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Collectins: Innate Immune Pattern
Recognition Molecules
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Abstract Collectins are collagen-containing C-type (calcium-dependent) lectins
which are important pathogen pattern recognising innate immune molecules. Their
primary structure is characterised by an N-terminal, triple-helical collagenous region
made up ofGly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and aC-
terminalC-type lectin or carbohydrate recognitiondomain (CRD). Further oligomeri-
sation of this primary structure can give rise to more complex and multimeric struc-
tures that can be seen under electron microscope. Collectins can be found in serum
as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can
activate the complement system while other members of the collectin family are
extremely versatile in recognising a diverse range of pathogens via their CRDs and
bring about effector functions designed at the clearance of invading pathogens. These
mechanisms include opsonisation, enhancement of phagocytosis, triggering superox-
idative burst and nitric oxide production. Collectins can also potentiate the adaptive
immune response via antigen presenting cells such as macrophages and dendritic
cells through modulation of cytokines and chemokines, thus they can act as a link
between innate and adaptive immunity. This chapter describes the structure-function
relationships of collectins, their diverse functions, and their interaction with viruses,
bacteria, fungi and parasites.
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4.1 Introduction

Collectins (collagen-containing C-type lectins) are soluble mammalian C-type
lectins, which represent an important group of pattern-recognition molecules and
serve multiple functions in the innate immune system. The term “collectin” was first
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used by Malhotra et al. (1992). They are known to mediate pathogen recognition
through calcium-dependent carbohydrate recognition domains (CRDs). The follow-
ing nine collectins have been identified to date: mannan-binding lectin (MBL), three
bovine serum collectins, conglutinin, CL-43 and CL-46, lung surfactant proteins SP-
A and SP-D, and more recently discovered collectins including, collectin kidney 1
(CL-K1, also calledCL-11), collectin liver 1 (CL-L1, also calledCL-10) and collectin
placenta 1 (CL-P1 also called CL-12). The overall functions of collectins include
microbial aggregation and neutralisation, opsonisation, complement activation, and
modulation of inflammatory responses.

4.2 Structure of Collectins

Collectins are oligomers of trimeric subunits, For most collectins, the subunits are
homotrimers (made up of three identical polypeptides) but heterotrimers can be found
for SP-A, which is made up of highly homologous SPA-1 and SPA-2 polypeptides.
Hetrotrimers can also form in the case of CL-10 and CL-11 (Fig. 4.1). The subunit
of each collectin is composed of (i) a short N-terminal (7-28 amino acid residues)
cysteine-rich domain, involved in multimerisation (by disulphide bridging); (ii) a
collagen-like domain composed ofGly-X-Y triplets repeats, whereX andY represent
any amino acids; (iii) a short segment which can form coiled-coil helices, and (iv)

Fig. 4.1 Molecular structural representation and biological functions of human collectins. Col-
lectins are shown asmonomeric subunits, followed by trimeric subunits, composed of anN-terminal
domain, collagen-like region, α-helical coiled-coil neck region and C-terminal carbohydrate
recognition domain (CRD). Biological functions of each domain are also briefly described
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Fig. 4.2 Three-dimensional structures of trimeric human SP-A (a), SP-D (b), andMBL (c). Repre-
sentations of the trimeric “head” of collectins. These structures represent the ‘neck’, and the CRDs
of three polypeptides which make up the trimeric subunit. The helix interacts with a neighbouring
carbohydrate recognition domains (Kishore et al. 2006; Skjoedt et al 2012)

the C-terminal globular C-type lectin domain, also called the CRD (carbohydrate
recognition domain) (Uemura et al. 2006) (Fig. 4.1).

The triple-helical collagen region provides significant rigidity and stability to the
molecule (Colley and Baenziger 1987). Another structural feature of the collagen-
like domain of collectins is that it can be O-glycosylated (Colley and Baenziger
1987). Both MBL and SP-A show an interruption of the Gly-X-Y triplet repeats,
which introduces a bend in the otherwise straight triple helix. This enables the fully
assembled multi-subunit structure to angle away from the central core, producing
a structure resembling a bouquet of flowers (Fig. 4.2) (Voss et al. 1991). Several
distinct functions of the collagen domain of collectins have been reported. The col-
lagen domains of SP-A and MBL are involved in receptor-mediated properties. A
GEKGEP specific motif found within the collagen domain of MBL is suggested to
bind C1q receptor (Arora et al. 2001), andmediates the enhancement of phagocytosis
through C1qR (Arora et al. 2001). A similar motif is within the collagen domain of
SP-A (White et al. 1985), which is also involved in the interaction with C1q receptor
(Malhotra et al. 1992; Malhotra et al. 1990), and mediates phagocytosis of Staphy-
lococcus aureus by monocytes (Geertsma et al. 1994). Furthermore, the collagen
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domain of MBL is shown to bind MBL-associated serum proteases, MASP1, 2 and
3, which mediate complement activation via the lectin pathway (Thiel et al. 1997;
Tan et al. 1996). Additionally, the positively charged collagen region found in the
membrane bound CL-P1 is involved in the uptake of oxidised LDL particles (Ohtani
et al. 2001).

The cysteine residues found within the N-terminal domain (7-28 amino acids)
form disulphide bonds between monomers, thereby, stabilising trimeric subunits
as well as a larger multimers. It was believed that at least two cysteine residues are
required at the N-terminal domain for the formation ofmultimers of trimeric subunits
(Brown-Augsburger et al. 1996; McCormack et al. 1999; McCormack et al. 1997a,
b). However, in the case of CL-43, it is secreted as a single trimeric subunit, despite
having two cysteine residues (Rothmann et al. 1997; Lim et al. 1994a, b). Therefore,
other factors contribute to oligomerisation of trimeric subunits, in addition to the of
N-terminal cysteine residues.

The C-terminal region contains a coiled-coil trimerizing neck region (residues
112-130 in humanMBL) (Fig. 4.1), and the CRD (residues 134-245 in humanMBL)
which folds up into an independent globular carbohydrate–binding structure for each
polypeptide chain. Each subunit is held together covalently through disulphide bonds,
or non-covalently structured into oligomers of up to six subunits. C-type CRDs are
connected to the collagen-like domain through the ‘neck’ region (24-28 amino acid
residues) (Hoppe andReid 1994). Furthermore, the neck region is involved in aligning
the collagen chains.

4.2.1 Ligand Specificity of Collectins

A broad carbohydrate specificity is required by collectins in order to recognise and
bind a large repertoire of (pathogen-associated molecular patterns) PAMPs. Such
broad specificity is achieved by an open and flexible trough -like binding pocket
found within the CRDs. The selection of ligands by this site depends on the posi-
tioning of vicinal hydroxyl groups of sugars, which form coordination bonds with
a ligated calcium ion, hydrogen bonds and a polar Van der Waals contact (Ng et al.
1996). Ligand specificity of collectins is divided into twomain sub-classes (mannose-
binding or galactose-binding type), which is based on a three amino acid residue
motif found in the Ca++ ion binding site. The sequence 185-Glu-Pro-Asn is associ-
ated with binding of mannose-like sugars, while the sequence 185-Gln-Pro-Asp is
associated with binding galactose-like sugars. The molecular differences based on
which CRDs discriminate between mannose and galactose-type ligands depend on
the orientation of C3 and C4 vicinal hydroxyl groups presented on monosaccharides.
Mannose-specific CRDs bind ligands in which hydroxyl groups at the C3 and C4
positions are in an equatorial orientation (mannose, glucose, glucosamine), while in
galactose these vicinal hydroxyls are in an axial orientation (Drickamer and Taylor
2015). Inhibition studies using monosaccharides have shown that most likely, all the
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above described collectins, except CL-P1, prefer mannose ligands over galactose
(Ohtani et al. 2001; Holmskov et al. 1994).

However, a wider range of binding specificity has been reported forMBL and lung
surfactant proteins SP-A and SP-D, as these collectins are also capable of binding to
nucleic acids (Nadesalingam et al. 2003), phospholipids (Sano et al. 1999), as well
as non-glucosylated proteins.

Fucose, a hexose deoxy sugar is bound by mannose-specific CRDs in a different
manner as it has equatorial hydroxyl groups placed on its C2 and C3 position of the
sugar ring, not theC3andC4 (Weis et al. 1991a, b;Ng et al. 1996; Iobst andDrickamer
1994). Computational docking studies have demonstrated thatαD-glucose docks into
the CRD of SP-D via vicinal equatorial hydroxyl groups on the 2- and 3- position of
its sugar ring (Allen et al. 2001a, b). Although MBL affinity is reported to be very
low for monosaccharide galactose, MBL crystallographic studies demonstrate that
galactose is ligated in theMBL binding region via coordination bonds with hydroxyl
groups placed at C1 and C2 position of the sugar ring (Ng et al. 1996). In addition
to galactose and mannose, binding of collectins to a range of sugars has also been
studied (Holmskov et al. 1994); they exhibit preferences for certain sugar residues
over others. For instance, despite SP-D being structurally similar to conglutinin, it
displays a greater affinity for maltose, a glucose disaccharide, which is a weak ligand
for conglutinin. SP-D is suggested to have a lower affinity for GlcNAc, which is the
best ligand for conglutinin. Moreover, binding of CL-43 to sugars is closely related
to MBL, although the structure of CL-43 is closer to SP-D and conglutinin (Lu et al.
2002).

The sugar-binding specificity of CL-11/CL-K1 has been investigated (Venkatra-
man Girija et al. 2015). It has a larger recognition interface than MBL, and recog-
nises predominantly mannose-rich structures, interacting with two sugar residues at
a glycan terminal, rather than a single sugar.

4.3 Biosynthesis and Localisation of Collectins

HumanMBL is synthesised by hepatocytes and secreted into the blood stream (Sastry
et al. 1991; Ezekowitz et al. 1988; Hansen et al. 2000). Initially, MBL was isolated
from the liver of the rabbit, rat and chicken, where expression levels were detected
in the soluble cytosol, rather than on the cell surface. Two forms of MBL (MBL-A
and MBL-C) were detected in rodents (Hansen et al. 2000; Drickamer et al. 1986),
rabbits (Kawasaki et al. 1978; Kozutsumi et al. 1980) and rhesus monkeys (Mogues
et al. 1996). However, only one form of MBL is present in humans and chimpanzees
(Mogues et al. 1996). Although the liver is the main production site of MBL-A and
MBL-C in mice, mRNA expression of MBL was also detected in various tissues
(Table 4.1) (Shushimita et al. 2015). Substantial expression levels of MBL-A and
MBL-Cwere reported in kidney and intestine (Table 4.1). Detection ofMBL proteins
in the small intestine suggests that MBL may have similar roles to secretory IgA
(Reichhardt et al. 2012).
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Table 4.1 Origin of collectins and their tissue distribution

Collectins Tissues of origin Tissues of
presentation

Remarks

MBL Liver and small
intestine

Serum Two different
variants of MBL (A
and C) have been
identified in animals,
while only one
variant is found in
humans and
chimpanzee.

Conglutinin, CL-43
and CL-46

Bovine liver Serum These bovine
collectins plays an
important role in the
first line of defense
against rumen
microbes without
eliciting general
inflammatory
response

SP-A and SP-D Clara cells, intestinal
mucosa, thymus,
prostrate gland,
Eustachian tube,
paranasal sinuses,
middle ear, synovium

Alveolar space,
mucosal surfaces,
semen

Extrapulmonary
expression of SP-A is
limited to a few
organs, while SP-D
expression has been
detected in many
non-pulmonary
mucosal tissues

CL-P1 Placenta, and
vascular endothelial
cells

Endothelial cells CL-P1 is the only
membrane bound
collectin with an
intracellular domain.
It is suggested to play
many roles which
differ from those of
soluble collectins

CL-K1 Serum Different from all
other collectins, but
seems to have
functions
phylogenetically
similar to CL-L1

(continued)

The collectins SP-A and SP-D are primarily detected in the alveolar space of the
lungs, and synthesised by alveolar type-II cells (Table 4.1) (Voorhout et al. 1992,
Nayak et al. 2012), and nonciliated bronchial epithelial cells, also known as Clara
cells (Voorhout et al. 1992; Crouch et al. 1992). Although the lung is the main
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Table 4.1 (continued)

Collectins Tissues of origin Tissues of
presentation

Remarks

CL-L1 Liver and hepatocyte Ubiquitous Immunoblot analyses
using human liver
demonstrated that
CL-L1 was
distributed to the
cytoplasm. It is also
involved in
embryonic
development

site of SP-A and SP-D synthesis, presence of SP-D has also been reported at extra-
pulmonary sites. SP-D expression has been shown immunohistochemically in human
trachea, brain, heart, kidneys, testis, salivary gland, placenta, prostate, small intestine,
and pancreas (Table 4.1). A low expression level has been detected in spleen, uterus,
adrenal gland and mammary glands (Fisher and Mason 1995; Madsen et al. 2000;
Herías et al. 2007). Furthermore, immunoreactivity of SP-D has also been shown in
the epithelial cells of both small and large ducts of the parotid gland, lacrimal and
sweat glands, epithelial cells of intra-hepatic bile ducts and gall bladder, as well as
esophagus, exocrine pancreatic ducts, and in the urinary tract (Madsen et al. 2000;
Bräuer et al. 2007). In the case of SP-A, low levels are detected in small intestines
from human and rat (Table 4.1) (Lin et al. 2001, van Iwaarden et al. 1990). In addition
to its presence in the murine uterus, very low SP-A expression is found in human
prostate, amniotic fluid, thymus and salivary gland (Madsen et al. 2003). SP-A and
SP-D have also been localised in the fetal membranes, and choriodecidual layer of
the late pregnancy uterus (Miyamura et al. 1994). As a result of pulmonary microbial
infection, the protein levels of both SP-A and SP-D have been reported to increase in
the alveolar compartment (Atochina et al. 2001). Thus, the level of SP-D increases in
response to allergen-induced eosinophilia (Kasper et al. 2002), suggesting that both
SP-A and SP-Dmay function as acute phase reactants within the lungs. Furthermore,
hypoxia results in an increased concentration of both SP-A and SP-D in the alveolar
compartment (White et al. 2001).

Conglutinin, CL-46 and CL-43 are serum collectins identified in bovidae and
synthesised in the liver (Hansen et al. 2002). These collectins provide a first line
of defense against microbial pathogens. CL-L1 mRNA was detected in the liver,
and studies using Northern blot analysis have suggested that low levels occur in the
placenta. Although most collectins are secreted, CL-L1 was found in the cytosol of
hepatocytes,whichmay suggest its interactionwith intracellular ligands (Ohtani et al.
1999). The presence of CL-P1 was reported in vascular endothelial cells (Table 4.1);
CL-P1 is suggested to be membrane bound, and it contains an intracellular domain
(Ohtani et al. 2001). Expression ofMBL, SP-A andSP-D at themucosal surfaces sug-
gest the innate immune roles of these collectins against invading pathogens. During
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Helicobacter pylori infection, an increased level of SP-D has been detected, sug-
gesting the possible role of SP-D in the mucosal defense outside the lungs (Murray
et al. 2002), eg. gastrointestinal tract.

4.4 Role of Collectins in Microbial Infection

Collectins are important soluble pattern-recognition receptors (PRRs) of the humoral
arm of the innate immune response. Collectins are able to recognise and bind to a
wide variety of microbes and are involved in their clearance and forming a central
link to adaptive immunity against microbial infections. In this section, we will dis-
cuss the well-known collectins: MBL, SP-A and SP-D, as well as newly discovered
collectins: liver collectin (CL-L1), kidney collectin (CL-K1), and placenta collectin
(CL-P1). We will also briefly discuss bovine collectins, conglutinin, CL-43 and CL-
46. Microbes can be cleared by collectins via a number of mechanisms such as
aggregation, opsonisation, phagocytosis, microbial growth inhibition, complement
activation, as well as modulation of adaptive immunity.

4.5 Interaction of Collectins with Bacteria

4.5.1 SP-A and SP-D

Pulmonary surfactant is composed of 90% phospholipids and 10% proteins (made
up of surfactant proteins, SP-A, SP-B, SP-C and SP-D. Whilst, SP-B and SP-C are
hydrophobic and essential for the physiology of the alveolar surfaces, SP-A and
SP-D are hydrophilic and contribute to lung immunity. An early study showed that
pulmonary surfactant enhanced the killing of Staphylococcus aureus by alveolar
macrophages (AM), in vitro (LaForce et al. 1973). Both Gram-negative and Gram-
positive bacteria are recognised by SP-A and SP-D, enhancing their phagocytosis by
AMs (Fig. 4.3) (Pikaar et al. 1995). For Gram-negative bacteria, SP-A and SP-D both
bind to lipopolysaccharide (LPS) but differ in preferential targets on the molecule.
SP-A binds to the lipid A moiety of rough LPS (which lacks the O-antigen and
shortened oligosaccharides) (Van Iwaarden et al. 1994), and enhances phagocytosis
of bacteria by AM (Kalina et al. 1995), but not to smooth LPS (which contains the
O-antigen) (Van Iwaarden et al. 1994). In contrast, SP-D binds strongly to smooth
LPS from Escherichia coli and Salmonella species but does not recognise the lipid A
moiety or oligosaccharide deficient LPS (Kuan et al. 1992). This indicates that SP-
D preferentially targets the core terminal saccharides in the bacterial ligand, whilst
SP-A prefers lipid A. SP-D has also able been shown to bind to rough LPS via its
trimeric carbohydrate recognition domain (CRD), (targeting shortened oligosaccha-
rides) and agglutinating E. coli (Kuan et al. 1992), and rough LPS from Klebsiella
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Fig. 4.3 Multiple functions of SP-A and SP-D in human health and disease

pneumoniae and Pseudomonas aeruginosa (Lim et al. 1994a, b; Kishore et al. 1996).
In addition to LPS, SP-A is able to bind to capsular polysaccharides of Klebsiella
species, enhancing their phagocytosis byAM (Kabha et al. 1997). However, bacterial
peptidoglycan is not a ligand for SP-A (Murakami et al. 2002).

SP-A and SP-D directly inhibit the growth of several Gram-negative bacteria by
increasing the membrane permeability of the bacterial cell wall (Fig. 4.3) (Wu et al.
2003). SP-A and SP-D also inhibit biosynthetic functions in strains of E. coli, K.
pneumoniae and Enterobacter aerogenes (Wu et al. 2003). Similarly, SP-A inhibits
the growth of P. aeruginosa by increasing membrane permeability (Van Iwaarden
et al. 1994), but the bacterium can resist through quorum-sensing and the secretion of
a flagellum-mediated exoprotease that degrades SP-A (Kuang et al. 2011a). Further-
more, SP-A downregulates TNF-α secretion via toll-like receptor 2/NF-κBmediated
pathway, indicating its role in modulating inflammatory responses against bacte-
rial ligands (Murakami et al. 2002). SP-A can bind to the outer membrane protein
(OMP) of Haemophilus influenzae type A and to a lesser extent, type B (McNeely
and Coonrod, 1994). SP-A can also aggregate and opsonise H. influenzae type A,
facilitating killing by AM (McNeely and Coonrod 1994). Similarly, SP-A binds to
the capsular polysaccharide of some strains ofK. pneumoniae, agglutinating the bac-
teria and increase phagocytosis by macrophages (Kabha et al. 1997), and treatment
with SP-A plus SP-BN (N-terminal saponin domain of SP-B) significantly reduced
bacterial infection and enhanced neutrophil recruitment (Coya et al. 2015). SP-A
has a bacteriostatic effect on Mycoplasma pneumoniae via binding to di-saturated
phosphatidylglycerols on the bacterial membrane (Piboonpocanun et al. 2005). SP-A
can interact withMycobacterium tuberculosis putative adhesin Apa glycoprotein on
its surface (Ragas et al. 2007). SP-D can also bind to Gram-positive bacterial lig-
ands such as lipoteichoic acid and peptidoglycan via its CRD (van de Wetering et al.
2001) and to lipoarabinomannan (LAM) from M. tuberculosis and Mycobacterium
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avium (Ferguson et al. 1999; Kudo et al. 2004). SP-D is also able to interact with
cell membrane lipids of M. pneumoniae (Chiba et al. 2002).

It is intriguing that although both SP-A and SP-D bind and agglutinateM. tuber-
culosis, they have opposing effects on phagocytosis bymacrophages. SP-A enhances
phagocytosis via increased expression of mannose receptor on the host cell surface
(Beharka et al. 2002), whilst SP-D inhibits phagocytosis by blocking the interaction
of LAM with macrophage mannose receptor, and not as a result of bacterial agglu-
tination by SP-D (Ferguson et al. 1999, 2002). In a mouse model of tuberculosis
infection, SP-A−/−, SP-D−/−, and SP-A/D−/− knockout mice still had the ability to
phagocytose and clear M. tuberculosis when given a low-dose aerosol challenge of
the pathogen, suggesting that both SP-A and SP-D could be redundant in this animal
model (Lemos et al. 2011). Similarly, both SP-A andSP-D can also bind toLegionella
pneumophila, but seem to inhibit intracellular bacterial growth in the macrophage
(Sawada et al. 2010).

SP-A and SP-D can also directly facilitate phagocytosis without the need for
microbial binding, by up-regulating the expression of cell surface phagocytic recep-
tors in macrophages, such as mannose receptor (Beharka et al. 2002; Kudo et al.
2004). InSP-A−/− knockoutmice, expressionofmannose receptor is down-regulated,
showing that SP-A is important in regulating the expression of this receptor (Beharka
et al. 2002). Similarly, SP-A is able to enhance phagocytosis of Streptococcus pneu-
moniae byAM, independent of its binding to the bacterium, via the increased expres-
sion of scavenger receptor A (SR-A) (Kuronuma et al. 2004). Interestingly, the vast
majority of clinical strains of the opportunist Pseudomonas aeruginosa secrete an
elastase that degrades SP-A and facilitates evasion of opsonisation by the collectin
during phagocytosis (Kuang et al. 2011b).

SP-A and SP-D can play important roles in modulating the intracellular envi-
ronment after phagocytosis by stimulating reactive oxygen and nitrogen intermedi-
ates facilitating the killing of intracellular pathogens. This is of particular note in
mycobacteria, which are specialist intracellular bacteria. SP-A enhances the killing
of intracellular Mycobacterium bovis BCG by increasing nitric oxide (NO) produc-
tion, in addition to enhancing the release of inflammatory mediators such as TNF-α
(Weikert et al. 2000). In contrast, in IFN-γ primed AM, SP-A decreases NO pro-
duction in response to intracellular infection with M. tuberculosis and M. avium by
inhibiting TNF-α secretion and nuclear factor-kappa B (NF-κB) activation (Pasula
et al. 1999; Hussain et al. 2003). SP-A can also enhance the intracellular killing of
Mycoplasma pulmonis via a NO dependent mechanism (Hickman-Davis et al. 1998).

Bacteria-derived cell-wall molecules such as LPS and peptidoglycan are potent
stimulators of inflammation and can also interact with pattern-recognition receptors
(PRRs) such as CD14 or toll-like receptors (TLR), via pathogen-associated molec-
ular patterns (PAMPs), and activate downstream intracellular signalling. SP-A and
SP-D can also directly bind to PRRs (e.g. TLR and CD14) and thus can modulate the
inflammatory response. SP-A and SP-D can alter LPS interactions with CD14 via
different mechanisms (SP-A via neck domain; SP-D via CRD) (Sano et al. 2000).
Furthermore, via direct interaction with CD14, SP-A inhibits production of TNF-
α induced by smooth LPS, but not rough LPS in U937 macrophages (Sano et al.
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1999). In SP-A−/− knockout mice, TNF-α induced by smooth LPS, significantly
increased, compared to wild-type mice (Borron et al. 2000), whilst SP-A has also
been shown to inhibit TNF-α induction by peptidoglycan via direct binding to TLR-2
(Murakami et al. 2002). Thus, SP-A significantly decreases peptidoglycan or smooth
LPS-induced pro-inflammatory responses (via NF-κB activation). SP-A has no effect
or increases the inflammatory response induced by rough LPS. In tuberculosis, SP-A
has pleiotropic effects being able to promote inflammation in the presence of infec-
tion and suppresses inflammation in uninfected macrophages, probably protecting
uninfected lung areas from the deleterious effects of inflammation (Gold et al. 2004).

In humans, SP-A exists in two isoforms, SP-A1 and SP-A2, which are encoded by
distinct genes. Fully assembled SP-A protein contains both gene products. A number
of studies have described polymorphisms in these genes and the SP-D gene which
may have a role in susceptibility to microbial infection, particularly tuberculosis.
Polymorphismswithin and flanking the SP-A1 and SP-A2 genes have been described
which indicate protection or susceptibility toward pulmonary TB in the populations
studied in Mexico, Ethiopia, India and China (Floros et al. 2000; Madan et al. 2002;
Malik et al. 2006; Vaid et al. 2006; Yang et al. 2014). Two SP-A1 alleles (SFTPA1
307A, SFTPA1 776T) and two SP-A2 alleles (SFTPA2 355C and SFTPA2 751C)
were associated with tuberculosis susceptibility in Ethiopia (Malik et al. 2006). The
SFTPA2 751A/C polymorphism and the haplotype 1A3 in SP-A2, which both affect
the amino acids in CRD region of SP-A, may alter binding to M. tuberculosis and
thus were found to be strongly linked with tuberculosis susceptibility (Malik et al.
2006). Another study also found two polymorphisms (SP-A2 G1649C and SP-A2
A1660G) in the introns of SP-A1 that were associated with tuberculosis in an Indian
population, but none in the SP-A1 gene (Madan et al. 2002). In a Chinese population,
the polymorphism 1649G in the SP-A2 gene was strongly associated with tuberculo-
sis, mirroring the findings in the Ethiopian and Indian populations (Yang et al. 2014).
The SP-A2 1649G leads to a transversion (proline to alanine), affecting the triple
helical structure of SP-A (Yang et al. 2014). In SP-D, the polymorphism, G459A,
is significantly associated with tuberculosis susceptibility in an Indian population,
but the molecular basis for susceptibility is not understood (Vaid et al. 2006). These
observations illustrate the complexities of host-pathogen interactions in bacterial
infection mediated by these collectins.

4.5.2 MBL

MBL is the recognition subcomponent of the lectin pathway of the complement sys-
tem and is present mostly in the serum. The structure of MBL is similar to that of
SP-A, and in the presence of Ca2+, it has been observed to target terminal sugars (e.g.
d-mannose, l-fucose, and N-acetyl-d-glucosamine), on the surface of a number of
Gram-positive and Gram-negative bacterial species (Ip et al. 2009; Lugo-Villarino
et al. 2011). The binding of MBL to microbial surfaces can activate complement
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through MBL-associated serine proteases (MASPs), resulting in enhanced micro-
bial clearance via opsonisation (C3 and C4 deposition) and complement-mediated
lysis. However, MBL also has complement-independent activity such as inhibition
of bacterial adhesion (Jack et al. 2005) and opsonisation to enhance bacterial uptake
(Kuhlman et al. 1989; Polotsky et al. 1997; Jack et al. 2005). Strong in vitro binding
of MBL to S. aureus, Streptococcus pyogenes, Listeria monocytogenes and non-
encapsulated Neisseria meningitidis has been described (Levitz et al. 1993; van
Emmerik et al. 1994; Neth et al. 2000). Moderate levels of MBL binding were
observed in E. coli, Haemophilus influenzae and Klebsiella species, whilst no bind-
ing has been observed for P. aeruginosa, Enterococcus species and Streptococcus
pneumoniae (Levitz et al. 1993; van Emmerik et al. 1994; Neth et al. 2000). Bacterial
pathogens have involved strategies to interfere with MBL binding and functions for
survival, via the synthesis of a polysaccharide capsule and sialylation of LPS ligands
on the bacterial surface which reduces the binding of MBL (Jack et al. 2005; Krarup
et al. 2005). This effectively masks or alters the bacterial ligands for MBL interac-
tion. A number of studies have characterised the bacterial ligands for MBL. MBL is
able to bind to peptidoglycan and lipoteichoic acid from S. aureus (Polotsky et al.
1996; Nadesalingam et al. 2005a, b), LAM from M. avium (Polotsky et al. 1997),
and mannosylated lipoarabinomannan (ManLAM) from a number of mycobacteria
(M. tuberculosis, M. bovis, M. kansasii, M. gordonae and M. smegmatis) (Bart-
lomiejczyk et al. 2014). There is also a report of MBL binding to the antigen 85
(Ag85) complex of M. tuberculosis (Swierzko et al. 2016). Neisseria (M. meningi-
tidis and M. gonorrhoeae) are Gram-negative diplococci that have shorter versions
of LPS on their surface called lipooligosaccharides (LOS) that are commonly ter-
minated in sialic (neuraminic) acid, instead of the O-antigen. Neisseria bacteria are
able to decrease binding of MBL to their surface by the sialylation on LOS (Jack
et al. 1998; Devyatyarova-Johnson et al. 2000; Jack et al. 2001; Gulati et al. 2002).
M. meningitidis can also interfere with MBL binding through encapsulation (van
Emmerik et al. 1994), whilst M. gonorrhoeae is not able to form capsules. Encap-
sulation seems to be less robust at decreasing MBL binding than sialyation of LOS
(Jack et al. 1998). Bound MBL can activate complement and the ability of Neis-
seria species to cascade complement all the way to C9 (membrane attack complex
(MAC)) is crucial for protection against infection, since they are otherwise poorly
phagocytosed by neutrophils and macrophages when opsonised by C3 (Ross and
Densen 1984). MBL bound to the surface of Neisseria is able to increase bacterial
killing via increased complement activation (Jack et al. 1998, 2001; Gulati et al.
2002), and similar observations of bactericidal activity have been reported for E. coli
and Salmonella species (Kawasaki et al. 1989; Ihara et al. 1991). For most other bac-
teria, complement activation to the C3 deposition stage is enough for protection via
increased phagocytosis through opsonisation by complement products on the bacte-
rial cell surface. MBL can increase C3b deposition on S. aureus (Neth et al. 2002),
but this does not appear to result in increased complement activation (Cunnion et al.
2001). MBL targets wall teichoic acid in S. aureus and this interaction is particularly
important in infants that have not developed adaptive immunity, leading to bacterial
clearance via MBL-mediated complement activation (Kurokawa et al. 2016).
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In addition to its complement-mediated activities, MBL is also has various intrin-
sic effects, being able to act as anopsonin independently andother direct effects.MBL
enhances uptake and intracellular killing of Salmonella by neutrophils andmonocytes
(Kuhlman et al. 1989), but this may also involve interaction with fibronectin (Ghiran
et al. 2000). Recently, MBL has also been shown to have a direct inhibitory effect on
flagellar activity in pathogenic Salmonella bacteria, impairing theirmotility (Xu et al.
2016). MBL can also increase uptake of mycobacteria by macrophages (Polotsky
et al. 1997) and N. meningitidis by neutrophils, monocytes and macrophages (Jack
et al. 2001), but this uptake by neutrophils may not result in intracellular killing
(Drogari-Apiranthitou et al. 1997). MBL also appears to improve the efficiency of
internalisation of bacteria bound to the macrophage plasma membrane (Neth et al.
2002). MBL co-interacts with TLR2 in sensing S. aureus and thus influencing the
subsequent inflammatory response (Nauta et al. 2003; Ip et al. 2008).

MBL deficiency increases susceptibility to microbial infection even though the
majority of MBL-deficient individuals are usually healthy (Eisen and Minchinton
2003). The concentration of MBL in the plasma varies considerably in humans (0–
10, 000 ng/ml) due to polymorphisms in the MBL gene (Steffensen et al. 2000).
MBL deficiency is commonly observed in around 25% of Caucasians (having low
levels (<500 ng/ml)), which renders them susceptible to infection (Valdimarsson
et al. 2004). MBL-deficient mice are susceptible to S. aureus infection (Shi et al.
2004), whilst MBL deficiency increases susceptibility to postburn infection with P.
aeruginosa (Moller-Kristensen et al. 2006). A large cohort study has also found
a strong association between MBL deficiency and meningococcal infection, and
pneumococcal pneumonia, in patients undergoing chemotherapy (Gaynor et al. 1995;
Kronborg et al. 2002; Roy et al. 2002). In contrast, normal or increased levels ofMBL
are linked to frequent infection with M. tuberculosis and M. leprae (Garred et al.
1994, 1997b), probably through complement-mediated phagocytosis of the pathogen.
Up to 30% of healthy individuals have polymorphisms linked to MBL deficiency
and these, together with serum levels, have been associated with susceptibility to
tuberculosis and other inflammatory diseases in some ethnic populations (Takahashi
and Ezekowitz 2005; Thiel et al. 2006; Goyal et al. 2016).

4.5.3 CL-L1, CL-K1, CL-P1 and the Bovine-Unique
Collectins, Conglutinin, CL-43 and CL-46

Of the three more recently discovered collectins (CL-L1, CL-K1, CL-P1), CL-L1
and CL-P1 have been shown to have bacterial interactions. CL-K binds to E. coli,
K. pneumoniae, P. aeruginosa and M. tuberculosis (Keshi et al. 2006; Hansen et al.
2010; Troegeler et al. 2015), whilst CL-P1 can bind to E. coli and S. aureus (Ohtani
et al. 1999; Jang et al. 2009). Both CL-L1 and CL-K1 can activate the complement
lectin pathway as can the heteromeric form CL-LK, which interacts with the MASPs
(Henriksen et al. 2013). CL-P1 can activate the alternative and classical pathways
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via its interaction with C-reactive protein (CRP) (Roy et al. 2016). There is lim-
ited data on the activity of CL-LK in vivo and in vitro, but due to average serum
concentrations being below that of MBL (0.3 μg/ml vs. 1.5 μg/ml), pathogen recog-
nition and clearance through complement activation is likely to have a minor role
to play for these collectins. It is not clear whether these collectins can act directly
as opsonins in a complement-independent manner. CL-L1 can bind d-mannose, N-
acetylglucosamine,d-galactose, l-fucose and d-fructose in aCa2+ dependentmanner
(Ohtani et al. 1999; Axelgaard et al. 2013). Similarly, CL-K1 can also bind l-fucose,
d-mannose and N-acetylmannosamine (Ohtani et al. 1999; Hansen et al. 2010). Fur-
thermore, CL-LK was recently demonstrated to be a PRR forM. tuberculosis, being
able to primarily target mannose-capped lipoarabinomannan (ManLAM), in a Ca2+

dependent manner, on the surface of the mycobacterium, but not to M. smegmatis
due to the lack of mannose caps on its LAM (Troegeler et al. 2015). Mice deficient in
CL-K1 did not show altered susceptibility to M. tuberculosis infection and CL-LK
opsonisedM. tuberculosis did not result in altered phagocytosis or intracellular sur-
vival of the pathogen in human macrophages (Troegeler et al. 2015). Interestingly,
the levels of CL-LK in serum of tuberculosis patients is reduced, compared to con-
trols, correlating inversely to the immune response toM. tuberculosis and suggesting
that it may be useful as a biomarker for the disease (Troegeler et al. 2015).

Conglutinin was the first mammalian collectin to be discovered and is found in
Bovidae, together with other lesser known collectins (CL-43 and CL-46) (Hansen
and Holmskov 2002). Conglutinin is similar in overall structure to SP-D and is able
to bind to microbial surfaces in the presence of Ca2+ (Hansen and Holmskov 2002).
Conglutinin is secreted by the liver and found predominantly in bovine serum at an
average concentration of 12 μg/ml (Holmskov et al. 1998). Conglutinin has been
shown to have anti-microbial properties. Low serum levels of conglutinin have been
associated with acute infections (e.g. pneumonia and metritis) and predisposition to
respiratory infection (Ingram andMitchell 1971; Holmskov et al. 1998). Conglutinin
is able to bind many microbes, including Gram-negative bacteria such as E. coli and
Salmonella typhimurium (Friis-Christiansen et al. 1990; Friis et al. 1991), LPS and
peptidoglycan (Wang et al. 1995) and Gram-positive bacteria such as mycobacteria
(Dec et al. 2012; Mehmood et al. 2019). Conglutinin is uniquely able to bind to
iC3b, via the mannose sugars on the α-chain of iC3b (Laursen et al. 1994). Con-
glutinin is able to bind and agglutinate iC3b-coated erythrocytes (Lachmann and
Muller-Eberhard 1968; Laursen et al. 1994), and as well as E. coli, increasing the
respiratory burst of phagocytes (Friis et al. 1991). Conglutinin has also been shown
to be protective against bacterial infection in vivo, being able to increase the survival
of mice experimentally infected with highly virulent strains of S. typhimurium (Friis-
Christiansen et al. 1990). A recombinant truncated form of conglutinin, composed of
theα-helical neck region and theCRDof conglutinin (Wang et al. 1995), was recently
shown to bind to able to bind to the vaccine strainMycobacterium bovisBCG (proba-
bly via LAM), and act as an anti-opsonin both in the presence and absence of comple-
ment deposition. Thus, Conglutinin can interfere with the uptake of the bacterium by
THP-1 macrophages and alter their inflammatory response (Mehmood et al. 2019).
This suggests that conglutinin interfers with uptake of mycobacteria bymacrophages
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via two important mechanisms: (1) blocking interaction of mycobacterial LAMwith
mannose receptor, and (2) blocking iC3b interactionwith complement receptors CR3
and CR4 (Mehmood et al. 2019). These data potentially have important implications
for bovine tuberculosis.

CL-43 and CL-46 are also bovine-unique collectins, but their role in the physi-
ology and innate immunity against bacteria has not been fully studied. There is one
report of CL-43 binding to E. coli strain K12, enhancing attachment to phagocytes
(Hansen and Holmskov 2002).

4.6 Interaction of Collectins with Viruses

4.6.1 SP-A and SP-D

There are numerous studies that describe direct interaction of SP-A and SP-D with a
range of viruses, enhancing their phagocytosis, as well as neutralising viral infection
of host cells (Fig. 4.3). Experiments on SP-A−/− and SP-D−/− knockoutmice infected
with influenza A virus (IAV) suggest that both collectins are protective, but this is
dependent on viral strain-specific factors, such as the nature of glycosylation in HA
and NA (LeVine et al. 2001, 2002; Hawgood et al. 2004). Also, mice lacking both
SP-A and SP-D, have an IAV infection phenotype almost identical to SP-D−/− mice
(Hawgood et al. 2004). Moreover, SP-D, but not SP-A, enhanced the clearance of
IAV infection in the mouse lung (LeVine et al. 2001). Thus, these studies suggest that
SP-D plays a more significant role than SP-A in the host innate immune response to
infection with IAV.

SP-A binds to IAV, neutralises the virus and inhibits the release of viral parti-
cles from infected cells, by targeting mannose residues of viral surface haemagglu-
tinin (HA) or neuraminidase (NA) (Malhotra et al. 1994; Benne et al. 1995). SP-D
strongly inhibits hemagglutination activity of IAV, resulting in viral aggregation and
neutralisation (Hartshorn et al. 1994). SP-D is also able to inhibit NA activity, with
inhibition being stopped in the presence of D-mannose (Reading et al. 1997). SP-D
has a stronger inhibitory effect on NA compared to SP-A (Tecle et al. 2007). SP-D
binds to mannosylated, N-linked sugars on viral HA and NA via its CRD, resulting
in potent anti-IAV infectivity (Hartshorn et al. 1994, 2000). SP-D was able to inhibit
virus-induced HA activity, block the enzymatic activity of viral NA, and neutralise
the ability of seasonal H1N1 strains of IAV to infect human respiratory epithelial
cells (Job et al. 2010). However, in the same study, some pandemic H1N1were found
to be resistant to SP-D inhibition that correlated with the degree of N-glycosylation
in the globular head of HA (Job et al. 2010). It has been shown that porcine SP-D
has an increased ability to inhibit, not just seasonal IAV strains, but also a number of
pandemic and avian strains (van Eijk et al. 2003; Hillaire et al. 2012). This is impor-
tant as pigs are a source of IAV pandemic strains (H1N1) that can be transmitted
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to humans, so studying porcine SP-D could provide further insights into this host
reservoir.

A recombinant truncated form of SP-A (rfhSP-A) made up of α-helical neck
and CRD, promotes IAV infection, replication, upregulation of viral factors (M1) in
lung epithelial A549 cells and enhances the pro-inflammatory response (Al-Qahtani
et al. 2019). This contrasts with full-length SP-A which inhibits IAV infection and
dampens the pro-inflammatory response, demonstrating that the full-length SP-A
molecule is required for IAV protection (Al-Qahtani et al. 2019). However, in a
similar study, a recombinant truncated form of SP-D (rfhSP-D) was shown to inhibit
IAV entry, down-regulate viral factors (M1) and down-regulate the pro-inflammatory
response (Al-Ahdal et al. 2018). These opposing effects of rfhSP-A and rfhSP-D
provide further insight into IAV pathogenesis and the possible utility of rfhSP-D as a
therapeutic molecule. In bronchoalveolar lavage (BAL), SP-D enhances IAV uptake
and virus-induced respiratory burst by neutrophils (White et al. 2005), but other
collectins (SP-A), mucins and gp-340 dampen SP-D’s effect, and thus, significantly
reduce the ability of SP-D to promote neutrophil oxidative response (White et al.
2005). Therefore, the net effect of BAL is to increase neutrophil uptake of IAVwhile
reducing the respiratory burst response to virus (White et al. 2005).

SP-A is also able to bind to herpes simplex virus type 1 (HSV-1) via viral N-linked
sugars and enhance phagocytosis of the virus by macrophages (van Iwaarden et al.
1991; Van Iwaarden et al. 1992a, b). The mechanism of binding of SP-A to HSV-1 is
similar to binding to IAV, involving interaction with the sialylated carbohydrate on
the collectin’s CRD. SP-A also has an opsonin activity, increasing uptake of HSV-1
by AM (van Iwaarden et al. 1991). Similarly, SP-A binds to cytomegalovirus and
enhances viral entry into rat lung cells (Weyer et al. 2000). It is unknown whether
SP-D has any activity against other Herpesviridae. SP-A is able to bind to respiratory
syncytial virus (RSV) targeting the F2 subunit of the viral F antigen and is able neu-
tralise the virus (Ghildyal et al. 1999; Sano et al. 1999, 2000). Children with severe
RSV infection have reduced levels of SP-A and SP-D in BAL samples compared
to healthy controls (Kerr and Paton 1999). In SP-A−/− knockout mice, RSV infec-
tion was more severe than in SP-A+/+ mice and the addition of exogenous SP-A to
SP-A−/− mice reduced viral load and inflammation, and enhanced RSV clearance
(LeVine et al. 1999). SP-D can bind to RSV protein G and is able to neutralise RSV
infectivity in vitro (Hickling et al. 1999). Interestingly, RSV itself can alter SP-A
expression in human pulmonary epithelial cells, upon infection by interfering with
protein translation (Bruce et al. 2009). SP-A binds to Human Immunodeficiency
Virus 1 (HIV-1) via the viral envelope gp120 glycoprotein and inhibits direct infec-
tion of CD4+ T cells (Gaiha et al. 2008). Yet, in dendritic cells (DC), SP-A increases
HIV uptake, through enhanced binding to gp120 and facilitates transfer of HIV from
DC to CD4+ T cells (Gaiha et al. 2008). SP-D is also able to bind to HIV gp120 and
inhibit viral infectivity (Meschi et al. 2005), whilst rfhSP-D was also able to bind
to gp120 and prevent infection of Jurkat T cells, U937 monocytic cells and PBMC,
and significantly suppress the HIV-1 induced cytokine storm in these cells (Pandit
et al. 2014). Interestingly, a direct protein–protein interaction between rfhSP-D and
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DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin) modulates the capture of HIV-1 and its transfer to CD4+ T cells, revealing
a novel and distinct anti-viral mechanism against HIV-1 by SP-D (Dodagatta-Marri
et al. 2017). This same rfhSP-D has also been recently shown to restrict the transfer of
HIV across the vaginal epithelial barrier, by altering the gene expression signature of
the epithelium (Pandit et al. 2019). These recent studies demonstrate the therapeutic
potential of rfhSP-D against HIV infection.

Elevated levels of serum SP-D have been reported in severe acute respiratory
syndrome (SARS) coronavirus infected patients (Wu et al. 2009). SP-D is able to
bind to the glycosylated spike protein (S-protein) on the SARS coronavirus (Leth-
Larsen et al. 2007). Both SP-A and SP-D bind to coronavirus strain HCoV-229E,
and inhibit viral infection of human bronchial epithelial (16HBE) cells. Whilst SP-A
only modestly reduced infection in AM, whereas SP-D had no effect (Funk et al.
2012). Human and porcine SP-D can interact with Ebola virus glycoprotein and
enhance viral infection in pulmonary cells, suggesting that SP-D may enhance viral
spread (Favier et al. 2018). SP-A has been shown to enhance clearance of pulmonary
adenovirus infection and inhibit lung inflammation (Harrod et al. 1999). Bovine SP-
D is also able to bind to bovine rotaviruses via the VP7 glycoprotein and neutralise
infectivity (Reading et al. 1998). SP-D binds to the A27 protein of vaccinia virus. SP-
D−/− knockout mice challenged with vaccinia virus resulted in increased mortality,
compared to SP-D+/+ mice, suggesting that SP-Dhas a protective role against vaccinia
infection (Perino et al. 2013).

4.6.2 MBL

MBL is able to interact with a number of viral pathogens and its effect is generally
protective, although there are examples of negative as well as positive outcomes
for infection as a result of MBL-mediated binding (Fig. 4.4). Several studies have
shown that MBL is a potent inhibitor of IAV infection (Hartley et al. 1992; Hartshorn
et al. 1993b; Reading et al. 1995, 1997). Moreover, MBL also has the added ability
to deposit complement on IAV-infected cells (Reading et al. 1995). There are also
elevated levels of MBL in the lung during IAV infection, suggesting that it may be
important for protection against IAV pathogenesis (Reading et al. 1997; Fidler et al.
2009). MBL can inhibit viral hemagglutination and directly neutralise IAV in either
a complement-dependent or independent manner (Hartshorn et al. 1993b; Anders
et al. 1994; Kase et al. 1999). MBL binds to IAV HA and NA, and without involving
complement, neutralises the virus (Kase et al. 1999). However, some IAV strains are
resistant to the effects of MBL which is dependent on the degree of glycosylation on
the viral HA globular domain (Reading et al. 1997; Job et al. 2010; Tokunaga et al.
2011). Furthermore, MBL−/− mice were more susceptible to infection from highly
glycosylated viral strains of IAV than wild-type mice (Chang et al. 2010). However,
pandemic strain H1N1 and avian influenza A H9N2 produced more severe disease
(enhanced production of pro-inflammatory response) in wild-type mice compared
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Fig. 4.4 Anti-viral activity of mannose-binding lectin (MBL). MBL binds to viruses, including
influenza virus, acting as an opsonin (not through direct neutralisation), eliminating viral particles
by phagocytosis. Binding of MBL to carbohydrate groups found on the surface of viral particles
triggers the lectin activation pathway of complement leading to lysis

to MBL−/− mice, suggesting that MBL may have a deleterious effect in some IAV
infections (Ling et al. 2012).

MBL is able to neutralise HIV-1 in vitro by binding to the N-linked mannose
glycans of viral gp120, and binding to HIV-1 infected CD4+ T cells and monocytes
and inhibiting reverse transcriptase activity (Ezekowitz et al. 1989; Teodorof et al.
2014). Another study has also shown MBL can also bind to viral gp41 as well as
gp120 (Saifuddin et al. 2000), whilst MBL also activates complement on gp120
binding (Haurum et al. 1993). Studies have shown a tentative link between low
levels of MBL and increased risk of HIV-1 transmission or progression to AIDS,
but this remains contentious (Garred et al. 1997a; Takahashi and Ezekowitz 2005;
Ballegaard et al. 2014). There has also been a report of a positive correlation between
the rate of AIDS progression andMBL plasma concentration (Mangano et al. 2008).
However, other studies have found no correlation between MBL levels and AIDS
disease progression (Nielsen et al. 1995; McBride et al. 1998). In general, SP-D is
better able to inhibit HIV-1 than MBL, but as is the case for MBL, SP-D’s inhibitory
activity against HIV-1 is lower than what has been observed for IAV (Meschi et al.
2005). MBL has also been shown to contribute to HIV-1 pathogenesis, where MBL
mediates enhancement of HIV-1 dissemination to the brain by soluble gp120, which
is taken up by the CXCR4 receptor on neurones, and then intracellularly trafficked by
MBL, thus resulting in the apoptosis of neuronal cells (Bachis et al. 2006; Teodorof
et al. 2014).

Epidemiological studies have revealed association of MBL with hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection and disease severity, based on genetic
polymorphisms (Thomas et al. 1996; Matsushita et al. 1998; Yuen et al. 1999; Sasaki
et al. 2000; Hakozaki et al. 2002). However, one study found no link between MBL
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polymorphisms and HBV infection (Hohler et al. 1998). MBL is able to bind to HCV
envelope glycoproteins, E1 andE2, and is able to activate complement (viaMASP-2),
resulting in the neutralisation of HCV particles (Brown et al. 2010). MBL probably
binds to N-linked glycosylated forms or HBV surface antigen (HBsAg) (Brown et al.
2007), but it is unknown whether this interaction neutralises the infectivity of the
virus.

MBL is also able to bind to Ebola virus via its envelope glycoprotein (GP), which
contains high mannose glycan sites, and is able to inhibit the binding of Ebola (and
Marburg) viruses to DC-SIGN, blocking attachment to host cells and also neutralise
the virus through complement activation (Ji et al. 2005). Furthermore, soluble GP is a
key component of Ebola viral pathogenesis and MBL was found to be able to negate
GP activity and the virally induced cytokine storm (Escudero-Perez et al. 2014), and
thus MBL could be involved in protection against increased vascular permeability
which is a characteristic of Ebola haemorrhagic disease. Nevertheless, high dose
MBL therapy in a mouse model, where mice we given recombinant human MBL at
levels greater than seven times above average human levels, survived otherwise fatal
Ebola viral infection and became resistant to reinfection (Michelow et al. 2011).

There is limited or circumstantial data on the interaction of MBL with a number
of other viral pathogens. In mice, MBL appears to modulate the immune responses
to HSV-2 (Gadjeva et al. 2004), MBL deficiency seems to be linked with recurrent
infections (Gadjeva et al. 2004; Seppanen et al. 2009).MBL also binds to flaviviruses
such as Dengue and West Nile virus and is able to neutralise infection through
complement-dependent and independent mechanisms (Avirutnan et al. 2011; Fuchs
et al. 2011). Genetic polymorphism affecting MBL serum levels may also contribute
to the pathogenesis and disease severity of Dengue fever (Avirutnan et al. 2011).

4.6.3 CL-L1, CL-K1, CL-P1 and the Bovine-Unique
Collectins, Conglutinin, CL-43 and CL-46

For collectins CL-L1, CL-K1, CL-P1, there is limited data on their interaction with
viruses.OnlyCL-K1has been shown tobind IAVandpartially decrease the infectivity
of the virus (Hansen et al. 2010; Selman and Hansen 2012). The binding of CL-L1
and CL-P1 to viruses has not been reported.

Like SP-D, conglutinin binds to IAV resulting in the inhibition of hemagglutina-
tion and infectivity of the virus (Hartshorn et al. 1993a). Conglutinin binds via its
CRD to the high mannose sites on the viral HA. IAV treated with conglutinin also
boosted neutrophil respiratory burst (Hartshorn et al. 1993a). Conglutinin, CL-43
and bovine SP-D have been reported to bind the bovine rotavirus Nebraska calf diar-
rhoea virus, targeting its VP7 glycoprotein (Reading et al. 1998). Binding resulted
in hemagglutination and neuralisation of rotavirus, with CL-43 showing the highest
activity against the virus; it is the first report of collectin activity against a non-
enveloped virus (Reading et al. 1998). However, conglutinin has a higher inhibitory
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activity against IAV (strain HKx31) than bovine SP-D or CL-43 (Reading et al.
1998). Conglutinin binds to HSV-2 and enhances infection in mice (Fischer et al.
1994). It is also able to bind to HIV-1 gp160 and inhibit interaction of the virus with
the CD4 receptor (Andersen et al. 1991). Interestingly, a collectin-like protein analo-
gous, to bovine conglutinin, was purified from human serum (called conglutinin-like
protein) and this was demonstrated to bind to HIV-1 gp120 via its CRD and inhibit
viral infectivity (Ushijima et al. 1992).

4.7 Interaction of Collectins with Fungi

Collectins are able to recognise and bind to a number of fungi, both primary and
opportunistic fungal pathogens, at various stages in their life cycle. Collectins can
exhibit direct growth inhibition and enhance phagocytosis of fungi; in some cases,
they can contribute to the fungal pathogenesis.

4.7.1 SP-A and SP-D

Both SP-A and SP-D can bind to the conidia of Aspergillus fumigatus, via its β-(1-6)-
glucan carbohydrate structures on the fungal cell surface in a Ca2+ dependent manner
(Fig. 4.3) (Madan et al. 1997a; Allen et al. 2001a, b). SP-A and SP-D can cause
inhibition of conidia infectivity via agglutination, enhancement of phagocytosis and
intracellular killing of A. fumigatus conidia by neutrophils and AM (Madan et al.
1997a). The fungal ligands of SP-A are 2 N-linked glycosylated glycoproteins (gp45
and gp55) isolated from culture filtrate and are also used for ELISA diagnosis of
allergic aspergillosis (Madan et al. 1997b). Fungal melanin was recently determined
to be the primary ligand for SP-D on the A. fumigatus conidia cell surface, and is
able to facilitate fungal phagocytosis and modulate the anti-fungal immune response
(Wong et al. 2018).

Utilising a mouse model of invasive pulmonary aspergillosis (IPA), SP-D, but not
SP-A, was found to be protective against a normally fatal challenge of A. fumigatus
conidia (Madan et al. 2001a, b). In this study, IPA mice-treated intranasally with
purified human SP-D or rfhSP-D showed 60 and 80% survival respectively (Madan
et al. 2001a, b). The basis of this therapeutic protection by SP-D and rfhSP-D was
observed to be enhanced phagocytosis of conidia by macrophages and neutrophils,
fungistatic effects on the growth of conidia and a dampening of pathogenic Th2
cytokines (IL-4 and IL-5), whilst enhancing protective Th1 cytokines (TNF-α and
IFN-γ) (Singh et al. 2009). SP-D−/− knockout mice are more susceptible to IPA
(Madan et al. 2010).However, SP-A−/− knockoutmice demonstrate resistance to IPA,
suggesting that SP-Amay be involved in the pathogenesis of IPA (Madan et al. 2010).
Both SP-A and SP-D also have a direct effect onHistoplasma capsulatum, inhibiting
its growth by increasing the permeability of the fungal membrane (McCormack et al.
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2003). However, no aggregation of H. capsulatum was observed by SP-A or SP-D,
and neither collectin altered the phagocytosis of the fungus or inhibited the growth
of macrophage-infected H. capsulatum (McCormack et al. 2003).

SP-A is also able to bind to Cryptococcus neoformans, both in its encapsulated
and non- encapsulated yeast form, but this does not result in increased phagocytosis
of the acapsular form (Walenkamp et al. 1999). SP-A binding was Ca2+-dependent
and was inhibited by glucose and mannose, but not galactose (Walenkamp et al.
1999). Intranasal infection with C. neoformans gave the same survival outcome in
SP-A−/− knockout mice and wild-type mice, suggesting that the fungus is resis-
tant to SP-A mediated host defence mechanisms (Giles et al. 2007). A subsequent
study found that SP-D increases the phagocytosis of hypocapsular C. neoformans
by murine macrophages and that this facilitated fungal survival (Geunes-Boyer et al.
2009). Other studies have also shown that SP-D can agglutinate C. neoformans and
A. fumigatus (Schelenz et al. 1995; Madan et al. 1997a). Furthermore, SP-D can bind
to both encapsulated and acapsular C. neoformans and can aggregate acapsular C.
neoformans in particular (van de Wetering et al. 2004a). The cryptococcal capsu-
lar components glucuronoxylomannan (GXM) and mannoprotein 1 (MP1) are the
ligands for SP-D (van de Wetering et al. 2004a). SP-D is able to facilitate C. neofor-
mans infection further by protecting the fungus against oxidative stress allowing for
disease progression in the mouse model of infection (Geunes-Boyer et al. 2012).

SP-D is also able to bind Blastomyces dermatitidis, via β-glucan on its surface,
and subsequently block interactions with β-glucan-receptors on AM (Lekkala et al.
2006). This study also showed a reduction in TNF-α, dampening the host inflam-
matory response and thus may facilitate disease progression (Lekkala et al. 2006).
SP-D and SP-A can also bind to Coccidioides posadasii via its surface antigens. In a
mouse model of infection, C. posadasii infection is able to suppress the expression
of pulmonary SP-A and SP-D, possibly facilitating fungal disease progression and
dissemination (Awasthi et al. 2004). SP-D can also bind to Candida albicans via its
surface antigens and agglutinate the pathogen and directly inhibiting its growth with-
out the requirement of macrophage dependent phagocytosis (van Rozendaal et al.
2000). Similarly, SP-A is able to bind to C. albicans and interfere with attachment
to AM, inhibiting phagocytosis (Rosseau et al. 1997). SP-A is also able to dampen
the pro-inflammatory response elicited by C. albicans by human AM and mono-
cytes, which may be important in regulating excessive inflammation in the lung
during Candida infection (Rosseau et al. 1999). In Saccharomyces cerevisiae, SP-D
is observed to bind to its surface, but not SP-A, whilst the fungal ligand for SP-D is
yeast β-(1-6)-glucan (Allen et al. 2001a, b).

The opportunistic fungus, Pneumocystis is able to infect a number of mammals
with each species of the fungus displaying strict host specificity. For example, P.
carinii and P. wakefieldiae infect rats, P. murina infects mice, P. oryctolagi infects
rabbits, and P. jirovecii infects humans. SP-A and SP-D are able to recognise and
bind Pneumocystis species via the major surface glycoprotein (MSG; also known
as gpA) of the fungus (O’Riordan et al. 1995; McCormack et al. 1997a, b). MSG
contains anN-linked carbohydrate chainmade up of glucose,mannose, andN-acetyl-
glucosamine and is involved in attachment of the fungus to alveolar epithelium
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in Pneumocystis pneumonia (Zimmerman et al. 1992; Vuk-Pavlovic et al. 2001).
Cruciform dodecamers and other large oligomers of SP-D have a higher affinity of
binding to P. carinii than do smaller oligomeric versions of SP-D (Vuk-Pavlovic
et al. 2001). SP-D is also able to recognise Pneumocystis cysts via surface β-glucans
(Vuk-Pavlovic et al. 2001). However, SP-D binding does not appear to increase the
phagocytosis of the fungus (McCormack et al. 1997a, b; Vuk-Pavlovic et al. 2001).
Despite this, SP-D does aggregate P. carinii in large complexes that may restrict
phagocytosis by macrophages and may allow for persistence of the fungus within
the host lungs (Vuk-Pavlovic et al. 2001). Pneumocystis pneumonia does alter the
expression of SP-A in the lungs (Atochina et al. 2001), with a threefold increase in
the levels of SP-A and SP-D (Phelps et al. 1996; Aliouat et al. 1998; Qu et al. 2001),
but decreases total phospholipid content (Atochina et al. 2001).

Human SP-A enhances attachment of P. carinii to rat AM in vitro (Williams et al.
1996). SP-A also reduces phagocytosis of P. carinii in human AM in vitro (Koziel
et al. 1998). These data suggest that increased levels of SP-A during Pneumocystis
pneumonia (Phelps et al. 1996)may contribute to the pathogenesis through binding to
the fungus and interfering with its AM recognition (Koziel et al. 1998). Immunosup-
pressed SP-A−/− mice also have increased susceptibility toP. carinii infection (Linke
et al. 2001), whilst removal of immunosuppression resulted in efficient clearance of
the infection (Linke et al. 2006), showing that SP-A does not enhance P. carinii clear-
ance, but does modulate the host immune response during the resolution of infec-
tion. SP-D modulates interaction of P. carinii with AM (Limper et al. 1995) and also
aggregates P. carinii, impairing phagocytosis by AM (Yong et al. 2003). In SP-D−/−
mice, there was delayed clearance of P. carinii infection, increased inflammation and
altered nitric oxide response (Atochina et al. 2004). Similarly, in immunosuppressed
mice, SP-D was found to enhance P. carinii infection (Vuk-Pavlovic et al. 2006).

4.7.2 MBL

MBL has been reported to interact with various primary and opportunistic fungal
pathogens. Low serum levels of MBL have been linked to increased likelihood of
fungal disease (Mullighan et al. 2002; Granell et al. 2006). MBL is able to bind to A.
fumigatus (Neth et al. 2000), B. dermatitidis (Koneti et al. 2008), C. albicans (Kitz
et al. 1992; Neth et al. 2000; Ip and Lau et al. 2004; van Asbeck et al. 2008),Candida
parapsilosis (van Asbeck et al. 2008), and C. neoformans (Chaka et al. 1997; van
Asbeck et al. 2008). The ligands for MBL binding to C. albicans and C. neoformans
are mannan and mannoprotein, respectively (Chaka et al. 1997; Ip and Lau, 2004),
whilst 1,3-β-glucan and mannose are the MBL ligands on B. dermatitidis and A.
fumigatus, respectively (Neth et al. 2000; Koneti et al. 2008).

MBL is able to bind A. fumigatus conidia showing aggregation, enhancing phago-
cytosis, and complement deposition (Kaur et al. 2007). However, MBL binding of
conidia did not always result in the killing of A. fumigatus by phagocytes (Madan
et al. 2005a, b; Kaur et al. 2007). Moreover, MBL may be less important in this
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context, since it is mainly a serum protein and may not be in significant levels in the
lung. Nevertheless, genetic polymorphisms in the MBL gene have been shown to be
associatedwith severe aspergillosis (Crosdale et al. 2001; Vaid et al. 2007). Similarly,
MBL deficiency is a risk factor for aspergillosis in immunocompromised patients,
cancer patients and transplant recipients. In the mouse model of infection, MBL
deficiency does not necessarily affect the survival of mice infected with A. fumigatus
conidia, due to redundancy sincemice having two copies of theMBL gene (Mbl1 and
Mbl2), encoding MBL-A and MBL-C proteins in mouse serum (Hogaboam et al.
2004). However, treatment with recombinant MBL does enhance survival in IPA
mice (Kaur et al. 2007). Thus, the role of MBL in A. fumigatus infection may also
depend on the route of infection and the level of immunosuppression of the host.

MBL interaction with B. dermatitidis has only been studied in the mouse sys-
tem. Both MBL mouse proteins (MBL-A and MBL-C) bind to B. dermatitidis yeast
cells (Koneti et al. 2008). Inhibition of macrophage response to B. dermatitidis is
also mediated by MBL, binding to 1,3-β-glucan ligand on B. dermatitidis, and thus
inhibiting 1,3-β-glucan interaction with Dectin-1 receptor on macrophages and also
decreasing TNF-α production (Brown et al. 2002; Kimberg and Brown 2008). More-
over, macrophage production of G-CSF, IFN-γ, MCP-1, and RANTES were signifi-
cantly inhibited by MBL in response to B. dermatitidis, but not IL-6 (Brummer et al.
2007).

MBL can bind toC. albicans yeast and pseudohyphae and toC. parapsilosis yeast
cells (Denton and Disalvo 1964; Sugar and Picard 1988; Brummer et al. 2005; van
Asbeck et al. 2008). MBL is able to aggregate C. albicans resulting in its growth
inhibition and complement deposition of C4b and C3b on its surface via MASPs (Ip
and Lau 2004; vanAsbeck et al. 2008). Similar levels ofMBL-mediated complement
deposition were also observed forC. parapsilosis (van Asbeck et al. 2008). However,
the binding of MBL to C. albicans may inhibit its phagocytosis by macrophages or
dendritic cells (Zimmerman et al. 1992; Schelenz et al. 1995; Chaka et al. 1997; Vuk-
Pavlovic et al. 2001; Ip and Lau 2004; van de Wetering et al. 2004a). MBL seems
to inhibit Candida-induced macrophage responses in THP-1 cells through TLR-2
and TLR-4, suggesting that C. albicans modifies TLR signalling pathways in the
macrophage (Wang et al. 2013). However, in the case of neutrophils, MBL enhances
the phagocytosis of both C. albicans and C. parapsilosis yeast cells (van Asbeck
et al. 2008). MBL greatly facilitates complement-mediated uptake of C. albicans via
CR1 receptor in neutrophils and this results in the stimulation of reactive oxygen
species by intracellular Dectin-1, which recognises the phagocytosed fungal β-1,3
glucan (Li et al. 2012). The binding of MBL with C. albicans yeast also increases
TNF-α production by monocytes in vitro (Ghezzi et al. 1998) and in vivo (Lillegard
et al. 2006). Double knockout (MBL-A and MBL-C) mice were found to be more
susceptible to systemic infection withC. albicans compared to wild-type mice (Held
et al. 2008). Vaginal candidiasis is an important mycosis in women. MBL protein
is present in vaginal secretions (Pellis et al. 2005); MBL levels seem to increase in
vulvovaginal candidiasis. However, MBL levels were found to be lower in women



98 V. Murugaiah et al.

with recurrent vulvovaginal candidiasis, because of polymorphisms in their MBL
gene (Babula et al. 2003; Liu et al. 2006; Giraldo et al. 2007; Donders et al. 2008;
Milanese et al. 2008). The precise role of MBL in candidiasis remains to be fully
explored.

MBL can bind to acapsular C. neoformans yeast cells (Chaka et al. 1997), but this
does not cause aggregation (Eisen et al. 2008).However,MBLbinding to acapsularC.
neoformans did facilitate complement deposition and enhancement of fungal phago-
cytosis by neutrophils (van Asbeck et al. 2008). Furthermore, TNF-α production was
induced in peripheral blood mononuclear cells by C. neoformans mannoprotein and
this effect was enhanced by MBL (Chaka et al. 1997). It is unknown whether MBL
binds to H. capsulatum or P. carinii. It is unlikely that MBL binds to H. capsula-
tum, since the cell wall contains 1,3-α-glucan (Rappleye et al. 2007); however, in P.
carinii, the cell surface of cyst forms does containβ-1,3-glucan (Williams et al. 1996),
which may bind MBL. In Coccidioides species, it is also unknown whether MBL
interaction occurs, but patients with active coccidioidomycosis have been shown to
have low serum MBL levels, compared to healthy individuals previously infected
with Coccidioides, and that low levels of MBL were associated with polymorphisms
in their MBL gene (Corredor et al. 1999).

4.7.3 CL-L1, CL-K1, CL-P1 and the Bovine-Unique
Collectins, Conglutinin, CL-43 and CL-46

Very few studies have investigated the interaction of these minor collectins with
fungal species. CL-K1 can bind C. albicans (Selman and Hansen 2012) and cellular
extracts (mannan) of S. cerevisiae (Keshi et al. 2006; Selman and Hansen 2012).
CL-P1 has also been reported to bind to S. cerevisiae and mediate phagocytosis of
yeast-derived zymosan, suggesting that CL-P1 mediates phagocytosis for fungi in
the vascular endothelium (Ohtani et al. 1999; Jang et al. 2009). Interestingly, CP-P1
also partially binds to A. fumigatus, via its CRD, and in association with properdin,
can activate the complement alternative pathway, resulting in C3b deposition and
formation of the membrane attack complex (Ma et al. 2015). This shows a novel
mechanism of triggering the alternative pathway of complement (Ma et al. 2015).
There are no reports of CL–L1 interaction with fungi.

There are also limited reports of the binding of bovine-unique collectins to fungi.
CL-43 is able to bind to acapsular C. neoformans in vitro in a Ca2+-dependent man-
ner (Schelenz et al. 1995), and immobilised yeast mannan (Holmskov et al. 1996).
Conglutinin is able to bind to glycoproteins and polysaccharides derived from S.
cerevisiae (N-acetylglucosamine, mannose, mannan) (Loveless et al. 1989; Lim and
Holmskov 1996).
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4.8 Interaction of Collectins with Protozoal and Helminth
Pathogens

An area of collectin that is yet to be fully explored is the interaction of collectins
with protozoal and helminth pathogens, which are responsible for some of the most
important global infections. There are limited studies and these are mostly based on
genetic polymorphisms in collectin genes that are associated with predisposition or
severity of these diseases. There is a limited number of functional studies on the role
of collectins in protozoal and helminth infections.

Increases in levels of SP-D were observed in serum, renal and cerebral tissues in
mice experimentally infected with Plasmodium berghei, compared to control mice
(Cahayani et al. 2016). Low MBL serum levels and genetic polymorphisms in the
MBL gene have been associated with more severe malaria, particularly in children
(Luty et al. 1998; Holmberg et al. 2008). MBL can bind to P. falciparum protein
extracts, but it does not appear to inhibit the parasite directly (Klabunde et al. 2002).
MBL does not opsonise P. falciparum, but it can bind to P. falciparum-infected
erythrocytes, recognising the 78-kDa glucose-regulated stress glycoprotein of the
parasite (Garred et al. 2003). MBL binding to P. falciparummerozoite adhesins have
also been reported, having the ability to activate complement (Korir et al. 2014).

The complement lectin pathway can be activated byTrypanosoma andLeishmania
(Cestari et al. 2013). MBL binds to glycosylated antigens on Trypanosoma cruzi,
on the surface of metacyclic trypomastigotes, resulting in complement activation
(Cestari Idos et al. 2009). In a mouse model of T. cruzi infection, MBL influences
host resistance and pathology (Rothfuchs et al. 2012). In some strains of T. cruzi,
MBL mediates resistance to complement lysis of the parasite and enhances invasion
of host cells (Evans-Osses et al. 2014).

MBL also binds to major cell surface glycoconjugates (lipophosphoglycans) on
Leishmania parasites, triggering lectin pathway activation and promastigote lysis
(Green et al. 1994; Ambrosio and De Messias-Reason 2005). Certain genotypes of
theMBL2 genewere also predictive for the risk for developing visceral leishmaniasis
and other clinical complications in infections with Leishmania chagasi (Alonso et al.
2007). Similarly, there was a strong correlation found between serum levels of MBL
and the probability of developing visceral leishmaniasis (Santos et al. 2001). Mono-
cytes challenged withMBL-opsonised L. chagasi promastigotes secreted higher lev-
els of TNF-α and IL-6 than controls, suggesting that MBL may play an important
role in pathogenesis (Santos et al. 2001).

In helminth infections, MBL binds to the surface glycoproteins of Schistosoma
mansoni cercariae and adult worms and is able activate the lectin pathway (Klabunde
et al. 2000). Curiously, no differences in serum MBL levels were observed between
patients infected with Schistosoma and in healthy controls (Klabunde et al. 2000).
Another study has shown that high MBL serum levels are associated with protection
in schistosomiasis (Antony et al. 2013). Interestingly, high levels ofMBL and CL-K1
were inversely correlated with urogenital infections with S. haematobium (Antony
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et al. 2015b). Although CL-K1 has not been shown to bind directly to the para-
sitic worm, it was observed to be a risk factor for urinary schistosomiasis (Antony
et al. 2015a). Furthermore, concomitantly elevated IL-6 levels were also observed
in urinary schistosomiasis cases compared to controls that correlated with MBL lev-
els (Antony et al. 2015b). Similar findings linking IL-6 and MBL have also been
described in patients with visceral leishmaniasis (Santos et al. 2001; Antony et al.
2015b).

SP-D has also been shown to bind to fucosylated glycoconjugates (α-1–3 linked
fucose) on the surface of S. mansoni larval stages, although the significance of this
interaction remains unclear (van deWetering et al. 2004b, c). However, a recent study
has suggested that SP-D is essential for protection against helminth infection, using
the experimental model nematodeNippostrongylus brasiliensis (Thawer et al. 2016).
N. brasiliensis infection of SP-D−/− knockout mice resulted in severe susceptibility
to parasitic disease, whilst treatment with rfhSP-D enhanced parasite clearance and
anti-parasitic immune responses (Thawer et al. 2016). SP-D was determined to bind
to N. brasiliensis larvae via its CRD, and to enhance their killing by AM (Thawer
et al. 2016).

4.9 Collectins and Allergy

A considerable number of in vitro and in vivo studies have focused on the
immunomodulatory functions of collectins and their contribution to the host defense
system. Through activation of complement, and production of pro-inflammatory
cytokines, MBL makes a major impact on the generation and regulation of the
immune-mediated inflammatory response. Allergen-mediated activation of the com-
plement lectin pathway has been demonstrated (Varga et al. 2003). Allergen extracts
(parietaria (PA) and house dust (HD) mite) were shown to bind purified MBL, and
trigger the lectin complement pathway. Differences in plasmaMBL levels may affect
the degree of complement activation in different individuals, thus, susceptibility to
allergic diseases. Significantly elevated serum MBL levels were observed in pedi-
atric mild-asthma patients, suggesting the possible role of MBL in the pathogenesis
of asthma by contributing to airway inflammation, or increasing the risk of asthma
development (Uguz et al. 2005). Enhanced levels of serum MBL also correlate with
an increased peripheral blood eosinophils in these individuals. It is also suggested
that oxidative stress increases the MBL synthesis, and triggers complement activity.
MBL can initiate complement activation following oxidative stress in asthma (Col-
lard et al. 2000; Nadeem et al. 2003; Uguz et al. 2005), and aggravate inflammation.
Significantly increased MBL levels and MBL pathway was also detected in patients
with bronchial asthma, rhinitis and allergic bronchopulmonary aspergillosis (ABPA)
(Kaur et al. 2005).

Ahigher level of plasmaMBL is likely to contribute to activation of lectin pathway,
and an increased severity, including enhanced blood eosinophil counts. In addition,
production ofMBL in the liver is suggested to increase by up to three fold in response
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to environmental stimuli. Therefore, higher levels of plasmaMBL in allergic patients,
compared to the non-allergic patients, may result from elevated hepatic synthesis
caused by allergen exposure. Furthermore, the circulating level of mouse MBL-A
was also measured in Aspergillus fumigatus allergen-sensitised and non-sensitised
mice. Increased level of mMBL-A was observed following allergic sensitisation,
suggesting that challenging these mice with allergen may contribute to a higher level
of MBL in sensitised mice as well as allergic patients (Kaur et al. 2005). Earlier
in vivo studies using mouse MBLs have reported the likely role of MBL-A as a
mediator of inflammation (Santos et al. 2001; Takahashi et al. 2002). Moreover, a
substantial decline in the airway hyperresposiveness to A. fumigatus conidia was
seen in MBL-A–deficient mice (MBL-A−/−) when compared to MBL-A+/+ control
mice, which suggest the possible role ofMBL-A and its ability to trigger progression
of airway hyper-responsiveness (Hogaboam et al. 2004).

Since levels of plasma MBL are genetically determined, it is of interest to study
the genetic polymorphisms in MBL in relation to allergic susceptibility. In order to
address the correlation between polymorphisms in the MBL gene and the progres-
sion of atopic diseases, Nagy et al. found a contribution of variant MBL alleles to
the susceptibility to acute or chronic Chlamydia pneumoniae infection in asthmatic
children (Nagy et al. 2003). Another study that focused on the genetic associa-
tion of MBL related single nucleotide polymorphisms (SNPs) with allergic patients
(Kaur et al. 2006), reported the identification of G1011A, an intronic SNP found
in the MBL gene, and presence of 1011A allele of SNP G1011A to be associated
with an enhanced level of plasma MBL., SNP G1011A has also been suggested to
play a role in regulating MBL expression. Additional polymorphisms were found at
positions 550 (H/L variants) and 221 (X/Y variants) in the promoter region of the
MBL gene, which associated with high MBL levels in the plasma. 1011A allele was
also associated with bronchial asthmatic patients with allergic rhinitis and ABPA,
which positively correlated with allergic markers, including high peripheral blood
eosinophil counts, and reduced levels of forced expiratory volume at timed interval
of 1 s (FEV1) in these patients. However, no structural SNPs have been observed
within the MBL gene in these allergic patients.

As carbohydrate recognition immune molecules, both SP-A and SP-D have been
shown to interact with gp55 and gp45 of A. fumigatus in a calcium and carbohydrate
specific dependent manner (Madan et al. 1997b). Both these collagenous molecules
inhibit specific IgE binding to these glycoproteins, and block allergen triggered his-
tamine release fromhumanbasophils isolated fromDerp- andA. fumigatus-sensitised
patients (Madan et al. 1997a, b).Dodecameric formsof humanSP-Dmediate binding,
aggregation, and phagocytosis of starch granules, containing grass pollen allergens
from Dactylis glomerata and Phleum pratense via alveolar macrophages (Erpen-
beck et al. 2005). SP-D can suppress proliferation of PBMCs isolated from children
with Derp–sensitive asthma (Wang et al. 1998), and suppress secretions of IL-2 by
PBMCs (Borron et al. 1998). Suppressive effects of SP-A on the production and
release of IL-8 by eosinophils were also reported, which is stimulated by ionomycin
in a concentration-dependent manner (Cheng et al. 1998). Since IgE cross-linking,
release of histamine and PMBCs proliferation are crucial immunological factors
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contributing to the development of asthmatic symptoms, both SP-A and SP-D are
crucial immune modulators in resisting allergenic challenge, as well as suppressing
substantial hypersensitivity reactions in the lungs (Kishore et al. 2002).

Intranasal administration of SP-D or rfhSP-D caused reduced levels of peripheral
and pulmonary eosinophilia, and the effect persisted up to 16 days in the ABPAmice.
These observations therefore indicate the potential of SP-D as a therapeutic agent
(Kishore et al. 2002; Madan et al.2001a; 2005a, b). In addition, protective role of
rhfSP-D has also reported in murine model of Derp allergens-induced pulmonary
hypersensitivity (Singh et al. 2003). Shifting of Th2 to a Th1 following SP-D treat-
ments appeared to be crucial to the protective mechanism, since, IFN-γ gamma is
suggested to inhibit differentiation of Th2 in response to IL-4 (Elser et al. 2002).
Additionally, production of nitric oxide was significantly inhibited when Derp mice
derived alveolar macrophages are pre-incubated with rfhSP-D, and resulted in low
levels of TNF-α in the rfhSP-D treated Derp mice (Liu et al. 2005). Culturing alve-
olar macrophages with allergen and SP-D has induced an increased production of
IL-10, IL-12, and IFN- γ, indicating a positive correlation between macrophages and
SP-D triggered inhibition of airway inflammation and airway hyper-responsiveness
(AHR) (Takeda et al. 2003).

A study byMadan et al. has focused on the susceptibility of SP-A−/− and SP-D−/−
mice to challenge with A. fumigatus allergen compared to wild-type mice (Madan
et al. 2005a, b).

Intrinsic hypereosinophilia and seven fold increase in IL-5 and IL-13 levels were
seen in both SP-A−/− and SP-D−/− mice. However, lower levels of IFN- γ to IL-
4 ratio in the lungs were observed, suggesting the possible Th2 basis of immune
response. Treating these mice with exogenous intranasal SP-A and SP-D resulted in
reversal of Th2 polarisation. SP-D−/− mice was reported to be more susceptible to
A. fumigatus allergen-induced pulmonary hypersensitivity when compared to wild-
typemice. However, resistant to sensitisationwas seenwith SP-A−/− mice. Intranasal
administration of SP-Dor rfhSP-D led to rescue of the sensitisedSP-D−/−mice,while
SP-A−/− mice demonstrated an enhanced levels of IL-5 and IL-13, causing greater
pulmonary eosinophilia. Genetic polymorphisms in the collagen region of SP-A2
(SP-A2 G1649C and SP-A2 A1660G) may also increase susceptibility to allergic
bronchopulmonary aspergillosis (ABPA) (Saxena et al. 2003).

4.10 Collectin (and C1q) Receptors

The collectins are structurally related to the complement protein C1q (having a
collagenous region and similar overall tertiary structure. A common receptor for SP-
A,MBL and C1q was described in 1990 (Malhotra et al. 1990) (Fig. 4.5), as collagen
region binding cC1qR. This was subsequently identified as Calreticulin (~56kDa).
Two other candidate receptors were subsequently proposed:
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Fig. 4.5 Collectin receptors on immune cells. Collectins have been shown to bind a number of
receptors and putative receptors, which lead to immunomodulatory responses. Binding of col-
lectins to Toll-like receptor 2 (TLR-2), TLR-4, SP-A receptor 210 (SP-R210), CD91-calreticulin,
and signal inhibitory regulatory protein-α (SIRP-α) alters production of pro-inflammatory medi-
ators. For example, SP-A and SP-D binds to SIRP-α via their collagenous tails, and stimulates
pro-inflammatory chemokine production via calreticulin/CD91 interaction. Furthermore, bacterium
bound collectins induces the conformational changes of calreticulin/CD91 interaction, which then
activates P38-mitogen-activated protein kinase (MAPK) signalling pathway, leading to transcrip-
tional activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and
expression of pro-inflammatory cykines, including tumour necrosis factor alpha (TNF-α). SIRP-
α is abundantly expressed in macrophages, and ligation of SIRP-α by lung collectins are crucial
in preventing damage to the airways caused by the production of pro-inflammatory responses.
Thereby, phosphorylated cytoplasmic region of SIRP-α recruits SHP-1 (Src homology region 2
domain-containing phosphatase-1), which in turn dephosphorylates protein substrates involved in
mediating physiological effects. Thus, the interaction between SIRP-α and SHP-1 negatively reg-
ulates P38-MAP kinase signalling, and stimulates NF-κB activity, and cells become resistant to
TNF-mediated effects, such as apoptosis

(1) C1qRp (CD93) (C1q receptor associated with phagocytosis stimulated by C1q,
MBL or SP-A): but this has subsequently been shown not to bind any of these
ligands. It may be an adhesion receptor (McGreal et al. 2002; Norsworthy et al.
2004).

(2) CR1, the complement C3b receptor, does interact with C1q and MBL, but
functional aspects are not yet widely explored (Jacquet et al. 2018).

(3) Calreticulin remains themain candidate as a receptor/adapter involved in phago-
cytosismediated byC1qand collectins (Ogden et al. 2001;Vandivier et al. 2002).
Calreticulin bound to the cell surface CD91 mediates uptake of apoptotic cells
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to which C1q, MBL, SP-A and SP-D are bound. It also mediates uptake of
microorganisms targeted by the collectins.

SP-A and SP-D can interact with phagocytic receptors and are able to influence
receptor-mediated uptake of bacteria (Lawson and Reid 2000). SP-A enhances the
phagocytosis of S. aureus by monocytes but does not induce intracellular killing or
the production of reactive oxygen intermediates (ROI) (Geertsma et al. 1994). SP-A
is also able to enhance the uptake ofM. tuberculosis andM. avium by macrophages
via the increased expression of mannose receptor (Gaynor et al. 1995; Kudo et al.
2004), whilst SP-A enhances the scavenger receptor A (SR-A)-mediated uptake of
Streptococcus pneumoniae by AM (Kuronuma et al. 2004). SP-A is also reported to
bind to a 210-kDa SP-A receptor (SPR210) in U937 macrophages and rat AM and
mediate uptake of Mycobacterium bovis bacillus Calmette-Guérin (BCG) via this
receptor (Chroneos et al. 1996; Weikert et al. 1997); in rat macrophages, this led to
enhanced mycobacterial killing and an increase in the production of inflammatory
mediators, TNF-α and nitric oxide (Weikert et al. 2000). SP-A and SP-D can also
bind to the major LPS receptor, CD14 that is present on alveolar macrophages. SP-
A binds to the peptide portion of CD14, whilst SP-D interacts with the glycan of
the receptor (Sano et al. 2000). SP-A modulates LPS-induced cellular responses by
direct interaction with CD14 (Sano et al. 1999), serving as an important mechanism
for the recognition and clearance of this endotoxin. As noted above, SP-A and SP-D
can interact with the versatile protein calreticulin (Malhotra et al. 1990). When SP-A
and SP-D bind to surface target ligands such as LPS or apoptotic cells, multiple
collagen regions are presented on the surface, which interact with the Calreticulin
-CD91 receptor complex (Gardai et al. 2003). This can then lead to the promotion of
phagocytosis and initiation of cell signalling pathways leading to the production of
pro-inflammatory cytokines and priming of adaptive immunity (Ogden et al. 2001;
Vandivier et al. 2002; Gardai et al. 2003). In contrast, SP-A and SP-D can also sup-
press inflammatory responses by binding to signal regulating protein α (SIRP-α) on
macrophages and epithelia via their CRD region, and this leads to a signalling path-
way that blocks pro-inflammatory mediator production (Fig. 4.5) (Table 4.2) (Gardai
et al. 2003). Therefore, the orientation of binding of SP-A and SP-D (collagen or
lectin (CRD)) domains to host receptors Calreticulin-CD91 or SIRP-α, respectively,
have opposing effects and illustrate a dual function of these collectins, which could
be, (1) protection of the naïve lung via maintenance of immune homeostasis and (2)
protection via the triggering of inflammation to clear pathogens, allergens, necrotic
and apoptotic cells. Another receptor, gp-340 has also been found to bind to SP-D
and SP-A (Holmskov et al. 1997a; Tino and Wright 1999), but any microbial inter-
action has been described for Influenza virus (Hartshorn et al. 2006a, b) and not
bacteria, whilst binding of SP-A to gp-340 stimulates macrophage chemotaxis (Tino
and Wright 1999).

Calreticulin (cC1qR) is a collectin binding protein of 56 kDa, and is known to
bind C1q, MBL, SP-A, conglutinin and CL-43 (Fig. 4.5) (Table 4.2) (Malhotra et al.
1993). This interaction is independent of calcium ions, and ionic in nature. It is medi-
ated by the collagen domain ‘c’ of the collectins (cC1qR). The C1q binding site has
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Table 4.2 Binding proteins and Receptors for lung collectins

Binding
proteins/receptors

Cells expressing the
receptors

Protein domain Proposed functions

Calreticulin/CD91 Ubiquitous Collagen region of
SP-A and SP-D

Phagocytosis and
production of
pro-inflammatory
cytokines

C1qRp/CD93 Monocytes,
macrophages,
neutrophils, platelets,
endothelial cells and
microglia

Reported as a
receptor, but may not
bind C1q or
collectins

Initially proposed to
have roles in
phagocytosis

gp340 Soluble opsonin CRD region of SP-A
and SP-D

Stimulation and
migration of alveolar
macrophages

CD14 Alveolar
macrophages

Neck region of SP-A
which interacts with
the peptide portion
containing the
leucine-rich repeats
of CD14.
CRDs of SP-D that
binds and interact
with carbohydrate
moiety of CD14

CD14-LPS
modulation and
release of
pro-inflammatory
cytokines and
chemokines

SIRP α/CD172 Antigen presenting
cells, endothelial
cells, myeloid cells,
and neurons

CRD of SP-A and
SP-D

Inhibition of
pro-inflammatory
cytokine and
chemokine
production

SPR210 Type II cells, alveolar
macrophages, and
bone marrow derived
macrophages

SP-A- 36 residues
collagen
region composed of
RGD motif

Regulation of
phospholipid
secretion and
cytokine production,
phagocytosis, and
inhibition of T-cell
proliferation

been mapped to the S-domain of calreticulin (Stuart et al. 1996). Conglutinin and
CL-43 also bind C1qR and calreticulin (Dec andWernicki 2006). SP-A receptor 210
(SP-R210) is a 210 kDa oligomeric molecule that earlier has been purified from the
macrophage cell line U937 by affinity chromatography (Fig. 4.5 (Table 4.2) (Chro-
neos et al. 1996). SP-R210 is another candidate receptor for SP-A, and also found in
type II cells and alveolar macrophages. The direct interaction between SP-R210 and
SP-A occurs through the collagen region of SP-A.Antibodies raised against SP-R210
inhibit SP-A binding to alveolar type II cells and alveolar macrophages, thus, prevent
SP-A-mediated uptake ofMycobacterium bovis, and block SP-A-bacillus Calmette-
Guerin complexes to phagocytes. Furthermore, SP-R210 inhibited SP-A-mediated
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phospholipid secretion by alveolar type II cells (Weikert et al. 1997). Additionally, a
study byYang et al. reported SP-R210 as a cell surfacemyosin 18A (Yang et al. 2005),
and expressed in multiple isoforms. Gp340 is a 340 kDa SP-D binding glycoprotein
purified from lung bronchoalvelar lavage of alveolar proteinosis patients (Holmskov
et al. 1997), and belongs to the scavenger receptor superfamily, consisting ofmultiple
scavenger receptor type B domains (Holmskov et al. 1999). Furthermore, gp340 has
been shown to be identical to salivary agglutinin, and its binding interaction with
Streptococcus mutans and Helicobacter pylori has been reported (Ligtenberg et al.
2001). The direct binding of SP-D to gp340 occurs in a calcium dependent manner,
and is inhibited by EDTA. The interaction is not affected by the presence of mal-
tose, suggesting that the binding is a protein-protein interaction via the CRD region
of SP-D rather than a lectin-carbohydrate interaction. Similar binding pattern was
observed between gp340 and rfhSP-D, composed of trimeric neck region and CRD
(Holmskov et al. 1997). Gp340 exists in a soluble form, and acts as an adaptor for
SP-A and SP-D, but how gp340 is anchored in the membrane and the mechanism of
binding to cell surface has not been elucidated fully yet (Table 4.2). SP-D can bind
to human neutrophil defensins (HNPs) via its neck and CRD region (Hartshorn et al.
2006a, b). The interaction between SP-D and HNPs can trigger anti-viral activity
in the BAL fluid. HD6, human β-defensins, and human neutrophil peptide (HNP)-4
bind SP-D with weaker affinity, while HNP-1-3 bind SP-D with high affinity and
trigger inhibition of SP-D mediated anti-viral activity (Doss et al. 2009). Addition-
ally, SP-D binds human decorin from amniotic fluid in a calcium dependent manner
via sulphated N-acetyl galactosamine moiety of decorin (Nadesalingam et al. 2003).
rfhSP-D interacts with dermatan sulphate moiety of decorin, and core protein of
decorin interacts with SP-D via the collagen-like region.

The interaction between lung collectins (SP-A and SP-D) and native as well as
recombinant CD14 has been reported (Table 4.2) (Sano et al. 1999). CD14 is a sol-
uble receptor for LPS, and the neck domain of SP-D has been shown to bind the
leucine-rich peptide portion of CD14, whilst the carbohydrate moiety of CD14 inter-
acts with the lectin domain of SP-D (Sano et al. 1999). Thus, both these surfactant
proteins appear to modulate the cellular response to smooth and rough LPS by inter-
action with CD14. (Sano et al. 1999). Furthermore, the association of SP-A and
SP-D with toll-like receptors (TLR), and or the TLR-associated molecule, could be
one of the mechanisms by which they function as modulators of inflammation an
inflammatory mediators (Sano et al. 1999). Studies have reported direct involve-
ment of SP-A in TLR2 signalling, and inhibition of downstream gene activation
(Murakami et al. 2002). SP-A interacts directly with TLR4 and myeloid differentia-
tion factor 2 (MD-2), which are known critical signalling receptors for LPS (Billod
et al. 2016). Thus, binding of SP-Awith extracellular domain of TLR4 andMD-2was
revealed in a calcium-dependent manner, involving the CRD region. Additionally,
SP-A has attenuated cell surface binding of smooth LPS, and induced NF-κB activa-
tion in cells expressing TLR4 andMD-2 (Murakami et al. 2002). SP-D does not have
significant effect on TLR4 expression, but it down-regulates the TLR4-mediated sig-
nalling against LPS (Henning et al. 2008). Thus, SP-A’s ability to dampen TLR2 and
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TLR4 signalling is associated with decrease in the phosphorylation of IkappaBal-
pha, a key regulator of NF-κB activity, and nuclear translocation of p65, resulting in
reduced TNF-α secretion in response to TLR ligands. Furthermore, the same study
also reported diminished phosphorylation of Akt, an essential regulator of NF-κB
and potentially MAPKs. Therefore, there is a critical role for SP-A in modulating
lung inflammatory reactions by regulating macrophage-mediated TLR4 activity.

As noted above, calreticulin was identified as a common receptor for C1q, MBL
and SP-A (Malhotra et al. 1990). Calreticulin is mainly an intracellular protein but it
is present on cell surfaces bound to CD91 and, thus, acts as an adaptor or co-receptor
while binding to collagenous region of these collectins (Fig. 4.5) (Table 4.2) (Ogden
et al. 2001; Vandivier et al. 2002). Uptake of apoptotic cells by phagocytes mediated
by C1q orMBL binding to calreticulin-CD91 complex was revealed (Vandivier et al.
2002).HLAclass I heavy chain (Arosa et al. 1999), orCD59have been shown to act as
a calreticulin-binding proteins on cells which do not express CD91, allowing C1q or
MBL coated particles to adhere to the cells. Although a number of collectin receptors
have been identified, there is still a need to fully elucidate how collectins stimulate
phagocytes, and mediate phagocytosis, as well as other signalling transduction path-
ways. More studies on the structural aspects of receptors are needed, especially how
these receptors are anchored in the membrane of immune and non-immune cells and,
which co-receptors and signalling pathways are involved.

In conclusion, collectins appear to play important roles in controlling lung allergy,
inflammation and hypersensitivity, in addition to dealing with a wide variety of
pathogens at pulmonary and extra-pulmonary sites. They act against pulmonary
allergens through their ability to resist allergen challenge by interfering with allergen
triggered IgE interaction, degranulation of mast/basophils, cellular infiltration, and
polarisation of helper Th response. Their roles have been also implicated in alter-
ing profiles of pro-inflammatory cytokines and chemokines as a result of infection,
and allergen challenge. Further research is needed to characterise specific collectin
receptors that are crucial for collectin functions other than phagocytosis.
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