
Combinatorial Homotopy Categories

Carles Casacuberta and Jiří Rosický

Abstract Amodel category is called combinatorial if it is cofibrantly generated and
its underlying category is locally presentable. As shown in recent years, homotopy
categories of combinatorial model categories share useful properties, such as being
well generated and satisfying a very general form of Ohkawa’s theorem.
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1 Introduction

The term “combinatorial” in topology classically refers to discrete methods or, more
specifically, to the use of polyhedra, simplicial complexes or cell complexes in order
to deal with topological problems [17, 32].

In the context of Quillen model categories in homotopy theory [25], those called
combinatorial are, by definition, the cofibrantly generated ones whose underlying
category is locally presentable. For example, simplicial sets are combinatorial, but
topological spaces are not. As a consequence of this fact, certain constructions involv-
ing homotopy colimits, such as Bousfield localizations, may seem intricate if one
works with topological spaces while they have become standard technology in the
presence of combinatorial models [2, 6, 12].

One key feature of combinatorial model categories is that they admit presenta-
tions in terms of generators and relations; in fact, as shown by Dugger in [11], they
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are Quillen equivalent to localizations of categories of simplicial presheaves with
respect to sets of maps. Moreover, for each combinatorial model category K there
exist cardinals λ for which K admits fibrant and cofibrant replacement functors
that preserve λ-filtered colimits and λ-presentable objects, and the class of weak
equivalences is closed under λ-filtered colimits [4, 11, 28].

Cofibrantly generated model categories admit weak generators [13, 26]. Combi-
natorial model categories are, in addition, well generated in the sense of [18, 21].
This fact links the study of combinatorial model categories with the theory of trian-
gulated categories in useful ways. For instance, it was shown in [8] that localizing
subcategories of triangulated categories with combinatorial models are coreflective
assuming a large-cardinal axiom (Vopěnka’s principle), and similarly colocalizing
subcategories are reflective.

In this article we show that a suitably restricted Yoneda embedding [1, 28] gives a
way to implement Ohkawa’s argument [24] in the homotopy category of any combi-
natorial model category, not necessarily stable. Ohkawa’s original theorem becomes
then a special case, since the homotopy category of spectra admits combinatorial
models [15]. Thus we prove that, ifK is a pointed strongly λ-combinatorial model
category (see Sect. 3 below for details) then there is only a set of distinct kernels of
endofunctors H : K → K preserving λ-filtered colimits and the zero object.

This statement (and our method of proof) is a variant of the main result in [9],
where Ohkawa’s theorem was broadly generalized. In independent work, Stevenson
used abelian presheaves over compact objects to prove that Ohkawa’s theorem holds
in compactly generated tensor triangulated categories [31], and Iyengar and Krause
extended this result to well generated tensor triangulated categories [16].

Our approach shows that Ohkawa’s theorem is valid in the categories of motivic
spaces andmotivic spectra over anyNoetherian base scheme of finite dimension [19],
and also in categories of modules over (ordinary or motivic) ring spectra, since such
categories have combinatorial models. Therefore, for example, Okhawa’s theorem
holds in the derived category of motives over any field k of characteristic zero, since
these are modules over a motivic Eilenberg–MacLane spectrum [27].

2 Combinatorial Model Categories

The notion of a combinatorialmodel categorywas introduced by Jeff Smith in unpub-
lished work made in the decade of 1990. The name refers to the fact that the underly-
ing category and its model structure are both controlled by sets of sufficiently small
objects and maps between them, in the precise sense that we next define. Further
details and additional motivation can be found in [1, 4, 11–13].

For a regular cardinal λ, a small category A is λ-filtered if every diagram in A
of cardinality smaller than λ has a cocone. An object A of a category C is called
λ-presentable if the hom-functor C (A,−) : C → Set preserves λ-filtered colimits.
For example, a group (or a module over a ring) is λ-presentable if and only if it
admits a presentation with less than λ generators and less than λ relations.
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A category C is locally λ-presentable if it is cocomplete and has a set A of
λ-presentable objects such that every object of C is a λ-filtered colimit of objects
ofA . A category is locally presentable if it is locally λ-presentable for some regular
cardinal λ. The category of sets is locallyℵ0-presentable, since every set is the colimit
of the inclusions of its finite subsets. As shown in [1, Corollary 3.7], every variety of
finitary algebras is locally ℵ0-presentable. Many more examples arise from the fact
that every functor category from a small category to a locally presentable category
is locally presentable [1, Corollary 1.54].

Amodel categoryK is cofibrantly generated if it has a setI of cofibrations such
that the trivial fibrations ofK are those morphisms having the right lifting property
with respect toI , and a setJ of trivial cofibrations such that the fibrations ofK are
those morphisms having the right lifting property with respect toJ , and moreover
I andJ permit the small object argument, that is, their domains are small relative
to transfinite compositions of pushouts of elements of I and J respectively. The
category of simplicial sets is cofibrantly generated with I the set of inclusions
∂Δ[n] ↪→ Δ[n] for n ≥ 0 and J the set of inclusions Λk[n] ↪→ Δ[n] for n ≥ 0
and 0 ≤ k ≤ n; see [12, 13] for notation and a proof.

Amodel category is called combinatorial if it is locally presentable and cofibrantly
generated. By a combinatorial homotopy category we mean a homotopy category of
a combinatorial model category.

Every locally presentable categoryC can be viewed as a combinatorial homotopy
category because the trivial model structure on C (that is, the one in which every
morphism is both a cofibration and a fibration, and the weak equivalences are the
isomorphisms) is cofibrantly generated by the argument given in [30, Example 4.6].
In general, combinatorial homotopy categories are far from being locally presentable
themselves, but they behave in some sense like a homotopy-theoretical version of
those.

A model category K is called λ-combinatorial for a regular cardinal λ if it is
locallyλ-presentable and cofibrantly generated bymorphisms betweenλ-presentable
objects. Then the functors giving factorizations of morphisms inK into cofibrations
followed by trivial fibrations or into trivial cofibrations followed by fibrations can be
chosen to be λ-accessible, that is, preserving λ-filtered colimits. Details are given in
[28, Proposition 3.1].

3 Restricted Yoneda Embedding

Let C be a category and A a small full subcategory of C . The restricted Yoneda
embedding

EA : C −→ SetA
op

sends every object X of C to the hom-set C (−, X) restricted toA . Thus EA is full
and faithful on morphisms whose domain is an object of A .
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The subcategory A is called a generator of C if EA is faithful, and a strong
generator if EA is faithful and conservative, that is, reflecting isomorphisms. We
say thatA is a weak generator if EA reflects isomorphisms whose codomain is the
terminal object of C . This means that an object of C is terminal whenever its image
under EA is terminal; hence the objects in a weak generator of C form a left weakly
adequate set in the sense of [26].

Recall from [13, 25] that if K is a model category then its homotopy category
HoK is obtained by quotienting the full subcategoryKc f of objects that are fibrant
and cofibrant by the homotopy relation on morphisms. Each choice of a fibrant
replacement functor R f and a cofibrant replacement functor Rc on K yields an
essentially surjective functor

P : K −→ HoK , (1)

namely the composite RcR f : K → Kc f followed by the projectionKc f → HoK .
It was shown in [13, Theorem 7.3.1] that, ifI is a set of generating cofibrations in

a pointed cofibrantly generated model category K , then the cofibres of morphisms
in I form a weak generator of HoK . The assumption that K be pointed can be
removed if K has a set I of generating cofibrations between cofibrant objects, in
which case the domains and codomains of morphisms in I form a weak generator
of HoK , as shown in [26, Theorem 1.2].

We also recall that a small full subcategory A of a category C is called dense if
every object X in C is a colimit of its canonical diagram with respect to A . This is
equivalent to EA being full and faithful; see [1, Proposition 1.26]. Correspondingly,
EA is full if and only if A is weakly dense in the sense that every object X is
a weak colimit of its canonical diagram with respect to A . Finally, EA is full
and conservative if and only if every X is a minimal weak colimit of its canonical
diagram with respect to A . Recall that a weak colimit (δd : Dd → X) of a diagram
D : D → C is called minimal if every morphism f : X → X such that f ◦ δd = δd
for each d ∈ D is an isomorphism [10].

Theorem 3.1 If K is a combinatorial model category, then there exist arbitrarily
large regular cardinals λ such that K has the following properties:

1. K is locally λ-presentable.
2. There is a small weak generator of HoK consisting of λ-presentable objects.
3. There are fibrant and cofibrant replacement functors R f and Rc on K that

preserve λ-filtered colimits and λ-presentable objects.

Proof If K is combinatorial, then, according to [11, Corollary 1.2], there is a zig-
zag of Quillen equivalences into another combinatorial model category M where
all objects are cofibrant. Consequently, the domains and codomains of morphisms
in a set of generating cofibrations for M form a weak generator of the homotopy
category HoM by [26, Theorem 1.2]. Since the latter is equivalent to HoK , it
follows that HoK also has a small weak generator A .
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As K is locally presentable, there are arbitrarily large regular cardinals μ such
that K is locally μ-presentable, by [1, Theorem 1.20]. Thus we can choose μ big
enough so thatK is locally μ-presentable and cofibrantly generated by morphisms
between μ-presentable objects, and, furthermore, the objects in the chosen weak
generatorA are μ-presentable. Then, as shown in the proof of [28, Proposition 3.1],
there areμ-accessible functors giving factorizations ofmorphisms inK into cofibra-
tions followed by trivial fibrations and into trivial cofibrations followed by fibrations.
In particular we can pick a fibrant replacement functor R f and a cofibrant replace-
ment functor Rc that are μ-accessible. Moreover, using [1, Theorem 2.19] or [11,
Proposition 7.2], we can pick a regular cardinal λ ≥ μ such that R f and Rc preserve
both λ-filtered colimits and λ-presentable objects. �

Definition 3.2 We call a model category K strongly λ-combinatorial if it is com-
binatorial and λ satisfies the conditions stated in Theorem 3.1.

For a regular cardinal λ, let K be a strongly λ-combinatorial model category
and denote by Kλ a small full subcategory of representatives of all isomorphism
classes of λ-presentable objects. Here and in what follows we assume that fibrant
and cofibrant replacement functors R f and Rc have been chosen on K so that they
preserve λ-filtered colimits and λ-presentable objects.

Let HoKλ denote the full image of the composition

Kλ ↪ K
P HoK ,

where P is the composite RcR f followed by the canonical projection as in (1), and
denote by Pλ : Kλ → HoKλ the domain and codomain restriction of P .

Consider the restricted Yoneda embedding

Eλ : HoK −→ Set(HoK λ)
op
,

for which the composite EλP preserves λ-presentable objects.
The next two results follow from [28, Proposition 5.1 and Corollary 5.2].

Theorem 3.3 Let K be a strongly λ-combinatorial model category for a regular
cardinal λ. Then the composite

K
P HoK

Eλ Set(HoK λ)
op

preserves λ-filtered colimits.

Corollary 3.4 IfK is strongly λ-combinatorial, then EλP ∼= Indλ Pλ.

Here Indλ denotes free cocompletion with respect to λ-filtered colimits [1, Defi-
nition 2.25], so Indλ Pλ is a functor fromK to Indλ HoKλ. The statement of Corol-
lary 3.4 means that Eλ factorizes through the inclusion
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Indλ HoKλ ⊆ Set(HoK λ)
op
,

and its codomain restriction, which we keep denoting by Eλ, makes the composite
EλP isomorphic to Indλ Pλ.

If the model category K is pointed, then Indλ HoKλ is also pointed and Eλ

preserves the zero object 0, since Eλ0 is terminal and it is also initial because 0 is
λ-presentable and Eλ is full and faithful on morphisms with domain in HoKλ.

Corollary 3.5 If K is a strongly λ-combinatorial model category, the codomain
restriction Eλ : HoK → Indλ HoKλ preserves coproducts.

Proof Pick a cofibrant replacement functor Rc preserving λ-filtered colimits and λ-
presentable objects. Note that P preserves coproducts between cofibrant objects and
every object in HoK is isomorphic to PX for some cofibrant object X inK . Hence,
using Corollary 3.4 it suffices to show that Indλ Pλ preserves coproducts between
cofibrant objects. Since each coproduct is a λ-filtered colimit of λ-small coproducts
and Indλ Pλ preserves λ-filtered colimits, we have to prove that Indλ Pλ preserves
λ-small coproducts between cofibrant objects. Let

∐
i∈I Ki be such a coproduct, so

that the cardinality of I is smaller than λ. Since the functor Rc preserves λ-filtered
colimits and λ-presentable objects, each Ki is a λ-filtered colimit of cofibrant λ-
presentable objects. Let Di : Di → Kλ denote the corresponding diagrams, so that
Ki

∼= colim Di . Then
∐

i∈I Ki is a colimit of a λ-filtered diagram whose values
are coproducts

∐
i∈I Didi with di ∈ Di , and each such coproduct

∐
i∈I Didi is λ-

presentable as the cardinality of I is smaller than λ. Since the functor Indλ Pλ pre-
serves λ-filtered colimits and Pλ preserves λ-small coproducts of cofibrant objects,
the result is proved. �
Definition 3.6 Let C be a category with coproducts and λ a cardinal. An object S
of C is λ-small if for every morphism f : S → ∐

i∈I Xi there is a subset J of I of
cardinality less than λ such that f factorizes as

S
∐

j∈J X j
∐

i∈I Xi ,

where the second morphism is the subcoproduct injection.

We also say thatℵ0-small objects are compact. This terminology is due toNeeman
[21], who found how compactness should be defined for uncountable cardinals in
triangulated categories. His definition was simplified by Krause in [18]. They con-
sidered compactness in additive categories but the definition makes sense in general.
Consider classesS of λ-small objects in a category C with coproducts such that for
every morphism f : S → ∐

i∈I Xi with S ∈ S there exist morphisms gi : Si → Xi

for which Si ∈ S for all i ∈ I and f factorizes through

∐
i∈I gi :

∐
i∈I Si −→ ∐

i∈I Xi .

Since the collection of such classes is closed under unions, there is a greatest class
with this property. Its objects are called λ-compact.
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Proposition 3.7 IfK is a strongly λ-combinatorial model category, then all objects
in HoKλ are λ-compact in HoK .

Proof Choose fibrant and cofibrant replacement functors R f and Rc preserving λ-
filtered colimits andλ-presentable objects, and let P : K → HoK be as in (1). Sup-
pose given a morphism g : PA → ∐

i∈I PKi in HoK where A is inKλ. According
to Corollary 3.5, we have

Eλg : EλPA −→ ∐
i∈I EλPKi .

Due to the fact that EλP preserves λ-presentable objects, EλPA is λ-presentable in
Indλ HoKλ. Since each coproduct is a λ-filtered colimit of λ-small subcoproducts,
Eλg factorizes through some

∐
j∈J EλPK j where J has cardinality smaller than λ.

Since Eλ is full and faithful on morphisms with domain in HoKλ, we obtain a
factorization of g through

∐
j∈J PK j and therefore we conclude that PA is λ-small.

Moreover, the argument used in the proof of Corollary 3.5 shows in a similar way
that Eλg factors through some coproduct

∐
j∈J EλPDjd j where J has cardinality

smaller than λ and Djd j is in Kλ for all j . Using again the fact that Eλ is full and
faithful on morphisms with domain in HoKλ, we find a factorization of g through∐

j∈J PDjd j . Hence PA is indeed λ-compact. �

Definition 3.8 A category with coproducts is called well λ-generated if it has a
small weak generator consisting of λ-compact objects. It is called well generated if
it is well λ-generated for some λ.

For example, every locally λ-presentable category is well λ-generated.
The following result was proved in [28, Proposition 6.10] with the additional

assumption that K was stable, which is not necessary.

Theorem 3.9 If K is a strongly λ-combinatorial model category, then HoK is
well λ-generated.

Proof Since, by assumption, there is a small weak generator of HoK whose objects
are λ-presentable, HoKλ weakly generates HoK . The rest follows from Proposi-
tion 3.7. �

As a corollary one infers Neeman’s result in [22] that, for any Grothendieck
abelian category A , the derived category D(A ) is well generated.

4 Ohkawa’s Theorem

For an endofunctor H : K → K (not necessarily preserving weak equivalences)
on a model category K , we consider the composition

K
H

K
P HoK ,
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where P is defined as in (1). The class of objects X in K such that PHX is the
terminal object in HoK will be called the kernel of H and will be denoted by ker H .
Hence, if K is pointed and 0 denotes the zero object in K and also its image in
HoK , then ker H consists of objects X inK such that PHX = 0.

In this section we prove the following result.

Theorem 4.1 Suppose that K is a pointed strongly λ-combinatorial model cat-
egory. Then there is only a set of distinct kernels of endofunctors H : K → K
preserving λ-filtered colimits and the zero object.

Proof Consider the restricted Yoneda embedding as given by Corollary 3.4,

Eλ : HoK −→ Indλ HoKλ.

For a morphism f : EλS → EλPH A with A ∈ Kλ and S ∈ HoKλ, let us denote
by TH ( f ) the set of all morphisms t : A → B inKλ such that the composite

EλS
f

EλPH A
EλPHt

EλPHB

is the zero morphism, that is, EλPHt ◦ f factors through the zero object.
Next, we denote

J (H) = {TH ( f ) | f : EλS → EλPH A with A ∈ Kλ and S ∈ HoKλ}.

We are going to prove that if J (H1) = J (H2) then ker H1 = ker H2, assuming
that H1 and H2 preserve λ-filtered colimits and the zero object. Thus suppose that
J (H2) ⊆ J (H1) and let X ∈ ker H1. In order to prove that PH2X = 0, it is enough
to show that every morphism EλG → EλPH2X factors through the zero object if G
is in HoKλ, since HoKλ is a weak generator of HoK and Eλ is full and faithful
on morphisms whose domain is in HoKλ.

Assume given such a morphism f : EλG → EλPH2X . Since the categoryK is
locally λ-presentable, X ∼= colim(D : D → Kλ) for a certain λ-filtered diagram D.
Since EλPH2 preserves λ-filtered colimits by Theorem 3.3, we then have

EλPH2X ∼= colim

(

D
D

Kλ

PH2 HoK
Eλ Indλ HoKλ

)

.

Since EλG is λ-presentable, f factors through f̂ : EλG → EλPH2Dd for some
d ∈ D . Note that the set TH2( f̂ ) is nonempty, since the morphism Dd → 0 is in it
as H2 preserves the zero object. Consequently, the assumption that J (H2) ⊆ J (H1)

implies that TH2( f̂ ) ∈ J (H1). This means that there exist an object V ∈ HoKλ and
a morphism g : EλV → EλPH1Dd such that TH2( f̂ ) = TH1(g).

Now, since X ∈ ker H1, we have EλPH1X = 0. However,
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EλPH1X ∼= colim

(

D
D

Kλ

PH1 HoK
Eλ Indλ HoKλ

)

,

and, since EλV is λ-presentable, there is a morphism δ : d → d ′ in D such that

EλV
g

EλPH1Dd
EλPH1Dδ

EλPH1Dd ′

factors through the zero object. Hence Dδ ∈ TH1(g). Therefore Dδ ∈ TH2( f̂ ) and this
implies that f : EλG → EλPH2X factors through the zero object, as we wanted to
show.

Finally, since there is only a set of distinct sets J (H), the theorem is proved. �

Ohkawa’s theorem [24, Theorem 2] is a special case of Theorem 4.1. Recall that
two (reduced) homology theories E∗ and F∗ on spectra are said to be Bousfield
equivalent if the class of E∗-acyclic spectra coincides with the class of F∗-acyclic
spectra. A spectrum X is called E∗-acyclic if E∗(X) = 0.

Corollary 4.2 There is only a set of Bousfield equivalence classes of representable
homology theories on spectra.

Proof The homotopy category of spectra admits a combinatorial model category
K ; for instance, symmetric spectra over simplicial sets [15]. For each cofibrant
spectrum E we consider the endofunctor onK defined as HE X = E ∧ RcX where
Rc is a cofibrant replacement functor preserving filtered colimits. Since smashing
with E has a right adjoint, HE preserves filtered colimits. Moreover, a spectrum X
is in ker HE if and only if X is E∗-acyclic. Hence Theorem 4.1 implies that there is
only a set of distinct kernels of endofunctors of the form HE . �

5 Generalized Brown Representability

In this section we prove other properties of combinatorial homotopy categories
related to results in [28]. Note that if C is a locally λ-presentable category with
the trivial model structure then the functor Eλ : C → Indλ Cλ is an isomorphism.

Definition 5.1 A strongly λ-combinatorial model categoryK is called λ-Brown on
morphisms if Eλ : HoK → Indλ HoKλ is full. It is called λ-Brown on objects if
Eλ is essentially surjective. Finally, K is called λ-Brown if it is λ-Brown both on
objects and on morphisms.

Let us remark the following facts:

(i) A locally finitely presentable stable combinatorial model category is ω-Brown
if it is Brown in the sense of [14], where ω denotes the first infinite ordinal.



98 C. Casacuberta and J. Rosický

(ii) WheneverK is strongly ω-combinatorial and Eω is full then Eω is essentially
surjective as well. In fact, by Corollary 3.4, Indω Pω is full; since each object
of Indω Kω can be obtained by taking successive colimits of smooth chains [1]
and Pω is essentially surjective on objects, Indω Pω is essentially surjective on
objects too. HenceK is ω-Brown on objects. This argument does not work for
λ > ω because, in the proof, we need colimits of chains of cofinality ω.

(iii) Eλ is full if and only if HoKλ is weakly dense in HoK .

The homotopy category HoK of any model category K has weak colimits
and weak limits. Weak colimits are constructed from coproducts and homotopy
pushouts in the same way as colimits are constructed from coproducts and pushouts.
A homotopy pushout of

PC PA
Pg P f

PB

is a commutative diagram

PA
P f1

Pg1

PB1

Pg

PC1
P f

PE

where f = f2 ◦ f1 and g = g2 ◦ g1 are factorizations of f and g, respectively, into
a cofibration followed by a trivial fibration, and

A
f1

g1

B1

g

C1
f

E

is a pushout inK . The following definition is taken from [5].

Definition 5.2 A functor H : C → D will be called nearly full if for each commu-
tative triangle

H A
Hh

f

HC

HB

Hg

there is a morphism f : A → B in C such that H f = f .
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Proposition 5.3 A strongly λ-combinatorial model categoryK is λ-Brown onmor-
phisms if and only if the functor Eλ : HoK → Indλ HoKλ is nearly full.

Proof Sufficiency is evident because any full functor is nearly full. Let K be a
strongly λ-combinatorial model category and assume that Eλ is nearly full. Consider
an object K inK and express it as aλ-filtered colimit (δd : Dd → K ) of its canonical
diagram D : D → Kλ. This means that we have

Dd

ue
vd

∐

e : d→d ′
Dd

p

q

∐

d
Dd

g
K

Dd

ue

De
Dd ′

vd′

where g is given by a pushout

∐

d
Dd

g
K

(
∐

e
Dd

)
∐

(
∐

d
Dd

)

(p, id)

(q, id)

∐

d
Dd.

g

If we replace the pushout above by a homotopy pushout, we get (δd : Dd → K ).
It is not a cocone in K but (Pδd : PDd → PK ) is a standard weak colimit [10]
in HoK , and there is a comparison morphism t : K → K such that t ◦ δd = δd
for each d. Since Hλ = Indλ Pλ preserves λ-filtered colimits, there is a morphism
u : HλK → HλK such that u ◦ Hλδd = Hλδd for each d. Then Hλt ◦ u = id because

Hλt ◦ u ◦ Hλδd = Hλ(t ◦ δd) = Hλδd .

Now, since Eλ is nearly full, there is u : PK → PK such that u = Eλu.
Consider a morphism h : HλK1 → HλK2. Let u1, t1, u2, t2 be as u, t above for

K1 and K2. There is a cocone (γd : PD1d → PK 2) from PD1 such that

Eλγd = u2 ◦ h ◦ Hλδ1d : HλD1d −→ HλK 2
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for each d in D1. Thus there is a morphism h : K 1 → K 2 such that h ◦ Pδ1d = γd
for each d in D1. Hence

Eλh ◦ u1 ◦ Hλδ1d = Eλh ◦ Hλδ1d = Eλγd = u2 ◦ h ◦ Hλδ1d

for each d in D1. Thus Eλh ◦ u1 = u2 ◦ h. Putting h′ = Pt2 ◦ h ◦ u1, we obtain

Eλh
′ = Eλ(Pt2 ◦ h) ◦ u1 = Hλt2 ◦ u2 ◦ h = h,

which proves that Eλ is full. �

Remark 5.4 In Proposition 5.3 it suffices to assume that Eλ is full on split mono-
morphisms. This means that h = id in Definition 5.2.

The proof of the following result is given in [28, Proposition 6.4].

Proposition 5.5 If K is a combinatorial stable model category, then Eλ reflects
isomorphisms for arbitrarily large regular cardinals λ.

Remark 5.6 If Eλ is full and reflects isomorphisms then each object of HoK is a
minimal weak colimit of its canonical diagram with respect to HoKλ.

One could ask if every combinatorial stable model category is λ-Brown for arbi-
trarily large regular cardinals λ, as discussed in [28, 29]. This fact would have impor-
tant consequences [23], but it is unfortunately not true. The first counterexample was
given in [7], and in [3] a large class was found of combinatorial stable model cate-
gories which are not λ-Brown for any λ. An obstruction theory for generalized Brown
representability in triangulated categories was developed in [20], with special focus
on derived categories of rings.
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