
Chapter 2
New Approaches for Decomposition
Method for the Solution of Differential
Equations

2.1 Introduction

In many practical applications regarding the field of science and engineering, the
physical systems are modeled by nonlinear partial differential equations (NLPDEs).
These equations play a significant role in modeling problems in science and
engineering. Many physical phenomena of the physical problems arising in various
fields of science and engineering can be elegantly investigated by the NPDEs.
Furthermore, NPDEs are widely used to describe complex phenomena in various
fields of sciences, such as physics, biology, and chemistry and engineering.
Because, in many of the cases exact solutions are very difficult or even impossible
to obtain for NPDEs, the approximate analytical solutions are particularly important
for the study of dynamic systems for analyzing their physical nature. In the case of
approximate analytical solutions, the success of a certain approximation method
depends on the nonlinearities that occur in the studied problem, and thus a general
algorithm for the construction of such approximate solutions do not exist in the
general cases. Various methods have been devised to find the exact and approxi-
mate solutions of nonlinear partial differential equations in order to impart a great
deal of information for understanding physical phenomena arising in numerous
scientific and engineering fields. The investigation of the analytical solutions of
NPDEs plays a prominent role in the study of nonlinear physical phenomena.

In this chapter, the modified decomposition method has been implemented for
solving a coupled Klein-Gordon Schrödinger equation. In this purpose, a system of
coupled Klein-Gordon Schrödinger equation with appropriate initial values has
been solved by using the modified decomposition method. The proposed method
does not need linearization, weak nonlinearity assumptions or perturbation theory.

Spatially fractional order diffusion equations are generalizations of classical
diffusion equations which are increasingly used in modeling practical superdiffusive
problems in fluid flow, finance and other areas of application. This chapter presents
the analytical solutions of space fractional diffusion equations by two-step Adomian
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decomposition method (TSADM). By using initial conditions, the explicit solutions
of the equations have been presented in the closed form and then their solutions
have been represented graphically. The solution procedures of a one-dimensional
and a two-dimensional fractional diffusion equation are presented to show the
application of the present technique. The solutions obtained by the standard
decomposition method have been numerically evaluated and presented in the form
of tables and then compared with those obtained by TSADM. After examining the
results, it manifests that the present TSADM performs extremely well in terms of
efficiency and simplicity.

This chapter also presents the new approach of the Adomian decomposition
method (ADM) for the solution of space fractional diffusion equation with insulated
ends. A typical example of special interest with fractional space derivative of order
a, 1\a� 2 is considered in the present analysis and solved by ADM after
expressing the initial condition as Fourier series. The explicit solution of space
fractional diffusion equation has been presented in the closed form and then the
numerical solution has been represented graphically. The behaviour of Adomian
solutions and the effects of different values of a are shown graphically.

2.2 Outline of the Present Study

The aim of the present chapter is to focus on the study of nonlinear partial dif-
ferential equations (NLPDEs) that have particular applications appearing in engi-
neering and applied sciences. The analytical approximate methods have been used
for solving some specific nonlinear partial differential equations like coupled
nonlinear Klein-Gordon-Schrödinger equations, space fractional diffusion equations
on finite domain, space fractional diffusion equation with insulated ends, which
have a wide variety of applications in physical models.

2.2.1 Coupled Nonlinear Klein–Gordon–Schrödinger
Equations

The coupled nonlinear Klein–Gordon–Schrödinger (K-G-S) equations are consid-
ered in the following form:

utt � uxx þ u� vj j2¼ 0

ivt þ vxx þ uv ¼ 0:
ð2:1Þ

The modified decomposition method has been applied for solving coupled
Klein-Gordon-Schrödinger equations which play an important role in modern
physics.
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Darwish and Fan [1] have been proposed an algebraic method to obtain the
explicit exact solutions for coupled Klein-Gordon-Schrödinger (K-G-S) equations.
Recently, the Jacobi elliptic function expansion method has been applied to obtain
the solitary wave solutions for coupled K-G-S equations [2]. Hioe [3] has obtained
periodic solitary waves for two coupled nonlinear Klein–Gordon and Schrödinger
equations. Bao and Yang [4] have presented efficient, unconditionally stable and
accurate numerical methods for approximations of the Klein-Gordon-Schrödinger
equations. In order to determine the explicit series solutions of the coupled K-G-S
equations, the notion of Adomian’s decomposition method (in short ADM) [5, 6]
has been used. Without the use of any linearization or transformation method, the
ADM accurately computes the series solution. The ADM method which is of great
interest to applied sciences [5–7], provides the solution in a rapidly convergent
series with components that can be elegantly computed. The nonlinear equations
are solved easily and elegantly without linearizing the problem by using the ADM
[5, 6]. Large classes of linear and nonlinear differential equations, both ordinary as
well as partial, can be solved by the Adomian decomposition method [5–41].
A reliable modification of Adomian decomposition method has been done by
Wazwaz [42]. The decomposition method provides an effective procedure for
analytical solution of a wide and general class of dynamical systems representing
real physical problems [5–10, 12, 14–20, 23–25, 28–38, 40, 41]. This method
efficiently works for initial-value or boundary-value problems and for linear or
nonlinear, ordinary or partial differential equations and even for stochastic systems.
Moreover, we have the advantage of a single global method for solving ordinary or
partial differential equations as well as many types of other equations. Recently, the
solution of the fractional differential equation has been obtained through the
Adomian decomposition method by the researchers [38–40]. The method has
features in common with many other methods, but it is distinctly different on close
examinations, and one should not be misled by apparent simplicity into superficial
conclusions [5, 6].

In the present chapter, the modified decomposition method (in short MDM) has
been used to obtain the analytical approximate solutions of the coupled sine-Gordon
equations (2.1).

2.2.2 Space Fractional Diffusion Equations on Finite
Domain

Fractional diffusion equations are used to model problems in physics [43–45],
finance [46–49], and hydrology [50–54]. Fractional space derivatives may be used
to formulate anomalous dispersion models, where a particle plume spreads at a rate
that is different than the classical Brownian motion model. When a fractional
derivative of order 1\a\2 replaces the second derivative in a diffusion or dis-
persion model, it leads to a superdiffusive flow model. Nowadays, fractional
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diffusion equation plays important roles in modeling anomalous diffusion and
subdiffusion systems, description of fractional random walk, the unification of
diffusion and wave propagation phenomenon, see, e.g., the reviews in [43–58], and
references therein.

A one-dimensional fractional diffusion equation has been considered as in [59]

@uðx; tÞ
@t

¼ dðxÞ @
auðx; tÞ
@xa

þ qðx; tÞ; ð2:2Þ

on a finite domain xL\x\xR with 1\a� 2. It is to be assumed that the diffusion
coefficient (or diffusivity) dðxÞ[ 0. We also assume an initial condition uðx; t ¼
0Þ ¼ sðxÞ for xL\x\xR and Dirichlet boundary conditions of the form uðxL; tÞ ¼ 0
and uðxR; tÞ ¼ bRðtÞ. Equation (2.2) uses a Riemann fractional derivative of order a.

Also, a two-dimensional fractional diffusion equation has been considered as in
[60]

@uðx; y; tÞ
@t

¼ dðx; yÞ @
auðx; y; tÞ
@xa

þ eðx; yÞ @
buðx; y; tÞ
@yb

þ qðx; y; tÞ; ð2:3Þ

on a finite rectangular domain xL\x\xH and yL\y\yH , with fractional orders
1\a� 2 and 1\b� 2, where the diffusion coefficients dðx; yÞ[ 0 and eðx; yÞ[ 0.
The ‘forcing’ function qðx; y; tÞ can be used to represent sources and sinks. We will
assume that this fractional diffusion equation has a unique and sufficiently smooth
solution under the following initial and boundary conditions. Assume the initial
condition uðx; y; t ¼ 0Þ ¼ f ðx; yÞ for xL\x\xH , yL\y\yH , and Dirichlet bound-
ary condition uðx; y; tÞ ¼ Bðx; y; tÞ on the boundary (perimeter) of the rectangular
region xL\x\xH , yL\y\yH , with the additional restriction that
BðxL; y; tÞ ¼ Bðx; yL; tÞ ¼ 0. In physical applications, this means that the left/lower
boundary is set far away enough from an evolving plume that no significant con-
centrations reach that boundary. The classical dispersion equation in two dimen-
sions is given by a ¼ b ¼ 2. The values of 1\a\2, or 1\b\2 model a
super-diffusive process in that coordinate. Equation (2.3) also uses Riemann frac-
tional derivatives of order a and b.

In this chapter, the new two-step Adomian Decomposition Method (ADM) [6]
has been used to obtain the solutions of the fractional diffusion equations (2.2) and
(2.3).

2.2.3 Space Fractional Diffusion Equation with Insulated
Ends

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. Nowadays, fractional diffusion equa-
tion plays important roles in modeling anomalous diffusion and subdiffusion
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systems, description of fractional random walk, the unification of diffusion and
wave propagation phenomenon, see, e.g. the reviews in [43, 44, 55–58, 61], and
references therein.

In this chapter, the following space fractional diffusion equation with insulated
ends has been considered [62]

@uðx; tÞ
@t

¼ dDa
xuðx; tÞ; 0\x\L; t� 0; 1\a� 2; ð2:4Þ

where d is the diffusion coefficient and Da
x is Caputo fractional derivative of order a,

which is defined as [63]

Da
x f ðxÞ ¼

dm
f ðxÞ
dxm ; a ¼ m 2 N

1
Cðm�aÞ

Rx
0

x� nð Þm�a�1dm
f ðnÞ
dnm dn; m� 1\a\m; m 2 N:

8><
>: ð2:5Þ

We further consider the following Dirichlet’s boundary conditions

@uð0; tÞ
@x

¼ @uðL; tÞ
@x

¼ 0; t� 0; ð2:6Þ

and initial condition

uðx; 0Þ ¼ f ðxÞ; 0� x� L ð2:7Þ

In the present chapter, the Adomian decomposition method (ADM) [5, 6] with a
simple variation has been used to obtain the analytical approximate solution of
space fractional diffusion equation (2.4) with insulated ends.

2.3 Analysis of Proposed Methods

In this section, the analysis of modified decomposition method (MDM), the new
two-step Adomian Decomposition Method, and Adomian decomposition method
with a simple variation have been presented for solving the above physical
problems.

2.3.1 A Modified Decomposition Method for Coupled K-G-S
Equations

The coupled K-G-S equations (2.1) can be written in the following operator form
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Lttu ¼ Lxxu� uþNðu; vÞ
Ltv ¼ iLxxvþ iMðu; vÞ ð2:8Þ

where Lt � @
@t, Ltt � @2

@t2 and Lxx � @2

@x2 symbolize the linear differential operators and

the notations Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv symbolize the nonlinear operators.

Applying the two-fold integration inverse operator L�1
tt � Rt

0

Rt
0
ð:Þdtdt to the

system (2.8) and using the specified initial conditions yields

uðx; tÞ ¼ uðx; 0Þþ tutðx; 0Þþ L�1
tt Lxxu� L�1

tt uþ L�1
tt Nðu; vÞ

vðx; tÞ ¼ vðx; 0Þþ iL�1
t Lxxvþ iL�1

t Mðu; vÞ: ð2:9Þ

The Adomian decomposition method [5, 6] assumes an infinite series of solu-
tions for unknown function uðx; tÞ and vðx; tÞ given by

uðx; tÞ ¼
X1
n¼0

unðx; tÞ;

vðx; tÞ ¼
X1
n¼0

vnðx; tÞ;
ð2:10Þ

and nonlinear operators Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv by the infinite series of
Adomain polynomials given by

Nðu; vÞ ¼
X1
n¼0

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ;

Mðu; vÞ ¼
X1
n¼0

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ;

where An and Bn are the appropriate Adomian’s polynomial which are generated
according to algorithm determined in [5, 6]. For the nonlinear operator Nðu; vÞ,
these polynomials can be defined as

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
N
X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0:

ð2:11Þ

Similarly for the nonlinear operator Mðu; vÞ,

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
M

X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0:

ð2:12Þ
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These formulae are easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. For the sake of
convenience of the readers, we can give the first few Adomian polynomials for
Nðu; vÞ ¼ vj j2, Mðu; vÞ ¼ uv of the nonlinearity as

A0 ¼ v0v0;

A1 ¼ v1v0 þ v0v1;

A2 ¼ v2v0 þ v0v2 þ v1v1;

. . .

and

B0 ¼ u0v0;

B1 ¼ u1v0 þ u0v1;

B2 ¼ u2v0 þ u0v2 þ u1v1;

. . .

and so on, the rest of the polynomials can be constructed in a similar manner.
Substituting the initial conditions into Eq. (2.9) and identifying the zeroth

components u0 and v0, we then obtain the subsequent components by using the
following recursive equations according to the standard ADM

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An; n� 0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn; n� 0:
ð2:13Þ

Recently, Wazwaz [42] proposed that the construction of the zeroth component
of the decomposition series can be defined in a slightly different way. In [42], he
assumed that if the zeroth component u0 ¼ g and the function g is possible to divide
into two parts such as g1 and g2, the one can formulate the recursive algorithm for
u0 and general term unþ 1 in a form of the modified recursive scheme as follows:

u0 ¼ g1;

u1 ¼ g2 þ L�1
tt Lxxu0 � L�1

tt u0 þ L�1
tt A0;

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An; n� 1:

ð2:14Þ

Similarly, if the zeroth component v0 ¼ g0 and the function g0 is possible to
divide into two parts such as g01 and g02, the one can formulate the recursive
algorithm for v0 and general term vnþ 1 in a form of the modified recursive scheme
as follows:
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v0 ¼ g01;

v1 ¼ g02 þ iL�1
t Lxxv0 þ iL�1

t B0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn; n� 1:

ð2:15Þ

This type of modification is giving more flexibility to the ADM in order to solve
complicate nonlinear differential equations. In many cases, the modified decom-
position scheme avoids unnecessary computation especially in the calculation of the
Adomian polynomials. The computation of these polynomials will be reduced very
considerably by using the MDM.

It is worth noting that the zeroth components u0 and v0 are defined then the
remaining components un and vn; n� 1 can be completely determined. As a
result, the components u0; u1; . . .; and v0; v1; . . .; are identified and the series
solutions thus entirely determined. However, in many cases, the exact solution in a
closed form may be obtained.

The decomposition series solutions (2.10) generally converge very rapidly in
real physical problems [6]. The rapidity of this convergence means that few terms
are required. The convergence of this method has been rigorously established by
Cherruault [64], Abbaoui and Cherruault [65, 66] and Himoun et al. [67]. The
practical solutions will be the n-term approximations /n and wn

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1;

wn ¼
Xn�1

i¼0

viðx; tÞ; n� 1:

ð2:16Þ

with

lim
n!1/n ¼ uðx; tÞ;
lim
n!1wn ¼ vðx; tÞ: ð2:17Þ

2.3.2 The Two-Step Adomian Decomposition Method

Equation (2.2) can be rewritten as

Ltuðx; tÞ ¼ dðxÞDa
xuðx; tÞþ qðx; tÞ ð2:18Þ

where Lt � @
@t which is an easily invertible linear operator, Da

xð:Þ is the
Riemann-Liouville derivative of order a.
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The solution uðx; tÞ of Eq. (2.18) is represented by the decomposition series

u ¼
X1
n¼0

un: ð2:19Þ

Now, operating L�1
t both sides of Eq. (2.18) and then substituting Eq. (2.19)

yields

uðx; tÞ ¼ uðx; 0Þþ L�1
t dðxÞDa

x

X1
n¼0

un

 ! !
þ L�1

t ðqðx; tÞÞ ð2:20Þ

Each term of series (2.19) is given by the standard ADM recurrence relation

u0 ¼ f ;

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

; n� 0
ð2:21Þ

where f ¼ uðx; 0Þþ L�1
t ðqðx; tÞÞ.

It is worth noting that once the zeroth component u0 is defined, then the
remaining components un, n� 1 can be completely determined; each term is
computed by using the previous term. As a result, the components u0; u1; . . . are
identified and the series solutions thus entirely determined. However, in many
cases, the exact solution in a closed form may be obtained.

Without loss of generality let us assume that the zeroth component u0 ¼ f and
the function f is possible to divide into two parts such as f1 and f2, then one can
formulate the recursive algorithm for u0 and general term unþ 1 in a form of the
modified decomposition method (MDM) recursive scheme as follows:

u0 ¼ f1

u1 ¼ f2 þ L�1
t dðxÞDa

xun
� �

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

; n� 1:

ð2:22Þ

Comparing the recursive scheme (2.21) of the standard Adomain method with
the recursive scheme (2.22) of the modified technique leads to the conclusion that in
Eq. (2.21) the zeroth component was defined by the function f, whereas in
Eq. (2.22), the zeroth component u0 is defined only by a part f1 of f. The remaining
part f2 of f is added to the definition of the component u1 in Eq. (2.22). Although the
modified technique needs only a slight variation from the standard Adomian
decomposition method, the results are promising in that it minimizes the size of
calculations needed and will accelerate the convergence. The modification could
lead to a promising approach for many applications in applied science.
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The decomposition series solution (2.19) generally converges very rapidly in
real physical problems [5, 6]. Here also, the practical solution will be the n-term
approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1 ð2:23Þ

with
lim
n!1/n ¼ uðx; tÞ: ð2:24Þ

Luo [68] presented the theoretical support of how the exact solution can be
achieved by using only two iterations in the modified decomposition method. In
detail, it is possible because all other components vanish if the zeroth component is
equal to the exact solution.

Although the modified decomposition method may provide the exact solution by
using two iterations only, the criterion of dividing the function f into two practical
parts, and the case where f consists only of one term remains unsolved so far. The
two-step Adomian decomposition method (TSADM) overcomes the difficulties
arising in the modified decomposition method.

In the following, Luo [68] presents the two-step Adomian decomposition
method. For the convenience of the reader, we consider the differential equation

LuþRuþNu ¼ g; ð2:25Þ

where L is the highest order derivative which is assumed to be easily invertible, R is
a linear differential operator of order less than L, Nu represents the nonlinear terms,
and g is the source term.

The main ideas of the two-step Adomian decomposition method are:

1. Applying the inverse operator L�1 to g, and using the given conditions we
obtain

u ¼ /þ L�1g;

where the function / represents the term arising from using the given
conditions, all are assumed to be prescribed.
Let

u ¼
Xm
i¼0

ui; ð2:26Þ

where /0;/1; . . .;/m are the terms arising from integrating the source term
g and from using the given conditions. Based on this, we define u0 ¼
uk þ . . .þukþ s where k ¼ 0; 1; . . .;m, s ¼ 0; 1; . . .;m� k. Then we verify that
u0 satisfies the original equation Eq. (2.25) and the given conditions by
substitution, once the exact solution is obtained, we stop. Otherwise, we go to
the following step two.
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2. We set u0 ¼ u and continue with the standard Adomian recursive relation

ukþ 1 ¼ �L�1ðRukÞ � L�1ðAkÞ; k� 0:

Similarly, for Eq. (2.3), we can obtain

uðx; y; tÞ ¼ uðx; y; 0Þþ L�1
t dðx; yÞDa

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞDb

y

X1
n¼0

un

 ! !
þ L�1

t ðqðx; y; tÞÞ:
ð2:27Þ

Now, the standard Adomian decomposition method recurrence scheme is

u0 ¼ f ;

unþ 1 ¼ L�1
t dðx; yÞDa

xun
� �þ L�1

t eðx; yÞDb
y un

� �
; n� 0;

ð2:28Þ

where f ¼ uðx; y; 0Þþ L�1
t ðqðx; y; tÞÞ.

In the other hand, the modified decomposition method recursive scheme is as
follows

u0 ¼ f1

u1 ¼ f2 þ L�1
t dðx; yÞDa

xu0
� �þ L�1

t eðx; yÞDb
y u0

� �
unþ 1 ¼ L�1

t dðx; yÞDa
xun

� �þ L�1
t eðx; yÞDb

y un
� �

; n� 1:

ð2:29Þ

Compared to the standard Adomian method and the modified method, we can
see that the two-step Adomian method may provide the solution by using two
iterations only.

2.3.3 ADM with a Simple Variation for Space Fractional
Diffusion Model

Equation (2.4) can be written as

Ltuðx; tÞ ¼ dDa
xuðx; tÞ; ð2:30Þ

where Lt � @
@t which is an easily invertible linear operator, Da

xð�Þ is the Caputo
fractional derivative of order a.
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If f ðxÞ is a periodic function with period L, then the Fourier Cosine series of f ðxÞ
in ½0; L� can be obtained as

f ðxÞ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cos

npx
L

� �
: ð2:31Þ

The Fourier Cosine series is well adapted to functions whose first order
derivatives are zero at the endpoints x ¼ 0 and x ¼ L of the interval ½0; L�, since all
the basis functions cos npx

L

� �
have this property.

Therefore, after considering the initial condition uðx; 0Þ ¼ f ðxÞ as Fourier Cosine
series, we can take

uðx; 0Þ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
; ð2:32Þ

where cosc npx
L

� �
is the Generalized Cosine function defined in [69] and c ¼ a=2,

c 2 ð12 ; 1�.
It is known that

Dc
x sinc x ¼ cosc x; lim

c!1
sinc x ¼ sin x

and

Dc
x sinc x ¼ cosc x;

where cosc x ¼
P1
n¼0

ð�1Þnx2nc
Cð2ncþ 1Þ.

According to the Adomian decomposition method, we can write,

uðx; tÞ ¼ uðx; 0Þþ L�1
t ðdDa

xuðx; tÞÞ; ð2:33Þ

where
u0 ¼ uðx; 0Þ

¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
;

u1 ¼ L�1
t ðdDa

xu0Þ;
u2 ¼ L�1

t ðdDa
xu1Þ;

u3 ¼ L�1
t ðdDa

xu2Þ;

and so on.
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The decomposition series solution

u ¼
X1
n¼0

un;

generally converges very rapidly in real physical problems [6]. The practical
solution will be the n-term approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1 ð2:34Þ

with

lim
n!1/n ¼ uðx; tÞ: ð2:35Þ

2.4 Solutions of Coupled Klein–Gordon–Schrödinger
Equations

In this section, the modified decomposition method has been used for getting the
analytical approximate solutions for the coupled K-G-S equations (2.1).

2.4.1 Implementation of MDM for Analytical Approximate
Solutions of Coupled K-G-S Equations

We first consider the coupled K-G-S equations (2.1) with the initial conditions

uðx; 0Þ ¼ 6B2 sec h2ðBxÞ; utðx; 0Þ ¼ �12B2c sec h2ðBxÞ tanhðBxÞ;
vðx; 0Þ ¼ 3B sec h2ðBxÞeidx; ð2:36Þ

where Bð� 1=2Þ, c and d are arbitrary constants.
Using (2.14) and (2.15) with (2.11) and (2.12) respectively and considering

c ¼
ffiffiffiffiffiffiffiffiffiffi
4B2�1

p
2 , d ¼ � c

2B for the coupled K-G-S equations (2.1) and initial conditions
(2.36) gives
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u0 ¼ 0;

u1 ¼ uðx; 0Þþ tutðx; 0Þþ L�1
tt Lxxu0 � L�1

tt u0 þ L�1
tt A0

¼ 6B2 sec h2ðBxÞ � 12B2ct sec h2ðBxÞ tanhðBxÞ;
u2 ¼ L�1

tt Lxxu1 � L�1
tt u1 þ L�1

tt A1

¼ t2ð�3B2 sec h2ðBxÞ � 9B4 sec h4ðBxÞþ 3B4 coshð3BxÞ sec h5ðBxÞÞ
þ t3ð�2B4c sec h5ðBxÞð�11 sinhðBxÞþ sinhð3BxÞÞ
þ 2B2c sec h2ðBxÞ tanhðBxÞÞ;

and

v0 ¼ 0;

v1 ¼ vðx; 0Þþ iL�1
t Lxxv0 þ iL�1

t B0

¼ 3B sec h2ðBxÞeidx;
v2 ¼ iL�1

t Lxxv1 þ iL�1
t B1

¼ �3iBeidxt sec h2ðBxÞð2B2 sec h2ðBxÞþ ðdþ 2iB tanh2ðBxÞÞ2Þ

and so on, in this manner, the other components of the decomposition series can be
easily obtained of which uðx; tÞ and vðx; tÞ were evaluated in the following series
form

uðx; tÞ ¼ 6B2 sec h2ðBxÞ � 12B2ct sec h2ðBxÞ tanhðBxÞ
þ t2ð�3B2 sec h2ðBxÞ � 9B4 sec h4ðBxÞþ 3B4 coshð3BxÞ sec h5ðBxÞÞ
þ t3ð�2B4c sec h5ðBxÞð�11 sinhðBxÞþ sinhð3BxÞÞþ 2B2c sec h2ðBxÞ tanhðBxÞÞþ � � � ;

vðx; tÞ ¼ 3B sec h2ðBxÞeidx

ð2:37Þ

�3iBeidxt sec h2ðBxÞð2B2 sec h2ðBxÞþ ðdþ 2iB tanh2ðBxÞÞ2Þþ � � � : ð2:38Þ

follow immediately with the aid of Mathematica [70].

2.4.2 Numerical Results and Discussion for Coupled K-G-S
Equations

In this section, we analyze the numerical solutions for coupled K-G-S equations
obtained by the modified decomposition method.

The numerical simulations using MDM

In the present numerical experiment, Eqs. (2.37) and (2.38) have been used to draw
the graphs as shown in Figs. 2.1, 2.2, 2.3 and 2.4 respectively.
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The numerical solutions of the coupled K-G-S equations (2.1) have been shown
in Figs. 2.1, 2.2, 2.3 and 2.4 with the help of five-term and four-term approxima-
tions /5 and w4 for the decomposition series solutions of uðx; tÞ and vðx; tÞ
respectively. In the present numerical computation, we have assumed B ¼ 0:575.

Fig. 2.1 a The decomposition method solution for uðx; tÞ, b Corresponding 2D solution for uðx; tÞ
when t ¼ 0

Fig. 2.2 a The decomposition method solution for Reðvðx; tÞÞ, b Corresponding 2D solution for
Reðvðx; tÞÞ when t ¼ 0

Fig. 2.3 a The decomposition method solution for Imðvðx; tÞÞ, b Corresponding 2D solution for
Imðvðx; tÞÞ when t ¼ 0

2.4 Solutions of Coupled Klein–Gordon–Schrödinger Equations 69



2.5 Implementation of Two-Step Adomian Decomposition
Method for Space Fractional Diffusion Equations
on a Finite Domain

In this section, the new two-step Adomian decomposition method has been
implemented for the solutions of one-dimensional and two-dimensional space
fractional diffusion equations with finite domain respectively.

2.5.1 Solution of One-Dimensional Space Fractional
Diffusion Equation

Let us consider the one-dimensional fractional diffusion equation (2.2), as taken in
[59]

@uðx; tÞ
@t

¼ dðxÞ @
1:8uðx; tÞ
@x1:8

þ qðx; tÞ; ð2:39Þ

on a finite domain 0\x\1, with the diffusion coefficient

dðxÞ ¼ Cð2:2Þx2:8=6 ¼ 0:183634x2:8;

the source/sink function

qðx; tÞ ¼ �ð1þ xÞe�tx3;

the initial condition

Fig. 2.4 a The decomposition method solution for Absðvðx; tÞÞ, b Corresponding 2D solution for
Absðvðx; tÞÞ when t ¼ 0
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uðx; 0Þ ¼ x3; for 0\x\1

and the boundary conditions

uð0; tÞ ¼ 0; uð1; tÞ ¼ e�t; for t[ 0:

Now, Eq. (2.39) can be rewritten in operator form as

Ltuðx; tÞ ¼ dðxÞD1:8
x uðx; tÞþ qðx; tÞ; ð2:40Þ

where Lt � @
@t symbolizes the easily invertible linear differential operator, D1:8

x ð:Þ is
the Riemann–Liouville derivative of order 1.8.

Applying the one-fold integration inverse operator L�1
t � Rt

0
ð:Þdt to Eq. (2.40)

and using the specified initial condition yields

uðx; tÞ ¼ uðx; 0Þþ L�1
t dðxÞD1:8

x

X1
n¼0

un

 ! !
þ L�1

t ðqðx; tÞÞ

¼ e�tx3 þ e�tx4 � x4 þ L�1
t dðxÞD1:8

x

X1
n¼0

un

 ! !
:

ð2:41Þ

The standard Adomian decomposition method:

u0 ¼ e�tx3 þ e�tx4 � x4;

u1 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u0
@x1:8

� �

¼ ð�e�t þ 1Þx4 þ 4ð�e�t þ 1� tÞx5
2:2

;

u2 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u1
@x1:8

� �

¼ 4ðe�t þ t � 1Þx5
2:2

þ
80 e�t � t2

2! þ t � 1
� �

x6

3:2� 2:22
;

u3 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u2
@x1:8

� �

¼
80 �e�t þ t2

2! � tþ 1
� �

x6

3:2� 2:22
þ

80Cð6Þ �e�t � t3
3! þ t2

2! � tþ 1
� �

x7

4:2� 3:22 � 2:23
;

and so on.
Therefore, according to the decomposition method, the two-term approximation

/2 is
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/2 ¼ u0 þ u1

¼ e�tx3 þ 4ð�e�t þ 1� tÞx5
2:2

:
ð2:42Þ

Therefore, the three-term approximation /3 is

/3 ¼ u0 þ u1 þ u2

¼ e�tx3 þ
80 e�t � t2

2! þ t � 1
� �

x6

3:2� 2:22
:

ð2:43Þ

Therefore, according to the decomposition method, the four-term approximation
/4 is

/4 ¼ u0 þ u1 þ u2 þ u3

¼ e�tx3 þ
80Cð6Þ �e�t � t3

3! þ t2
2! � tþ 1

� �
x7

4:2� 3:22 � 2:23

ð2:44Þ

The TSADM:
Using the scheme (2.26) of TSADM, we have

u ¼ u0 þu1 þu2;

where u0 ¼ e�tx3, u1 ¼ e�tx4, u2 ¼ �x4.
Clearly, u1 and u2 do not satisfy the initial condition uðx; 0Þ ¼ x3. By selecting

u0 ¼ u0 and verifying that u0 justifies Eq. (2.39) and satisfies the initial as well as
boundary conditions, we obtain the following terms from the recursive scheme of
MDM

u0 ¼ e�tx3;

u1 ¼ e�tx4 � x4 þ L�1
t

Cð2:2Þx2:8
6

@1:8u0
@x1:8

� �
¼ e�tx4 � x4 � ðe�t � 1Þx4
¼ 0

u2 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u1
@x1:8

� �
¼ 0

and so on.
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Therefore, the solution is

u x; tð Þ ¼ e�tx3 ð2:45Þ

The solution (2.45) can be verified through substitution in Eq. (2.39).

2.5.2 Solution of Two-Dimensional Space Fractional
Diffusion Equation

Let us consider the two-dimensional fractional diffusion equation Eq. (1.2), as in
[60]

@uðx; y; tÞ
@t

¼ dðx; yÞ @
1:8uðx; y; tÞ
@x1:8

þ eðx; yÞ @
1:6uðx; y; tÞ
@y1:6

þ qðx; y; tÞ; ð2:46Þ

on a finite rectangular domain 0\x\1, 0\y\1, for 0� t� Tend with the diffusion
coefficients

dðx; yÞ ¼ Cð2:2Þx2:8y=6;

and

eðx; yÞ ¼ 2xy2:6=Cð4:6Þ;

and the forcing function

qðx; y; tÞ ¼ �ð1þ 2xyÞe�tx3y3:6;

with the initial condition

uðx; y; 0Þ ¼ x3y3:6;

and Dirichlet boundary conditions on the rectangle in the form uðx; 0; tÞ ¼
uð0; y; tÞ ¼ 0, uðx; 1; tÞ ¼ e�tx3, and uð1; y; tÞ ¼ e�ty3:6, for all t� 0.

Now, Eq. (2.46) can be rewritten in operator form as

Ltuðx; y; tÞ ¼ dðx; yÞD1:8
x uðx; y; tÞþ eðx; yÞD1:6

y uðx; y; tÞþ qðx; y; tÞ; ð2:47Þ

where Lt � @
@t symbolizes the easily invertible linear differential operator, D1:8

x ð:Þ
and D1:6

y ð:Þ are the Riemann–Liouville derivatives of order 1.8 and 1.6 respectively.

Applying the one-fold integration inverse operator L�1
t � Rt

0
ð:Þdt to the

Eq. (2.47) and using the specified initial condition yields
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uðx; y; tÞ ¼ uðx; y; 0Þþ L�1
t dðx; yÞD1:8

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞD1:6

y

X1
n¼0

un

 ! !
þ L�1

t ðqðx; y; tÞÞ

¼ x3y3:6e�t þ 2x4y4:6e�t � 2x4y4:6 þ L�1
t dðx; yÞD1:8

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞD1:6

y

X1
n¼0

un

 ! !

ð2:48Þ

The standard Adomian decomposition method:

u0 ¼ x3y3:6e�t þ 2x4y4:6e�t � 2x4y4:6;

u1 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u0
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u0
@y1:6

� �

¼ 2x4y4:6ð�e�t þ 1Þþ 8
2:2

þ 2� 4:6
3

� �
x5y5:6ð�e�t þ 1� tÞ

¼ 2x4y4:6ð�e�t þ 1Þþ 1106
165

x5y5:6ð�e�t þ 1� tÞ;

u2 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u1
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u1
@y1:6

� �

¼ 1106
165

x5y5:6ðe�t � 1þ tÞþ 9101827
272250

x6y6:6
�
e�t � 1þ t � t2

2

�

and so on.
Therefore, according to the decomposition method, the three-term approxima-

tion /3 is

/3 ¼ u0 þ u1 þ u2

¼ x3y3:6e�t þ 9101827
272250

x6y6:6
�
e�t � 1þ t � t2

2

� ð2:49Þ

The TSADM:
Using the scheme (2.26) of TSADM, we have

u ¼ u0 þu1 þu2;

where u0 ¼ x3y3:6e�t, u1 ¼ 2x4y4:6e�t, u2 ¼ �2x4y4:6.
Clearly, u1 and u2 do not satisfy the initial condition uðx; y; 0Þ ¼ x3y3:6. By

selecting u0 ¼ u0 and verifying that u0 justifies Eq. (2.46) and satisfies the initial as

74 2 New Approaches for Decomposition Method for the Solution …



well as boundary conditions, we obtain the following terms from the recursive
scheme of MDM

u0 ¼ x3y3:6e�t;

u1 ¼ 2x4y4:6e�t � 2x4y4:6 þ L�1
t

Cð2:2Þx2:8y
6

@1:8u0
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u0
@y1:6

� �
¼ 2x4y4:6e�t � 2x4y4:6 � 2ðe�t � 1Þx4y4:6
¼ 0;

u2 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u1
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u1
@y1:6

� �
¼ 0

and so on.
Therefore, the solution is

uðx; y; tÞ ¼ x3y3:6e�t: ð2:50Þ

The solution (2.50) can be verified through substitution in Eq. (2.46).

2.5.3 Numerical Results and Discussion for Space
Fractional Diffusion Equations

In this section, the numerical solutions for space fractional diffusion equations
obtained by proposed new two-step Adomian decomposition method have been
analyzed. Also, an analysis for the comparison of errors between TSADM solution
and standard Adomian decomposition method solution has been presented here.

The numerical simulations using TSADM

In this present numerical experiment, Eqs. (2.45) and (2.50) have been used to draw
the graphs as shown in Figs. 2.5 and 2.6 respectively. Figure 2.5 shows the 3D
surface solution uðx; tÞ for one-dimensional fractional diffusion equation. On the
other hand, Fig. 2.6 shows the 3D surface solution uðx; y; tÞ for two-dimensional
fractional diffusion equation.

Comparison of errors between TSADM solution and standard Adomian
decomposition method solution

In this present analysis, the solutions of the two-step Adomian decomposition
method have been compared with that obtained by standard Adomian decompo-
sition method. Here we demonstrate the absolute errors by taking different values of
x and t. Comparison results in Tables 2.1, 2.2, 2.3 and 2.4 exhibit that there is a
good agreement between TSADM and standard Adomian decomposition method
solutions.
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From Tables 2.1, 2.2 and 2.3, it can be observed that the standard Adomian
decomposition method solution converges very slowly to the exact solution. On the
other hand, TSADM requires only two iterations to achieve the exact solution.
Therefore, TSADM is more effective and promising compared to standard Adomian
decomposition method.

Fig. 2.5 Three dimensional surface solution uðx; tÞ of one-dimensional fractional diffusion
Eq. (2.39)

Fig. 2.6 Three dimensional surface solution uðx; y; tÞ of two-dimensional fractional diffusion
Eq. (2.46) at time t ¼ 1
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Table 2.1 Comparison between TSADM solution and standard Adomian decomposition method
solution /2

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
two term solution /2

Absolute error
u� /2j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.00509492 0.000653195

(0.5, 1) 0.0459849 0.0250827 0.0209022

(0.75, 1) 0.155199 −0.00352725 0.158726

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.0000987486 0.00201587

(0.5, 2) 0.0169169 −0.0475908 0.0645077

(0.75, 2) 0.0570946 −0.432761 0.489855

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00286161 0.00363954

(0.5, 3) 0.00622338 −0.110242 0.116465

Table 2.2 Comparison between TSADM solution and standard Adomian decomposition method
solution /3

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
three term solution /3

Absolute error
u� /3j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.0055815 0.000166612

(0.5, 1) 0.0459849 0.0353218 0.0106631

(0.75, 1) 0.155199 0.0337393 0.12146

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.00102422 0.00109039

(0.5, 2) 0.0169169 −0.0528681 0.0697851

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00231194 0.00308986

(0.5, 3) 0.00622338 −0.191528 0.197751
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Table 2.3 Comparison between TSADM solution and standard Adomian decomposition method
solution /4

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
four term solution /4

Absolute error
u� /4j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.00570392 0.0000442011

(0.5, 1) 0.0459849 0.0403272 0.00565774

(0.75, 1) 0.155199 0.0585313 0.0966678

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.00151496 0.000599653

(0.5, 2) 0.0169169 −0.0598386 0.0767556

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00184474 0.00262266

(0.5, 3) 0.00622338 −0.329478 0.335701

Table 2.4 Comparison between TSADM solution and standard Adomian decomposition method
solution /3

ðx; y; t ¼ 1Þ Two-step Adomain
decomposition method
solution (exact solution
uðx; y; t ¼ 1Þ ¼ x3y3)

Standard Adomian
decomposition method
three term solution /3

Absolute error
u� /3j j

(0, 0.25, 1) 0 0 0

(0.25, 0.25, 1) 0.000039094 0.0000389794 0.0000001146

(0.5, 0.25, 1) 0.000312752 0.000305417 0.000007335

(0.75, 0.25, 1) 0.00105554 0.000971995 0.0000835416

(1, 0.25, 1) 0.00250201 0.00203262 0.000469391

(0, 0.5, 1) 0 0 0

(0.25, 0.5, 1) 0.000474043 0.000462926 0.0000111166

(0.5, 0.5, 1) 0.00379234 0.00308088 0.000711464

(0.75, 0.5, 1) 0.0127992 0.00469513 0.00810402

(1, 0.5, 1) 0.0303387 −0.015195 0.0455337

(0, 0.75, 1) 0 0 0

(0.25, 0.75, 1) 0.00204054 0.00187904 0.000161501

(0.5, 0.75, 1) 0.0163244 0.00598829 0.0103361

(0.75, 0.75, 1) 0.0550947 −0.0626396 0.117734

(0, 1, 1) 0 0 0

(0.25, 1, 1) 0.00574812 0.00466974 0.00107838

(0.5, 1, 1) 0.0459849 −0.0230313 0.0690162
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From Table 2.4, it can be observed that the absolute errors for TSADM solution
and standard Adomian decomposition method solution /3 are very small for small
values of x and y. But as the values of x and y increase the absolute errors also
increase.

2.6 Solution of Space Fractional Diffusion Equation
with Insulated Ends

In this section, a variation of Adomian decomposition method has been proposed
for getting analytical approximate solution of space fractional diffusion equation
with insulated ends.

2.6.1 Implementation of the Present Method

Let us consider initial conditions

uðx; 0Þ ¼ x2; 0� x� p ð2:51Þ

and boundary conditions

@uð0; tÞ
@x

¼ @uðp; tÞ
@x

¼ 0; t� 0 ð2:52Þ

for Eq. (2.4), as taken in [62].
We see that f ðxÞ ¼ x2 is a periodic function with period p. The Fourier sine

series of f ðxÞ in [0, p] can be obtained as

f ðxÞ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cos nx: ð2:53Þ

Therefore, after considering f ðxÞ as Fourier Cosine series, we can take

uðx; 0Þ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx; ð2:54Þ

where cosc nx is the Generalized Cosine function and c ¼ a=2, c 2 ð12 ; 1�.
From Eq. (2.33), the following terms can be obtained
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u0 ¼ uðx; 0Þ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx;

u1 ¼ L�1
t ðdDa

xu0Þ ¼
�td
1!

X1
n¼1

4
n2
ð�1Þnn2c cosc nx;

u2 ¼ L�1
t ðdDa

xu1Þ ¼
t2d2

2!

X1
n¼1

4
n2
ð�1Þnn4c cosc nx;

u3 ¼ L�1
t ðdDa

xu2Þ ¼ � t3d3

3!

X1
n¼1

4
n2
ð�1Þnn6c cosc nx

and so on.
Therefore, the solution is

uðx; tÞ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx 1� tdn2c

1!
þ t2d2n4c

2!
� t3d3n6c

3!
þ � � �

� �

¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx E1ð�tdn2cÞ;

where Ek zð Þ is the Mittag-Leffler function in one parameter.

¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx e�tdn2c

¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosa=2 nx e�tdna

ð2:55Þ

The solution (2.55) can be verified through substitution in Eq. (2.4).

2.6.2 Numerical Results and Discussion

In this section, the numerical solutions of the space fractional diffusion equation
with insulated ends obtained by the proposed method have been analyzed.

The numerical simulations for the proposed method

In this present numerical experiment, Eq. (2.55) has been used to draw the graphs
as shown in Figs. 2.7, 2.8 and 2.9 for different fractional order values of a
respectively. In this numerical analysis, we assume d ¼ 0:4 for Eq. (2.4).

Figures 2.7, 2.8 and 2.9 show anomalous diffusion behaviour. These figures
exhibit slow diffusion at the beginning and fast diffusion later. From these figures, it
is also observed that diffusion behaviour increases as a increases.
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Fig. 2.7 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 1:5

Fig. 2.8 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 1:75

Fig. 2.9 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 2
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2.7 Conclusion

In the present chapter, the modified decomposition method has been used for
finding the solutions for the coupled K-G-S equations with initial conditions. The
approximate solutions to the coupled K-G-S equations have been calculated by
using the MDM without any need of transformation techniques and linearization of
the equations. Additionally, it does not need any discretization method to get
numerical solutions. This proposed method thus eliminates the difficulties of
massive computational work.

This chapter includes an analytical scheme to obtain the solutions of the one
dimensional and two-dimensional fractional diffusion equations. Two typical
examples have been discussed as illustrations. In this work, it has been established
that TSADM is well suited to solve the fractional diffusion equation. TSADM
proceeds in two steps. The first step consists of verifying that the zeroth component
of the series solution includes the exact solution. Once the exact solution is
obtained, we stop. Otherwise, we continue with the standard Adomian recursion
relation in the second step.

In this chapter, TSADM has been applied for the solutions of space fractional
diffusion equations. The TSADM may provide the solution by using two iterations
only if compared with the standard Adomian method and the modified decompo-
sition method. Moreover, the TSADM overcomes the difficulties arising in the
modified decomposition method as discussed earlier. A comparison study between
the TSADM and the standard decomposition method is conducted to illustrate the
efficiency of the TSADM and the results obtained indicate that the TSADM is more
feasible and effective.

This chapter also presents an analytical scheme to obtain the solution of space
fractional diffusion equation with insulated ends by ADM with a simple variation.
In the present analysis, a new approach of Adomian decomposition method has
been successfully applied after expressing the initial condition as a Fourier series.
The physical significance of the solution has been also presented graphically. The
present work demonstrates that this proposed technique is well suited to solve the
space fractional diffusion equation with insulated ends.

The proposed methods are straightforward, without restrictive assumptions and
the components of the series solution can be easily computed using any mathe-
matical symbolic package. Moreover, these methods do not change the problem
into a convenient one for the use of linear theory. Therefore, they provide more
realistic series solutions that generally converge very rapidly in real physical
problems. When solutions are computed numerically, the rapid convergence is
obvious. Moreover, no linearization or perturbation is required. It can avoid the
difficulty of finding the inverse of the Laplace Transform and can reduce the labour
of perturbation method. It is quite obvious to see that these methods are quite
accurate, easy and efficient technique for solving fractional partial differential
equations arising in physical problems.
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As mentioned, the proposed methods avoid linearization and physically unre-
alistic assumptions. Furthermore, as the present methods do not require dis-
cretization of the variables, i.e., time and space, it is not affected by computational
round off errors and one is not faced with the necessity of large computer memory
and time. Consequently, the computational size will be reduced.

References

1. Darwish, A., Fan, E.G.: A series of new explicit exact solutions for the coupled
Klein-Gordon-Schrödinger equations. Chaos. Soliton. Fractals. 20, 609–617 (2004)

2. Liu, S., Fu, Z., Liu, S., Wang, Z.: The periodic solutions for a class of coupled nonlinear
Klein-Gordon equations. Phys. Lett. A 323, 415–420 (2004)

3. Hioe, F.T.: Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrödinger
equations. J. Phys. A: Math. Gen. 36, 7307–7330 (2003)

4. Bao, W., Yang, L.: Efficient and accurate numerical methods for the
Klein-Gordon-Schrödinger equations. http://web.cz3.nus.edu.sg/*bao/PS/KGS.pdf

5. Adomian, G.: Nonlinear stochastic systems theory and applications to physics. Kluwer
Academic publishers, Netherlands (1989)

6. Adomian, G.: Solving frontier problems of physics: the decomposition method. Kluwer
Academic Publishers, Boston (1994)

7. Wazwaz, A.M.: Partial differential equations: methods and applications. Balkema, Lisse, The
Netherlands (2002)

8. Adomian, G.: An analytical solution of the stochastic Navier-Stokes system. Found. Phys. 21
(7), 831–843 (1991)

9. Adomian, G., Rach, R.: Linear and nonlinear Schrödinger equations. Found. Phys. 21, 983–
991 (1991)

10. Adomian, G.: Solution of physical problems by decomposition. Comput. Math. Appl. 27(9–
10), 145–154 (1994)

11. Adomian, G.: Solutions of nonlinear P.D.E. Appl. Math. Lett. 11(3), 121–123 (1998)
12. Wazwaz, A.M.: The decomposition method applied to systems of partial differential equations

and to the reaction—diffusion Brusselator model. Appl. Math. Comput. 110(2–3), 251–264
(2000)

13. Wazwaz, A.M.: Approximate solutions to boundary value problems of higher order by the
modified decomposition method. Comput. Math Appl. 40(6–7), 679–691 (2000)

14. Wazwaz, A.M.: The modified decomposition method applied to unsteady flow of gas through
a porous medium. Appl. Math. Comput. 118(2–3), 123–132 (2001)

15. Wazwaz, A.M.: Construction of soliton solutions and periodic solutions of the Boussinesq
equation by the modified decomposition method. Chaos. Solitons. Fractals. 12(8), 1549–1556
(2001)

16. Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV
equation by Adomian decomposition method. Chaos. Solitons. Fractals. 12(12), 2283–2293
(2001)

17. Wazwaz, A.M.: A computational approach to soliton solutions of the Kadomtsev-Petviashvili
equation. Appl. Math. Comput. 123(2), 205–217 (2001)

18. Wazwaz, A.M., Gorguis, A.: An analytic study of fisher’s equation by using Adomian
decomposition method. Appl. Math. Comput. 154(3), 609–620 (2004)

19. Wazwaz, A.M.: Analytical solution for the time-dependent Emden-Fowler type of equations
by Adomian decomposition method. Appl. Math. Comput. 166(3), 638–651 (2005)

20. Mavoungou, T., Cherruault, Y.: Solving frontier problems of physics by decomposition
method: a new approach. Kybernetes 27(9), 1053–1061 (1998)

2.7 Conclusion 83

http://web.cz3.nus.edu.sg/%7ebao/PS/KGS.pdf


21. Abbaoui, K., Cherruault, Y.: The decomposition method applied to the Cauchy problem.
Kybernetes 28, 103–108 (1999)

22. Khelifa, S., Cherruault, Y.: Approximation of the solution for a class of first order p.d.e. by
Adomian method. Kybernetes 31(3/4), 577–595 (2002)

23. Inc, M., Cherruault, Y.: A new approach to travelling wave solution of a fourth-order
semilinear diffusion equation. Kybernetes 32(9–10), 1492–1503 (2003)

24. Inc, M., Cherruault, Y., Abbaoui, K.: A computational approach to the wave equations: an
application of the decomposition method. Kybernetes 33(1), 80–97 (2004)

25. Inc, M., Cherruault, Y.: A reliable approach to the Korteweg-de Vries equation: an application
of the decomposition method. Kybernetes 34(7–8), 951–959 (2005)

26. Inc, M., Cherruault, Y.: A reliable method for obtaining approximate solutions of linear and
nonlinear Volterra-Fredholm integro-differential equations. Kybernetes 34(7–8), 1034–1048
(2005)

27. Kaya, D., Yokus, A.: A numerical comparison of partial solutions in the decomposition
method for linear and nonlinear partial differential equations. Math. Comp. Simul. 60(6), 507–
512 (2002)

28. Kaya, D.: A numerical solution of the Sine-Gordon equation using the modified
decomposition method. Appl. Math. Comp. 143, 309–317 (2003)

29. Kaya, D., El-Sayed, S.M.: On a generalized fifth order KdV equations. Phys. Lett. A 310(1),
44–51 (2003)

30. Kaya, D., El-Sayed, S.M.: An application of the decomposition method for the generalized
KdV and RLW equations. Chaos. Solitons. Fractals. 17(5), 869–877 (2003)

31. Kaya, D.: An explicit and numerical solutions of some fifth-order KdV equation by
decomposition method. Appl. Math. Comp. 144(2–3), 353–363 (2003)

32. Kaya, D.: Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation.
Appl. Math. Comp. 147, 69–78 (2004)

33. Kaya, D.: A numerical simulation of solitary-wave solutions of the generalized regularized
long-wave equation. Appl. Math. Comp. 149(3), 833–841 (2004)

34. Kaya, D., Inan, I.E.: A numerical application of the decomposition method for the combined
KdV–MKdV equation. Appl. Math. Comput. 168(2), 915–926 (2005)

35. Geyikli, T., Kaya, D.: An application for a modified KdV equation by the decomposition
method and finite element method. Appl. Math. Comput. 169(2), 971–981 (2005)

36. El-Sayed, S.M., Kaya, D.: A numerical solution and an exact explicit solution of the NLS
equation. Appl. Math. Comput. 172(2), 1315–1322 (2006)

37. Kaya, D.: The exact and numerical solitary-wave solutions for generalized modified
Boussinesq equation. Phys. Lett. A 348(3–6), 244–250 (2006)

38. Ray, S.S., Bera, R.K.: Analytical solution of a dynamic system containing fractional
derivative of order one-half by Adomian decomposition method. Trans. ASME J. Appl.
Mech. 72(2), 290–295 (2005)

39. Ray, S.S., Bera, R.K.: An approximate solution of a nonlinear fractional differential equation
by Adomian decomposition method. Appl. Math. Comput. 167(1), 561–571 (2005)

40. Ray, S.S., Bera, R.K.: Analytical solution of the Bagley Torvik equation by Adomian
decomposition method. Appl. Math. Comput. 168(1), 398–410 (2005)

41. Ray, S.S.: A numerical solution of the coupled Sine-Gordon equation using the modified
decomposition method. Appl. Math. Comput. 175(2), 1046–1054 (2006)

42. Wazwaz, A.M.: A Reliable Modification of Adomian decomposition method. Appl. Math.
Comp. 102(1), 77–86 (1999)

43. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal
equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82(18), 3563–
3567 (1999)

44. Metzler, R., Klafter, J.: The random walk’s guide to Anomalous diffusion: a fractional
dynamics approach. 339(1), 1–77 (2000)

84 2 New Approaches for Decomposition Method for the Solution …



45. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in
the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208
(2004)

46. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous time
finance. III. The diffusion limit. Mathematical finance (Konstanz, 2000), Trends Math.,
Birkhuser, Basel. 171–180 (2001)

47. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time
finance II: the waiting-time distribution. Phys. A 287, 468–481 (2000)

48. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys.
A 284, 376–384 (2000)

49. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial
data: an empirical study. Phys. A 314, 749–755 (2002)

50. Benson, D.A., Wheatcraft, S., Meerschaert, M.M.: Application of a fractional advection–
dispersion equation. Water Resour. Res 36, 1403–1412 (2000)

51. Baeumer, B., Meerschaert, M.M., Benson, D.A., Wheatcraft, S.W.: Subordinated advection—
dispersion equation for contaminant transport. Water Resour. Res. 37, 1543–1550 (2001)

52. Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion,
Lévy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)

53. Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the
fractional advection-dispersion equation. J. Contam. Hydrol. 48, 9–88 (2001)

54. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional
advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–1032 (2003)

55. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical
mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and fractional calculus in
continuum mechanics, pp. 291–348. Springer, Vienna (1997)

56. Mainardi, F., Pagnini, G.: The weight functions as solutions of the time-fractional diffusion
equation. Appl. Math. Comput. 141, 51–62 (2003)

57. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded
domain. Nonlinear Dyn. 29, 145–155 (2002)

58. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–
144 (1989)

59. Meerschaert, M.M., Scheffler, H., Tadjeran, C.: Finite difference methods for
two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

60. Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical
approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

61. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional
diffusion equation. Fractional Calc. Appl Anal. 4(2), 153–192 (2001)

62. Shen, S., Liu, F.: Error Analysis of an explicit finite difference approximation for the space
fractional diffusion equation with insulated ends. ANZIAM J., 46(E), C871-C887 (2005)

63. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)
64. Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18, 31–38 (1989)
65. Abbaoui, K., Cherruault, Y.: Convergence of Adomian’s method applied to differential

equations. Comput. Math. Applic. 28(5), 103–109 (1994)
66. Abbaoui, K., Cherruault, Y.: New Ideas for proving convergence of decomposition methods.

Comput. Math. Applic. 29, 103–108 (1995)
67. Himoun, N., Abbaoui, K., Cherruault, Y.: New Results of Convergence of Adomian’s

Method. Kybernetes 28(4–5), 423–429 (1999)
68. Luo, X.G.: A two-step Adomian decomposition method. Appl. Math. Comput. 170(1), 570–

583 (2005)
69. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and

applications. Taylor and Francis, London (1993)
70. Wolfram, S.: Mathematica for Windows, Version 5.0, Wolfram Research, (2003)

References 85


	2 New Approaches for Decomposition Method for the Solution of Differential Equations
	2.1 Introduction
	2.2 Outline of the Present Study
	2.2.1 Coupled Nonlinear Klein–Gordon–Schrödinger Equations
	2.2.2 Space Fractional Diffusion Equations on Finite Domain
	2.2.3 Space Fractional Diffusion Equation with Insulated Ends

	2.3 Analysis of Proposed Methods
	2.3.1 A Modified Decomposition Method for Coupled K-G-S Equations
	2.3.2 The Two-Step Adomian Decomposition Method
	2.3.3 ADM with a Simple Variation for Space Fractional Diffusion Model

	2.4 Solutions of Coupled Klein–Gordon–Schrödinger Equations
	2.4.1 Implementation of MDM for Analytical Approximate Solutions of Coupled K-G-S Equations
	2.4.2 Numerical Results and Discussion for Coupled K-G-S Equations

	2.5 Implementation of Two-Step Adomian Decomposition Method for Space Fractional Diffusion Equations on a Finite Domain
	2.5.1 Solution of One-Dimensional Space Fractional Diffusion Equation
	2.5.2 Solution of Two-Dimensional Space Fractional Diffusion Equation
	2.5.3 Numerical Results and Discussion for Space Fractional Diffusion Equations

	2.6 Solution of Space Fractional Diffusion Equation with Insulated Ends
	2.6.1 Implementation of the Present Method
	2.6.2 Numerical Results and Discussion

	2.7 Conclusion
	References




