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Abstract

Nanoparticles are a very advanced area of nanotechnology and play an important
role in medical sciences and technology. Nanoparticles such as polymer and
metal nanoparticles are widely used in applications for antioxidant activity.
Nonenzymatic antioxidant assays using free radical–scavenging activity of
nanoparticles have been investigated using different methods such as
2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays, nitric oxide radical inhi-
bition assays, superoxide anion–scavenging activity, reducing power, determina-
tion of total phenolic compounds and hydroxyl radical–scavenging assays. The
investigated metal nanoparticle included gold, zinc oxide, copper, silver, zirco-
nium oxide and selenium, and the polymer nanoparticles include chitosan and
silica.
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3.1 Introduction

3.1.1 Nanoparticles Used in Antioxidant Activity

Nanotechnology is one of the most recent areas to be explored for its applications
related to engineering, medicine and various other sciences. Nanoparticles are
particles in the size range of 1–100 nm and have the most applications in nanotech-
nology. Nanoparticles in different forms play vital roles in biomedical applications.
The different types or forms of nanoparticles include metal nanoparticles (gold,
silver, zinc, copper, selenium, etc.), metal oxide nanoparticles (silver oxide, zinc
oxide, copper oxide, cadmium oxide and zirconium oxide), polymer nanoparticles
(chitosan, silica, polyethylene glycol, cellulose, polyvinyl alcohol and polyvinyl
pyrrolidine), carbon nanotubes, magnetic nanoparticles, nanohydrogels, aerogels,
graphene nanostructures, nanocomposites, nanoshells, nanohybrids and
biomolecules (curcumin, beta cyclodextrins, etc.).

Previously, nanoparticles were synthesized using physical and chemical
techniques such as chemical vapour deposition, microwave irradiation, sol–gel
techniques, plasma synthesis techniques, mechanical milling, ultrasound techniques,
the hydrothermal method, the solvothermal method, the electrodeposition process,
electroexplosion and laser techniques. Because of the high cost and environmental
factors, researchers have recently been exploring use of green materials for the
synthesis of nanoparticles, using microorganisms such as Bacillus subtilis, Klebsi-
ella planticola, Klebsiella pneumoniae and Aspergillus niger; plant extracts from
Coleus aromaticus, Pongamia pinnata, etc.; and algal extracts of Turbinaria
conoides, Padina tetrastromatica, etc. [1–6]. Synthesis of nanoparticles using
biological methods is very simple and cost effective. The prepared nanoparticles
have been characterized using various techniques such as scanning electron micros-
copy, atomic force microscopy, ultraviolet–visible light (UV-vis) spectroscopy,
dynamic light scattering, transmission electron microscopy, Fourier transform infra-
red spectroscopy, gas chromatography with mass spectroscopy, zeta potential anal-
ysis, thermogravimetric analysis, elemental dispersive analysis and x-ray diffraction
assays [7–9]. Figure 3.1 shows green synthesis of nanoparticles and their
characterization.

These nanoparticles are used in diverse applications such as anticancer activity.
Different types of nanoparticles are used for antioxidant activity in vitro and

in vivo. Among these nanoparticles, metal and metal oxide nanoparticles are majorly
involved in the activity in different experimental procedures. Figure 3.2 shows the
different types of nanoparticles involved in antioxidant activity.

3.1.1.1 Silver Nanoparticles
Silver nanoparticles are the major metal nanoparticles in use and are intensively used
in antimicrobial applications for their antibacterial and antifungal activities. In
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addition, silver nanoparticle have achieved very good results in anticancer and
antioxidant activities [10–13]. Table 3.1 provides information on green synthesis
of silver nanoparticles characterized using various techniques and antioxidant
activities.

Fig. 3.1 Biosynthesis and characterization of nanoparticles
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3.1.1.2 Gold Nanoparticles
Gold nanoparticles are widely used for delivery of drugs, proteins and genes in
biomedical applications because of their surface plasmon resonance. These
advanced metal nanoparticles also have applications in photothermal therapy, cancer
imaging, identification of pathogens using immune chromatographic techniques,
tissue imaging, anti-inflammatory activities and anticancer activities [39–
41]. Table 3.2 provides information on gold nanoparticles and their antioxidant
activities in various biochemical assays.

3.1.1.3 Zinc Oxide Nanoparticles
Zinc oxide nanoparticles have unique properties with many applications in many
fields such as photocatalytic activity; antibacterial and antifungal activity against
clinical, animal and plant pathogens; dye degradation and heavy metal degradation
activity; and UV-filtering properties [10, 50–52]. Zinc oxide nanoparticles are one of
the important types of semiconductor nanoparticles used in multitasking
applications, including antioxidant activity, as shown in Table 3.3.

3.1.1.4 Antioxidant Activity of Other Nanoparticles
Apart from silver, gold and zinc nanoparticles, other nanoparticles such as chitosan,
titanium dioxide, cerium oxide, selenium, magnetic nanoparticles, silicon dioxide
and nickel oxide nanoparticles also show very good antioxidant activity in different

Fig. 3.2 Different nanoparticles (NPs) used in antioxidant activity
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Table 3.3 Antioxidant activity of zinc oxide nanoparticles (ZnONPs)

Reducing agent Characterization of NPs
Antioxidant activity: method,
concentration, activity level Reference

Citrus pectin
powder,
chitosan,
sodium alginate

UV-vis spectroscopy
TEM: 46 nm
DLS, XRD, FTIR

DPPH assay
IC50 values 47.5 and 65 μg/mL
Antibacterial activity against
gram-positive and gram-negative
organisms and yeast
Anticancer activity against
Ehrlich ascites carcinoma

[53]

Inducible nitric
oxide synthase
(nos2) gene

TEM: 45 nm qPCR analysis
Western blot analysis

[54]

Psidium
guajava leaf
extract

UV-vis spectroscopy: 345 nm
SEM: Spherical shapes

DPPH assay: 77.80–81.35% [55]

Thymus
vulgaris leaf
extract

Size 50–60 nm
Shape: Irregular
TEM, XRD, EDX, DLS,
FTIR

DPPH assay:�75% antibacterial
activity against selected
foodborne pathogens

[56]

Mangifera
indica leaf
extract

UV-vis spectroscopy, TEM,
SEM, XRD, EDX
Size 45–60 nm
Shape: Spherical and
hexagonal quartzite

DPPH assay
Cytotoxicity assays: A549 lung
cancer cell line

[12]

Curcumin FTIR, field emission SEM,
XRD, UV-vis spectroscopy

DPPH assay: 24.25%
Stability of curcumin improved
( p < 0.05)

[57]

Synthesized by
aqueous and
polyol method

XRD: 10 and 40 nm
UV-vis spectroscopy
TEM: 10 and 15 nm

DPPH assay: IC50 values 39.38
and 43.33
Metal chelation: IC50 values
54.17 and 51.6
ABTS assay: IC50 values 38.31
and 39.15
Antibacterial activity

[58]

Pithecellobium
dulce peel
extract

Hexagonal crystalline
structure
Shape: Spherical
Size 11.5 � 2 nm

Photocatalytic activity
Antifungal activity

[59]

Tecomaca
stanifolia leaf
extract

UV-vis spectroscopy: 380 nm
Shape: Spherical
Size 70–75 nm

DPPH assay
Anticancer activity
IC50 65 μg/mL (A549 cell line)

[60]

Malus pumila
and Juglen
regia plant
extracts

UV-vis spectroscopy, TEM,
XRD, FTIR, DLS, SEM,
EDX
Size 12 and 16 nm

DPPH assay
Antibacterial activity

[61]

Artemisia
haussknechtii
leaf extract

UV-vis spectroscopy, TEM,
GC-MS, FTIR, AFM, SEM,
EDX, powder XRD
Size 50–60 nm
Shape: Hexagonal wurtzite

Total antioxidant capacity
DPPH assay
Disc diffusion assay

[62]

(continued)
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Table 3.3 (continued)

Reducing agent Characterization of NPs
Antioxidant activity: method,
concentration, activity level Reference

Oleic acid,
gluconic acid,
tween 80

Shapes: (1) flower-like
nanorods and nanoflakes;
(2) nanogranules, size
20–30 nm; (3) assembled
hierarchical structure

H2O2 free radical–scavenging
activity, ABTS assay, DPPH
assay

[63]

Ricinus
communis plant
seed extract

Shape: Crystalline hexagonal
arrangement
Size 20 nm
Powder XRD, FTIR, XRD,
TEM

Antioxidant activity
DPPH assay, FRAP assay
Anticancer activity: IC50 of
ZnONPs in MDA-MB-231
breast cancer cells: 7.103 μg/mL
Antifungal activity

[64]

Coccinia
abyssinica
tuber extract

Size 10.4 nm
Shape: Hexagonal (analysed
using TEM)

DPPH assay
IC50 127.74 μg/mL
Well diffusion assay

[65]

Codonopsis
lanceolata root
extract

Size and shape: 500 nm with
flower-like structure
confirmed by XRD and TEM
UV-vis spectroscopy: 365 nm

Photocatalytic degradation
activity

[66]

Vitamin E and
C mixture

DLS, TEM, inductive coupled
plasma mass spectrometry
Size 35 nm

Lipid peroxidation activity in
Nile tilapia tissues

[67]

Aqueous
extract of
chironji leaves

XRD, TEM and UV-vis
techniques: 363 nm
Shape: Hexagonal wurtzite

DPPH assay
IC50 8025 μg/mL
Antibacterial activity
Photocatalytic degradation
activity

[68]

Copditis
rhizome extract

Size 8.50 nm
Shapes: Spheres and rods
SEM, EDX, FTIR, XRD,
TEM, TGA, SAED, UV-vis
spectroscopy

DPPH assay: 1 mg/mL
(52.34%), >0.5 mg/mL
(51.57%), >0.25 mg/mL
(51.19%), >0.125 mg/mL
(38.12%)
Cytotoxicity against RAW 264.7
cells
Antibacterial activity

[69]

Water extract
of Garcinia
xanthochymus

UV-vis spectroscopy: 370 nm
SEM: Spongy cave-like
structures
XRD: Pure wurtzite structure

DPPH assay
Photocatalytic degradation
activity

[70]

Polygala
tenuifolia root
extract

UV-vis spectroscopy, FTIR,
TGA
TEM: 33.03–73.48 nm
Shape: Spherical

DPPH assay: 45.47% [71]

ABTS 2,20-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), AFM atomic force microscopy,DLS
differential light scattering, DPPH 2,2-diphenyl-1-picryl-hydrazyl-hydrate, EDX energy-dispersive
x-ray, FRAP ferric-reducing ability of plasma, FTIR Fourier transform infrared, GC-MS gas
chromatography with mass spectrometry, IC50 half-maximal inhibitory concentration, qPCR quan-
titative polymerase chain reaction, SAED selected area electron diffraction, SEM scanning electron
microscopy, TEM transmission electron microscopy, TGA thermogravimetric analysis, UV-vis
ultraviolet–visible light, XRD x-ray diffraction
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assays. Figure 3.3 shows different antioxidant assays used for free radical–scaveng-
ing nanoparticles.

3.1.1.5 Antioxidant Activity of Polymer, Magnetic and Oxide
Nanoparticles

Chitosan is an important bioactive product, obtained from crab shells and prawn
shells. It shows good antimicrobial activity against Escherichia coli and Staphylo-
coccus aureus and antifungal activity against Candida albicans, and it has shown
good scavenging activity of 76% in a 2,2-diphenyl-1-picryl-hydrazyl-hydrate
(DPPH) assay [72]. Super-para iron oxide nanoparticles synthesized using Stevia
leaf extract had a spherical shape and were 25 nm in size on high-resolution
transmission electron microscopy (TEM) analysis. They showed good antioxidant
activity in a DPPH assay and a half-maximal inhibitory concentration (IC50) of
65 μg/mL [73]. Manganese oxide nanoparticles prepared using mature seeds of

Fig. 3.3 In vitro antioxidant activity of nanoparticles using various assays. ABTS 2,20-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid), DPPH 2,2-diphenyl-1-picryl-hydrazyl-hydrate
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Atropa belladonna L. showed a crystalline structure (on x-ray diffraction (XRD))
and a spherical shape with a size of 30 nm, confirmed by TEM. The free radical–
scavenging activity of MnO2 nanoparticles, investigated using a DPPH assay with
plantlets at 200 mg/L with an IC50 of 134.6 μg/mL and Fe2+-chelating activity, also
showed the same tendency [74].

Selenium nanoparticles synthesized using pectin showed DPPH radical–scaveng-
ing activity of 92%, a Trolox-equivalent antioxidant capacity assay value of
222.18 μmol Trolox per gram of the sample and a ferric-reducing ability of plasma
(FRAP) assay value of 127.51 μmol Fe2+ per gram of the sample [75]. A
hyperbranched polysaccharide from Lignosus rhinocerotis also showed good activ-
ity in a DPPH assay (24.29%, 23.28%, 44.84%, 52.31% and 43.22%) and in an
ABTS radical–scavenging assay (83.18% and 81.54%) [76].

Pisonia alba leaf extract–mediated cerium oxide nanoparticles with the
characteristics of a cubic fluorite crystal structure (on XRD), UV-vis spectroscopy
values of 258 and 317 nm, and a 12 nm size on TEM showed good antifungal
activity and moderate antioxidant activity in a DPPH assay and FRAP assay [77].

3.1.1.6 Antioxidant Activity of Nanoparticles In Vivo
In a recent research article, Qin et al. showed that layered double hydroxide (LDH)
nanoparticles possessed a DPPH-scavenging effect, a hydroxyl radical (OH)–scav-
enging effect and a pro-oxidative Cu2+-chelating effect. This was mainly due to folic
acid coupling with the LDH nanoparticles; moreover, folic acid–LDH was success-
ful in increasing glycogen levels in muscle and hepatic glycogen. It was suggested
that a folic acid–LDH antioxidant could have indications for use as a novel antioxi-
dant or an antifatigue nutritional supplement [78].

An in vivo study by Zhang et al. revealed that nano-gold loaded with resveratrol
(Res-GNPs) showed a better antitumour effect than resveratrol alone. This was due
to the fact that the gold nanoparticles could transport more resveratrol to cells and to
mitochondria; thus, the gold nanoparticles coupled with resveratrol reduced the
cancer effect both in vitro and in vivo [79].

The above studies clearly indicate that nanoparticles, when coupled with
antioxidants, provide more protection for healthy cells and provide anticancer
effects.

In in vitro studies on sulphoraphane-modified selenium nanoparticles, Krug et al.
showed anticancer action in several cancer cell cultures. They also showed that this
high antitumour activity and selectivity with regard to diseased and healthy cells is
an extremely promising treatment for cancer cells [80]. The different parameters
analysed to determine the in vivo antioxidant activity of the nanoparticles are shown
in Fig. 3.4.

Khan et al. studied the effects of cobalt-doped tin oxide (Co-doped SnO2)
nanoparticles and revealed that in breast carcinoma cells, green-synthesized
Co-doped SnO2 nanoparticles showed potential antioxidant activity in a DPPH
assay and also showed significant anticancer and antitumour activity in both
in vitro and in vivo conditions. The multipurpose properties of synthesized
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nanoparticles demonstrated in this study showed that they could be useful for
pharmaceutical and nanomedicine applications [81].

A research study by Tang et al. demonstrated the characterization of
epigallocatechin-3-gallate (EGCG)–functionalized chitin (CH) derivative
nanoparticles (CE-HKNPs) and compared their antitumour activity with that of
free Honokiol (HK). The result showed that the CE-HKNPs were effective,
inhibiting the cell proliferation of HepG2 cells and decreasing the mitochondrial
membrane potential. Moreover, in both in vitro and in vivo conditions they did not
elicit any side effects in the cells. It was suggested that CE-HKNPs are an effective
delivery system against liver cancer cells [82]

A recent article by Shanmugasundaram et al. described a Sprague Dawley
(SD) rat model in which hepatoprotective experiments were conducted against
diethyl nitrosamine (DEN)–stimulated liver cancer cells using biocompatible
nanoparticles of silver (AgNPs), gold (AuNPs) and their alloy (Ag/AuNPs),
synthesized from microbes. The animals treated with nanoparticles showed signifi-
cant tumour reduction in in vivo studies, and this was also confirmed by other
studies. The results showed anticancer activity only in DEN-stimulated liver cells,
due to the synthesized AgNPs, AuNPs and Ag/AuNPs. In nanodrug development,
microbial biocompatible nanoparticles have been shown to have potential as an
effective drug [83].

Fig. 3.4 In vivo antioxidant activity of nanoparticles. LDL low-density lipoprotein
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Sulaiman et al. described an experiment, using an Oleo europaea leaf extract, in
which copper oxide (CuO) nanoparticles (CuNPs) were synthesized. Because of the
stability of the antioxidant effect, the free radical–scavenging activity of the CuNPs
against 2,2-diphenyl-1-picryl-hydrazyl was assured. In mice, immune responses
were observed in both the thymus and the spleen. After CuNP treatment the thymus,
spleen and serum showed reductions in the adenosine deaminase (ADA) enzyme. In
a dose-dependent manner, application of CuNPs against AMJ-13 and SKOV-3
cancer cells induced cell death by apoptosis. Normal dermal fibroblast cells showed
less significant cytotoxic effects. Thus, CuNPs have the ability to act as an anticancer
agent [84].

In contrast, Nemmer et al. found that exposure to cerium oxide nanoparticles
(CeO2NPs) induced lung toxicity. In their study, a noticeable increase in neutrophils
in the bronchoalveolar lavage fluid, along with an increase in tumour necrosis factor
(TNF) and a drop in the activity of the antioxidant catalase, were stimulated by
CeO2NPs. Increased plasma levels of C-reactive protein and TNF were also noted
[85]. In this in vivo study it was found that thrombosis was due to acute pulmonary
oxidative damage and systemic inflammation.

Qiao et al. studied andrographolide (ADG), a diterpenoid separated from
Andrographis paniculata with a range of pharmacological activities including
antitumour, anti-inflammatory, anticancer and hepatoprotective effects. They
showed that a freeze-dried ADG nanosuspension (ADG-NS) could remain highly
stable [86].

Pramanik et al. performed in vitro and in vivo studies on biotin-enriched gold
nanoparticles targeted for delivering an anticancer active copper complex, copper
(II) diacetyl-bis (N4-methylthiosemicarbozane), tethered to 20 nm gold nanoparticles
(AuNPs) and additionally decorated with biotin for target achievement. They
revealed very good anticancer activity against HeLa cells derived from cervical
cancer cells; less activity was observed against HaCaT cells. In an in vivo compari-
son with a nanoparticle conjugate without biotin, using a HeLa cell xenograft tumour
model, the biotin-enriched nanoparticle conjugate showed a greater reduction
in tumour volume than the control (without biotin), suggesting significant
targeting [87].

3.2 Mechanisms of Action

Different metal nanoparticles, polymer nanoparticles, metal-coated polymer
nanoparticles and bioactive compound–coated/decorated nanoparticles act as
nanoantioxidants. The major mechanisms of action of these nanoparticles mimic
the behaviour of catalase (CAT), glutathione peroxidase (GPX), superoxide
dismutase (SOD) and chain-breaking activity. Examples of these nanoparticles and
their mechanisms of action in different assays are cerium oxide nanoparticles, which
show catalase-like behaviour in hydrogen peroxide disappearance on spectrophoto-
metric analysis [88], polyvinyl pyrrolidone–coated gold nanoparticles, which
decrease H2O2 in spectrometric analysis and show catalase-like behaviour [89],
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and gold nanorods, gold with platinum nanorods, core shells and gold with palla-
dium nanorods, which shows catalase-like behaviour in H2O2 assays, spectrophoto-
metric analysis and O2 evaluation using dark electrodes [90].

Nanoparticles such as manganese oxide nanoflowers and grapheme oxide–
supported selenium nanoparticles have shown glutathione peroxidase–like
behaviour in a glutathione reductase–coupled assay using spectrophotometric anal-
ysis [91, 92].

The chain-breaking mechanism is the major action in various antioxidants (also
called radical-trapping antioxidants) such as flavonoids, vitamin C, vitamin E and
many synthetic alternatives.

A chain-breaking or slowdown mechanism of action was found in some
nanoparticles, such as oleic acid–coated cerium oxide nanoparticles, when an
AAPH-derived radical-scavenging (oxygen radical absorbance capacity (ORAC))
assay was performed [93]. Polyacrylic acid–protected platinum nanoparticles were
analysed using a DPPH assay with spectrophotometric analysis. Inhibition of
linoleic acid peroxidation was observed with electron paramagnetic resonance
(EPR) detection of AAPH-derived radical–scavenging activity [94]. Zirconium
oxide nanoparticles and polyethylene glycol–coated melanin nanoparticles have
also shown chain-breaking activity, confirmed by a DPPH assay [95, 96].

Superoxide dismutase–like behaviour is the major mechanism in many antioxi-
dant nanomaterials and xanthine/xanthine oxidase and cytochrome C analysed by
spectrophotometric analysis, potassium oxide reaction, EPR study of reactions with
potassium oxide with 5-diethoxyphosphoryl 5-methyl-1-pyrroline-n-oxide
(DEPMPO) and oxide evaluation. The nanomaterials involved in these actions are
fullerene, multiwalled carbon nanotubes, trismalanyl C-60, dimercaptosuccinic
acid–coated Co3O4 nanoparticles, polyvinyl pyrrolidone–coated gold nanoparticles,
glycine-coated copper nanoparticles, polyethylene glycol–coated manganese and
carbon nanoclusters, palladium nanoparticles, platinum nanopowder and Mn3O4

nanoflowers [89, 91, 97–105].
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