Chapter 6 ®)
Grobner Bases and Dimension Formulas Gissiia
for Ternary Partially Associative Operads

Fatemeh Bagherzadeh and Murray Bremner

6.1 Introduction

We consider nonsymmetric operads in the category of Z-graded vector spaces over a
field of characteristic 0. The product is the tensor product (with Koszul signs) and the
coproduct is the direct sum. Grobner bases for operads were introduced by Dotsenko,
Khoroshkin and Vallette [5, 6]; see also [2].

Let L7 be the free nonsymmetric operad with one ternary operation ¢ = ().
Let « denote ternary partial associativity, which may be written as a tree polynomial,
using partial compositions or as a nonassociative polynomial:

tojt+tort+tost,

o Z/KN + ﬁ + /%\ (Grsksk) k) 4 (k(skskk) k) + Gk (kxx)). (6.1)
We compute a Grobner basis for the ideal (o) when ¢ has even (homological) degree
so that Koszul signs are irrelevant, and when ¢ has odd degree so that Koszul signs
are essential. We include details of the calculations to clarify the Grobner basis
algorithm for nonsymmetric operads. As an application, we calculate dimension
formulas for the quotient operads. Similar results have been obtained independently
in unpublished work of Vladimir Dotsenko.

For earlier work on partial associativity and its applications, see [1, 3, 7, 9—
11, 13-15]. Recent results of Dotsenko, Shadrin and Vallette [8] have shown that
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the ternary partially associative operad with an odd generator arises naturally in the
homology of the poset of interval partitions into intervals of odd length and in certain
De Concini—Procesi models of subspace arrangements [4] over the real numbers.

6.2 Preliminaries

Definition 6.1 An m-ary tree is a rooted plane tree p in which every node has either
no children (leaf’) or m children (internal node). The weight w(p) counts internal
nodes; the arity £(p) = 1 + w(p)(m—1) counts leavesindexed 1, . .., £(p) from left
to right. The basic tree t is the m-ary tree of weight 1. Set [n] = {1, ..., n}.

Definition 6.2 If n = 1 (mod m—1) then 7 (n) is the set of m-ary trees of arity n,
and 7 is the disjoint union of the 7 (n) forn > 1.

Definition 6.3 If p, g € 7 then for i € [€(p)] the partial composition p o; q € T
is obtained by identifying leaf i of p with the root of g.

Lemma 6.1 Starting with t, every m-ary tree of weight w can be obtained by a
sequence of w—1 partial compositions.

Lemma 6.2 Let p, q, r be m-ary trees. Partial composition satisfies [2, p. 72]:

poi(qoj_ix1r), i <j<i+lg)-1;
(poiq)ojr=13 (poj_ggp+17)oiq, i+l(g) <j=<L(p)+lig)—1;
(pojr)oitepry-19, 1=j=<i-l.

Lemma 6.3 The set 7 with partial compositions is isomorphic to the free nonsym-
metric (set) operad with one m-ary operation t.

Definition 6.4 Ifn = 1 (mod m—1)then L7 (n) is the vector space with basis 7 (n),
and L7 is the direct sum of L7 (n) for n > 1. A tree polynomial of arity n is an
element of L7 (n). Partial composition in 7~ extends bilinearly to L7

Lemma 6.4 The vector space LT with partial compositions is isomorphic to the
free nonsymmetric (vector) operad with one m-ary operation t.

Definition 6.5 A relation of arity n is an element of £7 (n) \ 0. The operad
ideal T = (f1, ..., fr) generated by relations fi, ..., fi is the intersection of all
homogeneous subspaces S € L7 such that fi, ..., fr € S, and for all f € S(m),
g€ LT (n)ywehave fo;g,g80; f €S elm]jeln].

The following results come from [2, Sect. 3.4] and [6, Sects. 2.4, 3.1] with minor
changes.

Definition 6.6 The path sequence of p € T (n) is path(p) = (ay, ..., a,), where a;
is the length of the path from the root to the leaf i.
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Lemma 6.5 If p,q € T then p = q if and only if path(p) = path(q).

Definition 6.7 For p,q € 7 (n) we write p < g and say p precedes q in path-lex
order if and only if path(p) < path(q) in lex order on n-tuples of positive integers.
If f € LT (n) then its leading monomial {m(f) € T (n) is the greatest monomial in
path-lex order, and its leading coefficient £c(f) is the coefficient of ¢m( f).

Definition 6.8 If p, g € 7 then g is divisible by p (written p | ) if p is a subtree of
q:thatis,q = --- p - - - where the dots denote sequences of partial compositions with
parentheses. If p € 7 (m),q € T (n), p | q,and f € LT (m) then we may replace p
by f inq and use linearity and the same partial compositions to obtain the substitution
of f for pingq:

Mg, p. f)=---f--€LT(n).

Definition 6.9 If /, g € L7 andm(g) | £m(f) thenthe reduction of f by g (which
eliminates the leading term of f) is

£
R(f.e)=Ff— %M(Km(f), tm(g), g)-

This extends to reduction of f by gy, ..., g; see [2, Algorithm 3.4.2.16].

Definition 6.10 If p, g, r € 7 then we call p a small common multiple (SCM) of
g and r if g | p, r | p, every node of p is a node of g or r (or both), and £(p) <
£(q) + £(r).

Definition 6.11 If f, g, & are monic tree polynomials and £m(f) is an SCM of
€m(g), Lm(h) then the resulting S-polynomial is

S(f, g.h) = M(&m(f), tm(g), g) — M(¢m(f), tm(h), h).

Definition 6.12 Let G be a finite set of relations and let / = (G). If for all f € I
there exists g € G such that £m(g) | £m(f) then we call G a Grobner basis for 1.
We say G is reduced if £m(g) is not divisible by £m(h) for all g, h € G.

Lemma 6.6 Every operad ideal has a unique reduced Grobner basis.

Theorem 6.1 If I = (G) then G is a Grobner basis for 1 if and only if for every
SCM f of elements g, h € G the reduction of S(f, g, h) by G is 0.
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6.3 Grobner Bases and Dimension Formulas

In the rest of this paper, we consider a ternary operation (m = 3). We usually indicate
the leading monomial of a tree polynomial by a bullet at the root, and write the terms of
a tree polynomial from left to right in reverse path-lex order. The partially associative
relation o corresponds to this rewrite rule:

tort :/@ — —ﬁ—/%: —toyt—tost (6.2)

Theorem 6.2 For the path-lex monomial order, the following tree polynomials form
the reduced Grobner basis for (a) with an operation of even degree:

“= .\+ﬁ+ﬂ>h ﬂf\%+%+ﬂ>\

Proof The proof consists of Lemmas 6.7 to 6.13. (]

Remark 6.1 As nonassociative polynomials, the relations of Theorem 6.2 are

(Grskk)kk) 4+ (k(Gkkok) k) + (s (Gkkk)),
(s Grk Grokk) ) k) 4 Crk(e(skkk) %)) 4 (ke Grk (kkk) ) ),
(s Gk ) (ke (ko) k) ) 4 (R Grokok) (o (skokk) ) ), (ke Gk Grokok) (k%)) ), (ks (kok Gk (kkk) ) ).

Lemma 6.7 There is only one SCM of {m(c) with itself; this produces reduced
S-polynomial B, and the set {c, B} is self-reduced:

B= + + =toy(tozt)+toz(toyt)+tos(tost).

Proof We have £m(a) =t o; t and hence

Im(a) o)t = =to; fm(a).

From this, we obtain these tree polynomials by substitution (Definition 6.8):
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adojt=(tojt)ojt+ (toyt)ot+ (tozt)o;t

toja=to;(tojt)+toy(toyt)+to)(tozt)

The difference is this (non-reduced) S-polynomial:
odojt—toja=(tort)ot+ (to3t)oyt —to;(toyt) —tog(tozt)
N
=(tojt)ogst+ (toyt)ost—(toyt)oyt —(toyt)oszt.

We have rewritten the partial compositions (Lemma 6.2). We apply rewrite rule (6.2)
to the top subtree ¢m (o) = t oy t of each monomial (reduce using «):

—(toyt)ogt —(tozt)ogst —(topt)ost— (tozt)ost
+ (topt)opt+ (tozt)opt+ (topt)ozt+ (tost)ost.

Terms 3 and 6 cancel since both monomials represent the same tree:

(tort)ost = (foyt)ort = %\

Six terms remain:

— (toyt)ogt —(tozt)ost —(tozt)ost
4+ (togt)opt+ (toyt)ost+ (tozt)ost

= —toy(togt) —toz(toyt) —toz(tozt)
+toy(toyt)+toy(toyt)+tos(tort).

In terms 4 and 6, we reduce the bottom subtree £m () = ¢ o; ¢ using o:

—top(tozt) —toz(toyt) —toz(tozt)—toy(tort)
—toy(tozt)+top(toyt)—toz(topt)—toz(toszt).
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Terms 4 and 6 cancel and the others combine in pairs:

/1N
—2(top (to3t)+103(togt)+103(to3t))=-2 + +

No further reduction is possible. The monic form of this polynomial is B. O

The relation 8 corresponds to this rewrite rule:

toy(tost)=—toz(toyt)—toz(tozt)

We consider separately the four SCMs of ¢m(x) =t ot and €m(B) =1t o
(t o3 1).

Lemma 6.8 Identifying the second t of {m(a) =t oy t with the first t of {m(B) =
t oy (t o3 t) produces the reduced S-polynomial y, and {«, B, v} is self-reduced:

/N
y=2 %\—F =2(toz(toyt))ost+1toz(tos(tozt)).

Proof We have the following equations:

Im(a) oy (tozt) =(tort)oy (tozt) = =toy(toy(tozt)) =to; Lm(B).

We apply the same partial compositions to o and B:

oy (tozt) = (tojt)oy(tozt)+ (foyt)oy(tozt)+ (fo3t)oy(tozt),
toyB=toj(toy(tozt))+toy(toz(toyt))+tog (tos(tost)).

Taking the difference, we obtain this (non-reduced) S-polynomial:

(tojt)oy(tozt)+ (toyt)oy(tozt)+ (tozt)oy (tozt)
—toj(toy(tozt)) —tog(toz(topt)) —tog (toz(tost)).

Terms 1 and 4 cancel, leaving
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(togt)oy (tozt)+ (tozt)oy (tozt)
—toj(toz(toyt)) —toj(tosz(tost))

N
=toy((tojt)o3t)+ (tozt)op(tozt)
—(toyt)oz(tost) —(togt)oz(tost).

Terms 1, 3, 4 contain the subtree £m(«) = ¢ o) t, so we reduce them using o:

—toy((togt)ozt) —toy((tozt)ozt)+ (tozt)op (tozt)
+(1021)O3(l02l)+(l03l)03([Ozl)+(t02l)03(l03l)

+ (t o3 t) o3 (to3t).

We write this polynomial in terms of trees:

Terms 1 and 4 cancel, leaving

The leading monomial is divisible by £m () but not £m («); we reduce using S:

The leading monomial is divisible by « (bottom) and S (top). Using « gives

Terms 1, 5 and terms 2, 6 cancel, leaving
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HnRR

We reduce the leading monomial using 8:

Terms 1, 2 cannot be reduced; terms 3, 4 can be reduced by «:

TR AR R

We reduce terms 3, 5 by «o:

If we reduce term 2 using 8, then two terms cancel and we obtain —y. (]

Lemma 6.9 Identifying the first t of tm(a) =t oy t and the first t of tm(B) =
t oy (t o3 t) we obtain the S-polynomial §, and {«, B, 8} is self-reduced:

/.
5= M +M+ %\
= (to3(toyt))oxt)+ (to3z(tozt))ort)+ (to3(tos(toszt)).

Proof We have the equations

€m(a) og (fo31) = (toyt)os(tozt)= MX = (toy(tozt))ort =Lm(B)oyt.

We apply the same partial compositions to o and j:
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aog(tozt)=(toyt)os(tozt)+ (toyt)os(tozt)+ (tozt)oys(tozt),
Boit=(toy(tozt))oyt+ (toz(toyt))ojt+ (toz(tozt)) opt.

The resulting S-polynomial is

(tort)og (fo31)+ (toxt)og (fo31)+ (fo3t)oy(tozt)
—(toy(tozt))ort —(toz(tort))oyt— (toz(tozt)) ort.

Terms 1, 4 cancel, leaving

(toxt)os(tozt)+(tozt)os(tozt)—(to3(toyt))ort—(toz(tozt))ort
= + - -
We reduce terms 3, 4 using «:
AN
+ + M + + M
Reducing term 1 using 8 gives

Terms 1, 3 and 2, 5 cancel; no further reduction is possible, producing é. O

Lemma 6.10 Identifying the first t of {m(a) =t oy t with the second t of tm(B) =
t oy (t 03 t) we obtain the S-polynomial € and {«, B, €} is self-reduced:

T SR SN

=((tozt)oxt)ogt+ ((tozt)ort)ogt — (toz(tozt))ost— (toz(tozt)) ort.
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Proof We have the equations

toy (Um(a)ost) =top ((tojt)ost) =@\= (tog(tozt))ort =€m(B)ort.

The resulting S-polynomial 7 o, (o o5¢1) — B oyt iS

toy((toyt)ost)+toy((tost)ost)+1toy((tozt)ost)
—(toy(tozt))opt —(toz(toyt))ost— (toz(tozt)) ort.

Terms 1, 4 cancel, leaving

l02((lOz[)O5l)+lOz(([O3t)05[)—([03(lOzl))Oz[—(lO3(l03[))02t
N LY SN
= + — -
We reduce terms 1, 2 using §:
Reducing terms 1, 2 using « gives
@& Kon-"A,

Terms 1, 6 and 2, 5 cancel. No further reduction is possible, giving —¢. O

Lemma 6.11 Identifying the first t of £m(a) =t oy t with the third t of {m(f) =
t oy (t o3 t) we obtain new S-polynomial ¢, and {«, B, ¢} is self-reduced:

/N
¢ = — =to3((toyt)ost) —toz(tos(toszt)).
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Proof We have the equations

(topt)ogfm(ax) = (topt)og (tort) = = (top(tozt))ost =4Lm(B)ost.

The resulting S-polynomial (¢ o, ) o4 ¢ — B oy t is

(toyt)og(tojt)+(toyt)os(toxt)+ (topt)og(tozt)
—(toy(tozt))ogt —(toz(topt))ogt— (toz(tozt)) ogt.

Terms 1, 4 cancel, leaving

(toxt)og(togt)+ (toyt)os(fo3t)— (toz(toxt))ogt—(to3(fozf)) ogt

We use 8 to reduce terms 1, 2:

Terms 1, 6 and 2, 5 and 4, 7 cancel. No further reductions are possible, and the monic
form of the last polynomial is ¢. ]
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Lemma 6.12 The polynomials y, §, €, ¢ span a subspace with basis n, 0, v.

Proof 1t is easy to see that
1 1 1
n=§(y+8+2e), 9:5(2)/—54-6), v:—g(y—25+2€),

and that these three polynomials form a basis of span(y, 8, €, ¢). (]
Lemma 6.13 Every S-polynomial obtained from o, 8, n, 6, v reduces to 0.

Proof If either f or g is a monomial then clearly every S-polynomial obtained from
f and g reduces to 0. We have already considered S-polynomials from « and §; the
other cases are «, nn and 8, n and 1, n with many subcases. We give details for the
most difficult subcase and leave the others as exercises. These calculations can be
simplified using the triangle lemma for nonsymmetric operads [2, Prop. 3.5.3.2].

We identify the second ¢ of £m (o) with the first ¢ of £m(n) and obtain this SCM:
Im(a) =tort, €m(n)=(topt)os(toxt), (Um(a)opt)os(toxt)=1torlm(n).

To save space, we switch to nonassociative notation. We obtain the S-polynomial

(@ogt)os(togt)y—torn=
(s (st ) G (ks ) sk ) k) k) = (3 Grokok ) (G G ) sk ) skok ) ) — (3 Giokok) (skok (Gkokok ) ) skok ).

Rewrite rules (6.2) and (6.3) have this form; the letters represent submonomials:

(wwx)yz) — — (v(wxy)z) — (vw(xyz)), (6.4)
(t(uv(wxy))z) F—— — (tu(v(wxy)z)) — (tu(vw(xyz))). (6.5)
When we apply (6.4) or (6.5), we use bars to indicate the submonomials. To begin
we reduce all three monomials in the S-polynomial using « and obtain
Cr(Greot) G (ko) k) %) 3k) 4= (e Gorok) (Gr Gtk ) %) k%)) — ((kGrotok) (rok (roker) ) k) =
— (k(k Gk (x Gk %) ) k) k) — (ot Gr (e (skokok) k) %) ) k) — (k(rsksx) Gk ((kkk) 5k ) %) )

— (x (k) (e Geror) (o) ) )+ (k) (iok (et ) ) %) %)+ (3 (o) (G (kotok ) ) %) ).

Terms 3, 5, 6 reduce using « as indicated; term 4 is 6 o, ¢ and reduces to 0:

4 Gk Grokeor) Gr Gk (ekx) ) %)) — (rGr (R Gk (ko) ) %) k) — e (3 Gr (teok (eotesk ) ) %) )

— ((GRkok) (k Gr (o) k) k) ) — (e (skskok) (ko Ghokok ) ) ) ).

Terms 3, 7 cancel, and terms 1, 2, 4, 5, 6 reduce using 8 as indicated:
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(RGRRCRGR Gk ) k) ) %) %) 4 (R Grk Grk (Grokok) skk) ) ) %) 4 (ko (3 (3 Gk Giokok ) k) k) k) )
4 Gk ik ((k Grorr ) sk ) skk ) ) — (ke (kskok) (o (sk (ko) ) ) ) — (k (k) ik (k3 (kkk) ) ) )
F e (r(x (k%) )k) ) k) F (R (Grok(Grak (x (ko) %) ) k) = Grok Gk Gk (o (kokk ) ) ) ) %)
+ (o (o ((kx (k%) ) k%)) — (k) (R (Ghokok) k%))

Terms 1, 2,7, 8 reduce using B as indicated; term 6 is v o, ¢ and reduces to 0; omitting
terms which cancel, we obtain

— (ke (R (e (ko Grokk) ) sk ) k) ) — (o Gk Gror (3 Gk ) ) ) k) ) — Gk (skok Gk (3 (skokk ) ) %) %) )
4 Grk Gk ((rok (o) )kk) ) ) — (3 Grokok) Gk ((3k3%3%) k%) ).

Terms 1, 2, 8 reduce using « as indicated; omitting terms which cancel, we obtain
— 20k GeGex (3 (%K) %)) %)) — 20k Gk (x (x (k) %) %)) — (3 GeGek (k% (3%%)) ) %))
— (ke R (Rx(%%%) ) %))).

Terms 1, 3, 4 reduce using B as indicated. Some terms cancel, and others reduce to
0 using v, leaving the single term (ks (s (ke (k%%))%))). We reduce using 8 and
then both terms reduce to 0 using v. ]

We use Theorem 6.2 to calculate the dimensions of the homogeneous components
of the ternary partially associative operad 7PA = L7 /() with an operation of even
(homological) degree. Theorem 6.3 below implies the conditional result of Goze and
Remm [11, Theorem 15]; our proof using Grobner bases is much simpler. For a more
general conjecture, see [2, Conjecture 10.3.2.6, case 6].

Lemma 6.14 Forn =1, 3,5, 7 we have
dim 7RA(1) = dim TRAQ3) =1, dim 7TPRAS) =2, dim 7PRA(T) = 4.

For TRA(S) a monomial basis in increasing path-lex order is

For TRA(T) a monomial basis in increasing path-lex order is

Proof The case n = 1 is trivial, and for n = 3 we have only the basic tree 7. For
n =5, the monomial ¢ o; ¢ reduces by «, leaving only 71 =t oyt and 7T, = ¢ o3 ¢.
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For n =7, we have (i) T} o; t: if i = 1, 3 the result reduces by «, and if i = 2,4, 5
we obtain Ts, Ty, T3; (ii) t o; Ty: if i = 1, 2 the result reduces by «, 8, and if i = 3
we obtain T3; (iii) 75 o; t: if i = 1, 2 the result reduces by «, if i = 3 we obtain
Ts, if i = 4 the result reduces by B, and if i = 5 we obtain Ts; (iv) f o; Tr:if i =1
the result reduces by «, if i = 2,3 we obtain Tg, 7y4. Clearly T3, ..., Ts cannot be
reduced using « or B, which proves linear independence. (I

Theorem 6.3 For weight k > 3 we have dim 7TRAQRk+1) = k+1.

Proof Let M be the tree with one vertex, set M; = ¢, and for £ > 2 set
My=toy(toy(toy---(topt) -+)) (€ copies of 1).

Consider the following k41 monomials of weight k in increasing path-lex order; to
save space we write | £ | = M,:

fi f2 fiB<i<k-1 S Six1
(k,3,k—2) (k,2,k—1) (k,3,k—2) k,2,k—1) (k,1,k)

We say a leaf is left (middle, right) if it is the left (middle, right) child of its parent.
The ordered triples above give the number of left (middle, right) leaves. We have
Ji =103t o3 My_2), fo =103 M_1, and

fi=@o3(tosMy_j)) oo Mi_r (3=<i=<k).

For 3 <i <k—1, we obtain f;; from f; by moving the bottom ¢ of the right—
right subtree to the middle subtree. We will show that fi, ..., fi4+; form a basis of
T PAk+1). For linear independence, we simply observe that no f; (1 <i < k)
can be reduced using any Grobner basis element «, 8, 1, 9, v.

To prove that fi, ..., fi+1 span 7 PA(2k+1) we use induction on k > 3. Basis:
Lemma6.14 gives fi =T, for =Ty, f3=1Ts, fy = Tg. Induction: Assume that
fis - ooy fer1 span TRA(2k+1) and write f, ..., f;,, for the monomials of weight
k+1. For each f; in 7 PA(2k+1) we obtain monomials of weight k41 in two ways:

(1) to; fiforje[3lieclk+1l;  (2) fiojtfori € [k+1], j € [2k+1].

Case 1: If j =1 then ¢ oy f; reduces by «. If j =2 then ¢ o, f; reduces by
for i € [k], and t oy fii1 = Myy1 = fi,,- If j =3 then t o3 f; reduces using v,
toz fo = f{,t o3 f; reduces using 6 for i € [k], and f o3 fiy1 = f;.

Case 2 has three subcases depending on where we attach ¢. If we attach to a left
leaf of f; then the result reduces by «. If we attach to a right leaf then for f; the result
reduces by v or B, for f>, ..., fi the result reduces by 8 or 6, and for f;, either we
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obtain f|, , or the result reduces by . If we attach to a middle leaf of f; then we
obtain either f; or f| or the result reduces by 6. If we attach to a middle leaf of f,
then we obtain either f; or f;. If we attach to a middle leaf of f; for 3 <i < k then
we obtain f ]’ for 3 < j < k+1 or the result reduces by 6. If we attach to the middle
leaf of fi 1 then we obtain f/_,. a

We now assume that the ternary operation ¢ has odd (homological) degree. Thus
every tree has even or odd parity depending the number of internal nodes. We write
| f1 € {0, 1} for the parity of f. We must include Koszul signs in the relations for
partial compositions: transposing two odd elements introduces a minus sign.

Lemma 6.15 ([12, Def. 1.1)) If p, q. r € T then

poi(goj_jit+11) i<j<i+ig -1
(poiq)ojr=3 (=DM (po;_yyy1m0iq i+ <j<tp) +tq -1
=Dl (pojr)oippey—1g 1<j<i—1

Theorem 6.4 The relation o is a Grobner basis for (&) in the free nonsymmetric
operad with a ternary operation of odd homological degree.

Proof The first few steps are identical to those for an even operation. The leading
monomial £m () = t o t overlaps with itself in one way to produce this SCM:

= Im(x) oyt = t o dm(a).

We apply the same partial compositions to « instead of £m («):

adojt=(tojt)ojt+(togt)oyt+(tozt)ort

AT UNTON

topa=toy(tojt)+toy(toyt)+to; (tozt)

The difference is this (non-reduced) S-polynomial:

adojt—toja=(toyt)ojt+(tozt)ojt—toy(toyt)—toj(tozt)=

M\\+M‘%\‘Aﬁ (6.6)
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Lemma6.15 (case 3), p =g =r =t,withi, j =2, 1 and i, j = 3, 1 gives
(togt)ojt = —(tort)oyt, (tozt)o;t = — (tojt)ost.

Lemma6.15 (case 1), p=q =r =t,withi, j =2,2and i, j = 1, 3 gives

—toj(toyt)= —(togt)oyt. —toj(tozt)= — (tojt)ost.
Therefore (6.6) equals

—(toyt)ogst —(tojt)ost—(toyt)ost— (togt)ost.

We reduce each monomial using ¢ and obtain

(togt)ogt+ (tozt)ogst+ (toyt)ost+ (fozt)ost
+ (topt)opt+ (tozt)opt+ (topt)ozt+ (tost)ost.

Terms 3, 6 cancel by Lemma6.15 (case 2), (f o, t) o5t = — (t 03t) oy t, leaving

(togt)ogt+ (tozt)ogst+ (tozt)ost
+ (togt)oyt+ (togt)ozt+ (tozt)ost

We reduce terms 4, 6 using «; this cancels terms 1, 5 and terms 2, 3. O

Theorem 6.5 For an odd operation, the dimension of the ternary partially associa-
tive operad is the binary Catalan number (in the weight grading ).

Proof Relation « shows that any left subtree reduces, so the dimension for weight
w is the number of binary trees of weight w. (]
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