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Abstract In the present work, an analytical solution is presented for a combined
pressure-driven electroosmotic flow of a Newtonian liquid within a microchannel
between two parallel plates. The electroosmotic flow is considered to be induced
by an externally applied electrostatic potential field and a pressure gradient. The
no-slip boundary conditions are considered. The electric potential distribution is
represented by the Poisson–Boltzmann equation. The Debye–Huckel linear approx-
imation is ignored in the present work to minimize error in results. The reduced form
of the Navier–Stokes and the energy equations are considered, respectively, to deter-
mine velocity and temperature distributions. Homotopy perturbation method (HPM)
is adopted as an analytical tool to solve the nonlinear Poisson–Boltzmann equation
for electrical potential distribution without the Debye–Huckel linear approximation.
TheNavier–Stokes and the energy equations subjected to respective boundary condi-
tions are solved analytically. An expression of CfRe product is obtained solving the
Navier–Stokes equation. The results obtained are validated with existing literature
and show good agreement. The zeta potential is varied for a particular electrokinetic
length, and proposed results are presented graphically. Finally, the Nusselt num-
ber is presented varying electrokinetic length for different values of zeta potential.
The results demonstrate the influence of the zeta potential on the potential, velocity,
temperature distributions, and Nusselt number.

1 Introduction

In recent days, the study on microfluidic systems has become an important area
of research for various potential applications in biomedical and chemical industry.
Biomedical microelectromechanical systems or bioMEMS can accomplish sample
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injection, chemical reaction, separation, and detection in a single integratedmicroflu-
idic circuit [1]. Various techniques such as thermopneumatic, magnetohydrody-
namic, piezoelectric, electrostatic, and electroosmotic pumping have been proposed
for fluid delivery. Among these, the electroosmotic pumping is preferred because
pumping a liquid through a very small channel requires a very large pressure differ-
ence, whereas it does not require any external pump, but needs electrodes to control
the flow field. Due to the absence of moving parts and pulsating flows, ease of
microfabrication, and a great degree of flow control, the electroosmotic pumping is
very popular [2–6]. Therefore, it is important to understand the fundamental char-
acteristics of electroosmotic flow (EOF) through microchannels for optimal design
and efficient control and to ensure the reliability and the stability of the microfluidic
devices of electroosmotic pumps.When an electrolytic solution is under no flow con-
dition, the ions dissociate. Those ions having charge opposite to that of the surface
are attracted by the surface. Thus, two layers of positively and negatively charged
ions are formed near the surface which are called electric double layer (EDL). If a
pressure gradient and an electric field are applied tangentially along such a charged
surface, the ions in the diffuse layer will start moving under the action of the pressure
field and body force exerted by the electric field, resulting in pressure-driven EOF
[3].

In this connection, few literatures are studied. Masood Khan et al. [5] discussed
the dynamics of an EOF in cylindrical domain. The linearized Poisson–Boltzmann
equation and theCauchymomentumequationwere solved using the temporal Fourier
and finite Hankel transforms. Ngoma and Erchiqui [7] investigated the liquid flow
with the slip boundary condition in a microchannel between two parallel plates with
imposed heat flux. They considered the combined effect of pressure-driven flow and
electroosmosis. Jain and Jensen [8] presented an analytical investigation on the effects
of electrostatic potential in microchannels. The energy equation was solved with the
Nusselt number for constant wall heat flux and constant wall temperature boundary
conditions and presented with analytic expressions over a wide range of operating
conditions. Min et al. [9] analytically solved the fundamental characteristics of elec-
troosmotic flow through rectangular pumping channels without the Debye–Huckel
approximation. The Poisson–Boltzmann equation for the electric potential distribu-
tion and the momentum equation for the velocity profile are solved by averaging
method. The zeta potential is experimentally measured by the streaming potential
technique. They found that their method is applicable when the ratio of a half of the
channel width to the EDL thickness is larger than 3.

It is observed from the above literature that conventionally, the electric potential
distribution inside a microchannel is determined by a simplified analysis based on
the Debye–Huckel linear approximation which is valid for small value of wall zeta
potential (usually <25 mV). However, higher range of zeta potentials (100–200 mV)
are frequently encountered in practical applications [9–11]. As a result, the accuracy
level of the result may reduce. On the other hand, the analytical methods applied are
complex, lengthy, and laborious.Hence, it is highly desirable to adopt a simple analyt-
ical method to study the fundamental characteristics of EOF through microchannels
without the Debye–Huckel approximation. Hence, in the present work, homotopy
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Fig. 1 Geometry of parallel plate microchannel

perturbation method (HPM) as an analytical tool is considered to solve the Pois-
son–Boltzmann equation as it is a simple, powerful, and efficient solving technique,
whereas the Navier–Stokes and the energy equations are also solved analytically for
determination of velocity and temperature distributions, respectively, for flow within
a microchannel between two parallel plates.

2 Description of the Physical Problem

In the present work, a microchannel consisting of two parallel plates separated by
a distance 2H is considered as shown in Fig. 1. The plate extends to infinity in x-
and z-directions. So, property variation is considered in the y-direction. Because of
the symmetry in the potential and velocity fields, the solution domain is reduced to
a half section of the channel (as shown by the hatched area in Fig. 1). Two plate-
type electrodes are placed apart by length L normal to the parallel plates such that
an electric field is induced in the x-direction. A constant pressure gradient is also
imposed in the x-direction to study combined effect of both the fields. The following
assumptions are made for the mathematical formulation.

• The liquid is a symmetric electrolyte, incompressible, Newtonian and the
thermophysical properties are constant.

• The flow is steady, laminar, and fully developed.
• No-slip boundary condition and no wall temperature jump.

3 Mathematical Formulation

In the present study, a combined pressure-driven electroosmotic flow through a
microchannel between two parallel plates is considered. The subsequent governing
equations subjected to the respective boundary conditions are considered.
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3.1 Poisson–Boltzmann Equation

The one-dimensional EDLfield can be described by the Poisson–Boltzmann equation
given as [8, 10, 12–14]

∂2ψ/∂y2 = (2zen0/ε) sinh(zeψ/kbT ) (1)

where ψ , z, e, n0,ε,kb, and T are the electric potential due to EDL, valence of
ions, electric charge, bulk ionic concentration, permittivity of vacuum, Boltzmann
constant, and absolute temperature, respectively.

Equation (1) is subjected to the following boundary conditions at y = 0, ∂ψ/∂y =
0 and at y = H , ψ = wall zeta potential (ξ).

3.2 Momentum Equation

The Navier–Stokes equation [8, 10] along the x-axis is considered by a balance
between the shear stresses in the fluid, externally imposed constant pressure gradient,
and electric field as

μ(∂2u/∂y2) − ∂P/∂x + ρ f Ex = 0 (2)

where μ, u, ∂P/∂x , ρ f , and Ex are the dynamic viscosity, velocity in x-direction,
pressure gradient in x-direction, local net charge density, and the electric field
strength, respectively.

The above equation is subjected to the following boundary conditions at y = 0,
∂u/∂y = 0 and at y = H , u = 0.

3.3 Energy Equation

The steady-state energy equation is given as [8, 10, 12–14]

u(∂T/∂x) = α(∂2T/∂y2) (3)

where α = ρCp/μ is thermal diffusivity.
The boundary conditions are given as at y = 0, ∂T/∂y = 0 and at y = H , where

T is surface temperature.
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4 Solution of the Governing Equations

The governing equations for electrical potential, velocity, and temperature distribu-
tions have been solved analytically.

4.1 Electric Potential Distribution

The governing Eq. (1) for electrical potential distribution has been solved by homo-
topy perturbation method (HPM). Equation (1) and its boundary conditions are
non-dimensionalized by introducing the dimensionless variables as

Y = y/H, � = zeψ/(kbT ), Z = 2zeξ/(kbT )

The non-dimensional form of Eq. (1) becomes

∂2�/∂Y 2 = λ2 sinh� (4)

whereλ = κH is the electrokinetic length and κ = √[2z2e2n0/(εkbT )] is the inverse
Debye–Huckel length.

The corresponding non-dimensional boundary conditions are written as at Y = 0,
∂�/∂Y = 0 and at Y = 1, � = Z.

In most of the existing work, the Debye–Huckel approximation is considered
where sinh� in Eq. (4) is replaced by only �. It is already stated that this approxi-
mation holds good for small value of zeta potential. In the present study, the Debye–
Huckel approximation is ignored to improve the accuracy level of results and to
predict results for high range of zeta potential. Hence, in Eq. (4) instead of�, sinh�

is considered. Hence, sinh� is expanded based on the Taylor series of expansion as

sinh� = � + �3/3! + · · · (5)

Substituting the above relation in Eq. (4) results in

∂2�/∂Y 2 = λ2(� + �3/3! + · · · ) (6)

The homotopy considered is

� ′′ − ω2� + p[(λ2 − ω2
)
� + λ2�2/3] = 0 (7)

where � ′′ = ∂2�/∂Y 2, ω is a modified inverse Debye length, and p ∈ [0, 1] is an
embedding parameter, a small parameter in the homotopy perturbation method.
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The power series in p used to find the solution of Eq. (7) is

� = �0 + p�1 + · · · (8)

Substituting the above expression in Eq. (7) and arranging the coefficients of p
powers, the following homotopy is obtained

p0
(
� ′′

0 − ω2�0
) + p1[� ′′

1 − ω2�1 − (
λ2 − ω2)�0 − λ2�3

0/3!] = 0 (9)

Equating the coefficients of p0, p1 to zero gives

p0 : � ′′
0 − ω2�0 = 0 (10)

p1 : � ′′
1 − ω2�1 − (

λ2 − ω2
)
�0 − λ2�3

0/3! = 0 (11)

Equation (10) is solved using the boundary conditions

�0(1) = Z, � ′
0(0) = 0

and the resulting equation is

�0 = Z cosh(ωY)/ cosh(ω) (12)

Substituting the above expression in Eq. (11) and simplifying the equation give

� ′′
1 − ω2�1 − (λ2 − ω2)Z cosh(ωY)/ coshω

− λ2Z3[3 cosh(ωY) + cosh(3ωY)]/[24 cosh3 ω] = 0 (13)

In order to eliminate cosh(ωY) from Eq. (13), the coefficients are collected and
equated to zero to predict the value of ω. Equation (13) becomes

� ′′
1 − ω2�1 − λ2Z3 cosh(3ωY)/[24 cosh3(ω)] = 0 (14)

Now applying the boundary conditions

�1(1) = 0, � ′
1(0) = 0

Eq. (14) is solved as

�1 = [λ2Z3/192ω2 cosh3(ω)][cosh(3ωY) − cosh(3ω) cosh(ωY)/ cosh(ω)] (15)

Substituting the results of Eq. (12) and Eq. (15) in Eq. (8) and considering p = 1,
the electric potential distribution is obtained as
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� = A1 cosh(ωY) + A2 cosh(3ωY) (16)

where A1 = Z/ coshω − λ2Z3 cosh 3ω/[192ω2 cosh4 ω] and A2 =
λ2Z3/[192ω2 cosh3 ω]

4.2 Velocity Distribution

The Navier–Stokes equation becomes (18)

μ(∂2u/∂y2) = ∂P/∂x + (2zen0/λ
2)Ex∂

2�/∂Y 2 (17)

where ρ f = −2zen0 sinh� and sinh� = (∂2�/∂Y 2)/λ2.
Equation (17) is non-dimensionalized incorporating the following non-

dimensional terms

U = u/um, �1 = −(H 2/μum)∂P/∂x, E = Ex L/ξ, �2 = 2zen0ξH
2/(μu0L)

where um is the mean velocity.
Hence, the Eq. (17) for the velocity field is written as

∂2U/∂Y 2 = −�1 + (�2E/λ2)(∂2�/∂Y 2) (18)

The corresponding non-dimensional boundary conditions become at Y = 0,
∂U/∂Y = 0 and at Y = 1, U = 0.

Finally, the velocity profile is obtained by integrating Eq. (18) twice with respect
to Y with the given boundary conditions as

U = �1(1 − Y2)/2 + (�2EZ/λ2)[{A1 cosh(ωY) + A2 cosh(3ωY)}/Z − 1] (19)

The relation between�1 and�2 is determined from the definition ofmean velocity
as

1∫

0

UdY = 1 (20)

and obtained as

�2 = (λ2/EZ)(1 − �1/3)/[{A1 sinh(ω)/(ω) + A2 sinh(3ω)/(3ω)}/Z − 1] (21)

Now, the skin friction coefficient Cf is defined as [8]

C f = 2τw/(ρU 2) (22)
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The product CfRe is obtained as

C fRe = 8U ′(1) (23)

where Re = ρum(4H)/μ is the Reynolds number.

4.3 Temperature Distribution

Equation (3) for temperature field is simplified by performing scale analysis as
q̇ ′′ ∼ (ṁcp�T/A) ∼ ρcpum�T and q̇ ′′ ∼ h(Tm − Ts)
where q̇ ′′, ṁ, Cp, �T , A, ρ, h, and Tm are the wall heat flux, mass flow rate

of liquid, specific heat, temperature scale, area normal to heat flow, convective heat
transfer coefficient, and mean temperature, respectively.

From the above relations, it is observed that

∂T/∂x = �T/�x = q̇ ′′/(ρumcpH) (24)

where �x is the length scale in x-direction.
Combining Eqs. (3) and (24), the relation obtained is as follows

∂2T/∂y2 = uq̇ ′′/(αρumcpH) (25)

Equation (25) is non-dimensionalized considering

� = (T − Ts)/(Tm − Ts) and Nu = (4H)(h)/K

and is written as

∂2�/∂Y 2 = (Nu)(U )/4 (26)

The corresponding boundary conditions become at Y = 0, ∂�/∂Y = 0 and at
Y = 1, � = 0.

Substituting the expression (Eq. (19)) for velocity distribution in Eq. (26) gives

∂2�/∂Y 2 = (Nu/4)[�1(1 − Y2)/2 + (�2EZ/λ2)

[{A1 cosh(ωY) + A2 cosh(3ωY)}/Z − 1]] (27)

Thereafter, the Eq. (27) is integrated twice with respect to Y with the given
boundary conditions to yield the temperature distribution as follows:

� = (Nu/4)[�1(Y
2/4 − Y4/24 − 5/24) + (�2EZ/λ2)[{9A1 cosh(ωY) − 9A1 cosh(ω)

+ A2 cosh(3ωY) − A2 cosh(3ω)}/(9Zω2) + (1 − Y2)/2]] (28)
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The mean temperature is defined as

1∫

0

U�dY = 1 (29)

Finally, the expression of Nusselt number, Nu, is determined at the wall by
substituting Eqs. (19) and (28) in the Eq. (29) and written as

Nu = 4/
∫ 1

0
�1(1 − Y2)/2 + (�2EZ/λ2)[{A1 cosh(ωY) + A2 cosh(3ωY)}/Z − 1]

[�1(Y
2/4 − Y4/24 − 5/24) + (�2EZ/λ2)[{9A1 cosh(ωY)

− 9A1 cosh(ω) + A2 cosh(3ωY) − A2 cosh(3ω)}/(9Zω2) + (1 − Y2)/2]]dY
(30)

5 Results and Discussion

Finally, a MATLAB program is developed to solve the governing equation. The
result obtained is presented in a comparative way with numerical method (FDM)
and existing result to check the accuracy level of the proposed work.

In Fig. 2a, b, the potential distributions in the Y-direction for an electrokinetic
length of 10 are presented at zeta potential values of 1 and 3, respectively. It is
observed that the proposed result is in close agreement with the numerical solution
for both the zeta potential values of 1 and 3. For smaller value of zeta potential (i.e.,
Z = 1), the solution based on the Debye–Huckel approximation agrees well with the
numerical solution as shown in Fig. 2a whereas deviates more in Fig. 2b for Z = 3.
Hence, the proposed method can be used for a large range of zeta potential.

The velocity distribution obtained for the combined pressure-driven electroos-
motic flow is compared with the existing work by Jain and Jansen [8] and numerical
results in Fig. 3a, b. The proposed results show close agreement with the numerical

Fig. 2 Non-dimensional potential distribution a Z = 1 and b Z = 3 for λ = 10
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Fig. 3 Non-dimensional velocity distribution a Z = 1 and b Z = 3 for λ = 10

method for Z = 1 and 3, whereas the existing work shows a little deviation from
the numerical method close to the plate surface for Z = 3 as shown in Fig. 3b. This
deviation may be due to the effect of the Debye–Huckel approximation considered
in the existing work. Hence, the proposed results can predict the velocity distribution
for higher values of zeta potential.

Figure 4a, b represents the temperature distribution for an electrokinetic length
of 10 and zeta potential values of 1 and 3. Here the solution based on the proposed
method is compared with the existing work by Jain and Jansen [8] and numerical
results. It is observed that the proposed result is in close agreementwith the numerical
result for both the zeta potential values of 1 and 3. As a consequence of considering
theDebye–Huckel approximation in the existingwork, it shows a little deviation from
the numerical result close to the plate surface for Z = 3 as shown in Fig. 4b. Hence,
the proposed method can predict the temperature distribution for higher values of
zeta potential.

In Fig. 5a, b, the productCfRe and the Nu are presented, respectively, as functions
of λ for Z = 1, 2, and 3. It is seen that for a particular value of Z the value of CfRe
decreases with increase in λ. It has also been observed for a value of λ, the CfRe
product increases with rise in Z values. This can be attributed to the fact that on
increasing the value of Z, the presence of EDL is felt in a region farther away from
the wall which enhances the viscosity, and therefore, increases the value of CfRe.
The variation of Nu with λ follows the same pattern as that of CfRe.

Fig. 4 Non-dimensional temperature distribution a Z = 1 and b Z = 3 for λ = 10
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Fig. 5 Variation of a CfRe product and b Nu with λ for Z = 1, 2, and 3

6 Conclusion

The present work investigates an analytical solution based on the homotopy pertur-
bation method to analyze the characteristics of combined pressure-driven electroos-
motic flow between two parallel plates. The electric potential, velocity, and temper-
ature distributions are obtained by solving the Poisson–Boltzmann equation without
Debye–Huckel approximation, the Navier–Stokes equation, and energy equation,
respectively. The homotopy perturbation method is used to solve the Poisson–Boltz-
mann equation. Finally, the Nusselt number has been determined. The proposed
results for potential, velocity, and temperature fields are presented with an existing
work and numerical method for Z = 1 and 3 for an electrokinetic length (λ) of 10. It
is seen that the proposed method shows good agreement with the numerical method
for Z = 1 and 3. The Nusselt number is presented with λ for Z = 1, 2, and 3.
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