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Foreword

Since the extensive calculations of stable homotopy groups of spheres in the 1960s,
algebraic topologists have recognized the extreme complexity of stable homotopy
theory. This has prompted efforts to step back from the intricate details and seek a
more global understanding. In the 1970s, we learned how to view stable homotopy
through the “eyes” of a homology theory E� using an E�-localization that turned the
E�-equivalences of spectra into isomorphisms. For rational homology theory and
much more richly for K-homology theory, this did indeed lead to an algebraic
overview of stable homotopy theory. More relevantly, it led to a very different global
approach in which we sought of classify spectra E according to the E�-equivalences
that they give. Thus, for a spectrum E, we considered the class hEi of all spectra F
such that the F�-equivalences are the same as the E�-equivalences in the stable
homotopy category. These classes not only inherit the wedge and smash product
operations for spectra but also have a partial ordering with nice lattice properties.
After our initial study of these classes in 1979, many interesting sorts of spectra were
classified in this way. However, the most surprising and important general result on
these classes came in 1989 when Tetsusuke Ohkawa demonstrated that they just
form a set and thus an actual lattice. Although this lattice is still poorly understood, it
does seem to provide a very fundamental overview of stable homotopy theory.

In the ensuing years, this classification system and Ohkawa’s theorem have been
generalized far beyond the original setting to other sorts of “stable” categories,
beginning with the derived categories of commutative rings. We believe that
Ohkawa’s theorem will have many more ramifications, and the surveys in this
volume should help to stimulate much more work in this area.

Chicago, USA
2016

A. K. Bousfield
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Memories on Ohkawa’s Mathematical
Life in Hiroshima

Takao Matumoto

Abstract Some of Ohkawa’s mathematical life in Hiroshima are suggested.

Keywords Biographies · Obituaries · Personalia · Bibliographies

1 Master Thesis

In the graduate school of Tokyo University he studied with Prof. Kazuhiko Aomoto
at first and then with Prof. Mitsuyoshi Kato.

His Master thesis ‘Group π with finite dimensional K (π, 1)’ written in 1976 has
three parts:

(I) Construction of K (π, 1) complex,
(II) Analogy of Cartan’s theorem for 2-dimensional simplicial complex,
(III) Grushko’s theorem for an amalgamated product.

2 MathSciNet

In MathSciNet we can find seven papers written in English:
(1) The Matsumoto tripling for compact simply connected 4-manifolds. Tohoku

Math. J. 31(1979), 525–535 (with M. Kato, S. Kojima and M. Yamasaki).
(2) Homological separation of 2-spheres in a 4-manifold. Topology 21(1982),

297–313.
(3) The pure braid groups and the Milnor μ̄-invariants of links. Hiroshima Math.

J. 12(1982), 485–489.

T. Matumoto (B)
Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima 739-8526, Japan
e-mail: matumot1@amber.plala.or.jp
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2 T. Matumoto

(4) The injective hull of homotopy types with respect to generalized homology
functors. Hiroshima Math. J. 19(1989), 631–639 (Theme of the conference).

(5) A vanishing theorem of Araki-Yosimura-Bousfield-Kan spectral sequences.
Hiroshima Math. J. 23(1993), 114 (Ph. D. thesis).

(6) A remark on homology localization. Hiroshima Math. J. 28(1998), 1–5.
(7) On epimorphisms and monomorphisms in the homotopy category of CW

complexes. Japan. J. Math. (N.S.) 26(2000), 153–156 (with T. Matumoto).

3 RIMS Kokyuroku

In Research Institute for Mathematical Sciences Kokyuroku there are eight papers
written in Japanese:

(J1) Analogy of Cartan’s theorem for 2-dimensional simplicial complex.
268(1976), 69–74.

(J2) On 2-dimensional K (π, 1). 283(1976), 52–57.
(J3) Cable knots of fibered knots are fibered. 309(1977), 80–85.
(J4) Higher separating of links. 346(1979), 80–87.
(J5) Separating problem of elements of π2(M4). 369(1979), 122–127.
(J6) Pure braid groups and Milnor μ̄-invariants. 417(1981), 100–105.
(J7) On h∗-injective spectrum as analogy of injective module. 781(1992),

129–131.
(J8) On half localization. 838(1993), 50–54.

4 Some Comments

He was offered a job as an assistant at Hiroshima University from Prof. Masahiro
Sugawara in 1978, when I moved to Hiroshima. All the papers except J1, J2, J3 and
1 were written in Hiroshima. He had many other talks, home pages and results.

For example, an important Remark 4.3 of ‘On the set of free homotopy classes
and Brown’s construction. Hiroshima Math. J. 14(1984), 359–369 by T. Matumoto,
N. Minami and M. Sugawara’ is due to him. But he did not agree to be a coauthor.

He became associate professor at Hiroshima Institute of Technology in 1996.



Depth and Simplicity of Ohkawa’s
Argument

Carles Casacuberta

Abstract This is an expository article about Ohkawa’s theorem stating that acyclic
classes of representable homology theories form a set. We provide background in
stable homotopy theory and an overview of subsequent advances in the study of
Bousfield lattices. As a new result, we prove that there is a proper class of acyclic
classes of nonrepresentable homology theories.

Keywords Spectra · Homology theories · Acyclicity · Bousfield classes

1 Introduction

The main purpose of this article is to present the statement and proof of Ohkawa’s
theorem [25, Theorem2]without assuming expertise on the reader’s part in homotopy
theory. Thus in Sects. 2 and 3we collect basic facts about homology theories, spectra,
Spanier–Whitehead duality, and Adams representability.

Most of Ohkawa’s article [25] was devoted to a discussion of injective hulls of
spaces and spectra with respect to homology theories. After the publication of that
article, it remained generally unnoticed that the proof of the fact that Bousfield
classes of spectra form a set instead of a proper class did not depend on injective
hulls—although it had likely been inspired by the study of those.

In fact, Ohkawa’s theorem did not become widespread until Dwyer and Palmieri
published in [10] another proof of the same result, motivated by earlier thoughts of
Strickland [32], who studied jointly with Hovey and Palmieri [15, 17] the complete
lattice resulting from the fact that Bousfield classes of spectra form a set. Their work
triggered further progress in the understanding of chromatic homotopy theory [4, 37]
and, more generally, tensor triangulated categories [11, 18, 36], including derived
categories of commutative rings.

C. Casacuberta (B)
Facultat de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via de les Corts
Catalanes 585, 08007 Barcelona, Spain
e-mail: carles.casacuberta@ub.edu
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4 C. Casacuberta

We present Ohkawa’s proof of [25, Theorem 2] without changing anything sub-
stantial from the original argument, in order to illustrate both its simplicity and the
far-reaching depth of the idea behind it. Recent generalizations of Ohkawa’s theorem
in the context of triangulated categories by Iyengar–Krause [18] and Stevenson [31]
used different methods, but the general form of the same result described in [8] for
non necessarily stable combinatorial model categories was proved using precisely a
version of Ohkawa’s argument.

All the variants of Ohkawa’s theorem published so far include representability
as a crucial ingredient. In its original formulation, it was indeed a statement about
representable homology theories, whose featuring property is that they preserve
coproducts and filtered colimits. This property is essential in the proof of Ohkawa’s
theorem given by Dwyer and Palmieri in [10], which is based on the fact that every
CW-spectrum is a filtered union of its finite subspectra. Additivity and exactness
are also fundamental hypotheses in [18, Theorem 2.3] for the validity of Ohkawa’s
theorem in well generated tensor triangulated categories.

The proof of the version of Ohkawa’s theorem presented in [8] no longer requires
additivity nor exactness—not even homotopy invariance—but it is a result about
endofunctors in combinatorial model categories preserving λ-filtered colimits for
some regular cardinal λ; see [9] in this volume for details.

One could ask if this assumption can be weakened further. In Sect. 7 we show that
if one considers non necessarily representable homology theories without any extra
assumption, then there is a proper class of distinct Bousfield classes of those.

2 Homology Theories

Generalized homology theories were studied by G.W.Whitehead in [34] after the
discovery of K -theory and other functorial constructions on spaces that satisfied the
Eilenberg–Steenrod axioms [12] except the dimension axiom. In order to state these
axioms in a simpleway, wewill only consider reduced homology theories and restrict
their scope to CW-complexes, that is, topological spaces constructed by successively
attaching cells of increasing dimensions [35, Sect. 5].

For n ≥ 0, the n-skeleton X (n) of a CW-complex X is the union of its cells of
dimension lower than or equal to n. A pointed CW-complex is a pair consisting
of a CW-complex X and a distinguished 0-cell x0. Pointed CW-complexes form a
categorywhosemorphisms are continuousmaps f : X → Y with f (X (n)) ⊆ f (Y (n))

for all n and f (x0) = y0.
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A reduced homology theory is a collection of functors {hn}n∈Z from pointed CW-
complexes to abelian groups with the following properties:

• Homotopy invariance: If two maps f, g : X → Y are homotopic, then the induced
homomorphisms hn( f ) and hn(g) coincide for all n.

• Exactness:Every inclusion i : A ↪→ X of a subcomplex induces, for all n, an exact
sequence of abelian groups

hn(A) −→ hn(X) −→ hn(X/A).

• Suspension isomorphism: There is a natural isomorphism hn(X) ∼= hn+1(ΣX) for
all n and all X , where ΣX = S1 ∧ X .

Here and throughout we denote by Sn the n-sphere and by ∧ the smash product,
i.e., the quotient of the cartesian product by the one-point union of pointed spaces.
The spaceΣX is called the suspension of X . The exactness axiom and the suspension
isomorphism axiom are usually replaced by long exact sequences for pairs of spaces
and the excision axiom in the case of nonreduced homology theories. Passage from
reduced to nonreduced and conversely can be done as explained in [33, Sects. 7.34
and 7.35] or in [34, Sect. 5]. Generalized cohomology theories are defined in the
same way, but contravariantly.

The graded abelian group h∗(S0) is called the coefficients of h∗. A reduced ho-
mology theory {hn}n∈Z is ordinary if hn(S0) = 0 for n 	= 0. Otherwise it is called
extraordinary or generalized. Examples include the following, among many others:

• Complex K -theory, for which K̃∗(S0) = Z[t, t−1] with t in degree 2.
• Complex cobordism, such that M̃U ∗(S0) = Z[x1, x2, . . . ] with xi in degree 2i .
• Morava K -theories, with K̃ (n)∗(S0) = Fp[vn, v−1

n ] and vn in degree 2(pn − 1).

It follows from results in [12] that, if a homology theory is ordinary, then there
is an abelian group G such that hn(X) ∼= H̃n(X;G) for all finite CW-complexes X
and all n, where H̃n denotes reduced singular homology. This result was extended by
Milnor in [21] to arbitrary CW-complexes, not necessarily finite, under the following
additional assumption. A reduced homology theory {hn}n∈Z is called additive if it
satisfies the Milnor axiom about preservation of coproducts:

hn
(∨

i∈I Xi
) ∼= ⊕

i∈I hn(Xi )

for every set of indices I and all n. This property is a consequence of the previous
axioms if the set of indices I is finite, but it is not if I is infinite. If h∗ is additive
and ordinary, then the natural isomorphism h∗ ∼= H̃∗(−; h0(S0)) can be proved by
comparing the respective cellular chain complexes, as in [13, Theorem 4.5.9]. A sim-
ilar argument yields the following more general result, whose proof is given in [29,
Proposition II.3.19] and [33, Theorem 7.55].

Proposition 2.1 If a natural transformation h′∗ → h∗ of additive homology theo-
ries induces an isomorphism h′∗(S0) ∼= h∗(S0), then it also induces an isomorphism
h′∗(X) ∼= h∗(X) for every CW-complex X.
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3 Spectra and Representability

There are several different models for the homotopy category of spectra. Here we
consider CW-spectra for consistency with the rest of the article. A CW-spectrum
is a sequence of pointed CW-complexes E = {En}n∈Z together with subcomplex
inclusionsΣEn ↪→ En+1 for all n. Each CW-complex X yields a CW-spectrumwith
Xn = Σn X if n ≥ 0 and Xn = ∗ (a single point) for n < 0. We will not distinguish
notationally a CW-complex from the corresponding CW-spectrum, and will omit
“CW” from now on for shortness.

Spectra can be suspended and desuspended:

(Σk E)n = En+k for k ∈ Z.

A stable cell of a spectrum E is a cell c ⊂ En for some n, which is identified with
Σkc ⊂ En+k for k ≥ 1. If c is a d-cell in En then it represents a (d − n)-cell of E .
A spectrum with only a finite number of distinct stable cells is called finite. More
generally, the cardinality of a spectrum is the cardinality of its set of stable cells.

Maps between spectra are defined up to cofinality [3, 33], and homotopies between
maps of spectra are defined similarly as for topological spaces. We denote by [X,Y ]
the set of homotopy classes of maps X → Y . Suspension induces bijections

[X,Y ] ∼= [Σk X,ΣkY ] (1)

for all k and all spectra X and Y . Moreover there is a natural homotopy equivalence
ΣE � S1 ∧ E for every spectrum E . Consequently, the homotopy category of spec-
tra is additive, since [X,Y ] ∼= [Σ2X,Σ2Y ] and the latter has a natural abelian group
structure for all X and Y , resulting from the pinchmap S2 → S2 ∨ S2 on the domain.

Moreover, the homotopy category of spectra is triangulated. This means that each
map f : X → Y fits into a cofibre sequence X → Y → C that expands into

· · · X
f

Y C ΣX
Σ f

ΣY · · · (2)

in such a way that certain axioms are satisfied [16, 20, 24]. Most notably, (2) yields
long exact sequences of abelian groups by applying [E,−] or [−, E] to it, where E
is any spectrum. Indeed, it is a feature of spectra that there is no distinction between
fibre sequences and cofibre sequences, in contrast with spaces.

The homotopy groups of a spectrum E = {En}n∈Z are defined as

πk(E) = [Σk S0, E] ∼= colimn πk+n(En) for k ∈ Z.

A map of spectra X → Y inducing isomorphisms πk(X) ∼= πk(Y ) for all k is a
homotopy equivalence [3, Corollary III.3.5]. It is also remarkable that

πk(X ∨ Y ) ∼= πk(X) ⊕ πk(Y ) (3)

for all k, since X → X ∨ Y → Y is a split cofibre sequence.
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The stable homotopy groups of the sphere spectrum are of utmost importance.
If k > 0 then πk(S0) is finite [27], while π0(S0) is infinite cyclic, and if k < 0 then
πk(S0) = 0. We state the following consequence for its use in Sect. 5.

Lemma 3.1 The set of homotopy types of finite spectra is countable, and given any
two finite spectra A and B the abelian group [A, B] is finitely generated.
Proof For every finite spectrum A there is a finite CW-complex X and an integer k
such that A � Σk X , and if two CW-complexes are homotopy equivalent then their
suspension spectra are also homotopy equivalent. Hence our first claim follows from
the fact that every finite CW-complex is homotopy equivalent to a finite polyhedron;
cf. [29, Lemma II.3.16].

To prove the second claim, observe first that, for every finite spectrum B, each
of its homotopy groups πk(B) is finitely generated since it is obtained by means of
finitely many group extensions starting from homotopy groups of spheres and using
cofibre sequences as in (2) corresponding to the cells of B. Arguing in the same way,
if A is another finite spectrum then the abelian group [A, B] is finitely generated
since it is obtained in finitely many steps starting from homotopy groups of B and
using cofibre sequences determined by the cells of A. �

As shown in [34, Theorem 5.2], every spectrum E defines a homology theory as

En(X) = πn(E ∧ X) (4)

and similarly E defines a cohomology theory as

En(X) = [Σ−n X, E], (5)

where X is any pointed CW-complex. In fact (4) and (5) make perfectly sense if
X is a spectrum, with any version of a smash product for spectra [2]; for instance,
(E ∧ X)2n = En ∧ Xn and (E ∧ X)2n+1 = En+1 ∧ Xn .

Thus E∗ defines a homology theory on spectra, meaning that it is a functor from
spectra to graded abelian groups which is homotopy invariant and exact in the sense
that every cofibre sequence X → Y → C of spectra yields an exact sequence

En(X) −→ En(Y ) −→ En(C)

for every n, and there is a natural isomorphism En(X) ∼= En+1(ΣX) for all X .
Similarly, E∗ is a cohomology theory on spectra. It is clear from (5) that E∗

sends coproducts to products, and it is also true that E∗ preserves coproducts, by the
following argument. Recall that a partially ordered set I is filtered if for every two
elements i and j there is another element k such that i ≤ k and j ≤ k.

Lemma 3.2 For every spectrum E, the homology theory E∗ preserves coproducts
and sends filtered unions of subspectra to filtered colimits.

Proof As shown, for instance, in [33, Lemma 8.34], if a spectrum X is a fil-
tered union of subspectra Xi then the inclusions Xi ↪→ X induce an isomorphism
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colimi [F, Xi ] ∼= [F, X ] for every finite spectrum F . Moreover, E ∧ X is also a
filtered union of its subspectra E ∧ Xi . Therefore, since Σn S0 is a finite spectrum,

En(X) = πn(E ∧ X) = [Σn S0, E ∧ X ] ∼= colimi [Σn S0, E ∧ Xi ] = colimi En(Xi ).

As a special case, En preserves coproducts because every coproduct of spectra is a
filtered union of finite coproducts and En preserves these by (3). �

The homology theory E∗ and the cohomology theory E∗ given by (4) and (5) are
said to be represented by the spectrum E . Singular (co)homology with coefficients
in G is represented by the Eilenberg–MacLane spectrum {K (G, n) | n ≥ 0}, and
complex K -theory is represented by the spectrum consisting of the unitary group U
in odd dimensions and Z × BU in even dimensions (where BU is the classifying
space of U ), with structure maps given by Bott periodicity Ω2BU � Z × BU .

Brown’s representability theorem [7, Theorem II] for cohomology theories with
countable coefficients was extended by Adams in [2, Theorem 1.6] by showing that
every cohomology theory defined on finite CW-complexes is represented by some
spectrum (not necessarily finite). This leads to the following central result.

Theorem 3.3 (Adams) Every additive homology theory on CW-complexes is rep-
resented by some spectrum.

Proof As a consequence of Alexander duality, if X is a finite nonempty proper
subcomplex of Sn then there is a finite subcomplex DnX of Sn � X such that

Ek(X) ∼= En−k−1(DnX) (6)

for all k and every spectrum E ; see [30, p. 199]. Hence each homology theory h∗
defines by means of such duality a cohomology theory on finite CW-complexes,
as shown in [34, Corollary 7.10], which is representable by Adams’ extension of
Brown’s theorem. Then the representing spectrum E defines an additive homology
theory E∗ whose restriction to finite CW-complexes is naturally isomorphic to the
restriction of h∗. Moreover, for every CW-complex X and every n the group En(X)

is the colimit of En(Xi ) where {Xi }i∈IX is the filtered set of all finite subcomplexes
of X ; see [33, Corollary 8.35]. Hence there is a natural transformation E∗ → h∗
inducing an isomorphism E∗(S0) ∼= h∗(S0). If h∗ is also additive, this implies that
E∗(X) ∼= h∗(X) for all X , by Proposition 2.1. �

The stable analogue of (6) is as follows; cf. [3, Part III, §5]. Each finite spectrum
A admits a homotopy unique Spanier–Whitehead dual DA, which is also finite and
is equipped with a map

DA ∧ A −→ S0

inducing isomorphisms [X,Y ∧ DA] ∼= [X ∧ A,Y ] and [X, A ∧ Y ] ∼= [DA ∧ X,Y ]
for all spectra X and Y ; cf. [33, Theorem 14.34]. Therefore DDA � A and

E−n(A) ∼= En(DA) (7)
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for all spectra E and all n. Using Spanier–Whitehead duality it follows with the
same argument as in the proof of Theorem 3.3 that every additive homology theory
on spectra is represented by some spectrum [20, Chapter 4, Theorem 16].

4 Bousfield Equivalence Classes of Spectra

Given two spectra E and X , the spectrum X is called E∗-acyclic if E∗(X) = 0, where
E∗ denotes the homology theory represented by E as in (4). Two spectra E and F
are called Bousfield equivalent if the classes of E∗-acyclic spectra and F∗-acyclic
spectra coincide. Since the statement that En(X) = 0 for all n is equivalent to the
statement that E ∧ X � 0, where 0 denotes here the one-point spectrum, two spectra
E and F are Bousfield equivalent if and only if

{X | E ∧ X � 0} = {X | F ∧ X � 0}. (8)

It is also true that E and F are Bousfield equivalent if and only if E∗-localization
and F∗-localization are naturally isomorphic. Here E∗-localization is meant in the
sense of [5], where it was proved that for every spectrum X and every representable
homology theory E∗ there is a map l : X → LE X such that En(l) is an isomorphism
for all n and LE X is E∗-local, that is, for every map f : A → B such that En( f )
is an isomorphism for all n, the function [B, LE X ] → [A, LE X ] is bijective. Then
LE defines an exact endofunctor in the homotopy category of spectra such that a
map X → Y induces a homotopy equivalence LE X � LEY if and only if it induces
isomorphisms En(X) ∼= En(Y ) for all n. Hence LE X � 0 if and only if X is E∗-
acyclic. Therefore, the collection of E∗-acyclic spectra determines LE up to a natural
isomorphism.

Bousfield equivalence classes have been studied since the decade of 1980 in
connection with homological localizations [5, 6, 26]. The Bousfield equivalence
class of a spectrum E is usually denoted by 〈E〉, and it is also common to view
〈E〉 as the collection of all E∗-acyclic spectra. There is a partial order on Bousfield
classes, namely 〈E〉 ≤ 〈F〉 if and only if the class of F∗-acyclics is contained in the
class of E∗-acyclics, or, equivalently, if there is a natural transformation LF → LE

of coaugmented functors.
Thanks to Ohkawa’s theorem, the collection of Bousfield classes becomes in fact

a complete lattice with least upper bounds ( joins) given by the wedge sum, and
greatest lower bounds (meets) obtained as wedges of all lower bounds, which exist
since there is only a set of those. The smash product provides lower bounds, but not
greatest lower bounds in general. This lattice and other related lattices have been
studied by a number of authors [4, 11, 14, 15, 17, 18, 23, 36, 37].

Ohkawa’s injective hulls [25] are closely related to homological localizations.
For a homology theory E∗ on spectra, a spectrum Y is E∗-injective if, for every map
f : A → B such that En( f ) is a monomorphism for all n, the function [B,Y ] →
[A,Y ] is surjective. A map h : X → Y is an E∗-injective enveloping map if Y is
E∗-injective and En(h) is a monomorphism for all n, and, moreover, for all maps
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g : Y → Z and every n the homomorphism En(g) is monic if En(g ◦ h) is monic.
In [25, Theorem 1] it was shown that if a homology theory E∗ is representable
then every spectrum X admits an E∗-injective enveloping map h : X → Y , which is
unique up to homotopy. Then Y is called an injective hull of X .

5 Okhawa’s Argument

Choose a set F of representatives of all homotopy types of finite spectra and a set
M of representatives with domains and codomains inF of all isomorphism classes
of maps between finite spectra in the stable homotopy category. Thus for each map
f : A → B between finite spectra the set M contains a unique map f0 : A0 → B0

where A0 and B0 are inF and there exist two homotopy equivalences hA : A0 → A
and hB : B0 → B such that f ◦ hA � hB ◦ f0. By Lemma 3.1,F has cardinality ℵ0

andM also has cardinality ℵ0 since for every two finite spectra A and B the abelian
group [A, B] of homotopy classes of maps A → B is finitely generated.

Given two maps of spectra g : X → Y and f : X → E , we say that f extends to
Y if there exists a map f̃ : Y → E such that f̃ ◦ g � f . For a map f : X → E of
spectra with X ∈ F , we denote, as in [25],

t ( f ) = {g : X → Y | g ∈ M and f extends to Y }. (9)

Hence t ( f ) ∈ P(M ), where the latter denotes the set of subsets ofM . Next, for
a spectrum E , let tE : F → P(P(M )) be the function defined as

tE (X) = {t ( f ) | f : X → E} (10)

for each X ∈ F , and call two spectra E and F elementarily equivalent if tE = tF ,
that is, if tE (X) = tF (X) for every X ∈ F .

For a spectrum E , we consider the homology theory E∗ on spectra represented
by E , namely En(X) = πn(E ∧ X) for n ∈ Z and every spectrum X . If {Xi }i∈IX is
the collection of all finite subspectra of X , then the inclusions Xi ↪→ X induce an
isomorphism

colimi∈IX En(Xi ) ∼= En(X) (11)

for every n by Lemma 3.2, since IX is filtered.

Theorem 5.1 (Ohkawa) Suppose that two spectra E and F are elementarily equiv-
alent, and let f : X → Y be any map of spectra. For each n ∈ Z, the homomorphism
En( f ) : En(X) → En(Y ) is monic if and only if Fn( f ) : Fn(X) → Fn(Y ) is monic.

Proof Suppose that En( f ) is a monomorphism, and let φ ∈ Ker Fn( f ). Our aim is
to prove that φ = 0.

Since Fn satisfies (11), there is a finite subspectrum A ⊆ X and a class α ∈ Fn(A)

such that Fn(i A, X )(α) = φ, where i A, X : A → X denotes the inclusion. Therefore
Fn( f ◦ i A, X )(α) = 0 and, using again the fact that Fn commutes with filtered
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colimits, we infer that there is a finite subspectrum B ⊆ Y that contains f (A) and
such that Fn( f ′)(α) = 0 if f ′ : A → B denotes the restriction of f :

X
f

Y

A
f ′

i A, X

B

iB, Y

Let DA denote a Spanier–Whitehead dual of A. Then, since Fn(A) ∼= F−n(DA),
the class α is represented by a map a : ΣnDA → F , and the fact that Fn( f ′)(α) = 0
implies that a ◦ ΣnD f ′ � 0, where Df ′ : DB → DA is dual to f ′.

Now replaceΣnDA by a homotopy equivalent finite spectrumbelonging toF and
choose a map p : ΣnDA → P inM such that the following is a cofibre sequence:

ΣnDB
Σn D f ′

ΣnDA
p

P Σn+1DB.

Here the map a : ΣnDA → F extends to P since a ◦ ΣnD f ′ � 0, and this means
precisely that p ∈ t (a) as defined in (9).

Now t (a) ∈ tF (ΣnDA) and, since we are assuming that tE = tF , we infer that
t (a) ∈ tE (ΣnDA). Therefore there is a map b : ΣnDA → E with t (a) = t (b). Thus
p ∈ t (b) and this implies that b extends to P .

Let β ∈ En(A) be the class represented by b. Since b extends to P , we have
that b ◦ ΣnD f ′ � 0 and consequently En( f ′)(β) = 0. Since En( f ) is injective
and f ◦ i A, X = iB, Y ◦ f ′, it follows that En(i A, X )(β) = 0. Since En commutes
with filtered colimits, there is a finite subspectrum C ⊆ X containing A such that
En(i A,C)(β) = 0.

Hence b ◦ ΣnDiA,C � 0 and therefore b extends to a homotopy cofibre Q of
ΣnDiA,C , which we may choose so that the map q : ΣnDA → Q is inM :

ΣnDC
Σn DiA,C

ΣnDA
q

Q Σn+1DC.

Thus q ∈ t (b), and using again that t (a) = t (b), we find that q ∈ t (a), and this
means that Fn(i A,C)(α) = 0. Hence φ = Fn(i A, X )(α) = Fn(iC, X )Fn(i A,C)(α) = 0,
from which it follows that Fn( f ) is indeed a monomorphism. Exchanging the roles
of E and F completes the proof. �
Corollary 5.2 If two spectra E and F are elementarily equivalent, then E and F
are Bousfield equivalent.
Proof Suppose that E and F are elementarily equivalent, and suppose that a given
spectrum X is E∗-acyclic. Then the map from X to the zero spectrum induces a
monomorphism En(X) → 0 for alln. According toTheorem5.1, the homomorphism
Fn(X) → 0 is also a monomorphism for all n, which means that X is F∗-acyclic. �

Hence Bousfield equivalence classes of spectra form a set of cardinality smaller
than or equal to the cardinality of the set of elementary equivalence classes, which
is at most 22

ℵ0 .
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6 Other Proofs and Extensions of Ohkawa’s Theorem

The argument given in Sect. 5 uses Spanier–Whitehead duality and the fact that
representable homology theories commutewith filtered colimits.An alternative proof
not requiring the use of duality was published by Dwyer and Palmieri in [10]. Their
argument works in every algebraic stable homotopy category, as shown in [19]. It
can be summarized as follows in the case of spectra.

For a spectrum E and a homology class c ∈ E∗(A), where A is a finite spectrum,
define the annihilator of c as

annE
A(c) = { f : A → B | B is finite and E∗( f )(c) = 0},

and let the Ohkawa class of E consist of all annihilators of all classes c ∈ E∗(A)

where A is a finite spectrum.

Theorem 6.1 (Dywer–Palmieri) If two spectra E and F give rise to the same
Ohkawa class, then they are in the same Bousfield equivalence class.

Proof If theOhkawa class of F is contained into theOhkawa class of E then the class
of E∗-acyclics is contained in the class of F∗-acyclics. To prove this fact, suppose that
E∗(X) = 0 andwrite X as a union of its finite subspectra. Given any class c ∈ Fn(X),
there is a finite subspectrum A of X and a class a ∈ Fn(A) such that Fn(i)(a) = c
where i : A → X is the inclusion. By assumption there is a class a′ ∈ En(A) such
that annF

A(a) = annE
A(a′). Since E∗(X) = 0, there is a finite subspectrum B of X

containing A such that the homomorphism induced by the inclusion j : A → B
satisfies En( j)(a′) = 0; therefore j ∈ annE

A(a′). Hence j also belongs to annF
A(a)

and this implies that Fn( j)(a) = 0, so c = 0 in Fn(X), as claimed. �

If the definition of Ohkawa classes is restricted after a choice of a set F of
representatives of all homotopy types of finite spectra and a setM of representatives
with domains and codomains in F of all homotopy classes of maps between finite
spectra, as in Sect. 5 and as in [10], then the cardinality of the set of Ohkawa classes
is bounded by 22

ℵ0 , and hence so is the cardinality of the set of Bousfield equivalence
classes of spectra. It is still unknown if this bound can be lowered.

Upper and lower bounds for the cardinality of the set of Bousfield classes in an
arbitrary algebraic stable homotopy category have been given in [19] in terms of a
generating set of small objects.

Dwyer and Palmieri proved in [11] that in the derived category of a truncated
polynomial ring on countably many generators there is also only a set of Bousfield
equivalence classes, and askedwhether thiswas in fact the case in the derived category
of every commutative ring—Bousfield equivalence of chain complexes of modules
over a ring is defined as in (8) with the smash product replaced by the derived tensor
product of chain complexes. This was known to be true for countable rings as shown
in [10] and also for Noetherian rings due to a result of Neeman [22]: for a Noetherian
commutative ring R there is a bijection between the Bousfield lattice in the derived
category D(R) and the lattice of subsets of the spectrum of R. However, it had
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already been observed in [23] that something very different happens for rings that
fail to be Noetherian. Further results in this research direction have been obtained
by Wolcott in [36].

Around 2010 Stevenson extended in an unpublished article the Dwyer–Palmieri
argument to compactly generated triangulated categories equipped with a biexact
and coproduct-preserving tensor product, hence proving that, indeed, the Bousfield
lattice of the derived category D(R) is a set for every commutative ring R. Shorty
after, Iyengar and Krause proved in [18] that the same result holds in any well
generated tensor triangulated category. Their argument was based on a restricted
Yoneda embedding of a triangulated category T with a set of α-compact generators
for some cardinal α into the category of abelian presheaves over that set.

Still Okhawa’s theorem remained a result about additive categories. Another step
was made in [8] by showing that it holds in fact in the homotopy category of every
combinatorial model category, not necessarily stable. A proof of this fact is presented
in [9] using Rosický’s result [28, Proposition 5.1] that, for a combinatorial model
category K , the composite

K −→ HoK −→ Set(HoK λ)
op

of the canonical functor from K to its homotopy category followed by a restricted
Yoneda embedding preserves λ-filtered colimits for a sufficiently large regular car-
dinal λ. HereKλ is a set of representatives of isomorphism classes of λ-presentable
objects inK .

7 Nonrepresentable Homology Theories

If a homology theory is not representable, then it need not preserve colimits of any
kind. Therefore its value on a spectrum need not be determined by its values on
finite subspectra. For this reason, there is no hope that the argument used in the
proof of Theorem 5.1 can be extended to non necessarily representable homology
theories. In this section we show that, indeed, Ohkawa’s theorem does not hold for
nonrepresentable homology theories.

For an abelian group A and a cardinal α, we denote by Aα the cartesian product of
α copies of A, that is, the abelian group of functions α → A. Moreover, we denote by
SAα the subgroup of Aα consisting of shrinking functions, that is, functions α → A
whose image has cardinality smaller than α.

Note that FαA = Aα/SAα defines an exact functor from the category of abelian
groups to itself. This fact has the following consequence.

Theorem 7.1 For every uncountable cardinal α there is a reduced homology theory
hα∗ on pointed CW-complexes such that if X has less than α cells then hα∗ (X) = 0
but there exists a CW-complex with α cells which is not hα∗ -acyclic.

Proof Consider the exact endofunctor FαA = Aα/SAα on the category of abelian
groups. If the cardinality of A is less than α then the image of every function α → A
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has cardinality smaller than α. Hence SAα = Aα and FαA = 0. On the other hand,
there is an injective function α → ⊕i<α Z and hence Fα(⊕i<α Z) 	= 0.

Next, define hα
n = Fα ◦ H̃n for all n, where H̃∗ denotes reduced singular homol-

ogy. Since Fα is exact, hα∗ is a reduced homology theory. If X has less than α cells
then the cardinality of H̃∗(X) is smaller than α and therefore hα∗ (X) = 0. How-
ever, for a wedge of α circles we have H1(

∨
i<α S1) ∼= ⊕i<α Z and this implies that

hα
1 (

∨
i<α S1) is nonzero. �

We say that two homology theories h∗ and h′∗ (defined on spaces or spectra) are
Bousfield equivalent if they have the same acyclics.

Corollary 7.2 There is a proper class of distinct Bousfield equivalence classes of
nonrepresentable homology theories of spaces or spectra.

Proof In the case of spaces, consider the collection {hα∗ } given by Theorem 7.1
where α runs through all uncountable cardinals. Then any two of them belong to
distinct Bousfield equivalence classes since if β > α then there is a space X which
is hβ

∗ -acyclic but not hα∗ -acyclic. The same argument is valid for spectra by defining
similarly hα∗ = Fα ◦ H∗ where H∗ is ordinary homology with Z coefficients. �

However, if we fix an arbitrary regular cardinal λ then there is only a set of
Bousfield equivalence classes of homology theories that preserve λ-filtered colimits.
For a proof of this claim, see [8, Corollary 3.8].
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Abstract This survey stems from Amnon Neeman’s lecture series at Ohakawa’s
memorial workshop. Starting with Ohakawa’s theorem, this survey intends to supply
enoughmotivation, background and technical details to read Neeman’s recent papers
on his “approximable triangulated categories” and his Db
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1 Introduction

This survey stems from Amnon Neeman’s lecture series at Ohakawa’s memorial
workshop.1 The original lecture series started and ended with Ohkawa’s theorem on
the stable homotopycategory. In thebeginningOhkawa’s theoremwaspresented in its
lovely, original form. The lecture series then meandered through some–definitely not
all–of the developments and generalizations made by others in the years following
Ohkawa’s paper. And at the end came what was then a recent result of Amnon
Neeman’s–and the relevance was that the Ohkawa set and its properties, as developed
in the years followingOhkawa, turned out to be key to the proof of the recent theorem.

Here, our presentation significantly modifies Neeman’s original presentation,
partially fueled by other distinguished submissions to this proceedings, mostly to
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motivate topologists to get interested in this rich subject. For this purpose, we have
reorganized and expanded the original framework ofAmnonNeeman’s lecture series.

Still, the underlying philosophy of Neeman’s presentation to start with Ohkawas’s
theorem remains kept in this survey. And most significantly, following a strong
request of Professor Neeman, we reviewed Neeman’s recent proof of:
Db

coh(X ) strong generation sufficient criterion via de Jong′s regular alteration
with enough background and technical details, expanding and sometimes even mod-
ifying parts of the original proof so as to make this review beginner-friendly from a
homotopy theorist’s point of view. Actually, this proof of Neeman also makes critical
use of, in addition to de Jong’s regular alteration, a couple of Thomason’s theorems:

• First, the fundamental theorem of Hopkins, Neeman, Thomason and others on the
classification of thick tensor ideals of Dperf(X ), the Dperf(X ) = Dqc(X )c analogue
of the Hopkins–Smith thick subcategory theorem of SHfin = SHc whose proof
heavily depends upon the (Devinatz-)Hopkins–Smith nilpotency theorem.

• Second, Thomason’s localization theorem on Dperf(X \ Z), for which Neeman
found a homotopy theoretical proof in the framework ofMiller’s finite localization.

Considering these circumstance, we have also explained the role of (Devinatz-)
Hopkins–Smith nilpotency theorem in the proof of Hopkins–Smith thick subcate-
gory theorem, as well as essentially all the details of Neeman’s proof of Thomason’s
localization theorem.

Now the rest of this survey is organized as follows:

Section2: The first goal of this section is to recall Ohkawa’s theorem in stable
homotopy theory. Ohkawa’s theorem claims the Bousfield classes in the stable
homotopy category SH form a set which is very mysterious and beyond our
imagination. Then the second goal of this section is the fundamental theorem of
Hopkins, Neeman, Thomason and others, which roughly states the analogue of
the Bousfield classes in Dqc(X ), in contrast to the Ohakawa’s case of SH, form
a set with a clear algebro-geometric description. For these purposes, standard
facts about the Bousfield localization and triangulated categories are reviewed,
including the existence of Bousfield localization for perfectly generated trian-
gulated subcategories, Miller’s finite localization for triangulated subcategories
generated a set of compact objects, and the telescope conjecture.

Section3: In reality, Hopkins was not motivated by Ohkawa’s Theorem2.25 for
his influential paper in algebraic geometry [48] (Theorem2.37). Instead, Hopkins
wasmotivated by his own theoremwith Smith [50] in the triangulated subcategory
SHc consisting of compact objects, whose validity was already known to them
back around the time Hopkins wrote [48]. In this section, we review this theorem
of Hopkins–Smith, emphasizing the way how (Devinatz-)Hopkins–Smith nilpo-
tency theorem is used in its proof. In Theorem3.7, we summarize the main stories
in SHc

(p) ⊂ SH(p) (the Ohkawa theorem, the Hopkins–Smith theorem, Miller’s

version of the Ravenel telescope conjecture (C ◦ I ?= Id
T

(
SHfin

(p)

)), and the con-

jectures of Hovey and Hovey–Palmieri) in the following succinct commutative
diagram:
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mysterious set Ohkawa Th.
B(SH(p))

Hovey Conj.

?=
L(SH(p))

chromatic hierachy
···�Cn+1···�Cn···

Hopkins–Smith Th.
T

(
SHfin

(p)

) I (split inj.)

S(SH(p))
C (split surj.)

(1)

We then review anlogues of the Hopkins–Smith theorem in the motivic setting by
Joachimi and Kelly. Also, inspired by this influence of Hopkins–Smith theorem
to algebra and algebraic geometry, we briefly reviewed the couple of most promi-
nent conjectures in homotopy theory, the telescope conjecture and the chromatic
splitting conjecture, following a suggestion of Professor Morava.

Section4: From the previous two sections, we are naturally led to investigate
Dqc(X )c.However, the story is not so simple.Whereas there is a conceptually sim-
ple algebro-geometrical interpretation Dqc(X )c = Dperf(X ), it is its close relative
(actually equivalent if X is smooth over a field) Db

coh(X ) which traditionally has
been intensively studied because of its rich geometric and physical information.
So,wewish to understand bothDb

coh(X ) andDperf(X ). In this section,we start with
brief, and so inevitably incomplete, summaries ofDb

coh(X ) andDperf(X ), focusing
on their usages. Still, we hope this would convince non-experts that Db

coh(X ) and
Dperf(X ) are very important objects to study. Amongst of all, we shall recall the
fundamental theorem of Hopkins, Neeman, Thomason and others on the classifi-
cation of thick tensor ideals of Dperf(X ) and the Thomason’s localization theorem
on Dperf(X \ Z), both of which play critical roles in Neeman’s proof of the strong
generation of Db

coh(X ) reviewed in Sect. 5. For the classification of thick tensor
ideals of Dperf(X ), we shall establish the following commmutative diagram (39)
in Theorem4.15, which is theDc

qc(X ) = Dperf(X ) analogue of theHopkins–Smith
theorem, coupled with the fundamental theorem of Hopkins, Neeman, Thoma-
son, and others, reviewed in Sect. 2, which is the Dqc(X ) analogue of he Ohkawa
theorem:

2|X |
{Q∈Dqc(X ) | supp(Q)⊆−}

L(Dqc(X ))
supp

Tho(|X |)
Dperf
− (X )

T
(
Dperf(X )

)
supp

IX
S(Dqc(X ))

CX

(2)

This commutative diagram is very important because it encapsulates the story
(of not only this article, but also of this proceedings!). In fact, this commuta-
tive diagram in Dc

qc ⊂ Dqc, which is the analogue of the commutative diagram
in SHc ⊂ SH (introduced in Sect. 3), leads us to extend these commutative dia-
grams to other triangulated categories. Furthermore, the mutually inverse arrows
at the bottom right of the diagram yield a positive solution to the telescope con-
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jecture (see Theorem4.15 and Remark4.16 for more detail), unlike the original
problematic telescope conjecture in SH(p) which shows up in the commutative
diagram (1) (see the paragraph after Theorem3.3 ). Finally, to close this section,
we shall review Neeman’s recent result, which claims two close relatives Db

coh(X )

and Dperf(X ) actually determine each other, and its main technical tool: approx-
imable triangulated category whose principal example is Dqc(X ), as well as SH.

Section5: Having been convinced that Db
coh(X ) and Dperf(X ) carry rich informa-

tion and are intimately related to each other in the previous section, we review here
Neeman’s recent investigations of the important “strong generation”property, in
the sense of Bondal and Van den Bergh [20], for Db

coh(X ) and Dperf(X ). The focus
here (and in this paper) is Neeman’sDb

coh(X ) strong generation sufficient criterion
via de Jong’s regular alteration, for which we give a substantial part of its proof,
including some modifications.

• Start with theDqc(X ) strong compact generation sufficient criterion Theorem5.12,
and give an outline of its proof, emphasizing where the approximability of Dqc(X )

is used.
• Applying both the fundamental theorem of Hopkins, Neeman, Thomason and
others on the classification of thick tensor ideals of Dperf(X ) and the Thomason
localization theorem on Dperf(X \ Z), both of which were reviewed in Sect. 4, we
shall show how the Dqc(X ) strong compact generation sufficient criterion Theo-
rem5.12, reviewed above, implies theDqc(X ) strong bounded generation sufficient
criterion via de Jong’s regular alteration Theorem5.12. Here, we extend and par-
tially modify Neeman’s proof in order to make this review beginner-friendly.

• Having the Dqc(X ) strong compact generation sufficient criterion available, we
can prove our desired Db

coh(X ) strong generation sufficient criterion via de Jong’s
regular alterationTheorem5.6.However, this proof is rather involved, and requires,
in addition to Christensen’s theory of phantom maps, some algebro-geometric
result which we had to put in a black box. We have located this black box in
Lemma5.7 (ii).

Neeman’s own results presented in this survey are not exactly what he talked
about at the workshop. For instance, although the “strong generation”of Db

coh(X )

and Dperf(X ) was still a major issue in Neeman’s lecture series, Neeman’s theory
of approximable triangulated category, which first appeared in Neeman’s series of
arxiv preprints in 2017,was not touched uponduring 2015 lectures. Likewise, nothing
was mentioned from Sects. 3 and 4 in this survey during 2015 lectures. In contrast,
Neeman actually talked about other results of his own , but they have been omitted
in this survey. All of these decisions were made in order to make this proceedings a
“coherent story,”with this survey at its philosophical core. In fact, the author, who
happened to be both an organizer of the workshop and an editor of this follow-
up proceedings, became confident that the mathematics presented by Neeman at
the workshop vividly interacts with lots of other talks at the workshop and articles
submitted to this proceedings. So, the author repeatedly mentioned such interactions
whenever appropriate.
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In spite of such an excitement, the first version of this paper was just a twenty
page short list of results with no proof,2 but it was the requests and the suggestions
by Professor Neeman and Professor Morava, which prompted the author to revise
this article repeatedly to contain lots of useful results, including many proofs!

The author would like to express his hearty thanks to Professor Amnon Neeman
for his beautiful lecture series, his encouragement to write up his lecture series from
the author’s perspective as a non-expert, and his request to write a beginner-friendly
survey of his proof of the Db

coh(X ) strong generation sufficient criterion, in such a
way that the roles of the homotopical ideas of Bousfield, Ohkawa, Hopkins–Smith
and others in its proof become transparent. Not only that, Professor Neeman kindly
read a preliminary version of this survey and offered the author many many useful
suggestions including locating author’s confusions.

The author’s thanks also goes to Professor Jack Morava for his suggestion to
emphasize the telescope conjecture and the chromatic splitting in this article, as well
as many inspiring and useful comments, some of which emerged as footnotes of this
paper.

The author also thanks Dr. Tobias Barthel for his help with the chromatic splitting
conjecture, Professor Mike Hopkins for his historical comment on an earlier version
of this paper, Professors Srikanth B. Iyengar and Ryo Takahashi for their information
of theirwork, andProfessor PeterMay for his comments on the definition of the tensor
triangulated category and supporting our emphasis of the conjecture(s) of Hovey and
Hovey–Palmieri. The author also would like to thank Dr. Ryo Kanda for preparing
a tex file of Professor Neeman’s lecture series for us.

Still, the author is solely responsible for any left over mistakes and confusions,
as a matter of course.

Professor Haynes Miller informed the author of interesting works of Ruth
Joachimi and Tobias Barthel, both of which have been incorporated in this survey
and our proceedings, As an editor of this proceedings, the author would like to thank
Professor Miller for these information and other valuable information, all of which
were so crucial in organizing this proceedings.

To conclude the introduction, the author dedicates this survey to Professor Tet-
susuke Ohkawa, the author’s former colleague at Hiroshima University. Probably
the author should express his heartfelt gratitude to Professor Tetsusuke Ohkawa with
rhetorical flourish... However, the author does not have such an ability, and, what is
probably even more importantly, the author knows very well that Professor Ohkawa
prefers interesting mathematics much more than such rhetorical flourish! So, the
author would like to close this section with a homework on behalf of Professor
Tetsusuke Ohkawa to be submitted to Professor Tetsusuke Ohkawa:

2Actually, the author thought even such a short list is exciting.
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Homework 1.1 Extend the commutative diagrams below to other triangulated cat-
egories:

mysterious set
Ohkawa Th.

B(SH(p))
Hovey Conj.

?=
L(SH(p))

chromatic hierachy
···�Cn+1···�Cn···

Hopkins–Smith Th.
T

(
SHfin

(p)

) I (split inj.)

S(SH(p))
C (split surj.)

2|X |
{Q∈Dqc(X ) | supp(Q)⊆−}

L(Dqc(X ))
supp

Tho(|X |)
Dperf
− (X )

T
(
Dperf(X )

)
supp

IX
S(Dqc(X ))

CX

2 Ohkawa’s Theorem on Bousfield Classes Forming a Set,
and Its Shadows in Algebraic Geometry

The first goal of this section is to recall Ohkawa’s theorem in stable homotopy theory.
Ohkawa’s theorem claims the Bousfield classes in the stable homotopy category SH
form a set which is very mysterious and beyond our imagination.3

Then the second goal of this section is the fundamental theorem of Hopkins,
Neeman, Thomason and others, which roughly states the analogue of the Bousfield
classes in Dqc(X ), in contrast to the Ohakawa’s case of SH, form a set with a clear
algebro-geometric description.

Since both SH and Dqc(X ) are triangulated categories, we start with recalling
some basic terminologies of triangulated categories.

3Concerning this sentence, Professor Morava communicated the following thoughts to the author:
“When I read it I was reminded of a quotation from the English writer Sir Thomas Browne (from
‘Urn Burial’, in 1658):

What song the Sirens sang, or what name Achilles assumed when he hid himself among women,
though puzzling questions, are not beyond all conjecture...

I believe understanding the structure of Ohkawa’s set (perhaps by defining something like a
topology on it) is very important, not just for homotopy theory but for mathematics in general. An
analogy occurs tome, to other very complicated objects (like the Stone-Čech compactification of the
rationals or the reals, or maybe the Mandelbrot set) which are very mysterious but can approached
as limits of more comprehensible objects. Indeed I wonder if this is what Neeman’s theory of
approximable triangulated categories points toward.”
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2.1 Bousfield Localizations

Let T be a triangulated category. The suspension functor is denoted by Σ . In this
article all triangulated categories are assumed to have small Hom-sets, except Verdier
quotients to be defined now.

In fact, to study highly rich objects like triangulated categories, we should “local-
ize”at various stages. This is exactly what Verdier [135] did in the context of derived
categories.4

4Let us briefly recall the localization in the abelian category setting: [41, III, 1] [43, p. 122, Exer. 9].
Just as we may start with thick triangulated categories for Verdier quotients, which we will see in
Remark2.3 (iii), to localize an abelian categoryA by its full subcategory B,we start with assuming
B is a Serre subcategory, i.e.

for any exact sequene 0→ B′ → B→ B′′ → 0 inA,
(
B ∈ B ⇐⇒ (B′ ∈ B andB′′ ∈ B)

)

Then the quotient category A/B, in the sense of Gabriel, Grothendieck, and Serre, is of the fol-
lowing form:

ObA/B := ObA; “Hom”A/B(A,A′) := lim−→
A,A′ s.t. A/A∈B,A′∈B

HomA
(
A,A′/A′

)

Thus, an element of HomA/B(A,A′) is of the following form:

A A′ ∈ B

A A′

B 
 A/A A′/A′

However, if we consider a similar diagram in the setting of derived categories, we may take the
homotopy pullback Ã as in the following diagram:

Ã

�

� A

�

A′

�

A A′/A′

Here, arrows with � are local maps, and so, this gives a pair of maps (A
�←− Ã→ A′), which is a

typical element in the “Hom”class in the Verdier quotient.
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Definition 2.1 (Verdier quotient (a.k.a. Verdier localization)) [135] (see also [111,
Chapter2]) For a triangulated category T and its triangulated subcategory5 S, the
Verdier quotient (a.k.a. Verdier localization) T /S is a “triangulated category” ,6

which are characterized by the following properties:

• Ob(T /S) = Ob(T ). For X ,Y ∈ Ob(T /S) = Ob(T ), the class of morphisms, is
given by

“Hom”T /S (X ,Y ) = diagrams of the form (X
l←− Z

f−→ Y ) with l, f ∈ HomT ,Cone(l) ∈ Ob(S)

(X
l1←− Z1

f1−→ Y1) � (X
l2←− Z2

f2−→ Y2) ⇐⇒ Z1

l1 f1

X ∃Z Y

Z2

l2 f2

• The Verdier localization functor

Funiv : T → T /S
X �→ X

(X
f−→ Y ) �→ (X

idX←− X
f−→ Y )

(3)

is universal for all triangulated functors F : T → T which sends all morphisms

(Z
l−→ X ) with Cone(l) ∈ Ob(S) to invertible morphisms.

• The triangulated structure of T /S is induced from that of T via the Verdier local-
ization functor Funiv:

– The suspension ΣT /S of T /S is induced from the suspension ΣT of T :

ΣT /S : T /S → T /S
X �→ ΣT X

(X
l←− Z

f−→ Y ) �→ (ΣT X
ΣT l←−− ΣT Z

ΣT f−−→ ΣT Y )

– A distinguished triangle in T /S is isomorphics to the Verdier localization functor
Funiv image of a distinguished triangle in T .

As is always the case with such a localization procedure, the Verdier localization
does not necessarily have small Hom-sets. It was Neeman’s insight [105, 106, 111]

5WARNING!: In this article, we follow the convention of [111, Def. 1.5.1] [78, 4.5] for a
triangulated subcategory, which is automatically full by this convention. On the other hand, it
is not so in the convention of [131, p. 3,1.1].
6Verdier quotient does not necessarily have small Hom-sets.



From Ohkawa to Strong Generation via Approximable … 25

tomake use of the Bousfield localization [21], which was introduced in the context of
stable homotopy theory, to take case of this problem in general triangulated category
theory.

To explain this theory of Neeman, we now prepare some definitions.

Definition 2.2 (WARNING!: A triangulated subcategory is by definition [111,
Def. 1.5.1] [78, 4.5] automatically full.)

1. A triangulated subcategory S of a triangulated category T with small coproducts
is called localizing, if it is closed under coproducts in T .

2. A triangulated subcategory S of T is called thick, if it closed under direct sum-
mands in T .

3. [111, p99, Rem.2.1.39] The thick closure Ŝ of a triangulated subcategory S of a
triangulated category T is the triangulated subcategory of T consisting of direct
summands in T of objects in S.

4. [131, 1.4] A triangulated subcategory S of a triangulated category T is called
dense, if Ŝ = T .

Remark 2.3 (i) Every localizing triangulated subcategory is thick, for any direct
summand decomposition in T :

S 
 x = ex ⊕ (1− e)x

can be realized using the cones in S :
{
ex = Cone (⊕Nx → ⊕Nx : (ξn)n∈N �→ (ξn − eξn−1)n∈N)

(1− e)x = Cone (⊕Nx → ⊕Nx : (ξn)n∈N �→ (ξn − (1− e)ξn−1)n∈N)

(ii) A triangulated subcategory S of a triangulated category T is thick if and only
if S = Ŝ.

(iii) [111, p99, Rem.2.1.39] The thick closure is nothing but the kernel of the Verdier
localization functor: For a triangulated subcategory S of a triangulated category T ,

Ŝ = Ker (Funiv : T → T /S) .

(iv) [111, p. 148, Cor. 4.5.12] IfS is a dense triangulated subcategory of a triangulated
category T , then,

∀x ∈ T , x ⊕Σx ∈ S. (4)

To see this,7 since ∃y ∈ T s.t. x ⊕ y ∈ S, form a triangle:

x ⊕ 0⊕ y
0⊕0⊕idY−−−−→ 0⊕ x ⊕ y

0⊕idX⊕idY−−−−−−→ Σx ⊕ x ⊕ 0,

where the first and the second terms are contained in S: x ⊕ 0⊕ y ∼= 0⊕ x ⊕ y ∼=
x ⊕ y ∈ S, and so is the third term: Σx ⊕ x ∼= Σx ⊕ x ⊕ 0 ∈ S, as desired.

7If T is essentially small, this result also follows immediately from a general result reviewed later
in Proposition4.3.
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FromRemark2.3 (iii), to search for criteriawhich guarantee theVerdier quotient to
have smallHom-sets,wemay startwith a thick triangulated subcategoryS ofT .Also,
while the original Bousfield localization [21] require T to have small coproducts,
there are many cases where we wish Verdier quotients T /S to have small Hom-sets,
even when T does not have small coproducts, Now, Neeman [111] proposed the
following general definition for Bousfield localization:

Definition 2.4 [111, Def. 9.1.1, Def. 9.1.3, Def. 9.1.4, Def. 9.1.10] [78] (i) Let S
be a thick subcategory of a triangulated category T .8 Then the pair S ⊂ T is
said to possese a Bousfield localization functor when the Verdier localization
functor Funiv : T → T /S has a right adjoint G : T /S → T , which is called the
Bousfield localization functor. The resulting composite

L := G ◦ Funiv : T Funiv−−→ T /S G−→ T

is also called the Bousfield localization functor by an abuse of terminology.
(ii) S ⊂ T is, by definition, the full subcategory of S − colocal objects.
(iii) S⊥ ⊂ T is, by definition, the full subcategory of L− localobjects or
S − localobjects.

An adjoint functor between triangulated categories showed up in the above defi-
nition, but such an adjoint functor actually becomes a triangulated functor:

Lemma 2.5 [111, Lem.5.3.6] Suppose a pair of adjoint functors between triangu-
lated categories are given:

S
F

T
G

If either one of F or G is a triangulated functor, then so is the other.

We shall freely use this useful fact for the rest of this article.
Still, readers might worry that themore existence of a right adjointG : T /S → T

in the definition of the above Bousfield localization too weak. However, in this
particular case, we have a very special property that the naturalmap from the category
of fractions T

[
Σ(Funiv)

−1] to the Verdier quotient T /S becomes an equivalence:

T
[
Σ(Funiv)

−1] ∼=−→ T /S,

whereΣ(Funiv) is the collection ofmorphisms inT whose image inT /S is invertible,
i.e. those maps in T whose mapping cone is in S. And, using this useful fact, we can
see any right adjoint G : T S → T is fully faithful by applying the following useful
fact:

8We dot not require T to have small coproducts in this definition.
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Lemma 2.6 ( see [42, I, Prop. 1.3] [78, Prop. 2.3.1]). For an adjoint pair9:

C
F

D
G

, the following conditions are equivalent:

• The right adjoint G is fully faithful.
• The adjunction F ◦ G → IdD is an isomorphism.
• The functor F : C [Σ(F)−1

]→ D satisfying F = F ◦ QΣ(F) is an equivalence,
whereΣ(F) is the collection of morphisms in T whose images in T ′ by F becomes
invertible, and
QΣ(F) : C → C

[
Σ(F)−1

]
is the canonical quotient functor to the category of frac-

tions.

Thus, from Lemma2.6 and Lemma2.5, we obtain the following:

Proposition 2.7 Any right adjoint G : T /S → T in Neeman’s definition of the
Bousfield localization Definition2.4 is automatically a fully faithful triangulated
functor.

In fact, as is well known, if a triangulated functor F : T → T ′ enjoys good prop-
erties listed in Lemma2.6, then we have the following very useful result10,11:

Proposition 2.8 (see e.g. [126, Lem.3.4]) If a triangulated functor F : T → T ′ has
a fully faithful right adjoint G or a right adjoint G with its adjunction an isomorphism

F ◦ G ∼=−→ IdD, then Ker F becomes a thick triangulated subcategory of T , and F
induces the following equivalence of triangulated categories:

T /Ker F
∼=−→ T ′

Going back to Bousfield localization, we prepare some more definitions to state
its basic properties.

Definition 2.9 1. (WARNING!: These conventions are those of [78, 4.8], which
are the opposite of [111, Def. 9.1.10; Def. 9.1.11]!) For a full subcategory A of
T , define the full subcategory A⊥ of T by

A⊥ = { t ∈ T | HomT (A, t) = 0 }.

Dually, ⊥A is defined by

9This is an adjoint pair of functors between ordinary categories, and we are not considering any
triangulated structure.
10Goes back at least to Verdier.
11Let us recall the following precursor of this result in the setting of abelian categories, which goes
back at least to Gabriel (see also [126, Lem.3.2]): If an exact functor F : A→ B between abelian
categories has a fully faithful right adjoint G (i.e. the adjunction F ◦ G → IdB is an isomorphism,
thenKer F is Serre subcategory ofA, andF induces the following equivalence of abelian categories:

A/Ker F
∼=−→ B, where the left hand side is the abelian quotient category in the sense of Gabriel,

Grothendieck, and Serre.
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⊥A = { t ∈ T | HomT (t,A) = 0 }.

2. For full subcategories A and B of T , denote by A ∗ B the full subcategory of T
consisting of all objects y ∈ T forwhich there exists a triangle x→ y→ z→ Σx
with x ∈ A and z ∈ B.

Proposition 2.10 [111, Prop. 9.1.18; Th.9.1.16; Th.9.1.13; Cor. 9.1.14]
[78, Prop. 4.9.1] Let S be a thick subcategory of a triangulated category T .12 Then
the following assertions are equivalent.

1. The inclusion functor I : S ↪→ T has a right adjoint Γ̃ : T → S.

2. T = S ∗ S⊥.
3. S ⊂ T posseses a Boundfield localization functor, i.e. the Verdier localization

functor Funiv : T → T /S has a right adjoint G : T /S → T .

4. The composite E : S⊥ ↪→ T → T /S is an equivalence.
5. The inclusion J : S⊥ ↪→ T has a left adjoint T → S⊥ and ⊥(S⊥) = S.
These equivalent conditions can be succinctly expressed, via the standard adjoint
functor notation,13 as follows:

S
I

T
Funiv

Γ̃

T /S
G

(5)

Remark 2.11 Assume that the inclusion I : S ↪→ T has a right adjoint Γ̂ as in
Proposition2.10(1). Then, for each t ∈ T , embed the counit of adjunction Γ (t) =
I Γ̃ (t) → t, where Γ : T → T is called the Bousfield colocalization functor for the
pair T → T /S,14 into a triangle

Γ (t) → t → L(t) → ΣΓ (t),

which yields a functor L : T → T . Then we see L(t) ∈ S⊥, which

• implies T = S ∗ S⊥ in Proposition2.10(2);
• yields a left adjoint L̃ : T → S⊥ to the inclusion J : S⊥ ↪→ T , stated in Proposi-
tion2.10(5), and L̃ yields the Bousfield localization functor, recovering the above
functor L by the composition

L = J ◦ L̃ : T → S⊥ → T . (6)

• yields a left adjoint G : T /S → T to the Verdier localization functor Funiv; T →
T /S as the compositionG : T /S L̃−→ S⊥ ↪→ T stated in Proposition2.10(3), and,

12We do not require T to have small coproducts.
13An arrow above is left adjoint to the arrow below.
14A Bousfield colocalization functor means its opposite functor is a Bousfield localization functor
[54, Def. 3.1.1] [78, 2.8].WARNING: This terminology is not consistent with that of Bousfield [21]
(see [54, Rem.3.1.4]).
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• assuming Proposition2.10(4), L̃ is equivalent to E−1 ◦ Funiv : T → T /S → S⊥.

Remark 2.12 Actually, the property in Proposition2.10(2) is exactly what Bondal–
Orlov [19, Def. 3.1] call semiorthogonal decomposition and denote by

T = 〈S⊥,S〉. (7)

Of course, the fundamental question is when Bousfield location exists. Now,
Neeman’s insight [111, Th.8.4.4] is to apply Brown representability to construct
Bousfield localization. We now review this development following mostly Krause
[77, 78].

Definition 2.13 Let T be a triangulated category with small coproducts.
(i) [111, Def. 6.2.8] A setG of objects in T is said to generate T , if (

⋃
n∈Z

ΣnG)⊥ =
0, i.e.,
given t ∈ T ,

∀g ∈ G,∀n ∈ Z, HomT (Σng, t) = 0 =⇒ t = 0.

(ii) An element t ∈ T is called compact if, for every set of objects {tλ}λ∈� in T , the
natural map

⊕λ∈� HomT (t, tλ) → HomT (t,⊕λ∈�tλ)

is an isomorphism.
(iii) T is called compactly generated , if T is generated by a set of compact objects
in T .

(iii) (c.f. [77, Def. 1][78, 5.1]15 (see also [111, Def. 8.1.2])) A set of objects P in T
is said to perfectly generate T , if,

1. P generates T ,

2. for every countable set of morphisms xi → yi in T such that T (p, xi) → T (p, yi)
is surjective for all p ∈ P and i, the induced map

T
(
p,
∐
i

xi

)
→ T

(
p,
∐
i

yi

)

is surjective.

T is called perfectly generated , if T is perfectly generated by a set P of objects in
T .

Remark 2.14 Any compactly generated triangulated category is perfectly generated.

Theorem 2.15 (Brown representability) [77, Th.A][78, Th.5.1.1] [106, 111] Sup-
pose a triangulated category T is perfectly generated.

15Strictly speaking, the definition here is slightly differently fromKrause’s, but essentially the same.
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1. A functor F : T op → Ab, the category of abelian groups, is cohomological and
sends coproducts in T to products in Ab if and only if

F ∼= T (−, t)

for some object t in T .

2. A triangulated functor T → U preserves small coproducts if and only if it has a
right adjoint.

From the second part of this theorem and the second characterization of Bousfield
localization in Proposition2.10, we immediately obtain the following:

Corollary 2.16 (Existence of Bousfield localization) [78, Prop. 5.2.1]
[111, Prop. 9.1.19] Bousfield localization exists for any perfectly generated triangu-
lated subcategory S of T , a triangulated category with small coproducts.

Corollary 2.17 Bousfield localization exists for any compactly generated triangu-
lated subcategory S of T , a triangulated category with small coproducts.

To be precise, the “compactly generated”assumption adapted in [105, Lem.1.7]
meant the smallest localizing triangulated subcategory containing the generating
set is the entire triangulated category. But this can be reconciled by the following
corollary of Corollary2.16:

Corollary 2.18 [111, Th.8.3.3; Prop. 8.4.1] Suppose T is perfectly generated by a
set P of objects in T , then

T = the smallest localizing triangulated subcategory containing P.

For a special case of Corollary2.17, Neeman and Miller gave a simple explicit
homotopy theoretical construction of Bousfield localization with a nice property:

Theorem 2.19 [93] [105, Lem.1.7] For any localizing triangulated subcategoryR
of a compactly generated triangulated category with small coproducts T such that
R is the smallest localizing triangulated subcategory containing a set R consisting
of compact objects in T ,

1. Bousfield localization exists,16 given explicitly byMiller’s finite localization [105,
p.554, Proof of Lem.1.7] [93, From p.384, -6th line to p.385, 1st line]: for x ∈ T ,

proceed inductively as follows:

• x0 := x,
• Suppose xn has been defined, then set

xn+1 := Cone

(
⊕r∈R ⊕fr∈HomT (r,xn) r

⊕r∈R⊕fr∈HomT (r,xn)fr−−−−−−−−−−→ xn

)

16This claim itself is a special case of Corollary2.17.
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• Then Miller’s finite localization of x ∈ T is simply given by the mapping tele-
scope:

x → Lx := hocolim(xn).

2. Miller’s finite localization is smashing, i.e. L preserves arbitrary coproducts.

Let us record the above definition of “smashing” , because this definition of
“smashing”without smash (tensor) product is not the traditional Ravenel’s defini-
tion [122]:

Definition 2.20 [78, 5.5] A Bousfield localization L : T → T is smashing if L pre-
serves arbitrary coproducts in L. Then, S = Ker L is also called smashing.

We have the following equivalent characterizations of smashing Bousfield local-
ization without smash (tensor) product:

Proposition 2.21 [78, Prop. 5.5.1] For a thick subcategory S of a triangulated cate-
gory with small coproducts, suppose there is a Bousfield localization L = G ◦ Funiv :
T → T for the pair S → T in the following set-up: (see (5)):

S
I

T
Funiv

Γ̃

T /S
G

(8)

Then the following conditions are equivalent:

1. Bousfield localization L = G ◦ Funiv is smashing, i.e. L = G ◦ Funiv : T → T
preserves coproducts (see Definition2.20).

2. Bousfield colocalization Γ = I ◦ Γ̃ : T → T preserves coproducts.
3. The right adjoint G : T /S → T of the Verdier quotient Funiv : T → T /S pre-

serves coproducts.
4. The right adjoint Γ̃ : T → S of the canonical inclusion I : S → T preserves

coproducts.
5. The full subcategory S⊥ of all L-local (S-local) objects is localizing.

If T is perfectly generated,17 in addition the following is equivalent.

6. In the set-up (8), both Γ̃ and G have right adjoints and (8) is amplified to a
recollement18 of the following form:

S

I

T

Funiv

Γ̃ T /SG (9)

17This “perfectly generated”condition is used to apply Brown representability (Theorem2.15) to
construct two right adjoints in the recollement.
18For the precise definition of recollement, consult [15, 1.4].
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Later in Proposition2.28, all of these conditions are shown to be equivalent to
Ravenel’s [122], when T is a rigidly compactly generated tensor triangulated cat-
egory. Smashing localization is frequently referred in the context of the telescope
conjecture, which asks whether the converse of the second claim in Theorem2.19
holds or not19:

Conjecture 2.22 (Telescope conjecture without smash (tensor) product)
[54, Def. 3.3.2, Def. 3.3.8] (see also Proposition2.28) In a rigidly compactly gener-
ated tensor triangulated category T , a smashing localization L : T → T is a finite
localization, i.e. Ker L is generated by a set of compact objects in T .

After we take into account the tensor product structure, we shall revisit the finite
localization and the telescope conjecture in Theorem3.3. For now, we record another
easy consequence of Miller’s finite localization construction presented in Theo-
rem2.19:

Proposition 2.23 (See [105, p. 556, from 7th to 10th lines])
Let R be a set of compact objects in a triangulated category with small coproducts

T , and R be the smallest localizing triangulated subcategory containing R.

Then, every element in Rc is isomorphic in Rc to a direct summand of a finite
extensions of finite coproducts of elements in R. In particular,Rc is essentially small.

In fact, the Bousfield localization with respect to the pair 〈R〉 = R ⊂ R, is trivial
for any x ∈ R:

x→ Lx := hocolim(xn) � 0.

Then, if x ∈ Rc, this map becomes trivial at some “finite” stage, which implies x
is a direct summand of a finite extensions of finite coproducts of elements in R, as
claimed.

2.2 Bousfield Classes and Ohkawa’s Theorem

Now we focus on a special case: let T = SH be the homotopy category of spectra.
Then T is a triangulated category with coproducts. It has the smash product ∧: T ×
T → T and the unit object S0 ∈ T which make T a tensor triangulated category.20

The smash product preserves coproducts in each variable. T is generated by {S0},
and T satisfies Brown representability.

For each H ∈ T , put H∗ = H ∧ (−). We consider the localizing triangulated
subcategory

19Strictly speaking, this is the telescope conjecture without smash (tensor) product, but coincides
with the original Ravenel’s telescope conjecture for T = SH, and more generally for rigidly
compactly generated tensor triangulated categories [54, Def. 3.3.2, Def. 3.3.8] (see also Proposi-
tion2.28).
20For a serious treatment of the definition of “tensor triangulated category,” consult [92].
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KerH∗ = { t ∈ T | H ∧ t = 0 },

which is called the Bousfield class of H .

Theorem 2.24 (Bousfield [21]) Let T = SH be the homotopy category of spectra.

1. If S ⊂ SH is a localizing triangulated subcategory which is generated by a set
of objects, then a Bousfield localization exists for S.

2. For everyH ∈ SH, there exists a set of objects which generatesKerH∗. Therefore
a Bousfield localization exists for KerH∗.

Somewhat surprisingly, Ohkawa’s theorem had been elusive from researchers’
attention for more than a decade. It was the paper of Dwyer and Palmieri [37] which
drew researchers’ attention to Ohkawa’s surprising theorem21:

Theorem 2.25 (Ohkawa [115]) {KerH∗ | H ∈ SH } is a set.

We note that no explicit structure of this set is known.
For more details, including a proof, of the Ohakawa theorem, see the survey [26]

in this proceedings.

2.3 Casacuberta–Gutiérrez-Rosický Theorem, Motivic
Analogue of Ohkawa’s Theorem

Ohkawa’s theorem is a statement in the stable homotopy category SH, which is “a
part”of the Morel–Voevodsky stable homotopy category22 SH(k) when k ⊆ C, via
the retraction of the following form:

SH

id

SH(k)
Rk SH (10)

So, a natural question here is whether there is a shadow of Ohkawa’s theorem in
this algebro-geometrical setting, i.e. whether there is amotivic analogue of Ohkawa’s
theorem or not.

Now, Casacuberta–Gutiérrez-Rosický [28] answered this question affirmatively
under some very mild assumption.

Theorem 2.26 [28, Cor. 3.6] For each Noetherian scheme S of finite Krull dimen-
sion, there is only a set of distinct Bousfield classes in the stable motivic homotopy
category SH(S) with base scheme S.

Once again, no explicit structure of this set is known.
For various generalizations of Ohkawa’s theorem, see afore-quoted [28], also [66]

and the review [27], both in this proceedings.

21For a concise summary of the academic life of Professor Tetsusuke Ohkawa, see [91] in this
proceedings.
22For short reviews of the Morel-Voevodsky stable homotopy category, cosult [72, 94] for instance.



34 N. Minami

2.4 Localizing Tensor Ideals of Derived Categories and the
Fundamental Theorem of Hopkins, Neeman, Thomason
and Others

In both Ohkawa’s Theorem2.25 and its algebro-geometric shadow Theorem2.26,
the resulting sets are completely mysterious and beyond our imagination. However,
if we take a look at the algebro-geometrical shadow of Ohkawa’s theorem from a
different angle, i.e. by considering Dqc(X ) for a fixed Noetherian scheme instead of
SH(k), thenwe see an explicit set representing clear algebro-geometric information.
This is the fundamental theorem of Hopkins, Neeman, Thomason, and others, which
has been the guiding principle of the area.

Now, the tensor structure is essential for this fundamental theorem, and we must
start with some review of fundamental facts about general tensor triangulated cate-
gories and Bousfield localization from the tensor triangulated category point of view.

Definition 2.27 Let T be a tensor triangulated category.

1. A triangulated subcategory I of T is called a

{
tensor ideal

prime
if

{
T ⊗ I ⊂ I;
it is a tensor ideal and (T \ I)⊗ (T \ I) ⊂ (T \ I) �= ∅.

2. [81,Chapter III] (see also [54,App.A,] [7, p. 1163])An element x in a closed sym-
metric monoidal triangulated category (T ,⊗,Hom) is called strongly dualizable
or simply rigid,23 if the natural map Dx ⊗ y→ Hom(x, y), where Dx :=
Hom(x,1), is an isomorphism for all y ∈ T .

3. [54, Def. 1.1.4] (see also [7, Hyp.1.1]) A closed symmetric monoidal triangu-
lated category (T = 〈G〉,⊗,Hom) is called a
unital algebraic stable homotopy category or a
rigidly compactly generated tensor triangulated category, if 1 is compact
and T = 〈G〉 for a set G of rigid and compact objects.24

Now, we are ready to reconcile our previous definition (Definition2.20) of smash-
ing localization with Ravel’s original definition in [122] for rigidly compactly gen-
erated tensor triangulated categories:

23If x ∈ T is strongly dualizable, i.e. rigid, the natural map x→ D2x is an isomorphism [81,
Chapter III] [54, Th.A.2.5.(b)].
24In a rigidly compactly generated tensor triangulated category, any compact object is rigid, for,
by Proposition2.23, any compact object is seen to be isomorphic to a direct summand of a finite
extensions of finite coproducts of rigid elements. In particular, in a rigidly compactly generated
tensor triangulated category, 1 is both rigid and compact.
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Proposition 2.28 [54, Def. 3.3.2] For a thick subcategory S of a closed symmetric
monoidal triangulated category with small coproducts (T = 〈G〉,⊗,Hom),25 sup-
pose there is a Bousfield localization L : T → T for the pair S → T . Consider the
following “smishing”conditions:

(S): (Ravenel’s original definition of smashing localization [122]):

L ∼= L(1)⊗−, where1 is the unit onject of (T ,⊗).

(C): (The definition of smashing localization in Definition2.20):

L preserves arbitrary coproducts.

Then, the implication (S) =⇒ (C) always holds. If T is also a rigidly compactly
generated tensor triangulated category, the converse (C) =⇒ (S) also holds, and
so, (C) and (S) become equivalent.

Proof The implication (S) =⇒ (C) is easy:

L (⊕λxλ)
(S)∼= L(1)⊗ (⊕λxλ) ∼= ⊕λ (L(1)⊗ xλ)

(S)∼= ⊕λLxλ.

For the converse (C) =⇒ (S), first note that (C) implies those x ∈ T which satisfies
L1⊗ x ∼= Lx form a localizing triangulated subcategory of T , even without the
rigidly compactly generated assumption. For instance, if L1⊗ xλ

∼= Lxλ ∀λ ∈ �,

then

L(1)⊗ (⊕λxλ) ∼= ⊕λ (L(1)⊗ xλ) ∼= ⊕λLxλ

(C)∼= L (⊕λxλ) .

Now, we are reduced to showing L1⊗ g ∼= Lg for any rigid element g. For this, we
start with the tensor product of the localization distinguished sequence for 1 with g:

Γ (1)⊗ g → (g ∼= 1⊗ g) → L(1)⊗ g,

and apply the Bousfield localization L to drive the equivalence L(1)⊗ g ∼= Lg as
follows:

(
∗ (TI)∼= L(Γ (1)⊗ g)

)
→

(Lg ∼= L(1⊗ g))
∼=−−−−→

∵)(TI)

(
L(L(1)⊗ g)

(R)∼= LHom(Dg, L(1))
(L)∼= Hom(Dg, L(1))

(R)∼= L(1)⊗ g

)
,

where (TI) holds because Ker L is a tensor ideal, (R) holds because g is rigid, and
(L) holds because Hom(Dg,L(1)) is L-local. �

25Recall in this case T becomes distributive, because for any objects xλ (λ ∈ �), y, z in T ,

Hom ((⊕λxλ)⊗ y, z) ∼= Hom
(⊕λxλ,Hom(y, z)

) ∼=∏λ Hom
(
xλ,Hom(y, z)

) ∼=∏λ Hom(xλ ⊗
y, z) ∼= Hom (⊕λxλ ⊗ y, z) .
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In general, when we talk about smashing Bousfield localization in tensor trian-
gulated setting, we adopt the following equivalent conditions, where the localizing
tensor ideal I is called a smashing ideal [7, Def. 2.15]:

Proposition 2.29 [See [7, Th.2.13]] Let T be a tensor triangulated category with
coproducts, and let I be a localizing tensor ideal of T for which a Bousfield localiza-
tion exists. Define the Bousfield localization functor L : T → I⊥ as in Remark2.11.
Then the following assertions are equivalent.

(TI) I⊥ is a tensor ideal. That is, T ⊗ I⊥ ⊂ I⊥.
(S) L is smashing in Ravenel’s sense: L ∼= L(1)⊗−.
Remark 2.30 (TI) is a tensor triangulated analogue of Proposition2.21(5).

Proof (Proof of Proposition)2.29 Now, for the implication (TI) =⇒ (S), consider
the tensor product of the localization distinguished sequence for 1 with x ∈ T :

Γ (1)⊗ x→ (x ∼= 1⊗ x) → L(1)⊗ x, (11)

where Γ (1)⊗ x ∈ I because I is a tensor ideal by assumption, and L(1)⊗ x ∈ I⊥
becauseI⊥ is also a tensor ideal by (TI). Then, from the uniqueness of the localization
distinguished sequence for x ∈ T , we find Lx ∼= L(1)⊗ x, which implies (S).

The converse (S) =⇒ (TI) is easy; for, if l = L(l) ∈ I⊥ be a I-local object and
x ∈ T , then

l ⊗ x = L(l)⊗ x
(S)= (L(1)⊗ l)⊗ x = L(1)⊗ (l ⊗ x)

(S)= L(l ⊗ x) ∈ I⊥.

�

In the above proposition, we started with a localizing tensor ideal for which a
Bousfield localization exists. However, we have the following example of a localizing
tensor ideal for which an existence of the Bousfield localization is problematic:

Example 2.31 Let T = SH be the homotopy category of spectra. For everyH ∈ T ,
its Bousfield class KerH∗ is a localizing tensor ideal. The subcategory

KerH ∗ = { t ∈ T | Hom(t,Σ iH ) = 0 for all i ∈ Z },

called the cohomological Bousfield class ofH , is also a localizing tensor ideal. Actu-
ally, as was noticed by Hovey [52, Prop. 1.1], any Bousfield class is a cohomological
Bousfield class:

KerH∗ = Ker(IH )∗,

where IH is the Brown–Comenetz dual of H , characterized by: (IH )∗(t) =
Hom (H∗(t), Q/Z) , ∀t ∈ T .
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Here, Hovey [52] and Hovey–Palmieri [53] proposed the following conjectures,
any one of which implies that an arbitrary localizing tensor ideal KerH ∗ admits a
Bousfield localization26:

Conjecture 2.32 (i) [52, Conj. 1.2] Every cohomological Bousfield class is a Bous-
field class.
(ii) Every localizing tensor ideal is a Bousfield class.
(iii) [53, Conj. 9.1] Every localizing triangulated subcategory is a Bousfield class.

Of course, (iii) =⇒ (ii) =⇒ (i), for we have an obvious inclusions of classes:

Bousfield-Ohkawa set := The class of Bousfield classes ⊆ The class of cohomological Bousfield classes

⊆ The class of localizing tensor ideals ⊆ The class of localizing triangulated subcategories,

where all the inclusings become= if the above conjecture (iii) holds. However, even
(i) is still open, and so it is still unknown even whether the class of cohomological
Bousfield classes becomes a set or not. Similarly, it is still unknown even whether
any cohomological Bousfield class admits a Bousfield localization or not. Here, we
shall show an analogue of (ii) holds holds with an explicit geometric description of
its set structure for Dqc(X ).

For a scheme X , Dqc(X ) is the derived category of complexes of arbitrary OX -
modules on X whose cohomologies are quasi-coherent. If X is quasi-compact and
separated, thenDqc(X ) is equivalent toD(QCoh X ), whereD(QCoh X ) is the derived
category of complexes of quasi-coherent sheaves on X ([17, Corollary5.5]). Here
we have the nice theorem of Gabriel [41] and Rosenberg [124]:

Theorem 2.33 Any quasi-compact and separated scheme X can be reconstructed
from QCoh X .

Glancing at this theorem of Gabriel and Rosenberg, we naturally hope Dqc(X ) ∼=
D(QCoh X ) would carry rich information of X .

Now Dqc(X ) ∼= D(QCoh X ) is a tensor triangulated category with coproducts,
with respect to the derived tensor product −⊗L

X −, which is defined using flat res-
olutions (see e.g. [82, (2.5.7)]), and the unit object given by the structure sheaf OX .
Let us also recall the following standard facts about derived functors:

Proposition 2.34 (i) (see e.g. [82, (2.1.1)(2.7.2)(3.1.3)(3.9.1)(3.6.4)∗] )For anymap
of schemesf : X → Y , we can define the derived pullback triangulated functor

Lf ∗ : Dqc(Y ) → Dqc(X ),

via flat resolutions.
Furthermore, we have a natural functorial isomorphism

Lf ∗Lg∗ ∼−→ L(gf )∗

26Conjecture2.32 should be taken more seriously. In fact, Professor Peter May is very glad to see
Conjecture2.32 is advertised here.
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(ii) (see e.g. [82, (2.1.1)(2.3.7)(3.1.2)(3.9.2)(3.6.4)∗]) For any quasi-compact and
quasi-separated map of schemes f : X → Y , we can define the derived direct image
(a.k.a. derived pushforward) triangulated functor

Rf∗ : Dqc(X ) → Dqc(Y ),

via injective resolutions. Furthermore, we have a natural functorial isomorphism

R(gj)∗
∼−→ Rg∗Rf∗,

when both f and g and quasi-compact and quasi-separated maps.
(iii) (see e.g. [82, (3.6.10)]) For any quasi-compact and quasi-separated map of
schemes f : X → Y , (Lf ∗, Rf∗) gives an afjunction pair:

Dqc(Y )
Lf ∗

Dqc(X )
Rf∗

(iv) (see e.g. [82, (3.2.1)(3.9.4)]) For any quasi-compact and quasi-separated map of
schemes f : X → Y , the projection formula holds, i.e. we have natural isomorphisms
for any F ∈ Dqc(X ),G ∈ Dqc(Y ):

(Rf∗F)⊗L G
∼=−→ Rf∗

(
F ⊗L Lf ∗G

)
, G ⊗L Rf∗F

∼=−→ Rf∗
(
Lf ∗G ⊗L F

)

To investigate an analogue of Ohkawa’s theorem for Dqc(X ), we must consider
localizing tensor ideals ofDqc(X ).However, those smashing (localizing tensor ideals)
are sometimes, more important. To study such (smashing) localizing tensor ideals of
Dqc(X ), an appropriate concept of “stalk”becomes crucial:

Definition 2.35 (compare with [2, Proof of Th.4.12] [61, App.A])27 Let x ∈ X be
a point in a scheme. Then we have the following canonical maps involving the local
ring OX ,x and the residue field kx at x ∈ X :

Spec kx

ix

rx
SpecOX ,x

lx

flat
X =⇒ Dqc(Spec kx) Dqc

(
SpecOX ,x

)
L(rx)∗

Dqc(X )
L(lx)∗=(lx)∗

L(ix)∗

(12)
Then, for E ∈ Dqc(X ), we have four notions of “supports” :

27Our presentation of “supports” in this definition and next proposition is somewhat different from
those given in [2, Proof of Th.4.12] [61,App.A], but the author hopes thiswould bemore transparent
to the reader.
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supp(E) := {x ∈ X | L(ix)
∗E �= 0 ∈ Dqc(Spec kx)

}

� Supp(E) := {x ∈ X | (lx)
∗E �= 0 ∈ Dqc(SpecOX ,x)

} ;
supph(E) := {x ∈ X | L(ix)

∗ (⊕•∈ZH•E
) �= 0 ∈ Dqc(Spec kx)

}

� Supph(E) := {x ∈ X | ⊕•∈Z(H•E)x = (lx)
∗ (⊕•∈ZH•E

) �= 0 ∈ QCoh(SpecOX ,x)
}

(13)

where:

• H•E is the associated homology sheaves, regarded as a chain complex with trivial
boundaries, of E.

• the inclusive relations follow from L(rx)∗(lx)∗ = L(rx)∗L(lx)∗
∼−→ L(lxrx) =

L(ix)∗, where the former equality follows from L(lx)∗ = (lx)∗, a consequence
of the flatness of lx, and the latter isomorphism is a direct consequence of Propo-
sition2.34(i).

• these inclusive relations become equalities when E ∈ Db
coh(X ) because of

Nakayama’s lemma.
• If it becomes necessary to distinguish these four concepts, we call supp(E) the
small support of E, Supp(E) the large support of E. supph(E) the
small homology support of E, Supph(E) the large homology support of E.
Otherwise, we simply call supp(E) the support of E, because this is themost essen-
tial object, and Supph(E) he homology support of E, because this is a tractible
ordinary sheaf theoretical support for the associated homology sheaves⊕•∈ZH•E.

Then the following useful fact will be used later:

Proposition 2.36 (i) Given E ∈ Dqc(X ), we have for any x ∈ X and • ∈ Z,

H• ((lx)∗E
) ∼= (lx)

∗ (H•E) ∈ QCoh
(
SpecOX ,x

)
.

Consequently, for any E ∈ Dqc(X ),

SuppE = Supph E.

(ii) The commutative diagram of quasi-coherent sheaves in (12) restricts to coherent
sheaves, and for any E ∈ Db

coh(X ), all the four concepts of supports inDefinition2.35
coincide:

suppE = SuppE = Supph E = supph E.

Proof In view of Definition2.35, we only have to verify the first claim in (i):
H• ((lx)∗E) ∼= (lx)∗ (H•E) ∈ QCoh

(
SpecOX ,x

)
. However, this follows imme-

diately from the flatness of lx which implies (lx)∗ preserves exactness at the cochain
level. �

Now, the fundamental theorem of Hopkins, Neeman, Thomason and others clas-
sify (smashing) localizing tensor ideals of Dqc(X ) under a mild assumption of X :
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Theorem 2.37 ([48] [103, Th.2.8, Th.3.3] [131], [2, Cor4.6; Cor. 4.13; Th.5.6 ] [7,
Cor. 6.8] [34, Cor. 6.8; Ex.6.9] [47, Th.B]) Let X be a Noetherian scheme. Then
every localizing tensor ideal of Dqc(X ) is of the form

KerH∗ = {Q ∈ Dqc(X ) | suppQ ⊆ S },

for some S ⊂ X .
The subcategory KerH∗ is smashing if and only if the corresponding S ⊂ X is

closed under specialization.

Note those S’s with S ⊂ X clearly form a set. So, we see an analogue of Ohkawa’s
theorem, however with a clear algebro-geometrical interpretation of “the Bousfield–
Ohkawa set” in contrast to the case ofOhkawa’s theorem. Furthermore, Theorem2.37
solves Conjecture2.32 (ii) affirmatively for the case Dqc(X ).

Also note that, in the special case when S in Theorem2.37 is Z = X \U ⊂ X ,

the complement of a quasi-compact Zariski open immersion j : U ↪→ X , we have
the following equivalence for not only noetherian, but also more general quasicom-
pact, quasiseparated schemes (in which case, as Lj∗ has a right adjoint Rj∗ with
ε : Lj∗Rj∗ → id an isomorphism, we may apply Proposition2.8 )28,29:

Dqc(X )
/ (

Dqc
)
Z (X )

Lj∗−→∼= Dqc(U ), (14)

where
(
Dqc
)
Z (X ) := {Y ∈ Dqc(X ) | Supp Y ⊆ Z

} = Ker Lj∗.30 In this general-
ity of quasicompact, separated schemes, Bousfield localization L is smashing (see
Proposition2.29), given explicitly as follows:

L
(6)= Rj∗Lj∗ = (Rj∗OU )⊗L

OX
− : Dqc(X ) → Dqc(X )

/ (
Dqc
)
Z (X )

Lj∗−−→∼= Dqc(U )
Rj∗−−→ Dqc(X ).

(15)

28So, should had been known to Verdier.
29Let us recall the following precursor of this result in the setting of abelian category of quasi-
coherent sheaves, which should go back at least to Gabriel (see e.g. [126, In the proof of Prop.3.1]):

QCoh(X )
/
QCohZ (X )

j∗−→∼= QCoh(U ), where the left hand side is the abelian quotient category in

the sense of Gabriel, Grothendieck, and Serre.
30Unlike Theorem2.37 stated under the noetherian assumption, (14) is stated under more
general quasicompact, quasiseparated assumption. Therefore, in this equality

(
Dqc
)
Z (X ) :={

Y ∈ Dqc(X ) | Supp Y ⊆ Z
} = Ker Lj∗, we may not replace Supp with supp . In fact, without

the noetherian hypothesis, Theorem2.37 becomes very bad as was shown in [107]. The author is
grateful to Professor Neeman for this reference.
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3 Hopkins–Smith Theorem and Its Motivic Analogue

In reality, Hopkins was not motivated by Ohkawa’s Theorem2.25 for his influential
paper in algebraic geometry [48] (Theorem2.37). Instead, Hopkins wasmotivated by
his own theoremwithSmith [50] in the sub stable homotopy categorySHc, consisting
of compact objects, whose validity was already known to them back around the time
Hopkins wrote [48].

Theorem 3.1 [50] For any prime p, any thick (épaisse) subcategories of the sub-
triangulated category SHc

(p) consisting of compact objects

SHc
(p) = SHfin

(p) = the homotopy category of p-local finite spectra

is of the form

Cn := Ker E(n− 1)∗
∣∣
SHfin

(p)
=
{
X ∈ SHfin

(p) | E(n− 1) ∧ X = 0
}

= KerK(n− 1)∗
∣∣
SHfin

(p)
=
{
X ∈ SHfin

(p) | K(n− 1) ∧ X = 0
}

.
(16)

Furthermore, these form a decreasing filtration of F(p):

{∗} � · · · � Cn+1 � Cn � Cn−1 � · · · � C1 � C0 = SHfin
(p). (17)

In this Hopkins–Smith classification of thick triangulated subcategories of SHc,

the first step is an easy observation that any thick triangulated subcategory of SHc

is a thick (tensor) ideal,31 furthermore, E(n− 1) and K(n− 1) are the (n− 1)-
st Johnson–Wilson spectrum and Morava K-theory, respectively, and the equality
Ker E(n− 1)∗

∣∣
SHfin

(p)
= KerK(n− 1)∗

∣∣
SHfin

(p)
in (16) and the inclusions (17) are con-

sequences of the following results found in Ravenel’s paper [122]:

Theorem 3.2 (i) [122, Th.2.1(d)] Ker E(n− 1)∗ = Ker
(∨0≤i≤n−1K(i)

)
∗

(ii) [122, Th.2.11] For X ∈ SHfin
(p), if K(i)∗X = 0, then K(i − 1)∗X = 0.

By the Hopkins–Smith work [50], the smashing conjecture for E(n) [122] also
holds [123], and so, Ker E(n− 1)∗ in (16) is a smashing tensor ideal. Actually, the
first equality in (16) is a part of the following elegant reformulation of the tele-
scope conjecture [122][54, Def. 3.3.8] (see also Conjecture2.22) by Miller [93] [54,
Th.3.3.3] (here we follow more recent formulations of [7, Th.4.1; Def. 4.2] [47,
Cor. 2.1; Def. 3.1].):

Theorem 3.3 (Miller’s finite localization and the Ravenel telescope conjecture) Let
T be a rigidly compactly generated tensor triangulated category. Let S(T ) denote

31Such a property is not usually satisfied for general triangulated categories. So, most effort to
generalize the Hopkins–Smith theorem for a general triangulated category T aim at a classification
of thick (tensor) ideals of T c.
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the collection of all smashing localizing tensor ideals of T , and let T(T c) denote the
collection of all thick tensor ideals of T c.

(i) [93, Cor. 6; Prop. 9] [47, Th.1.7] For any C ∈ T(T c), the smallest localizing
triangulated subcategory 〈C〉 containing C in T is smashing, i.e. ∈ S(T ). Thus, we
obtain the inflation map:

I : T(T c) → S(T ).

(ii) [54, Th.3.3.3] There is also the contraction map:

C : S(T ) → T(T c); S �→ S ∩ T c,

which enjoys:

C ◦ I = idT(T c) : T(T c)
I

S(T )
C

(iii) [93, Cor. 6; Prop. 9; Cor. 10] The telescope conjecture for S ∈ S(T ) holds if and
only if, in addition to C ◦ I = idT(T c) stated in (ii), the following also holds:

I ◦ C(S) = S ∈ S(T )

(iv) [93, Cor. 6; Prop. 9; Cor. 10] The telescope conjecture for T 32 holds if and only
if I and C give mutually inverse equivalence:

C ◦ I = idT(T c) : T(T c)
I

S(T ) : idS(T ) = I ◦ C.
C

However, the telescope conjecture of this generality has been shown to be false
[69], and even the original telescope conjecture for SH is now believed to be false
by many experts, including Ravenel himself [87]. Still, algebraicists have shown the
validity of its various algebraic analogues (e.g. [7, 16, 80]) as we shall review an
algebraic analogue of the Hopkins–Smith theorem, in conjunction with the above
telescope conjecture, later in Theorem4.15. Furthermore, Krause [76] showed the
underlying philosophical message of the telescope conjecture that smashing ten-
sor ideals are completely characterized by their restrictions to compact objects
In fact, whereas the original telescope conjecture only concerns local compact
objects, Krause proves his characterization of smashing tensor ideals via “local
maps”between compacts objects. For more details, consult Krause’s own paper [76].

Going back to the Hopkins–Smith theorem, a major part of its proof was to show:

Theorem 3.4 [50, Th.7] Any thick subcategory of SHfin
(p) is of the form Cn for some

n ∈ Z≥0.

32This telescope conjecture is equivalent to the telescope conjecturewithout productConjecture2.22
via Propositions2.28 and 2.29.
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To show this, Hopkins–Smith prepared the following version of the nilpotency
theorem [50, Cor. 2.5], building upon their earlier collaboration work with Devinatz
[35]:

Theorem 3.5 [50, Cor. 2.5.(ii)] For a map f : F → A between finite p-local spectra
and another finite P-local spectra Y , the following conditions are equivalent:

• ∃m� 0 such that f ∧m ∧ IY : F∧m ∧ Y → A∧m ∧ Y is null.
• 0 ≤ ∀n < ∞, K(n)∗ (f ∧ IY ) = 0.

Now, to prove Theorem3.4, it suffices to prove the following:

Lemma 3.6 [50, (2.9)] Let C be a thick subcategory of SH(p) and X ,Y be p-local
finite spectra. Then, if X ∈ C and {n ∈ Z≥0 | K(n)∗Y �= 0} ⊆ {n ∈ Z≥0 | K(n)∗X �=
0}, then Y ∈ C.

Actually, if Lemma3.6 is shown to be correct, together with Ravenel’s Theo-
rem3.2 (ii), it would imply

C = Cm, where m = min{n ∈ Z≥0 | Cn ⊆ C}.

Then, the proof of Lemma3.6 in [50] proceeds as follows (see also [123]:

• StartingwithX , let e : S0 → X ∧ DX be the S-dual of the identitymap : IX : X →
X , and extend it to a triangle with a map between p-local finite spectra f : F → S0

as the fiber as follows:

F
f−→ S0 e−→ X ∧ DX � Cf , the cofiber of f . (18)

• Applying the smash product with Y to (18), we obtain:

F ∧ Y
f ∧IY−−→ S0 ∧ Y ∼= Y

e∧IY−−→ X ∧ DX ∧ Y � Cf ∧ Y , (19)

for which, we claim

0 ≤ ∀n < ∞, K(n)∗(f ∧ IY ) = 0. (20)

– If K(n)∗Y = 0 then K(n)∗(IY ) = 0, which implies the triviality of (20), by the
Kunneth theorem for Morava K-theories:

K(n)∗(X ∧ Y ) ∼= K(n)∗X ⊗K(n)∗ K(n)∗Y for any p-local spectraX ,Y (21)

– IfK(n)∗Y �= 0 thenK(n)∗X �= 0 by the assumption of Lemma3.6. Then, by the
duality isomorphism for Morava K-theories:

HomK(n)∗ (K(n)∗X ,K(n)∗Y ) = HomK(n)∗ (K(n)∗,K(n)∗(Y ∧ DX )) = K(n)∗(Y ∧ DX )

for any p-local spectraX , Y ,

(22)
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we also find the non-triviality: K(n)∗(e ∧ IY ) �= 0. But, this in turn implies the
triviality:K(n)∗(f ∧ IY ) = 0 from theMoravaK-theory exact sequence associated
to (19), making use of the Morava Kunneth isomorphism (21) again,

• Since (20), we may apply the Hopkins–Smith nilpotency Theorem3.5 to f ∧ IY
in (19) to find m� 0 such that f ∧m ∧ IY : F∧m ∧ Y → (S0)∧m ∧ Y ∼= Y is null.
This implies:

Y is a direct summand ofCf ∧m∧IY ∼= Cf ∧m ∧ Y . (23)

• By the assumption, X ∈ C, but as the thick subcategory C of SHfin
(p) is also a thick

ideal, this implies Cf

(19)∼= X ∧ DX ∈ C.

• For any n ∈ N, consider the commutative diagram:

F∧n ∧ F
f ∧n∧IF

(S0)∧n ∧ F ∼= F

f

Cf ∧n ∧ F

F∧(n+1) f ∧(n+1)
(S0)∧(n+1) ∼= S0 Cf n+1

• Cf Cf

From this, we obtain a triangle

Cf ∧n ∧ F → Cf n+1 → Cf

Since Cf ∈ C and C is a tensor ideal, we see inductively from this triangle that

Cf m ∈ C (∀m ∈ N) (24)

• Since C is a thick ideal, we conclude from (23) and (24) that Y ∈ C. This complete
the proof of Lemma3.6.

�
Now, the basic philosophy underlying the above picture of Hopkins–Smith was

already perceived by Morava much earlier (see the “exercises” in Sect. 0.5 of [96],
whose preprint version was circulated nearly a decade ago before its publication).
For a modern development of Morava K-theory, consult Morava’s own paper [98] in
this proceedings.

The author believes the Hopkins–Smith theorem (Theorem3.1) and the Ohkawa
theorem (Theorem2.25) are best understood, when they are appreciated simulta-
neously in a single commutative diagram. Since this commutative diagram can be
drawn for more general rigidly compactly generated tensor triangulated category T ,

let us first set up our notations of our interests in this generality:
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• L(T ): the collection of localizing tensor ideals of T .

• S(T ): the collection of smashing localizing tensor ideals of T .

• T(T c): the collection of thick tensor ideals of T c.

• B(T ): the collection of Bousfield classes, i.e. those of the form
Ker(h⊗−) ⊆ L(T ) (h ∈ T ).

Now let us specialize to the case T = SH(p):

Theorem 3.7 In SH(p), the Ohkawa theorem, the Hopkins–Smith theorem, Miller’s

version of theRavenel telescope conjecture (C ◦ I ?= Id
T

(
SHfin

(p)

)), and the conjectures

of Hovey and Hovey–Palmieri can be simultaneously expressed in the following
succinct commutative diagram:

mysterious set
Ohkawa Th.

B(SH(p))
Hovey Conj.

?=
L(SH(p))

chromatic hierachy
···�Cn+1···�Cn···

Hopkins–Smith Th.
T

(
SHfin

(p)

) I (split inj.)

S(SH(p))
C (split surj.)

(25)

For more on the Hopkins–Smith theorem and related “chromatic mathemat-
ics,” see [123] and, for some of the latest developments,33 see [9, 13, 133] in this
proceedings. Actually, Bartel’s survey [9] focuses upon the telescope [122, 123]
and chromatic splitting conjectures [51], which are major directions of research,
not only in chromatic homotopy theory, but also in stable homotopy theory as a
whole. Considering the traditional influence of stable homotopy theory, initiated by
Hopkins, Rickard, Neeman, Thomason and others, to the representation theory of
finite dimensional algebras and the derived category theory in algebraic, as is high-
lighted by Brown representability, Bousfield localization, Hopkins–Smith theorem,
researchers in these areas might better to keep this fact in mind.

Comparingwith the telescope conjecture, the chromatic splitting conjectre appears
to be elusive for them. In short, the chromatic splitting conjecture predicts, for a p-
completed finite spectrum F, the first map in the canonical cofiber sequence

Hom
(
LE(n−1)S0,LE(n)F

)→ LE(n−1)F → LE(n−1)LK(n)F (26)

is trivial; stated differently, the second map in (26) is split injective.34

In fact, Hopkins [51, Conj.4.2(iv)] further predicted, presumably hoping to pro-
vide a program to prove the triviality of thefirstmap in (26), an explicit decomposition

33A trend here is to apply the higher algebra technique of Lurie [85, 86] to understand chromatic
phenomena [13, 133], where the latter contains a concise review of higher algebra technology.
Different kinds of applications of Lurie’s higher algebra technique can be seen in [89, 90].
34This splitting conjecture implies, for any p-completed finite spectrum F and any infinite subset
{ni}∞i=1 ⊆ N, the natural map F →∏∞

i=1 LK(ni)F is split injective. For this and much more, consult
[9, 51].
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of Hom
(
LE(n−1)S0,LE(n)F

)
, inspired by Morava’s old observation [96, Rem.2.2.5].

The structure of Hom
(
LE(n−1)S0,LE(n)F

)
is highly reflected by its divisible homo-

topy group elements. In general, divisible homotopy group elements of a spectrum
X can be isolated in the spectrum Hom(L0S0,X ), which is in the current case:

Hom
(
L0S

0,Hom
(
LE(n−1)S0,LE(n)F

)) ∼= Hom
(
L0S

0 ∧ LE(n−1)S0,LE(n)F
) ∼= Hom

(
L0S

0,LE(n)F
)

To understand this, Morava [97] suggested to consider the following cohomology
theory L∗n:

X �→ L∗n(X ) := Hom
(
π−∗Hom

(
L0S

0,LE(n)X
)
, Q
)

Actually, Morava [97] noticed the validity of the Hopkins’ prediction on the explicit
structure of Hom

(
LE(n−1)S0,LE(n)F

)
would imply the cohomology theory L∗n is rep-

resented by the p-adic rationalization of the spectrum35:

Σ2n

⎛
⎜⎝

∨

{ni∈Z≥0}∞i=1; ∑∞
i=1 ini=n

(∑∞
i=1 ni

)!∏∞
i=1(ni!)

( ∞∏
i=1

U (i − 1)ni

)

+

⎞
⎟⎠ (27)

While Hopkins’ prediction [51] above of the explicit decomposition of
Hom

(
LE(n−1)S0,LE(n)F

)
, which the above work of Morava [97] is based upon,

is known to hold for n = 1 or n = 2 and p ≥ 3, Beaudry [11] has recently shown it
to fail for the case n = 2 and p = 2. Still, as was pointed out to the author by Tobias
Barthel, The above formula (27), which was derived fromMorava’s calculation, still
holds even for this troublesome case of n = 2 and p = 2, because the discrepancy
found by Beaudry [11] is p-torsion and so vanishes rationally. Thus, it could well be
the case (27) holds for any pair of a prime p and a natural number n.

Furthermore, it could be the case thatHopkins’ prediction of the explicit decompo-
sition of Hom

(
LE(n−1)S0,LE(n)F

)
still holds, consequently so does Morava’s deduc-

tion (27) above, when the base prime p is sufficiently large comparing with the height
n.

It would be fantastic, if, as Professor Morava dreams of, there hold formulae
analogous to the predictedHopkins’ andMorava’s in algebraic examples likeDqc(X ),

where the fundamental theorem of Hopkins, Neeman, Thomason and others gave us
an explicit “Bousfield–Ohkawa set” , not only for Bousfield classes, but also for
localized tensor ideals, whereas the original Ohkawa’s set for SH only takes into
account Bousfield classes and is not explicit at all. Furthermore, as we mentioned
before, while the telescope conjecture is now believed to be false by many experts,
algebraicists have shown the validity of its various algebraic analogues. So, why not
for the chromatic splitting conjecture, as Professor Morava dreams of!

Actually, restricting to the conjectured splitting of the second map in (26),
recent effort of Beaudry-Goerss-Henn [12] has shown its validity even for the case
n = p = 2, which is the case [11] showed Hopkins’ conjectural decomposition of

35It appears that [97, p. 4, Corollary] should be modified as in (27).
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Hom
(
LE(n−1)S0,LE(n)F

)
is false. Furthermore, Barthel–Heard–Valenzuela [10] has

recently proved an algebraic analogue of the conjectural splitting of the second map
in (26). For this and much more, consult Bartel’s survey [9].

Going back to the Hopkins–Smith theorem, it is natural to look after its motivic
analogue (10) (This means efforts to classify thick (tensor) ideals of SH(k)c.).

In this regard,Ruth Joachimi [62] constructed somemotivic thick ideals inSH(k)c

for k ⊆ C:

Theorem 3.8 [62, Th.13]

1. If k ⊆ C, then (SH(k)c)(p) contains at least an infinite chain of different thick

ideals, given by R
−1
k (Cn), 0 ≤ n ≤ ∞, where Rk denotes the p-localisation of the

restriction of Rk to SH(k)c:

(SHc)(p) ck

id

(SH(k)c)(p)
Rk

(SHc)(p)

(SH)(p)

id

(SH(k))(p)
Rk

(SH)(p)

Here,

• ck is induced from the constant presheaf functor [62, Th.10], which restricts
to the compact objects [62, Rem.53, Prop.58, Prop.61].

• The existence of Rk follows since Rk preserves compactness [62, Prop.61].

2. If k ⊆ R, then (SH(k)c)(p) contains at least a two-dimensional lattice of different

thick ideals, given by
(
R
′
k

)−1
(Cm,n), for all (m, n) ∈ Γp ( see [62, Def.35] for

the definition of Γp and more detail):

(SH(Z/2)c)(p)

id

(SH(k)c)(p)
R
′
k

(SH(Z/2)c)(p)
φ{1}

φZ/2
(SH)c)(p)

(SH(Z/2))(p)
c′k

id

(SH(k))(p)
R′k

(SH(Z/2))(p)
φ{1}

φZ/2
(SH))(p)
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Here,

• [62, Th.11] c′k : (SH(Z/2))(p) → (SH(k))(p) is induced by

c′ : sSet(Z/2) → sPre(Sm /R)

M �→
(∐
M Z/2

)∐
⎛
⎝ ∐

(M \M Z/2)/(Z/2)

SpecC

⎞
⎠ ,

which restricts to the compact objects [62, Rem.53, Prop.58, Prop.61].
• (Strickland’s theorem [62, Cor. 34]36) Any thick ideal in the category

(SH(Z/2)c)(p) is of the form

Cm,n = {X | φ{1}(X ) ∈ Cm andφZ/2(X ) ∈ Cn},

where m, n ∈ [0,∞].
Just like the nilpotency Theorem3.5 was crucial in the proof of Hopkins–Smith

Theorem3.1, the above theorem of Strickland is shown by first proving an appropri-
ate nilpotency theorem [62, Th.3]. At the same time, Joachimi [62] explains various
difficulties in proving an appropriate nilpotency theorem in the motivic setting. Fur-
thermore, the above Joachimi’s construction of motivic thick ideals in SH(k)c for
k ⊆ C is so far limited to importing the Hopkins–Smith stable homotopy thick ideals
in SHc. Thus, constructions of motivic thick ideals of truly algebro-geometric origin
is highly desired. For details and much more of Joachimi’s work, construct her own
exposition [62] in this proceeding.

For a case of k � C,Kelly [72] obtained the following surprisingly simple descrip-
tion of the set of prime thick tensor ideals Spc

(
SH(Fq)

c
Q

)
,37 up to a couple of widely

believed conjectures:

Theorem 3.9 [72, Th.1.1] Let Fq be a field with a prime power, q, number of
elements. Suppose that for all connected smooth projective varieties X we have:

CHi(X ; j)Q = 0; ∀j �= 0; i ∈ Z (Beilinson-Parshin conjecture),

CHi(X )Q ⊗ CHi(X )Q → CH0(X )Q is non-degenerate. (Rat. and num. equiv. agree)

Then
Spc

(
SH(Fq)

c
Q

) ∼= Spec(Q).

For details, consult Kelly’s own exposition [72] in this proceeding.

36Strickland’s theorem for G = Z/2 has recently been generalized to arbitrary finite group G by
Balmer–Sanders [8].
37See Defjnition4.22 for this concept.
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4 Db
coh(X) and Dperf(X)

In the last two sections, we reviewed:

• Ohkawa’s theorem in SH, which states the Bousfield classes form a somewhat
mysterious set.

• Its analogue in Dqc(X ) is explicitly computable: the fundamental theorem of Hop-
kins, Neeman,..., identifies the set of Bousfield classes with the set of localizing
tensor ideals,which turns out to have a concrete and algebro-geometric description.

• Hopkins’ motivation of his fundamental theorem in Dqc(X ) was his own theorem
with Smith in SHc.

Thus, we are naturally led to investigate Dqc(X )c. However, the story is not so
simple. Whereas there is a conceptually simple categorical interpretation Dqc(X )c =
Dperf(X ), it is its close relative (actually equivalent if X is smooth over a field)
Db

coh(X )which traditionally has been intensively studied because of its rich geometric
and physical information.38

So, we wish to understand both Db
coh(X ) and Dperf(X ).

In this section, we start with brief, and so inevitably incomplete, summaries of
Db

coh(X ) and Dperf(X ), focusing on their usages. Still, we hope this would convince
non-experts that Db

coh(X ) and Dperf(X ) are very important objects to study.
Then, we shall review Neeman’s recent result, which claims these two close

relatives Db
coh(X ) and Dperf(X ) actually determine each other, and its main technical

tool: approximable triangulated category.

4.1 Db
coh(X)

• There is a classical functoriality result of Grothendieck:

Theorem 4.1 [44, Th.3.2.1] Let f : X → Y be a proper morphism with Y locally
noetherian. Then

Rf∗ Db
coh(X ) ⊂ Db

coh(Y ).

Actually, there is a sharp converse (i.e. we do not have to check Rf∗ Db
coh(X ) ⊂

Db
coh(Y )) to Theorem4.1 [83, Cor. 4.3.2] [109, Lem.0.20]:

Theorem 4.2 [109, Lem.0.20] Let f : X → Y be a separated, finite-type morphism
of noetherian schemes such that

Rf∗ Dperf(X ) ⊂ Db
coh(Y ).

38Or, researchers might prefer “♥-felt”Db
coh(X ) ∼= Db(Coh(X )) (although separated, not mere

quasi-separated, assumption is needed for this equivalence) over simply formal Dperf (X ) ∼=
Dqc(X )c…
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Then f is proper.

• For an essentially small triangulated categoryT , itsGrothendieckK0-groupK0(T )

is defined by generators and relations as follows [111, Def. 4.5.8] [112, Def. 1]:

K0(T ) := Z {[X ] | [X ] is an isomorphism class ofX ∈ T }
Z {[X ] − [Y ] + [Z] | there is a distiguished triangle X → Y → Z → ΣX } (28)

– Having defined K0(T ), we should not be too optimistic to hope K0(T ) always
carries a rich information of T , In fact, if T contains an arbitrary countable
direct sum (coproduct),39 then, for any X ∈ T ,we have a distinguished triangle
of the following form:

⊕n∈NX
index shift−−−−−→ ⊕n∈NX → X → Σ (⊕n∈NX )

From the defining relation of K0(T ) (28), this implies [X ] = 0 ∈ K0(T ) for any
X ∈ T . By the definition (28), this means K0(T ) = 0 whenever T contains an
arbitrary countable direct sum (coproduct). As a very important special case,
we emphasize:

K0(Dqc(X )) = 0.

– GrothendieckK0-group is useful to classify dense subcategories of an essentially
small triangulated subcategory.

Proposition 4.3 [131, p. 5, Lem.2.2, p. 6, Cor. 2.3] [111, Prop. 4.5.11] Suppose a
triangulated subcategory S of an essentially small triangulated category T is dense,
i.e. Ŝ = T . Then,

1. The induced map K0(S) → K0(T ) is a monomorphism.
2. For any X ∈ T ,

X ∈ S ⇐⇒ [X ] ∈ Im(K0(S) → K0(T )).

Theorem 4.4 [131, p. 5, Th.2.1] For an essentially small triangulated category T ,
there is a one-to-one correspondence between the dense triangulated subcategories
of T and the subgroups of K0(T ):

{dense triangulated subcategories ofT }
∼=
� {subgroups of K0(T )}

S |→ Im (K0(S) → K0(T ))

" subcategory consisting of X ∈ T with [X ] ∈ H ⊆ K0(T ) ←| H

– For any small abelian categoryA, the functorDb comeswith the canonical embed-
dingA→ Db(A),which induces an equivalence of Grothendieck K-groups of an
abelian category T and a triangulated category Db(A):

39Having arbitrary small coproducts was an indispensable assumption for Brown representability
and Bousfield localization (Theorem2.15, Corollary2.16).
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K0 (A)
∼=−→ K0

(
Db(A)

)
, (29)

– Whenever a bounded t-structure is given on T , if we denote by T ♥ its heart,
then we have another isomorphism of K0-groups of an abelian category and a
triangulated category:

K0(T ♥)
∼=−→ K0(T ). (30)

Applying (30) to T = Db
coh(X ), T ♥ = Coh(X ),40 we find the canonical isomor-

phism:

K (Coh(X ))
∼=−→ K

(
Db

coh(X )
)

(32)

• The sheaf theory has its origin in Oka-Cartan theory of complex functions of
several variables (see e.g. [116] for a general picture, and [114] for a review of the
L2-technique in complex geometry, both by Ohsawa41). The pivotal achievement
at the time was Oka’s Coherence Theorem, which states that the structure sheaf
OM of a complex manifold M is coherent (for a proof, see e.g. [113]). From the
viewpoint of algebraic geometry, interest of complex manifolds emerge through
the GAGA theorem of Serre [128], which, for a proper scheme X over SpecC,

can be stated as an equivalence of abelian categories of coherent modules [45, XII,
Th. 4.4]:

φ∗ : Coh(X )
∼=−→ Coh(X an),

where φ : X an → X is the canonical morphism from the associated analytic space
X an of X [45, XII, 1.1], and φ∗ consequently induces isomorphisms of resulting
derived categories42:

DCoh(X )
∼=−→ DCoh(X

an); Db
coh(X )

∼=−→ Db
coh(X

an); · · ·

40If we apply (29) in order to obtain the isomorphism (32), we must require the extra “sepa-
rated”assumption, for then we should also use the isomorphism:

Db
coh(X ) = Db(Coh(X )), (31)

which requires the “separated”assumption of X . This fact, and the above approach to use (30) was
communicated to the author by Professor Neeman.
41Professor Takeo Ohsawa is the AMS Stefan Bergman Prize 2014 recipient. His survey paper
[114] in this proceedings is a concise summary of his work for which this prize was awarded. It was
his Bergman Prize money which enabled us to invite distinguished lecturers to Ohkawa’s memo-
rial conference at Nagoya University in the summer of 2015. Takeo Ohsawa was also Tetsusuke
Ohkawa’s highschool classmate at Kanazawa University High School in Kanazawa, Japan.
42X being proper over Spec(C) implies (as part of the definition of properness) that it is separated,
hence Db(Coh(X )) = Db

coh(X ). Hence, these two isomorphisms are trivial consequences of the

isomorphism φ∗ : Coh(X )
∼=−→ Coh(X an). These two isomorphism are supplied just for reader’s

information.
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Recently, JackHall [46] proposed a unified treatment of “GAGA type theorems,” in
which, a prominent role of Oka’s coherence theorem became transparent in his
deduction of the classical GAGA theorem [46, Example7.5] (also consult the
updated version of [104, Remark1.7 and AppendixA] to appreciate how short and
simple the Jack Hall’s new proof is.).

• Derived categories in the complex analytic setting shows up in the Kontsevich
homological mirror symmetry [74]43 which in the Calabi–Yau setting is of the
following form:

Db
coh(X ) ∼= Db Fuk(X ∨), (33)

where X is expected to be a mirror of X ∨, given by a sigma model:

(M , I ,ω,B),

where we only note I is the complex structure of M , and that whose category of
D-branes of type B (B-model) is the left side of (33) :

DB(M , I ,ω,B) ∼= Db
coh(M , I) ∼= Db

coh(X ).

On the other hand, Db Fuk(X ∨), the derived Fukaya category consisting of
Lagrangian submanifolds of the mirror X ∨, is not a derived category of an abelian
category (but of an A∞ category; see [38, 39] for more details).

• Recall that Db
coh(X ) is given by the composite of functors:

Db
coh : X Coh�→ Coh(X )

Db�→ Db(Coh(X )) = Db
coh(X ). (34)

It is instructive to keep reconstruction problems arising from these functors in
mind. For instance, Theorem2.33 of Gabriel-Rosenberg can be specialized to the
following (which is essentially the original theoremofGabriel [41]) reconstruction
theorem with respect to Coh44:

Theorem 4.5 Any Noetherian and separated scheme X can be reconstructed from
Coh(X ).

• Glancing at this theorem of Gabriel, we naturally hope Db
coh(X )would carries rich

information of X . Concerning the reconstruction problem associated with (34),
any smooth connected projective variety with either KX ample or−KX ample can
be reconstructed from Db

coh(X ) (the Bondal–Orlov reconstruction theorem [18] ).
• On the other hand, among thoseX with trivialKX like an abelian variety or Calabi–
Yau, many examples of so-called Fourier–Mukai partners, i.e. non-isomorphic

43Of course, there are many other mathematical approaches to physics. For instance, some of
Costello’s approach to quantum field theory via Lurie’s higher algebra [85, 86] point of view are
touched upon in Matsuoka’s surveys [89, 90] in this proceedings.
44Theorem4.5 is reduced to Theorem2.33 for QCoh(X ) ∼= Ind Coh(X ) under the Noetherian
hypothesis [84, Lem.3.9]. See also [25, p. 2] [121].
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smooth projective varieties with equivalent Db
coh, have been produced, starting

with Mukai [101], Thus, the restruction for the composite Db
coh : X �→ Db

coh(X ) in
(34) does not hold in general. Considering theGabriel reconstruction Theorem4.5,
we find this failure results from that of the reconstruction of Db among those X
with trivial KX . This suggests an existence of a of moduli of hearts of Db

coh(X ) for
these X .45

• If X is affine locally regular and finite-dimensional, then we have the following
canonical equivalence (which is a local assertion):

Db
coh(X )

�−→ Dperf(X )

This, in turn, suggests the Verdier quotient

DSg(X ) := Db
coh(X )/ Dperf(X )

reflects singular information of X , and is consequently called the derived category
of singularities [118, Def. 1.8].
In the Kontsevich homological mirror symmetry, a mirror of varieties other than
Calabi–Yau is not expected to be given by a sigma model. For a variety with either
KX ample or−KX ample, its mirror is expected to be given by a Landau–Ginzburg
model

(Y , I ,ω,B,W ),

where W : Y → A1 is a regular function called the superpotential. In this case,
the category of D-branes of type B is, via its identification with the category of
matrix factorizations, shown to be of the following form [64, 118, 119] :

DB(Y , I ,ω,B,W ) ∼=
∏

λ∈A1

DSg
(
W−1(λ)

)
. (35)

• This oracle of physics (35), which highlights essentially only the singular part,
might appear surprising for mathematicians. However, in the development of the
minimal model program in birational geometry, it has become clear that we should
take into account singular information even if we are only interested in smooth
ones [73, 88, 95].
Now, close relationship between Db

coh and birational geometry have been observed
[19, 67]. A central problem here is the Kawamata DK-hypothesis:

Conjecture 4.6 [68, Conj.1.2] For birationally equivalent smooth projective vari-
eties X ,Y , suppose there exists a smooth projective variety Z with birational mor-
phisms f : Z → X , g : Z → Y .

45As we shall briefly review later, Bridgeland’s space of stability conditions is a kind of moduli
space of “enriched hearts”of a triangulated category.
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K-equivalence =⇒ D-equivalence:

K-equivalence

(
i.e. f ∗KX ∼ g∗KY (linearly equivalent)

)

implies D-equivalence

(
i.e. Db

coh(X ) ∼= Db
coh(Y )

)

K − inequality =⇒ fully faithful triangulated functor:

K-inequality

(
i.e. there exists an effective divisor E on Z s.t.

f ∗KX+E∼g∗KY (linearly equivalent)

)

implies

(
there is a fully faithful functor of triangulated categories

Db
coh(X )→Db

coh(Y ).

)

While the converse (D-equivalence =⇒ K-equivalence) does not hold in general
[134], if there is a fully faithful functor � : Db

coh(X ) → Db
coh(Y ), then we obtain a

semi-orthogonal decomposition (7) [20]:

Db
coh(Y ) = 〈� (Db

coh(X )
)⊥

, �
(
Db

coh(X )
)〉 (36)

• Motivated by the Kontsevich homological mirror symmetry, some previously
unexpected structures of Db

coh(X ) have been discovered:

– Motivated by the generalized Dehn twist associated with the Lagrangian spheres
of the (hypothetical) mirror X ∨, Seidel–Thomas [127] constructed a braid group
Bm+1 action under the presence of the spherical Am-configuration, i.e. there are
Ei ∈ Db

coh(X ) (1 ≤ i ≤ m) such that the following two conditions are satisfied:

(sphericality): For 1 ≤ i ≤ m, Ei ⊗ ωX
∼= Ei and

HomDb
coh(X ) (Ei, Ei[r]) =

{
C if r = 0, dim X

0 if r �= 0, dim X

(Am-configuration):

dimC⊕r HomDb
coh(X )

(
Ei, Ej[r]

) =
{
1 |i − j| = 1

0 |i − j| ≥ 2.

– Going back to the reconstruction problem of Db in (34), existence of Fourier–
Mukai partners suggests an existence of a moduli of hearts of Db

coh(X ) =
Db(Coh(X )).
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To begin with, we recall a related toy model for Coh(X ), where we can construct
moduli spaces,MOX (1)(P) for a fixedHilbert polynomial, by restricting to (Gieseker–
Maruyama–Simpson) (semi)-stable sheaves [57, Th.4.3.4].

Thus, its not surprising that somekindof stability condition is needed to construct a
moduli in of hearts of Db

coh(X ) = Db(Coh(X )). In fact, axiomatizing Douglas’ study
[36] of the �-stability of D-branes, Bridgeland [22] proposed a way of constructing
a moduli space of “enriched hearts,” space of stability conditions, out of certain
triangulated categories. Bridgeland [22] defined a stability condition on a triangulated
category D to be a data (Z,A) such that:

� A ⊂ D is the heart of a bounded t-structure on D.

� Z : K(A) → C is a stability function, i.e.

· Z : K(A) → C is a group homomorphism.
· For any E ∈ A \ {0},

Z(E) := r(E) exp (iπφ(E)) (r(E) > 0, 0 < φ(E) ≤ 1)

∈ H := {r exp(iπφ) | r > 0, 0 < φ ≤ 1} .

� This stability function Z : K(A) → C is furthermore a stability condition, i.e. any
E ∈ A admits a Harder–Narasimhan filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that

· each Fi = Ei/Ei−1 is Z- semistable, i.e. for all nonzero subobjects F ′i ⊂ Fi we
have

φ(F ′i ) ≤ φ(Fi).

· φ(F1) > φ(F2) > · · · > φ(Fn).

Since Z is a homomorphism, we can easily verify:

E,F : Z − semistable s.t.φ(E) > φ(F) =⇒ HomA(E,F) = 0.

Thus, topologists should recognize a similarity between the Harder–Narasimhan
filtration and the (finite) Postnikov tower with the following analogy

K(π1, n1),K(π2, n2) : Eilenberg-MacLane spectra s.t. n1 > n2
=⇒ HomSH (K(π1, n1),K(π2, n2)) = Hn2 (K(π1, n1),π2) = 0.

Here, we wish to vary the heart A = D♥ while fixing the ambient triangulated
category D. For this purpose, in view of (29), we impose an extra structure on the
stability function, i.e.
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K
(
D♥
) ∼=

K (D)
Z

cl

C

Γ

∃

,where

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ is a finitely generated free abelian group,

s.t.Γ ⊗Z Ris equipped with a norm

(which allows us to define ‖ cl(E)‖ forE ∈ K(D)).

cl : Γ → C is a homomorphism

We further impose the support property [75]:

{ |Z(E)|
‖ cl(E)‖

∣∣∣∣ E ∈
(∪i∈ZD♥[i]) \ 0

}
is bounded.

Whenwe fixDwith such a homomorphismK(D) → Γ,Bridgeland [22] showed the
set of such stability conditions can be topologized and becomes a complex manifold
StabΓ (D).

However, for the case of our interest D = Db
coh(X ), as soon as dim X ≥ 3, there

is no stability condition on D = Db
coh(X ) with D♥ = Coh(X ) [132, Lem.2.7], and

even the existence of such a stability condition is problematic, i.e. the possibility of
StabΓ (D) = ∅ is yet to be excluded.

4.2 Dperf(X)

• The functoriality results for Db
coh reviewed in Theorems4.1 and 4.2 have the fol-

lowing analogue for Dperf :

Theorem 4.7 [83, Th.1.2] [109, Ill.0.19] For a separated, finite-type morphism of
noetherian schemes f : X → Y ,

Rf∗ Dperf (X ) ⊂ Dperf (Y ) (i.e. perfect) ⇐⇒ f is proper and of finite Tor-dimension

• Dperf(X ) can be directly recovered from Dqc(X ) :
Theorem 4.8 ( [20, 106]) The canonical functor

Dperf(X ) → Dqc(X )

identifies Dperf(X ) as the full triangulated subcategory Dqc(X )c of compact objects
in Dqc(X ) :

Dperf(X ) = Dqc(X )c

• Thomason–Trobaugh [130, App.F] proved Dperf(X ) = Dqc(X )c is essentially
small (i.e. equivalent to a small category) for any quasi-compact and quasisep-
arated scheme X (e.g. for any noetherian scheme). Starting with this, Thomason
[131,Th.3.15] classified thick tensor triangulated ideals ofDperf(X ) = Dqc(X )c for
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any quasi-compact and quasiseparated scheme X . Here, we review Paul Balmer’s
generalization [3] of such a classification to certain essentially small tensor trian-
gulated categories.

Definition 4.9 For a tensor triangulated category K,

– [3, Def. 4.1] [5, Def. 7] A thick tensor ideal I ⊂ K is called radical if

I = √I := {a ∈ K | ∃n ≥ 1 such that a⊗n ∈ I
}
.

The collection of radical thick tensor ideals of K is denoted by R(K).

– [3, Def. 2.1] [5, Con.8], (see also Definition2.27) A proper thick tensor ideal
P � K is called prime, if

a ⊗ b ∈ P =⇒ a ∈ P or b ∈ P.

– [3, Def. 2.1] [5, Con.8] If K is further essentially small, its spectrum Spc(K) is
given by the following (set, by the “essentially small” assumption):

Spc(K) = {P � K | P is a proper prime thick tensor ideal ofK} ,

which is endowed with the topology whose open subsets are of the form

U (E) := {P ∈ Spc(K) | E ∩ P �= ∅} (E ⊆ K);

in other words, given by the closed basis {supp(a)}a∈K, where

supp(a) = {P ∈ Spc(K) | a /∈ P}

is the support of a ∈ K.46

– [5, Rem.12] For a general topological space T (we are particularly interested in
the case T = Spc(K)), a subset Y ⊂ T of the form

Y = ∪i∈I Yi with each complement X \ Yiopen and quasi-compact

is called a Thomason subset of T . The set of Thomason subsets of T is denoted
by Tho(T ).

Theorem 4.10 (i) [3, Th. 4.10] [5, Th.14] [7, Th.5.9] For an essentially small tensor
triangulated category K, there are mutually inverse isomorphisms between radical
thick tensor ideals of K and Thomason subsets of Spc(K):

46WARNING!We had already introduced the same notation supp back in Definition2.35. However,
from Proposition2.36, Theorem4.11, these two usages of supp coincide for the most fundamental
example of K = Dperf (X ).
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K− : Tho (Spc(K))
∼=
� R(K) : supp

Y |→ KY := {a ∈ K | supp(a) ⊂ Y }
supp(R) := ∪a∈R supp(a) ←|R

(37)

(ii) [4, Prop. 2.4] Suppose further K is rigid, then every thick tensor ideal is radi-
cal, and so, R(K) = T(K). Consequently, the mutually inverse isomorphisms in (i)
becomes the following:

K− : Tho (Spc(K)) � T(K) : supp

Theorem 4.11 [131] [3, Cor. 5.6] [23, Cor. 5.2] [5, Th.16] For a quasi-compact and
quasi-separated scheme X , its underlying topological space |X | is homeomorphic
to the spectrum Spc(Dperf(X )) via

|X | ∼=−→ Spc
(
Dperf(X )

)

x �→ P(x) := {P ∈ Dperf(X ) | Px
∼= 0
}
.

For any P ∈ Dperf(X ), this homeomorphism restricts to the homeomorphism

Supph(P)
∼=−→ supp(P),

where Supph(P) ⊆ X is the homological support of P ∈ Dperf(X ), i.e. the usual
sheaf theoretical support of the total homology of P given in Definition2.35 and
Proposition2.36.

FromTheorem4.11, Theorem4.10 (ii) yields the following theoremofThomason,
which is a Dqc(X ) analogue of the Hopkins–Smith Theorem3.1:

Theorem 4.12 [131, Th.3.15]For a quasi-compact and quasi-separated scheme X ,

there are mutually inverse isomorphisms between thick tensor ideals of Dperf(X ) and
Thomason subsets of |X |:

Dperf
− (X ) : Tho (|X |)

∼=
� T

(
Dperf(X )

) : supp
Y |→ Dperf

Y (X ) := {P ∈ Dperf(X ) | Supph(P) ⊂ Y }
supp(R) := ∪a∈R supp(a) ←|R.

(38)

Remark 4.13 [109, Lem.3.1] For an object H of a tensor triangulated category T ,

denote by 〈H 〉⊗ the thick tensor ideal (tensor) generated by H . Then we easily see:

〈H 〉⊗ = ∪N∈N,C∈T 〈C ⊗ H 〉N ,

where the notation 〈−〉N is recalled in Definition4.28.
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Many tensor triangulated categories T are (tensor) generated by a single element.

It should be mentioned that, just like the nilpotency Theorem3.5 was crucial in
the proof of Hopkins–Smith Theorem3.1, some algebro-geometric analogue of
(Devinatz-)Hopkins–Smith nilpotency is crucial to prove these algebro-geometric
analogues of the Hopkins–Smith theorem (see e.g. [103, Th.1.1] [131, Th.3.6,
Th. 3.8]). In this direction, Hovey–Palmieri–Strickland [54, 5] developed a general
theory how nilpotence implies classifications of thick subcategories.

Now, the following simple consequence of the above theorem of Thomason will
be used later:

Corollary 4.14 For a quasi-compact and quasi-separated scheme X , any thick ten-
sor ideal generated by a singleH ∈ Dperf(X )withSupph(H ) = |X | is all ofDperf(X ).

• In terms of Dperf(X ) = Dqc(X )c, we may refine the smashing part of the fun-
damental theorem of Hopkins, Neeman, Thomason and others (Theorem2.37) to
become an algebraic analogue of the Hopkins–Smith theorem (Theorem3.1), with
an extra bonus of the validity of an algebraic analogue of the telescope conjecture.
We shall review it now, together with (a restatement of) Theorem2.37. For the
notations below, consult the list just before Theorem3.7.

Theorem 4.15 ([48] [103, Th.2.8, Th.3.3] [131], [2, Cor4.6; Cor. 4.13; Th.5.6] [7,
Cor. 6.8] [34, Cor. 6.8; Ex.6.9] [47, Th.B]) For a Noetherian scheme X , we have a
commutative diagram consisting of mutually inverse horizontal arrows:

2|X |
{Q∈Dqc(X ) | supp(Q)⊆−}

L(Dqc(X ))
supp

Tho(|X |)
Dperf
− (X )

T
(
Dperf(X )

)
supp

IX
S(Dqc(X ))

CX

(39)

Here,

– The upper side mutually inverse arrows are those in Theorem2.37, which is the
analogue of the Ohkawa theorem and an affirmative solution of the Hovey Con-
jecture2.32 (ii) for Dqc(X ).

– The lower left sidemutually inverse arrows are those in Thomason’s Theorem4.12,
which is a Dqc(X ) analogue of the Hopkins–Smith Theorem3.1:

Remark 4.16 The above commutative diagram (39) encapsulates our story; starting
with Ohkawa’s theorem in SH, we then move on to the Dqc analogue, encountering
the fundamental theorem of Hopkins, Neeman, Thomason and others; then going
back to SHc to appreciate the Hopkins–Smith thick category theorem, and then,
movingback again to theDc

qc analogue,wediscover the above fantasticTheorem4.15.
In fact, the commutative diagram (39) is a Dc

qc ⊂ Dqc analogue of the commutative
diagram (25) for SHc

(p) ⊂ SH(p).
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Thus the underlying message here is to extend the commutative diagrams of (39)
and (25) to other triangulated categories. There is a paper of Iyenger–Krause [58] in
this direction, and this is exactly the theme of our Homework in the introduction.

– The mutually inverse arrows at the bottom right of the diagram yield a positive
solution of the telescope conjecture (Theorem3.3 (iv)) by [7,Cor. 6.8] [34,Cor. 6.8;
Ex.6.9] [47, Th.B]).

• However, the analogue of (14) for Dperf does not hold in general, for Lj∗ :
Dperf(X ) → Dperf(U ) is not surjective in general. Still, as was noticed by
Thomason–Trobaugh [130], there is a similar equivalence as soon as we apply
the thick closure (−)̂:47,48

47Let us recall the following related result in the setting of abelian category of quasi-coherent

sheaves, which should go back at least to Gabiriel (see e.g. [126, Prop. 3.1]): Coh(X )
/
CohZ (X )

j∗−→∼=
Coh(U ), where the left hand side is the abelian quotient category in the sense of Gabriel,
Grothendieck, and Serre.
48The following interesting historical account on the difficulty of generalizing statements in Dqc
(14) (15):

⎧
⎪⎨
⎪⎩

Dqc(X )
/ (

Dqc
)
Z (X )

Lj∗−−→∼= Dqc(U )

L = Rj∗Lj∗ = (Rj∗OU )⊗L
OX
− : Dqc(X ) → Dqc(X )

/ (
Dqc
)
Z (X )

Lj∗−−→∼= Dqc(U )
Rj∗−−→ Dqc(X )

and the precursor in the setting of abelian categories reviewed in footnote 27:

QCoh(X )
/
QCohZ (X )

j∗−→∼= QCoh(U )

to the setting of Dperf , has been communicated to the author by Professor Neeman:

... But the right adjoints j∗ : QCoh(U ) → QCoh(X ) and Rj∗ : Dqc(U ) → Dqc(X ) fail to
preserve the finite subcategories Coh(−) and Dperf (−). For these categories some work is
needed. Especially in the case of Dperf (−); for a long time all that was known was that
Lj∗ : Dperf (X ) → Dperf (U ) isn’t surjective on objects, hence the natural map

Dperf (X )

Ker(Lj∗)
−→ Dperf (U )

couldn’t be an equivalence. So the assumption was that this map had to be worthless.

Thomason’s ingenious insight was that the old counterexamples were a red herring. Up to
idempotent completion this map is an equivalence, and in particular induces an isomorphism
in higher K-theory. This of course required proof. Thomason gave a rather involved proof,
following SGA6, and I noticed that the proof simplifies and generalizes when one uses the
methods of homotopy theory.

It was an amusing role reversal: Thomason, the homotopy theorist, had the brilliant idea
but gave a clumsy proof using the techniques of algebraic geometry, while I, the algebraic
geometer, simplified the argument with the techniques of homotopy theory.
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Theorem 4.17 (Thomason’s localization theorem) Under the situation of (14), i.e.
let X be a quasicompact and quasiseparated scheme, Z = X \U ⊂ X , the comple-
ment of a quasi-compact Zariski open immersion j : U ↪→ X ,we have a triangulated
embedding

Dperf(X )
/ (

Dperf)
Z (X ) ⊂ Dperf(U ),

which yields an equivalence upon applying the thick closure:

(
Dperf(X )

/ (
Dperf

)
Z (X )

)̂ Lj∗−→∼= Dperf(U ). (40)

In applications, we sometime have to take care of elements in
(
Dperf

)
Z (X ). Then we

wonder if they are in the image of Ri∗ Dperf(Z) or not. Now, Rouquier [125] gave an
affirmative answer for a weaker question in the coherent setting:

Theorem 4.18 [125, Lem.7.40] Let X be a separated noetherian scheme and Z be
its closed subscheme given by the ideal sheaf I ofOX . For n ∈ N, let Zn be the closed
subscheme of X with ideal sheaf In and in : Zn → X the corresponding immersion.
Then,

∀Q ∈ (Db
coh

)
Z (X ), ∃n ∈ N, ∃Pn ∈ Db

coh(Zn) s.t. Q = Rin∗Pn.

While the original proof of Theorem4.17 given in [130] is purely algebro geometric
in the spirit of SGA6, Neeman [105, Th.2.1] gave a proof from a general triangulated
category theoretical point of view, in the homotopy theoretical spirit of Bousfield,
Ohakawa, and others, building upon Corollary2.19 [105, Lem.1.7]:

Theorem 4.19 (Neeman’s generalization of Thomason’s localization theorem) Let
T be a compactly generated triangulated category, generated by a set K consisting
of compact objects in T . For a subset S ⊆ K, set S be the smallest localizing tri-
angulated subcategory containing S. Then, the canonical sequence of triangulated
categories

S → T → T /S (41)

induces another sequence of triangulated categories of compact objects

Sc → T c → (T /S)c , (42)

which induces an equivalence
Sc = S ∩ T c, (43)

a fully faithful embedding
T c/Sc → (T /S)c, (44)

and, although it may fail to induce an equivalence T c/Sc
∼=−→ (T /S)c , it does induce

an equivalence upon applying the thick closure:
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(
T c/Sc

)̂ ∼=−→ (T /S)c . (45)

Proof (i) The first triangulated functor in (42) is an easy consequence of
Proposition2.23. The second triangulated functor in (42) is induced by the smashing
Bousfield localization functorT → T /S,which preserves arbitrary coproducts The-
orem2.19. Then for c ∈ T c, tλ ∈ T (λ ∈ �), regarding T /S as the full subcategory
of L-local objects, we evaluate as follows:

HomT /S (Lc,⊕λ∈�Ltλ) = HomT (Lc,⊕λ∈�Ltλ)
L: smashing= HomT (Lc,L(⊕λ∈�tλ))

= HomT (c,L(⊕λ∈�tλ))
L: smashing= HomT (c,⊕λ∈�Ltλ)

c: compact= ⊕λ∈� HomT (c,Ltλ)

= ⊕λ∈� HomT (Lc,Ltλ) = ⊕λ∈� HomT /S (Lc,Ltλ) ,

which implies Lc is also compact.
On the other hand, Krause [78] gave a conceptually simple, though more

involved, proof of the existence of (42), applying the following easy observation
[78, Lem.5.4.1.(1)], which goes back at least to [106, Th.5.1] where the converse,
i.e. compactness preservation of F =⇒ small coproducts preservation of G, is also
shown under the additional compact generation assumption of T :

For any pair of adjoint triangulated functors T
F

U
G

such that G preserves small

coproducts, F preserves compactness.

∵ ) In fact, for any c ∈ T c, uλ ∈ U (λ ∈ �),

HomU (Fc,⊕λuλ) = HomT (c,G(⊕λuλ)) = HomT (c,⊕λG(uλ)) = ⊕λ HomT (c,G(uλ))

= ⊕λ HomU (Fc, uλ).

Now, (42) is induced from (41) by applying this easy observation to the recollement
given by Proposition2.21(6).49

(ii) To see (43), first noteSc ⊃ S ∩ T c is trivial from the definition. Then (43) follows
since converse Sc ⊂ S ∩ T c also follows from (42).
(iii) For (44), suffices to show the composite

HomT c/Sc (c, c′) → Hom(T /S)c (c, c
′)
∼=−→ Hom(T /S)(c, c

′) Th. (2.19)= HomT (c, hocolim(xn))

is an isomorphism.
For the surjectivity, take (f : c→ hocolim(xn)) ∈ HomT (c, hocolim(xn)), then

we can find its preimage (c
�←− c×h

cn c
′ f̃ ′n−→ c′) ∈ HomT c/Sc(c, c′) by a straightfor-

ward contemplation summarized in the following commutative diagram:

49This is the involved part of this proof, for the existence of recollement there requires Brown
representability.
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c′

�

x0

c×h
cn c

′

f̃ ′n

�

∃cn xn

c

∃̃fn

f
hocolim(xn)

Here, cn is some compact object so that arrows with � have cones of the form finite
extension of finite coproducts of elements in S, and c×h

cn c
′ is the homotopy pullback

(see e.g. [130, p. 252, (1.1.2.5)]).

For the injectivity, suppose (c
�←− c̃

f ′−→ c′) ∈ HomT c/Sc(c, c′) is sent to (c
�←−

c̃
0−→ hocolim(xn)) = 0 ∈ HomT (c, hocolim(xn)).Thenwecan see (c

�←− c̃
f ′−→ c′) =

(x
�←− c̃×h

c′m
c′ 0−→ c′) = 0 ∈ HomT c/Sc(c, c′) by a straightforward contemplation

summarized in the following commutative diagram:

c̃×h
c′m
c′ 0

�

�

c′

�

x0

c̃

�

f ′

0

0

∃c′m xm

c hocolim(xn).

Here, c′m is some compact object so that arrows with � have cones of the form
finite extension of finite coproducts of elements in S, and c×h

c′m
c′ is the homotopy

pullback [130, p. 252, (1.1.2.5)].
(iv) To see (45), write T = 〈K〉, and observe from the construction of the Verdier

quotient T Funiv−−→ T /S that T /S = 〈Funiv(K)〉, where Funiv(K) ⊆ T c/Sc ⊆ (T /S)c

by (42) and (44). Now apply Proposition2.23 to conclude any object y of (T /S)c is
a direct summand of a finite extension (in (T /S)c) of finite direct sums of objects
in Funiv(K) ⊆ T c/Sc, which is a full triangulated subcategory by (44). This implies

the desired equivalence upon thick closure (45): (T c/Sc )̂
∼=−→ (T /S)c . �

The following consequence of Theorem4.17 and Remark2.3 (iv) will be used
later:

Corollary 4.20 Let X be a Noetherian scheme, and Z = X \U ⊂ X , the com-
plement of a quasi-compact Zariski open immersion j : U ↪→ X . Then, for any
P ∈ Dperf(U ), there exists H ∈ Dperf(X ) such that

Lj∗H ∼= P ⊕ΣP ∈ Dperf(U ).
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Now, to motivate Balmer’s construction reviewed next, let us single out the fol-
lowing slight strengthening of Theorem4.19 (and so also of Theorem4.17):

Theorem 4.21 Under the same assumption of Theorem4.19, the extrinsic thick clo-
sure equivalence (45) can be upgraded to the intrinsic idempotent completion50

equivalence: (
T c/Sc

)	 ∼=−→ (T /S)c . (46)

In particular, under the same assumption of Theorem4.17, we have an equivalence
upon applying the idempotent completion:

(
Dperf(X )

/ (
Dperf

)
Z (X )

)	 Lj∗−→∼= Dperf(U ). (47)

To show (46), it suffices to show (T c/Sc )̂ ∼= (T c/Sc)	 thanks to (45). For this,
note from (44) a fully faithful embedding T c/Sc → T /S. Here, T /S is idempotent
complete, becauseT /S is first seen to be equippedwith arbitrary small coproducts by
Theorem2.19(2), Proposition2.21(5), Proposition2.10(5), and then we may apply
Remark2.3 (i) to find T /S is idempotent complete. Thus, any added idempotent
object of (T c/Sc)	 shows up in T /S, but, because of T c/Sc ⊆ (T /S)c and any
direct summand of a compact object is still compact, these added idempotent objects
actually show up in (T /S)c . This implies the desired (46).

• In view of Theorem4.11, we wonder whether the spectrum X is reconstructed
from (Dperf(X ),⊗L). But, this is nothing but the theorem of Paul Balmer [3]:

Definition 4.22 For an essentially small tensor triangulated categoryK, we defined
in Definition4.9 the spectrum (topological space) Spc(K).

– Here, motivated by (47), we can construct a presheaf of tensor triangulated cate-
gories by

U �→ K(U ) := (K/KZ
)	

, (48)

whereKZ := {a ∈ K | supp(a) ⊆ Z}withZ := X \U and supp(a) := Spc(K) \
U (a) = {P ∈ Spc(K) | a /∈ P} .

– Finally, we obtain the ringed space

Spec (K) = (Spc(K),OK) , (49)

as the sheafication of the presheaf of commutative rings

U �→ EndK(U )(1), (50)

where 1 is the unit object of the tensor triangulated category K(U ).

50For the fact that the idempotent completion of a triangulated category has a natural structure of a
triangulated category, there is a proof in Balmer–Schlichting [6].
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Now Balmer’s reconstruction theorem [3] states:

Theorem 4.23 For a quasi-compact and quasi-separated scheme X , we have an
isomorphism of ringed spaces51

Spec
(
Dperf(X ),⊗L) ∼= X .

4.3 Db
coh(X) and Dperf(X) Determine Each Other

With the concepts “approximable” , “noetherian approximable” , “metric” , “pre-
ferred t-structure” , and “Cauchy sequence” in a black box,AmnonNeeman’s strategy
to prove this may be summarized as follows:

• [108, Ex.8.4]:

Out of an approximable triangulated category T with a preferred t-structure
(T ≤0, T ≥0), we can construct a couple of triangulated categories S with metrics:

1. S = T c ⊂ T , and Mi = T c ∩ T ≤−i.
2. S = [T b

c ]op, and Mop
i = T b

c ∩ T ≤−i.

• [110, Def. 1.10] For an essentially small triangulated category S with a metric
{Mi}, we define three full subcategories L(S),C(S),S(S) of the category

Mod−S := additive functors Sop → Z−Mod .

With Y : S → Mod−S; A �→ Y (A) := Hom(−,A) the Yoneda functor, we set

L(S) :=
{
colim−→ Y (Ei) ∈ Mod−S ∣∣ E∗, is aCauchy sequence inS.

}

C(S) :=
{
A ∈ Mod−S ∣∣ For every j∈Z there exists i∈Zwith

Hom(Y (Mi),Σ
−jA)=0.

}

S(S) := L(S) ∩ C(S).

By construction, we see [110, Obs. 2.3]

S(S) =
⋂
j∈Z

⋃
i∈N

[
Y (Σ jEi)

]⊥
.

Intuitively,S(S) consists of compactly supported objects (for contained in C(S))
of the Cauchy completion with respect to the given metric inside the Ind-
completion given by the Yoneda embedding (for contained in L(S)).

51The weaker reconstruction just as a topological space was already shown by Thomason (see
Theorem4.11) in the course of his establishing a Dqc(X ) analogue of the Hopkins–Smith theorem
(see Theorems4.12 and 4.10).
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Apriori, it is not clear whether S(S) is triangulated or not. However, Neeman
proves:

Theorem 4.24 [110, Def. 2.10, Th.2.11] S(S) becomes a triangulated category

with the distinguished triangles of the form colim−→ Y (Ai
fi−→ Bi

gi−→ Ci
hi−→ ΣAi), where

(A∗
f∗−→ B∗

g∗−→ C∗
h∗−→ ΣA∗) is a Cauchy sequence of triangles in S.

• [108, Th.8.8] With the metrics as above, we have triangulated equivalences

1. S(T c) = T b
c .

2. If T is noetherian then S
([T b

c ]op
) = [T c]op.

• [104, Ex.3.6] The above theory works when X is separated and quasi-compact: If
X is separated and quasi-compact, T = Dqc(X ) is approximable with the standard
t-structure in the preferred equivalence class.

• Consequently, we obtain our desired result:

When X is separated and quasi-compact, we have the following:

1. S(Dperf(X )) = Db
coh(X ).

2. If X is further noetherian, S
([

Db
coh(X )

]op) = [Dperf(X )
]op

.

For the rest of this section, we explain the concepts of “approximable” , “noethe-
rian approximable” , “metric” , “preferred t-structure” , and “Cauchy sequence” ,
which were put in a black box in the above summary. We urge readers to consult
Neeman’s own survey [108] for more details about the approximable triangulated
categories.

Now, it is rather straightforward to define “metric” and “Cauchy sequence” .

Definition 4.25 [110, Def. 1.2] [108, Def. 8.3] A metric on a triangulated category
S is a sequence of additive subcategories {Mi, i ∈ N}, satisfying:
1. Mi+1 ⊂Mi for every i ∈ N.

2. Any b ∈ S, with a distinguished triangle a→ b→ c s.t. a, c ∈Mi, belongs to
Mi.

Definition 4.26 [110, Def. 1.6] [108, Def. 8.5] A Cauchy sequence in S, a triangu-
lated category with a metric {Mi}, is a sequence

E1 → E2 → E3 → · · ·

such that, for any i ∈ N, j ∈ Z, there exists M ∈ N such that,

Cof(Em → Em′) ∈ Σ−jMi

for any m′ > m ≥ M .
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Next, we aim at “preferred t-structure” , but we shall make a little detour for some
later purpose.

Definition 4.27 [108, Rem.3.1] LetA be a full subcategory of a category T .Define
the full subcategories addA, AddA, and smdA as follows.

1. Assume T has finite coproducts. addA consists of all finite coproducts of objects
in A.

2. Assume T has coproducts. AddA consists of all coproducts of objects in A.
3. smdA consists of all direct summands in T of objects in A.

The following construction will play major roles:

Definition 4.28 [108, Def. 3.3] [109, Rem.0.1] Given A ⊂ T , a full subcategory
of a triangulated category, and possibly infinite integers m ≤ n, define the full sub-
categories:

1. A[m, n] = ∪n
i=mA[−i].

2. For l ∈ N, define inductively the full subcategory 〈A〉[m,n]
l (resp. 〈A〉[m,n]

l if T has
coproducts) as follows.

a. 〈A〉[m,n]
1 = smd(addA[m, n]) (resp. 〈A〉[m,n]

1 = smd(AddA[m, n])
b. 〈A〉[m,n]

l+1 = smd(〈A〉[m,n]
1 ∗ 〈A〉[m,n]

l ) (resp. 〈A〉[m,n]
l+1 = smd(〈A〉[m,n]

1 ∗ 〈A〉[m,n]
l )).

3. For the casem = −∞, n = ∞ and l ∈ N, following Bondal–Van den Bergh [20],
we shall simply denote as follows52:

〈A〉l := 〈A〉[−∞,∞]
l (resp. 〈A〉l := 〈A〉[−∞,∞]

l )

Whereas the above definition might look complicated, its major part is reflected
in the following simpler definition:

Definition 4.29 [109, Def. 1.3] Given A ⊂ T , a full subcategory of a triangu-
lated category, and l ∈ N, define inductively the full subcategory coprodl(A) (resp.
Coprodl(A) if T has coproducts) as follows.

1. coprod1(A) = add(A) (resp. Coprod1(A) = Add(A),

2. coprodl+1(A)= coprod1(A) ∗ coprodl(A) (resp.Coprodl+1(A)=Coprod1(A) ∗
Coprodl(A). )

Thekey forDefinition4.29 to reflect amajor part ofDefinition4.28 is the following
elementary observation of Bondal–Van den Bergh [20]:

Lemma 4.30 [20, Lem.2.2.1] Let A and B be full subcategories of a triangulated
category with small coproducts. Then:

52It was Neeman’s insight to notice surprising usefullness of introducing related categories 〈A〉[m,n]
l

and 〈A〉[m,n]
l as well.
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(1) smd(A) ∗ B ⊂ smd(A ∗ B), A ∗ smd(B) ⊂ smd(A ∗ B);
(2) smd (smd(A) ∗ B) = smd (A ∗ smd(B)) = smd(A ∗ B).

To show the first inclusion of (1): smd(A) ∗ B ⊂ smd(A ∗ B), pick x ∈ smd(A) ∗
B fitting in a triangle:

s→ x→ b (s ∈ smd(A), b ∈ B),

for which we pick s′ ∈ T with s⊕ s′ ∈ A and form a new triangle:

s⊕ s′ → x ⊕ s′ → b.

This shows the desired x ∈ smd(A ∗ B). The second inclusion of (1):A ∗ smd(B) ⊂
smd(S ∗ B) is shown similarly. Then (2) follows immediately from (1).

Using Lemma4.30, we can easily prove, by induction on l, the following trans-
parent expression relating Definition4.28 with Definition4.29.

Corollary 4.31 (c.f. [109, Cor. 1.11]) Given A ⊂ T , a full subcategory of a trian-
gulated category, a natural number l ∈ N, and possibly infinite integers m ≤ n,

〈A〉[m,n]
l = smd

(
coprodl A[m, n]) , 〈A〉[m,n]

l = smd
(
Coprodl A[m, n]) .

The following Proposition4.32 follows immediately by combining the second
equality of Corollary4.31 and Lemma4.33 below. Philosophically Proposition 4.32
may be viewed as saying that 〈−〉l and Coprodl(−) are interchangeable.

Proposition 4.32 (c.f. [109, Cor. 1.11]) Given A ⊂ T , a full subcategory of a tri-
angulated category, a natural number l ∈ N, and possibly infinite integers m ≤ n,

Coprodl (A[m, n]) ⊆ 〈A〉[m,n]
l ⊆ Coprod2l (A[m− 1, n]) .

We include a proof of the following Lemma4.33, to highlight the point at which
infinite coproducts are used. Just in case the reader is wondering: the finite analogue
of Proposition4.32 is false. While the inclusion coprodl (A[m, n]) ⊆ 〈A〉[m,n]

l is
true and easy, it isn’t in general true that 〈A〉[m,n]

l ⊆ coprod2l (A[m− 1, n]) .

Lemma 4.33 (c.f. [109, Lem.1.9]) Let B a subcategory of T , a triangulated cate-
gory with coproducts, and l ∈ N. Then

Coprodl(B) ⊆ smd
(
Coprodl(B)

) ⊆ Coprod2l(B[−1, 0]).

Proof The first inclusion is obvious. For the second inclusion, recall from
Remark2.3 (i) that

∀x ∈ smd
(
Coprodl(B)

)
, ∃b ∈ Coprodl(B) and an idempotent e : b→ b, s.t. x = eb = Cone (⊕Nb→⊕Nb) .
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From this, we obtain the following triangle:

⊕Nb→⊕Nb→ x→ Σ (⊕Nb) ,

where⊕Nb ∈ Add
(
Coprodl(B)

)=Coprodl(B) and soΣ (⊕Nb) ∈ Σ Coprodl(B) =
Coprodl(ΣB). Thus,

x ∈ Coprodl(B) ∗ Coprodl(ΣB) ⊆ Coprodl(B ∪ΣB) ∗ Coprodl(B ∪ΣB) ⊆ Coprod2l(BΣB).

�

The constructions 〈−〉l and 〈−〉l are older than coprodl(−) and Coprodl(−), and
for most purposes they work just fine. But there are results which become much
easier to prove by working with coprodl(−) and Coprodl(−); for example the reader
can look at the proof of [24, Lem.4.4].53 Thus one way to view the difference is to
regard coprodl(−) and Coprodl(−) as technically more powerful than the older 〈−〉l
and 〈−〉l .

Now, in practice, as their constructions suggest, coprodl (resp. Coprodl) are more

tractible than 〈A〉[m,n]
l (resp.〈A〉[m,n]

l ).However, 〈A〉[m,n]
l (resp.〈A〉[m,n]

l ) occursmore
frequently, for instance,

Theorem 4.34 [1, Th.A] (See also [104, Ex.0.13]) For a triangulated category T
with coproducts and a compact generator G ∈ T , there is a unique t-structure of
the following form:

(
T ≤0
G , T ≥0

G

)
:=
(
〈G〉[−∞,0]

,
(
〈G〉[−∞,0])⊥ [1]

)
.

Definition 4.35 [108, Def. 7.3, Rem.7.4]

1. Two t-structures
(
T ≤0
1 , T ≥0

1

)
and

(
T ≤0
2 , T ≥0

2

)
are called equivalent, if there

exists A ∈ N with
T ≤−A
1 ⊂ T ≤0

2 ⊂ T ≤A
1 .

2. For a triangulated category T with coproducts and a compact generator, a
t-structure

(
T ≤0, T ≥0) is in the preferred equivalence class if it is equivalent

to
(
T ≤0
G , T ≥0

G

)
for some compact generator G (in fact, for every compact gener-

ator).

The importance of “preferred equivalence class” is that T −, T +, and T b, recalled
in the next definition, are independent of the particular representative (T ≤0, T ≥0) in
the preferred equivalence class [108, Fact. 0.5.(iii)]:

Definition 4.36 [108, Def. 7.5, Def. 7.6]

53The author is grateful to Professor Neeman for this reference.
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1. Given a t-structure (T ≤0, T ≥0), we have the usual subcategories:

T − = ∪nT ≤n, T + = ∪nT ≥n, T b = T − ∩ T +.

2. For a triangulated category T with coproducts and a compact generator, choose a
t-structure (T ≤0, T ≥0) in the preferred equivalence class, define the full subcat-
egories T −

c and T b
c as follows:

T −
c :=

{
F ∈ T

∣∣∣∣
For any n∈N there exists a triangle

E→F→D→E[1]
withE compact andD∈T ≤−n−1

}
, T b

c := T b ∩ T −
c

Intuitively, T −
c is the closure, with respect to the metricMi = T ≤−i, of T c.

T −
c and T b

c in the above definition do not depend on the choice of compact
generator G and are both intrinsic [108, Rem.7.7, Fact. 0.5.(iv)].

Now we are ready to state the fundamental concepts of “approximable”and
“noetherian (approximable)” triangulated categories:

Definition 4.37 [104, Def. 0.21] [108, Def. 4.1] A triangulated category T with
coproducts is called approximable if there exits a compact generator G ∈ T , a
t-structure

(
T ≤0, T ≥0) , and A ∈ N such that

1. G[A] ∈ T ≤0 and Hom(G[−A], T ≤0) = 0.
2. For every object F ∈ T ≤0, there exists a triangle

E → F → D→ E[1],

with D ∈ T ≤−1 and E ∈ 〈G〉[−A,A]
A .

From thedefinition,wefind for any approximable triangulated categoryT , the clo-

sure, with respect to themetricMi = T ≤−i, of
⋃

n 〈G〉[−n,n]n is nothing but T −.Thus
we may intuitively say every object in T − may be “Taylor approximable” regarding
〈G〉[−n,n]n as consisting of “Taylor polynomials of G of degree ≤ n.” [108, Dis. 0.1,
Rem.02].

Definition 4.38 [110, Def. 5.1] [108, Not. 8.9] Suppose T is a triangulated category
with coproducts, and assume it has a compact generator G with Hom(G,Σ iG) = 0
for i � 0. We declare T to be noetherian if there exists N ∈ N and a t-structure(
T ≤0, T ≥0) in the preferred equivalence class, s.t.

∀X ∈ T −c , ∃ triangle A→ X → B s.t. A ∈ T −c ∩ T ≤0, B ∈ T −c ∩ T ≥−N = T b
c ∩ T ≥−N .

Remark 4.39 (i) The noetherian hypothesis is somewhat weaker than the assump-
tion that there exists a t-structure in the preferred equivalence class which restricts
to a t-structure on T −

c .

(ii) [104, Fac.0.23, Exa.3.6] For a quasicompact and separated scheme X , the stan-
dard t-structure onT = Dqc(X ) is in the preferred equivalence class. Suppose further
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that X is noetherian, then T −
c = D−coh, the category of bounded-above complexes of

coherent sheaves, and so, the standard t-structure, which is in the preferred equiva-
lence class, on T = Dqc(X ) restricts to a t-structure on T = Dqc(X ). This implies
Dqc(X ) becomes noetherian in the sense of Definition4.38, provided X is noetherian
and separated. This is the origin of the terminology “noetherian”of Definition4.38.
(iii) WARNING! The “noetherian” triangulated category of Definition4.38 is noth-
ing to do with the “Noetherian”stable homotopy category of [54, Def.6.0.1].

For instance, for the case of T = SH, the stable homotopy category of spectra,
it is easy to see T −

c consists of those spectra X whose homotopy group πi(X ) is
a finitely generated abelian groups for each i and vanishes for i ' 0. Thus, the
standard t-structure, which is obviously in the preferred equivalence class, restricts
to a t-structure on T −

c . This implies SH is noetherian in the sense of Definition4.38
[104, Fac.0.23].

On the other hand, SH is clearly NOT a Noetherian stable homotopy category
in the sense of [54, Def.6.0.1], for the graded ring of the stable homotopy category
of spheres π∗S0 is not a Noetherian graded commutative ring, which can be easily
seen by applying the Nishida nilpotency, the precursor of (Devinatz-)Hopkins–Smith
nilpotency.

Thenwe have the following somewhat straightforward result to produce examples
of approximable triangulated categories:

Proposition 4.40 [104, Ex.3.3] If T has a compact generator G, such that
Hom(G,Σ iG) = 0 for all i > 0, then T is approximable. Just take the t-structure(
T ≤0
G , T ≥0

G

)
of Theorem4.34 with A = 1.

From this, we immediately see the stable homotopy categorySH is approximable.
(actually noetherian, as was remarked in Remark4.39 (iii)).

Our principal example of approximable triangulated categories is supplied by the
following theorem:

Theorem 4.41 [104, Ex.3.6] Let X be a quasicompact, separated54 scheme. Then
the categoryDqc(X ) is approximable. (actually noetherian if X is further noetherian,
as was remarked in Remark4.39 (ii)).

The proof is very involved andwe urge readers to consult Neeman’s original paper
[104].

For now, we shall record the following application of approximability:

Corollary 4.42 [108, Lem.6.5] [109, Th.0.18] Let X be a quasicompact, separated
scheme, let G ∈ Dqc(X ) be a compact generator, and let u : U → X be an open
immersion with U quasicompact. Then

∃n ∈ N s.t. Ru∗OU ∈ 〈G〉[−n,n]n ⊂ Dqc(X ).

54Unlike (14) and Theorem4.17, the general case (where X is quasicompact and quasiseparated) is
still open—see [104, Just above Lem.3.5].



72 N. Minami

Proof (Outline of the proof of Corollary4.42 using approximability presented in
[108])

Step 1: ∃l ∈ N s.t. Hom
(
Ru∗OU , Dqc(X )≤−l

) = 0.
Step 2 (This is where the approximability of Dqc(X ) is used!) : By the approxima-

bility of Dqc(X ),55 ∃n ∈ N and a triangle:

E → Ru∗OU → D

with D ∈ Dqc(X )≤−l and E ∈ 〈G〉[−n,n]n .

Step 3: FromStep 1 and Step 2, themapRu∗OU → D in Step 2 is 0,which implies

Ru∗OU is a direct summand of E ∈ 〈G〉[−n,n]n , as desired. �

For details about the approximable triangulated categories. Consult Neeman’s
own survey [108].

5 Strong Generation in Derived Categories of Schemes

In the previous section, we saw Dperf(X ) and Db
coh(X ) carry rich information and

are intimately related to each other. In this section, we would like to investigate the
important “strong generation”property, in the sense of Bondal and Van den Bergh
[20], for Dperf(X ) and Db

coh(X ), via approximable triangulated category techniques.
For this purpose, we have to start with what we mean by a “generator”of Dperf(X )

and Db
coh(X ), because our previous definition of a generator in Definition2.13 only

works for triangulated categorieswith small coproducts, whichDperf(X ) andDb
coh(X )

are not.

Definition 5.1 [108, Expl. 5.4] Let G be an element of a triangulated category S.

Then, in the notation of Definition4.28,

1. G is called a classical generator if S = ∪n〈G〉[−n,n]n .

2. G is called a stronggenerator if there exists an integer l > 0withS = ∪n〈G〉[−n,n]l .

In this case, S is called strongly generated.

With this opportunity, let us record the following important concept intimately
related to the above definition:

Definition 5.2 [125, Def. 3.2] The Rouquier dimension of a triangulated category
S, denoted by dim S, is the smallest d for which there exists G ∈ S with S =
∪n〈G〉[−n,n]d+1 .

55There is some subtlety here. See e.g. [108, footnote 4 in Proof of Lem.5; Sketch 7.19.(i)].
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Remark 5.3 (i) Rouquier [125] proved the following properties of the Rouquier
dimension of Db

coh(X ):

• [125, Prop. 7.9] For a smooth quasiprojective scheme X over a field, we have
dim Db

coh(X ) ≤ 2 dim X .

• [125, Prop. 7.16] For a reduced separated scheme X of finite type over a field,
dim Db

coh(X ) ≥ dim X .

• [125, Th.7.17] For a smooth affine scheme X of finite type over a field,
dim Db

coh(X ) = dim X .

(ii) For a sample of examples of Rouquier dimension in affine case, see [30, 31, 59]
for instance.

On the other hand, Neeman deduces strong generation of Dperf(X ) and Db
coh(X )

from some properties of Dqc(X ):

Definition 5.4 Let X be a separated scheme.

1. Dqc(X ) is called strongly compactly generated if there exists G ∈ Dperf(X ) and

integer l > 0 with Dqc(X ) = 〈G〉(−∞,∞)

l .

2. Dqc(X ) is called strongly boundedly generated if there exists G ∈ Db
coh(X ) and

integer l > 0 with Dqc(X ) = 〈G〉(−∞,∞)

l .

Remark 5.5 From Proposition4.32, we may replace the required equality Dqc(X ) =
〈G〉(−∞,∞)

l showing up twice in Definition5.4 with more tractible
Dqc(X ) = Coprodl (G(−∞,∞)) (of course, l here is a doubling of old l.).

Theorem 5.6 Let X be a separated scheme.

1. [109, Proof of Lem.2.2] If Dqc(X ) is strongly compactly generated, then Dperf(X )

is strongly generated.
2. [109, Proof of Lem.2.7] Suppose X is noetherian. IfDqc(X ) is strongly boundedly

generated, then Db
coh(X ) is strongly generated.

To prove these claims, the following observation is crucial:

Lemma 5.7 (i) [109, Prop.1.8.(i)] Let T be a triangulated category with coprod-
ucts, and let B be a subcategory of T c. Then, for any l ∈ N,

T c ∩ Coprodl(B) ⊆ smd
(
coprodl(B)

)
.

(ii) [109, Lem.2.6] Let X be a noetherian scheme, and let G be an object inDb
coh(X ).

Then, for any l ∈ N,

Db
coh(X ) ∩ Coprodl(G(−∞,∞)) ⊆ smd

(
coprod2l(G(−∞,∞))

)
.
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Of course, we are going to apply (i) with T = Dqc(X ),B = G(−∞,∞) ⊆ T c =
Dperf(X ). Then (i) becomes

Dperf(X ) ∩ Coprodl(G(−∞,∞)) ⊆ smd
(
coprodl(G(−∞,∞))

)
,

a clear analogue of (ii).
However, the point is that we can not prove (ii) with a generality like (i). In fact,

while the proof of (i) is somewhat straightforward, the proof of (ii) is more involved.
For instance (see [109, Proof of Lem.2.4]), the “phantom ideal”I, consisting of those

maps f : x→ y such that any composite Σ iG → x
f−→ y vanishes for any i ∈ Z and

anymapΣ iG → x is studied carefully, resorting Christensen’s phantommap theory:

Theorem 5.8 [29, Th.1.1] Suppose (P, I) is a projective class of a triangulated
category T , i.e. P is a collection of objects in T , I is a collection of maps in T ,

such that

• P − null = I, where P − null is the collection of “P-phantom maps” , i.e. those
maps x→ y such that the composite p→ x→ y is zero for all objects p ∈ P and
all maps p→ x. (This condition makes I an ideal.)

• I − proj = P, where I − proj is the collection of all objects p such that the
composite p→ x→ y is zero for all maps x→ y in I and all maps p→ x.

• For any object x ∈ T , there exists a triangle p→ x→ y with p ∈ P and x→ y
in I.

Then, for any n ∈ N, (Pn, In) is also a projective class, where In is the n-th power
of the “phantom ideal”I, andPn = 〈P〉n,which is by defined inductively analogous
to Definition4.28:

〈P〉1 = P, 〈P〉l+1 = smd (〈P〉1 ∗ 〈P〉l) .

But, we also need some algebro-geometric input also to prove (ii) (see [109, Lem.2.5]
[83, Th.4.1]).

Anyway, assuming Lemma5.7, the proof of Theorem5.6 becomes straightfor-
ward:

Proof (Proof of Theorem5.6 assuming Lemma5.7) In both cases, assuming the
respective assumption on Dqc(X ), together with Remark5.5, the claims follow as
follows:

Dperf(X ) = Dperf(X ) ∩ Dqc(X ) = Dperf(X ) ∩ Coprodl(G(−∞,∞))

⊆ smd
(
coprodl(G(−∞,∞))

) ⊆ ∪n〈G〉[−n,n]l .

Db
coh(X ) = Db

coh(X ) ∩ Dqc(X ) = Db
coh(X ) ∩ Coprodl(G(−∞,∞))

⊆ smd
(
coprod2l(G(−∞,∞))

) ⊆ ∪n〈G〉[−n,n]2l .

�
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5.1 Strong Generation of Dperf(X)

From Theorem5.6(1), we search for situations when Dqc(X ) becomes strongly com-
pactly generated:

Theorem 5.9 (Max Kelly [70]) Suppose X = SpecR is affine. Then Dqc(X ) is
strongly compactly generated if and only if R is of finite global dimension.

Theorem 5.10 (Bondal–Van den Bergh) [20] Let X be smooth scheme of finite type
over a field k. Then Dqc(X ) is strongly compactly generated.

Theorem5.10 has recently been improved by Orlov as a characterization of the
strong generation of Dperf(X ):

Theorem 5.11 (Orlov [120, Th.3,27]) Let X be a separated noetherian scheme of
finite Krull dimension over an arbitrary field k. Assume that the square X × X is
noetherian too. Then the following conditions are equivalent:

1. X is regular;
2. Dperf(X ) is strongly generated.

It was this paper of Orlov [120] which motivated Neeman to develop his the-
ory of approximable triangulated category (see e.g. [109, p. 6, the paragraph before
Rem.0.10]).

In fact, the approximability of Dqc(X ) allowed Neeman to prove the following
statement by reducing to the Kelly’s old theorem in a straightforward way, i.e. by
induction on the number of open affines covering X :

Theorem 5.12 (Neeman [109, Th.2.1]) Let X be a quasi-compact separated
scheme. If X can be covered by open affinesSpecRi with Ri of finite global dimension,
then Dqc(X ) is strongly compactly generated.

Proof (Outline of a proof of Theorem5.12 following [108, Sketch.6.6]) Proceed as
follows:

• Write X = ∪1≤i≤rUi with ui : Ui = Spec(Ri), by assumption.
• By induction on r unsing the Mayer Vietoris sequence [125, Prop. 5.10] (as in the
proof given in [109, Proof of Theorem 2.1]), we find

Dqc(X ) =
(
add

[∪r
i=1Rui∗ Dqc(Ui)

] ) ∗
(
add

[∪r
i=1Rui∗ Dqc(Ui)

] ) ∗ · · · ∗
(
add

[∪r
i=1Rui∗ Dqc(Ui)

] )

︸ ︷︷ ︸
r copies

.

(51)

• By a minor variant of Max Kelly’s Theorem5.9,

∃l ∈ N, s.t. 1 ≤ ∀i ≤ r, Dqc(Ui) = 〈OUi 〉(−∞,∞)

l . (52)
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• From Corollary4.42 (recall this is where the approximability of Dqc(X )

was exploited),

∃n ∈ N s.t. 1 ≤ ∀i ≤ r, Rui∗OUi ∈ 〈G〉[−n,n]n ⊂ Dqc(X ). (53)

• From (52) and (53),

Rui∗ Dqc(Ui) = Rui∗
[
〈OUi 〉(−∞,∞)

l

]
⊂ 〈Rui∗OUi 〉(−∞,∞)

l ⊂ 〈G〉[−∞,∞]
ln ,

and so
add

[∪r
i=1Rui∗ Dqc(Ui)

] ⊂ 〈G〉[−∞,∞]
ln , (54)

• From (51) and (54), we obtain the desired strong compact generation of Dqc(X ):

Dqc(X ) = 〈G〉[−∞,∞]
lnr ,

�
Now, Neeman proves his main theorem on strong generation of Dperf(X ):

Theorem 5.13 (Neeman [109, Th.0.5] [108, Th.6.1]) Let X be a quasi-compact
separated scheme. ThenDperf(X ) is strongly generated if and only if X can be covered
by open affines SpecRi with Ri of finite global dimension.

Proof “if” part: This is immediate from Theorem5.12 and Theorem5.6(1).
“only if” part: [109, Rem.0.10] By Thomason–Trobaugh [130] recalled in

Theorem4.17 and (47), we have an equivalence upon idempotent completion:

(
Dperf(X )

/ (
Dperf

)
Z (X )

)	 Lj∗−→∼= Dperf(U ).

Thus, if G ∈ Dperf(X ) is a strong generator, then so is Lj∗G ∈ Dperf(U ). Now
the strong generation of an affine U = Spec(R) forces R to be of finite global
dimension, as is shown in [125, Prop. 7.25]. �

5.2 Strong Generation of Db
coh(X)

Here, we start with a nice theorem of Rouquier:

Theorem 5.14 (Rouquier [125, Th.7.39]) Let X be a scheme of finite type over a
perfect field k. ThenDqc(X ) is strongly boundedly generated, andDb

coh(X ) is strongly
generated.
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To go further, let us recall:

• the canonical mapDperf(X ) → Db
coh(X ) is an isomorphismwhenX is smooth over

a field, and in this case, the strong generation of Db
coh(X ) ∼= Dperf(X ) is already

discussed in the previous subsection.
• the Verdier quotient Dsg(X ) = Db

coh(X )/ Dperf(X ) reflects singular information
of X .

Thus, we must take care of singular property of X . However, while Theorem5.13
is easy and classical in the case where X is affine, this problem is neither easy nor
classical for affine X . See [108, H.S..6.12] for more on this point.56

Now, for this purpose, Neeman turned his attention to de Jong’s alteration57:

Definition 5.15 [32, 33, 117] [109, Remi.0.13] Let X be a noetherian scheme. A
regular alteration of X is a proper, surjective morphism f : Y → X , so that

1. Y is regular and finite dimensional.
2. There is a dense open set U ⊂ X over which f is finite.

Now, Neeman proves:

Theorem 5.16 (Neeman [109, Th.2.3]) Let X be a noetherian scheme, and assume
every closed subscheme Z ⊂ X admits a regular alteration. Then Dqc(X ) is strongly
boundedly generated.

Proof (Outline of a proof of Theorem5.16 following [109, Proof that Theorem 2.3
follows from Theorem 2.1])58: This is proved in the following order:

• Suppose there is a counterexample X to Theorem5.16 (SBG criterion). Since X is
noetherian, we may choose a minimal closed subscheme Z ⊂ X which does not
satisfy Theorem5.16 (SBG criterion).

• Replacing X by Z, may assume all proper closed subschemes Z ⊂ X satisfy The-
orem5.16 (SBG criterion).

• To prove Theorem5.16 (SBG criterion) for X , we may assume it is reduced:
for, let j : Xred → X be the inclusion of the reduced part of X , and let J be the
corresponding ideal sheaf with J n = 0. Then, expressing any C ∈ Dqc(X ) by a
complex of quasi-coherent sheaves, we obtain a filtration

0 = J nC ⊂ J n−1C ⊂ · · · ⊂ JC ⊂ C,

56In fact, when X is affine, strong generation of Dqc(X ) has been proved by Iyengar and Takahashi
[60] under different hypotheses, and using quite different techniques, fromNeeman’s Theorem5.16.
And they give examples where strong generation fails; see [60] and references therein.
57(Gabber’s strengthening [40] of) de Jong’s alteration is now widely used in the Morel–Voevodsky
motivic stable homotopy theory. See e.g. [55, 71]. For an introductory review of de Jong’s alteration,
consult Oort’s [117] for instance.
58This proof does not directly use the approximability of Dqc(X ), the approximability enters only
indirectly, whenwe appeal to Theorem 5.10.Whatwewant to highlight here, following a strong sug-
gestion of Professor Neeman, is “the pivotal role that the homotopy-theoretical ideas of Bousfield,
Ohkawa, Hopkins–Smith and many others play in the reduction.”
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withJ jC/J j+1 ∈ Rj∗ Dqc(Xred) (0 ≤ ∀j ≤ n− 1).Then, as in [125, 7.3], we find:

C ∈ [Rj∗ Dqc(Xred)
]∗n = [Rj∗ Dqc(Xred)

] ∗ [Rj∗ Dqc(Xred)
] ∗ · · · ∗ [Rj∗ Dqc(Xred)

]
︸ ︷︷ ︸

n

.

So, it suffices to prove the strong bounded generation Dqc(Xred) =
CoprodÑ

(
G̃(−∞,∞)

)
for some Ñ ∈ N and some G̃ ∈ Db

coh(Xred), for then we
would get:

Db
coh(X ) ⊆ [Rj∗ Dqc(Xred)

]∗n = [Rj∗ CoprodÑ
(
G̃(−∞,∞)

) ]∗n
⊆ [CoprodÑ

(
(Rj∗G̃)(−∞,∞)

) ]∗n = CoprodÑn

(
(Rj∗G̃)(−∞,∞)

)
,

where Rj∗G̃ ∈ Db
coh(X ) by Theorem4.1. So, the strong bounded generation of

Db
coh(X ) would follow.

• Now that we may assume X is reduced, we may apply de Jong’s regular alteration
to X :

Y
f

proper & surjective
X

f −1(U )
f |f−1(U )

finite & flat
∃U

dense open

where we may apply Theorem5.12 (SCG criterion) to Y , because Y is finite-
dimensional, separated and regular: Here, let us consider Rf∗ (OY ⊕ΣOY ) ∈
Db

coh(X ) (see Theorem4.1). Then,

– Since f |f −1(U ) is finite, flat and surjective, the restriction to U of the object
Rf∗OY ∈ Dqc(X ) is a nowhere vanishing vector bundle on U. In particular,

(
Lj∗Rf∗OY

)⊕Σ
(
Lj∗Rf∗OY

) = Lj∗Rf∗ (OY ⊕ΣOY ) ∈ Dperf(U ). (55)

– Then, we can apply Corollary4.20, a corollary of Thomason’s localization

theorem (Theorem4.17), to (55) to find some H ∈ Dperf(X ) such that

Lj∗H
∼=−→ Lj∗Rf∗ (OY ⊕ΣOY ) ∈ Dperf(U ). (56)

• To the local isomorphism (56), applying the ajoint isomorphism

HomDqc(U )

(
Lj∗H , Lj∗Rf∗ (OY ⊕ΣOY )

) ∼= HomDqc(X )

(
H , Rj∗Lj∗Rf∗ (OY ⊕ΣOY )

)
,

we obtain a map59

59WARNING! In [109, Proof that Theorem 2.3 follows from Theorem 2.4], Neeman concluded
the existence of an honest map H → Rf∗ (OY ⊕ΣOY ) corresponding to (56). However, this is
quite problematic, and usually, such an honest map H → Rf∗OY ⊕ΣRf∗OY does not exist. Thus,
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ψ : H → Rj∗Lj∗Rf∗ (OY ⊕ΣOY ) . (57)

– Recall, since
(
Dqc
)
Z (X ) is compactly generated ([125, Th.6.8]), we can apply

Miller’s finite localization Theorem2.19 to form the Verdier quotient with the
equivalence (14):

Dqc(X )
/ (

Dqc
)
Z
(X )

Lj∗−→∼= Dqc(U ), (58)

and thatRj∗Lj∗which shows up in the target of theψmap (57) can be interpreted
as the Bousfield localization, as in (15), which is consequently expressed by a
mapping telescope hocolim asMiller’s finite localization (Theorem2.19). Then,
consider the following pair of maps:

H
ψ−→ Rj∗Lj∗Rf∗ (OY ⊕ΣOY ) = hocolim(Rn)

c←−−−−−−−
canonical map

R0 = Rf∗ (OY ⊕ΣOY ) .

(59)

– The both maps in (59) are local isomorphism, i.e. isomorphisms when restricted
to U. This is trivial for the canonical map (which is the Bousfield localization)
and the claim for ψ follows from the local isomorphism (56).

– Since H ∈ Dperf(X ) = Dqc(X )c is compact, arguing as in Proposition2.23 and
its comments below, we may factorize the pair of maps (59) as follows:

H

∃ψ̃

ψ
hocolim(Rn) Rf∗ (OY ⊕ΣOY )

c

∃̃c
∃R̃
ι

, (60)

where:
· R̃ is obtained from Rf∗ (OY ⊕ΣOY ) ∈ Db

coh(X ) via c̃ by a finite step exten-
sions of finite coproducts of elements in Dperf(X ). Thus, we have a triangle
of the following form:

Rf∗ (OY ⊕ΣOY )
c̃−→ R̃→ Q′ (Q′ ∈ (Dperf)Z(X ), R̃ ∈ Db

coh(X )) (61)

some sort of patch is needed. The “patch”presented above was communicated to the author by
Professor Neeman, and the author replaced his own patch, which concentrates on R̃ (see (63)), with
Professor Neeman’s “patch” , which concentrates on H̃ (see (63)), because Professor Neeman’s
patch delivers a simple message how to read [109, Proof that Theorem 2.3 follows from Theorem
2.4]: just replace H with H̃ and pretend the map ψ̃′ : H̃ → Rf∗ (OY ⊕ΣOY ) obtained in (63) as
our “honest map”H → Rf∗ (OY ⊕ΣOY ) , and then, just proceed as is written in [109, Proof that
Theorem 2.3 follows from Theorem 2.4].

According to Professor Neeman, this leap and omission of justification is standard. So, the reader
is required to comeupwith this kind of patch spelled out in terms of elementaryBousfield (orMiller’s
finite) localization instantaneously at the top of his or her head. Thus, homotopy theoretical insight
is prerequisite to read Professor Neeman’s papers!
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· From (61), we see c̃ is a local isomorphism, then, since c is also a local isomor-
phism, ι is a local isomorphism as well from the right hand side commutative
diagram of (60).
Then, sinceφ is also a local isomorphism, from the left hand side commutative
diagram of (60), we find ψ̃ is also a local isomorphism. Thus, we have a
triangle of the following form:

Q′′ → H
ψ̃−→ R̃ (Q′′ ∈ (Db

coh)Z(X )) (62)

– Take the homotopypullback H̃ of the pair ofmapsH
ψ̃−→ R̃

c̃←− Rf∗ (OY ⊕ΣOY )

obtained in (60):

H̃ := H ×h
R̃

Rf∗ (OY ⊕ΣOY )

c̃′ ψ̃′

H

ψ̃

Rf∗ (OY ⊕ΣOY )

c̃

R̃

(63)

where:
· From (61), the homotopy pullback diagram (63) and H ∈ Dperf(X ), we have
a triangle of the following form:

H̃
c̃′−→ H → Q′ (Q′ ∈ (Dperf)Z(X ), H , H̃ ∈ Dperf(X )) (64)

· From (62) and the homotopy pullback diagram (63), we have a triangle of the
following form:

Q′′ → H̃
ψ̃′−→ Rf∗ (OY ⊕ΣOY ) (Q′′ ∈ (Db

coh)Z(X )) (65)

• Concerning the homological support Supph(H̃ ) of H̃
(64)∈ Dperf(X ), we see:

– Supph(H̃ ) is closed, because H̃ ∈ Dperf(X ) implies H•H̃ is of finite type as an
OX -module, and so we may apply [129, Lem.17.9.6] for instance.

Supph
(
H̃
)⋂

U
(64)= Supph (H )

⋂
U

(56)= Supph (Rf∗ (OY ⊕ΣOY ))
⋂

U

direct summand
� Supph (Rf∗OY )

⋂
U = U, a dense open ofX .

where the last equality follows from the fact Rf∗OY restricted toU is a nowhere
vanishing vector bundle.
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Thus the homological support Supph
(
H̃
)
is the whole X . Then, we can

apply Corollary4.14, a corollary of Thomason’s theorem of Thomason sets

(Theorem4.12) to conclude that, 〈H̃ 〉⊗, the tensor ideal generated by H̃ , is the
whole Dperf(X ), which obviously contains OX . Then, applying Remark4.13 and
Proposition4.32, we may pick some C ∈ Dperf(X ) and L ∈ N such that

OX ∈ 〈C ⊗ H̃ 〉L ⊆ Coprod2L
((
C ⊗ H̃

)
(−∞,∞)

)
. (66)

Consequently, for any D ∈ Dqc(X ),

D = D⊗OX ∈ 〈D⊗ C ⊗ H̃ 〉L ⊆ Coprod2L
((
D⊗ C ⊗ H̃

)
(−∞,∞)

)
. (67)

• Having (67) inmind,we applyD ⊗ C ⊗− to (65) to obtain the following triangles:

D⊗ C ⊗ Q′′ → D⊗ C ⊗ H̃ → D⊗ C ⊗ Rf∗ (OY ⊕ΣOY ) (68)

where Rf∗ (OY ⊕ΣOY ) ∈ Db
coh(X ), Q′′ ∈ (Db

coh)Z(X ).

• For Y , obtained by de Jong’s regular alteration, we may apply Theorem5.12
to conclude its strong compact generation. Thus, ∃G ∈ Dperf(X ), ∃N ∈ N, s.t.
Dqc(Y ) = CoprodN (G(−∞,∞)). Hence,

Lf ∗(D⊗ C)⊗ (OY ⊕ΣOY ) ∈ Dqc(Y ) = CoprodN (G(−∞,∞)) (G ∈ Dperf (X ))

Consequently, by the projection formula,

D⊗ C ⊗ Rf∗ (OY ⊕ΣOY ) = Rf∗
(

Lf ∗(D⊗ C)⊗ (OY ⊕ΣOY )

)

∈ Rf∗ CoprodN (G(−∞,∞)) ⊆ CoprodN ((Rf∗G)(−∞,∞))

(69)

where Rf∗G ∈ Db
coh(X ) by Theorem4.1.

• For Q′′ ∈ (Db
coh)Z(X ) in (68), we may apply Rouquier’s Theorem4.18 to find

n ∈ N,Pn ∈ Db
coh(Zn) s.t.

Q′′ = Rin∗Pn (Pn ∈ Db
coh(Zn)). (70)

• For Zn, whose underlying space is equal to that of the proper closed subscheme
Z of X from their constructions in Theorem4.18, we may apply Theorem5.16 by
inductive assumption to conclude their strong bounded generations. Thus, ∃G ′′ ∈
Db

coh(Zn), ∃M ∈ N s.t. Dqc(Zn) = CoprodM (G ′′(−∞,∞)). Hence,

Li∗n(D⊗ C)⊗ Pn ∈ Dqc(Zn) = CoprodM (G ′′(−∞,∞)) (G ′′ ∈ Db
coh(Zn))

(71)
Consequently, by the projection formula,
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D⊗ C ⊗ Q′′ = D⊗ C ⊗ Rin∗Pn = Rin∗
(

Li∗n(D⊗ C)⊗ Pn

)

∈ Rin∗ CoprodM (G ′′(−∞,∞)) ⊆ CoprodM ((Rin∗G ′′)(−∞,∞))

(72)

where Rin∗G ′′ ∈ Db
coh(X ) by Theorem4.1.

• From (65), (69) and (72), we find60

D⊗ C ⊗ H̃ ∈ CoprodM ((Rin∗G ′′)(−∞,∞)) ∗ CoprodN ((Rf∗G)(−∞,∞))

⊆ CoprodM ((Rf∗G ⊕ Rin∗G ′′)(−∞,∞)) ∗ CoprodN
(
(Rf∗G ⊕ Rin∗G ′′)(−∞,∞)

)

⊆ CoprodM+N
(
(Rf∗G ⊕ Rin∗G ′′)(−∞,∞)

)
,

(73)
where Rf∗G ⊕ Rin∗G ′′ ∈ Db

coh(X ).

• Finally, from (67) and (73) we see for any D ∈ Dqc(X ),

D
(67)∈ Coprod2L

(
(D⊗ C ⊗ H̃ )(−∞,∞)

)
(73)⊆ Coprod2L

((
CoprodM+N

(
(Rf∗G ⊕ Rin∗G ′′)(−∞,∞)

) )
(−∞,∞)

)

⊆ Coprod2L(M+N )

(
(Rf∗G ⊕ Rin∗G ′′)(−∞,∞)

)
,

(74)
where Rf∗G ⊕ Rin∗G ′′ ∈ Db

coh(X ). Thus, we have obtained the desired

Dqc(X ) = Coprod2L(M+N )

(
(Rf∗G ⊕ Rin∗G ′′)(−∞,∞)

)
,

which shows the strong bounded generation of Dqc(X ) for Rf∗G ⊕ Rin∗G ′′ ∈
Db

coh(X ). �

From Theorem5.16 and Theorem 5.6 (2), we obtain Neeman’s main theorem on
strong generation of Db

coh(X ):

Theorem 5.17 (Neeman [109, Th.0.15] [108, Th.6.11]) Let X be a noetherian
scheme, and assume every closed subscheme Z ⊂ X admits a regular alteration.
Then Db

coh(X ) is strongly generated.

From [32, 33, 102], we see any X , which is separated and essentially of finite
type over a separated excellent scheme S of dimension≤ 2, satisfies the assumptions
of Theorems5.16 and 5.17. Thus, Theorems5.16 and 5.17 generalize Rouquier’s
Theorem5.14.

For more details about strong generations of Dperf(X ) and Db
coh(X ), consult Nee-

man’s original article [109] and the survey [108].

60In Neeman’s corresponding calculation [109, 1st paragraph in p. 24], the extension length of
Coprod was doubled to be 2(M + N ) rather than M + N given in (73). However, the author does
not see such a need, and so, the author opted to present as in (73).
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Combinatorial Homotopy Categories

Carles Casacuberta and Jiří Rosický

Abstract Amodel category is called combinatorial if it is cofibrantly generated and
its underlying category is locally presentable. As shown in recent years, homotopy
categories of combinatorial model categories share useful properties, such as being
well generated and satisfying a very general form of Ohkawa’s theorem.

Keywords Combinatorial model category · Cofibrantly generated · Locally
presentable · Well generated · Brown representability

1 Introduction

The term “combinatorial” in topology classically refers to discrete methods or, more
specifically, to the use of polyhedra, simplicial complexes or cell complexes in order
to deal with topological problems [17, 32].

In the context of Quillen model categories in homotopy theory [25], those called
combinatorial are, by definition, the cofibrantly generated ones whose underlying
category is locally presentable. For example, simplicial sets are combinatorial, but
topological spaces are not. As a consequence of this fact, certain constructions involv-
ing homotopy colimits, such as Bousfield localizations, may seem intricate if one
works with topological spaces while they have become standard technology in the
presence of combinatorial models [2, 6, 12].

One key feature of combinatorial model categories is that they admit presenta-
tions in terms of generators and relations; in fact, as shown by Dugger in [11], they
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are Quillen equivalent to localizations of categories of simplicial presheaves with
respect to sets of maps. Moreover, for each combinatorial model category K there
exist cardinals λ for which K admits fibrant and cofibrant replacement functors
that preserve λ-filtered colimits and λ-presentable objects, and the class of weak
equivalences is closed under λ-filtered colimits [4, 11, 28].

Cofibrantly generated model categories admit weak generators [13, 26]. Combi-
natorial model categories are, in addition, well generated in the sense of [18, 21].
This fact links the study of combinatorial model categories with the theory of trian-
gulated categories in useful ways. For instance, it was shown in [8] that localizing
subcategories of triangulated categories with combinatorial models are coreflective
assuming a large-cardinal axiom (Vopěnka’s principle), and similarly colocalizing
subcategories are reflective.

In this article we show that a suitably restricted Yoneda embedding [1, 28] gives a
way to implement Ohkawa’s argument [24] in the homotopy category of any combi-
natorial model category, not necessarily stable. Ohkawa’s original theorem becomes
then a special case, since the homotopy category of spectra admits combinatorial
models [15]. Thus we prove that, ifK is a pointed strongly λ-combinatorial model
category (see Sect. 3 below for details) then there is only a set of distinct kernels of
endofunctors H : K → K preserving λ-filtered colimits and the zero object.

This statement (and our method of proof) is a variant of the main result in [9],
where Ohkawa’s theorem was broadly generalized. In independent work, Stevenson
used abelian presheaves over compact objects to prove that Ohkawa’s theorem holds
in compactly generated tensor triangulated categories [31], and Iyengar and Krause
extended this result to well generated tensor triangulated categories [16].

Our approach shows that Ohkawa’s theorem is valid in the categories of motivic
spaces andmotivic spectra over anyNoetherian base scheme of finite dimension [19],
and also in categories of modules over (ordinary or motivic) ring spectra, since such
categories have combinatorial models. Therefore, for example, Okhawa’s theorem
holds in the derived category of motives over any field k of characteristic zero, since
these are modules over a motivic Eilenberg–MacLane spectrum [27].

2 Combinatorial Model Categories

The notion of a combinatorialmodel categorywas introduced by Jeff Smith in unpub-
lished work made in the decade of 1990. The name refers to the fact that the underly-
ing category and its model structure are both controlled by sets of sufficiently small
objects and maps between them, in the precise sense that we next define. Further
details and additional motivation can be found in [1, 4, 11–13].

For a regular cardinal λ, a small category A is λ-filtered if every diagram in A
of cardinality smaller than λ has a cocone. An object A of a category C is called
λ-presentable if the hom-functor C (A,−) : C → Set preserves λ-filtered colimits.
For example, a group (or a module over a ring) is λ-presentable if and only if it
admits a presentation with less than λ generators and less than λ relations.
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A category C is locally λ-presentable if it is cocomplete and has a set A of
λ-presentable objects such that every object of C is a λ-filtered colimit of objects
ofA . A category is locally presentable if it is locally λ-presentable for some regular
cardinal λ. The category of sets is locallyℵ0-presentable, since every set is the colimit
of the inclusions of its finite subsets. As shown in [1, Corollary 3.7], every variety of
finitary algebras is locally ℵ0-presentable. Many more examples arise from the fact
that every functor category from a small category to a locally presentable category
is locally presentable [1, Corollary 1.54].

Amodel categoryK is cofibrantly generated if it has a setI of cofibrations such
that the trivial fibrations ofK are those morphisms having the right lifting property
with respect toI , and a setJ of trivial cofibrations such that the fibrations ofK are
those morphisms having the right lifting property with respect toJ , and moreover
I andJ permit the small object argument, that is, their domains are small relative
to transfinite compositions of pushouts of elements of I and J respectively. The
category of simplicial sets is cofibrantly generated with I the set of inclusions
∂Δ[n] ↪→ Δ[n] for n ≥ 0 and J the set of inclusions Λk[n] ↪→ Δ[n] for n ≥ 0
and 0 ≤ k ≤ n; see [12, 13] for notation and a proof.

Amodel category is called combinatorial if it is locally presentable and cofibrantly
generated. By a combinatorial homotopy category we mean a homotopy category of
a combinatorial model category.

Every locally presentable categoryC can be viewed as a combinatorial homotopy
category because the trivial model structure on C (that is, the one in which every
morphism is both a cofibration and a fibration, and the weak equivalences are the
isomorphisms) is cofibrantly generated by the argument given in [30, Example 4.6].
In general, combinatorial homotopy categories are far from being locally presentable
themselves, but they behave in some sense like a homotopy-theoretical version of
those.

A model category K is called λ-combinatorial for a regular cardinal λ if it is
locallyλ-presentable and cofibrantly generated bymorphisms betweenλ-presentable
objects. Then the functors giving factorizations of morphisms inK into cofibrations
followed by trivial fibrations or into trivial cofibrations followed by fibrations can be
chosen to be λ-accessible, that is, preserving λ-filtered colimits. Details are given in
[28, Proposition 3.1].

3 Restricted Yoneda Embedding

Let C be a category and A a small full subcategory of C . The restricted Yoneda
embedding

EA : C −→ SetA
op

sends every object X of C to the hom-set C (−, X) restricted toA . Thus EA is full
and faithful on morphisms whose domain is an object of A .
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The subcategory A is called a generator of C if EA is faithful, and a strong
generator if EA is faithful and conservative, that is, reflecting isomorphisms. We
say thatA is a weak generator if EA reflects isomorphisms whose codomain is the
terminal object of C . This means that an object of C is terminal whenever its image
under EA is terminal; hence the objects in a weak generator of C form a left weakly
adequate set in the sense of [26].

Recall from [13, 25] that if K is a model category then its homotopy category
HoK is obtained by quotienting the full subcategoryKc f of objects that are fibrant
and cofibrant by the homotopy relation on morphisms. Each choice of a fibrant
replacement functor R f and a cofibrant replacement functor Rc on K yields an
essentially surjective functor

P : K −→ HoK , (1)

namely the composite RcR f : K → Kc f followed by the projectionKc f → HoK .
It was shown in [13, Theorem 7.3.1] that, ifI is a set of generating cofibrations in

a pointed cofibrantly generated model category K , then the cofibres of morphisms
in I form a weak generator of HoK . The assumption that K be pointed can be
removed if K has a set I of generating cofibrations between cofibrant objects, in
which case the domains and codomains of morphisms in I form a weak generator
of HoK , as shown in [26, Theorem 1.2].

We also recall that a small full subcategory A of a category C is called dense if
every object X in C is a colimit of its canonical diagram with respect to A . This is
equivalent to EA being full and faithful; see [1, Proposition 1.26]. Correspondingly,
EA is full if and only if A is weakly dense in the sense that every object X is
a weak colimit of its canonical diagram with respect to A . Finally, EA is full
and conservative if and only if every X is a minimal weak colimit of its canonical
diagram with respect to A . Recall that a weak colimit (δd : Dd → X) of a diagram
D : D → C is called minimal if every morphism f : X → X such that f ◦ δd = δd
for each d ∈ D is an isomorphism [10].

Theorem 3.1 If K is a combinatorial model category, then there exist arbitrarily
large regular cardinals λ such that K has the following properties:

1. K is locally λ-presentable.
2. There is a small weak generator of HoK consisting of λ-presentable objects.
3. There are fibrant and cofibrant replacement functors R f and Rc on K that

preserve λ-filtered colimits and λ-presentable objects.

Proof If K is combinatorial, then, according to [11, Corollary 1.2], there is a zig-
zag of Quillen equivalences into another combinatorial model category M where
all objects are cofibrant. Consequently, the domains and codomains of morphisms
in a set of generating cofibrations for M form a weak generator of the homotopy
category HoM by [26, Theorem 1.2]. Since the latter is equivalent to HoK , it
follows that HoK also has a small weak generator A .
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As K is locally presentable, there are arbitrarily large regular cardinals μ such
that K is locally μ-presentable, by [1, Theorem 1.20]. Thus we can choose μ big
enough so thatK is locally μ-presentable and cofibrantly generated by morphisms
between μ-presentable objects, and, furthermore, the objects in the chosen weak
generatorA are μ-presentable. Then, as shown in the proof of [28, Proposition 3.1],
there areμ-accessible functors giving factorizations ofmorphisms inK into cofibra-
tions followed by trivial fibrations and into trivial cofibrations followed by fibrations.
In particular we can pick a fibrant replacement functor R f and a cofibrant replace-
ment functor Rc that are μ-accessible. Moreover, using [1, Theorem 2.19] or [11,
Proposition 7.2], we can pick a regular cardinal λ ≥ μ such that R f and Rc preserve
both λ-filtered colimits and λ-presentable objects. �

Definition 3.2 We call a model category K strongly λ-combinatorial if it is com-
binatorial and λ satisfies the conditions stated in Theorem 3.1.

For a regular cardinal λ, let K be a strongly λ-combinatorial model category
and denote by Kλ a small full subcategory of representatives of all isomorphism
classes of λ-presentable objects. Here and in what follows we assume that fibrant
and cofibrant replacement functors R f and Rc have been chosen on K so that they
preserve λ-filtered colimits and λ-presentable objects.

Let HoKλ denote the full image of the composition

Kλ ↪ K
P HoK ,

where P is the composite RcR f followed by the canonical projection as in (1), and
denote by Pλ : Kλ → HoKλ the domain and codomain restriction of P .

Consider the restricted Yoneda embedding

Eλ : HoK −→ Set(HoK λ)
op
,

for which the composite EλP preserves λ-presentable objects.
The next two results follow from [28, Proposition 5.1 and Corollary 5.2].

Theorem 3.3 Let K be a strongly λ-combinatorial model category for a regular
cardinal λ. Then the composite

K
P HoK

Eλ Set(HoK λ)
op

preserves λ-filtered colimits.

Corollary 3.4 IfK is strongly λ-combinatorial, then EλP ∼= Indλ Pλ.

Here Indλ denotes free cocompletion with respect to λ-filtered colimits [1, Defi-
nition 2.25], so Indλ Pλ is a functor fromK to Indλ HoKλ. The statement of Corol-
lary 3.4 means that Eλ factorizes through the inclusion
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Indλ HoKλ ⊆ Set(HoK λ)
op
,

and its codomain restriction, which we keep denoting by Eλ, makes the composite
EλP isomorphic to Indλ Pλ.

If the model category K is pointed, then Indλ HoKλ is also pointed and Eλ

preserves the zero object 0, since Eλ0 is terminal and it is also initial because 0 is
λ-presentable and Eλ is full and faithful on morphisms with domain in HoKλ.

Corollary 3.5 If K is a strongly λ-combinatorial model category, the codomain
restriction Eλ : HoK → Indλ HoKλ preserves coproducts.

Proof Pick a cofibrant replacement functor Rc preserving λ-filtered colimits and λ-
presentable objects. Note that P preserves coproducts between cofibrant objects and
every object in HoK is isomorphic to PX for some cofibrant object X inK . Hence,
using Corollary 3.4 it suffices to show that Indλ Pλ preserves coproducts between
cofibrant objects. Since each coproduct is a λ-filtered colimit of λ-small coproducts
and Indλ Pλ preserves λ-filtered colimits, we have to prove that Indλ Pλ preserves
λ-small coproducts between cofibrant objects. Let

∐
i∈I Ki be such a coproduct, so

that the cardinality of I is smaller than λ. Since the functor Rc preserves λ-filtered
colimits and λ-presentable objects, each Ki is a λ-filtered colimit of cofibrant λ-
presentable objects. Let Di : Di → Kλ denote the corresponding diagrams, so that
Ki

∼= colim Di . Then
∐

i∈I Ki is a colimit of a λ-filtered diagram whose values
are coproducts

∐
i∈I Didi with di ∈ Di , and each such coproduct

∐
i∈I Didi is λ-

presentable as the cardinality of I is smaller than λ. Since the functor Indλ Pλ pre-
serves λ-filtered colimits and Pλ preserves λ-small coproducts of cofibrant objects,
the result is proved. �
Definition 3.6 Let C be a category with coproducts and λ a cardinal. An object S
of C is λ-small if for every morphism f : S → ∐

i∈I Xi there is a subset J of I of
cardinality less than λ such that f factorizes as

S
∐

j∈J X j
∐

i∈I Xi ,

where the second morphism is the subcoproduct injection.

We also say thatℵ0-small objects are compact. This terminology is due toNeeman
[21], who found how compactness should be defined for uncountable cardinals in
triangulated categories. His definition was simplified by Krause in [18]. They con-
sidered compactness in additive categories but the definition makes sense in general.
Consider classesS of λ-small objects in a category C with coproducts such that for
every morphism f : S → ∐

i∈I Xi with S ∈ S there exist morphisms gi : Si → Xi

for which Si ∈ S for all i ∈ I and f factorizes through

∐
i∈I gi :

∐
i∈I Si −→ ∐

i∈I Xi .

Since the collection of such classes is closed under unions, there is a greatest class
with this property. Its objects are called λ-compact.
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Proposition 3.7 IfK is a strongly λ-combinatorial model category, then all objects
in HoKλ are λ-compact in HoK .

Proof Choose fibrant and cofibrant replacement functors R f and Rc preserving λ-
filtered colimits andλ-presentable objects, and let P : K → HoK be as in (1). Sup-
pose given a morphism g : PA → ∐

i∈I PKi in HoK where A is inKλ. According
to Corollary 3.5, we have

Eλg : EλPA −→ ∐
i∈I EλPKi .

Due to the fact that EλP preserves λ-presentable objects, EλPA is λ-presentable in
Indλ HoKλ. Since each coproduct is a λ-filtered colimit of λ-small subcoproducts,
Eλg factorizes through some

∐
j∈J EλPK j where J has cardinality smaller than λ.

Since Eλ is full and faithful on morphisms with domain in HoKλ, we obtain a
factorization of g through

∐
j∈J PK j and therefore we conclude that PA is λ-small.

Moreover, the argument used in the proof of Corollary 3.5 shows in a similar way
that Eλg factors through some coproduct

∐
j∈J EλPDjd j where J has cardinality

smaller than λ and Djd j is in Kλ for all j . Using again the fact that Eλ is full and
faithful on morphisms with domain in HoKλ, we find a factorization of g through∐

j∈J PDjd j . Hence PA is indeed λ-compact. �

Definition 3.8 A category with coproducts is called well λ-generated if it has a
small weak generator consisting of λ-compact objects. It is called well generated if
it is well λ-generated for some λ.

For example, every locally λ-presentable category is well λ-generated.
The following result was proved in [28, Proposition 6.10] with the additional

assumption that K was stable, which is not necessary.

Theorem 3.9 If K is a strongly λ-combinatorial model category, then HoK is
well λ-generated.

Proof Since, by assumption, there is a small weak generator of HoK whose objects
are λ-presentable, HoKλ weakly generates HoK . The rest follows from Proposi-
tion 3.7. �

As a corollary one infers Neeman’s result in [22] that, for any Grothendieck
abelian category A , the derived category D(A ) is well generated.

4 Ohkawa’s Theorem

For an endofunctor H : K → K (not necessarily preserving weak equivalences)
on a model category K , we consider the composition

K
H

K
P HoK ,
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where P is defined as in (1). The class of objects X in K such that PHX is the
terminal object in HoK will be called the kernel of H and will be denoted by ker H .
Hence, if K is pointed and 0 denotes the zero object in K and also its image in
HoK , then ker H consists of objects X inK such that PHX = 0.

In this section we prove the following result.

Theorem 4.1 Suppose that K is a pointed strongly λ-combinatorial model cat-
egory. Then there is only a set of distinct kernels of endofunctors H : K → K
preserving λ-filtered colimits and the zero object.

Proof Consider the restricted Yoneda embedding as given by Corollary 3.4,

Eλ : HoK −→ Indλ HoKλ.

For a morphism f : EλS → EλPH A with A ∈ Kλ and S ∈ HoKλ, let us denote
by TH ( f ) the set of all morphisms t : A → B inKλ such that the composite

EλS
f

EλPH A
EλPHt

EλPHB

is the zero morphism, that is, EλPHt ◦ f factors through the zero object.
Next, we denote

J (H) = {TH ( f ) | f : EλS → EλPH A with A ∈ Kλ and S ∈ HoKλ}.

We are going to prove that if J (H1) = J (H2) then ker H1 = ker H2, assuming
that H1 and H2 preserve λ-filtered colimits and the zero object. Thus suppose that
J (H2) ⊆ J (H1) and let X ∈ ker H1. In order to prove that PH2X = 0, it is enough
to show that every morphism EλG → EλPH2X factors through the zero object if G
is in HoKλ, since HoKλ is a weak generator of HoK and Eλ is full and faithful
on morphisms whose domain is in HoKλ.

Assume given such a morphism f : EλG → EλPH2X . Since the categoryK is
locally λ-presentable, X ∼= colim(D : D → Kλ) for a certain λ-filtered diagram D.
Since EλPH2 preserves λ-filtered colimits by Theorem 3.3, we then have

EλPH2X ∼= colim

(

D
D

Kλ

PH2 HoK
Eλ Indλ HoKλ

)

.

Since EλG is λ-presentable, f factors through f̂ : EλG → EλPH2Dd for some
d ∈ D . Note that the set TH2( f̂ ) is nonempty, since the morphism Dd → 0 is in it
as H2 preserves the zero object. Consequently, the assumption that J (H2) ⊆ J (H1)

implies that TH2( f̂ ) ∈ J (H1). This means that there exist an object V ∈ HoKλ and
a morphism g : EλV → EλPH1Dd such that TH2( f̂ ) = TH1(g).

Now, since X ∈ ker H1, we have EλPH1X = 0. However,



Combinatorial Homotopy Categories 97

EλPH1X ∼= colim

(

D
D

Kλ

PH1 HoK
Eλ Indλ HoKλ

)

,

and, since EλV is λ-presentable, there is a morphism δ : d → d ′ in D such that

EλV
g

EλPH1Dd
EλPH1Dδ

EλPH1Dd ′

factors through the zero object. Hence Dδ ∈ TH1(g). Therefore Dδ ∈ TH2( f̂ ) and this
implies that f : EλG → EλPH2X factors through the zero object, as we wanted to
show.

Finally, since there is only a set of distinct sets J (H), the theorem is proved. �

Ohkawa’s theorem [24, Theorem 2] is a special case of Theorem 4.1. Recall that
two (reduced) homology theories E∗ and F∗ on spectra are said to be Bousfield
equivalent if the class of E∗-acyclic spectra coincides with the class of F∗-acyclic
spectra. A spectrum X is called E∗-acyclic if E∗(X) = 0.

Corollary 4.2 There is only a set of Bousfield equivalence classes of representable
homology theories on spectra.

Proof The homotopy category of spectra admits a combinatorial model category
K ; for instance, symmetric spectra over simplicial sets [15]. For each cofibrant
spectrum E we consider the endofunctor onK defined as HE X = E ∧ RcX where
Rc is a cofibrant replacement functor preserving filtered colimits. Since smashing
with E has a right adjoint, HE preserves filtered colimits. Moreover, a spectrum X
is in ker HE if and only if X is E∗-acyclic. Hence Theorem 4.1 implies that there is
only a set of distinct kernels of endofunctors of the form HE . �

5 Generalized Brown Representability

In this section we prove other properties of combinatorial homotopy categories
related to results in [28]. Note that if C is a locally λ-presentable category with
the trivial model structure then the functor Eλ : C → Indλ Cλ is an isomorphism.

Definition 5.1 A strongly λ-combinatorial model categoryK is called λ-Brown on
morphisms if Eλ : HoK → Indλ HoKλ is full. It is called λ-Brown on objects if
Eλ is essentially surjective. Finally, K is called λ-Brown if it is λ-Brown both on
objects and on morphisms.

Let us remark the following facts:

(i) A locally finitely presentable stable combinatorial model category is ω-Brown
if it is Brown in the sense of [14], where ω denotes the first infinite ordinal.
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(ii) WheneverK is strongly ω-combinatorial and Eω is full then Eω is essentially
surjective as well. In fact, by Corollary 3.4, Indω Pω is full; since each object
of Indω Kω can be obtained by taking successive colimits of smooth chains [1]
and Pω is essentially surjective on objects, Indω Pω is essentially surjective on
objects too. HenceK is ω-Brown on objects. This argument does not work for
λ > ω because, in the proof, we need colimits of chains of cofinality ω.

(iii) Eλ is full if and only if HoKλ is weakly dense in HoK .

The homotopy category HoK of any model category K has weak colimits
and weak limits. Weak colimits are constructed from coproducts and homotopy
pushouts in the same way as colimits are constructed from coproducts and pushouts.
A homotopy pushout of

PC PA
Pg P f

PB

is a commutative diagram

PA
P f1

Pg1

PB1

Pg

PC1
P f

PE

where f = f2 ◦ f1 and g = g2 ◦ g1 are factorizations of f and g, respectively, into
a cofibration followed by a trivial fibration, and

A
f1

g1

B1

g

C1
f

E

is a pushout inK . The following definition is taken from [5].

Definition 5.2 A functor H : C → D will be called nearly full if for each commu-
tative triangle

H A
Hh

f

HC

HB

Hg

there is a morphism f : A → B in C such that H f = f .
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Proposition 5.3 A strongly λ-combinatorial model categoryK is λ-Brown onmor-
phisms if and only if the functor Eλ : HoK → Indλ HoKλ is nearly full.

Proof Sufficiency is evident because any full functor is nearly full. Let K be a
strongly λ-combinatorial model category and assume that Eλ is nearly full. Consider
an object K inK and express it as aλ-filtered colimit (δd : Dd → K ) of its canonical
diagram D : D → Kλ. This means that we have

Dd

ue
vd

∐

e : d→d ′
Dd

p

q

∐

d
Dd

g
K

Dd

ue

De
Dd ′

vd′

where g is given by a pushout

∐

d
Dd

g
K

(
∐

e
Dd

)
∐

(
∐

d
Dd

)

(p, id)

(q, id)

∐

d
Dd.

g

If we replace the pushout above by a homotopy pushout, we get (δd : Dd → K ).
It is not a cocone in K but (Pδd : PDd → PK ) is a standard weak colimit [10]
in HoK , and there is a comparison morphism t : K → K such that t ◦ δd = δd
for each d. Since Hλ = Indλ Pλ preserves λ-filtered colimits, there is a morphism
u : HλK → HλK such that u ◦ Hλδd = Hλδd for each d. Then Hλt ◦ u = id because

Hλt ◦ u ◦ Hλδd = Hλ(t ◦ δd) = Hλδd .

Now, since Eλ is nearly full, there is u : PK → PK such that u = Eλu.
Consider a morphism h : HλK1 → HλK2. Let u1, t1, u2, t2 be as u, t above for

K1 and K2. There is a cocone (γd : PD1d → PK 2) from PD1 such that

Eλγd = u2 ◦ h ◦ Hλδ1d : HλD1d −→ HλK 2
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for each d in D1. Thus there is a morphism h : K 1 → K 2 such that h ◦ Pδ1d = γd
for each d in D1. Hence

Eλh ◦ u1 ◦ Hλδ1d = Eλh ◦ Hλδ1d = Eλγd = u2 ◦ h ◦ Hλδ1d

for each d in D1. Thus Eλh ◦ u1 = u2 ◦ h. Putting h′ = Pt2 ◦ h ◦ u1, we obtain

Eλh
′ = Eλ(Pt2 ◦ h) ◦ u1 = Hλt2 ◦ u2 ◦ h = h,

which proves that Eλ is full. �

Remark 5.4 In Proposition 5.3 it suffices to assume that Eλ is full on split mono-
morphisms. This means that h = id in Definition 5.2.

The proof of the following result is given in [28, Proposition 6.4].

Proposition 5.5 If K is a combinatorial stable model category, then Eλ reflects
isomorphisms for arbitrarily large regular cardinals λ.

Remark 5.6 If Eλ is full and reflects isomorphisms then each object of HoK is a
minimal weak colimit of its canonical diagram with respect to HoKλ.

One could ask if every combinatorial stable model category is λ-Brown for arbi-
trarily large regular cardinals λ, as discussed in [28, 29]. This fact would have impor-
tant consequences [23], but it is unfortunately not true. The first counterexample was
given in [7], and in [3] a large class was found of combinatorial stable model cate-
gories which are not λ-Brown for any λ. An obstruction theory for generalized Brown
representability in triangulated categories was developed in [20], with special focus
on derived categories of rings.
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Notes on an Algebraic Stable Homotopy
Category

Ryo Kato, Hiroki Okajima and Katsumi Shimomura

Abstract Ohkawa showed that the collection of Bousfield classes of the stable ho-
motopy category of spectra is a set (Ohkawa in HiroshimaMath. J. 19:631–639, [8]).
Let C be an algebraic stable homotopy category in the sense of Hovey, Palmieri and
Strickland (Axiomatic Stable Homotopy Theory, American Mathematical Society,
Providence, RI, [6]).We here show that Bousfield classes of C form a set by introduc-
ing a homology theory based on the generators of C, in a similar manner as Dwyer
and Palmieri did in Dwyer and Palmieri (Proc. Am.Math. Soc. 129(3):881–886, [3]).
We also consider a relation between Bousfield classes of finite objects and supports
of them on a collection of objects.

Keywords Stable homotopy category · Bousfield lattice · Ohkawa theorem

1 Introduction

In the stable homotopy categoryS of spectra, the Bousfield class 〈E〉 of a spectrum E
is the collection of spectra X with E ∧ X = 0. Ohkawa [8] showed that the Bousfield
classes of S form a set (cf. [3]). Then, several authors generalized it to categories
with some structure ([2, 4, 7, 9]). In this paper, we consider an algebraic stable
homotopy category C in the sense of [6], which is a triangulated closed symmetric
monoidal category (C,∧, S, F(−,−),�)with a set G of small objects of C such that
loc〈G〉 = C, satisfying that C admits arbitrary coproducts and that every cohomology
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functor on C is representable. Here, loc〈G〉 denotes the smallest localizing subcat-
egory containing G, and we call an object A small if [A,

∨
α Xα]∗ = ⊕

α[A, Xα]∗,
where

∨
α Xα denotes the coproduct of {Xα} in C. For examples of algebraic stable

homotopy categories, see [6, 1.2. Examples]. The Bousfield class 〈E〉 of E in an
algebraic stable homotopy category C is the collection {X ∈ C | E ∧ X = 0}. Let a
denote the cardinal number of the set

⊕
F,F ′∈thick〈G〉[F, F ′]∗. Here, thick〈G〉 denotes

the smallest thick subcategory of C containing G, whose objects we call G-finite.
Then, we have an analogous theorem to Ohkawa’s:

Theorem 1.1 Let C be an algebraic stable homotopy category. Then the Bousfield
classes B(C) of C form a set, whose cardinal number is not greater than 22

a
.

This follows from Lemma 2.4 and Corollary 2.6. We note that B(C) is a partially
ordered set by setting 〈E〉 ≥ 〈F〉 if 〈E〉 ⊂ 〈F〉. Consider a subset DL(C) of B(C)

consisting of elements x ∈ B(C) satisfying x ∧ x = x . We call a non-zero element
a ∈ DL(C) an atom if for any element x ∈ B(C), a ∧ x = a or a ∧ x = 0. Consider
the set A(C) of atoms of B(C), and let b be the cardinal number of A(C). Then,

Proposition 1.2 The cardinal number of B(C) is not less than 2b.

Here, we show this by use of a surjection supp : B(C) → 2A(C) defined by

supp(b) = {a ∈ A(C) | a ∧ b �= 0}. (1.1)

In the stable homotopy category S(p) of p-local spectra, finite spectra are classified
by their types. A finite spectrum X has type n if K (n)∗(X) �= 0 and K (m)∗(X) = 0
for m < n. Here, K (n) ∈ S(p) denotes the nth Morava K -theory. It is well known
that if E and F are finite spectra, then E and F have the same type if and only if
〈E〉 = 〈F〉. We generalize this to an algebraic stable homotopy category. We say that
A(C) detects ring objects if for any non-zero ring object R, there is an atom a ∈ A(C)

such that 〈R〉 ∧ a �= 0.

Proposition 1.4 Suppose that A(C) detects ring objects. Let E and F be G-finite
objects. Then, 〈E〉 = 〈F〉 if and only if supp(〈E〉) = supp(〈F〉).

We prove this in section three.

2 Ohkawa Theorem

Let C denote an algebraic stable homotopy category with a set G of generators. We
call a subcategory D thick if it is closed under cofibrations and retracts, and denote
by thick〈G〉 the smallest thick subcategory containing G.

For E ∈ C, put

EG
∗ (X) =

⊕

G∈G
[G, E ∧ X ]∗. (2.1)
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Since G = {S} in the stable homotopy category of spectra, EG∗ (X) = [S, E ∧ X ]∗ =
π∗(E ∧ X) is the homology theory represented by E in the usual sense. In this paper,
a homology theory means a homology functor as defined in [6, Definition 1.1.3].

Lemma 2.2 (1) EG∗ (−) is a homology theory.
(2) ([6, Lemma 1.4.5 (b)]) If EG∗ (X) = 0, then E ∧ X = 0.

For an object X ∈ C, let �(X) denote the category whose objects are morphisms
u : Z → X of C for Z ∈ thick〈G〉 and whose morphisms between objects u : Z → X
and u′ : Z ′ → X are morphisms Z

v−→ Z ′ of C such that u′v = u. Then, we read off
the following from [6, Cor. 2.3.11]:

Lemma 2.3 For any objects E and X of C, EG∗ (X) = colim
�(X)

EG∗ (Xα), where {Xα →
X} is the set of objects of �(X).

Consider the following subset of A(X) = ⊕
F∈thick〈G〉[X, F]∗:

annEX (x) = { f ∈ [X, F]∗ | F ∈ thick〈G〉, EG
∗ (f)(x) = 0} ⊂ A(X)

for E ∈ C and x ∈ EG∗ (X). Then the Ohkawa class of E ∈ C is the set

〈〈E〉〉 = {annEF (x) | F ∈ thick〈G〉, x ∈ EG
∗ (F)} ⊂ 2

⊕
F∈thick〈G〉 A(F).

Put
O = {〈〈E〉〉 | E ∈ C}.

Lemma 2.4 O is a set whose cardinal number is not greater than 22
a
, where a

denotes the cardinal number of
⊕

F∈thick〈G〉 A(F) = ⊕
F,F ′∈thick〈G〉[F, F ′]∗.

For an object E ∈ C, the Bousfield class of E is the collection

〈E〉 = {X ∈ C | E ∧ X = 0}.

We denote the collection of all Bousfield classes of C by B: B = {〈E〉 | E ∈ C}. We
define a partial ordering on B and O as follows:

• 〈E〉 ≥ 〈F〉 if E ∧ X = 0 implies that F ∧ X = 0, and
• 〈〈E〉〉 ≥ 〈〈F〉〉 if for any annFA(x) ∈ 〈〈F〉〉, there exists y ∈ EG∗ (A) such that
annFA(x) = annEA(y).

Then we have a similar lemma as [3, Lemma 1.7]:

Lemma 2.5 If 〈〈E〉〉 ≥ 〈〈F〉〉, then 〈E〉 ≥ 〈F〉.
Proof Suppose that 〈〈E〉〉 ≥ 〈〈F〉〉 and let X be an object such that E ∧ X = 0. Note
that FG∗ (X) = colim

�(X)
FG∗ (Xα) by Lemma 2.3. Take an element x ∈ FG∗ (Xα). By hy-

pothesis, for annFXα
(x) ∈ 〈〈F〉〉, there is an element y ∈ EG∗ (Xα) such that annFXα

(x) =
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annEXα
(y). Since E ∧ X = 0, we have 0 = EG∗ (X), which equals colim

�(X)
EG∗ (Xα)

by Lemma 2.3. It follows that there is a morphism fαβ : Xα → Xβ ∈ �(X) for
an object fβ : Xβ → X ∈ �(X) such that fαβ ∈ annEXα

(y) = annFXα
(x). Therefore,

FG∗ ( fαβ)(x) = 0, and so FG∗ ( fα)(x) = FG∗ ( fβ)FG∗ ( fαβ)(x) = 0 ∈ FG∗ (X). Since
Xα and x are both arbitrary, we see that FG∗ (X) = 0, and hence F ∧ X = 0 by
Lemma 2.2. �
Corollary 2.6 The map f : O → B defined by f (〈〈E〉〉) = 〈E〉 is well-defined. Fur-
thermore, it is an order-preserving surjection.

LetDL denote the subset ofB consisting of elements x such that x ∧ x = x . Here,
the pairing ‘∧’ is inherited from C, that is, if x = 〈X〉 and y = 〈Y 〉 for objects X
and Y ∈ C, then x ∧ y = 〈X ∧ Y 〉. We notice that ‘∧’ is not always a meet in the
lattice B. The set DL is an ordered set bounded below. We call a non-zero element
x of DL an atom if x ∧ y = x or x ∧ y = 0 for any y ∈ B. Let A denote the subset
of DL consisting of atoms. Note that if both of x and y are atoms, then x ∧ y = x
if x = y and x ∧ y = 0 otherwise. Consider the mapping supp : B → 2A defined by
(1.1). We also consider the ordering on 2A by inclusion.

Lemma 2.7 The mapping supp is an order-preserving surjection.

Proof We see that supp is a surjection, since for a subset S ⊂ A, we have s =∨
a∈S a ∈ B satisfying supp(s) = S. Suppose that e = 〈E〉 ≥ 〈F〉 = f . For an el-

ement a = 〈A〉 /∈ supp(e), A ∧ E = 0, and so A ∧ F = 0. Thus, a /∈ supp(f), and
supp(f) ⊂ supp(e). �
Corollary 2.8 The cardinal number of B is not less than 2b for the cardinal number
b of A.

Remark 2.9 For the stable homotopy category S(p) of p-local spectra, the role of
A is played by {〈K (n)〉 | n ∈ N ∪ {∞}}, whose cardinal number is ℵ0. Here, K (n)

denotes the nth Morava K -theory if n < ∞, and the mod p Eilenberg-Mac Lane
spectrum if n = ∞.

3 Bousfield Classes and Supports on G-Finite Objects

In this section, we apply a thick subcategory theorem for the set A of atoms used in
the previous section. Let B denote the set of Bousfield classes of a fixed algebraic
stable homotopy category C.

We call an object R a ring object if R admits an associative multiplicationμ : R ∧
R → R and a unit η : S → R. Consider the following condition on the category C:

For any ring object R �= 0, 〈R〉 ∧ A
∨ �= 0 for A∨ =

∨

a∈A
a. (3.1)

In this case, we say that A detects ring objects.
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Remark 3.2 In the stable homotopy category S(p) of p-local spectra, the nilpotence
theorem [5, Th. 3 i)] of Hopkins and Smith says that an element α of a homotopy
group of a ring spectrum R is nilpotent if and only if K (n)∗(α) is nilpotent for all
0 ≤ n ≤ ∞. It follows that the set {〈K (n)〉 | n ∈ N ∪ {∞}} ⊂ A detects ring objects.

We here call an object F G-finite if F ∈ thick〈G〉, that is, F belongs to the thick
subcategory generated by G, and a thick subcategory D a G-ideal if X ∧ G ∈ D for
any X ∈ D and G ∈ G. We see that, under (3.1), the set A of atoms satisfies the
conditions of [6, Th. 5.2.2], and so we have the following:

Proposition 3.3 ([6, Th. 5.2.2]) Suppose that the condition (3.1) holds. Then, every
G-ideal D of small objects (= G-finite objects) is expressed by

D = {X ∈ thick〈G〉 | supp(〈X〉) ⊂ supp(D)}.

Here supp(D) = ⋃
X∈D supp(〈X〉).

Corollary 3.4 Under the condition (3.1), the class of G-ideals of small objects is a
set whose cardinal number is not greater than 2b.

For an object E , consider the subcategories

TE = {X ∈ thick〈G〉 | supp(〈X〉) ⊂ supp(〈E〉)} and
T B
E = {X ∈ thick〈G〉 | 〈X〉 ≤ 〈E〉}.

Lemma 3.5 Both of TE and T B
E are G-ideals and T B

E ⊂ TE .

Proof The last statement follows from Lemma 2.7. By [6, Th. 2.1.3 (a)], it suf-
fices to show that both of the categories are thick. If X ∨ Y ∈ TE , then supp(〈X〉) ⊂
supp(〈X ∨ Y〉) ⊂ supp(〈E〉), and so X ∈ TE . Suppose that X,Y ∈ TE , and X →
Y → Z is a cofiber sequence. If 〈A〉 /∈ supp(〈E〉), then 〈A〉 /∈ supp(〈X〉) and 〈A〉 /∈
supp(〈Y〉), which implies that A ∧ X = 0 = A ∧ Y . It follows that A ∧ Z = 0.
Therefore, supp(〈Z〉) ⊂ supp(〈E〉). Thus, TE is thick. For T B

E , a similar argument
works. �

Corollary 3.6 Let E be a G-finite object. Then, TE = T B
E .

Proof By Proposition 3.3 and Lemma 3.5, T B
E = {X ∈ thick〈G〉 | supp(〈X〉) ⊂

supp(T B
E )}. For X ∈ T B

E , supp(〈X〉) ⊂ supp(〈E〉) by Lemma 2.7. Since E is G-finite,
we see that supp(T B

E ) = supp(〈E〉). �

Corollary 3.7 Let X and Y be G-finite objects. Then, 〈X〉 = 〈Y 〉 if and only if
supp(〈X〉) = supp(〈Y〉).
Proof The ‘only if’ part follows from Lemma 2.7. Suppose that supp(〈X〉) =
supp(〈Y〉). Then, TX = TY , and so T B

X = T B
Y by Corollary 3.6. Noticing that

X ∈ T B
X , we see the ‘if’ part. �
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Thick Ideals in Equivariant and Motivic
Stable Homotopy Categories

Ruth Joachimi

Abstract We study thick ideals in the stable motivic homotopy category SH(k)
and in its subcategories of compact and of finite cellular objects. If k is a subfield of
the complex or even the real numbers, then using comparison functors we find thick
ideals corresponding to thick ideals in classical or Z/2-equivariant stable homotopy
theory, respectively. We also study motivic Morava K-theories AK (n), for which we
prove the motivic analogue of the decomposition of the Bousfield class of E(n) into
Bousfield classes of K (i)’s over the complex numbers if p > 2. In that case we also
prove that AK (n)-acyclicity implies AK (n − 1)-acyclicity.

Keywords Motivic homotopy theory · Equivariant homotopy theory · Thick
subcategories · Triangulated categories · Motivic Morava K-theories · Motivic
Bousfield classes

1 Introduction

In a tensor triangulated category, a thick ideal is a full subcategory which is closed
under exact triangles and retracts and under tensoring with arbitrary elements of
the category. The classification of thick ideals in the stable homotopy category of
p-local finite spectra, SH f in

(p) , is given by a famous theorem of Hopkins and Smith,

[25, Theorem 7], see Sect. 2. It states that, in SH f in
(p) , the thick ideals are given as a

chain
SH f in

(p) = C0 � C1 � · · · � Cn � · · · � C∞ = {0},

and each thick ideal is characterised by the vanishing of a particularMoravaK-theory,
that is, Cn = {X ∈ SH f in

(p) | K (p, n − 1)∗(X) = 0} for 0 < n < ∞. This theorem is
a consequence of the nilpotence theorem [25, Theorem 3], the existence of type-n
spectra for any n ≥ 0 [58, Theorem 4.8] and the fact that K (n)∗(X) = 0 implies
K (n − 1)∗(X) = 0 for X ∈ SH f in [73, Theorem 2.11].
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In equivariant stable homotopy theory for a finite group G, unpublished work
of Strickland [86], see Sect. 3, contains a partial classification of thick ideals in the
category SH(G) f ⊂ SH(G), which is the full subcategory of compact objects in
the G-equivariant stable homotopy category. This is a generalisation of the above
result, which concerns the special case SH({1}) f = SH f in . In SH(G) f , any thick
ideal is characterised by the vanishing of particular equivariant Morava K-theories,
which are indexed by a prime and a nonnegative integer (as the ordinary Morava
K-theories) and, additionally, by a conjugacy class of subgroups of G. The set of
thick ideals can be mapped to a lattice of such multi-indices and Strickland proves
lower and upper bounds for a sublattice onto which this map is bijective.

In this article, we study thick ideals in SH(k), k ⊆ C, and related motivic cat-
egories, like (SH(k) f )(p), the p-localisation of the full subcategory of all compact
objects, and SH(k) f in

(p) , the category of p-localised finite cell spectra. We use differ-
ent approaches, all of which are, in some sense, motivated by the results about thick
ideals in SH f in .

One approach is to use the comparison functors,

SH ck−→ SH(k)
Rk−→ SH

for k ⊆ C, and also

SH(Z/2)
c′
k−→ SH(k)

R′
k−→ SH(Z/2)

for k ⊆ R. We show that, for k ⊆ C, the preimages R−1
k (Cn) ⊆ (SH(k) f )(p), n ≥ 0,

form a chain of different thick ideals in (SH(k) f )(p) (Theorem 13). For k ⊆ R, we
also show that (R′

k)
−1(C) ⊆ (SH(k) f )(p) are different thick ideals, where C runs

over all thick ideals in (SH(Z/2) f )(p), as studied in [86] and in Sect. 3, as well as
in [8].

The second approach is to use methods of nilpotence theory. The thick subcat-
egory theorem for SH is highly related to the nilpotence theorem, which states
that the cobordism spectrum MU detects certain kinds of nilpotence. In this
context, the Morava K-theories recover the information from MU , meaning that
also the family {K (p, n) | p prime, n ≥ 0} detects nilpotence. Since the Morava
K-theories have a particularly easy structure (they are field theories satisfying the
Künneth formula, see e.g. [75, p. 176]), this can be used to show that any thick ideal
in SH f in can be uniquely described in terms of the vanishing and non-vanishing
of Morava K-theories. This is how [25, Theorem 7] is proven. Similar nilpotence
arguments are used in [86] to classify thick ideals in SH(G) f for finite groups G.
Strickland shows that the equivariant Morava K-theories detect nilpotence (Theorem
3).

The motivic analog to MU is the algebraic cobordism spectrum MGL . But here,
the situation is different, as MGL does not detect nilpotence. There is a notion of
motivic Morava K-theories, which are more complicated than the topological ones,
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but they, too, describe a certain family of thick ideals. In Sect. 7, we show that they
do not discover all thick ideals in (SH(k) f )(p), and also that not all thick ideals are
of the form R−1

k (Cn).
The third approach is to find different lifts of topological type-n spectra to the

motivic world and to ask whether they generate the same thick ideals or different
ones. We consider two explicit different such lifts to (SH(C) f )(p).

In SH f in
(p) , the thick ideals are ordered linearly by inclusion, due to the fact that

K (n + 1)∗(X) = 0 implies K (n)∗(X) = 0 for X ∈ SH f in . This raises the question
whether this implication also holds in SH(k) f . For p > 2, we prove that the analog
statement holds for motivic Morava K-theories overC if X is a finite cellular motivic
spectrum, as studied in [16]. That is, it holds for X ∈ SH(C) f in ⊆ SH(C) f . On
the way, we prove a couple of interesting facts concerning the motivic versions of
BP , K (n) and related theories. We prove that the analog of the decomposition of
Bousfield classes 〈E(n)〉 = ∨

i≤n
〈K (i)〉 holds in SH(C) (for p > 2), as conjectured

by Hornbostel in [27, Question 2.17] for arbitrary fields.
While we study the tensor triangulated spectrum of the Morel–Voevodsky stable

homotopy category over fields k ⊆ C, we refer to [42] for an account on the case
of finite fields. Another paper to mention is [24], which studies this object for fields
of characteristic different from 2 and proves the surjectivity of Balmer’s comparison
map.

Outline

In Sect. 2, we introduce basic notation concerning thick ideals and the stable homo-
topy category SH. We recall the thick subcategory theorem of Hopkins and Smith
(Theorem 1). In SH f in , there is no difference between thick subcategories and thick
ideals (Lemma 1).

Section3 is an account on Strickland’s work [86]. It contains Strickland’s main
results on thick ideals in SH(G) f and their proofs. The section begins with the
necessary recollection from equivariant stable homotopy theory, such as compact
objects inSH(G) and geometric fixed point functors. EquivariantMoravaK-theories

K (n, H) = G/H+ ∧ Ẽ[� H ] ∧ K (n), for H ⊆ G,

are introduced in Sect. 3.2. They are related to the classicalMorava K-theories via the
geometric fixed point functor (Proposition 14) and satisfy similar properties, such as
theKünneth formula (Corollary 15). Section3.3 introduces the terminologyof lattices
and contains the result of Strickland which establishes a general relation between
thick ideals and the detection of nilpotence by some family of homology theories
(Theorem 2). The equivariant analog of the nilpotence theorem [25, Theorem 3] is
Theorem 3. We give a reformulation of the thick subcategory theorem [25, Theorem
7] in a non-p-localised way (Theorem 4) and prove a similar equivariant result,
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Theorem 5, which describes an injective lattice homomorphism from the set of thick
ideals in SH(G) f to the lattice

GQ =
∏

sub(G)

{u ∈
∏

p

Qp | u p = 1∀ p or u p �= 1∀ p},

where Qp = {p−n | 0 ≤ n ≤ ∞}, and gives a lower bound for its image:

Theorem 5 (Strickland) The composition

τ : Idl(SH(G) f )
supp−→ P(GQ′) max−→ GQ

is injective. Its image contains all u ∈ GQ which satisfy: if H ⊆ H ′, then uH ≥ uH ′ .

Here, P(GQ′) denotes the power set of the set

GQ′ = {p−n | p prime, 0 ≤ n < ∞} × sub(G).

An upper bound is given in Proposition 33. In Sect. 3.5, we apply Strickland’s results
to SH(Z/2) f , which will be most interesting to us in our study of thick ideals in
SH(k) f , k ⊆ R. Any thick ideal in (SH(Z/2) f )(p) is of the form

Cm,n = {X | φ{1}(X) ∈ Cm and φZ/2(X) ∈ Cn},

where m, n ∈ [0,∞] and φH : SH(G) → SH is the geometric H -fixed point func-
tor (Corollary 34).But not allCm,n are different. Corollary 36gives partial information
on which ones are.

In Sect. 4, we introduce the comparison functors SH ck−→ SH(k)
Rk−→ SH for

k ⊆ C, and SH(Z/2)
c′
k−→ SH(k)

R′
k−→ SH(Z/2) for k ⊆ R, which are symmetric

monoidal and satisfy Rk ◦ ck ∼= id and R′
k ◦ c′

k
∼= id, respectively. This is mainly a

recollection from various other sources. The same results are independently obtained
in [23, Sect. 4].

In Sect. 5, we apply our knowledge concerning comparison functors to the study
of thick ideals, proving the following theorem for any prime p.

Theorem 13 (Lower bound on the number of motivic thick ideals)

(1) If k ⊆ C, the category (SH(k) f )(p) contains at least an infinite chain of different

thick ideals given by R
−1
k (Cn), 0 ≤ n ≤ ∞, where Rk denotes the p-localisation

of the restriction of Rk to SH(k) f and Cn ⊆ SH f in
(p) is as defined in Sect.1.

(2) If k ⊆ R, then (SH(k) f )(p) contains at least a two-dimensional lattice of differ-

ent thick ideals given by (R
′
k)

−1(Cm,n), for all (m, n) ∈ Γp as in Definition35.

One ingredient of this theorem is Proposition 61, where we show that the realisa-
tion functors Rk and R′

k preserve compactness. In Sect. 5.3, we also prove a couple of
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additional results on the connection betweenmotivic thick ideals and the comparison
functors.

Section6 begins with an account of homology and cohomology theories in the
category of finite motivic cell spectra, SH(k) f in , as studied by Dugger and Isaksen
in [16]. We show that, for a cellular ring spectrum E and a finite cellular spectrum X ,
E∗∗X = 0 is equivalent to E∗∗X = 0 (Proposition 69). For k ⊆ R, we use a notion
of cellular spectra which is more general than the notion from [16], see Definition 52.
This yields another version of Proposition 69 (Corollary 72). In Sect. 6.2, we discuss
different ways of defining thick ideals associated with a (ring) spectrum. This is
applied to motivicMorava K-theories AK (n) in Sect. 6.4. For example, we show that
the thick ideal CAK (n) associated with the n-th motivic Morava K-theory is contained
in R−1

k (Cn+1) (Proposition 78). We recall the definition and some properties of the
motivic Morava K-theories in Sect. 6.3. The motivic Atiyah Hirzebruch spectral
sequence described in [32, Example 8.13], implies that the n-th motivic Morava
K-theory over the field C has coefficient ring HZ/p∗∗ ⊗ K (n)∗ (Lemma 5), as
remarked in [96] below Corollary 3.9.

In Sect. 7, we study the thick ideal generated by the cofiber of the motivic Hopf
map, Cη ∼= P

2
k , and compare it to the thick ideals R−1

k (Cn) and CAK (n) for k ⊆ C.
We calculate the type of Rk(Cη(p)) ∈ SH f in

(p) , which is 1, and the equivariant type
of R′

k(Cη(p)) ∈ (SH(Z/2) f )(p), which is (1, 2) for p = 2 and (1,∞) for odd p
(Proposition 82). In Proposition 83, we show that Cη(p) generates a thick ideal of
(SH(k) f )(p) which is neither of the form R−1

k (Cn+1) or CAK (n) for any n ≥ 0, nor is
it all of (SH(k) f )(p) (at least, if p = 2 or k ⊆ R).

Proposition 83 For k ⊆ C, let thickid(Cη(p)) ⊆ (SH(k) f )(p) denote the thick ideal
generated by the p-localised cofiber of the Hopf map. Then the following hold:

(1) thickid(Cη(p)) � CAK (n) for any n ≥ 0 and any prime p,
(2) thickid(Cη(p)) � R−1

k (Cn) for any n > 0 and any prime p,
(3) thickid(Cη(p)) � thickid(S0(p)) = (SH(k) f )(p) if k ⊆ R and p is any prime or

k ⊆ C and p = 2.
(4) For any prime p, the thick ideals thickid(Cη(p)) ∩ R−1

k (Cn) are distinct for dif-
ferent n ≥ 0 and in particular nonzero if n < ∞.

This proves thatSH(k) f , k ⊆ C, really has “more” thick ideals than its topological
counterpart. In Sect. 7.2, we compare our results to Balmer’s work on prime ideals
[7]. For the categories SH f in , SH(Z/2) f , SH(C) f and SH(R) f , we recover the
information on prime ideals given in [7, Sect. 10] from a different point of view.

In Sect. 8, we study two preimages under RC of a type-n spectrum Xn ∈ SH f in
(p) .

One of them is cC(Xn) and the other one, Xn , is constructed by a motivic version of
the construction of Xn , as given in [75, Appendix C]. In analogy to Mitchell’s result
[58, Theorem 4.8], we prove the following vanishing theorem for motivic Morava
K-theory.

Theorem 14 (Vanishing criterion) Let s > 0 and X ∈ SH(C) f in be a finite motivic
cell spectrum such that H∗∗(X, Z/p) is free over the exterior algebra ΛHZ/p∗∗(Qs)

as a module over the motivic Steenrod algebra. Then AK (s)∗∗X = 0.
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This is proven with the help of the motivic Adams spectral sequence for
Ak(s) ∧ X , where Ak(s) is the motivic analog of the connective Morava K-theory
spectrum. This spectral sequence is studied in Sect. 8.3. In Sect. 8.5, we construct
a spectrum Xn satisfying the assumption of the theorem, and we show that this
spectrum is indeed of motivic type n (Theorem 16).

Section9 is devoted to the study of the Bousfield classes of AK (n) and related
motivic spectra. The main goal in writing this section was to prove that
AK (n + 1)∗∗(X) = 0 implies AK (n)∗∗(X) = 0, which we show for X ∈ SH(C) f in

and p > 2 in Theorem 21.

Theorem 21 Let p > 2. If X ∈ SH(C) f in satisfies AK (n + 1)∗∗(X) = 0, then it
also satisfies AK (n)∗∗(X) = 0.

A lot of results in Sect. 9 hold more generally. In Sect. 9.1, we prove that vn-
torsion in ABP∗∗ABP is also vn−1-torsion. This holds in any SH(k), k ⊆ C

(Theorem 17). The proof uses methods similar to the topological version of the
statement, [40, Theorem 0.1]. Another ingredient is the map of Hopf algebroids
(BP∗, BP∗BP) → (ABP∗∗, ABP∗∗ABP), as studied in [65]. In Sect. 9.4, we con-
struct certain operations on AP(n) in SH(k), k ⊆ C (Theorem 18), similar to the
operations on P(n) constructed by Würgler in [94, Theorem 5.1]. These are used to
prove the equality of Bousfield classes 〈AK (n)〉 = 〈AB(n)〉 in SH(C) (Corollary
147) with methods similar to those of [39]. In the proof of Corollary 147, we assume
k = C because we make use of the explicitly known coefficient rings HZ/p∗∗ and
AK (n)∗∗. The result is used to prove Theorem 20, which is the following decom-
position of Bousfield classes in SH(C), as conjectured in [27, Question 2.17] for
arbitrary fields.

Theorem 20 For p > 2,

〈AE(n)〉 =
∨

i≤n

〈AK (i)〉 in SH(C).

Large parts of Sects. 8 and 9 also hold for k = R, when p is odd, using Lemma5
applied to H∗∗(R, Z/p) ∼= Z/p[τ 2]. Here deg(τ 2) = (0, 2) and τ 2 is mapped to
τ 2 ∈ H∗∗(C, Z/p) by the base change functor.

2 Thick Ideals in Classical Stable Homotopy Theory

In this section, we introduce basic notation concerning thick ideals and the stable
homotopy category SH. In SH f in , a thick ideal is the same as a thick subcate-
gory (Lemma 1). We recall the thick subcategory theorem of Hopkins and Smith in
Theorem 1.
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Definition 1 A tensor triangulated category is a triple (T ,∧, S) consisting of a
triangulated category T and a symmetric monoidal product∧ on T with unit S, such
that for any A ∈ T , A ∧ − preserves exact triangles (see e.g. [6, Definition 1.1]).

Example 2 The stable homotopy category (SH,∧, S) with S = S0 = Σ∞S0 is a
tensor triangulated category.

Definition 3 Let (T ,∧, S) be a tensor triangulated category. A full triangulated
subcategory ∅ �= C ⊆ T is called a

(1) thick subcategory if it is closed under retracts.
(2) thick ideal if it is a thick subcategory and in addition satisfies:

if X ∈ T and Y ∈ C then X ∧ Y ∈ C.

If X is an object or a set of objects, we denote the smallest thick ideal containing X
by thickid(X ) and call it the thick ideal generated byX . This is well defined because
the intersection of thick ideals is again a thick ideal. If X is a finite set of objects,
thickid(X ) is called finitely generated.

Remark 4 Anyfinitely generated thick ideal is generated by a single element, namely
the direct sum of all generators.

Example 5 If (T ,∧, S) is a tensor triangulated category, then

thickid(S) = T ,

since for any X ∈ T , X ∼= X ∧ S.
More generally, if Z is in the Picard group Pic(T ), i.e., if there exists a Z ′ such that

Z ′ ∧ Z ∼= S, then thickid(Z) = T . The Picard group of the stable homotopy category
SH consists precisely of the spheresΣn S0, n ∈ Z (see e.g. [26]), the Picard group of
the equivariant stable homotopy category SH(G) is described in [19] and examples
for elements in the Picard groups of motivic stable homotopy categories are given in
[35].

Definition 6 The category SH f in is the smallest full subcategory of SH that con-
tains all finite desuspensions of suspension spectra of finite CW complexes and is
closed under isomorphisms.

Remark 7 SH f in is a tensor triangulated subcategory of SH. It can equivalently
be defined as the smallest thick subcategory of SH that contains S0, or as the full
subcategory of compact objects in SH (see, e.g. [78, Theorem II.7.4]).

Lemma 1 In SH f in , any thick subcategory is already a thick ideal.

Proof Let X be an element of the thick subcategory C ⊆ SH f in and let Y ∈ SH f in .
By the definition of SH f in , there is a finite sequence of spectra {Y k}0≤k≤n such that
Y 0 = Sn0 , Y ∼= Y n and each Y k is the cofiber of somemap Snk → Y k−1, nk ∈ Z. Any
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thick subcategory is closed under suspensions and desuspensions becauseΣ±1X lies

in an exact triangle with X
1→ X . Hence, X ∧ Y 0 ∈ C. Assume that X ∧ Y k ∈ C for

some k. Then X ∧ Snk+1 → X ∧ Y k → X ∧ Y k+1 is an exact triangle whose first two
objects are in C. Since C is a thick subcategory, it follows that X ∧ Y k+1 ∈ C, too,
and inductively, X ∧ Y n ∈ C. Note further that thick subcategories are closed under
isomorphisms as these are special cases of retractions. Hence, X ∧ Y ∈ C, which
proves that C is a thick ideal. �

Definition 8 Let p be a prime number. The p-local categories SH(p) and SH f in
(p)

are defined as the Bousfield localisations of SH and SH f in at the p-local Moore
spectrum MZ(p).

It is a commonprocedure to study spectra p-locally for each prime p, i.e. instead of
X ∈ SH one studies its image X(p) underSH → SH(p), and thenfits the information
together. For example, n-th Morava K-theory K (n) is defined for any fixed prime p,
where it satisfies K (n)∗(X) = K (n)∗(X(p)). For the construction and properties of
K (n), see e.g. [39].

Now we are ready to state the thick subcategory theorem of Hopkins and Smith
[25, Theorem 7], which was the main motivation for this paper. It gives a beautiful
and complete description of the thick ideals in SH f in

(p) in terms ofMorava K-theories.

Theorem 1 (Hopkins, Smith) In SH f in
(p) , the thick ideals are given as a chain

SH f in
(p) = C0 � C1 � · · · � Cn � · · · � C∞ = {0},

with Cn = {X ∈ SH f in
(p) | K (n − 1)∗(X) = 0} for 0 < n < ∞.

Definition 9 A spectrum X ∈ SH f in
(p) is said to be of type n if K (n − 1)∗(X) = 0

and K (n)∗(X) �= 0. We write type(X) = n.

For any fixed prime p, the type of a spectrum is well-defined by [73, Theorem
2.11]. The thick subcategory theorem implies that any spectrum X of type n generates
Cn as a thick ideal.

3 Thick Ideals in Equivariant Stable Homotopy Theory

The contents of this section (except for the introductory section and some details)
are due to Neil Strickland [86]. We state Strickland’s main results on thick ideals in
SH(G) f and their proofs. We start with the necessary recollection from equivariant
stable homotopy theory. Thick ideals inSH(G) f are classified by equivariantMorava
K-theories, K (n, H) = G/H+ ∧ Ẽ[� H ] ∧ K (n), H ⊆ G, which are introduced in
Sect. 3.2. They are related to the classical Morava K-theories via the geometric fixed
point functor (Proposition 14) and satisfy similar properties, such as the Künneth
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formula (Corollary 15). As in the non-equivariant theory of Hopkins and Smith,
the equivariant Morava K-theories detect nilpotence in SH(G) f (Theorem 3). The
general relation between the detection of nilpotence by a family of homology theories
and thick ideals is described in Theorem 2. As a corollary, we reformulate the thick
subcategory theorem [25, Theorem 7] in a non-p-localised way (Theorem 4) and
prove a similar equivariant result, Theorem 5, which describes an injective lattice
homomorphism from the set of thick ideals in SH(G) f to a particular lattice GQ
and gives a lower bound for its image. An upper bound is given in Proposition 33.

For our study of thick ideals in the motivic stable homotopy categories SH(k) f ,
k ⊆ R, we will use the here given knowledge concerning thick ideals in the Z/2-
equivariant stable homotopy category. Therefore, the caseG = Z/2 is the interesting
one for the rest of this paper and we will summarise all results on thick ideals
in SH(Z/2) f in Sect. 3.5. Any thick ideal in (SH(Z/2) f )(p) is of the form Cm,n =
{X | φ{1}(X) ∈ Cm and φZ/2(X) ∈ Cn}, wherem, n ∈ [0,∞] andφH is the geometric
fixed point functor (Corollary 34). But not all Cm,n are different. Corollary 36 gives
partial information on which ones are.

In the meanwhile, a full description of thick ideals in SH(Z/2) f has been given
by [8].

3.1 Equivariant Stable Homotopy Theory

Let G be a finite group and SH(G) be the stable homotopy category of genuine G-
spectra. This category has quite a few models. We switch between spectra of G-CW
complexes and spectra of G-simplicial sets, depending on which is more convenient
in the concrete situation. A good model for SH(G) as a tensor triangulated category
is the category of orthogonalG-spectra, see e.g. [53] or [79]. In Sect. 4.2,wemake use
of two other models, namely symmetric G-spectra and GΣG-spectra. The following
definition of finite G-spectra, for example, makes sense if we use the model of
orthogonal G-spectra with G-CW complexes as the underlying category of spaces.
The definition induces a notion of finiteness for any other model for SH(G).

Definition 10 ForG a finite group, let SH(G) f in be the smallest full subcategory of
SH(G) that contains all finite desuspensions of suspension spectra of finite G-CW
complexes and is closed under isomorphisms. The objects of SH(G) f in are called
finite G-CW spectra. We denote the closure of SH(G) f in under retracts in SH(G)

by SH(G) f .

Both SH(G) f in and SH(G) f are tensor triangulated subcategories of SH(G)

because finiteG-CW complexes are closed under cofiber sequences and under smash
products and because retracts commute with smash products.

Definition 11 A spectrum X ∈ SH(G) is called dualisable, if the canonical map

F(X, S0) ∧ Y → F(X,Y )
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is an isomorphism for any Y ∈ SH(G), where F(−,−) denotes the derived function
spectrum and S0 = S0G is the sphere spectrum in SH(G) (for possible definitions of
S0 and F(−,−), see e.g. [79, Examples 2.10 and 5.12]). DX = F(X, S0) is called
the dual of X . It satisfies DDX ∼= X ([51, Proposition III.1.3]). In the following, we
also use the notation S for S0G , since it is the unit in SH(G).

X ∈ SH(G) is called compact if [X,−]SH(G) = HomSH(G)(X,−) preserves
arbitrary coproducts.

Proposition 12 The subcategory SH(G) f ⊆ SH(G) has the following equivalent
descriptions:

(1) It is the full subcategory of retracts of finite G-CW spectra.
(2) It is the full subcategory of dualisable objects.
(3) It is the full subcategory of compact objects.

Proof Items (1) and (2) are equivalent by [54, Theorem XVI.7.4].
Furthermore, any dualisable object X is also compact, because

[
X,

∨
Yi

]
=

[
S, F(X,

∨
Yi )

]
=

[
S, DX ∧

∨
Yi

]
=

[
S,

∨
(DX ∧ Yi )

]

=
⊕

[S, DX ∧ Yi ] =
⊕

[S, F(X,Yi )] =
⊕

[X,Yi ] ,

where we used that F(X,−) is right adjoint to X ∧ − and that the unit S is com-
pact, see e.g. [79, Corollary 3.30(i)]. Since πH

n X = 0 for all H ⊆ G and n ∈ Z

implies X ∼= 0 in SH(G) by the definition of SH(G), {ΣnΣ∞(G/H)+ | H ⊆
G, n ∈ Z} is a detecting set and, hence, also a generating set by [55, Lemma
13.1.6]. That is, the smallest thick subcategory of SH(G)which is closed under infi-
nite coproducts and contains {ΣnΣ∞(G/H)+ | H ⊆ G, n ∈ Z} is SH(G) itself.
By [51, Corollary II.6.3], Σ∞(G/H)+ is dualisable and, thus, compact. Hence,
{Σ∞(G/H)+ | H ⊆ G} is a set of compact generators for SH(G). By general
theory due to Neeman [66], see e.g. [55, Theorem 13.1.14], the full subcategory
of compact objects in SH(G) is the thick subcategory generated by this set (i.e.,
the smallest thick subcategory of SH(G) containing this set). Therefore, (3) is also
equivalent to (1) and (2). �

Let G be a finite group and H ⊆ G a subgroup. There are functors i : SH →
SH(G) and φH : SH(G) → SH, where i maps a nonequivariant spectrum to the
corresponding G-spectrum with trivial G-action and φH is the geometric fixed point
functor (as defined in [51, Definition 9.7], [53, Definition 4.3] or [79, Sect. 7.3]) con-
catenated with the forgetful functor from SH(W (H)) to SH, where W (H) denotes
the Weyl group of H ⊆ G. We will need the following properties [86, Proposition
12.1 and Theorem 12.4].

Proposition 13 The geometric fixed point functor φH has the following properties:

(1) In SH, φH (Σ∞X) = Σ∞XH for any suspension spectrum Σ∞X ∈ SH(G).
(2) In SH, φH (X ∧ Y ) = φH (X) ∧ φH (Y ) for any X,Y ∈ SH(G).
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(3) In SH, φH (i(X)) = X for any X ∈ SH.
(4) If φH (X) = 0 in SH for all H ⊆ G, then X = 0 in SH(G).

Proof A proof of (1) can be found in [51, Corollary II.9.9], [53, Corollary 4.6], or
in [79, Example 7.7]. (2) follows from [51, Theorem II.9.8(ii)] and [51, Proposition
II.9.12(ii)]. (3) follows directly from the definition of φH , since H acts trivially on
i(X). (4) is proven in [79, Theorem 7.12] and in [86, Theorem 12.4]. �

3.2 Equivariant Morava K-Theories

For H ⊆ G, Ẽ[� H ] denotes a G-space which satisfies:

Ẽ[� H ]K �
{
0 if K �G H

S0 if K ≥G H
,

where K ≥G H means that K contains a subgroup conjugate to H .
The existence of such a space Ẽ[� H ] follows from the theory of classifying

spaces for families (see e.g. [51, Sect. II.2]), if one takes F as the family of all
subgroups of G for which H is not subconjugate and then defines Ẽ[� H ] by the
cofiber sequence

EF+ → S0 → Ẽ[� H ],

as in [53, Notations 4.14].
Fix a prime number p. Strickland [86, Definition 16.2] defines Morava K-theory

spectra in SH(G), G a finite group, by

K (n, H) = G/H+ ∧ Ẽ[� H ] ∧ K (n)

for any subgroup H ⊆ G. He notes that, as a localisation of S0, Ẽ[� H ] is a commu-
tative ring spectrum, which together with the ring structure of K (n) and the diagonal
map on G/H induces a ring structure on K (n, H), which is commutative for p > 2.
We will only be interested in H up to conjugacy, because if H and H ′ are conjugate,
then K (n, H) ∼= K (n, H ′).

The following proposition serves as motivation for this definition of equivariant
Morava K-theories [86, Remark 16.4 ff].

Proposition 14
K (n, H)∗(X) = K (n)∗(φH (X))

and
K (n, H)∗(X) = K (n)∗(φH (X)).
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Proof Here, we need the following formula for the geometric fixed point spectrum
[51, Theorem II.9.8(ii)]:

φH (X) ∼= (Ẽ[� H ] ∧ X)H ,

where (−)H is the spectrification of the levelwise fixed point functor. In the following,
we abbreviate Ẽ[� H ] by Ẽ . The first equation follows from

K (n, H)∗(X) = π∗
(
(X ∧ G/H+ ∧ Ẽ ∧ K (n))G

)

= π∗
(
(X ∧ Ẽ ∧ K (n))H

)
= π∗

(
φH (X ∧ K (n))

)

= π∗
(
φH (X) ∧ K (n)

) = K (n)∗(φH (X)).

For the second equation, we use the fact thatG/H+ is self-dual [51, Corollary II.6.3],
hence

K (n, H)∗(X) = [X, F(G/H+, Ẽ ∧ K (n))]G∗ = [X, Ẽ ∧ K (n)]H∗ .

We claim that this is isomorphic to [φH X,φH K (n)]∗ = K (n)∗(φH X). To prove the
claim, first note that because Ẽ ∧ − is a Bousfield localisation functor,

[X, Ẽ ∧ K (n)]H∗ = [Ẽ ∧ X, Ẽ ∧ K (n)]H∗ .

From here, the H -fixed points yield a map

α : [Ẽ ∧ X, Ẽ ∧ K (n)]H∗ → [(Ẽ ∧ X)H , (Ẽ ∧ K (n))H ]∗
and the latter group is isomorphic to [φH X,φH K (n)]∗. Assume that XH is an orbit
H/K+ for K ⊆ H . If K �= H ,α : 0 → 0 is an isomorphism. If K = H , [Ẽ ∧ X, Ẽ ∧
K (n)]H∗ = [S0G, Ẽ ∧ K (n)]H∗ = [S0,φH (K (n))]∗ = [φH X,φH (K (n))]∗. That is, α
is an isomorphism on all orbit types and it follows that α is an isomorphism for any
X ∈ SH(G). �

From this and the properties of nonequivariant Morava K-theories (see e.g. [25,
Sect. 1]), it follows immediately that K (n, H) has coefficients like K (n) and satisfies
the Künneth formula [86, Sect. 16].

Corollary 15 The equivariant Morava K-theories satisfy the following properties:

(1) K (n, H)∗S0G = K (n)∗S0 = Fp[v±1
n ] for any n > 0 and any H ⊆ G.

(2) K (n, H)∗(X ∧ Y ) ∼= K (n, H)∗(X) ⊗K (n)∗ K (n, H)∗(Y ) for any X,Y ∈
SH(G).

(3) If X is dualisable, i.e., if X ∈ SH(G) f , then
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K (n, H)∗(DX) ∼= HomK (n)∗(K (n, H)∗(X), K (n)∗).

Furthermore, Strickland shows [86, Proposition 16.6]:

Proposition 16 If p �= p′ or n �= n′ or H �=G H ′ (i.e., not conjugate in G), then

K (p, n, H) ∧ K (p′, n′, H ′) = 0.

Proof In the cases p �= p′ and n �= n′, this follows from K (p, n) ∧ K (p′, n′) = 0
(see [73, Theorem 2.1(i)]), as these appear as smash factors in K (p, n, H) ∧
K (p′, n′, H ′). Therefore, assume p = p′, n = n′ and H �=G H ′. Now it suffices
to show G/H+ ∧ Ẽ[� H ] ∧ G/H ′+ ∧ Ẽ[� H ′] = 0, which is easily checked on the
level of K -fixed points for all K ⊆ G. �

3.3 Nilpotence and Lattices of Thick Ideals

For a convenient description of the collection of thick ideals in the equivariant homo-
topy category of dualisable spectra, SH(G) f , [86] uses the language of lattices.

Definition 17 A lattice is a partially ordered set A for which any finite subset F ⊆ A
has a greatest lower bound (called meet)

∧
F and a smallest upper bound (called

join)
∨

F . The largest element in A is
∧ ∅, which we denote by 1 and the smallest

element is 0 = ∨ ∅. A lattice homomorphism is an order preservingmap f : A → B
which also preserves all joins and meets.

Example 18 (1) The collection of thick ideals C in a tensor triangulated category T ,
partially ordered by inclusion, is a lattice. Meets are just intersections, whereas
the join of a finite collection of thick ideals is the smallest thick ideal which
contains all objects of the different ideals. We denote this lattice by Idl(T ).

(2) The power set of any set is a lattice, partially ordered by inclusion, meets given
by intersections and joins by unions.

We introduce a new notation, due to Strickland, which will be useful in the rest
of this section.

Notation 19 For a prime p and a nonnegative integer n, let K (p−n) denote the n-th
Morava K-theory spectrum at the prime p (which above was denoted by K (p, n) or
just K (n)).

One advantage of this notation is that there is only one name for the zerothMorava
K-theory spectrum (which is independent of p): K (1) = HQ.

Definition 20 Let
Qp = {p−n | 0 ≤ n ≤ ∞}
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and
Q = {u ∈

∏

p

Qp | u p = 1∀ p or u p �= 1∀ p}.

The sets Qp and Q are lattices, with the usual ordering of rational numbers and
the componentwise partial ordering of products. We immediately see that Theorem1
can be reformulated as follows.

Corollary 21 Let Idl(SH f in
(p) ) be as in Example 18(1). The map

τp : Idl(SH f in
(p) ) −→ Qp,

τp(C) = max{p−n | type(X) = n for some X ∈ C},

is a lattice isomorphism.

We will see in Theorem 4 how to merge the information for different p to a
classification of finitely generated thick ideals of SH f in using the lattice Q. But
before we are able to do so, we need some more theory on thick ideals and lattice
homomorphisms.

Definition 22 For X ∈ SH(G) f , let ann(X) denote the fibre of the unit map S →
F(X, X) and define

Aann(X) = {A | ann(X)∧n ∧ A → A is null for some n > 0}.

The map here is the n-fold smash product of the map ann(X) → S from the cofiber

sequence, smashed with A
1→ A.

The following is [86, Proposition 15.6].

Proposition 23 The smallest thick ideal containing X is

thickid(X) = Aann(X)

and thickid(X) ⊆ thickid(Y ) if and only if the map ann(Y )∧n → S factors through
ann(X) → S for some n > 0.

Proof Wefirst show that thickid(X) ⊆ Aann(X). Since X is amodule over F(X, X) =
DX ∧ X , it is a retract of DX ∧ X ∧ X . It follows that ann(X) ∧ X is the fiber of
a map X → DX ∧ X ∧ X which splits, so ann(X) ∧ X → X is zero and hence
X ∈ Aann(X). It is easy to see thatAann(X) is closed under exact triangles and retracts,
as well as under smashing with arbitrary objects. Hence, Aann(X) is a thick ideal
containing X , which proves thickid(X) ⊆ Aann(X).

Now assume A ∈ Aann(X). We need to show A ∈ thickid(X). Consider the cofiber
sequence
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ann(X)∧n ∧ A → A → S/(ann(X)∧n) ∧ A.

By the assumption, we can choose n such that the first map is zero. Then it
follows that A is a retract of S/(ann(X)∧n) ∧ A. Therefore, it suffices to show
S/(ann(X)∧n) ∈ thickid(X). By the definition of ann(X), S/ ann(X) = F(X, X) =
DX ∧ X ∈ thickid(X). There is a cofiber sequence

ann(X) ∧ S/(ann(X)∧ j ) → S/(ann(X)∧ j+1) → S/(ann(X)∧ j ),

which implies inductively that S/(ann(X)∧n) ∈ thickid(X).
The existence of this cofiber sequence follows from Verdier’s axiom for tri-

angulated categories, also known as octahedral axiom (see e.g. [67, Proposition
1.4.6]). Applied to the three cofiber sequences I ∧ J → I ∧ S → I ∧ S/J , as well
as I ∧ J → S → S/(I ∧ J ) and I → S → S/I , the axiomyields a cofiber sequence
I ∧ S/J → S/(I ∧ J ) → S/I .

For the second claim, assume that thickid(X) ⊆ thickid(Y ), which is equivalent
to X ∈ thickid(Y ) = Aann(Y ). Let n > 0 be such that ann(Y )∧n ∧ X → X is the zero
map. Consider the two cofiber sequences

ann(Y )∧n S S/(ann(Y )∧n)

ann(X) S F(X, X).

The smash product of the upper sequence with X is

ann(Y )∧n ∧ X
0→ X → S/(ann(Y )∧n) ∧ X,

so there is a retraction S/(ann(Y )∧n) ∧ X → X , which then induces a morphism
S/(ann(Y )∧n) → F(X, X) making the diagram commutative. From the axioms for
triangulated categories it follows that we can fill in the required map ann(Y )∧n →
ann(X), as claimed.

On the other hand, if ann(Y )∧n → S factors through ann(X)→S and ann(X)∧m ∧
A → A is zero then also ann(Y )∧(nm) ∧ A → A is zero and it follows Aann(X) ⊆
Aann(Y ). �

Proposition 24 Let I0 and J0 be collections of objects in SH(G) f and let I and
J be the thick ideals which they generate. Then

I ∩ J = thickid ({Y ∧ Z | Y ∈ I0, Z ∈ J0}) .

Proof This is [86, Proposition 15.8].
Let K = thickid ({Y ∧ Z | Y ∈ I0, Z ∈ J0}). The intersection I ∩ J is a thick

ideal which contains Y ∧ Z for all Y ∈ I0 and Z ∈ J0. Therefore,K ⊆ I ∩ J . Now,
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let
I ′ = {Y ∈ I | Y ∧ Z ∈ K ∀ Z ∈ J0},

J ′ = {Z ∈ J | Y ∧ Z ∈ K ∀Y ∈ I}.

It is easy to check that I ′ is a thick subideal of I which contains I0. Hence, I ′ = I. It
follows that the thick subideal J ′ ⊆ J contains J0, so J ′ = J . That is, Y ∧ Z ∈ K
for all Y ∈ I, Z ∈ J .

Now, let X ∈ I ∩ J . Since X is an F(X, X)-module, X is a retract of DX ∧
X ∧ X . Consider DX ∧ X as an object of I and the other X as an object of J . It
follows DX ∧ X ∧ X ∈ K and hence X ∈ K. �

Remark 25 Note that Proposition 24 holds in any tensor triangulated category in
which internal hom objects exist and all objects are dualisable. The following defi-
nition, theorem and corollary can also be formulated in such a general setting, given
a suitable notion of homology theories.

Definition 26 Let {Ei | i ∈ I } be a family of ring spectra in SH(G). For X ∈
SH(G) f , define

supp(X) = {i ∈ I | (Ei )∗(X) �= 0}.

If C ⊆ SH(G) f is a subcategory, let

supp(C) =
⋃

X∈C
supp(X).

For a map f : X → Y , we also define

supp( f ) = {i ∈ I | (Ei )∗( f ) �= 0}.

Remark 27 If (Ei )∗(X) = 0, then (Ei )∗(Y ) = 0 for any Y ∈ thickid(X) by the fol-
lowing arguments. If A → B → C is a cofiber sequence and the (Ei )∗-homology
of two of the three objects is zero, then, by the long exact (Ei )∗-sequence, (Ei )∗(−)

of the third object is zero, too. If (Ei )∗(A) = π∗(Ei ∧ A) = 0, then also (Ei )∗(A ∧
B) = π∗(Ei ∧ A ∧ B) = 0. And, finally, if (Ei )∗(A) = 0 and B is a retract of A,
then (Ei )∗(B) → 0 → (Ei )∗(B) is the identity map, hence, (Ei )∗(B) = 0.

This implies
supp(thickid(X)) = supp(X).

The following theorem is one of the central results in [86], where it is Theorem
15.14.

Theorem 2 (Strickland) Assume {Ei | i ∈ I } is a family of ring spectra in SH(G)

satisfying the following properties:

(1) If f : X → Y , with X,Y ∈ SH(G) f , and (Ei )∗( f ) = 0 for all i ∈ I , then there
exists n > 0 such that f ∧n = 0.
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(2) For any X,Y ∈ SH(G) f and any i ∈ I , (Ei )∗(X ∧ Y ) ∼= (Ei )∗(X) ⊗(Ei )∗
(Ei )∗(Y ).

(3) For any i ∈ I , (Ei )∗ = (Ei )∗(S0) is concentrated in even degrees and any
nonzero homogeneous element in (Ei )∗ is invertible.

Then, for any X,Y ∈ SH(G) f , thickid(X) ⊆ thickid(Y ) if and only if supp(X) ⊆
supp(Y ).

In otherwords, a family {Ei | i ∈ I }of spectra detecting nilpotence (seeDefinition
28) and satisfying some additional properties can be used to distinguish any two
different thick ideals with the help of the support functor supp(−).

Proof Consider the cofiber sequence ann(Y )
v→ S

u→ F(Y,Y ). We first show that
supp(v) = I \ supp(Y ). Consider the long exact sequence

(Ei )∗(F(Y,Y )) → (Ei )∗(ann(Y ))
(Ei )∗(v)→ (Ei )∗(S)

(Ei )∗(u)→ (Ei )∗(F(Y,Y ))

If i ∈ I \ supp(Y ), then (Ei )∗(F(Y,Y )) ∼= (Ei )∗(DY ) ⊗(Ei )∗ (Ei )∗(Y ) = 0 and
(Ei )∗(v) is an isomorphism. Hence, i ∈ supp(v). If, on the other hand, (Ei )∗(v) �= 0,
it already has to be surjective because (Ei )∗(ann(Y )) is an (Ei )∗-vector space (by
property (3)). It follows that (Ei )∗(u) = 0. But u is the unit map of F(Y,Y ), so
this implies (Ei )∗(F(Y,Y )) = 0. As Y is a retract of F(Y,Y ) ∧ Y , it follows that
(Ei )∗(Y ) = 0. This proves supp(v) = I \ supp(Y ).

Now let X,Y ∈ SH(G) f and supp(X) ⊆ supp(Y ). With v as above, we have
supp(v) = I \ supp(Y ) ⊆ I \ supp(X). Hence,

supp
(
ann(Y )

v→ S → F(X, X)
)

= ∅.

By property (1), this map is smash nilpotent, so there is some m > 0 such that

ann(Y )∧m → S → F(X, X)∧m

is the zero map. Concatenation defines a map F(X, X)∧m → F(X, X), over which
the unit map S → F(X, X) factors, so we get a diagram in which the lower row is
a cofiber sequence, the composition of the two upper maps is zero and the square
commutes:

ann(Y )∧m S F(X, X)∧m

ann(X) S F(X, X),

It follows that the map ann(Y )∧m → S factors over ann(X). By Proposition 23, this
is equivalent to thickid(X) ⊆ thickid(Y ).
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For the other direction, assume thickid(X) ⊆ thickid(Y ). Then by Remark 27,

supp(X) = supp(thickid(X)) ⊆ supp(thickid(Y )) = supp(Y ).

�

Definition 28 We say that a family {Ei | i ∈ I } detects nilpotence, if for any f :
X → Y in SH(G) f , supp( f ) = ∅ implies f ∧n = 0 for some n > 0.

Corollary 29 (Strickland) Under the assumptions of the above theorem, the map
from the collection of thick ideals in SH(G) f to the set of subsets of I ,

Idl(SH(G) f ) −→ P(I ),

C �→ supp(C),

is a lattice homomorphism (see Definition 17). It is injective on the collection of
finitely generated thick ideals, FIdl(SH(G) f ) (see Definition 3).

Proof This is [86, Corollary 15.15]. It is clear from the definition of supp(C), that
supp(−) is order preserving. The map preserves meets by Proposition 24 and by the
Künneth formula for Ei . As supp(C) is the support of any set of generators for C and
the join of thick ideals Ci is generated by the collection of generators of the individual
thick ideals, it is also clear that supp(−) preserves joins. Recall that any finitely
generated thick ideal is already generated by a single element (Remark 4). By the
above theorem, thickid(X) = thickid(Y ) if and only if supp(X) = supp(Y ), which
is the same as supp(thickid(X)) = supp(thickid(Y )). This proves the injectivity on
FIdl. �

3.4 Thick Ideals and Equivariant Morava K-Theories

Definition 30 For a finite group G, let sub(G) denote the set of equivalence classes
of conjugate subgroups of G. Let

Q′ = {p−n | p prime, 0 ≤ n ≤ ∞}

and GQ′ = Q′ × sub(G).

The following theorem shows that the family of equivariant Morava K-theories
{K (p−n, H) | (p−n, H) ∈ GQ′} (see Sect. 3.2) detects nilpotence, as required in the
assumptions ofTheorem2andCorollary 29.As in [12, Theorem1], there are different
kinds of nilpotence, which are all detected by the Morava K-theories. Although we
mainly work with smash nilpotence, the theorem, which is [86, Theorem 16.7],
considers all three definitions.
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Theorem 3 (Strickland)

(1) Let R ∈ SH(G) be a ring spectrum. Then α ∈ πG∗ R is nilpotent if and only if
for all v ∈ GQ′, K (v)∗(α) is nilpotent as an element of K (v)∗R.

(2) A self-map f : ΣkW → W, W ∈ SH(G) f , is nilpotent if and only if for all
v ∈ GQ′, K (v)∗( f ) is nilpotent.

(3) A map f : W → X, with W ∈ SH(G) f and X ∈ SH(G), is smash nilpotent
(i.e., it exists an n > 0 such that f ∧n = 0) if and only if for all v ∈ GQ′,
K (v)∗( f ) is nilpotent.

Proof (1) Let α : SdG → R be such that K (v)∗(α) is nilpotent for all v ∈ GQ′.
For any H ⊆ G, φH (SdG) is a non-equivariant sphere, so φHα ∈ π∗(φH R). By
Proposition 14, K (u)∗(φHα) = K (u, H)∗(α), so this is nilpotent for all u ∈ Q′.
Furthermore, φH R is a ring spectrum and, by [25, Theorem 3(i)], it follows
that φH (α) is nilpotent, so (φH R)[φHα−1] = 0 (for the definition of this map-
ping telescope, see [12, p. 212]). By [79, Remark 7.15], φH preserves tele-
scopes, hence, φH (R[α−1]) ∼= (φH R)[φHα−1] = 0. This holds for all H , which
by Proposition 13(4) implies R[α−1] = 0, and, hence, πG∗ R[α−1] = 0. Thus, α
is nilpotent.

(2) The adjoint of f is an element α ∈ πG
d F(W,W ), and K (v)∗(α) is nilpotent for

all v ∈ GQ′. So, the claim follows from (1).
(3) Let R = ∨

k≥0 F(W, X)∧k ∈ SH(G) be the free associative ring spectrum gen-
erated by F(W, X). The map f is adjoint to α ∈ πG

d F(W, X) ⊂ πG
d R such that

K (v)∗(α) is nilpotent for all v ∈ GQ′, and the claim follows from (1).
�

Definition 31 Let GQ = ∏

sub(G)

Q, where Q is as in Definition 20 and let

max : P(GQ′) −→ GQ, I �→ {
H �→ max{p−n | (p−n, H) ∈ I }} ,

with the convention max(∅) = 0. Let

τ = max ◦ supp : Idl(SH(G) f ) −→ GQ.

Furthermore, for u ∈ GQ, H ⊆ G and p prime, we write uH ∈ Q for the projection
of u ∈ GQ onto the component of GQ corresponding to the equivalence class of H
in sub(G), andwewrite uH,p ∈ Qp for the projection of uH ∈ Q onto the component
of Q ⊆ ∏

p
Q p corresponding to p.

Corollary 32 The functor

Idl(SH(G) f ) −→ P(GQ′),

C �→ supp(C) = {
v ∈ GQ′ | K (v)∗(X) �= 0 for some X ∈ C

}
,

is a lattice homomorphism. Furthermore, it is injective.
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Proof This is [86, Corollary 16.8]. It follows fromCorollary 29 applied to the family
of equivariant Morava K-theories. The assumptions are satisfied by Theorem 3(3)
and Corollary 15.

Corollary 29 states that the restriction of supp to finitely generated thick ideals
FIdl(SH(G) f ) is injective. To show that supp is injective on arbitrary thick ideals,
it suffices to show that τ is injective. Note that τ is injective on FIdl(SH(G) f )

because, by [73, Theorem 2.11], K (p−n)∗(φH X) = 0 implies K (p−m)∗(φH X) = 0
for all m ≤ n.

Now let τ (I) = τ (J ) for some thick idealsI andJ inSH(G) f . Thus, τ (I)H,p =
τ (J )H,p for allH ⊆ G and all primes p.Assume X ∈ I. Then τ (X)H,p ≤ τ (I)H,p =
τ (J )H,p. Let I = {(p, H) | τ (X)H,p �= 0, 1}. We claim that I is finite. Since G
is finite, there are only finitely many possibilities for H . If (p, H) ∈ I , then
K (p−0)∗(φH X) = H∗(φH X, Q) = 0. Since φH X is a finite spectrum, this implies
H∗(φH X, Fq) = 0 for all but finitely many q, so I is finite. For any u ∈ I , there exists
by assumption a Yu ∈ J with τ (Yu)u ≥ τ (X)u . Similarly, let I ′ = {H | τ (X)H = 1}
and pick YH ∈ J with τ (YH ) = 1 for each H ∈ I ′. Then, by the injectivity of τ on
finitely generated thick ideals, X is contained in thickid({Yu | u ∈ I } ∪ {YH | H ∈
I ′}), which is a finitely generated subideal of J . It follows I ⊆ J and, similarly,
J ⊆ I. �

As promised, we now state a reformulation of the thick subcategory theorem
from [25], which is no longer in p-local form. We do not claim that all the notation
from above was necessary to state this. But it is helpful for generalising the result to
SH(G) f or maybe also other categories.

Theorem 4 The composition

τ : Idl(SH f in)
supp−→ P(Q′) max−→ Q

is bijective.
Its restriction to the finitely generated thick ideals maps FIdl(SH f in) bijectively

to
Fin(Q) = {u ∈ Q | u = 1 or u p = 0 for almost all p}.

Proof This is [86, Proposition 19.14]. The theorem states that supp maps injec-
tively onto its image, which is isomorphic to Q. The map supp is injective by the
nonequivariant version of Corollary 32. The image of supp maps injectively to Q
because K (p−n)∗X = 0 implies K (p−m)∗X = 0 for all m ≤ n by [73, Theorem
2.11]. We show that τ is surjective: By [58, Theorem B(b)] or [75, Sect. C.3],
for any number n > 0 there is a spectrum Xn ∈ SH f in

(p) of type n. Thus, the p-
localisation of τ is surjective ontoQp (see Definition 20). Let u ∈ Q. If u = 1, then
C = thickid(S0) satisfies τ (C) = u. Assume u �= 1, so u p = p−np with 0 < np ≤ ∞.
Let Xnp be a p-local spectrum of type np if 0 < np < ∞ and Xnp = 0 if np = ∞.
Then C = thickid(Xn2 , Xn3 , Xn5 , · · · ) satisfies τ (C) = u. Hence, τ is surjective. If
u = 1 or u p = 0 for almost all p, then C as above is finitely generated. As in the
proof of Corollary 32, all finitely generated thick ideals are mapped to Fin(Q). �
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This theorem identifies the thick ideals with a sublattice of P(Q′) that is bijective
to Q. Similarly, thick ideals in the equivariant category SH(G) f are mapped injec-
tively into GQ. Unlike its nonequivariant version, the equivariant version of τ is not
surjective. However, we can state the following:

Theorem 5 (Strickland) The composition

τ : Idl(SH(G) f )
supp−→ P(GQ′) max−→ GQ

is injective. Its image contains all u ∈ GQwhich satisfy: If H ⊆ H ′ for some H, H ′ ∈
sub(G), then uH ≥ uH ′ .

Proof We already know that supp is an injective lattice homomorphism. The injec-
tivity of τ follows as in the nonequivariant case, by considering H -fixed points for
each H ∈ sub(G) separately.

Now let u ∈ GQ be such that H ′ ⊆ H implies uH ′ ≥ uH . Let XuH be a finite
spectrum inSHwith τ (XuH ) = uH . Recall that any nonequivariant spectrummaps to
aG-spectrumwith trivialG-action through the functor i : SH → SH(G). Let YH =
i(XuH ) ∧ G/H+. This is a finite G-spectrum satisfying φH ′

YH = XuH ∧ G/H+ if
H ′ is subconjugate to H and φH ′

YH = 0 if H ′ is not subconjugate to H . Hence,
τH ′(YH ) = uH if H ′ ⊆ H and τH ′(YH ) = 0 if H ′

� H . LetY = ∨
H∈sub(G) YH . Then

τH (Y ) = max{uH ′ | H ⊆ H ′} = uH by the assumption. �

This theorem gives a lower bound on the set of thick ideals inSH(G) f . Thewhole
set GQ is an upper bound. Strickland was able to show that τ (Idl(SH(G) f )) lies in
a certain proper subset of GQ (if G is nontrivial). For a cyclic group G = Z/p, his
result is the following [86, Proposition 16.9]:

Proposition 33 (Strickland) If X ∈ SH(Z/p) f and K (p−(n+1))∗φ{1}X = 0, then
K (p−n)∗φZ/p X = 0. (Note that the same prime p appears in two different roles.)

Proof Again, the proof is taken from [86]. X is of the form X = Σ∞−V T , where
T is a retract of a finite Z/p-CW complex and V is a representation of Z/p.
Then, by Proposition 13, φZ/p X = Σ∞−dim(V Z/p)T Z/p. The assumption is equiva-
lent to K (p−(n+1))∗T = 0 and the claim is equivalent to K (p−n)∗T Z/p = 0. By
[73, Theorem 2.11], we can formulate this in terms of Johnson-Wilson theories,
namely: We know E(n + 1)∗T = 0 and have to show E(n)∗T Z/p = 0. The proof
uses the Greenlees–May theory of Tate spectra [20]. For any G-spectrum Y , let
tGY = F(EG+,Y ) ∧ ẼG and PGY = (tGY )G . They have the following properties:

(1) The functors tG and PG preserve exact triangles.
(2) We have tG(X ∧ Y ) = X ∧ tGY for finite G-spectra X , and PG(X ∧ Y ) = X ∧

PGY for finite spectra X with trivial G-action.
(3) If Y is a free G-spectrum, then tGY = 0 and so PGY = 0.
(4) If Y is nonequivariantly contractible, then tGY = 0 and so PGY = 0.
(5) If p divides the order of G, then the spectrum PGE(n + 1) has Bousfield class

〈PGE(n + 1)〉 = 〈E(n)〉 [30, Theorem 1.1].
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As E(n + 1)∗T = 0, we see that the Z/p-spectrum E(n + 1) ∧ T is nonequivari-
antly contractible, so tG(E(n + 1) ∧ T ) = 0 by (4). We also have tG(E(n + 1) ∧
T/T Z/p) = 0 by (3), so (1) implies tG(E(n + 1) ∧ T Z/p) = 0. Hence, (PGE(n +
1)) ∧ T Z/p = PG(E(n + 1) ∧ T Z/p) = 0 and (5) gives E(n) ∧ T Z/p = 0, as
required. �

This result on cyclic groups can be used to derive some restriction on the types of
G-spectra that can occur for a general group G. This is done by applying the result
to quotients of subgroups of G, see [86, Corollary 16.10]. We do not state this result
here, because it needs additional notation and because we will only be interested in
the case G = Z/2 later on.

Further work on the topic has been done by Balmer and Sanders. In [8, Propo-
sition 7.5], they show that K (p−(n+1))∗φ{1}X = 0 in the above situation does not
imply K (p−(n+1))∗φZ/p X = 0, which completes the classification of thick ideals in
(SH(Z/p) f )(p).

3.5 Thick Ideals in SH(Z/2) f

We apply the results of this section to G = Z/2.
Recall that, forG a finite group, the thick ideals in (SH(G) f )(p) are characterised

by their equivariant types, i.e., by the vanishing or non-vanishing of the different
equivariant Morava K-theories.

Corollary 34 By the injectivity of τ (Theorem 5), any thick ideal in the category
(SH(Z/2) f )(p) is of the form

Cm,n = {X | φ{1}(X) ∈ Cm and φZ/2(X) ∈ Cn},

where m, n ∈ [0,∞]. By Proposition 14, X ∈ Cm,n is equivalent to K (m − 1, {1})∗
(X) = 0 and K (n − 1, Z/2)∗(X) = 0 if 0 < m, n < ∞.

Definition 35 We say that X ∈ (SH(Z/2) f )(p) has type (m, n), 0 ≤ m, n ≤ ∞, if
X ∈ Cm,n \ (Cm+1,n

⋃
Cm,n+1).

Let Γp ⊆ (Z≥0 ∪ {∞}) × (Z≥0 ∪ {∞}) be the sublattice of all (m, n) such that a
p-local spectrum of type (m, n) exists.

Corollary 36 (1) Any type-(m, n) spectrum generates Cm,n as a thick ideal (by
Theorem 5).

(2) Not all pairs (m, n) occur as the type of some spectrum. For example, if p = 2,
m cannot be greater than n + 1 (by Proposition 33).

(3) If m ≤ n, then a type-(m, n) spectrum exists, namely Xm,n = (Xm ∧ Z/2+) ∨
Xn with Xk ∈ SH f in

(p) a type-k spectrum and with Z/2 acting nontrivially only
on Z/2 (by Theorem 5). Thus, m ≤ n implies (m, n) ∈ Γp.
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These results of Strickland give upper and lower bounds for the set of thick ideals
in (SH(Z/2) f )(p) (which is bijective to Γp).

Remark 37 The results on thick ideals in SH(G) f presented in this section also
hold in the category of finite G-CW spectra, SH(G) f in ⊆ SH(G) f , as we did not
use the closure under retracts in any argument.

4 Comparison Functors

Notation 38 For k a field, wewriteSH(k) for themotivic stable homotopy category
over k. The standard spheres are denoted by Sp,q = S∧(p−q)

s ∧ G
∧q
m and their P

1-
suspension spectra are also denoted by Sp,q if no confusion can arise. SH(k) is a
tensor triangulated category, whose unit is the sphere spectrum S = Σ∞

P1 S0,0, which
we also denote by S0. For any E ∈ SH(k), πp,q(E) = [Sp,q , E]SH(k) denotes the set
ofmaps from Sp,q to E inSH(k). For E and X inSH(k), let Ep,q(X) = πp,q(X ∧ E)

and E p,q(X) = [X, Sp,q ∧ E].
For our study of thick ideals in motivic categories SH(k), k ⊆ C, we want to use

the given knowledge on thick ideals in the classical stable homotopy category and the
Z/2-equivariant stable homotopy category. For this purpose, we will make use of the

functors SH ck→ SH(k)
Rk→ SH for k ⊆ C and SH(Z/2)

c′
k→ SH(k)

R′
k→ SH(Z/2)

for k ⊆ R. The functors ck, RC and R′
R
appear in various places in the literature

but none of the sources conveniently covers all of the constructions. Most details
on RC can be found in [70, Appendix] and the unstable functor R′

R
is studied in

[15, Sect. 5]. Other important references are [88, Sect. 3.4], [63, Sect. 3.3] and [5].
The stable functors R′

k and c′
k are constructed and studied by Heller and Ormsby in

[23, Sect. 4], which was written independently and at the same time as this section.
Since our approach is slightly different, we give another, mostly self-contained con-
struction of all these functors.

We start with the construction of RC and R′
R
.

4.1 Symmetric CP1-Spectra

Objects of the motivic stable homotopy category SH(C) are spectra with respect to
suspension by P

1
C

∼= S2,1. The corresponding analytic space P
1
C
(C) is CP1. We want

that the topological realisation R(X) of a spectrum X ∈ SH(C) is a spectrum again.
Therefore, we work with CP1-spectra. The category of symmetric CP1-spectra,
SpΣ

CP1 , is described in [70, Theorem A.44] and is a model for the stable homotopy
category.A symmetricCP1-spectrum is defined in the sameway as a usual symmetric
spectrum with S1 replaced by CP1 ∼= S2. The stable model structure is constructed



132 R. Joachimi

analogously as for symmetric S1-spectra in [31]. Hence, the following results also
hold for symmetric CP1-spectra [31, Lemmas 3.4.5, 3.4.12, 3.4.13].

Proposition 39 1. The stable trivial fibrations are the level trivial fibrations.
2. A map of CP1-spectra f : X → Y is a stable fibration if and only if it is a level

fibration and

Xn
σ̃

ΩXn+1

Yn
σ̃

ΩYn+1

is homotopy cartesian for all n, where the horizontal maps are the adjoints of the
structure maps.

3. The fibrant objects are Ω-spectra, i.e., the adjoints of their structure maps are
weak equivalences.

4.2 Z/2-Equivariant Symmetric Spectra

For the Z/2-equivariant stable homotopy category we use the model constructed in
[52]. We now recall Mandell’s definitions and results. Let G be a finite group. We
only need the case G = Z/2.

Definition 40 Let S(G) denote the based simplicial G-set obtained by smashing
together copies of the simplicial circle S1 indexed on the elements of G, where the
G-action permutes the smash factors according to the multiplication in G.

For example, S({1}) = S1 and S(Z/2) ∼= S2, where Z/2 acts via an orientation
reversing map of degree one.

Definition 41 A symmetric G-spectrum consists of a based G × Σn-simplicial set
T (n) for each n ∈ N and structure maps T (n) ∧ S(G) → T (n + 1) such that the
m-th iterated structure maps are G × Σn × Σm-equivariant. Morphisms of spectra
are defined in the usual way. We denote the category of symmetric G-spectra by
SpΣ(G).

Mandell replaces SpΣ(G) by the isomorphic category Sp(GΣG) ofGΣG-spectra,
which is defined as follows.

Definition 42 Let Σ be the category whose objects are nonnegative integers n =
{1, · · · , n} (with the convention 0 = ∅) and whosemorphisms are bijections. LetΣG

be the category Σ together with the diagram S indexed on Σ taking n to the n-fold
smash product of S(G) and with arrows permuting these smash factors.

A GΣG-spectrum T is a functor from Σ to based simplicial G-sets together with
natural transformations σn,m : T (n) ∧ S(m) → T (n+m) satisfying certain associa-
tivity and unitality conditions [52, Definition 1.3]. A morphism of GΣG-spectra is a
natural transformation commuting with the structure maps.



Thick Ideals in Equivariant and Motivic Stable Homotopy Categories 133

Mandell defines Ω-spectra in Sp(GΣG) and constructs a projective level model
structure with level equivalences, level fibrations and projective cofibrations. The
resulting homotopy category is denoted by Hol .

Definition 43 A morphism of GΣG-spectra f : T → U is called a stable equiva-
lence if it induces bijections Hol(U, E) → Hol(T, E) for all Ω-spectra E .

The following theorem is [52, Theorem 4.1].

Theorem 6 The category Sp(GΣG) has a symmetricmonoidal model structurewith
stable equivalences as weak equivalences and projective cofibrations as cofibrations.
A morphism f : T → U is a fibration if and only if it is a level fibration and

T (m)
σ̃m,n

ΩnT (m+n)

U (m)
σ̃m,n

ΩnU (m+n),

is homotopy cartesian for all m, n ∈ Σ , where the horizontal maps are adjoint to the
structure maps.

Using this model structure, Mandell shows [52, Theorem 2]:

Theorem 7 The category SpΣ(G) is Quillen equivalent to the stable G-equivariant
category indexed on a complete G-universe.

4.3 Complex and Real Topological Realisation Functors

The aimof this section is to recall the construction of the stable topological realisation
functors

R = RC : SH(C) → SH,

R′ = R′
R

: SH(R) → SH(Z/2).

Various unstable and stable versions of these functors were constructed in [88, Sect.
3.4], [63, Sect. 3.3], [5, 15], [70, Appendix] and [23, Sect. 4].

For k ⊆ C, let Sm /k be the category of smooth schemes of finite type over k
and let sPre(Sm /k) be the category of simplicial presheaves on the Nisnevich site
Sm /k, see e.g. [63] or [38, Appendix B].

We begin with the definition of RC. In the next section we will define Rk and R′
k

also for subfields k of C and R respectively.
The functor

R : sPre(Sm /C) → sSet
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is defined in the following way: Any simplicial presheaf A can be written as

colim
X×Δn→A

(X × Δn)
∼=→ A,

where the colimit is taken over the over-category of A, in which X runs over repre-
sentable presheaves, see [70, Sect. A.4]. We set

R(A) = colim
X×Δn→A

(X (C) × Δn) ∈ sSet .

By X (C) we actually mean the simplicial set Sing(X (C)an), where X (C)an denotes
the set of complex points of X with the analytic topology.

Now let k = R. Let sSet(Z/2) denote the category of Z/2-simplicial sets. The
functor

R′ : sPre(Sm /R) → sSet(Z/2)

is still defined by
R′(A) = colim

X×Δn→A
(X (C) × Δn),

but nowZ/2 acts on X (C) by precomposingwith conjugation. This induces an action
of Z/2 on R′(A), see e.g. [15, Sect. 5].

If A is pointed, then so are R(A) and R′(A) respectively.
We equip sPre(Sm /k) with the projective model structure defined in [15, Sect.

5.1], where this category is denoted by Spc′(k)Nis. The model structure for sSet can
be found in [28, Sect. 3.2] and the equivariant model structure on sSet(Z/2) is, for
example, described in [21, Example 4.2]:

• Weak equivalences are maps f that induce weak equivalences f H on the fixed
point sets for all H ⊆ Z/2.

• The collection {(Z/2)/H × ∂Δn → (Z/2)/H × Δn | H ⊆ Z/2} is a set of gen-
erating cofibrations.

• The collection {(Z/2)/H × Λn
i → (Z/2)/H × Δn | H ⊆ Z/2} is a set of gener-

ating trivial cofibrations.

Theorem 8 The functors R and R′ and their pointed versions are strict symmetric
monoidal left Quillen functors.

Proof This is [15, Theorems 5.2, 5.5] and [70, Theorem A.23]. �

Now we define the functor

Sing : sSet → sPre(Sm /C),

as in [70, TheoremA.23]. It maps a simplicial set Z to the simplicial presheaf sending
X ∈ Sm /C to the simplicial set which in degree n is the set of maps sSet(X (C) ×
Δn, Z), that is, Sing(Z)(X) is defined as an internal hom object in sSet.
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Proposition 44 The functor Sing is right adjoint to R.

Proof We have to find a bijection

Φ : sSet(R(X),Y ) → sPre(Sm /C)(X,Sing(Y ))

for any X ∈ sPre(Sm /C) and Y ∈ sSet. The general case will follow by passage
to colimits after we have shown this for the case that X is representable. So let
X = Sm /C(− × Δ•, X ′) with X ′ ∈ Sm /C. Let f : R(X) → Y be an element of
the left hand side, which now is sSet(X ′(C) × Δ•,Y ). We have to define a natural
transformation

Φ( f ) : X = Sm /C(− × Δ•, X ′) → sSet(−(C) × Δ•,Y ) = Sing(Y ).

We do this by the following composition:

Φ( f ) : Sm /C(− × Δ•, X ′) R−→ sSet(−(C) × Δ•, X ′(C))

f∗−→ sSet(−(C) × Δ•,Y ).

The map Φ is obviously injective. It is also surjective because any morphism
from Sm /C(− × Δ•, X ′) to sSet(−(C) × Δ•,Y ) factors through the realisation
functor. �

The Z/2-version of this functor,

Sing′ : sSet(Z/2) → sPre(Sm /R),

maps an equivariant simplicial set Z to the simplicial presheaf sending X ∈ Sm /R

to the internal hom sSet(Z/2)(X (C), Z).

Proposition 45 The functor Sing′ is right adjoint to R′.

Proof The proof is the same as in the complex case, except that we have to replace
Sm /C by Sm /R and sSet by sSet(Z/2). �

We want to define stable versions of the functors R, R′ and Sing,Sing′. There-
fore, we consider the category of symmetric P

1-spectra on sPre(Sm /k), denoted by
SpΣ

P1(k). The stable model structure on SpΣ
P1(k) is constructed in the same way as in

[38], except that we start with our different definitions of fibrations and cofibrations
on sPre(Sm /k). This construction is also described in [70, Sect. A.5]. We will only
need the following information about this model structure.

Let J be a level fibrant replacement functor and let Q be the stabilisation functor
defined in [38, Remark 2.4]. A map f in SpΣ

P1(k) is called a stable equivalence if
QJ ( f ) is a level equivalence.
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Proposition 46 A map of symmetric P
1-spectra, f : X → Y , is a stable fibration if

and only if it is a level fibration and

Xn QJ Xn

Yn QJYn

is homotopy cartesian [38, Lemma 2.7].
A stable trivial fibration is the same as a levelwise trivial fibration [38, Theorem

2.9].

Since R(P1
C
) ∼= CP1 and R′(P1

R
) ∼= R′(S1s ∧ Gm) ∼= S1+ ∧ S1− ∼= S(Z/2) (the 2-

sphere with orientation reversing Z/2-action) in the homotopy categories, we can
define

R : SpΣ
P1(C) → SpΣ

CP1

and
R′ : SpΣ

P1(R) → SpΣ(Z/2)

levelwise.
We can also extend Sing and Sing′ to the categories of spectra, as follows.
OverC, the simplicial presheaf P

1 is equivalent to the simplicial presheaf sending
Z ∈ Sm /C to Sm /C(Z × Δn, P

1
C
). realisation defines a map from Sm /C(Z ×

Δn, P
1
C
) to sSet(Z(C) × Δn, CP1). These can be assembled into a map of simplicial

presheaves P
1 → Sing(CP1). For X ∈ SpΣ

CP1 we can, hence, define structure maps

Sing(Xn) ∧ P
1 → Sing(Xn) ∧ Sing(CP1)

∼= Sing(Xn ∧ CP1)
Sing(σn)−→ Sing(Xn+1),

so that we get a spectrum Sing(X) ∈ SpΣ
P1(C) defined levelwise.

Over R, the same argument holds if we consider Z/2-equivariant maps of sim-
plicial sets. We get a spectrum Sing′(X) ∈ SpΣ

P1(R) defined levelwise.

Corollary 47 The functors (R,Sing) and (R′,Sing′) form adjoint pairs between the
categories of symmetric spectra.

Theorem 9 (The stable functors R, R′) The pairs (R,Sing) and (R′,Sing′) are
Quillen adjunctions on the spectrum level and R, R′ are strict symmetric monoidal.

Proof The case of R is covered in [70, TheoremA.45] and the claim for R′ is proven
in [23, Proposition 4.8]. For completeness, we reprove the theorem in our ownwords.

To show that R and R′ are Quillen functors, we only have to prove that their right
adjoints preserve stable fibrations between stably fibrant objects and stable trivial
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fibrations [13, Corollary A.2]. In all model structures we are considering here, the
stable trivial fibrations are the levelwise trivial fibrations. From the unstable version of
this theorem it follows therefore that Sing and Sing′ preserve stable trivial fibrations.

Stable fibrations are, in all of these model structures, levelwise fibrations with
some additional homotopy pullback properties and stably fibrant objects are always
Ω-spectra. By Propositions 44 and 45, the unstable functors Sing and Sing′ are
right Quillen functors. It follows that the levelwise-defined functors Sing and Sing′
preserveΩ-spectra and level fibrations. Let f : X → Y be a stable fibration between
Ω-spectra in SpΣ

CP1 with the model structure from Proposition 39 (or in SpΣ(Z/2)
with the model structure from Theorem 6). We have to show that

Sing(X)n Q J Sing(X)n

Sing(Y )n Q J Sing(Y )n

is homotopy cartesian for all n. Since X and Y are in particular level fibrant and
Sing preserves level fibrations, J Sing(X) � Sing(X) and similarly for Y . Since
Q is defined using only the adjoint structure maps, Q Sing(X) � Sing(X) and
Q Sing(Y ) � Sing(Y ) for the Ω-spectra Sing(X) and Sing(Y ). It follows that the
above square is in particular homotopy cartesian.

The functors R and R′ are strict symmetric monoidal, since this holds unstably
and the product of symmetric spectra is defined in the same way in all the categories
considered here. �

4.4 Realisation Functors for Other Fields

For k ⊆ K a subfield, the canonical map Spec K → Spec k induces a couple of base
change functors between the corresponding motivic homotopy categories. These are
studied in [63, Sect. 3.1] and also in [33, Sect. 2]. For the stable version, see [70,
Sect. A.7]. For a more general approach, see also [4].

Let f : k ↪→ K be the inclusion of the subfield.On the level of unpointed schemes,
f ∗ is given by

f ∗ : Sm /k → Sm /K , f ∗(X) = X ×Spec k Spec K .

It induces a functor

f ∗ : sPre(Sm /k) → sPre(Sm /K ),

which has a right adjoint f∗. By [70, Proposition A.47], this adjunction induces
a strict symmetric monoidal Quillen adjunction on the level of symmetric spectra,
where f ∗ is given by f ∗(E)n = f ∗(En).
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One can therefore define realisation functors

Rk : SH(k)
f ∗→ SH(C)

R→ SH for k
f

↪→ C,

R′
k : SH(k)

f ∗→ SH(R)
R′→ SH(Z/2) for k

f
↪→ R,

which are strict symmetric monoidal.

4.5 Constant Presheaf Functors

The following construction of the constant presheaf functors ck : SH → SH(k)
for k ⊆ C and c′

k : SH(Z/2) → SH(k) for k ⊆ R is close to the one given in
[23, Sect. 4].

Let k ⊆ C. For X ∈ sSet we define ck(X) ∈ sPre(Sm /k) by ck(X)(Z) = X for
all Z ∈ Sm /k. Using ck(S1) = S1s , we extend the functor ck : sSet → sPre(Sm /k)
levelwise to symmetric S1-spectra and get:

ck : SpΣ
S1 → SpΣ

S1s
(k).

Wepostcompose this functorwith theP
1-suspension functor, yielding a functor to the

category of symmetric (S1s , P
1)-bispectra, ck : SpΣ

S1 → SpΣ
S1s ,P

1(k). The homotopy

category of SpΣ
S1s ,P

1(k) is equivalent to SH(k) by [29, Theorem 9.1].

Theorem 10 (The stable functor ck) This induces a functor ck : SH → SH(k),
which is strict symmetric monoidal. It is right inverse to Rk and hence faithful.
Furthermore, by [49, Theorem 1], ck is full if k is algebraically closed.

Proof We first show that the unstable functor, ck : sSet → sPre(Sm /k), is a left
Quillen functor. The generating cofibrations of sSet are the maps ∂Δn ↪→ Δn . The
functor ck takes these maps to the same maps considered as morphisms of constant
simplicial presheaves. These are examples of generating cofibrations in the model
structure for sPre(Sm /k), as described in [70, Sect. A.3]. The same applies to
the generating trivial cofibrations Λn

r ↪→ Δn . The functor ck preserves colimits by
definition, hence it is a left Quillen functor. We denote its right adjoint by r0. It
satisfies r0(S1s ) = S1.

Nowwe show that ck : SpΣ
S1 → SpΣ

S1s
(k) is left Quillen, where the model structure

on SpΣ
S1s

(k) is described in [38, Sect. 4.5] and satisfies the analogue of Proposition46.
The right adjoint, r , to ck is defined by levelwise application of r0. Since r0, as a
right Quillen functor, preserves fibrations and trivial fibrations, r preserves level
fibrations and level trivial fibrations. Stable trivial fibrations are the same as level
trivial fibrations, hence these are preserved by r .We have to show that r also preserves
stable fibrations between stably fibrant objects. Let f : X → Y be a stable fibration



Thick Ideals in Equivariant and Motivic Stable Homotopy Categories 139

in SpΣ
S1s

(k)with X and Y level fibrantΩ-spectra. We have to show that r( f ) is a level
fibration—which we already know—and that the squares

r(X)n Ωr(X)n+1

r(Y )n Ωr(Y )n+1

are homotopy pullbacks. This is trivial because r preserves Ω-spectra (it is defined
levelwise and commutes with desuspension), so r(X) and r(Y ) are Ω-spectra. This
proves that ck : SpΣ

S1 → SpΣ
S1s

(k) is a left Quillen functor. It is symmetric monoidal
by its pointset definition and by the definition of products of symmetric spectra.

The P
1-suspension functor SpΣ

S1s
(k) → SpΣ

S1s ,P
1(k) is also a symmetric monoidal

left Quillen functor if the category of symmetric P
1-spectra over SpΣ

S1s
(k) is endowed

with the stable model structure (see [29, Theorems 5.1 and 9.1]). It follows that
both functors induce a functor on the respective stable homotopy categories, and the
concatenation of the induced functors, ck : SH → SH(k), is also strict symmetric
monoidal by [29, Theorem 8.11].

To show that ck is right inverse to Rk , first note that, for f : k ↪→ C, we have
f ∗(Spec(k)) = Spec(C), which implies f ∗ ◦ ck = cC. So, by definition of Rk , Rk ◦
ck = RC ◦ f ∗ ◦ ck = RC ◦ cC, and it suffices to consider the case k = C. Unstably,
for A ∈ sSet,

(R ◦ c)(A) = colim
X×Δ•→cA

(X (C) × Δ•) = colim
Δ•→A

Δ• = A.

On the level of spectra, we have used different models for constructing R and c.
We therefore have to check that the following diagram is commutative, where, by
definition, the composition of the upper maps induces c : SH → SH(C) and the
lower map induces R : SH(C) → SH.

SpΣ
S1

∼Σ∞
CP1

c
SpΣ

S1s
(C)

Σ∞
P1

SpΣ
S1s ,P

1(C)

ΣR

SpΣ
S1,CP1

SpΣ
CP1

∼Σ∞
S1

SpΣ
P1(C)

∼ Σ∞
S1s

R

Since R(S1s ) = S1, the functor R : SpΣ
P1(C) → SpΣ

CP1 induces a functor ΣR on S1s -
spectra on SpΣ

P1(C) by the levelwise definition. This induced functor is drawn as
a diagonal in the above diagram and it makes the lower subdiagram commutative
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by definition. Thus, it suffices to check that the upper diagram is commutative. Let
X = {Xn}n ∈ SpΣ

S1 . X is mapped to {cXn}n in SpΣ
S1s

(C) and to {Pm ∧ cXn}m,n in

SpΣ
S1s ,P

1(C), which realises to {(CP1)m ∧ Xn}m,n in SpΣ
S1,CP1 . This is the same as the

image of X under the vertical map SpΣ
S1 → SpΣ

S1,CP1 , which completes the proof that
R ◦ c = id on SH. �

For subfields k ⊆ R, we want to define functors c′
k : SH(Z/2) → SH(k) which

are right inverse to R′
k . For a better understanding, we first consider k = R and then

generalise.
To define a functor c′ : SH(Z/2) → SH(R) which is right inverse to R′, we first

construct R′ : sSet(Z/2) → sPre(Sm /R). Observe that R′(SpecR) = ∗ is the one-
point set and R′(SpecC) = Z/2 is the two-point set with non-trivial Z/2-action. We
let c′(∗) = SpecR and c′(Z/2) = SpecC and extend this to Z/2-sets M by

c′(M) =
(

∐

MZ/2

SpecR

)
∐

⎛

⎝
∐

(M\MZ/2)/(Z/2)

SpecC

⎞

⎠ .

This can be done functoriality, just note that −1 : Z/2 → Z/2 has to be mapped
to the morphism SpecC → SpecC induced by complex conjugation. Furthermore,
c′ extends to simplicial Z/2-sets by c′(M × Δn) = c′(M) × Δn . This defines the
unstable, basepoint preserving functor c′ : sSet(Z/2) → sPre(Sm /R). We extend
this to a functor of spectra by postcomposing the levelwise defined functor

c′ : SpΣ
S(Z/2) → SpΣ

c′(S(Z/2))(R)

with the suspension spectrum functor

Σ∞
P1 : SpΣ

c′(S(Z/2))(R) → SpΣ
c′(S(Z/2)),P1(R).

Note that c′(S(Z/2)) ∼= c′(S1+) ∧ c′(S1−) ∼= S1s ∧ c′(S1−) and c′(S1−) = FC/R(SV ) in
the notation of [33] (with V the sign representation), where it is shown that this is
invertible in SH(R) [33, Theorem 3.5]. Thus, by [29, Theorem 9.1], Σ∞

c′(S(Z/2)) :
SpΣ

P1(R) → SpΣ
c′(S(Z/2)),P1(R) is a Quillen equivalence.

Theorem 11 (The stable functor c′) This induces a functor c′ : SH(Z/2) →
SH(R), which is strict symmetric monoidal and right inverse to R′. In particular, c′
is faithful.

Proof As in the previous proof, we start by considering the functor c′ : sSet(Z/2) →
sPre(Sm /R). It preserves colimits. The generating cofibrations of sSet(Z/2) are
the maps (Z/2)/H × ∂Δn → (Z/2)/H × Δn , where H ⊆ Z/2 is a subgroup. The
images of these maps under c′ can be written as pushout products:

c′(Z/2 × ∂Δn → Z/2 × Δn) = (∅ → SpecC) � (∂Δn → Δn)
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c′(∂Δn → Δn) = (∅ → SpecR) � (∂Δn → Δn).

These are examples of generating cofibrations for sPre(Sm /R) as described in
[70, Sect. A.3]. The same argument holds for the generating trivial cofibrations
(Z/2)/H × Λn

r → (Z/2)/H × Δn . The passage to the spectrum level works simi-
larly as in the previous proof. The induced functor c′ : SH(Z/2) → SH(R) is sym-
metric monoidal by the same arguments as before.

By its definition, c′ is right inverse to R′ on the level of simplicial Z/2-sets. On
the level of stable homotopy categories, R′ ◦ c′ = id follows from the commutativity
of the following diagram, similarly as in the previous proposition.

SpΣ
S(Z/2)

∼Σ∞
S(Z/2)

c′
SpΣ

c′(S(Z/2))(R)
Σ∞

P1
SpΣ

c′(S(Z/2)),P1(R)

ΣR′

SpΣ
S(Z/2),S(Z/2)

SpΣ
S(Z/2)

∼Σ∞
S(Z/2)

SpΣ
P1(R)

∼ Σ∞
c′(S(Z/2))

R′

.

�

Now let k ⊆ R. Then R′
k(Spec k) = ∗ and R′

k(Spec(k[i])) = Z/2. Therefore, we
let c′

k(∗) = Spec k and c′
k(Z/2) = Spec(k[i]) and, for a Z/2-set M ,

c′
k(M) =

(
∐

MZ/2

Spec k

)
∐

⎛

⎝
∐

(M\MZ/2)/(Z/2)

Spec(k[i])
⎞

⎠ .

For functoriality, note that −1 : Z/2 → Z/2 has to be mapped to Spec(k[i]) →
Spec(k[i]) induced by complex conjugation. As before, c′

k extends to c′
k :

sSet(Z/2) → sPre(Sm /k) and then to

c′
k : SpΣ

S(Z/2) → SpΣ
c′
k (S(Z/2))(k) → SpΣ

c′
k (S(Z/2)),P1(k),

where the first functor is defined levelwise by c′
k and the second one is the

P
1
k-suspension spectrum functor. Here, c′

k(S(Z/2)) ∼= S1s ∧ c′
k(S

1−) and c′
k(S

1−) =
Fk[i]/k(SV ) in the notation of [33], which is invertible in SH(k) by [33, Theorem
3.5].

Theorem 12 (The stable functor c′
k) This induces a functor c′

k : SH(Z/2) →
SH(k) which is strict symmetric monoidal and right inverse to R′

k .

Proof The main claim follows exactly as in the case k = R considered above. It
is also implied by [23, Theorem 4.6]. It remains to prove R′

k ◦ c′
k

∼= id. Again, this
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follows from f ∗ ◦ c′
k

∼= c′ (for k
f

↪→ R) and R′ ◦ c′ ∼= id, where f ∗ ◦ c′
k

∼= c′ holds
because f ∗(Spec k) ∼= SpecR and f ∗(Spec(k[i])) ∼= SpecR ×Spec k Spec(k[i]) ∼=
SpecC. �

Remark 48 In [23, Theorem 1.1], Heller and Ormsby prove that if k is a real closed
field, then c′

k is full after p-completion.

Remark 49 With similar methods as above, one can show that the functors sSet
ck→

sPre(Sm /k)
Rk→ sSet induce functors

SH ck→ SHS1s (k)
Rk→ SH,

where SHS1s (k) is the stable motivic homotopy category in which S1s got inverted
but Gm did not.

For k ⊆ R, the definition of the stable functor c′
k relied on the invertibility of

FC/R(SV ) in SH(R) = SHP1(R), as shown in [33, Theorem 3.5]. One can show

that the functors sSet(Z/2)
c′
k→ sPre(Sm /k)

R′
k→ sSet(Z/2) induce functors

SHS1(Z/2)
c′
k→ SHS1s (k)

R′
k→ SHS1(Z/2),

where SHS1(Z/2) is the naive equivariant stable homotopy category, in which only
the sphere with trivial action got inverted. The functor R′ : SHS1s (R) → SHS1(Z/2)
sends FC/R(SV ) to SV = S(Z/2), which is not invertible in SHS1(Z/2). Therefore,
FC/R(SV ) cannot be invertible in SHS1s (R). This shows that it is not possible to
extend c′

k : sSet(Z/2) → sPre(Sm /k) to a functor from SH(Z/2) to SHS1s (k).

5 Thick Ideals Discovered by Comparison Functors

The aim of this section is to draw conclusions concerning thick subcategories and
thick ideals in SH(k), k ⊆ C, and in finite, local versions of this category using the
functors from the previous section. In the next section, we will study thick ideals that
are described by motivic Morava K-theories.

5.1 Consequences of the Properties of Rk, R′
k, ck and c′k

Proposition 50 (1) If C ⊆ SH is a thick subcategory or a thick ideal, then, for
k ⊆ C, R−1

k (C) ⊆ SH(k) is a thick subcategory or a thick ideal, respectively.
(2) If C ⊆ SH(Z/2) is a thick subcategory or a thick ideal, then, for k ⊆ R,

(R′
k)

−1(C) ⊆ SH(k) is a thick subcategory or a thick ideal, respectively.
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(3) If f : k ↪→ K and C ⊆ SH(K ) is a thick subcategory or a thick ideal, then
( f ∗)−1(C) ⊆ SH(k) is a thick subcategory or a thick ideal, respectively.

Proof Any functor preserves retracts, hence R−1
k (C) is closed under retracts when-

ever C is. We also have Rk(S1s ) = S1 and Rk preserves cofibers because it is a left
adjoint, hence it preserves exact triangles. Therefore, R−1

k (C) is closed under trian-
gles whenever C is. Hence, R−1

k preserves thick subcategories. Since Rk is symmet-
ric monoidal (see Sect. 4), X ∈ R−1

k (C) and Y ∈ SH(k) implies that Rk(X ∧ Y ) ∼=
Rk(X) ∧ Rk(Y ) is in C, if C is a thick ideal. Thus, X ∧ Y ∈ R−1

k (C). That is, R−1
k

preserves thick ideals, too.
The proofs for (R′

k)
−1 and ( f ∗)−1 are the same. �

Proposition 51 For k ⊆ C, c−1
k preserves thick subcategories and thick ideals. Sim-

ilarly, for k ⊆ R, (c′
k)

−1 preserves thick subcategories and thick ideals.

Proof Since S1s = ck(S1) and ck preserves mapping cones, ck preserves exact trian-
gles. It also preserves retracts and is strict symmetric monoidal, hence, c−1

k preserves
thick subcategories and thick ideals. �

5.2 Finite Motivic Spectra

The thick subcategory theorem of [25] concerns the category of finite spectra,SH f in ,
as defined in Sect. 1. The functors Rk and ck can therefore only help us to understand
subcategories of SH(k)which are at most as big as R−1

k (SH f in). There are multiple
equivalent possibilities to define SH f in , using the notions of finite CW-spectra,
dualisable objects or compact objects. These notions are not equivalent in themotivic
setting, therefore we obtain more than one possible category of “finite” objects in
SH(k).

We will now discuss the various versions of finiteness, including non-standard
notations which will be needed in Proposition 67. Let k be any field.

Definition 52 (1) The category SH(k) f in of finite cellular motivic spectra over a
field k is the smallest full subcategory of SH(k) that contains the spheres Sp,q

for all p, q ∈ Z and is closed under exact triangles [16, Definition 8.1].
(2) For k ⊆ R, letSH(k) f in+ be the smallest full subcategory ofSH(k) that contains

Sp,q ∧ (Spec k[i])∧m+ for all p, q ∈ Z,m ≥ 0 and is closed under exact triangles.
(3) The closures of SH(k) f in and SH(k) f in+ under colimits are denoted by

SH(k)cell and SH(k)cell+. Their objects are called cellular, see [16, Definitions
2.1 and 2.10].

Remark 53 Note that these categories are closed under the bifunctor ∧ because so
are their sets of generators and because ∧ preserves exact triangles and colimits, as
it is a left adjoint.

With this definition, SH(k) f in is the smallest tensor triangulated full subcategory
of SH(k) that contains ck(SH f in) and is closed under − ∧ G

±1
m , and SH(k) f in,+ is
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the smallest tensor triangulated full subcategory that contains c′
k(SH(Z/2) f in) and

is closed under − ∧ G
±1
m .

The following results can mostly be found in [65, Sect. 4].

Definition 54 (1) Let D ⊆ SH(k) be the collection of all (strongly) dualisable
objects. That is, all spectra X such that the canonical map F(X, S) ∧ Y →
F(X,Y ) is an isomorphism for all Y ∈ SH(k), where F(−,−) denotes the
derived internal hom in SH(k) and S = S0,0 is the sphere spectrum. F(X, S) is
called the dual of X and is also denoted by DX (compare Definition 11).

(2) Amotivic spectrum F ∈ SH(k) is called compact if HomSH(k)(F,−) preserves
arbitrary sums. Let SH(k) f ⊆ SH(k) denote the full subcategory of compact
objects.

Remark 55 (1) SH(k) f is a thick subcategory of SH(k) [65, Sect. 4].
(2) Any dualisable object is also compact, as shown in the proof of Proposition 12.
(3) The smash product of two dualisable objects X and Y is again dualisable,

because F(X ∧ Y, S) ∧ Z ∼= F(X, F(Y, S)) ∧ Z ∼= F(X, S) ∧ F(Y, S) ∧ Z ∼=
F(X, S) ∧ F(Y, Z) ∼= F(X, F(Y, Z)) ∼= F(X ∧ Y, Z).
Similarly, compact objects are closed under ∧.

(4) By [33, Cor. 2.14 and Thm. 4.1], F(Spec(k[i])+, E) ∼= Spec(k[i])+ ∧ E in
SH(k), k ⊆ R. That is, Σ∞ Spec(k[i])+ is self-dual and in particular compact.

Definition 56 For R a collection of objects in SH(k) f , let SH(k)R, f ⊆ SH(k) f

be the smallest thick subcategory containing R.
Let Tk = {Sp,q | p, q ∈ Z} be the collection of all motivic spheres in SH(k)

and let T +
k = {Sp,q ∧ (Spec k[i])∧m+ | p, q ∈ Z,m ≥ 0} if k ⊆ R. These are sets of

compact objects in SH(k) by Remark 55, parts (2) and (4).

Comparing the definitions, we see that SH(k)Tk , f is the closure of SH(k) f in

under retracts and SH(k)T +
k , f is the closure of SH(k) f in+ under retracts.

Proposition 57 SH(k)D, f ⊆ SH(k) f is the full subcategory of dualisable objects
of SH(k).

Proof This is [65, Lemma 4.2]. By Remark 55(2), D is a collection of compact
objects. Furthermore, the full subcategory spanned by D is already a thick subcate-
gory. �

Since SH(k)D, f ⊆ SH(k) f is a thick subcategory and SH(k) f ⊆ SH(k) is a
thick subcategory, it follows that the strongly dualisable objects form a thick subcat-
egory of SH(k). Note also that all the categories mentioned above are closed under
∧.
Proposition 58 We have SH(k) f in ⊆ SH(k)Tk , f ⊆ SH(k)D, f ⊆ SH(k) f and for
k ⊆ R,SH(k) f in+ ⊆ SH(k)T +

k , f ⊆ SH(k)D, f ⊆ SH(k) f . In particular, all objects
in SH(k) f in and SH(k) f in+ are strongly dualisable. Furthermore, SH(k) f in and
SH(k) f in+ are closed under taking duals.
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Proof The first line and the case SH(k) f in are proven in [65, Sect. 4]. For k ⊆ R,
the only additional input is the self-duality of Σ∞ Spec(k[i])+. �

Remark 59 ([65, Remark 8.2]) gives an example for an object in SH(S) that is
compact but not dualisable, where S is the spectrum of a discrete valuation ring.

A stronger result holds if k is a field of characteristic 0. It is also proven in [76].

Proposition 60 Let k be of characteristic 0. Then SH(k)D, f = SH(k) f is the thick
subcategory ofSH(k) generated by {Σ2n,nΣ∞U+ | U ∈ Sm /k, n ∈ Z}. Hence, any
object of SH(k) is dualisable if and only if it is compact.

Proof By [16, Theorem 9.2], {Σ2n,nΣ∞U+ | U ∈ Sm /k, n ∈ Z} is a set of com-
pact generators for SH(k), which means two things: First, these objects are compact
and second, the only full triangulated subcategory of SH(k) containing this set and
being closed under infinite direct sums is SH(k) itself. Since schemes are locally
affine, also {Σ2n,nΣ∞U+ | U ∈ Sm /k quasi-projective} is a set of compact gen-
erators. General theory [55, Theorem 13.1.14] implies that SH(k) f is the thick
subcategory of SH(k) generated by {Σ2n,nΣ∞U+ | U ∈ Sm /k quasi-projective}.
By [77, Theorem 4.9], Σ∞U+ is dualisable for any such U . Since dualisabil-
ity is preserved by exact triangles and retracts, the thick subcategory generated
by {Σ2n,nΣ∞U+ | U ∈ Sm /k quasi-projective} is contained in SH(k)D, f . Thus,
SH(k) f = SH(k)D, f . �

For k ⊆ C (k ⊆ R) all these categories are furthermore included in the preimage
of compact topological spectra under Rk (R′

k):

Proposition 61 For k ⊆ C,

SH(k) f ⊆ R−1
k (SH f in)

and for k ⊆ R,
SH(k) f ⊆ R′−1

k (SH(Z/2) f ).

Proof We have to show that Rk and R′
k preserve compact objects. Let f : k ↪→

C. Then f ∗ restricts to a functor between the categories of compact objects: f ∗ :
SH(k) f → SH(C) f , because the base change functor preserves smooth schemes
and so f ∗ sends a compact generator Σ(2n,n)Σ∞U+, U ∈ Sm /k, n ∈ Z, of SH(k)
to a compact generator of SH(C). Hence, for the first claim it suffices to prove that
R = RC preserves compact objects. Similarly, for the second claim it suffices to
show that R′ = R′

R
preserves compact objects.

Let X = Σ(2n,n)Σ∞U+ be a compact generator of SH(C). As in the proof of the
previous proposition, we can assume thatU is a smooth quasi-projective scheme. By
Jouanolou’s trick [41, Lemma 1.5], there exists an affine vector bundle torsor over
U . This is a vector bundle E → U , together with a torsor p : V → U on E with
V affine. By the definition of a torsor, V is locally isomorphic to E . This implies
that for some m, U × A

m is locally isomorphic to an affine smooth scheme V . In
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particular,U isA
1-equivalent to V , and so X ∼= Σ(2n,n)Σ∞V+ inSH(C). Now, since

V is smooth and affine, its complex realisation has the homotopy type of a finite CW
complex by [47, Example 3.1.9]. Hence, R(X) ∈ SH is isomorphic to ΣnΣ∞Y+
for some finite CW complex Y and, so, R(X) is compact by Remark 7.

The proof that for any smooth and affine variety V , V (C) ⊆ C
r has the homotopy

type of a finite CW-complex, can be summarised as follows [47, Example 3.1.9]:
V (C) is a complex submanifold of C

r without boundary (because V is smooth, see
e.g. [37, Sect. 3.1.2]), which is closed as a subset of C

r (because the zero locus
of any polynomial is closed). For almost any c ∈ C

r , the squared distance func-
tionφc : V (C) → R,φc(x) = ||x − c||2, has only non-degenerate critical points [57,
Theorem 6.6]. Furthermore, φc being real algebraic implies that it has only finitely
many critical points, as in [47, Example 3.1.9]. Using Morse theory [57, Theorem
3.5], it follows that V (C) has the homotopy type of a CW complex with one cell of
dimension n for each critical point of φc of index n.

For X a compact generator of SH(R), we also have X ∼= Σ(2n,n)Σ∞V+ and now
V is a smooth and affine real variety. Its realisation R′(V ) = V (C) ⊆ C

r is still a
complex manifold, which is closed, but with the property that, for any x ∈ V (C),
also its complex conjugate x̄ lies in V (C). This was used for the definition of the
Z/2-action on V (C): ρ(x) = x̄ for ρ ∈ Z/2 the generator. As before, we can choose
c ∈ C

r such that φc has finitely many critical points, which are all non-degenerate.
If c ∈ R

r , φc is Z/2-invariant and the claim follows from equivariant Morse theory:
by the proof of [56, Theorem 2.2], any invariant Morse function can be turned into a
special invariantMorse function and, by [56, Theorem 3.3], a manifold with a special
invariant Morse function is equivariantly homotopy equivalent to an equivariant CW
complex with one equivariant cell for each critical orbit. Thus, V (C) is equivalent
to a finite Z/2-CW complex, whose suspension spectrum is compact in SH(Z/2)
by Proposition 12. For more information on equivariant Morse theory in English
language, we refer the reader to [93].

Now, assume c ∈ C
r \ R

r . We would like to take x �→ min(φc(x),φc(x̄)) as a
Morse function. It is continuous and Z/2-invariant but it is not differentiable for
x ∈ R

r . Outside of R
r , the critical points of min(φc(x),φc(x̄)) are a subset of the

critical points of φc and their complex conjugates. The idea is to proceed in two
steps: first, to take care of the real part V (C) ∩ R

r = V (R) = V (C)Z/2 and, second,
to use min(φc(x),φc(x̄)) as a Morse function away from R

r .
V (R) ⊆ R

r is a manifold, which is closed and without boundary and for which
there exists d ∈ R

r such that φd : V (R) → R is a Morse function with finitely many
critical points (analogously to V (C) ⊆ C

r ). Let B be an open ball around 0 ∈ C
r

which contains a ball D(d) aroundd containing all critical points ofφd and aball D(c)
around c containing all critical points of φc and their conjugates. V (R) can be con-
tracted inside R

r to V (R) ∩ B, following the orthogonal trajectories of the hypersur-
faces on which φd is constant, until B is reached (that is, we glue an infinite sequence
of the diffeomorphisms Ma ∼= Mb constructed in the proof of [57, Theorem 3.1] to
one homotopy equivalence). We extend this homotopy equivalence to a narrow open
neighborhood U ⊂ C

r of R
r \ (B ∩ R

r ) so that C
r � C

r \U by a Z/2-equivariant
homotopy equivalence which does not add critical points to min(φc(x),φc(x̄)) out-
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side of B. Using this homotopy equivalence, we can assume that V (C) \ B does
not contain any points near the real subspace R

r . Now we use φc to contract V (C)

to V (C) ∩ B̄ with an equivariant homotopy equivalence: any x ∈ V (C) \ B with
φc(x) < φc(x̄) gets moved into B along the line of steepest descent of φc inside
V (C). If, however, φc(x̄) < φc(x), x gets moved along the line of steepest descent
of φc̄. Note that φc̄(x) = φc(x̄) and that the homotopy equivalence is well defined
because we removed R

r before and because all critical points of φc and φc̄ are inside
B. Hence, this defines a Z/2-equivariant homotopy equivalence between V (C) and
V (C) ∩ B̄.

Thus, V (C) is Z/2-homotopy equivalent to a Z/2-manifold (with boundary)
which is closed and bounded and, hence, compact in C

r . Using equivariant Morse
theory, this compact manifold is Z/2-homotopy equivalent to a finite Z/2-CW com-
plex (again, see [56, Theorems 2.2, 3.3] or [93]). Note that, although most of the
literature only studies Morse theory for manifolds without boundary, it still covers
this case for the following reason: Since D(c) ⊂ B, the Morse function φc evaluated
on the boundary of V (C) ∩ B takes a higher value than on any critical point. There-
fore, V (C) ∩ B appears at a finite step in the Morse theoretical construction of the
CW complex associated with φc, i.e., V (C) ∩ B � V (C)m = φ−1

c ([0,m]) for some
m ∈ R, which is a finite Z/2-CW complex. �

5.3 Motivic Thick Ideals

Let k ⊆ C and p be any prime. The following theorem identifies important families
of thick ideals in (SH(k) f )(p). It is the main result in this section.

Theorem 13 (Lower bound on the number of motivic thick ideals)

(1) The category (SH(k) f )(p) contains at least an infinite chain of different thick

ideals, given by R
−1
k (Cn), 0 ≤ n ≤ ∞, where Rk denotes the p-localisation of

the restriction of Rk to SH(k) f and Cn ⊆ SH f in
(p) is as defined in Sect.1.

(2) If k ⊆ R, then (SH(k) f )(p) contains at least a two-dimensional lattice of differ-

ent thick ideals, given by (R
′
k)

−1(Cm,n), for all (m, n) ∈ Γp as in Definition35.

Proof We prove the first part, the second is proven similarly. By Remark 53, Propo-
sitions 58 and 61, ck(SH f in) ⊆ SH(k) f ⊆ R−1

k (SH f in), hence ck and Rk restrict to

functors SH f in ck−→ SH(k) f
Rk−→ SH f in . Since the motivic p-local Moore spec-

trum (the homotopy colimit of a diagram of sphere spectra whose arrows are mul-
tiplications by integers prime to p) is the image of the topological p-local Moore
spectrum under ck , we get induced functors between the localised categories,

SH f in
(p)

ck−→ (SH(k) f )(p)
Rk−→ SH f in

(p) ,
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which still have the properties that ck and Rk preserve exact triangles and smash
products and that Rk ◦ ck = id, as proven in Theorem 10. Similarly to Proposition

50, it follows that R
−1
k (Cn) is a thick ideal. Now let n < m. Then Cm ⊂ Cn in SH f in

(p)

and there is some X ∈ Cn \ Cm . It follows that R−1
k (Cm) ⊆ R

−1
k (Cn) and that ck(X) ∈

R
−1
k (Cn) \ R

−1
k (Cm). Thus, R

−1
k (Cn), 0 ≤ n ≤ ∞, form a chain of pairwise different

thick ideals.
For the second part, one needs to consider the functors

(SH(Z/2) f )(p)
c′
k−→ (SH(k) f )(p)

R
′
k−→ (SH(Z/2) f )(p).

�

In the following, we will omit the overline and use the notation Rk , R′
k for the

(p-localised) restricted functors, too.

Remark 62 In the above theorem, SH(k) f can be replaced by any other tensor
triangulated full subcategory D ⊆ SH(k) satisfying

ck(SH f in) ⊆ D ⊆ R−1
k (SH f in), or

c′
k(SH(Z/2) f in+) ⊆ D ⊆ (R′

k)
−1(SH(Z/2) f ) respectively.

In particular, the theorem applies to any

D ∈ {SH(k) f in, SH(k) f in+, SH(k)Tk , f , SH(k)T +
k , f ,

R−1
k (SH f in), R′−1

k (SH(Z/2) f )}

for the following reasons. Recall from Remark 37 that Strickland’s characterisa-
tion of equivariant thick ideals works in SH(G) f in as well as in its closure under
retracts, SH(G) f . Therefore, we can here take SH(k) f in(+) as well as its clo-
sure under retracts, SH(k)T (+)

k , f . Note also that all categories mentioned here are
closed under ∧ because they are generated as thick or triangulated subcategories
by classes of objects closed under ∧: SH(k) f in(+) and SH(k)T (+)

k , f are generated
by {Sp,q(∧Spec(k[i])∧m+ )} and SH(k) f is generated by smooth schemes, which are
also closed under smash product. R−1

k (SH f in) and (R′
k)

−1(SH(Z/2) f ) are closed
under ∧ because ∧ commutes with Rk , R′

k .

Remark 63 The construction of the functors Rk and ck does not depend on the fact
that P1 is invertible inSH(k). They can also be constructed for the category SHS1s (k)
in which only S1s = S1,0 got inverted and Gm did not. Therefore, part (1) of the
theorem also holds for (SHS1s (k) f )(p). The construction of c′

k , however, needed the
invertibility ofP1 (seeRemark 49). Thus, part (2) cannot be applied to (SHS1s (k) f )(p).
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Definition 64 For a full subcategory C of a tensor triangulated category T , let Δ(C)

denote the smallest thick subcategory of T that contains C.

Recall that thickid(C) denotes the smallest thick ideal that contains C.
We state twomore observations about thick ideals in (SH(k) f )(p). They also hold

in any of the above categories D.

Proposition 65 Let Xn ∈ SH f in
(p) be any spectrum of type n, i.e. Xn ∈ Cn \ Cn+1

(see Definition 9) and let Xm,n ∈ SH(Z/2) f in
(p) be any spectrum of type (m, n) (see

Definition 35). Then

thickid(ck Xn) = thickid(ckCn) in (SH(k) f )(p) if k ⊆ C and

thickid(c′
k Xm,n) = thickid(c′

kCm,n) in (SH(k) f )(p) if k ⊆ R.

Proof It is clear that thickid(ck Xn) ⊆ thickid(ckCn). Since c−1
k preserves thick ide-

als by Proposition 51, c−1
k (thickid(ck Xn)) is a thick ideal containing Xn . Since Cn is

the smallest thick ideal containing Xn , we have Cn ⊆ c−1
k (thickid(cXn)) and hence

ckCn ⊆ thickid(ck Xn), which implies the first claim. The same proof shows the sec-
ond claim. �

Proposition 66 If X,Y ∈ (SH(k) f )(p) with type(Rk X) �= type(RkY ) (see Defini-
tion 9) or, if k ⊆ R, type(R′

k X) �= type(R′
kY ) (see Definition 35), then

thickid(X) �= thickid(Y ).

Proof Let type(Rk X) = n > type(RkY ). Then thickid(X) ⊆ R−1
k (Cn) but Y /∈

R−1
k (Cn). The case of R′

k is similar. �

The next proposition gives a description of thick ideals in the categories of finite
cellular spectra, SH(k) f in , k ⊆ C, and SH(k) f in+, k ⊆ R, from Definition 52. In
this case, a thick ideal is a thick subcategory that is closed under − ∧ G

±1
m and under

− ∧ Spec(k[i])+ if k ∈ R.

Proposition 67 Let C ⊆ SH(k) f in be a subcategory, k ⊆ C. Then

thickid(C) = Δ

(
⋃

n∈Z
C ∧ G

∧n
m

)

.

For a subcategory C ⊆ SH(k) f in+, k ⊆ R, we have

thickid(C) = Δ

(
⋃

n∈Z
(C ∧ G

∧n
m ) ∪

⋃

n∈Z
(C ∧ G

∧n
m ∧ Spec(k[i])+)

)

.
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Proof We prove the second claim, the proof of the first claim is slightly shorter. Let
k ⊆ R. The subcategory thickid(C) contains

C = Δ

(
⋃

n∈Z
(C ∧ G

n
m) ∪

⋃

n∈Z
(C ∧ G

n
m ∧ Spec(k[i])+)

)

because thickid(C) is closed under − ∧ G
n
m and − ∧ Spec(k[i])+ and is a thick

subcategory. We have to show that the triangulated subcategory C is already a thick
ideal. Let D ⊆ SH(k) f in+ be the full subcategory consisting of all objects X such
that C is closed under − ∧ X . We have to show D = SH(k) f in+. First note that D
contains all spheres Sp,q because, as a triangulated subcategory, C is closed under
− ∧ Sp,0 and because we added Sq,q . If X → Y → Z is a triangle with two objects
in D, then A ∧ X → A ∧ Y → A ∧ Z is a triangle with two objects in C for any
A ∈ C, hence the third object is also in C. It follows that D is closed under exact
triangles. Furthermore, D is closed under ∧ by definition. It remains to show that D
contains Σ∞

T Spec(k[i])+. By the equivalence

Spec(k[i])+ ∧ Spec(k[i])+ ∼= Spec(k[i])+ ∨ Spec(k[i])+
∼= cof

(
Spec(k[i])+ 0→ Spec(k[i])+

)
,

any triangulated subcategory of SH(k) containing Σ∞
T Spec(k[i])+ also contains

Σ∞
T Spec(k[i])∧l+ , l ≥ 1. It follows that C contains C ∧ G

n
m ∧ Spec(k[i])∧l+ , l ≥ 0.

Hence, D contains Σ∞
T Spec(k[i])+ and is thus equal to SH(k) f in+. �

For k ⊆ C, we have so far identified the following thick ideals in the category
(SH(k) f )(p):

R−1
k (C0)

⊇
⊃ R−1

k (C1)
⊇

⊃ R−1
k (C2)

⊇
⊃ · · ·

thickid(ckC0) ⊃ thickid(ckC1) ⊃ thickid(ckC2) ⊃ · · ·
For k ⊆ R, the picture has another dimension and depends on the classification

of thick ideals in the equivariant category as described in Sect. 3. There is at least
one spot where the inclusion from the lower row into the upper row is actually an
equality.

Proposition 68

R−1
k (C0) = thickid(ck(C0)) = (SH(k) f )(p) and

(R′
k)

−1(C0,0) = thickid(c′
k(C0,0)) = (SH(k) f )(p).
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Proof This is because all these subcategories contain the sphere spectrum and are
closed under smashing with arbitrary elements of (SH(k) f )(p). �

6 Thick Ideals Associated with Cohomology Theories

6.1 Equivalence of Homology and Cohomology Theories

We will now concentrate on the categories of finite cellular spectra SH(k) f in ,
SH(k) f in+, and on (co)homology theories represented by objects in SH(k)cell or
SH(k)cell+ respectively, because these satisfy some useful additional properties. A
couple of these are proven in [16].

A consequence of the results in [16] is the following proposition, which states that
cellular homology theories and cohomology theories forSH(k) f in are exchangeable.
We will state the analogous result for SH(k) f in+ below, in Corollary 72.

Proposition 69 Let E ∈ SH(k)cell (see Definition 52) be a ring spectrum and X ∈
SH(k) f in . Then E∗∗(X) = 0 if and only if E∗∗(X) = 0.

Proof In the universal coefficient spectral sequence (see [16, Proposition 7.7] or
Proposition 104),

E2 = Exta,b,c
E∗∗ (M∗∗, N∗∗) ⇒ π−a−b,−cFE (M, N ),

we set M = X ∧ E and N = E :

E2 = Exta,b,c
E∗∗ (E∗∗(X), E∗∗) ⇒ π−a−b,−cFE (X ∧ E, E).

Since FE (X ∧ E, E) = F(X, E), the spectral sequence converges conditionally to
E∗∗(X). If E∗∗(X) = 0, the spectral sequence collapses and thus converges strongly
to E∗∗(X), which, hence, is 0. For the other direction, we set M = F(X, E) and
N = E . Note that this M is cellular because X is dualisable and its dual is again a
finite cell spectrum by Proposition 58. So we get

E2 = Exta,b,c
E∗∗ (E∗∗(X), E∗∗) ⇒ π−a−b,−cFE (F(X, E), E).

Now FE (F(X, E), E) = FE (D(X) ∧ E, E) = F(D(X), E) = X ∧ E , so the
sequence converges conditionally to E∗∗(X). Hence, E∗∗(X) = 0 implies
E∗∗(X) = 0. �

One important result of Dugger and Isaksen, [16, Proposition 7.1], states that
for cellular objects E ∈ SH(k)cell , π∗∗E = 0 implies E ∼= 0. We will show that an
adjusted statement holds for E ∈ SH(k)cell+, k ⊆ R.
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We know from equivariant stable homotopy theory that a generalisation of homo-
topy groups is needed to obtain the corresponding result in SH(G). In SH(Z/2),
for example, we have the equivariant homotopy groups

πZ/2
n (X) = [Sn, X ]Z/2 = [Sn, XZ/2]{1}

and
π{1}
n (X) = [Sn ∧ Z/2+, X ]Z/2 = [Sn, X ]{1}.

We can similarly define homotopy groups in SH(k), k ⊆ R such that R′
k maps

πk
p,q(X) to π

Z/2
p (R′

k X) and πk[i]
p,q (X) to π

{1}
p (R′

k X).

Definition 70 For k ⊆ R and X ∈ SH(k), let

πk
p,q(X) = [Sp,q , X ]SH(k) and πk[i]

p,q (X) = [Sp,q ∧ Spec(k[i])+, X ]SH(k).

We write π+∗∗(X) = 0 if πK∗∗(X) = 0 for both K = k and K = k[i]. Furthermore,
E+∗∗(X) = 0 will mean π+∗∗(E ∧ X) = 0 and (E+)∗∗(X) = 0 will mean π+∗∗
(F(X, E)) = 0.

The same arguments as in [16, Proposition 7.1] now imply the following.

Proposition 71 If X ∈ SH(k)cell+, k ⊆ R and π+∗∗(X) = 0 then X ∼= 0.

Proof Assuming X is cofibrant and fibrant, one considers the class D of all
Y such that Map(Y cof , X) is contractible. By assumption, D contains Sp,q and
Sp,q ∧ Spec(k[i])+. Furthermore,D is closed under isomorphisms, (de-)suspensions
and homotopy colimits. As in the proof of Proposition 67, it follows that it also
contains Sp,q ∧ (Spec(k[i])+)∧m , m ≥ 0. As SH(k)cell+ ⊆ SH(k) is generated by
{Sp,q ∧ (Spec(k[i])+)∧m | p, q ∈ Z,m ≥ 0} under isomorphisms and homotopy
colimits, it follows that SH(k)cell+ ⊆ D, in particular X ∈ D. Hence, Map(X, X) is
contractible, which implies X ∼= 0. �

The following corollary is a k ⊆ R-version of Proposition 69.

Corollary 72 Let E ∈ SH(k)cell+ be a ring spectrum and X ∈ SH(k) f in+. Then
E+∗∗(X) = 0 if and only if (E+)∗∗(X) = 0.

Proof The spectral sequence from [16, Proposition 7.7] is derived similarly to the
universal coefficient spectral sequence in [18, Sect. IV.5]. The crucial point is the
convergence, where cellularity is needed to apply [16, Proposition 7.1]. The equiv-
ariant version of this spectral sequence (a spectral sequence of Mackey functors) is
proven in [50]. Using [50] and Proposition 71, one can derive the universal coefficient
spectral sequence for our motivic homotopy groups over k ⊆ R. The new version of
Proposition 69 can then be deduced from this spectral sequence as before. �
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6.2 Thick Ideals

In SH f in
(p) , any thick ideal can be described by some cohomology theory (namely,

n-thMoravaK-theory). Conversely, any cohomology theory defines a thick ideal.We
are therefore interested in thick ideals of SH(k) f , as well as SH(k) f in , SH(k) f in+,
described by cohomology theories as follows.

Lemma 2 Let k be any field and let T ⊆ SH(k) be a tensor triangulated subcate-
gory of SH(k). For any E ∈ SH(k), the full subcategory of T given by

CE = {X ∈ T | X ∧ E ∼= 0}

is a thick ideal of T .

Proof Since− ∧ E preserves exact triangles,CE is closed under these. IfY is a retract
of X and X ∧ E = 0, then Y ∧ E → 0 → Y ∧ E is the identity on Y ∧ E , hence
Y ∧ E ∼= 0. Let X ∈ CE and Y ∈ T . Then X ∧ Y ∧ E ∼= 0, hence X ∧ Y ∈ CE . �

Proposition 73 Let CE be as defined in the above lemma.
If k ⊆ C, E ∈ SH(k)cell and T = SH(k) f in or T = SH(k)cell , then

CE = {X ∈ T | E∗∗(X) = 0}.

If, furthermore, E is a ring spectrum and T = SH(k) f in , then also

CE = {X ∈ T | E∗∗(X) = 0}.

If k ⊆ R, E ∈ SH(k)cell+ and T = SH(k) f in+ or T = SH(k)cell+, then

CE = {X ∈ T | (E+)∗∗(X) = 0}.

If, furthermore, E is a ring spectrum and T = SH(k) f in+, then also

CE = {X ∈ T | (E+)∗∗(X) = 0}.

The same descriptions apply if T is the p-localisation of any of these categories for
some prime p.

Proof For E and X as in the first claim, we have E∗∗(X) = 0 ⇔ E ∧ X ∼= 0 by
[16, Proposition 7.1] and for X finite, E a ring spectrum, E∗∗(X) = 0 ⇔ E∗∗(X) =
0 by Proposition 69. For k ⊆ R, the same arguments hold by Proposition 71 and
Corollary 72. �
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6.3 Construction and Properties of AK (n)

Topology suggests that thick ideals described by Morava K-theories are particu-
larly interesting. Therefore, we want to study motivic Morava K-theories and their
properties.

Motivic Morava K-theories were introduced in [10]. The rough idea is as follows.
One starts with MGL , the motivic analogue of MU . Since MU∗ is a subring of
MGL∗∗, elements in MU∗ can be used to define maps on MGL and to construct
motivic spectra which are analogous to certain other topological spectra constructed
from MU .

Definition 74 Let k ⊆ C. Let MGL be the algebraic cobordism spectrum as con-
structed in [88, Sect. 3.5], see also [89, Sect. 6.3] or [68, Sect. 6.5]. In [10, The-
orem 10], elements ai ∈ MGL2i,i , i ≥ 1, are defined, whose images under Rk are
atopi ∈ MU2i . If E is an MGL-module, then E/ai and a−1

i E can be defined as in
[27, Definition 2.10].

Note that the functorMGL ∧ − fromSH(k) to the category ofMGL-modules in
SH(k) has F(MGL ,−) as right adjoint and has the forgetful functor as left adjoint.
As in [18, Lemma II.1.3] and [10, p. 99], it follows that the category ofMGL-modules
is complete and cocomplete. Thus, E/ai and a−1

i E are again MGL-modules (see
Lemma 18 for the proof that the action of ai on E is a map of MGL-modules).

The motivic Brown–Peterson spectrum for a fixed prime p was first constructed
in [87, Sect. 5]. By [32, Remark 6.20], it is equivalent as an MGL-module to
MGL(p)/I , where I is the image under MU∗ → MGL∗∗ of a regular sequence
in the Lazard ring L that generates the vanishing ideal for p-typical formal group
laws. We take this as the definition of the motivic Brown Peterson spectrum ABP
at the prime p. That is,

ABP = MGL(p)/(ai | i �= p j − 1).

With v0 = p and vi = api−1 for i ≥ 1, we define:

AP(n) = ABP/(v0, · · · , vn−1) and AB(n) = v−1
n AP(n),

Ak(n) = ABP/(v0, · · · , vn−1, vn+1, vn+2, · · · ) and AK (n) = v−1
n Ak(n),

AE(n) = v−1
n ABP/(vn+1, vn+2, · · · ).

Wewill make use of all these spectra in Sect. 9. For now, we are mostly interested
in AK (n).

Lemma 3 Let Ah be one of the motivic spectra mentioned in the above definition,
e.g. Ah = AK (n) with h = K (n). Then Rk(Ah) = h.

Proof This follows from Rk(MGL) = MU [88, Sect. 3.5] and Rk(vi ) = v
top
i because

Rk preserves colimits. �
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Remark 75 (1) All spectra mentioned in the above definition are cellular: Theorem
6.4 in [16] shows that MGL is cellular. Since the spectra above are constructed
from MGL by taking homotopy cofibers and homotopy colimits, they are cellu-
lar. The mod-p version of the main result in [32] states that HZ/p is the cofiber
of vn : Σ2(pn−1),pn−1Ak(n) → Ak(n). Hence, HZ/p is cellular, too.

(2) ABP is a homotopy commutative ring spectrum by construction [87, Definition
5.3] and the orientation of MGL induces an orientation on ABP by [69, Theo-
rem 1.1]. The ring structure of ABP induces an ABP-module structure on the
quotients of ABP defined above.

(3) Since MGL is a ring spectrum, ABP is also an MGL(p)-module spectrum and
so is ABP/I for I ⊆ MU∗ a regular ideal.

(4) As remarked at the end of the introduction in [65], ABP is Landweber exact in
the sense of [65] and their results for MGL also hold for ABP .

(5) MGL2∗,∗ and H∗∗ MGL (with coefficients in Z or Z/p) are known (see e.g.
[10, Theorem 5] and [32, Corollary 6.9]). From this, one can compute Ah2∗,∗
and H∗∗ Ah if Ah is one of the above spectra ([10, Theorem 12] and [32, Lemma
6.10]). More can be said about Ah∗∗ if H∗∗(Spec k) is known, see Lemma 5.

(6) In general, however, Ah∗∗ is not known in degrees different from (2i, i). It is also
not known whether Ah can be given the structure of a ring spectrum (except for
Ah = ABP). Another open question is whether AK (n) satisfies the Künneth
formula like K (n).

Wewill make use of motivic Atiyah–Hirzebruch spectral sequences as discovered
by Hopkins and Morel and worked out by Hoyois [32, Example 8.13]. See also [48,
Sect. 11].

Proposition 76 Let h = MU(p)/I and Ah = MGL(p)/I for some regular ideal
I ⊆ MU∗. For X ∈ SH(k) f in

(p) , there are strongly convergent spectral sequences:

E p,q,t
2 = Hp+2t,q+t (X, ht ) ⇒ Ahp,q(X),

E p,q,t
2 = Hp+2t,q+t (X, (v−1

n h)t ) ⇒ (v−1
n Ah)p,q(X).

Remark 77 (1) These are the spectral sequences associated with the slice filtra-
tions of Ah and v−1

n Ah. The n-th truncation of MGL in the slice filtration is
described in the proof of [82, Theorem 4.6] as the colimit of a certain diagram
Ddeg≥n , meaning that fnMGL is constructed from MGL by quotienting out
all monomials ak11 · · · akmm with ai ∈ MGL2∗,∗ and

∑m
i=1 iki ≥ n. The same con-

struction with MU instead of MGL yields the Postnikov truncation of MU
because MU∗ = Z[atop1 , atop2 , · · · ] with |atopi | = 2i . It follows that, for k ⊆ C,
Rk : SH(k) → SH maps the slice filtration of MGL to the Postnikov filtration
of MU . By the construction of Ah and v−1

n Ah from MGL , this implies that
their slice filtrations also realise to the Postnikov filtrations of h and v−1

n h. For
the associated spectral sequences, this means that Rk maps the above spectral
sequences to the analogous topological Atiyah–Hirzebruch spectral sequences.
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(2) In [32, Example 8.13], the convergence is stated for X ∈ Sm /S and follows from
Ah, v−1

n Ah being convergent with respect to [Σ0,qΣ∞X+,−], X ∈ Sm /S, in
the sense of [32, Sect. 8.5]. But this implies convergence with respect to [X,−]
for all finite cell spectra X by motivic cellular induction. Hence, the sequences
converge for all finite cell spectra X . Note that [32, Example 8.13] shows the
convergence for Landweber exact spectra, but his proof holds for quotients of
MGL as well.

In Sects. 8 and 9, we will often assume k = C to be able to prove more results than
for general k. The reason is that the coefficients of HZ/p are particularly simple in
this case.

Lemma 4 For k = C,
H∗∗(Spec(C), Fp) ∼= Fp[τ ]

with deg(τ ) = (0, 1).

Proof This is [92, Eq. (74)]. �

This, and the above spectral sequence, can be used to calculate the coefficients of
theories like Ak(n).

Lemma 5 Let k = C and h = MU(p)/I with (p) ⊆ I ⊆ MU∗ a regular ideal. Let
Ah = MGL(p)/I . Then

Ah∗∗ ∼= H∗∗(SpecC, Fp) ⊗Fp h∗ ∼= h∗[τ ].

Proof This is remarked in [96], below Corollary 3.9. The reason is the following:
For X = SpecC, the motivic Atiyah–Hirzebruch spectral sequence is

Hp+2t,q+t (SpecC, Fp) ⊗ ht ⇒ Ahp,q(SpecC).

By Lemma 4, H∗∗(SpecC, Fp) ∼= Fp[τ ] with deg(τ ) = (0, 1). Thus, for fixed t ,
E p,q,t
2 = Hp+2t,q+t (SpecC, ht ) can only be nonzero in the column p = −2t , which

implies that all differentials vanish. Therefore, the spectral sequence collapses imme-
diately, proving Ah∗∗ ∼= H∗∗ ⊗h∗. �

6.4 Thick Ideals and Morava K-Theories

Let K be a cellular spectrum in SH(k), k ⊆ C, such that Rk(K ) = K (n) is the n-th
Morava K-theory with respect to a fixed prime p. We call such a K a motivic model
for K (n).

Let CK = {X ∈ (SH(k) f )(p) | K ∧ X ∼= 0}, which is a thick ideal in the p-
localised category (SH(k) f )(p) by Lemma 2. If K ∧ X ∼= 0, then Rk(K ∧ X) ∼=
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K (n) ∧ Rk(X) ∼= 0. Consequently, Rk(X) ∈ Cn+1 for any X ∈ CK . This is content
of the following proposition.

Proposition 78 For K a motivic model for K (n), we have an inclusion of thick
ideals in (SH(k) f )(p):

CK ⊆ R−1
k (Cn+1).

The same is true in the category SH(k) f in
(p) .

Example 79 The motivic Morava K-theory spectra AK (n), as defined in Defini-
tion 74, satisfy Rk(AK (n)) = K (n) and are cellular. In particular, they satisfy the
previous proposition.

Another possibility for such a spectrum K is the constant Morava K-theory spec-
trum ck(K (n)). In Sects. 8.4–8.6 we will have a closer look at the thick ideals CAK (n)

and Cck K (n) for k = C.

Remark 80 The spectrum K (n) is not finite. One possibility to see this is by the
equivalence [73, Theorem 2.1.(h) and (i)]:

K (m) ∧ K (n) ∼= 0 ⇔ m �= n

If K (n) were finite, we would have K (m)∗K (n) = 0 ⇒ K (m − 1)∗K (n) = 0 by
[73, Theorem 2.11], which is wrong for n = m − 1. As a consequence, any spectrum
K with Rk(K ) = K (n) can also not be finite cellular.

7 SH(k) f Has More Thick Ideals than SH f in

7.1 The Motivic Hopf Map

In this section, we study the cofiber of the motivic Hopf map, which generates a
thick ideal that is not of the form R−1

k (Cn) or CAK (n). The first part of this claim was
proven by Balmer in [7, Proposition 10.4]. We will reprove and extend this result,
as well as summarise and apply other results of Balmer’s work on prime ideals in
tensor triangulated categories.

For k ⊆ R, we have already shown thatSH(k) f hasmore thick ideals thanSH f in .
This section is, therefore, in particular interesting for k = C.

To understand why there cannot be a complete analogy between motivic thick
ideals and topological thick ideals, recall the reasoning in the topological case: the
thick subcategory (i.e., thick ideal) theorem of Hopkins and Smith [25] is derived
from the fact that Morava K-theories detect nilpotence, which follows from the
theorem that MU detects nilpotence. This is not the case in the motivic setting.

TheHopfmap inSH(k) is given by η : A
2 \ {0} → P

1, (x, y) �→ [x : y], defining
an element η ∈ π1,1(S). Unlike the topological Hopf element, η is not nilpotent [62,
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Theorem 4.7]. The following lemma is due to Morel, see e.g. [60], but we could not
find a proof in the literature. It shows that the spectrum MGL does not detect the
non-nilpotence of η.

Lemma 6
MGL ∧ η ∼= 0

Proof The unit map u of the ring spectrum MGL factors through Σ−2,−1Cη, as in
the proof of [32, Theorem 3.8]. Consider the diagram:

MGL ∧ S1,1

∼=

1∧Σ−2,−1η
MGL ∧ S0,0

∼=
1∧u

MGL ∧ Σ−2,−1Cη

MGL ∧ S1,1 MGL MGL ∧ MGLm

The upper row is a cofiber sequence and u,m are the structure maps of the ring
spectrum MGL . The diagram is commutative. It follows that 1 ∧ Σ−2,−1η factors
through its own cofiber, hence it must be zero. Suspending by S2,1, we get MGL ∧
η ∼= 0. �

It seems likely that also AK (n) ∧ η ∼= 0, but this does not immediately follow
from the above lemma. For our interests, itwill suffice to know that AK (n) ∧ Cη � 0,
which we prove differently.

Remark 81 By [61, Lemma 6.2.1], Cη ∼= P
2.

Proposition 82 For any k ⊆ C and any prime p,

thickid(Rk(Cη(p))) = C0 = SH f in
(p) .

For k ⊆ R,

thickid(R′
k(Cη(p))) =

{
C0,1 ⊂ (SH(Z/2) f )(2) if p = 2

C0,∞ ⊂ (SH(Z/2) f )(p) if p �= 2,

where Cn is the thick ideal defined in Theorem 1 and Cm,n is the thick ideal defined
in Corollary 34.

Proof Since, by definition, Rk = RC ◦ f ∗ for f : k ↪→ C, R′
k = RR ◦ f ∗ for f :

k ↪→ R, and f ∗(ηk) = ηK for f : k ↪→ K , it suffices to prove the claims for k = C

and k = R.
For k = C, we have R(Cη) = R(P2) = CP2. Since K (0)∗(CP2

(p)) = H∗(CP2
(p),

Q) �= 0, R(Cη(p)) has type 0. By [25, Theorem 7], any spectrum of type 0 generates
SH f in

(p) . So, thickid(R(Cη(p))) = SH f in
(p) .
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For k = R, R′(Cη){1} = Cη(C) = CP2 as before. Therefore, if R′(Cη(p)) ∈ Cm,n ,
then m = 0.

Furthermore, R′(η)Z/2 = η(R) is the quotient map R
2 \ {0} → RP1, which is

isomorphic to 2 : S1 → S1. It follows that R′(Cη)Z/2 = S/2.

If p �= 2, S
2→ S is an isomorphism in SH f in

(p) and, hence, (S/2)(p) = 0, which
has type ∞. This proves thickid(R′(Cη(p))) = C0,∞ if p �= 2.

Now let p = 2. Since S
2→ S is an isomorphism rationally,wehave K (0)∗(S/2) =

H∗(S/2, Q) = 0. On the other hand, K (1) is a direct summand of mod 2 topological

K-theory, so K (1)∗(S
2→ S) = 0 and K (1)∗(S/2) �= 0, as in the proof of [7, Proposi-

tion 9.4]. Hence, the type of S/2 ∈ SH f in
(2) is 1 and, therefore, thickid(R′

k((Cη)(2))) =
C0,1. �

In terms of the motivic thick ideals thickid(Cη(p)) ⊆ (SH(k) f )(p), the above
proposition states the following: For k ⊆ C, thickid(Cη(p)) ⊆ R−1

k (C0) (which is a
trivial statement) and thickid(Cη(p)) � R−1

k (Cn) for n > 0. For k ⊆ R and p �= 2,
thickid(Cη(p)) ⊆ (R′

k)
−1(C0,∞) and thickid(Cη(p)) � (R′

k)
−1(Cm,n) for any m > 0,

n arbitrary. If p = 2, then thickid((Cη)(2)) ⊆ (R′
k)

−1(C0,1) and thickid((Cη)(2)) �

(R′
k)

−1(Cm,n) for any m > 0 or n > 1.
The next proposition contains twomore results on thickid(Cη(p)) ⊆ (SH(k) f )(p).

Proposition 83 For k ⊆ C, let thickid(Cη(p)) ⊆ (SH(k) f )(p) denote the thick ideal
generated by the p-localised cofiber of the Hopf map. Then the following hold:

(1) thickid(Cη(p)) � CAK (n) for any n ≥ 0 and any prime p,
(2) thickid(Cη(p)) � R−1

k (Cn) for any n > 0 and any prime p,
(3) thickid(Cη(p)) � thickid(S0(p)) = (SH(k) f )(p) if k ⊆ R and p is any prime or

k ⊆ C and p = 2.
(4) For any prime p, the thick ideals thickid(Cη(p)) ∩ R−1

k (Cn) are distinct for dif-
ferent n ≥ 0 and in particular nonzero if n < ∞.

Proof (1) By Proposition 78, CAK (n) ⊆ R−1
k (Cn+1).

Assuming thickid(Cη(p)) ⊆ CAK (n) therefore implies thickid(Cη(p)) ⊆ R−1
k

(Cn+1). Hence, (1) will follow from (2).
(2) This can either be derived from the previous proposition or can be seen by the

following argument.
Rk(η) is the topological Hopf map, which is nilpotent. Hence, for n ≥ 1, Rk(η)∗
is not surjective in the sequence

· · · → K (n − 1)∗(S3)
Rk (η)∗→ K (n − 1)∗(S2) → K (n − 1)∗(C(Rkη)) → · · · .

It follows that K (n − 1)∗(C(Rkη)) �= 0 and, since C(Rkη) ∼= Rk(Cη), Cη(p) /∈
R−1
k (Cn).
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(3) Note that Cη ∈ thickid(S0) = SH(k) f , so thickid(Cη(p)) ⊆ thickid(S0(p)) for
any p. We have to show that S0(p) /∈ thickid(Cη(p)). We consider the sheaf

cohomology theory H∗(−, KMW
∗ [η−1]), on which η induces an isomorphism

as in the proof of [62, Theorem 4.7], where Morel concludes that η cannot
be nilpotent. Localising at p, we get that η(p) induces an isomorphism on
H∗(S0(p), K

MW
∗ [η−1]). Consider H0(S0(p), K

MW
∗ [η−1]) = KMW∗ (k)[η−1](p). As in

the proof of [62, Theorem 4.7], this is KW
0 (k)[η, η−1](p), and KW

0 (k) is isomor-
phic to the Witt ring W (k) by [62, Remark 4.2]. We have W (C) = Z/2 and
W (R) = Z, see e.g. [43, p. 34].
Hence, for k = C, H0(S0(p), K

MW
∗ [η−1]) = (Z/2[η, η−1])(p), which is nonzero

if p = 2. And, for k = R, H0(S0(p), K
MW
∗ [η−1]) = (Z[η, η−1])(p) �= 0 for any p.

Therefore, the above mentioned isomorphism induced by η(p) is not the zero
map, and, as in [62, Theorem 4.7], it follows that η(p) is not nilpotent in these
cases.
Now we apply [7, Theorem 2.15], which states that, for a map f : X → Y
between invertible objects X and Y in a tensor triangulated category T , the thick
ideal generated by C f is equal to the full subcategory consisting of all objects
A such that f ∧n ∧ A = 0 for some n ≥ 1 (this is similar to Proposition 23). A
corollary of this theorem is that thickid(C f ) = T if and only if f is nilpotent.
It follows that, since η(p) is not nilpotent, S0(p) /∈ thickid(Cη(p)) and
thickid(Cη(p)) �= thickid(S0(p)) in the cases k = C and p = 2 or k = R and p
any prime.
Now, let f : k ↪→ C. By Proposition 50, ( f ∗)−1 preserves thick ideals. Since
f ∗(Cηk) = CηC, thickid((Cηk)(2)) ⊆ ( f ∗)−1(thickid((CηC)(2))). As f ∗
((S0k )(2)) = (S0

C
)(2) /∈ thickid((CηC)(2)), it follows (S0k )(2) /∈ ( f ∗)−1

(thickid((CηC)(2))) and, hence, (S0k )(2) /∈ thickid((Cηk)(2)).

The same argument holds for arbitrary primes p if f : k ↪→ R. Alternatively,
the statement for k ⊆ R can be derived from Proposition 82 and Theorem 13:

thickid(Cη(p)) ⊆ (R′
k)

−1(thickid(R′
k(Cη(p))))

�= (R′
k)

−1(C0,0) = thickid(S0(p)).

(4) Let X ∈ R−1
k (Cn) be such that Rk(X) is of type n, i.e., Rk(X) ∈ Cn \ Cn+1. From

the proof of (2), we know that Rk(Cη(p)) is of type 0. From theKünneth formulas
for K (n) and K (n + 1), it follows that Rk(Cη(p) ∧ X) ∼= Rk(Cη(p)) ∧ Rk(X) is
of type n. Therefore,

Cη(p) ∧ X ∈ (
thickid(Cη(p)) ∩ R−1

k (Cn)
) \ (

thickid(Cη(p)) ∩ R−1
k (Cn+1)

)
.

�
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Corollary 84 For k ⊆ C, thickid((Cη)(2)) is neither of the formCAK (n) for any n ≥ 0
(by Proposition 83(1)) nor of the form R−1

k (Cn) for any n ≥ 0 (by Proposition 83(2)
and (3)).

For k ⊆ R, the statements analogous to (2) and (4) of Proposition 83 read as
follows.

Proposition 85 Let η denote the Hopf map in SH(k), k ⊆ R. In the category
(SH(k) f )(p) the following inequalities hold.

(1) thickid(Cη(p)) � (R′
k)

−1(Cm,n) for any m > 0 (p, n arbitrary) or, if p = 2, m =
0 and n > 1.

(2) Let (m, n)and (m ′, n′)be pairs of integers≥ 0 such thatZ/2-equivariant spectra
of types (m, n) and (m ′, n′) exist (see Sect.3). If p is any prime and m �= m ′ or
p = 2 and max(n, 1) �= max(n′, 1) then

thickid(Cη(p)) ∩ (R′
k)

−1(Cm,n) �= thickid(Cη(p)) ∩ (R′
k)

−1(Cm ′,n′).

Otherwise, the two thick ideals are equal.

Proof (1) is a reformulation of the second part of Proposition 82. For (2), take X =
c′
k(Xm,n) or any other spectrum whose realisation is a spectrum of type (m, n). Then
R′
k(Cη(p) ∧ X) ∼= R′

k(Cη(p)) ∧ R′
k(X) is the smash product of a spectrum of type

(0,∞) if p is odd ((0, 1) if p = 2) with a spectrum of type (m, n). By the equivariant
Künneth formula, Corollary 15, it follows that R′

k(Cη(p) ∧ X) has type (m,∞) if p
is odd and (m,max(n, 1)) if p = 2. Consequently, thickid(Cη(p)) ∩ (R′

k)
−1(Cm,n)

is equal to thickid(Cη(p)) ∩ (R′
k)

−1(Cm,∞) if p is odd and to thickid(Cη(p)) ∩
(R′

k)
−1(Cm,max(n,1)) if p = 2. The intersection is not contained in (R′

k)
−1(Cm ′,n′) for

any m ′ > m or, if p = 2, for any n′ > max(n, 1). �

Related to the previous propositions are the following conjectures.

Conjecture 86 (1) R−1
k (Cn) � thickid(Cη(p)) for all 0 ≤ n < ∞.

(2) CAK (n) � thickid(Cη(p)) for all n ≥ 0.
(3) The thick ideals thickid(Cη(p)) ∩ CAK (n) are distinct for different n ≥ 0 and in

particular nonzero if n < ∞.
(4) For k ⊆ R, thickid(Cη(p)) � (R′

k)
−1(C0,∞) for odd primes p and, for p = 2,

thickid(Cη(p)) � (R′
k)

−1(C0,1).
(5) For k ⊆ R, (R′

k)
−1(Cm,n) � thickid(Cη(p)) for all 0 ≤ m, n < ∞.

Remark 87 A possible approach for proving (1) or (2) might be to choose a motivic
spectrum X whose realisation is of type n (e.g. ck(Xn)) or a spectrum which is of
motivic type n (e.g. as constructed in Sect. 8), respectively. If one can show that
H∗(X, KMW

∗ [η−1]) �= 0, this proves (1) respectively (2).
An idea to prove (3) is to choose a spectrum X of motivic type n and to show that

Cη ∧ X is again of motivic type n for this particular choice.
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For (4), p odd, one has to find a spectrum X ∈ (R′
k)

−1(C0,∞), which is not con-
tained in thickid(Cη(p)). X = (Σ∞ SpecC+)(p) satisfies the first condition and it
might be possible to show H∗(X, KMW

∗ [η−1]) �= 0, which would imply the second.
Since C0,∞ ⊆ C0,1, the same X could be used for the case p = 2.

Remark 88 If and only if the first conjecture is true, the ideals in Proposition 83(4)
are different from the ideals R−1

k (Cn) for all n ≥ 0.

Remark 89 In [3], Andrews and Miller compute the ring π∗∗(S)[η−1] over C. The
computation implies the existence of a non nilpotent element μ9. Using methods
from this section, one can show a result similar to Proposition 83 for thickid(Cμ9).

7.2 Prime Ideals

Let us recall some results of [7], where Balmer studies prime ideals in tensor trian-
gulated categories.

Definition 90 Aprime ideal is a proper thick ideal C with the additional property that
X ∧ Y ∈ C implies X ∈ C or Y ∈ C. The set of prime ideals of a tensor triangulated
category T is denoted by Spc(T ).

In [7], the endomorphism ring of the unit object of T is denoted by RT . To avoid
confusion with the realisation functors, we use the notation πT

0 instead of RT . In [7,
Corollary 5.6], Balmer defines a functor

ρT : Spc(T ) → Spec(πT
0 ),

ρT (P) = { f ∈ πT
0 | C( f ) /∈ P},

which he proves to be surjective if T is connective [7, Theorem 7.13], where con-
nectivity means that HomT (S,Σ i S) = 0 for all i > 0 and S the unit object of T .
Furthermore, this functor is natural for tensor triangulated functors f : T → T ′ by
[7, Theorem 5.3(c) and Corollary 5.6(b)].

7.3 Prime Ideals in the Topological Categories SH f in and
SH(Z/2) f

Applied to SH f in
(p) , this yields the following [7, Proposition 9.4]:

All proper thick ideals Cn ⊂ SH f in
(p) , 0 < n ≤ ∞ are prime ideals, as can be seen

either from the Künneth formula for K (n) or by the linear ordering of the Cn . The
functor
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ρSH f in
(p)

: Spc(SH f in
(p) ) → Spec(Z(p))

has the following values:

ρSH f in
(p)

(Cn) =
{
pZ(p) if n > 1,

0 if n = 1.

Note that C0 is not proper, so it is not in Spc(SH f in
(p) ). Note also that [7] uses a different

indexing convention, in which the indices are shifted by one.
The prime ideals in the non-localised category SH f in are given as follows.

Proposition 91 A subcategory C ⊂ SH f in is a prime ideal if and only if there exist
a prime p and a number 1 ≤ n ≤ ∞ such that

C = Cp,n = {X ∈ SH f in | K (p, n − 1)∗X = 0}

if n < ∞, or
C = Cp,∞ = {X ∈ SH f in | X(p) = 0}

if n = ∞. Here, Cp,1 = Cq,1 = C1 for any primes p and q. Except for n = 1, the Cp,n

are pairwise different.
The functor ρSH f in : Spc(SH f in) → Spec(Z)maps Cp,n to pZ for any n > 1 and

it maps C1 to 0.

Proof This is [7, Corollary 9.5]. We give another proof of the first statement. By
Theorem 4, any thick ideal of SH f in is an intersection

C =
⋂

p∈P

{X ∈ SH f in | X(p) ∈ Cnp ⊆ SH f in
(p) }

for some set of primes P and some numbers 1 ≤ np ≤ ∞. If |P| = 0, then C =
SH f in , which is not proper, and, thus, is no prime ideal. Assume |P| ≥ 1. By Propo-
sition 24, the intersection of two thick ideals I and J satisfying I � J and J � I
is never a prime ideal, because it contains all X ∧ Y with X ∈ I and Y ∈ J . It fol-
lows that, if C is a prime ideal, then |P| = 1. This proves that any prime ideal of
SH f in is of the form C = {X ∈ SH f in | X(p) ∈ Cnp } for some prime p and some
1 ≤ np ≤ ∞.

On the other hand, the Künneth formula implies that K (p, n)∗(X ∧ Y ) can only
be zero if K (p, n)∗X = 0 or K (p, n)∗Y = 0, proving that Cp,n as above is indeed a
prime ideal. Note that, for n = ∞, we have X ∈ Cp,n if and only if K (m)∗(X) = 0
for all m ≥ 0, so Cp,∞ is also a prime ideal by the Künneth formula (using that
K (m + 1)∗(X) = 0 implies K (m)∗(X) = 0). �

Nowwe turn to theZ/2-equivariant category, T = SH(Z/2) f . By [81, Corollary
1], the map
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πT
0 → A(Z/2), [ f ] �→ (deg( f {1}), deg( f Z/2))

is an isomorphism to the Burnside ring A(Z/2) ∼= Z ⊕ Z. Hence, [7, Theorem 7.13]
yields surjective functors

ρSH(Z/2) f : Spc(SH(Z/2) f ) → Spec(Z ⊕ Z)

and
ρ(SH(Z/2) f )(p) : Spc((SH(Z/2) f )(p)) → Spec(Z(p) ⊕ Z(p)).

Proposition 92 A thick ideal Cm,n ⊆ (SH(Z/2) f )(p) is a prime ideal if and only if
Cm,n = Cm,0, 0 < m ≤ ∞, or Cm,n = C0,n, 0 < n ≤ ∞.

Proof From Sect. 3.5, we know that any thick ideal in (SH(Z/2) f )(p) is of the form

Cm,n = {X | φ{1}(X) ∈ Cm and φZ/2(X) ∈ Cn} = Cm,0 ∩ C0,n.

By Proposition 24, this is equal to {X ∧ Y | X ∈ Cm,0,Y ∈ C0,n}. It follows that Cm,n

being a prime ideal implies Cm,n = Cm,0 or Cm,n = C0,n . On the other hand, if either
m or n is 0 then Cm,n is a prime ideal by the Künneth formula for K (m, {1}) or
K (n, Z/2). Note that C0,0 = (SH(Z/2) f )(p) is not a prime ideal since it is no proper
subcategory. �

Remark 93 Asa consequence of Strickland’s results [86],Cm,n = C0,n impliesm = 0
but Cm,n = Cm,0 does not always imply that n = 0. This follows from Corollary 36:
for m ≤ n, a type (m, n)-spectrum Xm,n always exists, and X0,n ∈ C0,n \ Cm,n for all
m > 0. On the other hand, Proposition 33 implies that, for p = 2, Cm,0 = Cm,n for
any 0 ≤ n ≤ m − 1.

Recall from Definition 35 that the thick ideals in (SH(Z/2) f )(p) are in bijection
with a lattice Γp ⊆ (Z≥0 ∪ {∞}) × (Z≥0 ∪ {∞}) containing all (m, n) such that a
spectrum of type (m, n) exists. In the case just considered, (m, 0) would not be in
Γ2 (at least for m > 1). In terms of the bijection to Γp, the above proposition instead
reads as follows:

Corollary 94 For any (m, n) ∈ Γp, the thick ideal Cm,n is a prime ideal if and only
if one of the following conditions holds:

(1) (m, n) = (0, n), with 0 < n ≤ ∞,
(2) 0 < m ≤ ∞, 0 ≤ n ≤ ∞ and (m, n − 1) /∈ Γp.

For evaluating the functor ρ(SH(Z/2) f )(p) , we use the first description of the prime
ideals in (SH(Z/2) f )(p), given by Proposition 92.

Proposition 95 The functor

ρ(SH(Z/2) f )(p) : Spc((SH(Z/2) f )(p)) → Spec(Z(p) ⊕ Z(p))
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has the following values:

ρ(SH(Z/2) f )(p) (Cm,0) =
{
0 ⊕ Z(p) if m = 1

pZ(p) ⊕ Z(p) if m > 1,

ρ(SH(Z/2) f )(p) (C0,n) =
{

Z(p) ⊕ 0 if n = 1

Z(p) ⊕ pZ(p) if n > 1.

Proof By [7, Corollary 5.6(b)], ρT is natural in T . Since X ∈ Cm,0 is only a condition
on φ{1}X and X ∈ C0,n is only a condition on φZ/2X , the fixed point functors can be
used to derive this result from the nonequivariant case. Note that the induced functor
between the endomorphism rings,

π0(φ
H ) : π

(SH(Z/2) f )(p)
0 → π

SH f in
(p)

0

is the projection onto the first summand of Z ⊕ Z if H = {1} and onto the second
summand of Z ⊕ Z if H = Z/2 [81, Corollary 1]. �

The generalisation to the non-localised category SH(Z/2) f works similarly as in
the non-equivariant case. In particular, any prime ideal in SH(Z/2) f is the preimage
under the p-localisation functor of a prime ideal in (SH(Z/2) f )(p) for some prime p.

Summarising the result, we can say that all information on thick ideals in
SH(Z/2) f given in [7]—namely, that they map surjectively to Spec(Z ⊕ Z)—is
recovered in the results of [86] as presented in Sect. 3. Furthermore, [86] does not
only specify a preimage of any element in Spec(Z ⊕ Z) but gives a complete list of
all possible such preimages.

7.4 Prime Ideals in the Motivic Category SH(k) f

Reference [7, Sect. 10] studies T = SH(F) f for F a perfect field, in which case
the map ρT : Spc(T ) → Spec(GW (F)) is surjective. That is, Spec(GW (F)) gives
a lower bound on the thick ideals of SH(F) f .

For F = C, the naturality of ρT yields a commutative diagram:

Spc(SH(C) f )
ρ

Spec(π
SH(C) f
0 )

Spc(SH f in)

Spc(R)

ρ
Spec(πSH f in

0 ).

Spec(π0(R))
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The map Spc(R) takes a prime ideal C of SH f in to its preimage under R = RC. The
endomorphism ring πSH f in

0 is isomorphic to Z, generated by the identity S0 → S0.

By [62, Corollary 4.11], the same holds for π
SH(C) f
0

∼= Z. Since R(id : S0
C

→ S0
C
) =

(id : S0 → S0), it follows that the map Spec(π0(R)) is isomorphic to the identity
map Spec(Z) → Spec(Z). Thus:

Corollary 96 For any 0 < n ≤ ∞, the thick ideal R−1(Cn) ⊆ (SH(C) f )(p) is a
prime ideal, and

ρ(SH(C) f )(p) (R
−1(Cn)) =

{
0 if n = 1,

pZ(p) if n > 1.

Remark 97 From Proposition 83(2) or [7, Proposition 10.4], we know that Spc(R)

is not surjective, since Cη lies in some prime ideal which is not of the form R−1(Cn).

For F = R, there is also a commutative diagram:

Spc(SH(R) f )
ρ

Spec(π
SH(R) f
0 )

Spc(SH(Z/2) f )

Spc(R′)

ρ
Spec(π

SH(Z/2) f

0 ).

Spec(π0(R′))

Lemma 7 In the above diagram, the right map Spec(π0(R′)) is an isomorphism.

Proof The realisation functor R′ maps generators of πSH(R)
0

∼= GW (R) ∼= Z ⊕ Z

to generators of π
SH(Z/2)
0 . This follows from [62, Sect. 4] and is explained on [14,

Slides 15–16 and 22–24]: πSH(R)
0 is generated by 1 and ε = −1 − ρ−1η (in GW (R),

ε corresponds to the quadratic form q(x) = −x2). The element ε ∈ πSH(R)
0 is also

represented by the twist map S1,1 ∧ S1,1 → S1,1 ∧ S1,1 [14, Slide 22]. Now, S1,1 =
Gm = A

1 \ {0} is mapped by R′ to the circle with Z/2 acting by involution, which
is also denoted by S1,1. Hence, R′(ε) = ε : S1,1 ∧ S1,1 → S1,1 ∧ S1,1, the twist map
in SH(Z/2). By [14, Slide 16], 1 and ε are generators for π

SH(Z/2)
0 . Thus, π0(R′) :

πSH(R)
0 → π

SH(Z/2)
0 is an isomorphism. �

Corollary 98 For any prime ideal Cm,n ⊆ (SH(Z/2) f )(p), (R′)−1(Cm,n) is a prime
ideal of (SH(R) f )(p) and ρ(SH(R) f )(p) ((R

′)−1(Cm,n)) can be identified with the same
prime ideal of Z(p) ⊕ Z(p) as ρ(SH(Z/2) f )(p) (Cm,n).

Remark 99 Conjecture 86(4) would imply that in the above diagram, (R′)−1 is not
surjective, as thickid(Cη(p)) would have to lie in some prime ideal which is not of
the form (R′)−1(Cm,n).

Remark 100 Since the Künneth formula might not hold for AK (n), we do not know
whether CAK (n) or CAK (m,n) are prime ideals.
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Remark 101 If k ⊂ C or k ⊂ R is a field such that Spec(GW (C)) → Spec(GW (k))
is not surjective or Spec(GW (R)) → Spec(GW (k)) is not surjective respectively
then [7, Corollary 10.1] already implies that there is an infinite family of thick ideals
in SH(k) f which are not of the form R−1

k (C) or (R′
k)

−1(C) respectively.

8 Motivic Type-n Spectra

Definition 102 Let AK (n) be the motivic Morava K-theory spectrum as defined in
Definition74.Wesay that X ∈ (SH(k) f )(p) hasmotivic typen if AK (n − 1)∗∗(X) =
0 and AK (n)∗∗(X) �= 0.

A priori, the motivic type of X might not be unique, as we do not know whether
CAK (n−1) ⊆ CAK (s) for all s < n. In Sect. 9.6, we will prove that any X ∈ SH(C)

f in
(p) ,

p > 2, has a unique motivic type. For any prime p, the motivic type-n spectra that
we are going to consider in this section satisfy AK (s)∗∗(X) = 0 for all s < n.

Remark 103 In the topological category SH f in
(p) , the notion of types is equivalent

to the notion of thick ideals by the thick subcategory theorem [25, Theorem 7]. In
Sect. 3, we have seen that, in equivariant homotopy theory, a more general notion of
types is required. Also in the motivic world, not every thick ideal can be described
in the language of types, as defined above. For example, as shown in Sect. 7, the
motivic Morava K-theories AK (n) do not distinguish between the nonequal thick
ideals thickid(Cη(2)) and thickid(S0(2)), as both are generated by a spectrumofmotivic
type 0.

In this section, we will often assume k = C, because we will need explicit knowl-
edge of H∗∗ and of AK (n)∗∗ for some of our arguments. The results might hold in
greater generality, but this seems to require different methods of proof.

If Xn ∈ SH f in
(p) has type n (see Definition 9), then c(Xn) ∈ SH(C)

f in
(p) has motivic

type n (Sect. 8.6). That is, c(Xn) ∈ CAK (n−1) and c(Xn) /∈ CAK (n). For any given n,
we show how to construct a spectrum Xn ∈ (SH(C) f )(p) with motivic type n that
is not in the image of the functor c. The construction will be similar to topological
constructions given by [58, Sect. 4] and [75, Appendix C].We stick to the approach in
[75] but we believe that a motivic version of Mitchell’s spectrum would give another
spectrum of motivic type n.

This section is organised as follows:
We first discuss some foundations that are needed to apply the motivic Adams

spectral sequence and obtain a vanishing result for motivic Morava K-theory (The-
orem 14). Afterwards, we construct a spectrum satisfying the conditions of the the-
orem and we prove that it has indeed motivic type n (Sect. 8.5). Finally, we compare
our findings to a constant type-n spectrum, c(Xn) (Sect. 8.6), realising that motivic
Morava K-theory does not distinguish the thick ideal generated by Xn from the one
generated by cXn , meaning that both spectra havemotivic type n. We partly calculate
their types with respect to the cohomology theories c(K (s)), as well. However, we
do not have the answer to the question whether thickid(Xn) equals thickid(c(Xn)).
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8.1 Universal Coefficient and Künneth Theorems

This section states some general results, which hold in SH(k), k any field, and which
will be used later on. In the whole section, we use the notation H = HZ/p. Recall
from Remark 75(1) that H is cellular.

Proposition 7.7 in [16] describes the following universal coefficient spectral
sequences (one of which we already encountered in the proof of Proposition 69):

Proposition 104 Let E ∈ SH(k) be a motivic ring spectrum, M a right E-module
and N a left E-module. Furthermore, assume that E, M ∈ SH(k)cell (see Definition
52).

(1) There is a strongly convergent spectral sequence

E2 = TorE∗∗
a,b,c(M∗∗, N∗∗) ⇒ πa+b,c(M ∧E N ).

(2) There is a conditionally convergent spectral sequence

E2 = Exta,b,c
E∗∗ (M∗∗, N∗∗) ⇒ π−a−b,−cFE (M, N ),

where FE (−,−) denotes the E-function spectrum.

We apply (2) to the case E = H = HZ/p, M = A ∧ H and N = H for A a cell
spectrum and get:

ExtH∗∗(H∗∗ A,H∗∗) ⇒ π∗∗FH (A ∧ H, H) = H∗∗ A.

If A is a finite cell spectrum, we can also apply the spectral sequence to the case
E = H , M = F(A, H), N = H :

ExtH∗∗(H∗∗ A,H∗∗) ⇒ π∗∗FH (F(A, H), H) = π∗∗F(F(A, S0), H) = H∗∗ A.

The first equality holds because F(A, H) = F(A, S0) ∧ H for finite A and the sec-
ond holds because taking the dual of A twice gives A again (see [51, Proposition
III.1.3]).

In the case of vanishing higher Ext-groups, the spectral sequence collapses and
we get the following result:

Corollary 105 If A ∈ SH(k)cell is any cell spectrum such that H∗∗ A is free over
H∗∗, then H∗∗ A ∼= HomH∗∗(H∗∗ A,H∗∗). If A is a finite cell spectrum with H∗∗ A
free over H∗∗, then H∗∗ A ∼= HomH∗∗(H∗∗ A,H∗∗).

The universal coefficient spectral sequence also implies the following Künneth
theorem [16, Remark 8.7]:
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Proposition 106 Let A and B bemotivic spectra such that A is a finite cell spectrum.
If H∗∗ A is free over H∗∗, then

H∗∗(A) ⊗H∗∗ H∗∗(B) ∼= H∗∗(A ∧ B).

8.2 The Motivic Steenrod Algebra

In this section, too, we let H = HZ/p. Let k ⊆ C.
The motivic mod-p Steenrod algebra,A = A∗∗ has first been defined in [91, Sect.

11] as the algebra of certain bistable natural transformations H∗∗(−) → H∗∗(−). By
[92, Theorem 3.49] and [32, Lemma 5.7],A is the algebra of all such operations and,
as an H∗∗-module,

A ∼= H∗∗ ⊗FpAtop,

where Atop is the topological mod-p Steenrod algebra. Thus, as H∗∗-modules,

A ∼= H∗∗ ⊗Fp RP ⊗Fp ΛFp (Q0, Q1, · · · ),

where RP is the Fp-module generated by certain products of reduced powers Pi :
H∗∗(−) → H∗+2i(p−1),∗+i(p−1)(−), i ≥ 0, andΛFp (Q0, Q1, · · · ) denotes the exterior
algebra over Fp generated by Qi : H∗∗(−) → H∗+2pi−1,∗+pi−1, i ≥ 0, as defined in
[91, Sect. 13]. See also [10, Corollaries 3 and 4] or [96, Eq. (2.18)].

Borghesi [10, Theorem 12] computes the cohomology of the motivic connec-
tive Morava K-theory spectrum, which can be expressed by the same formula as in
topology.

Proposition 107

H∗∗(Ak(s)) = A/AQs = H∗∗ ⊗RP ⊗ ΛFp (Q0, · · · , Qs−1, Qs+1, · · · ).

If X is a finite cell spectrum such that H∗∗(X) is free over H∗∗, we can apply the
Künneth theorem to Ak(s) ∧ X .

Corollary 108 Let X ∈ SH(k) f in with H∗∗(X) free over H∗∗. Then

H∗∗(Ak(s) ∧ X) = A/AQs ⊗H∗∗ H∗∗(X).

Writing Λ(Qs) for the exterior algebra over H∗∗ generated by Qs , we have A =
A/AQs ⊗H∗∗ Λ(Qs). Any resolution of H∗∗ X by projective Λ(Qs)-modules Pi
yields a resolutionA/AQs ⊗H∗∗ Pi ofA/AQs ⊗H∗∗ H∗∗ X byprojectiveA-modules.
This implies the following change of rings isomorphism.
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Corollary 109 For any finite cell spectrum X with H∗∗(X) free over H∗∗, we have

ExtA(H∗∗(Ak(s) ∧ X),H∗∗) ∼= ExtΛ(Qs )(H
∗∗(X),H∗∗).

This isomorphism will later be applied to the motivic Adams spectral sequence
for Ak(s)∗∗(X).

8.3 The Motivic Adams Spectral Sequence

Recall the notation H = HZ/p. Let k ⊆ C.
Our aim in this section is to show the existence and convergence of the following

Adams spectral sequence:

Es,t,u
2 = Exts,t,uA (H∗∗(Ak(s) ∧ X),H∗∗) ⇒ Ak(s)∗∗(X)

for finite cell spectra X ∈ SH(k) f in (see Definition 52), with H∗∗ X free over H∗∗.
Motivic Adams spectral sequences were first described in [59]. Corollary 3 of [36]

shows that over fields of characteristic 0, the Adams spectral sequence for a motivic
cell spectrum X of finite type converges to the homotopy groups of the completion
X∧

p,η . In [17], calculations are made for the case p = 2, X = S. More details and
explanations can be found in [83]. The convergence of the Adams spectral sequence
for Ak(s) ∧ X will follow from [36]. However, we have to start again from theAdams
resolution, to get the limit term Ak(s)∗∗(X) using arguments from [74, Sect. 2.1],
and to get a module structure on the sequence.

Definition 110 An Adams resolution (Ys, gs, Ks, fs)s≥0 for a motivic cell spectrum
Y ∈ SH(k)cell is a diagram

Y Y0

f0

Y1

f1

g0
Y2

f2

g2
· · ·

g3

K0 K1 K2

,

where each Ks is a wedge of suspensions of H , fs is surjective on motivic mod-p
cohomology and Ys+1 is the fiber of fs .

Such an Adams resolution exists whenever H∗∗ Y is a free module over H∗∗ of
motivically finite type [36], [83, Sect. 2.5.4]. The finite type condition is defined in
[17, Definition 2.12]. For our purposes, it suffices to know that, if the generators of
H∗∗ Y are located in degrees (iα, jα) with iα bounded below and, for each α, there
are only finitely many β’s with iα = iβ and jα ≥ jβ , then H∗∗ Y is of motivically
finite type. This holds, for example, if Y ∈ SH(k) f in .

Corollary 111 Let X be a finite cell spectrum such that H∗∗ X is free over H∗∗ and
let Ak(s) be the motivic connective Morava K-theory spectrum (see Definition 74).
Then Y = Ak(s) ∧ X satisfies the finite type condition as described above.
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Proof By Corollary 108, H∗∗(Y ) ∼= A/AQs ⊗H∗∗ H∗∗ X . The motivic Steenrod
algebra A is of motivically finite type, since, for the bidegrees (iα, jα) of its H∗∗-
generators, iα and jα are nonnegative and there are only finitely many generators of
a fixed bidegree. The same holds for A/AQs . Furthermore, H∗∗ X is of motivically
finite type, since X is finite. It follows that the tensor productA/AQs ⊗H∗∗ H∗∗ X is
also of motivically finite type. �

Corollary 112 (Convergence of the ASS) Let k = C (or any other field satisfying
the assumptions of [36, Theorem 1]) and let X be a finite cell spectrum such that
H∗∗(X) is a freeH∗∗-module. Then the Adams spectral sequence for Y = Ak(s) ∧ X,
s > 0, strongly converges to Ak(s)∗∗(X).

Proof Since Y is of motivically finite type by the previous corollary, strong con-
vergence follows from [36, Corollary 3]. By [36, Theorem 1], the spectral sequence
converges to the p-completion of π∗∗Y . Since Ak(s) is a quotient of ABP/(p) by
definition, Y∧

p = Y , whence the limit term is Ak(s)∗∗(X). �

Remark 113 In Corollary 112, X does not necessarily need to be finite. All we need
to know is that Ak(s) ∧ X is of motivically finite type.

In Theorem 14, it will be crucial that this particular spectral sequence is a spectral
sequence of (MGL(p))∗∗-modules.

Since Ak(s) is an MGL(p)-module spectrum by Remark 75(3), Ak(s)∗∗X and
H∗∗(Ak(s) ∧ X) are (MGL(p))∗∗-modules. Before we can prove compatibility of the
Adams spectral sequencewith themodule structure, we need to determineH∗∗ Ak(s).
Borghesi [10, Theorem 5 and Remark 2.2] shows:

Lemma 8

H∗∗(MGL) ∼= H∗∗[m1,m2, · · · ] ∼= H∗∗ ⊗Fp H∗(MU, Z/p).

Since π∗∗(H ∧ MGL(p)) = π∗∗(H(p) ∧ MGL) and H(p) = H , it follows that
also H∗∗(MGL(p)) is a free H∗∗-module with basis elements mI = mk1

i1
mk2

i2
· · ·mkt

it
.

Here, mi is defined as the Hurewicz image of ai ∈ MGL2i,i and ai is the image of
a polynomial generator of MU∗. The motivic connective Morava K-theory spectra
are defined as homotopy colimits of spectra Ei , which are defined by successively

taking cofibers of maps Σ2(i−1),i−1Ei−1
ai−1→ Ei−1, starting from MGL(p) (see Defi-

nition 74). Passing from H∗∗ Ei−1 to H∗∗ Ei , the H∗∗-basis changes but the fact that
the homology is a free H∗∗-module remains true for each i .

Corollary 114 H∗∗(Ak(s)) is a free H∗∗-module. Hence,

H∗∗(Ak(s)) ∼= HomH∗∗(H∗∗(Ak(s)),H∗∗).

Proof The second statement follows fromCorollary 105. For the cellularity of Ak(s),
see Remark 75(1). �
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Proposition 115 Let k and X be as in Corollary 112. The Adams spectral sequence
for Ak(s) ∧ X is a spectral sequence of (MGL(p))∗∗-modules.

Proof We show that there is an Adams resolution by MGL(p)-modules. The con-
struction of the spectral sequence from theAdams resolution preserves such amodule
structure in every step and the claim will follow.

We use similar arguments as in Corollary 112, but starting with an Adams resolu-
tion {Xt , gt , Kt , ft } for X . Then we take the smash product of such a resolution with
Ak(s) and show that this yields anAdams resolution forY = Ak(s) ∧ X . Since Ak(s)
is an MGL(p)-module, this will be a resolution by MGL(p)-modules. By definition,
ft is surjective on cohomology, which is equivalent to gt inducing zero in cohomol-
ogy. It follows that Ak(s) ∧ gt induces zero in cohomology, hence, Ak(s) ∧ ft is
surjective on cohomology by the long exact fiber sequence.

It remains to show that Ak(s) ∧ Kt is a wedge of suspensions of H . Consider one
wedge summand H of Kt . By Corollary 114, π∗∗(Ak(s) ∧ H) is free over π∗∗(H).
Furthermore, Ak(s) ∧ H is a cellular H -module. Therefore, [32, Lemma5.3] implies
that Ak(s) ∧ H is split, that is, Ak(s) ∧ H ∼= ∨

Σ∗∗H , as we wanted to show. �

8.4 Vanishing Criterion for Motivic Morava K-Theory

Nowwe can prove the followingmotivic version of the vanishing result [58, Theorem
4.8].

Theorem 14 (Vanishing criterion)Let p beanyprime, s > 0andk beas inCorollary
112. Let X ∈ SH(k) f in be a finite motivic cell spectrum such thatH∗∗ X is free over
Λ(Qs) (the exterior algebra over H∗∗) as a module over the Steenrod algebra. Then

AK (s)∗∗X = 0.

Proof With the preparations made so far, the rest of the proof is exactly as in
[58, Theorem 4.8]. Since AK (s) = v−1

s Ak(s), it suffices to show that Ak(s)∗∗X is
vs-torsion. We apply the change of rings isomorphism, Corollary 109, to the Adams
spectral sequence for Ak(s) ∧ X and get:

E2
∼= ExtΛ(Qs )(H

∗∗ X,H∗∗) ⇒ Ak(s)∗∗X.

By the assumption on X , this collapses to

HomΛ(Qs )(H
∗∗ X,H∗∗) ∼= Ak(s)∗∗X,

and, by the previous proposition, this is an isomorphism of (MGL(p))∗∗-modules.
Since (MGL(p))∗∗ acts trivially on the left hand side of this isomorphism, vs acts
trivially on Ak(s)∗∗X , too. Hence, AK (s)∗∗X = 0. �
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8.5 Construction of Motivic Type-n Spectra

In this section, we assume k = C because we will work explicitly with H∗∗ ∼= Fp[τ ],
deg(τ ) = (0, 1) (see Lemma 4). The construction of a spectrum X with the properties
required in the previous theoremcan be done similarly as in [75,AppendixC]. That is,
one starts with a so-called weakly type-n spectrum (n > s) and then uses a particular
idempotent to split off a (strongly) type-n spectrum of a certain smash power of it.

In the following, we study idempotents for free H∗∗-modules.
For V ∗∗ an Adams graded graded abelian group (i.e., V ∗∗ has a sign rule in the

first grading but not in the second one, see e.g. [65, Sect. 3]) which is a free H∗∗-
bimodule, let V+ = ⊕

p even
V p,q and V− = ⊕

p odd
V p,q be the even and odd dimensional

parts of V . That is, commuting with an element of V+ does not change the sign but
commuting two elements of V− does. For a vector space V ∗ overFp, Ravenel defines
a number kV and an idempotent eV ∈ Z(p)[ΣkV ], which only depend on dimFp V

+
and dimFp V

− [75, Appendix C.2]. The analogous definition can be formulated using
dimH∗∗ V+ and dimH∗∗ V− for our bigraded H∗∗-modules. The symmetric group ΣkV
acts on V⊗kV by permuting the factors. As V is an Fp-module, this induces an action
of Z(p)[ΣkV ] on V⊗kV . For our purposes, it will not be important to know the precise
definitions of kV and eV . We just need to know that they are defined in such a way
that the following analogue of [75, Theorem C.2.1] holds.

Proposition 116 Let kV and eV ∈ Z(p)[ΣkV ] be the number and idempotent defined
in [75, Appendix C.2] and let W = V⊗kV . Then eVW �= 0. If U ⊂ V has dimU+ ≤
dim V+ − 1 or dimU− ≤ dim V− − (p − 1), then eVU⊗kV = 0.Here, dim denotes
the H∗∗-dimension and ⊗ denotes the tensor product over H∗∗.

Proof The proof of [75, Theorem C.2.1] applies to our setting without changes. �

We will need the following lemma.

Lemma 9 Let M be a module over Fp[τ , Q]/Q2 which is free as a module over
Fp[τ ] and free as a module over Fp[Q]/Q2. Then M is a free Fp[τ , Q]/Q2-module.

Proof Let {mi }i∈I be a basis of M over Fp[τ ] and {n j } j∈J a basis over Fp[Q]/Q2.
Then M is a free Fp-module with bases {τ kmi }i∈I,k∈N and {n j , Qn j } j∈J . As an
Fp[Q]/Q2-module, M decomposes as M ∼= M ′ ⊕ QM ′ with M ′ ∼= QM ′ ∼= QM as
Fp-modules. Hence, the elements mi can be written as mi = ai + Qbi with ai , bi ∈
M ′. For any i ∈ I such that both ai and bi are nonzero, we replace the basis element
mi by the two elements ai and Qbi . Then we still have a set of generators for
M over Fp[τ ], which can be turned into a basis by removing elements. Hence,
we can assume that all mi are of the form mi = ai or mi = Qbi . Let I ′ = {i ∈
I | mi = ai ∈ M ′}. Then M ′ ∼= Fp{τ kai }i∈I ′,τ∈N as an Fp-module. Hence, QM ′ ∼=
Fp{Qτ kai }i∈I ′,τ∈N and M ∼= Fp{τ kai , Qτ kai }. It follows that {ai }i∈I ′ is a basis of M
as a free Fp[τ , Q]/Q2-module. �
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Theorem C.2.2 of [75] explains how to split off a free module over the exterior
Fp-algebra generated by Qs from a module with nontrivial Qs-action. In our setting,
this also works for the exterior H∗∗-algebra Λ(Qs).

Proposition 117 Let V = U ⊕ F be a splitting of Λ(Qs)-modules which are free
over H∗∗, and F �= 0 be free over Λ(Qs). Then eV V⊗kV is a free Λ(Qs)-module.

Proof Wewrite the tensor product asV⊗kV = U⊗kV ⊕ F ′,where F ′ = ⊕

a+b=kV
b≥1

U⊗a ⊗

F⊗b. By the proof of [75, Theorem C.2.2], F ′ is free over the Hopf algebra
Fp[Qs]/Q2

s , which we abbreviate by E . Let us give the reason for this state-
ment. We show that if the E-module U has basis {ui }I over Fp and F has basis
{ f j }J over E , then U ⊗Fp F has Fp-basis {ui ⊗ f j , Qs(ui ⊗ f j )}I,J and hence is a
free module over E . The module structure of U ⊗ F is defined by Qs(u ⊗ f ) =
Qsu ⊗ f + u ⊗ Qs f . Since { f j , Qs f j }J defines an Fp-basis of F , an Fp-basis
of U ⊗ F can be given by {ui ⊗ f j , ui ⊗ Qs f j }. In the formula Qs(ui ⊗ f j ) =
Qsui ⊗ f j + ui ⊗ Qs f j , Qsui = Σrkuk can be expressed by the basis elements of
U , hence Qsui ⊗ f j ∈ Fp{uk ⊗ f j } and the basis elements ui ⊗ Qs f j ofU ⊗ F can
be replaced by Qs(ui ⊗ f j ). We obtainU ⊗ F = Fp{ui ⊗ f j , Qs(ui ⊗ f j )}. Induc-
tively, it follows that all mixed summands U⊗a ⊗ F⊗b in V⊗kV are free and hence
F ′ is free over E .

The analogue holds if we consider U and F as free modules over Fp[τ ] instead
of Fp and use ⊗Fp[τ ]. It follows that F ′ is free over Λ(Qs). The direct summands are
invariant under the ΣkV -action. Hence, we have a short exact sequence

0 → eVU
⊗kV → eV V

⊗kV → eV F
′ → 0.

Since deg(Qs) = (2pi − 1, pi − 1), multiplication by Qs sends V+ to V− and vice
versa. It follows that dim F+ > 0 (and dim F− > 0) and, hence, dimU+ < dim V+.
By the previous proposition, this implies eVU⊗kV = 0. It follows that eV V⊗kV =
eV F ′. We have to show that eV F ′ is a free Λ(Qs)-module. As a module over the
exterior Fp-algebra over Qs , this is a direct summand of a free module over a local
ring. Hence, eV F ′ is free over Fp[Qs]/(Q2

s ). Since eV F
′ is also a free H∗∗-module,

it is free over Λ(Qs) = Fp[τ , Qs]/Q2
s by Lemma 9. �

We can apply this to motivic cohomology in the following way:

Theorem 15 (Splitting off free Λ(Qs)-modules) Let X ∈ SH(C)
f in
(p) be a p-local

finite cell spectrum such that Qs acts nontrivially on H∗∗(X) as an element of
the Steenrod algebra. Assume that V = H∗∗(X) is a free H∗∗-module and let
Y = eV (X∧kV ). Then H∗∗(Y ) is free over Λ(Qs).

Proof This is analogous to a statement in [75, Theorem C.3.2]. Since Qs acts non-
trivially, H∗∗(X) contains a nontrivial summand which is free over Λ(Qs). The
previous proposition yields the claim. Note that H∗∗(eV X∧kV ) = eV H∗∗(X)⊗kV by
the Künneth theorem (Proposition 106) and by the way Z(p)[ΣkV ] acts. The Künneth
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theorem also holds for p-local finite spectra because p-localisation commutes with
H∗∗(−). �

Y is a retract of the p-local finite cell spectrum X∧kV , but maybe it is not finite
itself. Therefore, we need an additional argument which shows that Theorem 14
holds for Y .

Corollary 118 For s > 0 and Y as in Theorem 15, AK (s)∗∗(Y ) = 0.

Proof We have to show H∗∗(Ak(s) ∧ Y ) ∼= A/AQs ⊗H∗∗ H∗∗(Y ). Since H∗∗ Y ∼=
eV H∗∗(X)⊗kV , Y is of motivically finite type. Remark 113 applies and the claim
follows as in the proof of Theorem 14. The left hand side of the claimed isomorphism
can be rewritten as

H∗∗(Ak(s) ∧ eV X
∧kV ) ∼= H∗∗((1 ∧ eV )(Ak(s) ∧ X∧kV ))

∼= (1 ⊗ eV )H∗∗(Ak(s) ∧ X∧kV ).

Now we can apply the Künneth isomorphism and get (1 ⊗ eV )(A/AQs ⊗H∗∗

H∗∗(X)∧kV ). This is isomorphic to

A/AQs ⊗H∗∗ eV H∗∗(X)∧kV ∼= A/AQs ⊗H∗∗ H∗∗(Y ),

which is the right hand side. �

This result tells us that, given a nontrivial Qs-action on H∗∗(X), X ∈ SH(C)
f in
(p) ,

we can construct a spectrum Y for which AK (s)∗∗(Y ) = 0. So, let’s construct such
an X .

Next, we will construct a finite cell spectrum with nontrivial Qs-action and trivial
Qn-action.

Let k = C. We combine ideas of Ravenel [75] with computations by Voevod-
sky [91]. In [75, Lemma 6.2.6], the given example of a spectrum with nontrivial
Qtop

s -action, s < n, and trivial Qtop
n -action on H∗(X) is X = (BZ/p)2p

n

2 , that is, the
suspension spectrum of the 2pn-skeleton of the classifying space BZ/p modulo its
1-skeleton. Cutting off higher dimensional cells leads to a trivial Qtop

n -action, which
is needed for nontrivial n-th Morava K-theory. In [91, Sect. 6], the algebraic ana-
logue to BZ/p is defined as Bμp = colimn Ṽn/μp, where Ṽn = A

n \ {0} (see the
proof of [91, Lemma 6.3]) and μp acts by multiplication with a p-th root of unity in
each of the n coordinates. Under R = RC, this action realises to the Z/p-action on
S2n−1 ⊂ C

n rotating each C factor by a p-th root of unity.

Lemma 10
R(Ṽn/μp) ∼= S2n−1/(Z/p)

is the (2n − 1)-skeleton of BZ/p in the CW-structure having one cell in each dimen-
sion.
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Proof BZ/p is the infinite dimensional lens space, as studied for example in
[22, Example 2.43]. There, it is explained that the (2n − 1)-skeleton is precisely
the (2n − 1)-dimensional lens space, which is defined as the orbit space
S2n−1/(Z/p). �

By [22, Example 2.43, p. 146], the attaching map of the 2k-cell of BZ/p is the
quotient map S2k−1 → S2k−1/(Z/p). We define Vn ∈ SH(C) to be the cofiber of
the quotient map of suspension spectra Ṽpn → Ṽpn/μp, so that the following lemma
holds.

Lemma 11
R(Vn) = (BZ/p)2p

n
.

Let B be the cofiber of the composite map Ṽ1/μp → Ṽpn/μp → Vn . Then B is a
finite cell spectrum and satisfies the following corollary.

Corollary 119
R(B) = (BZ/p)2p

n

2 .

The following is a special case of [91, Proposition 6.10] (as explained on [91, p.
20]).

Proposition 120 H∗∗(Bμp) is a freeH∗∗-module with basis {vi , uvi | i ≥ 0}, where
v ∈ H2,1(Bμp) and u ∈ H1,1(Bμp).

From this, it follows for dimensional reasons:

Proposition 121 The cohomologyH∗∗
B is the freeH∗∗-module with basis {vi | 1 ≤

i ≤ pn} ∪ {uvi | 1 ≤ i ≤ pn − 1}.
Furthermore, Voevodsky shows [91, Lemmas 11.2 and 11.3]:

Lemma 12 On

H∗∗(Bμp)/H
∗,>0 H∗∗(Bμp) ∼= Fp[u, v]/(u2 = 0),

A/(H∗,>0 A) acts by β(u) = v, Pi (u) = 0 for i > 0, β(vk) = 0 and Pi (vk) =(k
i

)
vk+i(p−1).

Over C, the action of Qi can be defined by Q0 = β and Qi+1 = P pi Qi − Qi P pi

[88, Proposition 3.1]. From this, we can inductively compute the action of Qs on
uvk ∈ H∗∗(B)/H∗,>0 H∗∗(B). We get Qs(uvk) = cvk+ps with c ≡ 1 mod p, which
is nontrivial for s < n and k < pn − ps . It follows that Qs acts nontrivially onH∗∗(B)

for s < n.
Now we have all ingredients for the motivic type n spectrum in SH(C).

Theorem 16 (A spectrum of motivic type n) For a fixed n > 0, let V = H∗∗(B(p))

and X = eV (B(p))
∧kV , then AK (s)∗∗(X) = 0 for all s < n and AK (n)∗∗(X) �= 0.
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Proof For s > 0, AK (s)∗∗(X) = 0 follows from Corollary 118, whose assumptions
are satisfied by the above considerations.

For s = 0, note that AK (0) = p−1MGL(p)/(a1, a2, · · · ) by Definition 74. The
main result of [32] implies AK (0) ∼= p−1(HZ)(p). It follows that

AK (0)∗∗X ∼= π∗∗(p−1(HZ ∧ X)(p)).

But p acts trivially on Ṽm/μp, which implies that X is p-torsion. Therefore, p−1X ∼=
0 and AK (0)∗∗X = 0. It remains to show that AK (n)∗∗(X) �= 0. This can either be
done analogously to [58, Theorem 4.8], using themotivic Atiyah Hirzebruch spectral
sequence fromProposition76, or by considering the topological realisation RC(X). In
Proposition 124, we show that R(X) is of type n. It follows that X ∈ R−1(Cn \ Cn+1).
In particular, X /∈ R−1(Cn+1). By Proposition 78, CAK (n) ⊆ R−1(Cn+1). This proves
X /∈ CAK (n). �

Remark 122 The spectrum X is a retract of the p-local finite cell spectrum B
∧kV
(p) and

it follows by Remark 55(1) that X is compact, i.e., X ∈ (SH(C) f )(p).

Remark 123 X = eV (B(p))
∧kV is an example of a motivic spectrum with vanishing

Margolis homology groups MH p,q
s (X) for all s < n, p, q ∈ Z, as defined in [90,

Sect. 3]: we have shown that H∗∗(X) is free overΛ(Qs), which implies that ker Qs =
im Qs for Qs : H∗∗(X) → H∗∗(X).

Proposition 124 The topological realisation R(X) of the spectrum X constructed
above is of type n.

Proof Let k = C and B = (BZ/p)2p
n

2 . We already know that for R : SH(C) →
SH, R(B) = B. Since R preserves ∧-products, it follows

R(X) = R(eV (B(p))
∧kV ) = eV (R(B(p)))

∧kV = eV (B(p))
∧kV .

The Fp-vector space H∗(B(p)) is generated by similar elements as the Fp[τ ]-vector
space V = H∗∗(B(p)) (compare Proposition 121 with [75, Lemma 6.2.6]). In partic-
ular,

dimFp (H
∗(B(p)))

+ = dimH∗∗ V+

and
dimFp (H

∗(B(p)))
− = dimH∗∗ V−.

It follows that R(X) is the type-n spectrum defined in [75, Theorem C.3.2]. �

8.6 The Constant Type-n Spectrum

In this section, let k = C and let Xn = eV B∧kV be the type-n spectrum defined by
Ravenel and let c : SH → SH(C) as in Sect. 4. Xn is constructed via an idempo-
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tent from the finite cell spectrum B = (BZ/p)2p
n

2 [75, Lemma 6.2.6]. We calculate
H∗∗(cB).

Proposition 125 Let X = Σ∞Y be the suspension spectrum of a finite CW complex.
Then H∗∗(cX) ∼= H∗(X)[τ ] as Fp-modules, where a generator in degree i from the
right hand side maps to bidegree (i, 0) on the left hand side.

Proof For any F ∈ SH(C), we have H∗∗(F) ∼= H∗+n,∗(F ∧ Sns ). For F = S0, we
get H∗∗(Sns ) ∼= H∗−n,∗(S0) ∼= H∗−n,∗ ∼= H∗(Sn)[τ ]. Now let (Y k)k be a CW decom-
position of Y , that is, Σ∞Y k is the cofiber of some Σ∞αk : Snk → Σ∞Y k−1. We
write Xk for Σ∞Y k . Since c preserves cofiber sequences, we get a cofiber sequence
of suspension spectra Snks

cα→ cXk−1 → cXk . It induces a long exact sequence

· · · → H∗−1,∗(cXk−1)
(cα)∗→ H∗−1,∗(Snks ) → H∗∗(cXk) → H∗∗(cXk−1)

(cα)∗→ H∗∗(Snks ) → · · ·

We assume inductively that Hi, j (cXk−1) ∼= Hi (Xk−1){τ j }.
Let xτ j ∈ Hi, j (cXk−1). Since R(τ ) = 1 and R(cα) = α, we have

R((cα)∗(xτ j )) = α∗(R(xτ j )) = α∗(x).

The only element inHi, j (Snks )which ismapped toα∗(x) by R isα∗(x)τ j . This proves
(cα)∗ ∼= α∗[τ ]. By the five lemma, it follows that the map H∗∗(cXk) → H∗(Xk)[τ ],
given by sending x ∈ Hi, j (cXk) to R(x)τ j , is an isomorphism and, inductively,
H∗∗(cX) ∼= H∗(X)[τ ]. �

Corollary 126 As Fp-modules,

H∗∗(cB) ∼= H∗(B)[τ ] ∼= H∗∗{xk | 1 ≤ k ≤ pn} ∪ {yxk | 1 ≤ k ≤ pn − 1},

with deg(x) = (2, 0) and deg(y) = (1, 0).

Proof The cohomology of B is described in the proof of [75, Lemma 6.2.6]. We
only have to add the polynomial generator τ ∈ H∗∗. �

Recall that on the one hand, thickid(Xn) ⊆ CAK (n−1). On the other hand, thickid
(cXn) ⊆ CcK (n−1), as the following proposition shows.

Proposition 127 cK (s) ∧ c(Xn) ∼= 0 if and only if s < n. Hence,

thickid(cXn) ⊆ CcK (n−1) ⊆ R−1(Cn)

in (SH(C) f )(p). Furthermore, thickid(cXn) � R−1(Cn+1).
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Proof We have c(K (s) ∧ Xn) ∼= 0 if and only if Xn is in Cs+1, since c is fully faithful
by [49, Theorem 1]. Since Xn ∈ Cn \ Cn+1, the first claim follows. The second claim
holds because R(cXn) = Xn . �

One may also ask whether thickid(cXn) ⊆ CAK (n−1) or thickid(Xn) ⊆ CcK (n−1).
In [84, Sect. 3.6], Stahn constructs a counterexample to the first inclusion for n = 2
and shows

thickid(cXn) � CAK (n−1)

and
CAK (n) � R−1(Cn+1).

Summary
We have constructed two different lifts of a topological type-n spectrum to the
motivic category (SH(C) f )(p), one of them is in c(SH f in

(p) ) and the other one is
not. These are candidates for generators of different thick sub-ideals of R−1(Cn)
inside (SH(C) f )(p). We proved that Xn has motivic type n. By [84], the thick ide-
als generated by the two lifts are different and can be distinguished using motivic
Morava K-theories AK (s).

9 Bousfield Classes

So far, we have seen that the thick ideals R−1
k Cn form a descending chain and that

CAK (n−1) is a thick ideal contained in R−1
k Cn . However, we have not seen that the thick

ideals CAK (n) form a descending chain themselves. The aim of this section is to prove
this, at least for k = C and finite cell spectra. That is, we prove that AK (n)∗∗X = 0
implies AK (n − 1)∗∗X = 0 for X ∈ SH(C) f in , where n ≥ 1 and p > 2 (Theorem
21). As is done in topology [73, Theorem 2.11], we will work in terms of Bousfield
classes (Definition 128).

We proceed as follows. In the first two sections, k can be any subfield of C.
In Sect. 9.1, we show that vn-torsion is also vn−1-torsion (Theorem 17). Then we
show that some basic results on Bousfield classes also apply to the motivic setting
(Lemma 17). In Sect. 9.3, we construct a product on AP(n). Here, we need to know
that AP(n)∗∗ vanishes in certain degrees, which we do if we assume k = C, p > 2
and n > 0. We continue by showing that, for p > 2 and n > 0, 〈AK (n)〉 = 〈AB(n)〉
in SH(C) (Corollary 147), passing from AK (n) to the cohomology theory AB(n) =
v−1
n AP(n), which is slightly easier to understand. On the way, we need to compute a
couple of things like AP(m)∗∗AP(n), to construct stable operations AP(n)∗∗(−) →
AP(n)∗∗(−) (Theorem 18). Here, the assumption k = C is also helpful, as we make
explicit use of the formula AP(n)∗∗ ∼= P(n)∗[τ ] (Lemma 5). An application of all
these results is Theorem 20, where, for p > 2 and k = C, we prove

〈AE(n)〉 =
∨

0≤i≤n

〈AK (i)〉.
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For the definitions of AK (n), AB(n), AP(n) and AE(n), see Definition 74.
Let’s start with a definition of Bousfield classes.

Definition 128 Let k be a field and let T = SH(k), SH(k)cell or SH(k) f in . For any
E ∈ SH(k), the class of all spectra X ∈ T satisfying E∗∗X �= 0 is denoted by 〈E〉.
We write 〈E〉 ≤ 〈F〉 if 〈E〉 is a subclass of 〈F〉. Meet and join of Bousfield classes
are given by 〈E〉 ∧ 〈F〉 = 〈E ∧ F〉 and 〈E〉 ∨ 〈F〉 = 〈E ∨ F〉 [73, Definition 1.20].
Remark 129 In [73, Definition 1.19], 〈E〉 is defined to be the equivalence class
consisting of all F such that, for all X , E∗X = 0 if and only if F∗X = 0. Thus,
〈E〉 is determined by the collection of all X such that E∗X �= 0, as in the definition
above. For T = SH(k)cell or SH(k) f in and E ∈ SH(k)cell , 〈E〉 = {X ∈ T | E ∧
X � 0} = T \ CE by Proposition 73.

9.1 vn-Torsion

In this section, we work in the category SH(k), k ⊆ C. We prove the following
theorem, refining [40, Theorem 0.1].

Theorem 17 Any vn-torsion element in an ABP∗∗ABP-comodule is also a vn−1-
torsion element.

Recall that BP∗BP ∼= BP∗{t Etop} for some generators t Etop, where E = (e1, e2, · · · )
runs over all finite sequences of non-negative integers and deg(t Etop) = ∑

ei (2pi −
2), as is shown in [2, Theorem II.16.1(ii)].

From [87, Definition 5.3], we know that ABP is a homotopy commutative ring
spectrum. It follows that ABP∗∗ABP is an ABP∗∗-module.Wedescribe its structure:

Lemma 13 (1) As a left ABP∗∗-module,

ABP∗∗ABP ∼= ABP∗∗{t E },

where E runs over all finite sequences of non-negative integers,

deg
(
t (e1,e2,··· )

) =
(

∑

i

ei (2p
i − 2),

∑

i

ei (p
i − 1)

)

,

and Rk(t E ) = t Etop Consequently, as a right ABP∗∗-module,

ABP∗∗ABP ∼= ABP∗∗{c(t E )},

where c : ABP∗∗ABP → ABP∗∗ABP is the conjugation, induced by the twist
map ABP ∧ ABP → ABP ∧ ABP.
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(2) As a left ABP∗∗-module,

ABP∗∗ABP ∼= ABP∗∗[[sE ]],

which is the completion of ABP∗∗{sE } under infinite sums.
Here, deg(sE ) = deg(t E ) and the sE are the dual basis elements to t E .

In particular, ABP∗∗ABP is a flat ABP∗∗-module.

Proof By Remark 75(4), [65, Proposition 9.1.(i)] applies to ABP , so we have
ABP∗∗ABP ∼= ABP∗∗ ⊗BP∗ BP∗BP . Since BP∗BP ∼= BP∗{t Etop}, the first claim
follows. As BP∗BP is projective over BP∗, [65, Proposition 9.7(i)] implies ABP∗∗
ABP ∼= HomBP∗(BP∗BP, ABP∗∗). Since the analogue holds for BP∗BP , this is
the same as ABP∗∗ ⊗BP∗ BP∗BP , which is ABP∗∗[[sE ]] by [40, Lemma 5.12]. �

For any finite motivic cell spectrum X , the morphism

m∗ : ABP∗∗(ABP) ⊗ABP∗∗ ABP∗∗(X) → ABP∗∗(ABP ∧ X)

induced by the ABP-module structure of ABP ∧ X is an isomorphism: this holds for
X = S0, since ABP∗∗ABP is free over ABP∗∗ and, hence, for anyfinite X by cellular
induction via the five lemma, see also [1, Lecture 3, Lemma 1]. More precisely, one
has to check that a cofiber sequence X → Y → Z induces a long exact sequence
on both ends of m∗. On the right hand side, this is the long exact ABP∗∗-sequence
induced by ABP ∧ X → ABP ∧ Y → ABP ∧ Z and on the left hand side, we get
a long exact ABP∗∗-sequence tensored over the field Fp with Fp{t E }, which is still
exact. Actually, the above map is an isomorphism for any motivic spectrum X by
[65, Lemma 5.1(i)].

This can be used to define elementary ABP-operations as in [40, Sect. 1]:

Definition 130 Let

ψX : ABP∗∗X → ABP∗∗ABP ⊗ABP∗∗ ABP∗∗X

be the map induced by 1 ∧ i ∧ 1 : ABP ∧ S0 ∧ X → ABP ∧ ABP ∧ X (where i
is the unit of the ring spectrum ABP) followed by (m∗)−1. Then the elementary
ABP-operation sE : ABP∗∗X → ABP∗∗X is defined by

ψX (x) =
∑

E

c(t E ) ⊗ sE (x).

The sE ∈ ABP∗∗ABP from the above lemmaare special cases of these operations
(see [40, Lemma 5.12]). The ABP-operations satisfy a Cartan formula similar to
[40, Formula (1.7)]:
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Lemma 14 If y ∈ ABP∗∗ and x ∈ ABP∗∗X, then

sE (yx) =
∑

F+G=E

sF (y)sG(x).

Proof We have to show that

ψX (yx) =
∑

E

(

c(t E ) ⊗
∑

F+G=E

sF (y)sG(x)

)

.

Since ψX is a map of ABP∗∗-modules, ψX (yx) = ψS0(y)ψX (x), which is equal
to

∑
E

∑
F+G=E (c(t F )c(tG) ⊗ sF (y)sG(x)). As F and G are exponent sequences,

t F tG = t E and it follows that ψX (yx) = ∑
E (c(t E ) ⊗ ∑

F+G=E sF (y)sG(x)). �

The next lemma compares the Hopf algebroid structures of (BP∗, BP∗BP) and
(ABP∗∗, ABP∗∗ABP) and is closely related to [65, Sect. 5].

Lemma 15 (ABP∗∗, ABP∗∗ABP) is a flat Hopf algebroid, and there is a map of
Hopf algebroids (BP∗, BP∗BP) → (ABP∗∗, ABP∗∗ABP) such that the following
hold:

(1) BP∗ → ABP∗∗ is the inclusion into
⊕

i
ABP(2i,i), mapping v

top
i to vi .

(2) BP∗BP → ABP∗∗ABP is the map BP∗{t Etop} → ABP∗∗{t E } given by (1) on
BP∗ and mapping t Etop to t

E .
(3) The map ψ = ψS0 from Definition 130 is the coaction map of ABP∗∗ as a left

(ABP∗∗, ABP∗∗ABP)-comodule and, similarly, for the map ψtop from [40].
Furthermore, the map of Hopf algebroids preserves the comodule structure in
the sense that

BP∗
ψtop

BP∗BP ⊗BP∗ BP∗

ABP∗∗
ψ

ABP∗∗ABP ⊗ABP∗∗ ABP∗∗

commutes.

Proof In [65, Corollary 5.2(i)], it is shown that (E∗∗, E∗∗E) is a flat Hopf algebroid
whenever E is a cellular ring spectrum and E∗∗E is a flat E∗∗-module. This is the
case for E = ABP by Remark 75 and Lemma 13(1). Furthermore, an orientation
on E induces a map of Hopf algebroids (MU∗, MU∗MU ) → (E∗∗, E∗∗E) by [65,
Corollary 6.7], where MU∗ → E∗∗ is the map classifying the formal group law
(FGL) given by the orientation on E and MU∗MU → E∗∗E classifies the strict
isomorphism of formal group laws induced on E ∧ E by the left and right units
E → E ∧ E .
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If the FGL associated with the orientation of E is p-typical, the map of Hopf
algebroids factors through (BP∗, BP∗BP) because BP∗ and BP∗BP classify p-
typical group laws and strict isomorphisms of p-typical group laws, respectively (see
[74, Appendix 2]). Recall that ABP is oriented by MU∗ → MGL∗∗ → ABP∗∗
and its FGL is p-typical because this factors as MU∗ → BP∗ → ABP∗∗ by the
construction of ABP , where the latter map is as claimed in (1). Hence, we get a map
of Hopf algebroids (BP∗, BP∗BP) → (ABP∗∗, ABP∗∗ABP) satisfying (1).

Before we prove (2), we will show the analogous statement for MGL . By [65,
Corollary 6.7], as above, there is a map of Hopf algebroids

(MU∗, MU∗MU ) → (MGL∗∗, MGL∗∗MGL),

determined by the complex orientation onMGL . Let x be the orientation onMGL ∧
MGL induced by the left unit MGL → MGL ∧ MGL and x ′ be the orientation
induced by the right unit. By [65, Lemma 6.4.(ii)], x ′ = ∑

i≥0
bi xi+1. The orientations x

and x ′ correspond to formal group laws FL and FR and the formula implies that the bi
are the coefficients of the power series of the strict isomorphismϕ between FL and FR

(as in the proof of [74, Theorem 4.1.11]). The same formula holds for the orientations
on MU ∧ MU by [74, Lemma 4.1.8] and the strict isomorphism between the FGLs
F top
L and F top

R therefore has coefficients btopi . By definition, bi is the image of btopi

under MU∗[btopi ] ∼= MU∗MU → MGL∗∗ ⊗MU∗ MU∗MU ∼= MGL∗∗MGL , as in
[65, Lemma 6.4.(i)].

MU∗MU classifies strict isomorphisms F
f→ G of FGLs in the following way:

MU∗MU ∼= MU∗[btopi ], where MU∗ classifies F , f is given by a power series in
btopi and G is determined by F and f .

In our setting, the map MU∗MU → MGL∗∗MGL is the map correspond-
ing to the strict isomorphism FL

ϕ→ FR . Furthermore, FL is the FGL associated
with the orientation of MGL∗∗MGL given by MU∗ → MGL∗∗ → MGL∗∗[bi ] ∼=
MGL∗∗MGL (because the isomorphism herein is an isomorphism of left MGL∗∗-
modules), and, similarly, F top

L is the FGL associated with the orientation MU∗ →
MU∗[btopi ] ∼= MU∗MU . This implies that the following square commutes, where the
left horizontal maps are the obvious inclusions, and the vertical maps are the maps
from [65, Corollary 6.7].

MU∗ MU∗[btopi ] ∼=
MU∗MU

MGL∗∗ MGL∗∗[bi ] ∼=
MGL∗∗MGL .

In terms of group laws, the right hand map sends ϕtop to ϕ. Since these are the power
series described above, btopi is sent to bi . This proves the MGL-version of (2).
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For the ABP-version, one has to show that the following diagram commutes,
where the right map is the Hopf algebroid morphism and the left map is as described
in (2).

BP∗[t topi ] ∼= BP∗BP

ABP∗∗[ti ] ∼= ABP∗∗ABP.

The proof is exactly the same as in the case of MGL . One simply has to replace each
FGL by the corresponding p-typical FGL.

For (3), note that, by its definition, ψ is the coaction map that comes naturally
with any flat Hopf algebroid (E∗∗, E∗∗E) (as in [65, Corollary 5.2(i)]), meaning in
particular that the diagram in (3) commutes. �

Definition 131 For an exponent sequence E = (e1, e2, · · · ) as in Lemma 13(1), we
set |E | = ∑

i ei (2p
i − 2). Let Im = (p, v1, · · · , vm−1) ⊂ ABP∗∗ be the usual prime

ideal.

Corollary 132 Consider sE : ABP∗∗ → ABP∗∗ as in Definition 130 and assume
that |E | ≥ 2kps(pn − pm) for n ≥ m, s ≥ 0 and k ≥ 1. Then

sE (vkps
n ) =

{
v
kps
m mod I s+1

m if en−m = kps+m and ei = 0 for i �= n − m

0 mod I s+1
m otherwise.

Proof By the above lemma, the following diagram commutes:

BP∗
ψtop

BP∗BP ⊗BP∗ BP∗

ABP∗∗
ψ

ABP∗∗ABP ⊗ABP∗∗ ABP∗∗,

where the vertical arrows send v
top
n to vn and t Etop to t E . We consider the element

(v
top
n )kp

s ∈ BP∗. It is mapped horizontally to

ψtop((vtop
n )kp

s
) =

∑

E

ctop(t Etop) ⊗ s topE ((vtop
n )kp

s
).

By [40, Lemma 2.1], s topE ((v
top
n )kp

s
) satisfies the formula we want to prove. Since

all the elements from the topological case map to the corresponding elements in the
lower row, the formula has to hold there, too. �

The rest of the proof of Theorem 17 is exactly the same as [40, Lemmas 2.2
and 2.3], relying mainly on the above lemma and the Cartan formula. Theorem 17
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implies the following corollary. The analogous topological statement can be found
in the proof of [73, Theorem 2.1(d)].

Corollary 133 Let k ⊆ C. If AE(n)∗∗X = 0, then also AE(i)∗∗X = 0 for all i ≤ n.
In terms of Bousfield classes in SH(k):

〈AE(n)〉 ≥ 〈AE(i)〉 for all n ≥ i.

Proof Since E(n) is Landweber exact (see [46] or [74, Sect. 4.2]), the ABP-version
of [65, Theorem 8.7] applies to AE(n)∗∗(X), yielding

AE(n)∗∗(X) ∼= ABP∗∗(X) ⊗BP∗ E(n)∗,

which is an ABP∗∗ABP-comodule via the map ψX from Definition 130.
As E(n) = (v

top
n )−1BP/(v

top
n+1, v

top
n+2, · · · ), the condition AE(n)∗∗(X) = 0 is

equivalent to ABP∗∗(X) ⊗BP∗ BP/(v
top
n+1, v

top
n+2, · · · ) being vn-torsion. By Theorem

17, it follows that ABP∗∗(X) ⊗BP∗ BP/(v
top
n+1, v

top
n+2, · · · ) is vi -torsion for any i ≤ n.

This implies that also ABP∗∗(X) ⊗BP∗ BP/(v
top
i+1, v

top
i+2, · · · ) is vi -torsion, which is

equivalent to AE(i)∗∗(X) = 0. �

9.2 Properties of Bousfield Classes

Ravenel has shown the following properties of Bousfield classes [73, Sect. 1]. They
hold in any tensor triangulated category (T ,∧).

Lemma 16 (1) In an exact triangle, each Bousfield class is less or equal to the
wedge of the other two [73, Proposition 1.23].

(2) If M is a module spectrum over the ring spectrum E, then 〈M〉 ≤ 〈E〉 [73,
Proposition 1.24].

(3) Let Σ be an auto-equivalence in T . If Y is the homotopy cofiber of Σd X
f→ X

and X̂ = colim
f

(Σ−kd X), then 〈X〉 = 〈X̂〉 ∨ 〈Y 〉 [73, Lemma 1.34].

Furthermore, the following relations from [73, Sect. 2] also hold in SH(k):

Lemma 17 (1) 〈AE(n)〉 ≥ 〈AK (n)〉,
(2) 〈AE(n)〉 ∧ 〈AP(n + 1)〉 = 〈v−1

n ABP〉 ∧ 〈AP(n + 1)〉 = 〈0〉,
(3) 〈AP(n)〉 = 〈AB(n)〉 ∨ 〈AP(n + 1)〉.
Proof Constructing AK (n) from AE(n), (1) follows from Lemma 16(1). (3) is a
direct application of Lemma 16(3) (see also [73, Theorem 2.1(c)]). For the first part
of (2), note that 〈AE(n)〉 ≤ 〈v−1

n ABP〉 since AE(n) = v−1
n ABP/(vn+1, vn+2, · · · ).

When we prove the second equation in (2), the first one will follow from this inequal-
ity because 〈0〉 is the empty set.
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It remains to show that AP(n + 1) ∧ v−1
n ABP ∼= 0, as proven in the topological

setting in [73, Lemma 2.3]. This spectrum is the homotopy cofiber of the map

vn ∧ 1 : AP(n) ∧ v−1
n ABP → AP(n) ∧ v−1

n ABP.

We claim that (vn ∧ 1)∗ = (1 ∧ vn)∗ on π∗∗(AP(n) ∧ ABP). Since (1 ∧ vn)∗ is an
isomorphism on π∗∗(AP(n) ∧ v−1

n ABP), this will imply that the homotopy cofiber
is contractible.

To prove this claim, note that (vn ∧ 1)∗ and (1 ∧ vn)∗ are induced by the respective
maps on π∗∗(ABP ∧ ABP), where they are given by applying the left respectively
right unit ABP∗∗ → ABP∗∗ABP to vn . In the topological case, the left and right
units applied to vn are the same modulo In by [2, II.16.1 (ii)]. By Lemma 13(1)
and the inclusion of BP∗ in ABP∗∗, this also holds motivically. Hence, (vn ∧ 1)∗
and (1 ∧ vn)∗ are the same modulo In . It remains to show that In ⊆ ABP∗∗ABP
maps to 0 under ABP∗∗ABP → AP(n)∗∗ABP . For n = 0, there is nothing to
show. Assume that In is mapped to zero in AP(n)∗∗ABP for some n. Consider

the map AP(n)∗∗ABP
i∗→ AP(n + 1)∗∗ABP induced by the map to the cofiber in

AP(n)
vn→ AP(n)

i→ AP(n + 1). The inductive assumption implies that In is still
zero in AP(n + 1)∗∗ABP . Recall that In+1 ⊆ ABP∗∗ABP is the ideal generated by
In and vn . Since i∗ ◦ (vn)∗ = 0 in the long exact sequence

· · · → AP(n)∗∗ABP
(vn)∗→ AP(n)∗∗ABP

i∗→ AP(n + 1)∗∗ABP → · · · ,

i∗ maps vn = (vn)∗(1) to 0. Hence, In+1 = 0 in AP(n + 1)∗∗ABP . �

9.3 The Action of vi on AP(n)

In [39, Appendix], a geometric proof using the Baas–Sullivan construction of P(n)

shows that the action of vtop
i on P(n)∗(X) is zero for any 0 ≤ i < n. A non-geometric

proof of this result is given by [64, Satz 1.3.4], whichwasmotivated by [95]. Nassau’s
proof can be simplified using the language of triangulated categories of modules,
which is basically done in [18, Lemma V.2.4], as well as in [85, Lemma 3.2]. These
proofs rely on the fact that the vi are non-zero divisors of MU∗ and that BP∗ vanishes
in certain degrees, which is not known in the motivic case. In the following, we will
use ideas from [64] and [18] to give a proof which also works in SH(C). The
main difference is that we only know coefficients after passing to MGL(p)/(p) (see
Lemma 5), which is why we have to work with R/(x, y), while [18, Chap. V] only
works with R/x for some ring spectrum R.

In this section, wewill prove that vi acts trivially on AP(n) if k = C. Furthermore,
we will show that if p is odd, then AP(n)∗∗(X) and AP(n)∗∗(X) are AP(n)∗∗-
modules for any X ∈ SH(C).
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Recall that MGL can be constructed as an E∞-ring spectrum [34, Theorem 14.2],
which is equivalent to a strictly commutative ring spectrum by the motivic version
of [18, Corollary II.3.6].

Let R ∈ SH(k) be a strictly commutative ring spectrum with multiplication
m : R ∧ R → R and unit i : S0,0 → R. Let x : Sk,l → R for some k, l ∈ Z. In our
application, we will have R = MGL(p). Note that MGL(p) is the homotopy colimit

of the diagram of maps MGL
n→ MGL for all positive integers relatively prime to

p (see [34, end of Sect. 14]). As these are maps of strictly commutative ring spectra,
MGL(p) is also a strictly commutative ring spectrum ([80, Theorem 4.1(3)] applied
to S0,0-algebras implies that the category of strictly commutative ring spectra is
cocomplete).

Let M be an R-module with action map νM : R ∧ M → M . Let

φ = νM ◦ (x ∧ 1M) : Sk,l ∧ M → R ∧ M → M.

The map φ is the action of x on M .
The R-module structure on Sk,l ∧ M is given by

νSk,l∧M : R ∧ Sk,l ∧ M
τ∧1M−→ Sk,l ∧ R ∧ M

1Sk,l ∧νM−→ Sk,l ∧ M.

Lemma 18 The map φ is an R-module map.

Proof We have to check the commutativity of the following diagram:

R ∧ Sk,l ∧ M
1∧x∧1

τ∧1

R ∧ R ∧ M
1∧νM

R ∧ M

νM

Sk,l ∧ R ∧ M
1∧νM

Sk,l ∧ M
x∧1

R ∧ M
νM

M.

In this diagram, we can replace (x ∧ 1) ◦ (1 ∧ νM) by

Sk,l ∧ R ∧ M
x∧1∧1−→ R ∧ R ∧ M

1∧νM−→ R ∧ M

and we can fill in a diagonal across the upper left corner,

Sk,l ∧ R ∧ M
(τ∧1)◦(x∧1∧1)−→ R ∧ R ∧ M.

It follows that the above diagram commutes if and only if the following diagram
commutes:
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Sk,l ∧ R ∧ M
x∧1∧1

x∧1∧1

R ∧ R ∧ M
τ∧1

R ∧ R ∧ M
1∧νM

R ∧ M

νM

R ∧ R ∧ M
1∧νM

R ∧ M
νM

M.

Since R is commutative, we have m ◦ τ = m and, hence,

νM ◦ (m ∧ 1) ◦ (τ ∧ 1) = νM ◦ (m ∧ 1).

Since M is an R-module, this is the same as

νM ◦ (1 ∧ νM) ◦ (τ ∧ 1) = νM ◦ (1 ∧ νM),

proving the commutativity of the above diagram. �

In the following, we denote the homotopy category of R-modules by R-Mod. A
stable model structure on R-modules is given by [80, Theorem 4.1] applied to the
motivic stable model structure from [38], so that R-Mod is a triangulated category
(compare [65, p. 554]). Since φ from above is a map of R-modules (Lemma 18),
there is an exact triangle in R-Mod,

Sk,l ∧ M
φ−→ M

η−→ N
∂−→ Sk+1,l ∧ M.

The cofiber N is also denoted M/x . Application of [−, N ]R-Mod to this exact triangle
yields a long exact sequence

· · · → [S2k+1,2l ∧ M, N ]R-Mod
∂∗→ [Sk,l ∧ N , N ]R-Mod

η∗→ [Sk,l ∧ M, N ]R-Mod →

Let ψ = νN ◦ (x ∧ 1N ) : Sk,l ∧ N → R ∧ N → N . This map is the action of x on
M/x , and a map of R-modules by Lemma 18. We want to show that, under certain
assumptions, ψ = 0, meaning that x acts trivially on M/x .

First, we consider

η∗ψ = ψ ◦ (1Sk,l ∧ η) : Sk,l ∧ M
1∧η−→ Sk,l ∧ N

ψ→ N .

By the definition of ψ, this is the map νN ◦ (x ∧ 1N ) ◦ (1Sk,l ∧ η) = νN ◦ (1R ∧ η) ◦
(x ∧ 1M). Since η is a map of R-modules, this is the same as η ◦ νM ◦ (x ∧ 1M),
which, by definition of φ, is the map η ◦ φ. By the above exact triangle, it follows
that η∗ψ = η ◦ φ = 0. The long exact sequence implies that there is amap in R-Mod,

ψ : S2k+1,2l ∧ M → N ,

such that ψ = ∂∗ψ.
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Now, we assume that either M = R or that M = R/y for some y ∈ R∗∗. Further-
more, we assume that π2k+1,2l N = 0.

Note that Case 1 is a special instance of Case 2 (with y = 0), so the reader may
skip the following paragraph and continue reading at Case 2. However, Case 1 is
easier, for which reason it might still be a good idea to read it, anyway.

Case 1. M = R.
We have ψ : S2k+1,2l ∧ R → N . Since R is a ring spectrum, the unit i : S0,0 → R

satisfies 1R = m ◦ (1R ∧ i) : R ∧ S0,0 → R ∧ R → R. Hence,

ψ = ψ ◦ (1S2k+1,2l ∧ m) ◦ (1S2k+1,2l∧R ∧ i).

By the definition of the R-module structure νS2k+1,2l∧R on S2k+1,2l ∧ R,

(1S2k+1,2l ∧ m) = νS2k+1,2l∧R ◦ (τ ∧ 1R) :

S2k+1,2l ∧ R ∧ R → R ∧ S2k+1,2l ∧ R → S2k+1,2l ∧ R.

Hence,
ψ = ψ ◦ νS2k+1,2l∧R(τ ∧ 1R)(1S2k+1,2l∧R ∧ i)

= ψ ◦ νS2k+1,2l∧R(1R ∧ 1S2k+1,2l ∧ i)(τ ∧ 1R).

Since ψ is an R-module map, ψνS2k+1,2l∧R = νN (1R ∧ ψ), and therefore

ψ = νN (1R ∧ ψ)(1R ∧ 1S2k+1,2l ∧ i)(τ ∧ 1R)

= νN (1R ∧ (ψ(1S2k+1,2l ∧ i)))(τ ∧ 1R).

Now, ψ(1S2k+1,2l ∧ i) : S2k+1,2l ∧ S0,0 → N is in π2k+1,2l N , which we assumed to be
zero. Thus,ψ = 0 and it follows that alsoψ = ∂∗ψ, which is the action of x on M/x ,
is zero, as we wanted to show.

Thus, we have shown:

Proposition 134 Let R ∈ SH(k) be a strictly commutative ring spectrum and x ∈
πk,l R. Assume that π2k+1,2l(R/x) = 0. Then x acts trivially on R/x, i.e., the map
ψ from above is zero. The same holds if x ∈ πk R for a strictly commutative ring
spectrum R ∈ SH such that π2k+1(R/x) = 0.

Note that part of the above argument can be formulated more generally:

Lemma 19 Let R be a (homotopy) ring spectrum, M a left R-module, and πk,l M =
0. Then any R-module map ψ : Sk,l ∧ R → M is homotopically trivial.

Proof Let i : S0,0 → R be the unit of R. It satisfies 1R = m(1R ∧ i). Thus,

ψ = ψ ◦ m(1R ∧ i) = νM(1R ∧ ψ)(1R ∧ i) = νM(1R ∧ ψi),

with ψi ∈ πk,l M = 0. It follows ψ = νM(1R ∧ 0) = 0. �
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Now we pass on to case 2.
Case 2. M = R/y.
Let y : Sk ′,l ′ → R and let φ′ = m(y ∧ 1R) : Sk ′,l ′ ∧ R → R ∧ R → R be the

action of y on R. We have an exact triangle in R-Mod,

Sk
′,l ′ ∧ R

φ′→ R
η′→ M

∂′→ Sk
′+1,l ′ ∧ R,

and, again, an exact sequence

· · · → [S2k+k ′+2,2l+l ′ ∧ R, N ]R-Mod
∂′∗→ [S2k+1,2l ∧ M, N ]R-Mod

η′∗→ [S2k+1,2l ∧ R, N ]R-Mod → · · ·

We consider

η′∗ψ = ψ ◦ (1S2k+1,2l ∧ η′) : S2k+1,2l ∧ R → S2k+1,2l ∧ M → N .

Let i : S0,0 → R be the unit of R, as before. Since η′ : R → M is amapof R-modules
(using Lemma 18), η′ ◦ m = νM(1R ∧ η′), and, hence,

νM(1R ∧ η′)(1R ∧ i) = η′ ◦ m(1R ∧ i) = η′.

Thus,
ψ(1S2k+1,2l ∧ η′) = ψ(1S2k+1,2l ∧ νM(1R ∧ η′)(1R ∧ i))

= ψ(1S2k+1,2l ∧ νM(1R ∧ η′i)).

Since ψ is a map of R-modules, ψ ◦ νS2k+1,2l∧M = νN ◦ (1R ∧ ψ), where, by def-
inition, νS2k+1,2l∧M = (1S2k+1,2l ∧ νM)(τ ∧ 1M). Hence, ψ(1S2k+1,2l ∧ νM) = νN (1R ∧
ψ)(τ ∧ 1M), and, therefore,

η′∗ψ = νN (1R ∧ ψ)(τ ∧ 1M)(1S2k+1,2l ∧ 1R ∧ η′i)

= νN (1R ∧ ψ)(1R ∧ 1S2k+1,2l ∧ η′i)(τ ∧ 1S0,0)

= νN (1R ∧ (ψ(1S2k+1,2l ∧ η′i)))(τ ∧ 1S0,0).

Now, ψ(1S2k+1,2l ∧ η′i) : S2k+1,2l ∧ S0,0 → N lies in π2k+1,2l N , which we assumed
to be zero. Hence, η′∗ψ = 0. By the long exact sequence from above, it follows that

ψ = ∂′∗ψ for some R-module map ψ : S2k+k ′+2,2l+l ′ ∧ R → N . Thus, ψ = ∂∗ψ =
∂∗∂′∗ψ.

Consider the following commutative diagram. The map ψ is the precomposition

of ψ with the diagonal of the righthand square.
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S2k,2l ∧ M
φ

∂′

Sk,l ∧ M

ζ

η
Sk,l ∧ N

ξ

∂

∂

S2k+1,2l ∧ M

∂′

S2k+k′+1,2l+l ′ ∧ R
φ′

S2k+1,2l ∧ R
η′

S2k+1,2l ∧ M
∂′

S2k+k′+2,2l+l ′ ∧ R.

Since both rows are exact triangles,we canfill in amap ζ : Sk,l ∧ M → S2k+1,2l ∧ R.
Wehaveφ′ ◦ ∂′ = 0, as both of these aremaps in the lower triangle. Thus, the diagonal
in the first square is zero and the map ζ lifts to a map ξ : Sk,l ∧ N → S2k+1,2l ∧ R.

It follows that ∂′ ◦ ∂ = ∂′ ◦ η′ ◦ ξ = 0, and, hence, ψ = ψ ◦ ∂′ ◦ ∂ = 0.
We have proven:

Proposition 135 Let R ∈ SH(k) be a commutative ring spectrum, x ∈ πk,l R and
y ∈ πk ′,l ′ R. Assume that π2k+1,2l(R/(y, x)) = 0. Then x acts trivially on R/(y, x).

The same holds if x ∈ πk R and y ∈ πk ′ R for a commutative ring spectrum R ∈
SH such that π2k+1(R/(y, x)) = 0.

This result can be applied to the action of vi on AP(n) for 0 ≤ i < n, at least for
k = C.

Corollary 136 Let k = C and n ≥ 1. Then vi acts trivially on AP(n) for any 0 ≤
i < n and vi acts trivially on Ak(n) for any i �= n.

Proof First, we consider MGL(p)/(p, vi ) for some 0 < i < n (thus, n ≥ 2). Since
MU∗ is concentrated in even degrees and Lemma 5 holds for k = C and quotients of
MGL(p)/p, we get π2k+1,2l(MGL(p)/(p, vi )) = 0 for any k, l. By Proposition 135
it follows that v0 = p and vi act trivially on MGL(p)/(p, vi ).

By [18, Lemma V.1.10],

MGL(p)/(p, vi ) ∼= MGL(p)/p ∧MGL(p) MGL(p)/vi ,

and, by [32, Remark 6.20], AP(n) ∼= MGL(p)/J , where J contains ai ∈ MGL∗∗,
i �= 2pi − 2, as well as vi , 0 ≤ i ≤ n − 1. From [18, Lemma V.1.10], it follows that

AP(n) ∼= MGL(p)/(p, vi ) ∧MGL(p) MGL(p)/(J \ {p, vi }).

Now vi acts trivially on MGL(p)/(p, vi ), i.e., the respective map φi on MGL(p)/

(p, vi ) is zero. It follows that also the map

φi ∧MGL(p) 1MGL(p)/(J\{p,vi })

is zero, meaning that vi acts trivially on AP(n). Similarly, p acts trivially on AP(n).
This proves that all vi , 0 ≤ i < n, act trivially on AP(n) if n ≥ 2.

If n = 1, one has to replace MGL(p)/(p, vi ) by MGL(p)/(p) in the above argu-
ment.
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Furthermore,

Ak(n) ∼= AP(n) ∧MGL(p) MGL(p)/(p, vn+1, vn+2, · · · ),

so vi acts trivially on Ak(n), too, for 0 ≤ i < n. For i > n, the claim follows analo-
gously to the above argument. �

Remark 137 Working with modules over MGL(p) has the advantage that the E∞-
structure allows us to use the isomorphism from [18, Lemma V.1.10], as well as the
results from [80] (below Lemma 18). For ABP , we only know of a commutative
ring structure in the weak sense (see [87, Definition 5.3]). Note that for BP , an
E4-structure is constructed in [9].

The ABP-module structure on AP(n) is the action of ABP on itself in ABP
∧MGL(p) MGL(p)/(v0, · · · , vn−1) ∼= AP(n) and it is (by its construction) compatible
with the MGL(p)-action on AP(n).

Recall thatν : BP ∧ P(n) → P(n) induces a BP∗-module structure on P(n)∗(X)

and P(n)∗(X) for any X ∈ SH and that P(n)∗ = BP∗/(v0, · · · , vn−1). Therefore,
the classical version of the above corollary immediately implies that the BP∗-module
structure on P(n)∗(X) and P(n)∗(X) induces a P(n)∗-module structure, as also con-
cluded in [39, Remark 2.5(a)].

Our next aim is to show that also for X ∈ SH(C), the ABP∗∗-module structure on
AP(n)∗∗(X) and AP(n)∗∗(X) induces a structure of AP(n)∗∗-modules, where the
ring structure on AP(n)∗∗ is defined via the isomorphism AP(n)∗∗ ∼= H∗∗ ⊗Fp P(n)∗
(Lemma 5). We will show in Lemma 22 that this is the right choice of ring structure
on AP(n)∗∗.

Let R be a strictly commutative ring spectrum, letM = R/y satisfy π2k ′+1,2l ′ M =
0 (where (k ′, l ′) is the degree of y, as in Case 2 above), and let N = M/x satisfy
π2k+1,2l N = 0.

In the commutative diagram,

Sk
′,l ′ ∧ R ∧ M

1∧νM

y∧1∧1
R ∧ R ∧ M

1∧νM

m∧1
R ∧ M

νM

Sk
′,l ′ ∧ M

y∧1 R ∧ M
νM

M,

the composition νM(y ∧ 1M) is zero by Proposition 134. Furthermore, (m ∧ 1M) ◦
(y ∧ 1R ∧ 1M) = φ′ ∧ 1M , where φ′ is, as before, the map whose cofiber is M . Thus,
we have

Sk
′,l ′ ∧ R ∧ M

0

φ′∧1
R ∧ M

νM

η′∧1
M ∧ M

μM

M ,
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and there exists a map μM : M ∧ M → M in the homotopy category R-Mod such
that μM ◦ (η′ ∧ 1M) = νM .

Next, we define a map νM,N : M ∧ N → N by νM,N = μM ∧R 1R/x , using N ∼=
M ∧R R/x [18, Lemma V.1.10]. It satisfies νM,N (η′ ∧ 1N ) = νN (by applying− ∧R

R/x to the analogous equation for μM ) and νM,N (1 ∧ η) = η ◦ μM (because η :
M → N is the canonical map M ∧R R → M ∧R R/x).

In the commutative diagram (where the right square commutes because νM,N is
a map of R-modules)

Sk,l ∧ M ∧ N

1∧νM,N

x∧1∧1
R ∧ M ∧ N

1∧νM,N

νM∧1
M ∧ N

νM,N

Sk,l ∧ N
x∧1 R ∧ N

νN
N ,

the lower composition is the action of x on N , which is trivial by Proposition 135.
Thus,

νM,N (φ ∧ 1N ) = νM,N (νM ∧ 1N )(x ∧ 1M ∧ 1N ) = 0.

Hence, there exists a map μN : N ∧ N → N in R-Mod making the following dia-
gram commutative.

Sk,l ∧ M ∧ N

0

φ∧1
M ∧ N

νM,N

η∧1
N ∧ N

μN

N .

In particular, this applies to N = MGL(p)/(p, x) as in Corollary 136, yielding
an MGL(p)-module map

μx : MGL(p)/(p, x) ∧ MGL(p)/(p, x) → MGL(p)/(p, x).

Lemma 20 AP(n) is isomorphic as an MGL(p)-module to the ∧MGL(p)-product of
all MGL(p)/(p, x), x ∈ J , where J is as in the proof of Corollary 136.

Proof By Proposition 134, p acts trivially on MGL(p)/p, which proves MGL(p)/

(p, p) = MGL(p)/p. By [18, Lemma V.1.10], it follows that

MGL(p)/(p, x) ∧MGL(p) MGL(p)/(p, y) ∼= MGL(p)/(p, x) ∧MGL(p) MGL(p)/y

for any x, y ∈ J . With p = v0 ∈ J , this implies that the ∧MGL(p)-product of all
MGL(p)/(p, x) is isomorphic to the ∧MGL(p)-product of all MGL(p)/x , which is
the quotient MGL(p)/J ∼= AP(n) (as in Corollary 136). �
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We can, therefore, define a map of MGL(p)-modules,

μAP(n) : AP(n) ∧ AP(n) → AP(n)

by applying the maps μx on each factor MGL(p)/(p, x).

Lemma 21 If, in the above setting,

πk ′+1,l ′ M = π2k ′+2,2l ′ M = π3k ′+3,3l ′ M = 0,

then μM is homotopy associative.
If, furthermore,

πk+1,l N = π2k+2,2l N = π3k+3,3l N = 0,

then μN is also homotopy associative.

Proof Let μ = μM and ν = νN . We have to show that

δ = μ(μ ∧ 1M − 1M ∧ μ) : M ∧ M ∧ M → M

is zero. Let δ′ = δ(η′ ∧ 1M ∧ 1M) : R ∧ M ∧ M → M , δ′′ = δ′(1R ∧ η′ ∧ 1M) :
R ∧ R ∧ M → M and δ′′′ = δ′′(1R ∧ 1R ∧ η′) = δ ◦ (η′)∧3 : R ∧ R ∧ R → M .
Consider

R ∧ R

m

1∧η′

η′∧η′
M ∧ M

μR ∧ M

η′∧1

ν

R
η′ M.

The top triangle obviously commutes, the right triangle commutes (up to homotopy)
by the definition of μ, and the large triangle commutes because η′ is an R-module
map. Thus, μ ◦ (η′)∧2 = η′ ◦ m, and it follows

μ(μ ∧ 1 − 1 ∧ μ)(η′)∧3 = μ(η′m ∧ η′ − η′ ∧ η′m)

= μ ◦ (η′)∧2(m ∧ 1 − 1 ∧ m) = η′m(m ∧ 1 − 1 ∧ m),

which vanishes by the associativity of m. Thus, δ′′′ = δ′′(1 ∧ 1 ∧ η′) = 0.
This implies that δ′′ factors through an R-modulemap ζ : Sk ′+1,l ′ ∧ R ∧ R ∧ R →

M , as in the following diagram:
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R ∧ R ∧ R
1∧1∧η′

δ′′′=0

R ∧ R ∧ M
1∧1∧∂′

δ′′

Sk
′+1,l ′ ∧ R ∧ R ∧ R

ζ

M .

Now, R ∧ R ∧ R is a ring spectrum and ζ can be considered as a map of R ∧ R ∧ R-
modules.ByLemma19 and the assumption onπk ′+1,l ′ M , ζ must be trivial. Thus, δ′′ =
0. Again, this implies δ′ = ζ ′(1R ∧ ∂′ ∧ 1M) for some ζ ′ : Sk ′+1,l ′ ∧ R ∧ R ∧ M →
M . The R ∧ R ∧ R-module map ζ ′(1Sk′+1,l′ ∧ 1R ∧ 1R ∧ η′) is a degree (k ′ + 1, l ′)-
map from the ring spectrum R ∧ R ∧ R to M , and therefore vanishes by Lemma 19.
It follows that ζ ′ = ζ ′′(1Sk′+1,l′ ∧ 1R ∧ 1R ∧ ∂′) for some map ζ ′′ : S2k ′+2,2l ′ ∧ R ∧
R ∧ R → M .

Sk
′+1,l ′ ∧ R∧3 1∧η′

0

Sk
′+1,l ′ ∧ R ∧ R ∧ M 1∧∂′

ζ ′

S2k
′+2,2l ′ ∧ R∧3

ζ ′′

M .

By the second assumption on π∗∗M , ζ ′′ = 0. It follows that δ′ = ζ ′(1 ∧ ∂′ ∧ 1) =
ζ ′′(1 ∧ ∂′ ∧ ∂′) = 0. That is, δ(η′ ∧ 1M ∧ 1M) = δ′ = 0,which implies δ = ζ ′′′(∂′ ∧
1M ∧ 1M) for some ζ ′′′ : Sk ′+1,l ′ ∧ R ∧ M ∧ M → M .

Now, ζ ′′′(1 ∧ η′ ∧ 1)(1 ∧ 1 ∧ η′) is a map from R ∧ R ∧ R to M of degree
(k ′ + 1, l ′), and therefore trivial. Thus, ζ ′′′(1 ∧ η′ ∧ 1) = ζ(4)(1 ∧ 1 ∧ ∂′) with ζ(4) :
S2k

′+2,2l ′ ∧ R ∧ R ∧ R → M , which is also trivial. It follows that ζ ′′′ = ζ(5)(1 ∧
∂′ ∧ 1) for some ζ(5) : S2k ′+2,2l ′ ∧ R ∧ R ∧ M → M , and δ = ζ ′′′(∂′ ∧ 1 ∧ 1) =
ζ(5)(∂′ ∧ ∂′ ∧ 1). The map ζ(5)(1 ∧ 1 ∧ η) : S2k ′+2,2l ′ ∧ R ∧ R ∧ R → M is again
zero,which implies ζ(5) = ζ(6)(1 ∧ 1 ∧ ∂′) for some ζ(6) : S3k ′+3,3l ′ ∧ R ∧ R ∧ R →
M . By the third condition on π∗∗M , this ζ(6) is zero. Finally, we have

δ = ζ(6)(∂′ ∧ ∂′ ∧ ∂′) = 0.

The same line of proof can be used to derive the associativity of μN from that of
μM . It only needs to be checked that

M ∧ M

μM

1∧η

η∧η
N ∧ N

μNM ∧ N

η∧1

νM,N

M
η

N

is commutative, but this was part of the definitions of νM,N and μN . �
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Proposition 138 If p > 2, then μAP(n) is homotopy associative.

Proof Note that this does not follow immediately from the above lemma, as
π2k+2,2l N �= 0 for N = MGL(p)/(p, x). However, we can use a trick from [18,
Theorem V.3.1], where the topological analogue of this statement is proven.

Let N = R/(x, y) and A = R/(J − {x, y}) for some set J of elements in π∗∗R,
and assume that we already know that A is equipped with a (homotopy) associative
mapμA : A ∧ A → A as above.Theproduct on R/J ∼= A/(x, y) ∼= N ∧R A is given
by

(N ∧R A) ∧ (N ∧R A)
τ−→ (N ∧ N ) ∧R (A ∧ A)

1∧RμA−→ (N ∧ N ) ∧R A
μN∧R1−→ N ∧R A.

Therefore, to prove associativity for μN∧R A, it suffices to prove that the associativity
diagram for μN commutes after applying − ∧R 1A to it. Applying − ∧R 1A to all
diagrams appearing in the above lemma yields the following result: If πi, j (M ∧R

A) = 0 for (i, j) ∈ {(k ′ + 1, l ′), (2k ′ + 2, 2l ′), (3k ′ + 3, 3l ′)} and πi, j (N ∧R A) =
0 for (i, j) ∈ {(k + 1, l), (2k + 2, 2l), (3k + 3, 3l)}, then μN∧R A is associative.

Now, let R = MGL(p), A = ABP , and furthermore M = MGL(p)/p and N =
MGL(p)/(p, x). From [87, Definition 5.3], we know that μABP is associative.
The assumptions on the homotopy groups are satisfied by Lemma 5, by which
π∗∗(ABP/p) ∼= H∗∗ ⊗π∗(BP/p) and π∗∗(ABP/(p, x)) ∼= H∗∗ ⊗π∗(BP/(p, x)).
Note that these homotopy groups vanish in degrees (k + 1, l) and (3k + 3, 3l) for
any p because π∗BP is concentrated in even degrees and k is even. However, for
π(2k+2,2l) to vanish, we need to assume that p is odd.

This proves that μABP/(p,x) is associative. Inductively, we can apply this
argument to A = ABP/J ′ for some (p) ⊂ J ′ ⊂ J , where J is as in the
proof ofCorollary 136, using ABP/(J ′ ∪ {y}) = MGL(p)/(p, y) ∧MGL(p) ABP/J ′
(compare Lemma20). �

Recall that, for k = C and n > 0, AP(n)∗∗ ∼= H∗∗ ⊗Fp P(n)∗ (Lemma 5), which
is a ring. Hence, we can speak of AP(n)∗∗-modules. Note that AP(0)∗∗ is a ring,
anyway, since AP(0) = ABP is a ring spectrum.

Lemma 22 Let k = C. On coefficients, the map

μAP(n) : AP(n) ∧ AP(n) → AP(n)

induces the multiplication on AP(n)∗∗ given by AP(n)∗∗ ∼= H∗∗ ⊗Fp P(n)∗.

Proof By [71, Theorem 3.6.16], the motivic Atiyah Hirzebruch spectral sequence in
Lemma 5 is multiplicative, yielding an isomorphism of rings between AP(n)∗∗ with
multiplication induced from μAP(n) and E2 = H∗∗ ⊗Fp P(n)∗ with multiplication
induced from the ring structure ofH∗∗ and from RC(μAP(n)) : P(n) ∧ P(n) → P(n).
It therefore suffices to show that RC(μAP(n)) induces the ring structure on P(n)∗.
Now, RC carries all the above diagrams to the analogous topological diagrams
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and, therefore, BP ∧ P(n) → P(n) (inducing the action of BP∗ on P(n)∗) fac-
tors through RC(μAP(n)), which, hence, induces the induced action of P(n)∗ on
P(n)∗. �

Corollary 139 InSH(C), the actionνn : ABP ∧ AP(n) → AP(n) factors through
a map μAP(n) : AP(n) ∧ AP(n) → AP(n). If p > 2, the induced action of ABP∗∗
on AP(n)∗∗(X) and AP(n)∗∗(X) gives AP(n)∗∗(X) and AP(n)∗∗(X) the structure
of left AP(n)∗∗-modules for any n ≥ 0 and X ∈ SH(C).

Proof Wehave to check that the action of AP(n)∗∗ on AP(n)∗∗(X) and AP(n)∗∗(X)

is unital and associative. This is equivalent to μAP(n) being homotopy left unital and
associative. Unitality follows from the maps νM : R ∧ M → M being unital, since,
by definition of μM , νM = μM ◦ (η′ ∧ 1) : R ∧ M → M ∧ M → M . Associativity
is proven in Proposition 138 for p > 2. �

9.4 Bousfield Classes of AK (n) and AB(n)

Recall AB(n) = v−1
n AP(n).

We want to use methods of [39, 94] to prove that

AK (n)∗∗X = 0 ⇔ AB(n)∗∗X = 0

for X ∈ SH(C). For this, we need the following two results, which hold in SH(k)
for any k ⊆ C and are analogous to [94, Formula (2.8)]. The reader may skip the
first proposition, as it is a special case of the second one. The proof of the first one
is maybe more illustrative.

Let μn : ABP∗∗(−) → AP(n)∗∗(−) be induced from

ABP
1∧i→ ABP ∧ AP(n)

νn→ AP(n),

where i : S → AP(n) is induced from the unitmap S → ABP and νn is the structure
map of the ABP-module AP(n). For sE ∈ ABP∗∗ABP as inLemma13(2),we have
μn(sE ) ∈ AP(n)∗∗(ABP).

Proposition 140 For any n ≥ 0, the map

hn : AP(n)∗∗[[μn(s
E )]] → AP(n)∗∗ABP,

given by hn(
∑

E
xE · μn(sE )) = ∑

E
νn(sE ∧ xE ), is an isomorphism of ABP∗∗-

modules. If k = C and p > 2, it is an isomorphism of AP(n)∗∗-modules by Corollary
139.

Proof We proceed by induction. For AP(0) = ABP , μ0 is the identity and the
claim holds by Lemma 13(2). Now, assume hn is an isomorphism for some n ≥
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0. Consider the following diagram, consisting of two exact sequences induced by
AP(n)

vn→ AP(n) → AP(n + 1).

AP(n)∗∗ABP
v∗
n

AP(n)∗∗ABP
λ∗
n

AP(n + 1)∗∗ABP
δ∗

AP(n)∗∗ABP
v∗
n

AP(n)∗∗ABP

AP(n)∗∗[[μnsE ]]

hn

AP(n)∗∗[[μnsE ]]

hn

AP(n + 1)∗∗[[μn+1s
E ]]

hn+1

AP(n)∗∗[[μnsE ]]

hn

AP(n)∗∗[[μnsE ]]

hn

The lower sequence is the exact sequence

· · · → AP(n)∗∗ → AP(n)∗∗ → AP(n + 1)∗∗ → AP(n)∗∗ → AP(n)∗∗ · · · ,

tensored over Fp with Fp[[sE ]]. We show that the diagram commutes.
In the first square, the upper composition takes

x · μn(s
E ) ∈ AP(n)∗∗[[μns

E ]]

to

v∗
n(hn(xμns

E )) : ABP
sE∧x−→ ABP ∧ AP(n)

νn−→ AP(n)
vn−→ AP(n),

and the lower composition takes the same element to

hn((vn · x) · μn(s
E )):ABP

sE∧x−→ ABP ∧ AP(n)
1∧vn−→ ABP ∧ AP(n)

νn−→ AP(n).

Therefore, the commutativity of the first square is equivalent to the commutativity
of the square

ABP ∧ AP(n)
1∧vn

νn

ABP ∧ AP(n)

νn

AP(n)
vn

AP(n).

This square commutes because vn is a map of ABP-modules (compare Lemma 18).
In the second square, the upper composition takes

x · μn(s
E ) ∈ AP(n)∗∗[[μns

E ]]

to

(λ∗ ◦ hn)(xμns
E ) : ABP

sE∧x−→ ABP ∧ AP(n)
νn−→ AP(n)

λn−→ AP(n + 1)
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and the lower composition takes x · μn(sE ) to

hn+1(λnx · μns
E ) : ABP

sE∧x−→ ABP ∧ AP(n)

1∧λn−→ ABP ∧ AP(n + 1)
νn+1−→ AP(n + 1).

Thus, the commutativity of the second square is equivalent to the commutativity of

ABP ∧ AP(n)
1∧λn

νn

ABP ∧ AP(n + 1)

νn+1

AP(n)
λn

AP(n + 1),

which holds because λn is, by definition, a map in the category of ABP-modules
(see Definition 74).

In the third square, the upper composition takes x · μn+1(sE ) ∈ AP(n + 1)∗∗
[[μn+1sE ]] to (δ ◦ hn+1)(xμn+1sE ) = δ(νn+1(sE ∧ x)) and the lower composition
takes x · μn+1(sE ) to νn(sE ∧ δ(x)). Thus, the commutativity of the third square
follows from the commutativity of

ABP ∧ AP(n + 1) 1∧δ

νn+1

ABP ∧ AP(n)

νn

AP(n + 1)
δ

AP(n).

Finally, the five lemma implies that hn+1 is an isomorphism. �
The above proposition holds more generally:

Proposition 141 Let h ∈ SH(k)cell be any cellular ABP-module spectrum. Then

h∗∗ABP ∼= h∗∗[[sE ]]

as ABP∗∗-modules. In particular, this also holds for h = Ak(n).

Proof We apply the universal coefficient spectral sequence from [16, Proposition
7.7] (see also Proposition 104) to E = ABP (which is a ring spectrum by [87,
Definition 5.3] and is cellular by Remark 75(1)), M = ABP ∧ ABP and N = h.

Ext∗∗∗
ABP∗∗(ABP∗∗ABP, h∗∗) ⇒ π∗∗FABP(ABP ∧ ABP, h),

converging conditionally to π∗∗FABP(ABP ∧ ABP, h) ∼= h∗∗(ABP). As ABP∗∗
ABP ∼= ABP∗∗{t E } is free over ABP∗∗ (Lemma 13(1)), the higher Ext-groups van-
ish and the sequence collapses to
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h∗∗ABP ∼= HomABP∗∗(ABP∗∗{t E }, h∗∗),

which is isomorphic to h∗∗[[sE ]], as in Lemma 13(2). �

Würgler constructs operations

sEQ : MUQi (−) → MUQi+|E |(−)

for regular sequences Q [94, Theorem 5.1]. For MUQ = P(n), these operations
specify a choice of the operations (rE )n : P(n)∗(−) → P(n)∗+|E |(−) considered
in [39, Sect. 4]. They are needed in the proof of the isomorphism B(n)∗(X) ∼=
K (n)∗(X) ⊗ Fp[vn+1, vn+2, · · · ] in [39, Proposition 4.14].Wewill now statemotivic
analogues of some of Würgler’s lemmas for MUQ = P(n).

In SH(k)cell , let AP(n)[t] represent the cohomology theory

AP(n)∗∗(−)[t] = ABP∗∗[t1, t2, · · · ] ⊗ABP∗∗ AP(n)∗∗(−)

with deg(ti ) = −(2(pi − 1), pi − 1).

Remark 142 Würgler defines h∗(−)[t] = h∗(−) ⊗h∗ h∗[t1, t2, · · · ], where the ti take
any even degree, i.e., deg(ti ) = −2i in [94, Sect. 5]. He also considers operations sE

of any degree
∑

i 2iei . However, Johnson and Wilson [39, Sects. 1 and 4] are only
interested in operations of degree |E | = ∑

i 2(p
i − 1)ei . We will see that it suffices

to restrict to those degrees. Most of Würgler’s results we refer to in the following
are formulated in a much greater generality and do not depend on any degrees of
particular elements. The only point where the degrees of the ti are important is in
[94, Theorem 5.1] and we will comment on that below Theorem 18.

Lemma 23 For X ∈ SH(k) f in ,

(ABP ∧ AP(n))∗∗(X) ∼= AP(n)∗∗(X)[t].

Asany cohomology theory onSH(k) f in extends uniquely toSH(k)cell by [65, Lemma
4.10], it follows that we can take

AP(n)[t] = ABP ∧ AP(n).

Proof We consider the map

(ABP ∧ ABP)∗∗ ⊗ABP∗∗ AP(n)∗∗(X) → (ABP ∧ AP(n))∗∗(X),

induced by the ABP-module structure on AP(n). First, we see that

(ABP ∧ ABP)∗∗ ∼= (ABP ∧ ABP)−∗,−∗ ∼= ABP−∗,−∗[t] ∼= ABP∗∗[t]
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by Lemma 13(1). Note that the ti appearing here are dual to the ti in Lemma 13(1),
hence deg(ti ) = −(2(pi − 1), pi − 1). To prove the claim, it suffices to show that
the above map is an isomorphism.

For n = 0 and X = S0, this is clear. Induction on n shows

(ABP ∧ ABP)∗∗ ⊗ABP∗∗ AP(n)∗∗ ∼= (ABP ∧ AP(n))∗∗

for any n, since AP(n) → AP(n) → AP(n + 1) induces long exact sequences on
both sides and the diagram commutes because AP(n) → AP(n) → AP(n + 1) are
maps of ABP-modules. As also any cofiber sequence X → Y → Z induces long
exact sequences on both sides, cellular induction proves the claim for any finite
spectrum X . �

We state an analogue of [94, Lemma 3.14].

Lemma 24 Let h ∈ SH(k)cell , k ⊆ C, be an ABP-module. The multiplication
ABP ∧ h → h induces an isomorphism of ABP∗∗-modules,

ABP∗∗ABP ⊗ABP∗∗ h∗∗AP(n) ∼= h∗∗(ABP ∧ AP(n)).

Proof We apply the spectral sequence from [16, Proposition 7.7] to E = ABP ,
M = ABP ∧ ABP ∧ ABP and N = h:

Ext∗∗∗
ABP∗∗(ABP∗∗(ABP ∧ ABP), h∗∗) ⇒ π∗∗FABP(ABP ∧ ABP ∧ ABP, h),

converging conditionally to h∗∗(ABP ∧ ABP). By [65, Lemma 5.1(i)],

ABP∗∗(ABP ∧ ABP) ∼= ABP∗∗ABP ⊗ABP∗∗ ABP∗∗ABP,

which is free over ABP∗∗. Thus, the spectral sequence collapses and

h∗∗(ABP ∧ ABP) ∼= HomABP∗∗(ABP∗∗ABP ⊗ABP∗∗ ABP∗∗ABP, h∗∗).

Now, ABP∗∗ABP ⊗ABP∗∗ ABP∗∗ABP ∼= ABP∗∗{t E1 t F2 }, and, therefore,

HomABP∗∗(ABP∗∗ABP ⊗ABP∗∗ ABP∗∗ABP, h∗∗) ∼= h∗∗[[sE1 sF2 ]]
∼= ABP∗∗[[sE1 ]] ⊗ABP∗∗ h

∗∗[[sF2 ]] ∼= ABP∗∗ABP ⊗ABP∗∗ h
∗∗ABP,

using Proposition 141. This proves the claim for n = 0.
Assume we have shown that ABP ∧ h → h induces an isomorphism

ABP∗∗ABP ⊗ABP∗∗ h∗∗AP(n) ∼= h∗∗(ABP ∧ AP(n))

for some n ≥ 0. The cofiber sequence AP(n) → AP(n) → AP(n + 1) induces
long exact sequences on both sides of this isomorphism, which form a commuta-
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tive diagram because the maps AP(n) → AP(n) → AP(n + 1) are maps of ABP-
modules. Thus, the five lemma implies the claim for n + 1. �

Combining the above isomorphism with the one from Proposition 141, we get:

Lemma 25 Let k = C and p > 2. Let X = AP(n) or X = AP(n)[t]. The action of
ABP on AP(m), ABP ∧ AP(m) → AP(m), induces an isomorphismof AP(m)∗∗-
modules

AP(m)∗∗(ABP) ⊗AP(m)∗∗ AP(m)∗∗(X)
∼=→ AP(m)∗∗(ABP ∧ X).

Proof From Proposition 140, we know that

AP(m)∗∗(ABP) ∼= AP(m)∗∗ ⊗ABP∗∗ ABP∗∗ABP

as AP(m)∗∗-modules. With h = AP(m), the above lemma immediately implies

AP(m)∗∗(ABP) ⊗AP(m)∗∗ AP(m)∗∗(AP(n))
∼=→ AP(m)∗∗(ABP ∧ AP(n))

as ABP∗∗-modules and, by Corollary 139, also as AP(m)∗∗-modules.
For X = AP(n)[t] = ABP ∧ AP(n), we set M = ABP∧4 in the proof of the

previous lemma. Using π∗∗ABP∧4 ∼= ABP∗∗ABP ⊗ABP∗∗ π∗∗ABP∧3 [65, Propo-
sition 5.1(i)], the proof proceeds with exactly the same arguments as the proof of
Lemma 24. �

As a consequence of Corollary 136, we show the following (see [39, Lemma
2.8(b)]):

Corollary 143 Let k = C and p > 2. The cofibration S2p
n−2,pn−1 ∧ AP(n)

vn→
AP(n) → AP(n + 1) induces short exact sequences

0 → Ak( j)∗∗(S2p
n−1,pn−1 ∧ AP(n)) → Ak( j)∗∗(AP(n + 1))

→ Ak( j)∗∗(AP(n)) → 0

for every j > n.

Proof We have to show that, in the Ak( j)∗∗-long exact sequence, the map induced
by vn is zero. This map is defined as the composition of the two left arrows in the
following commutative diagram:

Ak( j)∗∗(S2p
n−2,pn−1 ∧ AP(n)) ABP∗∗(S2p

n−2,pn−1) ⊗ABP∗∗ Ak( j)∗∗(AP(n))
∼=

Ak( j)∗∗(ABP ∧ AP(n))

Ak( j)∗∗(vn∧1)

ABP∗∗(ABP) ⊗ABP∗∗ Ak( j)∗∗(AP(n))

ABP∗∗(vn )⊗1

∼=

Ak( j)∗∗(AP(n))

Ak( j)∗∗(νn )
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The horizontal maps are induced by the ABP-module structure on Ak( j).
The lower horizontal map is an isomorphism by the previous lemma. The upper
isomorphism is proven similarly, setting M = ABP ∧ ABP in the above proof.
We show that the right hand map is zero. Let

∑
sE ⊗ xE be an element of

ABP∗∗(ABP) ⊗ABP∗∗ Ak( j)∗∗(AP(n)). It maps to
∑

sE (vn) ⊗ xE . In Corollary
132, we set k = 1, s = 0 and m = n, to see that for all |E | ≥ 0, either sE (vn) ≡ vn
mod In or sE (vn) ≡ 0 mod In . Thus, sE (vn) ∈ In+1 = (v0, · · · , vn). By Corollary
136, In+1 acts trivially on Ak( j)∗∗(AP(n)) for j > n, hence, the right hand map
is zero.

It follows that the left map factors through zero, proving the claim. �

The isomorphism from Lemma 25 is now used to define an AP(m)∗∗(ABP)-
comodule structure on AP(m)∗∗(AP(n)) by

AP(m)∗∗AP(n)
ν∗
n→ AP(m)∗∗(ABP ∧ AP(n))

∼=← AP(m)∗∗ABP ⊗AP(m)∗∗ AP(m)∗∗AP(n),

where νn is the ABP-module structuremap on AP(n). Note that, for k �= C or p = 2,
we do not know if these groups are AP(m)∗∗-modules (see Corollary 139). In this
case, we might only get an ABP∗∗ABP-comodule structure on AP(m)∗∗AP(n).

Lemma 26 Let k = C, m > n ≥ 0 and E be an exponent sequence. Let sE :
ABP → ABP be as in Lemma 13 and μm : ABP → AP(m) be as defined in the
beginning of this section. Then

μm ◦ sE ◦ vn : S → ABP → ABP → AP(m)

is the zero map.

Proof The realisation functor RC takes the composition μm ◦ sE ◦ vn ∈ AP(m)∗∗
to μ

top
m ◦ sEtop ◦ v

top
n ∈ P(m)∗. By the BP-version of [94, Lemma 2.2], μtop

m : BP →
P(m) is the canonical projection. By the invariant prime ideal theorem, I topn+1 =
(v

top
0 , v

top
1 , · · · , v

top
n ) ⊂ BP∗ is invariant under the action of sEtop ∈ BP∗BP , hence,

sEtop(v
top
n ) ∈ I topn+1. Thus, μ

top
m (sEtop ◦ v

top
n ) ∈ P(m)∗ lies in the image of In+1 under

the projection BP∗ → P(m)∗ = BP∗/(v
top
0 , · · · , v

top
m−1), which is zero, sincem > n.

This implies RC(μm ◦ sE ◦ vn) = 0 ∈ P(m)∗.
For k = C, AP(m)∗∗ ∼= P(m)∗[τ ] by Lemma 5, and any homogeneous element

in AP(m)∗∗ that realises to zero in P(m)∗ already has to be zero in AP(m)∗∗. Hence,
μm ◦ sE ◦ vn = 0 in AP(m)∗∗. �

Now we present an analogue of a special case of [94, Proposition 4.12].

Lemma 27 Let k = C, p > 2 and m ≥ n. As AP(m)∗∗ABP-comodules,

AP(m)∗∗AP(n) ∼= AP(m)∗∗ABP ⊗AP(n)∗∗ ΛAP(n)∗∗ [[β0, · · · ,βn−1]]
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with deg(βi ) = (2pi − 1, pi − 1).

Proof For n = 0, the statement is trivial. Assume the proposition holds for some
pair (m, n) with m > n. We show that it also holds for (m, n + 1).

Consider AP(n)
vn→ AP(n). We show that the induced map

v∗
n : AP(m)∗∗AP(n) → AP(m)∗∗AP(n)

is trivial. This works similar to [94, Lemma 3.15]. Let φ : S → ABP repre-
sent vn ∈ ABP∗∗ and let φ∗ : AP(m)∗∗ABP → AP(m)∗∗ be the map induced on
AP(m)∗∗(−). For x ∈ AP(m)∗∗ABP = AP(m)∗∗[[μmsE ]] (see Proposition 140),
we have x = ∑

E λEμmsE and

φ∗(x) = φ∗(
∑

E

λEμms
E ) =

∑

E

λEμm(sE (vn)),

because φ∗ is precomposition with vn ∈ ABP∗∗. By Lemma 26, μm(sE (vn)) = 0 in
AP(m)∗∗, hence, φ∗ = 0. Now consider the following commutative square:

AP(m)∗∗(ABP ∧ AP(n))
(φ∧1)∗

AP(m)∗∗(AP(n))

AP(m)∗∗ABP ⊗AP(m)∗∗ AP(m)∗∗AP(n)

∼=

φ∗⊗1
AP(m)∗∗ ⊗AP(m)∗∗ AP(m)∗∗AP(n)

∼=

The left map is an isomorphism by Lemma 25. Since φ∗ = 0, it follows that (φ ∧
1)∗ = 0. Since v∗

n is, by definition, the precomposition of (φ ∧ 1)∗ with the map
AP(m)∗∗AP(n) → AP(m)∗∗(ABP ∧ AP(n)), v∗

n = 0, as claimed.
It follows that the long exact AP(m)∗∗(−)-sequence induced by

S2p
n−2,pn−1 ∧ AP(n)

vn→ AP(n) → AP(n + 1)

splits into short exact sequences of AP(m)∗∗ABP-comodules

0 → AP(m)∗∗(S2p
n−1,pn−1 ∧ AP(n)) → AP(m)∗∗AP(n + 1)

→ AP(m)∗∗AP(n) → 0.

Analogously to [94, Proposition 4.12], it follows inductively that

AP(m)∗∗AP(n + 1) ∼= AP(m)∗∗AP(n) ⊗AP(m)∗∗ ΛAP(m)∗∗(βn)

and the degree of βn is determined by the degrees appearing in the exact
sequence. �
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If M is an AP(n)∗∗(ABP)[t]-comodule with structure map ψ, an element a ∈ M
is called primitive if ψ(a) = 1 ⊗ a. Similarly to [94, Lemma 4.13], the following
holds:

Lemma 28 Let k = C and p > 2. Let g : AP(n) → AP(n)[t] be a map of spectra.
Then g is a map of ABP-module spectra if and only if it is a primitive element of the
AP(n)∗∗(ABP)[t]-comodule AP(n)∗∗(AP(n))[t].
Proof This follows fromLemma 25 in the samemanner as [94, Lemma 4.13] follows
from [94, Lemma 3.14] for X = P(n) and X = P(n)[t]. �

Now we state a result which is directly used for the construction of the operation
we are aiming at. This corresponds to [94, Theorem 4.17].

Proposition 144 Let k = C and p > 2. There is a degree-preserving group isomor-
phism

Hom∗∗
ABP (AP(n), AP(n)[t]) ∼= ΛAP(n)∗∗[t][[β0,β1, · · · ]],

where the left hand side is the bigraded abelian group of maps of ABP-module
spectra and the right hand side is an exterior algebra over AP(n)∗∗[t].
Proof Würgler derives this from [94, Proposition 4.12] and [94, Lemma 4.13] using
that inverse limits of primitive elements are primitive [94, Lemma 4.16]. The same
line of proof proves this proposition using Proposition 27 and Lemma 28. Denoting
the set of primitive elements in M by Pr{M}, the proof can be summarised by the
following sequence of isomorphisms:

Hom∗∗
ABP(AP(n), AP(n)[t]) ∼= Pr

{
AP(n)∗∗(AP(n))[t]}

∼= Pr
{
AP(n)∗∗(ABP)[t] ⊗AP(n)∗∗[t] ΛAP(n)∗∗[t][[β0,β1, · · · ]]

}

∼= Pr
{
AP(n)∗∗(ABP)[t]} ⊗AP(n)∗∗[t] ΛAP(n)∗∗[t][[β0,β1, · · · ]]

∼= AP(n)∗∗[t] ⊗AP(n)∗∗[t] ΛAP(n)∗∗[t][[β0,β1, · · · ]] ∼= ΛAP(n)∗∗[t][[β0,β1, · · · ]].

�

This completes the preparation Würgler needs for [94, Theorem 5.1]. We state
our version of this theorem, now using the notation from [39].

Theorem 18 Let p > 2. In SH(C)cell , there exists a family (rE )n, n ≥ 0, of natural
stable operations

(rE )n : AP(n)∗∗(−) → AP(n)∗∗(−)

of degree (|E |, |E |/2), such that

(rE )n(ux) =
∑

F+G=E

sF (u)(rG)n(x)
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for u ∈ ABP∗∗(X) and x ∈ AP(n)∗∗(X) (see Definition 130 for the definition of sF )
and such that

ABP∗∗(−)
sE

ABP∗∗(−)

AP(n)∗∗(−)
(rE )n

AP(n)∗∗(−)

commutes.

Proof Let st : ABP∗∗(−) → ABP∗∗(−)[t] be given by

st (x) =
∑

E

sE (x) ⊗ t E .

As in [94, Theorem 5.1], the square

ABP∗∗(−)
st

ABP∗∗(−)[t]

AP(n)∗∗(−)
st,n

AP(n)∗∗(−)[t]

can be completed with the help of Proposition 144 and we define (rE )n by st,n(x) =∑
E (rE )n(x) ⊗ t E .
Since Proposition 144 gives us a map of ABP-module spectra, the operation st,n

satisfies st,n(ux) = st (u)st,n(x). It follows that

∑

E

(rE )n(ux) ⊗ t E =
∑

F+G=E

sF (u)(rG)n(x) ⊗ t F tG

and, hence, (rE )n(ux) = ∑
F+G=E sF (u)(rG)n(x), which proves the first property

claimed. The second property holds because the above commutative square has to
commute on the level of each t E . �

Remark 145 Originally (see e.g. [72, Formula (2.4)]), one first defines the operation
st : BP∗(−) → BP∗(−)[t1, t2, · · · ], deg(ti ) = −2i , and then uses it to construct
operations sE of degree

∑
i 2iei . The st used in the above proof contains only those

summands sE ⊗ t E with |E | = ∑
i 2(p

i − 1), because we work with ABP-modules
instead of MGL-modules. Hence, the st,n also consists of less summands than the
corresponding operation in [94, Theorem 5.1], but this suffices to define exactly those
(rE )n with the degrees needed in [39, Sect. 4].

In [39, Proposition 4.14], Johnson and Wilson show that, for any X ∈ SH f in ,
there is a natural isomorphism

B(n)∗(X) ∼= K (n)∗(X) ⊗ Fp[vn+1, vn+2, · · · ]
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for n < 2p − 2. Johnson and Wilson needed the condition on n because they were
only able to canonically define the operations (rE )n in this range. As stated in [94,
Remark 6.19], the condition becomes redundant if Würgler’s operations are used.

With the above operations at hand, we can proceed exactly as in [39, Sect. 4]:

Definition 146 Let n be fixed and let E be the set of all exponent sequences of
the form E = (0, · · · , 0, en+1, en+2, · · · ). Recall the definition of |E | from Def-
inition 131. For E ∈ E , let q = |E | = 2(pn − 1)b + a with 0 ≤ a < 2(pn − 1).
With σn E = (pnen+1, pnen+2, · · · ) and c = b − (en+1 + en+2 + · · · ), it follows
|σn E | = c2(pn − 1) + a, exactly as in [39]. Note that q and, hence, a are even.
We define s̄E ∈ Ak(n)a,a/2(AP(n)) by

s̄E : AP(n)
(rσn E )n−→ Σc2(pn−1)+a,c(pn−1)+a/2AP(n)

vcn→ Σa,a/2AP(n)
λn→ Σa,a/2Ak(n),

where λn is the quotient map from AP(n) to Ak(n) = AP(n)/(vn+1, · · · ).
Furthermore,we assume that the set {E ∈ E | |E | = q} is ordered as {E1, · · · , Ev},

where v is the Fp-dimension of (Fp[vn+1, vn+2, · · · ])q , and we denote s̄Eu by su .

Lemma 29 Let k = C, p > 2 and s̄E : AP(n)∗∗ → Ak(n)∗∗ be induced by the
above map. Assume n > 0 and let τ ∈ AP(n)∗∗ be as in Lemma 5. Then s̄E (τ ) = 0
for E �= 0 and s̄0(τ ) = τ . If, furthermore, x ∈ AP(n)∗∗X with X ∈ SH(C)cell , then
s̄E (xτ ) = s̄E (x)τ .

Proof Since s̄E (τ ) = (λn ◦ vc
n ◦ (rσn E )n)(τ ) with λn(τ ) = τ , and c = 0 for E = 0,

the first claim is equivalent to (rF )n(τ ) = 0 for F �= 0 and (r0)n(τ ) = τ . The real-
isation functor RC maps τ to 1 ∈ P(n)0 and it takes (rF )n : AP(n)∗∗ → AP(n)∗∗
to (r topF )n : P(n)∗ → P(n)∗, which, by [94, Theorem 5.1], is compatible with s topF in
the sense that the following diagram commutes:

BP∗ stopF
BP∗

P(n)∗
(r topF )n

P(n)∗.

The map s topF is defined via the coaction map

ψtop : BP∗
(1∧i)∗−→ BP∗BP

m−1∗−→ BP∗BP ⊗BP∗ BP∗,

which clearly takes 1 to 1 ⊗ 1. Therefore, in the formula

ψtop(1) =
∑

F

c(t Ftop) ⊗ s topF (1),
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all s topF (1) have to be 0, except for s top0 (1), which is 1. It follows that also (r topF )n(1) = 0
for F �= 0 and (r top0 )n(1) = 1. Hence, RC((rF )n(τ )) is 0 for F �= 0 and it is 1 for
F = 0.

The preimage of x ∈ P(n)∗ under RC : AP(n)∗∗ → P(n)∗ is
{

∑

k≥0

xk · τ k |
∑

k≥0

xk = x

}

.

Since (rF )n is a map of degree (|F |, |F |/2), the only possible preimage of RC((rF )n
(τ )) is (rF )n(τ ) = 0 for F �= 0 and (r0)n(τ ) = τ .

The claim on s̄E (xτ ) now follows from the Cartan formula, Lemma 14. �

The following is a motivic analogue to [39, Proposition 4.14].

Theorem 19 For any X ∈ SH(C) f in and any n > 0, p > 2, there is a natural iso-
morphism

AB(n)∗∗(X) → AK (n)∗∗(X) ⊗ Fp[vn+1, vn+2, · · · ].

Furthermore, for any X ∈ SH(C),

AK (n)∗∗(X) = 0 if and only if AB(n)∗∗(X) = 0.

Proof For a given exponent sequence E , consider the composition

AP(n)
sE→ Σa,a/2Ak(n) → Σa,a/2AK (n)

v−b
n→ Σq,q/2AK (n),

where a = aE and b = bE are as in Definition 146. These induce a natural homo-
morphism

Λ̂ : AP(n)∗∗(X) → AK (n)∗∗(X) ⊗ Fp[vn+1, vn+2, · · · ]

by Λ̂(y) =
∑

E∈E
v−bE
n s̄E (y) ⊗ vE .

By Corollary 132 and the Cartan formula, rE (yvn) ≡ rE (y)vn mod In . As In =
(v0, · · · , vn−1) acts trivially on AP(n) and Ak(n) (Proposition 136), it follows that
s̄E : AP(n)∗∗(X) → Ak(n)∗∗(X) is an Fp[vn]-homomorphism. Therefore, Λ̂ can be
extended to AB(n)∗∗(X) = v−1

n AP(n)∗∗X . This yields a map

Λ : AB(n)∗∗(X) → AK (n)∗∗(X) ⊗ Fp[vn+1, vn+2, · · · ].

Weshow thatΛ is an isomorphism for X = S0, and, thus, for all X = Sp,q . ByLemma
5, we are considering a map B(n)∗[τ ] → K (n)∗[τ ] ⊗ Fp[vn+1, vn+2, · · · ] which,
under RC, realises to the isomorphism B(n)∗

∼=→ K (n)∗ ⊗ Fp[vn+1, vn+2, · · · ] in
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[39, Proposition 4.14]. Thus, it suffices to calculate Λ(τ ), or, equivalently, Λ̂(τ ) =∑
E∈E v−bE

n s̄E (τ ) ⊗ vE . By the previous lemma, this is equal to v−b0
n s̄0(τ ) ⊗ v0 = τ .

Thus, Λ is an isomorphism if X is a sphere.
Cellular induction via the five lemma shows that Λ is an isomorphism for all

X ∈ SH(C) f in .
By Definition 52(3), any cell spectrum is the colimit of a diagram of finite

cell spectra. As in [73, Theorem 2.1(a)], it follows that, for any X ∈ SH(C)cell ,
AB(n)∗∗X = 0 if and only if AK (n)∗∗X = 0. Here, we use that π∗∗(−) commutes
with filtered colimits by [16, Proposition 9.3].

Furthermore, by [16, Proposition 7.3], any X ∈ SH(C) has a cellular approxima-
tion X ′ ∈ SH(C)cell , f : X ′ → X f ib (X f ib a fibrant replacement of X ), such that

π∗∗( f ) : π∗∗X ′ ∼=→ π∗∗X . Hence, also π∗∗(1E ∧ f ) : E∗∗X ′ → E∗∗X is an isomor-
phism for any E ∈ SH(C). In particular,

AB(n)∗∗X = 0 ⇔ AB(n)∗∗X ′ = 0 ⇔ AK (n)∗∗X ′ = 0 ⇔ AK (n)∗∗X = 0.

�

Corollary 147 For p > 2 and n > 0,

〈AK (n)〉 = 〈AB(n)〉 in SH(C).

This also holds for n = 0, in which case we do not need to assume k = C or
p > 2.

Proposition 148 For any k ⊆ C and any prime p,

〈AK (0)〉 = 〈AB(0)〉 in SH(k).

Proof By definition, AB(0) = p−1ABP and

AK (0) = p−1ABP/(v1, v2, · · · ) = p−1MGL(p)/(a1, a2, · · · )

= MGLQ/(a1, a2, · · · ).

By the main result in [32], MGL/(a1, a2, · · · ) ∼= HZ, which implies

p−1MGL(p)/(a1, a2, · · · ) ∼= p−1HZ(p) = HQ.

Hence, AK (0) ∼= HQ. From Lemma 16(1), we already know

〈AK (0)〉 ≤ 〈AB(0)〉.

To prove
〈AK (0)〉 ≥ 〈AB(0)〉,
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let X ∈ SH(k) f in satisfy AK (0)∗∗(X) = 0. We have to show AB(0)∗∗(X) = 0.
We use [32, Lemma 7.10], in which we rationalise HZ and MGL and set X =
MGLQ. Here, rationalising a spectrum E means forming the homotopy colimit
EQ = p−1E(p). The lemma then states the following.

If F ∈ SH(k) satisfies HQ ∧ F = 0, then [F, MGLQ] = 0.
When rationalising the proof of [32, Lemma 7.10], one uses that κ0(MGLQ) ∼=

(MGLQ)≤0 and κ0(HQ) ∼= HQ≤0, which hold because MGLQ and HQ are con-
nective (which follows from the connectivity of MGL [32, Corollary 3.9] and of
HZ [32, Lemma 7.3]). Furthermore, one uses that

(MGLQ)≤0
∼= (MGL≤0)Q ∼= (HZ≤0)Q ∼= HQ≤0,

where the first and third isomorphisms follow from the fact that (−)≤d preserves
filtered homotopy colimits [32, Lemma 2.1] and the middle isomorphism is by [32,
Lemma 7.5].

We apply this version of [32, Lemma 7.10] to see that (MGLQ)∗∗X = 0 for X as
above, which is equivalent to (MGLQ)∗∗X = 0, since X is finite (Proposition 73).
Using Lemma 16(1) again, it follows that (p−1ABP)∗∗(X) = 0, as we wanted to
show.

As in the previous proof, the equivalence

AK (0)∗∗X = 0 ⇔ AB(0)∗∗X = 0

passes from finite spectra to cellular spectra and then to arbitrary spectra
X ∈ SH(k). �

As a corollary of the above results, we can prove the following analogue of [73,
Theorem 2.1(i)].

Corollary 149 In SH(C),

〈AK (n)〉 ∧ 〈AK (m)〉 = 0

for any m �= n.

Proof Assume m > n. By (1) and (2) of Lemma 17,

〈AK (n)〉 ∧ 〈AP(n + 1)〉 ≤ 〈AE(n)〉 ∧ 〈AP(n + 1)〉 = 〈0〉.

Furthermore, by Lemma 17(3) and the above result,

〈AP(m)〉 = 〈AB(m)〉 ∨ 〈AP(m + 1)〉 = 〈AK (m)〉 ∨ 〈AP(m + 1)〉.
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This implies 〈AK (m)〉 ≤ 〈AP(m)〉. Since m > n, 〈AP(m)〉 ≤ 〈AP(n + 1)〉 by
Lemma 16(1). Hence,

〈AK (n)〉 ∧ 〈AK (m)〉 ≤ 〈AK (n)〉 ∧ 〈AP(n + 1)〉 = 〈0〉.

�

9.5 Decomposition of 〈AE(n)〉

Recall from Definition 74 that

AE(n) = v−1
n ABP/(vn+1, vn+2, · · · ).

With the above preparations, we are ready to prove an analogue of the decomposition
of Bousfield classes given in [73, Theorem 2.1(d)]. This answers a special case of
[27, Question 2.17].

Theorem 20 For p > 2,

〈AE(n)〉 =
∨

0≤i≤n

〈AK (i)〉 in SH(C).

Proof These are the same arguments as for [73, Theorem 2.1(d)]: By Lemma
17(3) and Corollary 147, 〈AP(n)〉 = 〈AB(n)〉 ∨ 〈AP(n + 1)〉 = 〈AK (n)〉 ∨ 〈AP
(n + 1)〉. Since AP(0) = ABP , it follows inductively:

〈ABP〉 = 〈AK (0)〉 ∨ 〈AK (1)〉 ∨ · · · ∨ 〈AK (n)〉 ∨ 〈AP(n + 1)〉.

Since AE(n) is an ABP-module spectrum, 〈AE(n)〉 ≤ 〈ABP〉 by Lemma 16(2).
By Lemma 17(2), 〈AE(n)〉 ∧ 〈AP(n + 1)〉 = 〈0〉. It follows that

〈AE(n)〉 ≤ 〈AK (0)〉 ∨ 〈AK (1)〉 ∨ · · · 〈AK (n)〉.

By Corollary 133 and Lemma 17(1), 〈AE(n)〉 ≥ 〈AE(i)〉 ≥ 〈AK (i)〉 for i ≤ n and
hence also 〈AE(n)〉 ≥ ∨

i≤n
〈AK (i)〉. �

Remark 150 The restriction p > 2 originates from Sect. 9.3, where it was needed
to prove homotopy associativity for the map μAP(n) : AP(n) ∧ AP(n) → AP(n).
There might be a different way to show that the ABP∗∗-action on AP(n)∗∗(X)

induces an AP(n)∗∗-action, in which case the condition p > 2 could be removed in
the previous section and in the theorem.
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9.6 AK (n) and AK (n + 1)

Lemma 30 Let p be any fixed prime. For n ≥ 1 and X ∈ SH(C) f in , AP(n)∗∗(X)

is an AP(1)∗∗AP(1)-comodule and a coherent module over AP(1)∗∗.

Proof Note that AP(1) = ABP/p is a ring spectrum because p : ABP → ABP
is a map of ring spectra and the category of ring spectra is cocomplete. The coaction
on AP(n)∗∗(X) is defined via

AP(n)∗∗X → AP(n)∗∗(AP(1) ∧ X) ← AP(1)∗∗AP(1) ⊗AP(1)∗∗ AP(n)∗∗X,

where the left map is induced by the unit of AP(1) and we need to show that the
right map (induced by AP(1) ∧ AP(n) → AP(n), compare Corollary 139) is an
isomorphism. To prove this isomorphism, it suffices to show that, in the spectral
sequence from [16, Proposition 7.7],

TorAP(1)∗∗(AP(1)∗∗AP(1), AP(n)∗∗X) ⇒ AP(n)∗∗(AP(1) ∧ X),

AP(1)∗∗AP(1) is free over AP(1)∗∗, so that the spectral sequence collapses imme-
diately. We want to apply Lemma 5 to AP(1) ∧ AP(1). Recall that the slice spec-
tral sequence considered in Lemma 5 converges for quotients of Landweber exact
spectra by [32, Theorem 8.12 and Example 8.13]. Now, ABP ∧ ABP is a prod-
uct of Landweber exact spectra and is therefore Landweber exact, see e.g. [65,
Remark 9.2], and AP(1) ∧ AP(1) is a quotient of ABP ∧ ABP . Hence, the slice
spectral sequence converges strongly, and it collapses for the same degree rea-
sons as in Lemma 5. Thus, AP(1)∗∗AP(1) ∼= P(1)∗P(1)[τ ]. By [40, Sect. 1],
this is isomorphic to P(1)∗[τ , zE,A] for certain zE,A. In particular, it is free over
AP(1)∗∗ ∼= P(1)∗[τ ], as we wanted to show.

Now we show that AP(n)∗∗(X) is coherent over AP(1)∗∗. Recall that P(1)∗ ∼=
Fp[vtop

1 , v
top
2 , · · · ] is a coherent ring (see [11, Sect. 1]). The sameholds for AP(1)∗∗ ∼=

Fp[τ , v1, v2, · · · ]. By [11, Proposition 1.2], coherence of modules satisfies the two
out of three property for exact triangles of gradedmodules (i.e., long exact sequences).
It follows that AP(n)∗∗ is a coherent AP(1)∗∗-module, and cellular induction implies
that AP(n)∗∗(X) is a coherent AP(1)∗∗-module, too. �

Setting n = 1 and X = S0, the above lemma tells us that AP(1)∗∗ is a coherent
AP(1)∗∗AP(1)-comodule, where coherent means coherent as an AP(1)∗∗-module.

Lemma 31 (Invariant prime ideals)For k = C and p any prime, the invariant prime
ideals of AP(1)∗∗ (that is, prime ideals which are also sub-comodules) are given by
Im = (v1, · · · , vm−1) and Im = (τ , v1, · · · , vm−1).

Proof We have AP(1)∗∗ ∼= P(1)∗[τ ] and AP(1)∗∗AP(1) ∼= P(1)∗P(1)[τ ], as in
the proof of the previous lemma. Under the functor RC, the coaction
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AP(1)∗∗ → AP(1)∗∗AP(1) ⊗AP(1)∗∗ AP(1)∗∗

realises to
P(1)∗ → P(1)∗P(1) ⊗P(1)∗ P(1)∗

(similarly as in the proof of Corollary 132). By the classical invariant prime ideal
theorem (see [44, Theorem 2.7] or compare [40, Theorem 1.16]), the invariant prime
ideals of P(1)∗ are given by I topm = (v

top
1 , · · · , v

top
m−1). The isomorphism

AP(1)∗∗AP(1) ⊗AP(1)∗∗ AP(1)∗∗ ∼= P(1)∗P(1) ⊗P(1)∗ AP(1)∗∗

implies that Im is an invariant prime ideal in AP(1)∗∗. By AP(1)∗∗ ∼= P(1)∗[τ ], it
follows also that I m is an invariant prime ideal of AP(1)∗∗, too.

It remains to show that there cannot be any further invariant prime ideals. As in
[44], this follows from the fact that the only primitive elements in AP(1)∗∗/I m ∼=
P(1)∗/I

top
m are multiples of powers of vm (compare [44, Proposition 2.11]). �

Corollary 151 (Motivic Landweber filtration theorem) Let p be any prime and
n ≥ 1. For X ∈ SH(C) f in , AP(n)∗∗(X) can be filtered by AP(1)∗∗-modules

AP(n)∗∗(X) = M0 ⊃ · · · ⊃ Mk = 0

such that Mi/Mi+1
∼= AP(1)∗∗/Im or AP(1)∗∗/I m for some Im and Im (m ≥ n) as

above.

Proof ByLemma30, AP(n)∗∗(X) is a coherent AP(1)∗∗AP(1)-comodule.Landwe-
ber’s filtration theorem [45, Theorem 3.3] (see also [40, Theorem 1.16]) implies that
AP(n)∗∗(X) has a filtration

AP(n)∗∗(X) = M0 ⊃ · · · ⊃ Mk = 0

such that Mi/Mi+1
∼= AP(1)∗∗/I for some I which is invariant under the comodule

action. Thus, the claim follows from the previous lemma. �

The following is a motivic version of one statement in [73, Theorem 2.11]. In the
proof, we use ideas from Ravenel’s proof.

Theorem 21 Let p > 2. If X ∈ SH(C) f in satisfies AK (n + 1)∗∗(X) = 0, then also
AK (n)∗∗(X) = 0. That is, 〈AK (n + 1)〉 ≥ 〈AK (n)〉 in SH(C) f in .

Proof Assume n > 0. The case n = 0 will be considered at the end of the proof. Let
E∗∗(−) be defined by

E∗∗X = AE(n + 1)∗∗ ⊗ABP∗∗ AP(n)∗∗(X).
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As in [40, Lemma 3.5], the above Landweber filtration theorem and the fact that
AE(n + 1) is Landweber exact (see [65, Theorem 8.7]) yield

TorAP(n)∗∗
1 (AE(n + 1)∗∗ ⊗ABP∗∗ AP(n)∗∗, AP(n)∗∗/I ) = 0

for all invariant prime ideals I ⊆ AP(n)∗∗ as above. (Alternatively, this can be
derived from the topological analogue and Lemma 5, using [65, Theorem 8.7].)
As in [73, Theorem 2.11], this implies that E∗∗(−) is an exact functor.

In analogy to [73], we show that there is an injective pairing

AK (n + 1)∗∗ ⊗E∗∗ E∗∗X ↪→ AK (n + 1)∗∗X.

To construct this pairing, note that the ABP-action on AK (n + 1) factors through
a map AP(n) ∧ AK (n + 1) → AK (n + 1) by methods from Sect. 9.3, since vi ,
i < n + 1, acts trivially on AK (n + 1) by Corollary 136. This induces a map

AK (n + 1)∗∗ ⊗ABP∗∗ AP(n)∗∗X → AK (n + 1)∗∗X.

As in [73, Theorem 2.11], this map factors through a pairing

AK (n + 1)∗∗ ⊗E∗∗ E∗∗X → AK (n + 1)∗∗X,

the reason being again that the relevant elements act trivially. Such a pairing induces
a universal coefficient spectral sequence, whose motivic version is constructed in
[16, Propositions 7.7 and 7.10],

TorE∗∗
i (E∗∗(X), AK (n + 1)∗∗) ⇒ AK (n + 1)∗∗(X).

As in [73], to prove the injectivity of the pairing, it suffices to prove the vanishing of

TorABP∗∗
i (AP(n)∗∗(X), AK (n + 1)∗∗)

for i > 1. Since n ≥ 1, p acts trivially on both of these modules, and we can replace
ABP by AP(1) = ABP/p. Hence, we have to show the vanishing of

TorAP(1)∗∗
i (AP(n)∗∗(X), AK (n + 1)∗∗)

and, by Corollary 151, the question reduces to the vanishing of

TorAP(1)∗∗
i (AP(1)∗∗/I, AK (n + 1)∗∗)

for i > 1 and I = Im or I m , m ≥ n. By Lemma 5, this equals

TorP(1)∗[τ ]
i (P(1)∗/Im[τ ], K (n + 1)∗[τ ]) or
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TorP(1)∗[τ ]
i (P(1)∗/Im, K (n + 1)∗[τ ]), respectively.

A projective resolution of K (n + 1)∗ over P(1)∗ yields a projective resolution of
K (n + 1)∗[τ ] over P(1)∗[τ ] by applying − ⊗ Fp[τ ]. It follows that both of the
above torsion terms vanish if

TorP(1)∗
i (P(1)∗/Im, K (n + 1)∗) = 0.

For i > 1, this follows from

TorBP∗
i (BP∗/Im, K (n + 1)∗) = 0,

as in the proof of [73, Theorem 2.11]. This proves the injectivity of the above pairing.
Now, assume that AK (n + 1)∗∗X = 0. The injectivity of the pairing implies that

AK (n + 1)∗∗ ⊗E∗∗ E∗∗X = 0. Recall AK (n + 1)∗∗ ∼= H∗∗[v±1
n+1] and note that

E∗∗ ∼= AE(n + 1)∗∗ ⊗ABP∗∗ AP(n)∗∗ ∼= E(n + 1)∗ ⊗BP∗ P(n)∗[τ ] ∼= H∗∗[vn, v±1
n+1]

by [65, Theorem 8.7] and Lemma 5. Therefore, AK (n + 1)∗∗ ⊗E∗∗ E∗∗X = 0
implies v−1

n E∗∗X = 0. Now,

0 = v−1
n E∗∗X = AE(n + 1)∗∗ ⊗ABP∗∗ AB(n)∗∗X,

by the definitions of E∗∗(−) and of AB(n). By Theorem 19, since X is finite, this is
equal to

AE(n + 1)∗∗ ⊗ABP∗∗ AK (n)∗∗(X) ⊗ Fp[vn+1, vn+2, · · · ].

By [65, Theorem 8.7], AE(n + 1)∗∗ ∼= E(n + 1)∗ ⊗BP∗ ABP∗∗. It follows

0 = Z(p)[v1, · · · , vn, v
±1
n+1] ⊗Z(p)[v1,··· ] AK (n)∗∗X ⊗ Fp[vn+1, · · · ].

As vm acts trivially on AK (n)∗∗X for all m �= n by Corollary 136, this implies that
AK (n)∗∗X = 0.

It remains to show that AK (1)∗∗X = 0 implies AK (0)∗∗X = 0. Recall the defini-
tions AE(1) = v−1

1 ABP/(v2, · · · ) and AK (1) = v−1
1 ABP/(p, v2, · · · ) =

AE(1)/p. Since multiplication by p commutes with π∗∗(−), it follows that AK (1)∗∗
X = 0 implies p−1AE(1)∗∗X = 0. (Note that p−1(AE(1)∗∗X) ∼= (p−1AE(1))∗∗X
since π∗∗(−) commutes with filtered colimits by [16, Proposition 9.3].) The fol-
lowing argument is closely related to Corollary 133. Since p−1AE(1)∗∗X = 0,
p−1(ABP/(v2, · · · ))∗∗X is v1-torsion. By Theorem 17, this implies that p−1(ABP/

(v2, · · · ))∗∗X is p-torsion.But this canonlybe the case if p−1(ABP/(v2, · · · ))∗∗X =
0. It follows that

AE(0)∗∗X = p−1(ABP/(v1, v2, · · · ))∗∗X = 0.
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Now, by Theorem 20, 〈AE(0)〉 = 〈AK (0)〉. Hence, AK (0)∗∗X = 0. �

In terms of thick ideals in SH(C)
f in
(p) , p > 2, we have proven that the motivic

Morava K-theory spectra AK (n) indeed describe a descending chain of thick ideals,
similarly to the chain of thick subcategories in SH f in

(p) . The inclusions are proper by
Sect. 8.

Corollary 152 For p > 2,

SH(C)
f in
(p) � CAK (0) � CAK (1) � · · · .

To sum up, we have identified three sequences of thick ideals:

SH(C)
f in
(p)

=
⊃ R−1(C1)

⊃
⊃ R−1(C2)

⊃
⊃ · · ·

SH(C)
f in
(p)

=
⊃ CAK (0)

�

⊃ CAK (1)

�

⊃ · · ·

SH(C)
f in
(p) ⊃ thickid(cC1) ⊃ thickid(cC2) ⊃ · · · .

The lower vertical inequalities are shown in [84, Sect. 3.6].
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Some Observations About Motivic
Tensor Triangulated Geometry over a
Finite Field

Shane Kelly

Abstract We give a brief introduction to tensor triangulated geometry, a brief in-
troduction to various motivic categories, and then make some observations about the
conjectural structure of the tensor triangulated spectrum of the Morel–Voevodsky
stable homotopy category over a finite field.

Keywords Tensor triangulated categories · Motivic cohomology · Finite fields ·
Milnor-Witt K-theory

1 Introduction

These are notes based on three lectures I gave at the workshop “Bousfield classes
form a set: a workshop in memory of Tetsusuke Ohkawa” at Nagoya University in
August 2015.

The goal of the lectures was to give a brief sketch of the Morel–Voevodsky stable
homotopy category SH(S) and motivic stable homotopy groups of spheres, aimed
at someone with no previous experience with motives, and then in the last lecture
see if anything could be said about the tensor triangulated spectrum Spc(SH(S)c) of
SH(S). I expected, perhaps naïvely, Spc(SH(S)c) to be completely intractable, but
to my surprise, it is possible to give a conjectural description of Spc(SH(Fq)

c
Q
) (cf.

[32, Conj. 51] for Beilinson–Parshin and [34, pg. 17] for Rat = Num.).

Theorem 1.1 (Theorem 4.1) Let Fq be a field with a prime power, q, number of
elements. Suppose that for all connected smooth projective varieties X we have:

CHi (X, j)Q = 0, ∀ j �= 0, i ∈ Z (Beilinson–Parshin conjecture),
CHi (X)Q ⊗ CHi (X)Q → CH0(X)Q is non-degenerate. (Rat. and num. equiv. agree)

(1)

Then
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Spc(SH(Fq)
c
Q
) ∼= Spec(Q). (2)

Later, I found out there are a considerable number of results about Spc(SH(k)c)
for k ⊆ C in [31], using methods adapted from the study of the classical stable
homotopy category. Another paper studying this object is [25], where it is proven
that Balmer’s comparisonmap is surjective (for any field of non-even characteristic!).
They also address what is possibly one of the most important questions in this area
of study—the production of field spectra.

For a speculative discussion about the structure of Spc(SH(Fq)
c) see Sect. 4.

In this last section we also prove that Balmer’s comparison map

Spc(SH(Fq)
c) → Spech(KMW (Fq)) (3)

is surjective in the special case of finite fields of prime characteristic, Corollary 4.6.
To do this we exploit the fact that we can describe Spech(KMW (Fq)) completely—an
approach due to Ormsby.

Outline. The first section contains the basic definitions of tensor triangulated
geometry, and references to the literature. It is aimed at the motivic reader who has
had minimal to no exposure to these things.

The second section contains basic definitions of various motivic categories, and
references to the literature. It is aimed at the tensor triangulated geometer who has
had minimal to no exposure to these things.

The last section contains some observations and guesses about the structure of
Spc(SH(Fq)

c). In particular, it contains Theorem 4.1 and its proof.

2 Tensor Triangulated Geometry

In this section we recall some basic definitions from tensor triangulated geometry.
For a much more readable exposition of this material the reader is encouraged to
consult [10].

Example 2.1 The most enlightening example to keep in mind when reading the fol-
lowing definitions is the bounded derived category of coherent sheaves on smooth
variety X over a field, or equivalently, the derived category Dperf(X) of perfect com-
plexes on X . Of course, there are other important examples coming from scheme the-
ory, stable homotopy theory, modular representation theory, noncommutative topol-
ogy, and, as we shall see below, the theory of motives, [10, §1].

Warning 2.2 Whereas the elements of a ring R behave like functions, the objects in
a ⊗-triangulated K behave like (bounded complexes of) sheaves: a closed subset
of Spec(R) corresponds to the set of functions vanishing on it, whereas a closed
subset of Dperf(Spec(R)) corresponds to the set of (perfect complexes of) sheaves
supported on it. Consequently, the correspondence { ideals } ↔ { closed subsets } is
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inclusion preserving in the ⊗-triangulated world, where it is inclusion reversing in
the world of commutative algebra. Cf. also Proposition 2.7(2) and (3) below. For a
more surprising example of this phenomenon see [10, Rmk.27]. Cf. also [35].

Definition 2.3 Let (K ,⊗, 11) be an essentially small ⊗-triangulated category, i.e.,

a triangulated category equipped with a monoidal structure K × K
⊗→ K with

a unit object 11, such that ⊗ is exact in each variable, [10, Def. 3]. Let J be a
non-empty full triangulated subcategory.

1. J is called thick if it is stable under direct summands; a ⊕ b ∈ J ⇒ a ∈ J
or b ∈ J , [10, Def. 7]. For any closed subvariety Z of a smooth variety X , the
subcategory of objects supported on Z , i.e., objects sent to zero by the canonical
functor Dperf(X) → Dperf(X−Z), is thick.

2. J is said to be a ⊗-ideal if K ⊗ J ⊆ J , [10, Def. 7]. The subcategories
ker(Dperf(X) → Dperf(X−Z)) just mentioned are tensor ideals. For an example
of a thick subcategory which is not a tensor ideal, the reader could consider using
the Fourier-Mukai transform [27, Prop. 9.19] between the derived category of
an abelian variety and its dual, as this preserves thick subcategories, but not the
tensor structure.

3. A prime ofK is a thick ⊗-idealP such that 11 /∈ P and a ⊗ b ∈ P ⇒ a ∈ P
or b ∈ P , [10, Constr. 8]. The set of primes is denoted by

Spc(K ) = { primes of K }. (4)

The ideals ker(Dperf(X) → Dperf(X−Z))mentioned above are prime if and only
if Z is irreducible.

4. The support, denoted by supp(a), of an object a ∈ K is the set of primes not
containing it,

supp(a) = {P ∈ Spc(K ) : a /∈ P}. (5)

The complement of supp(a) is denoted by, [10, Constr. 8],

U (a) = {P ∈ Spc(K ) : a ∈ P}. (6)

5. The set Spc(K ) has a canonical topology with basis the sets U (a) as a ranges
over all objects inK , [10, Constr. 8].

6. To a subset Y of Spc(K ), we associate the full subcategory

KY = {a ∈ K : supp(a) ⊆ Y }. (7)

If Y is a union Y = ∪i∈I Yi of subsets Yi whose complement Spc(K ) − Yi is open
and quasi-compact (in the sense that every open cover admits a finite subcover),
then KY is a thick ⊗-ideal of K , [10, Rmk.12, Thm.14].

7. If U is a quasi-compact open of Spc(K ), with closed complement Z =
Spc(K )−U , one defines the tensor triangulated category
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K (U ) = (K /KZ )� (8)

as the idempotent completion of the Verdier localisation of K by KZ . An in-
clusion V ⊆ U of such opens comes with a canonical ⊗-triangulated functor
K (U ) → K (V ), [10, Constr. 24].

8. The sheafification of the assignment sending a quasi-compact openU to the ring
homK (U )(11, 11) is denoted by OK . This gives Spc(K ) the structure of a ringed
space, and, at least when K is rigid1 and idempotent complete, (Spc(K ),OK )

is a locally ringed space, [9, Cor. 6.6]. This ringed space is referred to as the
spectrum of K , [10, Constr. 29].

Example 2.4 1. Let X be a quasi-compact quasi-separated scheme (for example
a variety over a field). Then there is an isomorphism of locally ringed spaces
X ∼= Spc(Dperf(X))where Dperf(X) is the derived category of perfect complexes
on X , [10, Thm.54].

2. Let SHtop be the classical stable homotopy category. Then Spc(SHc
top) is

P2,∞ P3,∞ P5,∞ P7,∞ . . .

...
...

...
...

P2,2 P3,2 P5,2 P7,2 . . .

P2,1 P3,1 P5,1 P7,1 . . .

P0,1

(9)

The lines indicate that the higher prime is in the closure of the lower one. For every
prime number p and every n ≥ 1, the primePp,n of SHc

top is the kernel of the nth
Morava K -theory (composedwith localisation at p) andPp,∞ = ∩n≥1Pp,n is the
kernel of localisation at p. The generic pointP0,1 = (SHc

top)tor = ker(H(−, Q))

is the kernel of singular cohomology with Q-coefficients, Hopkins–Smith [26],
[9, Cor. 9.5], [10, Thm.51].

3. Let G be a finite group, and let SHG be the G-equivariant stable homotopy
category. For a subgroup H ⊆ G let ΦH : SHc

G → SHc
top denote the geometric

H -fixed points functor. Then, as a set,

Spc(SHc
G) =

{
P(H, p, n)

de f= (ΦH )−1Pp,n : H ≤ G,Pp,n ∈ Spc(SHc
top)

}
.

(10)

1An object a in a ⊗-category is called strongly dualisable if there exists an object Da such that
a ⊗ − is left adjoint to (Da) ⊗ −. A⊗-category is called rigid if every object is strongly dualisable.
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Furthermore,P(H, p, n) = P(H ′, p′, n′) if and only if H and H ′ are conjugate
in G, and p = p′, n = n′. For more details see [14].
In the case of a cyclic group G = Z/n, the space Spc(SHc

G) contains a copy
of Spc(SHc

top) for every m dividing n, including 1 and n. Over Spec(Z[1/n]),
the copies are disjoint, but there are some specialisation-generisation relations
between the points lying over Spec(Z/n), cf. [14, Eq.1.3], [31, Sect. 3, Proof of
Neil’s theorem].

Just as schemes admit a canonical comparison morphism to the spectrum of their
global sections, there are canonical comparison morphisms from Spc(K ) to the
spectrum of the ring of endomorphisms of the unit object.

Theorem 2.5 ([9, Thm.5.3, Cor. 5.6, Thm.7.13, Not. 3.1]) Let K be an essen-
tially small ⊗-triangulated category and u ∈ K an invertible object. There are two
continuous maps of topological spaces

ρK : Spc(K ) → Spec

(
homK (11, 11)

)
, ρ•

K : Spc(K ) → Spech
(

⊕n∈Z homK (11, un)

)
.

(11)
Here, Spech indicates the set of proper homogeneous ideals which are prime.2 It is
equipped with the topology whose closed sets are of the form V (I •) = {p• ∈ Spech :
I • ⊆ p•} for homogeneous ideals I •, [9, Rmk.3.4].

Futhermore, if homK (11[i], 11) = 0 for i < 0, then ρK is surjective. In the case
u = 11[1], and the graded endomorphism ring is coherent (e.g., noetherian), the map
ρ•
K is surjective.
For any morphism s : 11 → un, the premiage of the principle open D(s) of homo-

geneous primes not containing s is the open U (Cone(s)) of primes ofK containing
Cone(s).

Remark 2.6 The maps of Theorem 2.5 are as follows. The first one is defined on

primes P by ρK (P) = {11 f→ 11 : Cone( f ) /∈ P}. The second one takes a prime

P to the homogeneous ideal generated by those 11
f→ un such that Cone( f ) /∈ P

as n ranges over all integers.

Later on we will use the following facts.

Proposition 2.7 (Balmer) LetK be an essentially small ⊗-triangulated category.

1. If F : K → L is a ⊗-exact functor to another essentially small ⊗-triangulated
category L , then the assignment P �→ F−1P defines a continuous map of
topological spaces Spc(F) : Spc(L ) → Spc(K ). For every a ∈ K , we have
supp(F(a)) = Spc(F)−1(supp(a)), [10, Prop.11(c)].

2Recall that Proj of a non-negatively graded ring is the set of those proper homogeneous prime ideals
which don’t contain all elements of positive degree. There is no such exclusion in the definition of
Spech .
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2. Let J ⊂ K be a thick ⊗-ideal. Then the Verdier localisation K → K /J
induces a homeomorphism from Spc(K /J ) onto the subspace {P : J ⊆ P}
of Spc(K ). This subspace is not always open (although it is if, for example, J
is generated by a single element), but it is always closed under specialisation,
[10, Thm.18(a)].

3. Let u ∈ K be an object such that the cyclic permutation u⊗3 ∼→ u⊗3 is the
identity. Then the localisationK → K [u⊗−1] induces a homeomorphism from
Spc(K [u⊗−1]) onto the closed subspace supp(u) = {P : u /∈ P} of Spc(K ),
[10, Thm.18(c)].

4. Let f be a morphism between tensor invertible objects ofK . Then there exists a
prime containing Cone( f ) if and only if f ⊗n �= 0 for all n ≥ 0, [9, Thm.2.15],
[7, Cor.2.5].

The following notion of prime ideal of an abelian category which is analogous to
primes of a ⊗-triangulated category was developed in [51].

Definition 2.8 (cf. [51, Def. 4.2]) Let A be an abelian category. Recall that a full3

subcategory ofA is called thick, [36,Def. 8.3.21.(iv)], if it is closed under extensions,
kernels, and cokernels.4 Suppose now that A is a tensor abelian category. A (thick)
tensor ideal ofA is a (full) thick subcategoryM ⊆ A such thatM ⊗ A ⊆ M . A
proper⊗-idealM ⊂ A is called a (thick) prime ideal if a ⊗ b ∈ M implies A ∈ M
or B ∈ M .

Lemma 2.9 Suppose that (A ,⊗, 11) is a rigid semisimple5 tensor abelian category.
If 11 is simple, then both K b(A ) and A possess a unique prime: {0}.
Proof Since A is semisimple, every object of Kb(A ) is isomorphic to the sum of
its shifted cohomology objects, i.e., Kb(A ) ∼= ⊕

i∈Z A as a triangulated category;

the triangulated structure on
⊕

i∈Z A is given by shifting the indices, and Cone(a
f→

b) = ker( f )[1] ⊕ coker( f ). Inspecting the definitions, we see thatM �→ ⊕
i∈I M

is a bijection from the set of prime ideals of the tensor abelian categoryA to the set
of primes of the ⊗-triangulated category

⊕
i∈Z A . So it suffices to treat the case of

A .
Let a be a nonzero object of some prime ideal M . Since it is a tensor ideal, it

must also contain (Da) ⊗ a where Da is the strong dual of a, which exists by the
assumption that A is rigid. By definition, (Da) ⊗ − is right adjoint to a ⊗ −, and

so we have canonical morphisms 11
ε→ (Da) ⊗ a and a ⊗ (Da)

η→ 11 such that the

composition a
ida⊗ε−→ a ⊗ (Da) ⊗ a

η⊗ida−→ a is ida . If ε were to be zero, then ida would
be zero, contradicting the assumption that a is nonzero. So ε is nonzero, and by the

3This assumption does not appear in [51, Def. 4.2], but it seems it should be there.
4In [51, Def. 4.2], the definition uses coherent abelian subcategories, which, as Oliver Braunling
pointed out to me, are just thick subcategories containing a zero object.
5Anobjecta in an abelian category is called simple if everymonomorphismb → a (in the categorical
sense) is either zero or an isomorphism. An object is semisimple if it is a sum of simple objects. An
abelian category is semisimple if all of its objects are semisimple.
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assumption that 11 is simple, andA is semisimple, ε must be the inclusion of a direct
summand. Since prime ideals are closed under direct summand, it follows that M
contains 11, and therefore M = A .

3 Motivic Categories

In this section we rapidly review the motivic categories that we will discuss. Specif-
ically, the Morel–Voevodsky stable homotopy category SH(S), Voevodsky’s trian-
gulated category of motives DM(S), Grothendieck’s classical categories of motives
with respect to an adequate equivalence relation M∼(k), and some of the relation-
ships between these. This section will be too basic for the experts, and too terse for
the non-experts, but we hope that it will at least serve to set notation for the experts,
and provide references to the literature for the non-experts.

Remark 3.1 Philosophically, categories of motives should be defined by universal
properties. Consequently, all the constructions have a “generators and relations” feel
to them, cf. Remarks 3.4, 3.11, and Definition 3.3.

3.1 Grothendieck Motives

A nice introduction to classical Grothendieck motives over a field is [54]. For the
extension to a smooth base and a beautiful application of this extension see [20].

Definition 3.2 Cycle groups. Let k be a field, and S a smooth k-scheme of pure
dimension dS . For a smooth projective S-scheme X , let Z i (X) denote the free
abelian group generated by the closed integral subscheme of X of codimension i . If
∼ is an adequate equivalence relation6 such as rational equivalence,7 homological
equivalence,8 or numerical equivalence,9 denoted rat, hom, and num respectively,
we will write Ai∼(X) = Z i (X)/ ∼.

6An adequate equivalence relation is a family of equivalence relations ∼X on the Z ∗(X) which
satisfy three properties, which essentially require that composition as defined above is well-defined,
[53]. In short, pullback, pushforward, and intersection are well-defined.
7Two cycles α, α′ ∈ Z i (X) are rationally equivalent if there is a cycle β ∈ Z i (P1

X ) such that β ·
[{0} × X ] = α and β · [{∞} × X ] = α′. Rational equivalence is the coarsest equivalence relation.
8A cycle α is homologically equivalent to zero if its image under the cycle class map Z i (X) →
H2i (X) is zero, for some prechosen Weil cohomology theory, such as étale cohomology Hi (X) =
H2i
et (X, Ql (i)) for some l � char p. In other words, Ai

hom(X) is the image of the cycle class map
Ai
hom(X) = im(Z i (X) → H2i (X)).

9Numerical equivalence is the coarsest equivalence relation which makes the intersection prod-
uct Ai

num(X) ⊗ Ad−i
num(X) → Ad

num(X) nondegenerate, where d = dim X . That is, α ∈ Ai
rat(X) is

numerically equivalent to zero if and only if α · β = 0 for all β ∈ Ad−i
rat (X).
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Cycle categories. For any triple X,Y, Z of smooth projective S-schemes, and cy-
cles α ∈ Ai∼(X ×S Y ), and β ∈ A j∼(Y ×S Z), the composition β ◦ α ∈ Ai+ j∼ (X ×S

Z) is defined by pulling α and β back to the triple product X ×S Y ×S Z along the
canonical projections, intersecting them, and then obtaining a cycle on X ×S Z by
pushing forward along the canonical projections. In this way we obtain a category,
whose objects are smooth projective S-schemes, and hom(X,Y ) = Adim X/S∼ (X ×S

Y ). Here dim X/S denotes the relative dimension of the morphism X → S. Identity
morphisms are given by the cycles associated to the diagonals 	X ⊆ X ×S X . Fibre
product of S-schemes induces a tensor product on this category.

Motivic categories. The objects of M∼(S) are triples (X, p, n) where X is a
smooth projective S-scheme, p ∈ Adim X/S∼ (X ×S X) satisfies p ◦ p = p, and n ∈ Z.
We set

homM∼(S)((X, p, n), (Y, q,m)) = {α ∈ Adim X/S+n−m
∼ (X ×S Y ) : α = p ◦ α ◦ q}.

(12)
This category is a tensor additive category with sum induced by disjoint union of
S-schemes, and tensor product induced by fibre product. There is a canonical functor

M : SmProj(S) → M∼(S); X �→ (X, [	X ], 0) (13)

from smooth projective S-schemes which sends a morphism f : X → Y to the cycle
associated to its graph Γ f ⊆ X ×S Y .

Remark 3.3 Any section s : S → X of an S-scheme f : X → S, for example the
section at infinity ∞ : S → P

1
S , gives rise to any idempotent endomorphism s ◦ f ,

and consequently a decomposition M(X) ∼= M(S) ⊕ (ker M(s ◦ f )). The Left-
schetz motive L is defined as the kernel of the projection to infinity M(P1

S)
∼=

M(S) ⊕ L. We then have a canonical isomorphism

(X, p, n) ∼=
(
im

(
M(X)

p→M(X)
))⊗L⊗(−n). (14)

Remark 3.4 This definition can be seen as a generators and relations construction of
a category. The generators are smooth projective varieties and correspondences, and
the relations we have forced are the equivalence relation ∼, the existence of kernels
and images of idempotent endomorphisms, and the tensor inverse of L.

Definition 3.5 For an abelian group A and � a flat Z-algebra, we write A� = A ⊗
�. If A is an additive category, we write A� for the category which has the same
objects as A and homA�

(a, b) = homA (a, b)�.

Remark 3.6 Since Q is a flat Z-algebra, the categoriesM∼(k)Q are the same as the
ones constructed as above, using A∗∼(X)Q instead of A∗∼(X).

Theorem 3.7 ([29, Thm.1])Let k be a field and∼ an adequate equivalence relation.
The category M∼(k)Q is semisimple if and only if ∼ is numerical equivalence.
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Remark 3.8 ([54, 1.15]) There is a canonical functor ∨ : M∼(k)op → M∼(k)
defined by (X, p,m)∨ = (X, t , d − m) when X is purely d dimensional. Here
t : Ad∼(X ×S X) → Ad∼(X ×S X) corresponds to swapping the Xs.

One can verify by hand that M∨∨ = M and that for any three objects M, N , P
one has

hom(M ⊗ N , P) = hom(M, N∨ ⊗ P). (15)

Consequently, the categories M∼(k) are rigid.

3.2 Voevodsky Motives

Definition 3.9 Correspondences. Let S be a regular10 noetherian separated scheme,
such as the spectrum of a field. The category SmCor(S) has as objects smooth
S-schemes, and homSmCor(S)(X,Y ) is the free abelian group generated by closed
integral subschemes Z ⊆ X×SY such that the map Z → X induced by projection
is finite and surjective. Composition of two morphisms α ∈ homSmCor(S)(X,Y ) and
β ∈ homSmCor(S)(Y,W ) is defined as above: by pulling back to the triple product
X×SY×SW , intersecting, and thenpushing forward to X×SW . The condition that the
generators of the hom groups be finite and surjective over the first component ensures
that the two pullbacks to X×SY×SW intersect properly. The category SmCor(S) is
a tensor additive category, with direct sum induced by disjoint union of schemes, and
tensor product induced by fibre product. As above, there is a canonical functor

[−] : Sm(S) → SmCor(S) (16)

which sends a morphism to the cycle induced by its graph.
Effective geometric motives. Since SmCor(S) is additive, we can consider its

bounded homotopy category Kb(SmCor(S)). Define HI to be the set of complexes
of the form

(· · · → 0 → [A1
X ] → [X ] → 0 → . . . ) (17)

where X ranges over all smooth S-schemes. Define NMV to be the set of complexes
of the form

(· · · → 0 → [U×XV ] [k]+[l]→ [U ] ⊕ [V ] [i]−[ j]→ [X ] → 0 → . . . ) (18)

10The category SmCor(S) can be defined for any noetherian separated scheme S, but we have
not mentioned this construction because branch points make composition more subtle. For a more
general S, the group homSmCor(S)(X, Y ) is only a proper subgroup of the free abelian group we
describe, since branches of X introduce an ambiguity in the composition of some cycles. In fact, it
can be defined as the largest subgroup for which composition is well-defined, as soon as the notion
of composition has been formalised appropriately, [33, Chap.2].
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ranging over all Nisnevich distinguished squares.11,12 The category of effective ge-
ometric motives is defined as

DMef f
gm (S) =

(
Kb(SmCor(S))

〈HI ∪ NMV〉
)�

(19)

where (−)� denotes idempotent completion, 〈HI ∪ NMV〉 is the smallest thick trian-
gulated subcategory generated by the sets of objects HI and NMV, and the fraction
denotes the Verdier quotient.

Noneffective geometric motives. The tensor structure on SmCor(S) induces a
canonical tensor structure on DMef f

gm (S), and there is a canonical monoidal functor

M : Sm(S) → DMef f
gm (S) (20)

induced by [−] : Sm(S) → SmCor(S). As above, projection to infinity defines an
idempotent endomorphism of M(P1

S) the Tate motive Z(1)[2] to be the kernel of this
endomorphism: M(P1

S)
∼= M(S) ⊕ Z(1)[2]. Since we are working with complexes,

we have an explicit model for this:

Z(1)
de f= (· · · → 0 → [P1

S]
2

→ [S]
3

→ 0 → . . . ) (21)

as a complex concentrated in degrees 2 and 3. We obtain the category of noneffective
geometric motives is defined by forcing Z(1) to be tensor invertible.

DMgm(S) = DMef f
gm (S)[Z(1)−1]. (22)

Formally, the objects of DMgm(S) are pairs (M,m) with M an object of DMef f
gm (S)

andm ∈ Z, andmorphisms are hom((M,m), (N , n)) = lim−→k≥m,n
(M ⊗ Z(1)k−m, N ⊗

Z(1)k−n).

Remark 3.10 1. To simplify notation, one usually writes Z(m) = Z(1)⊗m and
M(m) = M ⊗ Z(m).

2. To show that the tensor structure on DMgm(S) is well defined on morphisms, one

needs to show that the cyclic permutation Z(1)⊗3 ∼→ Z(1)⊗3 is the identity. This
is [58, Cor. 2.1.5].

11A Nisnevich distinguished square is a cartesian square
U×X V↓

U

→
→

V↓
X
such that U → X is an open

immersion, V → X is étale, and (X−U )red×X V → (X−U )red is an isomorphism.
12In [58] Voevodsky only uses Zariski distinguished squares, i.e., those squares for which j is also
an open immersion. However, [58, Thm.3.1.12] implies that, at least when the base is a perfect
field, the Zariski and Nisnevich versions produce the same category. On the other hand, it is the
Nisnevich descent property which is often used in most of the proofs in [58]. Nisnevich locally,
closed immersions of smooth schemes look like zero sections of trivial affine bundles, cf. [47, Proof
of Lemma 2.28].
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3. The transition morphisms in the colimit defining the hom groups in DMgm(S)

are actually all isomorphisms, at least when the base is a perfect field: Voevodsky
shows in the “incredibly short and absolutely ingenious”13 article [59] that − ⊗
Z(1) is a fully faithful functor on DMef f

gm (S) when S is the spectrum of a perfect
field.

Remark 3.11 Again, this definition is clearly of the generators and relations form.
One starts with smooth schemes and correspondences as the generators, and then
forces A

1-invariance, Nisnevich descent, kernels and cokernels of idempotents to
exist, and Z(1) to be tensor invertible.

The most important facts we will need about DMgm(S) are the following.

Theorem 3.12 Let k be a perfect field of exponential characteristic p.

1. The category DMgm(k)Z[1/p] is rigid. If X is a smooth projective k variety of pure
dimension d, then the dual of M(X) is M(X)(−d)[−2d], [33, Thm.5.5.14], [58,
Thm.4.3.7].

2. For any smooth k-variety X, n ∈ Z, i ≥ 0, there are canonical isomorphisms

homDMgm (k)(M(X), Z(i)[n]) ∼= CHi (X, 2i − n) (23)

towards Bloch’s higher Chow groups, defined in [11]. In particular, for any
smooth k-variety X and smooth projective k-variety Y of pure dimension d, there
are canonical isomorphisms

homDMgm(k)Z[1/p](M(X), M(Y )(i)[n]) ∼= CHi+d(X×kY, 2i − n)Z[1/p], (24)

[33, Thm.5.6.4], [48, Thm.19.1], [55, Thm.3.2].
3. Consequently, there is a canonical fully faithful tensor additive embedding

Mrat(k)Z[1/p] → DMgm(k)Z[1/p]. (25)

4. The category DMgm(k)Z[1/p] is generated (as an idempotent complete tensor
triangulated category) by motives of smooth projective k-varieties. [13], [58,
Cor.3.5.5].

Remark 3.13 If one believes in strong resolution of singularities, in the sense of [22,
Def. 3.4], then one doesn’t have to invert p in the above theorem.

Using the fact that étale cohomology has a structure of transfers, is homotopy
invariant, satisfies Nisnevich descent, and is P

1-stable, one can construct a canonical
functor to l-adic sheaves.

13In his MathSciNet review, Röndigs attributes this quote to Suslin.
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Theorem 3.14 ([28, Thm. 3.1], cf. also [37, Appendix A]) For any noetherian
separated scheme S, and l invertible on S, and any n > 0 there are canonical tensor
triangulated functors

DMgm(S) → Det (S, Z/ ln), DMgm(S)Q → Det (S, Ql). (26)

Here, the target categories are the derived categories associated to the small étale site
of S. If f : X → S is a smoothmorphism, then the image of M(X) is the pushforward
R f∗(Z/ ln)X , resp. R f∗(Ql)X , of the constant sheaf on the small étale site of X. If S
is the spectrum of a perfect field, then this also holds for non-smooth X.

3.3 Morel–Voevodsky’s Stable Homotopy Category

The definition of SH(S) was sketched in [57] using the unstable theory of [47].
A more explicit construction, which includes the use of symmetric spectra is in
[30], and a more modern treatment which incorporates advances in the theory of
model categories which happened in the meantime (many of which were motivated
precisely for the study of SH(S)) appears in [3, Def. 4.5.52]. Even more recently, the
universal property which SH(S) satisfies was made formal in [52, Cor. 2.39], using
the language of infinity categories. Below we sketch the construction of [16], which
we find to be the most accessible.
Heuristic “Definition” 3.15. Let S be a noetherian scheme. The Morel–Voevodsky
stable homotopy category SH(S) is the universal tensor triangulated category such
that:

1. There is a monoidal functor Σ∞(−)+ : Sm(S) → SH(S).
2. (A1-invariance) Σ∞(A1

S)+ → Σ∞(S)+ is an isomorphism.
3. (Nisnevich descent) Σ∞(−)+ sends Nisnevich distinguished squares (see foot-

note 11) to homotopy cocartesian squares. That is, in the notation of footnote 11,
the Mayer-Vietoris style triangle

Σ∞(U×XV )+ −→ Σ∞U+ ⊕ Σ∞V+ −→ Σ∞X+ (27)

fits into a distinguished triangle.
4. ((P1,∞)-Stability) The cofibre of the image of the section at infinity∞ : S → P

1
S

is tensor invertible. That is, Cone
(
Σ∞S+ → Σ∞(P1

S)+
)
is tensor invertible.

The tensor triangulated category SH(S) can be constructed as follows.

Construction 3.16 [16, 1.2, 2.15] Let SpS1(S) denote the category of presheaves of
symmetric S1-spectra on Sm(S). This category is equipped with the projective model
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structure.14 Via Yoneda, every smooth S-scheme equipped with a section, such as P
1
S

equipped with the section at infinity, gives rise to an object of SpS1(S).15 Let T be an
cofibrant replacement16 for the pointed scheme P

1
S in SpS1(S), and let SpT SpS1(S)

denote the category of symmetric T -spectra in SpS1(S). It comes equipped with a
canonical “Yoneda” functor17

Σ∞(−)+ : Sm(S) → SpT SpS1(S), (28)

and a “constant sheaf” functor18

SpS1 → SpT SpS1(S). (29)

Let HI be the set of images in the homotopy category Ho(SpT SpS1(S)) of the mor-
phisms Σ∞(A1

X )+ → Σ∞X+ as X ranges over all smooth S-schemes. Let NMV
be the set of images in Ho(SpT SpS1(S)) of the morphisms Cone(Σ∞(U×XV )+ →
Σ∞U+ ⊕ Σ∞V+) → Σ∞X+ ranging over all distinguished Nisnevich squares (see
footnote 11) in Sm(S). We define SH(S) as the Verdier quotient

SH(S) = Ho(SpT SpS1(S))

〈〈HI ∪ NMV〉〉 . (30)

Here the double angle brackets 〈〈−〉〉 indicate the localising category, i.e., the small-
est triangulated category closed under direct summands and arbitrary small sums,
containing the objects of HI and NMV.

Its subcategory of compact objects is the smallest thick triangulated category
containing the objects Σ∞X+ for all X ∈ Sm(S). This is denoted by

14The projective model structure is the model structure for which a morphism is a fibration (resp.
weak equivalence) if and only if it is a fibration (resp. weak equivalence) of symmetric S1-spectra
after evaluation on every X ∈ Sm(S).
15The Yoneda functor produces a presheaf of pointed sets homSm(S)(−, P

1
S), and then working

schemewise, we associated to every pointed set its induced pointed simplicial set, and from there
its associated symmetric S1-spectrum.
16The projective model structure has the nice property that representable presheaves are cofibrant,
however, by representablewemean the image of a schemewith a disjoint base point, cf. Footnote 17.
Presheaveswhich are the image of pointed schemeswhose basepoint is not disjoint are not in general

cofibrant. Hence, we need to take some cofibrant model. For example, the pushout of S+ ∧ 	1+
0←

S+
∞→ P

1+ is a cofibrant model for (P1
S,∞), where 	1+ is the constant presheaf corresponding to

the simplicial interval. This is exactly the analogue of the complex ([S] ∞→ [P1
S]) which we could

have used to define Z(1) in DMef f
gm (S).

17We first equip any S-scheme X with a base point by replacing it with X+ = X � S. Then using
the procedure described in Footnote 15 we get a functor Sm(S) → SpS1 (S), which we compose
with the canonical functor SpS1 (S) → SpT SpS1 (S).
18This is actually the composition of the constant presheaf functor SpS1 → SpS1 (S) from sym-
metric S1-spectra to presheaves of symmetric S1-spectra, and the canonical functor SpS1 (S) →
SpT SpS1 (S).
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SH(S)c = 〈Σ∞X+ : X ∈ Sm(S)〉 ⊂ SH(S) (31)

Remark 3.17 There are also constructions using S1 ∧ Gm (where Gm is pointed at
the identity) instead of P

1
S , and constructions which take the HI ∪ NMV localisations

as Bousfield localisations before passing to T -spectra. These all produce equivalent
categories, [16, 2.15].

Remark 3.18 The canonical inclusion (see footnote 10) Sm(S) → SmCor(S), and
the canonical functor SpS1 → Cpx(Ab) from symmetric S1-spectra to (unbounded)
complexes of abelian groups induces a canonical tensor triangulated functor

SH(S) → DM(S). (32)

Here, DM(S) can defined in the same way as we have defined SH(S), but using
SmCor(S) instead of Sm(S), and Cpx(Ab) instead of SpS1 . As DMgm(S) can be
identified with the thick subcategory of DM(S) generated by the motives of smooth
schemes, this functor restricts to a functor

SH(S)c → DMgm(S). (33)

Theorem 3.19 (Morel, [45], cf. also [15, §A.3, §C.3]) If S is the spectrum of a
field such that −1 is a sum of squares (such as a finite field, or the field of complex
numbers), the canonical functor, cf. Remark 3.18,

SH(S)c
Q

→ DMgm(S)Q (34)

is a ⊗-triangulated equivalence of categories.

Remark 3.20 Morel proved this theorem is true for the rational versions of the big
categories SH(S) and DM(S), but Definition 3.5 does not work properly for non-
compact objects, so some care must be taken with the term “rational version”. Either
one can localise at all morphisms n · idM for all objects M and all integers n �= 0,
or since the rational versions of Sp1S and Cpx(Ab) are Quillen equivalent to the cat-
egory of unbounded complexes of Q-vector spaces, one could just use these in the
constructions instead.

The study of the motivic stable homotopy groups of spheres—the abelian groups
homSH(S)(11[p + q], T q) for p, q ∈ Z—is one of the central problems in motivic
homotopy theory.

Theorem 3.21 Suppose that k is the spectrum of a perfect field.

1. homSH(k)(11[p+q], T q) = 0 if p < 0, [42, Thm.4.2.10, §6 Intro.].
2. The graded ring ⊕q∈Z homSH(k)(11[q], T q) is canonically isomorphic to the

graded associative ring K MW• (k) generated by symbols [a], a ∈ k∗, of degree
1, and one symbol η of degree −1, subject to the following relations.
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a. [a][1 − a] = 0.
b. [ab] = [a] + [b] + η[a][b].
c. η[a] = [a]η.
d. η · h = 0, where h = 1 + (η[−1] + 1), [46, Def.12, Cor.25].

In degree zero, we have the Grothendieck-Witt group GW (k) ∼= KMW
0 (k), [46,

Cor.24]. If the characteristic of k is not 2, then for every n ∈ Z, there is a canon-
ical short exact sequence of abelian groups

0 → I (k)n+1 → KMW
n (k) → KM

n (k)︸ ︷︷ ︸
∼=KMW

n (k)/η

→ 0 (35)

where I (k) = ker(W (k)→Z/2) is the augmentation ideal in the Witt ring W (k)
of the field k, we set I (k)n = W (k) for n < 0 by convention, and K M

n (k) is the
Milnor K -theory of the field k, [44], [23, Def.3.7, Thm.3.8, Thm.5.4].19

3. If k is algebraically closed of characteristic zero then homSH(k)(11[n], 11) ∼= π s
n ,

the classical stable homotopy groups, [39, Cor.2]. If k is an algebraic closure of
a finite field with p elements, and l is a prime different from p, then the we have
the same result after l-completion homSH(k)(11[n], 11)∧l ∼= (π s

n )
∧
l , [60, Thm.A]. In

fact, for any subfield k ⊆ C, the⊗-triangulated functor SHtop → SH(k) induced
by the constant presheaf funtor, cf. Eq. (29), is fully faithful.

4. In fact, let k ⊆ C be a subfield. Then sending a smooth k-scheme X to its complex
valued points X (C) considered as a topological space in the obvious way induces
a⊗-triangulated functor SH(k) → SHtop towards the classical stable homotopy
category, [4], which is a retraction of the⊗-triangulated functor SHtop → SH(k)
induced by the constant presheaf funtor, cf. Eq. (29).

5. There are canonically defined “Hopf” elements η ∈ hom(11[−1], T−1), ν ∈
hom(11[−1], T−2), σ ∈ hom(11[−1], T−4), satisfying the relations (1 − ε)η =
ην = νσ = 0, where ε : 11[−1] → T−1 corresponds to the map Gm ⊗ Gm →
Gm ⊗ Gm swapping the factors, [19, Def.4.7].

Remark 3.22 For more calculations about motivic stable homotopy groups of
spheres, see, for example, [18, 24, 49, 50], and the references therein.

Remark 3.23 In the KMW• (k) description of ⊕q∈Z homSH(k)(11[q], T q), the symbol
[a] corresponds to the section k → Gm associated to the rational point a ∈ Gm(k),
and the symbol η corresponds to the Hopf map A

2−{0} → P
1, under the isomor-

phisms [57, Lem.4.1]

(An−{0}, 1) ∼= T n[−1], P
n/P

n−1 ∼= A
n/(An−{0}) ∼= T n. (36)

19There are some weird sign and bracket conventions in [23]. In [23], η̂ and {a} are used to denote
what [46] writes as η and [a]. On the other hand, [23] use η and [a] for the elements in KW def=
KMW /h corresponding to our η and −[a].
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The element h corresponds to the class of the hyperbolic plane inGW (k) ∼= KMW
0 (k),

[42, §6.2, §6.3].

Remark 3.24 The maps I n+1 → KMW
n in the short exact sequence (35) are as fol-

lows. First, there is an isomorphism of graded rings⊕n∈Z I n ∼= KW•
de f= (⊕nK MW

n )/h
where [a] ∈ KW

1 corresponds to the Pfister form 〈1,−a〉 ∈ I and 1 + η[a] ∈ KMW
0

corresponds to the one dimensional quadratic space 〈a〉 ∈ W . For n ≤ 0, multiplica-
tion by η induces the isomorphism KW

n → KW
n−1 corresponding toW

n = Wn−1 [23,
p. 13]. Next, since η · h = 0, multiplication by η induces a map KW• = KMW• /h →
KMW

•−1 . The map in question is the composition

I n+1 ∼= KW
n+1

−·η→ KMW
n . (37)

Remark 3.25 The prime homogeneous ideals of KMW (k) for any field k of charac-
teristic not 2 are classified in [56].

Example 3.26 Let k be a finite field with q elements, and q odd. Then

KMW
≥0 (Fq) ∼=

(
Z ⊕ Z/2

)
⊕ F

∗
q ⊕ 0 ⊕ 0 ⊕ . . . , (38)

and for n > 0 we have

KMW
−n (Fq) =

{
Z/4 q ≡ 3 mod 4,
Z/2[ε]/ε2 q ≡ 1 mod 4,

(39)

[38, p. 37], [38, p. 36, Thm.3.5], [41, Exam.1.5].
Let ω be a multiplicative generator for F

∗
q . Studying Remark 3.24 we find that

KMW
1 is additively generated by [ω], the copy ofZ/2 in KMW

0 is additively generated
by η · [ω], and for n > 0, KMW−n is additively generated by ηn if q ≡ 3 mod 4, or by
ηn and ηn+1[ω] if q ≡ 1 mod 4.

If F is the algebraic closure of Fq , then we have

KMW
n (F) ∼= . . . ⊕ Z/2

−3
⊕ Z/2

−2
⊕ Z/2

−1
⊕ Z

0
⊕

∼=(Q/Z)[1/p]
F

∗
1

⊕ 0
2

⊕ 0
3

⊕ 0
4

⊕ . . . .

(40)

4 Observations

In this section we make some observations and guesses about the structure of
Spc(SH(Fq)

c).
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4.1 Rational Coefficients

Theorem 4.1 Let Fq be a field with a prime power, q, number of elements. Suppose
that for all connected smooth projective varieties X we have:

CHi (X, j)Q = 0, ∀ j �= 0, i ∈ Z (Beilinson–Parshin conjecture),
CHi (X)Q ⊗ CHi (X)Q → CH0(X)Q is non-degenerate. (Rat. and num. equiv. agree)

(41)

Then
Spc(SH(Fq)

c
Q
) ∼= Spec(Q). (42)

Proof First we observe that by Theorem 3.19 of Morel, the canonical functor
SH(Fq)

c
Q

→ DMgm(Fq)Q is an equivalence. So we are reduced to studying DMgm

(Fq)Q.
On the other hand, since we are assuming that rational and numerical equiva-

lence agree, the canonical functor Kb(Mrat(Fq)Q)→Kb(Mnum(Fq)Q) is an equality.
Let us writeM (Fq)Q for the categoryMrat(Fq)Q=Mnum(Fq)Q. Jannsen’s semisim-
plicity theorem, Theorem 3.7, says that M (Fq)Q is semisimple, and therefore
Kb(M (Fq)Q) ∼= ⊕

i∈Z M (Fq)Q as a tensor triangulated category, cf. the proof of
Lemma 2.9. It follows that the canonical (tensor) functorMrat(Fq)Q → DMgm(Fq)Q
of Theorem 3.12(3) extends to a (tensor) triangulated functor

⊕
i∈Z

M (Fq)Q → DMgm(Fq)Q. (43)

For smooth projective varieties X and Y , the Beilinson–Parshin conjecture says that

homDMgm(Fq )Q(M(X), M(Y )[i])
Thm.3.12(2)∼= CH dim Y (X×Y,−i) (44)

vanishes unless i = 0. It follows that the functor (43) is fully faithful. Since
DMgm(Fq)Q is generatedbymotives of smoothprojective varieties, Theorem3.12(4),
the functor (43) is also essentially surjective. That is, it is an equivalence of tensor
triangulated categories. Finally we apply Lemma 2.9 and Remark 3.8 to notice that
M (Fq)Q has a unique prime: the zero prime. Consequently, the same is true for
DMgm(Fq)Q. For the structure sheaf: we have homM rat(Fq )Q(11, 11) ∼= Q by defini-
tion.

Remark 4.2 If one is willing to accept that Bondarko’s weight complex functor

DMgm(Fq)Q
t→ Kb(Mrat(Fq)Q) is monoïdal, there is a much more conceptual ap-

proach to the above proof. One considers the sequence of monoïdal functors

SH(Fq)
c
Q

→ DMgm(Fq)Q
t→ Kb(Mrat(Fq)Q)→Kb(Mnum(Fq)Q). (45)

The first one is an equivalence byMorel, the second one is an equivalence if and only
if the Beilinson–Parshin conjecture holds, [12], and the third one is an equivalence
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if and only if rat = num. We didn’t use this because at the time of writing there was
no written proof that t is monoïdal. Since then, the dg-statement has appeared in [,],
and a detailed proof in the generality of ∞-categories is available in [2].

Observation 4.3 Conversely, if Spc(SH(Fq)
c
Q
) ∼= Spec(Q), then the étale realisa-

tion functor of Theorem 3.14

R : DMgm(Fq)
op
Q

→ Db
et (Fq , Ql) (46)

is conservative for any l � q. That is, for any object M, we have R(M) ∼= 0 if and
only if M ∼= 0.

Proof First note that by Morel’s Theorem 3.19, we have SH(Fq)
c
Q

∼= DMgm(Fq)Q
so by assumption, Spec(DMgm(Fq)Q) ∼= Spec(Q). In particular, we are assuming
that the only prime of DMgm(Fq)Q is the zero ideal [9, Prop. 4.2(vi)].

Next note that the rigid category Db
et (Fq , Ql) is local, in the sense that for any two

objects E, F ∈ Db
et (Fq , Ql), if E ⊗ F ∼= 0 then E ∼= 0 or F ∼= 0, [9, Sect.4]. From

this and the fact that R is an exact monoïdal functor, it follows that the kernel of R
is a prime. Since zero is the only prime, it follows that R is conservative.

Observation 4.3 is true if the base is the complex numbers, and we use the Betti
realisation instead. Consequences of this conservativity are explored in [5, §2].20

Conjecture 4.4 (Cisinski, [17]) If Spc(SH(Fq)
c
Q
) ∼= Spec(Q), then the Beilinson–

Parshin conjecture is true, and rational and numerical equivalence agree.

4.2 The Structural Morphism

Proposition 4.5 Let q be an odd prime power and consider the open-closed de-
composition of the topological space Spc(SH(Fq)

c) = U (P2) ∪ supp(P2), cf. Defi-
nition 2.3(4), where P

2 is pointed at any rational point. The canonical morphism of
topological spaces

supp(P2) → Spec(Z), resp. U (P2) → Spec(Z) (47)

is surjective, resp. has image (2) ∈ Spec(Z). Moreover, the closure of U (P2) in
Spc(SH(Fq)

c) intersects supp(P2) nontrivially.

Proof We begin withU (P2). First we claim thatU (P2) is non-empty, cf. [9, Proof of
Prop. 10.4]. Recall that η : 11[−1] → T−1 is the morphism induced by the canonical
morphism A

2−{0} → P
1, and note that P2 ∼= Cone(η) by the Mayer-Vietoris distin-

guished triangle associated to {P2−{x} → P
2, P

2−P
1 → P

2} (and A
1-invariance)

20In fact, the Conservativity Conjecture described in [5] is one of the major problems in the area.
It is a kind of triangulated analogue of the Hodge conjecture.
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where x is any rational point not in P
1. So by Proposition 2.7(4) the set U (P2) is

non-empty if and only if η⊗n is nonzero for all n > 0. But this latter follows from
the fact that η is not nilpotent in KMW (Fq), Theorem 3.21, Example 3.26, (this
nonnilpotence is true for any field [43, Cor. 6.4.5,p. 258]).

By Proposition 2.7(2) the subspaceU (P2) is isomorphic to Spc
(
SH(Fq)

c/〈P2〉).
Since P

2 ∼= Cone(η), the morphism η is invertible in SH(Fq)
c/〈P2〉, and therefore

the canonical morphism of graded rings

⊕n∈Z homSH(Fq )(11[n], T n) → ⊕n∈Z homSH(Fq )/〈P2〉(11[n], T n) (48)

factors through the localised ring ⊕n∈Z homSH(Fq )(11[n], T n)[η−1]. It follows from
the description of Example 3.26 that 4 is zero in this latter. Hence 4 · id11 is
zero in SH(Fq)/〈P2〉 and therefore the canonical morphism of topological spaces
U (P2) ∼= Spc(

(
SH(Fq)/〈P2〉)c) → Spec(Z) given by Theorem 2.5 factors through

Spec(Z/2) ⊂ Spec(Z).
Now consider supp(P2). Using Theorems 2.5, 3.21 again, we find a surjective

morphism of topological spaces

Spc(SH(Fq)
c) → Spec(GW (Fq))

Exm.3.26∼= Spec(Z). (49)

We have seen that the open subspace U (P2) is sent to the closed subspace (2). So
to see that supp(P2) → Spec(Z) is still surjective, it suffices to show that supp(P2)

intersects the closure of U (P2) nontrivially. That is, it suffices to show that the
topological space Spc(SH(Fq)

c) is not the disjoint union of the topological spaces
U (P2) and supp(P2). Such a decompositionwould induce a decomposition of the ring
EndSH(Fq )

c
Z[1/p](11) into the direct product of the non-zero rings EndU (P2)(11)[1/p]

and Endsupp(P2)(11)[1/p], [8, Theorem 2.11], [40, Riou’s Appendix B]. Since 1 ∈
GW (Fq)[1/p] is not a sum of two non-zero idempotents, this is not possible.

Corollary 4.6 Let q be an odd prime power. The canonical morphism

Spc(SH(Fq)
c) → Spech(KMW (Fq)) (50)

of Theorem 2.5 and Theorem 3.21 is surjective.

Remark 4.7 This surjectivity is proven for a general field by Heller and Ormsby in
[25] using the classification of the prime ideals of KMW from [56]. It was Ormsby’s
idea of using this classification which lead to our proof.

Proof One can classify the homogenous prime ideals of KMW (Fq) by hand21 using
the description in Example 3.26, or consult [56], and find that they are: ([ω], η, p)
with p ∈ Z an odd prime, ([ω], 2), and ([ω], η).

21They are in bijection with the homogeneous prime ideals of KMW (Fq )red ∼= Z[η]/(2 · η).
Then we have Spec(Z[η]/(2 · η)) = Spec(Z) ∪ Spec(Z/2[η]). Clearly, apart from Spec(Z/2) =
Spec(Z) ∩ Spec(Z/2[η]), the graded ring Z/2[η] has exactly one other homogeneous prime: (η).
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It follows from U (P2) = U (Cone(η)) being non-empty that ([ω], 2) is in the
image of Spc(SH(Fq)

c). The primes ([ω], η, p) with p ∈ Z an odd prime are in the
image by the surjectivity of Spc(SH(Fq)

c) → Spec(Z). Finally, ([ω], η) is in the
image by the claim that supp(P2) intersects the closure of U (P2) nontrivially.

4.3 Equivariant Stable Homotopy Theory

Much information about SH(R) comes from the realisation functor, SH(R)→SHZ/2,
towards the Z/2-equivariant stable homotopy category, cf. Theorem 3.21(4). Here,
Z/2 appears because Gal(R) ∼= Z/2. The étale homotopy type, [1, 21], provides a
functor from Sm(S) to the homotopy category Ho(Pro-SS) of pro-finite simplicials
sets. We have Gal(Fq) ∼= Ẑ, and we hope that the étale homotopy type induces a
tensor triangulated functor towards an appropriate Ẑ-equivariant stable homotopy
category. The structure (as a set) of the spectrum of the equivariant stable homotopy
category, Spc(SHc

G), of a finite groupG has recently been completely determined by
Balmer–Sanders, [14]. They also describemuch about its topology. This suggests that
the Ẑ-equivariant stable homotopy category mentioned above has a good chance of
being accessible, and providing information about the structure of Spc(SH(Fq)

c
Z(l)

).

4.4 Final Observations

Recall the following.

1. It seems highly likely that

Spc(SH(Fq)
c
Q
) ∼= Spec(Q), (51)

since this is implied by conjectures which are widely believed to be true, cf.
Theorem 4.1.

2. Let F be the algebraic closure of the finite field with an odd number of ele-
ments. In Example 3.26 above, we have seen that the endomorphism ring of
the unit GW (F) ∼= EndSH(F)(11) and the graded endomorphism ring KMW (F) ∼=
⊕n∈Z homSH(F)(11[n], T n) are extremely simple, especially if we invert 2, and
ignore nilpotents. Indeed,

KMW (F)[1/2]red ∼= Z[1/2]. (52)

3. Due to the realisation functor, for a subfield k ⊆ C, there is a retraction
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Spc(SHc
top)

∼=

Spc(SH(k)c) Spc(SHc
top) . (53)

It seems likely that the étale realisation should give rise to a similar phenomenon
for all fields.

Based on these observations, lets make the following wild speculation. We have
taken the algebraic closure of the base field to avoid equivariant phenomena which
might appear, as discussed inSect. 4.3, but one could also ask if the case of a finite field
base is just the appropriate combination of the F-base case together with Gal(F/Fp)-
equivariant phenomena, cf. Example 2.4(3).

Guess 4.8 Let F be an algebraic closure of a finite field with p elements. Then
the canonical constant presheaf functor SHtop → SH(F) from the classical stable
homotopy category, cf. Eq. (29), induces an isomorphism

Spc(SH(F)c
Z(l)

) → Spc((SHc
top)Z(l) ) (54)

whenever l and p are odd.

Note that if Z(l) is replaced by Q in the above guess, we recover the isomorphism
Spec(SH(F)c

Q
) ∼= Spec(Q) implied by Theorem 4.1.
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Operations on Integral Lifts of K (n)

Jack Morava

Abstract This very rough sketch is a sequel to [27, 28]; it presents evidence that
operations on lifts of the functors K (n) to cohomology theories with values in mod-
ules over valuation rings oL of local number fields, indexed by Lubin–Tate groups of
such fields, are extensions of the groups of automorphisms of the associated group
laws, by the exterior algebras on the normal bundle to the orbit of the group law in
the space of lifts.

Keywords Stable homotopy · Perfectoid fields · Koszul construction · Lubin-Tate
theory · Morava K-theory

1 Introduction

1.1 In a symmetric monoidal category, e.g. of schemes or structured spectra, the
morphisms defining an action of a monoid M on an object X can be presented as a
cosimplicial object; for example [24] if M = MU is the Thom spectrum for complex
cobordism (i.e. the universal complex-oriented S0-algebra), then

(S0 ) MU MU ∧S0 MU · · ·

is a kind of MU-free Adams-Mahowald-Novikov resolution of S0. Its homotopy
groups define a cosimplicial commutative algebra resolution

π∗S0 π∗MU = MU∗ π∗(MU ∧S0 MU) = MU∗MU · · ·
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of the stable homotopy algebra.1 Regarding these algebras as affine schemes over
Spec Z, this diagram becomes a presentation for a groupoid-scheme

Spec MU∗MU Spec MU∗

which, by work of Quillen [29], can be identified with a moduli stack for one-
dimensional commutative formal groups.

Using a great deal of work on Lubin–Tate spectra by others, we construct in
Sect. 3.3.2 below, certain (p-adically complete, where p > 3) A∞ periodic MU-
algebra spectraK(L), indexed byLubin–Tate formal group lawsLTL for local number
fields L ⊃ Qp, Galois of degree [L : Qp] = n with valuation rings oL . These spectra
have homotopy groups

π∗K(L) = K(L)∗ ∼= oL∗[v±1]

(|v| = 2), and in Sect. 4 we present a conjectural description of an associated
groupoid-scheme

Spec K(L)∗K(L) Spec K(L)∗

of homological co-operations in terms of the isotropy or stabilizer groups of LTL ,
as objects in the Quillen–Lazard moduli stack. These automorphism groups are by
now well-understood, almost classical in local arithmetic geometry, and the first
section below summarizes some of that knowledge; it will serve as a model for our
applications to algebraic topology.

Perhaps the point of this paper is to explain that, in spite of the notation, our con-
struction of the spectra K(L) is not functorial in L; this note is instead a plea for a
natural construction. The third section below contains preliminary results toward an
identification of the endomorphisms or (co)operations of their associated cohomol-
ogy theories, and argues that these have close connections with the Weil group of L
[25]: or, more precisely, with the Galois group of a maximal totally ramified abelian
extension L trab of L , over Qp. Our partial results can perhaps be read as evidence
toward an interpretation of the spectra K(L) as something like a K -theory spectrum
associated to the (topological, perfectoid) completion L∞ of L trab [28]. For exam-
ple, our K(Qp) can be (non-canonically) identified with the p-adically completed
algebraic K -theory spectrum of the completionQp

∞ of the field of p-power roots of
unity overQp, and thus with the p-adic completion of Atiyah’s topological K -theory
of C.

To return to the organization of this paper: its second section uses the theory
of highly structured spectra to define, following the original work of Sullivan and
Baas [4, 38, 39], the spectra K(L) as Koszul quotients of spectra E(�L) associated
to Lubin–Tate formal group laws [14, 31]. The resulting constructions are integral
lifts of the ‘extraordinary’ spectra K (n) [44], in that smashing with a mod p Moore

1The terms in this display are graded, but it is convenient to regard themasZ2-graded comodules over
the multiplicative groupscheme Gm = Z[t±1

0 ], with coaction M2k � x �→ x ⊗ tk0 , thus providing
an excuse for often suppressing this grading.
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spectrum defines natural isomorphisms

K(L)∗(X ∧ M(p, 0)) ∼= K (n)∗(X,Fp) ⊗ oL/poL ,

where oL/poL ∼= Fq [π]/(πe) (with n = e f and q = p f , see Sect. 2.5). For example,
if L is unramified then e = 1, q = pn , and the mod p reduction of K(L) agrees with
K (n) ⊗ Fq . In some sense the K (n) are indexed by the finite fields, while the K(L)

are indexed by finite Galois extensions of Qp.

2 Notation and Recollections

2.1 If A is a commutative ring, let FG(A) ⊂ A[[X,Y ]] be the set of power series
F(X,Y ) = X + Y + . . . satisfying the standard axioms for a commutative formal
group law over A, and let �(A) ⊂ A[[T ]] be the group of invertible power series
t (T ) = t0T + . . . (i.e.with t0 ∈ A×) under composition; then the group � acts on
the set FG by

�(A) × FG(A) � t, F �→ Ft (X,Y ) = t−1(F(t (X), t (Y ))) ∈ FG(A) .

Both � and FG are co-representable functors: FG(A) ∼= Homalg(L, A), where
Lazard’s ring L is polynomial over Z, and �(A) ∼= Homalg(S, A), where S =
t−1
0 Z[ti ]i≥0 is a Hopf algebra with coproduct

(�t)(T ) = (t ⊗ 1)((1 ⊗ t)(T )) ∈ (S ⊗Z S)[[T ]] .

Yoneda’s lemma then implies the existence of a coproduct homomorphism

ψ : L → L ⊗Z S

of rings, corepresenting the group action. These rings are implicitly graded by the
coaction of the multiplicative subgroup Gm ⊂ Spec S.
2.2 A group action α : G × X → X in (Sets) defines a groupoid

[X//G] : G × X
s

t
X

with X as set of objects, G × X as set of morphisms, and s(g, x) = x, t (g, x) =
α(g, x) as source and targetmaps. The usual convention in algebraic topology regards
L ⊗Z S as a two-sided L-algebra, with the obvious structure on the left, and a right
L-algebra structure
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(L ⊗Z S) ⊗Z L
1⊗ψ

(L ⊗Z S) ⊗L (L ⊗Z S) (L ⊗Z S) ;

this is what’s meant by saying that

L

ηL

ηR

L ⊗Z S

is a Hopf algebroid.
Following Grothendieck and Segal, a category Cwith set C[0] of objects and C[1]

of morphisms can be presented as a simplicial set

C[0] C[1] C[1] ×C[0] C[1] · · ·

(where X ×Z Y denotes the fiber product or equalizer of two maps X,Y → Z ). In
the case of a group action as above, this is isomorphic to a simplicial object

X G × X G × G × X · · ·

which can alternatively be regarded as a bar construction. The functor A �→
[FG(A)//�(A)] thus defines a simplicial scheme: the moduli stack of one-
dimensional formal groups.
2.3 A homomorphism A → B of commutative rings defines an extension of scalars
map

FG(A) � F �→ F ⊗A B ∈ FG(B) .

Definition [iso(F)](B) is the groupoid with the orbit

O�(B)(F) = {(F ⊗A B)g | g ∈ �(B)}

(of F ⊗A B under coordinate changes) as its set of objects, and

morisoF (B)(G,G ′) = {h ∈ �(B) | Gh = G ′}

as (iso)morphisms of G with G ′; thus

[iso(F)](B) = [O�(B)(F)//�(B)] .

This groupoid maps fully and faithfully to its skeleton (which has one object) and the
group AutB(F) ⊂ �(B) (of automorphisms of F ⊗A B as a formal group law over
B) as its morphisms. The homomorphism F : L → A classifying F thus defines a
Hopf A - algebroid

[iso(F)] : A A ⊗L (L ⊗Z S) ⊗L A
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equivalent to a simplicial groupoid-scheme (A − alg) � B �→ [iso(F)](B) over
Spec A.
2.4 It is nonstandard, but it will be convenient below to write q = pn and let Qq

denote the quotient field of the ringW (Fq)ofWitt vectors, i.e. the degreen unramified
extension ofQp. Following Ravenel [30, §5.1.13] , a Lubin–Tate group law LTQq for
this field can be defined over the p-adic integers Zp by Honda’s logarithm

log
Qq

(T ) =
∑

k≥0

p−kT pnk ;

this has, as its mod p reduction, a formal group law H(n) of height n over Fp,
associated to the cohomology theory K (n). The resulting left and right Fp-algebra
structures on

Fp ⊗H(n) (L ⊗Z S) ⊗H(n) Fp = C(oD
×,Fq)

Gal(Fq/Fp)−inv = �(n)

coincide, representing [iso(H(n))] by the algebra of functions on a certain pro-
algebraic group scheme over Spec Fp.

In more detail [24], a finite field k = Fq has a local domainW (k) of Witt vectors,
withmaximal ideal generated by p and a canonical isomorphismW (k)/pW (k) → k;
its quotient fieldW (k) ⊗Z Q = Qq is the extension ofQp obtained by lifting the roots
F

×
q of unity to Qp. This construction is functorial, and a generator σ of the cyclic

group Gal(Qq/Qp) ∼= Gal(Fq/Fp) sends a root ω of unity to σ(ω) = ω p. Let

D = Qq〈F〉/(Fn = p)

be the noncommutative division algebra obtained from Qq by adjoining an nth root
F of p satisfying, for any a ∈ Qq , the relation σ(a) · F = F · a. The valuation onQq

(normalized so ord(p) = 1) extends to D to define a semidirect product extension

1 oD
× D× ord 1

nZ 0

with a generator of the infinite cyclic group on the right acting on an element u of
the compact kernel oD× as F-conjugation. This kernel thus acquires an action of the
cyclic group of order n, which may be identified with Gal(Fq/Fp), making oD× the
group of points of a pro-étale groupscheme over Fp. It is represented by the Fp-
algebra of (Galois equivariant, continous) Fq -valued functions h on oD

× satisfying
σ(h(u)) = h(FuF−1). More concisely,

[iso(H(n))] � [∗//oD
×]

as groupoid-valued functors.
2.5 Similar results [21] hold for Lubin–Tate groups of local number fields
(i.e. extensions L ofQp with [L : Qp] = n < ∞); I will assume here that this exten-
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sion is Galois. Such a field has a local valuation ring oL with finite residue field
kL ∼= Fq , where now q = p f ; moreover L contains a maximal unramified exten-
sion L0 = W (kL) ⊗Z Q ⊃ Qp, such that [L : L0] = e = f −1n. The maximal ideal
mL = (π) ⊂ oL is principal, and we will choose a generator π; it satisfies some
Eisenstein equation

EL(π) = πe +
∑

0≤i<e

eiπ
i = 0

with ord(ei ) > 0 and ord(e0) = 1. Lubin and Tate construct from this data, a formal
group law LTL over L (with logarithm logL and exponential expL ) such that

oL � a �→ [a]L(T ) = expL(a · logL(T )) ∈ EndoL(LTL)

is a ring isomorphism. The reduction�L over the residue field of LTL is independent
of the choices.

We will sometimes write X +L Y = LTL(X,Y ). There is some degree of choice
in the construction of the lift LTL of �L :

logL(T ) =
∑

i≥0

π−kT qk

is one possibility, and [π]L(T ) = πT +L T q defines another2 but all constructions
are isomorphic. Reduction modulo π defines a monomorphism

oL ∼= EndoL (LTL) → Endk̄L (�L)

of rings, which embeds the units oL× as a maximal commutative subgroup (a torus
of some sort) in oD

×.
The associated simplicial scheme [iso(LTL)] over Spec oL can then be defined,

as above, by the Hopf oL -algebroid

oL oL ⊗LTL (L ⊗Z S) ⊗LTL oL ;

over the generic point of Spec oL its fiber is the groupoid [∗//oL
×], while over the

closed point it is [∗//oD
×]. Note that any degree n extension of Qp embeds in D

as a maximal commutative subfield, so the maximal toruses of D× in some sense
parametrize Lubin–Tate groups of degree n extensions of Qp. The Weyl groups of
these toruses are then Galois groups Gal(L/Qp), and the normalizers of these toruses
are essentially the Weil groups W (L trab/Qp) associated to maximal totally ramified
abelian extensions of L [41, 43]; the (cohomology classes of the) group extensions
defining them are the ‘fundamental classes’ of local classfield theory.

When L = Qq is unramified [27] we can assume that

2The author believes Serre’s account [36] of the Lubin–Tate construction to be effectively optimal.
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[p]L(T ) = pT +L vq−1T q

i.e. that (a graded version of) LTQq is p-typical, defined by a homomorphism

BP∗ = Zp[vi ]i≥1 → Zp[v±1]

sending Araki’s [2] generators vi to 0 when i �= n, and vn to vq−1.

3 Some Koszul Constructions

3.1 To construct the spectra K(L) we work3 at a prime away from 6, in a symmetric
monoidal category of p-adically complete spectra, e.g. S0p̂ - modules. We will be
concerned below with K (n)-local spectra, and we will K (n)-localize their smash
products [17]. Recall [33] that the Gaussian integer spectrum S0[(−1)1/2] is not E∞:
the behavior of the stable homotopy category under arithmetic ramification seems
potentially very interesting.

Lurie’s étale topology on the category of spectra [23, Def 7.5.1.4] defines commu-
tative ring-spectra S0W (Fq )

étale over S0p̂ (roughly,W (Fq) ⊗Zp S
0
p̂). Schwede’s Moore

spectra (functorial away from 6 [34, §II Rem. 6.44]) can then be used to define,
for a valuation ring oL (free of rank e over W (kL)) a p-adic A∞ ring spectrum S0oL

(roughly, M(oL , 0) ⊗W (kL ) S0W (Fq )
) with

π∗S0oL
∼= π∗S0 ⊗Z oL .

Following Sect. 2.5, the commutative W(k)-algebra

oL = ⊕0≤i≤e−1W (k) · πi

(where k = kL for simplicity) is defined by classical structure constants mi, j
l ∈

W (k), 0 ≤ i, j, l ≤ e − 1, such that

πi · π j =
∑

0≤l≤e−1

mi, j
l πl .

Let S0oL
denote the wedge sum

∨
0≤i≤e−1 S

0
W (k) · t i (with t i a book-keeping indeter-

minate), and let
S0oL

× S0oL
→ S0oL

∧S0W (k)
S0oL

→ S0oL

3The typeface is intended to distinguish these constructions from Quillen’s K -theory
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be the morphism of S0W (k)-module spectra defined component-wise, as the composi-
tion

S0W (k) × S0W (k) · t i × t j S0W (k) ∧S0W (k)
S0W (k) · t l ·mi, j

l
S0W (k)t

l ,

(where the final map is multiplication by the structure constant). This is the product
map for a weak S0W (k)-algebra structure on S0oL

, i.e. a kind of H∞ structure making

π∗S0oL
= π0HomS0W (k)

(S∗
W (k), S

0
oL

) ∼= π∗(S0p̂) ⊗Zp oL

as algebras. In particular we have a morphism

oL × S0oL
→ S0oL

of S0W (k)-algebras, representing oL -multiplication onπ∗S0oL
, used in Sect. 3.3.2 below.

Remark If G is the Galois group of a finite extension L ofQp, a theorem of Noether
implies that its valuation ring oL is projective over the group ring ZpG iff L is
tamely ramified; but work of Swan [40] implies, more generally, that the class of oL
in the Grothendieck group G0(ZpG) (defined by splitting short exact sequences) is
the image of a (not necessarily unique) class [P] in K0(ZpG), perhaps analogous
to Wall’s finiteness obstruction for CW complexes. Such Swan elements suggest
constructing analogs of Moore spectra for oL as representing objects for functors
such as

X �→ π∗(X ∧ G+) ⊗ZpG P := π∗(X; P) . . .

3.1.1 Work several mathematical generations deep [10, 14, 31, 32]… associates to
a one-dimensional formal group law �, of finite height n over a perfect field k of
characteristic p > 0, an E∞ p-adic complex oriented S0W (k)-algebra spectrum E(�)

with homotopy algebra

π ∗ E(�) ∼= E(�)∗ ∼= W (k)[[u1, . . . , un−1]][v±1]]

of formal power series, representing Lubin and Tate’s functor [22] which sends a
complete noetherian local ring Awith residue field k to the set (modulo isomorphisms
which reduce to the identity over k) of lifts of � to A. We will sometimes take v = 1
to suppress the grading, and to simplify notation we may write EF for E(�) for a
chosen lift F of � to a local ring (e.g.W (k) or oL ) with residue field k; we may
even write EL0 for the S0W (kL ) = S0oL 0

-module spectrum E(LTL0). Similarly +E� or
+EF may denote the associated formal group sum, andmF = [[u∗]] may signify the
‘maximal ideal’ of EF∗ over W (k) or oL .

Lubin and Tate show that the (proétale) group Autk̄(�) ∼= oD
× of automorphisms

of � ⊗k k̄, with its natural Gal(k̄/k)-action, lifts to a (continuous but not smooth)
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action onW (k̄) ⊗W (k) E(�)∗; in particular, their Theorem 3.1 shows that this action
takes W (k̄) ⊗W (k) mE(�) to itself. In the formalism of Sects. 2.3–2.4, this defines a
formal groupoid-scheme of equivalence classes of lifts to Artin local rings, repre-
sented by a Hopf algebroid

[Spf E(�)∗//Autk̄(�)] : E(�)∗
ηL

ηR

E(�)∗E(�) ∼= HAut(�) ;

where HAut(�) [17] is aHopf algebra ofGalois-equivariant continuous functions from
Aut(�) to E(�). Note that the two (left and right) unit homomorphisms sendmE to
mE⊗̂HAut(�), and that this Hopf algebroid is equivalent to

E(�)∗
ηL

ηR

E(�)∗ ⊗L (L⊗Z) ⊗L E(�)∗ .

3.1.2 If, for example, �L/Fp is the Lubin–Tate group law for LTQq as in Sect. 2.3,
we can take the ui to be Araki generators satisfying

[p]E (T ) =
∑

E,i≥o

vi T
pi

(with v0 = p); the classifying homomorphism from MU∗ then sends CPqk−1 to

∏

1≤i≤k

(1 − pq
i−1)−1 · (p−1qk)vqk−1

and the remaining CPl to 0 [27].
3.2.1 A parallel (but even more venerable) line of research, leading to the modern
theoryof highly structured spectra, allowsus to associate to the (bydefinition, regular)
sequence v∗ = v1, . . . , vn−1 of elements of EQq∗, a choice

vi : S2(pi−1) → EQq

of representatives defining, by the construction of [12, V §1, §3.4], p-adic complex-
oriented A∞ ring-spectra

K(Qq) = EQq/(v∗)

with π∗K(Qq) ∼= W (Fq)[v±1], having LTQq as formal group law.

Remark When n = 1 this construction recovers a model for Atiyah’s p-adic com-
pletion [3] of complex topological K -theory, and when n = 2 it defines a p-adic lift
of Baker’s supersingular elliptic cohomology [5]. Away from the prime 6, elliptic
cohomology [13, §4.1 ex 4.2] has as coefficients, the polynomial ring of modular
forms (generated [37, III §5.6.2] by the Eisenstein series E2, E3). A theorem of
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Deligne [19] identifies the modular form defined by the Eisenstein series Ep−1 and
the (Hasse) parameter v1, modulo p. This suggests a close relation between p-adic
elliptic cohomology, mod Ep−1, with K(Qp2); but understanding that would require
an understanding of Ep−1 as a polynomial in E2, E3, which evidently depends on
the prime p.

3.2.2 More generally, a Lubin–Tate group law for a ramified local field of degree n
over Qp lifts its mod π reduction to a homomorphism

ui �→ u∗
i : E(�L)∗ = W (kL)[[u∗]] → oL

of local W (kL)-algebras.

Lemma Let u∗
i ∈ mL = (π) ⊂ oL , i ≤ i ≤ n − 1 be a sequence of elements in the

maximal ideal mL: then ui �→ ui − u∗
i = vi defines an isomorphism oL [[u∗]] ∼=

oL [[v∗]] of local oL-algebras.

[For if w∈ mL and oL [[x]] � a(x) = ∑
i≥1 ai x

i , then

a(x) =
∑

k≥1

(
∑

l≥1

(
k + l

l

)
ak+lw

l)x̃ k =
∑

k≥1

ãk x̃
k ,

where x̃ = x − w. The argument for multiple variables is similar.] �

Definition The A∞ complex-oriented S0oL
-algebra spectrum

EL = S0L ∧S0W (kL )
E(�LTL )

has
π∗EL = EL∗ = oL [[v∗]][v±1]

as algebra of homotopy groups, generated by a regular sequence of elements vi =
ui − u∗

i such that vi �→ 0 specializes themodular lift to the chosen Lubin–Tate group
law of L .
3.3.1 The definition in Sect. 3.2.1 of K(Qq) uses the E∞ structure on E(�LTQq

),
which is not available for nontrivially ramified fields. This issue can be avoided
by reorganizing the induction in [12] (which follows Sullivan and Baas, based on
iterated cofibrations) as a computation of the spectral sequence for the homotopy
groups of the geometric realization of a suitable simplicial (Koszul) spectrum [11,
§17.5], ex 18.2; [35]:

An element a of a commutative k-algebra A defines4 an (elementary) differential
graded A-algebra

4or, more generally, a homogeneous element of a graded commutative A∗; however this will be
largely suppressed from our notation.
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KszA(a) = (A[e]/(e2), da(e) = a) .

More generally, a k-module homomorphism a� : km → A defines the classical dif-
ferential graded commutative algebra

KszA(a�) =
⊗

A,1≤i≤m

KszA(ai ) ∼= A ⊗k �k(ei | 1 ≤ i ≤ m)

(with an exterior algebra denoted by �, to reduce the multiplicity of things called
E), and differential

deI =
∑

1≤i≤m

(−1)i+1a�(ei ) · eÎ (i) ,

where eI = ∧l∈I el is indexedby (totally ordered) subsets I of {m} = {1, . . . ,m}, Î (i)
is obtained from I by omitting its i th element, eI ∧ eK is 0 if I ∩ K is nonempty and
equals ±eI,K if they are disjoint, with sign equal to that of the permutation putting
{I, K } in proper order.

In the elementary case, if a is not a 0-divisor in A, this defines an A-free resolution
of the quotient algebra A/(a), i.e. of the cofiber of the map of A to itself defined
by a-multiplication. More generally, if ai is not a 0-divisor in the quotient ring
A/(a1, . . . , ai−1) (i.e. a∗ is a regular sequence), this construction defines an A-free
resolution of A/(a�).

In the context of commutative S0-algebras or ring spectra, we can associate to
morphisms

ai : S|ai | → A

a semi-simplicial (i.e.without degeneracy operators [42, §8.2.2]) A-algebra

k �→ KszA(a�)[k] =
∨

I⊂{m},|I |=k

A · eI

with A-module face operators ∂i eI = μ(ai ) · eÎ (i), where

μ(a) : S|a|A → A

is defined by multiplication by a. The fat realization [11, §4.8, §18.2] |KszA(a�)| of
such a semisimplicial object is canonically filtered, leading to the construction of a
spectral sequence computing its homotopy groups, with E1 page

π∗KszA(a�) = KszA∗(a�) ⇒ |KszA(a�)|∗
3.3.2 When a� is a regular sequence this complex is a resolution, and the spectral
sequence collapses to an isomorphism



256 J. Morava

|KszA(a�)|∗ ∼= A∗/(a�) .

Applying this as above yields a definition for K(Qq) = |Ksz�(Qq )(v�)| as an S0W (Fq )
-

algebra spectrum, essentially equivalent to the construction of [12]. The ramified
case is more delicate, because its building blocks are not E∞; we need a

Lemma The morphisms
ṽi , ṽ j : S∗

oL
EL → EL

(1 ≤ i, j ≤ n − 1) defined by multiplication with

ṽi = u∗
i ∧W 1E − 1L ∧W ui : S∗

oL
→ S0oL

∧W (kL ) E(�L) ( = EL)

commute.

Proof Define a twist isomorphism

E(�L) ∧W (kL ) oL → oL ∧W (kL ) E(�L)

adjoint to the composition

E(�L) → HomW (kL )(oL , oL) ∧W (kL ) E(�L) → HomW (kL )(oL , oL ∧W (kL ) E(�L))

of S0W (kL )-module morphisms. Since both S0L and E(�L) are commutative S0W (kL )-
modules, we have (with some abbreviation)

ṽi ∧W ṽ j = (u∗
i ∧W 1E − 1L ∧W ui ) ∧W (u∗

j ∧W 1E − 1L ∧W ui ) = · · · = ṽ j ∧ ṽi .

Proposition
K(L) = |KszEL (ṽ�)|

is an A∞ S0oL
-algebra spectrum with K(L)∗ ∼= oL [v±1], complex-oriented by the

morphism MU∗ → K(L)∗classifying the chosen Lubin-Tate group law for L. �

Remark The kernel of

oL ⊗Z MU∗ → EL∗ → K(L)∗

is generated by an (infinite) regular sequence (which can be chosen to belong to
MU∗ in degree greater than 2(pn − 1)). The Koszul construction above, together
with [12, V §4.2], leads to a construction for a connective spectrum k(L) with K(L)

as vn-localization.
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4 Some Trivial Spectral Sequences

4.1 The spectral sequence of a geometric realization, together with the Eilenberg–
Moore/Künneth spectral sequence for the smash product of module spectra provide
some understanding of the bialgebra

(K(L) ∧S0L
K(L)∗ = K(L)∗K(L) .

To begin, note that
(K(L) ∧S0L

EL)∗ = |KszEL (ṽ�)|∗(EL)

is the E(�L)∗ homology of a filtered E(�L)-module spectrum, and that the E1 page
of the associated spectral sequence is the Koszul algebra

Ksz(EL∧S0L
EL )∗(ṽ�) ;

but by [17], as in Sect. 3.1, (EL ∧S0L
EL)∗ ∼= HAut(�L ), with deformation parameters

acting as left ṽ∗-multiplication. This sequence is regular, so this is a resolution, and
the spectral sequence collapses to an isomorphism

(K(L) ∧S0L
EL)∗ ∼= K(L)∗ ⊗EL∗ HAut(�L )

∼= oL ⊗W (kL ) HAut(�L )

of oL -algebras. Now observe that

K(L) ∧S0L
K(L) � (K(L) ∧S0L

EL) ∧EL K(L)

which is accessible via [12, IV Thm 6.4].

Proposition The Künneth spectral sequence collapses at E2 to an isomorphism

K(L)∗K(L) ∼= (
oL ⊗EL∗ HAut(�L )

) ⊗oL �∗
oL

(mL/m
2
L) ,

where the term on the right is the exterior algebra on the (free, of rank n − 1) tangent
oL-module to the space of deformations of LTL .

Proof The E1-page of this spectral sequence is again a Koszul algebra, now of the
form

Ksz(K(L)∗⊗EL∗ HAut(�L ))(η(v�)) ,

where the images
η(vi ) =

∑

α

vi,α ⊗ gi,α ∈ mL HAut(�L )

of the generators vi under the right unit have coefficients vi,α in the ideal mL ([22,
Thm 3.1], see Sect. 3.1), and thus map to zero under EL∗ → K(L)∗. The homology
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of this DGA is therefore just its underlying graded algebra, which can be identified
with the algebra ofGalois-equivariant functions fromAut(�L) to the exterior algebra
on mL/m

2
L . [Note that EL∗EL is analogous [by Kodaira–Spencer theory, cf. [15, ex

2.8.1], [20]] to an algebra of functions from Aut(�L) to the symmetric algebra on
mL/m

2
L .] �

4.2 It seems reasonable to conjecture that this spectral sequence collapse implies
an interpretation of K(L)∗K(L) as a Hopf algebroid of functions on a (super, ie
nontrivially Z2-graded) groupoid scheme, an extension of the automorphism group
of LTL by an exterior algebra of deformations parametrized by its tangent space as
a point in Spf EL∗. However, the author feels that this and related questions (e.g. the
possible nontriviality of such extensions, the action of Gal(L/Qp) and its previously
mentioned relation to Weil groups, Massey product structures [1, §3.3], relations
[16] with Azumaya algebras …) are best left to younger, more vigorous and reliable
researchers.

In particular: recent advances in the algebra of non-discretely valued fields suggest
that the topological Hochschild homology of the perfectoid completion L∞ of the
fields L trab (Sect. 2.5) associates to the p-adic completion of BQ/Z (regarded as an
analog of CP∞), a rigid analytic analog [28] of a Lubin–Tate group for L . If the
spectra K(L) have a natural construction in terms of fields like L∞, one might hope
for the existence of a generalized Chern character or cyclotomic-like trace, mapping
k(L) Galois-equivariantly to THH(OL∞ ,Zp).
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A Short Introduction to the Telescope
and Chromatic Splitting Conjectures

Tobias Barthel

Abstract In this note, we give a brief overview of the telescope conjecture and the
chromatic splitting conjecture in stable homotopy theory. In particular, we provide a
proof of the folklore result that Ravenel’s telescope conjecture for all heights com-
bined is equivalent to the generalized telescope conjecture for the stable homotopy
category, and explain some similarities with modular representation theory.

Keywords Bousfield localization · Telescope conjecture · Chromatic splitting
conjecture

This document contains a slightly expanded and updated version of an overview talk,
delivered at the Talbot Workshop 2013 on chromatic homotopy theory, on two of the
major open conjectures in stable homotopy theory: the telescope conjecture and the
chromatic splitting conjecture. As such, these notes are entirely expositional and are
not aimed to give a comprehensive account; rather, we hope some might see them as
an invitation to the subject.

We have augmented the original content of the talk by some material which is
well-known to the experts but difficult to trace in the literature. In particular, we prove
the folklore result that the telescope conjecture for all heights combined is equivalent
to the classification of smashing Bousfield localizations of the stable homotopy cat-
egory. In the final section, we discuss algebraic incarnations of chromatic structures
in modular representation theory.

We will assume some familiarity with basic notions from stable homotopy theory,
and refer the interested reader to [44] as well as [5] for a more thorough discussion
of chromatic homotopy theory.
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1 Motivation: Freyd’s Generating Hypothesis

In 1966, Freyd [22] proposed one of the most fundamental conjectures in stable
homotopy theory:

Conjecture 1.1 (Generating hypothesis) Let f : X → Y be a map of finite spectra
with π∗ f = 0, then f is nullhomotopic.

As of today, this hypothesis is completely open—since the computation of stable
homotopy groups of finite complexes is notoriously difficult, there is essentially no
evidence supporting either conclusion. However, one important statement that would
follow if the hypothesis was true is that the map

π∗ : [X,Y ]∗ −→ Homπ∗S0(π∗X, π∗Y )

is an isomorphism for all finite spectra X and Y , the target being the group of graded
homomorphisms of π∗S0-modules. The generating hypothesis also has a number of
other curious consequences, see for example [29].

In the early 1990s, Devinatz and Hopkins described a chromatic approach to the
generating hypothesis in the special case when Y = S0 is the sphere spectrum [17].
We explain their idea first in the global setting. Suppose f : X → S0 is not null and
write f ∨ : S0 → DX for its Spanier–Whitehead dual; we have to show thatπ∗ f �= 0.
If f is of infinite order, then the question reduces to a rational statement, so suppose
f has finite order d. Recall that by Brown representability there exists a spectrum I
with

[W, I ] ∼= HomZ(π0W, Q/Z)

for all W , the so-called Brown–Comenetz dual of the sphere spectrum.
This can be used to reduce the generating hypothesis with target S0 to a set of

universal examples, a strategy reminiscent of the proof of the nilpotence theorem
[21]. Indeed, there is a map fd : [X, S0] → Q/Z sending f to 1/d. By construction
of I , fd corresponds to a map fd : DX → I . Writing I as a directed colimit of
finite spectra I α , we see that fd factors through some f α

d : DX → I α , i.e., there is a
commutative diagram

S0
f ∨

1/d

DX

fd
f α
d

I I α.

Spanier–Whitehead duality gives a map ( f α
d )∨ : DI α → X such that the composite

DI α
( f α

d )∨
X

f
S0
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is not nullhomotopic and depends only on α and d. Therefore, it suffices to prove
the claim for these universal examples DI α → S0.

In order to deal with them, we need to construct suitable models for the I α and
then prove the generating hypothesis for these examples. Instead of running this
programme for S0 directly, Devinatz and Hopkins propose to use the chromatic
convergence theorem [3, 44], which says that, p-locally, S0 is equivalent to the limit
of the chromatic tower

. . . LnS0 Ln−1S0 . . . L1S0 L0S0 � S0
Q
, (1)

where Ln denotes E(n)-localization (reviewed below). It consequently suffices to
prove an analogue of the generating hypothesis for the E(n)-local analogues of the
universal examples considered above, for each height n ≥ 0. The filtration steps of
the chromatic tower are built out of the monochromatic layers MnS0 = fib(LnS0 →
Ln−1S0), which leads to the study of I MnS0 via Gross–Hopkins duality [25] and
the K (n)-local Picard group [26]. The original approach relied on the telescope con-
jecture as well as the chromatic splitting conjecture in order to control the universal
examples, and it has been carried out successfully at height 1 [17]:

Theorem 1.2 (Devinatz) If p > 2 and f : X → S0 a map between p-local finite
spectra with π∗ f = 0, then L1 f is nullhomotopic.

In response to subsequent progress on the telescope conjecture and the chromatic
splitting conjecture as outlined in the next sections, Devinatz describes a modified
approach in [19], which appears to be the current state of the art.

2 Recollections on Bousfield Localization

Throughout this section, we will implicitly work locally at a fixed prime p. Let E be
a spectrum. A spectrum X is called E-acyclic if E ∧ X � 0 and X is called E-local
if any map from an E-acyclic spectrum into X is nullhomotopic. Moreover, a map
f : X → Y is called an E-equivalence if E ∧ f is an equivalence or, equivalently,
if the fiber of f is E-acyclic. A localization functor is an endofunctor L of the
stable homotopy category togetherwith a natural transformationη : id → L such that
Lη : L → L2 is an equivalence and Lη � ηL . Based on ideas of Adams, Bousfield
[14] rigorously constructed a localization functor which forces the E-equivalences
to be invertible; more precisely:

Theorem 2.1 (Bousfield, 1979) If E is a spectrum, there is a localization functor LE

on the stable homotopy category together with a natural transformation ηE : id →
LE such that, for any spectrum X, the map ηE (X) : X → LE X exhibits LE X as
the initial E-local spectrum with a map from X. The functor LE is called Bousfield
localization at E and the fiber CE of ηE is called E-acyclization.
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It follows formally that ηE (X) is also the terminal E-equivalence out of X . The
proof of this theorem relies on verifying the existence of a set of suitable genera-
tors for the category of E-acyclics. It is an open problem [30, Conj. 9.1] whether
every localization functor on the stable homotopy category arises as localization with
respect to some spectrum E .

The fiber sequence CE → id → LE can be thought of as providing a way to
decompose the stable homotopy category into two subcategories in a well-behaved
way. We might therefore ask for a classification of all Bousfield localizations. The
first result in this direction was proven by Ohkawa [41]. To state it, recall that two
spectra E and F are said to be Bousfield equivalent if they have identical categories
of acyclics, i.e., ker(LE ) = ker(LF ). The corresponding equivalence class of E is
denoted by 〈E〉, so we have 〈E〉 = 〈F〉 if and only if LE � LF . As usual, we define
〈E〉 ∨ 〈F〉 = 〈E ∨ F〉 and 〈E〉 ∧ 〈F〉 = 〈E ∧ F〉.
Theorem 2.2 (Ohkawa) The collection of Bousfield classes of spectra forms a set
of cardinality at least 2ℵ0 and at most 22

ℵ0 .

In light of this result, a classification of all Bousfield localizations does not seem
to be feasible, see [30] for some partial results. Instead, we will single out two
particularly well-behaved families among all Bousfield localizations:

Definition 2.3 A localization functor L is called smashing if it commutes with set-
indexed direct sums or, equivalently, if the natural transformation X ∧ LS0 → LX
is an equivalence for all spectra X . Moreover, L is finite if there exists a collection
of finite spectra that generates the category ker(L) of L-acyclics.

Miller [37] proves that any finite localization is smashing and any smashing local-
ization functor L is equivalent to Bousfield localization at LS0 by [43], so from now
on all localization functors we consider are assumed to be Bousfield localizations.

3 The Telescope Conjecture

We start with some examples of finite and smashing localizations; as before, every-
thing is implicitly localized at a prime p. Let K (n) and E(n) be the nth Morava
K -theory and nth Johnson–Wilson theory, respectively, with coefficients

K (n)∗ = Fp[v±1
n ] and E(n)∗ = Z(p)[v1, . . . , vn−1, vn][v−1

n ],

where vi is of degree 2(pi − 1). By [43], if a finite spectrum F is K (n)-acyclic,
then it is also K (n − 1)-acyclic1; since 〈E(n)〉 = 〈∨n

i=0 K (i)〉, this spectrum F is
then also E(n)-acyclic. A finite spectrum F is of type n if n is minimal with the

1In fact, as long as n > 1, this result has been extended to all suspension spectra by Bousfield [15].
For n = 1, a counterexample is given by K (Z, 3).
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property that K (n)∗(F) �= 0, and such a finite number n exists for any nontrivial
finite spectrum. By the periodicity theorem [27], any finite type n spectrum F admits
an (essentially unique) vn-self map, and wewrite Tel(F) = F[v−1

n ] for the associated
telescope. It then follows from the thick subcategory theorem [27] that the Bousfield
class of Tel(F) depends only on n, so we will also write Tel(n) for Tel(F).

Definition 3.1 Let n ≥ 0, then we define two localization functors on the stable
homotopy category by

L f
n = LTel(0)∨Tel(1)∨...∨Tel(n) and Ln = LE(n) � LK (0)∨K (1)∨...∨K (n),

referred to as the finite Ln-localization and Ln-localization, respectively.

As the terminology suggests, the functors L f
n are in fact finite localizations, with

ker(L f
n ) generated by any finite type (n + 1)-spectrum [36, 46]. It then follows from

the thick subcategory theorem that any finite localization functor of the category of
spectra which is not equal to the identity or the zero functor must be one of the L f

n .
Their key features are summarized in the next proposition, see [36, 37, 46].

Proposition 3.2 (Mahowald–Sadofsky, Miller, Ravenel) For each n, the functor L f
n

is a finite and thus smashing localization. If F is a finite type n spectrum then
L f
n F � Tel(F).

Having classified all finite localizations, we now turn to the a priori larger set of
smashing localizations. The smash product theorem [44] and its proof establish the
first part of the next result:

Theorem 3.3 (Hopkins–Ravenel) For any n ≥ 0, the localization functor Ln is
smashing.

There is a natural transformation L f
n → Ln which is an equivalence on all MU -

module spectra and all Li -local spectra for any i ≥ 0, as shown in [28, 31]. In
other words, there is a close relationship between the functors Ln and their finite
counterparts L f

n . As explained in [44], if the two localizations were in fact equivalent
for all n, then two naturally arising filtrations on the stable homotopy groups of
sphereswould coincide,making the computation ofπ∗S0 more amenable to algebraic
techniques. This led Ravenel [43] to:

Conjecture 3.4 (Telescope conjecture) For any n ≥ 0, the natural map L f
n → Ln

is an equivalence.

For n = 0, both L f
0 and L0 identify with rationalization. Based on explicit compu-

tations of the homotopy groups of L1S0/p and L f
1 S

0/p = Tel(S0/p) by Mahowald
(p = 2, [34]) and Miller (p > 2, [38]), Bousfield [14] deduced:

Theorem 3.5 (Bousfield, Mahowald, Miller) The telescope conjecture holds at
height n = 1.
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Onemight thus hope for an inductive approach to the telescope conjecture, passing
from height n − 1 to height n. The corresponding relative version admits a number
of equivalent formulations, see [35]:

Proposition 3.6 Let n ≥ 1 and suppose F is finite of type n, then the following are
equivalent:

1. If L f
n−1 � Ln−1, then L f

n � Ln.
2. Tel(F) � LnF.
3. 〈Tel(F)〉 = 〈K (n)〉.
4. The Adams–Novikov spectral sequence for Tel(F) converges to π∗ Tel(F).

Note that, by the thick subcategory theorem, a single example or counterexample
that is finite of type n is enough to settle the passage from height n − 1 to height n.

For n = 2 and p ≥ 5, Ravenel [45] began the analogue of Miller’s height 1 cal-
culation for V (1) = S0/(p, v1), attempting to show that the telescope conjecture is
false in these cases, but this computation has not yet been completed due to its con-
siderable complexity. In [35], Mahowald, Ravenel, and Shick describe an alternative
approach based on a spectrum Y (n) such that π∗LnY (n) is finitely generated over
R(n)∗ = K (n)∗[vn+1, . . . , v2n], but π∗L

f
n Y (n) can only be finitely generated over

R(n)∗ if there is a “bizarre pattern of differentials” in the corresponding localized
Adams spectral sequence. Thus, if these patterns could be ruled out, we would dis-
prove the telescope conjecture at heights n ≥ 2. At this time, the telescope conjecture
is still open for all n ≥ 2 and all p, and generally believed to be false.

4 Classification of Smashing Bousfield Localizations

This section discusses the classification of smashing Bousfield localizations of the
(p-local) stable homotopy category. In particular, we prove that the telescope conjec-
ture for all heights n is equivalent to the so-called generalized telescope conjecture
(or generalized smashing conjecture). Since this material is more technical than the
rest of this survey, the reader may want to skip ahead to the conclusion at the end of
this section. We start with two lemmas, the first of which is reminiscent of the type
classification of finite spectra.

Lemma 4.1 Let L be a smashing localization functor on the stable homotopy cate-
gory. If LK (n) �� 0, then LK (n − 1) �� 0.

Proof Suppose LK (n) �� 0. Since K (n) ∧ LS0 � LK (n) is a module over K (n)

and hence splits into a wedge of shifted copies of K (n), we see that K (n) is L-local
and thus the canonical map K (n) → LK (n) is an equivalence. This implies that
〈LS0〉 ≥ 〈K (n)〉: Indeed, if X ∧ LS0 � 0, then 0 � X ∧ LS0 ∧ K (n) � X ∧ K (n)

as well.
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The next claim is that 〈LS0〉 ≥ 〈∨n
i=0 K (i)〉. To this end, note that LK (n)S0 is

K (n)-local, hence LS0-local. Because L is smashing, we get an equality 〈LS0 ∧
LK (n)S0〉 = 〈LK (n)S0〉, which then yields

〈LS0〉 ≥ 〈LS0 ∧ LK (n)S
0〉 = 〈LK (n)S

0〉 = 〈∨n
i=0K (i)〉, (2)

where the last equality is [28, Cor. 2.4]. Therefore, we have LK (n − 1) �� 0.

The proof of the next lemma requires the nilpotence theorem.

Lemma 4.2 Suppose L is a smashing localization and n ≥ 0, then LK (n) � 0 if
and only if any finite spectrum of type at least n is in ker(L).

Proof Suppose LK (n) � 0 and let F be afinite spectrumof type at least n. Replacing
F with End(F) � DF ∧ F if necessary, wemay assume that F and thus LF are ring
spectra. By the nilpotence theorem, it thus suffices to show that K (i) ∧ LF � 0 for
all 0 ≤ i ≤ ∞. Since L is smashing, K (i) ∧ LF � LK (i) ∧ F � 0 for n ≤ i ≤ ∞
using the assumption and Theorem4.1, while the hypothesis on F guarantees that it
also vanishes for 0 ≤ i < n.

Conversely, let F be a finite type n spectrum so that LF � 0. It follows that F ∧
LK (n) � 0. But K (n) is a retract of LK (n) provided LK (n) �� 0, so F ∧ K (n) � 0
as well, contradicting the assumption on F . Therefore, LK (n) � 0.

As the next proof shows, we can use Theorem4.1 to detect smashing localizations.

Proposition 4.3 If L is a smashing localization which is neither 0 nor the identity
functor, then there exists an n ≥ 0 such that ker(L f

n ) ⊆ ker(L) ⊆ ker(Ln).

Proof By Theorem 4.1, any smashing localization functor L belongs to one of the
following three classes:

1. LK (n) = 0 for all n, or
2. there exists an n such that LK (n) �� 0 and LK (m) � 0 for all m > n, or
3. LK (n) � K (n) for all n.

In Case (1), ker(L) contains the sphere spectrum S0 by Theorem 4.2, so L � 0. If
L belongs to the second class, then Theorem 4.2 shows that ker(L f

n ) ⊆ ker(L), so it
remains to show that ker(L) ⊆ ker(Ln). To this end, let X ∈ ker(L). Because L is
smashing, this implies LS0 ∧ X � 0 and thus

∨n
i=0 K (i) ∧ X � 0 by (2). Therefore,

X ∈ ker(Ln) as desired.
Finally, if LK (n) � K (n) for all n, then (2) implies that any Ln-local spectrum

is L-local, so S0 � limn LnS0 is L-local by the chromatic convergence theorem.
Therefore, Lmust be equivalent to the identity functor, again using that L is smashing.

Corollary 4.4 The telescope conjecture holds for all n if and only if all smashing
localization functors on the stable homotopy category are finite.

This latter formulation, originally due to Bousfield [14, Conj. 3.4], generalizes
well to other compactly generated triangulated categories where it has been studied
extensively, see for example [32, 33].
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5 The Chromatic Splitting Conjecture

The chromatic splitting conjecture describes how the localizations Ln S0 for varying n
assemble into S0 via the chromatic tower (1), working p-locally as before. Informally
speaking, it asserts that this gluing process is as simple as it can be without being
trivial, but there are various refinements of its statement.Wewill focus on theweakest
form here and refer the interested reader to [28] for further details.

For each n ≥ 1 there is a map of fiber sequences, where the right square—known
as the chromatic fracture square—is a homotopy pullback:

F(Ln−1S0, LnX)

�

LnX LK (n)X

αn

F(Ln−1S0, LnX)
βn

Ln−1X Ln−1LK (n)X.
γn

(3)

Consider the question whether there exists a map αn as indicated making the top
triangle in the chromatic fracture square commute. By chasing the diagram, such
a map exists if and only if βn is nullhomotopic, which in turn is equivalent to the
existence of a map γn splitting the map Ln−1X → Ln−1LK (n)X . Based on explicit
computations of the cohomology ofMorava stabilizer groups as well as ofπ∗LK (n)S0

for small n, Hopkins (see [28]) arrived at the following:

Conjecture 5.1 (Chromatic splitting conjecture) If X is the p-completion of a finite
spectrum, then a splitting γn exists for all n.

The finiteness assumption on X is essential in this conjecture: Indeed, Devinatz
[18] proves that, for X = BPp the p-completion of the Brown–Peterson spectrum,
the map Ln−1BPp → Ln−1LK (n)BPp splits if and only if n = 1. If the chromatic
splitting conjecture holds for a finite spectrum X , then we obtain the following
consequences:

1. The canonical map X p → ∏
n LK (n)X p is the inclusion of a summand, as proven

in [28].
2. Taking the limit over the compositions LK (n+1)X

αn+1−−→ LnX → LK (n)X gives an
equivalence X p → limn LK (n)X . This follows follows from the chromatic con-
vergence theorem by cofinality.

In other words, the chromatic splitting conjecture implies that a finite spectrum X
can be recovered from its monochromatic pieces LK (n)X .

We now review what is known about the chromatic splitting conjecture for S0p, the
p-complete sphere spectrum. Take n = 1 and p > 2, then a classical computation
with complex K -theory, originally due to Adams and Baird [1] and then revisited by
Ravenel [43], shows that
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πi LK (1)S
0
p

∼=

⎧
⎪⎨

⎪⎩

Zp for i ∈ {−1, 0},
Z/ps+1 for i = 2(p − 1)psm − 1 with p � m,

0 otherwise.

Thusπ∗L0LK (1)S0p ∼= Qp for i = 0 and i = −1 and is 0 otherwise; of course,π∗L0S0p
is isomorphic to Qp in degree 0. One can then see that L0LK (1)S0p splits as L0S0p ∨
L0S−1

p . Replacing complex K -theory by real K -theory yields the same conclusion for
n = 1 and p = 2. The analogous computations at height n = 2 are considerablymore
complex and are the subject of extensive work by Shimomura–Yabe [47] (p ≥ 5),
Goerss–Henn–Mahowald–Rezk [23, 24] (p = 3), and Beaudry–Goerss–Henn [9]
(p = 2). Their results can be summarized as follows:

Theorem 5.2 (Beaudry–Goerss–Henn–Mahwald–Rezk–Shimomura–Yabe) The
chromatic splitting conjecture holds for n = 2 and all p. If p ≥ 3, then

L1LK (2)S
0
p � L1(S

0
p ∨ S−1

p ) ∨ L0(S
−3
p ∨ S−4

p ),

while for p = 2, we have

L1LK (2)S
0
p � L1(S

0
p ∨ S−1

p ∨ S−2
p /p ∨ S−3

p /p) ∨ L0(S
−3
p ∨ S−4

p ).

There is a stronger version of Theorem5.1, also due to Hopkins, which addition-
ally describes how the fiber term F(Ln−1S0, LnX) in (3) decomposes into spectra of
the form Li X with 0 ≤ i ≤ n − 1;we refer the interested reader to [28] for the details.
A compact formulation, encoding the combinatorics of the conjectured decompo-
sition for all heights simultaneously in terms of a single generating function, has
been given by Morava in [40]. However, in light of the p = 2 case of the previous
theorem proven by Beaudry, Goerss, and Henn, the original conjecture requires a
modification accounting for additional terms, at least for n = 2 and p = 2.

If correct, the strong version of the chromatic splitting conjecture (both in its
original or modified form) would imply [6] that the stable homotopy groups of
LK (n)S0 are finitely generated over Zp for n ≥ 1, another major open problem in
chromatic homotopy theory, see [20] for partial results. This conjecture is open for
all heights n ≥ 3 and primes p; there are hints [8, 42] that the problem might at least
be approachable for large primes with respect to the height n.

We end this sectionwith the following result byMinami [39],which provides some
evidence for the chromatic splitting conjecture at general heights. He introduces a
class of so-called robust spectra including finite spectra as well as BP and proves:

Theorem 5.3 (Minami) Fix a height n and prime p. If X is a robust spectrum and m
and k are positive integers satisfying m − k ≥ n + s0 + 1 where s0 is the vanishing
line intercept of the E(n)-based Adams–Novikov spectral sequence for S0, then the
map LmX → LnX factors through LK (k+1)∨...∨K (m)X.
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6 An Algebraic Analogue

We conclude this survey by discussing an algebraic analogue of the stable homotopy
category in which algebraic versions of the generating hypothesis, the telescope
conjecture, as well as the chromatic splitting conjecture have been settled. This is
just one instance of the observation that the chromatic programme and consequently
the above chromatic conjectures can be formulated in many other contexts, thereby
providing a plethora of test cases as well as motivation for a fruitful transfer of
techniques. Other examples include derived categories of quasi-coherent sheaves on
schemes or stacks, stable equivariant homotopy categories, motivic categories, or
categories arising in non-commutative geometry, see [2] for an overview.

Let G be a finite group, let k be a field of characteristic p, and write kG for
the associated group algebra. Recall that the stable module category StModkG is the
quotient of ModkG by the projectives and that it comes equipped with the structure of
a symmetric monoidal triangulated category with tensor unit k. As in [12] we write
Proj(H∗(G; k)) for the projective variety of the Noetherian graded commutative ring
H∗(G; k); the underlying set of Proj(H∗(G; k)) consists of the homogeneous prime
ideals in H∗(G; k) different from the ideal of all positive degree elements.

The finite localization functors on StModkG have been classified in the work of
Benson, Carlson, and Rickard [10]. As a result of a series of papers culminating in
[12], Benson, Iyengar, and Krause generalized this to a complete classification of all
localization functors: They develop a theory of support and employ it to establish
a bijection between the set of localizing tensor ideals of StModkG and arbitrary
subsets of Proj(H∗(G; k)). Their theory yields in particular a proof of the telescope
conjecture in this context.

Theorem 6.1 (Benson–Iyengar–Krause)Thegeneralized telescope conjecture holds
in StModkG, i.e., the category of acyclics of any smashing localization functor is
generated by compact objects. Furthermore, the smashing localization functors on
StModkG are in bijection with specialization closed2 subsets of Proj(H∗(G; k)).

In fact, they establish an analogous classification for the larger category StablekG
of unbounded complexes of injective kG-modules up to homotopy, which fits into
a recollement between StModkG and the derived category of kG-modules [13].
In this case, the role of the parametrizing variety is played by Spech(H∗(G; k)),
the Zariski spectrum of all homogeneous prime ideals of H∗(G; k). In particular,
any specialization closed subset V ⊆ Spech(H∗(G; k)) gives rise to a localization
functor LV on StablekG . For example, if p is a homogeneous prime ideal, then
V (p) = {q | p ⊆ q} ⊆ Spech(H∗(G; k)) is specialization closed, and thus provides
a localization functor LV (p) and a completion functor Λp. These functors should be
thought of as algebraic analogues of the functor Ln−1 and LK (n).

Before we can state the analogue of the chromatic splitting conjecture in this
context, we need to introduce some terminology: To emphasize the analogy to stable

2A subset V is called specialization closed if p ∈ V and p ⊆ q imply q ∈ V .
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homotopy category, we write π∗M for the graded abelian group of homotopy classes
of maps from k to M in StablekG . Call two prime ideals p, p′ ∈ Spech(H∗(G; k))
adjacent if p′

� p and this chain does not refine, i.e., there does not exist q ∈
Spech(H∗(G; k)) such that p′

� q � p. Furthermore, a module M ∈ StablekG is said
to be p-local if π∗M is a p-local H∗(G; k)-module, and a compact M is said to be
of type p′ if π∗M is p′-torsion as a graded H∗(G; k)-module.

Theorem 6.2 ([7]) Suppose G is a finite p-group. Let p, p′ ∈ Spech(H∗(G; k)) be
adjacent prime ideals and let M ∈ StablekG be p-local. There is a homotopy pullback
square

M ΛpM

LV (p)M LV (p)Λ
pM.

If M is compact and of type p′, then the bottom map in this square is split.

Finally, we consider the analogue of the generating hypothesis in StModkG , which
asserts that a map f : M → N between finitely generated modules is nullhomotopic,
i.e., factors through a projective module, if and only if π∗ f = 0. Based on earlier
work of [11] in the p-group case, [16] gives a complete answer:

Theorem 6.3 (Benson–Carlson–Chebolu–Christensen–Mináč)Thegeneratinghypoth-
esis holds for StModkG if and only if the p-Sylow subgroup of G is isomorphic to
either C2 or C3.

The techniques used in their proof, namely Auslander–Reiten theory, carry over
to the chromatic setting to establish the failure of a K (n)-local analogue of the
generating hypothesis [4], thereby bringing us back to our starting point.
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Spectral Algebra Models of Unstable
vn-Periodic Homotopy Theory

Mark Behrens and Charles Rezk

Abstract We give a survey of a generalization of Quillen–Sullivan rational homo-
topy theory which gives spectral algebra models of unstable vn-periodic homotopy
types. In addition to describing and contextualizing our original approach, we sketch
two other recent approaches which are of a more conceptual nature, due to Arone-
Ching and Heuts. In the process, we also survey many relevant concepts which arise
in the study of spectral algebra over operads, including topological André-Quillen
cohomology, Koszul duality, and Goodwillie calculus.

Keywords vn-periodic homtopy theory · Bousfield–Kuhn functor · Topological
André-Quillen cohomology

1 Introduction

In his seminal paper [80], Quillen showed that there are equivalences of homotopy
categories

Ho(Top≥2
Q

) � Ho(DGCoalg≥2
Q

) � Ho(DGLie≥1
Q

)

between simply connected rational spaces, simply connected rational differential
graded commutative coalgebras, and connected rational differential graded Lie alge-
bras. In particular, given a simply connected space X , there aremodels of its rational
homotopy type
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CQ(X) ∈ DGCoalg
Q
,

LQ(X) ∈ DGLieQ

such that

H∗(CQ(X)) ∼= H∗(X;Q) (isomorphism of coalgebras),

H∗(LQ(X)) ∼= π∗+1(X) ⊗ Q (isomorphism of Lie algebras).

In the case where the space X is of finite type, one can also extract its rational
homotopy type from the dualCQ(X)∨, regarded as a differential graded commutative
algebra. This was the perspective of Sullivan [89], whose notion of minimal models
enhanced the computability of the theory.

The purpose of this paper is to give a survey of an emerging generalization of this
theory where unstable rational homotopy is replaced by vn-periodic homotopy.

Namely, the Bousfield–Kuhn functor �K (n) is a functor from spaces to spectra,
such that the homotopy groups of �K (n)(X) are a version of the unstable vn-periodic
homotopy groups of X . We say that a space X is�K (n)-good if the Goodwillie tower
of �K (n) converges at X . A theorem of Arone-Mahowald [8] proves spheres are
�K (n)-good.

The main result is the following theorem (Theorem 6.4, Corollary 8.3).

Theorem 1.1 There is a natural transformation (the “comparison map”)

cK (n)
X : �K (n)(X) → TAQSK (n)

(SX
K (n))

which is an equivalence on finite �K (n)-good spaces.

Here the target of the comparison map is the topological André-Quillen coho-
mology of the K (n)-local Spanier-Whitehead dual of X (regarded as a non-unital
commutative algebra over the K (n)-local sphere), where K (n) is the nth Morava
K -theory spectrum.We regard SX

K (n) as a commutative algebra model of the unstable
vn-periodic homotopy type of X , and the theorem is giving a means of extracting the
unstable vn-periodic homotopy groups of X from its commutative algebra model. A
result of Ching [26] implies that the target of the comparison map is an algebra over
a spectral analog of the Lie operad. As such, we regard the target as a Lie algebra
model for the unstable vn-periodic homotopy type of X .

The original results date back to 2012, and are described in a preprint of the authors
[22] which has (still?) not been published. The paper is very technical, and the delay
in publication is due in part to difficulties in getting these technical details correct.
In the mean-time, Arone-Ching [1] and Heuts [44] have announced proofs which
reproduce and expand on the authors’ results using more conceptual techniques.

The idea of this survey is to provide a means to disseminate the authors’ original
work until the original account is published. As [22] is more of a forced march than a
reflective ramble, it also seemed desirable to have a discussion which explained the
main ideas without getting bogged down in the inevitable details one must contend
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with (which involve careful work with the Morava E-theory Dyer-Lashof algebra,
amongst other things). The approach of Arone-Ching uses a localized analog of their
classification theory for Taylor towers, together with Ching’s Koszul duality for
modules over an operad. Heuts’ approach is a byproduct of his theory of polynomial
approximations of∞-categories. Both of these alternatives, as we mentioned before,
are more conceptual than our computational approach, but require great care to make
precise.

This survey, by contrast, is written to convey the ideas behind all three approaches,
without delving into many details. We also attempt to connect the theory with many
old and new developments in spectral algebra.We hope that the interested reader will
consult cited sources for more careful treatments of the subjects herein. In particular,
all constructions are implicitly derived/homotopy invariant, and we invite the reader
to cast them in his/her favorite model category or ∞-category.

Organization of the Paper.
Section 2:We describe the general notion of stabilization of a homotopy theory, and
the Hess/Lurie theory of homotopy descent as a way of encoding unstable homotopy
theory as “stable homotopy theory with descent data”.

Section 3: The equivalence between rational differential graded Lie algebras and
rational differential graded commutative coalgebras is an instance of Koszul duality.
We describe the theory of Koszul duality, which provides a correspondence between
algebras over an operad, and coalgebras over its Koszul dual.

Section 4:We revisit rational homotopy theory and recast it in spectral terms. We
also describe Mandell’s work, which gives commutative algebra models of p-adic
homotopy types.

Section 5:We give an overview of chromatic (vn-periodic) homotopy theory, both
stable and unstable, and review the Bousfield–Kuhn functor.

Section 6:We define the comparison map, and state the main theorem in the case
where X is a sphere.

Section 7: We give an overview of the proof of the main theorem in the case
where X is a sphere. The proof involves Goodwillie calculus and the Morava
E-theory Dyer-Lashof algebra, both of which we review in this section.

Section 8: We explain how the main theorem extends to all finite �K (n)-good
spaces. We also discuss computational consequences of the theorem, most notably
the work of Wang and Zhu.

Section 9:After summarizing Ching’s Koszul duality for modules over an operad,
we give an exposition of the Arone-Ching theory of fake Taylor towers, and their
classification of polynomial functors.We then explain how they use this theory, in the
localized context, to give a different proof (and strengthening) of the main theorem.

Section 10: We summarize Heuts’ theory of polynomial approximations of ∞-
categories, and his general theory of coalgebramodels of homotopy types.Wediscuss
Heuts’ application of his general theory toKoszul duality, and to unstable vn-periodic
homotopy, where his theory also reproves and strengthens the main theorem.
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Conventions.

• For a commutative (E∞) ring spectrum R, we shall let ModR denote the category
of R-module spectra, with symmetric monoidal structure given by ∧R . For X,Y
in ModR , we will let FR(X,Y ) denote the spectrum of R-module maps from X
to Y , and X∨ := FR(X, R) denotes the R-linear dual. For a pointed space X , We
shall let RX denote the function spectrum F(�∞X, R).

• For X a space or spectrum,we shall use X∧
p to denote its p-completionwith respect

to a prime p, XE to denote its Bousfield localization with respect to a spectrum
E , and X≥n to denote its (n − 1)-connected cover.

• For all but the last section, our homotopical framework will always implicitly take
place in the context of relative categories: a category C with a subcategory W of
“equivalences” [29] (in the last section we work in the context of ∞-categories).
The homotopy category will be denoted Ho(C), and refers to the localization
C[W−1]. Functors between homotopy categories are always implicitly derived.
We shall use C(X,Y ) to refer to the maps in C, and [X,Y ]C to denote the maps in
Ho(C). We shall use C(X,Y ) to denote the derived mapping space.

• Top∗ denotes the category of pointed spaces (with equivalences the weak homo-
topy equivalences), Sp the category of spectra (with equivalences the stable equiv-
alences), and for a spectrum E , (Top∗)E and SpE denote the variants where we
take the equivalences to be the E-homology isomorphisms.

• All operads O in ModR are assumed to be reduced, in the sense that O0 = ∗ and
O1 = R. We shall let AlgO denote the category of O-algebras. As spelled out in
greater detail in Sect. 3, TAQO will denote topological André-Quillen homology,
and TAQO will denote topological André-Quillen cohomology (its R-linear dual).
In the case where O = CommR , the (reduced) commutative operad in ModR ,
we shall let TAQR (respectively TAQR) denote the associated topological André-
Quillen homology (respectively cohomology).1

2 Models of “Unstable Homotopy Theory”

The approach to unstable homotopy theory we are considering fits into a general
context, which we will now describe.
Stable homotopy theories.AsQuillen points out in [79], any pointedmodel category
C comes equipped with a notion of suspension �C and loops �C , given by

�CX = hocolim(∗ ← X → ∗),

�CX = holim(∗ → X ← ∗).

1This is slightly non-standard, as Comm-algebras are the same thing as non-unital commutative
algebras in ModR . However, as we explain in Sect. 3, the category of such is equivalent to the
category of augmented commutative R-algebras.
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This gives the notion of a category Sp(C) of spectra in C. With hypotheses on C, and
a suitable notion of stable equivalence (see, for example, [48, 86]), Sp(C) is a model
for the stabilization of C (in the sense of [63]). There are adjoint functors

�∞
C : Ho(C) � Ho(Sp(C)) : �∞

C . (2.1)

We regard Ho(C) as the unstable homotopy theory of C, and Ho(Sp(C)) as the stable
homotopy theory of C.

The fundamental question. Typically, the unstable homotopy theory is more com-
plicated than the stable homotopy theory. One would therefore like to think that
an unstable homotopy type is a stable homotopy type with extra structure. More
specifically:

Question 2.2 Is there an algebraic structure “?” on Sp(C) and functors:

A : Ho(C) � Ho(Alg?(Sp(C))) : E

so that X � EA(X) (natural isomorphism in the homotopy category)?

If so, we say that ?-algebras model the unstable homotopy types of C.

Remark 2.3

(1) Often, one must restrict attention to certain subcategories of Ho(C), Ho(Alg?)
to get something like this (e.g. 1-connected rational unstable homotopy types).

(2) One can hope formore: isA fully faithful? Canwe then characterize the essential
image?

(3) When (A,E) form an adjoint pair, we can say something sharper: in this case,
there is always a canonical equivalence between the full subcategories

Ho
{
X ∈ C s.t. X � EA(X)

} � Ho
{
A ∈ Alg?(Sp(C)) s.t. A � AE(A)

}
.

This identifies both the “good” subcategory of Ho(C) and its essential image
under A, and shows that A is fully faithful on this subcategory.

Example 2.4 In the case ofC = (Top∗)Q—rational pointed spaces—the stabilization
is rational spectra Sp

Q
. We have

Ho(Sp
Q
) � Ho(ChQ),

where ChQ denotes rational Z-graded chain complexes. In this context Quillen’s
work provides two answers to Question 2.2: the algebraic structure can be taken to
be either commutative coalgebras or Lie algebras.

Homotopy descent. The theory of homotopy decent of Hess [43] and Lurie [63]
(see also [3]) provides a canonical candidate answer to Question 2.2. Namely, the
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adjunction (2.1) gives rise to a comonad �∞
C �∞

C on Sp(C), and for any X ∈ C, the
spectrum �∞

C X is a coalgebra for this comonad.2 Thus one can regard the functor
�∞

C as refining to a functor

A : Ho(C) → Ho(Coalg�∞
C �∞

C
).

Asking for this to be an equivalence is asking for the adjunction to be “comonadic”.
It is typically only reasonable to expect that one gets an equivalence between suitable
subcategories of these two categories. Even then, this may be of little use if there is
no explicit understanding of what it means to be a �∞

C �∞
C -coalgebra.

Example 2.5 Suppose that C = Top∗, the category of pointed spaces. Then there is
always a map

X → C(�∞, �∞�∞, �∞X) (2.2)

where C(−,−,−) denote the comonadic cobar construction. Explicitly,

C(�∞, �∞�∞, �∞X) = Tot(QX ⇒ QQX � · · · ),

the Bousfield–Kan Q-completion of X . It follows that the map (2.2) is an equiva-
lence for X nilpotent, and for nilpotent spaces the unstable homotopy type can be
recovered from the �∞�∞-comonad structure on �∞X . But what does it mean
explicitly to endow a spectrum with a �∞�∞-coalgebra structure? This seems to be
a difficult question, but Arone, Klein, Heuts, and others have partial information (see
[45, 54]). Rationally, however, �∞�∞ is equivalent (on connected spaces) to the
free commutative coalgebra functor, and coalgebras for this comonad are therefore
rationally equivalent to commutative coalgebras.

3 Koszul Duality

The equivalence
Ho(DGCoalg≥2

Q
) � Ho(DGLie≥1

Q
)

mentioned in the introduction is an instance of Koszul duality [5, 24, 31, 33, 36, 37,
63]. In this section we will attempt to summarize the current state of affairs to the
best of our abilities.

Let R be a commutative ring spectrum, and let O be an operad in ModR . All
operads O in this paper are assumed to be reduced: O0 = ∗ and O1 = R.

We shall let AlgO = AlgO(ModR) denote the category ofO-algebras. An equiv-
alence of O-algebras is a map of O-algebras whose underlying map of spectra is an

2One should regard this coalgebra structure as “descent data”.



Spectral Algebra Models of Unstable vn-Periodic Homotopy Theory 281

equivalence.3 Note that since the operadO is reduced, the category AlgO is pointed,
with ∗ serving as both the initial and terminal object. There is a free-forgetful adjunc-
tion

FO : ModR � AlgO : U

where
FO(X) =

∨

i

(
Oi ∧R X∧Ri

)
�i

(3.1)

is the free O-algebra generated by X . We shall abusively also use FO to denote the
associated monad on ModR , so that O-algebras are the same thing as FO-algebras:

AlgO � AlgFO .

Topological André-Quillen homology. Because O is reduced, there is a natural
transformation of monads

ε : FO → Id.

For A anO-algebra, its module of indecomposables QA is defined to be the coequal-
izer of ε and the FO-algebra structure map:

FO(A) ⇒ A → QA.

The functor Q has a right adjoint

Q : AlgO � ModR : triv

where, for an R-module X , the O-algebra trivX is given by endowing X with O-
algebra structure maps:

O1 ∧R X = R ∧R X
≈−→ X,

On ∧R Xn ∗−→ X, n �= 1.

The topological André-Quillen homology of A is defined to be the left derived functor

TAQO(A) := LQA.

It is effectively computed as the realization of the monadic bar construction:

TAQO(A) � B(Id,FO, A).

3We refer the reader to [46] for a thorough treatment of the homotopy theory ofO-algebras suitable
for our level of generality. We advise the reader that some of the technical details in this reference
are correctly dealt with in [55, 76].
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The Topological André-Quillen cohomology is defined to be the R-linear dual of
TAQO:

TAQO(A) := TAQO(A)∨.

Suppose R = Hk is the Eilenberg-MacLane spectrum associated to aQ-algebra k,O
is the commutative operad (see Example 3.2 below), and A is the Eilenberg-MacLane
O-algebra associated to an ordinary augmented commutative k-algebra. Thenwe can
regard TAQO as being an object of the derived category of k under the equivalence

Ho(ModHk) � Ho(Chk)

and we recover classical André-Quillen homology. Basterra defined TAQ for com-
mutative R-algebras for arbitrary commutative ring spectra R, and showed that the
monadic bar construction gives a formula for it [9]. The case of general topological
operads was introduced in [14]; this work was extended to the setting of spectral
operads in [42] (see also [35]).

The important properties of TAQO are:

(1) TAQO is excisive—it takes homotopy pushouts ofO-algebras to homotopy pull-
backs of R-modules (which are the same as homotopy pushouts in this case),

(2) TAQO(FO(X)) � X—this is a consequence of the fact that QFOX ≈ X .

(1) and (2) above imply that if A is built out of free O-algebra cells, TAQO(A)

is built out of R-module cells in the same dimensions. In this way, TAQ provides
information on the “cell structure” of an O-algebra.

Example 3.2 The (reduced) commutative operad Comm = CommR is given by

Commi =
{

∗, i = 0,

R, i ≥ 1.

A CommR-algebra is a non-unital commutative R-algebra. The category of non-
unital commutative R-algebras is equivalent to the category of augmented commu-
tative R-algebras:

AlgCommR
� (AlgR)/R .

Given an augmented commutative R-algebra A, the augmentation ideal I A given by
the fiber

I A → A
ε−→ R

is the associated non-unital commutative algebra. In this setting, we have

TAQCommR (I A) � TAQR(A)

where TAQR(−) is the TAQ of [9].
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The stable homotopy theory of O-algebras.The following theoremwasfirst proven
in the context of simplicial commutative rings in [86], in the context of R arbitrary
and O = Comm in [13, 14], and R and O arbitrary in [74] (see also [31], [63,
Thm. 7.3.4.13]).

Theorem 3.3 There is an equivalence of categories

Ho(Sp(AlgO)) � Ho(ModR).

Under this equivalence, the functors

�∞
AlgO

: Ho(AlgO) � Ho(ModR) : �∞
AlgO

are given by

�∞
AlgO

A � TAQO(A),

�∞
AlgO

X � trivX.

The adjunction above extends to derived mapping spaces, and gives the following
(compare with [9]).

Corollary 3.4 The spaces of the TAQO-spectrum are given by

�∞�n TAQO(A) � AlgO(A, triv�n R).

Proof We have

AlgO(A, triv�n R) � ModR(TAQO(A),�n R)

� ModR(R, �n TAQO(A))

� �∞�n TAQO(A).

�

Divided power coalgebras.Question 2.2 clearly has a tautological answerwhen C =
AlgO: it consists ofO-algebras in Sp(C) � ModR . However, this is not the canonical
spectral algebra model given by the theory of homotopy descent of Sect. 2—we
should be considering the �∞

AlgO
�∞

AlgO
-coalgebra TAQO(A) as a candidate spectral

algebra model for A.
But what does it mean to be a �∞

AlgO
�∞

AlgO
-coalgebra? The answer, according to

[24, 31], is a divided power coalgebra over the Koszul dual BO. Let us unpack what
this means.

For any symmetric sequence Y = {Yi } of R-modules, one can use (3.1) to define
a functor

FY : ModR → ModR .
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The category of symmetric sequences of R-modules possesses a monoidal structure
◦ called the composition product, such that

FY ◦ FZ = FY◦Z .

The monoids associated to the composition product are precisely the operads in
ModR . The unit for this monoidal structure is the symmetric sequence 1R with

(1R)i =
{
R, i = 1,

∗, i �= 1.

Every reduced operad O in ModR is augmented over 1R . The Koszul dual of O is
the symmetric sequence obtained by forming the bar construction with respect to the
composition product

BO := B(1R,O, 1R) = |1 ⇐ O � O ◦ O · · · |.

Ching showed that BO admits a cooperad structure [26].

Example 3.5 Suppose R = HQ, sowecan replaceModR withChQ. TakeO = LieQ,
the Lie operad. Then we have BLieQ = sComm∨

Q
the suspension of the commutative

cooperad [26, 37].4

Example 3.6 In the case of R = S, the sphere spectrum, and O the commutative
operad, Ching showed that

BCommS � (∂∗IdTop∗)
∨

the duals of the Goodwillie derivatives of the identity functor on Top∗5 [26]. He also
showed that with respect to the resulting operad structure on ∂∗IdTop∗ , we have

sH∗∂∗IdTop∗
∼= LieZ.

As such, we will define the shifted spectral Lie operad as

s−1LieS := ∂∗IdTop∗ .

Following [24], we have for an R-module X :

4In general, for a (co)operadO, the suspension of the (co)operad sO is a new (co)operad for which
(sO)i � �i−1Oi (nonequivaraintly), with the property that an sO-(co)algebra structure on X is the
same thing as an O-(co)algebra structure on �X [7, 73].
5This identification used the computation of ∂∗IdTop∗ of [8, 53] as input.
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�∞
AlgO

�∞
AlgO

X � TAQO(trivX)

� B(Id,FO, trivX)

� FBOX.

If R and O are connective, and X is connected, we have

FBOX �
∏

i

(
BOi ∧R X∧Ri

)
�i

.

Thus, at least on the level of the homotopy category, the data of a �∞
AlgO

�∞
AlgO

-
coalgebra C corresponds to the existence of a collection of coaction maps:

ψi : C → (
BOi ∧R C∧Ri

)
�i

.

The term divided power comes from the fact that a standard coalgebra over a cooperad
consists of coaction maps into the �i -fixed points rather than the �i -orbits.

The general notion of a divided power (co)algebra over a (co)operad goes back
to Fresse (see [32, 33]). For a precise definition of divided power coalgebras in the
present homotopy-coherent context, we refer the reader to [31, 45]. In this language,
we have functors

TAQO : Ho(AlgO) � Ho(d.p.CoalgBO) : E. (3.2)

Instances of Koszul duality. The following “Koszul Duality” theorem (a special
case of a general conjecture of Francis-Gaitsgory [31]) generalizes Quillen’s original
theorem, as well as subsequent work in the algebraic context [33, 36, 37, 87].

Theorem 3.8 (Ching-Harper [24]) In the case where R and O are connective, the
functors (3.2) restrict to give an equivalence of categories

Ho(Alg≥1
O ) � Ho(d.p.Coalg≥1

BO).

Example 3.9 Returning to the context of R = HQ, and O = LieQ of Example 3.5,
Theorem 3.8 recovers Quillen’s original theorem:

Ho(Alg≥1
LieQ) � Ho(Coalg≥1

sComm∨
Q

) � Ho(Coalg≥2
Comm∨

Q

).

Note that we have not mentioned divided powers. This is because, rationally, coin-
variants and invariants with respect to finite groups are isomorphic via the normmap,
so every rational coalgebra is a divided power coalgebra.
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4 Models of Rational and p-Adic Homotopy Theory

In this section we will return to Quillen–Sullivan theory, and a p-adic analog studied
by Kriz, Goerss, Mandell, and Dwyer-Hopkins.

Rational homotopy theory, again. We begin by recasting Quillen–Sullivan theory
into the language of spectral algebra. This in some sense defeats the original purpose
of the theory—which was to encode rational homotopy theory in an algebraic cate-
gory where you can literally write down the models in terms of generators, relations
and differentials, but our recasting of the theory will motivate what follows.

Consider the functors

HQ ∧ − : Ho((Top∗)Q) → Ho(CoalgComm∨
HQ

),

HQ
− : Ho((Top∗)Q)op → Ho(AlgCommHQ

).

Essentially, for X ∈ Top∗, HQ ∧ X is a spectral model for the reduced chains on
X , and HQ

X is a spectral model for the reduced cochains of X . The commutative
coalgebra/algebra structures come from the diagonal

� : X → X ∧ X.

The two functors are related by HQ
X = (HQ ∧ X)∨. If X is of finite type, there is

no loss of information in using the cochains HQ
X . There is a definite advantage to

working with algebras rather than coalgebras if you like model categories.6

Quillen’s theorem implies these functors restrict to give equivalences of cate-
gories:

HQ ∧ (−) : Ho(Top≥2
Q

)
�−→ Ho(Coalg≥2

Comm∨
HQ

),

HQ
(−) : Ho(Top≥2,f.t.

Q
)

�−→ Ho(Alg≤−2,f.t.
CommHQ

).

His Lie algebra models then come from applying Koszul duality (see Example 3.9).

p-adic homotopy theory. Fix a prime p. Analogous approaches to p-adic homotopy
theory using cosimplicial commutative algebras, simplicial commutative coalgebras,
E∞-algebras in chain complexes, and commutative algebras in spectra were devel-
oped respectively by Kříž [56], Goerss [39], Mandell [66], and Dwyer-Hopkins (see
[66]).Wewill focus on the spectral algebra setting, which is closely tied toMandell’s
algebraic setting.

6For suitable monadsM on cofibrantly generated model categories C it is typically straightforward
to place induced model structures on AlgM [47]—coalgebras over comonads are more difficult to
handle. This may be an instance where there is a definite advantage in working with ∞-categories.
However, we also point out that Hess-Shipley [52] give a useful framework which in practice can
often give model category structures on categories of coalgebras over comonads.
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The basic idea in these approaches is to replace the role of HQ with the role of
H F̄p. Consider the cochain functor with F̄p-coefficients on p-complete spaces:

H F̄
(−)
p : Ho((Top∗)Zp )

op → Ho(AlgCommH F̄p
).

Theorem 4.1 (Mandell [66]) The F̄p-cochains functor gives a fully faithful embed-
ding

H F̄
(−)
p : Ho((Top∗)

nilp,f.t.
Zp

)op ↪→ Ho(AlgCommH F̄p
). (4.1)

of the homotopy category of nilpotent p-complete spaces of finite type into the homo-
topy category of commutative H F̄p-algebras.

Remark 4.3 Actually, the functor (4.1) induces an equivalence on derived mapping
spaces. Mandell also computes the effective image of this functor.

Remark 4.4 The approach of [39] suggests that the finite type hypothesis could be
removed if one worked with H F̄p-coalgebras.

What goes wrong when using HFp instead of H F̄p? Because the F̄p-cochains
are actually defined over Fp, there is a continuous action of

Gal := Gal(F̄p/Fp) ∼= Ẑ

on H F̄
X
p , with homotopy fixed points:

(H F̄
X
p )hGal(F̄p/Fp) � HF

X
p .

It follows that for X , Y nilpotent and of finite type, we have

Alg
CommHFp

(HF
Y
p , HF

X
p ) � Alg

CommH F̄p

(H F̄
Y
p , H F̄

X
p )hGal

� Top∗(X
∧
p ,Y

∧
p )hGal.

However, the action of Gal on Top∗(X
∧
p ,Y

∧
p ) is trivial, so we have

Top∗(X
∧
p ,Y

∧
p )hGal � Top∗(X

∧
p ,Y

∧
p )BZ

� LTop∗(X
∧
p ,Y

∧
p ) (the free loop space).

In unpublished work (closely related to [67]), Mandell has shown the same holds
for HFp replaced by Sp, the p-adic sphere spectrum when X and Y are additionally
assumed to be finite:

Alg
Comm

(SYp , SX
p ) � LTop∗(X

∧
p ,Y

∧
p ).
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In fact, Mandell has shown the integral cochains functors gives a faithful embedding
of the integral homotopy category into the category of integral E∞-algebras [67]

Ho(Topnilp,f.t.∗ )op ↪→ Ho(AlgE∞(ChZ))

Medina has recently proven a related statement using E∞-coalgebras [69], and
Blomquist-Harper have recently announced another setup using coalgebra struc-
tures on integral chains [10]. In unpublished work, Mandell has a similar result for
commutative S-algebras: the Spanier-Whitehead dual functor gives a faithful embed-
ding:

S(−) : Ho(Topnilp,finite∗ )op ↪→ Ho(AlgComm(Sp)).

Where are the p-adic Lie algebras? There is no known “Lie algebra model” for
unstable p-adic homotopy theory.One of the problems is that, unlike the rational case,
commutative H F̄p-coalgebras do not automatically come equipped with divided
power structures, so Koszul duality does not seem to apply (cf. the rational analogue
of Example 3.5). Applying Koszul duality in the other direction, to get a “divided
power Lie coalgebra model” (via a Koszul duality equivalence with commutative
algebras) is fruitless as well, since TAQH F̄p (H F̄

X
p ) � ∗ for any finite-type nilpotent

X (Thm. 3.4 of [67]).
One indication that one should not expect aLie algebramodel for p-adic homotopy

types is that rationally, the composite

Ho(Sp≥2
Q

)
�∞(−)−−−→ Ho(Top≥2

Q
)

LQ−→� Ho(Alg≥1
LieQ)

is given by
LQ(�∞Z) � triv�−1Z .

where we give the spectrum �−1Z the trivial Lie bracket. This, strangely, means
that a simply connected rational homotopy type is an infinite loop space if and only
if its associated Lie algebra is equivalent to one with a trivial bracket. There is thus
a functor

�0 : Ho(Top≥2
Q

) → Ho(Sp
Q
) (4.2)

given by forgetting the Lie algebra structure on LQ. For a 1-connected spectrum Z ,
we have

�0�
∞Z � ZQ,

i.e., we can recover the rationalization of the spectrum from its 0th space. It follows
that rationally, simply connected infinite loop spaces have unique deloopings. An
analogous fact does not hold for p-adic infinite loop spaces.



Spectral Algebra Models of Unstable vn-Periodic Homotopy Theory 289

5 vn-Periodic Homotopy Theory

In both the case of rational homotopy theory, and p-adic homotopy theory, there are
notions of “homotopy groups” and “homology groups”. In the rational case, we have

rational homotopy = π∗(X) ⊗ Q,

rational homology = H∗(X;Q).

The appropriate analogs in the p-adic case are

mod p homotopy = π∗(X; M(p)) := [�∗M(p), X ]Top∗ ,

mod p homology = H∗(X;Fp).

For 1-connected spaces, a map is a rational homotopy isomorphism if and only if
it is a rational homology isomorphism, and similarly, a map is a mod p homotopy
isomorphism if and only if it is a mod p homology isomorphism.

The idea of chromatic homotopy theory is that a p-local homotopy type is built
out of monochromatic (or vn-periodic) layers, and that elements of p-local homotopy
groups fit into periodic families of different frequencies. The vn-periodic homotopy
groups isolate the elements in a particular frequency. The associated homology theory
is the nth Morava K -theory.

Stable vn-periodic homotopy theory. We begin with the stable picture. vn-periodic
stable homotopy theory has its own notion of homotopy and homology groups. The
appropriate homology theory is the nth Morava K -theory spectrum K (n), with

K (n)∗ = Fp[v±
n ], |vn| = 2(pn − 1)

(for n = 0 we have K (0) = HQ and v0 = p). The appropriate notion of homotopy
groups are the vn-periodic homotopy groups, defined as follows. A finite p-local
spectrum V is called type n if it is K (n − 1)-acyclic, and not K (n)-acyclic. The
periodicity theoremofHopkins-Smith [51] states thatV has an asymptotically unique
vn self-map: a K (n)-equivalence

v : �kV → V

(with k > 0 if n > 0). The vn-periodic homotopy groups (with coefficients in V ) of
a spectrum Z are defined to be

v−1
n π∗(Z; V ) := v−1[�∗V, Z ]Sp.

For n > 0 these groups are periodic, of period dividing k, the degree of the chosen
self-map v. Note these groups do not depend on the choice of vn self-map (by
asymptotic uniqueness) but they do depend on the choice of finite type n spectrum
V . However, for any two such spectra V , V ′, it turns out that a map is a v−1

n π∗(−; V )
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isomorphism if and only if it is a v−1
n π∗(−; V ′) isomorphism. It is straightforward

to check that if we take T (n) to be the “telescope”

T (n) = v−1
n V := hocolim(V

v−→ �−kV
v−→ �−2kV

v−→ · · · )

then a v−1
n π∗-isomorphism is the same thing as a T (n)∗-isomorphism.

For maps of spectra it can be shown that

v−1
n π∗-isomorphism ⇒ K (n)∗-isomorphism.

Ravenel’s telescope conjecture [81] predicts the converse is true. This is easily veri-
fied in the case of n = 0, and deep computational work of Mahowald [64] andMiller
[70] implies the conjecture is valid for n = 1. It is believed to be false for n ≥ 2, but
the problem remains open despite the valiant efforts of many researchers [71].

As such, there are potentially two different stable vn-periodic categories, SpT (n)

and SpK (n), corresponding to the localizations with respect to the two potentially
different notions of equivalence. K (n)-localization gives a functor

(−)K (n) : Ho(SpT (n)) → Ho(SpK (n)).

Remark 5.1 Arguably localization with respect to T (n) is more fundamental, but
there are no known computations of π∗ZT (n) for a finite spectrum Z and n ≥ 2 (if we
had such a computation, we probably would have resolved the telescope conjecture
for that prime p and chromatic level n). By contrast, the whole motivation of the
chromatic program is that the homotopy groups π∗ZK (n) are essentially computable
(though in practice these computations get quite involved, and little has been done
for n ≥ 3).

The stable chromatic tower. p-local stable homotopy types are assembled from the
stable vn-periodic categories in the following manner. Let L f

n Sp denote the category
of spectra which are

⊕n
i=0 v−1

i π∗-local, and let LnSp denote the category of spectra
which are

⊕n
i=0 K (i)∗-local, with associated (and potentially different) localization

functors L f
n , Ln . A spectrum Z has two potentially different chromatic towers

· · · → L f
2 Z → L f

1 Z → L f
0 Z ,

· · · → L2Z → L1Z → L0Z .

Under favorable circumstances (for example, when Z is finite [49]) we have chro-
matic convergence: the map

Z(p) → holim
n

Ln Z

is an equivalence. Presumably one can expect similar results for L f
n , though the

authors are not aware of any work on this.
The monochromatic layers are the fibers
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M f
n Z → L f

n Z → L f
n−1Z ,

MnZ → Ln Z → Ln−1Z .

Let M f
n Sp (respectively MnSp) denote the subcategory of L

f
n Sp (respectively LnSp)

consisting of the image of the functor M f
n (respectively Mn). Then the pairs of

functors

(−)T (n) : Ho(M f
n Sp) � Ho(SpT (n)) : M f

n ,

(−)K (n) : Ho(MnSp) � Ho(SpK (n)) : Mn

give equivalences between the respective homotopy categories (see, for example,
[18]). We have

v−1
n V � M f

n V � VT (n)

and
v−1
n π∗(Z; V ) ∼= [�∗M f

n V, M f
n Z ]Sp ∼= [�∗VT (n), ZT (n)]Sp.

T (n)-local Tate spectra. For G a finite group, and Z a spectrum with a G-action,
there is a natural transformation

N : ZhG → ZhG

called the norm map [38]. The cofiber is called the Tate spectrum:

ZtG := cof(ZhG → ZhG).

The following theorem is due to Hovey-Sadofsky [50] in the K (n)-local case, and
was strengthened by Kuhn [58] to the T (n)-local case (see also [27, 41, 72]).

Theorem 5.2 (Greenlees-Sadofsky, Kuhn) If Z is T (n)-local, then the spectrum
ZtG is T (n)-acyclic, and the norm map is a T (n)-equivalence.

In the case of n = 0, this reduces to the familiar statement that rationally, invariants
and coinvariantswith respect to a finite group are isomorphic via the norm. In general,
this theorem implies that T (n)-local coalgebras, T (n)-locally, admit unique divided
power structures. In some sense, Theorem 5.2 will be the primary mechanism which
will allow unstable vn-periodic homotopy types to admit Lie algebra models.

Unstable vn-periodic homotopy theory. Perhaps the most illuminating approach
to unstable vn-periodic homotopy theory is that of [18], which we follow here. This
approach builds on previous work of Davis, Mahowald, Dror Farjoun, and many
others. Like the stable case, there will be two potentially different notions of unstable
vn-periodic equivalence: one based on unstable vn-periodic homotopy groups, and
one based on K (n)-homology.
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The appropriate unstable analogs of vn-periodic homotopy groups are defined
as follows. The periodicity theorem implies that unstably, a finite type n complex
admits a vn-self map

v : �k(N0+1)V → �kN0V

for some N0 � 0. For any X ∈ Top∗, its vn-periodic homotopy groups (with coeffi-
cients in V ) are defined by

v−1
n π∗(X; V ) := v−1[�∗V, X ]Top∗ .

for n > 0 (v0-periodic homotopy is taken to be rational homotopy). For n > 0 this
definition only makes sense for ∗ � 0, but because the result is k-periodic, one can
define these groups for all ∗ ∈ Z. These give the notion of a v−1

n π∗-equivalence of
spaces. Bousfield argues in [18] that the appropriate notion of unstable vn-periodic
homology equivalence is that of a virtual K (n)-equivalence—amapof spaces X → Y
for which the induced map

(�X)≥n+3 → (�Y )≥n+3

is a K (n)∗-isomorphism.7 Rather than try to explain why this is the appropriate
notion we will simply point out that Bousfield proves that if the telescope conjecture
is true, then virtual K (n)-equivalences are v−1

n π∗-isomorphisms.
We will focus on the version of unstable vn-periodic homotopy theory based

on v−1
n π∗-equivalences. The authors do not know if any attempt has been made to

systematically study the unstable theory based on virtual K (n)-equivalences (in case
the telescope conjecture is false).

Bousfield defines L f
n Top∗ to be the nullification of Top∗ with respect to

�Vn+1 ∨
∨

� �=p

M(Z/�, 2),

where Vn+1 is a type n + 1 complex of minimal connectivity (say it is (dn − 3)-
connected). Let L f

n denote the associated localization functor. When restricted to
Top≥dn∗ , L f

n is localization with respect to
⊕n

i=0 v−1
i π∗-equivalences. For a space X

there is an unstable chromatic tower

· · · → L f
2 X → L f

1 X → L f
0 X.

The unstable chromatic tower actually always converges to X(p) for a trivial reason:
the sequence dn is non-decreasing and unbounded [16].

The nth monochromatic layer is defined to be the homotopy fiber

M f
n X → L f

n X → L f
n−1X.

7A variant of this definition is explored by Kuhn in [59].
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Bousfield defines the nth unstable monochromatic category M f
n Top∗ to be the full

subcategory of Top∗ consisting of the spaces of the form (M f
n X)≥dn . Bousfield’swork

in [18] implies the equivalences in M f
n Top∗ are precisely the v−1

n π∗-equivalences.
Furthermore, for any type n complex V with an unstable vn-self map

v : �kV → V

the vn-periodic homotopy groups are in fact the V -based homotopy groups as com-
puted in Ho(M f

n Top∗):

v−1
n π∗(X; V ) ∼= [�∗V, M f

n X ]Top∗ .

The Bousfield–Kuhn functor. Bousfield and Kuhn [18, 61] observe vn-periodic
homotopy groups are the homotopy groups of a spectrum �V (X). The kN th space
of this spectrum is given by

�V (X)kN = Top∗(V, X)

with spectrum structure maps generated by the maps

�V (X)kN = Top∗(V, X)
v∗−→ Top∗(�

kV, X) � �k�V (X)k(N+1).

It follows that
π∗�V (X) ∼= v−1

n π∗(X; V ).

The above definition only depended on�kN V for N large. As a result, it only depends
on the stable homotopy type �∞V . One can therefore take a suitable inverse system
Vi of finite type n spectra so that

holim
i

v−1
n Vi � ST (n).

The Bousfield–Kuhn functor

�n : Ho(Top∗) → Ho(SpT (n))

is given by
�n(X) = holim

i
�V ∨

i
(X).

We define the completed unstable vn-periodic homotopy groups (without coefficients
in a type n complex) by8

8These should not be confused with the “uncompleted” unstable vn-periodic homotopy groups
studied by Bousfield, Davis, Mahowald, and others. These are given as the homotopy groups of
M f

n �n(X) (see [60]).



294 M. Behrens and C. Rezk

v−1
n π∗(X)∧ := π∗�n(X).

The Bousfield–Kuhn functor enjoys many remarkable properties:

(1) For X ∈ Top∗ and a type n spectrum V we have

[�∗V,�n(X)]Sp � v−1
n π∗(X; V ).

(2) �n preserves fiber sequences.
(3) For Z ∈ Sp there is a natural equivalence

�n�
∞Z � ZT (n).

Property (3) above is the strangest property of all: it implies (since by (2) �n com-
mutes with �) that a T (n)-local spectrum is determined by any one of the spaces in
its �-spectrum, independent of the infinite loop space structure.

Relation between stable and unstable vn-periodic homotopy. The category
Ho(SpT (n)) serves as the “stable homotopy category” of the unstable vn-periodic

homotopy category Ho(M f
n Top∗), with adjoint functors [18]

(�∞−)T (n) : Ho(M f
n Top∗) � Ho(SpT (n)) : (�∞M f

n −)≥dn .

Analogously to the rational situation, it is shown in [18] that the composite

Ho(SpT (n))
(�∞M f

n −)≥dn−−−−−−−→ Ho(M f
n Top∗)

�n−→ Ho(SpT (n))

is naturally isomorphic to the identity functor. Thus the stable vn-periodic homotopy
category admits a fully faithful embedding into the unstable vn-periodic homotopy
category. This leads one to expect that there is a “Lie algebra” model of unstable
vn-periodic homotopy, where the infinite loop spaces correspond to the Lie algebras
with trivial Lie structure.

The K (n)-local variant. There is a variant of the Bousfield–Kuhn functor

�K (n) : Ho(Top∗) → Ho(SpK (n))

defined by
�K (n)(X) � �n(X)K (n).

We then have
�K (n)�

∞Z � ZK (n).

There is a corresponding variant of completed unstable vn-periodic homotopy groups
which (probably to the chagrin of many) we will denote:
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v−1
K (n)π∗(X)∧ := π∗�K (n)(X).

Ofcourse if the telescope conjecture is true,�n(X) � �K (n)(X), and the twoversions
of unstable vn-periodic homotopy agree. If the telescope conjecture is not true, the
groups v−1

K (n)π∗ will likely be far more computable than v−1
n π∗.

6 The Comparison Map

Motivated by rational and p-adic homotopy theory, one could ask: to what degree is
an unstable homotopy type X ∈ M f

n Top∗ modeled by the T (n)-local Comm-algebra
SX
T (n) (the “ST (n)-valued cochains”)? I.e., what can be said of the functor:

S(−)

T (n) : Ho(M f
n Top∗)

op → Ho(AlgComm(SpT (n)))?

The first thing to check is to what degree the unstable vn-periodic homotopy groups
of X can be recovered from the algebra SX

T (n): i.e. for an unstable type n complex V
with vn-self map

v : �kV → V

what can be said of the following composite?

v−1
n π∗(X; V ) ∼= [�∗V, M f

n (X)]Top∗ → [
SX
T (n), S

�∗V
T (n)

]
AlgComm

(6.1)

Webeginwith the observation,whichwe learned fromMikeHopkins, that theComm-
algebra SV

T (n) is actually an “infinite loop object” in the category AlgComm:

Proposition 6.2 There is an equivalence of Comm-algebras

SV
T (n) � triv(V ∨).

Proof The existence of the vn-self map v shows that SV
T (n) is an infinite loop object

of AlgComm:

SV
T (n)

(vN )∗−−−→� S�NkV
T (n) � �Nk SV

T (n).

The result follows from the fact that the infinite loop objects in AlgComm are the trivial
algebras on the underlying spectra. �

Using Corollary 3.4, we now deduce:

Corollary 6.3 We have

Alg
Comm

(SX
T (n), S

�∗V
T (n) ) � �∞�∗ TAQST (n)

(SX
T (n)) ∧ V ∨.

We deduce that (6.1) refines to a natural transformation
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cVX : �V (X) → TAQST (n)
(SX

T (n)) ∧ V ∨.

Taking a suitable homotopy inverse limit of these natural transformations gives a
natural transformation

cX : �n(X) → TAQST (n)
(SX

T (n))

which we will call the comparison map. A variant, which involves replacing ST (n)

with SK (n), everywhere, is defined in [22]:

cK (n)
X : �K (n)(X) → TAQSK (n)

(SX
K (n)).

The main theorem of [22] is

Theorem 6.4 The comparison map cK (n)
X is an equivalence for X a sphere.

It follows formally from this theorem that the comparison map is an equivalence
for a larger class of spaces: the class of finite �K (n)-good spaces. This will be dis-
cussed in Sect. 8. In the case of n = 1, Theorem 6.4 was originally proven by French
[34].

It is shown in [26] that cobar constructions for O-coalgebras get a CO-algebra
structure (where C denotes the cooperadic cobar construction). The spectrum

TAQST (n)
(SX

T (n))

is therefore an algebra over s−1LieS (see Example 3.6). We might regard this as a
candidate for a “Lie algebramodel” for the unstable vn-periodic homotopy type of X ,
though this is probably only reasonable for X finite, as will be explained in Sect. 10.

7 Outline of the Proof of the Main Theorem

Our approach to Theorem 6.4 is essentially computational in nature, and uses the
Morava E-theory Dyer-Lashof algebra in an essential way. Unfortunately, the proof
given in [22] is necessarily technical, and consequently is not optimized for leisurely
reading. In this sectionwe give an overview of themain ideas of our proof. Aswewill
explain in Sects. 9 and 10, Arone-Ching [1] and Heuts [44] have announced more
abstract approaches to prove Theorem 6.4, with stronger consequences. Perhaps the
situation is comparable to the early work on p-adic homotopy theory of Kříž and
Goerss [39, 56]: Kriz’s approach (like that of [66]) is computational, based on the
Steenrod algebra, whereas Goerss’ is abstract, based on Galois descent and model
category theory. Both approaches offer insight into the theory of using commutative
algebras/coalgebras to model p-adic homotopy types. We hope the same is true of
the two approaches to model unstable vn-periodic homotopy.
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Goodwillie towers. The proof of 6.4 involves induction up the Goodwillie towers
of both the source and target of the comparison map. The key fact that the argument
hinges on is an observation of Kuhn [57]: the layers of both of these towers are
abstractly equivalent.

For our application of Goodwillie calculus to the situation, we point out that, in
the context of model categories, Pereira [74] has shown that Goodwillie’s calculus
of functors (as developed in [40]) applies to homotopy functors

F : C → D

between arbitrary model categories with fairly minimal hypotheses (see also [21,
63]).9 For simplicity we shall assume that C andD are pointed, and restrict attention
to reduced F (i.e. F(∗) � ∗).

Associated to F is its Goodwillie tower, a series of k-excisive approximations

Pk F : C → D

which form a tower under F :

F → · · · → Pk F → Pk−1F → · · · → P1F.

We say the Goodwillie tower converges at X if the map

F(X) → holim
k

Pk F(X)

is an equivalence. The layers of the Goodwillie tower are the fibers

DkF → Pk F → Pk−1F.

If F is finitary (i.e. preserves filtered homotopy colimits), the layers take the form

DkF(X) � �∞
D crlink (F)(�∞

C X, · · · , �∞
C X)h�k

where
crlink (F) : Sp(C)×k → Sp(D)

is a certain symmetric multilinear functor called the multilinearized cross-effect. In
the case where Sp(C),Sp(D) are Quillen equivalent to Sp = Sp(Top∗), the multilin-
earized cross effect is given by

crlink (F)(Z1, · · · , Zk) � ∂k F ∧ Z1 ∧ · · · ∧ Zk

9Yet another general treatment of homotopy calculus can be found in [12], but at present this
approach only applies to functors which take values in spectra.
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where ∂k F is a spectrum with �k-action (the kth derivative of F), and we have

DkF(X) � �∞
D

(
∂k F ∧h�k (�∞

C X)∧k
)
.

The Goodwillie tower is an analog for functors of the Taylor series of a function,
with Dk(F) playing the role of the kth term of the Taylor series.

We consider the Goodwillie towers of the functors

�K (n) : Top∗ → SpK (n)

TAQSK (n)
(S(−)

K (n)) : Top∗ → SpK (n).

Note that the second of these functors is not finitary (�K (n) is actually finitary, as
long as the corresponding homotopy colimit is taken in the category SpK (n)). In the
case of �K (n), it is fairly easy to see that its Goodwillie tower is closely related to
the Goodwillie tower of the identity functor

Id : Top∗ → Top∗.

Lemma 7.1 There are equivalences

Pk�K (n) � �K (n)PkId.

Proof This follows easily from observing that the fibers of the RHS are given by

�K (n)DkId(X) � (s−1Liek ∧h�k X
∧k)K (n)

and are therefore homogeneous of degree k. �
More subtly, Kuhn constructed a filtration on TAQR [57] which results in a tower

TAQR(A) → · · · → Fk TAQR(A) → Fk−1 TAQR(A) → · · · . (7.1)

For all A we have an equivalence

TAQR(A)
�−→ holim Fk TAQR(A) (7.2)

for the simple reason that Kuhn’s filtration of TAQR is exhaustive.

Theorem 7.4 (Kuhn [57]) The fibers of the tower (7.1) are given by

s−1Liek ∧h�k (A∧Rk)∨ → Fk TAQR(A) → Fk−1 TAQR(A).

Corollary 7.5 For finite X the Goodwillie tower of the functor TAQSK (n)
(S(−)

K (n)) is
given by

Pk(TAQSK (n)
(S(−)

K (n)))(X) � Fk TAQSK (n)
(SX

K (n)).
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Proof Combining Theorem 5.2 with Theorem 7.4 shows the layers of the RHS are
equivalent to

(s−1Liek ∧h�k X
∧k)K (n).

In particular, they are homogeneous of degree k. �
It follows that the comparison map actually induces a natural transformation of

towers
Pn(c

K (n)
X ) : �K (n)PkId(X) → Fk TAQSK (n)

(SX
K (n))

when restricted to finite X . In fact, the proofs of Lemma 7.1 and Corollary 7.5
actually imply that for X finite, the layers of these towers are abstractly equivalent.
Thus, to show that the maps Pn(c

K (n)
X ) are equivalences, we just need to show that

they induce equivalences on the layers (which we already know are equivalent)! This
will be accomplished computationally using

The Morava E-theory Dyer-Lashof algebra. Let En denote the nth Morava
E-theory spectrum, with

(En)∗ ∼= W (Fpn )[[u1, . . . , un−1]][u±].

The ring (En)0 has a unique maximal ideal m. We shall let

(E∧
n )∗Z := π∗(En ∧ Z)K (n)

denote the completed E-homology of a spectrum Z . If the uncompleted Morava
En-homology is flat over (En)∗, the completed E-homology is the m-completion of
the uncompleted homology. Let Kn denote the 2-periodic version of K (n), with

(Kn)∗ ∼= (En)∗/m ∼= Fpn [u±].

In [83], the second author defined a monad10

T : Mod(En)∗ → Mod(En)∗

such that the completed E-homology of a Comm-algebra has the structure of a
T-algebra. A T-algebra is basically an algebra over the Morava E-theory Dyer-
Lashof algebra �n . For an (En)∗-module M , the value of the functor TM is the free
�n-algebra on M (for a precise description of what is meant by this, consult [83]).

The work of Strickland [88] basically determines the structure of the dual of �n

in terms of rings of functions on the formal schemes of subgroups of the Lubin-Tate
formal groups. In the case of n = 1, the corresponding Morava E-theory is p-adic
K -theory, and �1 is generated by the Adams operation ψ p with no relations. In the
case of n = 2, the explicit structure of �2 was determined by the second author in

10The monad denoted T here is actually a non-unital variant of the monad T of [83].
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[82] for p = 2, and mod p for all primes in [84]. An integral presentation of �2

has recently been determined by Zhu [95]. Very little is known about the explicit
structure of �n for n ≥ 3 except that it is Koszul [85] in the sense of Priddy [78].

For the purpose of our discussion of Theorem 6.4, the only thing we really need
to know about T is the following theorem of the second author (see [83]):

Theorem 7.6 If (E∧
n )∗Z is flat over (En)∗, then the natural transformation

T(E∧
n )∗Z → (E∧

n )∗FCommZ

induces an isomorphism

(T(E∧
n )∗Z)∧m

∼=−→ (E∧
n )∗FCommZ .

There is a “completed” variant of the functor FComm:

F̂Comm(Z) :=
∏

i

Z i
h�i

.

The following lemma of [22] is highly non-trivial, as completed Morava E-theory
in general behaves badly with respect to products.

Lemma 7.7 There is a completed variant of the free T-algebra functor:

T̂ : ModE∗ → Alg
T

and for spectra Z a natural transformation

T̂(E∧
n )∗Z → (E∧

n )∗F̂CommZ

which is an isomorphism if (E∧
n )∗Z is flat and finitely generated.

In [22] we construct a version of the Basterra spectral sequence for E-theory: for
a K (n)-local Comm-algebra A whose En-homology satisfies a flatness hypothesis,
the spectral sequence takes the form

AQ∗,∗
T

((E∧
n )∗A; (Kn)∗) ⇒ (Kn)∗ TAQSK (n)

(A). (7.3)

Here AQ∗,∗
T

(−; M) denotes Andre-Quillen cohomology of T-algebras with coef-
ficients in an E∗-module M (see [22] for a precise definition—these cohomology
groups are closely related to those defined in [35]).

The comparison map on QX . The next step in the proof of Theorem 6.4 is to prove
the following key proposition.

Proposition 7.9 There is a non-negative integer N so that for all N-fold suspension
spaces X with (E∧

n )∗X free and finitely generated over (En)∗, the comparison map
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(�∞X)K (n) � �K (n)(QX)
cK (n)
QX−−→ TAQSK (n)

(SQX
K (n))

is an equivalence.

We will prove this proposition by showing that the comparison map induces an
isomorphism in Morava K (n)-homology. The first step is to compute the K (n)∗-
homology of the the RHS. This is accomplished in [22] with the following technical
lemma:

Lemma 7.10 For X satisfying the hypotheses of Proposition 7.9, there is a map of
(En)∗-modules

(E∧
n )∗SQX

K (n) → T̂Ẽ∗
n X

which is an isomorphism ofT-algebras modm, in the sense that it is an isomorphism
mod m, and commutes with the T-action mod m.

Heuristically, this lemma might seem to follow from Theorem 5.2 and the Snaith
splitting:

SQX
K (n) � S

∨
i X

i
h�i

K (n)

�
∏

i

(
SXi

K (n)

)h�i

�
(

∏

i

(
SXi

K (n)

)

h�i

)

K (n)

� (
F̂CommS

X
K (n)

)
K (n)

.

However, as was pointed out to us byNickKuhn, this is not an equivalence of Comm-
algebras (or even non-unital H∞-ring spectra)!Nevertheless, Lemma7.10 establishes
that on Morava E-theory, this sequence of equivalences induces an isomorphism of
T-algebras mod m.

Proof of Proposition 7.9. The natural transformation

�∞QX = �∞�∞�∞X → �∞X

induces a natural transformation

SX
K (n) → SQX

K (n)

of spectra, hence a natural transformation

FCommSK (n)
SX
K (n) → SQX

K (n)
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of Comm-algebras. We thus get a natural transformation

TAQSK (n)
(SQX

K (n))
ηX−→TAQSK (n)

(FCommSK (n)
SX
K (n))

�(�∞X)K (n)

��K (n)(QX).

It can be shown that ηX ◦ cK (n)
QX � Id. Since (K̃n)∗X is finite, it suffices to show that

(Kn)∗ TAQSK (n)
(SX

K (n)) is abstractly isomorphic to (K̃n)∗X . This is proven using the
Basterra spectral sequence (7.3). The spectral sequence collapses to the desired result
as we have (using Lemma 7.10)

AQs,∗
T

((E∧
n )∗SQX

K (n); (Kn)∗) ∼= AQs,∗
T

(T̂Ẽ∗
n X; (Kn)∗)

∼= AQs,∗
T

(TẼ∗
n X; (Kn)∗)

∼=
{

(K̃n)∗X, s = 0,

0, s > 0.

�
The comparison map on spheres. We now outline the proof of Theorem 6.4. Let
X = Sq . The following strong convergence theorem of Arone-Mahowald [8] is cru-
cial.

Theorem 7.11 (Arone-Mahowald) The natural transformation

�K (n)(X) → �K (n)PkId(X)

is an equivalence for q odd and k = pn, or q even and k = 2pn.

The basic strategy is to attempt to apply Proposition 7.9 to the Bousfield–Kan
cosimplicial resolution

X → Q•+1X = (QX ⇒ QQX � · · · ) .

We first assume that the dimension q of the sphere X = Sq is large and odd. Unfor-
tunately, for s ≥ 1, Qs X does not satisfy the finiteness hypotheses of Proposition 7.9
required to deduce that the comparison map is an equivalence. We instead consider
the diagram

�K (n)(X)

cK (n)
X

Tot�K (n)Ppn (Q•+1)(X)

�

TAQSK (n)
(SX

K (n)) Tot TAQSK (n)

(
S
Ppn (Q•+1)(X)

K (n)

)

(7.4)



Spectral Algebra Models of Unstable vn-Periodic Homotopy Theory 303

In the above diagram, the right vertical map is an equivalence using Proposition 7.9:
the Snaith splitting may be iterated to give an equivalence [6]

Ppn (Q
s+1)(X) � QY s

where the space Y s does satisfy the hypotheses of Proposition 7.9. Using finiteness
properties of the cosimplicial space Y •, we show in [22] that the top horizontal map

�K (n)(X) � �K (n)Ppn Id(X) → Tot�K (n)Ppn (Q
•+1)(X)

of (7.4) is an equivalence. It follows that the comparison map has a weak retraction
when restricted to large dimensional odd spheres X :

�K (n)X
�

cK (n)
X

�K (n)X

TAQSK (n)
(SX

K (n))

Using standard methods of Goodwillie calculus (or more specifically, Weiss calculus
[93] in this case) it follows that for X a large dimensional odd sphere, the induced
map on Goodwillie towers

{Pk�K (n)(X)}k cK (n)−−→ {Fk TAQSK (n)
(SX

K (n))}k (7.5)

has a weak retraction. The theorem (for X a large dimensional odd sphere) follows
from the fact that (1) the layers of the towers are abstractly equivalent, and (2) the
layers of the towers have finite K (n)-homology. Since Goodwillie derivatives are
determined by the values of the functors on large dimensional spheres, it follows that
the induced map of symmetric sequences

∂∗�K (n)
cK (n)−−→ ∂∗(TAQSK (n)

(S(−)

K (n))) (7.6)

is an equivalence. It follows that the map (7.5) is actually an equivalence of towers
for all spheres X . The theorem now follows from Theorem 7.11 and (7.2).

8 Consequences

We begin this section by explaining how our result for spheres actually implies that
the comparisonmap is an equivalence on the larger class of finite�K (n)-good spaces.
We also survey some computational applications of our theory, and end the section
with some questions.
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�K (n)-good spaces. We observe that our method of proving Theorem 6.4 actually
yields a stronger result.

Theorem 8.1 For X any finite complex, the comparison map gives an equivalence
of towers

{Pk�K (n)(X)}k cK (n)−−→� {Fk TAQSK (n)
(SX

K (n))}k

and therefore an equivalence

cK (n)
X : P∞�K (n)(X)

�−→ TAQSK (n)
(SX

K (n)).

Proof This follows from the equivalence (7.6). Note the restriction to finite com-
plexes is necessary as the target functor is not finitary. �

We will say that a space X is �K (n)-good if the map

�K (n)(X) → holim
k

Pk(�K (n))(X) (8.1)

is an equivalence.

Corollary 8.3 A finite space X is �K (n)-good if and only if the comparison map

cK (n)
X : �K (n)(X) → TAQSK (n)

(SX
K (n))

is an equivalence.

Theorem 7.11 clearly implies spheres are �K (n)-good. The functor �K (n) pre-
serves all fiber sequences, but it seems the target of the comparison map is not as
robust.

Lemma 8.4 The functor TAQSK (n)
(S(−)

K (n)) preserves products of finite spaces.

Proof This follows from the fact that TAQ is excisive, together with the fact that
there is an equivalence of augmented commutative S-algebras

SX×Y+ � SX+ ∧ SY+ . �

Corollary 8.5 The product of finite �K (n)-good spaces is �K (n)-good.

We shall say that a fiber sequence of finite spaces

F → E → B

is K (n)-cohomologically Eilenberg-Moore if the map of augmented commutative
S-algebras
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SE+ ∧SB+ S → SF+

is a K (n)-equivalence. The motivation behind this terminology is that with this con-
dition the associated cohomological Eilenberg-Moore spectral sequence converges
[30, Sect. IV.6]

Tor∗,∗
K (n)∗(B)(K (n)∗(F), K (n)∗) ⇒ K (n)∗(E).

The following lemma follows immediately from the excisivity of TAQ.

Lemma 8.6 Suppose that
F → E → B

is a fiber sequence of finite spaces which is K (n)-cohomologically Eilenberg-Moore.
Then the induced sequence

TAQSK (n)
(SF

K (n)) → TAQSK (n)
(SE

K (n)) → TAQSK (n)
(SB

K (n))

is a fiber sequence.

Since �K (n) preserves fiber sequences, we deduce the following.

Corollary 8.7 Suppose that
F → E → B

is a fiber sequence of finite spaces which is K (n)-cohomologically Eilenberg-Moore.
Then if any two of the spaces in the sequence are �K (n)-good, so is the third.

Using this we can give examples of �K (n)-good spaces which are not spheres (or
finite products of spheres).

Proposition 8.8 The special unitary groups SU (k) and symplectic groups Sp(k)
are �K (n)-good.

Proof For simplicity we treat the special unitary groups; the symplectic case is
essentially identical. Petrie [77] showed that additively there is an isomorphism

MU∗SU (k) ∼= 	MU∗ [y3, y5, . . . , y2k−1].

It follows from the collapsing universal coefficient spectral sequence that there is an
additive isomorphism

K (n)∗SU (k) ∼= 	K (n)∗ [x3, x5, . . . , x2k−1]. (8.2)

The Atiyah-Hirzebruch spectral sequence for K (n)∗SU (k) must therefore collapse
(any differentials would otherwise make the rank of K (n)∗SU (k) too small). There
are no possible extensions, as the exterior algebra is free as a graded-commutative
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algebra. Therefore (8.2) is an isomorphism of K (n)∗-algebras. This can than be used
to show that the fiber sequences

SU (k − 1) → SU (k) → S2k−1

are K (n)-cohomologically Eilenberg-Moore. The result follows by induction (using
Corollary 8.7). �

Not all spaces are �K (n)-good. Brantner and Heuts have recently shown that
wedges of spheres of dimension greater than 1, and mod p Moore spaces, are exam-
ples of non-�K (n)-good spaces [11].

Some computations. The target of the comparison map should be regarded as com-
putable, and the source should be regarded as mysterious. Because of this, our theo-
rem has important computational consequences. We take a moment to mention some
things that have already been done.

In [22],we show that theMorava E-theory of the layers of theGoodwillie tower for
�K (n) evaluated on S1 are given by the cohomology of the second author’s modular
isogeny complex [84]. Theorem 8.1 was applied by the authors in [22] to compute the
Morava E-theory of the attaching maps between the consecutive non-trivial layers
of this Goodwillie tower. Iterating the double suspension, these computations then
restrict to give an approach to computing the Morava E-theory of the Goodwillie
tower of �K (n) evaluated on all odd dimensional spheres.

We envision this as a step in the program of Arone-Mahowald [8, 60] to com-
pute the unstable vK (n)-periodic homotopy groups of spheres (and other �K (n)-good
spaces) using stable vK (n)-periodic homotopy groups and Goodwillie calculus. This
would generalize a number of known calculations in the case of n = 1. These compu-
tations include those of Mahowald [65] and Thompson [90] for spheres, and would
generalize Bousfield’s technology [17, 19, 20], for computations for spherically
resolved spaces. Bousfield’s theory was applied successfully by Don Davis and
his collaborators to compute v1-periodic homotopy groups of various compact Lie
groups (see [28], where the previous work on this subject, by Bendersky, Davis,
Mahowald, and Mimura is summarized11).

To this end, Zhu has used his explicit computation of the Morava E-theory Dyer-
Lashof algebra at n = 2 [95] to compute the Morava E-theory of �K (2)(Sq) for q
odd [94].

Using our technology, but employing BP-theory instead of Morava E-theory,
Wanghas computed the groupsv−1

K (2)π∗(S3)∧ for p ≥ 5 [92].Wanghas also computed
the monochromatic Hopf invariants of the β-family at these primes. These are the
analogs of the classical Hopf invariants, but computed in the category M f

2 Top∗.

Theorem 8.10 (Wang [91]) The monochromatic Hopf invariant of βi/j,k is βi− j/k .

11Technically, the previous computations used the unstable Adams-Novikov spectral sequence, but
were simplified using Bousfield’s results.
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Finally, Brantner has recently computed the algebra of power operations which
naturally act on the completed E-theory of any spectral Lie algebra (such as those
arising as spectral Lie algebra models of unstable vn-periodic homotopy types) [23].

Some questions. We end this section with some questions.

Question 8.11 Does the bracket from the s−1Lie-structure on TAQ-coincide with
the Whitehead product in unstable vn-periodic homotopy?

Question 8.12 In [20], Bousfield introduces the notion of a K̂�-good space. What
is the relationship between this notion and the notion of being �K (1)-good?

Question 8.13 Is there a relationship to X being �K (n)-good and the convergence
of X’s unstable vn-periodic E∧

n -based Adams spectral sequence to v−1
K (n)π∗(X)∧?

9 The Arone-Ching Approach

The central component of Goodwillie’s theory of homotopy calculus, from which
the theory derives much of its computational power, is the idea that the layers of
the Goodwillie tower of a functor F are classified by its symmetric sequence of
derivatives ∂∗F . Arone and Ching have pursued a research program which seeks to
endow ∂∗F with enough extra structure to recover the entire Goodwillie tower of
F [2–4]. In this section we will focus on the setup of [2], and will describe their
approach to give a conceptual alternative proof of Theorem 8.1. In this section we
will only consider homotopy functors

F : C → D

where C and D are either the categories of pointed spaces or spectra.12

Modules over operads. Let O be a reduced operad in ModR , and let A = {Ai }
be a symmetric sequence of R-module spectra. A left (respectively right) module
structure on A is the structure of an associative action

O ◦ A → A (resp. A ◦ O → A).

One similarly has the notion of a left/right comodule structure. Explicitly, a left
O-module structure on A is encoded in structure maps

Ok ∧R An1 ∧R · · · ∧R Ank → An1+···+nk ,

and a right O-module structure is encoded in structure maps

Ak ∧R On1 ∧R · · · ∧R Onk → An1+···+nk .

12Later in this section we will also allow D to be SpT (n).
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The structure maps for left/right comodules are obtained simply by reversing the
direction of the above arrows.

Suppose that A is an O-algebra. Regarding A as the symmetric sequence

(A, ∗, ∗, · · · )

with A in the 0th spot, theO-algebra structure on A can also be regarded as a leftO-
module structure on A. Less obviously, theO-algebra structure can also be encoded
in a right comodule structure on the symmetric sequence13

A∧R∗ := (∗, A, A2, A3, · · · ).

For simplicity, assume that each of the R-module spectraOi are strongly dualizible.
Then O∨ is a cooperad, and the O-algebra structure on A is encoded in a right
O∨-comodule structure on A∧R∗

An1+···+nk → Ak ∧R O∨
n1 ∧R · · · ∧R O∨

nk .

These comodule structure maps are adjoint to the maps

On1 ∧R · · · ∧R Onk ∧R An1+···+nk → Ak

obtained by smashing together k algebra structure maps.

Koszul duality, again. In this subsection, all symmetric sequencesA are assumed to
satisfyA0 = ∗. With this hypothesis, Ching’s construction of the cooperad structure
on the operadic bar construction

BO = B(1R,O, 1R)

extends to give BO-comodule structures [26]. Specifically, suppose thatM is a right
O-module. Then

BM := B(M,O, 1R)

gets the structure of a right BO-comodule. Similarly, for a left O-module N ,

BN := B(1R,O,N )

gets the structure of a left BO-comodule. There are dual statements which endow
cobar constructions of comodules with module structures.

13It is more natural to define the 0th space of the symmetric sequence A∧R∗ to be R, but it makes
no difference as we are assuming O is reduced. For the purposes of the rest of the section this
convention will be more useful.
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In this manner the operadic bar and cobar constructions give functors

B : lt.ModO � lt.ComodBO : C,

B : rt.ModO � rt.ComodBO : C.

Some of the key ideas in the following Koszul duality theorem can be found in [2],
but a proof of the full statement should appear in [25].

Theorem 9.1 (Ching)Thebar/cobar constructions give an equivalence of homotopy
categories of right (co)modules

B : Ho(rt.ModO) � Ho(rt.ComodBO) : C.

In the case of left modules, the bar construction gives a fully faithful embedding

B : Ho(lt.ModO) ↪→ Ho(lt.ComodBO).

Remark 9.2 Ching expects that one should also get an equivalence of homotopy
categories for left modules, but presently do not know how to prove this.

Remark 9.3 In both the case of left and right modules, the bar construction induces
equivalences of derived mapping spaces

lt./rt.ModO(M,N )
�−→ lt./rt.Comod

BO(BM, BN ).

The reader may be startled that the Koszul duality in Theorem 9.1 applies to the full
categories of modules, and not some suitable subcategory, and makes no mention
of “divided power structures” (as was the case of the instances of Koszul duality of
Sect. 3). It seems that one should rather thinkofTheorem9.1 as an extensionofKoszul
duality for (co)operads, rather than Koszul duality for (co)algebras over (co)operads.
Indeed, regarding an O-algebra structure on A as a left O-module structure on A,
Theorem 9.1 does not apply, as the symmetric sequence (A, ∗, ∗, · · · ) does not have
trivial 0th spectrum. Theorem 9.1 (with dualizability hypotheses onO) does encode
anO-algebra structure on A in a (BO)∨-comodule structure onCA∧R∗, but the latter
does not translate into anything like a BO-coalgebra structure.

Remark 9.4 Ching does have a different Koszul duality Quillen adjunction

Q : lt./rt.ComodBO � lt./rt.ModO : Prim (9.1)

which does not in general give an equivalence of homotopy categories, but which
does restrict (in the case of right modules) to give the usual Koszul duality between
(BO)∨-algebras and O∨-coalgebras. The monad and comonad of this adjunction
encode divided power module and comodule structures, which extend the previously
established notions of divided power structures for algebras and coalgebras.
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The fake Taylor tower. In [2], Arone and Ching establish that the derivatives of a
functor

F : C → D

have the structure of a ∂∗IdD-∂∗IdC-bimodule. Note that in the case where either
C or D is the category Sp of spectra, ∂∗IdSp = 1, and a left or right ∂∗IdSp-module
structure amounts to no additional structure.

A key tool, introduced in [2] is the notion of the fake Taylor tower of the functor
F . The fake Taylor tower is the closest approximation to the Goodwillie tower which
can be formed using only the bimodule structure of ∂∗F , and is defined as follows.

For X ∈ C, let RX denote the corepresentable functor

RX : C → D

given by
RX (Z) = [�∞]C(X, Z)

(where the �∞ in the above formula is only used if D = Sp). Then the fake Taylor
tower {Pfake

n F} is the tower of functors under F given by (in the case where X is
finite14)

Pfake
n F(X) := ∂∗IdDBimod∂∗IdC (∂∗RX , τn∂∗F).

Here, for a symmetric sequence A, we are letting τnA denote its nth truncation

τnAk :=
{
Ak, k ≤ n,

∗, k > n.
(9.2)

With the hypothesis that all symmetric sequences have trivial 0th term, it is easy to
see that operad and module structures onA induce corresponding structures on τnA.

The layers of the fake Taylor tower given by the fibers

Dfake
n F → Pfake

n F → Pfake
n−1F

take the form
Dfake

n F(X) � �∞
D

(
∂n F ∧ �∞

C Xn
)h�n

.

The following theorem is essentially proven in [2].

Theorem 9.7 (Arone-Ching) There is a natural transformation of towers

{PnF} → {Pfake
n F}

14For X infinite, one must regard RX as a pro-functor.
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such that the induced map on fibers is given by the norm map

N : �∞
D

(
∂n F ∧ �∞

C Xn
)
h�n

→ �∞
D

(
∂n F ∧ �∞

C Xn
)h�n

.

Thus, in general, the map from the Goodwillie tower to the fake Taylor tower is not
an equivalence, and the difference is measured by the Tate spectra

�∞
D

(
∂n F ∧ �∞

C Xn
)t�n

.

Although we do not need it for what follows, we pause to mention that Arone and
Ching have a refinement of this theory which recovers the Goodwillie tower from
descent data on the derivatives. Observe that the fake Taylor tower only depends on
the bimodule ∂∗F . The following is proven in [3].

Theorem 9.8 (Arone-Ching) The limit of the fake Taylor tower is right adjoint to
the derivatives functor:

∂∗ : Funct(C,D) � ∂∗IdDBimod∂∗IdC : Pfake
∞ .

In particular, one can now employ the comonadic descent theory of Sect. 2 to regard
the derivatives as taking values in ∂∗ ◦ Pfake

∞ -comodules.

Theorem 9.9 (Arone-Ching [3]) The Goodwillie tower of a functor F can be recov-
ered using the comonadic cobar construction

PnF � C(Pfake
∞ , ∂∗ ◦ Pfake

∞ , τn∂∗F).

In the case of functors from spectra to spectra, this theorem reduces to McCarthy’s
classification of polynomial functors [68].

Application to the Bousfield–Kuhn functor.WenowsummarizeArone andChing’s
approach to Theorem 8.1. Actually, their method proves something stronger, as it
applies to the functor �n instead of �K (n). Call a space �n-good if the map

�n X → holim
k

�n PkIdTop∗(X)

is an equivalence.

Theorem 9.10 (Arone-Ching) For all finite X, the comparison map

cX : P∞�n(X) → TAQST (n)
(SX

T (n))

is an equivalence. Thus for all finite �n-good spaces, the comparison map gives an
equivalence

cX : �n(X)
�−→ TAQST (n)

(SX
T (n)).
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Proof The basic strategy is to analyze the fake taylor tower of the functor

�n : Top∗ → SpT (n).

The argument used in Lemma 7.1 applies equally well to �n , and it follows that we
have

∂∗�n � s−1LieT (n)

with right ∂∗Id = s−1Lie structure given by localization of the right action of this
operad on itself. By Theorem 5.2, the map

Dk�n(X) =
[(

(s−1Liek)T (n) ∧ Xk
)
h�k

]

T (n)

N−→ (
(s−1Liek)T (n) ∧ Xk

)h�k

= Dfake
k �n(X)

of Theorem 9.7 is an equivalence. Thus in the T (n)-local context, the fake Taylor
tower agrees with the Goodwillie tower. Using [3, Lemma 6.14] and Theorem 9.1,
we have

P∞�n(X) � rt.Mods−1Lie(∂∗RX , s−1LieT (n))

� rt.Mods−1Lie(B(�∞X∧∗,Comm, 1)∨, s−1LieT (n))

� rt.Mods−1Lie

(
C(SX∧∗

T (n),Comm∨
T (n), 1),C(1,Comm∨

T (n), 1)
)

� rt.ComodComm∨(SX∧∗
T (n), 1ST (n)

)

� AlgComm(SX
T (n), trivST (n))

� TAQST (n)
(SX

T (n)). �

10 The Heuts Approach

The approach of Arone and Ching described in the last section arose from a clas-
sification theory of Goodwillie towers. In this section we describe Heuts’ general
theoretical framework, which arises from classifying unstable homotopy theories
with a fixed stabilization [45]. Our goal is simply to give enough of the idea of the
theory to sketch Heuts’ proof of Theorem 8.1. We refer the reader to the source
material for a proper and more rigorous treatment.
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Like the approach of Arone-Ching, Heuts’ proof is more conceptual than ours,
and his results have the potential to be slightly more general that Theorem 9.10,
in that they seem to indicate that by modifying the comparison map to have target
derived primitives of a coalgebra, the comparison map cX may be an equivalence for
all �n-good spaces (not just finite spaces—see Question 10.19 and Remark 10.20).

Unlike the previous sections, where we worked in a setting of actual categories
with weak equivalences, in this section we work in the setting of ∞-categories. For
the purposes of this section, C will always denote an arbitrary pointed compactly
generated ∞-category.

∞-operads and cross-effects. The adjunction

�∞
C : C � Sp(C) : �∞

C

gives rise to a comonad�∞
C �∞

C onSp(C). Lurie [63] observes that themultilinearized
cross effects

⊗n
C := crlinn (�∞

C �∞
C ) : Sp(C)n → Sp(C)

get an additional piece of algebraic structure: they corepresent a symmetric multi-
category structure on Sp(C) in the sense that the mapping spaces

Sp(C)
(⊗n

C(Y1, . . . ,Yn),Y
)

endow Sp(C) with the structure of a symmetric multicategory enriched in spaces.
If Sp(C) � Sp, then (as discussed in the beginning of Sect. 7) we have

⊗n
C(Y1, . . . ,Yn) � ∂n(�

∞
C �∞

C ) ∧ Y1 ∧ · · · ∧ Yn.

Saying that the cross-effects⊗n
C corepresent a symmetric multicategory is equivalent

to saying that the derivatives ∂∗(�∞
C �∞

C ) form a cooperad. In this context, this fact
was first observed by Arone and Ching [2], who proved that the derivatives of any
comonad on Sp form a cooperad.

Remark 10.1 In the language of Lurie, (Sp(C),⊗∗
C) forms a stable ∞-operad. This

terminology comes from the fact that a symmetric multicategory is the same thing
as a (colored) operad. We will deliberately avoid this terminology in our treatment,
as it may seem somewhat confusing that a stable ∞-operad on Sp is encoded by a
cooperad in Sp.

The linearizations of the diagonals in C

�n : X → X×n

gives rise to �n-equivariant maps

�n : �∞
C X → ⊗n

C(�∞
C X, · · · , �∞

C X) =: (�∞
C X)⊗Cn
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which yield maps
�n : �∞

C X → (
(�∞

C X)⊗Cn
)h�n

.

Composing out to the Tate spectrum gives maps

δnC : �∞
C X → (

(�∞
C X)⊗Cn

)t�n
. (10.1)

Heuts [45] refers to these maps as Tate diagonals. In the context of C = Top∗, these
natural transformations are well studied: their target is closely related to Jones-
Wegmann homology (see [15, II.3]) and the topological Singer construction of
Lunøe-Nielsen-Rognes [62].

Polynomial approximations of ∞-categories.Heuts constructspolynomial approx-
imations PnC: these are ∞-categories equipped with adjunctions

�∞
C,n : C � PnC : �∞

C,n

so that
PnIdC(X) � �∞

C,n�
∞
C,n X.

The ∞-categories PnC are determined by universal properties which we will not
specify here. We do point out that the identity functor IdPnC is n-excisive. We have
P1C � Sp(C). For n ≤ m we have

Pn PmC � PnC

and therefore we get a tower

C

�∞
C,1

�∞
C,2

P1C P2C
�∞

P2C,1

· · ·
�∞

P3C,2

We shall say that an object X of C is convergent if the Goodwillie tower of IdC
converges at X . Heuts proves that the induced functor

C → P∞C := holim
n

PnC

restricts to a full and faithful embedding on the full ∞-subcategory Cconv of conver-
gent objects.

Let Cn-conv denote the full ∞-subcategory of C consisting of objects for which the
map

X → PnIdC(X)
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is an equivalence. Then we have

Lemma 10.3 The functor
�∞

C,n : Cn-conv → PnC

is fully faithful.

Proof We have for X and Y in Cn-conv:

C(X,Y ) � C(X,�∞
C,n�

∞
C,nY )

� PnC(�∞
C,n X, �∞

C,nY ).

�

The natural transformations

�∞
C �∞

C � �∞
PnC�∞

C,n�
∞
C,n�

∞
PnC → �∞

PnC�∞
PnC

induce natural transformations of cross-effects

⊗k
C → ⊗k

PnC .

For k ≤ n these natural transformations are equivalences.
As the source and target of the Tate diagonals (10.1) are (n − 1)-excisive functors

of X (see [58]), the Tate diagonals extend to give natural transformations of functors
Pn−1C → Sp(C):

δnC : �∞
Pn−1CX → (

(�∞
Pn−1CX)⊗Cn

)t�n
.

We emphasize that, as the notation suggests, the Tate diagonals {δnC}n depend not
only on the functors ⊗∗

C on Sp(C), but also on the unstable category C itself.

A spectral algebra model for PnC.Heuts gives amodel for PnC as a certain category
of coalgebras in Sp(C). As the theory of homotopy descent of Sect. 2 would have us
believe, a good candidate spectral algebra model would be to consider �∞

PnC�∞
PnC-

coalgebras. We must analyze what it means for Y ∈ Sp(C) to have a coalgebra struc-
ture map

Y → �∞
PnC�∞

PnCY.

This is closely related to having a structure map

Y → Pn(�
∞
C �∞

C )Y.

A general theorem of McCarthy [68], as formulated by [58],15 applies to the functor
�∞

C �∞
C to give a homotopy pullback

15To be precise, this is established by McCarthy and Kuhn in the case where C = Top∗.
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Pn(�∞
C �∞

C )(Y ) (Y⊗Cn)h�n

Pn−1(�
∞
C �∞

C )(Y ) (Y⊗Cn)t�n

Thus inductively a �∞
PnC�∞

PnC-coalgebra is determined by the data of a map

Y → Pn−1(�
∞
C �∞

C )(Y )

and a lifting16

(Y⊗Cn)h�n

Y Pn−1(�
∞
C �∞

C )(Y ) (Y⊗Cn)t�n

The bottom composite agrees with the Tate diagonal δnC for Y = �∞
C,n−1X .

We will refer to these coalgebras as Tate-compatible⊗≤n
C -coalgebras, and denote

the ∞-category of such
TateCoalg⊗≤n

C
.

Roughly speaking, aTate-compatible⊗≤n
C -coalgebra is anobjectY ∈ Sp(C) equipped

with inductively defined structure consisting of coaction maps

�k : Y → (Y⊗Ck)h�k

for k ≤ n, and homotopies Hk making the following diagrams homotopy commute

(Y⊗Cn)h�k

Y

�k

δkC
(Y⊗Ck)t�k

The coaction maps �k and the homotopies Hk are required to satisfy compatibility
conditions which we will not (and likely cannot!) explicitly specify.17 The maps �k

and homotopies Hk for k ≤ n then induce the (n + 1)st Tate diagonal

δn+1
C : Y → (Y⊗Cn+1)t�n+1

16This is something the first author learned from Arone.
17Heuts is able to circumvent the need to explicitly spell out these compatibility conditions by
defining the ∞-categories TateCoalg⊗≤n

C
via an inductive sequence of fibrations of ∞-categories.
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and the process continues. Note that the Tate diagonal δn+1
C depends not only on the

structure maps �k and Hk for k ≤ n, but also the unstable category C itself (more
precisely, it depends only on the polynomial approximation PnC).
Theorem 10.4 (Heuts) There is an equivalence of ∞-categories

PnC � TateCoalg⊗≤n
C

.

Question 10.5 In the case where F = Id, how is Arone-Ching’s reconstruction the-
orem (Theorem 9.9) related to the framework of Heuts?

Remark 10.6 In [45], Heuts also considers the question: what data on the stable
∞-category Sp(C) determines the tower of unstable categories {PnC}? As should
be heuristically clear from Theorem 10.4, Heuts proves the tower is determined
by the cross-effects {⊗n

C} and the Tate diagonals {δnC}. In particular, given a sta-
ble ∞-category D, a tower of polynomial approximations of an unstable theory is
determined by specifying a sequence of symmetric multilinear functors

⊗n : Dn → D

which corepresent a symmetric multicategory structure on D, as well as a sequence
of inductively defined (and suitably compatible) Tate diagonals

δn : �∞
Pn−1CX → (�∞

Pn−1CX
⊗n)t�n .

Koszul duality, yet again. Let R be a commutative ring spectrum, and let O be
a reduced operad in ModR . Following [45], we run the general theory in the case
C = AlgO. The cooperads representing the symmetric multilinear functors⊗∗

AlgO
on

Sp(AlgO) � ModR are determined by the following

Theorem 10.7 (Francis-Gaitsgory [31, Lem. 3.3.4]) There is an equivalence of
cooperads18

∂∗(�∞
AlgO

�∞
AlgO

) � BO.

Therefore a ⊗∗
AlgO

-coalgebra A is simply a BO-coalgebra. The Tate diagonals on
ModR turn out to be null in this case, so a Tate compatible structure on a BO-
coalgebra A is a compatible choice of liftings of the coaction maps

(BOi ∧R Ai )h�i

A (BOi ∧R Ai )h�i

18This relies on the treatment of Koszul duality of monoids in [63]. In Lurie’s ∞-categorical
treatment, the coalgebra structure on BO making this theorem true is only coherently homotopy
associative. Presumably it can be strictified to an actual point-set level operad structure on a model
of BO, but the authors are not knowledgeable enough to know the feasibility of this, nor do they
know if this cooperad structure is equivalent to that of Ching [26].
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Thus a Tate compatible structure is the same thing as a divided power structure (or
perhaps one can take this as a definition of a divided power structure).We shall denote
the ∞-category of such (with structure maps as above for i ≤ n) by d.p.CoalgBO≤n .

Theorem 10.8 (Heuts) There are equivalences of ∞-categories

PnAlgO � d.p.CoalgBO≤n .

Heuts recovers the following weak Koszul duality result.

Corollary 10.9 (Heuts) There is a fully faithful embedding

TAQO : AlgconvO ↪→ holim
n

d.p.CoalgBO≤n .

To determine the convergent objects of IdAlgO , it is helpful to know the structure of
this Goodwillie tower. The following result was suggested by Harper and Hess [46],
was proven in the case of the commutative operad by Kuhn [59], and was proven by
Pereira [75].

Theorem 10.10 (Pereira) The Goodwillie tower of IdAlgO is given by

PnIdAlgO (A) = B(FτnO,FO, A).

Here τnO denotes the truncation (9.2).

In particular, connectivity estimates of Harper and Hess [46] imply that if R and
O are connective, and A is connected, then A is convergent. Thus Corollary 10.9
recovers half of Theorem 3.8. Another important case are operads for which O =
τnO. Then everyO-algebra is convergent, and Corollary 10.9 recovers a theorem of
Cohn.

Application to unstable vn-periodic homotopy. To recover and generalize
Theorem 8.1, Heuts applies his general framework to the unstable vn-periodic homo-
topy category. Unfortunately, the ∞-category modeling M f

n Top∗ of Sect. 5 seems to
fail to be compactly generated. To rectify this, Heuts works with a slightly different
∞-category, which we will denote v−1

n Top∗. This is the full ∞-subcategory of
L f
n Top∗ consisting of colimits of finite (dn − 1)-connected type n complexes. The

categories v−1
n Top∗ and M f

n Top∗ are very closely related. The Bousfield–Kuhn func-
tor factors as

Top∗
�n SpT (n)

v−1
n Top∗

�′
n

(10.2)

and detects the equivalences in v−1
n Top∗.
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We have Sp(v−1
n Top∗) � SpT (n). The multilinear cross-effects are given by the

commutative cooperad:
∂∗(�∞�∞) � Comm∨.

In this context Theorem 5.2 implies that the Tate diagonals are trivial, and Tate
compatible commutative coalgebras are the same thing as commutative coalgebras.
Heuts deduces (using Theorems 10.4 and 10.8):

Theorem 10.12 (Heuts) There are equivalences of ∞-categories

Pk(v
−1
n Top∗) � CoalgComm≤k (SpT (n)) � Pk(Algs−1Lie(SpT (n))).

In a sense made precise in the corollary below, this gives two spectral algebra models
of C.

Corollary 10.13 There are fully faithful embeddings of ∞-categories

(v−1
n Top∗)

conv ↪→ holim
k

Coalg(Comm∨)≤k (SpT (n)),

(v−1
n Top∗)

conv ↪→ P∞Algs−1Lie(SpT (n)).

We can be explicit about the functors giving these spectral algebra models. In general
there is an adjunction

triv : ModR � CoalgComm∨
R

: Prim

where triv Y is the coalgebra with trivial coproduct, and Prim(A) is the derived
primitives of a coalgebra A, given by the comonadic cobar construction:

Prim(A) := C(Id,FComm∨
R
, A).

For A a CommR-algebra finite as an R-module, we have

TAQR(A) � Prim(A∨). (10.3)

Ching’s work endows Prim(A) with the structure of an s−1Lie-algebra.
The functors of Theorem 10.12 are induced from the functors

v−1
n Top∗

(�∞−)T (n)−−−−−→ CoalgComm∨(SpT (n))
Prim−−→ Algs−1Lie(SpT (n)).

An argument following the same lines as Sect. 6 gives a refined comparison map

c̃X : �n(X) → Prim(�∞X)T (n).

Under the equivalence (10.3), this agrees with the comparison map cX for X finite,
and for such X gives cK (n)

X after K (n)-localization. From Theorem 10.12, Heuts
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deduces that for a space X , the comparison map refines to an equivalence of towers

c̃X : �n PkIdTop∗ X
�−→ Prim �∞

Coalg,k�
∞
Coalg,k(�

∞X)T (n). (10.4)

Using Theorem 7.11, Heuts obtains the following refinement of Theorem 6.4.

Corollary 10.16 (Heuts) The comparison map c̃X is an equivalence for X a sphere.

Question 10.17 What is the relationship between the ∞-subcategory
(v−1

n Top∗)conv ⊆ v−1
n Top∗ and the ∞-subcategory consisting of the images of �n-

good spaces?

Remark 10.18 If we knew that the functor �′
n of (10.2) preserved homotopy limits,

then it is fairly easy to check (using the fact that �′
n detects equivalences) that the

two∞-subcategories of Question 10.17 would in fact coincide. As already remarked
in Sect. 5, �n also factors through a related functor

�′′
n : M f

n Top∗ → SpT (n).

Bousfield produces a left adjoint for �′′
n in [18], and it therefore follows that �′′

n
commutes with homotopy limits.

It would seem that for X an infinite CW complex, the coalgebra (�∞X)T (n) is
a more appropriate model for the unstable vn-periodic homotopy type X than the
algebra SX

T (n). To this end we ask the following

Question 10.19 Is c̃X an equivalence for all �n-good spaces X?

Remark 10.20 We expect the answer to Question 10.19 should be “yes”, as the tower
which is the target of (10.4) should be an analog for primitives of the Kuhn filtration,
and hence should converge without hypotheses.
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On Quasi-Categories of Comodules
and Landweber Exactness

Takeshi Torii

Abstract In this paper we study quasi-categories of comodules over coalgebras in
a stable homotopy theory. We show that the quasi-category of comodules over the
coalgebra associated to a Landweber exact S-algebra depends only on the height
of the associated formal group. We also show that the quasi-category of E(n)-local
spectra is equivalent to the quasi-category of comodules over the coalgebra A ⊗ A for
any Landweber exact S(p)-algebra A of height n at a prime p. Furthermore, we show
that the category of module objects over a discrete model of the Morava E-theory
spectrum in K (n)-local discrete symmetric Gn-spectra is a model of the K (n)-local
category, where Gn is the extended Morava stabilizer group.

Keywords Landweber exactness · Quasi-Category · Comodule · Stable
homotopy theroy · Complex oriented spectrum · K (n)-local category

1 Introduction

It is known that the stable homotopy category of spectra is intimately related to the
theory of formal groups through complex cobordism and the Adams–Novikov spec-
tral sequence by the works of Morava [29], Miller–Ravenel–Wilson [28], Devinatz–
Hopkins–Smith [9], Hopkins–Smith [12], Hovey–Strickland [17] and many others.
The E2-page of the Adams–Novikov spectral sequence is described as the derived
functor of taking primitives in the abelian category of graded comodules over the
co-operation Hopf algebroid associated to the complex cobordism spectrum.

We also have a localized version of the Adams–Novikov spectral sequence. For
example, for a Landweber exact spectrum E of height n at a prime p, we have
an E-based Adams–Novikov spectral sequence abutting to the homotopy groups
of E-local spectra. In this case the E-localization and the E2-page of the E-based
Adams–Novikov spectral sequence depend only on the height n of the associated
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formal group at p. There are many results that the derived functor describing the
E2-page of the E-based Adams–Novikov spectral sequence depends only on the
substack of the moduli stack of formal groups [14, 15, 18, 30].

These results suggest that there may be an intimate relationship between localized
quasi-categories of spectra and quasi-categories of comodules over co-operation
coalgebras. In this paper we investigate this relationship. We show that the quasi-
category of comodules over a coalgebra associated to a Landweber exact S-algebra
depends only on the height of the associated formal group and that the quasi-category
of comodules over a coalgebra associated to a Landweber exactS(p)-algebra of height
n at a prime p is equivalent to the quasi-category of E(n)-local spectra, where E(n)

is the nth Johnson-Wilson spectrum at p.
First, we introduce a quasi-category of comodules over a coalgebra associated to

an algebra object of a stable homotopy theory C . In this paper we regard coalgebra
objects as algebra objects of the opposite monoidal quasi-category of A-A-bimodule
objects for an algebra object A of C . We regard comodule objects over a coalgebra
Γ as module objects over Γ in the opposite quasi-category of A-module objects in
C . In particular, we show that A ⊗ A is a coalgebra object for an algebra object A
of C and we can consider the quasi-category

LComodΓ (A)(C )

of left comodules over A ⊗ A in C , where Γ (A) represents the pair (A, A ⊗ A).
For a map A → B of algebra objects of C , we have the extension of scalars functor
B ⊗A (−) : LModA(C ) → LModB(C ), where LModA(C ) and LModB(C ) are the
quasi-categories of left A-modules and B-modules, respectively. We show that the
extension of scalars functor extends to a functor

B ⊗A (−) : LComodΓ (A)(C ) −→ LComodΓ (B)(C ).

of quasi-categories of comodules.
Next, we consider Landweber exact S-algebras in the quasi-category of spectra

Sp, where S is the sphere spectrum. We show that, if A is a Landweber exact S-
algebra, then the quasi-category of comodules over the coalgebra A ⊗ A depends
only on the height of the associated formal group.

Theorem 1 (cf. Theorem 8) If A and B are Landweber exact S-algebras with the
same height at all primes p, then there is an equivalence of quasi-categories

LComodΓ (A)(Sp) � LComodΓ (B)(Sp).

We also show that the quasi-category of comodules over A ⊗ A is equivalent to
the quasi-category LnSp of E(n)-local spectra if A is a Landweber exact S(p)-algebra
of height n at a prime p.

Theorem 2 (cf. Theorem 9) If A is a Landweber exact S(p)-algebra of height n at
a prime p, then there is an equivalence of quasi-categories
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LnSp � LComodΓ (A)(Sp).

As an application of the results in this paper we show that the model category
constructed in [33] is a model of the K (n)-local category, where K (n) is the nth
Morava K -theory spectrum at a prime p. We denote by ΣSp the model category of
symmetric spectra and byΣSpK (n) the left Bousfield localization ofΣSpwith respect
to K (n). The nth extended Morava stabilizer group Gn is a profinite group and we
can consider the model category ΣSp(Gn) of discrete symmetricGn-spectra and its
Bousfield localization ΣSp(Gn)K (n) with respect to K (n). We have a commutative
monoid object Fn in ΣSp(Gn)K (n) constructed by Davis [7] and Behrens–Davis [3],
which is a discrete model of the nth Morava E-theory spectrum En . In [33] we
showed that the extension of scalars functor

LK (n)(Fn ⊗ (−)) : ΣSp(Gn)K (n) −→ LModFn (ΣSp(Gn)K (n)),

which is a leftQuillen functor, is homotopically fully faithful, that is, it induces aweak
homotopy equivalence betweenmapping spaces for any two objects inΣSp(Gn)K (n).
In this paper we show that this functor is actually a left Quillen equivalence and hence
we can consider the category LModFn (ΣSp(Gn)K (n)) to be amodel of the K (n)-local
category.

Theorem 3 (cf. Theorem 11) The extension of scalars functor

LK (n)(Fn ⊗ (−)) : ΣSp(Gn)K (n) −→ LModFn (ΣSp(Gn)K (n))

is a left Quillen equivalence.

The organization of this paper is as follows: In Sect. 2 we fix some notation we
use throughout this paper. In Sect. 3 we review the theory of quasi-categories. We try
to explain that quasi-categories are very flexible models for (∞, 1)-categories and
that the theory of quasi-categories is an appropriate setting to study coalgebras and
comodules of spectra. In Sect. 4 we study opposite coCartesian fibrations, opposite
monoidal quasi-categories, and opposite tensored quasi-categories. In particular, we
show that a lax monoidal right adjoint functor between monoidal quasi-categories
induces a lax monoidal right adjoint functor between the opposite monoidal quasi-
categories. In Sect. 5 we introduce a quasi-category of comodules over a coalgebra
in a stable homotopy theory. We define a cotensor product of a right comodule and
a left comodule over a coalgebra as a limit of the cobar construction. We study the
relationship between localizations of a stable homotopy theory and quasi-categories
of comodules. In Sect. 6 we study comodules in spectra over a coalgebra associated
to a Landweber exact S-algebra. First, we study the Bousfield–Kan spectral sequence
associated to the two-sided cobar construction. Next, we show that the quasi-category
of comodules over the coalgebra associated to a Landweber exact S-algebra depends
only on the height of the associated formal group. Finally, we show that the model
category of modules over Fn in K (n)-local discrete symmetricGn-spectra is a model
of the K (n)-local category. In Sect. 7 we give a proof of Proposition 1 (stated in
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Sect. 4), which is technical but important for constructing a canonical map between
opposite coCartesian fibrations.

2 Notation

For a category C , we denote by HomC (x, y) the set of all morphisms from x to y in
C for x, y ∈ C .

We denote by sSet the category of simplicial sets. For a simplicial set K , we denote
by K op the opposite simplicial set (see [22, Sect. 1.2.1]). If K is a quasi-category,
then K op is also a quasi-category. For simplicial sets X,Y , we denote by Fun(X,Y )

the simplicial mapping space from X to Y . For a simplicial set X equipped with a
map π : X → S of simplicial sets, we denote by Xs the fiber of π over s ∈ S. If X
and Y are simplicial sets over a simplicial set S, then we denote by FunS(X,Y ) the
simplicial set of maps from X to Y over S.

For a small (simplicial) categoryC , we denote by N (C ) the simplicial set obtained
by applying the (simplicial) nerve functor N (−) to C (see [22, Sect. 1.1.5]). We
denote by Cat∞ the quasi-category of (small) quasi-categories (see [22, Sect. 3]).

We denote by ΣSp the category of symmetric spectra equipped with the stable
model structure (see [16]). We denote by Sp the quasi-category of spectra, which
is the underlying quasi-category of the simplicial model category ΣSp. We denote
by Ho(Sp) the stable homotopy category of spectra. We denote by S the sphere
spectrum. For a spectrum X ∈ Sp, we write X∗ for the homotopy groups π∗X . For
spectra X,Y ∈ Sp, we write X ⊗ Y for the smash product of X and Y .

3 Review of Quasi-Categories

In this section we review the theory of quasi-categories which are models for (∞, 1)-
categories. Quasi-categories were introduced by Boardman–Vogt [4] as weak Kan
complexes, and developed by Joyal [19] and Lurie [22, 23]. An (∞, n)-category is an
∞-category with invertible k-morphisms for all k > n. There are many models for
(∞, 1)-categories, including relative categories, topological categories, simplicial
categories, Segal categories, complete Segal spaces, and so on. Topological cate-
gories are intuitively easy to understand but they are actually difficult to work with.
Quasi-categories are yet another model for (∞, 1)-categories. Quasi-categories are
simplicial sets which satisfy some extension property. The meaning of the definition
of quasi-categories is difficult to understand at first glance but quasi-categories are
sufficiently flexible because they are closed under various categorical operations.

One of the motivations for the definition of quasi-categories comes from the fact
that we can embed the category of small categories into the category of simplicial
sets. Another is the fact that Kan complexes are models for (∞, 0)-categories.



On Quasi-Categories of Comodules and Landweber Exactness 329

Roughly speaking, a category consists of a collection of objects, and sets of
morphisms between objects equipped with associative and unital composition laws.
We can regard a small category as a simplicial set. In fact, there is a fully faithful
functor from the category of small categories to the category of simplicial sets, which
is called the nerve functor.

Let C be a small category. The nerve N (C ) of C is a simplicial set, in which the
set of n-simplices is the set HomCat([n],C ) of functors from [n] to C , where Cat
is the category of small categories and [n] is the category associated to the ordered
set {0 < 1 < · · · < n}. The nerve functor is fully faithful and the essential image is
characterized as follows. A simplicial set K is in the essential image of the nerve
functor if and only if there is a unique extension Δn → K for any map Λn

i → K of
simplicial sets with 0 < i < n:

Λn
i K

Δn,

where Δn is the standard simplicial n-simplex and Λn
i is the i th horn of Δn .

A Kan complex is defined to be a simplicial set which has the following extension
property. A simplicial set K is a Kan complex if and only if there is an extension
Δn → K of any map Λn

i → K of simplicial sets with 0 ≤ i ≤ n. A Kan complex
is a fibrant object in the category of simplicial sets equipped with the Kan model
structure. It is known that the homotopy theory of Kan complexes is equivalent to
the homotopy theory of topological spaces. We can regard topological spaces as
models for (∞, 0)-categories, which are also called ∞-groupoids. To a topological
space X , we can associate the fundamental groupoid π≤1(X). Objects of π≤1(X)

are points of X , and morphisms are homotopy classes of paths in X . Although the
fundamental groupoid π≤1(X) contains only the information of the 1-type of X , we
can generalize this construction and obtain the fundamental ∞-groupoid π≤∞(X)

of a topological space X , which contains the information of the homotopy type of
X . Roughly speaking, objects of π≤∞(X) are points of X , 1-morphisms are paths in
X , 2-morphisms are homotopies between paths, and higher morphisms are higher
homotopies. A generally accepted principal of higher category theory says that the
homotopy theory of∞-groupoids is equivalent to the homotopy theory of topological
spaces via the construction of fundamental∞-groupoids. Since the homotopy theory
of Kan complexes is equivalent to the homotopy theory of topological spaces, we
can regard Kan complexes as models for (∞, 0)-categories.

Ordinary categories and (∞, 0)-categories are examples of (∞, 1)-categories.
Thus, models for (∞, 1)-categories should be generalizations of ordinary categories
and topological spaces in some sense. Quasi-categories are models for (∞, 1)-
categories. A quasi-category is a simplicial set satisfying the following extension
property which is a generalization of the extension properties of both small cate-
gories and Kan complexes.
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Definition 1 Let X be a simplicial set. We say that X is a quasi-category if for any
i, n ∈ Z, such that 0 < i < n, any map Λn

i → X of simplicial sets can be extended
to a map Δn → X .

By definition, Kan complexes and nerves of small categories are quasi-categories.
Furthermore,we have a generalization of the nerve functor,which is called the simpli-
cial nerve functor. The simplicial nerve functor assigns a simplicial set to a simplicial
category. In particular, when we regard a small category C as a simplicial category
with discrete mapping simplicial sets, the simplicial nerve of C is isomorphic to the
nerve of C . If a simplicial category C is fibrant—that is, the mapping simplicial
sets MapC (x, y) are Kan complexes for all objects x, y of C , then the simplicial
nerve N (C ) is a quasi-category. Furthermore, it is known that the homotopy theory
of simplicial categories is equivalent to the homotopy theory of quasi-categories via
the simplicial nerve functor.

There is a quasi-categoryS of spaces, which is obtained by taking the simplicial
nerve of the simplicial category ofKan complexes. The quasi-categoryS of spaces is
of great importance in higher category theory because Kan complexes are models for
(∞, 0)-categories. Roughly speaking, (∞, 1)-categories are regarded as categories
enriched in S , and the theory of (∞, 1)-categories is obtained from the theory of
categories by replacing the category of sets with the quasi-category S of spaces.

For a quasi-category X , we can define objects andmorphisms of X . The objects of
X are the 0-simplices, and the morphisms are the 1-simplices of X . Furthermore, we
can define themapping spaceMapX (x, y) for any objects x, y ∈ X . The composition
law of the mapping spaces is unital and associative up to higher homotopy. Taking
π0 of the mapping spaces, we obtain the homotopy category Ho(X) of X , which is
an ordinary category. A morphism of a quasi-category X is said to be an equivalence
if it represents an isomorphism in the homotopy category Ho(X).

A functor between quasi-categories is defined to be amap of simplicial sets. This is
good news because the definition of functors between quasi-categories is very simple,
whereas the correct∞-categorical definition of functors between topological or sim-
plicial categories is quite difficult. A functor F : X → Y between quasi-categories
is fully faithful if it induces an equivalence MapX (x, x ′) → MapY (F(x), F(x ′)) of
mapping spaces inS for all objects x, x ′ ∈ X . The functor F is said to be essentially
surjective if any object y ∈ Y is equivalent to an object of the form F(x) for some
x ∈ X . A functor F is an equivalence of quasi-categories if it is fully faithful and
essentially surjective.

There is a model structure on the category of simplicial sets which is called the
Joyal model structure. Any simplicial set is a cofibrant object in the Joyal model
structure as in the case of the Kan model structure. But a simplicial set is a fibrant
object in the Joyal model structure if and only if it is a quasi-category, and weak
equivalences between fibrant objects are equivalences of quasi-categories. In general,
if we have a simplicial model category, then by taking the simplicial nerve of the full
subcategory consisting of cofibrant-fibrant objects, we obtain the underlying quasi-
category of the simplicial model category. Unfortunately, the Joyal model structure
is not compatible with simplicial enrichment, that is, it is not a simplicial model
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category. But we have a simplicial model category whose underlying quasi-category
is the quasi-category of (small) quasi-categories. A marked simplicial set is a pair
(X, M), where X is a simplicial set and M is a set of 1-simplices of X that contains
all degenerate 1-simplices. There is a simplicial model structure on the category of
marked simplicial sets. Any marked simplicial set is cofibrant. A marked simplicial
set (X, M) is fibrant if and only if X is a quasi-category and M is the set of all
equivalences. Taking the simplicial nerve of the full subcategory of fibrant-cofibrant
marked simplicial sets, we obtain a quasi-category, which is called the quasi-category
Cat∞ of (small) quasi-categories.

The classical stable homotopy category of spectra is an analogue of the derived
category of abelian groups.We have an enhancement of the classical stable homotopy
category, that is, a quasi-category Sp of spectra, whose homotopy category is the
classical stable homotopy category. The quasi-category Sp is defined to be the limit
of the tower

· · · Ω−→ S∗
Ω−→ S∗

Ω−→ S∗

in the quasi-category ̂Cat∞ of (not necessarily small) quasi-categories, whereS∗ is
the quasi-category of pointed spaces and Ω : S∗ → S∗ is the loop functor.

The quasi-category Sp of spectra is an example of stable quasi-categories. The
framework of stable quasi-categories gives a way to do homological algebra. Actu-
ally, the homotopy category of a stable quasi-category is a triangulated category in a
canonical way. Thus, stable quasi-categories are regarded as an enhancement of tri-
angulated categories. The quasi-category Sp of spectra has a universal property in the
realm of stable quasi-categories in the following sense. We can consider the quasi-
categoryPrLst of presentable stable quasi-categories. The quasi-categoryPrLst has a
symmetric monoidal structure, and a commutative monoid object ofPrLst is a sym-
metric monoidal quasi-category which is stable and presentable and whose tensor
product is colimit-preserving in each variable. We can consider the quasi-category
CAlg(PrLst) of commutative monoid objects of PrLst, and the quasi-category Sp of
spectra is an initial object of CAlg(PrLst). In particular, Sp is a stable presentable
symmetric monoidal quasi-category whose tensor product is colimit-preserving in
each variable.

Since the quasi-category Sp of spectra is symmetric monoidal, we can consider
various algebraic objects in Sp. Many algebraic structures can be controlled by oper-
ads, and Lurie developed the theory of∞-operads in [23], which control many types
of algebraic structures in quasi-categories. In particular, in Sp we can consider asso-
ciative algebras, commutative algebras, and modules over an associative algebra.
Associative algebras in Sp correspond to A∞-ring spectra, and commutative alge-
bras in Sp correspond to E∞-ring spectra.We can regard modules over an associative
algebra in Sp as modules over the corresponding A∞-ring spectrum. Furthermore,
we can use the theory of quasi-categories and ∞-operads to define quasi-categories
of coalgebras and comodules over a coalgebra in Sp. It seems to the author that the
theory of quasi-categories is an appropriate setting to define and study coalgebras
and comodules over a coalgebra of spectra. In this paper we study comodules of
spectra related to complex oriented cohomology theories.
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4 Opposite Monoidal Quasi-Categories and Opposite
Tensored Quasi-Categories over Monoidal
Quasi-Categories

In this section we study the opposite quasi-categories of monoidal quasi-categories
and the opposite quasi-categories of tensored quasi-categories over monoidal quasi-
categories. The author thinks that the results in this section are well-known to experts
but he decided to include this section because he is not aware of appropriate refer-
ences.

In Sect. 4.1 we recall a model of opposite coCartesian fibrations by Barwick–
Glasman–Nardin [2] and study maps between opposite coCartesian fibrations. In
Sect. 4.2 we study the opposite quasi-category of a monoidal quasi-category and
show that a lax monoidal right adjoint functor between monoidal quasi-categories
induces a lax monoidal right adjoint functor between the opposite monoidal quasi-
categories. In Sect. 4.3 we study the opposite of a tensored quasi-category over a
monoidal quasi-category. We show that a lax tensored right adjoint functor between
tensored quasi-categories induces a lax tensored right adjoint functor between the
opposites of the tensored quasi-categories.

4.1 Opposite CoCartesian Fibrations

For a coCartesian fibration we have the opposite coCartesian fibration whose fibers
are the opposite quasi-categories of the fibers of the original coCartesian fibration. In
this subsection we recall the explicit model of opposite coCartesian fibrations due to
Barwick–Glasman–Nardin [2]. We show that a map between coCartesian fibrations
whose restriction to every fiber admits a left adjoint induces a map between the
opposite coCartesian fibrations.

First, we recall the explicit model of opposite coCartesian fibrations by Barwick–
Glasman–Nardin [2].

Let S be a simplicial set and let p : X → S be a coCartesian fibration with small
fibers. We denote by Xs the quasi-category that is the fiber of p over s ∈ S. Let Cat∞
be the quasi-category of small quasi-categories. By [22, Sect. 3.3.2], the coCartesian
fibration p is classified by a functor X : S → Cat∞. There is an involution

R : Cat∞ −→ Cat∞

carrying a quasi-category to its opposite. The composite functor RX classifies a
coCartesian fibration Rp : RX → S in which the fiber (RX)s of Rp over s ∈ S is
equivalent to the opposite quasi-category (Xs)

op for all s ∈ S.We call Rp : RX → S
the opposite coCartesian fibration of p : X → S. In the following of this subsection
we assume that the base simplicial set S is a quasi-category.

To describe the model of opposite coCartesian fibrations, we recall the twisted
arrow quasi-category. The twisted arrow quasi-category ˜O(K ) for a quasi-category
K is the simplicial set in which the set of n-simplices is given by
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˜O(K )n = HomsSet((Δ
n)op � Δn, K )

with obvious structure maps. The simplicial set ˜O(K ) is actually a quasi-category
(see [24, Prop. 4.2.3]). Note that the inclusions Δn ↪→ (Δn)op � Δn and (Δn)op ↪→
(Δn)op � Δn induce maps of simplicial sets ˜O(K ) → K and ˜O(K ) → K op, respec-
tively.

We use the twisted arrow category ˜O(Δn) for the n-simplex Δn for n ≥ 0 to
describe the model of opposite coCartesian fibrations. The twisted arrow quasi-
category ˜O(Δn) for Δn is the nerve of ˜[n], where ˜[n] is the ordered set of all pairs
(i, j) of integers with 0 ≤ i ≤ j ≤ n equipped with order relation (i, j) ≤ (i ′, j ′) if
and only if i ≥ i ′ and j ≤ j ′. The ordered set ˜[n] is depicted as follows

00 → 01 → 02 → · · · → 01 → 00
↑ ↑ ↑ ↑
11 → 12 → · · · → 11 → 10

↑ ↑ ↑
22 → · · · → 21 → 20

↑ ↑
. . .

...
...

↑ ↑
11 → 10

↑
00,

(1)

where k = n − k.
By functoriality of ˜O(−), we have a cosimplicial simplicial set ˜O(Δ•). For a sim-

plicial set K over S, we define a simplicial set H(K ) over S as follows. The simplicial
set H(K ) is a simplicial subset of HomsSet( ˜O(Δ•), K ). A map ϕ : ˜O(Δn) → K is
an n-simplex of H(K ) for n ≥ 0 if the j-simplex ϕ( j j) → · · · → ϕ(1 j) → ϕ(0 j)
covers a totally degenerate j-simplex of S, that is, a j-simplex in the image of the
map S0 → Sj , for all 0 ≤ j ≤ n. Assigning to an n-simplexϕ of H(K ) the n-simplex
pϕ(00) → pϕ(01) → · · · → pϕ(0n) of S, we obtain a map H(K ) → S.

Let p : X → S be a coCartesian fibration, where S is a quasi-category. We define
a simplicial set RX as follows. The simplicial set RX is a simplicial subset of
H(X). A map ϕ : ˜O(Δn) → X is an n-simplex of RX for n ≥ 0 if the following two
conditions are satisfied:

1. The j-simplex ϕ( j j) → · · · → ϕ(1 j) → ϕ(0 j) covers a totally degenerate j-
simplex of S for all 0 ≤ j ≤ n.

2. The 1-simplex ϕ(i j) → ϕ(ik) is a p-coCartesian edge for all 0 ≤ i ≤ j ≤ k ≤ n.

As in H(X), we have a map

Rp : RX → S,
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which is a coCartesian fibration. The fiber (RX)s over s ∈ S is equivalent to
the opposite quasi-category (Xs)

op of the fiber Xs for all s ∈ S. An edge ϕ ∈
HomsSet(Δ

1, RX) is Rp-coCartesian if and only if the edge ϕ(11) → ϕ(01) is
an equivalence in the fiber Xs , where s = pϕ(11). The coCartesian fibration Rp :
RX → S is a model of the opposite coCartesian fibration corresponding to the com-
posite

RX : S X−→ Cat∞
R−→ Cat∞,

whereX : S → Cat∞ is themap corresponding to the coCartesian fibration p : X →
S, and R : Cat∞ → Cat∞ is the functorwhich assigns to a quasi-category its opposite
quasi-category.

Next, we consider a map between coCartesian fibrations which admits a left
adjoint for each fibers.We show that the map induces a canonical map in the opposite
direction between the opposite coCartesian fibrations.

Let p : X → S and q : Y → S be coCartesian fibrations over a quasi-category
S. Suppose we have a map G : Y → X over S. Note that we do not assume that G
preserves coCartesian edges. The map G : Y → X over S induces a functor Gs :
Ys → Xs between the quasi-categories of fibers for each s ∈ S.

We shall define a simplicial set R over S equipped with maps πX : R → RX
and πY : R → RY over S. For a simplicial set K and X , we denote by Fun(K , X)

the mapping simplicial set from K to X . The map p : X → S induces a map p∗ :
Fun(Δ1, X) → Fun(Δ1, S). We regard S as a simplicial subset of Fun(Δ1, S) via
constant maps. We denote by FunS(Δ1, X) the pullback of p∗ along the inclusion
S ↪→ Fun(Δ1, S). The inclusionΔ{i} ↪→ Δ1 induces a map FunS(Δ1, X) → X over
S for i = 0, 1.

We have the inclusion RX ↪→ H(X) ∼= H(Fun(Δ{0}, X)). The map G : Y → X

over S induces a map RY ↪→ H(Y )
G∗−→ H(X) ∼= H(Fun(Δ{1}, X)). The inclusion

Δ{i} ↪→ Δ1 induces amap H(FunS(Δ1, X)) → H(Fun(Δ{i}, X)) for i = 0, 1.Using
these maps, we define a simplicial set R by

R = RX ×H(Fun(Δ{0},X)) H(FunS(Δ1, X)) ×H(Fun(Δ{1},X)) RY.

We have a mapR → S and projections πX : R → RX and πY : R → RY over S.
Now we assume that the functor Gs : Ys → Xs admits a left adjoint Fs for all

s ∈ S. Then an object x of X with s = p(x) determines an object (x, ux , Fs(x)) of
R, where ux : x → GsFs(x) is the unit map of the adjunction (Fs,Gs) at x . We
defineR0 to be the full subcategory ofR spanned by {(x, ux , Fs(x))} for all x ∈ X ,
where s = p(x). Let

π0
X : R0 −→ RX.

be the restriction of πX toR0.

Proposition 1 The map π0
X : R0 → RX is a trivial Kan fibration.

We defer the proof of Proposition 1 to Sect. 7.
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We take a section T0 of π0
X , which is unique up to contractible space of choices.

Let π0
Y : R0 → RY be the restriction of πY toR0. We define a functor

RF : RX −→ RY

to be π0
Y T0.

Wewould like to describe someproperties of the sectionT0. Let s ∈ S.Weconsider
the restriction of T0 to (RX)s . The fiber Rs is described as

Rs = (RX)s ×H(Fun(Δ{0},Xs )) H(Fun(Δ1, Xs)) ×H(Fun(Δ{1},Xs )) (RY )s,

and the fiberR0
s is a full subcategory ofRs . The composition (RX)s ↪→ H(Xs)

(Fs )∗−→
H(Ys) factors through (RY )s . We denote by R(Fs) the induced functor (RX)s →
(RY )s . The unit map us : 1Xs → GsFs in Fun(Xs, Xs) can be identified with a map
us : Xs → Fun(Δ1, Xs). We obtain a map Hus : (RX)s → H(Fun(Δ1, Xs)) by the

composition (RX)s ↪→ H(Xs)
(us )∗−→ H(Fun(Δ1, Xs)). Note that Hus followed by

H(Fun(Δ1, Xs)) → H(Fun(Δ{0}, Xs)) is the inclusion (RX)s ↪→ H(Xs), and the
map Hus followed by H(Fun(Δ1, Xs)) → H(Fun(Δ{1}, Xs)) is the composition of
R(Fs) : (RX)x → (RY )s followed by the inclusion (RY )s ↪→ H(Xs). Hence we
obtain a section of R0

s over (RX)s :

(1(RX)s , Hus, R(Fs)) : (RX)s −→ R0
s .

Proposition 2 We have

T0|(RX)s � (1(RX)s , Hus, R(Fs))

for any s ∈ S

Proof Restricting π0
X to the fibers over s ∈ S, we obtain a trivial Kan fibration

(π0
X )s : R0

s → (RX)s . The restriction of the section T0 to (RX)s is a section of
(π0

X )s . The map (1(RX)s , Hus, R(Fs)) is also a section of (π0
X )s . Hence we have

T0|(RX)s � (1(RX)s , Hus, R(Fs)). �

Next, we consider the image of edges of RX under the section T0. Let ϕ be an edge
of RX over e : s → s ′ in S represented by a p-coCartesian edge ϕ(00) → ϕ(01)
in X and an edge ϕ(11) → ϕ(01) in the fiber Xs ′ . We take a q-coCartesian edge
ψ : Fsϕ(00) → y′ in Y over e. Since ϕ(00) → ϕ(01) is p-coCartesian, we obtain
an edge ϕ(01) → Gs ′ y′ in Xs ′ , which makes the following diagram commute

ϕ(00)

u

ϕ(01)

GsFsϕ(00)
Gψ

Gs ′ y′,

(2)
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where u is the unit map of the adjunction (Fs,Gs) at ϕ(00). Let w : Fs ′ϕ(11) → y′
be the map in Ys ′ obtained from ϕ(11) → ϕ(01) by applying Fs ′ followed by the
adjoint map of ϕ(01) → Gs ′ y′. We denote by Rϕ the edge of RY over e represented
by

Fsϕ(00)
ψ−→ y′ w←− Fs ′ϕ(11).

Since the composite ϕ(11) → ϕ(01) → Gs ′ y′ is adjoint to w : Fs ′ϕ(11) → y′, we
have an edge Hϕ : ϕ → G(Rϕ) of H(FunS(Δ1, X)) represented by the following
commutative diagram

ϕ(00)

u

ϕ(01) ϕ(11)

u

Gs Fsϕ(00)
Gψ

Gs ′ y′ Gs ′ Fs ′ϕ(11).
Gs′w

Proposition 3 For any edge ϕ of RX, we have

T0(ϕ) � (ϕ, Hϕ, Rϕ).

Proof Let π0
ϕ : R0

ϕ → Δ1 be the trivial Kan fibration obtained by the pullback of
π0
X along the map ϕ : Δ1 → RX . The triple (ϕ, Hϕ, Rϕ) determines a section of

π0
ϕ . Hence T0(ϕ) � (ϕ, Hϕ, Rϕ). �

The main result in this subsection is the following theorem.

Theorem 4 Let p : X → S and q : Y → S be coCartesian fibrations over a quasi-
category S. Suppose we have a map G : Y → X over S. If Gs admits a left adjoint
Fs for all s ∈ S, then there exists a canonical map RF : RX → RY over S up to
contractible space of choices. We have (RF)s � F op

s for all s ∈ S and RF(ϕ) � Rϕ

for any edge ϕ of RX.

Proof The theorem follows from Propositions 1, 2, and 3. �

Now we consider which coCartesian edge of RX is preserved by the functor RF .
Let e : s → s ′ be a 1-simplex of S. Since q : Y → S and p : X → S are coCartesian
fibrations, we have functors eY! : Ys → Ys ′ and eX! : Xs → Xs ′ associated to e. The
map G : Y → X over S induces a diagram ∂(Δ1 × Δ1) → Cat∞ depicted as

Ys

eY!

Gs
Xs

eX!

Ys ′
Gs′

Xs ′

(3)

and a natural transformation
eX! Gs −→ Gs ′eY! . (4)
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If natural transformation (4) is an equivalence, then G : Y → X preserves coCarte-
sian edges over e.

We recall the definition of left adjointable diagram (see [23, Def. 4.7.5.13]).
Suppose we are given a diagram of quasi-categories

C
G

U

D

V

C ′ G ′
D ′

which commutes up to a specified equivalence α : VG � G ′U . We say that this
diagram is left adjointable if the functors G and G ′ admit left adjoints F and F ′,
respectively, and if the composite transformation

F ′V → F ′VGF
α� F ′G ′UF → UF

is an equivalence, where the first map is induced by the unit map of the adjunction
(F,G), and the third map is induced by the counit map of the adjunction (F ′,G ′).

Proposition 4 Let e be a 1-simplex of S. If natural transformation (4) is an equiv-
alence and diagram (3) equipped with this equivalence is left adjointable, then
RF : RX → RY preserves coCartesian edges over e.

Proof Let ϕ be an Rp-coCartesian edge of RX over e represented by ϕ(00) →
ϕ(01) ← ϕ(11), where ϕ(00) → ϕ(01) is a p-coCartesian edge of X over e and
ϕ(11) → ϕ(01) is an equivalence in Xs ′ . We can regard ϕ(11) as eX! ϕ(00).

Suppose that the edge Rϕ of RY over e is represented by

Fsϕ(00)
ψ−→ y′ w←− Fs ′ϕ(11),

where ψ is a q-coCartesian edge of Y over e and w is an edge of Ys ′ . We have to
show that w is an equivalence of Ys ′ .

We can regard y′ as eY! Fsϕ(00) and Fs ′ϕ(11) as Fs ′eX! ϕ(00). The morphism w is
the adjoint of the morphism ϕ(11) → ϕ(01) → Gs ′ y′, which can be identified with
eX! ϕ(00) → Gs ′eY! Fsϕ(00). By the assumption that diagram (3) is left adjointable,
we see that w is an equivalence. �

4.2 Opposite Monoidal Quasi-Categories

In this subsectionwe study the oppositemonoidal quasi-categoryof amonoidal quasi-
category.We show that a lax right adjoint functor betweenmonoidal quasi-categories
induces a lax right adjoint functor between the opposite monoidal quasi-categories.

First, we recall the definition of monoidal quasi-categories. Let p : M → N (Δ)op

be a coCartesian fibration of simplicial sets. For any n ≥ 0, the inclusion [1] ∼= {i −
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1, i} ↪→ [n] induces a functor pi : X [n] → X [1] of quasi-categories for i = 1, . . . , n.
We say that p is a monoidal quasi-category if the functor

p1 × · · · × pn : X [n] −→
n

︷ ︸︸ ︷

X [1] × · · · × X [1]

is a categorical equivalence for all n ≥ 0. The fiber M[1] of p over [1] ∈ Δ is said to
be the underlying quasi-category of the monoidal category p.

Let p : M → N (Δ)op be a monoidal quasi-category. Since p is a coCartesian
fibration by definition, we have a functor X : N (Δ)op → Cat∞ classifying p. We
have the opposite coCartesian fibration Rp : RM → N (Δ)op that is classified by the
functor RX. We easily see that Rp : RM → N (Δ)op is a monoidal quasi-category.
Note that the fiber (RM)[n] is equivalent to (M[n])op � (Mop

[1])n for any n ≥ 0. We
say that RM is the opposite monoidal quasi-category of M .

Amap [m] → [n] inΔ is said to be convex if it is injective and the image is {i, i +
1, . . . , i + m} for some i . Let p : M → N (Δ)op and q : N → N (Δ)op be monoidal
quasi-categories. A lax monoidal functor G : N → M between the monoidal quasi-
categories is a map of simplicial sets over N (Δ)op which carries p-coCartesian edges
over convex morphisms in N (Δ)op to q-coCartesian edges.

Lemma 1 If G[1] : N[1] → M[1] admits a left adjoint F[1], then there is a canonical
functor RF : RM → RN over N (Δ)op up to contractible space of choices. We have
(RF)[n] � (F op

[1] )n for all n ≥ 0.

Proof For any n ≥ 0, we have equivalences M[n] � (M[1])n and N[n] � (N[1])n .
Since G is a lax monoidal functor, we see that G[n] is equivalent to (G[1])n under
the above equivalences. Hence G[n] admits a left adjoint for all n ≥ 0. The lemma
follows from Theorem 4. �

Proposition 5 If G : N → M is a lax monoidal functor between monoidal quasi-
categories such that G[1] : N[1] → M[1] admits a left adjoint, then the functor RF :
RM → RN is also a lax monoidal functor between the opposite monoidal quasi-
categories.

Proof We have to show that RF preserves coCartesian edges over convex mor-
phisms. Let α : [m] → [n] be a convex morphism in Δ. Since G : N → M is a lax
monoidal functor, we have a commutative diagram

N[n]

αN
!

G[n]
M[n]

αM
!

N[m]
G[m]

M[m]

in Cat∞. Since αM
! : M[n] → M[m] and αN

! : N[n] → N[m] are equivalent to projec-
tions Mn

[1] → Mm
[1] and Nn

[1] → Nm
[1], respectively, we see that the diagram is left

adjointable. The proposition follows from Proposition 4. �
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4.3 Opposites of Tensored Quasi-Categories Over Monoidal
Quasi-Categories

In this subsection we study the opposite of a tensored quasi-category over a monoidal
quasi-category. We show that the opposite of a lax tensored right adjoint func-
tor between tensored quasi-categories induces a lax tensored right adjoint functor
between the opposites of the tensored quasi-categories.

First,we recall the definition of left tensoredquasi-category over amonoidal quasi-
category. Let p : X → N (Δ)op × Δ1 be a coCartesianfibration of simplicial sets. For
any n ≥ 0, the identity id[n] : [n] → [n] in Δ and the edge {0} → {1} in Δ1 induces
a morphism ([n], 0) → ([n], 1) in N (Δ)op × Δ1, and hence we obtain a functor of
quasi-categories αn : X([n],0) → X([n],1). For any n ≥ 0, the inclusion [0] ∼= {n} ↪→
[n] in Δ and the identity id{0} : {0} → {0} in Δ1 induces a morphism ([0], 0) →
([n], 0) in N (Δ)op × Δ1, and hence we obtain a functor of quasi-categories βn :
X([n],0) → X([0],0). If the base change of p along the inclusion N (Δ)op × {1} ↪→
N (Δ)op × Δ1 is a monoidal quasi-category, and the functor

αn × βn : X([n],0) −→ X([n],1) × X([0],0)

is a categorical equivalence for all n ≥ 0, then we say that p is a left tensored quasi-
category.

Now suppose p : X → N (Δ)op × Δ1 is a left tensored quasi-category. We set
M = X([1],1) and C = X([0],0). Note that M is the underlying quasi-category of
a monoidal quasi-category p|N (Δ)op×{1}. We say that C is left tensored over the
monoidal quasi-category M .

Let Σ be a set of edges of N (Δ)op × Δ1 consisting of edges of the forms

([n], 0) −→ ([m], 0),

where [m] → [n] is a convex morphism in Δ that carries m to n, and

([n], i) −→ ([m], 1)

for i = 0, 1, where [m] → [n] is convex.
Suppose that p : X → N (Δ)op × Δ1 andq : Y → N (Δ)op × Δ1 are left tensored

quasi-categories. We say that a functor G : Y → X over N (Δ)op × Δ1 is a lax left
tensored functor if G carries p-coCartesian edges over Σ to q-coCartesian edges.

Lemma 2 Let p : X → N (Δ)op × Δ1 and q : Y → N (Δ)op × Δ1 be left tensored
quasi-categories. If G : Y → X is a lax left tensored functor such that G([0],0) and
G([1],1) admit left adjoints F([0],0) and F([1],1), respectively, then there is a canonical
functor RF : RX → RY over N (Δ)op × Δ1 up to contractible space of choices. We
have (RF)([n],0) � (Fop

([1],1))
n × Fop

([0],0) and (RF)([n],1) � (Fop
[1],1)n for all n ≥ 0.

Proof For any n ≥ 0, we have equivalences X([n],0) � (X([1],1))n × X([0],0) and
Y([n],0) � (Y([1],1))n × Y([0],0). Since G is a lax left tensored functor, we see that
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G([n],0) is equivalent to (G([1],1))n × G([0],0). In the same way, we see that G([n],1)
is equivalent to (G([1],1))n for any n ≥ 0. Hence Gs admits a left adjoint for all
s ∈ N (Δ)op × Δ1. The lemma follows from Theorem 4. �

Proposition 6 Let p : X → N (Δ)op × Δ1 and q : Y → N (Δ)op × Δ1 be left ten-
sored quasi-categories. If G : Y → X is a lax left tensored functor such that G([0],0)
and G([1],1) admit left adjoints, then the functor RF : RX → RY is also a lax left
tensored functor.

Proof We can prove the proposition in the same way as Proposition 5. We have to
show that RF preserves coCartesian edges over Σ . Let α : s → s ′ be an edge in Σ .
Since G : Y → X is a lax left tensored functor, we have a commutative diagram

Ys

αY
!

Gs
Xs

αX
!

Ys ′
Gs′

Xs ′

in Cat∞. Since αY
! : Ys → Ys ′ and αX

! : Xs → Xs ′ are equivalent to the projections,
we see that the diagram is left adjointable. The proposition follows from Proposi-
tion 4. �

5 Quasi-Categories of Comodules

In this section we introduce a quasi-category of comodules over a coalgebra in a
stable homotopy theoryC .We regard a coalgebra as an algebra object of the opposite
monoidal quasi-category of A-A-bimodule objects, where A is an algebra object of
C . We regard a comodule object over a coalgebra Γ as a module object over Γ

in the opposite quasi-category of A-module objects. We define a cotensor product
of a right comodule and a left comodule over a coalgebra as a limit of the cobar
construction. Using these formulations, we study the functor from the localization of
C with respect to A to the quasi-category of comodules over the coalgebra A ⊗ A.

5.1 Monoidal Structure on ABModA(C )op

In this subsection we introduce a quasi-category of coalgebras and a quasi-category
of comodules over a coalgebra in a stable homotopy theory.

Let M⊗ be a monoidal quasi-category. We denote by M the underlying quasi-
category of the monoidal quasi-category M⊗. For algebra objects A and B of M ,
we denote by ABModB(M ) the quasi-category of A-B-bimodule objects inM . If B
is the monoidal unit 1 in M , we abbreviate the quasi-category ABMod1(M ) of A-
1-bimodule objects in M as ABMod(M ). Let N be a quasi-category left tensored
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over M⊗. For an algebra object A of M , we denote by LModA(N ) the quasi-
category of left A-module objects in N . Note that there is a natural equivalence
LModA(M ) � ABMod(M ) of quasi-categories.

Let (C ,⊗, 1) be a stable homotopy theory in the sense of [25, Def. 2.1], that
is, C is a presentable stable quasi-category which is the underlying quasi-category
of a symmetric monoidal quasi-category C ⊗, where the tensor product commutes
with all colimits separately in each variable. For an algebra object A of C , we
denote by ABModA(C ) the quasi-category of A-A-bimodules in C , which is the
underlying quasi-category of the monoidal quasi-category ABModA(C )⊗, where the
tensor product is given by the relative tensor product ⊗A and the unit is the A-A-
bimodule A (see [23, 4.3 and 4.4]).Note that the relative tensor product⊗A commutes
with all colimits separately in each variable by [23, Cor. 4.4.2.15]. For algebra objects
A and B of C , we denote by ABModA(C ) the quasi-category of A-B-bimodules,
which is presentable by [23, Cor. 4.3.3.10].

If M⊗ is a monoidal quasi-category, then the opposite quasi-category (M⊗)op

also carries amonoidal structure. Since ABModA(C ) is the underlyingquasi-category
of the monoidal quasi-category ABModA(C )⊗ for an algebra object A of C , the
opposite quasi-category ABModA(C )op is the underlying quasi-category of the oppo-
site monoidal quasi-category (ABModA(C )⊗)op. We regard an algebra object Γ of
ABModA(C )op as a coalgebra object of ABModA(C ). We define the quasi-category
ACoAlgA(C ) of coalgebra objects of ABModA(C ) to be the opposite of the quasi-
category of algebra objects of ABModA(C )op:

ACoAlgA(C ) = Alg(ABModA(C )op)op.

For a quasi-category Y left tensored over a monoidal categoryM⊗, the opposite
quasi-category Y op carries the structure of left tensored quasi-category over the
opposite monoidal quasi-category (M⊗)op.

Thequasi-category ABMod(C ) � LModA(C ) is left tensoredover ABModA(C )⊗
by the relative tensor product ⊗A for an algebra object A of C . Hence the oppo-
site quasi-category ABMod(C )op is left tensored over the opposite monoidal quasi-
category (ABModA(C )⊗)op. Let Γ be a coalgebra object of ABModA(C ), that is, an
algebra object of ABModA(C )op. We regard a left Γ -module in ABMod(C )op as a
left Γ -comodule in ABMod(C ). We define the quasi-category of left Γ -comodules
LComod(A,Γ )(C ) to be the opposite of the quasi-category of left Γ -module objects
in ABModA(C )op:

LComod(A,Γ )(C ) = (LModΓ (ABMod(C )op))op.

Note that LComod(A,Γ )(C ) is right tensored over C and there is a forgetful functor

LComod(A,Γ )(C ) −→ ABMod(C ) � LModA(C ),

which is a map of quasi-categories right tensored over C .
In the same way as LComod(A,Γ )(C ), we can define the quasi-category of right

Γ -comodules RComod(A,Γ )(C ) in C for a coalgebra Γ of ABModA(C ).
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5.2 Comparison Maps

In this subsection we construct a functor between quasi-categories of comodules for
a map of algebra objects. We also show that the definition of a quasi-category of
comodules in this paper is consistent with the definition in [33].

Suppose (C ,⊗, 1) be a stable homotopy theory. Let f : A → B be a map of
algebra objects of C . We have the functor

( f, f )∗ : BBModB(C ) −→ ABModA(C )

which is obtained by restriction of scalars through f . The functor ( f, f )∗ extends to
a lax monoidal functor

(( f, f )∗)⊗ : BBModB(C )⊗ −→ ABModA(C )⊗.

Furthermore, the functor ( f, f )∗ admits a left adjoint

( f, f )! : ABModA(C ) −→ BBModB(C ),

which assigns to an A-A-bimodule X the B-B-bimodule B ⊗A X ⊗A B. By Propo-
sition 5, we obtain the following lemma.

Lemma 3 If f : A → B is a map of algebra objects of C , then the induced functor

( f, f )op! : ABModA(C )op −→ BBModB(C )op

can be extended to a lax monoidal functor.

In the remainder of this paper, for simplicity, we say that the underlying quasi-
categoryM of a monoidal categoryM⊗ is a monoidal category and that the under-
lying functor F : M → N of a (lax) monoidal functor F⊗ : M⊗ → N ⊗ is a (lax)
monoidal functor.

For a map of algebra objects f : A → B in C , the lax monoidal functor ( f, f )op!
induces a map of quasi-categories of algebra objects

( f, f )op! : Alg(ABModA(C ))op) −→ Alg(BBModB(C )op)

and hence we obtain a map of quasi-categories of coalgebra objects

( f, f )! : ACoAlgA(C ) −→ BCoAlgB(C ).

Therefore, for a coalgebra object Γ of ABModA(C ), we obtain a coalgebra object

B ⊗A Γ ⊗A B = ( f, f )!(Γ )

of BBModB(C ). In particular, since the monoidal unit A in ABModA(C ) is a coal-
gebra object, we see that

B ⊗A B = ( f, f )!(A)
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is a coalgebra object of BBModB(C ).
In particular, since the monoidal unit 1 is a coalgebra object of 1BMod1(C ) � C ,

we have a coalgebra object
A ⊗ A = ( f, f )!(1)

of ABModA(C ), where f : 1 → A is the unit map of A. We write

Γ (A) = (A, A ⊗ A)

for simplicity and we call A ⊗ A-comodules Γ (A)-comodules interchangeably.
Let f : A → B be amapof algebra objects ofC .Wedenote by f ∗ : LModB(C ) →

LModA(C ) the restriction of scalars functor. Recall that f ∗ is a right adjoint to the
extension of scalars functor

f! : LModA(C ) → LModB(C ),

which is given by f!(M) � B ⊗A M .

Theorem 5 Let Γ be a coalgebra object in ABModA(C ) and let f : A → B be a
map of algebra objects of C . The map f induces a functor of quasi-categories

f! : LComod(A,Γ )(C ) −→ LComod(B,Σ)(C )

which covers the functor f! : LModA(C ) → LModB(C ) through the forgetful func-
tors, where Σ = ( f, f )!Γ .

Proof This follows from Proposition 6. �

Suppose we have a map f : A → B of algebra objects of C . This induces an
adjunction of functors

f ! : LModA(C ) � LModB(C ) : f ∗.

Taking the opposite quasi-categories, we obtain an adjunction of functors

f ∗ op : LModB(C )op � LModA(C )op : f op
! .

By this adjunction, we obtain an endomorphism monad

T ∈ Alg(End(LModB(C )op)),

and a quasi-category
LModT (LModB(C )op).

of left T -modules in LModB(C )op (see [23, Sect. 4.7.4]).
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The following theorem shows that the definition of a quasi-category of comodules
is consistent with the definition in [33].

Theorem 6 There is an equivalence of quasi-categories

LComod(B,B⊗A B)(C ) � LModT (LModB(C )op)op.

Proof Put A = LModA(C )op and B = LModB(C )op. We have an adjunction of
functors F : B � A : G, where F = f ∗ op and G = f op

! . Since LModB(C ) �
BBMod(C ), we can regard B ⊗A B as an algebra object of End(B). By [23,
Prop. 4.7.4.3], we can lift G to G ∈ LModB⊗A B(Fun(B,A )). We can verify that
the composition

B ⊗A B −→ (B ⊗A B) ◦ G ◦ F −→ G ◦ F

is an equivalence in End(B), where the first map is induced by the unit map of the
adjunction (F,G), and the second map is induced by the left B ⊗A B-action on G in
Fun(B,A ). By [23, Prop. 4.7.4.3], we see that B ⊗A B is equivalent to the endomor-
phism monad T . Hence we obtain an equivalence between LModT (LModB(C )op)

and LModB⊗A B(BBMod(C )op). �

5.3 Cotensor Products for Comodules in Quasi-Categories

Let (C ,⊗, 1) be a stable homotopy theory. In this subsection we define a (derived)
cotensor product of comodules in C . In particular, we define a (derived) functor of
taking primitives of comodules. We also study a comodule structure on cotensor
products.

Let A be an algebra object of C . Suppose Γ is a coalgebra object of the quasi-
category ABModA(C ) of A-A-bimodules in C , that is, Γ is an algebra object of the
opposite monoidal quasi-category ABModA(C )op.

For a right Γ -comodule M and a left Γ -comodule N , we shall define a cotensor
product

M�Γ N .

We regard M as an object in RModΓ (BModA(C )op) and N as an object in
LModΓ (ABMod(C )op). We can construct a two-sided bar construction

B•(M, Γ, N ),

which is a simplicial object in C op. The simplicial object B•(M, Γ, N ) has the nth
term given by

Bn(M, Γ, N ) � M ⊗A

n
︷ ︸︸ ︷

Γ ⊗A · · · ⊗A Γ ⊗AN
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with the usual structure maps. We regard B•(M, Γ, N ) as a cosimplicial object

C•(M, Γ, N )

inC and define the cotensor productM�Γ N to be the limit of the cosimplicial object
C•(M, Γ, N ):

M�Γ N = limN (Δ) C
•(M, Γ, N ).

Now we regard A as a right A-module and suppose that A is a right Γ -comodule
via ηR : A → A ⊗A Γ � Γ . We define a functor

P : LComod(A,Γ ) −→ C

by
P(N ) = A�Γ N .

We consider the functor P is a derived functor of taking primitives in N .
Suppose we have algebra objects A, B,C of C . The quasi-category of B-A-

bimodules BBModA(C ) in C is right tensored over the monoidal quasi-category
ABModA(C ) and the quasi-category of A-C-bimodules ABModC(C ) in C is left
tensored over themonoidal quasi-category ABModA(C ). LetΓ be a coalgebra object
of ABModA(C ). We can define right Γ -comodule objects of BBModA(C ) and left
Γ -comodule objects of ABModC(C ) in the same way as Γ -comodule objects of
ABModA(C ). Suppose we have a right Γ -comodule M of BBModA(C ) and a left
Γ -comodule N of ABModC(C ). We can form the cobar construction C•(M, Γ, N )

in BBModC(C ). Hence the cotensor product M�Γ N is a B-C-bimodule

M�Γ N ∈ BBModC(C ).

Let Σ be a coalgebra object of BBModB(C ). Now suppose M is a (Σ, Γ )-
bicomodule object of BBModA(C ), that is, M is a (Σ, Γ )-bimodule object of
BBModA(C )op. In general, the cotensor product M�Γ N does not support a left
Σ-comodule structure. The following proposition gives us a sufficient condition
for M�Γ N to be a left Σ-comodule object of BBModC(C ) induced by the left
Σ-comodule structure on M .

Proposition 7 Let M be a (Σ, Γ )-bicomodule object of BBModA(C ) and let N be
a left Γ -comodule object of ABModC(C ). If the canonical map

r
︷ ︸︸ ︷

Σ ⊗B · · · ⊗B Σ ⊗B(M�Γ N ) −→ (

r
︷ ︸︸ ︷

Σ ⊗B · · · ⊗B Σ ⊗BM)�Γ N

is an equivalence in BBModC(C ) for all r > 0, then the left Σ-comodule structure
on M induces a left Σ-comodule structure on M�Γ N.

In order to prove Proposition 7, we need the following lemma.
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Lemma 4 Let M be a monoidal quasi-category, A an algebra object of M ,
and D a quasi-category left-tensored over M . Suppose we have a diagram X :
K → LModA(D), where K is a simplicial set. We set Y = π ◦ X : K → D , where
π : LModA(D) → D is the forgetful functor. We assume that there exists a colimit
colimD

K (A⊗r ⊗ Y ) in D for all r ≥ 0. If the canonical map colimD
K (A⊗r ⊗ Y ) →

A⊗r ⊗ colimD
K Y is an equivalence for all r > 0, then there exists a colimit of X in

LModA(D) and the forgetful functor π : LModA(D) → D preserves the colimit.

Proof We use the notation in [23, Sect. 4.2.2]. LetD� andM� be quasi-categories

defined in [23, Notation 4.2.2.16]. We have maps D� q→ M� p→ N (Δ)op, where
p and p ◦ q are coCartesian fibrations by [23, Remark. 4.2.2.24]. Furthermore, q
is a categorical fibration by [23, Remark. 4.2.2.18] and a locally coCartesian fibra-
tion by [23, Lem. 4.2.2.19]. Note that there is an equivalence of quasi-categories
D�

[s] � M�
[s] × D and the restriction q[s] : D�

[s] → M�
[s] is the projection for any

[s] ∈ N (Δ)op.
We have simplicial models of algebra and module objects in quasi-categories

(see [23, Sects. 4.1.2 and 4.2.2]). We have a full subcategory ΔAlg(M ) of the quasi-
categoryFunN (Δ)op(N (Δ)op,M�)which is equivalent to the quasi-categoryAlg(M )

of algebra objects of M (see [23, Def. 4.1.2.14 and Prop. 4.1.2.15]). We denote by
A′ : N (Δ)op → M� the corresponding simplicial object of M� to A ∈ Alg(M ).

We form a pullback diagram

N
j

q ′

D�

q

N (Δ)op
A′

M�,

where q ′ is a locally coCartesian fibration and a categorical fibration. Note that
the fiber N[n] of q ′ over [n] is equivalent to D for all [n] ∈ N (Δ)op. We have a
full subcategory ΔLModA′(D) of FunN (Δ)op(N (Δ)op,N ), which is equivalent to
LModA(D) (see [23, Cor. 4.2.2.15]). An objectG of FunN (Δ)op(N (Δ)op,N ) belongs
to LModA′(D) if and only if the edge ( j ◦ G)(αop) : ( j ◦ G)([n]) → ( j ◦ G)([m])
is p ◦ q-coCartesian for any convex map α : [m] → [n] in Δ such that α(m) = n.

We denote by f : K × N (Δ)op → N the map corresponding to the diagram
X ∈ Fun(K ,LModA(D)). We let g : K� × N (Δ)op → N (Δ)op be the projection.
We have a commutative diagram

K × N (Δ)op
f

N

q ′

K� × N (Δ)op
g

N (Δ)op,
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where the left vertical arrow is the inclusion. We shall show that there is a q ′-left
Kan extension f : K� × N (Δ)op → N which makes the whole diagram commu-
tative, and that the adjoint map gives rise to a colimit diagram K� → LModA′(D) �
LModA(D).

Let f[n] : K → N[n] � D be the restriction of the map f over [n] ∈ N (Δ)op,
which is equivalent to Y . Since Y has a colimit in D by the assumption, we obtain a
colimit diagram f [n] : K� → N[n] � D that is an extension of f .

Letα : [n] → [m]be an edge in N (Δ)op. Sinceq ′ is a locally coCartesianfibration,
α induces a functor α! : N[n] → N[m]. The composition α! ◦ f[n] : K → N[m] � D
is equivalent to A⊗r ⊗ Y for some r ≥ 0. This implies that α! ◦ f [n] is a colimit
diagram in N[m] � D by the assumption that the canonical map colimD

K (A⊗r ⊗
Y ) → A⊗r ⊗ colimD

K Y is an equivalence. Hencewe see that i[n] ◦ f [n] is a q ′-colimit
diagram by [22, Prop. 4.3.1.10], where i[n] : N[n] ↪→ N is the inclusion.

By the dual of [23, Lem. 3.2.2.9(1)], there exists a q ′-left Kan extension f :
K� × N (Δ)op → N of f such that q ′ ◦ f = g. The restriction of f to K� × {[n]}
is equivalent to i[n] ◦ f [n] for all [n] ∈ N (Δ)op.

We consider the adjoint map K� → Fun(N (Δ)op,N ) of f . By the dual of
[23, Lem. 3.2.2.9(2)], this map is a (q ′)N (Δ)op -colimit diagram, where (q ′)N (Δop) :
Fun(N (Δ)op,N ) → Fun(N (Δ)op, N (Δ)op) is induced by q ′. Since g is the pro-
jection, we see that it factors through FunN (Δ)op(N (Δ)op,N ) and we obtain a map
̂f : K� → FunN (Δ)op(N (Δ)op,N ). By [22, Prop. 4.3.1.5(4)], we see that ̂f is a
colimit diagram.

We shall show that ̂f factors through LModA′(D). Note that the restriction of ̂f
to K factors through LModA′(D). Let F = ̂f (∞) ∈ FunN (Δ)op(N (Δ)op,N ), where
∞ is the cone point of K�. Since f [n] is a colimit diagram extending Y , we have
F([n]) � colimD

K Y inN[n] � D for any [n] ∈ N (Δ)op. Let α : [m] → [n] be a con-
vex map in Δ such that α(m) = n. The induced functor α! : N[n] → N[m] is identi-
fied with the identity functor of D . This implies that ( j ◦ F)(αop) : ( j ◦ F)([n]) →
( j ◦ F)([m]) is a p ◦ q-coCartesian edge. Hence ̂f factors through the full subcate-
gory ΔLModA′(D) and the map ̂f : K� → ΔLModA′(D) is a colimit diagram.

By the construction of ̂f , the composition π ◦ ̂f : K� → D is also a colimit
diagram, where π : ΔLModA′(D) → D is the forgetful functor. This completes the
proof. �

Proof (Proof of Proposition 7) We shall apply Lemma 4. We have the monoidal
quasi-category BBModB(C )op, the algebra object Σ of BBModB(C )op, and the
quasi-category BBModC(C )op left tensored over BBModB(C )op. By the bar con-
struction, we have a simplicial object B•(M, Γ, N ) of LModΣ(BBModC(C )op). By
the assumption, the canonical map

colimN (Δ)opB•(Σ⊗Br ⊗B M, Γ, N ) → Σ⊗Br ⊗B colimN (Δ)opB•(M, Γ, N )

is an equivalence in BBModC(C )op for all r > 0. By Lemma 4, there exists a
colimit of B•(M, Γ, N ) in LModΣ(BBModC(C )op) and the colimit is created in
BBModC(C )op. Hence we see that the cosimplicial object C•(M, Γ, N ) has a limit
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in LComodΣ(BBModC(C )) and the underlying object of the limit is M�Γ N in
BBModC(C ). �

5.4 Equivalence of Quasi-Categories of Comodules

Let (C ,⊗, 1) be a stable homotopy theory and let A be an algebra object of C . In
this subsection we study the relationship between the localization of C with respect
to A and the quasi-category of Γ (A)-comodules in C .

We regard A as a right A-module and the map of right A-modules ηR : A � S ⊗
A → A ⊗ A induces a rightΓ (A)-comodule structure on A. Since RComodΓ (A)(C )

is left tensored over C , we have X ⊗ A ∈ RComodΓ (A)(C ) for any X ∈ C .
Recall that we have a cosimplicial object

C•(A, A ⊗ A, M)

inC by cobar construction forM ∈ LComodΓ (A)(C ). The totalization ofC•(A, A ⊗
A, M) is P(M). In the same way as in [33, Prop. 5.1], we obtain an adjunction of
functors

A ⊗ (−) : C � LComodΓ (A)(C ) : P.

Let C• : N (Δ) → C be a cosimplicial object in C . We recall the Tot tower asso-
ciated to C•. For r ≥ 0, we denote by Δ≤r the full subcategory of Δ spanned by
{[0], [1], . . . , [r ]}. We denote by C•|N (Δ≤r ) the restriction of C• to N (Δ≤r ). We
recall that Totr (C•) is defined to be the limit of C•|N (Δ≤r ) in C . The inclusion
Δ≤r ↪→ Δ≤r+1 induces a map Totr+1(C•) → Totr (C•) for r ≥ 0 and we obtain
a tower {TotrC•}r≥0. Note that the limit of the tower is equivalent to Tot(C•):

Tot(C•) � lim
r

Totr (C
•).

If there is a coaugmentation D → C•, then we obtain a map of towers c(D) →
{Totr (C•)}r≥0, where c(D) is the constant tower on D.

We denote by Pro(C ) the quasi-category of pro-objects in C (see [25, Sect. 3]).
We have a fully faithful embeddingC ↪→ Pro(C ). We say that an object of Pro(C ) is
constant if it is equivalent to an object in the image of the embedding C ↪→ Pro(C ).

Lemma 5 For any M ∈ LComodΓ (A)(C ), the cosimplicial object A ⊗ C•(A, A ⊗
A, M) is split, and hence the tower {Totr (A ⊗ C•(A, A ⊗ A, M))} associated to the
cosimplicial object A ⊗ C•(A, A ⊗ A, M) is equivalent to the constant object M in
Pro(C ).

Proof We have an isomorphism of cosimplicial objects

A ⊗ C•(A, A ⊗ A, M) ∼= C•(A ⊗ A, A ⊗ A, M).
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The lemma follows from the fact that C•(A ⊗ A, A ⊗ A, M) is a split cosimplicial
object. �

A full subcategoryI ⊂ C is said to be an ideal if X ⊗ Y ∈ I whenever X ∈ C
and Y ∈ I (cf. [25, Definition 2.16]). A full subcategory D ⊂ C is said to be thick
if D is closed under finite limits and colimits and under retracts. If, furthermore, D
is an ideal, we say that D is a thick tensor ideal (cf. [25, Definition 3.16]). Given a
collection of objects in C , the thick tensor ideal generated by them is the smallest
thick tensor ideal containing the collection. Let A be an algebra object ofC . An object
X ∈ C is said to be A-nilpotent if X belongs to the thick tensor ideal generated by A.

Lemma 6 Let A be an algebra object of C . If the unit 1 is A-nilpotent, then the
tower associated to the cosimplicial object C•(A, A ⊗ A, M) is equivalent to the
constant object P(M) in Pro(C ) for any M ∈ LComodΓ (A)(C ).

Proof Let I be the class of objects X in C such that the tower associated to
the cosimplicial object X ⊗ C•(A, A ⊗ A, M) is equivalent to a constant object in
Pro(C ).We see thatI is a thick tensor ideal ofC and contains A byLemma 5.Hence
I contains the unit 1 by the assumption. This implies that the tower associated to
C•(A, A ⊗ A, M) is equivalent to the constant object limN (Δ) C•(A, A ⊗ A, M) �
P(M) in Pro(C ). �

For any X ∈ C and M ∈ LComodΓ (A)(C ), we have an equivalence of cosimpli-
cial objects X ⊗ C•(A, A ⊗ A, M) � C•(X ⊗ A, A ⊗ A, M). This induces a natu-
ral map

X ⊗ P(M) −→ (X ⊗ A)�A⊗AM.

Proposition 8 Let A be an algebra object of C . If the unit 1 is A-nilpotent, then the
natural map X ⊗ P(M) → (X ⊗ A)�A⊗AM is an equivalence for any X ∈ C and
M ∈ ComodΓ (A)(C ).

Proof By Lemma 6, the tower associated to the cosimplicial object C•(A, A ⊗
A, M) is equivalent to the constant object P(M) in Pro(C ). This implies that the
tower

{Totr (X ⊗ C•(A, A ⊗ A, M))}

associated to the cosimplicial object X ⊗ C•(A, A ⊗ A, M) is also equivalent to the
constant object X ⊗ P(M) in Pro(C ). By the equivalence of cosimplicial objects
X ⊗ C•(A, A ⊗ A, M) � C•(X ⊗ A, A ⊗ A, M), we obtain the equivalence X ⊗
P(M) � (X ⊗ A)�A⊗AM . �

Corollary 1 Let A be an algebra object of C . If the unit 1 is A-nilpotent, then the
counit map

A ⊗ P(M) → M

is an equivalence for any M ∈ LComodΓ (A)(C ).
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Proof By Proposition 8, we have a natural equivalence A ⊗ P(M) � (A ⊗ A)

�A⊗AM . The corollary follows from the fact that (A ⊗ A)�A⊗AM � M . �

We consider the localization of C with respect to A. A morphism f : X → Y in
C is said to be an A-equivalence if A ⊗ f is an equivalence. We denote by LAC the
localization of C with respect to the class of A-equivalences.

The following theorem is a slight generalization of [25, Prop. 3.21].

Theorem 7 Let A be an algebra object of C . If the unit 1 is A-nilpotent, then L AC
is equivalent to LComodΓ (A)(C ). We have an adjoint equivalence

A ⊗ (−) : L AC � LComodΓ (A)(C ) : P,

and we can identify the functor A ⊗ (−) : C → LComodΓ (A)(C ) with the localiza-
tion C → L AC .

Proof We have an adjoint pair of functors A ⊗ (−) : C � LComodΓ (A)(C ) : P .
Clearly, A ⊗ f is an equivalence in LComodΓ (A)(C ) if and only if f is an A-
equivalence for any morphism f inC . Hence it suffices to show that the right adjoint
P is fully faithful. The counit map ε : A ⊗ P(M) → M is an equivalence for any
M ∈ LComodΓ (A)(C ) by Corollary 1. Hence we see that P is fully faithful. �

6 Comodules in the Quasi-Category of Spectra

In this sectionwe study quasi-category of comodules in spectra. Using the Bousfield–
Kan spectral sequence and the results in [18], we show that the quasi-category of
comodules associated to a Landweber exact S-algebra depends only on its height.
We also show that the E(n)-local category is equivalent to the quasi-category of
comodules over the coalgebra E(n) ⊗ E(n). In [33] we considered the model cat-
egory of Fn-modules in the category of discrete symmetric Gn-spectra, where Gn

is the extended Morava stabilizer group and Fn is a discrete model of the Morava
E-theory spectrum En . We show that the category of Fn-modules in the discrete
symmetric Gn-spectra models the K (n)-local category.

6.1 Cotensor Product and Its Derived Functor in Algebraic
Setting

In this subsection we recall some properties of the category of comodules over a
coalgebra in algebraic setting. We study the derived functor of cotensor product of
comodules and show that the derived functor can be described by the cobar complex
in some situations. The content in this section is not new. Our main reference is [31,
Appendix A1.2].
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Let Ab∗ be the category of graded abelian groups. Let A be a monoid object
in Ab∗. We denote by ABModA(Ab∗) the category of A-A-bimodules in Ab∗. The
category ABmodA(Ab∗) is a monoidal category with the tensor product ⊗A and the
unit A. We denote by ABModA(Ab∗)op the opposite monoidal category. A coalgebra
in ABModA(Ab∗) is defined to be a monoid object in ABModA(Ab∗)op. In other
word, a coalgebra Γ is an A-A-bimodule equipped with maps

ψ : Γ −→ Γ ⊗A Γ,

ε : Γ −→ A

in ABModA(Ab∗) satisfying the coassociativity and counit conditions.
We denote by ACoAlgA(Ab∗) the category of coalgebras in ABModA(Ab∗). By

definition, we have an equivalence

ACoAlgA(Ab∗) � Alg(ABModA(Ab∗)op)op.

We denote by LModA(Ab∗) the category of left A-modules and by RModA(Ab∗)
the category of right A-modules, respectively. Let Γ ∈ ACoAlgA(Ab∗). A left Γ -
comodule is defined to be a left A-module M equipped with a map

ψ : M −→ Γ ⊗A M

in LModA(Ab∗) satisfying the coassociativity and counit conditions. A right Γ -
comodule is defined in the similar fashion. We denote by LComod(A,Γ )(Ab∗) the
category of left Γ -comodules and by RComod(A,Γ )(Ab∗) the category of right Γ -
comodules, respectively.

The following lemma is obtained in the same way as in [31, Thm. A1.1.3 and
Lem. A1.2.2].

Lemma 7 If Γ is flat as a right A-module, then LComod(A,Γ )(Ab∗) is an abelian
category with enough injectives.

In the followingof this subsectionweassume that a coalgebraΓ ∈ ACoAlgA(Ab∗)
is flat as a right A-module and a left A-module. Hencewe can do homological algebra
in LComod(A,Γ )(Ab∗). We abbreviate HomLComod(A,Γ )(Ab∗)(−,−) as HomΓ (−,−).
For a left Γ -comodule M , we define

ExtiΓ (M,−)

to be the i th right derived functor of

HomΓ (M,−) : LComod(A,Γ )(Ab∗) −→ Ab∗.

ForM ∈ RComod(A,Γ )(Ab∗) and N ∈ LComod(A,Γ )(Ab∗),wedenote byM�Γ N
the cotensor product of M and N over Γ (see, for example, [31, Definition A1.1.4]).
We consider the functor
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M�Γ (−) : LComod(A,Γ )(Ab∗) −→ Ab∗.

We define
CotoriΓ (M,−)

to be the i th right derived functor of M�Γ (−). Note that if M is flat as a right
A-module, then Cotor0Γ (M, N ) ∼= M�Γ N since M�Γ (−) is left exact in this case.

Let M be a left Γ -comodule that is finitely generated and projective as a left
A-module. There is a right Γ -comodule structure on HomA(M, A) and we have a
natural isomorphism

HomΓ (M, N ) ∼= HomA(M, A)�Γ N

for any N ∈ LComod(A,Γ )(Ab∗) (cf. [31, Lem. A1.1.6]). This implies that there is a
natural isomorphism

ExtiΓ (M, N ) ∼= CotoriΓ (HomA(M, A), N )

for any i ≥ 0. In particular, we have a natural isomorphism

ExtiΓ (A, N ) ∼= CotoriΓ (A, N )

for any N ∈ LComod(A,Γ )(Ab∗) and i ≥ 0.
For a right Γ -comodule M and a left Γ -comodule N , we have a cosimplicial

object
C•(M, Γ, N )

in Ab∗ obtained by the cobar construction. In particular, we have

Cr (M, Γ, N ) = M ⊗A Γ ⊗Ar ⊗A N

for r ≥ 0. The cobar complex C∗(M, Γ, N ) is the associated cochain complex. The
normalized cobar complex C∗(M, Γ, N ) is a subcomplex of C∗(M, Γ, N ) that is
given by

C
r
(M, Γ, N ) = M ⊗A Γ

⊗Ar ⊗A N ,

for r ≥ 0, where Γ = ker ε.
We say that a left Γ -comodule N is relatively injective if N is a direct summand

of Γ ⊗A N ′ as a left Γ -comodule for some left A-module N ′. For a left Γ -comodule
N , the map ψ : N → Γ ⊗A N induces an augmentation N → C∗(Γ, Γ, N ). This
gives a resolution of N in LComod(A,Γ )(Ab∗) by relative injectives. Note that the
resolution is split in LModA(Ab∗). The splitting is given by

ε ⊗ 1⊗r ⊗ 1 : Γ ⊗A Γ ⊗Ar ⊗A N −→ A ⊗A Γ ⊗Ar ⊗A N ∼= Γ ⊗A Γ ⊗A(r−1) ⊗A N .
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Similarly, we have a resolution N → C∗(Γ, Γ, N ) of N in LComod(A,Γ )(Ab∗) by
relative injectives that is split in LModA(Ab∗). By the proof of [31, Lemma A1.2.9],
the cobar complex C∗(Γ, Γ, N ) is cochain homotopy equivalent to the normal-
ized cobar complex C∗(Γ, Γ, N ). Since C∗(M, Γ, N ) ∼= M�Γ C∗(Γ, Γ, N ) and
C∗(M, Γ, N ) ∼= M�Γ C∗(Γ, Γ, N ), this implies that

H∗(C∗(M, Γ, N )) ∼= H∗(C∗(M, Γ, N ))

for any M ∈ RComod(A,Γ )(Ab∗) and N ∈ LComod(A,Γ )(Ab∗).
The following proposition is obtained in the same way as in [31, Cor. A1.2.12].

Proposition 9 If M is flat as a right A-module, then

H∗(C∗(M, Γ, N )) ∼= Cotor∗Γ (M, N ).

In particular, we have

H∗(C∗(A, Γ, N )) ∼= Ext∗Γ (A, N ).

6.2 Bousfield–Kan Spectral Sequences

In this subsection we work in the quasi-category of spectra Sp and study the
Bousfield–Kan spectral sequence abutting to the homotopy groups of cotensor prod-
ucts of comodules.

Note that Sp is a presentable stable symmetric monoidal category in which the
tensor product commutes with all colimits separately in each variable. We use ⊗ for
the tensor product in Sp instead of ∧. We denote by S the sphere spectrum that is the
monoidal unit.

We would like to compute the homotopy groups of cotensor products of comod-
ules. Since a cotensor product of comodules is a limit of a cosimplicial object, we
have the Bousfield–Kan spectral sequence abutting to the homotopy groups of the
cotensor product.

First, we recall the Bousfield–Kan spectral sequence associated to a cosimpli-
cial object in Sp. Let X• : N (Δ) → Sp be a cosimplicial object in Sp. Since the
quasi-category Sp of spectra is the underlying quasi-category of the combinatorial
simplicial model category ΣSp of symmetric spectra, we can take a cosimplicial
object Y • : Δ → ΣSp◦ such that N (Y •) � X• by [22, Prop. 4.2.4.4.], where ΣSp◦
is the simplicial full subcategory of ΣSp consisting of objects that are both fibrant
and cofibrant. Then the limit limN (Δ) X• in Sp is represented by the homotopy limit
holimΔ Y •.

We recall that Totr (X•) is defined to be the limit of X•|N (Δ≤r ) in Sp for r ≥ 0,
where Δ≤r is the full subcategory of Δ spanned by {[0], [1], . . . , [r ]}. The inclusion
Δ≤r ↪→ Δ≤r+1 induces a map Totr+1(X•) → Totr (X•) for r ≥ 0. We have a tower
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{Totr X•}r≥0 and the limit of the tower is equivalent to Tot(X•):

Tot(X•) � lim
r

Totr (X
•).

Let Fr (X•) be the fiber of the map Totr (X•) → Totr−1(X•) for r ≥ 0, where
Tot−1(X•) = 0. Associated to the tower {Totr (X•)}r≥0, by applying the homotopy
groups, we obtain the Bousfield–Kan spectral sequence

Es,t
1

∼= πt−s Fs(X
•) =⇒ πt−sTot(X

•)

(see [6, Chap. IX, Sect. 4]). We can identify the E2-page of the spectral sequence
with the cohomotopy groups of the cosimplicial graded abelian group π∗(X•):

Es,t
2

∼= π sπt (X
•)

(see [6, Chap.X, Sect. 7]).
Next, we construct a spectral sequence that computes the homotopy groups of

cotensor products of comodules. Let A be an algebra object of Sp and Γ a coalgebra
object of ABModA(Sp). Recall that the cotensor product M�Γ N is defined to be the
limit of the cosimplicial object C•(M, Γ, N ) for a right Γ -comodule M and a left
Γ -comodule N . Hence we obtain the Bousfield–Kan spectral sequence abutting to
the homotopy groups of the cotensor product M�Γ N :

Es,t
2 =⇒ πt−s(M�Γ N ),

where the E2-page is given by

Es,t
2

∼= π sπt C
•(M, Γ, N ).

For a spectrum X ∈ Sp, we write X∗ for the homotopy groups π∗X for simplicity.
Now we suppose that Γ∗ is flat as a left A∗-module and a right A∗-module. Since

Cr (M, Γ, N ) � M ⊗A

r
︷ ︸︸ ︷

Γ ⊗A · · · ⊗A Γ ⊗AN for all r ≥ 0, we see that

π∗C•(M, Γ, N ) ∼= C•(M∗, Γ∗, N∗)

if M∗ is a flat right A∗-module or N∗ is a flat left A∗-module.

Proposition 10 If M∗ is a flat right A∗-module or N∗ is a flat left A∗-module, then
we have the Bousfield–Kan spectral sequence abutting to the homotopy groups of
the cotensor product M�Γ N :

Es,t
2 =⇒ πt−s(M�Γ N ).
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The E2-page of the spectral sequence is given by

Es,t
2

∼= CotorsΓ∗(M∗, N∗)t .

Now we regard A as a right A-module and suppose A is a right Γ -comodule via
ηR . In this case A∗ is a right Γ∗-comodule via ηR∗. Then we can regard A∗ as a left
Γ∗-comodule by using the isomorphism A∗ ∼= HomA∗(A∗, A∗) of left A∗-modules,
where HomA∗(A∗, A∗) is the graded abelian group of graded homomorphisms of
right A∗-modules. Hence we can form Ext∗Γ∗(A∗, N∗) for any left Γ -comodule N .

We consider the Bousfield–Kan spectral sequence associated to C•(A, Γ, N ).
Note that the limit of C•(A, Γ, N ) is P(N ) = A�Γ N .

Corollary 2 We assume that the right A-module A is a right Γ -comodule via ηR.
Then we have the Bousfield–Kan spectral sequence abutting to the homotopy groups
of P(N ):

Es,t
2 =⇒ πt−s P(N ),

where the E2-page is given by

Es,t
2

∼= ExtsΓ∗(A∗, N∗)t .

In the following of this subsection we study the relationship between Bousfield–
Kan spectral sequences and Adams spectral sequences.

For an S-algebra A, we have the coalgebra A ⊗ A in ABModA(Sp). We write
Γ (A) = (A, A ⊗ A) for simplicity and we call A ⊗ A-comodules Γ (A)-comodules

interchangeably.We can regard A as a leftΓ (A)-comodule via ηL : A � A ⊗ S
idA⊗u−→

A ⊗ A and as a right Γ (A)-comodule via ηR : A � S ⊗ A
u⊗idA−→ A ⊗ A, where u :

S → A is the unit map.
ByTheorem5,wehave a leftΓ (A)-comodule A ⊗ X for any X ∈ Sp.Weconsider

the cobar construction
C•(A, A ⊗ A, A ⊗ X),

where X ∈ Sp. Note that we have a coaugmentation X → C•(A, A ⊗ A, A ⊗ X),

which is given by X � S ⊗ X
u⊗idX−→ A ⊗ X � C0(A, A ⊗ A, A ⊗ X). This induces

a map
X → P(A ⊗ X) = limN (Δ) C

•(A, A ⊗ A, A ⊗ X).

We have an equivalence C•(A, A ⊗ A, A ⊗ X) � C•(A, A ⊗ A, A) ⊗ X . We
see that the cobar constructionC•(A, A ⊗ A, A) is the Amitsur complex in Sp given
by

Cr (A, A ⊗ A, A) �
r+1

︷ ︸︸ ︷

A ⊗ · · · ⊗ A
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for any r ≥ 0 with the usual structure maps. The Bousfield–Kan spectral sequence
of the cobar construction C•(A, A ⊗ A, A ⊗ X) is related to the A-Adams spectral
sequence of X . Although this may be well-known to experts, we briefly review this
relation for the reader’s convenience (see, for example, [26, Sect. 2.1]).

The coaugmented cosimplicial object X → C•(A, A ⊗ A, A ⊗ X) induces a
tower

{TotrC•(A, A ⊗ A, A ⊗ X)}r≥0,

and a map of towers c(X) → {TotrC•(A, A ⊗ A, A ⊗ X)}r≥0 for any X ∈ Sp. This
tower is related to the A-Adams tower of X .

Let A be the fiber of the unit map u : S → A. We have a canonical map A → S.
For r ≥ 0, we set

Tr (A, X) =
r

︷ ︸︸ ︷

A ⊗ · · · ⊗ A⊗X,

where we understand A
⊗0 = S. Using the canonical map A → S, we define a map

Tr+1(A, X) → Tr (A, X) for r ≥ 0 by

Tr+1(A, X) � A ⊗ A
⊗r ⊗ X → S ⊗ A

⊗r ⊗ X � Tr (A, X).

With thesemaps, we obtain a tower {Tr (A, X)}r≥0 and amap {Tr (A, X)}r≥0 → c(X)

of towers.
LetGr (A, X) be the cofiber of the map Tr+1(A, X) → Tr (A, X) for r ≥ 0. Asso-

ciate to the tower {Tr (A, X)}r≥0, by applying the homotopy groups, we obtain the
A-Adams spectral sequence of X . The E1-page of the spectral sequence is given by

Es,t
1

∼= πt−sGs(A, X)

(see, for example, [31, Chap.2.2]).
We set C• = C•(A, A ⊗ A, A ⊗ X). By [26, Prop. 2.14], the cofiber of the map

Tr+1(A, X) → X is equivalent to Totr (C•) for all r ≥ 0. Hence we obtain a natural
cofiber sequence of towers

{Tr+1(A, X)}r≥0 → c(X) → {Totr (C•)}r≥0.

In particular, we see that Gr (A, X) is equivalent to the fiber Fr (C•) of the map
Totr (C•) → Totr−1(C•). Comparing the spectral sequences, we see that the A-
Adams spectral sequence of X coincides with the Bousfield–Kan spectral sequence
associated to the cobar construction C•(A, A ⊗ A, A ⊗ X).

We recall that themap X → P(A ⊗ X) is an A-nilpotent completion inHo(Sp) in
the sense of Bousfield [5], where Ho(Sp) is the stable homotopy category of spectra.

Let R be a ring spectrum in Ho(Sp). A spectrum W is said to be R-nilpotent if
W lies in the thick ideal of Ho(Sp) generated by R. An R-nilpotent resolution of a
spectrum Z is a tower {Wr }r≥0 equipped with a map of towers c(Z) → {Wr }r≥0 in
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Ho(Sp) such that Wr is R-nilpotent for all r ≥ 0 and the map

colimr HomHo(Sp)(Wr , N ) → HomHo(Sp)(Z , N )

is an isomorphism for any R-nilpotent spectrum N . An R-nilpotent completion of Z
is defined to be the map Z → holimrWr for an R-nilpotent resolution {Wr }r≥0 of Z .

We shall show that the tower {Totr (C•)}r≥0 is an A-nilpotent resolution of X ,
where C• = C•(A, A ⊗ A, A ⊗ X). For any r ≥ 0, the fiber Fr (C•) of the map
Totr (C•) → Totr−1(C•) is equivalent to Gr (A, X). Since Gr (A, X) � A ⊗ A

⊗r ⊗
X is a left A-module, Gr (A, X) is A-nilpotent for all r ≥ 0. By induction on r and
the fact that Tot0(C•) = A ⊗ X , we see that Totr (C•) is A-nilpotent for all r ≥ 0.

Recall that the fiber of the map X → Totr (C•) is equivalent to Tr+1(A, X) for
all r ≥ 0. The map A → S is null in Ho(Sp) after tensoring with A since the unit
map S → A has a left inverse after tensoring with A. Hence we see that the map
Tr+1(A, X) → Tr (A, X) is null in Ho(Sp) after tensoring with A. This implies that
the map colimr HomHo(Sp)(Totr (C•), A ⊗ Y ) → HomHo(Sp)(X, A ⊗ Y ) is an iso-
morphism for any spectrum Y . Since the class of A-nilpotent spectra coincides with
the thick subcategory generated by the class {A ⊗ Z | Z ∈ Sp}, we see that the map
colimr HomHo(Sp)(Totr (C•), N ) → HomHo(Sp)(X, N ) is an isomorphism for any A-
nilpotent spectrum N .

Therefore, the tower {Totr (C•)}r≥0 is an A-nilpotent resolution of X . Since
P(A ⊗ X) � limr Totr (C•), we see that the map X → P(A ⊗ X) is an A-nilpotent
completion in Ho(Sp).

6.3 Complex Oriented Spectra

In this subsectionwe study quasi-categories of comodules over coalgebras associated
to Landweber exact S-algebras. We show that the quasi-category of comodules over
the coalgebra associated to a Landweber exact S-algebra depends only on the height
of the underlying MU∗-algebra.

Let MU be the complex cobordism spectrum. The coefficient ring of MU is a
polynomial ring over the ring Z of integers with infinitely many variables

π∗MU = Z[x1, x2, . . .]

with degree |xi | = 2i for i ≥ 1. We assume that the Chern numbers of xpn−1 are all
divisible by p for all positive integers n and all prime numbers p. In this case the
ideals Ip,n = (p, xp−1, . . . , xpn−1−1) are invariant and independent of the choice of
generators. We set Ip,0 = (0) and Ip,∞ = ∪

n≥0
Ip,n . The ideals Ip,n for 0 ≤ n ≤ ∞

and all primes p are the only invariant prime ideals in MU∗ (see [20]).
For a graded commutative MU∗-algebra R∗, we say that R∗ is Landweber exact

if p, xp−1, . . . , xpn−1, . . . is a regular sequence in R∗ for all prime numbers p.
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If E∗(−) is a complex oriented cohomology theory represented by a spectrum E ,
then there is a ring spectrum map f : MU → E in the stable homotopy category
Ho(Sp) of spectra. We say E is Landweber exact if E∗ is a graded commutative ring
and Landweber exact via the graded ring homomorphism f∗ : MU∗ → E∗.

We consider an S-algebra that is Landweber exact.

Definition 2 We say that A is a Landweber exact S-algebra if A is an S-algebra
spectrumequippedwith amap f : MU → A of ring spectra inHo(Sp) such that A∗ is
a graded commutative ring and Landweber exact via the graded ring homomorphism
f∗ : MU∗ → A∗.

Let p be a prime number and let S(p) be the localization of the sphere spectrum
S at p. We can consider a Landweber exact S(p)-algebra in the same way. If A is
a Landweber exact S-algebra, then the localization A(p) is a Landweber exact S(p)-
algebra at any prime number p.

Example 1 For any prime number p and any positive integer n, the Johnson-Wilson
spectrum E(n) at p is a complex oriented Landweber exact spectrum. By [1, Propo-
sition 4.1], E(n) admits an MU(p)-algebra spectrum structure. Hence, in particular,
E(n) is a Landweber exact S(p)-algebra.

Definition 3 For a Landweber exact graded commutative ring A∗, we denote by
ht p A∗ the height of A∗ at a prime p in the sense of [18, Definition 7.2], that is, the
largest number n such that A∗/Ip,n is nonzero, or ∞ if A∗/Ip,n is nonzero for all n.
For a Landweber exact S-algebra A, we denote by ht p A the height of A∗ at p.

For Landweber exact S-algebras E and F , we have an isomorphism

F∗(E) ∼= F∗ ⊗MU∗ MU∗(MU ) ⊗MU∗ E∗.

By abuse of notation, for graded commutative Landweber exact MU∗-algebras A∗
and B∗, we set B∗(A) = B∗ ⊗MU∗ MU∗(MU ) ⊗MU∗ A∗. We denote by Γ (A∗) the
pair (A∗, A∗(A)), which forms a graded Hopf algebroid (see [31, Appendix A.1]).
We can consider the categories of graded Γ (A∗)-comodules LComodΓ (A∗)(Ab∗)
which is an abelian category since Γ (A∗) is a flat Hopf algebroid.

The canonical map MU∗(MU ) → A∗(A) induces a map of graded Hopf alge-
broids Φ(A) : Γ (MU∗) → Γ (A∗). We consider the functor

Φ(A)∗ : LComodΓ (MU∗)(Ab∗) −→ LComodΓ (A∗)(Ab∗)

given by Φ(A)∗(M∗) = A∗ ⊗MU∗ M∗ for M∗ ∈ LComodΓ (MU∗)(Ab∗). The functor
Φ(A)∗ has the right adjoint Φ(A)∗ : LComodΓ (A∗)(Ab∗) → LComodΓ (MU∗)(Ab∗)
given by

Φ(A)∗(N∗) = MU∗(A)�A∗(A)N∗

for N∗ ∈ LComodΓ (A∗)(Ab∗) (see [18, Lem. 2.4 andRemark after its proof]). LetTA∗
be the class of all graded Γ (MU∗)-comodules M∗ such that A∗ ⊗MU∗ M∗ is trivial.
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By [18, Thm. 2.5], the adjoint pair (Φ(A)∗, Φ(A)∗) induces an adjoint equivalence
of categories between LComodΓ (A∗)(Ab∗) and the localization of LComodΓ (MU∗)
with respect to TA∗ .

Let A∗ and B∗ be graded commutative Landweber exact MU∗-algebras. We
recall that B∗(A) = B∗ ⊗MU∗ MU∗(MU ) ⊗MU∗ A∗. Note that B∗(A) is a graded
left Γ (B∗)-comodule and a graded right Γ (A∗)-comodule. We can define a functor

GB∗,A∗ : LComodΓ (A∗)(Ab∗) −→ LComodΓ (B∗)(Ab∗)

which assigns to a graded left Γ (A∗)-comodule M∗ the graded left Γ (B∗)-comodule
GB∗,A∗(M∗) given by

GB∗,A∗(M∗) = B∗(A)�A∗(A)M∗.

Lemma 8 If ht p A∗ = ht p B∗ for all primes p, then the functor GB∗,A∗ gives an
equivalence of categories between LComodΓ (A∗)(Ab∗) and LComodΓ (B∗)(Ab∗).

Proof Note that the functor GB∗,A∗ is the composition Φ(B)∗Φ(A)∗. The functor
Φ(A)∗ induces an equivalence of categories fromLComodΓ (A∗)(Ab∗) to the localiza-
tion of LComodΓ (MU∗)(Ab∗) with respect toTA∗ and Φ(B)∗ induces an equivalence
of categories from the localization of LComodΓ (MU∗)(Ab∗) with respect to TB∗ to
LComodΓ (B∗)(Ab∗). By [18, Thm. 7.3], the assumption that A∗ and B∗ have the
same heights for all p implies that TA∗ = TB∗ . Hence we see that GB∗,A∗ gives an
equivalence of categories. �

Lemma 9 Let A, B,C be Landweber exact S-algebras. We assume that ht p A =
ht p B = ht pC for all primes p. Then, for any Γ (A)-comodule M, the canonical map

C ⊗ ((B ⊗ A)�A⊗AM) −→ (C ⊗ B ⊗ A) �
A⊗A

M

is an equivalence.

Proof Let R be a Landweber exact S-algebra which has the same height at all p as A.
First, we consider the homotopy groups of the cotensor product (R ⊗ A)�A⊗AM .
The Bousfield–Kan spectral sequence abutting to the homotopy groups of (R ⊗
A)�A⊗AM has the E2-page given by

Es,t
2

∼= CotorsA∗(A)(R∗(A), M∗)t .

We have
Hs(C(A∗(A), A∗(A), M∗)) = 0

for s > 0. Note that the cobar complex C∗(A∗(A), A∗(A), M∗) is a cochain com-
plex in the abelian category LComodΓ (A∗)(Ab∗). Applying the functor GR∗,A∗ to
C∗(C(A∗(A), A∗(A), M∗)), we obtain

Hs(C(R∗(A), A∗(A), M∗)) = 0
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for s > 0 by Lemma 8. Hence the Bousfield–Kan spectral sequence abutting to the
homotopy groups of (R ⊗ A)�A⊗AM collapses from the E2-page and we obtain an
isomorphism

π∗((R ⊗ A)�A⊗AM) ∼= R∗(A)�A∗(A)M∗.

In particular, since C ⊗ B is Landweber exact through the map MU → B →
C ⊗ B in Ho(Sp), we obtain an isomorphism

π∗((C ⊗ B ⊗ A)�A⊗AM) ∼= (C ⊗ B)∗(A)�A∗(A)M∗.

Since we have an isomorphism

(C ⊗ B)∗(A) ∼= C∗(B) ⊗B∗ B∗(A),

we obtain an isomorphism

π∗((C ⊗ B ⊗ A)�A⊗AM)) ∼= C∗(B) ⊗B∗ (B∗(A)�A∗(A)M∗).

On the other hand, we have isomorphisms

π∗(C ⊗ ((B ⊗ A)�A⊗AM)) ∼= C∗(B) ⊗B∗ π∗((B ⊗ A)�A⊗AM)

and
π∗((B ⊗ A)�A⊗AM) ∼= B∗(A)�A∗(A)M∗.

Hencewe see that the canonicalmapC ⊗ (B ⊗ A)�A⊗AM → (C ⊗ B ⊗ A)�A⊗AM
induces an isomorphism of homotopy groups. This completes the proof. �
Corollary 3 Let A and B be Landweber exact S-algebras. We assume that ht p A =
ht p B for all primes p. For any left Γ (A)-comodule M, the left Γ (B)-comodule
structure on B induces a left Γ (B)-comodule structure on (B ⊗ A)�A⊗AM.

Proof For r > 0, B⊗r is a Landweber exact S-algebra and has the same height
at all p as B. By Lemma 9, the canonical map B⊗r ⊗ ((B ⊗ A)�A⊗AM) →
(B⊗r ⊗ B ⊗ A)�A⊗AM is an equivalence for all r > 0. Applying Lemma 4 for
the simplicial object B•(B ⊗ A, A ⊗ A, M) in LModB⊗B(LModB(Sp)op), we see
that the cosimplicial object C•(B ⊗ A, A ⊗ A, M) has a limit in LComodΓ (B)(Sp)
and the forgetful functor LComodΓ (B)(Sp) → LModB(Sp) preserves the limit. �

Using Corollary 3, we can define a functor

FB,A : ComodΓ (A)(Sp) −→ ComodΓ (B)(Sp)

by assigning to M ∈ LComodΓ (A)(Sp) the Γ (B)-comodule FB,A(M) given by

FB,A(M) = (B ⊗ A) �
A⊗A

M.
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Theorem 8 Let A and B be Landweber exact S-algebras. We assume that A and
B have the same height at all p. Then the functor FB,A gives an equivalence of
quasi-categories

LComodΓ (A)(Sp) � LComodΓ (B)(Sp).

Proof For any left Γ (A)-comodule M , we have

π∗FB,A(M) ∼= B∗(A)�A∗(A)M∗.

Since the functor GB∗,A∗ = B∗(A)�A∗(A)(−) gives an equivalence of categories by
Lemma 8, we see that the functor FB,A gives an equivalence of quasi-categories
between LComodΓ (A)(Sp) and LComodΓ (B)(Sp). �

Proposition 11 Let A and B be Landweber exact S-algebras. We assume that
ht p A = ht p B for all primes p. Then the following diagram is commutative

Sp
A⊗(−) B⊗(−)

LComodΓ (A)

FB,A
LComodΓ (B).

Proof Since B ⊗ S � B ⊗S S ⊗ S is an extended right Γ (S)-comodule, we have a
natural equivalence

B ⊗ X � (B ⊗ S)�S⊗S(S ⊗ X)

for any X ∈ Sp. The unit map S → A induces a natural map

(B ⊗ S)�S⊗S(S ⊗ X) −→ (B ⊗ A)�A⊗A(A ⊗ X)

and hence we obtain a natural map

f : B ⊗ X −→ (B ⊗ A)�A⊗A(A ⊗ X).

Note that f is a map of left Γ (B)-comodule. Since

π∗((B ⊗ A)�A⊗A(A ⊗ X)) ∼= B∗(A)�A∗(A)A∗(X),

we see that f induces an isomorphism of homotopy groups. This completes the
proof. �

6.4 The E(n)-Local Category

In this subsection we study the quasi-category of E(n)-local spectra, where E(n)

is the nth Johnson-Wilson spectrum at a prime p. We show that the quasi-category
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of E(n)-local spectra is equivalent to the quasi-category of comodules over the
coalgebra A ⊗ A for any Landweber exact S(p)-algebra of height n at p.

In this subsection we fix a non-negative integer n and a prime number p. Let LnSp
be the Bousfield localization of the quasi-category of spectra with respect to the nth
Johnson-Wilson spectrum E(n) at p. We denote by Ln : Sp → Sp the associated
localization functor. The quasi-category LnSp is a stable homotopy theory with the
tensor product in Sp and the unit LnS, where LnS is the E(n)-localization of the
sphere spectrum S.

We recall that E(n) is a Landweber exact S(p)-algebra with height ht p E(n) = n.
For simplicity, we set Γ (n) = (E(n), E(n) ⊗ E(n)). The functor

E(n) ⊗ (−) : Sp → LComodΓ (n)(Sp)

factors through LnSp and we obtain a functor

E(n) ⊗ (−) : LnSp −→ LComodΓ (n)(Sp).

Since any N ∈ LModE(n)(Sp) is E(n)-local, we see that P(M) lies in LnSp for
any M ∈ LComodΓ (n)(Sp), and we obtain an adjunction of functors

E(n) ⊗ (−) : LnSp � LComodΓ (n)(Sp) : P.

Proposition 12 The pair of functors

E(n) ⊗ (−) : LnSp � LComodΓ (n)(Sp) : P

is an adjoint equivalence.

Proof By [15, Theorem5.3], the unit LnS is E(n)-nilpotent (see, also, [32, Chap.8]).
By Theorem 7, we obtain the proposition. �

Let A be a Landweber exact S(p)-algebra with ht p A = n. Since A is Bousfield
equivalent to E(n) by [13, Corollary 1.12], we have a canonical equivalence of stable
homotopy theories

L ASp � LnSp,

where L ASp is the Bousfield localization of Sp with respect to A. In the same way
as E(n), we have an adjunction of functors

A ⊗ (−) : L ASp � LComodΓ (A)(Sp) : P.

Recall that we have the functor

FA,E(n) : LComodΓ (n)(Sp) → LComodΓ (A)(Sp)
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given by
FA,E(n)(M) = (A ⊗ E(n))�E(n)⊗E(n)M

for M ∈ LComodΓ (n)(Sp). By Proposition 11, we see that there is a commutative
diagram of quasi-categories

LnSp
E(n)⊗(−)−−−−−−→ LComodΓ (n)(Sp)

⏐

⏐

⏐

�

⏐

⏐

⏐

�

FA,E(n)

L ASp
A⊗(−)−−−−−−→ LComodΓ (A)(Sp),

where the left vertical arrow is the canonical equivalence.

Theorem 9 If A is a Landweber exact S(p)-algebra of height n at p, then the pair
of functors

A ⊗ (−) : L ASp � ComodA⊗A(Sp) : P

is an adjoint equivalence.

Proof The theorem follows from Theorem 8 and Proposition 12. �

6.5 Connective Cases

In this subsection we consider the quasi-category of comodules over A ⊗ A for
a connective S-algebra A. We show that the quasi-category of connective A-local
spectra is equivalent to the quasi-category of connective comodules over A ⊗ A
under some conditions.

We say that a spectrum X is connective if πi X = 0 for all i < 0. We denote by
Sp≥0 the full subcategory of Sp consisting of connective objects. In this subsection
we let A be a connective S-algebra and assume that A∗(A) is flat as a left and right
A∗-module.

We consider the condition that the multiplication map induces an isomorphism

π0(A ⊗ A)
∼=→ π0A. Note that there is an isomorphism π0(A ⊗ A) ∼= π0A ⊗ π0A.

Let R be a (possibly non-commutative) ring with identity 1. The core cR of R is
defined to be the subring

cR = {r ∈ R| r ⊗ 1 = 1 ⊗ r in R ⊗ R}

(see [5, 6.4]). The core cR is a commutative ring and the multiplication map cR ⊗
cR → cR is an isomorphism. We see that, if the multiplication map induces an

isomorphism π0(A ⊗ A)
∼=→ π0A, then cπ0A = π0A and, in particular, π0A is a

commutative ring.
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Lemma 10 Let M be a connective left Γ (A)-comodule in Sp. If the multiplica-

tion map A ⊗ A → A induces an isomorphism π0(A ⊗ A)
∼=→ π0A, then P(M) is

connective.

Proof We have the Bousfield–Kan spectral sequence

Es,t
2

∼= π sπtC
•(A, A ⊗ A, M) =⇒ πt−s P(M).

This is an upper half plane spectral sequence. Since A∗(A) is flat as a left and right
A∗-module, there is an isomorphism

π∗Cr (A, A ⊗ A, M) ∼= Cr (A∗, A∗(A), M∗)

for any r ≥ 0. Hence we obtain an isomorphism

Es,∗
2

∼= Hs(C∗(A∗, A∗(A), M∗)).

Let Γ be the kernel of the map A∗(A) → A∗ induced by the multiplication. By the

assumption that π0(A ⊗ A)
∼=→ π0(A), Γ t = 0 for t ≤ 0. This implies that

Cs(A∗, A∗(A), M∗)t = 0

for t < s. Hence Es,t
2 = 0 for t < s. The lemma follows from [6, Lemma X.7.3]. �

We recall that L ASp is the Bousfield localization of Sp with respect to A and
L A : Sp → Sp is the associated localization functor and that we have the adjoint pair
of functors

A ⊗ (−) : L ASp � LComodΓ (A)(Sp) : P.

We denote by LASp≥0 the full subcategory of L ASp consisting of connective objects.
We also denote by LComodΓ (A)(Sp)≥0 the full subcategories of LComodΓ (A)(Sp)
consisting of connective objects.

By Lemma 10, we see that the functor P : LComodΓ (A)(Sp) → L ASp restricted
to the full subcategory LComodΓ (A)(Sp)≥0 factors through L ASp≥0 when the mul-

tiplication map induces an isomorphism π0(A ⊗ A)
∼=→ π0A. Hence we obtain the

following corollary.

Corollary 4 If the multiplication map induces an isomorphism π0(A ⊗ A)
∼=→ π0A,

then there is an adjunction of functors

A ⊗ (−) : L ASp
≥0 � LComodΓ (A)(Sp)

≥0 : P.

Wewould like to show that the pair of functors (A ⊗ (−), P) is an adjoint equiva-
lence under some conditions. In order to show that A ⊗ (−) is fully faithful, we have
to show that the unit map X → P(A ⊗ X) is an equivalence for any X ∈ LASp≥0.
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We recall that the map X → P(A ⊗ X) is an A-nilpotent completion in Ho(Sp) (see
Sect. 6.2). The relation between the A-localization and the A-nilpotent completion
was studied by Bousfield [5].

Lemma 11 Weassume thatπ0A is isomorphic toZ/nZ for somen ≥ 2orZ[J−1] for
some set J of primes. Then the functor A ⊗ (−) : LASp≥0 → LComodΓ (A)(Sp)≥0

is fully faithful.

Proof Note that the multiplication map induces an isomorphism π0(A ⊗ A)
∼=→

π0(A) under the assumption and hence we have the adjunction of functors A ⊗ (−) :
L ASp≥0 � LComodΓ (A)(Sp)≥0 : P by Corollary 4.

We have to show that the unit map X → P(A ⊗ X) of the adjunction (A ⊗
(−), P) is an equivalence for any X ∈ L ASp≥0. By [5, Thm. 6.5 and 6.6], the A-
localization Y → LAY is equivalent to the A-nilpotent completion Y → P(A ⊗ Y )

for any connective spectrum Y under the assumption. This implies that the map
X → P(A ⊗ X) is an equivalence for any X ∈ L ASp≥0. �

In order to show that the left adjoint A ⊗ (−) is essentially surjective, we need
the following lemma.

Lemma 12 We assume that the multiplicationmap induces an isomorphismπ0(A ⊗
A)

∼=→ π0A. Let M be a connective left Γ (A)-comodule. If P(M) � 0, then M � 0.

Proof We shall show that P(M) �� 0 ifM �� 0. Suppose thatπi M = 0 for i < n and
πnM �= 0. Let Es,t

r be the Bousfield–Kan spectral sequence abutting to π∗P(M). We
have Es,∗

2
∼= Hs(C

∗
(A∗, A∗(A), M∗)). By the assumption, Es,t

2 = 0 for t − s < n
and E0,n

2
∼= πnM . In particular, we have E0,n∞ �= 0 and lim

r

1 Es,s+n
r = 0 for all

s ≥ 0. By [6, Lemma IX.5.4], E0,n∞ ∼= Im(πn P(M) → πnM). Hence we obtain
πn P(M) �= 0. �

Theorem 10 Let A be a connective S-algebra such that A∗(A) is flat as a left and
right A∗-module.We assume thatπ0A is isomorphic toZ/n for some n ≥ 2 orZ[J−1]
for some set J of primes. Then there is an adjoint equivalence of quasi-categories

A ⊗ (−) : L ASp
≥0 � LComodΓ (A)(Sp)

≥0 : P.

Proof By Corollary 4, we have the adjunction of functors A ⊗ (−) : L ASp≥0 �
LComodΓ (A)(Sp)≥0 : P . By Lemma 11, the left adjoint A ⊗ (−) is fully faithful.
Hence it suffices to show that A ⊗ (−) is essentially surjective.

Let M ∈ ComodΓ (A)(Sp)≥0. By the counit of the adjunction, we have a map
ε : A ⊗ P(M) → M . Let N be the cofiber of ε. Since the unit map P(M) → P(A ⊗
P(M)) is an equivalence, we see that P(N ) � 0. By Lemma 12, we obtain N � 0
and hence A ⊗ P(M) � M . This shows that the left adjoint A ⊗ (−) is essentially
surjective. �

In the following of this subsection we shall consider some examples.
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First, we consider the complex cobordism spectrum MU . The spectrum MU
admits a commutativeS-algebra structure by [27]. Sinceπ∗MU = Z[x1, x2, . . .]with
|xi | = 2i for i > 0, MU is a connective commutative S-algebra, the multiplication

map induces an isomorphism π0(MU ⊗ MU )
∼=→ π0MU , and cπ0MU ∼= Z. Note

that the localization LMU X coincides with X for a connective spectrum X by [5,
Thm. 3.1] and hence LMUSp≥0 is equivalent to Sp≥0. By Theorem 10, we obtain the
following corollary.

Corollary 5 (cf. [11, 6.1.2]) There is an adjoint equivalence

MU ⊗ (−) : Sp≥0 � LComodΓ (MU )(Sp)
≥0 : P.

Next, we consider the Brown-Peterson spectrum BP at a prime p. The spectrum
BP admits an S-algebra structure by [21, Sect. 2]. The coefficient ring of BP is a
polynomial ring over the ring Z(p) of integers localized at p with infinitely many
variables

π∗BP = Z(p)[v1, v2, . . .],

with degree |vi | = 2(pi − 1) for i ≥ 1. Hence BP is a connectiveS-algebra, themul-

tiplication map induces an isomorphism π0(BP ⊗ BP)
∼=→ π0BP , and cπ0BP ∼=

Z(p). Note that the localization LBP X coincides with the p-localization X(p) for a
connective spectrum X by [5, Thm. 3.1] and hence LBPSp≥0 is equivalent to the
full subcategory Sp≥0

(p) of p-local spectra in Sp≥0. By Theorem 10, we obtain the
following corollary.

Corollary 6 There is an adjoint equivalence

BP ⊗ (−) : Sp≥0
(p) � LComodΓ (BP)(Sp)

≥0 : P.

Finally, we consider the mod p Eilenberg–Mac Lane spectrum HFp for a prime
p. We know that HFp is a connective commutative S-algebra. Since π0HFp

∼= Fp,

we see that the multiplication induces an isomorphism π0(HFp ⊗ HFp)
∼=→ π0HFp

and cπ0HFp
∼= Fp. If X is a connective spectrum, then LHFp X is equivalent to the

p-completion of X by [5, Thm. 3.1], and hence LHFpSp
≥0 is equivalent to the full

subcategory (Sp∧
p)

≥0 of p-complete spectra in Sp≥0. By Theorem 10, we obtain the
following corollary.

Corollary 7 ([cf. [11, 6.1.1]) There is an adjoint equivalence

HFp ⊗ (−) : (Sp∧
p)

≥0 � LComodΓ (HFp)(Sp)
≥0 : P.
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6.6 A Model of the K (n)-Local Category

Let K (n) be the nth Morava K -theory spectrum at a prime p andGn the nth Morava
stabilizer group. In this subsection we show that the category of module objects over
Fn in the K (n)-local discrete symmetricGn-spectra models the K (n)-local category,
where Fn is a discrete model of the nth Morava E-theory spectrum.

The K (n)-local category is the Bousfield localization of the stable homotopy
category of spectra with respect to K (n). It is known that the K (n)-local categories
for various n and p are fundamental building blocks of the stable homotopy category
of spectra. Thus it is important to understand the K (n)-local category.

Let En be the nthMorava E-theory spectrum at p. TheMorava E-theory spectrum
En is a commutative ring spectrum in the stable homotopy category of spectra and
Gn is identified with the group of multiplicative automorphisms of En . By Goerss–
Hopkins [10], it was shown that the commutative ring spectrum structure on En

can be lifted to a unique E∞-ring spectrum structure up to homotopy. Furthermore,
it was shown that Gn acts on En in the category of E∞-ring spectra. There is a
K (n)-local En-based Adams spectral sequence abutting to the homotopy groups of
the K (n)-local sphere whose E2-page is the continuous cohomology groups of Gn

with coefficients in the homotopy groups of En . This suggests that the K (n)-local
sphere may be the Gn-homotopy fixed points of En . Motivated by this observation,
Devinatz–Hopkins [8] constructed a K (n)-local E∞-ring spectrum EdhU

n for any
open subgroupU ofGn , which has expected properties of the homotopy fixed points
spectrum.

Davis [7] constructed a discrete Gn-spectrum Fn which is defined by

Fn = colimU EdhU
n ,

whereU ranges over the open subgroups ofGn . The spectrum Fn is a discrete model
of En and actually we can recover En from Fn by the K (n)-localization as

LK (n)Fn � En.

Furthermore, Behrens–Davis [3] upgraded the discrete Gn-spectrum Fn to a com-
mutative monoid object in the category ΣSp(Gn) of discrete symmetricGn-spectra,
and showed that the unit map LK (n)S → Fn is a consistent K (n)-local Gn-Galois
extension.

We can give a model structure on the category ΣSp(Gn) of discrete symmetric
Gn-spectra and consider the left Bousfield localization ΣSp(Gn)K (n) with respect
to K (n) (see [3]). The category ΣSp(Gn)K (n) is a left proper, combinatorial, ΣSp-
model category.

The unit map S → Fn induces a symmetric monoidal ΣSp-Quillen adjunction

Ex : ΣSpK (n) � LModFn (ΣSp(Gn)K (n)) : Re,
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where ΣSpK (n) is the left Bousfield localization of the category ΣSp of symmetric
spectra with respect to K (n). In [33] we showed that the total left derived functor
LEx of Ex is fully faithful as an Ho(Sp)-enriched functor. In this subsection we shall
show that the adjunction is actually a Quillen equivalence and hence we can regard
LModFn (ΣSp(Gn)K (n)) as a model of the K (n)-local category.

We denote by SpK (n) the underlying quasi-category of the simplicial model cat-
egory ΣSpK (n). The quasi-category SpK (n) is a stable homotopy theory with the
tensor product LK (n)(− ⊗ −) and the unit LK (n)S. Since we can regard En as
an algebra object of SpK (n), we can consider the coalgebra LK (n)(En ⊗ En) in
EnBModEn (SpK (n)) and the quasi-category of left Γ (En)-comodules

LComodΓ (En)(SpK (n)),

where Γ (En) = (En, LK (n)(En ⊗ En)).

Proposition 13 We have an equivalence of quasi-categories

LK (n)(En ⊗ (−)) : SpK (n)

�−→ LComodΓ (En)(SpK (n)).

Proof We shall apply Theorem 7 for the stable homotopy theory SpK (n) and
the algebra object En . The unit object LK (n)S is En-nilpotent in SpK (n) by [8,
Prop. A.3]. Note that a map f : X → Y in SpK (n) is an equivalence if and only
if LK (n)(En ⊗ f ) is an equivalence since K (n) ⊗ En is a wedge of copies of K (n).
Hence LEn (SpK (n)) � SpK (n) and the proposition follows from Theorem 7. �

We have an adjunction of quasi-categories

SpK (n) � LModEn (SpK (n)), (5)

where the left adjoint is given by smashing with En in SpK (n) and the right adjoint is
the forgetful functor. By Theorem 6, we have an equivalence of quasi-categories

LComodΓ (En)(SpK (n)) � LComodΘ(LModEn (SpK (n))
op)op,

whereΘ is the comonad associated to adjunction (5). Hence we see that the forgetful
functor LModEn (SpK (n)) → SpK (n) exhibits the quasi-category SpK (n) as comonadic
over LModEn (SpK (n)) (see also [25, Prop. 10.10]).

Let Sp(Gn)K (n) be the underlying quasi-category ofΣSp(Gn)K (n). We can regard
Fn as an algebra object of Sp(Gn)K (n), and form a quasi-category

LModFn (Sp(Gn)K (n))

of left module objects over Fn in Sp(Gn)K (n). Note that LModFn (Sp(Gn)K (n)) is
equivalent to the underlying quasi-category of the symmetric monoidal ΣSp-model
category LModFn (ΣSp(Gn)K (n)). The adjunction (Ex,Re) of the ΣSp-model cate-
gories induces an adjunction of the underlying quasi-categories
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E x : SpK (n) � LModFn (Sp(Gn)K (n)) : Re.

Let U : ΣSp(Gn)K (n) → ΣSpK (n) be the forgetful functor. We can regard UFn

as a commutative monoid object in ΣSpK (n), and the unit map S → UFn induces a
symmetric monoidal ΣSp-Quillen adjunction

ΣSpK (n) � LModUFn (ΣSpK (n)),

where the left adjoint is given by smashing withUFn and the right adjoint is given by
the forgetful functor. This induces an adjunction of the underlying quasi-categories

SpK (n) � LModUFn (SpK (n)). (6)

Hence we can consider the quasi-category of comodules

Comod(UFn ,Θ)(SpK (n))

associated to the adjunction and a map of quasi-categories

Coex : SpK (n) −→ Comod(UFn ,Θ)(SpK (n)).

In [33] we showed that there is an equivalence of quasi-categories

LModFn (Sp(Gn)K (n)) � Comod(UFn ,Θ)(SpK (n)),

and there is an equivalence of functors

E x � Coex

under this equivalence.
Since the canonical map UFn → En of commutative algebras is a weak equiva-

lence in ΣSpK (n), we have a Quillen equivalence

LModUFn (ΣSpK (n))
�−→ LModEn (ΣSpK (n)),

and hence we obtain an equivalence of the underlying quasi-categories

LModUFn (SpK (n))
�−→ LModEn (SpK (n)).

Under this equivalence, we can identify two adjunctions (5) and (6), and hence the
forgetful functor LModUFn (SpK (n)) → SpK (n) exhibits SpK (n) as comonadic over
LModUFn (SpK (n)), that is, the functor Coex is an equivalence of quasi-categories.

The adjunction (E x,Re) of quasi-categories induces an adjunction of the homo-
topy categories
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Ho(SpK (n)) � Ho(LModFn (Sp(Gn)K (n))),

which is identified with the derived adjunction of the Quillen adjunction (Ex,Re).
Since the functor Coex is equivalent to E x and is an equivalence of quasi-categories,
the total left derived functor LEx is an equivalence of categories. Hence we obtain
the following theorem.

Theorem 11 The adjunction

Ex : ΣSpK (n) � ModFn (ΣSp(Gn)K (n)) : Re

is a Quillen equivalence and hence the category ModFn (ΣSp(Gn)K (n)) models the
K (n)-local category.

7 Proof of Proposition 1

In this section we prove Proposition 1 stated in Sect. 4.1, which is technical but
important for constructing a canonical map between opposite coCartesian fibrations.
First, we give some basic examples of inner anodynemaps and study oppositemarked
anodyne maps. In Sect. 7.3 we introduce a marked simplicial set ˜O(Δn)+ in which
the underlying simplicial set is ˜O(Δn) and study inclusions of subcomplexes of the
marked simplicial sets ˜O(Δn)+ and ( ˜O(Δn)+ × (Δ{0})�) ∪ ( ˜O(Δn)� × (Δ1)�). In
Sect. 7.4 we give a proof of Proposition 1.

7.1 Examples of Inner Anodyne Maps

In this subsection we give some basic examples of inner anodyne maps.
Amap of simplicial sets is said to be inner anodyne if it has the left lifting property

with respect to all inner fibrations. The class of inner anodyne maps is the smallest
weakly saturated class of morphisms generated by all horn inclusions Λn

i ↪→ Δn for
0 < i < n.

For a sequence i1, . . . , ik of integers such that 0 ≤ i1 < . . . < ik ≤ n, we denote
by Λn(i1, . . . , ik) the subcomplex

⋃

i �=i1,...,ik
diΔn−1 of Δn .

Lemma 13 The inclusionΛn(i1, . . . , ik) ↪→ Δn is an inner anodyne map for k > 0
and 0 < i1 < . . . < ik < n.

Proof We shall prove the lemma by induction on k. When k = 1, the inclu-
sion is the map Λn

i ↪→ Δn for 0 < i = i1 < n and hence it is an inner anodyne
map. Suppose the lemma holds for k − 1 and we shall prove the lemma for k.
The subcomplex Λn(i1, . . . , ik) ∩ dikΔ

n−1 of dikΔ
n−1 is isomorphic to the sub-

complex Λn−1(i1, . . . , ik−1) of Δn−1. By the hypothesis of induction, the inclu-
sion Λn−1(i1, . . . , ik−1) ↪→ Δn−1 is an inner anodyne map. By the cobase change
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of the inclusion Λn−1(i1, . . . , ik−1) ↪→ Δn−1 along the map Λn−1(i1, . . . , ik−1) ∼=
Λn(i1, . . . , ik) ∩ dikΔ

n−1 ↪→ Λn(i1, . . . , ik), we see that the inclusionΛn(i1, . . . , ik)
↪→ Λn(i1, . . . , ik−1) is an inner anodyne map. By the hypothesis of induction, the
inclusion Λn(i1, . . . , ik−1) ↪→ Δn is an inner anodyne map. Hence the composition
Λn(i1, . . . , ik) ↪→ Λn(i1, . . . , ik−1) ↪→ Δn is also an inner anodyne map. �

Lemma 14 The inclusion Λn(0, i1, . . . , ik) ↪→ Δn is an inner anodyne map for
k > 0 and 1 < i1 < . . . < ik < n.

Proof The subcomplex Λn(0, i1, . . . , ik) ∩ d0Δn−1 of d0Δn−1 is isomorphic to the
subcomplex Λn−1(i1 − 1, . . . , ik − 1) of Δn−1. Since 0 < i1 − 1 < · · · < ik − 1 <

n − 1, the inclusion Λn−1(i1 − 1, . . . , ik − 1) ↪→ Δn−1 is an inner anodyne map by
Lemma 13. By the cobase change of Λn−1(i1 − 1, . . . , ik − 1) ↪→ Δn−1 along the
map Λn−1(i1 − 1, . . . , ik − 1) ∼= Λn(0, i1, . . . , ik) ∩ d0Δn−1 ↪→ Λn(0, i1, . . . , ik),
we see that the inclusion Λn(0, i1, . . . , ik) ↪→ Λn(i1, . . . , ik) is an inner anodyne
map.Since the inclusionΛn(i1, . . . , ik) ↪→ Δn is an inner anodynemapbyLemma13,
the compositionΛn(0, i1, . . . , ik) ↪→ Λn(i1, . . . , ik) ↪→ Δn is also an inner anodyne
map. �

7.2 Opposite Marked Anodyne Maps

In this subsection we study opposite marked anodyne maps.
A marked simplicial set is a pair (K ,E ), where K is a simplicial set and E is a set

of edges of K that contains all degenerate edges. A map of marked simplicial sets
(K ,E ) → (L ,E ′) is a map of simplicial set f : K → L such that f (E ) ⊂ E ′. We
denote by sSet+ the category of marked simplicial sets.

For a simplicial set K , we denote by K � the marked simplicial set (K , s0(K0)),
where s0(K0) is the set of all degenerate edges of K , and by K � the marked simplicial
set (K , K1), where K1 is the set of all edges of K .

For a marked simplicial set (K ,E ), we have the opposite marked simplicial set
(K ,E )op = (K op,E op), where K op is the opposite simplicial set of K and E op is the
corresponding set of edges of K op.

We say that a map of marked simplicial sets K → L is an opposite marked
anodyne map if the opposite K op → Lop is a marked anodyne map defined in [22,
Def. 3.1.1.1]. The class of opposite marked anodyne maps in sSet+ is the smallest
weakly saturated class of morphisms with the following properties:

1. For each 0 < i < n, the inclusion (Λn
i )

� ↪→ (Δn)� is opposite marked anodyne.
2. For every n > 0, the inclusion

(Λn
0, (Λ

n
0)1 ∩ E ) ↪→ (Δn,E )

is opposite marked anodyne, where E denotes the set of all degenerate edges of
Δn together with the initial edge Δ{0,1}.
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3. The inclusion
(Λ2

1)
�

∐

(Λ2
1)

�

(Δ2)� ↪→ (Δ2)�

is opposite marked anodyne.
4. For every Kan complex K , the map K � → K � is opposite marked anodyne.

Lemma 15 The inclusion (Λn
0)

� ↪→ (Δn)� is opposite marked anodyne for n > 0.

Proof When n = 1, the lemma holds by property 2 of the class of opposite
marked anodyne maps. We consider the case n = 2. By [22, Cor. 3.1.1.7], the
inclusion (Λ2

0)
�
∐

(Λ2
0)

� (Δ2)� ↪→ (Δ2)� is opposite marked anodyne. The inclu-

sion (Λ2
0, (Λ

2
0)1 ∩ E ) ↪→ (Δ2,E ) is opposite marked anodyne by property 2 of

the class of opposite marked anodyne maps, where E is the set of edges of Δ2

consisting of all degenerate edges together with Δ{0,1}. Taking the pushout of
(Λ2

0, (Λ
2
0)1 ∩ E ) ↪→ (Δ2,E ) along the map (Λ2

0, (Λ
2
0)1 ∩ E ) → (Λ2

0)
�, we see that

the inclusion (Λ2
0)

� ↪→ (Λ2
0)

�
∐

(Λ2
0)

� (Δ2)� is opposite marked anodyne. Hence the

composition (Λ2
0)

� ↪→ (Λ2
0)

�
∐

(Λ2
0)

� (Δ2)� ↪→ (Δ2)� is also opposite marked ano-
dyne.

Now we consider the case n ≥ 3. The inclusion (Λn
0, (Λ

n
0)1 ∩ E ) ↪→ (Δn,E )

is opposite marked anodyne by property 2 of the class of opposite marked ano-
dyne maps, where E is the set of edges of Δn consisting of all degenerate edges
together with Δ{0,1}. Taking the pushout of (Λn

0, (Λ
n
0)1 ∩ E ) ↪→ (Δn,E ) along the

map (Λn
0, (Λ

n
0)1 ∩ E ) → (Λn

0)
�, we see that the inclusion (Λn

0)
� ↪→ (Δn)� is oppo-

site marked anodyne. �

Lemma 16 Let K = (Δn × ∂Δ1) ∪ (Λn
0 × Δ1) be the subcomplex of Δn × Δ1 for

n ≥ 1. Let E be the set of edges of Δn × Δ1 consisting of all degenerate edges
together with Δ{0,1} × Δ{0}. The inclusion (K , K1 ∩ E ) ↪→ (Δn × Δ1,E ) is an
opposite marked anodyne map.

Proof Put L(i) = (Δ{0,...,i} × Δ{0}) � (Δ{i,...,n} × Δ{1}) for 0 ≤ i ≤ n.We set L(i) =
K ∪ (∪i

j=0L( j)) for 0 ≤ i ≤ n. Note that L(n) = Δn × Δ1.

First, we show that the inclusion K ↪→ L(n − 1) is inner anodyne. Since L(0) ∩
K is isomorphic to Λn+1

1 in L(0) ∼= Δn+1, we see that the inclusion K ↪→ L(0) is
inner anodyne. For 0 < i < n, since L(i) ∩ L(i − 1) is isomorphic toΛn+1(0, i + 1)
in L(i) ∼= Δn+1, we see that the inclusion L(i − 1) ↪→ L(i) is inner anodyne by
Lemma 14. Hence the composition K ↪→ L(0) ↪→ · · · ↪→ L(n − 1) is also inner
anodyne.

Since the class of inner anodyne maps is stable under the opposite, the inclusion
K op ↪→ L(n − 1)op is also inner anodyne. By [22, Remark 3.1.1.4], we see that
K � ↪→ L(n − 1)� is an oppositemarked anodynemap. This implies that the inclusion
(K , K1 ∩ E ) ↪→ (L(n − 1), L(n − 1)1 ∩ E ) is opposite marked anodyne.

Now we consider the inclusion L(n − 1) ↪→ L(n). We see that L(n) ∩ L(n − 1)
is isomorphic to Λn+1

0 in L(n) ∼= Δn+1. We can identify (L(n), L(n)1 ∩ E ) with
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(Δn+1,E ′), where E ′ is the set of edges of Δn+1 consisting of all degenerate edges
together withΔ{0,1}. Since the map (Λn+1

0 , (Λn+1
0 )1 ∩ E ′) ↪→ (Δn+1,E ′) is opposite

marked anodyne, we see that (L(n − 1), L(n − 1)1 ∩ E ) → (L(n),E ) is opposite
marked anodyne.

Therefore, the composition (K , K1 ∩ E ) ↪→ (L(n − 1), L(n − 1)1 ∩ E ) ↪→
(L(n),E ) is also an opposite marked anodyne map. This completes the proof. �

7.3 The Marked Simplicial Set ˜O(Δn)+

In this subsection we introduce a marked simplicial set ˜O(Δn)+ in which the under-
lying simplicial set is ˜O(Δn). We study inclusions of subcomplexes of the marked
simplicial sets ˜O(Δn)+ and ( ˜O(Δn)+ × (Δ{0})�) ∪ ( ˜O(Δn)� × (Δ1)�).

Let ˜E be the set of edges of ˜O(Δn) consisting of all non-degenerate edges together
with edges i j → ik for 0 ≤ i ≤ j ≤ k ≤ n. We regard the pair ( ˜O(Δn), ˜E ) as a
marked simplicial set. For a subcomplex K of ˜O(Δn), we set ˜EK = ˜E ∩ K1 and
denote by K+ the marked simplicial set (K , ˜EK ).

For n > 0,we letMn be the subcomplex of ˜O(Δn) that contains all non-degenerate
k-simplices for 0 ≤ k ≤ n except for then-simplex corresponding tonn → · · ·→0n.

Lemma 17 The inclusion ˜O(∂Δn)+ ↪→ M+
n is an opposite marked anodyne map

for all n > 0.

Proof First, we consider the case n = 1. We let B0 be the 1-simplex corresponding
to 00 → 01. The subcomplex B0 ∩ ˜O(∂Δ1) is isomorphic to Λ1

0 in B0
∼= Δ1. The

inclusion (Λ1
0)

� ↪→ (Δ1)� is opposite marked anodyne by Lemma 15. Taking the
pushout of (Λ1

0)
� ↪→ (Δ1)� along the map (Λ1

0)
� ∼= B+

0 ∩ ˜O(∂Δ1)+ → ˜O(∂Δ1)+,
we see that the inclusion ˜O(∂Δ1)+ ↪→ M+

1 is opposite marked anodyne.
Next,we consider the casen = 2. Let B0 be the 2-simplex in ˜O(Δ2) corresponding

to 00 → 01 → 02. The subcomplex B+
0 ∩ ˜O(∂Δ2)+ is isomorphic to (Λ2

0)
� in B+

0
∼=

(Δ2)�. By Lemma 15, the inclusion (Λ2
0)

� ↪→ (Δ2)� is opposite marked anodyne.
Taking the pushout of (Λ2

0)
� ↪→ (Δ2)� along the map (Λ2

0)
� ∼= B+

0 ∩ ˜O(∂Δ2)+ →
˜O(∂Δ2)+, we obtain an opposite marked anodyne map ˜O(∂Δ2)+ ↪→ ˜O(∂Δ2)+ ∪
B+
0 . Let B1(0) be the 2-simplex in ˜O(Δ2) corresponding to 11 → 01 → 02. The

subcomplex B1(0) ∩ ( ˜O(∂Δ2) ∪ B0) is isomorphic to Λ2
1 in Δ2. The inclusion

(Λ2
1)

� ↪→ (Δ2)� is opposite marked anodyne. Taking the pushout of (Λ2
1)

� ↪→ (Δ2)�

along the map (Λ2
1)

� → ˜O(∂Δ2)+ ∪ B+
0 , we obtain an opposite marked anodyne

map ˜O(∂Δ2)+ ∪ B+
0 → ˜O(∂Δ2)+ ∪ B+

0 ∪ B1(0)+. Let B1(1) be the 2-simplex in
˜O(Δ2) corresponding to 11 → 12 → 02. The subcomplex B1(1) ∩ ( ˜O(∂Δ2) ∪ B0 ∪
B1(0)) is isomorphic to Λ2

0 in Δ2. The inclusion (Λ2
0, (Λ

2
0)1 ∩ E ′) ↪→ (Δ2,E ′)

is opposite marked anodyne, where E ′ is the set of edges of Δ2 consisting of
all degenerate edges together with Δ{0,1}. Taking the pushout of (Λ2

0, (Λ
2
0)1 ∩

E ′) ↪→ (Δ2,E ′) along the map (Λ2
0, (Λ

2
0)1 ∩ E ′) ∼= B1(1)+ ∩ ( ˜O(∂Δ2)+ ∪ B+

0 ∪
B1(0)+) → ˜O(∂Δ2)+ ∪ B+

0 ∪ B1(0)+, we see that the inclusion ˜O(∂Δ2)+ ∪ B+
0 ∪
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B1(0)+ → ˜O(∂Δ2)+ ∪ B+
0 ∪ B1(0)+ ∪ B1(1)+ is opposite marked anodyne. Hence

the composition ˜O(∂Δ2)+ → ˜O(∂Δ2)+ ∪ B+
0 → · · · → ˜O(∂Δ2)+ ∪ B+

0 ∪ B1(0)+
∪ B1(1)+ = M+

2 is also opposite marked anodyne.
Nowwe assume n ≥ 3. In this casewe note that all edges of ˜O(Δn) are included in

˜O(∂Δn). Let B+
0 be the n-simplex in ˜O(Δn)+ corresponding to 00 → 01 → · · · →

0n. The subcomplex B+
0 ∩ ˜O(∂Δn)+ of B+

0 is isomorphic to (Λn
0)

� in B+
0

∼= (Δn)�.
ByLemma 15, the inclusion (Λn

0)
� ↪→ (Δn)� is oppositemarked anodyne. Taking the

pushout of (Λn
0)

� ↪→ (Δn)� along the map (Λn
0)

� ∼= B+
0 ∩ ˜O(∂Δn)+ → ˜O(∂Δn)+,

we see that the inclusion ˜O(∂Δn)+ ↪→ ˜O(∂Δn)+ ∪ B+
0 is opposite marked anodyne.

For 0 ≤ i < n, we let L (i) be the set of all paths from i i to 0n in diagram (1).
To a path l ∈ L (i), we assign a sequence of integers J (l) = ( ji , ji−1, . . . , j1) with
i ≤ ji ≤ ji−1 ≤ · · · ≤ j1 ≤ n such that l is depicted as

0 j1 → · · · → 0n
↑

· · · → 1 j1
· · ·

(i − 1) ji → · · ·
↑

i i → · · · → i ji

We give {J (l)| l ∈ L (i)} the lexicographic order, and write l < l ′ if J (l) < J (l ′).
This gives rise to a total order on L (i). For example, the path i i → · · · → 0i →
· · · → 0n is the smallest and the path i i → · · · → in → · · · → 0n is the largest. For
l ∈ L (i), we denote by B(l) the n-simplex in ˜O(Δn) corresponding to l. Note that
L (0) consists of a unique element l0 and that B(l0) = B0. We set Bi = ∪l∈L (i)B(l)

and Bi = ˜O(∂Δn) ∪ ⋃i
j=0 Bj .We shall show that the inclusion B

+
i−1 ↪→ B

+
i is oppo-

site marked anodyne for 0 < i < n.
For 0 < i < n and l ∈ L (i), we set B(l) = Bi−1 ∪ ⋃

l ′≤l B(l ′) and B(l)◦ =
Bi−1 ∪ ⋃

l ′<l B(l ′). It suffices to show that the inclusion B(l)◦+ ↪→ B(l)+ is opposite
marked anodyne for all l ∈ L (i).

Let li be the path i i → · · · → 0i → · · · → 0n for 0 < i < n. The subcomplex
B(li ) ∩ Bi−1 of B(li ) is isomorphic to Λn

i of Δn . The inclusion (Λn
i )

� ↪→ (Δn)� is
opposite marked anodyne. Taking the pushout of (Λn

i )
� ↪→ (Δn)� along the map

(Λn
i )

� ∼= B(li )� ∩ B
+
i−1 → B

+
i−1, we see that the inclusion B

+
i−1 ↪→ B

+
i−1 ∪ B(li )+

is opposite marked anodyne.
Let l ′i be the path i i → · · · → in → · · · → 0n. We take l ∈ L (i) such that li <

l < l ′i . Let {α1, . . . , αk} (0 < α1 < . . . < αk < n) be the set of integers such that the
sub-path l(αt − 1) → l(αt ) → l(αt + 1) of l is depicted as

a, b → a, b + 1
�

⏐

a + 1, b
(7)
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for t = 1, . . . , k. We consider the subcomplex B(l) ∩ B(l)◦ of B(l). There are
two cases. (1) If the first edge of l is i i → (i − 1)i , then the subcomplex B(l) ∩
B(l)◦ of B(l) is isomorphic to the subcomplex Λn(α1, . . . , αk) of Δn . Since the
inclusion Λn(α1, . . . , αk) ↪→ Δn is inner anodyne by Lemma 13, the inclusion
(Λn(α1, . . . , αk))

� ↪→ (Δn)� is opposite marked anodyne. Taking the pushout of
(Λn(α1, . . . , αk))

� ↪→ (Δn)� along themap (Λn(α1, . . . , αk))
� ∼= B(l)� ∩ B(l)◦+ →

B(l)◦+, we see that the inclusion B(l)◦+ ↪→ B(l)+ is oppositemarked anodyne. (2) If
the first edge of l is i i → i(i + 1), then the subcomplex B(l) ∩ B(l)◦ of B(l) is iso-
morphic to the subcomplex Λn(0, α1, . . . , αk) of Δn . Note that α1 > 1 in this case.
Since the inclusion Λn(0, α1, . . . , αk) ↪→ Δn is inner anodyne by Lemma 14, the
inclusion (Λn(0, α1, . . . , αk))

� ↪→ (Δn)� is opposite marked anodyne. Taking the
pushout of (Λn(0, α1, . . . , αk))

� ↪→ (Δn)� along the map (Λn(0, α1, . . . , αk))
� ∼=

B(l)� ∩ B(l)◦+ → B(l)◦+, we see that the inclusion B(l)◦+ ↪→ B(l)+ is opposite
marked anodyne.

Finally, we shall show that B(l ′i )◦+ ↪→ B(l ′i )+ is opposite marked anodyne for
0 < i < n. The subcomplex B(l ′i ) ∩ B(l ′i )◦ is isomorphic to the subcomplex Λn

0 of
Δn . Note that i i → i(i + 1) is a marked edge, which corresponds to Δ{0,1} under
the isomorphism Λn

0
∼= B(l ′i ) ∩ B(l ′i )◦. The inclusion (Λn

0, (Λ
n
0) ∩ E ′) ↪→ (Δn,E ′)

is opposite marked anodyne, where E ′ is the set of edges of Δn consisting of all
degenerate edges together with Δ{0,1}. Taking the pushout of (Λn

0, (Λ
n
0) ∩ E ′) ↪→

(Δn,E ′) along the map (Λn
0, (Λ

n
0) ∩ E ′) → B(l ′i )+ ∩ B(l ′i )◦+ → B(l ′i )◦+, we see

that the inclusion B(l ′i )◦+ ↪→ B(l ′i )+ is opposite marked anodyne. This completes
the proof. �

For n > 0, we let

˜A = ( ˜O(Δn) × Δ{0}) ∪ ( ˜O(∂Δn) × Δ1),
˜B = ˜A ∪ (Mn × Δ{1}),
˜C = ˜A ∪ (Mn × Δ1)

be the subcomplexes of ˜O(Δn) × Δ1. We denote by ( ˜O(Δn) × Δ1)+ the marked
simplicial set ( ˜O(Δn)+ × (Δ{0})�) ∪ ( ˜O(Δn)� × (Δ1)�). For a subcomplex K of
˜O(Δn) × Δ1, we denote by K+ the subcomplex of the marked simplicial set
( ˜O(Δn) × Δ1)+ in which the underlying simplicial set is K .

Lemma 18 The inclusion ˜B+ ↪→ ˜C+ is an opposite marked anodyne map.

Proof We use the notation in the proof of Lemma 17. Recall that B0 is the n-
simplex in ˜O(Δn) corresponding to 00 → 01 → · · · → 0n. Since the subcomplex
B0 ∩ ˜O(∂Δn) of B0 is isomorphic to Λn

0 in Δn , the subcomplex ˜B ∩ (B0 × Δ1) of
B0 × Δ1 is isomorphic to the subcomplex (Δn × ∂Δ1) ∪ (Λn

0 × Δ1) of Δn × Δ1.
Since 00 → 01 is a marked edge of ˜O(Δn)+, we see that the inclusion ˜B+ ↪→
˜B+ ∪ (B0 × Δ1)+ is opposite marked anodyne by using Lemma 16.

We set Ci = ˜B ∪ (Bi × Δ1). We shall show that the inclusion C+
i−1 ↪→ C+

i is
opposite marked anodyne for 0 < i < n. For this purpose, it suffices to show that
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the inclusion C+
i−1 ∪ (B(l)◦ × Δ1)+ ↪→ C+

i−1 ∪ (B(l) × Δ1)+ is opposite marked
anodyne for all l ∈ L (i).

Recall that li is the path i i → · · · → 0i → · · · → 0n and that the subcomplex
B(li ) ∩ Bi−1 of B(li ) is isomorphic to Λn

i of Δn . This implies that (B(li ) × Δ1) ∩
Ci−1 is isomorphic to (Λn

i × Δ1) ∪ (Δn × ∂Δ1). The inclusion (Λn
i × Δ1) ∪ (Δn ×

∂Δ1) ↪→ (Δn × Δ1) is inner anodyne for 0 < i < n by [22, Cor. 2.3.2.4]. This
implies that (Λn

i × Δ1)� ∪ (Δn × ∂Δ1)� ↪→ (Δn × Δ1)� is opposite marked ano-
dyne. Hence we see that the inclusion C+

i−1 ↪→ C+
i−1 ∪ (B(li ) × Δ1)+ is opposite

marked anodyne.
We take l ∈ L (i) such that li < l < l ′i , where l

′
i is the path i i → · · · → in →

· · · → 0n. Let {α1, . . . , αk} (0 < α1 < . . . < αk < n) be the set of integers such
that the sub-path l(αt − 1) → l(αt ) → l(αt + 1) is a + 1, b → a, b → a, b + 1 for
some a, b.

Recall that the subcomplex B(l) ∩ B(l)◦ of B(l) is isomorphic to the subcom-
plex Λn(α1, . . . , αk) of Δn , if the first edge of l is i i → (i − 1)i . This implies that
(B(l) × Δ1) ∩ (Ci−1 ∪ (B(l)◦ × Δ1)) is isomorphic to (Λn(α1, . . . , αk) × Δ1) ∪
(Δn × ∂Δ1). In this case the inclusion (Λn(α1, . . . , αk) × Δ1) ∪ (Δn × ∂Δ1) ↪→
Δn × Δ1 is inner anodyne by Lemma 13 and [22, Cor. 2.3.2.4]. This implies that
(Λn(α1, . . . , αk) × Δ1)� ∪ (Δn × ∂Δ1)� ↪→ (Δn × Δ1)� is opposite marked ano-
dyne. Hencewe see thatC+

i−1 ∪ (B(l)◦ × Δ1)+ ↪→ C+
i−1 ∪ (B(l) × Δ1)+ is opposite

marked anodyne in this case.
If the first edge of l is i i → i(i + 1), then the subcomplex B(l) ∩ B(l)◦ of B(l) is

isomorphic to the subcomplex Λn(0, α1, . . . , αk) of Δn , where α1 > 1. This implies
that (B(l) × Δ1) ∩ (Ci−1 ∪ (B(l)◦ × (Δ1))) is isomorphic to (Λn(0, α1, . . . , αk) ×
Δ1) ∪ (Δn × ∂Δ1). In this case the inclusion (Λn(0, α1, . . . , αk) × Δ1) ∪ (Δn ×
∂Δ1) ↪→ Δn × Δ1 is inner anodyne byLemma14 and [22,Cor. 2.3.2.4]. This implies
that (Λn(0, α1, . . . , αk) × Δ1)� ∪ (Δn × ∂Δ1)� ↪→ (Δn × Δ1)� is opposite marked
anodyne. Hence we see that C+

i−1 ∪ (B(l)◦ × Δ1)+ ↪→ C+
i−1 ∪ (B(l) × Δ1)+ is also

opposite marked anodyne in this case.
Finally, we shall show that C+

i−1 ∪ (B(l ′i )◦ × Δ1)+ ↪→ C+
i−1 ∪ (B(l ′i ) × Δ1)+ is

opposite marked anodyne. Since the subcomplex B(l ′i ) ∩ B(l ′i )◦ is isomorphic to
the subcomplex Λn

0 of Δn , the subcomplex (B(l ′i ) × Δ1) ∩ (Ci−1 ∪ (B(l ′i )◦ × Δ1))

is isomorphic to (Λn
0 × Δ1) ∪ (Δn × ∂Δ1). Since i i → i(i + 1) is a marked edge

of ˜O(Δn), we see that C+
i−1 ∪ (B(l ′i )◦ × Δ1)+ ↪→ C+

i−1 ∪ (B(l ′i ) × Δ1)+ is opposite
marked anodyne by using Lemma 16. This completes the proof. �

7.4 Proof of Proposition 1

In this subsection we give a proof of Proposition 1. For this purpose, we show that the
map πX : R → RX has right lifting property with respect to the maps ∂Δn ↪→ Δn

for n > 0 if the final vertex Δ{n} goes to an object of R0.
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Let p : X → S and q : Y → S be coCartesian fibrations over a quasi-category S.
Suppose we have a map G : Y → X over S such that Gs admits a left adjoint Fs for
all s ∈ S.

We recall that

R = RX ×H(Fun(Δ{0},X)) H(FunS(Δ1, X)) ×H(Fun(Δ{1},X)) RY.

We have the projection map πX : R → RX .
We identify objects of RXwith objects of X . For x ∈ X with s = p(x), we have

an object (x, ux , Fs(x)) ofR over s, where ux : x → GsFs(x) is the unit map of the
adjunction (Fs,Gs) at x .

The following is a key lemma.

Lemma 19 Suppose we have a commutative diagram

∂Δn f
R

πX

Δn g
RX

for n > 0, where the left vertical arrow is the inclusion. We put x = g(Δ{n}) and
s = p(x). If f (Δ{n}) = (x, ux , Fs(x)), then there exists a dotted arrow Δn → R
making the whole diagram commutative.

Proof (Proof of Proposition 1) By Lemma 19, the map π0
X : R0 → RX has the right

lifting property with respect to the maps ∂Δn ↪→ Δn for all n ≥ 0. Hence π0
X is a

trivial Kan fibration. �

In order to prove Lemma 19, we consider the following situation.
Let h be a map ˜O(Δn) → S for n > 0 such that h(i i) → · · · → h(0i) is a totally

degenerate simplex in S for all 0 ≤ i ≤ n.We set h = hπ , whereπ : ˜O(Δn) × Δ1 →
˜O(Δn) is the projection.
Let X � be the marked simplicial set in which the simplicial set is X and the set

of marked edges consists of all p-coCartesian edges. Suppose that we have an n-
simplex in RX that is represented by g : ˜O(Δn) → X covering h. Note that we can
regard g as a map of marked simplicial sets ˜O(Δn)+ → X �.

Furthermore, we suppose that we have a map ∂Δn → R that is represented by
a triple of maps (g′, k, f ), where g′ : ˜O(∂Δn) → X , k : ˜O(∂Δn) → FunS(Δ1, X),
and f : ˜O(∂Δn) → Y . We assume that g′ is the restriction of g. Then the maps g′,
k, and f cover h, respectively.

Let Y � be the marked simplicial set defined in the same way as X �. We can regard
f as a map of marked simplicial sets ˜O(∂Δn)+ → Y �. There is an extension ˜f of f
to M+

n covering h by Lemma 17.
We recall that ˜A, ˜B, and ˜C are subcomplexes of ˜O(Δn) × Δ1 given by ˜A =

( ˜O(Δn) × Δ{0}) ∪ ( ˜O(∂Δn) × Δ1), ˜B = ˜A ∪ (Mn × Δ{1}), ˜C = ˜A ∪ (Mn × Δ1).
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Using the maps g, k, andG( ˜f ), we obtain a map of marked simplicial sets ˜B+ → X �

over h. Furthermore, by Lemma 18, we can extend this map to a map of marked sim-
plicial sets w : ˜C+ → X � covering h.

Let D be the n-simplex of ˜O(Δn) corresponding to nn → · · · → 0n. By restrict-
ingw to (D × Δ{0}) ∪ (∂D × Δ1), we obtain amap v : (D × Δ{0}) ∪ (∂D × Δ1) →
Xs , where s = h(nn).Wedenote by gD the restriction of g to D and by ˜f∂D the restric-
tion of ˜f to ∂D. Note that the restriction of v to D × Δ{0} is identified with gD and
that the restriction of v to ∂D × Δ{1} is Gs( ˜f∂D).

We would like to have maps ˜fD : D → Ys and v : D × Δ1 → Xs such that ˜fD
is an extension of ˜f∂D , v is an extension of v, and the restriction of v to D × Δ{1} is
G( ˜fD). Hence, in order to prove Lemma 19, it suffices to prove the following lemma.

Lemma 20 Let L : C � D : R be an adjunction of quasi-categories. Suppose we
have maps f : (Δn × Δ{0}) ∪ (∂Δn × Δ1) → C and g : ∂Δn → D for n > 0 such
that Rg = f |∂Δn×Δ{1} . We put c = f (Δ{0} × Δ{0}) and d = g(Δ{0}). If g(d) = L(c)
and f (Δ{0} × Δ1) is the unit map c → RL(c) of the adjunction (L , R) at c, then
there exist maps F : Δn × Δ1 → C and G : Δn → D such that F is an extension
of f , G is an extension of g, and RG = F |Δn×Δ{1} .

Proof Let π : M → Δ1 be a map associated to the adjunction (L , R), which is a
coCartesian fibration and a Cartesian fibration. We may assume that the fibers M{0}
andM{1} over {0} and {1} are isomorphic to C and D , respectively. We regard f as
a map (Δn × Δ{0}) ∪ (∂Δn × Δ1) → M{0} and g as a map ∂Δn → M{1}.

Since M → Δ1 is a Cartesian fibration, we can extend the map g to a map
h : ∂Δn × Δ1 → M such that h|∂Δn×Δ{0} = Rg, h|∂Δn×Δ{1} = g, and h(Δ{i} × Δ1)

is a π -Cartesian edge over Δ1 for all i = 0, 1, . . . , n. By the assumption that Rg =
f |∂Δn×Δ{1} , we obtain amap k : ∂Δn × Λ2

1 → M such that k|∂Δn×Δ{0,1} = f |∂Δn×Δ{0,1}

and k|∂Δn×Δ{1,2} = h.
By the assumptions that g(d) = L(c) and f (Δ{0} × Δ1) is the unit map c →

RL(c), we have a map l : Δ{0} × Δ2 → M such that l|Δ{0}×Δ{0,1} = f |Δ{0}×Δ1 ,
l|Δ{0}×Δ{1,2} = k|Δ{0}×Δ{1,2} , and l(Δ{0} × Δ{0,2}) is π -coCartesian.

Hence we obtain a map k ∪ l : (∂Δn × Λ2
1) ∪ (Δ{0} × Δ2) → M . Let σ : Δn ×

Δ2 → Δ1 be the projection Δn × Δ2 → Δ2 followed by s0 : Δ2 → Δ1, where
s0({0}) = s0({1}) = {0} and s0({2}) = {1}. We shall show that k ∪ l extends to a
map on Δn × Δ2 covering σ .

Since Λ2
1 ↪→ Δ2 is inner anodyne, (∂Δn × Λ2

1) ∪ (Δ{0} × Δ2) → ∂Δn × Δ2 is
also inner anodyne by [22, Cor. 2.3.2.4]. Hence there is an extension m : ∂Δn ×
Δ2 → M of k ∪ l : (∂Δn × Λ2

1) ∪ (Δ{0} × Δ2) → M covering σ .
We have the map f ′|Δn×Δ{0} ∪ m|∂Δn×Δ{0,2} : (Δn × Δ{0}) ∪ (∂Δn × Δ{0,2})→M .

Since m(Δ{0} × Δ{0,2}) is a π -coCartesian edge over Δ1, there is an extension
p(0, 2) : Δn × Δ{0,2} → M of f ′|Δn×Δ{0} ∪ m|∂Δn×Δ{0,2} covering σ by
[22, Prop. 2.4.1.8].

Wehave themap p(0, 2)|Δn×Δ{2} ∪ m|∂Δn×Δ{1,2} : (Δn × Δ{2}) ∪ (∂Δn × Δ{1,2})→
M . Since m(Δ{n} × Δ{1,2}) is a π -Cartesian edge over Δ1, there is an extension
p(1, 2) : Δn × Δ{1,2} → M of P(0, 2)|Δn×Δ{2} ∪ m|∂Δn×Δ{1,2} covering σ by the dual
of [22, Prop. 2.4.1.8].
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Henceweobtain amapq = m ∪ p(1, 2) ∪ p(0, 2) : (∂Δn × Δ2) ∪ (Δn × Λ2
2)→

M covering σ . We note that q(Δ{i} × Δ{1,2}) is π -Cartesian for all i = 0, 1, . . . , n.
Let E be the set of edges of Δ2 consisting of all degenerate edges together with

Δ{1,2}. We denote by (Δ2)+ the marked simplicial set (Δ2,E ) and by (Λ2
2)

+ the
marked simplicial set (Λ2

2,E ∩ (Λ2
2)1). The map of marked simplicial sets (Λ2

2)
+ →

(Δ2)+ is marked anodyne by [22, Def. 3.1.1.1]. This implies that (Δn)� × (Λ2
2)

+ ∪
(∂Δn)� × (Δ2)+ → (Δn)� × (Δ2)+ is also marked anodyne by [22, Prop. 3.1.2.3].

Let (Δ1)� be the marked simplicial set Δ1 equipped with the set of all edges, and
let M � be the marked simplicial set M equipped with the set of all π -Cartesian
edges. Since q(Δ{i} × Δ{1,2}) is a π -Cartesian edge for all i = 0, 1, . . . , n, we have
a map of marked simplicial sets q : (Δn)� × (Λ2

2)
+ ∪ (∂Δn)� × (Δ2)+ → M �. We

consider the following commutative diagram of marked simplicial sets

(Δn)� × (Λ2
2)

+ ∪ (∂Δn)� × (Δ2)+ M �

π

(Δn)� × (Δ2)+ σ

r

(Δ1)�,

where the upper horizontal arrow is q. Since the left vertical arrow is marked ano-
dyne, there is a dotted arrow r which makes the whole diagram commutative by
[22, Prop. 3.1.1.6]. The proof is completed by setting F = r |Δn×Δ{0,1} and G =
r |Δn×Δ{2} . �
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Koszul Duality for En-Algebras in a
Filtered Category

Takuo Matsuoka

Abstract We describe the use of filtration for algebra, in particular, for the Koszul
duality, in a stable (∞, 1)-category, while illustrating how simple arguments with
filtrations lead to finding nice behaviour of very basic constructions in homotopical
algebra.

Keywords Koszul duality · Higher morita category · En-algebra · Filtration ·
Completeness · Homotopical algebra · Stable category

1 Introduction

1.1 Overview

A classical instance of the Koszul duality was described by Quillen. Namely, he
essentially established an equivalence of the (∞, 1)-categories of reduced differential
graded Lie algebras and 2-reduced differential graded commutative coalgebras over
Q (both localized, of course, with respect to weak equivalences) [19]. This connects,
by algebraic means, algebraic models of simply connected rational homotopy types,
one given by Sullivan [22] and another given by Quillen [19].

In terms of theKoszul duality for operads, developed later byGinzburg andKapra-
nov [9], Quillen’s equivalence reflects the Koszul duality between the Lie and the
commutative operads. On the other hand, the associative operad is self Koszul dual
in a way, so there is a similar equivalence between some (augmented, or equivalently
up to categorical equivalence, non-unital) associative algebras and corresponding
(augmented/non-unital) associative coalgebras. For an associative algebra A, an asso-
ciative colagebra C corresponding to A under this equivalence is said to be Koszul
dual to A. In good cases, certain parts (of the (∞, 1)-categories) of A-modules and
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of C-comodules will be equivalent. Instead of C-comodules, one could think of the
modules over the linear dual C∨. The augmented/non-unital associative algebra C∨
is also called the Koszul dual of A, and Awill in turn beKoszul dual toC∨. A suitable
equivalence between the derived categories of modules over Koszul dual algebras
were established by Beilinson, Ginsburg and Schechtman [1]. An instance of this is a
canonical equivalence between derived categories of gradedmodules over symmetric
and exterior algebra, established by Bernstein, I. M. Gelfand and S. I. Gelfand [4],
which had inspired Beilinson, Ginsburg and Schechtman.

What we have called the “self” Koszul duality of the associative operad, was gen-
eralized for En-operad by Fresse [8], from the case n = 1. (The commutative–Lie
correspondence is also recovered if we let n → ∞.) A consequence would be an
equivalence of certain augmented/non-unital En-algebras and En-coalgebras. How-
ever, in view of Dunn’s result that the structure of an En-algebra is essentially the
n-fold iteration of the structure of an E1-algebra [7], it should be possible to establish
a similar equivalence in a simple manner by establishing and iterating the Koszul
duality for E1-algebras. The purpose of this survey is to describe a set of simple
techniques which are useful for examining how far such a result holds, and also
seem useful for application of homotopical algebra in general if the version of the
Koszul duality here does not serve the reader’s purposes well.

We shall follow [13], which was influenced by Costello [5]. There are also related
works by Positselski [18] in addition to the already mentioned work by Beilinson,
Ginsburg and Schechtman [1].

Following Quillen and some others, we consider a correspondence between alge-
braic and coalgebraic structures. While this simply happened to be as much as we
needed for the applications we had, this will separate from our work some complex-
ities arising from the process of taking the linear duals.

1.2 Basic Constructions

A traditional version of the Koszul dual construction assumes a differential graded
structure. We shall start with the description of a perhaps less traditional version,
which can bemade for an associative (co-)algebra object in a quite general symmetric
monoidal (∞, 1)-category. We shall use this construction throughout our work since
it will be easy to iterate as well as to analyse.

Let C be an augmented associative coalgebra in a symmetric monoidal (∞, 1)-
categoryA , or a “coaugmented coassociative” one, to emphasize the variance. In our
terminology, we shallmore often not emphasize the variancewhen a confusion seems
unlikely to arise. Associativity in a symmetric monoidal (∞, 1)-categorymeans data
for homotopy coherent associativity, which in particular is a structure rather than a
property.

Given such C , its Koszul dual is an augmented associative algebra C ! described
as follows.
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First of all, its underlying object is 1�C1, where the unit object 1 is given the
structure of aC-comodule coming through the augmentationmap ε : 1 → C from the
comodule structure of 1 over the unit coalgebra, and�C denotes the cotensor product
operation overC . The contensor product (as well as all other constuctions) is relative
to the structures of (∞, 1)-categories, so it should be understood to be isomorphic
(in the homotopy category) to the suitably derived and homotopy invariant version
of the construction if the (∞, 1)-categories come e.g., from model categories.

Equivalently, the underlying object of C ! is an object representing the presheaf
A op → Space, X �→ MapComodC (X ⊗ 1, 1), where X ⊗ 1(= X ) is made into a C-
comodule by the action ofC on the factor 1. Here, Space denotes the standard (∞, 1)-
category of “spaces” or infinity groupoids. The structure of an associative algebra of
C ! results from this, and we take as the augmentation the map η! : C ! → 1! = 1 for
the unit η : C → 1.

From this description, C ! represents the presheaf on the (∞, 1)-category of aug-
mented associative algebras which maps an object A to the space of A-module
structures on the C-comodule 1, lifting the A-module structure on the underly-
ing object 1 given by the augmentation map of A. In particular, MapAlg∗(A,C !) =
MapCoalg∗(A

!,C), where A! = 1 ⊗A 1 is the augmented associative coalgebraKoszul
dual to A. The subscripts ∗ here indicates that the categories are those of augmented

algebras and coalgebras. (For example, the map A! η−→ 1
ε−→ C corresponds to the

map A
ε−→ 1

η−→ C !.)
Another term for an associative algebra is “E1-algebra”. We adopt the iterative

definition of an En-algebra for n ≥ 2, that the symmetric monoidal (∞, 1)-category
AlgEn

(A ) of En-algebras in A is inductively determined as AlgE1

(
AlgEn−1

(A )
)
,

where the symmetric monoidal structure on associative algebras is given on the
underlying objects. This conforms with Dunn’s theorem [7]. The (∞, 1)-category of
coalgebras is simply CoalgEn

(A ) = AlgEn
(A op)op.

We consider the iteratedKoszul duality functor ( )! : AlgEn∗(A ) → CoalgEn∗(A )

defined inductively as the composite

AlgE1∗(AlgEn−1∗) −→ CoalgE1∗(AlgEn−1∗) −→ CoalgE1∗(CoalgEn−1∗),

where the first map is the associative Koszul duality construction, and the next map is
induced from the inductively defined En−1-Koszul duality functor, which is canon-
ically op-lax symmetric monoidal by induction. By applying this for A op, one also
obtains a functor ( )! : CoalgEn∗(A ) → AlgEn∗(A ).

1.3 Specific Results

A stable (∞, 1)-category ([12], see Toën–Vezzosi [23] for a discussion of the origin
of the notion) is an important and very reasonable place in which to do algebra. For
example, homological algebra takes place in the stable (∞, 1)-category of chain com-
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plexes (with quasi-isomorphisms inverted). Algebra in the stable (∞, 1)-category of
spectra is one formalizationof the idea of bravenewalgebra proposedbyWaldhausen.
The purpose of this survey is to give an overview of a settingwhere theKoszul duality
and some other basic algebraic constructions in a symmetric monoidal stable (∞, 1)-
category A behave nicely to lead to such results as an equivalence of large classes
of augmented algebras and coalgebras by the Koszul duality, to be described shortly
(Theorem 2). Specifically, we consider a symmetric monoidal stable (∞, 1)-category
A , equipped with a filtration with respect to whichA becomes complete, or at least
can be completed.

The primary example will be given by the (∞, 1)-category of complete filtered
objects (Sect. 2). In fact, the influence to the author’s work on the present subject
came from the use of complete filtered objects in a related context in Costello’s [5]
(see also the appendix of Costello–Gwilliam [6]). Filtration and completeness are
also used in the work of Positselski on the Koszul duality [18]. The approach to
be described here, despite its slight abstractness, has the advantage of including a
few more examples such as the filtration given by a t-structure, and hopefully of
clarifying some logic.

Remark 1 Beilinson, Ginsburg and Schechtman considers filtration, or “f-structure”
in their terminology, of a triangulated category [1]. A triangulated category is con-
ceptually close to a stable (∞, 1)-category, so our approach is very close to theirs.
Themost notable difference of their approach to ours is that an f-structure is similar to
but is different from and excludes a t-structure, while filtration in our sense includes
an f-structure as well as a t-structure. See Remark 17 for details. Their focus is in
fact on a mixture of an f- and a t- structure which are compatible with each other.

To illustrate the usefulness of the setting, in the presence of complete filtration
satisfying some mild conditions to be explained in the later sections, we have, as
follows from the associativity result Lemma 5 below, that the functor C �→ C ! is
symmetric monoidal when restricted for En-coalgebras C satisfying some positivity
condition with respect to the filtration, which we call “copositivity” (Definition 64).
In practice, one often has similar associativity as Lemma 5 for free for the tensor
product over algebras, but usually not simultaneously also over coalgebras. In the
presence of a complete filtration, associativity holds (Lemma 65) also over “positive”
algebras (Definition 64).

In particular, if A is a positive augmented En+1-algebra, then the Koszul dual
1 ⊗A 1 of its underlying associative algebra becomes an En-algebra in the (∞, 1)-
category of augmented associative coalgebras. Moreover, by another consequence,
Proposition 52, of the filtration, this En-algebra is equivalent to the tensor product
1 ⊗A 1 taken in the (∞, 1)-category of En-algebras. Similar consequences can be
observed also for copositive En-coalgebras.

Let AlgEn
(A )+ denote the (∞, 1)-category of positive augmented En-algebras

in A , and similarly, Coalg+ for copositive coalgebras. One obtains the following
under additional mild conditions to be also explained in the later sections.
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Theorem 2 ([13]) Let A be a monoidal complete filtered stable (∞, 1)-category
with uniformly bounded sequential limits and translational looping (Definitions 36,
68). Then the constructions of Koszul duals give inverse equivalences

AlgEn
(A )+

∼←−−→ CoalgEn
(A )+.

In the statement above, we have used a more descriptive term than in [13].

Remark 3 This theorem can be considered as a special case of a similar theorem for
locally constant factorization algebras on a manifold M [15], obtained by combining
the methods here with the subject of the article [16] in these proceedings. Namely,
the theorem for factorization algebras specializes to Theorem 2 in the case M = Rn .
The theorem for factorization algebras is in analogy with a common generalization
by Lurie [12, Remark 5.5.6.11] of the iterated loop space theory and the Verdier
duality.

1.4 Further Consequences

One also obtains a Morita theoretic functoriality of the Koszul duality.
To explain what this is, in [11], Lurie has outlined a generalization for En-algebras

of the “Morita” category due to Bénabou [2]. By collecting suitable versions of
bimodules, one obtains an (∞, n + 1)-category Algn(A ), in which

• an object is an En-algebra in A ,
• a 1-morphism is an En−1-algebra in A equipped with the structure of a suitable
kind of bimodule,

• a 2-morphisms is an En−2-algebra in A equipped with the structure of a suitable
kind of bimodule,

and so on, generalizing the 2-category of associative algebras and bimodules.
In order to make the construction of this work, one usually assumes that the

monoidalmultiplication functors preserve geometric realizations variablewise. How-
ever, unless the monoidal multiplication also preserve totalizations, one cannot have
both algebraic and coalgebraic versions of this in the same way. Despite these diffi-
culties, it turns out that, in a complete filtered symmetric monoidal (∞, 1)-category
satisfying some mild conditions, the construction works for both positive augmented
algebras and copositive augmented coalgebras at the same time.

Remark 4 In a quite different context, the construction of the both higher Morita
categories work in a Cartesian closed symmetric monoidal (∞, 1)-category which is
closed under the geometric realization and the finite limits. The coalgebraic higher
Morita category in this context was identified by Ben-Zvi and Nadler with the
(∞, n + 1)-category of iterated correspondences [3, Remark 1.17]. TheKoszul dual-
ity in the (∞, 1)-category of spaces is given by the iterated looping and delooping
constructions, and is understood very well through the iterated loop space theory.
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For example, in order for the construction of the coalgebraic Morita category,
even in the case n = 1, to work, we would like the following.

LetCi , i = 0, 1, 2, be coalgebras inA , and let Ki,i+1 for i = 0, 1 be a leftCi - right
Ci+1-bicomodule. Then we would first like K01�C1K12 to be a C0–C2-bicomodule
in a natural way.

We have this in the following case. AssumeA to be a monoidal complete filtered
stable (∞, 1)-category. We assume the mild condition to be explained in the later
sections, that “loops and sequential limits are uniformly bounded” with respect to the
filtration inA (Definitions 36, 41).We also assume thatC1 is a copositive augmented
coalgebra, and Ki,i+1 are “bounded below” in the filtration (Definition 19). Then for
any bounded below object L , the canonical map

(K01�C1K12) ⊗ L −→ K01�C1(K12 ⊗ L)

can be shown to be an equivalence using Proposition 49 below.
It follows that ifC0 andC2 are copositive and in particular, boundedbelow, then the

bicomodule structures of Ki,i+1, i = 0, 1 induce a structure of a C0–C2-bicomodule
on the cotensor product. In fact, the resulting bicomodule has the universal property
to be expected of the cotensor product.

For the construction of the Morita category, we would further like the following
to hold.

Lemma 5 Let A be a monoidal complete filtered stable (∞, 1)-category with uni-
formly bounded loops and sequential limits. Let Ci , i = 0, 1, 2, 3, be copositive
augmented associative coalgebras in A , and let Ki,i+1 be a left Ci - right Ci+1-
bicomodule for i = 0, 1, 2, whose underlying object is bounded below.

Then the resulting map

(K01�C1K12)�C2K23 −→ K01�C1K12�C2K23

is an equivalence of C0–C3-comodules, where the target denotes the totalization
of the obvious bicosimplicial (co)bar construction (each cosimplicial index coming
from the actions of each of the coalgebras C1, C2).

Proof will be discussed in Sect. 7.
Under similar mild conditions and positivity, one can further check that all other

basic constructions also behave nicely in a complete filtered symmetricmonoidal sta-
ble (∞, 1)-category. Let us denote the (∞, n + 1)-categories we obtain by Alg+

n (A )

and Coalg+
n (A ) respectively.

Theorem 6 ([13]) LetA be a symmetric monoidal complete filtered stable (∞, 1)-
category with uniformly bounded sequential limits and translational looping (Defini-
tions 36, 41). Then for every n, the construction of the Koszul dual define a symmetric
monoidal functor

( )! : Alg+
n (A ) −→ Coalg+

n (A ).
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It is an equivalence with inverse given by the Koszul duality construction.

Corollary 7 LetA be as in Theorem 6. Then any object of the symmetric monoidal
(∞, 1)-category Coalg+

n (A ) is n-dualizable.

Indeed, for a reasonable symmetric monoidal (∞, 1)-categoryA , Lurie has given
a description of the n-dimensional fully extended topological field theory in the
Morita (n + 1)-category Algn(A ) associated to any object A ∈ Algn(A ) [11], using
the topological chiral homology (to be reviewed in the article [16] in these proceed-
ings). His description also works in Alg+

n (A ) here, so any object of Alg+
n (A ) and

hence any object of Coalg+
n (A ) is n-dualizable. Given A ∈ Alg+

n (A ), the associated
topological field theory in Coalg+

n (A ) can in fact be described using the compactly
supported topological chiral homology of A, as a consequence of the Poincaré dual-
ity for the topological chiral homology [15], which is analogous to the “nonabelian”
Poincaré duality theorem of Lurie [12] and closely related earlier results of Segal
[21], McDuff [17] and Salvatore [20].

1.5 Outline

Our plan for the rest of this article is to first describe basic notions and facts on
symmetric monoidal filtered stable (∞, 1)-categories, and then to show how these
can be used for the study of the Koszul duality.

2 Filtration of a Stable Category

2.1 Complementary Localizations of a Stable Category

Afiltration of a stable (∞, 1)-category will be defined by pairs of localizationswhich
are complementary to each other.

Definition 8 Let C be a (∞, 1)-category.
A functor C → D is a left localization if it has a fully faithful functor as a right

adjoint.
A full subcategory D of C is a left localization of C if the inclusion functor

D ↪→ C has a left adjoint.

Right localization is defined similarly, so it is just left localization in the opposite
variance.

We consider the following situation. Let A be a stable (∞, 1)-category, and let
A� ⊂ A be a full subcategory which is a left localization of A . Denote by ( )�
the localization functor A → A�. By abuse of notation, we also denote by ( )� the
composite
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A A� A .
( )�

Definition 9 A right localization Ar of A is complementary to the left localiza-
tion A� of A as above if for every X ∈ Ar and Y ∈ A�, the space Map(X,Y ) is
contractible, and the sequence

( )r
ε−→ id

η−→ ( )� : A −→ A ,

where ( )r is the right localization functor considered asA → A , and the maps are
the counit and the unit maps for the respective adjunctions, is a fibre sequence (by
the unique null homotopy of the composite ηε).

As a full subcategory of A , Ar consists of objects X ∈ A for which the counit
ε : Xr → X is an equivalence, or equivalently, X�  0. It follows that given any left
localization A� of A , if it has a complementary right localization, then the right
localization is characterized as the right localization to the full subcategory of A
consisting of objects X ∈ A for which X�  0.

Given any right localization, its complementary left localization is defined in the
opposite way. It is immediate that if a left localization has a complementary right
localization, then this left localization is left complementary to its right complement.

Remark 10 Given a pair of complementary localizations A�, Ar , their homotopy
categories ho(A�), ho(Ar ) form a pair of localizations of the triangulated category
hoA which are complementary to each other in the similar sense. Note the full
subcategories ho(A�), ho(Ar ) of hoA determine the full subcategories A�, Ar of
A . Conversely, a pair of complementary localizations ofA is always obtained from
a complementary pair of localization of hoA . Cf. Lurie [12, Proposition 1.2.1.5].

The pair hoA�, hoAr of localizations of hoA defines a step in the sense of
Beilinson, Ginsburg and Schechtman [1, Definition 1.2.1] only if hoA� and hoAr

are triangulated themselves. This is when A� and Ar are stable.

Even though a localization of a stable (∞, 1)-category will not necessarily be
stable itself (a sufficient condition will be given in Proposition 26 below), comple-
mentary localizations will be additive at least. Let us first see that they are pointed,
namely, have zero objects.

Lemma 11 Let A be a stable (∞, 1)-category, and let A�, Ar be left and right
localizations of A respectively which are complementary to each other. Then A� is
pointed, and dually for Ar .

Proof 0r�  0 implies 0 ∈ A�, which is then a zero object of A�. �

All inclusion and localization functors will preserve the zero objects.
The following lemma gives a useful way to detect local equivalences.
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Lemma 12 Let A be a stable (∞, 1)-category with complementary left and right
localizations ( )� : A → A� and ( )r : A → Ar respectively. Then, for a cofibre
sequence

W −→ X −→ Y

inA , if W belongs to the full subcategoryAr ofA , then the localized map X� → Y�

is an equivalence.

Proof W belongs to Ar if and only if W�  0.
By applying the localization functor ( )� : A → A� to the given cofibre sequence,

we obtain a cofibre sequence inA�. IfW�  0, then themap X� → Y� in the sequence
is an equivalence. �

Corollary 13 In the situation of Lemma 12, X belongs toAr if and only if Y belongs
to Ar .

The additivity will follow from the following closure property with respect to the
formation of limits (and colimits for a right localization).

Lemma 14 Let A be a stable (∞, 1)-category. Then, if a left localization A� of
A has a complementary right localization, then A� is closed in A under any limit
which exists in A .

Proof This follows since A� is the full subcategory of A consisting of X ∈ A for
which Xr  0, and since the functor ( )r : A → Ar is a right adjoint, and hence
preserves any limit. �

Note also that the limit taken in A of a diagram lying in the full subcategory A�

(which in fact belongs to A�, according to the above) will be a limit in A� of the
diagram. On the other hand, since the inclusionA� ↪→ A preserves limits, if a limit
of a diagram A� exists in the (∞, 1)-category A�, then it also will be a limit in A .

One obtains the following ‘additivity’.

Corollary 15 If a left localizationA� has a complementary right localization, then
A� is closed in A under the finite coproduct in A .

Proof Let X , Y be object of A which belong to A�. Then the coproduct X

�

Y in
A is equivalent to the product X × Y in A , which belongs to A� by Lemma 14. �

All inclusion and localization functorswill preserve thefinite products and coprod-
uct, which coincide in each of the three (∞, 1)-categories.

2.2 Filtration

Definition 16 A filtration of a stable (∞, 1)-category A is a sequence of full sub-
categories
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A ⊃ · · · ⊃ A≥r ⊃ A≥r+1 ⊃ · · ·

indexed by integers, each of which is the inclusion of a right localization which has
a complementary left localization, denoted by ( )<r : A → A <r .

A filtered stable (∞, 1)-category is a stable (∞, 1)-category which is equipped
with a filtration.

Remark 17 Our definition of a filtration as a sequence of pairs of complementary
localizations, is similar to Beilinson, Ginsburg and Schechtman’s definition of an
f-structure on a triangulated category as a sequence of steps [1, Definition 1.3.1].
The difference is that pair of complementary localizations is a less restrictive notion
than the notion of step, as explained in Remark 10. As a consequence, filtration in
our sense includes a t-structure for instance (Example 20), which f-structure is meant
to not overlap.

Remark 18 The notion of a filtration on a stable (∞, 1)-category is self-dual in the
following sense. Namely, if a stable (∞, 1)-category A is given a filtration, then
B := A op has a filtration given by B≥r := (A ≤−r )op, where A ≤s := A <s+1.

Therefore, all notions and statements we formulate will have dual versions, which
we shall speak about freely without further notices.

Definition 19 Let A be a filtered stable (∞, 1)-category. Then an object X of A
is said to be bounded below in the filtration if there exists an integer r such that X
belongs to the full subcategory A≥r of A .

Let us see a few examples of filtrations.

Example 20 LetA be a stable (∞, 1)-category equipped with a t-structure [12]. For
example, A may be the stable (∞, 1)-category of chain complexes over a ring, or
more generally, of suitablly structured spectra, such asmodules over a connective ring
spectrum, where the t-structure is defined by the connectivity (and coconnectivity)
of the underlying spectra.

Then the usual sequences of full subcategories defines a filtration on A . In the
case of a t-structure by connectivity, A≥r will consist of objects whose underlying
spectrum has connectivity at least r , and A <r will consist of objects with coconec-
tivity less than r . In fact, a t-structure can be characterized as a filtration satisfying
a simple condition. See Example 69.

Let us see another typical example.
Let Z be the category

· · · ←− n ←− n + 1 ←− · · ·

defined by the poset of integers.

Definition 21 A filtered object of an (∞, 1)-category C is a functor Z → C .
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We shall typically express a filtered object X ∈ Fun(Z,C ) as a sequence

· · · ←− FnX ←− Fn+1X ←− · · ·

in C .
Let B be a stable (∞, 1)-category. Then the stable (∞, 1)-category A =

Fun(Z,B) of filtered objects in B, is filtered as follows.
We let A≥r be the (∞, 1)-category of sequences

Fr X ←− Fr+1X ←− · · · ,

and ( )≥r : A → A≥r to be the functor which forgets objects FnX for n < r . ( )≥r

is a right localization which has a complementary left localization, which we denote
by ( )<r : A → A <r .

Remark 22 Remark 18 allows us to consider this filtration also as a filtration on
A op. We obtain another filtration on A op by replacing B by Bop in the construc-
tion above. Note A op = Fun(Z,Bop). These are different filtrations. Namely, the
(∞, 1)-category of filtered objects have two distinct filtrations (unless it is the trivial
category).

Without loss of generality, we normally discuss only the former filtration, but
sometimes on A and sometimes on A op.

Before giving the next example of a filtration, it will be convenient to be able to
tell when a localization has a complement.

Proposition 23 ([13]) A left localization ( )� : A → A� of a stable (∞, 1)-category
A has a complementary right localization if and only if

(
Fibre[η : id → ( )�]

)
�

 0.

Example 24 This condition is satisfied if the left localization is exact in the following
sense.

Definition 25 A left localization of a stable (∞, 1)-categoryA is exact if the local-
ization functor ( )� : A → A� (and equivalently, ( )� : A → A ) preserves finite
limits.

A right localization is exact if the localization functor is exact.
One further obtains the following for an exact localization.

Proposition 26 Let A be a stable (∞, 1)-category, and let ( )� : A → A� be an
exact left localization of A . Then the (∞, 1)-category A� is stable, the inclusion
functorA� ↪→ A is also exact, and the complementary right localization (see Exam-
ple 24) is also exact.
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Example 27 LetA be the functor category into a stable (∞, 1)-category, and assume
it admits some version of the Goodwillie calculus [10]. Then it has a filtration in
which A <r is the full subcategory consisting of (r − 1)-excisive functors. The left
localization A → A <r is given by the universal (r − 1)-excisive approximation of
functors, which is exact as follows e.g., from the construction.

3 Completion

Let us define what it means for a category to be complete with respect to a filtration.
The property will turn out very useful.

Let A be a filtered stable (∞, 1)-category. Then define

A≥∞ := lim
r

A≥r =
⋂

r

A≥r ,

the intersection taken in A . We obtain the sequence

A≥∞ −→ A −→ lim
r

A <r

as the limit of the sequence

A≥r −→ A −→ A <r .

Let us denote by τ the functor A → limr A <r here. If A is closed under the
sequential limit, then this has a right adjoint which we shall denote by lim. For an
object X = (Xr )r of limr A <r , it is given by

lim X = lim
r

Xr ,

where the limit on the right hand side is taken in A .

Definition 28 Let A be a filtered stable (∞, 1)-category which is closed under the
sequential limit. Then we denote lim τ X by X̂ . We say that X is complete if the unit
map η : X → lim τ X = X̂ for the adjunction is an equivalence.

We denote by ˆA the full subcategory of A consisting of complete objects.

Example 29 For every r , A <r ⊂ ˆA in A .

Definition 30 We say that a filtered stable (∞, 1)-category A is complete if it is
closed under the sequential limit, and ˆA is the whole of A , namely, if every object
of A is complete.

It will be useful to be able to complete a stable (∞, 1)-category with respect to
a filtration. We unfortunately do not know a general definition of the completion of
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a filtered stable (∞, 1)-category A . However, we can write down what seems to be
a sufficient condition for the obvious candidate ˆA to correctly be the completion of
A .

Definition 31 LetA be a filtered stable (∞, 1)-category. Then we say that ˆA is the
completion of A if the following conditions are satisfied.

0 A is closed under the sequential limit, so we have ˆA defined.
1 The functor ˆ( ) : A → A preserves sequential limits.
2 ˆ( ) lands in ˆA .
3 The map η : id → ˆ( ) makes ˆ( ) a left localization for the full subcategory ˆA .

If A has ˆA as its completion in this sense, then we call the localization functor the
completion functor. In this case, we call η the completion map.

The following easy lemma is a part of the motivation for Definition 31.

Lemma 32 If ˆA is the completion ofA , then the sequential limits exists in ˆA , and
the completion functor preserves sequential limits.

Proposition 33 ([13]) Let A be a filtered stable (∞, 1)-category with ˆA its com-
pletion. Then the full subcategory A≥∞ of A is a right localization complementary
to the left localization ˆA .

Outline of proof It can be proved separately that the completion of an object X of
A vanishes if and only if X belongs to A≥∞. Therefore, it suffices to show that
completion has a complementary right localization. Existence of the complement
follows from Proposition 23 and Lemma 34 below since the fibre of the completion
map is limr X≥r . �

The following will be useful.

Lemma 34 LetA be a filtered stable (∞, 1)-category with ˆA its completion. Sup-
pose given an inverse system

· · · ←− Xi ←− Xi+1 ←− · · ·

in A , and suppose there is a sequence (ri )i of integers, tending to ∞ as i → ∞,
such that Xi belongs to A≥ri for every i .

Then limi Xi belongs to A≥∞.

Proof As stated during the proof of Proposition 33, it suffices to prove that its
completion vanishes. However,

ˆlim
i

Xi = lim
i

X̂ i = lim
r

lim
i

X<r
i  lim

r
0 = 0.

�
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Let us next give a sufficient condition for ˆA to be the completion of A which is
easy to check in practice.

Proposition 35 ([13]) Let A be a filtered stable (∞, 1)-category which is closed
under the sequential limit. If sequential limits in A are uniformly bounded in the
sense of Definition 36 below, then ˆA is the completion of A .

The following condition will turn out useful also for other purposes.

Definition 36 Let A be a filtered stable (∞, 1)-category which is closed under the
sequential limit. Then we say that sequential limits are uniformly bounded inA if
there exists an integer d such that for every integer r , and for every inverse sequence
in the full subcategory A≥r of A , the limit of the sequence taken in A , belongs to
A≥r+d . We refer to such d as a uniform lower bound for sequential limits in A .

Remark 37 A is assumed to have finite limits and sequential limits, so it has count-
able products at least, and if sequential limits are uniformly bounded, then so are
countable products in the similar sense. In the case where the filtration is given by a
t-structure, if countable products in A are uniformly bounded below by b, then the
familiar computation of a sequential limit in terms of countable products by Milnor
shows that sequential limits will be bounded below by b − 1.

In the case of a filtered (∞, 1)-category of filtered objects, as well as Goodwillie’s
filtration (Example 27), sequential limits are bounded below by 0 assuming that the
object-wise sequential limits exist.

One also obtains the following.

Proposition 38 ([13]) Let A be a filtered stable (∞, 1)-category with uniformly
bounded sequential limits. Then the functor lim : limr A <r → A induces an equiv-
alence limr A <r ∼−→ ˆA .

4 The Completion as a Complete Category

When ˆA is the completion of a filtered stable (∞, 1)-category A , then it will be
useful if the completion is itself a complete filtered stable (∞, 1)-category.Wewould
like to first give a sufficient condition for the completion to be a stable (∞, 1)-
category.A sufficient condition for a general localizationwas given in Proposition 26.

Definition 39 Let A be a filtered stable (∞, 1)-category with ˆA its completion.
Then we say that the completion is exact if ˆA is an exact left localization of A .

Proposition 40 ([13]) Let A be a filtered stable (∞, 1)-category with ˆA its com-
pletion. If loops are uniformly bounded in A in the sense of Definition 41 below,
then the completion is exact.
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The following condition will turn out useful also for other purposes.

Definition 41 LetA be a filtered stable (∞, 1)-category. An integer ω is said to be
a uniform lower bound for loops inA if for every integer r , and for every object of
the full subcategory A≥r of A , its loop in A belongs to A≥r+ω. We say that loops
are uniformly bounded in A if loops in A have a uniform lower bound.

Example 42 If the filtration is a t-structure on A , then ω can be taken as −1.
ω can be taken as 0 for the filtered (∞, 1)-category of filtered objects, as well as

for Goodwillie’s filtration. In fact, all localizations are exact in these filtrations.

Remark 43 An integerω � 0 cannot be a uniform lower bound for loops unlessA≥r

for all r are the same subcategory of A . Indeed, 	−1 = 
 maps A≥r into A≥r by
Lemma 14.

Remark 44 By Corollary 13, ω is a uniform lower bound for loops if and only if it
is a uniform lower bound for fibres in the similar sense. Indeed, if W → X → Y is
a fibre sequence in A , then there is a fibre sequence 	Y → W → X .

It follows again from Corollary 13, that the uniform lower bound of fibres more
generally bounds fibre products.

Definition 45 Let A , B be filtered stable (∞, 1)-categories, and let F : A → B
be an exact functor. Then we say that an integer b is a lower bound of F if for every
r , F takes the full subcategory A≥r of the source to the full subcategory B≥r+b of
the target.

We say that F is bounded below if it has a lower bound.
Upper bound/boundedness of F is defined as the lower bound/boundedness of

F : A op → A op with respect to the dual filtration on A op (Remark 18).

Thus, uniformly boundedness of loops in A means boundedness below of the
functor 	 : A → A . 	 also has 0 as an upper bound by Lemma 14.

We obtain from the following, that a uniform lower bound for loops also gives an
upper bound of the suspension functor.

Lemma 46 Let A , B be filtered stable (∞, 1)-categories, and let F : A → B be
a functor which has a right adjoint G. Then an integer b is a lower bound of F if
and only if −b is an upper bound of G.

Proof For an integer b, the composite

A≥r A B B<r+bF ( )<r+b

is null if and only if the composite of the right adjoints

A≥r A B B<r+b( )≥r G

is null, since either adjoint of a null functor is null. �
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Proposition 47 Let A be a filtered stable (∞, 1)-category with ˆA its completion.
If the completion is exact, then the canonical tower

ˆA −→ · · · −→ A <r −→ A <r−1 −→ · · ·

makes ˆA into a complete filtered stable (∞, 1)-category.

Proof As we have remarked in Example 29, for every r ,A <r ⊂ ˆA as full subcate-
gories ofA . It follows that the restriction to ˆA of the localization functorA → A <r

is a left localization. A complementary right localization to this is given byA≥r ∩ ˆA .
It is easy to verify that every object of ˆA is complete with respect to this filtration

of ˆA . �

Lemma 48 LetA be a filtered stable (∞, 1)-category with ˆA its exact completion.
Then any class of limits which exist in A (and therefore also in ˆA by Lemma 14)
and are uniformly bounded, have the same uniform lower bound in ˆA .

Proof Lemma 14 in fact states that ˆA is closed under the limits which exists in
A . The result follows since the full subcategory ˆA ≥r in the filtration of ˆA is just
A≥r ∩ ˆA as a full subcategory of A . �

5 Totalization in a Filtered Category

LetΔ f denote the subcategory of the categoryΔ of combinatorial simplices (or finite
non-empty totally ordered sets), where only face maps (maps strictly preserving the
order of vertices) are included. A covariant functor X• : Δ f → A is a cosimplicial
object ‘without degeneracies’ ofA . Its totalization Tot X• is by definition, the limit
over Δ f of the diagram X•.

The following important result gives a useful sufficient condition for the preser-
vation of the totalization of a cosimplicial object without degeneracies.

Proposition 49 LetA ,B be filtered stable (∞, 1)-categorieswhich have sequential
limits, and let F : A → B be an exact functor which is bounded below. Assume that
loops and sequential limits are uniformly bounded in A , and B̂ is the completion
of B.

Let X• : Δ f → A be such that there exists a sequence r = (rn)n of integers,
tending to ∞ as n → ∞, such that for a uniform lower bound ω for loops, and for
every n, Xn belongs to A≥−ωn+rn . Then the canonical map

F(Tot X•) −→ Tot FX•

is an equivalence after completion.
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Proof According to the sequence of full subcategories

Δ f ⊃ · · · ⊃ Δ
≤n
f ⊃ Δ

≤n−1
f ⊃ · · · ,

where objects of Δ
≤n
f are simplices of dimension at most n, we have the sequence

Tot X• −→ · · · −→ skn Tot X
• −→ skn−1 Tot X

• −→ · · ·

such that Tot X• = limn skn Tot X•, where “skn Tot” is a single symbol representing
the operation of taking the limit over Δ

≤n
f .

It is standard that the fibre of the map skn Tot X• → skn−1 Tot X• is equivalent to
	n Xn . It follows from our assumption that this belongs to A≥rn . It follows that the
fibre of the map Tot X• → skn Tot X• belongs to A≥rn+d for d a uniform bound for
sequential limits.

It follows that thefibre of themap F(Tot X•) → skn Tot FX• belongs toB≥rn+d+b

for a bound b of F . By taking the limit over n, we obtain the result from Lemma 51.
�
Remark 50 The fibre of themap skn Tot X• → skn−1 Tot X• for a usual cosimplicial
object X• with degeneracies is slightly more complicated to describe.

Lemma 51 Let A be a filtered stable (∞, 1)-category with ˆA its completion.
Suppose given a map of inverse systems

· · · Xi Xi+1 · · ·

· · · Yi Yi+1 · · ·
fi fi+1

in A , and suppose there is a sequence (ri )i of integers, tending to ∞ as i → ∞,
such that the fibre of fi belongs to A≥ri for every i .

Then the map limi fi : limi Xi → limi Yi is an equivalence after completion.

Proof This follows from Lemma 34, Proposition 33 and Lemma 12. �
Proposition 52 LetA ,B be filtered stable (∞, 1)-categories, and let F : A → B
be an exact functor which is bounded below. Assume that B̂ is the completion ofB.
Let X• : Δ

op
f → A be such that there exists a sequence r = (rn)n of integers, tending

to ∞ as n → ∞, such that for every n, Xn belongs toA≥rn . Then the canonical map

|FX•| −→ F |X•|

is an equivalence after completion.

Proof The proof of this is simpler. One simply notes that the full subcategory A≥r

of A is closed under any colimit by Lemma 14, and similarly in B. It follows that
the fibre of the map in question belongs to B≥∞, and we conclude by applying
Proposition 33 and Lemma 12. �
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6 Monoidal Structure on a Filtered Category

6.1 Monoidal Filtered Category

By a monoidal structure on a stable (∞, 1)-category A , we mean a monoidal
structure on the underlying (∞, 1)-category of A whose multiplication operations
are exact in each variable.

Definition 53 Let A be a filtered stable (∞, 1)-category, and let ⊗ be a monoidal
structure on the stable (∞, 1)-category (underlying) A . We say that the monoidal
structure is compatible with the filtration on A if for every finite totally ordered
set I , and every sequence r = (ri )i∈I of integers, the functor

⊗
I : A I → A takes

the full subcategory
∏

i∈I A≥ri of the source, to the full subcategory A≥∑
I r of the

target.
We call a filtered stable (∞, 1)-categoryA equipped with a compatible monoidal

structure a monoidal filtered stable (∞, 1)-category. If the monoidal structure is
symmetric, then it will just be a symmetric monoidal filtered (∞, 1)-category.

Remark 54 Even though both filtration and monoidal structure are self-dual notion
on a stable (∞, 1)-category, compatibility of these two kinds of structures is not self-
dual. Indeed, boundedness below in A op means boundedness above in A . Instead,
Lemma 46 implies that the internal hom functor would have suitable boundedness
above on a symmetric monoidal stable (∞, 1)-category.

Example 55 Let k be a connective E∞-ring in either chain complexes or spectra,
and let A be the stable (∞, 1)-category of k-modules. Then the monoidal structure
onA by the (derived) tensor product over k, is compatible with the filtration defined
by the connectivity of the underlying spectra (Example 20).

Example 56 In the case whereA is a functor category with Goodwillie’s filtration,
if the target category of the functors is a symmetric monoidal stable (∞, 1)-category,
then the pointwise symmetric monoidal structure on A op is compatible with the
filtration. Note Remark 18.

Let B be a symmetric monoidal stable (∞, 1)-category. Assume the following.

Assumption 57

• B has all small colimits.
• The monoidal multiplication functors on B preserve colimits variable-wise.

Then, the (∞, 1)-category A = Fun(Z,B) of filtered objects can be equipped
with a symmetric monoidal structure by the Day convolution, using the symmetric
monoidal structure of the poset Z (see Sect. 2) given by the operations of addition.

Explicitly, if X = (FnX)n and Y = (FnY )n are objects of A , then we have X ⊗
Y ∈ A defined by
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Fn(X ⊗ Y ) = colimi+ j≥n(Fi X ⊗ FjY ).

This monoidal multiplication preserves colimits variablewise.
The filtration onA is obviously compatible with the monoidal structure onA op.

Note Remark 22.
The following can also be verified.

Proposition 58 ([13]) The symmetric monoidal structure onA is compatible with
the filtration on A .

6.2 Completion of a Monoidal Structure

Definition 59 Let A be a monoidal filtered stable (∞, 1)-category with ˆA com-
pleting the filtration. Then we say that the monoidal structure is completable if there
is a monoidal structure on ˆA such that the completion functorA → ˆA is monoidal.

Remark 60 Together with a monoidal structure of the completion functor, the
monoidal structure on ˆA will be uniquely determined. For example, the monoidal
operations on ˆA in the completable case will be describable as the composites

ˆA n A n A ˆA .
⊗ ˆ( )

Proposition 61 ([13]) Let A be a filtered stable (∞, 1)-category with ˆA being its
exact localization. Then a monoidal structure of A is completable if and only if for
every integer n ≥ 0, the monoidal product

⊗n
i=0 Xi for a sequence Xi , 0 ≤ i ≤ n,

of objects of A necessarily belongs to the full subcategory A≥∞ of A whenever
Xi ∈ A≥∞ for some i .

Proposition 62 ([13]) LetA be a monoidal filtered stable (∞, 1)-category with ˆA
its exact completion. If the monoidal structure on A is completable, then ˆA with
the induced structures is a monoidal (complete) filtered stable (∞, 1)-category.

The Day symmetric monoidal structure on the (∞, 1)-category of filtered objects
A = Fun(Z,B) is obviously completable in A op. Note Remark 22.

The following can also be verified.

Proposition 63 ([13]) The monoidal structure on the filtered (∞, 1)-category of
filtered objects in B as in Proposition 58, is completable in the case where B is
closed under the sequential limits.
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7 Applications to the Koszul Duality

7.1 Notation

Results in this section will depend on analysis of cobar constructions. We denote the
cobar construction by B, instead of	, which is traditional but can easily be confused
with the looping functor in our exposition.

7.2 Fundamental Results

We would like to discuss applications of the notions and results which we have
described in the previous sections.

Given an augmented En-algebra A, its augmentation ideal is by definition, the
fibre of the augmentation map ε : A → 1. In particular, this definition applied in the
opposite category specifies what the augmentation ideal of an augmented coalgebra
is.

Definition 64 Let A be a symmetric monoidal filtered stable (∞, 1)-category. An
augmented En-algebra A is said to be positive if its augmentation ideal belongs to
A≥1.

An augmented En-coalgebra C inA is said to be copositive if there is a uniform
bound ω for loops in A such that the augmentation ideal of C belongs to A≥1−nω.

Note also Definition 19.

Proof of Lemma 5Denote the augmentation ideal ofCi by Ii .We express the cotensor
product K01�C1K12 etc. as the totalization of the cobar construction B•(K01, I1, K12)

etc. without degeneracies (in the sense that it is a diagram over Δ f ), associated to
the actions of the non-unital coalgebra I1 etc. See Sect. 5. It is easy to check that the
usual bar construction, with degeneracies, associated to the unital coalgebra C1 etc.,
is the right Kan extension of the version here, so the totalizations are equivalent.

The source then can be written as Tot B•(K01�C1K12, I2, K23).
For every n, the functor − ⊗ I⊗n

2 ⊗ K23 is bounded below, so the assumptions
and Proposition 49 implies that

B•(K01�C1K12, I2, K23) = Tot B•(B∗(K01, I1, K12), I2, K23),

where the totalization is in the variable ∗.
However, the totalization of this is nothing but the target. �
The proof of the following is similar.

Lemma 65 ([13]) Let A be a monoidal complete filtered stable (∞, 1)-category.
Let Ai , i = 0, 1, 2, 3, be positive augmented algebras in A , and let Ki,i+1 be a left
Ai - right Ai+1-bimodule for i = 0, 1, 2, whose underlying object is bounded below.
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Then the resulting map

K01 ⊗A1 K12 ⊗A2 K23 −→ (K01 ⊗A1 K12) ⊗A2 K23

is an equivalence, where the source denotes the realization of the obvious bisimplicial
bar construction (dual to the corresponding construction in Lemma 5).

One uses Proposition 52 instead of Proposition 49.

7.3 Positivity of the Koszul Dual

Let us turn to the Koszul duality.
LetA be amonoidal filtered stable (∞, 1)-categorywith uniformlybounded loops

and sequential limits. Then iterated application of the following lemma implies for a
copositive augmented En-coalgebra C inA , that its Koszul dual algebra is positive.

Lemma 66 Let A be a monoidal filtered stable (∞, 1)-category with uniformly
bounded loops and sequential limits. Let C be an augmented associative coalgebra
in A . Assume that, for an integer r ≥ 1 and a uniform bound ω for loops in A , the
augmentation ideal of C belongs to the full subcategory A≥r−ω of A .

Let η : C → 1 be the unit map of C. Then the fibre of the map η! : C ! → 1! = 1
in A belongs to the full subcategory A≥r of A .

Proof Let J be the augmentation ideal of C , so J ∈ A≥r−ω. Since we have Corol-
lary 13, it suffices to prove that the fibre of each of the following obvious maps
belongs to A≥r :

C ! = Tot B•(1, J, 1) −→ sk−d Tot B
•(1, J, 1)

−→ sk0 Tot B
•(1, J, 1) = 1,

where d ≤ 0 is a uniform lower bound for sequential limits in A . We shall prove

Fibre[Tot B•(1, J, 1) → sk−d Tot B
•(1, J, 1)] ∈ A≥r . (66)

The other part is simpler.
In order to prove (66), by theDefinition 36 of a uniform lower bound for sequential

limits, it suffices to prove that the fibre of the map

skn Tot B
•(1, J, 1) −→ sk−d Tot B

•(1, J, 1)

belongs toA≥r−d for all n ≥ −d + 1. However, this follows fromCorollary 13, since
for every k ≥ −d + 1, the fibre 	k Bk(1, J, 1) = 	k J⊗k of the map
skk Tot B•(1, J, 1) → skk−1 Tot B•(1, J, 1) belongs to A≥kr ⊂ A≥r−d . �
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With similar but simpler arguments using the dual of Lemma 14, one obtains the
following.

Lemma 67 Let A be a monoidal filtered stable (∞, 1)-category. If looping trans-
lates the filtration of A in the sense of Definition 68 below, then the Koszul dual of
a positive augmented En-algebra in A is a copositive augmented En-coalgebra.

Definition 68 LetA be a filtered stable (∞, 1)-category. Then we say that looping
translates the filtration ofA , or looping is translational inA , if there is a uniform
lower bound ω for loops in A for which −ω is a lower bound of the functor 
 =
	−1 : A → A . Equivalently (by Lemma 46), ω which is also an upper bound of the
functor 	.

Example 69 A t-structure on a stable (∞, 1)-category is equivalent to a filtration
with respect to which the loop functor is bounded above and below by −1. See
Example 20.

In the (∞, 1)-category of filtered objects and in a functor category with Good-
willie’s filtration (Sect. 2), the loop functor is bounded above and below by 0.

Remark 70 In general, if looping translates the filtration ofA , and if there exists an
integer r for which A≥r+1 is a proper subcategory of A≥r , and equivalently, A <r

is a proper subcategory of A <r+1, then a lower bound ω of 	 : A → A for which
−ω is an upper bound of 
 : A → A , must be the greatest lower bound of 	. It
follow by duality, that ω must also be the least upper bound of 	. Note Lemma 46.

The following proposition might be clarifying.

Proposition 71 Let A be a filtered stable (∞, 1)-category. Then an integer ω is a
lower and an upper bound of the functor 	 : A → A if and only if for every integer
r and every object X ∈ A , we have an equivalence (	X)<r+ω  	(X<r ) in A .

Proof If ω is a lower and upper bound of 	, then, since in the cofibre sequence

	(X≥r ) −→ 	X −→ 	(X<r ),

the fibre and the cofibre will respectively be in A≥r+ω and be in A <r+ω, we have
that the map 	X → 	(X<r ) induces an equivalence (	X)<r+ω ∼−→ 	(X<r ) by
Lemma 12.

Conversely, supposewe have equivalences (	X)<r+ω  	(X<r ). Then for X∈A
belonging to A <r , this implies that 	X = 	(X<r ) belongs to A <r+ω, so 	 takes
the full subcategory A <r of A to the full subcategory A <r+ω. For X belonging to
A≥r , we obtain (	X)<r+ω  	(X<r )  0, so 	 takes the full subcategory A≥r to
A≥r+ω. �
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7.4 Koszul Duality

The case n = 1 of Theorem 2 is implied by Theorems 72 and 73 below. The case for
an arbitrary n is also obtained by iterating the arguments.

Let A be an augmented associative algebra. Then, for a right A-module K , we
define a right A!-comoduleDAK as K ⊗A 1. Dually, ifC is an augmented associative
coalgebra, then for a rightC-comodule L , we have a rightC !-moduleDC L = L�C1.

Theorem 72 ([13]) Let A be a monoidal complete filtered stable (∞, 1)-category
with uniformly bounded sequential limits and translational looping.

Let A be a positive augmented associative algebra in A , and K be a right
A-module which is bounded below. Then the canonical map K → DA!DAK is an
equivalence (of A-modules). In particular, the canonicalmap A → A!! (of augmented
associative algebras) is an equivalence.

Theorem 73 ([13]) Let A be a monoidal complete filtered stable (∞, 1)-category
with uniformly bounded loops and sequential limits. Let C be a copositive augmented
associative coalgebra in A , and let K be a right C-comodule which is bounded
below. Then the canonical map DC !DC K → K is an equivalence (of C-comodules).
In particular, the canonical map C !! → C (of augmented associative coalgebras) is
an equivalence.

We recognize that the following result is obtained.

Theorem 74 (Cf. [13]) Let A be a monoidal complete filtered stable (∞, 1)-
category with uniformly bounded sequential limits and translational looping. Let
C be a copositive augmented associative coalgebra in A . Then the functor

DC : ComodC,>−∞(A ) −→ ModC !,>−∞(A )

is an equivalence with inverse DC ! , where ComodC,>−∞(A ) denotes the (∞, 1)-
category of bounded below right C-comodules in A .

These theorems follow from Lemmata 75 and 76 below either by using the Barr–
Beck arguments [12] or by more concrete arguments as in [13].

Lemma 75 Let A be a monoidal complete filtered stable (∞, 1)-category with
uniformly bounded loops and sequential limits. Let C be a copositive augmented
associative coalgebra in A . Then the functor

−�C1 : ComodC,>−∞(A ) → A

reflects equivalences.

For an associative algebra A inA≥0, let ModA,≥r (A ) denote the (∞, 1)-category
of right A-modules in A≥r .
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Lemma 76 Let A be a positive augmented associative algebra in a monoidal com-
plete filtered stable (∞, 1)-categoryA . Then, the functor− ⊗A 1 : ModA,≥r (A ) →
A≥r reflects equivalences.

The proofs of these lemmata are similar to each other. We shall first look at the
proof of Lemma 76, which requires fewer assumptions.

We shall use the next lemma. LetA be amonoidal complete filtered stable (∞, 1)-
category, and let A be a positive augmented associative algebra inA . Then we define
the powers of the augmentation ideal I of A by I r := I⊗Ar . This is unambiguous in
view of Lemma 65. Note that multiplication of A gives an A-bimodule map I r → I s

whenever r ≥ s. Denote the cofibre of this map by I s/I r . When s = 0, this, A/I r ,
is an A-algebra.

Lemma 77 LetA be a monoidal filtered stable category with ˆA completing it, and
let A be a positive augmented associative algebra in A .

Let K be a right A-module which is bounded below. Then the map K →
limr K ⊗A A/I r is an equivalence after completion.

Proof Since the fibre of the map A → A/I r (namely I r ) belongs toA≥r , the result
follows from Lemma 51. (Write K as K ⊗A A.) �

Proof of Lemma 76 Suppose an A-module K inA≥r satisfies K ⊗A 1  0. We want
to show that K  0.

In order to do this, it suffices, from the previous lemma, to prove K ⊗A

(I s/I s+1)  0 for all s ≥ 0. However, I s/I s+1  1 ⊗A I s as a left A-module. �
Proof of Lemma 75We would like to apply the arguments of the proof of Lemma 76.
We simply need to establish the counterpart of Lemma 77. Thiswill be simpler except
that we need to use Lemma 78 below. �

The proof of the following lemma is similar to the proof of Lemma 66, but is
simpler.

Lemma 78 ([13]) Let A be a monoidal filtered stable (∞, 1)-category with uni-
formly bounded loops and sequential limits. Let C be a copositive augmented coal-
gebra, K a right C-comodule, and L a left C-comodule, all in A . If for integers
r and s, (the underlying object of) K belongs to A≥r , and L belongs to A≥s , then
K�C L belongs to A≥r+s .

Techniques which establishes Theorem 6 are not very different.

7.5 Constructions of Positive Algebras

Let us see examples of positive algebras. In the case of a filtration by connectivity
(Example 20), the conditions are simply on the connectivity. We shall give examples
in filtered objects.
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Example 79 Let B be a symmetric monoidal stable (∞, 1)-category satisfying
Assumption 57. Given an augmented associative algebra A in B, the construction
of the powers I r of the augmentation ideal leads to the following associative algebra
in the filtered symmetric monoidal (∞, 1)-category A := Fun(Z,B):

· · · =←−− A
=←−− · · · =←−− A = F0A ←− F1A ←− · · · ←− Fr A ←− · · · ,

where Fr A = I r for r ≥ 0. Since F•1 = 1, the augmentation of A induces an aug-
mentation on F•A, and F•A becomes a positive augmented associative algebra in
A .

Since the monoidal structure onA was completable by Proposition 63, we obtain
a positive augmented associative algebra F̂•A in the symmetric monoidal complete
filtered stable (∞, 1)-category ˆA .

This construction can be described in a more systematic manner, and generalizes
for augmented locally constant factorization algebras. We refer the reader to [15].

Let us discuss another example.
LetB be the standard symmetric monoidal stable (∞, 1)-category of chain com-

plexes over a field k of characteristic 0. Let g be a dg Lie-algebra over k. Then the
Chevalley–Eilenberg complex C•g = (Sym∗(
g), d) (where 
 = ( )[1] is the sus-
pension functor, and the differential d is the sum of the internal differential from g
and the Chevalley–Eilenberg differential) can be refined to give a filtered object of
B:

· · · −→ 0 −→ · · · −→ 0 = F1C•g −→ F0C•g −→ · · · −→ F−rC•g −→ · · · ,

where F−rC•g := (Sym≤r (
g), d), so C•g = colimr→∞F−rC•g.
It turns out that the construction F∗C• is a symmetric monoidal functor between

symmetric monoidal (∞, 1)-categories

dgLie −→ Fun(Z,B) =: A ,

where the symmetric monoidal structure on dg Lie algebras is given by the direct
sum operations (and quasi-isomorphisms are inverted) [15]. In particular, F∗C•g is
an augmented commutative coalgebra inA . InA op, F∗C•g is a positive augmented
algebra. Note Remark 22.

The En-Koszul dual of this in A op is F∗C•(	ng), where the structure of an En-
algebra of F∗C•(	ng) in A (the structure of a coalgebra in A op) comes from the
standard structure of an En-coalgebra on the sphere Sn as a pointed space.

In fact, there is a more general version of this [15] in the context of the Koszul
duality for locally constant factorization algebras. The En-Koszul duality can be
seen as the ‘local’ case of the Koszul duality for factorization algebra through the
correspondence of Theorem 8 of [16] in these proceedings, established by Lurie [12].
We refer the reader to Lurie [12, Remark 5.5.6.11] for the basic ideas.
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Some Technical Aspects of Factorization
Algebras on Manifolds

Takuo Matsuoka

Abstract We describe the basic ideas of factorization algebras on manifolds and
topological chiral homology, with emphasis on their gluing properties.

Keywords Factorization algebra · Topological chiral homology · En-algebra ·
Homotopical algebra

1 Introduction

The notion of chiral algebra and equivalently, of factorization algebra was intro-
duced by Beilinson and Drinfeld on algebraic curves [3]. There is an interesting
counterpart of this on manifolds. Following some of the pioneers of the research of
these objects on manifolds, we call them factorization algebras.

One motivation for studying factorization algebras on manifolds comes from the
central role which they play in quantum field theory, generalizing the role of chiral
algebras for conformal field theory. Namely, observables of a quantum (or a classical)
field theory having locality form a factorization algebra, and this is the structure in
terms of which one can rigorously understand quantization of a physical theory (in
perturbative sense) [6], analogously to the deformation quantization of the classical
mechanics [10].

For an approach to locally constant factorization algebras, namely, factorization
algebraswith topological invariance, Lurie has introduced and studied the topological
chiral homology [11, Chap. 5]. Similar functor has several other names; in particular,
the “factorization homology” (without necessarily requiring “topological” invariance
of the “coefficients”) [2, 6], or the “higher order Hochschild homology” (at least for
coefficients in a commutative algebra) in [13], in which the work of Anderson [1] is
mentioned for an earlier appearance of the notion.
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Factorization algebras are defined by a certain gluing property, and topological
chiral homology is another process of gluing. In the locally constant setting, more
general forms of gluing property are implied, and this leads to useful reformulations
of the basic notions. Even though this subject is inevitably technical, the results turn
out to be useful.Weplan to describe some fundamental resultswith their implications.

We rely mostly on Lurie [11], Costello and Gwilliam [6], and the present
author [12]. Other references, Ayala and Francis [2], Calaque [5], Ginot, Tradler
and Zeinalian [9], Ginot [8], on factorization algebras have also been useful.

Since the subject of factorization algebras is relatively young, we expect that the
overview which we give of some technical issues and solutions might be useful for
the reader who foresees use of factorization algebras in their research.

2 Prefactorization Algebras

A factorization algebra will be analogous to a sheaf. We first define what will corre-
spond to a presheaf in the definition of a factorization algebra.

Given amanifoldM , let us denote byOpen(M) the collection of all open subsets of
M . It is a category, in fact a poset, under the inclusion of open sets inM .Wemoreover
consider it as a multicategory, where, for a finite family of open sets U = (Us)s of
M , and an open set V , we let there be exactly one multimap U → V if Us’s are
pairwise disjointly included in V in M , and otherwise, we let there be no multimap.
The previous poset underlies this multicategory as the category formed with unary
multimaps as morphisms.

Following Lurie [11] we shall refer to the homotopically enriched version of a
multicategory (i.e., “coloured operad”) as an infinity operad. Recall that a symmetric
monoidal (∞, 1)-category A has an underlying infinity operad, whose objects are
objects of (the underlying (∞, 1)-category of)A , and in which, for a finite set S, an
S-ary multimap X → Y , where X = (Xs)s∈S and Xs,Y ∈ A , is a map

⊗
S X → Y

in A .

Definition 0 Let M be a manifold, and let A be a symmetric monoidal (∞, 1)-
category. Then a prefactorization algebra on M in A is a functor from Open(M)

to the underlying infinity operad of A .

3 Assumption on the Target Category

For the rest of this survey, we assume that the target (∞, 1)-category A of pref-
actorization algebras has colimits, and the monoidal multiplication functor on A
preserves colimits variable-wise.

Note that a colimit in an (∞, 1)-category is isomorphic in the homotopy category
to the homotopy colimit if the (∞, 1)-category comes e.g., from a model category,
and the latter notion is defined appropriately.
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4 Factorization Algebras

Afactorization algebrawill be required to satisfy the gluing property for the following
class of covers.

Definition 1 (Costello andGwilliam [6]) LetM be amanifold. A collection of open
sets U = {Us}s∈S of M is a Weiss cover of M if for any finite subset x of M , there
is an element s ∈ S such that x ⊂ Us .

In an earlier version of the draft [6], the authors were using what they called
factorizing covers instead of Weiss covers. The definition will be recalled shortly.
There is no difference between the two definitions in many practical situations where
the cover is closed under taking finite disjoint union. Namely, in this case, the cover
is factorizing if and only if it is Weiss.

In the casewhere the assumption is not satisfied, one can easily force the condition
by replacing S by the set of finite subsets T of S for which Ut are pairwise disjoint
for t ∈ T (and by letting UT = ⋃

t∈T Ut ⊂ M). Let us denote this new cover {UT }T
obtained from U by U�.

Definition 2 Acollectionof open setsU = (Us)s∈S of amanifoldM is a factorizing
cover of M if the coverU� of M by the unions of finite numbers of pair-wise disjoint
open sets from U , is Weiss in the sense of Definition 1.

Given a cover, the gluing in a prefactorization algebra canbe formulated in termsof
the usual Čech complex which is either a chain complex under presence of the Dold–
Kan equivalence, or (the geometric realization of) a simplicial object in general. (For
an explicit description in the case at hand, we refer the reader to [6] for the chain
complex, and to e.g., Example 16 below (see also Remark 17) for the simplicial
object.) Following Costello and Gwilliam we shall denote it by Č(U , A). For a
factorizing (rather than Weiss) cover, one should instead consider Č(U�, A).

Definition 3 (Cf. Costello andGwillam [6]) A factorization algebra on amanifold
M in a symmetric monoidal (∞, 1)-category A , is a prefactorization algebra A on
M in A , with the following properties.

• For every open set U ⊂ M and Weiss cover U of U , the canonical map

Č(U , A) −→ A(U )

is an equivalence.
• A ismonoidal in the sense that, for every disjoint open setsU, V ⊂ M , the induced
map

A(U � V ) ←− A(U ) ⊗ A(V ) (4)
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is an equivalence, as well as the canonical map

A(∅) ←− 1. (5)

We denote the (∞, 1)-category of factorization algebras on M in A by AlgM(A ).

Remark 6 Costello and Gwilliam refer to a factorization algebra in the above sense
as a strict factorization algebra [6], as oppose to a lax factorization algebra, for which
the monoidality is not required. In this survey, we only consider the strict version of
the notion.

As one consequence of the definition of a factorization algebra, Costello and
Gwilliam discuss how the (∞, 1)-category of factorization algebras satisfy the sheaf
axiom as the base manifold varies. (In that discussion [6], they mean strict factoriza-
tion algebra by “factorization algebra”.)

In Sect. 6, we shall look at the corresponding result, Theorem 25, for “locally
constant” factorization algebras (Definition 22). The question is more involved in
this case since one needs to understand in what sense the local constancy may be a
local property of a factorization algebra, which is less trivial than in the case of a
sheaf.

5 Topological Chiral Homology

Within factorization algebras, we would like to consider an analogue of locally
constant sheaves. A locally constant sheaf taking values in an (∞, 1)-category is
determined by the local system formed by its stalks. Indeed, its sections (of which
the ones which we consider are always the ‘derived’ ones) can be computed as the
local coefficient cohomology.

Topological chiral homology, introduced by Lurie [11], is an analogue of the local
coefficient cohomology, which takes “coefficients” in a “locally constant algebra”
over disks in a manifold M , and produces a factorization algebra on M . Let us
describe it.

Let M be a manifold. Then, following Lurie, we denote by Disk(M), the full sub-
multicategory of Open(M) consisting of open submanifoldsU ⊂ M homeomorphic
to an open disk (by an unspecified homeomorphism). In particular, every prefactor-
ization algebra restricts to a Disk(M)-algebra.

Definition 7 (Lurie [11] Definition 2.3.3.20) Let E be amulticategory, and letA be
a symmetric monoidal (∞, 1)-category or more generally an infinity operad. Then an
E -algebra A : E → A is said to be locally constant if it takes every unary multimap
of E to an equivalence in the underlying (∞, 1)-category ofA . We shall denote the
(∞, 1)-category of locally constant E -algebras in A as AlglocE (A ).

Given a factorization algebra A on M , if the restriction of A to Disk(M) is locally
constant over Disk(M) in this sense, then we consider A|Disk(M) as an analogue in the
analogy with sheaves, of the local system formed by the stalks of a locally constant
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sheaf. In this analogue of a local system, the stalk has more structure than just being
an object of A . Indeed, the analogue of the stalk would be the restriction of the
Disk(M)-algebra through an open embedding R

n ↪→ M , and there is the following
theorem.

Theorem 8 (Lurie [11]) The (∞, 1)-category of locally constantDisk(Rn)-algebra
is equivalent to the (∞, 1)-category of En-algebras.

FollowingLurie, let us denote byDisj(M) the full subposet ofOpen(M) generated
under the disjoint union by the objects of Disk(M) ⊂ Open(M). Namely, an open
submanifold U ⊂ M belongs to Disj(M) if and only if it is homeomorphic (by
an unspecified homeomorphism) to the disjoint union of a finite number of disks.
Disj(M) has a partially defined monoidal structure given by the disjoint union in M ,
and everyDisk(M)-algebra in a symmetricmonoidal categoryA extends uniquely to
a symmetric monoidal functor Disj(M) → A , so wemay identify these two notions.

Definition 9 (Lurie [11]) Let M be a manifold, and letA be a symmetric monoidal
(∞, 1)-category. Given a locally constant Disk(M)-algebra A (extending to a sym-
metric monoidal functor A : Disj(M) → A ), the topological chiral homology of
M with coefficients in A is the object

∫

M
A := colimDisj(M) A

of A , where the colimit is over the underlying category (poset) of Disj(M).

Remark 10 By the results of Sects. 5.4.5 and 5.5.2 of [11], the colimit in the definition
of the topological chiral homology can in fact be written as a sifted colimit. In fact,
all constructions and results which we describe on topological chiral homology and
locally constant factorization algebras will be valid under only the assumption of
Sect. 3 on the target category of prefactorization algebras for sifted colimits rather
than for all small colimits as stated there.

Since Disj as a functor is symmetric monoidal with respect to the disjoint union
of manifolds, the association

Open(M) 	 U 
−→ HF•(U, A) :=
∫

U
A ∈ A , (11)

namely, the left Kan extension to Open(M) of the functor A : Disj(M) → A , has a
unique symmetric monoidal structure which extends that of A on Disj(M).

Theorem 12 (Ginot–Tradler–Zeinalian [9]) The prefactorization algebra (11) sat-
isfies the descent for factorizing covers.

In fact, a theorem below of Lurie leads to a stronger form of gluing property for
the topological chiral homology, which simultaneously generalizes the descent for a
Weiss cover and the definition of the topological chiral homology itself.
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Consider a diagram of open sets of a topological space X , given by a functor
χ : C → Open(X), where C is a small category. In this situation, one defines for
every point x ∈ X , the full subcategory

Cx := {i ∈ C | χ(i) 	 x}

(with an abuse of notation) of C . For example, the collection {χ(i)}i∈C of open sets
of X is a cover of X if Cx �= ∅ for every point x .

The following theorem is a generalization of the Seifert–van Kampen theorem.

Theorem 13 (Lurie [11], Theorem A.3.1) Let X be a topological space. Let C be
a small category and let χ : C → Open(X) be a functor. Assume that the following
condition (14) is satisfied.

For every point x ∈ X,Cx has contractible classifying space. (14)

Denote the forgetful functor Open(X) → Space by U, where Space denotes the
standard (∞, 1)-category of topological spaces (with weak homotopy equivalences
inverted). Then the canonical map

colim
C

(Uχ) −→ X

is an equivalence in Space.

Example 15 For a manifold M , the inclusion Disk(M) ↪→ Open(M) satisfies the
condition (14) for Theorem13 since for every x ∈ M , the posetDisk(M)x is directed.
Therefore, the natural map

hocolim
D∈Disk(M)

D −→ M

is a weak homotopy equivalence. Note that the source is equivalent to BDisk(M)

since the homotopy colimit is over a diagram which is weakly homotopy equivalent
to the terminal diagram.

This manner of considering a cover in terms of a diagram of open sets is actually
useful.

Example 16 Suppose given an open cover U = {Us}s∈S of M indexed by a set S.
Denote byΔ/S the category of combinatorial simplices whose vertices are labeled

by elements of S. Namely, its objects are finite non-empty ordinal I equipped with
a set map s : I → S. Then the cover determines a functor χ : (Δ/S)

op → Open(M)

by
(I, s : I → S) 
−→ Us :=

⋂

i∈I
Us(i).

Given a prefactorization algebra A on M , the Čech object Č(U , A) for U is
equivalent to colim(Δ/S)op A.
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Remark 17 In Example 16, the left Kan extension of χ (with target category
replaced e.g., by the (∞, 1)-category of presheaves on M) along the forgetful functor
(Δ/S)

op → Δop is the usual hypercover associated to the original cover, and the Čech
complex is the usual geometric realization for this hypercover.

The mentioned gluing property is given by the following, ‘factorizing’ analogue
of Theorem 13. Given a functorχ : C → Open(M), we consider for a subset x ⊂ M ,
the full subcategory

Cx := {i ∈ C | x ⊂ χ(i)}

of C .

Theorem 18 ([12]) Let M be amanifold. LetC be a small category and letχ : C →
Open(M) be a functor. Assume that the following condition is satisfied.

For any non-empty finite subset x ⊂ M,Cxhas contractible classifying space.
(19)

Let A be a locally constant Disk(M)-algebra in a symmetric monoidal (∞, 1)-
category A satisfying our conditions stated in Sect.3. Then the canonical map

∫

M
A ←− colimi∈C

∫

χ(i)
A

is an equivalence.

Example 20 The open cover of M given by the inclusion Disj(M) ↪→ Open(M)

satisfies the condition (19). Theorem 18 agrees in this case with the definition of the
topological chiral homology.

Example 21 Let U be an open cover of a manifold M , and consider the functor χ

of Example 16. Then it is immediate to see that χ satisfies the condition (19) if (and
only if) the cover is Weiss.

Theorem 18 in this case (applied on every open U ⊂ M) gives an alternative
proof that the prefactorization algebraHF•(−, A) constructed from a locally constant
Disk(M)-algebra A is a factorization algebra.

We shall denote the (∞, 1)-category of locally constant Disk(M)-algebras in a
symmetricmonoidal category or an infinity operadA asAlglocM (A ). In the casewhere
A satisfies the assumptions of Sect. 3, we consider AlglocM (A ) as a full subcategory
of prefactorization algebras on M by the embedding A 
→ HF•(−, A), and then
AlglocM (A ) is contained in AlgM(A ).

Definition 22 A factorization algebra on amanifoldM in a symmetricmonoidal cat-
egoryA is said to be locally constant if it belongs to the full subcategory AlglocM (A )

of AlgM(A ).

Here is another important example. Let I denotes the interval [−∞,∞], and
let p : M → I be a smooth map such that the restriction p : p−1(−∞,∞) →
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(−∞,∞) is the projection of a locally trivial smooth fibre bundle. Then M =
p−1[−∞, 0] ∪p−1{0} p−1[0,∞]. Thus, the codimension 1 submanifold N := p−1{0}
⊂ M divides M into two pieces, and the normal bundle of N , identified with the
tubular neighbourhood T := p−1(−∞,∞) of N in M , can be trivialized so that
p : T → R

1 will be the projection. Conversely, p may be constructed essentially
from such data (of division and trivialization).

Let Disj(I ) denote the poset of open subsets of I which is the disjoint union of
a finite number of intervals (each open in I ), but is not equal to the whole I . Then
Theorem 18 apply to the cover of M given by the functor

p−1 : Disj(I ) −→ Open(M),

so, given a locally constant factorization algebra A on M , the canonical map

colim
D∈Disj(I )

A(p−1D) −→ A(M) (23)

will be an equivalence. This colimit has a concrete description as follows.
In this situation, A

(
p−1(−∞,∞)

)
acquires the structure of an associative alge-

bra in A , which acts on A
(
p−1[−∞,∞)

)
from the right (say, depending on the

conventions), and on A
(
p−1(−∞,∞]) from the other side. (We in fact have a fac-

torization algebra p∗A := A ◦ p−1 on I which is locally constant along each of the
strata {±∞}, R

1 of I . The mentioned structure results from this. For example, the
associative algebra is p∗A|R1 . Note Theorem 8.)

Theorem 24 (Cf. Lurie [11], Theorem 5.5.3.11) The colimit in (23) is naturally
equivalent to p∗A[−∞,∞) ⊗p∗A(−∞,∞) p∗A(−∞,∞].

We shall see a simple example of this in Sect. 6

6 Descent Properties of Factorization Algebras

In this section, we would like to explain how the following theorem can be proved.
Let Man denote the category of manifolds and open embeddings.

Theorem 25 ([12], cf. Costello and Gwilliam [6]) The presheaf M 
→ AlglocM (A )

onMan of (∞, 1)-categories is a sheaf.

As mentioned in Sect. 4, the similar theorem in the non-locally constant setting
is obtained by Costello–Gwilliam [6]. In locally constant setting, we need to solve
an additional problem of whether local constancy of a factorization algebra is a
‘local’ property in some useful manner. We shall describe useful theorems obtained
in answering this question.

Theorem 26 Let M be a manifold, and let E ⊂ Disj(M) (⊂ Open(M)) be a full
subposet which is solid in the sense that if V,W ∈ Disj(M) are disjoint and V � W ∈
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E , then V ∈ E (and W ∈ E ). Assume the Hypotheses 29 below. Then a symmetric
monoidal functor A : Open(M) → A is a locally constant factorization algebra on
M if and only if it satisfies the following.

Let E1 := E ∩ Disk(M).

1 A sends every morphism in E1 to an equivalence.
2 The underlying functor of A is a left Kan extension of its restriction to E .

In other words, any pair E1 ⊂ E satisfying the hypotheses can replace the
pair Disk(M) ⊂ Disj(M) in the definition of a locally constant factorization alge-
bra/topological chiral homology.

Remark 27 E is not assumed to be closed under the disjoint union in Disj(M).

In order to formulate the necessary hypotheses, for a solid full subposet E ⊂
Disj(M) as in Theorem 26, consider the following (not full) submulticategory of
Disk(M), which we shall denote by �E 1. The objects of �E 1 are the objects of E1, and�E 1 is generated by the following form of multimaps in Disk(M) between objects
belonging to E1. Namely, for a finite set S, the multimap D → E in Disk(M) for
D = (Ds)s∈S , Ds, E ∈ E1 (thus D is pair-wise disjoint, and

⊔
S D ⊂ E inM) should

belong to �E 1 if
⊔

S D ∈ E , and we let �E 1 be the smallest submulticategory of
Disk(M) containing all these multimaps. Note that the poset E1 underlies this mul-
ticategory. Solidness of E implies that any map in E is the disjoint union of a finite
number of generating multimaps

⊔
S D → E of �E 1.

For an object V ∈ E1 and a finite set S, denote by ES(V ), the full subposet of the
direct product (E1)S consisting of S-labeled families D ∈ (E1)S for which there is
an S-ary multimap D → V in �E 1.

Example 28 IfE is thewholeDisj(M), then �E 1 = Disk(M), andES(V ) = DisjS(V ),
where, for any manifold U , we denote by DisjS(U ), the poset of pair-wise disjoint
S-labeled families of open disks inU . In the proof of [11, Lemma 5.4.5.11] of Lurie,
it is proved (using the generalized Seifert–van Kampen theorem 13) that the clas-
sifying space of DisjS(U ) is equivalent to the labeled (by S) configuration space
of U .

Hypothesis 29 a. For every U ∈ Open(M), the inclusion functor E/U →
Open(M)/U = Open(U ) satisfies the instance on U of the condition (19).

b. The inclusionE1 ↪→ Disk(M) induces an equivalence BE1
∼−→ BDisk(M) � M ;

see Example 15.
c. For every object V ∈ E1 ⊂ E and a finite set S, the inclusion ES(V ) ↪→

DisjS(M)/V = DisjS(V ) induces an equivalence on the classifying space.

Remark 30 • It follows from Example 28, that the condition (c) is automatically
satisfied for S of cardinality up to 1.

• It follows from Theorem 13 that a sufficient condition for the condition (b) is that
the inclusion χ : C := E1 ↪→ Open(M) satisfies the condition (14).
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There is a sufficient condition for the condition (c) which can be checked easily
in practice. For every object V ∈ E1 and an injection x : S ↪→ V , S 	 s 
→ xs ∈ V ,
define the full subposet ES(V, x) ⊂ ES(V ) as consisting of S-labeled family D =
(Ds)s∈S ∈ ES(V ), Ds ∈ E1, such that xs ∈ Ds in V for every s ∈ S.

Proposition 31 The condition (c) is satisfied if, for every injection x : S ↪→ V , the
poset ES(V, x) has contractible classifying space.

This follows from the generalized Seifert–van Kampen theorem 13. See the proof of
[11, Lemma 5.4.5.11] of Lurie.

The following is a situation where the hypotheses are satisfied.

Example 32 We can take E as follows. Suppose M is the interior of a compact
manifold �M with boundary. We let E be such that U ∈ Disj(M) belongs to E if and
only if there exists an smooth immersion i : D → �M , where D is the coproduct of
a finite number of closed disks, such that i restricts to a diffeomorphism from the
interior of D to U .

The key to the proof of Theorem 26 is the following theorem, which follows
immediately from Theorem 2.3.3.23 and (the proof of) Theorem 5.4.5.9, of Lurie’s
book [11].

Theorem 33 Let M be a manifold, and let E be a solid full subposet of Disj(M)

(see the formulation of Theorem 26). Assume the conditions (b), (c) of Hypothesis 29.
Then, for everymulticategoryM , the following restriction functor is an equivalence:

AlglocM (M ) −→ Algloc�E 1
(M ); (34)

see Definition 7.

Proof (Proof of Theorem26)Necessity of the assumptions follows fromTheorem18.
For sufficiency, the most non-trivial point is that the assumptions implies that A is

locally constant (on the whole Disk(M)). However, Theorem 33 gives a locally con-
stant factorization algebra which coincides with A on E , and then this will coincide
with A as a prefactorization algebra by the necessity part of the proof. �

(Outline of proof of Theorem 25) Let a cover of a manifold M be given by U =
(Us)s∈S where S is an indexing set. Let C := (Δ/S)

op be as in Example 21, and
define χ : C → Open(M) in the way described there. We would like to prove that
the restriction functor

AlglocM (A ) −→ lim
i∈C

Alglocχ(i)(A ) (35)

is an equivalence.
We can write the limit in the target as an algebra over the following multicategory

E1, and then apply Theorem 33.
For an open disk D ∈ Disk(M), define

CD := {i ∈ C | D ⊂ χ(i)}.
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Then this is either empty or has contractible classifying space. Indeed, CD =
(Δ/SD )op, where SD := {s ∈ S | D ∈ Us}.

Define E1 to be the full submulticategory of Disk(M) consisting of disks D such
that CD is non-empty. Then Hypothesis 29 is satisfied where E ⊂ Disj(M) consists
of disjoint unions of the disks belonging to E1. �

Example 36 Take distinct two points xi , i = 0, 1 on a circle S1, and cover S1 by
the open sets Ui := S1 − {xi }. Using a framing of S1, Ui or each component of
U0 ∩U1, which we shall denote by V and W , can be identified with R

1 up to a
contractible space of choices of framed diffeomorphisms. Therefore, locally constant
factorization algebras on each of these manifolds can canonically be identified with
associative algebras. Therefore, a locally constant factorization algebra on S1 is
obtained by giving associative algebras Ai on Ui and identifications of them on V
and on W .

Let us consider A0 = A1 =: A by using the identification on V . Then the identi-
fication on W gives us an automorphism τ : A → A. For this factorization algebra
on S1, which we shall denote by B, we obtain from Theorem 24 (by cutting S1 into
two pieces, on the side of x0, and on the side of x1) an equivalence

B(S1) � A0 ⊗A⊗Aop A1 � HH•(A, Aτ ),

where the right hand side is the Hochschild homology object inA with coefficients
in Aτ , the A–A-bimodule A twisted by τ . In other words, we have

∫

S1
B = HH•(A, Aτ )

where B on the left hand side denotes the corresponding locally constant Disk(S1)-
algebra.

7 Product Formulae on Factorization Algebras

We would like to give further illustration of use of Theorem 33.
LetA be a symmetric monoidal (∞, 1)-category satisfying the assumption stated

in Sect. 3.

Theorem 37 (Cf. Ginot [8], Calaque [5]) Let B, F be manifolds. Then, the restric-
tion functor

AlglocF×B

(
A

) −→ AlglocB
(
AlglocF (A )

)

is an equivalence of symmetric monoidal (∞, 1)-categories.

Remark 31 If one swaps the factors of B × F , then on the side of algebras, one
recovers the canonical equivalence AlglocB (AlglocF ) � AlglocF (AlglocB ).
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(Outline of proof of Theorem 37)To first give a technical remark, the (∞, 1)-category
AlglocF has sifted colimits, and they are preserved by the tensor product (since these
are the same colimits and tensor product on the underlying objects). Therefore, in
view of Remark 10, locally constant factorization algebras in AlglocF (A ) are within
our framework.

The restriction functor is symmetric monoidal since the symmetric monoidal
structures on the (∞, 1)-categories of algebras are value-wise, so it suffices to prove
that it is an equivalence of (∞, 1)-categories.We obtain this by applying Theorem33.

Let M := F × B. We let E be the solid full subposet of Disj(M) consisting of
those object D for which there exists objects D′ of Disj(B) and D′′ of Disj(F), such
that any component of D is a component of D′ × D′′ ⊂ M .

Theorem 33 applies to this E , and we obtain that the restriction functor AlglocM →
Algloc�E 1

is an equivalence.

However, the restriction functor Algloc�E 1
→ AlglocDisk(B)(Alg

loc
Disk(F)) can directly be

seen to be an equivalence.
For example, a locally constant factorization algebra onR

2 is the same as an asso-
ciative algebra in the (∞, 1)-category of associative algebras since a locally constant
factorization algebra on R

1 can be directly seen to be the same as an associative
algebra.

Inductively, a locally constant factorization algebra onR
n is an iterated associative

algebra object.

Remark 39 The proof by Ginot [8] of Theorem 37 is by relying on a theorem of
Dunn [7] on Boardman–Vogt’s “little cubes” [4]. The proof outlined above (where
we have essentially followed [12]) is independent of Dunn’s theorem.

Remark 40 On a product manifold M = B × F , Theorem 26 applies also to the
solid full subposet of Disj(M) consisting of the disjoint unions of disks in M of
the form D′ × D′′ for disks D′ in B and D′′ in F . The result we obtain is another
description of the (∞, 1)-category AlglocM , namely as the (∞, 1)-category of ‘locally
constant’ algebras on this basis of topology for M .

Iterating this, one finds a description of the (∞, 1)-category of locally constant
algebras on R

n which identifies it essentially with the (∞, 1)-category of algebras
over the little cubes. Therefore, Theorem 37 also proves Dunn’s theorem.

Remark 41 A version of Theorem for general (i.e., not assumed locally Formulae)
factorization algebras is described by Calaque in [5] with a (sketch of) proof by a
strategy similar to ours. Namely, he introduces the notion of factorizing basis as
Definition 42 below, using the similar condition as the condition (a) of Hypothe-
sis 29. Then he applies a theorem [5, Theorem 2.1.9] which corresponds in a way, to
Theorem 26.

We remark that the theorem for locally constant algebras may not be a corollary of
this since comparison of the “locally constant” objects throughCalaque’s equivalence
would perhaps not be straightforward.
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Definition 42 (Claque [5]) A factorizing basis of M is a collectionB of open sets
of M such that for any U ∈ Open(M), the collection B/U := {V ∈ B | V ⊂ U } is
a factorizing cover of U (Definition 2).

Remark 43 This is different from the notion of factorizing basis used by Costello
and Gwilliam [6].

Finally, we shall state a natural generalization of Theorem 37, in which the source
and the target of the algebras are twisted.

Namely, we consider algebras on the total space E of a fibre bundle taking values
in a locally constant factorization algebra A of (∞, 1)-categories on E . Then, as a
twisted version of AlgF in Theorem 37, one can construct a locally constant factor-
ization algebra AlgE/B(A ) of (∞, 1)-categories on the base manifold B of the fibre
bundle.

Theorem 44 ([12]) Let B be a manifold, and let E → B be a smooth fibre bundle
over B. For a locally constant factorization algebra A on E of (∞, 1)-categories,
there is a natural equivalence

AlgE (A )
∼−−→ AlgB(AlgE/B(A ))

of (∞, 1)-categories, given by a suitable ‘restriction’ functor.

Remark 45 For this theorem, no assumption on sifted colimits are needed forA . If
A is instead a single fixed symmetric monoidal (∞, 1)-category, there is actually a
slight difference between an algebra in A (for which Theorem 37 may fail without
assumption on sifted colimits), and an algebra taking values in the ‘constant’ algebra
at A (to which Theorem 44 always applies). The assumption on sifted colimits
simply ensures equivalence of these two notions of an algebra.

Acknowledgements The author is grateful to the anonymous referee for the fair criticism and
helpful suggestions.

Appendix

A Factorization Algebra on an Orbifold

1 Let A be as in Sect. 3. Then Theorem 25 implies that the contravariant func-
tor M 
→ AlglocM (A ) on the category Man of manifolds and open embeddings,
extends uniquely to a sheaf on the category (enriched in groupoids) of orbifolds
and local diffeomorphisms (or “étale” maps) between them. Indeed the (∞, 1)-
(or 2-) categories of sheaves (of e.g., (∞, 1)-categories) on these categories are
equivalent.
For an orbifold X , it would perhaps make sense to refer to the value associated to
X by this extended sheaf, as the (∞, 1)-category “of locally constant factorization
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algebras on X”. This defines a notion of locally constant factorization algebra on
X .
The purpose of this appendix is to give a concrete description of this notion of
locally constant factorization algebra on an orbifold, which also leads to a very
simple description of the functoriality of the (∞, 1)-category of locally constant
factorization algebras with respect to local diffeomorphisms.

2 Let us denote by Orb, the category enriched in groupoids of orbifolds with local
diffeomorphisms as morphisms. We denote by �Man, the category of manifolds
with local diffeomorphisms as morphisms.We have a non-full and full inclusions

Man �Man Orb.

(As any other category, we treat all these categories as (∞, 1)-categories.)
Let X be an orbifold. Then by LocDiff(X), we mean Man/X . The coCartesian
symmetric monoidal structure on �Man/X (i.e., the symmetric monoidal struc-
ture given by the finite coproduct operations) restricts to a symmetric monoidal
structure on LocDiff(X).
Given an object (M, f ) ∈ LocDiff(X), where M is a manifold, and f : M → X
is a local diffeomorphism, we obtain an induced symmetric monoidal functor
f! : Open(M) → LocDiff(X). Thus, we obtain from a symmetric monoidal func-
tor A : LocDiff X → A , a prefactorization algebra f ∗A := A ◦ f! on M .
One sees from the definitions, that a locally constant factorization algebra on
X is equivalent as a datum to a symmetric monoidal functor LocDiff(X) → A
for which f ∗A is a locally constant factorization algebra on M for every object
(M, f ) of LocDiff(X). Equivalently, A should be locally constant in disks over
X (i.e., on �Disk(X) defined below), and such that the canonical map A(M, f ) ←
colimDisj(M) f ∗A is an equivalence for every (M, f ).

3 We can also express a locally constant factorization algebra on X as a locally
constant algebra over suitable disks over X .
Let �Disk(X) denote the full submulticategory of (the underlyingmulticategory of)
LocDiff(X), where the object (U, i) ∈ LocDiff(X) for a manifold U and a local
diffeomorphism i : U → X , belongs to �Disk(X) if there exists a diffeomorphism
of U with a finite dimensional Euclidean space.
Now, given a general object (M, f ) of LocDiff(X), locally constant factorization
algebras on M were equivalent to locally constant Disk(M)-algebras, but the
functor f! identifies multimaps in Disk(M)with multimaps in �Disk(X). It follows
that a locally constant factorization on X is equivalent as a datum to a locally
constant algebra on �Disk(X).

4 Let f : X → Y be local diffeomorphism of orbifolds. For a locally constant
factorization algebra A on Y , we obtain a simple description of the pull-back
f ∗A of A by f . Indeed, we obtain the induced symmetric monoidal functor
f! : LocDiff(X) → LocDiff(Y ), and, it follows from the above description of
locally constant factorization algebras on orbifolds, that there is a natural equiv-
alence
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f ∗A = A ◦ f! (46)

of symmetric monoidal functors on LocDiff(X).

Proposition 47 Let p : U → X be a surjective local diffeomorphism of orbifolds.
Then a symmetric monoidal functor A : LocDiff(X) → A is a locally constant
factorization algebra on X if and only if A ◦ p! : LocDiff(U ) → A is a locally
constant factorization algebra on U.

Proof The necessity is clear from the equivalence (46).
For the converse, assume that A ◦ p! is a locally constant factorization algebra

on U . Then, for a manifold M and a local diffeomorphism f : M → X , we need to
prove that the prefactorization algebra f ∗A on M is a locally constant factorization
algebra.

The assumption implies that UM := U ×X M is a manifold, and the projection
pM : UM → M is a surjective local diffeomorphism. Therefore, it suffices by Theo-
rem 25, to prove for every V ∈ Open(UM) ×LocDiff(M) Open(M), that ( f ∗A)|V is a
locally constant factorization algebra on V .

However, the composite Open(V ) ↪→ Open(M)
f!−→ LocDiff(X) is isomorphic to

the composite

Open(V )
g!−−→ LocDiff(U )

p!−−→ LocDiff(X),

where g : V → U denotes the inclusion V ↪→ UM followed by the projectionUM →
U , which is a local diffeomorphism.
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A Role of the L2 Method in the Study
of Analytic Families

Takeo Ohsawa

Abstract An expository account is given on the L2 method for the ∂̄ equation, L2

extension theorems and the Bergman kernel focusing on the recent applications to
analytic families.
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Introduction

Geometric invariants of complex manifolds are encoded in the space of L2 space of
holomorphic sections of vector bundles. They are compressed in the Bergman kernel
as theworks ofKodaira [28], Hörmander [24] and Fefferman [17] have shown, so that
relations between analysis and geometry on complex manifolds are accumulated in
the results on the Bergman kernels. There are such instances in the study of analytic
families.

Given a smooth analytic family of complex manifolds, say p : M → T , the
parameter dependence of the diagonalized Bergman kernel Kt = KMt of Mt =
p−1(t) reflects how the complex structure of Mt deforms. It was proved by Berndts-
son [3] that log Kt depends plurisubharmonically in t if M is Stein. This property
was strengthened in [4] and was later applied in [5] to give an alternate proof of
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the optimalized version of an L2 extension theorem which had been obtained in [6,
20]. Another consequence of Berndtsson’s theorem is that such a family is locally
analytically trivial if log Kt ∈ C∞ and ∂∂̄ log Kt annihilates a horizontal distribu-
tion (a subbundle of the holomorphic tangent bundle T 1,0

M of M which bijects to T 1,0
T

by p). This generalizes a result of Maitani and Yamaguchi [32] for pseudoconvex
families of Jordan domains in C. Roughly speaking, the Bergman kernel detects the
rigidity of analytic families. On the other hand, it was proved by Nishino [37] that a
Stein submersion over the unit disc is trivial if the fibers are C. Although this rigidity
does not follow directly from KC ≡ 0, it turned out that an L2 extension theorem
in [50] is available to give its alternate proof (cf. [48]). For the family of C

n with
n ≥ 2, a rigidity criterion can be proved by a similar method (cf. [49]). The purpose
of the present article is to give an expository account on [48, 49] providing with
some backgrounds and supplementary remarks. In particular, it will be shown that
an analytic family M → T is locally trivial if M admits a complete Kähler metric
and Mt

∼= C for all t ∈ T .

1 L2 Method of Solving the ∂̄ Equation

First we recall a basic existence theorem for the ∂̄ equation with L2 norm estimates
on complete Kähler manifolds.

Let M be an n-dimensional connected complex manifold equipped with a com-
plete Kähler metric g. We note that M admits a complete Kähler metric of the form
∂∂̄λ(ϕ) for some λ : R → R if there exists a proper C∞ map ϕ : M → (−∞,∞)

satisfying ∂∂̄ϕ > 0. Here, by an abuse of notation, ∂∂̄ϕ stands also for the complex
Hessian of ϕ as well as the complex exterior derivatives applied to ϕ. By virtue of
Grauert [21, 22]weknowaccordingly that the complement of an analytic set in aStein
manifold admits a complete Kähler metric. Recall that the L2 norm ‖h‖(= ‖h‖g)

(resp. the weighted L2 norm ‖h‖�(= ‖h‖�,g) of a measurable (p, q)-form h on M)
is defined as (∫

M
|h|2dV

) 1
2

(
resp.

(∫
M
e−�|h|2dV

) 1
2

)

where |h| and dV respectively stand for the length of h and the volume form with
respect to the metric g. The space of L2 forms with respect to ‖‖� will be denoted
by L p,q

� (M). Recall also that

‖h‖2 =
∫
M
h ∧ ∗h (resp. ‖h‖2� =

∫
M
e−�h ∧ ∗h),

where ∗ denotes Hodge’s star operator, and that Ln,0
� (M) does not depend on the

choice of the metric g. Based on the method originated in [27] and developed in [1,
2, 24], the following was proved in [44].
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Theorem 1.1 (cf. [44], Theorem 1.5 and Corollary 1.6) Let M be as above and let
� be a strictly plurisubharmonic function of class C4 on M. Then, for any ∂̄ closed
(n, 1)-form f on M satisfying

∫
M
e−� f ∧ ∗∂∂̄� f < ∞,

there exists an (n, 0)-form h satisfying ∂̄h = f and

in
2
∫
M
e−�h ∧ h ≤

∫
M
e−� f ∧ ∗∂∂̄� f .

Here ∗∂∂̄� denotes Hodge’s star operator with respect to ∂∂̄�.

Recall that the proof of Theorem 1.1 in [44] is an application of the Riesz represen-
tation theorem based on the estimate

∣∣∣∣
∫
M
e−� f ∧ ∗∂∂̄�+gu

∣∣∣∣
2

≤ ‖∂̄∗u‖2
�,∂∂̄�+g

∫
M
e−� f ∧ ∗∂∂̄� f (1.1)

which holds for any u in the domain of the adjoint ∂̄∗ of ∂̄ with respect to theweighted
norm ‖‖�,∂∂̄�+g . That g is a complete Kähler metric is used substantially in the proof
of (1.1).

By a standard limiting argument for a sequence ∂∂̄� + εg ( ↘ 0), Theorem 1.1
can be generalized as a vanishing theorem for the L2 ∂̄ cohomology groups for
higher degrees. The result further generalizes for the cohomology with coefficients
in semipositive vector bundles (cf. [12, 44]). This approach turned out to be effective
to strengthen the Kodaira vanishing theorem (cf. [10, 14, 31, 33, 45]). In many
situations which will be discussed also in Sect. 3, Theorem 1.1 is simply applied in
the following way.

Let M and � be as above, let x ∈ M be any point and let z = (z1, . . . , zn) be
a local coordinate around x which maps a neighborhood U of x onto D

n , where
D = {ζ ∈ C; |ζ| < 1}. Let χ : M → [0, 1] be a C∞ function satisfying suppχ ⊂ U
and χ ≡ 1 on a neighborhood of x , let α be a C∞ (n, 0)-form on M satisfying
α = χdz1 ∧ · · · ∧ dzn on U , and let � be a C∞ function on M \ {x} satisfying
supp� ⊂ U and � = 2nχ log ‖z‖ on U \ {x}, where ‖z‖2 = ∑n

j=1 |z j |2. Clearly
� + m� is strictly plurisubharmonic on M \ {x} for sufficiently large m. Then, by
Theorem 1.1 one can find for suchm an (n, 0)-form u on M \ {x} such that ∂̄u = ∂̄α
and

i n
2
∫
M
e−�−m�u ∧ u < ∞. (1.2)
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Then, by (1.2), α − u extends to a holomorphic n-form on M say α̃ such that
α̃(x) �= 0. Similarly, for any two distinct points x, y ∈ M , one canfind a holomorphic
n-form β on M satisfying β(x) = 0 and β(y) �= 0.

2 L2 Extension Theorems and Suita Conjecture

From now on, the set of holomorphic functions (resp. plurisubharmonic func-
tions) on M will be denoted by O(M) (resp. PSH(M)). Refining the argument
in Sect. 1 together with the computation that yields (1.1), one has an extension
theorem for L2 holomorphic top forms. To state it we assume that M is a Stein
manifold of dimension n and take any s ∈ O(M) such that ds is not identically 0
on every irreducible component of s−1(0). We put X = s−1(0) and X0 := {x ∈ X;
ds(x) �= 0}. Let ϕ ∈ PSH(M).

Theorem 2.1 (cf. [50]) In the above situation, let f be a holomorphic (n − 1)-form
on X0 satisfying | ∫X0

e−ϕ f ∧ f | < ∞. Then there exists a holomorphic n-form F
on M such that

F = f ∧ ds holds at every point o f X0 (2.1)

and
∣∣∣∣
∫
M
e−ϕ(1 + |s|2)−2F ∧ F

∣∣∣∣ ≤ C0

∣∣∣∣
∫
X0

e−ϕ f ∧ f

∣∣∣∣ . (2.2)

Here C0 = 1620π.

Corollary Let D be a bounded pseudoconvex domain in C
n with Lipschitz continu-

ous boundary. Then the Bergman kernel function kD(z, w) of D satisfies
inf z∈D δD(z)2kD(z, z) > 0. Here δD(z) := infw/∈D ‖z − w‖.

Theorem 2.1 was refined in [46, 47] in such a way that it entails an application
to a question posed by Suita [53]. For any Riemann surface R, Suita conjectured
that the diagonalized Bergman kernel KR = kR(z, z)|dz|2 of R with respect to the
L2 holomorphic 1-forms satisfies πKR > c2β |dz|2 unless R = D \ E for some E of
logarithmic capacity 0 where the equality holds. Here cβ = cβ,R is defined coordi-
natewise by

cβ(z) = exp ( lim
w→z

(gR(w, z) − log |z − w|)),

where gR : R × R → [−∞, 0) denotes the Green function of R. The quantity
limw→z(gR(w, z) − log |z − w|) is known as the Robin function. By refining the
argument of producing the top forms as in Sect. 1, it was shown that 750πKR ≥
c2β |dz|2 in [46] and 512πKR ≥ c2β |dz|2 in [47].

Błocki [6] has proved the following.
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Theorem 2.2 Let � be a bounded domain in C containing 0, let D be a pseudo-
convex domain contained in C

n−1 × � and let D′ = D ∩ {zn = 0}. Then, for any
ϕ ∈ PSH(D) and for any f ∈ O(D′), there exists a holomorphic extension F of f
to D satisfying

∫
D
e−ϕ|F |2dλn ≤ π

(cβ,�(0))2

∫
D′
e−ϕ| f |2dλn−1.

Here dλm denotes the Lebesgue measure on C
m.

Corollary πk�(z, z) ≥ cβ(z)2 holds for any bounded domain � in C.

Suita conjecture has been completely settled by Guan and Zhou in [20]. We note
that Guan–Zhou’s variant of Theorem 2.2 is the following.

Theorem 2.3 Let M be an n dimensional Stein manifold, let ϕ,ψ ∈ PSH(M)

and take w ∈ O(M) such that supM (ψ + 2 log |w|) ≤ 0 and dw does not van-
ish identically on each irreducible component of w−1(0). Let H = w−1(0) and
H0 = {x ∈ H ; dw(x) �= 0}. Then, for any holomorphic (n − 1) form f on H0 sat-
isfying ∣∣∣∣

∫
H0

e−ϕ−ψ f ∧ f

∣∣∣∣ < ∞,

there exists a holomorphic n form F on M such that F = f ∧ dw holds at every
point of H0 and satisfies

∣∣∣∣
∫
M
e−ϕF ∧ F

∣∣∣∣ ≤ 2π

∣∣∣∣
∫
H0

e−ϕ−ψ f ∧ f

∣∣∣∣ .
See also [16] for an alternate proof for the equality case.

3 Bergman Kernel in Analytic Families

After the decisive works [6, 20] very busy years went rushing by us in the L2 exten-
sion theory. Besides the existence theorems with precise bounds, new connections
between several basic results have been found. The most remarkable example is a
theorem of Berndtsson and Lempert in [B-L] which generalizes Theorem 2.1 with
C0 = 2π and also Theorem 2.2 by a completely new method based on the plurisub-
harmonicity of certain functions associated to a Stein family of domains in M (resp.
in C

n) connecting M (resp. D) and X (resp. D′) by a decreasing sequence of sub-
domains. Their proof is based on Berndtsson’s work [3, 4] which is a generalization
of a theorem of Maitani and Yamaguchi [32]. Substantially, it is a slight generaliza-
tion of Lempert’s alternate proof of the inequality part of Suita conjecture, which is
short enough to be sketched below as well as in the introduction of Błocki’s another
paper [7].
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Proof πK ≥ c2β |dz|2: Given a Riemann surface R and a point z0 ∈ R such that
gR �≡ −∞, we consider a domain R in D × R defined by

R = {(t, z); gR(z, z0) < log |t | or t = 0}.

Since log |t | − gR(z, z0) is plurisubharmonic in (t, z) on D × (R \ {z0}), R is a
Stein manifold which connects R (|t | = 1) and {z0} (t = 0). Let p : R → D be
the restriction of the projection D × R → D and let Rt = p−1(t). Then, by virtue of
[32] one has

φ(z, t) := log kRt (z) − 2(gR(z, z0) − log |z − z0| − log |t |) ∈ PSH(R),

so that φ(z0, t) is a convex function of log |t |. Clearly

lim
t→0

φ(z0, t) = − logπ

and
lim
t→1

φ(z0, t) = log kR(z0) − 2 log cβ(z0).

Hence φ(z0, t) is an increasing function in log |t | so that

− logπ ≤ log kR(z0) − 2 log cβ(z0).

Thus we obtain πkR(z0) ≥ cβ(z0)2. �

In the above proof the log-subharmonicity of the Bergman kernel with respect to
the parameter t plays an essential role. This property was generalized in [3, 4] in full
generality as a curvature property of the direct image sheaf of the relative canonical
sheaf twisted by a semipositive vector bundle under a Stein submersion or a proper
Kähler submersion. For a Stein submersion p : M → D, its concise variant for the
Bergman kernel KMt = kt (z)|dz1 ∧ · · · dzn|2 is as follows.
Theorem 3.1 (cf. [3]) log kt (z) ∈ PSH(M).

We note that Theorem 3.1 had been observed in [25] when Mt
∼= D by analyzing

the corresponding family of the Riemann mappings. For the holomorphic motions of
Riemann surfaces, a variational formula for log kt (z)was obtained in [31, 33], which
was generalized in [32] for any smooth Stein families of Riemann surfaces. As was
mentioned in the introduction, the plurisubharmonicity of log kt was recognized in the
context of the deformation theory in these earlyworks. In fact, [31–33]were preceded
by [57], where a variational formula for the Robin function was established in order
to simplify Nishino’s proof of the rigidity theorem in [37] which was mentioned in
the introduction (see also [58]). A new viewpoint was brought by Guan and Zhou in
[20], where they found a relation between Theorem 3.1 and the optimal L2 extension
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theorem by giving an alternate proof of Theorem 3.1 as a corollary of Theorem 2.3.
Thus [B-L] was a revenge in some sense.

Quite recently a counter-revenge appeared in [15] asserting in particular that
Theorem 2.1 naturally implies Theorem 3.1 and its subsequent generalizations in
[4]. Namely, everything was already there in Theorem 2.1 with C0 independent of
ϕ and f . The point is to read an approximation theorem of Demailly for plurisub-
harmonic functions, which was the first unexpected application of Theorem 2.1, as
a characterization of plurisubharmonicity. To state Demailly’s result we put

Oϕ(D) = { f ∈ O(D);
∫
D
e−ϕ| f |2dλn < ∞}

for a domain D ⊂ C
n and ϕ ∈ PSH(D).

Theorem 3.2 (cf. [13]) Let D be a pseudoconvex domain inC
n and letϕ ∈ PSH(�)

such that Oϕ(D) �= {0}. For any complete orthogonal system { fμ} of Omϕ(D)

(m ∈ N), put ϕm = 1
m log

∑
μ | fμ|2. Then there exist constants C1,C2 which are

independent of m such that

ϕ(z) − C1

m
≤ ϕm(z) ≤ sup

‖ζ−z‖<r
ϕ(ζ) + 1

m
log

C2

rn
, z ∈ D, r < δD(z) (3.1)

holds.

The idea of [15] is that (3.1) implies the plurisubharmonicity of ϕ and that Theo-
rem 3.1 follows from Theorem 2.1 similarly. It must be noted here that Theorem 3.2
is preceded by a result of Bremermann [9] asserting that plurisubharmonic functions
on pseudoconvex domains can be approximated by convex combinations of log | f |
and their upper envelopes for holomorphic f . This was an immediate consequence
of the solution of the Levi problem in [51] (see also [42] and [8]). The approximation
in terms of the weighted Bergman kernels originates substantially in [35, 55] in the
context of polarized Kähler metrics.

Anyway, one can symbolize the relations between [3, 4, 6, 20, 50], [B-L],
[15, 32] as follows:

References [6, 20] ⇒ [50].
Reference[20] ⇒ [3, 4, 32].
References [3, 4] ⇒ [6, 20] (by [B-L]).
Reference [50] ⇒ [3, 4] (by [15]).
On the other hand, being also awared of the interface between the deformation

theory and the L2 extension theory, the author tried to apply Theorem 2.1 toNishino’s
theory. The subsequent results in [48, 49] will be reported below.
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4 Rigidity Theorems by the L2 Technique

In 1969, T. Nishino established the following as a basic result in the classification of
entire functions of two variables.

Theorem 4.1 (“Lemme fondamental” in [37]) Let M be a two dimensional Stein
manifold and let π be a holomorphic submersion from M onto the unit discD = {t ∈
C; |t | < 1}. Assume that every fiber of π is holomorphically equivalent to C. Then
π is holomorphically equivalent to the projection C × D → D.

What Nishino aimed at was to discribe the properties of an entire function f by
the conformal structures of f −1(t).1

We recall that the rigidity of this kind was shown by Fischer and Grauert [18] for
the families of compact complex manifolds in the context of the deformation theory
of Kodaira and Spencer [30].

Given f ∈ O(C2) such that the irreducible components of f −1(t) are compact-
ifiable, Theorem 4.1 implies the existence of a compactification of C

2 associated
to f . About the compactifications of C

2, Kodaira [29] showed that they are ratio-
nal and Morrow [34] completed the classification. Those took place in the days
of [36]∼[41].2 Such a relationship between Nishino’s theory and affine algebraic
geometry is reflected in the works of Suzuki [54] and Ueda [56].3

Since every analytic C bundle over D is trivial, it suffices to prove the equiv-
alence locally. Thus we may assume in advance that there exists a holomorphic
section s : D → M . The original proof of Theorem 4.1 consists of an elaborate
study of a canonically defined map ψ : M → C

2 univalent on each fiber. The map ψ
is associated to s and any nowhere zero holomorphic vector field say ξ on a neigh-
borhood of s(D) which is tangent to the fibers of π, in such a way that ψ|s(D) = 0
and ξψ|s(D) = 1. Even the continuity of such a function ψ is not evident but natu-
rally follows from the classical Koebe distortion theorem. The subtlety is analyticity
of ψ. The argument in [37] for that is quite technical, which was later simplified
by Yamaguchi [57].4 Yamaguchi’s method is to deduce the analyticity of ψ from
the plurisubharmonicity of log |ψ|. This approach was later extended in [32] and
eventually gave rise to a new perspective to the L2 extension problem in [B-L].

In [48] it turned out that Theorem 4.1 is a direct consequence of Theorem 2.1. The
idea is to identify the exterior derivative of the reciprocal of ψ as a relative canonical
form with a pole of order 2 along s(D). It is clear that Theorem 2.1 is applicable
because

1[37, Theorem II]: f ∈ O(C2) and cap{t; C ⊂ f −1(t)} > 0 ⇒ f ∈ O(C) ◦ AutC2 (◦ denotes
the composite). Reference [40, Théorème principal]: {irreducible components of f −1(t)} ⊂ {� \
�; � is compact and � is a finite set} ⇒ f ∈ O(C) ◦ C[z, w] ◦ AutC2.
2See also [19].
3Reference [54]: Every polynomial embedding of C intoC

2 can be linearized by AutC2. Reference
[56]: Every compactification of C × (C \ {0}) is rational.
4Chirka [11] also gave an alternate proof of Theorem 4.1 by applying holomorphic motions and
Teichmüller theory.
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f ∈ C · dz
z2

⇐⇒ f ∈ L1,0
α log+ 1

|z|
(C\{0}) ∩ Ker∂̄ for some 2 ≤ α < 4.

A map from5 M to D × (C ∪ {∞}) is given by a primitive of an L2 extension of
dz/z2 from π−1(0). The primitive can be defined as an integral along the paths in the
fibers of π starting from s ′(D) for some holomorphic section s ′ : D → M such that
s(D) ∩ s ′(D) = ∅. We note that the Steinness of M is also necessary to conclude the
analyticity of the complement of the image by virtue of Hartogs [23]. The method of
[48] was extended to Stein families of C

n in [49] as a generalization of the following
assertion which is essentially equivalent to Theorem 4.1.

Theorem 4.2 Let π : M → D be a Stein submersion with fibers equivalent to C.
Assume that it admits a holomorphic section s : D → M. Then, for any family of
biholomorphic maps βt : C → Mt with βt (0) = σ(t), there exists a function γ :
D → C such that the map (z, t) �→ βt (γ(t)z) is a biholomorphism from C × D to
M.

The generalization is as follows.

Theorem 4.3 Letπ be a holomorphic submersion froman (n+ 1)-dimensional Stein
manifold M onto D. Suppose that there exists a proper holomorphic embedding

σ : {z = (z1, . . . , zn) ∈ C
n; z1 · · · zn = 0} × D ↪→ M

satisfying the following.

(1) π ◦ σ = prD.

(2) There exist plurisubharmonic functions ϕ j (1 ≤ j ≤ n) on
M \ σ({z : z j = 0} × D) such that for each j and t ∈ D

there exist a biholomorphic map βt : C
n → Mt and a

constant Ct > 0 satisfying

ϕ j (βt (z)) − Ct ≤ log+ 1

|z j | ≤ ϕ j (βt (z)) + Ct (4.1)

on C
n \ {z j = 0}.

Then there exist biholomorphic maps γt : C
n → C

n (t ∈ D) such that the map
(z, t) �→ βt (γt (z)) is a biholomorphism from C

n × D to M.

Now look at the argument of section one that produces L2 holomorphic top forms.
Then it just tells us that Theorem 1.1 suffices for ensuring the existence of a non-zero
holomorphic 2-form F onM \ s(D) in Theorem 4.2which has a pole of order 2 along

5For the notation L1,0
log+ 1

|z|
, see section one.
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s(D) and square integrable on the complement of some subset of M lying properly
over D.6 Accordingly, it is not hard to generalize Theorem 3.2 as follows.

Theorem 4.4 Let M be a complete Kähler manifold of dimension 2with a holomor-
phic submersion onto D whose fibers are C. Then M ∼= D × C.

For the proof, what remains to show is the following counterpart of [23].

Lemma Let � be the graph of a continuous function z = f (t) from D to C. Then f
is holomorphic if D × C \ � has a complete Kähler metric.7

Proof Since the problem is local on �, we may assume in advance that � ⊂ D × D.
Let γ : M → D × D be the topological double covering branched along �. Then
M \ γ−1(�) is an unbranched double covering of D × D \ � so that it is a complex
manifold admitting a complete Kähler metric. Let σ ∈ Aut(M \ γ−1(�)) be the cov-
ering transformation without fixed point. Then, similarly as in section one, one has
a square integrable holomorphic 2-form h �= 0 on M \ γ−1(�) satisfying h(x) = 0
and h(y) �= 0 for a pair of points x and y satisfying σ(x) = y. Then, by putting
ĥ = h − σ∗h one has a nonzero holomorphic 2-form ĥ satisfying σ∗ĥ = −ĥ. Then
we put

ρ = ĥ

γ∗(dt ∧ dz)
.

Clearly, for every t ∈ D,ρ extends to ameromorphic function onγ−1({t} × D) (∼= D)

whose order of zero or pole at the point γ−1( f (t)) is an odd integer. Hence � is
contained in the divisor of ρ · σ∗ρ, so that it must be analytic. �

5 A Splitting Theorem

Finally, we would like to add a remark that the L2 extension theorem is still useful
to study a question similar to Nishino’s rigidity theorem.

We shall say that a closed connected analytic subset N of pure codimension m
in a complex manifold M is plumbed if there exists a neighborhood V ⊃ N and a
holomorphic map π : V → C

m with connected fibers such that π−1({x; |x | ≤ ε}) is
nonempty and closed in M for all sufficiently small positive number ε. We shall call
{p; |π(p)| ≤ ε} a plumbing neighborhood of N for such ε and π−1(t) with |t | < ε a
fiber of the plumbing.

6Actually the argument is slightly more delicate because we need to have m� ≤ (4 − ε) log+ 1
|z|

(0 < ε � 1) near z = 0. For that one may use log (|z|3 + |t |6) instead of 2 log (|z|2 + |t |2) to define
� (cf. [49]).
7Shcherbina [52] proved that f is holomorphic if and only if � ⊂ ϕ−1(−∞) holds for some
ϕ(�≡ −∞) ∈ PSH(D × C). The lemma was proved in [43] under a restrictive assumption that f is
continuously differentiable.



A Role of the L2 Method in the Study of Analytic Families 433

Theorem 5.1 (cf. [49]) Let S be a connected Stein surface containing a plumbed
curve C. Assume that there exists a plumbed curve C ′ intersecting with C at one point
transversally such that the fibers of the plumbing are biholomorphic to C. Then S is
biholomorphically equivalent to C × C.

For the proof, the following variant of Theorem 2.1 is applied.

Theorem 5.2 (cf. [47, Theorem 4]) Let M be a Stein manifold of dimension n, let ϕ
be a nonnegative plurisubharmonic function on M and let N be a closed nonsingular
complex hypersurface in M such that one can find a neighborhood W ⊃ N and a
holomorphic function s on W satisfying s−1(0) = N and ds �= 0. Assume that there
exists a continuous function G : M → [−∞, 0) such that N = G−1(−∞), ϕ + G
is plurisubharmonic on M and G − log |s|2 is bounded on W \ N. Then, for any
holomorphic (n − 1)-form ω on N satisfying

∣∣∣∣
∫
N
e−ϕω ∧ ω

∣∣∣∣ < ∞,

and for any δ > 0, there exists a holomorphic n-form ω̃ on M satisfying

∣∣∣∣
∫
M
e−(1+δ)ϕω̃ ∧ ω̃

∣∣∣∣ < ∞

such that ω̃ = ω ∧ ds holds at every point of N .
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230–246 (1980)

42. Norguet, F.: Sur les domaines d’holomorphie des fonctions uniformes de plusieurs variables
complexes (Passage du local au global). Bull. Soc. Math. France 82, 137–159 (1954)

43. Ohsawa, T.: Analyticity of complements of complete Kähler domains. Proc. Japan Acad. Ser.
A Math. Sci. 56, 484–487 (1980)

44. Ohsawa, T.: On complete Kähler domains withC1-boundary. Publ. Res. Inst. Math. Sci. 16(3),
929–940 (1980)

45. Ohsawa, T.: Vanishing theorems on complete Kähler manifolds. Publ. Res. Inst. Math. Sci.
20(1), 21–38 (1984)

46. Ohsawa, T.: On the Bergman kernel of hyperconvex domains. Nagoya Math. J. 129, 43–52
(1993). (Addendum, Nagoya Math. J. 137, 145–148 (1995))

47. Ohsawa, T.: On the extension of L2 holomorphic functions V. Effect of generalization. Nagoya
Math. J. 161, 1–21 (2001)

48. Ohsawa, T.: L2 proof of Nishino’s rigidity theorem, to appear in Kyoto J. Math
49. Ohsawa, T.: Generalizations of theorems of Nishino and Hartogs by the L2 method, in prepa-

ration
50. Ohsawa, T., Takegoshi, K.: On the extension of L2 holomorphic functions. Math. Z. 195,

197–204 (1987)
51. Oka,K.: Sur les fonctions de plusieurs variables. IX.Domainesfinis sans point critique intérieur,

Jap. J. Math. 23, 97–155 (1953)
52. Shcherbina, N.: Pluripolar graphs are holomorphic. Acta Math. 194, 203–216 (2005)
53. Suita, N.: Capacities and kernels on Riemann surfaces. Arch. Ration. Mech. Anal. 46, 212–217

(1972)
54. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automor-

phismes algébriques de l’espace C
2. J. Math. Soc. Jpn. 26, 241–257 (1974)

55. Tian, G.: On a set of polarizedKählermetrics on algebraicmanifolds. J. Diff. Geom. 32, 99–130
(1990)

56. Ueda, T.: Compactifications of C × C
∗ and (C∗)2. Tôhoku Math. J. 2 31(1), 81–90 (1979)

57. Yamaguchi, H.: Parabolicité d’une fonction entière. J. Math. Kyoto Univ. 16, 71–92 (1976)
58. Yamaguchi, H.: Complex and vector potential theory, (Japanese). Sūgaku 50(3), 225–247
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