
Chapter 3
Étale Groupoids and Steinberg Algebras
a Concise Introduction

Lisa Orloff Clark and Roozbeh Hazrat

Keep fibbing and you’ll end up with the truth!
No truth’s ever been discovered without fourteen fibs along the
way, if not one hundred and fourteen, and there’s honour in that.

Dostoyevsky, Crime and Punishment.

3.1 Introduction

In the last couple of years, étale groupoids have become a focal point in several areas
of mathematics. The convolution algebras arising from étale groupoids, considered
both in analytical setting [50] and algebraic setting [23, 54], include many deep
and important examples such as Cuntz algebras [27] and Leavitt algebras [40] and
allow systematic treatment of them. Partial actions and partial symmetries can also be
realised as étale groupoids (via inverse semigroups), allowing us to relate convolution
algebras to partial crossed products [28, 30].
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Realising that the invariants long studied in topological dynamics can bemodelled
on étale groupoids (such as homology, full groups and orbit equivalence [41]) and
that these are directly related to invariants long studied in analysis and algebra (such
as K -theory) allows interaction between areas; we can use techniques developed in
algebra in analysis and vice versa. The étale groupoid is the Rosetta stone.

The study of representations of étale groupoids onHilbert space and the associated
C∗-algebras was pioneered by Renault in [50]. In this seminal work, he showed
that Cuntz algebras can be realised using groupoid machinery. In [38] the authors
associated an étale groupoid to a directed graph and the subject of graphC∗-algebras
was born. The universal construction of these graph C∗-algebras via generators and
relations was then established in [6]. The analytic activities then exploded in several
directions; to describe the properties of the graph C∗-algebras directly from the
geometry of the graph, to classify these algebras and to extend the definition to other
types of graphs (such a higher rank graphs [37]).

There has long been a trend of ‘algebraisation’ of concepts from operator theory
into a purely algebraic context. This seems to have started with von Neumann and
Kaplansky who devised ways of seeing operator algebraic properties in underlying
discrete structures [35]. As Berberian puts it in [8], ‘if all the functional analysis is
stripped away...what remains should stand firmly as a substantial piece of algebra,
completely accessible through algebraic avenues’.

This translation did happen in the setting of graph algebras in the reverse order
(and with about 30year lag): in [2, 3] the algebraic analogue of graph C∗-algebras
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were defined using generators and relations (called Leavitt path algebras) and then
the algebraic analogue of groupoid C∗-algebras was developed in [23, 54] (now
called Steinberg algebras).

Another strand is the work of Exel on partial actions of groups on spaces and
their correspondingC∗-algebras. Again, the algebraic version of this theory is devel-
oped [28] and the close connections with groupoids are established [7, 30].

This survey exclusively concentrates on étale groupoids with totally disconnected
unit spaces (aka ample groupoids) and their convolution algebras (aka, Steinberg
algebras). One reason over such groupoids our R-algebras are just R-valued con-
tinuous functions with compact support over the groupoid and there is a known
universal description for such algebras, at least when the groupoid is Hausdorff. We
will briefly describe the situation when the groupoid is not Hausdorff as well. We
describe their connections with groupoid C∗-algebras and Exel’s partial construc-
tions. The concepts of inverse semigroup and groupoid are tightly related (as the
diagram in the first page shows) and are models for partial symmetries. In Sects. 3.2
and 3.3 we study these concepts with a view towards the algebras that arise from
them which we describe in Sect. 3.4.

The use of groupoids extends to many areas of mathematics, from ergodic theory
and functional analysis (such as work of Connes in noncommutative geometry [25])
to homotopy theory [12], algebraic geometry, differential geometry and group theory.
The reader is encouraged to consult [13, 34, 60] for more details on the history and
the development of groupoids.

3.2 Inverse Semigroups

There is a tight relation between the notion of groupoids and its ‘dual’ inverse semi-
groups. We start the survey with a description of inverse semigroups.

3.2.1 Inverse Semigroups

Recall that a semigroup is a non-empty set with an associative binary operation. For
a semigroup S, the element x ∈ S is called regular if xyx = x . In this case, we can
arrange that xyx = x and yxy = y and we say x has an inner inverse. We say a
semigroup is regular if each element has an inner inverse.

An inverse semigroup is a semigroup that each element has a unique inner inverse.
Namely, an inverse semigroup is a semigroup S such that, for each s ∈ S, there exists
a unique element s∗ ∈ S such that

ss∗s = s and s∗ss∗ = s∗.

The uniqueness guarantees that the map s → s∗ induces an involution on S. One can
check that
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E(S) := {ss∗ | s ∈ S},

is the set of idempotents of S and is an abelian subsemigroup. One way to prove that
a semigroup is an inverse semigroup is to show that it is a regular semigroup and the
set of idempotents are abelian. In fact E(S) is a meet semilattice with respect to the
partial ordering e ≤ f if e f = e; the meet is the product. The partial order extends to
the entire inverse semigroup by putting s ≤ t if s = te for some idempotent e ∈ E(S)

(or, equivalently, s = f t for some f ∈ E(S)). This partial order is preserved under
multiplication and inversion.

Most of the inverse semigroups we encounter have a zero element. An inverse
semigroup S has a zero element 0 if 0x = 0 = x0 for all x ∈ S. The zero element
is unique when it exists and often corresponds to the empty set in our concrete
examples. Any semigroup homomorphism p : S → T of inverse semigroups auto-
matically preserves the involution, i.e., p(s∗) = p(s)∗.

Parallel to the group of symmetries and the theorem of Cayley, we next define the
inverse semigroup of partial symmetries and recall the theorem of Wagner–Preston.
Let X be a set and A, B ⊆ X . A bijectivemap f : A → B is called a partial symmetry
of X . Denote by I(X) the collection of all partial symmetries of X . The set I(X)

is an inverse semigroup with zero under the operation given by the composition
of functions in the largest domain in which the composition may be defined. The
zero element corresponds to the map assigned to an empty set. The Wagner–Preston
theorem guarantees that any inverse semigroup is a subsemigroup of I(X) for some
set X .

A majority of inverse semigroups we encounter here are naturally ‘graded’. If S
is an inverse semigroup with possibly 0 and � is a discrete group, then S is called
a �-graded inverse semigroup if there is a map c : S \ {0} → � such that c(st) =
c(s)c(t), whenever st �= 0. For γ ∈ �, if we set Sγ := c−1(γ ), then S decomposes
as a disjoint union

S \ {0} =
⊔

γ∈�

Sγ ,

and we have SβSγ ⊆ Sβγ , if the product is not zero. We say that S is strongly graded
if SβSγ = Sβγ , for all β, γ , understanding that we exclude the zero if a product is
zero. The reader is referred to Mark Lawson’s book [39] for the theory of inverse
semigroups.

3.2.2 Examples of Inverse Semigroups

Clearly, any group is an inverse semigroup without zero unless it is a trivial group.
The Theorem ofWagner–Preston shows that the partial symmetries are the ‘mothers’
of all inverse semigroups.
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Example 3.1 (Graph inverse semigroups) Directed graphs provide concrete exam-
ples for constructing a variety of combinatorial structures, such as semigroups,
groupoids and algebras. We briefly recall the definition of a directed graph and
the construct the first combinatorial structure out of them, namely, graph inverse
semigroups.

A directed graph E is a tuple (E0, E1, r, s), where E0 and E1 are sets and r, s are
maps from E1 to E0. We think of each e ∈ E1 as an arrow pointing from s(e) to r(e).
We use the convention that a (finite) path p in E is a sequence p = α1α2 · · ·αn of
edges αi in E such that r(αi ) = s(αi+1) for 1 ≤ i ≤ n − 1. We define s(p) = s(α1),
and r(p) = r(αn). If s(p) = r(p), then p is said to be closed. If p is closed and
s(αi ) �= s(α j ) for i �= j , then p is called a cycle. An edge α is an exit of a path
p = α1 · · ·αn if there exists i such that s(α) = s(αi ) and α �= αi . A graph E is
called acyclic if there are no closed path in E . For a path p, we denote by |p| the
length of p, with the convention that |v| = 0.

A directed graph E is said to be row-finite if for each vertex u ∈ E0, there are at
most finitely many edges in s−1(u). A vertex u for which s−1(u) is empty is called
a sink, whereas u ∈ E0 is called an infinite emitter if s−1(u) is infinite. If u ∈ E0 is
neither a sink nor an infinite emitter, then it is called a regular vertex.

Definition 3.1 Let E = (E0, E1, r, s) be a directed graph. The graph inverse semi-
group SE is the semigroup with zero generated by the sets E0 and E1, together with
a set E∗ = {e∗ | e ∈ E1}, satisfying the following relations:

(0) uv = δu,vv for every u, v ∈ E0;
(1) s(e)e = er(e) = e for all e ∈ E1;
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;
(3) e∗ f = δe, f r(e) for all e, f ∈ E1.

For a path p = e1e2 · · · en , denoting p∗ = e∗
n · · · e∗

2e
∗
1, one can show that elements

of SE are of the form pq∗ for some paths p and q and the unique inner inverse of
pq∗ is qp∗.

This definition was first given in [5] and then in [48] in relation with groupoids
and groupoids C∗-algebras. The fact that Definition 3.1 gives an inverse semigroup
was checked in details in [48, Propositions 3.1, 3.2]. The graph inverse semigroup
associatedwith a graphwith one vertex and n loops is calledCuntz inverse semigroup
and it was defined in [50, p. 141]. We remark that the universal groupoid of SE (see
[54]) is the graph groupoid GE which will be studied in Sect. 3.3.5.

For a graph E , the inverse semigroup SE has a natural Z-grading where c(pq∗) =
|p| − |q|. We also refer the reader to [44] for further study on these inverse semi-
groups.

Example 3.2 (Exel’s inverse semigroup associated to a group) Any group is an
inverse semigroup. In [29], Exel defined a semigroup S(G) associated to the partial
actions of the group G on sets (Example 3.5) and proved that this semigroup is, in
fact, an inverse semigroup. He then established that the partial actions ofG on a set X
are in one-to-one correspondence with the action of S(G) on X . As the construction
of S(G) is very natural we give it here.
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Let G be a group with unit ε. We define S(G) to be the semigroup generated by
{[g] | g ∈ G} subject to the following relations: for g, h ∈ G:

(i) [g−1][g][h] = [g−1][gh];
(ii) [g][h][h−1] = [gh][h−1]; and
(iii) [g][ε] = [g].

Observe that [ε][g] = [gg−1][g] = [g][g−1][g] = [g][g−1g] = [g][ε] = [g].
Then S(G) is a semigroup with unit [ε]. It was proved in [29, Theorem 3.4] that
S(G) is an inverse semigroup and each element of x ∈ S(G) can be written uniquely
as x = [t1][t−1

1 ] · · · [tr ][t−1
r ][g]. This gives that S(G) is also a G-graded inverse

semigroup.
Further in [16] Buss and Exel showed that starting from an inverse semigroup G,

a similar construction as above (replacing g−1 by g∗) is also an inverse semigroup.

3.3 Groupoids

3.3.1 Groupoids

The use of groupoids to study structures whose operations are partially defined is
firmly recognised [12, 34, 39, 60]. We start by recalling the definition of a groupoid
with a suitable topology, i.e., an ample groupoid. We will eventually describe a ring
of R-valued continuous functions on an ample groupoid, where R is a (commutative,
unital) ring. These are the main objects of this survey, namely Steinberg algebras.

A groupoid is a small category in which every morphism is invertible. It can
also be viewed as a generalisation of a group which has a partially defined binary
operation. Let G be a groupoid. If x ∈ G, d(x) := x−1x is the domain of x and
r(x) := xx−1 is its range. Thus, the pair (x, y) in the category G is composable if
and only if r(y) = d(x) and in this case xy ∈ G. Denote G(2) := {(x, y) ∈ G × G :
d(x) = r(y)}. The set G(0) := d(G) = r(G) is called the unit space of G. Note that
we identify the objects of the categoryGwithG(0). which are the identity morphisms
of the category G in the sense that xd(x) = x and r(x)x = x for all x ∈ G.

The collection of morphisms whose domain and range are a fixed unit u ∈ G(0) is
a group and the collection of all of these groups is called the isotropy bundle Iso(G),
that is,

Iso(G) := {γ ∈ G : d(γ ) = r(γ )}.

For subsets U, V ⊆ G, we define

UV = {
xy | x ∈ U, y ∈ V and d(x) = r(y)

}
, (3.1)

and
U−1 = {

x−1 | x ∈ U
}
. (3.2)
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If G is a groupoid and � is a group, then G is called a �-graded groupoid if there
is functor c : G → �, i.e., there is a function c : G → � such that c(x)c(y) = c(xy)
for all (x, y) ∈ G(2). For γ ∈ �, if we set Gγ := c−1(γ ), then G decomposes as a
disjoint union

G =
⊔

γ∈�

Gγ ,

and we have GβGγ ⊆ Gβγ . We say that G is strongly graded if GβGγ = Gβγ , for
all β, γ . For γ ∈ �, we say that X ⊆ G is γ -graded if X ⊆ Gγ . We have G(0) ⊆ Gε,
so G(0) is ε-graded, where ε is the identity of the group �. Graded groupoids were
studied in [20].

3.3.2 Topological Groupoids

A topological groupoid is a groupoid endowed with a topology under which the
inverse map is continuous, and composition is continuous with respect to the relative
product topology on G(2). An étale groupoid is a topological groupoid G such that
the domain map d is a local homeomorphism. In this case, the range map r is also
a local homeomorphism. Further, for a fixed u ∈ G(0), d−1(u) and r−1(u) are both
discrete with respect to the subspace topology.1 An open bisection of G is an open
subset U ⊆ G such that d|U and r|U are homeomorphisms onto an open subset of
G(0). Notice that a groupoid is étale if and only if it has a basis of open bisections.

We say that a topological groupoid G is ample if there is a basis of compact open
bisections. An ample groupoid is automatically étale, locally compact and G(0) is an
open subset of G. The terminology in the literature is inconsistent: sometimes the
term ‘étale’ also includes the assumptions of local compactness and G(0) Hausdorff.
We will focus on the situation whereG is Hausdorff ample so these two assumptions
are automatically true.

In an ample Hausdorff groupoid, compact open bisections are also closed so
that any finite collection of such sets can be ‘disjointified’ to form a disjoint finite
collection whose union is equal to the original collection. This is very powerful. We
discuss non-Hausdorff groupoids briefly in Sect. 3.7.

In the topological setting,we call a groupoidG, a�-graded groupoid, if the functor
c : G → � is continuous with respect to the discrete topology on �; such a function
c is called a cocycle on G.
Lemma 3.1 Let G be an étale groupoid. If G(0) is finite, then G is a discrete topo-
logical space.

1Historically, the term r-discrete was used in place of étale and there are some inconsistencies in
the literature surrounding these terms.
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Proof Since G(0) is finite and Hausdorff, it is discrete. Fix γ ∈ G. We show that {γ }
is open. Since G is étale, γ is contained in an open bisection U . Also, since r is
continuous, r−1({r(γ )}) is open. But r is injective on U so

r−1({r(γ )}) ∩U = {γ }.

�

Wewill determine theSteinberg algebra associated tofiniteG(0) in Proposition 3.1.

3.3.3 Examples of Groupoids

Example 3.3 (Transitive groupoids) A groupoid is called connected or transitive if
for any u, v ∈ G(0), there is a x ∈ G such that u = d(x) and r(x) = y.

Let G be a group and I a non-empty set. The set I × G × I , considered as
morphisms, forms a groupoid where the composition defined by (i, g, j)( j, h, k) =
(i, gh, k). One can show that this is a transitive groupoid and any transitive groupoid
is of this form [39, Chap. 3.3, Proposition 6]. If I = {1, . . . , n}, we denote I × G × I
by n × G × n. Note that this groupoid is naturally strongly G-graded. This seems
to be the first appearance of groupoids after they were introduced by Brandt in 1926
[11] (see in [13] for a nice history of groupoids).

In the next three examples, we explore how a group action on a (combinatorial)
structure can be naturally captured by a groupoid. The first example is the action of
a group on a set, and we then continue with a partial action of a group and inverse
semigroup on a set. Although the (partial) action of an inverse semigroup on a set
would be themost general case covering the previous two examples, for a pedagogical
reason, we introduce these step by step.

Example 3.4 (Transformation groupoid arising from a group action) Let G be a
group acting on a set X , i.e., there is a group homomorphism G −→ Iso(X), where
Iso(X) consists of bijective maps from X to X which is a group with respect to
composition. Let

G = G × X (3.3)

and define the groupoid structure: (g, hy) · (h, y) = (gh, y), and (g, x)−1 =
(g−1, gx). ThenG is a groupoid, called the transformation groupoid arising from the
action of G on X (for short, G � X ). The unit space G(0) is canonically identified
with X via the map (ε, x) 	→ x . The natural cocycle G → G, (g, x) 	→ g, makes G
a stronglyG-graded groupoid. Note that the range and source map would distinguish
an element of this groupoid up to the stabiliser. Namely, d(g, x) = x = d(h, x) and
r(g, x) = gx = hx = r(h, x). But when we consider the grading then we can dis-
tinguish these elements as well. When X is a Hausdorff topological space and G is
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a discrete group, then G is an étale topological groupoid with respect to the product
topology. If, in addition, X has a basis of compact open sets, then G is ample.

Example 3.5 (Transformation groupoid arising from a partial group action) A par-
tial action of a group G on a set X is a data φ = (φg, Xg, X)g∈G , where for each
g ∈ G, Xg is a subset of X and φg : Xg−1 −→ Xg is a bijection such that

(i) Xε = X and φε is the identity on X , where ε is the identity of the group G;
(ii) φg(Xg−1 ∩ Xh) = Xg ∩ Xgh for all g, h ∈ G;
(iii) φg(φh(x)) = φgh(x) for all g, h ∈ G and x ∈ Xh−1 ∩ Xh−1g−1 .

Although the above construction gives a well-define map π : G → I(X), g 	→
φg , this map is not a homomorphism, i.e. φgh �= φgφh . However there is a one-to-one
correspondence between these partial actions and the actions of inverse semigroup
S(G) on X (see Example 3.2)

Let φ = (φg, Xg, X)g∈G be a partial action of G on X . Consider the G-graded
groupoid

Gφ =
⋃

g∈G
g × Xg, (3.4)

whose composition and inverse maps are given by (g, x)(h, y) = (gh, x) if y =
φg−1(x) and (g, x)−1 = (g−1, φg−1(x)). Here the range and source maps are given by
r(g, x) = (ε, x), d(g, x) = (ε, φg−1(x)) with ε the identity of G. The unit space of
Gφ is identified with X .

In case that X is a topological space, we assume Xg ⊆ X is an open subset and
each φg : Xg−1 −→ Xg is a homeomorphism, for g ∈ G. In order to obtain an ample
groupoid, we further assume that X is a Hausdorff topological space that has a basis
of compact open sets, each Xg is a clopen subset of X , and G is a discrete group.
The topology of Gφ which inherited from the product topology G × X gives us an
Hausdorff ample groupoid.

In fact, one can further generalise this to the setting of partial action of an inverse
semigroup on sets, topological spaces and rings. In Sect. 3.6 we will relate partial
inverse semigroup rings coming out of this partial actions to Steinberg algebras.

Example 3.6 (Transformation groupoid arising from an inverse semigroup action;
groupoid of germs) We start with a more concrete example of the groupoid of germs
and then move to a more abstract construction of the groupoid of germs of an inverse
semigroup acting on a space. In the topological setting, these are one of the main
sources of étale groupoids.

Let X be a non-empty set and let S = I(X) be the inverse semigroup of partial
symmetries. The S-germ is a pair (s, x) ∈ S × X , where x ∈ dom(s), modulo the
equivalence relation of germs (s, x) ∼ (t, y) if x = y and the restriction of s and t
coincides on a subset containing x . The groupoid operations defined by

(s, t y)(t, y) = (st, y), (s, x)−1 = (s−1, sx).
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In a more abstract setting, let S be an inverse semigroup acting on a set X , i.e.,
there is a semigroup homomorphism S → I(X). Let

G =
⋃

s∈S
s × Xs∗s . (3.5)

and define the groupoid structure: (s, t y) · (t, y) = (st, y), and (s, x)−1 = (s∗, sx).
One can check that these operations are well-defined and G is a groupoid. However,
this groupoid is too large for us and we need to invoke the equivalence of germs.

The groupoid of germs G = S � X is defined (with an abuse of notation) as G
modulo the equivalence relation (s, x) ∼ (t, y) if x = y and there exists an idem-
potent e such that x ∈ Xe and se = te. We denote the equivalence class of (s, x)
by [s, x] and call it the germ of s at x . It is a routine exercise to show that G with
[s, t y][t, y] = [st, y] and [s, x]−1 = [s∗, sx] is in fact a groupoid. Note that if S is a
group, then there are no identifications and we retrieve the transformation groupoid
of Example 3.4.

When X is a Hausdorff topological space, one can show that [s ×U ] := {[s, x] |
x ∈ U }, where U ⊆ Xs∗s is open, is a basis for a topology on G. With this topology,
G is étale and [s ×U ] is an open bisection. If X has a basis of compact open sets,
then G is Hausdorff ample. Further, by [30, Proposition 6.2] if S is a semilattice and
Xe are clopen for e ∈ E(S), then G is Hausdorff.

Example 3.7 (Underlying groupoid of an inverse semigroup) Let S be an inverse
semigroup. The maps

d : S −→ E(S) r : S −→ E(S)

s 	−→ s∗s s 	−→ ss∗

considered as the source and range maps make S into a groupoid with the product of
the semigroup as the composition of the groupoid. The unit space is E(S). Note that
if S is graded inverse semigroup so is the underlying groupoid of S and the strongly
graded property passes from one structure to another.

3.3.4 Inverse Semigroup of Bisections of a Groupoid

Given an ample Hausdorff groupoid, the inverse semigroup made up of all the com-
pact open bisections plays an important role. In fact, the Steinberg algebra associ-
ated to a Hausdorff ample groupoid is the inverse semigroup ring of compact open
bisections modulo their unions (see Definition 3.2). In the following, we describe
this inverse semigroup for a graded topological groupoid. Both the grading and the
topology can be stripped away.
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Let G be a �-graded Hausdorff ample groupoid. Set

Gh = {U | U is a graded compact open bisection of G}. (3.6)

Then Gh is an inverse semigroup under the multiplication U.V = UV and inner
inverse U ∗ = U−1 as in (3.1) and (3.2) (see [47, Proposition 2.2.4]). Furthermore,
the map c : Gh\∅ → �,U 	→ γ , if U ⊆ Gγ , makes Gh a graded inverse semigroup
with Gh

γ = c−1(γ ), γ ∈ �, as the graded components. Observe that in the inverse
semigroup Gh , B ≤ C if and only if B ⊆ C for B,C ∈ Gh . If from the outset we
consider G as a trivially graded groupoid, then we have an inverse semigroup con-
sisting of all compact open bisections. In this case we denote the inverse semigroup
by Ga . There are other notations for this semigroup in literature, such as S(G) in
[30] or Gco in [47].

There is a natural action of inverse semigroupGh on theG(0). In fact the groupoid
of germs (as in Example 3.6) of this action is G itself and this allows us to relate
the partial crossed product construction to the concept of Steinberg algebras (see
Theorem 3.9). We describe this action next. In fact, in what follows we will construct
a homomorphism of semigroups π : Gh → I(G(0)).

For each B ∈ Gh , BB−1 and B−1B are compact open subsets of G(0). Define

πB : B−1B −→ BB−1 (3.7)

u 	−→ r(Bu)

Since B is a bisection, Bu consists of only one element of G and thus the map
πB is well-defined. Observe that πB is a bijection with inverse πB−1 . We claim that
πB is a homeomorphism for each B ∈ Gh . Take any open subset O ⊆ UB . Observe
that π−1

B (O) = d(r−1(O) ∩ B) is an open subset of UB−1 . Thus, πB is continuous.
Similarly, π−1

B is continuous. One can check that for compact open bisections B
and C , πBπC = πBC , and thus π : Gh → I(G(0)) is a homomorphism of inverse
semigroups. If the grade group � is considered to be trivial, then we have a homo-
morphism π : Ga → I(G(0)). This homomorphism is injective if, in some sense,
there isn’t too much isotropy which we show in Lemma 3.2 after introducing some
more terminologies.

We say a topological groupoid G is effective if the interior of the isotropy bundle
is just the unit space, that is

Iso(G)◦ = G(0).

Thus, in an effective ample groupoid, if we have a compact open bisection B such
that every element γ ∈ B has the property s(γ ) = r(γ ), then B ⊆ G(0).

We say a subset U of the unit space G(0) of G is invariant if d(γ ) ∈ U implies
r(γ ) ∈ U ; equivalently,

r(d−1(U )) = U = d(r−1(U )).
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For an invariantU ⊆ G(0), we writeGU := d−1(U )which coincides with the restric-
tion

G|U = {x ∈ G | d(x) ∈ U, r(x) ∈ U }.

Notice that GU is a groupoid with unit space U .
We say G is strongly effective if for every non-empty closed invariant subset D

of G(0), the groupoid GD is effective. These assumptions play important roles when
classifying ideals of Steinberg algebras (see Sect. 3.4.5).

Lemma 3.2 Let G be an ample groupoid. Then the morphism π : Gh → I(G(0)) is
injective if and only if G is effective.

For more equivalences of effective groupoids, see [14, Lemma 3.1].

3.3.5 Graph Groupoids

Our next goal is to describe groupoids associated to directed graphs. There is a general
construction of a groupoid from a topological space X and a local homeomorphism
σ : X → X , called a Deaconu–Renault groupoid (see [51]). The graph groupoids
are a special case. We briefly recall this general construction.

Let σ : X → X be a local homeomorphism. Consider

G(X, σ ) = {(x,m − n, y) | m, n ∈ N, σm(x) = σ n(y)}, (3.8)

with the groupoid structure inherited from the transitive groupoid X × Z × X . Note
that G(X, σ ) is not transitive in general.

When X is a Hausdorff space, sets of the form

Z(U,m, n, V ) = {(x,m − n, y) | (x, y) ∈ U × V, σm(x) = σ n(y)},

whereU and V are open subsets of X are a basis for a topology on G(X, σ ) making
it a Hausdorff étale groupoid. When X also has a basis of compact open sets, the
groupoid is Hausdorff ample.

To any graph, E one can associate a groupoid GE , called the boundary path
groupoid, which we will just call the graph groupoid of E . This is the groupoid that
relates the Steinberg algebras to the subject of Leavitt path algebras, as it’s foundation
is to relate graphC∗-algebras and groupoidC∗-algebras. To be precise, one can show
there is a Z-graded ∗-isomorphism AR(GE ) ∼= LR(E) (see Example 3.9).

Let E = (E0, E1, r, s) be a directed graph (see Example 3.1). We denote by E∞
the set of infinite paths in E and by E∗ the set of finite paths in E . Set

X := E∞ ∪ {μ ∈ E∗ | r(μ) is not a regular vertex}.
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Let

GE := {
(αx, |α| − |β|, βx) | α, β ∈ E∗, x ∈ X, r(α) = r(β) = s(x)

}
.

We view each (x, k, y) ∈ GE as a morphism with range x and source y. The formu-
las (x, k, y)(y, l, z) = (x, k + l, z) and (x, k, y)−1 = (y,−k, x) define composition
and inverse maps on GE making it a groupoid with

G(0)
E = {(x, 0, x) | x ∈ X},

which we will identify with the set X .
Next, we describe a topology on GE which is ample and Hausdorff. For μ ∈ E∗

define
Z(μ) = {μx | x ∈ X, r(μ) = s(x)} ⊆ X.

For μ ∈ E∗ and a finite F ⊆ s−1(r(μ)), define

Z(μ \ F) = Z(μ) \
⋃

α∈F
Z(μα).

The sets Z(μ \ F) constitute a basis of compact open sets for a locally compact
Hausdorff topology on X = G(0)

E (see [59, Theorem 2.1]).
For μ, ν ∈ E∗ with r(μ) = r(ν), and for a finite F ⊆ E∗ such that r(μ) = s(α)

for α ∈ F , we define

Z(μ, ν) = {(μx, |μ| − |ν|, νx) | x ∈ X, r(μ) = s(x)},

and then
Z((μ, ν) \ F) = Z(μ, ν) \

⋃

α∈F
Z(μα, να).

The sets Z((μ, ν) \ F) constitute a basis of compact open bisections for a topology
under which GE is a Hausdorff ample groupoid.

In the case of the graph groupoid GE , the topological assumptions on GE can be
described in terms of the geometry of the graph E . We collect them here.

Theorem 3.1 Let E be a directed graph and GE the graph groupoid associated to
E. We have the following:

1. The unit space G(0)
E is finite if and only if E is a no exit finite graph [56].

2. The unit space G(0)
E is compact if and only if E has finite number of vertices.

3. The unit spaceG(0)
E is topologically transitive if and only if E is downward directed

[57].
4. The unit space G(0)

E is effective if and only if E satisfies condition (L) [57].

The following table summarises the properties of the graph E and the correspond-
ing properties of the graph groupoid GE .
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Graph E property Groupoid GE property
no cycles principal (istropy trivial)
condition (L) effective
condition (K) strongly effective
cofinal minimal
E0 finite G(0) compact
E finite and no cycles discrete

3.4 Steinberg Algebras

3.4.1 Steinberg Algebras

Steinberg algebras (for Hausdorff ample groupoids) are universal algebras that can
be defined in terms of inverse semigroup algebras. We present the details below and
then provide a concrete realisation as a convolution algebra consisting of certain
continuous functions with compact support. In the last section, we describe the
algebra when the groupoid is not Hausdorff.

Recall that if R is a commutative ring with unit, then the semigroup algebra RS
of an inverse semigroup S is defined as the R-algebra with basis S and multiplication
extending that of S via the distributive law. If S is an inverse semigroup with zero
element z, then the contracted semigroup algebra is R0S = RS/Rz. For a �-graded
groupoid G, recall the graded inverse semigroup Gh from Sect. 3.3.4.

Definition 3.2 Let G be a �-graded Hausdorff ample groupoid with the inverse
semigroup Gh . Given a commutative ring R with identity, the Steinberg R-algebra
associated to G, and denoted AR(G), is the contracted semigroup algebra R0Gh ,
modulo the ideal generated by B + D − B ∪ D, where B, D, B ∪ D ∈ Gh

γ , γ ∈ �

and B ∩ D = ∅.
So the Steinberg algebra AR(G), is the algebra generated by the set {tB | B ∈ Gh}
with coefficients in R, subject to the relations

(R1) t∅ = 0;
(R2) tBtD = tBD , for all B, D ∈ Gh ; and
(R3) tB + tD = tB∪D , whenever B and D are disjoint elements of Gh

γ , γ ∈ �, such
that B ∪ D is a bisection.

Thus, the Steinberg algebra is universal with respect to the relations (R1), (R2)
and (R3) in that if A is any algebra containing {TB : B ∈ Gh} satisfying (R1), (R2)
and (R3), then there is a homomorphism from AR(G) to A that sends tB to TB .
The uniqueness theorems would tell us when this natural homomorphism is injec-
tive (Sect. 3.4.4).

Example 3.8 (Classical groupoid algebras) IfG is a groupoid and A is a ring then A
is said to be aG-graded ring if A = ⊕

γ∈G Aγ , where Aγ is an additive subgroup of A
and Aβ Aγ ⊆ Aβγ , if (β, γ ) ∈ G(2) and Aβ Aγ = 0, otherwise. A prototype example
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of G-graded rings are classical groupoid algebras which we describe next. Let R be
a ring. Let RG be a free left R-module with basis G, i.e., RG = ⊕

γ∈G Rγ , where
Rγ = R. We define a multiplication as follows:

∑

σ∈G
rσ σ .

∑

τ∈G
sτ τ =

∑

σ,τ∈G
rσ sτ σ τ,

when (σ, τ ) ∈ G(2), and 0 otherwise. This makes RG an associative ring and setting
(RG)γ = Rγ , clearly gives this ring a G-graded structure.

It is not difficult to see that ifG(0) is finite, then RG is a direct sum of matrix rings
over corresponding isotropy group rings as follows: Let O1, . . . , Ok be the orbits of
G(0). Note that for x, y ∈ Oi , there is an isomorphism between the isotropy groups
Gx

x
∼= Gy

y . Choosing xi ∈ Oi , 1 ≤ i ≤ k, we then have

RG ∼=
k⊕

i=1

Mni (RGi ), (3.9)

where Gi = Gxi
xi and ni = |Oi |.

Now if G has a discrete topology, one can easily establish that AR(G) ∼= RG. On
the other hand, for the case of étale groupoid, finiteness of G(0) implies G is discrete
(Lemma 3.1). Putting these together we have the following.

Proposition 3.1 [56, Proposition 3.1] Let G be an ample groupoid with G(0) finite.
Let O1, . . . , Ok be the orbits ofG(0) and let Gi be isotropy group of Oi and ni = |Oi |.
Then

AR(G) ∼=
k⊕

i=1

Mni (RGi ),

Consider the set I = {1, . . . , n}, n ∈ N and G = {e} a trivial group. Then the
transitive groupoid I × I (see Example 3.3) with discrete topology is ample. Propo-
sition 3.1 now immediately gives

AR(I × I ) ∼= Mn(R).

Example 3.9 (Leavitt path algebras) Let E be a graph. The Leavitt path algebra
associated to the graph E was introduced as a purely algebraic version of the graph
C∗-algebras. We refer the reader to the book [1] for a general introduction to the
theory and [53] for an excellent survey on the connection of these algebras with
Steinberg algebras. We briefly give an account of how to model Leavitt path algebras
as Steinberg algebras.

For a graph E , let GE be the associated graph groupoid (see Sect. 3.3.5). By [22,
Example 3.2] the map
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πE : LR(E) −→ AR(GE ), (3.10)

μν∗ −
∑

α∈F
μαα∗ν∗ −→ 1Z((μ,ν)\F)

extends to a Z-graded algebra isomorphism. Observe that the isomorphism of alge-
bras in (3.10) satisfies

πE (v) = 1Z(v), πE (e) = 1Z(e,r(e)), πE (e∗) = 1Z(r(e),e), (3.11)

for each v ∈ E0 and e ∈ E1.
If w : E1 → � is a function, we extend w to E∗ by defining w(v) = 0 for v ∈ E0,

and w(α1 · · · αn) = w(α1) · · ·w(αn). Thus LR(E) is a �-graded ring. On the other
hand, defining w̃ : GE −→ � by

w̃(αx, |α| − |β|, βx) = w(α)w(β)−1, (3.12)

gives a cocycle [36, Lemma 2.3] and thus AR(G) is a �-graded ring as well. A quick
inspection of isomorphism (3.10) shows that πE respects the �-grading.

3.4.2 Convolution Algebra of Continuous Functions
From G to R

In this subsection we give an alternative definition for Steinberg algebras. Let
Cc(G, R) be the algebra of continuous functions from G to R (where R is a topo-
logical discrete space) that vanish outside a compact set. For f ∈ Cc(G, R) we have
that the support of f denoted supp( f ) := {γ ∈ G | f (γ ) �= 0} is compact. Since R
is discrete,

Cc(G, R) = { f : G → R | f is locally constant and has compact support}.

Note that when R = C, Cc(G, C) is not the same as the usual Cc(G), which is the set
of continuous functions from G to C with the standard topology that vanish outside
a compact set.

Addition and scalar multiplication are defined pointwise in Cc(G, R) and multi-
plication is given by convolution where

f ∗ g(γ ) =
∑

αβ=γ

f (α)g(β).

That convolution is well-defined, in that the sum is always finite, uses that G is étale:
for a fixed γ , we are summing over the set
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{αβ | αβ = γ, f (α) �= 0 and g(β) �= 0}. (3.13)

Since γ is fixed, so is r(γ ) and d(γ ). We claim that

{α | r(α) = r(γ ) and f (α) �= 0} = r−1(r(γ )) ∩ supp( f ) (3.14)

is finite. SinceG is étale, r−1(r(γ )) is closed and discrete. Thus, (3.14) is the intersec-
tion of a discrete closed subspace and a compact set so is finite as claimed. Similarly,
the set {β : d(β) = d(γ ) and g(β) �= 0} is finite and hence (3.13) is finite as well.

SinceG is Hausdorff, for each B ∈ Gh , B is clopen. So the characteristic function
1B (where 1B(γ ) = 1 for γ ∈ B and 0 otherwise) is inCc(G, R). For B, D ∈ Gh , one
can check that 1B ∗ 1D = 1BD and the set of all characteristic functions {1B : B ∈ G}
satisfies the relations (R1), (R2) and (R3). So the universal property gives us a
homomorphism from AR(G) to Cc(G, R) that takes tB to 1B for B ∈ Gh . The range
of this homomorphism is the subalgebra

span{1B : B ∈ Gh}.

Further, this homomorphism is bijective by [54, Theorem 6.3] and hence an isomor-
phism. Thus, one can write

AR(G) = span
{
1B | B is a homogeneous compact open bisection

}
,

=
{ ∑

B∈F
rB1B | F : mutually disjoint finite collection of

homogeneous compact open bisections
}
,

• addition and scalar multiplication of functions are pointwise,

• multiplications on the generators are 1B1D = 1BD.

Remark 3.1 One reason we restrict our attention to ample groupoids is to maintain
a connection with groupoid C∗-algebras, which is the completion of Cc(G) with
respect to a particular norm. If we only require our groupoids to be étale, there might
not be any locally constant functions soCc(G, C)might be empty. On the other hand,
when G is ample, Cc(G, C) is a dense subset of Cc(G).

3.4.3 Centre of a Steinberg Algebra

The centre of Steinberg algebras were determined in [54] and it has a very pleasant
description. We describe it here. We view AR(G) as Cc(G, R) where the elements
are functions. We say f ∈ AR(G) is a class function if f satisfies the following
conditions:
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1. if f (x) �= 0 then d(x) = r(x);
2. if d(x) = r(x) = d(z) then f (zxz−1) = f (x).

Proposition 3.2 [54, Proposition 4.13] The centre of AR(G) is the set of class func-
tions.

Note that if f is a class function, then supp( f ) ⊆ Iso(G)◦. Thus if G is effective,
then the centre is contained in the diagonal subalgebra AR(G(0)). The diagonal pre-
serving isomorphisms play an important role in realising groupoids from the algebra
isomorphisms (see Theorem 3.7).

3.4.4 Uniqueness Theorems

A uniqueness theorem gives criteria under which a homomorphism from the Stein-
berg algebra to another R-algebra is injective. Uniqueness theorems are useful when
studying other concrete realisations of Steinberg algebras. The most general unique-
ness theorem is the following which is [24, Theorem 3.1]:

Theorem 3.2 LetGbe a second countable, ample,Hausdorff groupoid and let R be a
unital commutative ring. Suppose that A is an R-algebra and thatπ : AR(G) → A is
a ring homomorphism. Thenπ is injective if and only ifπ is injective on AR(Iso(G)o),
the subalgebra generated by elements of Gh that are also contained in the interior
of the isotropy bundle.

Theorem 3.2 has the assumption of second countability because the proof requires
the unit space to be a ‘Baire space’. The graded uniqueness theorem, below (which
is [21, Theorem 3.4] ) does not have this assumption. Instead it requires a particular
graded structure.

Theorem 3.3 Let G be a Hausdorff, ample groupoid, R a commutative ring with
identity,� a discrete group, and c : G → � a continuous functor such thatGe is effec-
tive. Suppose π : AR(G) → A is a graded ring homomorphism. Then π is injective
if and only if π(r tK ) �= 0 for every nonzero r ∈ R and compact open K ⊆ G(0).

3.4.5 Ideal Structures of Steinberg Algebras

There is a satisfactory description of ideals of a Steinberg algebra Ak(G) based on
the geometry of the groupoid G, where the algebra is over a field k (so the ideals
of the coefficient ring does not interfere) and the groupoid is Hausdorff ample and
(strongly) effective.

The first result is the simplicity of these algebras.
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Theorem 3.4 [14]LetG be anHausdorff, ample groupoid, and k a field. Then Ak(G)

is simple if and only if G is effective and G(0) has no open invariant subsets.

A glance at the table of properties of the graph versus the graph groupoids
(Sect. 3.3.5) shows that Theorem 3.4 is parallel to the first theorem proved in the
theory of Leavitt path algebras, namely, for an arbitrary graph E , the Leavitt path
algebra Lk(E) is simple if and only if E satisfies condition (L) and E0 has no non-
trivial saturated hereditary subsets [2], [1, Sect. 2.9].

For an invariant U ⊆ G(0), one can easily see that the set

I (U ) := span{tB | s(B) ⊆ U },

is an ideal of Ak(G). In fact, if the groupoid is strongly effective, this is the only way
one can construct ideals in these algebras.

Theorem 3.5 [18] Suppose G is a strongly effective ample groupoid. Then the cor-
respondence

U 	−→ I (U ),

is a lattice isomorphism from the lattice of open invariant subsets of G(0) onto the
lattice of ideals of Ak(G).

Theorem 3.6 [24] Let G be a �-graded ample groupoid such that Gε is strongly
effective. Then the correspondence

U 	−→ I (U ),

is an isomorphism from the lattice of open invariant subsets ofG(0) onto to the lattice
of graded ideals in Ak(G).

We refer the reader to [18, 24] for further results on the ideal theory of Steinberg
algebras.

3.5 Combinatorial and Dynamical Invariants of étale
Groupoids

There are several ‘combinatorial’ invariants one can associate to a groupoid such
as the full group and homology groups. For certain groupoids these combinatorial
invariants are related to very interesting Higman–Thompson groups or K -groups as
we describe next in this section.
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3.5.1 Full Groups

For an étale groupoid G with the compact unit space G(0), the full group [[G]] was
defined by Matui [41]. The full group [[Z × X ]] of the transformation groupoid of
the action of Z on a Cantor set X via a minimal homeomorphism (see Example 3.3)
coincides with the full group defined and studied in [32]. We define the full group of
a groupoid here and collect results related to this group.

Recall thatGa is the inverse semigroup of compact open bisections and π : Ga →
I(G(0)) the action of Ga on G(0) (Sect. 3.3.4). Let G := {U ∈ Ga | d(U ) = r(U ) =
G(0)} be a subgroup ofGa (hereG(0) considered to be compact). Then the full group of
G, denoted by [[G]] isπ(G). In fact, for a noncompactG(0), one can give a generalised
version of this notion and define the full inverse semigroup by [[G]] = π(Ga).

If the Hausdorff ample groupoids G and H are isomorphism, then clearly
AR(G) ∼= AR(H). Further, since from the outset, G ∼= H induces G(0) ∼= H (0), we
have the diagonal isomorphism AR(G(0)) ∼= AR(H (0)) as well. Renault in [52] estab-
lished the converse of this statement for certain groupoidC∗-algebras. Several recent
papers progressively improved this result in the algebraic setting (see [4, 17, 58]).
Combining with the full group invariant, we have the following theorem, relating
groupoids, inverse semigroups and algebras.

Theorem 3.7 Let R be a unital commutative ring without nontrivial idempotents
and let G and H be Hausdorff effective ample groupoids. Then the following are
equivalent.

(1) G and H are isomorphic;
(2) the inverse semigroups Ga and Ha are isomorphic;
(3) the inverse semigroups [[G]] and [[H ]] are isomorphic;
(4) there exists a diagonal-preserving isomorphism between the Steinberg algebras

AR(G) and AR(H).

Consider a graph with one vertex and two loops

E : •

and its graph groupoidGE as described in Sect. 3.3.5. The unit spaceG(0)
E is compact

(Theorem3.1) andwe can consider the full group [[GE ]]. On the other hand, let Lk(E)

be the Leavitt path algebra associated to E over a field k. An element a ∈ Lk(E) is
called unitary if aa∗ = a∗a = 1. Consider the set

P2,1 =
{
a ∈ Lk(E) is unitary | a =

l∑

i=1

αiβ
∗
i

}
,

where αi , βi are distinct paths in E and the coefficients in the sum are all 1. One can
prove that

P2,1 ∼= [[GE ]],
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and they are isomorphic to the Thompson group T2,1, which was constructed in 1965
and was the first infinite finitely presented simple group. In fact, considering a graph
with one vertex and n loops, we retrieveHigman–Thompson groupsGn,1 constructed
by Higman in 1974. We refer the reader to [15, 46] for this line of research.

3.5.2 Homology and K-Theory

The homology theory for étale groupoids was introduced by Crainic and Moerdijk
[26] who showed these groups are invariant under Morita equivalences of étale
groupoids and established some spectral sequences which used for the computa-
tion of these homologies. Matui [41–43] considered this homology theory in rela-
tion to the dynamical properties of groupoids and their full groups. In [41] Matui
proved, using Lindon–Hochschild–Serre spectral sequence established by Crainic
and Moerdijk that for an étale groupoid G arising from subshifts of finite type,
the homology groups H0(G) and H1(G) coincide with K -groups K0(C∗(G)) and
K1(C∗(G)), respectively. Here C∗(G) is the groupoid C∗-algebra associated to G
which were first systematically studied by Renault in his seminal work [50]. In the
language of graphs, Matui proved that for a finite graph E with no sinks

K0(C
∗(E)) ∼= H0(GE ) and, K1(C

∗(E)) ∼= H1(GE ). (3.15)

In this section, we recall the construction of the homology of an ample groupoids
and recount Matui’s conjecture relating K -groups of groupoid C∗-algebras to the
homology of its groupoid (Conjecture 3.1). It would be very desirable to establish a
relation between the homology groups and K -groups of Steinberg algebras, as here
we have higher K -theories available and strong K -theory machinery which works
on them [49].

Let X be a locally compact Hausdorff space and R a topological abelian group.
Denote byCc(X, R) the set of R-valued continuous functions with compact support.
With pointwise addition, Cc(X, R) is an abelian group. Let π : X → Y be a local
homeomorphism between locally compact Hausdorff spaces. For f ∈ Cc(X, R),
define the map π∗( f ) : Y → R by

π∗( f )(y) =
∑

π(x)=y

f (x).

Thus, π∗ is a homomorphism from Cc(X, R) to Cc(Y, R) which makes Cc(−, R) a
functor from the category of locally compact Hausdorff spaces with local homeo-
morphisms to the category of abelian groups.

Let G be an étale groupoid. For n ∈ N, we write G(n) for the space of composable
strings of n elements in G, that is,
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G(n) = {(g1, g2, . . . , gn) ∈ Gn | d(gi ) = r(gi+1) for all i = 1, 2, . . . , n−1}.

For i = 0, 1, . . . , n, with n ≥ 2 we let di : G(n) → G(n−1) be a map defined by

di (g1, g2, . . . , gn) =

⎧
⎪⎨

⎪⎩

(g2, g3, . . . , gn) i = 0

(g1, . . . , gi gi+1, . . . , gn) 1 ≤ i ≤ n−1

(g1, g2, . . . , gn−1) i = n.

When n = 1, we let d0, d1 : G(1) → G(0) be the source map and the range map,
respectively (i.e., the d and r maps). Clearly, the maps di are local homeomorphisms.

Define the homomorphisms ∂n : Cc(G(n), R) → Cc(G(n−1), R) by

∂1 = d∗ − r∗ and ∂n =
n∑

i=0

(−1)i di∗. (3.16)

One can check that the sequence

0
∂0←− Cc(G(0), R)

∂1←− Cc(G(1), R)
∂2←− Cc(G(2), R)

∂3←− · · · (3.17)

is a chain complex of abelian groups.
The following definition comes from [26, 41].

Definition 3.3 (Homology groups of a groupoidG) Let G be an étale groupoid.
Define the homology groups of G with coefficients R, Hn(G, R), n ≥ 0, to be the
homology groups of the Moore complex (3.17), i.e., Hn(G, R) = ker ∂n/ Im ∂n+1.
When R = Z, we simply write Hn(G) = Hn(G, Z). In addition, we define

H0(G)+ = {[ f ] ∈ H0(G) | f (x) ≥ 0 for all x ∈ G(0)},

where [ f ] denotes the equivalence class of f ∈ Cc(G(0), Z).

ExtendingMatui’s result (3.15), in [33] using the description of monoid of Leavitt
path algebras, it could be proved that for any graph (with sinks, source and infinite
emitters), we have

H0(GE ) ∼= K0(A(GE )) ∼= K0(L(E)) ∼= K0(C
∗(E)) ∼= K0(C

∗(GE )).

Before stating Matui’s conjecture (Conjecture 3.1) we also state a class of
groupoids that the zeroth homology H0 coincides with Grothendieck group K0 and
their algebras fall into Elliott’s class of algebras that can be classified by K0-groups.

Let G be a second countable étale groupoid whose unit space is compact and
totally disconnected. Then the subgroupoidH ⊆ G is an elementary subgroupoid if
H is a compact open principal subgroupoid ofG such thatH (0) = G(0). The groupoid
G is called an AF groupoid if it can be written as an increasing union of elementary
subgroupoids.
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If G is an AF groupoid, then Steinberg algebra AR(G), for a field R, is an ultra-
matricial algebra (or the reduced groupoid C∗-algebra C∗(G) is an AF algebra and
thus the terminology). For such groupoids, there is an order-preserving isomorphism

π : H0(G) −→ K0(AR(G)),

[1G(0)] 	−→ [1AR(G(0) ].

We have then the following theorem.

Theorem 3.8 Let R be a field and G and H are AF groupoids. Then the following
are equivalent.

(1) G and H are isomorphic;
(2) There is an order-preserving isomorphism H0(G) ∼= H0(H) which sends [1G(0) ]

to [1H (0)];
(3) there exists a R-algebra isomorphism between the Steinberg algebras AR(G)

and AR(H).

This theorempoints to a directionwhich is gaining evermore importance of finding
a class of étale groupoids that a variant of K -theory and homology theory can be a
complete invariant.

Recall that an étale groupoid G is said to be effective if the interior of its isotropy
coincides with its unit space G(0) and minimal if every orbit is dense.

The following conjecture of Matui [43, Conjecture 2.6] expresses the K -theory
of a groupoid C∗-algebra as a direct sum of homology groups of the associated
groupoid. For one thing, this indicates that the homology groups provide much finer
invariants than the K -groups.

Conjecture 3.1 (Matui’s HKConjecture) LetG be a locally compact Hausdorff étale
groupoid such thatG(0) is a Cantor set. Suppose thatG is both effective and minimal.
Then

K0(C
∗
r (G)) ∼=

∞⊕

i=0

H2i (G) (3.18)

K1(C
∗
r (G)) ∼=

∞⊕

i=0

H2i+1(G) (3.19)

Apart from (arbitrary graphs) Matui proved this conjecture for AF groupoids
with compact unit space and in [43] for all finite Cartesian products of groupoids
associated with shifts of finite type. Ortega also showed in [45] that the conjecture is
valid for theKatsura-Exel-Pardo groupoidGA,B associated to square integermatrices
with A ≥ 0.
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3.6 Partial Crossed Product Rings

In this section, we consider the ‘partially’ group ring-like algebras and relate them to
Steinberg algebras. This is also another demonstration of how the inverse semigroups
and algebras arising from them are related to groupoids and algebras coming from
them.

Let π = (πs, As, A)s∈S be a partial action of the inverse semigroup S on an
algebra A. Here As ⊆ A, s ∈ S is an ideal of A and πs : As∗ −→ As an isomorphism
such that for all s, t ∈ S
(i) π−1

s = πs∗ ;
(ii) πs(As∗ ∩ At ) ⊆ Ast ;
(iii) if s ≤ t , then As ⊆ At ;
(iv) For every x ∈ At∗ ∩ At∗s∗ , πs(πt (x)) = πst (x).

This is a generalisation of the concept of partial group actions (see Sect. 3.5).
Define L as the set of all formal forms

∑
s∈S asδs (with finitely many as nonzero),

where as ∈ As and δs are symbols, with addition defined in the obvious way and
multiplication being the linear extension of

(asδs)(atδt ) = πs
(
πs−1(as)at

)
δst .

ThenL is an algebra which is possibly not associative. Exel and Vieira proved under
which condition L is associative (see [31, Theorem 3.4]). In particular, if each ideal
As is idempotent or non-degenerate, thenL is associative (see [31, Theorem 3.4] and
[28, Proposition 2.5]). This algebra is too large for us andwe need to consider this ring
modulo idempotents, as follows. Consider N = 〈aδs − aδt : a ∈ As, s ≤ t〉, which
is the ideal generated by aδs − aδt . The partial skew inverse semigroup ring A �π S
is defined as the quotient ring L/N .

Next, we equip these algebras with a graded structure. Suppose S is a �-graded
inverse semigroup (see Sect. 3.2.1). Observe that the algebraL is aG-graded algebra
with elements asδs ∈ L with as ∈ As are homogeneous elements of degree w(s).
Furthermore, if s ≤ t , then s = ts∗s. It follows that w(s) = w(t)w(s∗)w(s) = w(t).
Hence aδs − aδt with s ≤ t and a ∈ As is a homogeneous element in L. Thus, the
ideal N generated by homogeneous elements is a graded ideal and, therefore, the
quotient algebra A �π S = L/N is �-graded.

Let X be a Hausdorff topological space and R a unital commutative ring with a
discrete topology. Let CR(X) be the set of R-valued continuous function (i.e. locally
constant) with compact support (see also Sect. 3.4.2). If D is a compact open subset
of X , the characteristic function of D, denoted by 1D , is clearly an element ofCR(X).
In fact, every f in CR(X) may be written as

f =
n∑

i=1

ri1Di , (3.20)
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where ri ∈ R and the Di are compact open, pairwise disjoint subsets of X . CR(X) is
a commutative R-algebra with pointwise multiplication. The support of f , defined
by supp( f ) = {x ∈ X | f (x) �= 0}, is clearly a compact open subset.

We observe that CR(X) is an idempotent ring. We have

n∑

i=1

1Di · f = f ·
n∑

i=1

1Di =
n∑

i=1

ri1Di = f (3.21)

for any f ∈ CR(X) which is written as (3.20). So CR(X) is a ring with local units
and thus an idempotent ring.

For �-graded Hausdorff ample groupoid G, recall the inverse semigroup Gh

from (3.6) and the action of Gh on G(0) from (3.7). There is an induced action
(πB,CR(BB−1),CR(G(0)))B∈Gh of Gh on an algebra CR(G(0)). Here the map πB :
CR(B−1B) −→ CR(BB−1) is given byπB( f ) = f ◦ π−1

B .We still denote the induced
action byπ . In this case,L = {∑

B∈Gh aBδB | aB ∈ CR(BB−1)
}
is associative, since

each ideal CR(BB−1) is idempotent. Since Gh is �-graded, CR(G(0)) �π Gh is a
�-graded algebra.

We are in a position to relate partial skew inverse semigroup rings to Steinberg
algebras.

Theorem 3.9 Let G be a �-graded Hausdorff ample groupoid and

π =
(
πB,CR(BB−1),CR(G(0))

)

B∈Gh
,

the induced action of Gh on CR(G(0)). Then there is a �-graded isomorphism of
R-algebras

AR(G) ∼=gr CR(G(0)) �π Gh . (3.22)

Proof For each D ∈ G(h), define

tD = 1r(D)δD ∈ CR(G(0)) �π Gh .

One can check that the set {tD | D ∈ G(h)} satisfies (R1), (R2) and (R3) relations
in the Definition 3.2 of Steinberg algebras. Thus, we obtain a homomorphism

f : AR(G) → CR(G(0)) �π Gh .

Next define a map g : CR(G(0)) �π G(h) −→ AR(G). For each B ∈ G(h) and
aBδB ∈ L, we define

g(aBδB) =
{
aB(r(x)), if x ∈ B,

0, otherwise.
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One can check that the map g is well-defined and g f = idAR(G) and f g =
1CR(G(0))�πGh . �

We refer the reader to [9, 10, 33] for more results relating the partial inverse
semigroup algebras toSteinberg algebras and [30] for theC∗-versions of these results.

3.7 Non-Hausdorff Ample Groupoids

We finish this paper with a brief discussion about non-Hausdorff groupoids. When
relaxing the Hausdorff assumption on G, we still insist that the unit space G(0) be
Hausdorff so that, in the setting of étale and ample groupoids, they are locally Haus-
dorff. With this weakened hypothesis the universally defined Steinberg algebra of
Definition 3.2 no longer works. However, we can still study the Steinberg algebra of
such a groupoid using one of the other characterisations, such as

AR(G) = span{1B : B ∈ Gh}.

Since G is not Hausdorff, compact open bisections are no longer closed and hence
characteristic functions might not be continuous.

Other fundamental results in the theory of Steinberg algebras fail for non-
Hausdorff groupoids, for example, the Uniqueness theorems (see [24, Example 3.5]).
Still, progress is slowly being made to develop a theory. Recall that in an ample
groupoid G(0) is always open in G. It turns out that G(0) is closed in G if and only if
G is Hausdorff. So an important step for understanding non-Hausdorff groupoids is
to understand the closure of G(0).

3.7.1 Non-Hausdorff Simplicity

For non-Hausdorff groupoids, necessary and sufficient groupoid conditions that
ensure the Steinberg algebra is simple are not known. The forward implication of
Theorem 3.4 does hold in the non-Hausdorff setting (see [55, Theorem 3.5]). But the
reverse implication uses Theorem 3.2 which fails for non-Hausdorff groupoids. Here
is why it fails: The proof of Theorem 3.2 assumes that for every function f ∈ Ak(G),
the set

supp( f ) := {γ ∈ G : f (γ ) �= 0} = f −1(0)

has non-empty interior. This is clearly true if f is continuous but can fail when G is
not Hausdorff. We call a function f such that supp( f ) has empty interior a singular
function. The collection of all singular functions forms an ideal in Ak(G). It turns
out this is the only obstruction to simplicity.
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Theorem 3.10 [19, Theorem 3.14] Let G be a second countable, ample groupoid
such that G(0) is Hausdorff and let k be a field. Then Ak(G) is simple if and only if
the following three conditions are satisfied:

1. G is minimal,
2. G is effective, and
3. for every nonzero f ∈ Ak(�), supp( f ) has non-empty interior.

It is not known whether condition (3) is an automatic given conditions (1) and (2).
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