
An Approach to Achieve Compression
Along with Security via a User Assigned
Security Key with Possible Lossless
Compression

Ashis Datta and Mousam Saikia

Abstract Although the current version of this researchworkmight not be fool-proof
as this kind of works are currently being researched upon and yet to be successfully
implemented at large. Popular software such as WinRAR makes use of AES to
encrypt the data and also compresses it at the same time but only one algorithm
is used to compress the data [1]. It is sometimes seen that using different lossless
compression algorithms multiple times can achieve a better compression ratio and
may even achieve better security [2]. Our plan is to achieve such kind of compression
ratios while achieving confidentiality with a model that we have devised ourselves.

Keywords Data compression · Loss-less · Encryption · Decryption · Cipher ·
Private key · Symmetric key · Plain text · Cryptographic modeling · Digital right

1 Introduction

1.1 Encryption

The process of converting from plaintext to cipher-text is known as encipher-
ing or encryption. Some classical encryption techniques [3] include symmetric
cypher model, substitution techniques, transposition techniques, rotor machines and
steganography. Our algorithm partially falls into the category of symmetric cypher
model. In this model, the sender encrypts the plain text into some cypher text using
some key to encrypt the data. The same key has to be used to decrypt the data. Our
algorithm modifies this concept by making sure that the original content that is sent
by the sender can be decrypted only in a specific system i.e., of the receiver. We
achieve this by incorporating the receiver’s system’s MAC address into the final key
that is used to encrypt data.

A. Datta (B) · M. Saikia
Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India
e-mail: ashis.d@smit.smu.edu.in

© Springer Nature Singapore Pte Ltd. 2020
H. K. D. Sarma et al. (eds.), Trends in Communication, Cloud, and Big Data, Lecture
Notes in Networks and Systems 99, https://doi.org/10.1007/978-981-15-1624-5_12

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1624-5_12&domain=pdf
mailto:ashis.d@smit.smu.edu.in
https://doi.org/10.1007/978-981-15-1624-5_12

114 A. Datta and M. Saikia

1.2 Compression

There are two basic types of data compression [4, 5]; lossy data compression and
lossless [6] data compression.

In lossy data compression techniques, the original data upon decompression will
lose or undergo changes in some of itsminute features which are not easily noticeable
by humans. This type of compression technique is used in compression of images,
audio and video data.

Lossless compression techniques are those in which, upon decompression will
produce an exact replica of the original data. Our software makes use of this type of
algorithms to achieve compression. The technique we have used should be able to
compress general-purpose data, i.e. the algorithm will accept any bit string given to
it.

We present a new algorithm for lossless data compression and encryption. The
basic idea of the algorithm is to define a unique compression and encryption of files
specified by a user based on a key/password provided by the user. We are making use
of lossless data compression [7] algorithms such as Snappy,Gzip, BZip2 andXZ. The
key specified by the user is taken as an input and files given are compressed multiple
times depending upon the result of XOR operation between the password and the
MAC (Media Access Control) address of the user’s system which is automatically
retrieved by the software and is unique to each system.

During the process of decryption and decompression of the data, the contents
will be available at a temporary sandboxed location in a folder and a process will
be created that will keep on running till its closed or the system is turned off. The
extracted file(s) will remain secure as copying, distributing or tampering with it will
not be possible. This is achieved by running the decryption/decompression software
as non-administrator. This part of the software will terminate itself if it is being ran
with administrator privileges. The contents will be deleted if the process is killed
and the space in the hard drive the content takes up will be filled with random data
such that a hacker cannot retrieve that data later. This will be achieved by replacing
the content of the data just before deleting them.

1.3 The Problem of Piracy

The way we consume media is changing and as content owners and producers look
for new ways to keep audiences engaged, the challenges of protecting content across
multiple screens becomes increasingly difficult. Innovation, of course, is a good
thing, but as new ways of streaming content are developed, it is actually aiding
digital piracy.

Piracy is detrimental to innovation, directly affecting job creation and economic
growth. Industries protect their ideas through a variety of legal instruments such as
patents, copyrights, designs, models and trademarks. Without the protection of their

An Approach to Achieve Compression Along with Security … 115

intellectual property rights [8], they may be less inclined to develop new ideas and
products. Risks are particularly high for industries inwhich the research and develop-
ment costs are high compared to the production costs of the finalised product. Faced
with a diminishing turnover due to counterfeiting and piracy, industry investment in
research and innovation couldwell slowdown. Thiswould limit development, growth
and competitiveness, forcing industries to simply close or at least limit production.

The problem of piracy is that it’s here to stay and it could be argued that the
problem is growing; in August it was reported that Game of Thrones was the world’s
most pirated TV show, with 1.6 million illegal downloads in just four weeks. This
accounted for over a quarter of all pirated downloads from the top 100 torrent sites.
Another recent report from Viacess-Orca highlighted that during the last Football
World Cup they monitored 20 million illegal downloads. What this demonstrates is
that the pirates appear to be winning. However the definition of piracy encompasses
many different layers: from the amateurish camera recordings shot discreetly from a
cinema, through to Internet-streamed content that has been cracked and then uploaded
to an app store.

The many layers of piracy certainly means that content owners and producers
can never fully protect their content, they can only do as much as possible to limit
what pirates can access, and this is where it gets interesting. To implement a DRM
(digital rights management) solution for streamed content across all devices is both
complicated and expensive, so what we’re seeing is that studios are choosing to focus
their protections around high value digital media such as High Definition and 4 K
over standard definition content. What they need is content protection that follows
the content and therefore is device agnostic.

1.4 DRM (Digital Rights Management)

Implementing an effectiveDRMsecurity is the answer and asmost content publishers
will argue, it is vital to facilitate continued innovation in digitalmedia.As newdevices
that stream apps and host media players are constantly being developed, the need
for secure and unobtrusive digital distribution is urgent. In order for DRM solutions
[9, 10] to work to protect the sale of books, films, and music that is growing online,
the critical component of a digital key, which allows a user or device to decode the
protected content - is required [11]. However, even the best encryption schemes are
useless if a hacker can quickly acquire the key.

The costs of DRM security [12] breaches are significant; with the Motion Picture
Association of America (MPAA) estimating it costs the film industry $6 billion per
year in lost revenue. The weakness with DRM security and implementation is that it
can be easily hacked and cumbersome to users if strong application-level defences
are not leveraged. In an attempt to curb piracy, many DRM vendors are resorting to
using invasive digital rights protection techniques that assume the system is always
under attack by pirates, which causes restrictions and performance degradation to
honest users.

116 A. Datta and M. Saikia

Since most streaming media applications are performance intensive, DRM secu-
rity solutions mustn’t noticeably impact performance; hence it’s not an option. For
a DRM system to be well received, it’s imperative that the original content simply
looks and works better than the pirated copy. The solution lies in imposing DRM
security strategies that are effective at preventing piracy, while not degrading the
consumer’s experience.

DRM vendors are always going to be held hostage to the speed of technological
innovation. The problem here, is that the quality of the very content that we on our
different devices is likely to be undermined by the massive loss of revenue caused
by piracy.

2 The Scheme

The algorithm has two modules with two main parameters each. The modules are
briefly described below:

The file processor: This module is responsible for the generation of a special form
of file that is both an encrypted and compressed version of a user assigned file.

The reverser: This module is responsible for producing the exact replica of the
original file on acquiring the proper file and key (the file that was processed with the
key that was assigned during the execution of the previous module).

Both the modules have one common parameter i.e., the key assigned by the user,
which needs to be entered during separate instances. The first instance being the
processing of an unprocessed file and the second instance being the decryption and
decompression of a processed file. During the processing of an unprocessed file the
second parameter will contain the path and name of the unprocessed file in the form
of a string. While obtaining the original file, the second parameter will contain the
path and name of the previously processed file also in the form of a single string.
The programming language used for the development of this project is java.

3 Literature Survey

Serial number Author name Paper title Features

1 Robert Franceschini and
Amar Mukherjee

Data compression using
encrypted text

• It establishes that
encrypted representation
of text leads to substantial
saving of storage space

• It is an interesting
dictionary based
compression method with
better performance than
gzip and arithmetic
coding

(continued)

An Approach to Achieve Compression Along with Security … 117

(continued)

Serial number Author name Paper title Features

2 Matt Mahoney Data compression
explained

• Covers a lot about
lossless data compression
algorithms and
commonly used lossy
data compression
algorithms

• Most of the lossless data
compression algorithms
are used in this project

3 Mark Stamp Digital rights management:
the technology behind the
hype

• Covers topics such as
DRM tethered and
untethered systems

• Covers media snap DRM
in detail

4 Chung-Ping Wu Design of integrated
multimedia compression
and encryption systems

• It was shown that security
could be achieved
without sacrificing the
compression performance
or the processing speed

5 Cappaert, Nessim Kisserli,
Dries Schellekens and Bart
Preneel

Self-encrypting code to
protect against analysis and
tampering

• Covers topics such as
code obfuscation and
self-modifying code

• Shows how two or more
files are dependent upon
one another and achieves
self-modifying code

6 M. VidyaSagar, J.S. Rose
Victor

Modified run length
encoding scheme for high
data compression rate

• Covers the run length
encoding scheme in
details and how the
modified version is better
from other algorithms in
terms of both
compression and
performance. But better
compression algorithms
are available

7 Alan Story Intellectual property and
computer software

• Shows how proprietary
software can be prevented
from piracy

• Shows the various
ongoing problems for
such software

• Shows how to tackle
these kind of problems

(continued)

118 A. Datta and M. Saikia

(continued)

Serial number Author name Paper title Features

8 Kun-Won Jang, Chan-Kil
Park, Jung-Jae Kim and
Moon-Seog Jun

A study on DRM system
for on/off line key
authentication

• This paper shows an
algorithm that can
encrypt files by dividing it
into blocks. Conventional
systems can replay digital
content only after entirely
decrypting it

• It can be used to provide
free demos for users

9 Pasi Tyrväinen, Jarmo
Järvi, Eetu Luoma

Peer-to-peer marketing for
content products combining
digital rights management
and multilevel marketing

• It states “out of the
$32 billion market for
music in 2002 only about
$0.09 billion is sold by
paid downloads and
online retailers accounted
for a mere 1% of music
sales”

• Shows a model for
distribution of
copyrighted content in a
peer-to-peer network

10 Mikko Löytynoja, Tapio
Seppänen, Nedeljko Cvejic

Experimental DRM
architecture using
watermarking and PKI

• The paper describes a
unique architecture for
DRM and discusses
watermarking in detail

3.1 Objective of This Paper

The primary objective of the paper is to develop a unique algorithm for compression
and encryption of files specified by a user based on a key/password provided by the
user. We are making use of lossless data compression algorithms such as Snappy,
Gzip, BZip2 and XZ. A key comprising of integers that has a variable length from 1
to 19 digits specified by the user is taken as an input and files given are compressed
multiple times depending upon the result of XOR operation between the password
and the MAC address of the user’s system which is automatically retrieved.

It is intended to be used in industries where piracy causes huge amounts of loss.
With more research into this field, copyright laws will benefit a great deal in the
future. It also has the possibility to become the norm for downloading and uploading
of copyrighted content from the internet.

An Approach to Achieve Compression Along with Security … 119

3.2 Solution Strategy

We propose a solution strategy by applying the following steps:

• By continuously running an algorithm to clear the clipboard as a thread in the
background. This thread is stopped when the program is closed.

• Upon exit, the files previously extracted to a temporary location will be forcibly
deleted.

• The user won’t have write access to the files as modifying or coping the contents
of these files will make this project useless.

• The key passed by the user will undergo XOR operation with his/herMAC address
which is unique for every computer and the result will be used for the encryption
instead of the actual key.

4 An Implementation

4.1 Architecture Diagram

In Fig. 1,

T Represents the original unprocessed file.
C Represents the first module.
k Represents the key.
*T Represents the file after processing.

In Fig. 2,

*T Represents the processed (encrypted and compressed) file.

Fig. 1 Block diagram for
the first module (compresses
and encrypts)

Fig. 2 Block diagram for
the second module
(decompresses and decrypts)

120 A. Datta and M. Saikia

Fig. 3 The file processor/the first module

D Represents the reverser module.
k Represents the key.
T Represents an original copy of the unprocessed file.

4.2 Detailed Diagram

See Fig. 3.

4.3 Detail Process and Pseudo Codes

Compression of data in a lossless manner by making use of various algorithms more
than once sometimes achieve better compression ratios. But this kind of algorithms
are currently looked into and researched upon without any assurance that it is always

An Approach to Achieve Compression Along with Security … 121

possible. However, the algorithms we are using are quite simple and easy to use.
The source codes of these algorithms are easily available on the internet. Snappy is
a fast compression and decompression technique achieving speeds of 250 MB/s for
compression and 500MB/s for decompression on a single core i7 of 64 bit. It is based
on LZ77 algorithmwhich achieve compression by replacing repeated occurrences of
data with references to a single copy of that data existing earlier in the uncompressed
data stream. XZ compression algorithm is a dictionary based compression technique.
Gzip makes use of one of the algorithms already defined within itself depending
upon the type of data it is given to compress. BZip2 makes use of Burrows-Wheeler
algorithm to compress data. Our algorithm can compress multiple files but it is not
an archival tool. Although Gzip is an archival tool, this algorithm will not make use
of the ability because the file(s) after decryption and decompression will be found at
a temporary location in a temporary folder. The software will be fairly easy to use.
First, the user needs to specify the file(s) to be compressed and then in the second
step, a password is asked to be entered by the user and the system’s MAC address
is retrieved which then undergoes XOR operation with the password provided. One
assumption of our algorithm is that the password entered will be of numbers only
with a maximum length of nineteen digits and a minimum length of one digit. The
file(s) then undergo lossless compression via various algorithms according to the
result generated during the XOR operation. BZip 2, Snappy, Gzip, XZ are lossless
data compression algorithms [13] used in building this software. Their algorithms
are described below. However, in these algorithms, a file is created and the data
output stream is written onto it. In our algorithm, these functions instead of creating
an entire file, will return the output stream which will be further compressed. The
output file will be created only when it has finished compressing that stream. The
resulting stream will also be encrypted.

The pseudo code for BZip 2 compression algorithm in java:

Get the original file.
Create an empty output file.
Initialize output stream.
Read content of the original file.
Initialize BZip2 output stream.
Apply Burrows-Wheeler transform on the data and compress.
Write data to the stream.
Write contents of the stream to output file.
Close output stream.

The pseudo code for BZip 2 decompression algorithm in java:

Get compressed file.
Store contents of compressed file in byte array.
Initialize integer variable n to 0.
While (Reading of data in input stream is not complete, set n as counter)
{

122 A. Datta and M. Saikia

Decompress the contents of the input stream.
Write contents to the output buffer.

}
Close all input and output streams.

The pseudo code for Snappy compression algorithm in java:

Enter file to be compressed.
Initialize input stream to be compressed from the input file.
Initialize the output file.
Initialize the output stream.
Initialize encoder.
Apply Snappy algorithm.
Write the output to the output stream.
Create the output file.
Close output stream.

The pseudo code for Snappy decompression algorithm in java:

Read contents of compressed input file.
Put the content in a byte buffer.
Initialize Snappy decoder.
Decompress the contents by setting the correct properties.
Put decompressed content in an output stream.

The pseudo code for Gzip compression algorithm in java:

Initialize input stream.
Initialize the output stream.
While (Reading of data in input stream is not complete)
{

Apply Gzip algorithm to data.
Write to the output stream.

}
Close output stream.

The pseudo code for Gzip decompression algorithm in java:

Get compressed file.
Store contents of compressed file in byte array.
Initialize integer variable read_bytes to 0.
While (Reading of data in input stream is not complete, set read_bytes as counter)
{

Decompress the contents of the input stream.
Write contents to the output buffer.

An Approach to Achieve Compression Along with Security … 123

}
Close all input and output streams.

The pseudo code for XZ compression algorithm in java:

Initialize input stream.
Initialize output stream.
Set size of dictionary.
While (Reading of data in input stream is not complete)
{

Apply XZ Algorithm.
Write compressed contents to output stream

}
Close output stream.

The pseudo code for XZ decompression algorithm in java:

Get compressed file.
Store contents of compressed file in byte array.
Initialize integer variable read_bytes to 0.
While (Reading of data in input stream is not complete, set read_bytes as counter)
{

Decompress the contents of the input stream.
Write contents to the output buffer.

}
Close all input and output streams.

The code for function to detect whether the program is being run as administrator:

Initialize a Boolean flag.
Initialize a string with the command reg query “HKU\S-1-5-19”
Run the command in command prompt.
If no error is found set the flag to false.
Else set the flag to true.

A pseudo-code for one round of the encryption process

int key_1, key_2, secret_1, pass_value;
if(key_1 is not divisible by secret_1 and key_2 is not divisible by secret_1)

use BZip 2 on file_1;

if(key_1 is not divisible by secret_1 and key_2 is divisible by secret_1)

use Snappy on file_1;

if(key_1 is divisible by secret_1 and key_2 is not divisible by secret_1)

124 A. Datta and M. Saikia

use GZip on file_1;

if(key_1 is divisible by secret_1 and key_2 is divisible by secret_1)

use XZ on file_1;

pass_value = XOR(key_1, key_2);
return (file_1, pass_value);

In the pseudo-code described above, key_1 is used as the result of XOR operation
between the password provided by the user and the MAC address. The key_2 is a
private key that will be present with authenticated users only, it can also be used for
recovery purposes; secret_1 is a simple integer value that is kept private; file_1 is a
byte stream and pass_value will be used for further encryption.

5 Results and Discussions

The expected outcome of this project is that it shall be used in industries where
piracy causes huge amounts of loss. With more research into this field, copyright
laws [14] will benefit a great deal in the future. It also has the possibility to become
the norm for downloading and uploading of copyrighted content in the internet.
Since, this algorithm produces a lossless copy of the original content, high quality
multimedia content will consume reasonable amount of hard disk space while being
secure (Fig. 4).

Fig. 4 The form for getting
the password (in this case, a
wrong password is entered)

An Approach to Achieve Compression Along with Security … 125

Fig. 5 This window will
appear on successful entry of
the password

When the Fig. 5 appears, a new directory named temp_folder will appear which
will contain the decompressed files. The user will be unable to perform paste opera-
tionwhen this window is showing. Upon closing this window, the files will be deleted
and will reappear again when the program is rerun.

Currently, we are able to achieve at best a 55–60% compression ratio for pdf
file of 14 Megabytes. Some other tests include images, music and audio-video files,
60–65% in case of images, 80–90% in case of music and audio-video files. The time
required for compressing depends upon the file size and the type of file. However,
this technology seems to be working best with document files.

Below is a figure of a music file that has been compressed and encrypted
successfully (Fig. 6).

Fig. 6 A file successfully compressed

126 A. Datta and M. Saikia

6 Limitations

• The key provided by the user has to be comprised of integer values only.
• The size of the software used for extracting the original files will remain the same
at all times. This will take up more space during replay of the content.

• Better encryption and compression algorithms that work individually exist.
• It is not a final solution to provide fool proof security or data compression.

7 Future Scope

• The compression ratios can be better with different settings.
• The number of algorithms should be increased to provide better security.
• The number of rounds of encryption can be increased for better security.
• The algorithm can be optimized for its use in various regions.

8 Conclusions

This work is expected to help in industries where piracy auses huge amounts of loss.
With more research into this field, copyright laws will benefit a great deal in the
future. It also has the possibility to become the norm for downloading and uploading
of copyrighted content in the internet. Since, this algorithm produces a lossless copy
of the original content, high quality multimedia content will consume reasonable
amount of hard disk space while being secure.

Acknowledgements Let us express our heartiest gratitude to respective authorities of Sikkim
Manipal Institute of Technology, Sikkim, INDIA for providing resources used during the entire
development process.

References

1. VidyaSagar M, Rose Victor JS (2013) Modified run length encoding scheme for high data
compression rate. Int J Adv Res Comput Eng Technol (IJARCET) 2(12), December 2013

2. Zhang Y, Zhang LY, Zhou J, Liu L, Chen F, He X (2016) A review of compressive sensing in
information security field. IEEE Access 4:2507–2519

3. Cappaert J, Kisserli N, Schellekens D, Preneel B (2006) Self-encrypting code to protect against
analysis and tampering

4. Franceschini R, Mukherjee A (1996) Data Compression using encrypted text. In: Proceedings
of Advanced Digital Libraries (ADL’96)

An Approach to Achieve Compression Along with Security … 127

5. Mahoney M (2013) Data compression explained. Dell Inc.
6. Khelifi F, Brahimi T, Han J, Li X (2018) Secure and privacy-preserving data sharing in the

cloud based on lossless image coding. Signal Process 148:91–101, ISSN 0165-1684
7. Alsheikh MA, Lin S, Niyato D, Tan HP (2016) Rate-distortion balanced data compression for

wireless sensor networks. IEEE Sens J 16:5072–5083
8. Story A (2004) Intellectual property and computer software May 2004 intellectual property

rights and sustainable development
9. Tyrväinen P, Järvi J, Luoma E (2004) Peer-to-peer marketing for content products combining

digital rights management and multilevel marketing. In: Proceedings of IADIS International
Conference on e-Commerce 2004 (EC2004) Lisbon, Portugal, 14–16 Dec 2004

10. Löytynoja M, Seppänen T, Cvejic N (2003) Experimental DRM architecture using watermark-
ing and PKI. In: Proceeding of First International Mobile IPR Workshop Rights Management
of Information Products on the Mobile Internet, Helsinki, Finland, 47–52

11. Jang KW, Park CK, Kim JJ, JunMS (2006) A study on DRM system for on/off line key authen-
tication. In: Proceedings of the 2006 International Conference on Security and Management,
SAM 2006, Las Vegas, Nevada, USA, June 26–29

12. Stamp M (2003) Digital rights management: the technology behind the hype. J Electron
Commer Res (August, 2003)

13. Wu CP, Jay Kuo CCJ (2005) Design of integrated multimedia compression and encryption
systems. IEEE Trans Multimed 7(5), October 2005

14. De Hert P, Papakonstantinou V, Malgieri G, Beslay L, Sanchez I (2018) The right to data
portability in the GDPR: towards user-centric interoperability of digital services. Comput Law
Secur Rev, 34(2):193–203, ISSN 0267-3649

	An Approach to Achieve Compression Along with Security via a User Assigned Security Key with Possible Lossless Compression
	1 Introduction
	1.1 Encryption
	1.2 Compression
	1.3 The Problem of Piracy
	1.4 DRM (Digital Rights Management)

	2 The Scheme
	3 Literature Survey
	3.1 Objective of This Paper
	3.2 Solution Strategy

	4 An Implementation
	4.1 Architecture Diagram
	4.2 Detailed Diagram
	4.3 Detail Process and Pseudo Codes

	5 Results and Discussions
	6 Limitations
	7 Future Scope
	8 Conclusions
	References

