
Chapter 15
On an Algebraic Analogue of the
Mayer–Vietoris Sequence

Raja Sridharan, Sumit Kumar Upadhyay and Sunil K. Yadav

15.1 Introduction

Let X be a topological space, H 0(X,Z) be the set of continuous maps from X to Z

and H 1(X,Z) be the set of all homotopy classes of continuous maps from X to S1.
Since Z and S1 are abelian groups, H 0(X,Z) and H 1(X,Z) are also abelian groups.
In the literature, the group H 1(X,Z) is known as Bruschlinsky group (for details
one can see [5]).

Theorem 15.1 Let U1 and U2 be two open sets of a topological space X. Then we
have an exact sequence

H0(U1 ∪ U2,Z) → H0(U1,Z) ⊕ H0(U2,Z) → H0(U1 ∩ U2,Z)→H1(U1 ∪ U2,Z)

→ H1(U1,Z) ⊕ H1(U2,Z) → H1(U1 ∩ U2,Z).

This sequence is known as Mayer–Vietoris sequence.

We refer the reader to see the book ofWall [12] for the definitions and the construction
of theMayer–Vietoris sequence. It is natural to ask that ‘Does there exist an algebraic
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analogue of Mayer–Vietoris sequence?’ The main aim of this paper is to define
two algebraic groups �(A) and π1(SL2(A)), where A is an integral domain and
also to prove an algebraic analogue of Mayer–Vietoris sequence with the help these
groups for an integral domain of dimension 1. The group �(A) is also discussed by
Krusemeyer ([7]) in different context.

By using the theory of symplectic modules, we also give an algebraic analogue
of the connecting homomorphism

H 1(U1 ∩ U2,Z) → H 2(U1 ∪ U2,Z). (15.1)

This paper is organized as follows. After recalling some preliminary results in
Sect. 15.2, we give an analogue of Theorem15.1 in Sects. 15.3 and 15.4. In Sect. 15.5,
we give an analogue of the map (15.1) and finally in Sect. 15.6, we deduce some
corollaries of our results.

15.2 Some Preliminaries

In this section, we give some definitions and preliminary results. Throughout the
paper, ring A means commutative ring with identity.

Definition 15.1 1. Let A be a ring. A row (a1, a2, . . . , an) ∈ An is said to be uni-
modular (of length n) if the ideal (a1, a2, . . . , an) = A. The set of unimodular
rows of length n is denoted by Umn(A).

2. A unimodular row (a1, a2, . . . , an) is said to be completable if there is a matrix
in SLn(A) (or in GLn(A)) whose first row (or first column) is (a1, a2, . . . , an).

3. We define En(A) to be the subgroup of GLn(A) generated by all matrices of
the form Ei j (λ) = In + λei j , λ ∈ A, i �= j , where ei j is a matrix whose (i, j)th
entry is 1 and all other entries are 0. The matrices Ei j (λ) will be referred to as
elementary matrices.

We now define the symplectic and elementary symplectic group of a ring. Let ei j be
the matrix with 1 in the (i, j) place and zeros elsewhere, ei the i th row of In , and

χr =
r∑

i=1

e2i−1,2i −
r∑

i=1

e2i,2i−1.

We display the case r = 2 explicitly below.

χ2 =
2∑

i=1

e2i−1,2i −
2∑

i=1

e2i,2i−1

= e12 + e34 − e21 − e43
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=

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ .

Definition 15.2 The group of symplectic matrices Sp2r (A) is given by

Sp2r (A) = {α ∈ GL2r (A) : αtχrα = χr },

which is clearly a subgroup of of GL2r (A).

In order to define the elementary symplectic matrices, we use the permutation σ on
2r -letters given by

σ(2i) = 2i − 1 and σ(2i − 1) = 2i, for 1 ≤ i �= j ≤ 2r.

Definition 15.3 1. For each pair i �= j (1 ≤ i �= j ≤ 2r ) the elementary symplectic
matrix sei j (z) is given by

sei j (z) =
{

I2r + z · ei j if i = σ j

I2r + z · ei j − (−1)i+ j · z · eσ j,σ i if i �= σ j and i < j.

We shall call these matrices elementary symplectic.
2. The group ESp2r (A) is then the subgroup of Sp2r (A) generated by the elementary

symplectic matrices over A.

For the case r = 2, there are eight such matrices, the matrix se13(z) (i �= σ( j))
is displayed below. ⎛

⎜⎜⎝

1 0 z 0
0 1 0 0
0 0 1 0
0 −z 0 1

⎞

⎟⎟⎠ .

For the other three cases, the positions of±z change accordingly. Likewise for r = 2
the matrix se43(z) (i = σ( j)) is displayed below.

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 z 1

⎞

⎟⎟⎠ .

For the other three cases, the positions of z change accordingly.
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Let us recall Quillen’s Splitting Lemma [8]with the proof following the exposition
of [3]. In what follows, (ψ1(X))t denotes the image of ψ1(X) in SLn(Ast [X ]) and
(ψ2(X))s denotes the image of ψ2(X) in SLn(Ast [X ]).
Lemma 15.1 (see [8]) Let A be a domain and s, t ∈ A be such that s A + t A = A.
Suppose there exists σ(X) ∈ SLn(Ast [X ]) with the property that σ(0) = In. Then
there exist ψ1(X) ∈ SLn(As[X ]) with ψ1(0) = In and ψ2(X) ∈ SLn(At [X ]) with
ψ2(0) = In such that σ(X) = (ψ1(X))t (ψ2(X))s .

Proof Since σ(0) = In , σ(X) = In + Xτ(X), where τ(X) ∈ Mn(Ast [X ]), we
choose a large integer N1 such that σ(λsk X) ∈ SLn(At [X ]) for all λ ∈ A and for
all k ≥ N1. Define β(X, Y, Z) ∈ SLn(Ast [X, Y, Z ]) as follows:

β(X, Y, Z) = σ((Y + Z)X)σ (Y X)−1. (15.2)

Then β(X, Y, 0) = In , and hence there exists a large integer N2 such that for all
k ≥ N2 and for all μ ∈ A we have β(X, Y, μt k Z) ∈ SLn(As[X, Y, Z ]). This means

β(X, Y, μt k Z) = (σ1(X, Y, Z))t , (15.3)

where σ1(X, Y, Z) ∈ SLn(As[X, Y, Z ]) with σ1(X, Y, 0) = In .
Taking N = max(N1, N2), it follows by the comaximality of s A and t A that

s N A + t N A = A. Pick λ,μ ∈ A such that λs N + μt N = 1. Setting Y = λs N , Z =
μt N in (15.2) and Z = 1, Y = λs N in (15.3) we get

β(X, λs N , μt N ) = σ(X)σ (λs N X)−1

and

β(X, λs N , μt N ) = (σ1(X, λs N , μt N ))t = (ψ1(X))t , where ψ1(X) ∈ SLn(As[X ]).

Hence, we conclude σ(X)σ (λs N X)−1 = (ψ1(X))t . Let σ(λs N X) = (ψ2(X))s ,
where (ψ2(X))s ∈ SLn(At [X ]). Since σ(0) = In , ψ1(0) = ψ2(0) = In , the result
follows by using the identity σ(X) = σ(X)σ (λs N X)−1σ(λs N X).

Lemma 15.2 ([4]) Let A be a domain and s, t ∈ A be such that s A + t A = A. For
each σ ∈ SLn(Ast ) and ε ∈ En(Ast ) there exist τ1 ∈ SLn(As) and τ2 ∈ SLn(At ) such
that σε = τ1στ2.

Proof Let ε = ε1ε2, where ε1 ∈ SLn(As) is chosen such that ε1 = In mod (t N ) for
sufficiently large N and ε2 ∈ SLn(At ). So,wehaveσε = σε1ε2 = σε1σ

−1σε2.Now,
since ε1 = In mod (t N ) for sufficiently large N , σε1σ

−1 ∈ SLn(As). Now by taking
τ1 = σε1σ

−1 and τ2 = ε2, we have σε = τ1στ2.
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15.3 The Group �(A)

In this Section, we define the group�(A)which is an algebraic analogue of the group
H 1(X,Z).

Definition 15.4 Let A be a ring. We say a matrix α ∈ SL2(A) can be connected to
the identity matrix I2 if there exists a matrix β(T ) ∈ SL2(A[T ]) such that β(0) = I2
and β(1) = α.

Definition 15.5 We say that two unimodular rows (a, b), (c, d) over A are equiv-
alent, written as (a, b) ∼ (c, d), if one (and hence both) of the following equivalent
conditions hold.

1. There exists ( f11(T ), f12(T )) ∈ Um2(A[T ]) such that ( f11(0), f12(0)) = (a, b)

and ( f11(1), f12(1)) = (c, d).
2. There exists a matrix α ∈ SL2(A) which is connected to the identity matrix (that

is, there exists a matrix β(T ) ∈ SL2(A[T ]) such that β(0) = I2 and β(1) = α)

such that α

(
a
b

)
=

(
c
d

)
.

The fact that ∼ is an equivalence relation will be established later. We first show that
these two conditions are equivalent.
(2) =⇒ (1).

Suppose β(T ) =
(

g11(T ) g12(T )

g21(T ) g22(T )

)
such that β(0) = I2 and β(1) = α, whichmeans

ag11(1) + bg12(1) = c and ag21(1) + bg22(1) = d.

Let (
f11(T )

f12(T )

)
= β(T )

(
a
b

)
=

(
ag11(T ) + bg12(T )

ag21(T ) + bg22(T )

)
. (15.4)

Thus, it is clear that

( f11(0), f12(0)) = (a, b) and ( f11(1), f12(1)) = (c, d).

Since (a, b) is unimodular, we have (a′, b′) ∈ A2 such that ab′ − ba′ = 1. Then

f11(T ) f22(T ) − f12(T ) f21(T ) = 1,

where ( f21(T ), f22(T )) = (a′g11(T ) + b′g12(T ), a′g21(T ) + b′g22(T )). Thus

( f11(T ), f12(T )) ∈ Um2(A[T ]).

Therefore, definition (2) implies definition (1).
(1) =⇒ (2).
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Since ( f11(T ), f12(T )) ∈ Um2(A[T ]), there exists ( f21(T ), f22(T )) ∈ (A[T ])2 such
that

f11(T ) f22(T ) − f12(T ) f21(T ) = 1.

Thus a f22(0) − b f21(0) = 1.

Letβ(T ) =
(

f11(T ) f21(T )

f12(T ) f22(T )

)(
f22(0) − f21(0)
−b a

)
. Thenβ(0) = I2 andβ(1)

(
a
b

)

=
(

c
d

)
. For α = β(1), the definition (2) follows.

We now turn to proof that ∼ is an equivalence relation.
Reflexivity: To show (a, b) ∼ (a, b), we use (1) of Definition15.5 and simply

take ( f11(T ), f12(T )) = (a, b).
Symmetry: Suppose (a, b) ∼ (c, d). By (2) of Definition15.5, there exists a

matrix α ∈ SL2(A) which is connected to the identity matrix such that α

(
a
b

)
=

(
c
d

)
. Since α−1 is also connected to I2 and α−1

(
c
d

)
=

(
a
b

)
, we get (c, d) ∼ (a, b).

Transitivity:Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f ). Thenwe havematrices

α, β ∈ SL2(A) which are connected to the identity matrix such that α

(
a
b

)
=

(
c
d

)

and β

(
c
d

)
=

(
e
f

)
. Therefore βα

(
a
b

)
=

(
e
f

)
.

Sinceα andβ are connected to the identitymatrix, there existmatrices γ (T ), δ(T )

∈ SL2(A[T ]) such that γ (0) = I2 = δ(0) and γ (1) = α, δ(1) = β. Take θ(T ) =
δ(T )γ (T ). Thus θ(0) = I2 and θ(1) = βα, that is, βα is connected to the identity
matrix. Hence (a, b) ∼ (e, f ).

Note that a unimodular row will always be denoted by parenthesis and its equiv-
alence class by [ , ]. Thus the equivalence class of (a, b) is [a, b].
Definition 15.6 Let �(A) be the set of all equivalence classes of unimodular rows
given by the equivalence relation ∼ as above. Define a product ∗ in �(A) as follows.

Let (a, b), (c, d) ∈ Um2(A). Complete these toSL2(A)matricesσ =
(

a e
b f

)
and

τ =
(

c g
d h

)
. We define product of two elements [a, b], [c, d] ∈ �(A) as follows:

[a, b] ∗ [c, d] = [first column of στ ] = [ac + de, bc + d f ].

Claim. ∗ does not depend on the choice of completions.

Let σ ′ =
(

a e′
b f ′

)
and τ ′ =

(
c g′
d h′

)
∈ SL2(A) be another completion of (a, b)

and (c, d), respectively. Since columns of σ and σ ′ form bases of A2, columns of
σ ′ can be written as linear combination of columns of σ . Since σ and σ ′ in SL2(A),

σ ′ = σ

(
1 λ

0 1

)
for some λ ∈ A. Similarly τ ′ = τ

(
1 μ

0 1

)
for some μ ∈ A. Therefore
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σ ′τ ′ = σ

(
1 λ

0 1

)
τ

(
1 μ

0 1

)
.

Consider the matrix

β(T ) = σ

(
1 λT
0 1

)
τ

(
1 μT
0 1

)
τ−1σ−1 ∈ SL2(A[T ]).

Thus

β(0) = σ

(
1 0
0 1

)
τ

(
1 0
0 1

)
τ−1σ−1 = I2, and

β(1)στ = σ

(
1 λ

0 1

)
τ

(
1 μ

0 1

)
τ−1σ−1στ = σ ′τ ′.

Therefore

β(1)στ

(
1
0

)
= σ ′τ ′

(
1
0

)
.

Hence [(ac + de, bc + d f )] = [(ac + de′, bc + d f ′)]. So ∗ does not depend on the
choice of completions.

Claim. ∗ is a well-defined operation on�(A), that is, we have to show that if (a, b) ∼
(a′, b′) and (c, d) ∼ (c′, d ′), then

[a, b] ∗ [c, d] = [a′, b′] ∗ [c′, d ′]. (15.5)

Since (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d ′), there exist ( f11(T ), f12(T )) and
(g11(T ), g12(T )) in Um2(A[T ]) such that

( f11(0), f12(0)) = (a, b), ( f11(1), f12(1)) = (a′, b′),

(g11(0), g12(0)) = (c, d), (g11(1), g12(1)) = (c′, d ′).

Again there exist f21(T ), f22(T ), g21(T ), g22(T ) in A[T ] such that

f11(T ) f21(T ) − f12(T ) f22(T ) = 1 and g11(T )g21(T ) − g12(T )g22(T ) = 1.

Consider σ(T ) =
(

f11(T ) f22(T )

f12(T ) f21(T )

)
and τ(T ) =

(
g11(T ) g22(T )

g12(T ) g21(T )

)
in SL2

(A[T ]). Thus the first column of the product σ(T )τ (T ) is unimodular, that is,

( f11(T )g11(T ) + f22(T )g12(T ), f12(T )g11(T ) + f21(T )g12(T )) ∈ Um2(A[T ]).
(15.6)

Setting T = 0 and T = 1 in (15.6), we get (15.5). Hence the product ‘∗’ is well
defined.
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Since matrix multiplication is associative, the product ∗ is associative. Since
[a, b] ∗ [1, 0] = [a, b] for every (a, b) ∈ Um2(A), we see that [1, 0] is the identity
element. Let (a, b) ∈ Um2(A) and σ =

(
a e
b f

)
∈ SL2(A). Then σ−1 =

(
f −e

−b a

)

and [a, b] ∗ [ f,−b] = [1, 0]. So [ f,−b] is the inverse of [a, b] in (�(A), ∗). Hence
(�(A), ∗) forms a group.

Now, let A be an integral domain and a, b ∈ A be such that a A + bA = A. Define
the maps

ϕ : �(A) −→ �(Aa) ⊕ �(Ab)

given by ϕ(λ) = (λ, λ) and

ψ : �(Aa) ⊕ �(Ab) −→ �(Aab)

given by ψ(λ,μ) = λ − μ. We would like these maps to be homomorphisms but
since �(A) is not known to be abelian, ψ may not be a homomorphism.

Claim. �(A)
ϕ−→ �(Aa) ⊕ �(Ab)

ψ−→ �(Aab) is an exact sequence of groups.

To prove the claim, suppose we have elements λ ∈ �(Aa) and μ ∈ �(Ab) which
are equal in �(Aab), that is, there is an element α(T ) ∈ SL2(Aab[T ]) such that
α(0) = I2, and λ = α(1)μ. We split α(T ) (by Lemma15.1) as α1(T )α2(T ), where
α1(T ) ∈ SL2(Aa[T ]) with α1(0) = I2 and α2(T ) ∈ SL2(Ab[T ]) with α2(0) = I2.
Therefore α1(1)−1λ = α2(1)μ and these elements patch to yield an element of α ∈
�(A). So ϕ(α) = (α, α) = (λ, μ). Hence ker(ψ) ⊆ Im(φ).

By the definition of ϕ and ψ , it is clear that Im(φ) ⊆ ker(ψ). Hence the claim.
Another way of formulating this is to say that

�(A) �(Aa)

�(Ab) �(Aab)

is a fiber product diagram.

Remark 15.1 Let N be the set of α ∈ SL2(A) such that there exists β(T ) ∈
SL2(A[T ]) with β(0) = I2 and β(1) = α. Then N is the connected component of I2
in SL2(A) and N ⊃ E2(A). The group �(A) can also be defined to be the quotient
group SL2(A)/N . The reason we cannot take N to be E2(A) is that E2(A) is not in
general normal in SL2(A) and therefore it is necessary to consider a larger group N
containing E2(A).
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15.4 On the Group π1(SL2(A))

In this section, we define the group π1(SL2(A)) and give a connecting homomor-
phism between π1(SL2(A)) and �(A). Throughout this section, we assume A as an
integral domain.

Let L be the set of loops in SL2(A) starting and ending at the identity matrix
I2, that is, L = {α(T ) ∈ SL2(A[T ]) | α(0) = α(1) = I2}. We say that two loops
α(T ), β(T ) ∈ L are equivalent (that is, written as α(T ) ∼1 β(T )) if they are homo-
topic, that is, there existsγ (T, S) ∈ SL2(A[T, S]) such thatγ (T, 0) = α(T ), γ (T, 1)
= β(T ) and γ (0, S) = γ (1, S) = I2. We call γ (T, S) to be a homotopy between
α(T ) and β(T ).

We now show that ∼1 is an equivalence relation.

Reflexivity: To show α(T ) ∼1 α(T ), we simply take γ (T, S) = α(T ) ∈ SL2

(A[T, S]). This is obviously the desired homotopy.

Symmetry: Suppose γ (T, S) ∈ SL2(A[T, S]) is the homotopy between α(T ) and
β(T ). Then γ (T, 1 − S) is a homotopy between β(T ) and α(T ).

Transitivity: Let α(T ) ∼1 β(T ) and β(T ) ∼1 δ(T ). Then there exist matrices
γ1(T, S), γ2(T, S) in SL2(A[T, S]) such that γ1(T, 0) = α(T ), γ1(T, 1) = β(T ),
γ1(0, S) = γ1(1, S) = I2, γ2(T, 0) = β(T ), γ2(T, 1) = δ(T ) and γ2(0, S) =
γ2(1, S) = I2. Take γ3(T, S) = γ1(T, S)β(T )−1γ2(T, S). Hence

γ3(T, 0) = γ1(T, 0)β(T )−1γ2(T, 0) = α(T ),

γ3(T, 1) = γ1(T, 1)β(T )−1γ2(T, 1) = δ(T ), and

γ3(0, S) = γ3(1, S) = I2 (since β(0)−1 = β(1)−1 = I2).

Thus α(T ) ∼1 δ(T ).

Definition 15.7 For a domain A, π1(SL2(A)) is the set of all equivalence classes
of loops based on I2. For α(T ) ∈ SL2(A[T ]) with α(0) = α(1) = I2, we denote its
equivalence class in π1(SL2(A)) by [α(T )].
Theorem 15.2 The set π1(SL2(A)) forms an abelian group under the binary oper-
ation ‘∗’ defined as [α(T )] ∗ [β(T )] = [α(T )β(T )].
Proof First we show that the operation ‘∗’ is well defined. Let α(T ) ∼1 β(T )

and γ (T ) ∼1 δ(T ). Then there exist γ1(T, S), γ2(T, S) ∈ SL2(A[T, S]) such that
γ1(T, 0) = α(T ), γ1(T, 1) = β(T ), γ1(0, S) = γ1(1, S) = I2; γ2(T, 0) = γ (T ),

γ2(T, 1) = δ(T ) and γ2(0, S) = γ2(1, S) = I2. Take γ3(T, S) = γ1(T, S)γ2(T, S),
we have γ3(T, 0) = α(T )γ (T ), γ3(T, 1) = β(T )δ(T ) and γ3(0, S) = γ3(1, S) =
I2. Hence α(T )γ (T ) ∼1 β(T )δ(T ).

Since matrix multiplication is associative, ‘∗’ is also associative. Therefore
π1(SL2(A)) is a group with [I2] as the identity element and [α(T )−1] is the inverse
of the element [α(T )] ∈ π1(SL2(A)).



270 R. Sridharan et al.

Let α(T ), β(T ) ∈ L . Then we will show that α(T ) ∼1 β(T )α(T )β(T )−1. Con-
sider γ (T, S) = β(T S)α(T )β(T S)−1 ∈ SL2(A[T, S]). Then,
1. γ (T, 0) = α(T ), γ (T, 1) = β(T )α(T )β(T )−1,
2. γ (0, S) = γ (1, S) = I2.

Therefore α(T ) ∼1 β(T )α(T )β(T )−1 which means α(T )β(T ) ∼1 β(T )α(T ). This
implies that [α(T )] ∗ [β(T )] = [α(T )β(T )] = [β(T )α(T )] = [β(T )] ∗ [α(T )].
Hence (π1(SL2(A)), ∗) is an abelian group. �

Let a, b ∈ A be such that a A + bA = A. Define the maps

ϕ1 : π1(SL2(A)) −→ π1(SL2(Aa)) ⊕ π1(SL2(Ab)), and

ψ1 : π1(SL2(Aa)) ⊕ π1(SL2(Ab)) −→ π1(SL2(Aab))

by ϕ1(λ) = (λ, λ) and ψ1(λ, μ) = λμ−1, respectively. As in the case of �(A), it is
easy to show using Quillen’s splitting that we have an exact sequence of groups

π1(SL2(A))
ϕ1−→ π1(SL2(Aa)) ⊕ π1(SL2(Ab))

ψ1−→ π1(SL2(Aab)).

Definition 15.8 (The connecting map � : π1(SL2(Aab)) → �(A)) Let α(T ) ∈
π1(SL2(Aab)), that is,α(T ) ∈ SL2(Aab[T ]) such thatα(0) = α(1) = I2. Letα(T ) =
α1(T )−1α2(T ) be a Quillen splitting, where α1(T ) ∈ SL2(Aa[T ]) with α1(0) = I2
and α2(T ) ∈ SL2(Ab[T ]) with α2(0) = I2. Then α(1) = I2 = α1(1)−1α2(1). Hence
α1(1) = α2(1) and α1(1) and α2(1) patch up to yield an element γ ∈ SL2(A).
We define �([α(T )]) = [first column of γ ] in �(A). We will also write it as

�([α(T )]) = α2(1)

(
1
0

)
.

Theorem 15.3 1. The above association does not depend on the Quillen splitting
of α.

2. � is a well-defined map.
3. � is a group homomorphism.
4. The sequence of groups

π1(SL2(Aab))
�→ �(A)

φ→ �(Aa) ⊕ �(Ab) (15.7)

is exact.

Proof (1) Suppose we are given two Quillen splittings of α(T ) as follows:

α(T ) = α1(T )−1α2(T ); α(T ) = β1(T )−1β2(T ), (15.8)

where α1(T ), β1(T ) ∈ SL2(Aa[T ]) with α1(0) = β1(0) = I2 and α2(T ), β2(T ) ∈
SL2(Ab[T ]) with α2(0) = β2(0) = I2. Then α1(T )−1α2(T ) = β1(T )−1β2(T ) or we
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have
β1(T )α1(T )−1 = β2(T )α2(T )−1 (15.9)

and these patch up to yield δ(T ) ∈ SL2(A[T ]) such that δ(0) = I2.
An easy computation using (15.9) yields that multiplication by δ(1) sends the

unimodular row associated to the first Quillen splitting to the unimodular row given
by the second Quillen splitting. It now follows by definition that the element [�(α)]
in �(A) does not depend upon the choice of Quillen splitting.

(2) Now we have to show that � is well defined, that is, the homotopic loops in
SL2(Aab) go to the same element of �(A).

Let α(T ), β(T ) be loops in SL2(Aab[T ])with α(0) = β(0) = α(1) = β(1) = I2,
which are homotopic as loops. That is, there exists γ (T, S) ∈ SL2(Aab[T, S]) such
that γ (T, 0) = α(T ), γ (T, 1) = β(T ) and γ (0, S) = I2 = γ (1, S). Since γ (0, S) =
I2, we can write γ (T, S) = γ1(T, S)−1γ2(T, S), where γ1(T, S) ∈ SL2(Aa[T, S])
with γ1(0, S) = I2 and γ2(T, S) ∈ SL2(Ab[T, S]) with γ2(0, S) = I2.

Further,
α(T ) = γ (T, 0) = γ1(T, 0)−1γ2(T, 0), and

β(T ) = γ (T, 1) = γ1(T, 1)−1γ2(T, 1)

are Quillen splittings.
Consider the matrix γ ′ ∈ SL2(A) obtained by patching γ1(1, 0) and γ2(1, 0), the

matrix γ ′′ ∈ SL2(A) obtained by patching γ1(1, 1) and γ2(1, 1) and γ̃ (S) obtained
by patching γ1(1, S) and γ2(1, S). Then the first column of γ̃ (S) is a unimodular row
in A[S] which at S = 0 is the first column of γ ′ and at S = 1 is the first column of
γ ′′. Thus � is well defined.

(3) Let α(T ), β(T ) ∈ SL2(Aab[T ]) with α(0) = β(0) = I2 and α(1) = β(1) =
I2. Suppose α(T ) = α1(T )−1α2(T ) and β(T ) = β1(T )−1β2(T ) beQuillen splittings

of α(T ) and β(T ), respectively. Then �([α(T )]) = α2(1)

(
1
0

)
and �([β(T )]) =

β2(1)

(
1
0

)
. Thus

�([α(T )]) ∗ �([β(T )]) = (α2(1)

(
1
0

)
) ∗ (β2(1)

(
1
0

)
) = α2(1)β2(1)

(
1
0

)
,

by the definition of ∗ in �(A). On the other hand, we have

α(T )β(T ) = α1(T )−1α2(T )β1(T )−1β2(T ) (15.10)

= α1(T )−1α2(T )β1(T )−1α2(T )−1α2(T )β2(T ).

Since β1(T ) and hence β1(T )−1 can be chosen (see Lemma15.1) such that β1(T ) ≡
I2 (mod bN ) for sufficiently large N , as in Lemma15.2, we may assume that
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α2(T )β1(T )−1α2(T )−1 ∈ SL2(Aa[T ]).

Therefore the Quillen splitting of α(T )β(T ) is μ(T )α2(T )β2(T ), where μ(T ) is a
matrix inSL2(Aa[T ]),μ(0) = I2 andα2(T )β2(T ) ∈ SL2(Ab[T ])withα2(0)β2(0) =
I2. Therefore,

�([α(T )β(T )]) = α2(1)β2(1)

(
1
0

)
= �([α(T )]) ∗ �([β(T )]).

Hence � is a group homomorphism.
(4)By thedefinitionof�, it is clear that Im(�) ⊆ ker(φ). Conversely, let [(e, f )] ∈

ker(φ) that is, [(e, f )] = [(1, 0)] in �(Aa) and �(Ab). This implies that we can get
matrices α1(T ) ∈ SL2(Aa[T ]) and α2(T ) ∈ SL2(Ab[T ]) with α1(0) = I2 = α2(0),

α1(1)

(
1
0

)
=

(
e
f

)
and α2(1)

(
1
0

)
=

(
e
f

)
.

We have α2(1)−1α1(1)

(
1
0

)
=

(
1
0

)
. This implies that α2(1)−1α1(1) =

(
1 μ

0 1

)
,

whereμ ∈ Aab. Further, we have

(
1 μ

0 1

)
=

(
1 μ2

0 1

)(
1 −μ1

0 1

)
,whereμ1 ∈ Aa and

μ2 ∈ Ab. Thus

α2(1)

(
1 μ2

0 1

)
= α1(1)

(
1 μ1

0 1

)
.

Let β1(T ) = α1(T )

(
1 μ1T
0 1

)
and β2(T ) = α2(T )

(
1 μ2T
0 1

)
. Then

�([β1(T )−1β2(T )]) =
(

e
f

)
.

Hence Im(�) ⊇ ker(φ). Therefore we have an exact sequence π1(SL2(A))
ϕ1−→

π1(SL2(Aa)) ⊕ π1(SL2(Ab))
ψ1−→ π1(SL2(Aab))

�→ �(A)
φ→ �(Aa) ⊕ �(Ab)

ψ−→
�(Aab). (**) �

15.5 On Cocycles Associated to Alternating Matrices

In this section, we associate cocycles to alternating forms on projective modules.
Let A be a domain and P be a projective A-module of rank 2. Suppose there exist

f1, f2 ∈ A such that f1A + f2 A = A and Pf1 � A2
f1
, Pf2 � A2

f2
.

Since Pf1 and Pf2 are free, there exist bases {p1, p2} of Pf1 and {p′
1, p′

2} of Pf2 .
Therefore we have two bases {p1, p2} and {p′

1, p′
2} of Pf1 f2 . So we can get a matrix

σ ∈ GL2(A f1 f2) such that σ

(
p′
1

p′
2

)
=

(
p1

p2

)
.
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Definition 15.9 1. The matrix σ is called cocycle is associated to the projective
module P .

2. Two cocycles σ1 and σ2 are said to be equivalent if there exist μ1 ∈ GL2(A f1)

and μ2 ∈ GL2(A f2) such that σ2 = μ1σ1μ2. In particular, we say that a cocycle
σ splits if σ is equivalent to identity. It is known that a rank 2 projective module
P is free if the cocycle associated to P splits.

Now, instead of considering rank 2 projective A-modules one can consider 4 × 4
invertible alternating matrices over a ring A, where free modules are replaced by

ψ1 ⊥ ψ1 =

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ .

Definition 15.10 1. Let α and β be two invertible 4 × 4 alternating matrices over
a domain A. We say that α and β are isometric if there exists γ ∈ GL4(A) such
that γαγ t = β.

2. Let α ∈ GL4(A) be an alternating matrix. Suppose there exist α1 ∈ GL4(A f1)

and α2 ∈ GL4(A f2) such that

α1ααt
1 = ψ1 ⊥ ψ1; α2ααt

2 = ψ1 ⊥ ψ1.

Then β = α1α
−1
2 satisfies β(ψ1 ⊥ ψ1)β

t = ψ1 ⊥ ψ1 and we say β is the cocycle
associated to α. Clearly β ∈ Sp4(A f1 f2).

Lemma 15.3 Let β be the cocycle associated to an invertible alternating matrix α

as above. If β splits in Sp4(A f1 f2), then α and ψ1 ⊥ ψ1 are isometric.

Proof Since β splits, there exist δ1 ∈ Sp4(A f1) and δ2 ∈ Sp4(A f2) such that β =
α1α

−1
2 = δ−1

1 δ2 ⇒ δ1α1 = δ2α2. Suppose α′
1 = δ1α1 and α′

2 = δ2α2. Then α′
1α(α′

1)
t

= ψ1 ⊥ ψ1; α′
2α(α′

2)
t = ψ1 ⊥ ψ1,where α′

1 ∈ GL4(A f1) and α′
2 ∈ GL4(A f2). Also

since α′
1 = α′

2, we obtain α̃ ∈ GL4(A) such that α̃αα̃t = ψ1 ⊥ ψ1. Therefore α and
ψ1 ⊥ ψ1 are isometric. Thus α is trivial if the cocycle associated to α splits. �

Suppose α, β ∈ GL4(A) are alternating and

α1ααt
1 = ψ1 ⊥ ψ1; α2ααt

2 = ψ1 ⊥ ψ1,

where α1 ∈ GL4(A f1) and α2 ∈ GL4(A f2) and

β1ββ t
1 = ψ1 ⊥ ψ1; β2ββ t

2 = ψ1 ⊥ ψ1,

where β1 ∈ GL4(A f1) and β2 ∈ GL4(A f2).
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Let γ1 = α1α
−1
2 ∈ Sp4(A f1 f2) and γ2 = β1β

−1
2 ∈ Sp4(A f1 f2) be the cocycles asso-

ciated to α and β. Suppose there exist ν1 ∈ Sp4(A f1) and ν2 ∈ Sp4(A f2) such
that ν1γ1ν2 = γ2, then one can check that α and β are isometric, that is, there
exists ν ∈ GL4(A) such that ναν t = β (by using same argument as in the proof
of Lemma15.3). This shows that if the cocyles associated to α and β are equivalent,
then α and β are isometric.

Remark 15.2 There is a one-to-one correspondence between alternating forms on a
free module of rank n over a ring A and alternating matrices of order n with entries
in A.

Proposition 15.1 Let A be a domain of dimension 2. Suppose f1A + f2 A = A and
P, Q are stably free A-modules of rank 2 such that Pf1 and Pf2 are free and the
associated cocycle is σ ∈ SL2(A f1 f2) and Q f1 , Q f2 are free and the associated
cocycle is τ ∈ SL2(A f1 f2). Let Q′ be the projective A-module associated to the
cocycle στ and s, t ,t ′ be the corresponding alternating forms on P, Q and Q′. Then
we have an isometry of alternating forms

(P, s) ⊥ (Q, t) � (A2, ψ1) ⊥ (Q′, t ′).

Proof Since Pf1 and Pf2 are free, we have isomorphisms

Pf1
i1→ A2

f1; Pf2
i2→ A2

f2

such that the cocycle associated to P is σ ∈ SL2(A f1 f2). Since σ ∈ SL2(A f1 f2), the
alternating form s : P × P → A is (using the form ψ1 on A2

f2
) given by

s(p1, p2) = det(i1(p1), i1(p2)) = det(i2(p1), i2(p2)).

Similarly we have isomorphisms

Q f1
j1→ A2

f1; Q f2
j2→ A2

f2

such that the cocycle associated to Q is τ ∈ SL2(A f1 f2) and alternating form t :
Q × Q → A is given by

t (q1, q2) = det( j1(q1), j1(q2)) = det( j2(q1), j2(q2)).

Therefore we get an alternating form s ⊥ t on P ⊕ Q. Since P ⊕ Q � A4 ([1],
Bass Cancellation Theorem), s ⊥ t yields a matrix α ∈ GL4(A)which is alternating.

Further, the isomorphisms i1 and j1 show that (α) f1 � ψ1 ⊥ ψ2 and isomorphisms
i2 and j2 show that (α) f2 � ψ1 ⊥ ψ1. It is easy to check that the cocycle associated

to α is

(
σ 0
0 τ

)
∈ Sp4(A f1 f2).
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Further, there are isomorphisms Q′
f1

θ1→ A2
f1
and Q′

f2

θ2→ A2
f2
such that the asso-

ciated cocycle is στ . The isomorphisms θ1 and θ2 induce an alternating form
t ′ : Q′ × Q′ → A. Now, since A2 ⊕ Q′ � A4, we get an alternating form β =
(A2, ψ1) ⊥ (Q′, t ′) on A4, which in view of the isomorphisms θ1, θ2 satisfies the
property that β f1 and β f2 are both isometric to ψ1 ⊥ ψ1 and the cocycle associated

to β is

(
I2 0
0 στ

)
.

Now, (
σ−1 0
0 σ

) (
σ 0
0 τ

)
=

(
I2 0
0 στ

)
.

Since σ ∈ SL2(A f1 f2) and

(
σ−1 0
0 σ

)
∈ ESp4(A f1 f2), (by a lemma of Vaserstein [11],

see [2, Lemma 1.2.9 c]), so by a Symplectic version of the Bhatwadekar–Lindel–Rao

lemma,whose proof follows exactly the linear case Lemma15.2, the cocycles

(
σ 0
0 τ

)

and

(
I2 0
0 στ

)
are equivalent and therefore the alternating forms (P, s) ⊥ (Q, t) and

(A2, ψ1) ⊥ (Q′, t ′) are equivalent. Therefore, we have proved. �

15.6 On Some Consequences of the Above Results

We saw in the previous section that if A is a ring and a, b ∈ A are such that a A +
bA = A, then we can associate σ ∈ SL2(Aab) to a projective A-module P of trivial
determinant together with a non-singular alternating form δ : P × P → A.

Now, let A be a domain with dim A = 2 and S be the set of pairs (P, s), where P
is a rank 2 projective module and s : P × P → A is a non-singular alternating form.
Then by theorem of Bass [10, Appendix A.7], the set S is an abelian group with
the group structure + given by (P, s) + (Q, t) = (Q′, t ′), where (P, s) ⊥ (Q, t) �
(A2, ψ1) ⊥ (Q′, t ′), where ⊥ denotes the direct sum of alternating forms.

By Proposition15.1, we have a homomorphism H → S, where H is the subgroup
of �(Aab) corresponding to cocycles corresponding to stably free modules. Since S
is abelian group, in particular we have the following:

Corollary 15.1 Let A be a domain with dim A = 2. Let a, b ∈ A be such that a A +
bA = A. Let σ ∈ SL2(Aab) and τ ∈ SL2(Aab) be cocycles corresponding to stably
free modules. Then στσ−1τ−1 = α1α2, where α1 ∈ SL2(Aa) and α2 ∈ SL2(Ab).

Proof Since S is an abelian group, the image of the element of H corresponding to the
cocycle στσ−1τ−1 in S is the identity element of S that is, the cocycle στσ−1τ−1

corresponds to a free module of rank 2 over A. Therefore the cocycle στσ−1τ−1

splits, that is, στσ−1τ−1 = α1α2, where α1 ∈ SL2(Aa) and α2 ∈ SL2(Ab) ([9],
Theorem 14.4). �

http://dx.doi.org/10.1007/978-981-15-1611-5_14
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It would be interesting to see if the restriction that dim A = 2 can be removed in
Corollary15.1.

Next we would like to give conditions under which �(A) is an abelian group. To
obtain such condition observe that if �(A) is an abelian group and σ, τ ∈ SL2(A),

then the columns v = στ

(
1
0

)
and w = τσ

(
1
0

)
are equal in �(A), whereby there

exists α(T ) ∈ SL2(A[T ]) such that α(0) = I2 and α(1)v = w.
Now, since � : π1(SL2(Aab)) → �(A) is a homomorphism and π1(SL2(Aab)) is

an abelian group, its image in �(A) under � is likewise abelian and so any pair v, w
in the image commute. An element of �(A) lies in this image if it maps to 0 in
�(Aa) and �(Ab). This will be the case if we can find elementary completions of
the corresponding unimodular row in Aa and Ab.

We use these observations to prove the following corollary:

Corollary 15.2 Let A be a Noetherian domain of dimension one. Then �(A) is an
abelian group.

Proof Let [v] = (c, d), [w] = (c′, d ′). We want to show that [v] and [w] commute.
Since elementary matrices can be connected to the identity matrix, we can perform
elementary transformations on v and w without changing the class of v and w in
�(A).

Wemay, therefore, assume that d ′ �= 0. Letm1,m2, . . . ,mr be the maximal ideals
of A containing d ′. By replacing d by d + λc, we may assume that d /∈ mi for any
1 ≤ i ≤ r , which implies that (d) + (d ′) = A.

By the Chinese reminder theorem, wemay choose c̃ ∈ A such that c̃ = c mod (d)

and c̃ = c′ mod (d ′). Then c̃ = c + μd and c̃ = c′ + μ′d ′. Therefore, (c, d)
E2(A)∼

(̃c, d) and (c′, d ′)
E2(A)∼ (̃c, d ′) (This idea iswell knownbutwehavegiven an argument

for the convenience of the reader). Since (̃c, d) is unimodular, there exist g, h ∈ A
such that gc̃ + hd = 1 and g′, h′ ∈ A such that g ′̃c + h′d ′ = 1.

Let a = c̃ and b = (1 − gc̃)(1 − g ′̃c). Then c̃ is a unit in Aa , d and d ′ are units in
Ab. Thus, (̃c, d) and (̃c, d ′) can be completed to elementary matrices in Aa and Ab.
Hence [v] = 0 in �(Aa) and �(Ab) and [w] = 0 in �(Aa) and �(Ab). Therefore [v]
and [w] which are in �(A) commute proving the corollary. �

Corollary15.2 leads to the following interesting question:

•? Question 1

Does Corollary15.2 hold for rings of dimension bigger than one?

By using Corollary15.2, we can say that the exact sequence (∗∗) in Sect. 15.4 for
a Noetherian domain of dimension one is an algebraic analogue of the Theorem15.1.
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Remark 15.3 Let A be the coordinate ring of a real affine variety X = Spec A. Then
any element a ∈ A gives a continuous function a : X (R) → R. Therefore a unimod-
ular row (a1, a2) ∈ A2 gives a continuous map (a1, a2) : X (R) → R

2 − {(0, 0)}.
Two unimodular rows give the same element of �(A) if the corresponding maps

(a1, a2) : X (R) → R
2 − {(0, 0)} are homotopic. Thus the group �(A) can be con-

sidered in a certain sense as the algebraic analogue of the set of homotopy classes
of continuous maps from X → R

2 − {(0, 0)} or the homotopy classes of continuous
maps X to S1 or the group H 1(X,Z).

Further, if A is the coordinate ring of a real affine variety X = Spec A (as
above), then an element of π1(SL2(A)) gives a continuous function from X (R) →
π1(SL2(R)) and π1(SL2(R)) = Z. Thus π1(SL2(A))) can be considered H 0(Spec
(A), π1(SL2(A))) which is the analogue of the group H 0(X,Z) (the set of continu-
ous maps from X to Z or the free abelian group on the set of connected component
of X ).

Now the group homomorphism � : π1(SL2(Aab)) −→ �(A) shows that the
H 1(Spec(A), π1(SL2(A))) is connected to the group H 1(X,Z). So one can ask
‘is the group H 2(Spec(A), π1(SL2(A))) connected to the group H 2(X,Z)?’ This
was the suggestion of Nori. We elaborate this in the next remark. The cohomology
groups are considered in this remark with respect to Zariski topology on Spec(A).

Remark 15.4 Let A be a domain and �̃(A) = {α(T ) ∈ SL2(A[T ]) : α(1) = I2}, We
have a homomorphism �̃(A) → SL2(A) sending α(T ) to α(0). A projective A-
module P of rank 2 and trivial determinant gives a cocycle H 1(X,SL2), where
X = Spec A. By Quillen’s localization theorem [8], a projective A-module P of
rank 2 is free if the 1-cocycle associated to P belonging to H 1(X,SL2) can be lifted
to H 1(X, �̃). Let N (A) be the kernel of the map �̃(A) to SL2(A) given above, that
is,

1 → N (A) → �̃(A) → SL2(A) → 1

is exact.
Nori suggested to the first author that one should use the above exact sequence

to define a connecting map H 1(X,SL2(A)) → H 2(X, N/N0), where N0(A) is the
connected component of identity of N (A) and associate to P an obstruction in
H 2(X, N/N0), and show that if dimension of A is 2 and this obstruction van-
ishes then P is free (Nori also showed that N (A)/N0(A) � π1(SL2(A))). There-
fore H 2(X, N (A)/N0(A)) is same as H 2(Spec(A), π1(SL2(A))). This was Nori’s
original approach to defining a group to evaluate Euler Classes.

We will try to show how Nori’s suggestion motivated our work. We consider the
following problem:

•? Question 2

Can one associate an obstruction to a matrix in SL2(A) whose vanishing implies the
matrix is trivial in �(A)?
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We know that over a local ring B any matrix belonging to SL2(B) is elementary,
and therefore can be connected to the identity matrix.

Let
�′(A) = {β(T ) ∈ SL2(A[T ]) : β(0) = I2}.

We have a map �′(A) → SL2(A) given by β → β(1).
A matrix α ∈ SL2(A) can be connected to the identity matrix if α can be lifted to

�′(A) under the above map. Suppose there exist a, b ∈ A such that a A + bA = A,
and α ∈ SL2(A) is such that both (α)a and (α)b can be connected to the identity
matrix, that is, there exist β1(T ) ∈ �′(Aa)which is a lift of (α)a and β2(T ) ∈ �′(Ab)

which is a lift of (α)b. Then β1β
−1
2 ∈ π1(SL2(Aab)). This leads us to consider the

map π1(SL2(Aab)) to �(A) discussed in this paper and naturally to the other results
of this paper.

Remark 15.5 It would be interesting to know other places where the group �(A) is
used and where it first occurs. We have been able to trace its occurrence to a paper of
Krusemeyer [7, Lemma 3.3] who refers to a paper of Karoubi–Villamayor (see [6]).

The exact sequence

1 → π1(SL2(A)) → �(A) → SL2(A) → 1

occurs in [7, Lemma 3.6]. The main idea of this paper is to write down a Mayer–
Vietoris sequence associated to the above exact sequence.
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