Chapter 9 Actions on Alternating Matrices and Compound Matrices

Bhatoa Joginder Singh and Selby Jose

9.1 Introduction

In this note, we consider the action of $SL_n(R)$ on $Alt_n(R)$, the space of alternating matrices of order *n* over *R*, by conjugation: $V \mapsto \sigma V \sigma^t$, for $\sigma \in SL_n(R)$, *V* ∈ Alt_{*n*}(*R*). We prove (See Theorem [9.2\)](#page-3-0) that the matrix of the above linear transformation (associated to σ) is $\wedge^2 \sigma$.

These results are well known to experts when *R* is a field, but we worked it, as we will need it, in a sequel, over any commutative ring *R*. (The book [\[5\]](#page-8-0) gives some details.)

In the last section, we restrict to the case when $n = 4$. We show that by taking a suitable basis of Alt₄(*R*) we can get a map from $SL_4(R)$ to $SO_6(R)$. Moreover, this map induces an injection from $SL_4(R)/E_4(R)$ to $SO_6(R)/EO_6(R)$ (See Theorem [9.3\)](#page-8-1). The case when $R = \mathbb{C}$ is proved in [\[1\]](#page-8-2).

In some sense, this result is reminiscent to the Jose–Rao Theorem in [\[3,](#page-8-3) Theorem 4.14], when $n = 2$, where it was shown that

$$
SUMr(R)/EUmr(R) \rightarrow SO2(r+1)(R)/EO2(r+1)(R)
$$

is injective. (We refer the reader to [\[3](#page-8-3)] for details.)

In recent article [\[4\]](#page-8-4), Jose–Rao have shown that for $v, w \in R^{r+1}, \sigma \in SL_{r+1}(R)$, the Suslin matrix

$$
S_r(v\sigma, w\sigma^{t^{-1}}) = AS_r(v, w)B,
$$

B. J. Singh

S. Jose (\boxtimes)

© Springer Nature Singapore Pte Ltd. 2020 A. A. Ambily et al. (eds.), *Leavitt Path Algebras and Classical* K-*Theory*,

Indian Statistical Institute Series,

https://doi.org/10.1007/978-981-15-1611-5_9

183

Department of Mathematics, Government College, Nani-Daman 396210, India e-mail: jogiojogi@gmail.com

Department of Mathematics, The Institute of Science, Madam Cama Road, Mumbai 400032, India e-mail: selbyjose@gmail.com

for some $A, B \in SL_{2r}(R)$, with AB, the Euler characteristic of σ . We may regard Theorem [9.2](#page-3-0) as a prelude to this result; it signifies that the Suslin form brings out the Euler characteristic, whereas the alternating form only displays the initial \wedge^1 and \wedge^2 .

9.2 Preliminaries

In this section, we recall a few definitions, state some results and fix some notations which will be used throughout this paper.

Let *R* be a commutative ring with 1. Let $M_r(R)$ denote the set of all $r \times r$ matrices with entries in *R*.

Definition 9.1 The General Linear group $GL_r(R)$ is defined as the group of $r \times r$ invertible matrices with entries in *R*.

Definition 9.2 The Special Linear group is denoted by $SL_r(R)$ and is defined as $SL_r(R) = \{ \alpha \in GL_r(R) : \det(\alpha) = 1 \}.$ It is a normal subgroup of $GL_r(R)$.

Definition 9.3 The group of elementary matrices $E_r(R)$ is a subgroup of $GL_r(R)$ generated by matrices of the form $E_{ii}(\lambda) = I_r + \lambda e_{ii}$, where $\lambda \in R$, $i \neq j$ and $e_{ii} \in R$ $M_r(R)$ with *ij*th entry is 1 and all other entries are zero.

Note that
$$
e_{ij}e_{rs} = \begin{cases} e_{is} & \text{if } j = r \\ 0 & \text{if } j \neq r \end{cases}
$$
.

Following are some well-known properties of the elementary generators:

Lemma 9.1 *For* $\lambda, \mu \in R$,

- (1) *(Splitting Property)* $E_{ii}(\lambda + \mu) = E_{ii}(\lambda)E_{ii}(\mu), 1 \le i, j \le r, i \ne j.$
- (2) (*Steinberg relation*) $[E_{ii}(\lambda), E_{ik}(\mu)] = E_{ik}(\lambda \mu), \ 1 \le i, j, k \le r, \ i \ne j, \ i \ne k$, $j \neq k$.

Remark 9.1 In view of the Steinberg relation, $E_r(R)$ is generated by

$$
\{E_{1i}(\lambda), E_{i1}(\mu): 2 \leq i \leq r, \lambda, \mu \in R\}.
$$

Note that $E_{ii}(\lambda)$, $i \neq j$, $\lambda \in R$, is invertible with inverse $E_{ii}(-\lambda)$. In fact, $E_{ii}(\lambda)$ belongs to $SL_r(R)$. Hence, $E_r(R) \subseteq SL_r(R) \subseteq GL_r(R)$.

We now recall the notion of the compound matrix:

Definition 9.4 (*Minors of a matrix*) Given an $n \times m$ matrix $A = (a_{ij})$ over *R*, a minor of *A* is the determinant of a smaller matrix formed from its entries by selecting only some of the rows and columns. Let $K = \{k_1, k_2, \ldots, k_p\}$ and $L = \{l_1, l_2, \ldots, l_p\}$ be subsets of $\{1, 2, ..., n\}$ and $\{1, 2, ..., m\}$, respectively. The indices are chosen such that $k_1 < k_2 < \cdots < k_p$ and $l_1 < l_2 < \cdots < l_p$. The *p*th-order minor defined

by *K* and *L* is the determinant of the submatrix of *A* obtained by considering the rows k_1, k_2, \ldots, k_p and columns l_1, l_2, \ldots, l_p of *A*. We denote this submatrix as $A\left(\begin{matrix} k_1 & k_2 & \cdots & k_p \\ l & l & l \end{matrix}\right)$ l_1 l_2 \cdots l_p $\bigg)$ or $A(K \mid L)$.

Theorem 9.1 (The Cauchy–Binet formula) Let A be an $m \times n$ matrix and B an $n \times m$ matrix over R, where $m \leq n$. Then the determinant of their product $C = AB$ *can be written as a sum of products of minors of A and B, i.e.,*

$$
|C| = \sum_{1 \leq k_1 < k_2 < \cdots < k_m \leq n} \det A\left(\begin{matrix} 1 & 2 & \cdots & m \\ k_1 & k_2 & \cdots & k_m \end{matrix}\right) \det B\left(\begin{matrix} k_1 & k_2 & \cdots & k_m \\ 1 & 2 & \cdots & m \end{matrix}\right).
$$

The sum is over the maximal (mth order) minors of A and the corresponding minor of B. In particular, $det(AB) = det(A) det(B)$ *, if A, B are n* \times *n matrices.*

Definition 9.5 Suppose that *A* is an $m \times n$ matrix with entries from a ring *R* and $1 \leq r \leq \min\{m, n\}$. The *r*th compound matrix $C_r(A)$ or *r*th adjugate of *A* is the $\binom{m}{r} \times \binom{n}{r}$ matrix whose entries are the minors of order *r*, arranged in lexicographic order, i.e.

$$
C_r(A) = \left(\det A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ j_1 & j_2 & \dots & j_r \end{pmatrix}\right).
$$

Lemma 9.2 (Properties, See [\[2,](#page-8-5) [5\]](#page-8-0)) *Let A and B be n* \times *n matrices over R and r* $\lt n$. *Then*

- (i) $C_1(A) = A$.
- (ii) $C_n(A) = det(A)$.
- (iii) $C_r(AB) = C_r(A)C_r(B)$.
- (iv) $C_r(A^t) = (C_r(A))^t$.

9.3 Associated Linear Transformations

We shall always work over a commutative ring *R* with 1. In this section, we find the linear transformation of the action of $SL_n(R)$ on the space of alternating matrices.

Definition 9.6 A matrix $A \in M_n(R)$ is said to be alternating if $a_{ii} = -a_{ii}$ and $a_{ii} = 0$, for $1 \leq i, j \leq n$.

Notation The space of all alternating $n \times n$ matrices over a commutative ring R will be denoted by Alt_{*n*}(*R*). It is clearly a free *R*-module of rank $1 + 2 + \cdots + (n - 1) =$
(^{*n*}</sup>) with basis *B*_{ii} = *e_{ii}* − *e_{ii}*, 1 < *i* < *n*. $\binom{n}{2}$ with basis *B_{ij}* = *e_{ij}* − *e_{ji}*, 1 ≤ *i* < *j* ≤ *n*. □

One has the action of $SL_n(R)$ on $Alt_n(R)$ by

$$
SL_n(R) \times Alt_n(R) \to Alt_n(R)
$$

$$
(\sigma, A) \mapsto \sigma A \sigma^t.
$$

This action enables one to associate a linear transformation T_{σ} : Alt_n(*R*) \rightarrow Alt_n(*R*) for $\sigma \in SL_n(R)$, via $T_{\sigma}(A) = \sigma A \sigma^t$.

We input the next observation for completeness; which can be found in [\[5](#page-8-0), pp. 399–400].

Lemma 9.3 *Let* $\sigma : R^n \longrightarrow R^m$ *be a R-linear map. Then the matrix of the linear transformation* $\wedge^r \sigma : \wedge^r R^n \longrightarrow \wedge^r R^m$ *is* $C_r(M(\sigma))$ *, where* $M(\sigma)$ *is the matrix of* σ *and* $r < \min\{n, m\}$.

Proof This is well-known to experts when *R* is a field. We compute it as follows:

Let e_1, \ldots, e_n be a basis of R^n and f_1, \ldots, f_m be a basis of R^m . Let us compute the matrix of $\wedge^r \sigma$ w.r.t. the standard basis $e_{i_1} \wedge \cdots \wedge e_{i_r}$ of $\wedge^r R^n$ and $f_{i_1} \wedge \cdots \wedge f_{i_r}$ of ∧*r* R^m ordered lexicographically. Suppose $1 \le i_1 < \cdots < i_r \le n$ as usual. Then

$$
\begin{aligned}\n\wedge^r(\sigma)(e_{i_1} \wedge \cdots \wedge e_{i_r}) &= \sigma(e_{i_1}) \wedge \cdots \wedge \sigma(e_{i_r}) \\
&= \sum_{j_1=1}^m d_{j_1 i_1} f_j \wedge \cdots \wedge \sum_{j_r=1}^m d_{j_r i_r} f_j \\
&= \sum_{1 \leq j_1 < \cdots < j_r \leq n} \det A\left(\begin{matrix} j_1 & j_2 & \cdots & j_r \\ i_1 & i_2 & \cdots & i_r \end{matrix}\right) (f_{j_1} \wedge \cdots \wedge f_{j_r}),\n\end{aligned}
$$

where A^t denotes the matrix of the linear transformation σ .

Since \wedge^r ($\sigma \circ \tau$) = \wedge^r (σ) $\circ \wedge^r$ (τ), it is clear from Lemma [9.3](#page-3-1) that the multiplicative property of compound matrices hold, i.e.

$$
C_r(AB) = C_r(A)C_r(B),
$$

where *A* is an $m \times n$ matrix, *B* is an $n \times m$ matrix and $r \le \min\{m, n\}$.

Let us compute the matrix associated to T_{σ} for $\sigma \in SL_n(R)$. We prove that it is the matrix $\wedge^2 \sigma$.

Theorem 9.2 *Let* $\sigma \in SL_n(R)$ *. Then the matrix of the linear transformation* T_{σ} *w.r.t. the basis* ${B_{ij} : 1 \le i < j \le n}$ *is the same as the matrix of the linear transformation* $\wedge^2 \sigma : \wedge^2 R^n \longrightarrow \wedge^2 R^n$; which is the compound matrix of order 2 associated to σ .

Proof Let $\sigma = (a_{ij})$. For $1 \le i \le j \le n$, by definition,

$$
\qquad \qquad \Box
$$

9 Actions on Alternating Matrices and Compound Matrices 187

$$
T_{\sigma}(B_{ij}) = \sigma B_{ij}\sigma^{t} = \sigma(e_{ij} - e_{ji})\sigma^{t} = \sigma e_{ij}\sigma^{t} - \sigma e_{ji}\sigma^{t}
$$

=
$$
\sum_{r=1}^{n} \sum_{s=r+1}^{n} a_{ri}a_{sj}B_{rs} - \sum_{r=1}^{n} \sum_{s=r+1}^{n} a_{rj}a_{si}B_{rs}
$$

=
$$
\sum_{r=1}^{n} \sum_{s=r+1}^{n} (a_{ri}a_{sj} - a_{rj}a_{si})B_{rs}
$$

=
$$
\sum_{r=1}^{n} \sum_{s=r+1}^{n} \det \sigma \begin{pmatrix} r & s \\ i & j \end{pmatrix} B_{rs}.
$$

Thus $[T_{\sigma}] = \left(\det \sigma \begin{pmatrix} i & j \\ r & s \end{pmatrix}\right) = C_2(\sigma)$. The rest follows via Lemma [9.3.](#page-3-1)

The following Corollary gives the explicit form of $[T_{E_{1i}(\lambda)}]$, where $E_{1i}(\lambda) \in E_n(R)$. Since $E_{i1}(\lambda) = E_{1i}(\lambda)^t$, by Lemma [9.2\(](#page-2-0)iv) one has, $[T_{E_{i1}(\lambda)}] = [T_{E_{1i}(\lambda)}]^t$.

Corollary 9.1 *Let* $A = E_{1i}(\lambda) \in E_n(R)$, $\lambda \in R$ *. Let* $\alpha = \{i_1, i_2\}$, $\beta = \{j_1, j_2\}$, where 1 ≤ *i*¹ < *i*² ≤ *n and* 1 ≤ *j*¹ < *j*² ≤ *n. Then the* (αβ)*th entry* det *A*(α|β) *of* ∧2*A is given by*

$$
\det A(\alpha|\beta) = \begin{cases} 1 & \text{if } \alpha = \beta \\ (-1)^r \lambda & \text{if } |\alpha \cap \beta| = 1, 1 \in \alpha, i \in \beta \text{ and } 1, i \notin \alpha \cap \beta \\ 0 & \text{otherwise,} \end{cases}
$$

where r is the number of integers in $\alpha \cap \beta$ *between* 1 *and i.*

Proof Clearly if $\alpha = \beta$, then det $A(\alpha|\beta) = 1$ as the submatrix $A(\alpha|\beta) = A\begin{pmatrix} i_1 & i_2 \\ i_2 & i_3 \end{pmatrix}$ *j*¹ *j*² \setminus is either I_2 or an upper triangular matrix $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.

If $1 \in \alpha$, $i \in \beta$ and 1 , $i \notin \alpha \cap \beta$, then for $r \in \alpha \cap \beta$, $A(\alpha|\beta)$ is of the form $A\begin{pmatrix} 1 & r \\ r & i \end{pmatrix}$ if $1 < r < i$ and is of the form $A \begin{pmatrix} 1 & r \\ i & r \end{pmatrix}$ if $i < r \le n$. Note that if $A = (a_{ij})$, then \mathbf{G} \mathbf{G}

$$
a_{jk} = \begin{cases} 1 & \text{if } j = k \\ \lambda & \text{if } j = 1, k = i. \\ 0 & \text{otherwise.} \end{cases}
$$

Thus if $1 < r < i$, $A \begin{pmatrix} 1 & r \\ r & i \end{pmatrix} =$ $\begin{pmatrix} a_{1r} & a_{1i} \\ a_{rr} & a_{ri} \end{pmatrix} =$ $\begin{pmatrix} 0 & \lambda \\ 1 & 0 \end{pmatrix}$ and hence det $A(\alpha|\beta) = -\lambda$. Also if $i < r \le n$, $A \begin{pmatrix} 1 & r \\ i & r \end{pmatrix} =$ $\begin{pmatrix} a_{1i} & a_{1r} \\ a_{ri} & a_{rr} \end{pmatrix} =$ $\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$ and hence det $A(\alpha|\beta) = \lambda$. All other entries of \land ²A contains either a zero row or a zero column. $□$

9.4 The 4 × 4 Case

L. N. Vaserstein studied the case when $n = 4$ in [\[6](#page-8-6)]. We consider the Vaserstein space $V = Alt₄(R)$ of dimension 6.

Definition 9.7 Let π denote the permutation $(1 r + 1) \cdots (r 2r)$ corresponding to the form $\begin{pmatrix} 0 & I_r \\ I & 0 \end{pmatrix}$ *Ir* 0 . The elementary orthogonal matrices over *R* are defined by

$$
oe_{ij}(\lambda) = I_{2r} + \lambda e_{ij} - \lambda e_{\pi(j)\pi(i)}, \text{ if } i \neq \pi(j),
$$

where $1 \le i, j \le 2r$ and $\lambda \in R$.

Definition 9.8 The elementary orthogonal group $EO_{2r}(R)$ is the subgroup of $SO_{2r}(R)$ generated by the matrices $oe_{ii}(\lambda)$, where $1 \le i \le j \le 2r$, $i \ne \pi(j)$ and $\lambda \in R$.

It is observed that the matrix $[T_{\sigma}]$ w.r.t. the basis ${B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}}$, where $\sigma = E_{1i}$ or E_{i1} , $2 \le i \le 4$ are not orthogonal w.r.t. the standard form $\begin{pmatrix} 0 & I_3 \\ I_3 & 0 \end{pmatrix}$ *I*³ 0 . However, we have the following lemma.

Lemma 9.4 *With respect to the ordered basis* ${B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}}$ *, the matrix* $[T_{E_{1i}(\lambda)}]$ *and* $[T_{E_{i1}(\lambda)}]$ *,* $2 \leq i \leq 4$ *are elementary orthogonal w.r.t. the standard form.*

Proof By Lemma [9.3,](#page-3-1) w.r.t. the basis $B_1 = \{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\}$, the matrix of $T_{E_1(\lambda)}$ is the compound matrix of order 2 associated to $A = E_{12}(\lambda)$. By Corollary [9.1,](#page-4-0) det $A({1, 3}, {2, 3}) = \lambda$ and det $A({1, 4}, {2, 4}) = \lambda$ and all other $\det A(\alpha|\beta) = 0$ if $\alpha \neq \beta$. If $\alpha = \beta$, then $\det A(\alpha|\beta) = 1$. Thus (24)th and (35)th entry of $[T_{E_{12}(\lambda)}]_{B_1}$ are λ . Hence we have $[T_{E_{12}(\lambda)}]_{B_1} = E_{24}(\lambda)E_{35}(\lambda)$. Then w.r.t. the $\text{basis } B_2 = \{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}, \text{ the matrix } [T_{E_{12}(\lambda)}]_{B_2} = E_{26}(\lambda)E_{35}(-\lambda)$ which is by definition $oe_{26}(\lambda)$ w.r.t. the permutation $\pi = (14)(25)(36)$. Similarly w.r.t. the basis B_2 one has

$$
[T_{E_{13}(\lambda)}]_{B_2} = E_{34}(\lambda)E_{16}(-\lambda) = oe_{34}(\lambda).
$$

\n
$$
[T_{E_{14}(\lambda)}]_{B_2} = E_{15}(\lambda)E_{24}(-\lambda) = oe_{15}(\lambda).
$$

\n
$$
[T_{E_{21}(\lambda)}]_{B_2} = E_{62}(\lambda)E_{53}(-\lambda) = oe_{62}(\lambda).
$$

\n
$$
[T_{E_{31}(\lambda)}]_{B_2} = E_{43}(\lambda)E_{61}(-\lambda) = oe_{43}(\lambda).
$$

\n
$$
[T_{E_{41}(\lambda)}]_{B_2} = E_{51}(\lambda)E_{42}(-\lambda) = oe_{51}(\lambda).
$$

Hence the result. \Box

In general one has the following.

Proposition 9.1 *Let* $\sigma \in SL_4(R)$ *. Then the matrix of the linear transformation* T_{σ} *on the Vaserstein space V w.r.t. the ordered basis* ${B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}}$ *is an orthogonal matrix w.r.t. the standard form.*

Proof Let $\psi_3 =$ \int 0 I_3 *I*³ 0). Let β be the matrix of T_{σ} . We show that β is in the orthogonal group of ψ_3 .

Let p be a prime ideal of *R*. It suffices to show that β_p is in the orthogonal group of ψ_3 , for all prime ideals p of *R*. (Note that of T_{σ_p} is the same as the matrix of $(T_{\sigma})_p$.)

As R_p is a local ring, $SL_r(R_p) = E_r(R_p)$, for all $r \ge 2$. Hence, σ_p is an elementary matrix, i.e. it is a product of elementary generators $\varepsilon_1, \ldots, \varepsilon_k$, for some k. We may assume that ε_i is of type $E_{1i}(x)$ or $E_{i1}(x)$, for some *i*, and arbitrary $x \in R$.

Now, $T_{\sigma_{\rm n}} = \prod T_{\varepsilon_k}$. By Lemma [9.4,](#page-5-0) the matrix of each T_{ε_i} is an elementary orthogonal matrix w.r.t. the ordered basis {*B*₁₂, *B*₁₃, *B*₁₄, *B*₃₄, −*B*₂₄, *B*₂₃}. Hence, so is T_{σ_p} , for all prime ideals n of *R* for all prime ideals p of *R*. -

But one has the following:

Remark 9.2 Let $\sigma \in SL_4(R)$. Then the matrix of the linear transformation T_{σ} on the Vaserstein space *V* w.r.t. the ordered basis ${B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}}$ is an

orthogonal matrix with respect to the form
$$
\begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}
$$
, where $\alpha = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Proof Let *A* and *B* denote the matrices of T_{σ} w.r.t. the bases

$$
B_1 = \{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}\
$$
 and $B_2 = \{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\},\$

respectively. Let *P* denote the transition matrix from B_1 to B_2 . Then clearly $P = I_3 \perp$ α and $P^{-1}AP = B$. Note that $P^{-1} = P^T = P$. Hence $P^{-1}A^t P = (P^{-1}AP)^t = B^t$. By Proposition [9.1,](#page-5-1) *A* is orthogonal w.r.t. the standard form $\psi_3 =$ $(0 I_3)$ *I*³ 0 . Thus we have

$$
A\widetilde{\psi_3}A^t = \widetilde{\psi_3} \Rightarrow P^{-1}(A\widetilde{\psi_3}A^t)P = P^{-1}\widetilde{\psi_3}P \Rightarrow B(P^{-1}\widetilde{\psi_3}P)B^t = P^{-1}\widetilde{\psi_3}P,
$$

which means *B* is orthogonal w.r.t. the form $P^{-1} \widetilde{\psi}_3 P = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$ α 0 \setminus . \Box

9.5 Injectivity

In this section, we show that we can obtain a map from $SL_4(R) \to SO_6(R)$ and this map induces an injection $\frac{\operatorname{SL}_4(R)}{\operatorname{E}_4(R)} \hookrightarrow \frac{\operatorname{SO}_6(R)}{\operatorname{EO}_6(R)}$.

Proposition 9.2 *The map* φ : $E_4(R) \to EO_6(R)$ *is defined as* $\varphi(\sigma) = [T_{\sigma}]$ *is surjective.*

Proof Note that $EO_6(R)$ is generated by the elementary orthogonal matrices $oe_{12}(\lambda)$, $oe_{21}(\lambda), \, oe_{13}(\lambda), \, oe_{31}(\lambda), \, oe_{23}(\lambda), \, oe_{32}(\lambda), \, oe_{24}(\lambda), \, oe_{42}(\lambda), \, oe_{34}(\lambda), \, oe_{43}(\lambda),$ $oe_{35}(\lambda)$ and $oe_{53}(\lambda)$. By the same argument as that of Lemma [9.4,](#page-5-0) one has

$$
\begin{aligned}\n[T_{E_{23}(\lambda)}] &= o e_{12}(\lambda), [T_{E_{32}(\lambda)}] = o e_{21}(\lambda), [T_{E_{24}(\lambda)}] = o e_{13}(\lambda), \\
[T_{E_{42}(\lambda)}] &= o e_{31}(\lambda), [T_{E_{34}(\lambda)}] = o e_{23}(\lambda), [T_{E_{43}(\lambda)}] = o e_{32}(\lambda), \\
[T_{E_{14}(-\lambda)}] &= o e_{24}(\lambda), [T_{E_{41}(-\lambda)}] = o e_{42}(\lambda), [T_{E_{13}(\lambda)}] = o e_{34}(\lambda), \\
[T_{E_{31}(\lambda)}] &= o e_{43}(\lambda), [T_{E_{12}(-\lambda)}] = o e_{35}(\lambda), [T_{E_{21}(-\lambda)}] = o e_{53}(\lambda).\n\end{aligned}
$$

Hence φ is surjective.

Lemma 9.5 *Let u be a unit in R with* $u^2 = 1$ *. Then* $uI_4 \in E_4(R)$ *.*

Proof This follows from Whitehead's lemma. Explicitly, if

$$
\alpha_1 = \begin{pmatrix} I_2 & (1 - u)I_2 \\ 0 & I_2 \end{pmatrix}, \alpha_2 = \begin{pmatrix} I_2 & 0 \\ -I_2 & I_2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} I_2 & 0 \\ uI_2 & I_2 \end{pmatrix},
$$

then clearly $\alpha_1, \alpha_2, \alpha_3 \in E_4(R)$ and the direct computation shows $uI_4 = \alpha_1 \alpha_2 \alpha_1 \alpha_3$.
Hence the result Hence the result.

Proposition 9.3 *Let* $\alpha \in M_4(R)$ *such that* $\alpha A \alpha^t = A$ *for all* $A \in Alt_4(R)$ *. Then* $\alpha =$ uI_4 *, where* $u^2 = 1$ *.*

Proof Let $\alpha = (\alpha_{ij})_{4 \times 4}$. Consider the generators $\{B_{ij} : 1 \le i \le j \le 4\}$ of Alt₄(*R*). From $\alpha B_{1i} \alpha^t = B_{1i}$, $2 \le i \le 3$, one has

$$
\alpha_{11}\alpha_{ki} - \alpha_{1i}\alpha_{k1} = 0, \quad i+1 \leq k \leq 4,\tag{9.1}
$$

$$
\alpha_{i1}\alpha_{ki} - \alpha_{ii}\alpha_{k1} = 0, \quad i+1 \le k \le 4,\tag{9.2}
$$

$$
\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1} = 1. \tag{9.3}
$$

Now [\(9.1\)](#page-7-0) $\times \alpha_{ii}$ – [\(9.2\)](#page-7-0) $\times \alpha_{1i} \Rightarrow (\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1})\alpha_{ki} = 0$. Thus by [\(9.3\)](#page-7-0),

$$
\alpha_{ki}=0, \quad i+1\leq k\leq 4.
$$

Also [\(9.1\)](#page-7-0) × α_{i1} − [\(9.2\)](#page-7-0) × $\alpha_{11} \Rightarrow (\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1})\alpha_{k1} = 0$. Again by [\(9.3\)](#page-7-0), $\alpha_{k1} = 0$ for $k = 3, 4$.

Now we show that $\alpha_{21} = 0$. Consider $\alpha B_{13} \alpha^t = B_{13}$, we get

$$
\alpha_{11}\alpha_{23} - \alpha_{13}\alpha_{21} = 0, \tag{9.4}
$$

$$
\alpha_{21}\alpha_{33} - \alpha_{23}\alpha_{31} = 0, \tag{9.5}
$$

$$
\alpha_{11}\alpha_{33} - \alpha_{13}\alpha_{31} = 1. \tag{9.6}
$$

Now [\(9.4\)](#page-7-1) $\times \alpha_{31} - (9.5) \times \alpha_{11} \Rightarrow (\alpha_{11} \alpha_{33} - \alpha_{13} \alpha_{31}) \alpha_{21} = 0$ $\times \alpha_{31} - (9.5) \times \alpha_{11} \Rightarrow (\alpha_{11} \alpha_{33} - \alpha_{13} \alpha_{31}) \alpha_{21} = 0$ $\times \alpha_{31} - (9.5) \times \alpha_{11} \Rightarrow (\alpha_{11} \alpha_{33} - \alpha_{13} \alpha_{31}) \alpha_{21} = 0$. Thus by [\(9.6\)](#page-7-1), $\alpha_{21} = 0$. Hence

$$
\alpha_{ij} = 0 \text{ for } 1 \le j < i \le 4. \tag{9.7}
$$

Similarly using $\alpha B_{i4} \alpha^t = B_{i4}$, $1 \le i \le 3$, one can show that

$$
\alpha_{ij} = 0 \text{ for } 1 \le i < j \le 4. \tag{9.8}
$$

From [\(9.7\)](#page-8-7) and [\(9.8\)](#page-8-8), $\alpha_{ij} = 0$, $\forall i \neq j$.

Now from [\(9.3\)](#page-7-0) and the relations obtained from $\alpha B_i \alpha^i = B_i A$, $1 \le i \le 3$ one get, $\alpha_{11}\alpha_{22} = \alpha_{11}\alpha_{33} = \alpha_{11}\alpha_{44} = \alpha_{22}\alpha_{44} = 1$ and hence $\alpha_{11} = \alpha_{22} = \alpha_{33} = \alpha_{44} = u$, where $u \in R$ with $u^2 = 1$. Hence the result.

Theorem 9.3 *One has an injective homomorphism*

$$
\overline{\varphi} : \frac{\operatorname{SL}_4(R)}{\operatorname{E}_4(R)} \hookrightarrow \frac{\operatorname{SO}_6(R)}{\operatorname{EO}_6(R)}
$$

 $(\overline{\varphi}$ *is induced by the homomorphism* φ : $SL_4(R) \rightarrow SO_6(R)$ *)*.

Proof Let $\alpha \in SL_4(R)$ with $[T_\alpha] = I_6$. Then $\alpha V \alpha^t = V$, for all $V \in Alt_4(R)$. Thus by Proposition [9.3,](#page-7-2) $\alpha = uI_4$ with $u^2 = 1$. By Lemma [9.5,](#page-7-3) $\alpha \in E_4(R)$. Hence $\frac{SL_4(R)}{E_4(R)} \hookrightarrow$ $SO_6(R)$ $\overline{{\rm EO}_{6}(R)}$. The contract of the contrac

Acknowledgements The second author thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for the funding of project MTR/2017/000875 under Mathematical Research Impact Centric Support (MATRICS).

References

- 1. P. Garrett, Sporadic isogenies to orthogonal groups, [http://www.math.umn.edu/~garrett/m/v/](http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf) [sporadic_isogenies.pdf](http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf)
- 2. R.A. Horn, C.R. Johnson, *Matrix Analysis* (Cambridge University Press, Cambridge)
- 3. S. Jose, R.A. Rao, A fundamental property of Suslin matrices. J. *K*-Theory: *K*-Theory Appl. Algebra Geom. Topol. **5**, 407–436 (2010)
- 4. S. Jose, R.A. Rao, Suslin forms and the Euler characteristics, in preparation
- 5. B.R. McDonald, *Linear Algebra over Commutative Rings*. Pure and Applied Mathematics, vol. 87 (Marcel Dekker Inc., New York, 1984)
- 6. A.A. Suslin, L.N. Vaserstein, Serre's problem on projective modules over polynomial rings and algebraic K-theory. Math. USSR Izv. **10**, 937–1001 (1976)