
Chapter 5
A Survey on the Ideal Structure
of Leavitt Path Algebras

Müge Kanuni and Suat Sert

5.1 Introduction

Leavitt path algebras are introduced independently by Abrams and Aranda Pino
in [3] and by Ara, Moreno and Pardo in [6] around 2005. When the Leavitt path
algebra is defined over the complex field it is the dense subalgebra of the graph
C∗-algebra. (For a comprehensive survey on the graph C∗-algebras by Raeburn, see
[11]). This close connection between algebra and analysis flourished with many
similar results on the algebraic and analytic structures. A survey article by Abrams
[1] summarized this interaction, also listed the similarities/differences of algebraic
and analytic results giving an extensive list of references. This topic attracted the
interest of many mathematicians immediately as the structure reveals itself in the
graph properties on which it is constructed. Leavitt path algebras produced examples
to answer somewell-known open problems. Hence, hundreds of papers are published
within a decade.

For a detailed discussion onLeavitt path algebras, interactionswith various topics,
we refer the interested reader to a well-written introductory level book published in
2017 by Abrams, Ara, and Siles Molina [2] which covers most of the literature.

Our main aim in this article is to focus only on the prime, primitive, and maximal
two-sided ideals of Leavitt path algebras over a field, we gather and cite the known
results that are either included in the book [2] or some recent to appear results [9,
14]. To keep the survey short and to avoid overlap with other expository papers, we
did not include many other important and interesting topics in the ideal structure of
Leavitt path algebras. We also did not extend the discussion to the results on Leavitt
path algebras over commutative rings.
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5.2 Preliminaries

The first section consists of preliminary definitions all of which can be found in the
book [2].

5.2.1 Graph Theory

We first start with the basic definitions on graphs that is the main discrete structure
of our interest. In this paper, E = (E0, E1, s, r) will denote a directed graph with
vertex set E0, edge set E1, source function s, and range function r . In particular, the
source vertex of an edge e is denoted by s(e), and the range vertex by r(e). The graph
E is called finite if both E0 and E1 are finite sets, and called row-finite if every vertex
emits only finitely many edges. A vertex which emits infinitely many edges is called
an infinite emitter. A sink is a vertex v for which the set s−1(v) = {e ∈ E1 | s(e) = v}
is empty, i.e., emits no edges. A vertex is a regular vertex if it is neither a sink nor
an infinite emitter.

A proper pathμ is a sequence of edgesμ = e1e2...en such that s(ei ) = r(ei−1) for
i = 2, ..., n. Any vertex is considered to be a trivial path of length zero. The length
of a path μ is the number of edges forming the path, i.e. l(μ) = n and the set of all
paths is denoted by Path(E). If n = l(μ) ≥ 1, and v = s(μ) = r(μ), thenμ is called
a closed path based at v. Again, μ is a closed simple path based at v if s(e j ) �= v for
every j > 1. If μ = e1e2...en is a closed path based at v and s(ei ) �= s(e j ) for every
i �= j , then μ is called a cycle based at v. An exit for a path μ = e1 . . . en is an edge
e such that s(e) = s(ei ) for some i and e �= ei . A cycle of length 1 is called a loop.
A graph E is said to be acyclic in case it does not have any closed paths based at any
vertex of E .

There are some graph properties that deserve to be named which will be used in
the sequel.

Definition 5.1 For v,w ∈ E0, we write v ≥ w in case there is a path μ ∈ Path(E)

such that s(μ) = v and r(μ) = w.
If v ∈ E0 then the tree of v, denoted T (v), is the set

T (v) = {w ∈ E0 | v ≥ w}.

Also, define M(v) = {w ∈ E0 : w ≥ v}.
Definition 5.2 A graph E satisfies Condition (K ) if for each v ∈ E0 which lies on
a closed simple path, there exist at least two distinct closed simple paths α, β based
at v.

A graph E satisfies Condition (L) if every cycle in E has an exit.
A cycle c in a graph E is called a cycle without K , if no vertex on c is the base of

another distinct cycle in E (where distinct cycles possess different sets of edges).
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A graph E satisfies the Countable Separation Property, if there exists a countable
set S of vertices in E such that, for each vertex u ∈ E , there exists w ∈ S for which
u ≥ w.

A graph E is said to be countably directed if there is a non-empty atmost countable
subset S of E0 such that, for any two u, v ∈ E0, there is a w ∈ S such that u ≥ w
and v ≥ w.

Definition 5.3 Let E be a graph, and H ⊆ E0. H is hereditary if whenever v ∈ H
and w ∈ E0 for which v ≥ w, then w ∈ H .

H is saturated if whenever a regular vertex v has the property that {r(e)|e ∈
E1, s(e) = v} ⊆ H , then v ∈ H .

We denote HE the set of those subsets of E0 which are both hereditary and
saturated.

For a given graph, there are many different new graph constructions that play a role
in the ideal theory of Leavitt path algebras.

Definition 5.4 (The restriction graph EH ) Let E be an arbitrary graph, and let H
be a hereditary subset of E0. We denote by EH the restriction graph:

E0
H := H, E1

H := {e ∈ E1|s(e) ∈ H},

and the source and range functions in EH are the source and range functions in E ,
restricted to H .

(The quotient graph by a hereditary subset E/H ) Let E be an arbitrary graph,
and let H be a hereditary subset of E0. We denote by E/H the quotient graph of E
by H , defined as follows:

(E/H)0 = E0\H, and (E/H)1 = {e ∈ E1|r(e) /∈ H}.

The range and source functions for E/H are defined by restricting the range and
source functions of E to (E/H).

(The hedgehog graph for a hereditary subset FE (H)) Let E be an arbitrary
graph. Let H be a non-empty hereditary subset of E0. We denote by FE (H) the set

FE (H) = {α ∈ Path(E)|α = e1....en, with s(e1) ∈ E0\H, r(ei ) ∈ E0\H for all

1 ≤ i < n, and r(en) ∈ H}

We denote by FE (H) another copy of FE (H). If α ∈ FE (H), we will write α to refer
to a copy of α in FE (H). We define the graph H E = (H E0,H E1, s ′, r ′) as follows:

H E
0 = H ∪ FE (H), and H E

1 = {e ∈ E1|s(e) ∈ H} ∪ FE (H).

The source and range functions s ′ and r ′ are defined by setting s ′(e) = s(e) and
r ′(e) = r(e) for every e ∈ E1 such that s(e) ∈ H ; and by setting s ′(α) = α and
r ′(α) = r(α) for all α ∈ FE (H).
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Intuitively, FE (H) can be viewed as H , together with a new vertex corresponding
to each path in E which ends at a vertex in H , but for which none of the previous
edges in the path ends at a vertex in H . For every such new vertex, a new edge is
added going into H . In FE (H), the only paths entering the subgraph H have common
length 1; (the new graph looks like a hedgehog where the body is H and the quills
are the edges into H ).

Example 5.1 Consider the graph E below and take the hereditary saturated subset
H = {v,w},

•u •v •w

The restriction graph is
EH

•v •w

The quotient graph E/H is
E/H

•u

Example 5.2 Consider the graph E below and take the hereditary saturated subset
H = {v,w},

•ue
f •v •w

The hedgehog graph H E is

•e2 f
e2 f

· · · •en f
en f

•e f e f •v •w

• f

f

When we have infinite emitters in a graph, the graph is not row-finite and we need
to introduce the notion of breaking vertices.

Definition 5.5 Let E be an arbitrary graph and K be any field. Let H be a hereditary
subset of E0, and let v ∈ E0. We say that v is a breaking vertex of H if v belongs to
the set

BH := {v ∈ E0\H | v is an infinite emitter and 0 < |s−1(v) ∩ r−1(E0\H)| < ∞}.
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In words, BH consists of those vertices of E which are infinite emitters, which do
not belong to H , and for which the ranges of the edges they emit are all, except for
a finite (but non-zero) number, inside H . For v ∈ BH , we define the element vH of
LK (E) by setting

vH := v −
∑

e∈s−1(v)∩r−1(E0\H)

ee∗.

We note that any such vH is homogeneous of degree 0 in the standard Z-grading on
LK (E). For any subset S ⊆ BH , we define SH ⊆ LK (E) by setting SH = {vH |v ∈
S}. Given a hereditary saturated subset H and a subset S ⊂ BH , (H, S) is called an
admissible pair. Given an admissible pair (H, S), the ideal generated by H ∪ SH is
denoted by I (H, S).

Now, the new graph constructions that we defined in definition 5.4, can be extended
to graphs with infinite emitters.

Definition 5.6 (Thequotient graph E/(H, S)) Let E be an arbitrary graph, H ∈ HE ,
and S ⊆ BH . We denote by E/(H, S) the quotient graph of E by (H, S), defined as
follows:

(E/(H, S))0 = (E0\H) ∪ {v′|v ∈ BH\S},

(E/(H, S))1 = {e ∈ E1|r(e) /∈ H} ∪ {e′|e ∈ E1 and r(e) ∈ BH\S},

and range and sourcemaps in E/(H, S) are defined by extending the range and source
maps in E when appropriate, and in addition setting s(e′) = s(e) and r(e′) = r(e)′.

(The generalized hedgehog graph construction (H,S)E) Let E be an arbitrary
graph, H a non-empty hereditary subset of E , and S ⊆ BH . We define

F1(H, S) := {α ∈ Path(E)|α = e1...en, r(en) ∈ H and s(en) /∈ H ∪ S}, and

F2(H, S) := {α ∈ Path(E)| |α| ≥ 1 and r(α) ∈ S}.

For i = 1, 2 we denote a copy of Fi (H, S) by Fi (H, S). We define the graph (H,S)E
as follows:

(H,S)E
0 := H ∪ S ∪ F1(H, S) ∪ F2(H, S), and

(H,S)E
1 := {e ∈ E1|s(e) ∈ H} ∪ {e ∈ E1|s(e) ∈ S and r(e) ∈ H} ∪ F1(H, S) ∪ F2(H, S).

The range and source map for (H,S)E are described by extending r and s to (H,S)E1,
and by defining r(α) = α and s(α) = α for all α ∈ F1(H, S) ∪ F2(H, S).

Definition 5.7 A graph F is a subgraph of a graph E , if F0 ⊂ E0 and F1 ⊂ E1

where for any f ∈ F1, s( f ), r( f ) ∈ F0.
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A subgraph F of a graph E is called full in case for each v,w ∈ F0,

{ f ∈ F1|s( f ) = v, r( f ) = w} = {e ∈ E1|s(e) = v, r(e) = w}.

In other words, the subgraph F is full in case whenever two vertices of E are in the
subgraph, then all of the edges connecting those two vertices in E are also in F .

A non-empty full subgraph M of E is a maximal tail if it satisfies the following
properties:

(MT – 1) If v ∈ E0,w ∈ M0 and v ≥ w, then v ∈ M0;
(MT – 2) If v ∈ M0 and s−1

E (v) �= ∅, then there exists e ∈ E1 such that s(e) = v and
r(e) ∈ M0; and

(MT – 3) If v,w ∈ M0, then there exists y ∈ M0 such that v ≥ y and w ≥ y.

Condition MT − 3 is now more commonly called downward directedness in litera-
ture, however we will use the term MT − 3 for consistency throughout the text.

5.2.2 Leavitt Path Algebra

Definition 5.8 Given an arbitrary graph E and a field K , the Leavitt path algebra
LK (E) is defined to be the K -algebra generated by a set {v : v ∈ E0} of pair-wise
orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1}which satisfy
the following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (CK-1 relations) For all e, f ∈ E1, e∗e = r(e) and e∗ f = 0 if e �= f .
(4) (CK-2 relations) For every regular vertex v ∈ E0,

v =
∑

e∈E1, s(e)=v

ee∗.

The Leavitt path algebra is spanned as a K -vector space by the set of monomials

{γ λ∗|γ, λ ∈ Path(E) such that r(γ ) = r(λ)}

That is, any x ∈ LK (E),

x =
n∑

i=1

kiγiλ
∗
i for any ki ∈ K , γi , λi ∈ Path(E).

Some familiar rings appear as examples of Leavitt path algebras, for instance:
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Example 5.3 Take the graph E as

•v1 e1 •v2 •vn−1
en−1 •vn

LK (E) ∼= Mn(K ).

Example 5.4 Take the graph R1 as

•v e

In this case, LK (R1) ∼= K [x, x−1] via v �→ 1, e �→ x, e∗ �→ x−1.

Example 5.5 For n ≥ 2, consider the graph

Rn = •v e1

e2
e3

en

...

Then LK (Rn) ∼= LK (1, n) which is Leavitt algebra of type (1, n).

Recall that a ring R is said to have a set of local units F , where F is a set of
idempotents in R having the property that, for each finite subset r1, . . . , rn of R,
there exists f ∈ F with f ri f = ri for all 1 ≤ i ≤ n. A ring R with unit 1 is, clearly,
a ring with a set of local units where F = {1}.

In the case of Leavitt path algebras, for each x ∈ LK (E) there exists a finite set of
distinct vertices V (x) for which x = f x f , where f = ∑

v∈V (x) v. When E0 is finite,

LK (E) is a ring with unit element 1 =
∑

v∈E0

v. Otherwise, LK (E) is not a unital ring,

but is a ring with local units consisting of sums of distinct elements of E0.
One of the most important properties of the class of Leavitt path algebras is that

each LK (E) is a Z-graded K -algebra. that is, LK (E) =
⊕

n∈Z
Ln induced by defining,

for all v ∈ E0 and e ∈ E1, deg(v) = 0, deg(e) = 1, deg(e∗) = −1. Further, for each
n ∈ Z, the homogeneous component Ln is given by

Ln = {∑
kiαiβ

∗
i ∈ L : l(αi ) − l(βi ) = n, ki ∈ K , αi , βi ∈ Path(E)

}
.

An ideal I of LK (E) is said to be a graded ideal if I =
⊕

n∈Z
(I ∩ Ln). In the sequel,

all ideals of our concern will be two-sided.
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5.3 Ideals in Leavitt Path Algebras

Recall that an (not necessarily unital) algebra R is called simple, if R2 �= 0 and R
has no proper non-trivial ideals. Simple Leavitt path algebras are characterized in
[3] by Abrams and Aranda Pino.

Theorem 5.1 Let E be an arbitrary graph and K be any field. Then LK (E) is simple
if and only if E has Condition (L) and the only hereditary saturated subsets of E0

are ∅ and E0.

In a Leavitt path algebra, the intersection of any ideal with the set of vertices is
always a hereditary set.

Lemma 5.1 ([3, Lemma 3.9]) Let E be an arbitrary graph, K be any field and N
be an ideal of LK (E). Then N ∩ E0 ∈ HE .

N ∩ E0 may very well be the empty set, however if the Leavitt path algebra is over a
graph that satisfies Condition (L) then N definitely contains a vertex (an idempotent).

Proposition 5.1 ([3, Corollary 3.8]) Let E be an arbitrary graph satisfying Condi-
tion (L) and K be any field. Then every non-zero ideal of LK (E) contains a vertex.

Proposition 5.2 Let E be an arbitrary graph, K be any field and H be a hereditary
subset of E0. Then there is a Z-graded monomorphism ϕ from LK (EH ) into LK (E)

via v �→ v, e �→ e, e∗ �→ e∗ for all v ∈ E0
H , e ∈ E1

H .

We give a description of the elements in the ideal generated by a hereditary subset
of vertices.

Lemma 5.2 ([15, Lemma 5.6]) Let E be an arbitrary graph and K be any field.
(i) Let H be a hereditary subset of E0. Then the ideal I(H) is

I (H) = spanK ({γ λ∗|γ, λ ∈ Path(E) such that r(γ ) = r(λ) ∈ H})

=
{ n∑

i=1

kiγiλ
∗
i |n ≥ 1, ki ∈ K , γi , λi ∈ Path(E) such that r(γi ) = r(λi ) ∈ H

}

(ii) Let H be a hereditary subset of E0 and S a subset of BH . Then the ideal

I (H, S) = spanK ({γ λ∗|γ, λ ∈ Path(E) such that r(γ ) = r(λ) ∈ H})

+spanK ({αvHβ∗|α, β ∈ Path(E) and v ∈ S}).

5.3.1 Graded Ideals

First, we mention the result on graded simplicity, that is when LK (E) has no non-
trivial graded ideals. As stated in [2, Corollary 2.5.15], LK (E) is graded simple if and
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only if the only hereditary saturated subsets of E0 are ∅ and E0. A typical example
of a graded simple Leavitt path algebra is K [x, x−1], see Example 5.4. However,
since 〈1 + x〉 is a (non-graded) ideal, K [x, x−1] is not simple. Hence, it is possible
to have non-trivial non-graded ideals in a graded simple ring.

Now, we are ready to describe the graded ideals in Leavitt path algebras which is
in [7, Remark 2.2].

Theorem 5.2 Let E be an arbitrary graph and K be any field. Then every graded
ideal N of LK (E) is generated by H ∪ SH , where H = N ∩ E0 ∈ HE , and S =
{v ∈ BH |vH ∈ N }, i.e. N = I (H, S).

In particular, every graded ideal of LK (E) is generated by a set of homogeneous
idempotents.

Observe that if N = I (H, S) is a graded ideal, so that N = 〈H, vH : v ∈ S〉, the
generators u in H and vH are all idempotents. So they all belong to N 2, that is if
N is a graded ideal, then N = N 2. Conversely, if N is an ideal such that N = N 2,
we use a result from [10]. In [10, Theorem 3.6], it was shown that for any ideal N ,
the intersection of {Nn : n > 0} is a graded ideal. So, if N 2 = N , then N = ∩{Nn :
n > 0} is a graded ideal. Thus, we obtain the following characterization of graded
ideals of a Leavitt path algebra (which also appears in [2, Corollary 2.9.11] via a
different proof.)

Theorem 5.3 Let E be an arbitrary graph and K be any field. Then, an ideal N of
LK (E) is graded if and only if N 2 = N.

The correspondence between the quotient Leavitt path algebra and the Leavitt
path algebra of the quotient graph is noteworthy to state at this point. Part (i) of the
following theorem appears as [7, Lemma 2.3] and part (ii) appears in [15, Theorem
5.7].

Theorem 5.4 Let K be any field,

(i) E be a row-finite graph, and H ∈ HE . Then LK (E)/I (H) ∼= LK (E/H) as Z-
graded K -algebras.

(ii) E be an arbitrary graph, H ∈ HE and S ⊂ BH . Then LK (E)/I (H, S) ∼=
LK (E/(H, S)) as Z-graded K -algebras.

5.3.2 The Structure Theorem of Graded Ideals

Now, we are ready to give a complete description of the lattice of graded ideals of a
Leavitt path algebra in terms of specified subsets of E0, that is the Structure Theorem
for Graded Ideals. The results in this section first appeared for row-finite graphs in
[6] and for arbitrary graphs in [15].

Definition 5.9 Let E be an arbitrary graph and K be any field. DenoteLgr (LK (E))

the lattice of graded ideals of LK (E), whose order is inclusion, also supremum and
infimum are the usual operations of ideal sum and intersection.
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Remark 5.1 Let E be an arbitrary graph. We define inHE a partial order by setting
H ≤ H ′ in case H ⊆ H ′. So,HE is a complete lattice,with supremum∨ and infimum
∧ inHE given by setting ∨i∈�Hi := ∪i∈�Hi and ∧i∈�Hi := ∩i∈�Hi respectively.

Definition 5.10 Let E be an arbitrary graph. We set

S =
⋃

H∈HE

P(BH ),

where P(BH ) denotes the set of all subsets of BH .
We denote by TE the subset of HE × S consisting of pairs of the form (H, S),

where S ∈ P(BH ). We define in TE the following relation:

(H1, S1) ≤ (H2, S2) if and only if H1 ⊆ H2 and S1 ⊆ H2 ∪ S2.

Proposition 5.3 Let E be an arbitrary graph. For (H1, S1), (H2, S2) ∈ TE , we have

(H1, S1) ≤ (H2, S2) ⇐⇒ I (H1, S1) ⊆ I (H2, S2).

In particular, ≤ is a partial order on TE .

For more details on the lattice structure of TE , see [2].

Theorem 5.5 ([15, Theorem 5.7]) Let E be an arbitrary graph and K be any field.
Then the map ϕ given here provides a lattice isomorphism:

ϕ : Lgr (LK (E)) → TE via I �→ (I ∩ E0, S).

where S = {v ∈ BH |vH ∈ I } for H = I ∩ E0. The inverse ϕ′ of ϕ is given by:

ϕ′ : TE → Lgr (LK (E)) via (H, S) �→ I (H ∪ SH ).

Theorem 5.6 ([6, Theorem 5.3]) Let E be a row-finite graph and K be any field.
The following map ϕ provides a lattice isomorphism:

ϕ : Lgr (LK (E)) → HE via ϕ(I ) = I ∩ E0,

with inverse given by

ϕ′ : HE → Lgr (LK (E)) via ϕ′(H) = I (H).

Let E be an arbitrary graph and K be any field. Then every graded ideal of LK (E)

is K -algebra isomorphic to a Leavitt path algebra. Part (i) of the following theorem
first appears in [7, Lemma5.2] under the hypothesis that graph EH satisfiesCondition
(L).
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Theorem 5.7 Let E be an arbitrary graph and K be any field. Let H be a non-
empty hereditary subset of E and S ⊆ BH . Then (i) I (H) is K-algebra isomorphic
to LK (H E);
(ii) I (H, S) is isomorphic as K-algebras to LK ((H,S)E).

5.3.3 Structure of Two-Sided Ideals

The generators of an ideal are studied in [13] and gives a useful characterization of the
graded and non-graded part of an ideal. The following results are due to Rangaswamy
and finally achieving that in a Leavitt path algebra, any finitely generated ideal is
principal [13].

Theorem 5.8 Let E be an arbitrary graph and K be any field. Then any non-zero
ideal of the LK (E) is generated by elements of the form

(
u +

k∑

i=1

ki g
ri

)(
u −

∑

e∈X
ee∗

)

where u ∈ E0, ki ∈ K, ri are positive integers, X is a finite (possibly empty) proper
subset of s−1(u) and, whenever ki �= 0 for some i , then g is a unique cycle based at
u.

The main result of [13] is the following theorem:

Theorem 5.9 Let I be an arbitrary non-zero ideal of LK (E) with I ∩ E0 = H and
S = {v ∈ BH : vH ∈ I }. Then I is generated by H ∪ {vH : v ∈ S} ∪ Y where Y is
a set of mutually orthogonal elements of the form (u + ∑n

i=1 ki g
ri ) in which the

following statements hold:

(i) g is a (unique) cycle with no exits in E0\H based at a vertex u in E0\H; and
(ii) ki ∈ K with at least one ki �= 0.

If I is non-graded, then Y is non-empty.

Corollary 5.1 Every finitely generated ideal of LK (E) is a principal ideal. More-
over, if E is a finite graph, then every ideal is principal.

5.3.4 Prime and Primitive Ideals

The structure of prime ideals has played a key role in ring theory. In the Leavitt path
algebra setting the first paper to focus on the prime and primitive ideals of Leavitt
path algebras on row-finite graphs have been [8]. Later the prime ideal structure on
an arbitrary graph was studied in [12], while the primitive Leavitt path algebras are
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described in [4]. The primitive algebras have also been important as a consequence
of Kaplansky’s question: “Is a regular prime ring necessarily primitive?”

We recall a few ring-theoretic definitions. A two-sided ideal P of a ring R is
prime in case P �= R and P has the property that for any two-sided ideals I, J of
R, if I J ⊆ P then either I ⊆ P of J ⊆ P . The ring R is called prime in case {0}
is a prime ideal of R. It is easily shown that P is a prime ideal of R if and only if
R/P is a prime ring. The set of all prime ideals of R is denoted by Spec(R), call the
prime spectrum of R. A ring R is called left primitive if R admits a simple faithful
left R-module. It is easy to show that any primitive ring is prime.

A ring is von Neumann regular (or regular) in case for each a ∈ R there exists
x ∈ R for which a = axa. In the theory of Leavitt path algebras, the necessary and
sufficient condition for LK (E) to be regular is given by Abrams and Rangaswamy
[5].

Theorem 5.10 Let E be an arbitrary graph and K be any field. LK (E) is von
Neumann regular if and only if E is acyclic.

Recall the one vertex, one loop graph R1 of the Example 5.4. The prime ideals
of the principal ideal domain K [x, x−1] ∼= LK (R1) provides a model for the prime
spectra of general Leavitt path algebras. The key property of R1 in this setting is
that it contains a unique cycle without exits. Specifically, Spec(K [x, x−1]) consists
of the ideal {0}, together with ideals generated by the irreducible polynomials of
K [x, x−1]. The irreducible polynomials are of the form xn f (x), where f (x) is an
irreducible polynomial in the standardpolynomial ring K [x], andn ∈ Z. In particular,
there is exactly one graded prime ideal (namely,{0}) in LK (R1). All the remaining
prime ideals of LK (R1) are non-graded corresponding to irreducible polynomials in
K [x, x−1].

The prime ideals of a Leavitt path algebra are completely characterized in the
following theorem. Recall that M(u) is defined in Definition 5.1.

Theorem 5.11 ([12, Theorem 3.12]) Let E be an arbitrary graph and K be any
field. Let P be an ideal of LK (E) with P ∩ E0 = H. Then P is a prime ideal of
LK (E) if and only if P satisfies one of the following conditions:

(i) P = 〈H, {vH : v ∈ BH }〉 and E0\H satisfies the MT − 3 condition;
(ii) P = 〈H, {vH : v ∈ BH\{u}}〉 for some u ∈ BH and E0\H = M(u);
(iii) P = 〈H, {vH : v ∈ BH }, f (c)〉 where c is a cycle without K in E based at a

vertex u, E0\H = M(u) and f (x) is an irreducible polynomial in K [x, x−1].
Recall that a ring R is prime if {0} is a prime ideal, hence the immediate corollary
to Theorem 5.11 follows.

Corollary 5.2 Let E be an arbitrary graph and K any field. Then LK (E) is prime
if and only if E is MT − 3.

When E is row-finite, the characterization of a primitive LK (E) is given in [8].

Theorem 5.12 Let E be a row-finite graph and K be any field. Then LK (E) is
primitive if and only if E has MT − 3 and Condition(L).
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When E is an arbitrary graph, the result requires a new condition on the graph [4].

Theorem 5.13 Let E be any graph and K be any field. Then LK (E) is primitive if
and only if E has MT − 3, Condition(L) and Countable Separation Property.

We pause here to construct a Leavitt path algebra which is a counter example to
Kaplansky’s question “Is a regular prime ring necessarily primitive?”, (see [4] for
details).

Example 5.6 Let X be an uncountable set and S be the set of finite subsets of X .
Define the graph E with

(1) Vertices indexed by S, and
(2) Edges induced by proper subset relationship.

Then LK (E) is a regular, prime and not primitive Leavitt path algebra.

The following results are from [12].

Lemma 5.3 ([12, Lemma 3.8]) Let P be a prime ideal of LK (E) with H = P ∩ E0

and let S = {v ∈ BH : vH ∈ P}. Then the ideal I (H, S) is also a prime ideal of
LK (E).

Corollary 5.3 ([12, Corollary 3.9]) Let E be an arbitrary graph and K be any field.
Then the Leavitt path algebra LK (E) is a prime ring if and only if there is a prime
ideal of LK (E) which does not contain any vertices.

A natural question that arose is to answer the graded version of Kaplansky’s
question, namely whether every graded prime von Neumann regular Leavitt path
algebra is graded primitive. This question is solved by the recent unpublished work
of Rangaswamy [14].

Theorem 5.14 For any arbitrary graph E given, the following are equivalent

(i) LK (E) is graded primitive;
(ii) E0 is countably directed;
(iii) LK (E) is graded prime and, for some vertex v ∈ E0, the tree T (v) satisfies the

Countable Separation Property.

The author in [14], provides many examples of graded von Neumann regular rings
which are graded prime but not graded primitive.

5.3.5 Maximal Ideals

This section is quoted from [9] by Esin and the first named author.
In a unital ring, any maximal ideal is also a prime ideal. However, this is not

necessarily true for a non-unital ring. Consider, for instance, the non-unital ring 2Z,
and it’s ideal 4Z. Notice that 4Z is a maximal ideal, but not prime ideal in 2Z. The
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Leavitt path algebra is a unital ring, only if E0 is finite. So it is worthwhile to study
the maximal ideals in a non-unital setting. The following argument on maximal and
prime ideals in non-unital Leavitt path algebras appears in [12, pp. 86–87].

Proposition 5.4 In a ring R satisfying R2 = R, any maximal ideal is a prime ideal.
Hence, in any Leavitt path algebra, any maximal ideal is a prime ideal.

Proof Suppose R2 = R, and let M be a maximal ideal of R such that A�M and
B � M for some ideals A, B of R. Then R = R2 = (M + A)(M + B) = M2 +
AM + MB + AB ⊆ M + AB. Then M + AB = R, and AB � M . Thus M is a
prime ideal. Now, since any Leavitt path algebra, R is a ring with local units, R2 = R
is satisfied and the result holds.

As stated in [12, Lemma 3.6], in a Leavitt path algebra LK (E), the largest graded
ideal contained in any ideal N (which is denoted by gr(N )) is the ideal generated
by the admissible pair (H, S) where H = N ∩ E0, and S = {v ∈ BH |vH ∈ N }, i.e.
gr(N ) = I (H, S). One useful observation is that: if a non-graded ideal N is a maxi-
mal element inL(LK (E)), the lattice of all two-sided ideals of a Leavitt path algebra,
then gr(N ) is a maximal element inLgr (LK (E)), the lattice of all two-sided graded
ideals of this Leavitt path algebra (e.g. Example 5.10).

Maximal ideals always exist in a unital ring; however, this is not always true in a
non-unital ring. Consider the Leavitt path algebra of the next example:

Example 5.7 Let E be the row-finite graph with E0 = {vi : i = 1, 2, . . .} and for
each i , there is an edge ei with r(ei ) = vi , s(ei ) = vi+1, also at each vi there are two
loops fi , gi so that vi = s( fi ) = r( fi ) = s(gi ) = r(gi ):

•v3
f3 g3

e2
•v2

f2 g2

e1
•v1

f1 g1

The non-empty proper hereditary saturated subsets of vertices in E are the sets
Hn = {v1, . . . , vn} for some n ≥ 1 and they form an infinite chain under set inclusion.
Graph E satisfies Condition (K), so all ideals are graded, generated by Hn for some n
and they form a chain under set inclusion. As the chain of ideals does not terminate,
LK (E) does not contain any maximal ideals. Note also that, E0\(Hn,∅) is MT − 3
for each n, thus all ideals are prime ideals.

A well-established question is to find out when a maximal ideal exists in a non-
unital Leavitt path algebra. The necessary and sufficient condition depends on the
existence of a maximal hereditary and saturated subset of E0 as proved in [9].

Theorem 5.15 (Existence Theorem) LK (E) has a maximal ideal if and only ifHE

has a maximal element.

Proof (Sketch: see [9] for details) Assume LK (E) has a maximal ideal M , then there
are two cases:
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If M is a graded ideal, then M = I (H, S) for some H ∈ HE and S = {v ∈
BH |vH ∈ M}. However, M = I (H, S) ≤ I (H, BH ), and as M is a maximal ideal,
S = BH . Then it can be shown that: I (H, BH ) is a maximal ideal in LK (E) if
and only if H is a maximal element in HE and the quotient graph E\(H, BH ) has
Condition(L).

If M is a non-graded maximal ideal, then gr(M) = I (H, S) is a maximal graded
ideal where H = M ∩ E0, and S = {v ∈ BH |vH ∈ M}. Similarly since gr(M) is
maximal, S = BH . Again, it can be shown that: H is a maximal element inHE with
E\(H, BH ) not satisfying Condition(L), if and only if there is amaximal non-graded
ideal M containing I (H, BH ) with H = M ∩ E0.

This completes the proof.

Moreover, the poset structure ofHE determines whether every ideal of the Leavitt
path algebra is contained in a maximal ideal.

Theorem 5.16 The following assertions are equivalent:

(i) Every element X ∈ HE is contained in a maximal element Z ∈ HE .
(ii) Every ideal of LK (E) is contained in a maximal ideal.

Example 5.8 Let E be the graph

•u •v •w c

Then E does not satisfy Condition (K), so the Leavitt path algebra on E has both
graded and non-graded ideals. Let Q be the graded ideal generated by the hereditary
saturated set H = {v,w}. Q is a maximal ideal as L/Q is isomorphic to LK (E\H)

which is also isomorphic to the simple Leavitt algebra L(1, 2) (See Example 5.1). By
using Theorem 5.11, we classify the prime ideals in L . There are infinitelymany non-
graded prime ideals each generated by f (c)where f (x) is an irreducible polynomial
in K [x, x−1] which are all contained in Q. Also, the trivial ideal {0} is prime as E
satisfies condition MT − 3 and LK (E) has a unique maximal element Q.

We now give an example of a graph with infinitely many hereditary saturated
sets and the corresponding Leavitt path algebra has a unique maximal ideal which is
graded.

Example 5.9 Let E be a graph with E0 = {vi : i = 1, 2, . . .}. For each i , there is an
edge ei with s(ei ) = vi and r(ei ) = vi+1 and at each vi there are two loops fi , gi so
that vi = s( fi ) = r( fi ) = s(gi ) = r(gi ). Thus E is the graph

•v3
f3 g3

•v2
f2 g2

e2 •v1
f1 g1

e1

Now E is a row-finite graph and the non-empty proper hereditary saturated subsets of
vertices in E are the sets Hn = {vn, vn+1, . . .} for some n ≥ 2 and Hn+1 � Hn form
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an infinite chain under set inclusion and H2 = {v2, v3, . . .} is the maximal element
in HE . The graph E satisfies Condition (K), so all ideals are graded, generated by
Hn for some n. So LK (E) contains a unique maximal ideal I (H2). Note also that,
E0\Hn is MT − 3 for each n, thus all ideals of L are prime ideals.

In a Leavitt path algebra, if a unique maximal ideal exists, then it is a graded
ideal. Also, every maximal ideal is graded in LK (E) if and only if for every maximal
element H inHE , E\(H, BH ) satisfies Condition(L). Note that there are Leavitt path
algebras with both graded and non-graded maximal ideals as the following example
illustrates.

Example 5.10 Let E be the graph

•u •v •w c

Then the Leavitt path algebra on E has both graded and non-graded maximal
ideals. The setHE is finite and hence any ideal is contained in a maximal ideal. The
trivial ideal {0} which is a graded ideal generated by the empty set, is not prime as
E does not satisfy condition MT − 3. There are infinitely many non-graded prime
ideals each generated by f (c) where f (x) is an irreducible polynomial in K [x, x−1]
which all contain {0}. Let N be the graded ideal generated by the hereditary saturated
set H = {u} and in this case, the quotient graph E\H does not satisfy condition (L).
Then there are infinitely many maximal non-graded ideals each generated by f (c)
where f (x) is an irreducible polynomial in K [x, x−1] which all contain N . Also,
let Q be the graded ideal generated by the hereditary saturated set H = {w}. In this
case, the quotient graph E\H satisfy condition (L). Hence, Q is a maximal ideal.

LK (E) has infinitely many maximal ideals, one of them is graded, namely Q and
infinitely many are non-graded ideals whose graded part is N .

It is an interesting question to answer when all non-zero prime ideals aremaximal,
as these rings are called ringswithKrull dimension zero. In fact, Leavitt path algebras
with prescribed Krull dimension are studied in [12]. We conclude this article with
two results from [12].

Theorem 5.17 ([12, Theorem 6.1]) Let E be an arbitrary graph and K be any field.
Then every non-zero prime ideal of the Leavitt path algebra LK (E) is maximal if
and only if E satisfies one of the following two conditions:

Condition I: (i) E0 is a maximal tail; (ii) The only hereditary saturated subsets
of E0 are E0 and ∅; (iii) E does not satisfy the Condition(K ).

Condition II: (a) E satisfies the Condition(K ); (b) For each maximal tail M, the
restricted graph EM contains no proper non-empty hereditary saturated subsets; (c)
If H is a hereditary saturated subset of E0, then for each u ∈ BH , M(u) � E0\H
When E is finite, the answer is much simpler.

Corollary 5.4 Let E be a finite graph. Then every non-zero prime ideal of LK (E)

is maximal if and only if either LK (E) ∼= Mn(K [x, x−1]) for some positive integer n
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or E satisfies the Condition(K ) and, for each maximal tail M, the restricted graph
EM contains no proper non-empty hereditary saturated subsets of vertices.
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