
Chapter 9
Actions on Alternating Matrices
and Compound Matrices

Bhatoa Joginder Singh and Selby Jose

9.1 Introduction

In this note, we consider the action of SLn(R) on Altn(R), the space of alter-
nating matrices of order n over R, by conjugation: V �→ σVσ t , for σ ∈ SLn(R),
V ∈ Altn(R). We prove (See Theorem 9.2) that the matrix of the above linear trans-
formation (associated to σ ) is ∧2σ .

These results are well known to experts when R is a field, but we worked it, as
we will need it, in a sequel, over any commutative ring R. (The book [5] gives some
details.)

In the last section, we restrict to the case when n = 4. We show that by taking a
suitable basis of Alt4(R) we can get a map from SL4(R) to SO6(R). Moreover, this
map induces an injection from SL4(R)/E4(R) to SO6(R)/EO6(R) (See Theorem 9.3).
The case when R = C is proved in [1].

In some sense, this result is reminiscent to the Jose–Rao Theorem in
[3, Theorem 4.14], when n = 2, where it was shown that

SUmr(R)/EUmr(R) → SO2(r+1)(R)/EO2(r+1)(R)

is injective. (We refer the reader to [3] for details.)
In recent article [4], Jose–Rao have shown that for v,w ∈ Rr+1, σ ∈ SLr+1(R),

the Suslin matrix
Sr(vσ,wσ t−1

) = ASr(v,w)B,
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for some A,B ∈ SL2r (R), with AB, the Euler characteristic of σ . We may regard
Theorem 9.2 as a prelude to this result; it signifies that the Suslin form brings out the
Euler characteristic, whereas the alternating form only displays the initial∧1 and∧2.

9.2 Preliminaries

In this section, we recall a few definitions, state some results and fix some notations
which will be used throughout this paper.

Let R be a commutative ring with 1. Let Mr(R) denote the set of all r × r matrices
with entries in R.

Definition 9.1 The General Linear group GLr(R) is defined as the group of r × r
invertible matrices with entries in R.

Definition 9.2 The Special Linear group is denoted by SLr(R) and is defined as
SLr(R) = {α ∈ GLr(R) : det(α) = 1}. It is a normal subgroup of GLr(R).

Definition 9.3 The group of elementary matrices Er(R) is a subgroup of GLr(R)

generated by matrices of the form Eij(λ) = Ir + λeij, where λ ∈ R, i �= j and eij ∈
Mr(R) with ijth entry is 1 and all other entries are zero.

Note that eijers =
{
eis if j = r

0 if j �= r
.

Following are some well-known properties of the elementary generators:

Lemma 9.1 For λ,μ ∈ R,

(1) (Splitting Property) Eij(λ + μ) = Eij(λ)Eij(μ), 1 ≤ i, j ≤ r, i �= j.
(2) (Steinberg relation) [Eij(λ),Ejk(μ)] = Eik(λμ), 1 ≤ i, j, k ≤ r, i �= j, i �= k,

j �= k.

Remark 9.1 In view of the Steinberg relation, Er(R) is generated by

{E1i(λ),Ei1(μ) : 2 ≤ i ≤ r, λ, μ ∈ R}.

Note thatEij(λ), i �= j,λ ∈ R, is invertiblewith inverseEij(−λ). In fact,Eij(λ)belongs
to SLr(R). Hence, Er(R) ⊆ SLr(R) ⊆ GLr(R).

We now recall the notion of the compound matrix:

Definition 9.4 (Minors of a matrix) Given an n × m matrix A = (aij) over R, a
minor of A is the determinant of a smaller matrix formed from its entries by selecting
only some of the rows and columns. LetK = {k1, k2, . . . , kp} and L = {l1, l2, . . . , lp}
be subsets of {1, 2, . . . , n} and {1, 2, . . . ,m}, respectively. The indices are chosen
such that k1 < k2 < · · · < kp and l1 < l2 < · · · < lp. The pth-order minor defined
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by K and L is the determinant of the submatrix of A obtained by considering the
rows k1, k2, . . . , kp and columns l1, l2, . . . , lp of A. We denote this submatrix as

A

(
k1 k2 · · · kp
l1 l2 · · · lp

)
or A(K | L).

Theorem 9.1 (The Cauchy–Binet formula) Let A be an m × n matrix and B an
n × m matrix over R, where m ≤ n. Then the determinant of their product C = AB
can be written as a sum of products of minors of A and B, i.e.,

|C| =
∑

1≤k1<k2<···<km≤n

det A

(
1 2 · · · m
k1 k2 · · · km

)
det B

(
k1 k2 · · · km
1 2 · · · m

)
.

The sum is over the maximal (mth order) minors of A and the corresponding minor
of B. In particular, det(AB) = det(A) det(B), if A, B are n × n matrices.

Definition 9.5 Suppose that A is an m × n matrix with entries from a ring R and
1 ≤ r ≤ min{m, n}. The rth compound matrix Cr(A) or rth adjugate of A is the(m
r

) × (n
r

)
matrix whose entries are the minors of order r, arranged in lexicographic

order, i.e.

Cr(A) =
(
det A

(
i1 i2 . . . ir
j1 j2 . . . jr

))
.

Lemma 9.2 (Properties, See [2, 5]) Let A and B be n × nmatrices over R and r ≤ n.
Then

(i) C1(A) = A.
(ii) Cn(A) = det(A).
(iii) Cr(AB) = Cr(A)Cr(B).
(iv) Cr(At) = (Cr(A))t .

9.3 Associated Linear Transformations

We shall always work over a commutative ring R with 1. In this section, we find the
linear transformation of the action of SLn(R) on the space of alternating matrices.

Definition 9.6 AmatrixA ∈ Mn(R) is said to be alternating if aij = −aji and aii = 0,
for 1 ≤ i, j ≤ n.

Notation The space of all alternating n × nmatrices over a commutative ring Rwill
be denoted by Altn(R). It is clearly a free R-module of rank 1 + 2 + · · · + (n − 1) =
( n
2 ) with basis Bij = eij − eji, 1 ≤ i < j ≤ n. �
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One has the action of SLn(R) on Altn(R) by

SLn(R) × Altn(R) → Altn(R)

(σ,A) �→ σAσ t .

This action enables one to associate a linear transformation Tσ : Altn(R) → Altn(R)

for σ ∈ SLn(R), via Tσ (A) = σAσ t .
We input the next observation for completeness; which can be found in [5, pp.

399–400].

Lemma 9.3 Let σ : Rn −→ Rm be a R-linear map. Then the matrix of the linear
transformation ∧rσ : ∧rRn −→ ∧rRm is Cr(M (σ )), where M (σ ) is the matrix of σ
and r ≤ min{n,m}.
Proof This is well-known to experts when R is a field. We compute it as follows:

Let e1, . . . , en be a basis of Rn and f1, . . . , fm be a basis of Rm. Let us compute
the matrix of ∧rσ w.r.t. the standard basis ei1 ∧ · · · ∧ eir of ∧rRn and fi1 ∧ · · · ∧ fir
of ∧rRm ordered lexicographically. Suppose 1 ≤ i1 < · · · < ir ≤ n as usual. Then

∧r(σ )(ei1 ∧ · · · ∧ eir ) = σ(ei1) ∧ · · · ∧ σ(eir )

=
m∑

j1=1

dj1i1 fj ∧ · · · ∧
m∑

jr=1

djr ir fj

=
∑

1≤j1<···<jr≤n

det A

(
j1 j2 . . . jr
i1 i2 . . . ir

) (
fj1 ∧ · · · ∧ fjr

)
,

where At denotes the matrix of the linear transformation σ . �

Since ∧r(σ ◦ τ) = ∧r(σ ) ◦ ∧r(τ ), it is clear from Lemma 9.3 that the multiplicative
property of compound matrices hold, i.e.

Cr(AB) = Cr(A)Cr(B),

where A is an m × n matrix, B is an n × m matrix and r ≤ min{m, n}.
Let us compute the matrix associated to Tσ for σ ∈ SLn(R). We prove that it is

the matrix ∧2σ .

Theorem 9.2 Let σ ∈ SLn(R). Then the matrix of the linear transformation Tσ w.r.t.
the basis {Bij : 1 ≤ i < j ≤ n} is the same as the matrix of the linear transformation
∧2σ : ∧2Rn −→ ∧2Rn; which is the compound matrix of order 2 associated to σ .

Proof Let σ = (aij). For 1 ≤ i < j ≤ n, by definition,
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Tσ (Bij) = σBijσ
t = σ(eij − eji)σ

t = σeijσ
t − σejiσ

t

=
n∑

r=1

n∑
s=r+1

ariasjBrs −
n∑

r=1

n∑
s=r+1

arjasiBrs

=
n∑

r=1

n∑
s=r+1

(ariasj − arjasi)Brs

=
n∑

r=1

n∑
s=r+1

det σ

(
r s
i j

)
Brs.

Thus [Tσ ] =
(
det σ

(
i j
r s

))
= C2(σ ). The rest follows via Lemma 9.3. �

The following Corollary gives the explicit form of [TE1i(λ)], where E1i(λ) ∈ En(R).
Since Ei1(λ) = E1i(λ)t , by Lemma 9.2(iv) one has, [TEi1(λ)] = [TE1i(λ)]t .
Corollary 9.1 Let A = E1i(λ) ∈ En(R), λ ∈ R. Let α = {i1, i2}, β = {j1, j2}, where
1 ≤ i1 < i2 ≤ n and 1 ≤ j1 < j2 ≤ n. Then the (αβ)th entry det A(α|β) of ∧2A is
given by

det A(α|β) =

⎧⎪⎨
⎪⎩
1 if α = β

(−1)rλ if |α ∩ β| = 1, 1 ∈ α, i ∈ β and 1, i /∈ α ∩ β

0 otherwise,

where r is the number of integers in α ∩ β between 1 and i.

Proof Clearly if α = β, then det A(α|β) = 1 as the submatrix A(α|β) = A

(
i1 i2
j1 j2

)

is either I2 or an upper triangular matrix

(
1 λ

0 1

)
.

If 1 ∈ α, i ∈ β and 1, i /∈ α ∩ β, then for r ∈ α ∩ β,A(α|β) is of the formA

(
1 r
r i

)

if 1 < r < i and is of the form A

(
1 r
i r

)
if i < r ≤ n. Note that if A = (aij), then

ajk =

⎧⎪⎨
⎪⎩
1 if j = k

λ if j = 1, k = i

0 otherwise .

.

Thus if 1 < r < i, A

(
1 r
r i

)
=

(
a1r a1i
arr ari

)
=

(
0 λ

1 0

)
and hence det A(α|β) = −λ.

Also if i < r ≤ n, A

(
1 r
i r

)
=

(
a1i a1r
ari arr

)
=

(
λ 0
0 1

)
and hence det A(α|β) = λ. All

other entries of ∧2A contains either a zero row or a zero column. �
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9.4 The 4× 4 Case

L. N. Vaserstein studied the case when n = 4 in [6].We consider the Vaserstein space
V = Alt4(R) of dimension 6.

Definition 9.7 Let π denote the permutation (1 r + 1) · · · (r 2r) corresponding to

the form

(
0 Ir
Ir 0

)
. The elementary orthogonal matrices over R are defined by

oeij(λ) = I2r + λeij − λeπ(j)π(i), if i �= π(j),

where 1 ≤ i, j ≤ 2r and λ ∈ R.

Definition 9.8 Theelementaryorthogonal groupEO2r(R) is the subgroupofSO2r(R)

generated by the matrices oeij(λ), where 1 ≤ i < j ≤ 2r, i �= π(j) and λ ∈ R.

It is observed that the matrix [Tσ ] w.r.t. the basis {B12, B13, B14, B23, B24, B34},
where σ = E1i or Ei1, 2 ≤ i ≤ 4 are not orthogonal w.r.t. the standard form

(
0 I3
I3 0

)
.

However, we have the following lemma.

Lemma 9.4 With respect to the ordered basis {B12,B13,B14,B34,−B24,B23}, the
matrix [TE1i(λ)] and [TEi1(λ)], 2 ≤ i ≤ 4 are elementary orthogonal w.r.t. the standard
form.

Proof By Lemma 9.3, w.r.t. the basis B1 = {B12, B13, B14, B23, B24, B34}, the
matrix of TE12(λ) is the compound matrix of order 2 associated to A = E12(λ). By
Corollary 9.1, det A({1, 3}, {2, 3}) = λ and det A({1, 4}, {2, 4}) = λ and all other
det A(α|β) = 0 if α �= β. If α = β, then det A(α|β) = 1. Thus (24)th and (35)th
entry of [TE12(λ)]B1 are λ. Hence we have [TE12(λ)]B1 = E24(λ)E35(λ). Then w.r.t. the
basis B2 = {B12,B13,B14,B34,−B24,B23}, the matrix [TE12(λ)]B2 = E26(λ)E35(−λ)

which is by definition oe26(λ) w.r.t. the permutation π = (14)(25)(36). Similarly
w.r.t. the basis B2 one has[

TE13(λ)

]
B2

= E34(λ)E16(−λ) = oe34(λ).[
TE14(λ)

]
B2

= E15(λ)E24(−λ) = oe15(λ).[
TE21(λ)

]
B2

= E62(λ)E53(−λ) = oe62(λ).[
TE31(λ)

]
B2

= E43(λ)E61(−λ) = oe43(λ).[
TE41(λ)

]
B2

= E51(λ)E42(−λ) = oe51(λ).

Hence the result. �

In general one has the following.
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Proposition 9.1 Let σ ∈ SL4(R). Then the matrix of the linear transformation Tσ

on the Vaserstein space V w.r.t. the ordered basis {B12, B13, B14, B34, −B24, B23} is
an orthogonal matrix w.r.t. the standard form.

Proof Let ψ̃3 =
(
0 I3
I3 0

)
. Let β be the matrix of Tσ . We show that β is in the orthog-

onal group of ψ̃3.
Let p be a prime ideal of R. It suffices to show that βp is in the orthogonal group of

ψ̃3, for all prime ideals p of R. (Note that of Tσp
is the same as the matrix of (Tσ )p.)

As Rp is a local ring, SLr(Rp) = Er(Rp), for all r ≥ 2. Hence, σp is an elementary
matrix, i.e. it is a product of elementary generators ε1, . . . , εk , for some k. We may
assume that εi is of type E1i(x) or Ei1(x), for some i, and arbitrary x ∈ R.

Now, Tσp
= ∏

Tεk . By Lemma 9.4, thematrix of each Tεj is an elementary orthog-
onal matrix w.r.t. the ordered basis {B12,B13,B14,B34,−B24,B23}. Hence, so is Tσp

,
for all prime ideals p of R. �
But one has the following:

Remark 9.2 Let σ ∈ SL4(R). Then the matrix of the linear transformation Tσ on
the Vaserstein space V w.r.t. the ordered basis {B12, B13, B14, B23, B24, B34} is an

orthogonal matrix with respect to the form

(
0 α

α 0

)
, where α =

⎛
⎝0 0 1
0 −1 0
1 0 0

⎞
⎠.

Proof Let A and B denote the matrices of Tσ w.r.t. the bases

B1 = {B12,B13,B14,B34,−B24,B23} and B2 = {B12,B13,B14,B23,B24,B34},

respectively. Let P denote the transition matrix from B1 to B2. Then clearly P = I3 ⊥
α and P−1AP = B. Note that P−1 = PT = P. Hence P−1AtP = (P−1AP)t = Bt . By

Proposition 9.1, A is orthogonal w.r.t. the standard form ψ̃3 =
(
0 I3
I3 0

)
. Thus we have

Aψ̃3A
t = ψ̃3 ⇒ P−1(Aψ̃3A

t)P = P−1ψ̃3P ⇒ B(P−1ψ̃3P)Bt = P−1ψ̃3P,

which means B is orthogonal w.r.t. the form P−1ψ̃3P =
(
0 α

α 0

)
. �

9.5 Injectivity

In this section, we show that we can obtain a map from SL4(R) → SO6(R) and this

map induces an injection
SL4(R)

E4(R)
↪→ SO6(R)

EO6(R)
.

Proposition 9.2 The map ϕ : E4(R) → EO6(R) is defined as ϕ(σ) = [Tσ ] is sur-
jective.
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Proof Note that EO6(R) is generated by the elementary orthogonal matrices oe12(λ),
oe21(λ), oe13(λ), oe31(λ), oe23(λ), oe32(λ), oe24(λ), oe42(λ), oe34(λ), oe43(λ),
oe35(λ) and oe53(λ). By the same argument as that of Lemma 9.4, one has

[
TE23(λ)

] = oe12(λ),
[
TE32(λ)

] = oe21(λ),
[
TE24(λ)

] = oe13(λ),[
TE42(λ)

] = oe31(λ),
[
TE34(λ)

] = oe23(λ),
[
TE43(λ)

] = oe32(λ),[
TE14(−λ)

] = oe24(λ),
[
TE41(−λ)

] = oe42(λ),
[
TE13(λ)

] = oe34(λ),[
TE31(λ)

] = oe43(λ),
[
TE12(−λ)

] = oe35(λ),
[
TE21(−λ)

] = oe53(λ).

Hence ϕ is surjective. �

Lemma 9.5 Let u be a unit in R with u2 = 1. Then uI4 ∈ E4(R).

Proof This follows from Whitehead’s lemma. Explicitly, if

α1 =
(
I2 (1 − u)I2
0 I2

)
, α2 =

(
I2 0

−I2 I2

)
, α3 =

(
I2 0
uI2 I2

)
,

then clearly α1, α2, α3 ∈ E4(R) and the direct computation shows uI4 = α1α2α1α3.
Hence the result. �

Proposition 9.3 Let α ∈ M4(R) such that αAαt = A for all A ∈ Alt4(R). Then α =
uI4, where u2 = 1.

Proof Let α = (αij)4×4. Consider the generators {Bij : 1 ≤ i < j ≤ 4} of Alt4(R).
From αB1iα

t = B1i, 2 ≤ i ≤ 3, one has

α11αki − α1iαk1 = 0, i + 1 ≤ k ≤ 4, (9.1)

αi1αki − αiiαk1 = 0, i + 1 ≤ k ≤ 4, (9.2)

α11αii − α1iαi1 = 1. (9.3)

Now (9.1) ×αii− (9.2) ×α1i ⇒ (α11αii − α1iαi1)αki = 0. Thus by (9.3),

αki = 0, i + 1 ≤ k ≤ 4.

Also (9.1) ×αi1− (9.2) ×α11 ⇒ (α11αii − α1iαi1)αk1 = 0. Again by (9.3), αk1 = 0
for k = 3, 4.

Now we show that α21 = 0. Consider αB13α
t = B13, we get

α11α23 − α13α21 = 0, (9.4)

α21α33 − α23α31 = 0, (9.5)

α11α33 − α13α31 = 1. (9.6)

Now (9.4) ×α31− (9.5) ×α11 ⇒ (α11α33 − α13α31)α21 = 0. Thus by (9.6), α21 = 0.
Hence
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αij = 0 for 1 ≤ j < i ≤ 4. (9.7)

Similarly using αBi4α
t = Bi4, 1 ≤ i ≤ 3, one can show that

αij = 0 for 1 ≤ i < j ≤ 4. (9.8)

From (9.7) and (9.8), αij = 0, ∀ i �= j.
Now from (9.3) and the relations obtained from αBi4α

t = Bi4, 1 ≤ i ≤ 3 one
get,α11α22 = α11α33 = α11α44 = α22α44 = 1 andhenceα11 = α22 = α33 = α44 = u,
where u ∈ R with u2 = 1. Hence the result. �

Theorem 9.3 One has an injective homomorphism

ϕ : SL4(R)

E4(R)
↪→ SO6(R)

EO6(R)

(ϕ is induced by the homomorphism ϕ : SL4(R) → SO6(R)).

Proof Letα ∈ SL4(R)with [Tα] = I6. ThenαVαt = V , for allV ∈ Alt4(R). Thus by

Proposition 9.3, α = uI4 with u2 = 1. By Lemma 9.5, α ∈ E4(R). Hence
SL4(R)

E4(R)
↪→

SO6(R)

EO6(R)
. �
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