Chapter 9 Actions on Alternating Matrices and Compound Matrices

Bhatoa Joginder Singh and Selby Jose

9.1 Introduction

In this note, we consider the action of $SL_n(R)$ on $Alt_n(R)$, the space of alternating matrices of order *n* over *R*, by conjugation: $V \mapsto \sigma V \sigma^t$, for $\sigma \in SL_n(R)$, $V \in Alt_n(R)$. We prove (See Theorem 9.2) that the matrix of the above linear transformation (associated to σ) is $\wedge^2 \sigma$.

These results are well known to experts when R is a field, but we worked it, as we will need it, in a sequel, over any commutative ring R. (The book [5] gives some details.)

In the last section, we restrict to the case when n = 4. We show that by taking a suitable basis of Alt₄(*R*) we can get a map from SL₄(*R*) to SO₆(*R*). Moreover, this map induces an injection from SL₄(*R*)/E₄(*R*) to SO₆(*R*)/EO₆(*R*) (See Theorem 9.3). The case when $R = \mathbb{C}$ is proved in [1].

In some sense, this result is reminiscent to the Jose–Rao Theorem in [3, Theorem 4.14], when n = 2, where it was shown that

$$\operatorname{SUm}_{r}(R)/\operatorname{EUm}_{r}(R) \to \operatorname{SO}_{2(r+1)}(R)/\operatorname{EO}_{2(r+1)}(R)$$

is injective. (We refer the reader to [3] for details.)

In recent article [4], Jose–Rao have shown that for $v, w \in \mathbb{R}^{r+1}$, $\sigma \in SL_{r+1}(\mathbb{R})$, the Suslin matrix

$$S_r(v\sigma, w\sigma^{t^{-1}}) = AS_r(v, w)B,$$

B. J. Singh

S. Jose (🖂)

© Springer Nature Singapore Pte Ltd. 2020 A. A. Ambily et al. (eds.), *Leavitt Path Algebras and Classical* K-*Theory*, Indian Statistical Institute Series, https://doi.org/10.1007/978-981-15-1611-5_9 183

Department of Mathematics, Government College, Nani-Daman 396210, India e-mail: jogiojogi@gmail.com

Department of Mathematics, The Institute of Science, Madam Cama Road, Mumbai 400032, India e-mail: selbyjose@gmail.com

for some $A, B \in SL_{2^r}(R)$, with AB, the Euler characteristic of σ . We may regard Theorem 9.2 as a prelude to this result; it signifies that the Suslin form brings out the Euler characteristic, whereas the alternating form only displays the initial \wedge^1 and \wedge^2 .

9.2 Preliminaries

In this section, we recall a few definitions, state some results and fix some notations which will be used throughout this paper.

Let *R* be a commutative ring with 1. Let $M_r(R)$ denote the set of all $r \times r$ matrices with entries in *R*.

Definition 9.1 The General Linear group $GL_r(R)$ is defined as the group of $r \times r$ invertible matrices with entries in *R*.

Definition 9.2 The Special Linear group is denoted by $SL_r(R)$ and is defined as $SL_r(R) = \{\alpha \in GL_r(R) : \det(\alpha) = 1\}$. It is a normal subgroup of $GL_r(R)$.

Definition 9.3 The group of elementary matrices $E_r(R)$ is a subgroup of $GL_r(R)$ generated by matrices of the form $E_{ij}(\lambda) = I_r + \lambda e_{ij}$, where $\lambda \in R$, $i \neq j$ and $e_{ij} \in M_r(R)$ with *ij*th entry is 1 and all other entries are zero.

Note that
$$e_{ij}e_{rs} = \begin{cases} e_{is} & \text{if } j = r \\ 0 & \text{if } j \neq r \end{cases}$$

Following are some well-known properties of the elementary generators:

Lemma 9.1 For $\lambda, \mu \in R$,

- (1) (Splitting Property) $E_{ij}(\lambda + \mu) = E_{ij}(\lambda)E_{ij}(\mu), 1 \le i, j \le r, i \ne j$.
- (2) (Steinberg relation) $[E_{ij}(\lambda), E_{jk}(\mu)] = E_{ik}(\lambda\mu), \ 1 \le i, j, k \le r, \ i \ne j, \ i \ne k, j \ne k.$

Remark 9.1 In view of the Steinberg relation, $E_r(R)$ is generated by

$$\{E_{1i}(\lambda), E_{i1}(\mu) : 2 \le i \le r, \lambda, \mu \in R\}.$$

Note that $E_{ij}(\lambda)$, $i \neq j, \lambda \in R$, is invertible with inverse $E_{ij}(-\lambda)$. In fact, $E_{ij}(\lambda)$ belongs to $SL_r(R)$. Hence, $E_r(R) \subseteq SL_r(R) \subseteq GL_r(R)$.

We now recall the notion of the compound matrix:

Definition 9.4 (*Minors of a matrix*) Given an $n \times m$ matrix $A = (a_{ij})$ over R, a minor of A is the determinant of a smaller matrix formed from its entries by selecting only some of the rows and columns. Let $K = \{k_1, k_2, \ldots, k_p\}$ and $L = \{l_1, l_2, \ldots, l_p\}$ be subsets of $\{1, 2, \ldots, n\}$ and $\{1, 2, \ldots, m\}$, respectively. The indices are chosen such that $k_1 < k_2 < \cdots < k_p$ and $l_1 < l_2 < \cdots < l_p$. The *p*th-order minor defined

by *K* and *L* is the determinant of the submatrix of *A* obtained by considering the rows k_1, k_2, \ldots, k_p and columns l_1, l_2, \ldots, l_p of *A*. We denote this submatrix as $A\begin{pmatrix}k_1 & k_2 & \cdots & k_p \\ l_1 & l_2 & \cdots & l_p\end{pmatrix}$ or $A(K \mid L)$.

Theorem 9.1 (The Cauchy–Binet formula) Let A be an $m \times n$ matrix and B an $n \times m$ matrix over R, where $m \le n$. Then the determinant of their product C = AB can be written as a sum of products of minors of A and B, i.e.,

$$|C| = \sum_{1 \le k_1 < k_2 < \dots < k_m \le n} \det A \begin{pmatrix} 1 & 2 & \dots & m \\ k_1 & k_2 & \dots & k_m \end{pmatrix} \det B \begin{pmatrix} k_1 & k_2 & \dots & k_m \\ 1 & 2 & \dots & m \end{pmatrix}.$$

The sum is over the maximal (mth order) minors of A and the corresponding minor of B. In particular, det(AB) = det(A) det(B), if A, B are $n \times n$ matrices.

Definition 9.5 Suppose that *A* is an $m \times n$ matrix with entries from a ring *R* and $1 \le r \le \min\{m, n\}$. The *r*th compound matrix $C_r(A)$ or *r*th adjugate of *A* is the $\binom{m}{r} \times \binom{n}{r}$ matrix whose entries are the minors of order *r*, arranged in lexicographic order, i.e.

$$C_r(A) = \left(\det A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ j_1 & j_2 & \dots & j_r \end{pmatrix}\right)$$

Lemma 9.2 (Properties, See [2, 5]) Let A and B be $n \times n$ matrices over R and $r \le n$. Then

- (i) $C_1(A) = A$.
- (ii) $C_n(A) = \det(A)$.
- (iii) $C_r(AB) = C_r(A)C_r(B)$.
- (iv) $C_r(A^t) = (C_r(A))^t$.

9.3 Associated Linear Transformations

We shall always work over a commutative ring *R* with 1. In this section, we find the linear transformation of the action of $SL_n(R)$ on the space of alternating matrices.

Definition 9.6 A matrix $A \in M_n(R)$ is said to be alternating if $a_{ij} = -a_{ji}$ and $a_{ii} = 0$, for $1 \le i, j \le n$.

Notation The space of all alternating $n \times n$ matrices over a commutative ring R will be denoted by Alt_n(R). It is clearly a free R-module of rank $1 + 2 + \cdots + (n - 1) = \binom{n}{2}$ with basis $B_{ij} = e_{ij} - e_{ji}$, $1 \le i < j \le n$.

One has the action of $SL_n(R)$ on $Alt_n(R)$ by

$$\operatorname{SL}_n(R) \times \operatorname{Alt}_n(R) \to \operatorname{Alt}_n(R)$$

 $(\sigma, A) \mapsto \sigma A \sigma^t.$

This action enables one to associate a linear transformation T_{σ} : Alt_n(R) \rightarrow Alt_n(R) for $\sigma \in SL_n(R)$, via $T_{\sigma}(A) = \sigma A \sigma^t$.

We input the next observation for completeness; which can be found in [5, pp. 399–400].

Lemma 9.3 Let $\sigma : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a \mathbb{R} -linear map. Then the matrix of the linear transformation $\wedge^r \sigma : \wedge^r \mathbb{R}^n \longrightarrow \wedge^r \mathbb{R}^m$ is $C_r(M(\sigma))$, where $M(\sigma)$ is the matrix of σ and $r \leq \min\{n, m\}$.

Proof This is well-known to experts when *R* is a field. We compute it as follows:

Let e_1, \ldots, e_n be a basis of \mathbb{R}^n and f_1, \ldots, f_m be a basis of \mathbb{R}^m . Let us compute the matrix of $\wedge^r \sigma$ w.r.t. the standard basis $e_{i_1} \wedge \cdots \wedge e_{i_r}$ of $\wedge^r \mathbb{R}^n$ and $f_{i_1} \wedge \cdots \wedge f_{i_r}$ of $\wedge^r \mathbb{R}^m$ ordered lexicographically. Suppose $1 \le i_1 < \cdots < i_r \le n$ as usual. Then

$$\wedge^{r}(\sigma)(e_{i_{1}}\wedge\cdots\wedge e_{i_{r}}) = \sigma(e_{i_{1}})\wedge\cdots\wedge\sigma(e_{i_{r}})$$
$$= \sum_{j_{1}=1}^{m} d_{j_{1}i_{1}}f_{j}\wedge\cdots\wedge\sum_{j_{r}=1}^{m} d_{j_{r}i_{r}}f_{j}$$
$$= \sum_{1\leq j_{1}<\cdots< j_{r}\leq n} \det A\begin{pmatrix} j_{1} \ j_{2} \ \cdots \ j_{r}\\ i_{1} \ i_{2} \ \cdots \ i_{r} \end{pmatrix} (f_{j_{1}}\wedge\cdots\wedge f_{j_{r}}),$$

where A^t denotes the matrix of the linear transformation σ .

Since $\wedge^r(\sigma \circ \tau) = \wedge^r(\sigma) \circ \wedge^r(\tau)$, it is clear from Lemma 9.3 that the multiplicative property of compound matrices hold, i.e.

$$C_r(AB) = C_r(A)C_r(B)$$

where A is an $m \times n$ matrix, B is an $n \times m$ matrix and $r \le \min\{m, n\}$.

Let us compute the matrix associated to T_{σ} for $\sigma \in SL_n(R)$. We prove that it is the matrix $\wedge^2 \sigma$.

Theorem 9.2 Let $\sigma \in SL_n(R)$. Then the matrix of the linear transformation T_{σ} w.r.t. the basis $\{B_{ij} : 1 \le i < j \le n\}$ is the same as the matrix of the linear transformation $\wedge^2 \sigma : \wedge^2 R^n \longrightarrow \wedge^2 R^n$; which is the compound matrix of order 2 associated to σ .

Proof Let $\sigma = (a_{ij})$. For $1 \le i < j \le n$, by definition,

9 Actions on Alternating Matrices and Compound Matrices

$$T_{\sigma}(B_{ij}) = \sigma B_{ij}\sigma^{t} = \sigma (e_{ij} - e_{ji})\sigma^{t} = \sigma e_{ij}\sigma^{t} - \sigma e_{ji}\sigma^{t}$$
$$= \sum_{r=1}^{n} \sum_{s=r+1}^{n} a_{ri}a_{sj}B_{rs} - \sum_{r=1}^{n} \sum_{s=r+1}^{n} a_{rj}a_{si}B_{rs}$$
$$= \sum_{r=1}^{n} \sum_{s=r+1}^{n} (a_{ri}a_{sj} - a_{rj}a_{si})B_{rs}$$
$$= \sum_{r=1}^{n} \sum_{s=r+1}^{n} \det \sigma \begin{pmatrix} r & s \\ i & j \end{pmatrix} B_{rs}.$$

Thus $[T_{\sigma}] = \left(\det \sigma \begin{pmatrix} i & j \\ r & s \end{pmatrix}\right) = C_2(\sigma)$. The rest follows via Lemma 9.3.

The following Corollary gives the explicit form of $[T_{E_{1i}(\lambda)}]$, where $E_{1i}(\lambda) \in E_n(R)$. Since $E_{i1}(\lambda) = E_{1i}(\lambda)^t$, by Lemma 9.2(iv) one has, $[T_{E_{1i}(\lambda)}] = [T_{E_{1i}(\lambda)}]^t$.

Corollary 9.1 Let $A = E_{1i}(\lambda) \in E_n(R)$, $\lambda \in R$. Let $\alpha = \{i_1, i_2\}$, $\beta = \{j_1, j_2\}$, where $1 \le i_1 < i_2 \le n$ and $1 \le j_1 < j_2 \le n$. Then the $(\alpha\beta)$ th entry det $A(\alpha|\beta)$ of $\wedge^2 A$ is given by

$$\det A(\alpha|\beta) = \begin{cases} 1 & \text{if } \alpha = \beta \\ (-1)^r \lambda & \text{if } |\alpha \cap \beta| = 1, 1 \in \alpha, i \in \beta \text{ and } 1, i \notin \alpha \cap \beta \\ 0 & \text{otherwise,} \end{cases}$$

where *r* is the number of integers in $\alpha \cap \beta$ between 1 and *i*.

Proof Clearly if $\alpha = \beta$, then det $A(\alpha|\beta) = 1$ as the submatrix $A(\alpha|\beta) = A\begin{pmatrix} i_1 & i_2 \\ j_1 & j_2 \end{pmatrix}$ is either I_2 or an upper triangular matrix $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.

If $1 \in \alpha, i \in \beta$ and $1, i \notin \alpha \cap \beta$, then for $r \in \alpha \cap \beta, A(\alpha|\beta)$ is of the form $A\begin{pmatrix} 1 & r \\ r & i \end{pmatrix}$ if 1 < r < i and is of the form $A\begin{pmatrix} 1 & r \\ i & r \end{pmatrix}$ if $i < r \le n$. Note that if $A = (a_{ij})$, then $\begin{cases} 1 & \text{if } i = k \end{cases}$

$$a_{jk} = \begin{cases} 1 & \text{if } j = k \\ \lambda & \text{if } j = 1, k = i \\ 0 & \text{otherwise} \end{cases}.$$

Thus if 1 < r < i, $A\begin{pmatrix} 1 & r \\ r & i \end{pmatrix} = \begin{pmatrix} a_{1r} & a_{1i} \\ a_{rr} & a_{ri} \end{pmatrix} = \begin{pmatrix} 0 & \lambda \\ 1 & 0 \end{pmatrix}$ and hence $\det A(\alpha|\beta) = -\lambda$. Also if $i < r \le n$, $A\begin{pmatrix} 1 & r \\ i & r \end{pmatrix} = \begin{pmatrix} a_{1i} & a_{1r} \\ a_{ri} & a_{rr} \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$ and hence $\det A(\alpha|\beta) = \lambda$. All other entries of $\wedge^2 A$ contains either a zero row or a zero column.

9.4 The 4 x 4 Case

L. N. Vaserstein studied the case when n = 4 in [6]. We consider the Vaserstein space $V = Alt_4(R)$ of dimension 6.

Definition 9.7 Let π denote the permutation $(1 \ r + 1) \cdots (r \ 2r)$ corresponding to the form $\begin{pmatrix} 0 \ I_r \\ I_r \ 0 \end{pmatrix}$. The elementary orthogonal matrices over *R* are defined by

$$oe_{ij}(\lambda) = I_{2r} + \lambda e_{ij} - \lambda e_{\pi(j)\pi(i)}, \text{ if } i \neq \pi(j),$$

where $1 \le i, j \le 2r$ and $\lambda \in R$.

Definition 9.8 The elementary orthogonal group $EO_{2r}(R)$ is the subgroup of $SO_{2r}(R)$ generated by the matrices $oe_{ij}(\lambda)$, where $1 \le i < j \le 2r$, $i \ne \pi(j)$ and $\lambda \in R$.

It is observed that the matrix $[T_{\sigma}]$ w.r.t. the basis $\{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\}$, where $\sigma = E_{1i}$ or $E_{i1}, 2 \le i \le 4$ are not orthogonal w.r.t. the standard form $\begin{pmatrix} 0 & I_3 \\ I_3 & 0 \end{pmatrix}$. However, we have the following lemma.

Lemma 9.4 With respect to the ordered basis $\{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}$, the matrix $[T_{E_{1i}(\lambda)}]$ and $[T_{E_{i1}(\lambda)}]$, $2 \le i \le 4$ are elementary orthogonal w.r.t. the standard form.

Proof By Lemma 9.3, w.r.t. the basis $B_1 = \{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\}$, the matrix of $T_{E_{12}(\lambda)}$ is the compound matrix of order 2 associated to $A = E_{12}(\lambda)$. By Corollary 9.1, det $A(\{1,3\}, \{2,3\}) = \lambda$ and det $A(\{1,4\}, \{2,4\}) = \lambda$ and all other det $A(\alpha|\beta) = 0$ if $\alpha \neq \beta$. If $\alpha = \beta$, then det $A(\alpha|\beta) = 1$. Thus (24)th and (35)th entry of $[T_{E_{12}(\lambda)}]_{B_1}$ are λ . Hence we have $[T_{E_{12}(\lambda)}]_{B_1} = E_{24}(\lambda)E_{35}(\lambda)$. Then w.r.t. the basis $B_2 = \{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}$, the matrix $[T_{E_{12}(\lambda)}]_{B_2} = E_{26}(\lambda)E_{35}(-\lambda)$ which is by definition $oe_{26}(\lambda)$ w.r.t. the permutation $\pi = (14)(25)(36)$. Similarly w.r.t. the basis B_2 one has

$$\begin{split} & \left[T_{E_{13}(\lambda)} \right]_{B_2} = E_{34}(\lambda) E_{16}(-\lambda) = oe_{34}(\lambda). \\ & \left[T_{E_{14}(\lambda)} \right]_{B_2} = E_{15}(\lambda) E_{24}(-\lambda) = oe_{15}(\lambda). \\ & \left[T_{E_{21}(\lambda)} \right]_{B_2} = E_{62}(\lambda) E_{53}(-\lambda) = oe_{62}(\lambda). \\ & \left[T_{E_{31}(\lambda)} \right]_{B_2} = E_{43}(\lambda) E_{61}(-\lambda) = oe_{43}(\lambda). \\ & \left[T_{E_{41}(\lambda)} \right]_{B_2} = E_{51}(\lambda) E_{42}(-\lambda) = oe_{51}(\lambda). \end{split}$$

Hence the result.

In general one has the following.

Proposition 9.1 Let $\sigma \in SL_4(R)$. Then the matrix of the linear transformation T_{σ} on the Vaserstein space V w.r.t. the ordered basis $\{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}$ is an orthogonal matrix w.r.t. the standard form.

Proof Let $\widetilde{\psi}_3 = \begin{pmatrix} 0 & I_3 \\ I_3 & 0 \end{pmatrix}$. Let β be the matrix of T_{σ} . We show that β is in the orthogonal group of $\widetilde{\psi}_3$.

Let \mathfrak{p} be a prime ideal of R. It suffices to show that $\beta_{\mathfrak{p}}$ is in the orthogonal group of $\widetilde{\psi}_3$, for all prime ideals \mathfrak{p} of R. (Note that of $T_{\sigma_{\mathfrak{p}}}$ is the same as the matrix of $(T_{\sigma})_{\mathfrak{p}}$.)

As R_p is a local ring, $SL_r(R_p) = E_r(R_p)$, for all $r \ge 2$. Hence, σ_p is an elementary matrix, i.e. it is a product of elementary generators $\varepsilon_1, \ldots, \varepsilon_k$, for some k. We may assume that ε_i is of type $E_{1i}(x)$ or $E_{i1}(x)$, for some i, and arbitrary $x \in R$.

Now, $T_{\sigma_p} = \prod T_{\varepsilon_k}$. By Lemma 9.4, the matrix of each T_{ε_j} is an elementary orthogonal matrix w.r.t. the ordered basis $\{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}$. Hence, so is T_{σ_p} , for all prime ideals \mathfrak{p} of R.

But one has the following:

Remark 9.2 Let $\sigma \in SL_4(R)$. Then the matrix of the linear transformation T_{σ} on the Vaserstein space V w.r.t. the ordered basis $\{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\}$ is an $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

orthogonal matrix with respect to the form
$$\begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$$
, where $\alpha = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Proof Let A and B denote the matrices of T_{σ} w.r.t. the bases

$$B_1 = \{B_{12}, B_{13}, B_{14}, B_{34}, -B_{24}, B_{23}\}$$
 and $B_2 = \{B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}\},\$

respectively. Let *P* denote the transition matrix from B_1 to B_2 . Then clearly $P = I_3 \perp \alpha$ and $P^{-1}AP = B$. Note that $P^{-1} = P^T = P$. Hence $P^{-1}A^tP = (P^{-1}AP)^t = B^t$. By Proposition 9.1, *A* is orthogonal w.r.t. the standard form $\widetilde{\psi}_3 = \begin{pmatrix} 0 & I_3 \\ I_3 & 0 \end{pmatrix}$. Thus we have

$$A\widetilde{\psi}_3 A^t = \widetilde{\psi}_3 \Rightarrow P^{-1}(A\widetilde{\psi}_3 A^t)P = P^{-1}\widetilde{\psi}_3 P \Rightarrow B(P^{-1}\widetilde{\psi}_3 P)B^t = P^{-1}\widetilde{\psi}_3 P,$$

which means *B* is orthogonal w.r.t. the form $P^{-1}\widetilde{\psi}_3 P = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$.

9.5 Injectivity

In this section, we show that we can obtain a map from $SL_4(R) \to SO_6(R)$ and this map induces an injection $\frac{SL_4(R)}{E_4(R)} \hookrightarrow \frac{SO_6(R)}{EO_6(R)}$.

Proposition 9.2 The map $\varphi : E_4(R) \to EO_6(R)$ is defined as $\varphi(\sigma) = [T_\sigma]$ is surjective.

Proof Note that EO₆(*R*) is generated by the elementary orthogonal matrices $oe_{12}(\lambda)$, $oe_{21}(\lambda)$, $oe_{13}(\lambda)$, $oe_{31}(\lambda)$, $oe_{23}(\lambda)$, $oe_{32}(\lambda)$, $oe_{24}(\lambda)$, $oe_{42}(\lambda)$, $oe_{34}(\lambda)$, $oe_{43}(\lambda)$, $oe_{35}(\lambda)$ and $oe_{53}(\lambda)$. By the same argument as that of Lemma 9.4, one has

$$\begin{split} & \left[T_{E_{23}(\lambda)} \right] = oe_{12}(\lambda), \left[T_{E_{32}(\lambda)} \right] = oe_{21}(\lambda), \left[T_{E_{24}(\lambda)} \right] = oe_{13}(\lambda), \\ & \left[T_{E_{42}(\lambda)} \right] = oe_{31}(\lambda), \left[T_{E_{34}(\lambda)} \right] = oe_{23}(\lambda), \left[T_{E_{43}(\lambda)} \right] = oe_{32}(\lambda), \\ & \left[T_{E_{14}(-\lambda)} \right] = oe_{24}(\lambda), \left[T_{E_{41}(-\lambda)} \right] = oe_{42}(\lambda), \left[T_{E_{13}(\lambda)} \right] = oe_{34}(\lambda), \\ & \left[T_{E_{31}(\lambda)} \right] = oe_{43}(\lambda), \left[T_{E_{12}(-\lambda)} \right] = oe_{35}(\lambda), \left[T_{E_{21}(-\lambda)} \right] = oe_{53}(\lambda). \end{split}$$

Hence φ is surjective.

Lemma 9.5 Let u be a unit in R with $u^2 = 1$. Then $uI_4 \in E_4(R)$.

Proof This follows from Whitehead's lemma. Explicitly, if

$$\alpha_1 = \begin{pmatrix} I_2 \ (1-u)I_2 \\ 0 \ I_2 \end{pmatrix}, \alpha_2 = \begin{pmatrix} I_2 \ 0 \\ -I_2 \ I_2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} I_2 \ 0 \\ uI_2 \ I_2 \end{pmatrix},$$

then clearly $\alpha_1, \alpha_2, \alpha_3 \in E_4(R)$ and the direct computation shows $uI_4 = \alpha_1 \alpha_2 \alpha_1 \alpha_3$. Hence the result.

Proposition 9.3 Let $\alpha \in M_4(R)$ such that $\alpha A \alpha^t = A$ for all $A \in Alt_4(R)$. Then $\alpha = uI_4$, where $u^2 = 1$.

Proof Let $\alpha = (\alpha_{ij})_{4 \times 4}$. Consider the generators $\{B_{ij} : 1 \le i < j \le 4\}$ of Alt₄(*R*). From $\alpha B_{1i} \alpha^{t} = B_{1i}, 2 \le i \le 3$, one has

$$\alpha_{11}\alpha_{ki} - \alpha_{1i}\alpha_{k1} = 0, \quad i+1 \le k \le 4, \tag{9.1}$$

$$\alpha_{i1}\alpha_{ki} - \alpha_{ii}\alpha_{k1} = 0, \quad i+1 \le k \le 4, \tag{9.2}$$

$$\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1} = 1. \tag{9.3}$$

Now (9.1) $\times \alpha_{ii} - (9.2) \times \alpha_{1i} \Rightarrow (\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1})\alpha_{ki} = 0$. Thus by (9.3),

$$\alpha_{ki} = 0, \quad i+1 \le k \le 4.$$

Also (9.1) $\times \alpha_{i1} - (9.2) \times \alpha_{11} \Rightarrow (\alpha_{11}\alpha_{ii} - \alpha_{1i}\alpha_{i1})\alpha_{k1} = 0$. Again by (9.3), $\alpha_{k1} = 0$ for k = 3, 4.

Now we show that $\alpha_{21} = 0$. Consider $\alpha B_{13} \alpha^t = B_{13}$, we get

$$\alpha_{11}\alpha_{23} - \alpha_{13}\alpha_{21} = 0, \tag{9.4}$$

$$\alpha_{21}\alpha_{33} - \alpha_{23}\alpha_{31} = 0, \tag{9.5}$$

$$\alpha_{11}\alpha_{33} - \alpha_{13}\alpha_{31} = 1. \tag{9.6}$$

Now (9.4) $\times \alpha_{31} - (9.5) \times \alpha_{11} \Rightarrow (\alpha_{11}\alpha_{33} - \alpha_{13}\alpha_{31})\alpha_{21} = 0$. Thus by (9.6), $\alpha_{21} = 0$. Hence

$$\alpha_{ij} = 0 \text{ for } 1 \le j < i \le 4.$$
(9.7)

Similarly using $\alpha B_{i4} \alpha^t = B_{i4}$, $1 \le i \le 3$, one can show that

$$\alpha_{ij} = 0 \text{ for } 1 \le i < j \le 4.$$
(9.8)

From (9.7) and (9.8), $\alpha_{ij} = 0$, $\forall i \neq j$.

Now from (9.3) and the relations obtained from $\alpha B_{i4}\alpha^t = B_{i4}$, $1 \le i \le 3$ one get, $\alpha_{11}\alpha_{22} = \alpha_{11}\alpha_{33} = \alpha_{11}\alpha_{44} = \alpha_{22}\alpha_{44} = 1$ and hence $\alpha_{11} = \alpha_{22} = \alpha_{33} = \alpha_{44} = u$, where $u \in R$ with $u^2 = 1$. Hence the result.

Theorem 9.3 One has an injective homomorphism

$$\overline{\varphi}: \frac{\mathrm{SL}_4(R)}{\mathrm{E}_4(R)} \hookrightarrow \frac{\mathrm{SO}_6(R)}{\mathrm{EO}_6(R)}$$

 $(\overline{\varphi} \text{ is induced by the homomorphism } \varphi : SL_4(R) \to SO_6(R)).$

Proof Let $\alpha \in SL_4(R)$ with $[T_\alpha] = I_6$. Then $\alpha V \alpha^t = V$, for all $V \in Alt_4(R)$. Thus by Proposition 9.3, $\alpha = uI_4$ with $u^2 = 1$. By Lemma 9.5, $\alpha \in E_4(R)$. Hence $\frac{SL_4(R)}{E_4(R)} \hookrightarrow \frac{SO_6(R)}{EO_6(R)}$.

Acknowledgements The second author thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for the funding of project MTR/2017/000875 under Mathematical Research Impact Centric Support (MATRICS).

References

- P. Garrett, Sporadic isogenies to orthogonal groups, http://www.math.umn.edu/~garrett/m/v/ sporadic_isogenies.pdf
- 2. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge)
- 3. S. Jose, R.A. Rao, A fundamental property of Suslin matrices. J. *K*-Theory: *K*-Theory Appl. Algebra Geom. Topol. **5**, 407–436 (2010)
- 4. S. Jose, R.A. Rao, Suslin forms and the Euler characteristics, in preparation
- 5. B.R. McDonald, *Linear Algebra over Commutative Rings*. Pure and Applied Mathematics, vol. 87 (Marcel Dekker Inc., New York, 1984)
- A.A. Suslin, L.N. Vaserstein, Serre's problem on projective modules over polynomial rings and algebraic K-theory. Math. USSR Izv. 10, 937–1001 (1976)