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Preface

The number theory seminar has been organized, from January 20, 2017, by
Algebraic/Algorithmic/Analytic Number Theory Seminar (ANTS) at Harish-
Chandra Research Institute, Allahabad, India. This lecture series was started by
Kalyan Chakraborty, Azizul Hoque and other members of the group. Prior to the
existence of this group, we had decided to hold a series of three conferences on the
theme ‘Class Groups of Number Fields and Related Topics.’ By October 2019, we
had organized these three conferences. However, seeing its success and also on the
request of all concerned, we have decided to continue this yearly conference.

The first ‘International Conference on Class Groups of Number Fields and
Related Topics (ICCGNFRT)’ was held during September 4–7, 2017, at
Harish-Chandra Research Institute, Allahabad, India.

This collection comprises original research papers and survey articles presented
at ICCGNFRT-2017. There are 16 chapters on important topics in algebraic number
theory and related parts of analytic number theory. These topics include class
groups and class numbers of number fields, units, the Kummer–Vandiver conjec-
ture, class number one problem, Diophantine equations, Thue equations, continued
fractions, Euclidean number fields, heights, rational torsion points on elliptic
curves, cyclotomic numbers, Jacobi sums and Dedekind zeta values.

We are grateful to Springer and its mathematics editor(s), especially Mr. Shamim
Ahmad, for publishing this volume.

Allahabad, India
October 2019

Kalyan Chakraborty
Azizul Hoque

Prem Prakash Pandey
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A Geometric Approach to Large Class
Groups: A Survey

Jean Gillibert and Aaron Levin

1 The Survey

The geometric techniques we shall report on are in fact explanations of geometric
nature of a strategy that has been used from the beginning of the subject. We hope
to convince the reader that this geometric viewpoint has many advantages. In partic-
ular, it clarifies the general strategy, and it allows one to obtain quantitative results.
Furthermore, it raises new questions concerning torsion subgroups of Jacobians of
curves defined over number fields.

Let us point out that, for simplicity, we focus here on geometric techniques related
to covers of curves. Similar results hold for covers of arbitrary varieties, see [24] and
[18], at the price of greater technicalities. The advantage of considering arbitrary
varieties is that it provides a general framework to explain all constructions from
previous authors, without exception.

1.1 Large Class Groups: The Folklore Conjecture

If M is a finite abelian group, and if m > 1 is an integer, we define the m-rank of
M to be the maximal integer r such that (Z/mZ)r is a subgroup of M ; we denote it
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by rkm M . If k is a number field, we let Cl(k) denote the ideal class group of k, and
Disc(k) denote the (absolute) discriminant of k.

The following conjecture is widely believed to be true.

Conjecture 1.1 Let d > 1 and m > 1 be two integers. Then rkm Cl(k) is unbounded
when k runs through the number fields of degree [k : Q] = d.

Whenm = d, andmore generallywhenm divides d, this conjecture follows easily
from Class Field Theory. On the other hand, when m and d are coprime, there is not
a single case where Conjecture 1.1 is known to hold.

When constructing families of degree d fields k with a given lower bound on
rkm Cl(k), it is natural to count the number of fields constructed, ordered by discrim-
inant. This is the quantitative aspect of Conjecture 1.1.

For a detailed account of qualitative results towards Conjecture 1.1, and a discus-
sion of quantitative results, see Sect. 1.4.

1.2 A Toy Example

In order to give a flavour of our technique, we revisit a classical construction.

Fact Let m ≥ 3 be an odd integer. For infinitely many odd x ∈ N, the imaginary
quadratic field k = Q(

√
1 − xm) satisfies rkm Cl(k) ≥ 1.

Classical Proof

If y = √
1 − xm , then y2 = 1 − xm and xm = (1 − y)(1 + y). The ideal (1 − y, 1 +

y) divides 2, but is also coprime to 2 because x is odd. Thus 1 − y and 1 + y are
coprime, and their product is an mth power; hence each of them generates an ideal
that is the mth power of some ideal of Ok . So there exists an ideal a of Ok such that
(1 − y) = am . Therefore, the class of a in Cl(k) has order dividing m.

The next (and hardest) step is to prove that, if some additional condition is satisfied,
then the class of a in Cl(k) has exact order m. Let us assume that the class of a has
order q < m, i.e. there exists α ∈ Ok such that aq = (α). One can write m = q� for
some odd � > 1. It follows that (α)� = (1 − y), and hence there exists a unit ε of
k such that εα� = 1 − y. Assuming that the square-free part of 1 − xm is strictly
smaller than −3, the units of the imaginary quadratic field k are {±1}, and hence
α� = 1 − y up to sign change. The result ultimately relies on the inexistence of
solutions to this Diophantine equation, which one achieves by putting additional
conditions on x . For example, Ram Murty [35] has shown that, if the square factor
of 1 − xm is less than xm/4/2

√
2, then this equation has no solution. The same result

is proved in [9] under the condition that x is a prime number ≥ 5. Eventually, as was
pointed out by Cohn [13], it follows from the work of Nagell [30] that, for any odd
number x ≥ 5, one has rkm Cl(k) ≥ 1.

Quantitative results are usually obtained by ad hoc techniques of analytic number
theory, depending on the required condition on x .
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Geometric Proof

Let C be the smooth, projective, geometrically irreducible hyperelliptic curve over
Q defined by the affine equation

y2 = 1 − xm .

Let T ∈ C(Q) be the point with affine coordinates (0, 1). The integer m being
odd, the curve C has a unique point at infinity, that we denote by ∞. The divisor of
the rational function 1 − y is given by

div(1 − y) = mT − m∞,

which proves that the class of the divisor T − ∞ defines a rational point of order
dividing m in the Jacobian of C . It is not very hard to check that in fact, this divisor
class has exact order m in the Jacobian of C .

A brief reminder on ramification in Kummer extensions : let K be a local field
with valuation v, let m > 1 be an integer, and let γ ∈ K×. If the Kummer extension
K ( m

√
γ)/K is unramified at v, then v(γ) ≡ 0 (mod m). Conversely, if v(γ) ≡ 0

(mod m) and the residue characteristic of K is coprime to m, then K ( m
√

γ)/K is
unramified at v.

The valuation of 1 − y at each place of C is a multiple of m; hence the function
field extension Q(C)( m

√
1 − y)/Q(C) is unramified at each place of C . Therefore,

this extension corresponds to an étale cover of C , that we denote by f : C̃ → C .
This is a geometrically connected cover of degree m, because the class of T − ∞
has order m in the Jacobian of C .

Let us consider a point P ∈ C(Q) satisfying the following properties:

(i) for each finite place v of Q(P), v(1 − y(P)) ≡ 0 (mod m);
(ii) [Q( m

√
1 − y(P)) : Q(P)] = m;

(iii) Q(P) is linearly disjoint from the mth cyclotomic field Q(μm).

Then we claim that rkm Cl(Q(P)) ≥ 1 − rkZ O×
Q(P). In order to prove this, let us

define

Selm(Q(P)) := {γ ∈ Q(P)×/(Q(P)×)m;
∀v finite place ofQ(P), v(γ) ≡ 0 (mod m)}, (1)

which is an analogue of the Selmer group for the multiplicative group over Q(P).
Then we have an exact sequence

1 −−−−−→ O×
Q(P)

/
(O×

Q(P)

)m −−−−−→ Selm(Q(P)) −−−−−→ Cl(Q(P))[m] −−−−−→ 0.

Bycondition (i), the element 1 − y(P)defines a class inSelm(Q(P)),which has exact
order m by condition (ii). It follows from condition (iii) that rkm O×

Q(P)/(O×
Q(P))

m =
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rkZ O×
Q(P). Therefore, by considering m-ranks in the exact sequence above, one

obtains the result.
We shall now prove the existence of infinitely many points P ∈ C(Q) satisfying

(i), (ii) and (iii), such that Q(P) is an imaginary quadratic field. It follows from
Dirichlet’s unit theorem that rkm Cl(Q(P)) ≥ 1 for such fields. On the other hand, if
Q(P) is a real quadratic field, then this machinery does not yield any result, because
we do not have a way to ensure that 1 − y(P) is not a unit modulo mth powers.

It follows from an appropriate version of the Chevalley–Weil theorem that, if
p is a prime of good reduction of C , then for any point P ∈ C(Q), the extension
Q( m

√
1 − y(P))/Q(P) is unramified at all places v dividing p. For such v, the con-

dition v(1 − y(P)) ≡ 0 (mod m) is satisfied, according to the Kummer criterion.
An immediate application of the Jacobian criterion of smoothness shows that the

primes of bad reduction ofC are the primes dividing 2m.We shall now deal with local
conditions at such primes p. Let P0 be the rational point of C with affine coordinates
(1, 0). Then P0 is a ramification point of x , and y(P0) = 0. Let P ∈ C(Q) be a point
which is p-adically close enough to P0, by which we mean that, for each place v of
Q(P) dividing p, the point P is close to P0 for the v-adic topology on C(Q(P)v).
Then by elementary considerations y(P) is p-adically close to y(P0), hence to 0.
Therefore, if P is p-adically close enough to P0, then v(1 − y(P)) = 0 for each
place v of Q(P) dividing p.

Let� be the product of bad primes, and letφ : C → P
1 be the rationalmap defined

by φ = x−1
�N for some integer N large enough. The map φ being totally ramified at

P0, one can see that, for all t ∈ N and all bad primes p, the point Pt := φ−1(t) is
p-adically close enough to the point P0. Then the discussion above proves that all
points Pt with t ∈ N satisfy condition (i). In fact, it was shown in the classical proof
that the map φ = x−1

2 does the job, so we shall use that one instead.
Applying Hilbert’s irreducibility theorem to the composite cover of degree 2m

C̃
f−−−−→ C

φ−−−−→ P
1,

we obtain the existence of infinitely many t ∈ N such that [Q( f −1(Pt )) : Q] = 2m.
For such t , the field Q(Pt ) is quadratic, and Q( f −1(Pt )) = Q( m

√
1 − y(Pt )) is

an extension of degree m of Q(Pt ). Hence condition (ii) is satisfied. Moreover,
Q(Pt ) = Q(

√
1 − (2t + 1)m) is imaginary quadratic, hence (iii) holds (unless 3 | m

andQ(P) = Q(
√−3), whichwe exclude). This concludes the proof of the statement.

Finally, it follows from a quantitative version of Hilbert’s irreducibility theorem,
due to Dvornicich and Zannier [17], that, given X > 0, there exist 	 X

1
m / log X

imaginary quadratic fields Q(Pt ) with discriminant |Disc(Q(Pt ))| < X such that
condition (ii) is satisfied. This yields a quantitative version of the result.

Comments

At first glance, the geometric proof seems more technical than the classical one. Let
us list some advantages of this technique over the classical one.

The first advantage of geometry is to avoid the use of ad hoc “tricks”. More
precisely, in the classical method one uses two tricks: the first one is to ensure that
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1 − y is the mth power of some ideal of k, which is done by requiring congruence
conditions on the variables. In the geometric case, this relies on the Chevalley–Weil
theorem and some additional condition, namely there exists a rational point on C at
which the map C → P

1 is totally ramified. The second trick, which is the hardest, is
to prove that, for every � > 1 dividing m, the equation α� = 1 − y has no solution
α ∈ k. In the geometric world, this follows immediately fromHilbert’s irreducibility
theorem, without any additional technicality.

Another nice feature of the geometric approach: the use of Hilbert’s irreducibil-
ity theorem automatically gives us a quantitative version of the result. This should
be compared to the specific analytic number theory machinery that has been used
previously on these quantitative class group problems.

A final advantage comes from the (arguable) fact that it is relatively easier to build
étale covers of curves than everywhere unramified extensions of number fields.

1.3 General Specialization Results

Following the lines of the geometric proof of the “toy example” above, one obtains
the following general statement.

Theorem 1.2 Let C be a smooth, projective, geometrically irreducible curve over
Q, let Jac(C) be the Jacobian of C, and let m > 1 be an integer. Assume that C admits
a finite morphism C → P

1 of degree d, totally ramified over some point belonging
to P

1(Q). Then there exist infinitely many (isomorphism classes of) number fields k
with [k : Q] = d such that

rkm Cl(k) ≥ rkm Jac(C)(Q)tors − rkZ O×
k . (2)

Inspired by the technique introduced in [24], this theoremwas proved in [18] in the
case when C is a superelliptic curve defined by a “nice equation” (see Corollary 3.1
of [18]). The version above is proved in [3], the base field being Q for simplicity. In
Sect. 2.4 we state a variant of this result, in which the assumption that the morphism
C → P

1 is totally ramified over some rational point is replaced by a more technical
one.

While Theorem 1.2 is quite general, its applicability in concrete cases is impaired
by the presence of the negative term− rkZ O×

k on the right: the rank of the unit group
of the field k tends to be large, especially if d > 2.

This deficiency is avoided in the following theorem, which constitutes the main
result of [3]. Let us denote by rkμm Jac(C) the maximal integer r such that Jac(C)

has a Gal(Q/Q)-submodule isomorphic to μr
m .

Theorem 1.3 In the setup of Theorem 1.2, there exist infinitely many number fields k
with [k : Q] = d such that

rkm Cl(k) ≥ rkμm Jac(C). (3)
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In contradistinction with the proof of Theorem 1.2 which is based on Kummer
theory, the proof of Theorem 1.3 relies on Class Field Theory. It can be seen as a
generalization of the constructions of Mestre [25–28].

In both Theorems 1.2 and 1.3 the “infinitely many” can be made quantitative, the
fields being ordered by discriminant.

Theorem 1.4 Letφ ∈ Q(C) be the rational function defining themorphismC → P
1

appearing in both Theorems 1.2 and 1.3. Assume that there exists a rational function
x ∈ Q(C) of degree n such that Q(C) = Q(φ, x). Then, for sufficiently large posi-
tive X, in both these theorems the number of isomorphism classes of the fields k sat-
isfying (2) or (3), respectively, and such that |Disc(k)| ≤ X is 	 X1/2n(d−1)/ log X.

In a recent work [5], Bilu and Luca improved the quantitative version of Hilbert’s
irreducibility theorem given by Dvornicich and Zannier, on which our quantitative
results are based. We underline the fact that any improvement of quantitative HIT
automatically yields a similar improvement in our quantitative results.

In the case when C is a hyperelliptic curve with a rational Weierstrass point, it is
possible to improve slightly the quantitative result. More precisely, we obtain in [18]
the following quantitative version of Theorem 1.2 for such curves.

Corollary 1.5 Let C be a smooth projective hyperelliptic curve overQ with a ratio-
nal Weierstrass point, and let m > 1 be an integer. Let g denote the genus of C. Then

there exist 	 X
1

2g+1 / log X imaginary (resp. real) quadratic number fields k with
|Disc(k)| < X and

rkm Cl(k) ≥ rkm Jac(C)(Q)tors

(resp. rkm Cl(k) ≥ rkm Jac(C)(Q)tors − 1).

In view of the statement above, the following question arises immediately.

Question 1.6 Let m > 1 be an integer. Do there exist hyperelliptic curves C overQ
with rkm Jac(C)(Q)tors arbitrarily large?

According to Corollary 1.5, a positive answer to this question would provide a
proof of Conjecture 1.1 in the d = 2 case, provided the curves have rational Weier-
strass points.

For m = 2, the question above has a positive answer. Apart from this easy case,
very little is known. To our knowledge, the best general result is the following: given
m > 1, there exist hyperelliptic curves C over Q with rkm Jac(C)(Q)tors ≥ 2. This
allows one to derive Yamamoto’s result from Corollary 1.5 (see Sect. 2.1).

Finally, it follows from Theorem 1.3 that Corollary 1.5 and Question 1.6 have
natural analogues in which rkm Jac(C)(Q)tors is replaced by rkμm Jac(C). Unfortu-
nately, we have not been able to find examples of hyperelliptic curves over Q with
large rkμm Jac(C).
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1.4 Record of Known Results Towards Conjecture 1.1

In this section, we give a brief summary of the history of results on the problem of
finding infinite families of number fields of degree d over Q with ideal class groups
of large m-rank (see Tables1 and 2 for a more comprehensive list of results). The
earliest such result could be considered to be Gauss’ result determining, in modern
terms, the 2-rank of the class group of a quadratic number field in terms of the primes
dividing the discriminant of the quadratic field. In particular, it follows from Gauss’
result that the 2-rank of the ideal class group of a quadratic number field can be
made arbitrarily large. In contrast to Gauss’ result, there is not a single quadratic
number field k and prime p �= 2 for which it is known that rk p Cl(k) > 6, although
the Cohen–Lenstra heuristics [11, 12] predict that for any given positive integer r , a
positive proportion of quadratic fields k should have rk p Cl(k) = r .

The first constructive result on m-ranks of class groups for arbitrary m was given
in 1922 by Nagell [29, 31], who proved that for any positive integer m, there exist
infinitely many imaginary quadratic number fields whose class group has an element
of order m (in particular, there are infinitely many imaginary quadratic fields with
class number divisible by m). Nagell’s result has since been reproved by a number
of different authors (e.g. [1, 20, 23]). Nearly 50 years later, working independently,
Yamamoto [40] andWeinberger [39] extended Nagell’s result to real quadratic fields.
Soon after, Uchida [38] proved the analogous result for cubic cyclic fields. In 1984,
Azuhata and Ichimura [2] succeeded in extending Nagell’s result to number fields
of arbitrary degree. In fact, they proved that for any integers m, d > 1 and any

Table 1 Values of m and r for which it is known that there exist infinitely many quadratic fields
k with rkm Cl(k) ≥ r (we let r = ∞ if rkm Cl(k) can be made arbitrarily large). All results in this
table can be recovered by applying Corollary 1.5, except for Mestre’s ones, which are applications
of Theorem 1.3

Author(s) Year Type m r

Gauss 19th century Imaginary, real 2 ∞
Nagell [29, 31] 1922 Imaginary > 1 1

Yamamoto [40] 1970 Imaginary > 1 2

Yamamoto [40],
Weinberger [39]

1970, 1973 Real > 1 1

Craig [14] 1973 Imaginary 3 3

Real 3 2

Craig [15] 1977 Imaginary 3 4

Real 3 3

Diaz y Diaz [16] 1978 Real 3 4

Mestre [25–27] 1980 Imaginary, real 5, 7 2

Mestre [28] 1992 Imaginary, real 5 3
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Table 2 Values of m, d and r for which it is known that there exist infinitely many number fields
k of degree d with rkm Cl(k) ≥ r . All results in this table can be recovered by applying variants of
Theorem 1.2, except for the cases when m = 2, which follow from variants of Theorem 1.3

Author(s) Year m d r

Brumer, Brumer
and Rosen [6, 7]

1965 >1 d = m ∞

Uchida [38] 1974 >1 3 1

Ishida [21] 1975 2 Prime d − 1

Azuhata and
Ichimura [2]

1984 >1 >1
⌊ d
2

⌋

Nakano [32, 33] 1984 >1 >1
⌊ d
2

⌋ + 1

1985 2 >1 d

Nakano [34] 1988 2 3 6

Levin [24] 2007 >1 >1
⌈⌊ d+1

2

⌋ + d
m−1 − m

⌉

Kulkarni [22] 2017 2 3 8

nonnegative integers r1, r2, with r1 + 2r2 = d, there exist infinitely many number
fields k of degree d = [k : Q] with r1 real places and r2 complex places such that

rkm Cl(k) ≥ r2. (4)

The right-hand side of (4) was subsequently improved to r2 + 1 by Nakano [32, 33].
Choosing r2 as large as possible, we thus obtain, for any m, infinitely many number
fields k of degree d > 1 with

rkm Cl(k) ≥
⌊
d

2

⌋
+ 1, (5)

where �· and �·�denote the greatest and least integer functions, respectively. For gen-
eralm and d, (5) is the best result that is known on producing number fields of degree
d with a class group of large m-rank. In [24], it was shown that there exist infinitely
many number fields k of degree d satisfying rkm Cl(k) ≥ ⌈⌊

d+1
2

⌋ + d
m−1 − m

⌉
,

improving (5) when d ≥ m2.
For certain special values of m and d, slightly more is known. Of particular note

to us are Mestre’s papers [25–28] giving the best known results for m = 5, 7 and
d = 2. Mestre’s method can be seen as an application of Theorem 1.3 (see Sect. 2.3).

Recently, progress has been made on obtaining quantitative results on count-
ing the number fields in the above results. Murty [36] gave the first results in this
direction, obtaining quantitative versions of the theorems of Nagell and Yamamoto–
Weinberger. His results have since been improved by, among others, Soundararajan
[37] in the imaginary quadratic case and Yu [41] in the real quadratic case. In higher
degrees, Hernández and Luca [19] gave the first such result for cubic number fields,
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while Bilu and Luca [4] succeeded in proving a quantitative theorem for number
fields of arbitrary degree. Bilu and Luca’s result was improved in [24], where a
quantitative version of Azuhata and Ichimura’s result was given. In Sect. 2.4, we
show how it is possible to derive from Theorem 1.2 a short proof of this result.

2 The Examples

This section is devoted to examples of applications of Theorems 1.2 and 1.3. Each
of these examples is obtained by revisiting previous constructions. In certain cases,
this yields new quantitative results.

2.1 Yamamoto’s Result

In [40], Yamamoto proved that, for any integer m > 1, there exist infinitely many
imaginary (resp. real) quadratic fields k with rkm Cl(k) ≥ 2 (resp. rkm Cl(k) ≥ 1).

In order to recover this result via geometry, we proved the following in [18].

Lemma 2.1 Let λ ∈ Q
×, λ �= ±1, and let m > 1 be an integer. Let C be the smooth

projective hyperelliptic curve defined overQ by the affine equation y2 = x2m − (1 +
λ2)xm + λ2. Then C has a rational Weierstrass point, and rkm Jac(C)(Q)tors ≥ 2.

Applying Corollary 1.5 to this situation, we obtained the following quantitative
version of Yamamoto’s result [18, Corollary 3.4].

Corollary 2.2 Let m > 1 be an integer. There exist 	 X
1

2m−1 / log X imaginary
(resp. real) quadratic number fields k with |Disc(k)| < X and rkm Cl(k) ≥ 2 (resp.
rkm Cl(k) ≥ 1).

If m is odd, then Byeon [8] and Yu [41] have proved, for imaginary and real
quadratic fields, respectively, the better lower bound of 	 X1/m−ε. If m is even, in
the real quadratic case a lower bound of 	 X1/m was proved by Chakraborty, Luca
andMukhopadhyay [10]. The imaginary quadratic case of Corollary 2.2 withm even
appears to be a new result of [18].

2.2 3-Ranks of Quadratic Fields: A Construction of Craig

In [15], Craig constructed infinitely many imaginary (resp. real) quadratic fields
k with rk3 Cl(k) ≥ 4 (resp. with rk3 Cl(k) ≥ 3). We prove quantitative versions of
Craig’s result and show how his constructions yield a hyperelliptic curve whose
Jacobian has a rational subgroup isomorphic to (Z/3Z)4.
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Let f be the polynomial

f (x, y, z) = x6 + y6 + z6 − 2x3y3 − 2x3z3 − 2y3z3.

The idea in [15] is to find a nontrivial parametric family of solutions to the equations

f (x0, y0, z0) = f (x1, y1, z1) = f (x2, y2, z2).

Since

f (x, y, z) = (x3 + y3 − z3)2 − 4x3y3 = (x3 − y3 + z3)2 − 4x3z3 = (−x3 + y3 + z3)2 − 4y3z3,

it suffices to find solutions to

x1z1 = x0z0, x2y2 = x0y0, (6)

x31 − y31 + z31 = −(x30 − y30 + z30), (7)

x32 + y32 − z32 = −(x30 + y30 − z30). (8)

Craig gives a two-parameter family of solutions to (6), (7) and (8) in terms of α, β
and γ satisfying α + β + γ = 0. We refer the reader to [15] for the rather involved
formulas. We specialize Craig’s solution by setting α = 0, β = t and γ = −t . This
gives a polynomial h(t) = f (x0(t), y0(t), z0(t)) of degree 141. Let C be the (non-
singular projective model of the) hyperelliptic curve defined by Y 2 = h(t). We have
the four identities (where x0 = x0(t), y0 = y0(t), etc.),

(
Y + (x30 + y30 − z30)

) (
Y − (x30 + y30 − z30)

) = −4x30 y
3
0 ,(

Y + (x30 − y30 + z30)
) (
Y − (x30 − y30 + z30)

) = −4x30 z
3
0,(

Y + (x31 + y31 − z31)
) (
Y − (x31 + y31 − z31)

) = −4x31 y
3
1 ,(

Y + (−x32 + y32 + z32)
) (
Y − (−x32 + y32 + z32)

) = −4y32 z
3
2.

It follows that there are divisors D1, D2, D3 and D4 on C such that

(Y + x30 + y30 − z30) = 3D1,

(Y + x30 − y30 + z30) = 3D2,

(Y + x31 + y31 − z31) = 3D3,

(Y − x32 + y32 + z32) = 3D4.

UsingMagma, it is easy to verify that D1, D2, D3 and D4 give independent 3-torsion
elements of Jac(C)(Q) (to simplify calculations, this can be done modulo p = 7, a
prime of good reduction of C). Thus, we arrive at the following result.
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Theorem 2.3 Let C be the hyperelliptic curve defined by Y 2 = h(t). Then

rk3 Jac(C)(Q)tors ≥ 4.

Since h has odd degree, C has a rational Weierstrass point, and so Corollary 1.5
applies.

Corollary 2.4 There exist 	 X
1
141 / log X imaginary (resp. real) quadratic fields k

with |Disc(k)| < X and rk3 Cl(k) ≥ 4 (resp. rk3 Cl(k) ≥ 3).

2.3 5-Ranks of Quadratic Fields: A Construction of Mestre

In [28], Mestre proved the existence of infinitely many imaginary and real quadratic
fields k with rk5 Cl(k) ≥ 3. We briefly review his construction. For the reader’s
convenience, we stick to the original notation. Mestre constructs

(1) a genus 5-hyperelliptic curve C defined over Q, which admits three rational
Weierstrass points;

(2) three elliptic curves E1, E2 and E3 defined over Q, each of them endowed with
an isogeny ϕi : Ei → Fi with kernel Z/5Z;

(3) three independent Galois covers τi : C → Fi with group (Z/2Z)2.

The existence of the maps τi implies that the Jacobian of C splits, and that each
of the Fi is an isogenus factor of Jac(C) via an isogeny of degree 4. More precisely,
there exists an abelian surface B and an isogeny

F1 × F2 × F3 × B −→ Jac(C)

whose degree is a power of 2.
On the other hand, the dual isogeny ϕ̂i : Fi → Ei has kernel μ5, because the

kernel of the ϕ̂i is the Cartier dual of the kernel of ϕi . Hence Jac(C) contains μ3
5 as

a subgroup, which means in our terminology that rkμ5 Jac(C) ≥ 3.
Applying Theorem 1.3 to this situation, we obtain the following quantitative

version of Mestre’s result.

Theorem 2.5 There exist 	 X
1
11 / log X imaginary (resp. real) quadratic fields k

with |Disc(k)| < X such that rk5 Cl(k) ≥ 3.

2.4 Higher Degree Fields

Let us fix integersm, r > 1with (r,m) = 1. Consider a superelliptic curveC defined
by an affine equation of the form
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ym = a0

r∏

i=1

(x − ai ),

where a1, . . . , ar are pairwise distinct rational numbers, and a0 ∈ Q
×. Then x and y

are rational functions onC with deg x = m anddeg y = r . Since (r,m) = 1, the curve
C has a unique point at infinity, that we denote by∞, and x and y are totally ramified
at that point. For each i , let Pi be the rational point onC with affine coordinates (ai , 0).
Then one has

div(x − ai ) = mPi − m∞.

A classical argument shows that the divisor classes (Pi − ∞)ri=1 generate a sub-
group of Jac(C)(Q) isomorphic to (Z/mZ)r−1.

Applying Theorem 1.2 to the map x : C → P
1, one recovers the result of Brumer

and Rosen (first line in Table2). By considering the map y : C → P
1, one recovers

results of Azuhata and Ichimura (line 4 in Table2). Using Hilbert’s irreducibility
theorem, quantitative versions of these results were obtained in [24].

Using other maps, it was shown in [24] that in some situations it is possible to
improve on Nakano’s inequality (5) (line 5 in Table2).

Theorem 2.6 Let m, d > 1 be integers with d > (m − 1)2. There exist	 X
1

(m+1)d−1 /

log X number fields k of degree d with |Disc(k)| < X and

rkm Cl(k) ≥
⌈⌊

d + 1

2

⌋
+ d

m − 1
− m

⌉
.

A detailed proof of this theorem is given in [24], but it is possible to give a simpler
proof by using the following variant of Theorem 1.2.

Theorem 2.7 Let C be a smooth projective geometrically irreducible curve over
Q, let Jac(C) be the Jacobian of C, and let m > 1 be an integer. Let s = rkm
Jac(C)(Q)tors, and let D1, . . . , Ds be divisors on C whose classes in Jac(C)(Q)

generate a subgroup isomorphic to (Z/mZ)s . Let g1, . . . , gs be rational functions on
C such that div(gi ) = mDi for all i . Assume that there exists a finite mapφ : C → P

1

of degree d such that, for all t ∈ N, the point Pt := φ−1(t) has the property that

g1(Pt ), . . . , gs(Pt ) define classes in Selm(Q(Pt )), (9)

where Selm is defined in (1). Then there exist infinitely many t ∈ N such that [Q(Pt ) :
Q] = d and

rkm Cl(Q(Pt )) ≥ s − rkZ O×
Q(Pt )

.

Moreover, there are infinitely many isomorphism classes of such fields Q(Pt ).

This statement is a generalization of Theorem 1.2, in which the condition on the
existence of a totally ramified point for the map φ is replaced by a more technical
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one. In explicit examples, this technical condition usually comes from a congruence
condition on the coordinates of the point Pt (see proof of Theorem 2.6).

Theorem 2.7 can be proved along the lines of the toy example. We refer to the
proof of [18, Theorem 2.4], in which all needed arguments already appear. Needless
to say, Theorem 2.7 admits the same quantitative version as the previous ones, as
stated in Theorem 1.4.

Proof (Proof of Theorem 2.6) Letm, d > 1 be integers with d > (m − 1)2. Let r be
the largest integer such that r − ⌊

r
m

⌋ ≤ d and (r,m) = 1. It is easily checked that
r ≥ d + d

m−1 − m + 1. Let C be the curve defined by

ym = h(x) = −(x − am1 )

r∏

i=2

(x + ami ),

where a1, . . . , ar are certain carefully chosen integers [24, Lemma 3.1]. For i =
2, . . . , r , we let gi := x + ami . Then div(gi ) = mPi − m∞ where Pi = (−ami , 0),
and, as noted above, the divisor classes (Pi − ∞)ri=2 generate a subgroup isomorphic
to (Z/mZ)r−1 in Jac(C)(Q).

Let f (x) be the Taylor series for m
√
h(x) at x = 0 truncated to degree

⌊
r
m

⌋ − 1
with f (0) = ∏r

i=1 ai . Then f is defined over Q, and

ordx ( f
m − h) ≥

⌊ r

m

⌋
≥ r − d.

Let b be the lowest common denominator of the coefficients of f . Letψ : C → P
1

be the rational function defined by

ψ := b(y − f )

xr−d
.

Then one computes [24, Lemma 3.5] that ψ has degree d.
Let �0 be the product of prime numbers dividing the discriminant of h. Having

chosen a1, . . . , ar properly, it can be shown [24, Lemma 3.3] that there exists an
integer c0 such that, for each integer c ≡ c0 (mod �0), the point Qc := ψ−1(c) has
the property that g2(Qc), . . . , gr (Qc) define classes in Selm(Q(Qc)).

If we define φ : C → P
1 by

φ := ψ − c0
�0

,

then φ also has degree d and, for all t ∈ N, the point Pt := φ−1(t) satisfies condition
(9) from Theorem 2.7 with respect to the functions g2, . . . , gr .
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Finally, it follows from [24, Lemma 3.4] that

Disc(Q(Pt )) = O(t (m+1)d−1)

and Q(Pt ) has at most two real places for t 	 0. The result follows from
Theorem 2.7. �
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On Simultaneous Divisibility of the Class
Numbers of Imaginary Quadratic Fields

Toru Komatsu

1 Introduction

In this article, we explain some results in the papers [7, 8] on simultaneous divisibility
of the class numbers of quadratic fields and present an evolved problem of the inverse
Galois problem.

Let k be an algebraic number field with [k : Q] < ∞. Let Cl(k) denote the ideal
class group of k, and h(k) the class number of k.

Theorem 1.1 (Komatsu [7] 2002, Acta Arith.) Let m �= 0 be a rational integer.
Then there exist infinitely many real (imaginary) quadratic fields Q(

√
D) such that

3 | h(Q(
√
D)) and 3 | h(Q(

√
mD)).

Theorem 1.2 (Komatsu [8] 2017, IJNT) Let n and m be rational integers greater
than 1. Then, there exist infinitely many imaginary quadratic fieldsQ(

√
D) such that

n | h(Q(
√
D)) and n | h(Q(

√
mD)).

2 Old Motivation for the Results

Let d > 1 be a squarefree rational integer. Let r denote the 3-rank of Cl(Q(
√
d)) of

the real quadratic fieldQ(
√
d), and s that of the imaginary quadratic fieldQ(

√−3d).

Theorem 2.1 (Scholz, reflection theorem) The inequality r ≤ s ≤ r + 1 holds. For
a rational integer d > 1, if 3 | h(Q(

√
d)), then 3 | h(Q(

√−3d)).
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Remark 2.2 By some experiments with calculators, I wondered if the 3-divisibilities
of h(Q(

√
d)) and h(Q(

√−d)) are independent of one another. The problem is
whether there are infinitely many quadratic fields Q(

√
D) such that 3 | h(Q(

√
D))

and 3 | h(Q(
√−D)) or not. It was solved affirmatively in a paper at 2001. Its general

cases are done in [7] at 2002.

3 Comparison of Methods

Let H(k) denote the Hilbert class field of k, that is, the maximal unramified abelian
extension of k. Class field theory yields an isomorphism Cl(k) � Gal(H(k)/k)
where Gal(H(k)/k) is the Galois group of the extension H(k)/k.

Remark 3.1 In the paper [7] (2002), we construct unramified cyclic cubic extensions
of k due to Honda’s method [4] (1968) and also to Kishi-Miyake (2000). It is not
necessary for the method to consider influence of units. In the paper [8] (2017), we
construct ideals of k with order n in Cl(k) due to Yamamoto’s method [12] (1970),
which needs consideration for the influence of units.

4 Construction of Fields and Extensions

Let us recall the result in the paper [7]. Let m �= 1 be a squarefree rational integer.
Let l be a prime number which splits in the extension Q(

√
m)/Q and is inert in the

extension Q(
3
√
2)/Q. We take a rational integer ν such that

ν ≡

⎧
⎪⎪⎨

⎪⎪⎩

±(4m − 3) (mod 27) ifm ≡ 1 (mod 3),
±(4m + 12) (mod 27) ifm ≡ 2 (mod 3),
±4m (mod 27) ifm ≡ 3 (mod 9),
±1 (mod 3) otherwise,

and mν2 ≡ 1 (mod l). Now put r = mν2. Let T be the set of all of the rational
integers t such that

t ≡

⎧
⎪⎪⎨

⎪⎪⎩

4 or 7 (mod 9) ifm ≡ 1 (mod 3),
3 (mod 9) ifm ≡ 2 (mod 3),
−3 (mod 27) ifm ≡ 3 (mod 9),
±(r/3)2 (mod 9) otherwise,

t ≡ −1 (mod l) and t �≡ r (mod p) for every prime divisor p �= 3 of r(r − 1). We
define

Dr (X) := (3X2 + r)(2X3 − 3(r + 1)X2 + 6r X − r(r + 1))/27.
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Theorem 4.1 (Komatsu [7]) For each t ∈ T , we have that 3 | h(Q(
√
Dr (t))) and

3 | h(Q(
√
mDr (t))). When m > 0, if t ≥ 3r/2 (resp. t < 3r/2), then Q(

√
Dr (t))

and Q(
√
mDr (t)) are both real (resp. both imaginary).

For t ∈ T , put

u := t3 + 3tr, w := 3t2 + r, a := u − w, b := u − rw, c := t2 − r.

We define

f1(Z) := Z3 − 3cZ − 2a, f2(Z) := Z3 − 3cZ − 2b.

For j = 1 and 2, let K j denote the minimal splitting field of f j (Z) overQ, and d( f j )
the discriminant of the polynomial f j (Z). Put k j := Q(

√
d( f j )).

Proposition 4.2 For every j = 1 and 2, the extension K j/k j is cyclic cubic and
unramified. We have that k1 = Q(

√
Dr (t)) and k2 = Q(

√
mDr (t)).

Proof By the definition one has that r ≡ 1 (mod l), t ≡ −1 (mod l), a ≡ b ≡ −23

(mod l) and c ≡ 0 (mod l). Note that 2 /∈ F
3
l . Thus f j ≡ Z3 + 24 (mod l) are irre-

ducible over Fl , and so are over Q. Thus K j/k j are cyclic cubic.
By using Llorente–Nart’s criterion for the decompositions of primes in cubic

fields Q(θ) where f j (θ) = 0, we see that Q(θ)/Q are not totally ramified at any
finite primes. Hence K j/k j are unramified. �

Remark 4.3 The construction yields infinite families, not only of pairs of imaginary
and imaginary, but also of those of real and real.

Remark 4.4 Without considering any influence of units, we focus on only the sign of
the discriminant. In general, for the n-divisibilities of the class numbers of quadratic
fields, we may try to construct Dn-extensions of Q as the minimal splitting fields of
polynomial with degree n. It is difficult to make such polynomials of large degree n
with parameters yielding infinite family.

5 Construction of Fields and Ideals

Let us explain the result in the paper [8]. Let n > 1 be a rational integer with the
prime decomposition n = pe11 pe22 . . . pess . Let m > 1 be a squarefree rational integer.
Step 1. We take distinct prime numbers li such that li ≡ 1 (mod 12pi ) andm ∈ F

×2
li

for i = 1, 2, . . . , s.
Step 2. For each i , we take a rational integer gi with gi , gi + 1 /∈ F

pi
li
.

Step 3. We take a positive even number a such that a2m ≡ g2i /(gi + 1)2 (mod li )
for all i .
Step 4. We take a rational integer t satisfying all of the following conditions:
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⎧
⎪⎪⎨

⎪⎪⎩

t ≡ gi/(gi + 1) (mod li ) for all i,
gcd(t, am) = 1,
gcd(t − 1, b) = 1,
t > a2mn/2,

where b is the maximal divisor of a2m − 1 relatively prime to l1l2 · · · ls .
Step 5. We put M := Q(

√
m), and

β := t − a
√
m, γ1 := 1 + 1

a
√
m
, γ2 := 1 + a

√
m,

x1 := Tr(βnγ1), x2 := Tr(βnγ2), z1 := z2 := N (β),

where Tr = TrM/Q and N = NM/Q. For each j = 1 and 2, let Fj denote the quadratic

field Q(
√
x2j − 4znj ) with discriminant Dj .

Theorem 5.1 (Komatsu [8]) For each j = 1 and 2, Fj is an imaginary quadratic
field with an ideal of order n. The ratio D2/(mD1) is square.

Remark 5.2 For each j = 1 and 2, there exists a rational integer y j such that x2j −
4znj = y2j D j . We put α j := (x j + y j

√
Dj )/2. Let a j be an ideal of Fj satisfying

anj = (α j ). This implies that a j is the ideal generated by z j and α j . Then the order
of a j in Cl(Fj ) is equal to n.

For the existence of li , we have the following lemma.

Lemma 5.3 Let p be a prime number. If l is a prime number with
l ≡ 1 (mod 12mp), then l ≡ 1 (mod 12p) and m ∈ F

×2
l .

Proof Let m0 be the maximal odd divisor of m. Then one has
(m

l

)
=

(m0

l

)
=

(
l

m0

)

=
(

1

m0

)

= 1. �

For the existence of gi , we have the following lemma.

Lemma 5.4 Let p and l be prime numbers with l ≡ 1 (mod 2p). Then there exists
a rational integer g such that both g and g + 1 are pth power non-residue modulo l.

Proof Note that 1 and l − 1 are pth power residues modulo l. Let g be a pth power
non-residue modulo l with 2 ≤ g ≤ l − 2. Assume that g + 1 is a pth power residue
modulo l. Then g−1 is a suitable one, that is, g−1 and g−1 + 1 = (g + 1)/g are pth
power non-residue modulo l. �

Remark 5.5 We can show the existence of a and t due to Chinese remainder theorem

(CRT). Since li are odd, distinct and

(
m

li

)

= 1, the integer a proves to exist by CRT.

Since l1, . . . , ls , am, b are relatively prime to each other, the integer t proves to exist
by CRT.
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Remark 5.6 Using Yamamoto’s method [12], one can see that a j is of order n in
Cl(Fj ). In fact, by anj = (α j ), the order of a j is a divisor of n. Since α j is a pi th
power non-residue modulo li above li and units are power residues, the order does
not decrease.

Remark 5.7 With li , gi , and a fixed, the family of fields constructed in the run of
t is infinite. Indeed, for every large number C , the family contains a quadratic field
ramified at a prime number greater than C .

6 New Motivation, Application to a Problem

Let k be a number field with [k : Q] < ∞, and K a Galois extension of k with
[K : k] < ∞. Let G denote the Galois group of K/k, andH the family of all of the
subgroups of G, that is,

H := {H : subgroups of G} := {H1, H2, . . . , Hs},

where s is the number of the subgroups of G. Let K j denote the fixed field by Hj in
K/k. Let q be an integral ideal of K , and q j the ideal of K j below q, that is, q ∩ K j .
Let n j denote the order of q j in Cl(K j ), respectively.

Definition 6.1 We say that (n1, n2, . . . , ns) is the tuple of the orders in the extension
K/k of q, and shorten it to toe of q.

Definition 6.2 (Inverse Galois problem with toe condition) Let k be a number field
with [k : Q] < ∞. Let G be a finite group and H the family of all of the subgroups
of G,H := {H : subgroups of G} := {H1, H2, . . . , Hs}. For given positive integers
n1, n2, . . . , ns, does there exist a Galois G-extension K of k with an ideal of toe
(n1, n2, . . . , ns)?

Remark 6.1 It seems to need some conditions on n j ’s according to the relations
between Hj ’s.

Let k = Q and G = {e,σ, τ ,στ } � V4 � C2 × C2 with

H = {H1 = {e}, H2 = 〈σ〉, H3 = 〈τ 〉, H4 = 〈στ 〉, H5 = G }.

Corollary 6.3 Let b, c, d be positive, odd numbers and put a := lcm(b, c, d).
Then there exist infinitely many Galois V4-extensions K of Q with ideals a of toe
(a, b, c, d, 1).
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K1 a = lcm(b, c, d)

K2 b K3 c K4 d

K5 = Q 1

Proof By Yamamoto’s result, there exists a real quadratic field Q(
√
m) with an

ideal b of order b. Due to Theorem 5.1 at Sect. 5, there exist imaginary quadratic
fields Q(

√
D) and Q(

√
mD) with ideals c and d of order cd, respectively. Put K =

Q(
√
m,

√
D) and G = Gal(K/Q) = 〈σ, τ 〉 where

σ : √
m → √

m,
√
D → −√

D,

τ : √
m → −√

m,
√
D → √

D.

Then it follows from the Galois correspondence that K1 = K , K2 = Q(
√
m), K3 =

Q(
√
D), K4 = Q(

√
mD), and K5 = Q. Put a = bcddc as ideals of K . Let q be a

prime ideal of K which is equivalent to a in Cl(K ), and which splits completely in
K/Q. Then the toe of q is (a, b, c, d, 1). Indeed, the classes [q j ] of q j in Cl(K j ) are
as follows:

[q1] = [q] = [a], [q2] = [NK/K2(q)] = [b2],
[q3] = [NK/K3(q)] = [c2d ], [q4] = [NK/K4(q)] = [d2c], [q5] = [(q)] .

This completes the proof. �

7 Real Quadratic Cases

Let us recall Yamamoto’s method in [12] not only for the imaginary but also for the
real. Let F be a quadratic field with discriminant D �= −3,−4. Let x, y, z be rational
integers such that x2 − y2D = 4zn and gcd(x, z) = 1. Put α± := (x ± y

√
D)/2.

Then there exists an ideal a of F such that an = (α+). Put

ε :=
{
the fundamental unit of F if D > 0,

1 if D < −4.

Let p be a prime factor of n, and l a prime number with l ≡ 1 (mod 2p). Assume
that x /∈ F

p
l and l | z. Then there exists a prime ideal l of F above l dividing α−.
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Lemma 7.1 (Yamamoto [12]) If ε is a pth power residue modulo l, then (α+) is the
pth power of no principal ideal in F.

Let n be a rational integer greater than 1 with the prime decomposition n =
pe11 pe22 . . . pess . Let li , l

′
i be distinct prime numbers with li ≡ l ′i ≡ 1 (mod 2pi ). Let

x, z, x ′, z′ be rational integers such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 − 4zn = x ′2 − 4z′n,
gcd(x, z) = gcd(x ′, z′) = 1,

x /∈ F
pi
li
, x ′ /∈ F

pi
l ′i
,

x + x ′

2
∈ F

pi
li
,

li | z, l ′i | z′.

Let F denote the quadratic field Q(
√
x2 − 4zn) with discriminant D.

Theorem 7.2 (Yamamoto [12], Prop. 2)The ideal class groupCl(F) has a subgroup
N isomorphic to Cn × Cn if D < −4, and Cn if D > 0.

Proof There exists a rational integer y such that x2 − 4zn = x ′2 − 4z′n = y2D.
Then there exist ideals a, a′ of F such that an = ((x + y

√
D)/2) and a′n = ((x ′ +

y
√
D)/2). When D < −4, the ideals a and a′ generateN � Cn × Cn . When D > 0,

the ideals a and a′ may have orders less than n because of units in F ; however, a and
a′ generate an ideal of order n in Cl(F). �

Remark 7.3 Diophantine equation X2 − Y 2D = 4Zn does not become complicated
as n increases. We need to consider the influence of units. The number of using
integers x, . . . for real quadratic cases is more than that for imaginary quadratic
cases.
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1 Thue Equations

1.1 Introduction

A Thue equation is a Diophantine equation of the form F(x, y) = m, where F ∈
Z[X, Y ] is a given homogeneous polynomial in two variables (i.e., a binary form) of
degree d with integer coefficients, m is a given nonzero integer while the unknowns
x, y take their values in Z. Is the set of such (x, y) finite or infinite? If it is finite,
can we get an upper bound for the number of its elements? (Such an upper bound is
a qualitative statement). Can we get an upper bound for the height of its elements?
(Such an upper bound is a quantitative statement).

A Thue–Mahler equation is an exponential Diophantine equation of the form
F(x, y) = pz1

1 · · · pzs
s where F is a given binary form, p1, . . . , ps are given prime

numbers, the unknowns are x, y, z1, . . . , zs where x, y take their values in Z and
z1, . . . , zs in Z≥0.
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We denote by f ∈ Z[T ] the polynomial defined by f (T ) = F(T, 1):

f (T ) = a0T d + a1T d−1 + · · · + ad−1T + ad ,

F(X, Y ) = a0Xd + a1Xd−1Y + · · · + ad−1XY d−1 + adY d .

Notice that a0 = 0 is equivalent to saying that F(X, 0) is the zero polynomial. We
assume a0 > 0 so that f has degree d.

For m = 0, the set of (x, y) �= (0, 0) in Z
2 such that F(x, y) = 0 is empty if f

has no rational root, while, if f has rational roots, then this set is the set of (x, y)

with y �= 0 such that x/y is a root of f .
From now on we assume m �= 0.
When d = 1, we have F(X, Y ) = a0X + a1Y ; the solution of a linear equation

a0x + a1y = m is given by Bézout’s Theorem. The computation of the gcd of a0

and a1 is done efficiently via the Euclidean algorithm, which is nothing else than the
continued fraction expansion algorithm applied to a1/a0.

Assume d = 2. The quadratic equation a0x2 + a1xy + a2y2 = m may have no
solution or finitely many solutions: one among many examples is for (a0, a1, a2) =
(1, 0, 1) with the equation x2 + y2 = m. It may have infinitely many solutions; this
is the case for (a0, a1, a2) = (1, 0,−D) and m = 1, where D is a positive integer
which is not a square, with the Brahmagupta–Fermat–Pell equation x2 − Dy2 = 1.
The general solution of the quadratic equation (not necessarily a Thue equation) is
due to Lagrange [11, 28].

Assume now d > 2. If f is a reducible polynomial in Z[X ], then solving the
equation F(x, y) = m, where the unknowns x, y take their values in the set of rational
integers, amounts to solving finitely many equations Fi (x, y) = mi with mi a divisor
of m and Fi (X, Y ) an irreducible factor of F(X, Y ) in Z[X, Y ]. For this reason, we
assume now that f is irreducible in Z[X ].

1.2 Positive Definite Binary Forms

Assume first that the polynomial f has no real root (hence its degree d is even). Then
for each m ∈ Z, m �= 0, the set of (x, y) in Z

2 such that F(x, y) = m is finite. To
study the Diophantine equation F(x, y) = m means to study the representation of
integers by the definite form F . Let us quote the following elementary Lemma 2.1
from [12].

Lemma 1 Let f ∈ Z[T ] be a nonzero polynomial of degree d which has no real
root. Let g(T ) = T d f (1/T ). Assume that the leading coefficient of f (T ) is positive
so that the real number, defined by

γ = min

{
inf−1≤t≤1

f (t), inf−1≤t≤1
g(t)

}



Thue Diophantine Equations 27

is > 0. Let F(X, Y ) be the binary form Y d f (X/Y ) associated with f . Then for each
(x, y) ∈ Z

2, we have
F(x, y) ≥ γ max

{|x |d , |y|d}.
Moreover, for any real number c with c > γ , there exist infinitely many couples (x, y)

in Z
2 satisfying

F(x, y) < cmax
{|x |d , |y|d}.

A class of definite forms F (namely, forms which are associated with a polyno-
mial f without real root) is given by the norm over Q of a CM field. Recall that a
subfield K of C is a CM field if is number field which satisfies the following equiv-
alent conditions:
(i) K is totally imaginary and is a quadratic extension of a totally real field.
(ii) There exists γ ∈ K such that K = Q(γ ) and γ 2 is totally real with all conjugates
negative.
(iii) K is not real and the complex conjugation z → z commutes with every embed-
ding of K into C: for σ : K → C and α ∈ K ,

σ(α) = σ(α).

Theorem 1 (Győry [13]) Let K be a CM field of degree d over Q. Let α ∈ K
be such that K = Q(α); let f be the irreducible polynomial of α over Q and let
F(X, Y ) = Y d f (X/Y ) the associated homogeneous binary form. Set a0 = F(1, 0),
ad = F(0, 1). For (x, y) ∈ Z

2 we have

xd ≤ 2dad−1
d F(x, y) and yd ≤ 2dad−1

0 F(x, y).

Recall that the leading coefficient a0 of the irreducible polynomial of an algebraic
number is positive. The assumption implies that α is totally imaginary, hence ad > 0
and F(x, y) > 0 for (x, y) �= (0, 0).

Proof Let α1, . . . , αd be the roots of f in C so that

F(X, Y ) = a0(X − α1Y ) · · · (X − αdY ).

For 1 ≤ j ≤ d, the number α j is not real (since K is totally imaginary) and we have

|x − α j y| ≥ |�m(α j )y|.

Since K is a CM field, α is in K and 2i�m(α) = α − α is a nonzero element in
K ; its conjugates in C are α j − α j . Moreover, a0(α − α) being a nonzero algebraic
integer, its norm is a nonzero rational integer, of absolute value ≥ 1. Therefore

2dad−1
0 F(x, y) = ydNK/Q(2ia0�m(α)) ≥ yd .
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The same argument gives the upper bound for xd . �

In the special case where α is a unit in K , we have a0 = ad = 1 and the conclusion
can be written as

max{|x |, |y|} ≤ 2F(x, y)1/d . (1)

Examples of binary forms satisfying the assumptions of Theorem 1 with a0 =
ad = 1 are given by the cyclotomic binary forms, which we define as follows.

For n ≥ 1, denote by φn(T ) the cyclotomic polynomial of index n and degree
ϕ(n) (Euler’s totient function). The cyclotomic binary form Φn(X, Y ) is defined
by Φn(X, Y ) = Y ϕ(n)φn(X/Y ). In particular, we have Φn(x, y) > 0 for n ≥ 3 and
(x, y) �= (0, 0).

An example showing that the estimate (1) is optimal is given by the form
F(X, Y ) = Φn(X − Y, Y ) of degree d = ϕ(n), where n ≥ 3 is not of the form pr

nor 2pr with p prime. This condition on n implies φn(1) = φn(−1) = 1, hence for
y ∈ Z we have

F(2y, y) = yd F(2, 1) = ydφn(1) = yd .

The irreducible polynomial of the unit α = 1 + ζn is φn(t − 1) and the fieldQ(α) is
the CM field Q(ζn).

In the special case of cyclotomic binary forms, Theorem 1 gives

max{|x |, |y|} ≤ 2|m|1/ϕ(n)

for the integral solutions (n, x, y) of Φn(x, y) = m. An upper bound for n can be
deduced only if max{|x |, |y|} ≥ 3.

In [12], the refined estimate

max{|x |, |y|} ≤ 2√
3
|m|1/ϕ(n)

has been proved for the integral solutions (n, x, y) ofΦn(x, y) = m satisfying n ≥ 3
and max{|x |, |y|} ≥ 2. Therefore

ϕ(n) ≤ 2√
3
logm.

See [29], [A296095, A299214, A293654, A301429, and A301430].

1.3 Thue Equation and Diophantine Approximation

We now come back to the general case where f ∈ Z[T ] is irreducible over Q of
degree d ≥ 3 and may have real zeroes. Write

https://oeis.org/A296095
https://oeis.org/A299214
https://oeis.org/A293654
https://oeis.org/A301429
https://oeis.org/A301430
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f (T ) = a0(T − α1)(T − α2) · · · (T − αd).

Recall our assumption a0 > 0. Assumem �= 0 is fixedwhile x, y are rational integers
with F(x, y) = m. Let us show that, as soon as max{|x |, |y|} is sufficiently large,
x/y is close to one of the roots αi of f and is not close to any other root (since f is
irreducible, the roots αi are distinct). For i = 1, . . . , d, define βi = x − αi y. Label
the roots of f so that

|β1| = min
1≤i≤d

|βi |.

From a0β1 . . . βd = m we deduce

|β1|d ≤ |m|
a0

,

which means ∣∣∣∣α1 − x

y

∣∣∣∣ ≤ |m|1/d

a1/d
0 |y| · (2)

We may notice that if α1 is not real, then we get immediately a sharp upper bound
for |y|:

|y| ≤ |m|1/d

a1/d
0 |�m(α1)|

·

We now sharpen the upper bound (2). If

|y| ≤ 2|m|1/d

a1/d
0 min

2≤i≤d
|αi − α1|

,

then the relation x = α1y + β1 implies the upper bound

|x | ≤
⎛
⎝ 2|α1|

min
2≤i≤d

|αi − α1| + 1

⎞
⎠ |m|1/d

a1/d
0

,

which shows that |x | and |y| are bounded. Assume now

|y| >
2|m|1/d

a1/d
0 min

2≤i≤d
|αi − α1|

·

For i = 2, . . . , d, we have βi = (α1 − αi )y + β1, hence

|βi | = |x − αi y| ≥ |(αi − α1)y| − |m|1/d

a1/d
0

≥ 1

2
|(αi − α1)y|,
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which implies

|m| = |a0β1 . . . βd | ≥ |y|d−1|β1| 1

2d−1
a0

d∏
i=2

|αi − α1|

and therefore we deduce the following improvement of the upper bound (2):

∣∣∣∣α1 − x

y

∣∣∣∣ ≤ κ1( f )|m|
|y|d

with

κ1( f ) = 2d−1

a0

d∏
i=2

|αi − α1|
·

Liouville’s estimate is the lower bound
∣∣∣∣α1 − x

y

∣∣∣∣ ≥ κ2( f )

|y|d

with some explicit constant κ2( f ); this does not give any information on the Thue
Diophantine equation, but any nontrivial improvement of Liouville’s estimate gives
a nontrivial information on the equation F(x, y) = m (see [18, 35]). The work by
Thue in 1914 culminated with the proof by Roth in 1955 of the following result.

Theorem 2 (Thue, Siegel, Roth) If α is an algebraic number of degree d ≥ 2, for
any ε > 0 there exists a positive constant κ(α, ε) such that, for any rational number
p/q with q > 0, we have ∣∣∣∣α − p

q

∣∣∣∣ >
κ(α, ε)

q2+ε
·

From the previous argument, we deduce the following.

Corollary 1 (A. Thue)Let F ∈ Z[X, Y ] be an irreducible binary form of degree d ≥
3. Let m ∈ Z. Then there are only finitely many (x, y) in Z × Z such that F(x, y) =
m.

One main drawback of this argument is that the proof following the original
approach by Thue does not produce an effective value for the constant κ(α, ε) when
ε is less than d − 2. As a consequence, Corollary 1 is not effective; as a matter of
fact, upper bounds for the number of solutions (x, y) to the Diophantine equation
F(x, y) = m (qualitative statements) can be derived from the proof, but no upper
bound for max{|x |, |y|} can be obtained (quantitative statements). We will discuss
below (see Sect. 2) another approach which has been suggested by A. O. Gel’fond
and worked out by A. Baker, involving lower bounds for linear forms in logarithms
and it is effective.
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An illuminating presentation of Thue’s method is given by D. W. Masser in [27],
Chap. 12, where he starts with x3 − 2y3 = m and goes on by explaining some of the
main ideas behind Thue’s proof, building upon Newton’s method.

1.4 An Example: x3 − 2 y3 = m

Let us consider the special case of the cubic Thue equation x3 − 2y3 = m (see [35]).
Let ψ be a positive real function which satisfies

∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ >
ψ(q)

q3

for each q > 0. Letm ∈ Z,m �= 0 and let (x, y) ∈ Z
2 satisfy x3 − 2y3 = m. Assume

x and y are positive (this is no loss of generality). Write

x3 − 2y3 = (x − 3
√
2y)(x2 + 3

√
2xy + 3

√
4y2)

and observe that x2 + 3
√
2xy + 3

√
4y2 > y2. We deduce that any solution (x, y) in

positive integers of the equation x3 − 2y3 = m satisfies

ψ(y) ≤ |m|. (3)

Ifψ(q) tends to infinity with q, then we get an upper bound for y while x is bounded
by

x ≤ 3
√
2max{ 3

√|m|, 3
√
2y}.

In the other direction, letψ be a positive real function such that any solution (x, y)

in positive rational integers of x3 − 2y3 = m satisfies

ψ(y) ≤ |m|.

We write

|p3 − 2q3| =
∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ (p2 + 3
√
2pq + 3

√
4q2)q.

If p ≤ (3/2)q, we have p2 + 3
√
2pq + 3

√
4q2 ≤ 6q2 and we deduce

∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ ≥ ψ(q)

6q3
·

If p > (3/2)q, then we have the sharper estimate
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∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ >
3

2
− 3

√
2 >

1

5
·

Liouville’s estimate ∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ >
1

6q3
(4)

follows by taking for ψ the constant function ψ(y) = 1, while any upper bound for
the solutions (x, y) of x3 − 2y3 = m implies the validity of (3) with a functionψ(y)

tending to infinity with y, and this yields an improvement on Liouville’s estimate
(4).

In this direction, the sharpest known estimates are due to Bennett [4]:

∣∣∣∣ 3
√
2 − p

q

∣∣∣∣ >
1

4q2.5
and |x3 − 2y3| ≥ √

x .

See also [5] for similar results concerning other algebraic numbers than 3
√
2.

2 Solving Thue Equation Using Baker’s Method

2.1 References

Here is a selection of books having a section devoted to Baker’s method for solving
Thue equations.
• Baker [2] Chap.4 (Diophantine equations) Sect. 2. The Thue equation—proof
using lower bounds for linear forms in logarithms.
• Shorey et al. [33] Main results arising from Baker’s method in 1977, with proofs
using lower bounds for linear forms in logarithms.
• Shorey and Tijdeman [32] Chap.5 (The Thue equation) proof using lower bounds
for linear forms in logarithms. Includes effective estimates.
• Sprindžuk [34] Chap. IV (The Thue Equation).
• Baker and Wüstholz [3] Chap. 3 (Diophantine problems) Sect. 3 The Thue
equation—sketch of proof using lower bounds for linear forms in logarithms.
•Győry [14] Survey of some important applications of Baker’s theory of linear forms
in logarithms to Diophantine equations.
• Evertse and Győry [10] Chap.9 (Decomposable forms equations) Sect. 9.6 (Effec-
tive results) Sect. 9.6.1 (Thue equations) Explicit results.
• Bugeaud [7] Chap.4 Sect. 3 (The Thue equation).
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2.2 Thue Equation and Siegel’s Unit Equation

We explain some of the basic ideas behind the reduction of the Diophantine equation
F(x, y) = m to Siegel’s unit equation.

Assume for simplicity a0 = 1, ad = ±1, m = 1 so that the polynomial f can be
written as

f (T ) = T d + a1T d−1 + · · · + ad−1T ± 1 = (T − α1) . . . (T − αd)

where α1, . . . , αd are units of degree d. The numbers βi = x − αi y (i = 1, . . . , d)
are also units of degree d since they are algebraic integers satisfying β1 · · ·βd = 1. If
i1, i2, i3 are distinct indices in {1, . . . , d} (recall d ≥ 3), eliminating x and y among
the three relations

βi1 = x − αi1 y, βi2 = x − αi2 y, βi3 = x − αi3 y

shows that the determinant ∣∣∣∣∣∣
1 −αi1 βi1
1 −αi2 βi2
1 −αi3 βi3

∣∣∣∣∣∣
is 0. This yields the so-called Siegel unit equation

βi1(αi2 − αi3) + βi2(αi3 − αi1) + βi3(αi1 − αi2) = 0.

The main result on Siegel’s unit equation is that given γ1, γ2 in K ×, the set of
pairs (u1, u2) of units in a number field K satisfying γ1u1 + γ2u2 = 1 is finite. In
homogeneous form, the result is the following: if γ1, γ2, γ3 are in K ×, if we consider
the equation γ1u1 + γ2u2 + γ3u3 = 0, then the set of (u1/u3, u2/u3) is finite. Baker’s
method gives an effective upper bound for the heights of the solutions.

Once we know that the set of numbers

βi1(αi2 − αi3)

βi2(αi3 − αi1)
,

for (x, y) solution of F(x, y) = m, is finite,we deduce that the set of quotientsβi1/βi2
is finite, hence x/y belongs to a finite set E ; if y = νx with ν ∈ E , then F(x, y) =
xd F(1, ν) and the equation xd F(1, ν) = m yields the desired upper bound for |x |.
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2.3 Lower Bounds for Linear Forms in Logarithms
and Siegel’s Unit Equation

Let α1, . . . , αn be nonzero algebraic numbers and b1, . . . , bn be rational integers
such that

α
b1
1 · · ·αbn

n �= 1.

Define B = max{2, |b1|, . . . , |bn|}. A “trivial” estimate “à la Liouville” is

|αb1
1 . . . αbn

n − 1| ≥ e−C1B,

where C1 is an explicit constant depending only on α1, . . . , αn . Methods from tran-
scendental number theory involving the quantity β1 logα1 + · · · + βn logαn yield
the refinement

|αb1
1 . . . αbn

n − 1| ≥ B−C2 , (5)

where C2 is also an explicit constant depending only on α1, . . . , αn . This estimate
is optimal as far as the dependence on B is concerned (but optimal estimates for C2

have not yet been achieved).
Let γ1, γ2 be nonzero elements in a number field K . Let ε1, . . . , εr be a basis of

the group of units of K . Let (u1, u2) be two units in K such that

γ1u1 + γ2u2 = 1.

We write u1

u2
= ζε

b1
1 · · · εbr

r

where ζ is a root of unity in K and b1, . . . , br are rational integers. Set

γ0 = −γ1ζ

γ2
·

We use the fundamental Diophantine estimate (5) to obtain a lower bound for the
modulus of any complex conjugate of the left-hand side of

γ0ε
b1
1 · · · εbr

r − 1 = −1

γ2u2
.

An auxiliary lemma (e.g., Lemma 5.1 of [32] or Lemma 5 of [25]) shows that one
can choose such a complex embedding for which the modulus of the right-hand side
is small, so that we end up with an upper bound for the heights of u1 and u2.
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Essentially, the three statements:
• finiteness of the set of solutions to Thue equations,
• finiteness of the set of solutions of the unit equation, and
• nontrivial refinement of Liouville’s Theorem
are equivalent. An upper bound for the number of exceptional solutions for one of
these statements implies such an upper bound for the two others; an effective result
on one of them (upper bound for the exceptional solutions) yields an effective result
on the two others. See [18, 35].

An effective result on the Thue equation is the following: let F ∈ Z[X, Y ] be an
irreducible binary form of degree ≥ 3; let (x, y) ∈ Z

2 and let m = F(x, y). Then

max{|x |, |y|} ≤ mκ ,

where κ is a positive effective absolute constant depending only on F ; explicit formu-
lae are available (see for instance [10]). At the early stages of Baker’s method, such
constants were huge; drastic improvements have been achieved; nowadays these esti-
mates are good enough for solving explicitly Thue equations with coefficients which
are not too large. Algorithms using this approach are implemented in computation
packages.

3 Families of Thue Equations

3.1 Historical Survey

Given a family Ft (X, Y ), t ∈ I of binary forms of degree ≥ 3, the first goal is to
prove, under suitable assumptions, that for all m > 0 there are only finitely many
(t, x, y) ∈ I × Z × Z satisfying Ft (x, y) = m. Sometimes some subsets of (t, x, y),
corresponding to “trivial solutions”, are excluded. The second goal is to give an upper
bound for the exceptional solutions.

A survey on these question is [15]. Further results can be found in [10]. See also
[1] for another approach (the family x3 − (t3 − 1)y3 = 1 is quoted).

3.2 Idea of the Proof

Let f ∈ Z[T ] be an irreducible polynomial of degree d ≥ 3 and let

F(X, Y ) = Y d f (X/Y ) ∈ Z[X, Y ].

Denote by α a root of f , by K the field Q(α), and by υ a unit in K of infinite order.
For a ∈ Z we denote by fa the irreducible polynomial of αυa . We assume that fa
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has degree d. Let Fa be the binary form Y d fa(X/Y ) so that f0 = f and F0 = F .
Given m ∈ Z, m �= 0, we consider the set of triples (x, y, a) in Z3 such that

Fa(x, y) = m.

Let σ1, . . . , σd be the embeddings of K in C. We define

αi = σi (α), υi = σi (υ) (i = 1, . . . , d),

so that

fa(T ) = a0

d∏
i=1

(T − αiυ
a
i ),

Fa(X, Y ) = Y d fa(X/Y ) = a0

d∏
i=1

(
X − αiυ

a
i Y

)
.

Let m be a nonzero integer and (x, y, a) be a solution of Fa(x, y) = m with
Q(αυa) = K . For i = 1, . . . , d, set βi = x − αiυ

a
i y. We have

a0β1 · · ·βd = m.

Eliminating x and y among three equations βi = x − αiυ
a
i y for i = i1, i2, i3 yields

the unit equation

βi1αi2υ
a
i2 − βi1αi3υ

a
i3 + βi2αi3υ

a
i3 − βi2αi1υ

a
i1 + βi3αi1υ

a
i1 − βi3αi2υ

a
i2 = 0.

A first approach is to use Schmidt’s Subspace Theorem and its consequence on the
generalized S-unit equations: given a finite set of places S of a number field K and an
integer n, the set of nondegenerate solutions (u1, . . . , un) in S-units of the equation

u1 + · · · + un = 1

is finite. Nondegenerate means that no nontrivial subsum of u1 + · · · + un vanishes.
A technical difficulty is that we need to deal with degenerate solutions. This approach
yields strong general but ineffective results [19].

Another approach, which is effective, is to use Baker’s method. This is efficient
as soon as two of the six terms on the left-hand side have a size which is much larger
than the sum of all other four terms (besides, these two terms should not yield a zero
subsum). So far, this has been achieved only in special cases [21–26].
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3.3 Joint Papers with Claude Levesque

Wegive here a summary of the results in a sequence of joint papers with C. Levesque,
which was initiated during our visit to IMPA in Rio de Janeiro in 2010. The initial
goal, which was to solve the family of equations obtained from Thomas equations
(see [15]) by including powers of units, has been achieved in [24].

In [18], we work out equivalence statements between assertions dealing with
several Diophantine questions: Thue–Mahler equations, S-unit equation, integral
points on P

1(K ) minus three points.
Our first results [8, 19, 20]were based on Schmidt’s Subspace Theorem and there-

fore were not effective—but they were very general. We obtained families of Thue–
Mahler equations having only finitely many solutions and we gave upper bounds for
the number of solutions; but we were not able to give upper bounds for the solutions
themselves, hence we could not solve the equations.

Our first main new results were proved in [19]. Some consequences on Diophan-
tine approximation were given in [20].

Here is a special case of Corollary 3.6 of [19] which deals with Thue–Mahler
equations.

Theorem 3 Let K be a number field and Γ a finitely generated subgroup of K ×. For
γ ∈ Γ , denote by fγ ∈ Z[X ] the irreducible polynomial of γ and by Fγ ∈ Z[X, Y ]
its homogeneous version. Then the set of γ ∈ Γ satisfying [Q(γ ) : Q] ≥ 3 for which
there exists (x, y) ∈ Z

2 with Fγ (x, y) ∈ Γ and xy �= 0 is finite.

Proof Since K has only finitely many subfields, it suffices to prove that the set of
γ ∈ Γ satisfying Q(γ ) = K for which there exists (x, y) ∈ Z

2 with Fγ (x, y) ∈ Γ

and xy �= 0 is finite.
Assume γ ∈ Γ satisfiesQ(γ ) = K and assume that there exists (x, y) ∈ Z

2 with
Fγ (x, y) ∈ Γ and xy �= 0. Let α ∈ K with K = Q(α). Let S be a finite set of places
of K such that α ∈ O×

S et Γ ⊂ O×
S . Corollary 3.6 of [19] with t = 0, ε = γ /α yields

the result. �

By taking for Γ the group of units Z×
K in K , we deduce the following result.

Corollary 2 Let K be a number field. The set of units ε ∈ Z
×
K of degree ≥ 3 for

which there exists (x, y) ∈ Z
2 with Fε(x, y) = ±1 and xy �= 0 is finite.

Another result from [19] is the following. Let S = {p1, . . . , ps} be a finite set of
prime numbers, f ∈ Z[X ] an irreducible polynomial of degree d ≥ 3, α a root of f ,
K the number field Q(α), σ1, . . . , σd the embeddings of K into C. For each S-unit
ε ∈ O×

S , define Fε(X, Y ) ∈ Z[X, Y ] by

Fε(X, Y ) = a0
(
X − σ1(αε)Y

)(
X − σ2(αε)Y

)
. . .

(
X − σd(αε)Y

)
.

Let m ∈ Z \ {0}. Then the set of (x, y, ε, z1, . . . , zs) in Z
2 × O×

S × N
s satisfying
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Fε(x, y) = mpz1
1 . . . pzs

s

with xy �= 0, gcd(xy, p1 . . . ps) = 1, and [Q(αε) : Q] ≥ 3, is finite.
Theorem 3 implies finiteness results for families of Thue–Mahler equations. It is

not effective: upper bounds for the number of solutions could be deduced, but not
upper bounds for the heights of the solutions.

In [8], which is a joint paper involving also Yann Bugeaud, we obtained an upper
bound for the number of solutions of simultaneous Brahmagupta–Fermat–Pell–
Mahler equations: given rational integers a1, b1, c1, a2, b2, c2 and prime numbers
p1, . . . , ps , we considered the system of equations

{
a1X2 + b1X Z + c1Z2 = ±pm1

1 . . . pms
s ,

a2Y 2 + b2Y Z + c2Z2 = ±pn1
1 . . . pns

s ,

where the unknowns x, y, z, m1, . . . , ms, n1, . . . , ns take their values in the set of
rational integers with m1, . . . , ms, n1, . . . , ns nonnegative.

Our more recent papers provide effective results for families of Thue equations
by means of Baker’s method. One main goal is to prove the following conjecture.

Conjecture 1 Letα be an algebraic number of degree d ≥ 3overQ. We denote by K ,
the algebraic number fieldQ(α), by f ∈ Z[X ] the irreducible polynomial of α overZ,
byZ×

K the group of units of K , and by r the rank of the abelian groupZ×
K . For any unit

ε ∈ Z
×
K such that the degree δ = [Q(αε) : Q] is ≥ 3, we denote by fε(X) ∈ Z[X ] the

irreducible polynomial of αε overZ (uniquely defined upon requiring that the leading
coefficient be > 0) and by Fε the irreducible binary form defined by Fε(X, Y ) =
Y δ fε(X/Y ) ∈ Z[X, Y ]. Then there exists an effectively computable constant κ > 0,
depending only upon α, such that, for any m ≥ 2, each solution (x, y, ε) ∈ Z

2 × Z
×
K

of the inequation |Fε(x, y)| ≤ m with xy �= 0 and [Q(αε) : Q] ≥ 3 satisfies

max{|x |, |y|, eh(αε)} ≤ mκ .

In [21], we prove Conjecture 1 when the field K is a non-totally real cubic field.
In [25], we prove Conjecture 1 in the more general case where the field K has at most
one real embedding. In [22], we prove Conjecture 1 when one requests the unknown
ε to belong to a subset of the group of units of K ; we show that this subset contains
a positive proportion of all units as soon as the degree of K is at least 4.

The papers [21, 23, 24, 26] deal with the special case where one restricts to a
rank one subgroup of the group of units, namely when ε = υa with a ∈ Z.

The main result of [21], which deals only with non-totally real cubic equations,
is a special case of the main result of [26]; the “constants” in [21] depend on α and
υ while in [26] they depend only on the degree d. The main result of [22] deals with
Thue equations twisted by a set of units which is not supposed to be a group of rank
one, but it involves an assumption (namely that at least two of the conjugates of υ

have a modulus as large as a positive power of υ ) which we do not need in [26]. Our
Theorem in [26] also improves the main result of [23]: we remove the assumption
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that the unit is totally real (besides, the result of [23] is not explicit in terms of the
heights and regulator). We also notice that part (iii) of Theorem 1.1 of [24] follows
from our Theorem in [26]. The main result of [25] does not assume that the twists
are done by a group of units of rank one, but it needs a strong assumption which does
not occur in [26], namely that the field K has at most one real embedding.

A very recent joint work with E. Fouvry and C. Levesque, already quoted in Sect.
1.2, deals with the family of cyclotomic binary forms [12]. One motivation came
from the fact that in [26], we needed an assumption that some number was not a root
of unity. It was a natural task to study the special case of roots of unity, which gives
rise to the sequence of cyclotomic binary forms.

4 A Guide to Further References

One of the main references is the classical paper of C. L. Siegel in 1929, which
has been recently translated into English. The reference [38] includes the English
translation On some applications of Diophantine approximations by Clemens Fuchs,
of the original text by C. L. Siegel in German Über einige Anwendungen diophan-
tischer Approximationen, which is also reproduced in [38], together with comments
by Clemens Fuchs and Umberto Zannier Integral points on curves: Siegel’s theorem
after Siegel’s proof.

Another reference is Zannier [37] Chap.2 (Thue’s equations and rational approx-
imations), where full proofs are given with lots of supplements.

There are many references on Diophantine geometry and Schmidt Subspace The-
orem, including the following ones:
• Lang [17], Chap. 7 (The Thue–Siegel–Roth Theorem).
• Serre [31], Chap. 7 (Siegel’s method), Chap. 8 (Baker’s method).
• Schmidt [30], Chap. III (The Thue equation); also Chap. V (Diophantine equations
in More Than Two Variables).
• Zannier [36], Chap. 1 (Diophantine Approximation and Diophantine equations)
Sect. 1.2 (From Thue to Roth); also Chap. II (Schmidt’s Subspace Theorem and
S-unit equations) and Chap. III (Integral points on curves and other varieties).
• Bugeaud [6], Chap. 2 (Approximation to algebraic numbers), Sect. 2.1 (Rational
approximation), Sect. 2.2 (Effective rational approximation).
• Hu and Yang [16], Chap. 6 (Roth Theorem); also Chap.7 (Subspace Theorem) and
Chap.8 (Vojta’s conjectures)
• Corvaja [9], Chap. 3 (The theorems of Thue and Siegel); also includes results on
Hilbert Irreducibility Theorem and integral points on surfaces.
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A Lower Bound for the Class Number
of Certain Real Quadratic Fields

Fuminori Kawamoto and Yasuhiro Kishi

1 Introduction

For a sequence A = 〈a1, a2, . . . , am〉 of m(≥2) positive integers, we define qn and
rn(0 ≤ n ≤ m + 1) by

{
q0 = 0, q1 = 1, qn = an−1qn−1 + qn−2 (2 ≤ n ≤ m + 1),

r0 = 1, r1 = 0, rn = an−1rn−1 + rn−2 (2 ≤ n ≤ m + 1),

inductively. If either rm+1 = 2qm or rm+1 = 2qm − qm+1 holds, we say that A is
of pre-ELE type with length m. Specially A is said to be of pre-ELE1 type (resp.
pre-ELE2 type) with length m if rm+1 = 2qm (resp. rm+1 = 2qm − qm+1) holds. Put

εA :=
{
0 if A : pre-ELE1 type,

1 if A : pre-ELE2 type.

Let b be a positive integer such that

b ≥ 2, 2b > a1, . . . , am and b ≡ (−1)mqmrm (mod qm+1) (1.1)

(resp. b ≥ 4, 2b + 2 > a1, . . . , am and b ≡ (−1)mqm(qm + rm) (mod qm+1)),

(1.2)
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if A is of pre-ELE1 type (resp. pre-ELE2 type) with length m. Then the sequence
A, b of m + 1 positive integers is said to be of ELE1 type (resp. ELE2 type) (cf. [1,
Proposition 4.1]). Moreover, from [1, Theorem 2], we have the following.

Proposition 1.1 Let the notation be as above.
(1) Define d by

d := (b + εA)2 + 2(brm+1 + rm) + εArm+1

qm+1
.

Then d is a positive integer with [√d] = b + εA and

d ≡
{
2 (mod 4) if b is even,

3 (mod 4) if b is odd.

Furthermore, the simple continued fraction expansion of
√
d is

√
d = [b + εA, a1, . . . , am, b, am, . . . , a1, 2b + 2εA]

with minimal period 2m + 2.
(2) Let d be as in (1) and md the Yokoi invariant of d (cf. [1, Remark 1.4 (2)]).

Then we have md = 2q2
m+1 if m is odd, and md = 2q2

m+1 − 1 if m is even.

Remark 1.1 (1) Let d be a non-square positive integer. If the simple contin-
ued fraction expansion of

√
d has even period, then it is of the form

√
d =

[a0, a1, . . . , am, am+1, am, . . . , a1, 2a0]. Then we say that the sequence a1, a2, . . . ,
am, am+1 is the primary symmetric part of the simple continued fraction expansion of√
d . Proposition 1.1 gives a way of constructing every positive integer d of minimal

type such that the primary symmetric part of the simple continued fraction expansion
of

√
d with even period (≥6) is of ELE type. (As for the definition of “minimal type”,

see [3, Definition 3.1].)
(2) For any prime pwith p ≡ 3 (mod 4), the primary symmetric part of the simple

continued fraction expansion of
√
p is of ELE type if its minimal period is greater

than or equal to 6 (cf. [1, Corollary 1, Theorem 1]).

Now let bA denote the smallest positive integer b satisfying the three conditions
(1.1) (resp. (1.2)), if A is of pre-ELE1 type (resp. pre-ELE2 type)with lengthm, and
put

b(t) := bA + (t − 1)qm+1

for each positive integer t ≥ 1. Then the sequence A, b(t) satisfies the condition
(1.1) (resp. (1.2)) again, and so A, b(t) is of ELE1 type (resp. ELE2 type). Then we
can define a positive integer d(t) as in Proposition 1.1 such that the simple continued
fraction expansion of

√
d(t) is
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√
d(t) = [b(t) + εA, a1, . . . , am, b(t), am, . . . , a1, 2b(t) + 2εA]

with minimal period 2m + 2. By a straightforward calculation, we have

d(t) = q2
m+1(t − 1)2 + 2(qm+1b

A + 2qm)(t − 1) + d(1),

where

d(1) = (bA + εA)2 + 2(bArm+1 + rm) + εArm+1

qm+1
.

In particular, the sequence {d(t)}t≥1 is strictly monotonously increasing ([2, Proposi-
tion 2.1 (1)]). Moreover, the set {d(t) | t ∈ Z, t ≥ 1} contains infinitely many square-
free elements ([2, Proposition 2.1 (2)]).

In this paper, we consider the class number of Q(
√
d(t)) for the case where d(t)

is square free. Throughout this paper, for a square-free positive integer d > 1, hd
and εd denote the class number and the fundamental unit (>1) of the quadratic field
Q(

√
d), respectively.

For brevity, we put

J = J A := bA + εA = [√d(1)] > 0, C := 0.3275

32
.

The following is the main theorem of this paper.

Theorem 1 Under the above setting, let m ≥ 4. Assume that J > e8 (=
2980.9579 · · · ) and

C J 7/8 − log(J + 1)

log(4J 2/9 + 1)
+ 1 ≥ m. (1.3)

Then for d ∈ {d(t) | t ∈ Z, t ≥ 1, d(t) : square-free}, we have hd > 1with one more
possible exception.

This paper is organized as follows. In Sect. 2, we give a lower bound for the
class number of Q(

√
d(t)) by using Tatuzawa’s theorem and the Yokoi invariant. In

Sect. 3, we prove Theorem 1. In the last section, Sect. 4, we give a family of real
quadratic fields whose class numbers are not equal to one, by applying Theorem 1
to a sequence A = 〈2, . . . , 2, 2, 1〉 of pre-ELE2 type with length m(≥4).

2 A Lower Bound for the Class Number

Tatuzawa’s theorem (Tatuzawa [6, Theorem 2]) reads that for any s ≥ 11.2, square-
free d ≥ es and with one possible exception of d, it holds

hd log εd >
0.3275 · d(s−2)/2s

s
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(see, for example, Yokoi [7, p. 187]).
From now on, we consider the case where

d(t) = q2
m+1(t − 1)2 + 2(qm+1b

A + 2qm)(t − 1) + d(1)

is square free. Substituting s = 16 in the above inequality, we have

hd log εd >
0.3275 · d7/16

16
(2.1)

for any d ∈ {d(t) | t ∈ Z, t ≥ 1, d(t) : square-free, d(t) ≥ e16} with one more pos-
sible exception. Now let us give an upper bound for log εd by using the Yokoi invari-
ant.

Lemma 2.1 Let the notation be as above. For d ∈ {d(t) | t ∈ Z, t ≥ 1, d(t) :
square-free}, we have

log εd < log

(
2

m∏
k=1

a2k ·
m∏

k=2

(
1 + 1

ak−1ak

)2

+ 1

)
+ 2 log(b + εA + 1), (2.2)

where b := b(t) for simplicity.

Proof Since the minimal period of the simple continued fraction expansion of
√
d

is greater than or equal to 6, we have d ≥ 19 > 13. Then it holds that

mdd < εd < (md + 1)d

(see [7, Proof of Theorem 1.1]). Hence we have

log εd < log(2q2
m+1 + 1) + log d,

because 2q2
m+1 ≥ md > 0 holds by Proposition 1.1 (2). Here it holds that

b + εA <
√
d < b + εA + 1. (2.3)

This implies that
log d < 2 log(b + εA + 1),

and hence, we get

log εd < log(2q2
m+1 + 1) + 2 log(b + εA + 1). (2.4)
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On the other hand, it holds in general that

q2
m+1 ≤

m∏
k=1

a2k ·
m∏

k=2

(
1 + 1

ak−1ak

)2

(see Lang [4, p. 34]). Thus,

log(2q2
m+1 + 1) ≤ log

(
2

m∏
k=1

a2k ·
m∏

k=2

(
1 + 1

ak−1ak

)2

+ 1

)
.

From this, together with (2.4), we obtain (2.2). �

Put

I = I A := qm+1 > 0, J = J A := bA + εA > 0, M = MA := e8 − J

I

and

L = L A := log

(
2

m∏
k=1

a2k ·
m∏

k=2

(
1 + 1

ak−1ak

)2

+ 1

)
.

For x(≥ 0) ∈ R, define

f (x) := (I x + J )7/8

2 log(I x + J + 1) + L
.

Then the following holds.

Theorem 2 Under the above setting, for d ∈ {d(t) | t ∈ Z, t ≥ max{1, [M] + 2},
d(t) : square-free}, we have

hd >

⎧⎪⎨
⎪⎩
0.3275

16
f ([M] + 1) if J < e8,

0.3275

16
f (0) if J > e8

(2.5)

with one more possible exception.

For the proof of Theorem 2, we prepare the following lemma.

Lemma 2.2 Put N = N A := min{ f (x) | x ∈ Z, x ≥ max{0, [M] + 1}}. Then we
have

N =
{
f ([M] + 1) if M > 0,

f (0) if M < 0.
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Proof For x(> 0) ∈ R, define

g(x) := 7 log x + 8

x
.

Since

g′(x) = 7

x
− 8

x2
= 7x − 8

x2
,

g(x) is strictly monotonously increasing in (8/7,∞). Then for any x(≥ 0) ∈ R, we
have

I x + J + 1 ≥ J + 1 = bA + εA + 1 ≥ 3 >
8

7
,

and so,

g(I x + J + 1) ≥ g(3) = 7 log 3 + 8

3
= 10.3569 · · · > 8 > 8 − 7L

2
.

Then we have

f ′(x) = (7/8)(I x + J )−1/8 I {2 log(I x + J + 1) + L} − (I x + J )7/8 2I
I x+J+1

{2 log(I x + J + 1) + L}2

= I
{
14 log(I x + J + 1) + 7L − 16 I x+J

I x+J+1

}
8(I x + J )1/8{2 log(I x + J + 1) + L}2

= I
{
14 log(I x + J + 1) + 16

I x+J+1 + 7L − 16
}

8(I x + J )1/8{2 log(I x + J + 1) + L}2
= I (2g(I x + J + 1) + 7L − 16)

8(I x + J )1/8{2 log(I x + J + 1) + L}2
> 0,

and hence f (x) is strictly monotonously increasing in [0,∞).
Therefore, if M > 0, then [M] + 1 ≥ 1, and so,

N = f ([M] + 1).

If M < 0, then [M] + 1 ≤ 0, and so,

N = f (0).

The proof is completed. �

Proof of Theorem 2 Let t be a positive integer with t ≥ max{1, [M] + 2} and assume
that d := d(t) is square free. Put x := t − 1. Then we have x ≥ max{0, [M] + 1}
and x ∈ Z. It follows from the definitions of I and J that



A Lower Bound for the Class Number of Certain Real Quadratic Fields 49

b + εA = b(t) + εA = qm+1(t − 1) + bA + εA = I x + J.

From this, together with (2.3) and x ≥ [M] + 1 > M = (e8 − J )/I , we have

d > (b + εA)2 = (I x + J )2 > e16. (2.6)

On the other hand, we see from the definition of L and Lemma 2.1 that

log εd < 2 log(I x + J + 1) + L . (2.7)

For d ∈ {d(t) | t ∈ Z, t ≥ max{1, [M] + 2}, d(t) : square-free}, therefore, it fol-
lows from (2.1), (2.6), and (2.7) that

hd >
0.3275

16
· d

7/16

log εd
>

0.3275

16
· (I x + J )7/8

2 log(I x + J + 1) + L
= 0.3275

16
f (x) ≥ 0.3275

16
N

with one more possible exception. Hence Lemma 2.2 reads Theorem 2. �
Set

a := max{a1, a2, . . . , am}.

Let us give an upper bound for L .

Lemma 2.3 Under the above setting, the following holds:

L < 2(m − 1) log(a2 + 1) −
m−1∑
k=2

2 log ak + 2 log 2.

Proof For simplify, set

B :=
m∏

k=1

ak ·
m∏

k=2

(
1 + 1

ak−1ak

)
.

Then L = log(2B2 + 1). For x(>0) ∈ R, define ϕ(x) := log(x + 1) − log x . Since

ϕ′(x) = 1

x + 1
− 1

x
= − 1

x(x + 1)
< 0,

ϕ(x) is strictly monotonously decreasing in (0,∞). Therefore, when x > 1, we have

ϕ(x) < ϕ(1) = log 2.

Thus
log(x + 1) < log x + log 2 (x > 1). (2.8)
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Since ak−1ak ≤ a2, we obtain

log B =
m∑

k=1

log ak +
m∑

k=2

log

(
1 + 1

ak−1ak

)

=
m∑

k=1

log ak +
m∑

k=2

log

(
ak−1ak + 1

ak−1ak

)

≤
m∑

k=1

log ak −
m∑

k=2

log ak−1 −
m∑

k=2

log ak +
m∑

k=2

log(a2 + 1)

= log am −
m∑

k=2

log ak + (m − 1) log(a2 + 1)

= (m − 1) log(a2 + 1) −
m−1∑
k=2

log ak .

Then by (2.8), we get

L = log(2B2 + 1) < log(2B2) + log 2 = 2 log B + 2 log 2

≤ 2(m − 1) log(a2 + 1) −
m−1∑
k=2

2 log ak + 2 log 2,

as desired. �

3 Proof of Theorem 1

In this section, we will prove Theorem 1.

Proposition 3.1 Let A = 〈a1, . . . , am〉 be of pre-ELE type with length m(≥4) such
that a2 = a3 = · · · = am−1 = 1. Then A = 〈3, 1, 1, 1〉 or 〈4, 1, 1, 1, 1〉.
Proof The proof is omitted. It needs the properties of “growth transformations”
introduced in [2]. �

Lemma 3.2 Let A = 〈a1, . . . , am〉 be of pre-ELE type with length m(≥4). If A �=
〈3, 1, 1, 1〉, 〈4, 1, 1, 1, 1〉, then

m−1∑
k=2

log ak ≥ log 2. (3.1)

If A = 〈3, 1, 1, 1〉 (resp. A = 〈4, 1, 1, 1, 1〉), then
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J = 9 < e8 (resp. J = 16 < e8). (3.2)

Proof By Proposition 3.1, if A �= 〈3, 1, 1, 1〉, 〈4, 1, 1, 1, 1〉, then (3.1) holds.
Let A = 〈3, 1, 1, 1〉. Then the following holds:

n 0 1 2 3 4 5
qn 0 1 3 4 7 11
rn 1 0 1 1 2 3

Hence we have εA = 1 and bA = 8, and so (3.2) holds.
Let A = 〈4, 1, 1, 1, 1〉. Then the following holds:

n 0 1 2 3 4 5 6
qn 0 1 4 5 9 14 23
rn 1 0 1 1 2 3 5

Hence we have εA = 1 and bA = 15, and so (3.2) also holds. �

Proof of Theorem 1 Assume that (1.3) holds. Then we have

0.3275

16
J 7/8 − 2 log(J + 1) ≥ 2(m − 1) log(4J 2/9 + 1). (3.3)

Now we put
a := max{a1, a2, . . . , am}.

Then it holds in general that a < 2[√d(1)]/3 (see, for example, Perron [5, Satz
3.14]). Since [√d(1)] = bA + εA, we have

(0 <) a <
2

3
[√d(1)] = 2

3
(bA + εA) = 2

3
J.

Since log(x2 + 1) is strictly monotonously increasing in [0,∞), we see from Lem-
mas 3.2 and 2.3 that

2(m − 1) log(4J 2/9 + 1) = 2(m − 1) log((2J/3)2 + 1)

> 2(m − 1) log(a2 + 1)

≥ 2(m − 1) log(a2 + 1) −
m−1∑
k=2

2 log ak + 2 log 2

> L . (3.4)

By (3.3) and (3.4), therefore, we get
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0.3275

16
J 7/8 − 2 log(J + 1) > L .

From this inequality and (2.5), we have

hd >
0.3275

16
f (0) = 0.3275

16
· J 7/8

2 log(J + 1) + L
> 1

with one more possible exception, under the assumption J > e8. �

4 A Sequence 〈2, . . . , 2, 2, 1〉 of Pre-ELE2 Type

In this section, we consider a sequence

A = 〈2, . . . , 2, 2, 1〉

of pre-ELE2 type with length m(≥3). Then we have εA = 1, I = qm+1, bA = qm+1,
J = bA + εA = qm+1 + 1, a = 2 and

d(t) = q2
m+1t

2 + 4qmt + 2

for positive integer t ≥ 1 (cf. [2, Lemma 2.1 (2)]). Moreover, we have

qn = (1 + √
2)n − (1 − √

2)n

2
√
2

(1 ≤ n ≤ m),

and so

qm+1 = qm + qm−1

= (1 + √
2)m − (1 − √

2)m

2
√
2

+ (1 + √
2)m−1 − (1 − √

2)m−1

2
√
2

= (1 + √
2)m

2
√
2

(
1 + 1

1 + √
2

)
− (1 − √

2)m

2
√
2

(
1 + 1

1 − √
2

)

= (1 + √
2)m

2
+ (1 − √

2)m

2
. (4.1)

For m(≥ 3) ∈ Z, define

θ(m) := 2(m − 1) log 5 − 2(m − 3) log 2.
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Then by Lemma 2.3, we have L < θ(m). By putting

Bm := 0.3275

16
· J 7/8

2 log(J + 1) + θ(m)
,

therefore, we obtain

0.3275

16
f (0) = 0.3275

16
· J 7/8

2 log(J + 1) + L
> Bm . (4.2)

Example 4.1 Let m = 11. Then we have

J = J A = 8120 > e8,

θ(11) = 20 log 5 − 16 log 2,

and hence,

B11 = 0.3275

16
· 81207/8

2 log(8121) + 20 log 5 − 16 log 2
= 1.3795 · · · .

Thus by Theorem 2 and (4.2), for d ∈ {d(t) | t ∈ Z, t ≥ 1, d(t) : square-free}, we
have

hd >
0.3275

16
f (0) > B11 = 1.3795 · · · > 1

with one more possible exception.
By a similar calculation, we obtain the following:

m 10 12 13 14
J A 3364 19602 47322 114244
Bm 0.7026 · · · 2.7317 · · · 5.4482 · · · 10.9319 · · ·

Thus, as for 11 ≤ m ≤ 14, we get a nontrivial lower bound for hd(t).

Now we will investigate when both (1.3) and J > e8 hold. Note that

(1.3) ⇐⇒ C J 7/8 − log(J + 1) − (m − 1) log(4J 2/9 + 1) > 0.

Since ∣∣∣∣∣ (1 − √
2)m

2

∣∣∣∣∣ < 1,

it follows from (4.1) that

(1 + √
2)m

2
− 1 < qm+1 <

(1 + √
2)m

2
+ 1.
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Then by putting

K := (1 + √
2)m

2
+ 1,

we have
K − 1 − 1 < qm+1 < K − 1 + 1,

that is,
K − 1 < J < K + 1.

Hence we have

C J7/8 − log(J + 1) − (m − 1) log(4J2/9 + 1)

> C(K − 1)7/8 − log(K + 2) − (m − 1) log(4(K + 1)2/9 + 1)

= C(K − 1)7/8 − log(K + 2) − m log(4(K + 1)2/9 + 1) + log(4(K + 1)2/9 + 1)

= C(K − 1)7/8 − m log

(
4

9
K 2 + 8

9
K + 13

9

)
+ log

(
4
9K

2 + 8
9K + 13

9
K + 2

)

= C(K − 1)7/8 − m log

(
4

9
K 2 + 8

9
K + 13

9

)
+ log

(
4

9
(K − 1) + 4K + 21

9(K + 2)

)
.

Here, if m ≥ 5, then K ≥ 35, and so

1

2
(K − 1)2 −

(
4

9
K 2 + 8

9
K + 13

9

)
= 1

18
{(K − 17)2 − 306} > 0.

Then we get

C J 7/8 − log(J + 1) − (m − 1) log(4J 2/9 + 1)

> C(K − 1)7/8 − m log

(
1

2
(K − 1)2

)
+ log

(
4

9
(K − 1)

)

= C

(
(1 + √

2)m

2

)7/8

− m log

(
(1 + √

2)2m

8

)
+ log

(
2(1 + √

2)m

9

)

=
(
1

2

)7/8

C(1 + √
2)7m/8 − 2m2 log(1 + √

2)

+ m log 8 + m log(1 + √
2) + log

(
2

9

)
.
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For x(≥ 0) ∈ R, define

ψ(x) :=
(
1

2

)7/8

C(1 + √
2)7x/8 − 2x2 log(1 + √

2)

+ x log 8 + x log(1 + √
2) + log

(
2

9

)
.

Then we have

ψ ′(x) = 7

8

(
1

2

)7/8

C(1 + √
2)7x/8 log(1 + √

2) − 4x log(1 + √
2) + log 8 + log(1 + √

2),

ψ ′′(x) =
(
7

8

)2 (
1

2

)7/8

C(1 + √
2)7x/8 log(1 + √

2)2 − 4 log(1 + √
2)

= log(1 + √
2)

{(
7

8

)2 (
1

2

)7/8

C(1 + √
2)7x/8 log(1 + √

2) − 4

}
.

Since

ψ ′(11) = −15.0205 · · · < 0,

ψ ′(12) = 5.6300 · · · > 0

andψ ′′(x) > 0 if x ≥ 10,ψ(x) is strictly monotonously increasing in [12,∞). Then
by

ψ(14) = −32.8654 · · · < 0,

ψ(15) = 235.9345 · · · > 0,

we have ψ(x) > 0 if x ≥ 15. Namely, for any integer m ≥ 15, we have

C J 7/8 − log(J + 1) − (m − 1) log(4J 2/9 + 1) ≥ 0.

On the other hand, it follows from J = qm+1 + 1 and e8 = 2980.9579 · · · that J > e8

holds when m ≥ 10. Then combine with Example 4.1 we get the following.

Proposition 4.1 Let m ≥ 11 and let A = 〈2, . . . , 2, 2, 1〉 with length m. Then for
d ∈ {d(t) | t ∈ Z, t ≥ 1, d(t) : square-free}, we have hd > 1with one more possible
exception.
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1 Introduction

Let K be a number field and OK be its ring of integers. We say that K (or OK )
is Euclidean if there exists a (Euclidean) function φ : OK → N ∪ {0} satisfying the
conditions (i)φ(α) = 0 if andonly ifα = 0, and (ii) for allα,β �= 0 ∈ OK there exists
a γ ∈ OK such that φ(α − βγ) < φ(β). For example the ring of rational integers Z
is Euclidean with respect to the absolute value function φ(a) = |a|. As an immediate
consequence, we obtain the fundamental theorem of arithmetic. Also, if an integral
domain admits a Euclidean function, i.e., if it a Euclidean domain, then it is a principal
ideal domain. Therefore, a natural question arises: Given a number field K (or an
integral domain D) what is the criteria to decide whether it is Euclidean or not? Is
there a classification of all Euclidean number fields?

In this chapter we shall address such questions and give an update of recent results
in this direction.
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To begin with, let us first define the norm-Euclidean function for quadratic fields.
Let m be a square free integer. Let K = Q(

√
m) . The integral domain OK is called

norm-Euclidean, if there is a function φ = φm : Q(
√
m) → Q defined by

φm(r + s
√
m) = |r2 − ms2| (1.1)

for all r , s ∈ Q.
An elegant criteria to check the Euclidean property was given by Lenstra in [1]

which we state below.

Proposition 1.1 Let K be a quadratic field andOK be its ring of integers. The norm
map N : OK → N ∪ {0} is Euclidean if and only if for every α ∈ OK there exists
a,β ∈ K such that N (α − β) < 1.

The proposition 1.1 is powerful to classify all norm-Euclidean imaginary fields,
since the norm on imaginary quadratic fields assumes only positive integer values.
Consequently, all norm Euclidean quadratics fields were classified, which are as
follows (see also [2]).

If m < 0, then Z + Z
√
m is norm-Euclidean if and only if m = −1,−2 and if

m ≡ 1 (mod 4), then the integral domain Z + Z(1 + √
m)/2 is norm-Euclidean if

and only if m = −3,−7,−11.
The story for real case is a bit tricky. This is mainly due to the fact that norm

assumes both negative and positive integer values. But the following reinterpretation
of the definition turns out to be useful.

Definition 1.1 For α ∈ K , let m(α) = inf{N (α − β) : β ∈ OK )}, it is called the
Euclideanminimum of K atα. The Euclideanminimum of K is defined asM(K ) :=
sup{m(α) : α ∈ K }.
It follows from theProposition 1.1 thatM(K ) < 1 if and only if K is norm-Euclidean.
A bound for M(K ) is given by the following theorem of Cassels.

Theorem 1.1 (Cassels [3]) Let K = Q(
√
m) be a real quadratic field with discrim-

inant d, then √
m

16 + 6
√
6

≤ M(K ) ≤
√
m

4
(1.2)

Observe that if the discriminant m is sufficiently large then M(K ) > 1 and thus K
will not be norm-Euclidean. From this it follows that the number of norm-Euclidean
real quadratic fields is finite. On the other hand to determine the positive squre-
free integers m for which the integral domains Z + Z

√
m (m ≡ 2, 3 (mod 4)) and

Z + Z(1 + √
m)/2 (m ≡ 1 (mod 4)) are norm-Euclidean took considerable efforts

of numerous mathematicians, including, Dickson, Perron, Oppenheim, Erdös, Dav-
enport, Chatland. It must be pointed out that using only the criteria in the Proposition
1.1, one can show that certain real quadratic fields are not norm-Euclidean, for exam-
ple Q(

√
6). In this direction, the following Lemma 1.1 turns out to be useful in the

search of Euclidean real quadratic fields.
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Lemma 1.1 Let K be a quadratic field of discriminant D and hK be its class number.
Suppose D has r distinct prime factors, then 2r−1|hK if D < 0 and 2r−2|hK if D > 0.

The above lemma helps in restricting our attention to only certain quadratic fields.
In [4], Erdös and Ko proved that the quadratic fields of the form Q(

√
p) are not

norm-Euclidean for all sufficiently large primes p. Huo Loo-Keng [5] made it more
precise.

Theorem 1.2 (Huo [5]) The quadratic field Q(
√
p) is not norm-Euclidean if p >

e250.

By reducing this upper bound, the problem of classifying all norm-Euclidean real
quadratic fields was finally completed by Chatland and Davenport (see [6]). Their
result is as follows:

If m is a positive squarefree integer with m ≡ 2, 3 (mod 4), then Z + Z
√
m

is norm-Euclidean if and only if m = 2, 3, 6, 7, 11, 19 and if m ≡ 1 (mod 4),
then the integral domain Z + Z(1 + √

m)/2 is norm-Euclidean if and only if
m = 5, 13, 17, 21, 29, 33, 37, 41, 57, 73.

This gives a complete classification of all norm-Euclidean reat quadratic fields.
Now, one can ask the following question: Suppose K is known to be not norm

Euclidean. Could it be Euclidean with respect to some other function φ?
The answer to the above question is given in terms of existence of universal side

divisors, which we define below.

Definition 1.2 Let D be an integral domain, U(D) be the group of units in D. Set
D̃ = U(D) ∪ {0}. An element u ∈ D − D̃ is called a universal side divisor if for any
x ∈ D there exists some z ∈ D̃ such that u|x − z.

Using this notion, Motzkin showed that if D is an integral domain that is not a field
and if D has no side divisors then D is not Euclidean.

Using this criteria, one can show if m ≡ 2, 3 (mod 4) and m < −2, then Z +
Z

√
m is not Euclidean. Similarly, ifm ≡ 1 (mod 4) andm < −11, then Z + Z(1 +√

m)/2 is not Euclidean. Thus for K = Q(
√
m), m squarefree negative integer, the

integral domain OK is Euclidean if and only if m = −1,−2,−3,−7,−11.
However, the picture is not that rosywhenm > 0! In fact, very little is known in this

case. By means of explicit construction Clark [7] showed that Z + Z((1 + √
69)/2)

is Euclidean with respect to the function

φ

(
a + b

(
1 + √

69

2

))
=

{ |a2 + ab − 17b2|, if (a, b) �= (10, 3),
26, if (a, b) = (10, 3),

though it is known to be not norm-Euclidean. The first breakthrough came in 1949
through the work of Motzkin [8] who gave a beautiful criteria for a domain to be
Euclidean.
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Motzkin’s criteria Given a domain R, let A0 := {0} ∪ R×. Let

Ai = Ai−1 ∪ {a ∈ R|∀x ∈ R, ∃y ∈ Ai−1 : x − y ∈ (a)}

for i ≥ 1 and let
A := ∪∞

i=0Ai

If A = R, then R is Euclidean. In particular, the function φR defined by φR(α) = 0
if and only if α = 0, and φR(α) = i if α ∈ Ai − Ai−1 is an Euclidean function.

It is to be remarked that Motzkin’s construction is ubiquitous in all the subsequent
progress in this area of research. This idea enabled Weinberger [9] in 1973, in con-
junction with Generalized Riemann Hypothesis (GRH), to show that all algebraic
number fields with infinitely many units and whose ring of integers are PIDs are
in fact Euclidean! In 1977 Lenstra [1] extended this result to the ring of S integers
in a number field under GRH. We define the notion of S integers for the sake of
completion.

Definition 1.3 Let S be a finite set of places of K containing the infinite places S∞.
An element x of K is called an S-integer if ordp(x) ≥ 0 for all primes p of K not in
S. The ring of S integers will be denoted by OS .

In 1985 Gupta, Ram Murty, Kumar Murty managed to remove GRH from
Lenstra’s result. Their result reads as follows.

Theorem 1.3 (Gupta, Murty, Murty [10]) Let K be Galois over Q such that

(1) |S| ≥ max{5, 2[K : Q] − 3};
(2) K has a real embedding or ζg ∈ K.

If OS is a PID, then it is Euclidean. Here g := gcd{NK/Q(p) − 1 : p ∈ S − S∞}.
In 1995, Ram Murty and Clark [11] showed how to remove GRH for large class of
algebraic number fields by introducing the concept of admissible primes, which is
an indispensable ingredient in the determination of Euclidean algorithm for abelian
algebraic number fields. We now introduce the concept of admissible primes.

Definition 1.4 Let K be an algebraic number field with class number one. Suppose
that π1,π2, . . . ,πt are distinct, unramified primes with inertial degree one lying
above odd rational primes. Then the set {π1,π2, . . . ,πt } is called an admissible set of
primes if, for all β = πa1

1 πa2
2 . . .πat

t with ai ∈ N ∪ {0}, every element in the coprime
residue class (mod β) is represented by a unit inO×

K . i.e., the natural canonical map
O×

K → (OK /β)
× is surjective.

In the same paper, they also established that it is enough to take all a′
i s to be equal

to 2. Their theorem runs as follows.

Theorem 1.4 (Ram Murty and Clark [11]) Let K be a totally real Galois extension
with degree nK such that OK has class number one. Suppose that OK has a set S of
admissible primes with m = |nK − 4| + 1 elements, then OK is Euclidean.
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Remark This theorem is handy when the rank of the unit group is large. However,
when K is a real quadratic field or cyclic cubic field, the theorem demands the
existence of an admissible set with 3 elements. This is not possible for real quadratic
fields, as can be seen by the following arguments.

By Dirichlet unit theorem, the group of units, O×
K

∼= UK × Z
r , where UK is the

torsion group and r is the rank of K . Since the unit group O×
K is generated by r + 1

elements, the multiplicative group (OK /π
a1
1 πa2

2 . . .πat
t )

× is also generated by r + 1
elements.

On the other hand, by Chinese remainder theorem, we have

(OK /π
a1
1 πa2

2 . . .πat
t )

× ∼= ⊕t
i=1(OK /π

ai
i )

×. (1.3)

This implies t ≤ r + 1. This says that when K is real quadratic (unit rank 1), we
can have at the most 2 elements in the admissible set and when K is cyclic cubic
(unit rank 2), the admissible set may contain at the most 3 elements. Thus for real
quadratic case, the above theorem is not useful!

In order to deal with number fields with small degrees Ram Murty and Harper
[12], considered a variation of Motzkin’s construction which is as follows.

Variation of Motzkin’s construction: Let B0 be the monoid generated by the unit
group and an admissible set of primes. For n ≥ 1, define the sets Bn as follows:

Bn := {π − prime ∈ O×
K : B0 ∪ Bn−1 → (OK /π)

×is surjective}

and let B := ∪∞
n=0Bn . If all primes ofOK lies in B and K has class number one, then

K is Euclidean.
These modified criteria allowed them to prove the following important results.

Theorem 1.5 (Harper and Murty [12]) Suppose thatOK is a PID. Let B1(x) denote
the cardinality of the set of all elements in Bn whose norm is less than or equal to x.
If

B1(x) � x

log2x

then OK is Euclidean.

Theorem 1.6 (Harper and Murty [12]) If K/Q is a finite Galois extension with unit
rank > 3, then OK is Euclidean if and only if OK is a PID.

Theorem 1.7 (Harper and Murty [12]) Let K/Q be abelian of degree n with OK

having class number one, that contains a set of admissible primes with s elements.
Let r be the rank of the unit group. If r + s ≥ 3, then OK is Euclidean.

Remark For real quadratic fields, Theorem 1.7 says that it is enough to find an
admissible set with two elements. Indeed, Harper in 2004 [13] showed that Z[√14]
is Euclidean by exhibiting the admissible set {5 − √

14, 3 − 2
√
14}. This was a great

success since it was known before that Q(
√
14) is not norm Euclidean and it was
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the field with smallest discriminant whose Euclidean nature was evading detection!
He further proved in the same paper that all real quadratic fields with discriminant
≤ 500 and having class number one are Euclidean.

Without the strong assumption ofGRH, under some reasonably plausible (in terms
of heuristics) Hardy-Littlewood and Wieferich primes conjecture, the authors and
Ram Murty in [14] proved that if K is real quadratic, then it has an admissible set
with two elements. We would like to state the main results of [14].

Conjecture 1.2 (Hardy-Littlewood conjecture) Fix a natural number r and b
coprime to r . Hardy and Littlewood conjectured that the number of primes p ≤ x
with p ≡ b (mod r) such that 2p + 1 is also prime is

� x

log2 x
.

Conjecture 1.3 (Wieferich primes conjecture) Let ε be an element ofO×
K of infinite

order. The number of primes p ≤ x such that

εp−1 ≡ 1 (mod p2)

is o(x/log2x).

The main result is

Theorem 1.8 (RamMurty, Srinivas, Subramani [14])Assume theHardy-Littlewood
and the Wieferich primes conjectures. If K is a real quadratic field such thatOK has
class number one, then OK is Euclidean.

Remark The key result used in establishing the main Theorem 1.8 is the following
lemma.

Lemma 1.2 Let L be a number field, OL be its ring of integers and let ε ∈ OL be
a unit of infinite order. If q1 and q2 are distinct, unramified prime ideals with odd
prime norms q1 and q2 and if

(1) ε has order q1(q1 − 1)/2 modulo q21;
(2) q1 ≡ 3 (mod 4);
(3) gcd(q1(q1 − 1)/2, q2(q2 − 1)) = 1; and
(4) ε has the order q2(q2 − 1) modulo q22;

then O×
L maps onto (OL/q

2
1q

2
2)

×.

Remark The Conjectures 1.2 and 1.3 allows us to choose primes q1 and q2 satisfying
all the conditions of Lemma 1.2, thereby yielding an admissible set {q1, q2}. Now
invoking Theorem 1.7 established the result. For details see [14].
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2 Explicit Construction of Potentially Euclidean Real
Quadratic Fiel

As mentioned in the remark following Theorem 1.7, Harper [13] showed that all real
quadratic fields with discriminant ≤500 and having class number one are Euclidean.
This he did by producing an admissible set with two elements for each of the fields.
Motivated by this idea, the authors of this paper and RamMurty [14] constructed an
infinite family of real quadratic fields K such that the class number of K is one if
and only if OK is Euclidean. We briefly describe the construction below, for details
see [14].

Fix two primes p1 := 11 and p2 := 13. Let

d := (a + 1)2b2n2 + 2(a + 1)2n + 23 (2.1)

where a, b, n are integers such that

a ≡ 24 (mod p31 p
3
2), b ≡ 5 (mod p31 p

3
2), (2.2)

and
n ≡ 0 (mod p1 p2). (2.3)

We define

K := Q(
√
d) = Q

(√
(a + 1)2b2n2 + 2(a + 1)2n + 23

)
. (2.4)

With the above notations, the main results are as follows.

Theorem 2.1 Let K = Q(
√
d) be as defined above. Then there exists a set {p1, p2}

of two unramified prime ideals with odd prime norms p1 and p2 respectively such
that the canonical map O×

K → (OK /p
2
1p

2
2)

× is surjective.

As a consequence of Theorem 2.1, we deduce the following:

Theorem 2.2 There exists a family C := {Q(
√
d) : d is prime} of real quadratic

fields such that OK is Euclidean if and only if it has class number one.

Remark The primes p1 = 11 and p2 = 13 were chosen to illustrate how to produce
the admissible set. In fact, the main theorem holds true for any real quadratic field
K provided there exists two unramified rational primes p1 ≡ 3 (mod 4) and p2 ≡ 1
(mod 4) satisfying the following conditions:

(1) N (εp1(p1−1)) �≡ 0 (mod p1);
(2) N (εp2(p2−1) �≡ 0 (mod p2); and
(3) gcd(p1(p1 − 1)/2, p2(p2 − 1)) = 1;

for any fixed unit ε ∈ O×
K .
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3 The Cubic Case

Now we shall briefly mention the results known in the case of cyclic cubic number
fields. Let K be a cyclic cubic field with discriminant f 2, where f is the conductor
of K . The study of norm-Euclidean cubic fields was initiated by Heilbronn. In [15],
he proved that only finitely many such cyclic cubic fields are Euclidean. In 1969,
Smith [16] proved that the cyclic cubic fields with conductors 7, 9, …, 67 are norm-
Euclidean. Further, in the same paper he showed that the fields with conductors 73,
79, 97, 139, 151 and 163 < f < 104 are not norm-Euclidean. In [17], the authors
proved the following theorem.

Theorem 3.1 Let K be a cyclic cubic field with conductor f , satisfying 73 ≤ f ≤
11971 and let OK be its ring of integers. Then OK is Euclidean if and only if it has
class number one.

Remark K is cyclic cubic implies the Galois group of K over Q is cyclic of order
three, therefore K is totally real. This, in turn means that the rank of unit group is
2. Thus, by Theorem 1.7 we need to exhibit an admissible set of primes with one
element (i.e. s = 1). This is done explicitly for each conductor in the above range.
A sage code is also available. For details see [17].

If K be a complex cubic field, an inequality of the type 1.2 exists for Euclidean
minima, from which it follows that there are only finitely many complex cubic fields
which are norm-Euclidean. We end this note by stating an important conjecture by
Lemmermeyer [18].

Conjecture 3.1 Let K be a complex cubic field and d be its discriminant. Then K
is norm-Euclidean if and only −d = 23, 31, 44, 59, 76, 83, 87, 104, 107, 108, 116,
135, 139, 140, 152, 172, 175, 200, 204, 211, 212, 216, 231, 239, 243, 244, 247, 255,
268, 300, 324, 356, 379, 411, 419, 424,431, 440, 451, 460, 472, 484, 492, 499, 503,
515, 516, 519, 543, 628, 652, 687, 696, 728, 744, 771, 815, 876.

Acknowledgements The authors wish to thank the Organizers of ICCGNFRT–2017 for their kind
invitation, for making the stay a happy and productive one.
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1 Introduction

First, we consider the fundamental unit of a pure cubic field K = Q( 3
√
m) where m

is a square-free natural number not congruent to±1 modulo 9. Then it is well known
that the ring of integers of K isOK = Z[ 3

√
m]. Let hm denote the class number of K

and ξm = x + y 3
√
m + z 3

√
m2 be the fundamental unit of K . We relate congruence

properties of x, y and z to the class number of K . Consequently, one can obtain the
following result.

Theorem 1.1 If hm is not divisible by 3, then m must be either p or 3p for some
prime p.

Theorem 1.1 is in agreement with an old result of Gerth ([2]). By Theorem 1.1,
the class number of Q( 3

√
m) is divisible by 3 for any square-free composite number

m ≡ 2, 4, 5 or 7(mod 9).

Theorem 1.2 Suppose m = 3p where p �= 3 is a prime. Let the fundamental unit
of K be ξm = x + y 3

√
m + z 3

√
m2. If 3 does not divide hm then x2 ≡ 1 mod 27p and

y ≡ z ≡ 0 mod 3.

For Q( 3
√
p) too, we can similarly obtain Theorem 2.8 and more precisely,

Propositions 2.6 and 2.7. Our approach is to exploit the ramified primes in K/Q. We
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later adopt the same approach to deduce congruence relations for the fundamental
unit of a real quadratic field of odd class number (see Theorem 3.3). An immediate
consequence of our approach is the classically well-known result that a real quadratic
field with discriminant having more than or equal to three prime factors has even
class number (see Corollary 3.2).

2 Fundamental Unit of Q( 3
√
m) when 3 � hm

It is easily seen that the norm of ξm has to be positive, hence

NormK/Q(ξm) = x3 + my3 + m2z3 − 3mxyz = 1. (2.1)

We can establish certain divisibility relations between ξm and ξ 2
m as follows.

Lemma 2.1 Suppose K = Q( 3
√
m) is a pure cubic field where m is not a multiple

of 3. Let ξm = x + y 3
√
m + z 3

√
m2 ∈ Z[ 3

√
m] denote the fundamental unit of K and

let ξ 2
m = x1 + y1 3

√
m + z1

3
√
m2. Then 3 divides y, z if and only if 3 divides y1, z1.

The above result can be explicitly obtained by simple computation as done in ([1]).
One needs only to use (2.1) and the obvious relations

x1 + y1
3
√
m + z1

3
√
m2 = (x + y 3

√
m + z

3
√
m2)2

=⇒ x1 = x2 + 2myz, y1 = mz2 + 2xy, z1 = y2 + 2xz.
(2.2)

The following lemma is crucial for the rest of the article.

Lemma 2.2 Let q �= m be a prime that ramifies in K = Q( 3
√
m). If 3 � hm then

either ξm or ξ 2
m can be written as α3

q for some α ∈ OK .

Proof As q ramifies in K , qOK = ℘3 where ℘ is a prime ideal. Thus the ideal class
of ℘ is an element of order dividing 3. Since the class number is not divisible by
3, ℘ must be principal. Hence qOK = ℘3 = α3OK for some α ∈ OK . Therefore,
±ξ

j
mq = α3. If 3 | j , it would imply that 3

√
q ∈ K which leads to a contradiction as

q �= m. By modifying the element α suitably, we can take j = 1 or j = 2. �

Lemma 2.3 If 3 � hm then m is either a prime or a multiple of 3.

Proof Suppose m is neither a prime nor a multiple of 3. Let p be a (proper) prime
factor of m. As p ramifies in Q( 3

√
m), ξ i

m = β3

p by Lemma 2.2 where i = 1 or 2. By

explicitly substituting β = a1 + b1 3
√
m + c1

3
√
m2, we find that y, z, y1 and z1 are all

divisible by 3 by Lemma 2.1.
As 3 also ramifies in Q( 3

√
m), ξ i

m = α3

3 by Lemma 2.2 where i = 1 or 2. By

substituting α = a + b 3
√
m + c 3

√
m2 and considering the divisibility of y, z, y1 and
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z1 by 3, one can explicitly see that 3 has to divide (a3 − mb3)c. If 3 divides c, then
one easily shows that a and b are also divisible by 3. It leads to a contradiction that
either x or x1, and hence, either ξm or ξ 2

m is divisible by 3.
The remaining possibility that 3 divides a3 − mb3 also leads to a contradiction

when m ≡ ±1 mod 3, as consideration of a3 ≡ ±b3 modulo 9 implies divisibility
of x or x1 by 3. Therefore, m is either a prime or a multiple of 3 when 3 � hm . �
Corollary 2.4 For any square-free composite number m ≡ 2, 4, 5 or 7(mod 9), the
class number of Q( 3

√
m) is divisible by 3.

Now we prove Theorem 1.1 with the help of Lemma 2.3. Consider K = Q( 3
√
m)

such that 3 � hm . Suppose m is not a prime. By Lemma 2.3, we know that m must
be divisible by 3. We want to show that m = 3p for some prime p. Suppose m is
divisible by two distinct primes p and q other than 3. Then, 3, p and q all ramify
in K , and so does 3p. By Lemma 2.2 there exist α, β ∈ K such that either α3

3 = β3

3p

or ( α3

3 )2 = β3

3p or α3

3 = (
β3

3p )
2. But these identities imply that a cube root of p or 9p

belongs to Q( 3
√
m), which is not possible as m �= p, 9p. Hence, the only possibility

is m = 3p where p is a prime. �

Nowwe can establish certain congruences for the fundamental unit of K = Q( 3
√
3p).

By Lemma 2.2, one of ξm or ξ 2
m can be expressed as α3

3 and as β3

p for some α, β ∈ K .

If ξm = β3

p , then y ≡ z ≡ 0 (mod 3) follows directly by expanding β3. If ξ 2
m = β3

p ,
then y1 ≡ z1 ≡ 0 (mod 3) follows similarly. In that case, one can easily deduce from
(2.2) that 3 | xy. If 3 | x then (2.2) leads to the contradiction that 3 | x1 as well.
Therefore, 3 | y and by considering (2.2), 3 | z.

Putting α = a + b 3
√
m + c 3

√
m2 in ξ

j
m = α3

3 and taking norm, we obtain

NormK/Q(α)3 = 33NormK/Q(ξ j
m)

⇒ NormK/Q(α) = a3 + mb3 + m2c3 − 3mabc = 3.
(2.3)

Expansion of α3 shows that either x or x1 is a3+mb3+m2c3+6mabc
3 which equals

3+9mabc
3 by (2.3). As m is divisible by 3, 3 must divide a. Hence either x or x1

is 1 + 3mabc. As m = 3p, we have either x or x1 is congruent to 1 (mod 27p). But
x1 = x2 + 2myz ≡ x2 (mod 27p) because m = 3p and y ≡ z ≡ 0 (mod 3). �

Examples: (i) The fundamental unit of Q(
3
√
3.2) is 109 + 60

√
6 + 33 3

√
36 (see [5]),

where 60 ≡ 0 ≡ 33 mod 3 and 1092 ≡ 1 mod 54.
(i i)The fundamental unit ofQ(

3
√
3.5) is 5401 + 2190

√
6 + 888 3

√
36 (see [5]), where

2190 ≡ 0 ≡ 888 mod 3 and 54012 ≡ 1 mod 135.

Corollary 2.5 Let ξm = x + y 3
√
3p + z 3

√
9p2 be the fundamental unit of Q( 3

√
3p).

If 3 � y or 3 � z or 27p � (x2 − 1) then the class number of K is divisible by 3.

Examples: (i) The fundamental unit of Q(
3
√
3.7) is 1705 + 618

√
21 + 224 3

√
441

(see [5]), where 17052 �≡ 1 mod 27. One can check that the class number is 3.
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(i i) The fundamental unit of Q(
3
√
3.13) is 529 + 156

√
6 + 46 3

√
36 (see [5]). Here

46 �≡ 0 mod 3 and once can check that the class number is 6.

By similar arguments, we can obtain the following results concerning congruence
relations satisfied by the fundamental unit of K = Q( 3

√
p) when 3 � h p.

Proposition 2.6 Let ξm = x + y 3
√
p + z 3

√
p2 be the fundamental unit of K =

Q( 3
√
p) where p is a prime ≡ 4 or 7 mod 9. If 3 � h p then x2 ≡ 1 mod 3p and

one of the following must hold:
(i) x ≡ 1 mod 3 and y + z ≡ 0 mod 3.
(i i) x ≡ 2 ≡ y mod 3, z ≡ 0 mod 3.
(i i i) x ≡ 2 ≡ z mod 3 and y ≡ 0 mod 3.

Proposition 2.7 Let ξm = x + y 3
√
p + z 3

√
p2 be the fundamental unit of K =

Q( 3
√
p) where p is a prime ≡ 2 or 5 mod 9. If 3 � h p then x2 ≡ 1 mod 3p and

one of the following must hold:
(i) x ≡ 1 mod 3 and y − z ≡ 0 mod 3.
(i i) x ≡ 2 ≡ −y mod 3, z ≡ 0 mod 3.
(i i i) x ≡ 2 ≡ z mod 3 and y ≡ 0 mod 3.

The following theorem is now immediate from the two propositions above.

Theorem 2.8 Let ξm = x + y 3
√
p + z 3

√
p2 be the fundamental unit of K = Q( 3

√
p)

where p is a prime �≡ ±1 mod 9. Suppose 3 � h p. Then x2 ≡ 1 mod 3p and one of
the following must hold.
(i) x ≡ 2 mod 3, and 3 divides either y or z but not both.
(i i) x ≡ 1 mod 3 and 3 | (y + z) if p ≡ 1 mod 3; 3 | (y − z) if p ≡ 2 mod 3.

3 Real Quadratic Fields with Odd Class Number

In this section, we deduce certain congruence relations for the fundamental unit ξd of
a real quadratic field K = Q(

√
d) of odd class number. These congruence relations

are stronger than similar ones proven in [6] by using 2-adic numbers, and in our
earlier work [1] which used the same approach as here.

If Q(
√
d) has odd class number then d = p, 2p or pq where p and q denote distinct

primes congruent to 3 modulo 4. When d = pq ≡ 1 mod 8 with p ≡ 3 ≡ q mod 4,
ξd still belongs to Z[√d] even though the ring of integers of Q(

√
d) is larger than

Z[√d]. When d = pq ≡ 5 mod 8 with p ≡ 3 ≡ q mod 4, ξd may not belong to
Z[√d] but ξ 3

d does.

First, we state an obvious analogue of Lemma 2.2 for the real quadratic case.

Lemma 3.1 (i) If d = p or 2p where p is a prime congruent to 3 mod 4, then
2ξd = α2 for some α ∈ OK .
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(i i) If d = pq, where p and q are two distinct primes congruent to 3 mod 4, then
pξ j

d = α2 for some α ∈ OK , where j = 1 if pq ≡ 1 nod 8 and j = 3 if pq ≡ 5
mod 8.

The following result is classically known, but we can also deduce it from the second
relation in Lemma 3.1.

Corollary 3.2 If K = Q(
√
d) is a real quadratic field with discriminant having at

least three prime factors then the class number of K is even.

Proof Suppose K = Q(
√
d) is the real quadratic field under question. The given

condition implies that at least three distinct rational primes p, q and r ramify in
K . Hence, ideals generated by both p and pq ramify in K , but none of them is a
square in K . If ξd denotes the fundamental unit of K and the class number of K is
not divisible by 2, then we can write ξd = α2

p = β2

pq by Lemma 3.1. Then
√
q ∈ K ,

a contradiction. �

Theorem 3.3 Let p and q be two distinct primes congruent to 3 modulo 4, and
x + y

√
pq ∈ Z[√pq] be the fundamental unit ξpq of K = Q(

√
pq) (or its cube

when pq ≡ 5 mod 8). Without loss of generality, suppose p is a quadratic residue
mod q. Then
(i) x ≡ 7 mod 8, and y ≡ 0 mod 4.
(i i) x − 1 is divisible by 2q and x−1

2q is the square of an odd integer.

(i i i) x + 1 is divisible by 2p and x+1
2p is the square of an even integer.

Suppose d = pq where p ≡ q ≡ 3 mod 4. As the prime p ramifies in Q(
√
pq), we

have x = a2+pqb2

p and y = 2ab
p by Lemma 3.1.We can obtain the following additional

information about a and b.

Lemma 3.4 (i) When
( p

q

)
= 1, we have a2 − pqb2 = p.

(i i) When
( p

q

)
= −1, we have a2 − pqb2 = −p.

Proof By considering norm of the fundamental unit, we obtain
(
a2+pqb2

p

)2 −
pq

(
2ab
p

)2 = 1,which impliesa2 − pqb2 = ±p.When
( p

q

)
= 1,wehave

(−p

q

)
=

(−1

q

)
= −1, hence a2 − db2 �= −p.When

( p

q

)
= −1, we have

( p

q

)
= −1, hence

a2 − db2 �= p. �

Proof of Theorem 3.3 Consider the fundamental unit ξpq = x + y
√
pq where p and

q are primes congruent to 3 mod 4. By Lemmas 3.1 and 3.4, we have

px = a2 + pqb2, py = 2ab, p = a2 − pqb2

⇒ p(x + 1) = 2a2, x − 1 = 2qb2.
(3.1)
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Considering p = a2 − pqb2 mod 4, we find that a is even and b is odd. In particular,
y ≡ 0 mod 4. As x − 1 = 2qb2 ≡ 6 mod 8, we have x ≡ 7 mod 8. Clearly, x − 1 is
divisible by 2q and x−1

2q is the square of an odd integer. Moreover, x + 1 is divisible

by 2p and x+1
2p is the square of an even integer. Theorem 3.3 follows. �

Examples: (i) The fundamental unit ofQ(
√
3.11) is 23 + 4

√
33, where 23 ≡ 7mod

8, 4 ≡ 0 mod 4, 23−1
2.11 = 12 and 23+1

2.3 = 22. Note that
(
3
11 = 1

)
.

(i i) The fundamental unit ofQ(
√
11.19) is 46551 + 3220

√
11.19, where 46551 ≡ 7

mod 8, 3220 ≡ 0 mod 4, 46551−1
2.19 = 352 and 46551+1

2.11 = 462.
Results similar to Theorem 3.3 can be obtained in the other two cases d = p or
d = 2p when the quadratic field Q(

√
d) has odd class number.
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The Charm of Units I,
On the Kummer–Vandiver Conjecture.
Extended Abstract

Preda Mihăilescu

Une paquerette, la midinette
Se balançait – dans un champ de blé ...
Une petite abeille, en plein soleil,
La féconda, trà la là la là.
To John Coates

1 Introduction

We introduce first the minimal notation that is needed for explaining the purpose
and approach of this paper. Let p be an odd prime and K̃ = K̃0 = Q[ζ] be the p-
th cyclotomic field and K̃n = K̃[ζpn+1 ] be the intermediate fields of its cyclotomic
Zp-extension. Let Gn = Gal(K̃n/Q) and �n = Gal(K̃n/K̃0) be generated by the
restriction of a topological generator τ ∈ � = Gal(K̃∞/K̃) of the galois group of the
cyclotomic Zp-extension K̃∞ of K̃. Let νn,a : ζpn+1 �→ ζa

pn+1 be the automorphisms
of the group Gn that send ζpn+1 to its a-th power, for (a, p) = 1. Thus σc := νn,cpn

are lifts of G0 to Gn . The maximal real subfield of K̃ is K = Q[ζ + ζ]—since most
of our work takes place in the real subfields, we keep the notation K for this field
and use the uncommon notation K̃ for the full cyclotomic field, which has only a
collateral significance in this paper.

If X is a finite abelian group, we denote by X p its p—Sylow subgroup and for
an arbitrary number field K we write A(K) = C(K)p for the p—part of the class
group C(K). The units of this field are E(K) = O×(K) and E ′(K) are the units of
the ring of p-integers O(K)[1/p]. The local units U (K) are the invertible integers
in the algebra Kp := K ⊗Q Qp.
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In a letter to Kronecker dating from 1849, Kummer explained his approach for
proving Fermat’s Last Theorem. The assumptions that

K1. The class group of K has trivial p-subgroup, or equivalently, p � |A(K)|, and
K2. The p2-primary units of K are global p-powers, or equivalently, E(K) ∩

U p2
(K) ⊂ E p(K),

play a central role in this approach. We know that Kummer succeeded later to prove
the second case of Fermat’s Last Theorem (FLT) on base of these very assumptions.
Four years later, writing to the same Kronecker, Kummer still mentioned K1 as ein
noch zu beweisender Satz,1 which raises some problems. Kummer never succeeded
to prove the assumption, and in the early decades of the twentieth century, Vandiver,
who pursued the work of Kummer on Fermat, used this assumption in several of
his results. The assumption K1 is currently referred to as Conjecture of Kummer–
Vandiver. It can be found together with some of its more important consequences in
the textbooks on cyclotomy of Lang [4] andWashington [7]. Vandiver indicated also
an approach to the study of the First Case of FLT, which is based on the Kummer–
Vandiver Conjecture. The approach was made rigorous by Sitaraman in 1993 [5],
and it states that the First Case holds, if along with K1, the condition K3. holds:

K3. The p-part A(K̃) has exponent p.

The conjecture of Kummer–Vandiver for the p-th cyclotomic field is related to the
K -theory of Q. In particular, the (p − 1 − 2n)-th component of A(K) vanishes if
K 4n(Q) ⊗ Zp = 0. Grzegorz Banaszak and Vojtek Gajda proved this result in 1990
[1] and deduced from the fact that K 4n(Q) is a torsion group, that for any n > 0,
the (p − 1 − 2n)-th component of A(K) vanishes for all sufficiently large p. Using
the proof of K 4(Q) = 0 given by Vojevodski, Kurihara deduced in 1993 [3] that
A(p−3)(K) = 0 for all p. This result was improved by Greenberg and then Soulé in
[6].

In this paper we shall show.

Theorem 1 Suppose that the groups A+
n are uniformly bounded. Then they are

trivial.

In other words, we show that Greenberg’s λ-conjecture, stating the finiteness of the
projective limits of p-parts of class groups in the cyclotomicZp-extension of a totally
real field, implies Kummer–Vandiver. The former conjecture is proved in the general
case, in a separate paper.

1.1 Plan of the Proof

Greenberg’s λ-conjecture states that for arbitrary totally real fields K, the groups
A∞(K) are finite. In particular, whenK = K, this implies that |A(Kn)| are uniformly

1A yet to prove theorem.
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bounded when n → ∞. We shall assume the truth of the Greenberg Conjecture,
which shall be proved for arbitrary CM fields, in a separate paper. We thus assume
that there is some M > 0 such that |An| < M for all n ∈ N, but An 
= {1}. We denote
by Hn the maximal p-abelian unramified extension of Kn , which is herewith a finite
extension of bounded size, for n → ∞.

We fix some real extension L/K which is unramified, cyclic of degree p and
Galois over Q, and let Ln = Kn · L ⊂ Hn; we fix a generator ν ∈ Gal(L/K)—since
L/K is real and unramified, its existence is equivalent to the failure of the Kummer–
Vandiver conjecture. The structure of the local and global units of Ln is intimately
connected to the simpler structure of the local units of Kn , in which there is only
one prime above p. Moreover, capitulation happens both in Ln/Kn for all n, and
also, for sufficiently large n, in the vertical extensions Kn+1/Kn . By a detailed study
of global and local units in Ln , we find incompatibility between these two types of
capitulation. In this investigation, such classical results as Hilbert’s Theorems 90–94,
together with some application of local class field theory and Kummer theory join
together in order to reveal a contradiction.

More precisely, we show that for each n there is some singular unit δn ∈ E(Ln)

which has norm one and does not lay in the augmentation ideal of the units:

NL/K(δn) = 1, δn /∈ E(Ln)
ν−1.

There also is a local singular Zp-module Sn—defined in Definition 4 below—, con-
tained in the local units of Ln; for sufficiently large n, the projections of δn to Sn

define a submodule of finite index

p�n = [Sn : δ
Zp[s]
n ]

in the singular module. It turns out that �n > 0 but the index decreases by one in each
extension Kn+1/Kn , for sufficiently large n. This is the contradiction which proves
our Theorem. The plan is only descriptive at this point, but the notions introduced
will become clear and shall be formally defined along the proof below.

1.2 Notations and Auxiliary Results

For any CM field K we write j for the image of complex conjugation in Aut(K/Q).
The Zp-extension of Q is Q∞ and Qn ⊂ Q∞ are the subfields of degree pn over Q.
Accordingly, ifK is an arbitrary number field, its cyclotomicZp-extension isK · Q∞
and Kn = K · Qn . We fix a p-th root of unity ζ and write K̃n = Qn[ζ] = Q[ζpn+1 ].
Then K̃ = K̃0 and the galois group of K̃0 is

G = G0 = Gal(K̃0/Q)

= {σa : a = 1, 2, . . . p − 1, ζ �→ ζa} ∼= (Z/p · Z)∗.
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The group G lifts to Gn = Gal(K̃n/Q) ∼= �n × G, with �n = Gal(Kn/K) ∼=
Gal(Qn−1/Q). The groups Gn are cyclic and we may denote by ν̃a ∈ Gn the auto-
morphisms given by ν̃a : ζpn → ζa

pn ; in this notation, we identify σa with its lift

σ̃a = ν̃a pn−1 ∈ Gn . The maximal real subfields of K̃n are Kn = Qn[ζ + ζ]. The rami-
fied primes above p are

℘̃n = (λ̃n), ℘n = (λn), with

λ̃n = ζpn+1 − ζ pn+1 , λn = λ̃2
n.

The cyclotomic units are

C(Kn) = λ̃n
Z[Gn ] ⋂

E(Kn) ⊂ E(Kn);

these modules are generated by ηn = λ̃σ−1
n , as a Z[Gn]-module, up to possible index

2. For n = 0, we may also write η = η0.
For R ∈ {Fp, Zp, Z/(pm · Z)}, we describe the group rings R[G] by means of the

Teichmüller character, induced by unique p − 1-th roots of unity, verifying:

	(σa) ∈ R, 	(σa) ∼= a mod pR.

Herewith, the orthogonal idempotents ek ∈ R[G] are

ek = 1

p − 1

p−1∑

a=1

	k(σa) · σ−1
a , (1)

and some of the most usual properties (see also [7], p. 100) are

p−2∑

k=0

ek = 1, and (σc − 	k(σc))ek = 0. (2)

We shall use the notation ek quite freely—at times it denotes the p-adic idempotents
forR = Zp, but wemay also choose some tk ∈ Z[G]which approximates ek to some
power pM , and denote these also by ek , when there is no place for confusion; in all
cases, the orthogonality relations hold modulo pM , and the precise signification of
ek will be made clear in the context.

The local units U (K) are defined as follows. Let P = {P j : j = 1, 2, . . . , s} be
the primes of K above p. Then the p-idèles of K are

Kp := K ⊗Q Qp
∼=

s∏

j=1

KP j ,
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where KP is the completion of K at the prime P and Qp embeds diagonally in
Kp. The local units are then defined as the products of the units in the individual
completions, and their subgroupU ′ is the kernel of the global norm Np : Kp → Qp:

U (K) :=
∏

P∈P

O (
KP

)
, U ′(K) = Ker(Np : U (K) → Zp). (3)

By definition, K is dense in Kp in the p-adic product topology, so any x ∈ Kp is
approximated by sequences (xn)n∈N ⊂ K with x − xn ∈ U (K)pn

. The p-adic closure
of E(K) is

E(K) =
∞⋂

N=1

(
E(K) · U (K)pN

)
⊂ U ′(K),

and E(K) embeds diagonally in the completion.

Definition 1 If L/K is a cyclic extension of degree p of the field K, with group
X = 〈ν〉, and s = ν − 1 we let

S = { f ∈ Z[s] : deg( f ) < p − 1}

and denote a set of units H = {H0; H1, H2, . . . , Hk} ⊂ E(L) as fundamental set of
Hilbert relative units, and H = H \ {H0} a pre-fundamental set of Hilbert relative
units, if the following conditions are fulfilled:

1. The unit H0 verifies N (H0) = 1 but H0 /∈ E(L)(s,p),
2. The set

H′ = H(H) =
{

k∏

i=1

H fi

i : fi ∈ S

}
⊂ E(L),

the restricted Z[s]-hull of H, verifies N (H′) = N (E(L)).
3. The units in HS := {ν j (Hi ) : i = 0, 1, . . . , k; j = 0, 1, . . . , p − 2} are Z-

independent and together with a fundamental set of units for E(K), they build a
fundamental set of units for E(L).

By a slight abuse of language, we shall also say H are a fundamental set of relative
units, if the index [E(L) : E(K) · H] is coprime to p.

We introduce some additional notation connected to the group ring Z[X ] = Z[s];
here, N = 1 + ν + · · · + ν p−1 is the associated norm, and its derivative is defined
by

N = (s + 1)p − 1

s
= p + sN ′, (4)

N ′ := s p−2 + p ·
(

p−1∑

i=2

(p
i

)

p
· si−2

)
.



78 P. Mihăilescu

We also note the following relations which will be useful in the sequel. The proof is
a simple application of the developments in (4) and is left to the reader.

s · N = 0 = s p + psv−1(s),

v(s) = 1 + O(s) ⇒ ps = −v(s)s p, (5)

N = s p−2 + pu1(s), u1(s) = p − 1

2
+ O(s) ∈ (Zp[s])×. (6)

We assume in this paper that the Kummer–Vandiver conjecture is false and, con-
cretely, there is an integer 2m ∈ {2, 4, . . . , p − 3}, such that e2m A 
= {1}. We may
accordingly choose the fieldLmentioned above, such that Gal(L/K) is a quotient of
Gal(H0/K)e2m . ThenL is galois overQ, as a consequence of the fact that e2mZp[G0]
has rank 1.

We adopt the notation to the case of X = Gal(L/K), a group generated by ν;
the augmentation is generated by s = ν − 1 and the norm is N = NL/K. Thus X ∼=
Gal(Ln/Kn) ∼= Gal(L/K) does not depend on n. We denote by Yn the groups

Yn = Gal(Ln/Q) = Gn � X.

The maximal p-abelian, p-ramified extension of K̃n is Hn and �E,n =
K̃n

[
E(K̃n)

1/pn
]
. In the injective limit we write

H∞ =
⋃

n

Hn; �E =
⋃

n

�E,n.

Complex conjugation j acts by conjugation on the galois groups of these extensions
inducing natural decomposition in plus andminus parts: writing Zn = Gal(Hn/K̃n),

Z = lim←−n
Zn , we have

Z− = (1 − j)Z , Z+ = (1 + j)Z; H−
∞ = HZ+

∞ , H+
∞ = HZ−

∞ ,

and similar for the various other fields introduced above.

1.3 Hilbert’s Theorems on Class Fields

In this section, we recall the most important of the Theorems 90–94 on class fields in
Hilbert’s Zahlbericht [2]. Hilbert considers an arbitrary cyclic galois extension L/K
of degree p, with galois group X = 〈ν〉 and Dirichlet number r = r(K) = r1 + r2 −
1. Then the Dirichlet number of L is R = r(L) = p(r + 1) − 1. The Theorem 90
implies the vanishing of Ĥ 0(X, L×): it states that for x ∈ L× with N (x) = 1, there
is a y ∈ L× such that x = yν−1. The Theorem 91 is less often quoted or used, but it
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plays an important role in our approach. Here is its slightly modified statement that
we shall use:

Fact 1 (Hilbert’s Theorem 91) Let L/K be an extension like in definition (1) and let
r = r1 + r2 − 1 be the Dirichlet rank of E(K). Then there is a fundamental set of
Hilbert relative units H = {Hi : i = 0, 1, . . . r} ⊂ E(L), such that H0 /∈ E(L)(p,s)

and N (H0) = 1. Moreover, if H′ is the restricted Z[s]-hull of H′ = H \ {H0}, then
the index [N (E(L)) : N (H′)] is coprime to p.

In the case that L/K is unramified, the unit H0 gives raise to capitulation, according
to the celebrated Theorem 94

Fact 2 (Hilbert’s Theorem 94) If L/K is unramified and δ ∈ E(L) \ E(L)s has
norm N (δ) = 1, then there is an ideal A ⊂ K, which is not principal, but lifts to a
principal ideal (γ) = A · O(L), such that γs = δ.

Proof By Theorem 90, there is some γ ∈ L such that δ = γs , so the ideal (γ) is fixed
by Gal(L/K). Since the extension is unramified, it must be the lift of an ideal from
A ⊂ O(K). If this ideal is principal, say A = (α), then there is some unit d ∈ E(L)

such that γ = dα and thus δ = (dα)s = ds ∈ E(L)s , in contradictionwith the choice
of δ. We thus obtain a map Ĥ 1( Gal(L/K), E(L)) → A(K)[p], by which δE(L)s

has a nontrivial image. �

2 Primes and Local Units

We start with a first glance at the primes above p in our fields of interest.

2.1 Primes Above p

Let n ≥ 0 and℘n = (λn) = (ξ − ξ)1+j be the unique totally ramified prime above p
in Kn—with ξ = ζpn . Since Ln is unramified, the principal ideal theorem of Hilbert
class fields implies that ℘n is split in Ln/Kn . We assume in this paper, for simplicity,
that the primes above ℘n are principal ideals. The general case is marginally more
complex and will be treated in the final version of the paper.

Let X = Gal(L/K) be generated by ν and s = ν − 1,N = NL/K; since Y :=
Gal(L/Q) is galois, it follows that the canonical lift of σ to Gal(K/Q), acting by
conjugation on X , fixes this group. Thus e2m X = X for some m ∈ {0, 1, . . . , d}. The
definition ofm implies that νσc = ν	2m (σc), where conjugation acts via νσc = σcνσ−1

c
([7], Sect. 10.2). We obtain

σc ◦ ν = ν	2m(σc) ◦ σc, ν ◦ σc = σc ◦ ν	−2m(σc). (7)
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Wefix now pn ⊂ Ln , one of the primes above p, and letπn = π(Ln) ∈ Ln generate
this principal ideal. We claim that πn can be chosen such thatN (πn) = λn; as ideals,
we have N (pn) = ℘n , so there is a unit ε ∈ E(Kn) such that N (πn) = ε · λn . We
may assume that ε ∈ Cn , the cyclotomic units of Kn: if not, there is a minimal
j > 0 such that εp j ∈ Cn , and then N (πn/ε

p j−1
)/λn ∈ Cn , as claimed. Since Cn =

λZ[σ,τ ]
n ∩ E(Kn) (see, e.g., [7], Proposition 8.1), there is a group ring element

θ =
N∑

i=0

ci (σ − 1)T i ∈ �; ci ∈ Z[X ], c0(0) = 0,

such that ε = λθ
n and thus N (πn) = δ1+θ. Note that for A ∈ Z[X ],

(1 + (σ − 1)A(σ − 1))p ≡ 1 + (σ − 1)A(σ − 1) mod pZ[σ], so

(1 + θ) · (1 + c0(σ − 1)p−2) ≡ 1 + O(T ) mod p(σ − 1, T ).

Moreover, T pn ≡ 0 mod p((σ − 1), T ), so combining with the previous identity,
we see there is some θ1 ∈ Z[σ, τ ], such that (1 + θ)(1 + θ1) ≡ 1 mod p(σ − 1, T ),
while δ1 := πθ1

n ∈ E(Ln). Consequently N (δ1πn) = λ1+p·θ2 , for some θ2 ∈ (σ −
1, T ). But then λ

pθ2
n = ε

p
1 ∈ C p

n , and finally N (πnδ1/ε1) = λn , which confirms the
claim.

Since p is totally ramified in Kn/Q, it follows that the decomposition group
D(pn) ⊂ Gal(Ln/Q) of pn is equal to its inertia group and D(pn) ∼= Gal(Kn/Q).
We can thus choose lifts σ̃, τ̃ ∈ D(pn) of the generators σ, τ ∈ Gal(Kn/Q) of the
cyclic subgroups of order p−1

2 and pn , respectively. In fact, τ commutes with X ,
so the lift τ̃ is canonic and shall be identified to τ in the sequel. We also can fix
ν ∈ X a generator verifying νω = ζpω, for L = K[ω] = K[α1/p], as a Kummer
extension. We shall prove in Lemma 4 in Sect. 3, that the primes pn are principal,
say pn = (π(Ln)) and one can choose πn such that N (πn) = λn . Using the lifts σ̃,
we note that

μ0(Ln) := π(Ln)
τ−1, μ1(Ln) := π(Ln)

σ̃−1 (8)

are units: this follows from the choice of the lifts, in the inertia group of πn .

Definition 2 The units μ0(Ln) = πτ̃−1
n ,μ1(Ln) = πσ̃−1

n are metacyclotomic units of
Ln and they have the property that N (μ0),N (μ1) generate Cn as a Z[Gn]-module.

2.2 Local Units in Fields and p-idèles

We keep the notation introduced above, in particular X = 〈ν〉 = Gal(L/K) =
Gal(Ln/Kn) and both Ln and Kn are totally real, while K̃n = Kn[ζ]. We have fixed
a principal prime pn = (πn) ⊂ Ln with N (πn) = λn and defined lifts of σ, τ in its
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decomposition group, introducing by their means the metacyclotomic units in Defi-
nition 2.

We review the structure of local units in cyclotomic fields first, and then derive the
structure ofU (Ln). Subsequently,we focus our attention on thefirst levelK = K0 and
show that the metacyclotomic units generate, together with an additional, singular
unit δ0, a systemofHilbert relative units, in the sense ofDefinition 1. The same system
is also independent in the completion E(L), which proves the—ephemeral—result
that the Leopoldt Conjecture holds in L. This results deduced in detail at the level
K0 generalizes quite easily for the units of Ln; thus we define in particular a series
of singular units δn ∈ E(Ln). These are connected to capitulation and must change
with n. Their projections to an invariant singular submodule S0 ⊂ U ′(Ln) generate
under the action of Zp[s] the projection of E(Ln) to the singular module. This fact
will be led in the last chapter to a contradiction. In the present chapter, we prepare
the necessary facts on units for the final proof.

2.2.1 Local Units in the Cyclotomic Extension

We recall first the structure of U (K̃n); the idempotents ek act naturally on U (K̃n)

inducing a direct product

U (K̃n) =
p−2∏

i=0

U (k)(K̃n), U (k)(K̃n) = ekU (K̃n).

Lang proves in [4], Sect. 6.2, thatU (k)(K̃n) are cyclic�-modules for k /∈ {0, 1}. One
verifies from the definitions, that we also have U (k)(K̃n) ∈ U ′(K̃n) for k > 0. In the
case of k = 1, there exists a torsion submodule which obstructs cyclicity; this does
not impact upon the cyclicity of U (Kn), which is the union of the even components
of U (K̃n). For k = 0, we have

Lemma 1 The group U ′(0)(Kn) is �-cyclic, generated by �n = ρT
n , with ρn =

NKn/Qn (1 − ζn) with ζn a primitive pn+1-th root of unity and Qn ⊂ Kn the subfield
of the cyclotomic Zp-extension Q∞/Q that is contained in Kn. Moreover,

U (0)(Kn) = Z×
p × ��

n .

In particular, for n = 0, we have U ′(Qn) = {1} and U (Qn) = Z×
p .

Proof It is known ([7], Proposition 8.1), that�n generates the cyclotomic units ofQn ,
and since the class group of this field has vanishing p-part, the analytic class number
formula applied toQn implies that p � [E(Qn) : C(Qn)], so�n generates E(Qn) as a
Z[τ ]-module, up to finite index, coprime to p. Consequently,�n generates the cyclic
submodule E(Qn) ⊂ U ′(Qn).Moreover,U ′(Qn)/E(Qn) ∼= Gal(Rn/Qn), where Rn

is the maximal p-ramified p-abelian extension of Qn which is fixed by (a lift of) �.
By (Leopoldt) reflection, the radical in K̃n of an extension of degree p, which is
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Kummer and p-ramified over Qn lays in (K×
n )e1 and it is either a unit or generates

a principal ideal which is the p-th power of a class in e1A(Kn). This component is
trivial byHerbrand’s Theorem [7], p. 101, and the only units in the first component are
the roots of unity. Consequently, the only possible unramified abelian p-extension is
Qn+1 itself. It follows thatU ′(Qn)/E(Qn) = 1 and it is�- cyclic by the above proof.
For n = 0, we have ρ0 = p and thus�0 = 1. SinceU (Qn)/U ′(Qn) ∼= Zp ⊂ U (Qn),
the proof is complete. �

The following definition introduces generators of the �-cyclic components of
U ′(Kn):

Definition 3 For fixed n, we let ξn,k ∈ U (Kn) be generators ofU (k)(K̃n) for k 
= 0, 1
and ξn,0 = �n . Let ξn = ∏d

k=0 ξn,2k and υ = 1 + p ∈ Zp. If the value of n is fixed
in the context, then we simply write ξ, ξ(k), etc. By definition,

U ′(Kn) = ξ�[G0]
n , U ′(2k)

(Kn) = (ξ(2k)
n )�, Z×

p = υZp , (9)

2.2.2 Local Units in Ln

The groupsYn = Gal(Ln/Q) are semi-direct productsYn = Gn � Xn , andwe define
the group rings Rn := Zp[Yn] or R′

n = Rn/(N ). Note that s Rn = Rns, as follows
from (7). Since Yn is non commutative, caution is needed when using exponential
notation, since when transcribing to functorial notation, the operations are reversed:
α(βx) = xβα, for α,β ∈ Rn . We thus only use functional notation for the group ring
operations, with the possible exception of the action of elements like s. An important
consequence of the fact that s Rn is a bimodule, is the fact that there is a bijection
Rn/(s Rn) → (s Rn)\Rn , so both factors are simultaneously finite or infinite.

Since s Rn = Rns, and in view of (7), we deduce that every θ ∈ Rn can be repre-
sented by some polynomials fk, gk ∈ Zp[s, T ] as follows:

θ =
∑

g∈Gn

tgg =
d∑

k=0

fk(s, T )e2k =
d∑

k=0

e2k gk(s, T ), (10)

where the idempotents e2k are taken with respect to the fixed lift σ̃ ∈ Xn of σ ∈ G0.
Note also, that by choice of Ln , the group Gal(Ln/L) ∼= Gal(Kn/K) ∼= �/� pn

commutes with ν.
With respect to the primes pn = (πn), we have the p-idèles (Ln)p =∏p−1

i=0 (Ln)νi (p), and there are projections ιi : (Ln)p → (Ln)νi (p) to the different
completions. For x ∈ (Ln)p they can be interpreted as components of the vector
residues under the Chinese Remainder Theorem, so we write xi = ιi (x) ∈ (Ln)νip

and x = (x0, x1, . . . , x p−1). We have (Ln)νip
∼= (Kn)p and the action of ν on the

vector representation of x is ν(x) = (x p−1, x0, . . . , x p−2), thus a cyclic right shift.
As a consequence, we obtain the following representation of the norm:
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N (x) = N (x0, x1, . . . , x p−1) =
p−1∏

i=0

xi .

In particular, for the diagonal embedding of x ∈ Ln we have ιi (x) ≡ ν−i (x) mod pn .
The decomposition of U (Kn)p according to the orthogonal idempotents induces an
important decomposition of U (Ln), namely,

Uk(Ln) ={
x = (x0, x1, . . . , x p−1) ∈ U (Ln) : xi ∈ U (Kn)

e2k
}
. (11)

It follows from remarks above that Uk(Ln) ⊂ U ′(Ln) for all k > 0. We define
accordingly a sub-decomposition of U0(Ln) as follows:

S = {x ∈ U (Ln) : xi ∈ Zp} ∼= (Zp)
p,

Ũ0(Ln) = {x ∈ U (Ln) : xi ∈ ��
n },

�(Ln) = Ũ0(Ln)
⊕ (⊕d−1

k=1Uk(Ln)
)
.

We define in addition a list of special elements of U (Ln), written in their vector
representation, which act as generators of the Zp[s]-submodules above

	(k)
n = (ξn,2k, 1, . . . , 1), k > 1, 	(0)

n = (υ, 1, . . . , 1),


n = (�n, 1, . . . , 1).

With these notation, the structure of the units U (Ln) is given by the following:

Lemma 2 The following direct sum decompositions

U (Ln) =
d⊕

i=0

, Uk(Ln) = S
⊕

�n, (12)

and the following generation relations hold

S = (	(0)
n )Zp[s], Ũ0(Ln) = 
�[s]

n , (13)

Uk(Ln) = (	(k)
n )�[s], k > 0 f orall n ≥ 0.

Proof The relations (13) are verified directly from the definition, using the circular
shift action of ν on the vector representation of elements inU (Ln). The orthogonality
of the idempotents induces a direct sum decomposition U (Ln) = ⊕d

k=0 Uk(Ln),
and U0(Ln) = S ⊕ Ũ0(Ln) follows from Lemma 1. This induces the decomposition
U (Ln) = S ⊕ �n , and completes the proof. �

Note that �n � U ′
n . In view of the above decomposition, we denote the pro-

jections ιs : U (Ln) → S and ιr : U (Ln) → �n , the singular and regular projec-
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tions of U (Ln). The modules are accordingly the singular, respective the regular
module of U (Ln). We note that the norms Nn,0 : �n → �0 are surjective, while
∩nNn,0(U (Ln)) = �0, so the singular module is the natural norm defect of the uni-
versal norms of local units from U (Ln). Moreover, N (�0) = U ′(Kn) ⊃ N (E(L)).
This motivates the denomination.

The notion of singularity level defined in the following applies to global units:

Definition 4 For x ∈ U ′(Ln), we define the integer �(x) as the largest integer l for

which ιs(x) ∈ 	
sl
Zp[s]

0 . If C ⊂ U ′(Ln) is some submodule, �(C) = minx∈C (�(x))

and �(Ln) := �(E(Ln)). A unit e ∈ E(Ln) is called singular, if ιs(e) ∈ S generates
ιs(E(Ln)) as a Zp[s]-module; in particular, �(e) = e(Ln) is minimal over all units
in E(Ln)

In the sequel, we gather some useful facts about the local algebras:

Lemma 3 The following facts hold in the algebras (Ln)p:

A. In (Ln)p, we have

Ker(s : (Ln)p → (Ln)p) = (Kn)p, and

Ker(N : (Ln)p → (Kn)p) = (Ln
×
p )s .

B. The following identity principle holds: if α,β ∈ Ln are such that ιk(α) = ιk(β)

for some k ∈ {0, 1, . . . , d}, then α = β. In particular, if α /∈ Q, then ιk(α) /∈ Q,
and for ε ∈ E(L) we have ιk(ε) = ±1 iff ε = ±1.

C. For x, y ∈ U ′(Ln) and m ≥ 0, we have �(xsm
) = �(ysm

) iff �(x) = �(y). Also,
�(E(Ln)) ≥ �(E(Ln′)) for n > n′.

D. If x ∈ Ln has �(x) = 0, then x /∈ E(Ln).

Proof If x ∈ Ker(s : (Ln)p → (Ln)p), then ν(x) = x and thus all the compo-
nents of x under the Chinese Remainder Theorem are identical. There is thus
some y ∈ (Kn)p such that x = (y, y, . . . , y), which is the diagonal representa-
tion of the lift of y to Ln; this confirms the first claim in A. For the second,
let x = (x0, x1, . . . , x p−1) ∈ Ker(N : (Ln)p → (Kn)p). Then

∏
i xi = 1 and thus

1/x p−1 = ∏p−2
i=0 xi . We define y ∈ (Ln)p such that ys = x as follows. Let y0 = t

and define inductively: y1 = x0y0 = x0t; y2 = x1y1, . . . , yp−1 = x p−2 · yp−2.

We notice that yk = t · ∏k−1
l=0 xi for k = 1, 2, . . . , p − 1 and the conditions are con-

sistent with y0 = x p−1yp−1. Let thus t = 1 and y be given by ιk+1(y) = ∏k
i=0 xi for

k = 0, 1, . . . , p − 1, were ιp = ι0. Then ys = x , which confirms the second claim
in point A.

For point B, we can assume without loss of generality that α,β ∈ O(Ln),
since multiplication by a rational integer leaves the identity between components
unchanged. Assume thus that ιk(α − β) = 0 for some k ≥ 0; this implies that
α − β ≡ 0 mod PN

n for all N > 0. Consequently NLn/Q(α − β) ≡ 0 mod pN for
all N , which implies α − β = 0, as claimed. The further special cases in the claim
B. are direct consequences of this fact.
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For point C., let xs = ιs(x), ys = ιs(y) ∈ 	
sZp[s]
0 . Assume that �(xsm

) = �(yxm
).

Then there are units V, V1 ∈ (Zp[s])× and a l > m such that xsm

s = ysm V
s = 	

sl V1
0 and

(	
sl−m V1
0 /xs)

sm = 1. But 	
sZp]s]
0 is Zp-free, so it follows that xs = 	

sl−m V1
0 ; likewise,

ys = 	
sl−m V1/V
0 , and it follows �(x) = �(y). The other direction is straightforward.

Moreover, there are some units e ∈ E(Ln), e′ ∈ E(L′
n) such that �(e) = �(E(Ln))

and �(e′) = �(E(Ln′)). For n > n′, obviously e′ ∈ E(Ln) and thus �(Ln′) = �(e) ≤
�(Ln), which completes the proof of point C.

Finally assume that �(x) = 0, so x = 	V
0 · ω, with V ∈ (Zp[s])× and ω ∈ �n .

Then NLn/K(x) = (1 + p)V (0)pn · ω′, where ω′ ∈ �0 ∩ U (K) ⊂ U ′(K).
Consequently, NLn/Q(x) = (1 + p)V (0)(p−1)pn

, and this norm is only a unit in Z,
if V (0) = 0, which is inconsistent with V being a unit. This completes the proof of
point D. �

3 Existence of a Singular Capitulation Unit

The purpose of this chapter is to prove the

Proposition 1 Under the above assumptions, for all sufficiently large n, there are
singular capitulation units δn ∈ E(Ln), verifying �(δn) = �(Ln) and N (δn) = 1,
while δn /∈ E(Ln)

(s,p).

We first note the following

Lemma 4 Assuming that |A(Kn)| = |A(Km)| for all n ≥ m, we have

E(Kn) = C(Kn) · E(Km), ∀n ≥ m. (14)

Moreover, there are uniformizors πn ∈ E ′(Ln) with N (πn) = ℘n and consequently
C(Kn) ⊂ N (E(Ln)).

Proof By the analytic class number formula, the hypothesis of this lemma implies
that the index |(E(Kn)/C(Kn))p| is stable for all n ≥ m, being equal to the stabilized
size of the p-part of the class group. Since the cyclotomic units are norm coherent,
the claim (14) follows.

We choose now k > 0 sufficiently large, such that E(Km)pk ⊂ C(Km) and let ρk ∈
E ′(Ln+k) have normN (ρ′) = λn+ke, with e ∈ E(Kn+k). The choice of k implies that
Nn+k,n(e) ∈ C(Kn) and consequently, the p-unit ρ := Nn+k,n(ρ

′) verifies N (ρ) ∈
λnC(Kn) = λ1+(σ−1)Z[Gn ]

n .Wemaydefine thusπn = ρt for someadequate t ∈ Z[Gn],
which implies the claim. �

We proceed with the proof of the Proposition 1:

Proof Let n > m and dn ∈ E(Ln) have �(dn) = �(Ln) = L . Let Dn = N (dn) =
ε · γn , with ε ∈ E(Km) and γn ∈ C(Kn), a decomposition based on (14). Let now
N > n be sufficiently large and choose γN ∈ C(KN ) such that NN ,n(γN ) = γn .
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We deduce from Lemma 4, that there is some γ′
N ∈ E(LN ), with γN = N (γ′

N ).
Let γ′

n = NN ,n(γ
′
N ). We may choose N sufficiently large, so that �(γ′

n) = 2L , say.
Since N (γ′

n) = γn , by construction, by letting d ′
n = dn/γ

′
n , we obtained a unit with

�(d ′
n) = �(dn) and N (d ′

n) = εm . Since (Em/Cm)e0
p = 1, while the singular mod-

ule S ⊂ E(Kn)
e0 , we may let δ′

n = (d ′
n)

e′
0 for an approximation e′

0 ∈ Z[G] with
e′
0 ≡ e0 mod pMZp[G]. Then D′

n := N (δ′
n) ∈ U (Kn)

pM
while �(δ′

n) = �(dn). By
taking M sufficiently large, we can reach D′

n = v p, for some unit v ∈ E(Kn). Finally,
letting δn = δ′

n/v we obtained a unit with N (δn) = 1 and �(δn) = �(dn). The mini-
mality of the index �(dn) implies that δn /∈ E(Ln)

(p,s). Thus δn satisfies all the claims
of Proposition 1, and this completes the proof. �

Finally, we combine the previous result with the Theorem Hilbert 94, thus obtain-
ing

Corollary 1 There is a singular class an ∈ A(Kn)[p], an 
= 1, such that the primes
of an become principal in Ln and for each P ∈ an, if PO(Ln) = (ρ), then ρs ∈
δn · E(Ln)

s .

Proof The properties of δn imply, by Hilbert’s Theorem 94, that there is an ideal
B ⊂ O(Kn), which is not principal in Kn but capitulates in Ln – say, B · O(Ln) =
(β) – such that βs = δn . Let then a = [B] be the class of this ideal and letP ∈ a, so
there is some α ∈ Kn such thatP = (α)B. Then (ρ) = (α) · (β) and there is a unit
d ∈ E(Ln), such that ρ = dα · β. Since α ∈ Kn , we conclude that ρs = ds · βs =
ds · δn ∈ δn E(Ln)

s , as claimed. �

4 Proof of the Main Theorem

The assumption that A(K∞) is bounded implies that there is an n0 such that for all
n > n0, we have A(Kn) ∼= A(Kn+1) and thus

p − rank
(
Ker : ιn,n+1 A(Kn) → A(Kn+1)

) = p − rank (A(Kn))

= p − rank (A(Kn+1)).

Furthermore, Corollary 1 implies that

Lemma 5 For n > n0, the units δn are singular and at the next level, δn ∈ E(Ln+1)
s .

Proof For n > n0, we let An ∈ an , where an is the class defined in Corollary 1, and
assume that δn = γs

n , with (γn) = O(Ln) · A. Since n > n0 and a p
n = 1, the idealAn

capitulates inKn+1. There is thus anαn+1 ∈ Kn+1 such that (αn+1) = An · O(Kn+1).
But then αn+1O(Ln+1) = γnO(Ln+1) and there is a unit εn+1 ∈ E(Ln+1) such that
γn = ε · αn+1. Then δn = γs

n = εs in E(Ln+1)
s , which completes the proof. �

We now give the proof of Theorem 1:
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Proof Let n > n0. Since δn is singular, we have �(Ln) = �(δn). On the other hand,
δn = εs

n+1, as shown in Lemma 5 above, and point 3 of Lemma 3 implies herewith
that

�(Ln+1) ≤ �(εn+1) < �(δn) = �(Ln).

For large enough n, the vertical capitulation has thus as effect a decrease of �(Ln).
Since �(Ln0) is an integer, we reach in finitely many steps a contradiction; there is
indeed some n1 ≤ n0 + �(Ln0) such that �(Ln1) = 0, a contradiction to point D in
Lemma 3. This completes the proof of Theorem 1. �
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Heights and Principal Ideals of Certain
Cyclotomic Fields

René Schoof

1 Introduction

Any prime number l splits completely in the cyclotomic field Q(ζl−1). The primes
lying over l all have norm l and are Galois conjugate. Consider the following set of
prime numbers:

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71}.

In this expository note we give a self-contained proof of the following theorem

Theorem 1.1 For a prime number l the following are equivalent.

(i) l ∈ S;
(ii) the class number of Q(ζl−1) is 1;
(iii) The prime ideals lying over l in Q(ζl−1) are principal.

It is trivial that (ii) implies (iii). The fact that (i) implies (ii) is not trivial, but it is stan-
dard. In fact, using Odlyzko’s [5] discriminant bounds, Masley and Montgomery [4]
determined in the 1970’s all cyclotomic fields with class number 1. See [7]. For
proving that (i) implies (ii) one needs much less. We work this out in Sect. 3.

A proof of the fact that (iii) implies (i) was recently published by Bernat Plans [6].
It is an application of a theorem, proved in 2000 by Amoroso and Dvornicich [1],
supplemented by computations byHoshi [2]. In their paper, Amoroso andDvornicich
themselves already had used their theorem in a similar way proving that certain
cyclcotomic fields have nontrivial class numbers. We prove a weak version of their
theorem in Sect. 2.

Condition (iii) of Theorem 1.1 first came up in a 1974 paper by Lenstra [3] on
a problem related to Noether’s problem and the inverse problem of Galois theory.
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Lenstra showed that the set of prime numbers satisfying the condition has Dirichlet
density zero [3, , Cor.6.7].

We deduce Theorem 1.1 in Sect. 4 from the results in Sects. 2 and 3.

This note is based on an expository lecture given at the ICCGNFRT meeting at
the HRI, Allahabad, September 2017.

2 Heights

We recall some basic properties of heights. For every finite or infinite prime v of a
number field F , let |x |v denote the corresponding normalized valuation of x ∈ F∗.
This means that for finite primes v we put |x |v = q−v(x), where q is the cardinality
of the residue field. For infinite real primes we use the usual absolute value and for
complex primes its square.

Then the product formula holds: for every x ∈ F∗ we have
∏

v

|x |v = 1.

For any positive real t we put log+ t = max(log t, 0). The height h(x) of x ∈ F∗ is
defined as

h(x) =
∑

v

log+ |x |v.

Note that the value of h(x) depends not only on x but also on the number field F .
The absolute height

h(x)

[F : Q]
is independent of F and depends only on x .

It is easy to see that for all x, y ∈ F∗ and every prime v we have

|x − y|v ≤ 2uv max(1, |x |v) · max(1, |y|v),

where uv = 0, 1 or 2, depending on whether v is finite, real or complex, respectively.
Indeed, by symmetry we may assume that |x |v ≥ |y|v . Then the triangle inequality
implies that |1 − y/x |v is at most 2uv . It follows that |x − y|v ≤ 2uv |x |v and the
inequality follows.

Sharper upper bounds for |x − y|v give rise to lower bounds for the heights of
either x or y.

Proposition 2.1 Let F be a number field and let x and y be distinct elements of F∗.
For every prime v, let 0 < cv ≤ 1. If

|x − y|v ≤ 2uvcv · max(1, |x |v) · max(1, |y|v), for all primes v.
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Then
h(x) + h(y) ≥ −[F : Q] log 2 −

∑

v

log cv.

Proof By the product formula and the inequalities of the hypothesis we have

0 =
∑

v

log |x − y|v ≤
∑

v

log(2uvcv) + h(x) + h(y).

The result then follows from the fact that
∑

v uv = ∑
v infinite uv = [F : Q].

The following lemma is used in the proof of the result byAmoroso andDvornicich.

Lemma 2.2 Let F be a number field, let v be a finite prime of F and let χ,χ′ :
F∗ −→ F∗ be two homomorphisms that preserve v-integrality. Let c ∈ R>0. If we
have

|χ(α) − χ′(α)|v ≤ c, for all non-zeroα ∈ OF ,

then

|χ(α) − χ′(α)|v ≤ c · max(1, |χ(α)v) · max(1, |χ′(α)|v), for allα ∈ F∗.

Proof Let α ∈ F∗. By the Chinese remainder theorem, we can find an element β ∈
OF for which αβ ∈ OF and |β|v = max(1, |α|v)−1. Since χ preserves v-integrality,
this implies that |χ(β)|v = max(1, |χ(α)|v)−1. From the identity

χ(α) − χ′(α) = 1

χ(β)

(
χ(αβ) − χ′(αβ) + χ′(α)χ′(β) − χ′(α)χ(β)

)
,

we deduce the inequality

|χ(α) − χ′(α)|v ≤ c

|χ(β)|v max(1, |χ′(α)|v) = cmax(1, |χ(α)|v)max(1, |χ′(α)|v),

as required.

Proposition 2.3 (Amoroso and Dvornicich [1]) Let m be a positive integer and let
ζm denote a primitive m-th root of unity. Suppose that α ∈ Q(ζm)∗ is not a root of
unity. Then for every prime number p we have

h(α)

[F : Q] ≥ log(p/2)

2p
.

If p does not divide m, we have the sharper estimate

h(α)

[F : Q] ≥ log(p/2)

p + 1
.
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Proof Put F = Q(ζm). If p does not divide m, we apply Proposition 2.1 to x = αp,
y = σ(α) and cv = |p|v when v lies over p, while cv = 1 for the other primes v.
Here σ is the Frobenius automorphism in Gal(F/Q) of the primes lying over p. It
fixes every v lying over p. Since h(αp) = ph(α) and h(σ(α)) = h(α), the second
estimate then follows.

It remains to check that x = αp, y = σ(α) satisfy the hypotheses of
Proposition 2.1. Since α is not a root of unity, the elements x and y are distinct.
In order to check the inequality in the condition of Proposition 2.1, we recall that
the ring of integers of F is Z[ζm]. The fact that σ(ζm) = ζ

p
m , implies therefore that

σ(α) ≡ αp (mod p) for all integralα. This implies that the inequality holds for inte-
gral x = σ(α) and y = αp. An application of Lemma 2.2 to the homomorphisms
χ(α) = σ(α) and χ′(α) = αp shows that it also holds for all α ∈ F∗ and we are
done.

If p divides m, we we apply Proposition 2.1 to x = αp, y = σ(α)p and and
cv = |p|v when v lies over p, while cv = 1 for the other primes v. Here σ generates
the Galois group of F over its subfieldQ(ζm/p). The first inequality follows readily.

It remains to check the hypotheses of Proposition 2.1. Since σ fixes Q(ζm/p),
we have σ(ζm) = ζ tm for some t ≡ 1 (mod m/p). It follows that σ(ζm)p = ζ

p
m and

hence σ(α)p ≡ αp (mod p) for all α ∈ Z[ζm]. In other words, the inequality in the
hypothesis of Proposition 2.1 holds for x = σ(α)p and y = αp for every integral
α ∈ F . An application of Lemma 2.2 to the homomorphisms χ(α) = σ(α)p and
χ′(α) = αp shows that the inequality holds for all α ∈ F∗.

Finally, if x and y were equal, then α = σ(α)ζ ′ for some ζ ′ ∈ μp. The kernel
of the homomorphism μm −→ μm given by ξ 	→ σ(ξ)/ξ = ξt−1, is μm/p. Therefore
the image is μp. It follows that ζ ′ = σ(ξ)/ξ for some ξ ∈ μm . This means that ξα is
fixed by σ and is hence contained in the subfield Q(ζm/p). Since α and ξα have the
same height, we may replace α by ξα and F = Q(ζm) by Q(ζm/p). We repeat this
until either x 
= y, in which case all conditions of Proposition 1 are satisfied, or until
p does not divide m, in which case we have the sharper estimate that we already
proved.

Corollary 2.4 Let l be a prime number and suppose that the prime ideals ofQ(ζl−1)

lying over l are principal. Then we have

log l

φ(� − 1)
≥ log(5/2)

10
,

where φ is Euler’s function. Moreover, for any prime p for which l 
≡ 1 (mod p),
we have

log l

φ(� − 1)
≥ log(p/2)

p + 1
.

Proof We put F = Q(ζl−1) and, as in [1, Cor.1], we put α = π/π, where π is a
generator of a prime of F lying over l. Since l splits completely in F , the quotient
π/π = α is not a root of unity. Since h(α) = log l, an application of Proposition 2.3
implies the result.



Heights and Principal Ideals of Certain Cyclotomic Fields 93

Remark 2.5 For p = 2, the bounds of Proposition 2.3 are trivial. However, one
can obtain nontrivial bounds by observing that for α ∈ Z[ζm] one has σ(α)2 ≡
α4 (mod 4) when m 
≡ 0 (mod 4) and σ is the Frobenius automorphism of the
primes lying over 2. When m ≡ 0 (mod 4) and σ is the automorphism of Q(ζm)

for which σ(ζm) = ζ
1+m/2
m = −ζm , one has σ(α)2 ≡ α2 (mod 4). This leads to the

inequality
h(α)

[F : Q] ≥ log(2)

6
,

for all m and all α ∈ Q(ζm)∗ that are not a root of unity.

Remark 2.6 In the proof of Proposition 2.3 of the case where p divides m, one may
actually take cv = |p|p/(p−1)

v for the primes v lying over p. This is slightly smaller
and gives a better estimate in Corollary 2.4. It makes little difference for the proof
of Theorem 1.1.

3 Discriminant Bounds

In this section,we explain how to prove the implication (i)⇒ (ii) of themain theorem.
We use Odlyzko’s discriminant bounds [5].

In general, the class number of a cyclotomic fieldQ(ζm) is the product of the class
number of the maximal real subfield Q(ζm)+ of Q(ζm) and the so-called relative
class number. The latter is a product of generalized Bernoulli numers and is easy to
compute [7, Theorem 4.17]. It is an easy matter to check that for the primes in the
set S of Theorem 1.1, the relative class numbers of Q(ζl−1) are all equal to 1. This
is left to the reader, who may prefer to consult the table in [7, p.412]. To show that
the class numbers themselves are also 1, it suffices to show that the class numbers of
the subfields Q(ζm)+ are 1.

The absolute degree ofQ(ζm) overQ is φ(m). The root discriminant δm ofQ(ζm)

is the φ(m)-th root of the absolute value of its discriminant. Explicitly, δm is equal
to m

∏
p p

−1/(p−1), where the product runs over the prime divisors of m. See [7,
Proposition 2.7]. For m > 2, the subfieldQ(ζm)+ has absolute degree 1

2φ(m), while
its root discriminant is at most δm .

Consider the set S of primes of Theorem 1.1. For the primes l = 2, 3, 5, 7, 11 and
13, the field Q(ζl−1)

+ is either Q or one of the quadratic fields Q(
√
3) or Q(

√
5). It

is well known and easy to verify that the class numbers of these fields are equal to 1.
This leaves us with the primes l = 17, 19, 23, 29, 31, 37, 41, 43, 61, 67 and 71.

In Table1 we list the degrees and root discriminants of these fields.
The root discriminant of any totally real number of degree d is bounded below by

Odlyzko’s discriminant boundOdl(d). See [7, , 11.4]. The function Odl((d) is mono-
tonically increasing. For degree d ≤ 14, we list its values, or rather approximations
to them, in Table2. See also [5].
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Table 1 Degrees and root discriminants of Q(ζl−1)

l φ(l − 1) δl−1 l φ(l − 1) δl−1

17 8 8.000 41 16 13.375

19 6 5.197 43 12 8.767

23 10 8.655 61 16 11.583

29 12 10.123 67 20 14.991

31 8 5.792 71 24 16.923

37 12 10.393

Table 2 Odlyzko’s bounds

d Odl(d) d Odl(d) d Odl(d) d Odl(d)

1 0.996 5 6.514 9 11.787 13 16.044

2 2.222 6 7.926 10 12.941 14 16.971

3 3.609 7 9.279 11 14.034

4 5.062 8 10.568 12 15.068

The Hilbert class field of Q(ζl−1)
+ is totally real. Its degree over Q(ζl−1)

+ is equal
to the class number of Q(ζl−1)

+. Since it is an everywhere unramified extension of
Q(ζl−1)

+, its root discriminant is equal to the root discriminant of Q(ζl−1)
+, which

is at most δl−1. Therefore, we can use Odlyzko’s bounds to bound the class number
h of Q(ζl−1)

+. To be precise, we have

hφ(l − 1)/2 < d,

for any d for which Odl(d) exceeds δl−1. It follows easily from the entries in the two
tables that h < 2 in each case. For instance, for l = 71, we have δl−1 = 16.923 . . ..
Since Odl(14) = 16.971, we may take d = 14 and we find that h · 1

2 · 24 < 14.
This implies that for the primes in the set S of Theorem 1.1, the class numbers of

Q(ζl−1)
+ are equal to 1, as required.

4 Plans’ Theorem

In this section, we prove the implication (iii) ⇒ (i) of Theorem 1.1.

The degree [Q(ζl−1 : Q] = φ(l − 1) grows faster than log l. In fact, it is easy to
prove that φ(l − 1) ≥ √

(l − 1)/2. Therefore the first inequality of Corollary 2.4 can
only hold for finitely many primes. It is not difficult to check that the prime numbers l
that satisfy the first inequality of Corollary 2.4 are necessarily≤ 211. An application
of the second inequality of Corollary 2.4 with the primes p ≤ 11 reduces this bound
to 79 and excludes l = 59. The only primes not in S are l = 47, 53, 73 and 79. The
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relevant cyclotomic fields are Q(ζm) with m = 23, 52, 72 and 39, respectively. We
deal with them one by one.

The equation x2 + 23y2 = 4 · 47 has no solutions in integers. This implies that
there is no element of norm 47 in the ring of integers of the quadratic subfield
Q(

√−23) of Q(ζ23). This means that the prime ideals over 47 of Q(
√−23) are not

principal. It follows that the prime ideals over 47 of Q(ζ23) are not principal either.
Similarly, the equation x2 + 39y2 = 4 · 79 has no solutions in integers. It follows
that the prime ideals over 79 of Q(ζ39) are not principal.

Since the image of the local normmap Z13[ζ13]∗ −→ Z∗
13 is the group 1 + 13Z13,

the norm map from Q(ζ52) to Q(i) maps numbers that are units at the primes lying
over 13 to elements of Q(i)∗ that are congruent to 1 (mod 13). Therefore, the norm
map from the class group Cl52 ofQ(ζ52) to the (trivial) class group ofQ(i) ‘factors’
through the ray class group of conductor 13 ofQ(i). In other words, the norm induces
a homomorphism

N : Cl52 −→ (Z[i]/(13))∗/〈i〉.

It maps the class of an ideal I of Z[ζ52] that is prime to 13, to a generator of the
ideal N (I ) of Z[i]. In particular, any prime of Z[ζ52] lying over 53 is mapped to
the image of 7 ± 2i in the ray class group. Since 7 ± 2i has order 3 in the group
(Z[i]/(13))∗/〈i〉, this image is nontrivial. Therefore the class in Cl52 of a prime
lying over 53 is not trivial either. It follows that the primes over 53 inQ(ζ52) are not
principal.

Similarly, the image of the local norm map Z3[ζ9]∗ −→ Z∗
3 is the group 1 + 9Z3.

Therefore, the norm map from Q(ζ72) to Q(
√−2) maps numbers that are units at

the primes lying over 3 to elements ofQ(
√−2)∗ that are congruent to 1 (mod 9). It

follows that the norm maps the class group Cl72 of Q(ζ72) to the ray class group of
conductor 9 of Q(

√−2). In other words, the norm induces a homomorphism

N : Cl72 −→ (Z[√−2]/(9))∗/{±1}.

It maps the class of any prime over 73 to the image of 1 ± 6
√−2 in the ray class

group. Since 1 ± 6
√−2 has order 3 in the group (Z[√−2]/(9))∗/{±1}, this image

is nontrivial. Therefore the class in Cl72 of a prime lying over 73 is not trivial either.
This proves Theorem 1.1.
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Distribution of Residues Modulo p Using
the Dirichlet’s Class Number Formula

Jaitra Chattopadhyay, Bidisha Roy, Subha Sarkar and R. Thangadurai

1 Introduction

Let p be an odd prime number. A number a ∈ {1, . . . , p − 1} is said to be a quadratic
residue modulo p, if the congruence

x2 ≡ a (mod p)

has a solution in Z. Otherwise, a is said to be a quadratic non-residue modulo p.
The study of distribution of quadratic residues and quadratic non-residues modulo
p has been considered with great interest in the literature (see for instance [1, 3–7,
10, 12, 13, 15–25]).

Since Z/pZ is a field, the polynomial X p−1 − 1 has precisely p − 1 nonzero
solutions over Z/pZ. As p is an odd prime, we see that X p−1 − 1 = (X (p−1)/2 +
1)(X (p−1)/2 − 1) and one can conclude that there are exactly p−1

2 quadratic residues
as well as non-residues modulo p in the interval [1, p − 1].
Question 1 For an odd prime number p and a given natural number k with
1 ≤ k ≤ p − 1, we let Sk = {a ∈ {1, 2, . . . , p − 1} : a ≡ 0 (mod k)} be the sub-
set consisting of all natural numbers which are multiples of k. How many quadratic
residues (respectively, non-residues) lie inside Sk?
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In the literature, there are many papers addressed similar to Question 1 and to
name a few, one may refer to [8, 9, 11]. First we shall fix some notations as follows.
We denote by Q(p, Sk) (respectively, N (p, Sk)) the number of quadratic residues
(respectively, quadratic non-residues) modulo p in the subset Sk of the interval
[1, p − 1].

The standard techniques in analytic number theory answers the above question as

Q(p, Sk) = p − 1

2k
+ O(

√
p log p) (1)

and the same result is true for N (p, Sk) for all k (we shall be proving this fact
in this article). However, it might happen that for some primes p, we may have
Q(p, Sk) > N (p, Sk) or Q(p, Sk) < N (p, Sk). Using the standard techniques, we
could not answer this subtle question. In this article, we shall answer this using the
Dirichlet’s class number formula for the field Q(

√−p), when k = 2, 3 or 4. More
precisely, we prove the following theorems.

Theorem 1 Let p be anoddprime. If p ≡ 3 (mod 4), then for any ε with0 < ε < 1
2 ,

we have

Q(p, S2) − p − 1

4
�ε p

1
2 −ε .

When the prime p ≡ 1 (mod 4), we have

Q(p, S2) = p − 1

4
.

Corollary 1.1 Let p be an odd prime and let O be the set of all odd integers in
[1, p − 1]. If R = N (p, S2) or R = Q(p,O), then for any ε with 0 < ε < 1

2 , we
have

p − 1

4
− R �ε p

1
2 −ε, if p ≡ 3 (mod 4).

When the prime p ≡ 1 (mod 4), we have

R = p − 1

4
.

Theorem 2 Let p be an odd prime. If p ≡ 1, 11 (mod 12), then for any ε with
0 < ε < 1

2 , we have

Q(p, S3) − p − 1

6
�ε p

1
2 −ε .

When p ≡ 5, 7 (mod 12), in this method, we do not get any finer information
other than in (1).

Corollary 1.2 Let p be an odd prime. If p ≡ 1, 11 (mod 12), then for any ε with
0 < ε < 1

2 , we have
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p − 1

6
− N (p, S3) �ε p

1
2 −ε .

Theorem 3 Let p be an odd prime. Then, for p ≡ 3 (mod 8), we have

Q(p, S4) = 1

2

[
p − 1

4

]
.

Also, for any 0 < ε < 1
2 , we have

Q(p, S4) − p − 1

8
�ε p

1
2 −ε, if p ≡ 1 (mod 4),

and

Q(p, S4) − 1

2

[
p − 1

4

]
�ε p

1
2 −ε; if p ≡ 7 (mod 8).

Corollary 1.3 Let p be an odd prime. Then, for p ≡ 3 (mod 8), we have

N (p, S4) = 1

2

[
p − 1

4

]
.

Also, for any 0 < ε < 1
2 , we have

p − 1

8
− N (p, S4) �ε p

1
2 −ε; if p ≡ 1 (mod 4),

and
1

2

[
p − 1

4

]
− N (p, S4) �ε p

1
2 −ε; if p ≡ 7 (mod 8).

Using Theorems 1 and 3, we conclude the following corollary.

Corollary 1.4 Let p be an odd prime such that p ≡ 3 (mod 8). Then for any ε with
0 < ε < 1

2 , we have

Q(p, S2\S4) − 1

2

⌊
p − 1

4

⌋
�ε p

1
2 −ε .

2 Preliminaries

In this section, we shall state many useful results as follows.

Theorem 4 (Polya–Vinogradov) Let p be any odd prime and χ be a non-principal
Dirichlet character modulo p. Then, for any integers 0 ≤ M < N ≤ p − 1, we have
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∣∣∣∣∣
N∑

m=M

χ(m)

∣∣∣∣∣ ≤ √
p log p.

Let us define the following counting functions as follows. Let

f (x) = 1

2

(
1 +

(
x

p

))
for all x ∈ (Z/pZ)∗ (2)

and

g(x) = 1

2

(
1 −

(
x

p

))
for all x ∈ (Z/pZ)∗ (3)

where

( ·
p

)
is the Legendre symbol. Then, we have

f (x) =
{
1; if x is a quadratic residue (mod p),
0; otherwise.

and

g(x) =
{
1; if x is a quadratic non-residue (mod p),
0; otherwise.

In the following lemma, we prove the “expected” result.

Lemma 1 For an integer k ≥ 1 and an odd prime p, let Sk = k I where I is the
interval I = {1, 2, . . . , [(p − 1)/k]}. Then

Q(p, Sk) = 1

2

[
p − 1

k

]
+ 1

2

(
k

p

) (p−1)/k∑
m=1

(
m

p

)
(4)

and hence

Q(p, Sk) = 1

2

[
p − 1

k

]
+ O(

√
p log p).

The same expressions hold for N (p, Sk) as well.

Proof We prove for Q(p, Sk) and the proof of N (p, Sk) follows analogously. Let
ψk be the characteristic function for Sk which is defined as

ψk(m) =
{
1; if m ∈ Sk,
0; if m /∈ Sk .

Now, by (2), we see that
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Q(p, Sk) =
∑
m∈Sk

f (m) =
p−1∑
m=1

ψk(m) f (m) = 1

2

p−1∑
m=1

ψk(m)

(
1 +

(
m

p

))

= 1

2

[
p − 1

k

]
+ 1

2

(
k

p

) (p−1)/k∑
m=1

(
m

p

)
, (5)

which proves (4). Then, by Theorem 4, we get

Q(p, Sk) = 1

2

[
p − 1

k

]
+ O(

√
p log p).

This finishes the proof. �

Letq > 1 be a positive integer and letψ be a nontrivial quadratic charactermodulo

q. Let L(s, ψ) =
∞∑
n=1

ψ(n)

ns
be the Dirichlet L-function associated to ψ . Since ψ is

a nontrivial homomorphism, L(s, ψ) admits the following Euler product expansion:

L(s, ψ) =
∏
p�q

(
1 − ψ(p)

ps

)−1

for all complex number s with 
(s) > 1. This, in particular, shows that L(s, ψ) > 0
for all real number s > 1. By continuity, it follows that L(1, ψ) ≥ 0. Dirichlet proved
that L(1, ψ) �= 0 in order to prove the infinitude of prime numbers in an arithmetic
progression. Hence, it follows that L(1, ψ) > 0 for all nontrivial quadratic character
ψ . Since L(1, ψ) > 0, it is natural to expect somenontrivial lower bound as a function
of q. This is what was proved by Landau–Siegel in the following theorem. The proof
can be found in [14].

Theorem 5 Let q > 1 be a positive integer and ψ be a nontrivial quadratic char-
acter modulo q. Then for each ε > 0, there exists a constant C(ε) > 0 such that

L(1, ψ) >
C(ε)

qε
.

The following lemma is crucial for our discussions. This lemma connects the
sum of Legendre symbols and the Dirichlet L-function associated with Legendre
symbol via the famous Dirichlet class number formula for the quadratic field. For an

odd prime p, the Legendre symbol

( ·
p

)
= χp(·) is a quadratic Dirichlet character

modulo p. We also define a character

χ4(n) =
{

(−1)(n−1)/2; if n is odd,
0; otherwise.
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Then one can define the Dirichlet character χ4p as χ4p(n) = χ4(n)χp(n) for any odd
prime p and similarly, we can define χ3p(n) = χ3(n)χp(n) for any odd prime p > 3.
Clearly, χ4p and χ3p are nontrivial and real quadratic Dirichlet characters.

Lemma 2 (See for instance, Page 151, Theorem 7.2 and 7.4 in [24]) Let p > 3 be
an odd prime and for any real number � ≥ 1, we define

S(1, �) =
∑

1≤m<�

χp(m). (6)

Then we have the following equalities.

(1) For a prime p ≡ 3 (mod 4), we have

S(1, p/2) =
√
p

π

(
2 − χp(2)

)
L(1, χp),

where L(1, χp) is the Dirichlet L-function; Also, we have

S(1, p/3) =
√
p

2π
(3 − χp(3))L(1, χp).

(2) For a prime p ≡ 1 (mod 4), we have

S(1, p/3) =
√
3p

2π
L(1, χ3p);

Also, we have

S(1, p/4) =
√
p

π
L(1, χ4p).

Now, we need the following lemma, which deals with the vanishing sums of
Legendre symbols. This was proved in [2]. For more such relations one may refer to
[8].

Lemma 3 [2] Let p be an odd prime. Then the following equalities hold true.

(1) If p ≡ 1 (mod 4), then we have
(p−1)/2∑
n=1

(
n

p

)
= 0.

(2) If p ≡ 3 (mod 8), then we have
�p/4∑
n=1

(
n

p

)
= 0.

(3) If p ≡ 7 (mod 8), then we have
�p/2∑
�p/4�

(
n

p

)
= 0.
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3 Proof of Theorem 1

Let p be a given odd prime. We want to estimate the quantity Q(p, S2). Therefore,
by (5), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+ 1

2

(
2

p

) (p−1)/2∑
n=1

(
n

p

)
. (7)

Now, we consider three cases as follows.

Case 1. p ≡ 1 (mod 4)

In this case, since
(p−1)/2∑
n=1

(
n

p

)
= 0, by Lemma 3 (1), the Eq. (7) reduces to

Q(p, S2) = p − 1

4
,

which is as desired.

Case 2. p ≡ 3 (mod 8)

By Lemma 2 (1) and by (7), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+

√
p

π

(
2 − χp(2)

)
L(1, χp).

In this case, we know that
(

2
p

)
= −1. Therefore, we get

Q(p, S2) = 1

2

[
p − 1

2

]
+ 3

√
p

π
L(1, χp).

Let ε be any real number such that 0 < ε < 1
2 . Then by Theorem 5, we get

Q(p, S2) − 1

2

[
p − 1

2

]
�ε p

1
2 −ε,

as desired.

Case 3. p ≡ 7 (mod 8).

Since p ≡ 7 (mod 8), we know that

(
2

p

)
= 1. Therefore, by Lemma 2 (1) and

by (7), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+

√
p

π
L(1, χp) = 1

2

[
p − 1

2

]
+

√
pL(1, χp)

π
.
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Let ε be any real number such that 0 < ε < 1
2 . Then by Theorem 5 we get

Q(p, S2) − 1

2

[
p − 1

2

]
�ε p

1
2 −ε

which proves the theorem. �

4 Proof of Theorem 2

Let p be a given odd prime. We want to estimate the quantity Q(p, S3). Therefore,
by (5), we get,

Q(p, S3) = 1

2

[
p − 1

3

]
+

(
3

p

) (p−1)/3∑
n=1

(
n

p

)
. (8)

Now, we consider the following cases.

Case 1. p ≡ 1 (mod 12)

Note that, in this case, we have

(
3

p

)
= 1. By (8) and by Lemma 2 (2), we get

Q(p, S3) − 1

2

(
p − 1

3

)
= 1

2

√
3p

2π
L(1, χ3χp)

≥
√
3p

4π

C(ε)

(3p)ε

�ε p
1
2 −ε,

for any given 0 < ε < 1
2 in Theorem 5.

Case 2. p ≡ 11 (mod 12)

In this case, we have,

(
3

p

)
= 1. Then again by (8) and by Lemma 2 (1), we get

Q(p, S3) = 1

2

[
p − 1

3

]
+ 1

2

√
3p

2π
(3 − χp(3))L(1, χp).

Hence

Q(p, S3) − 1

2

[
p − 1

3

]
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5. �
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5 Proof of Theorem 3

At first, using the Eq. (5), we note that

Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

(
4

p

) (p−1)/4∑
m=1

(
m

p

)
= 1

2

[
p − 1

4

]
+ 1

2

(p−1)/4∑
m=1

(
m

p

)
.

(9)
Case 1. p ≡ 1 (mod 4)

Now, we apply Lemma 2 (2) in (9) and we get

Q(p, S4) = 1

2

(
p − 1

4

)
+ 1

2

√
p

π
L(1, χ4χp).

Hence

Q(p, S4) − p − 1

8
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5.

Case 2. p ≡ 3 (mod 8)

In this case, we apply Lemma 3 (2) which says that
[(p−1)/4]∑

n=1

(
m

p

)
= 0. Hence,

by (9), we get

Q(p, S4) = 1

2

[
p − 1

4

]
.

Case 3. p ≡ 7 (mod 8)

First note that by Lemma 3 (3), we have

∑
p−1
4 <m<

p−1
2

(
m

p

)
= 0.

Therefore, the Eq. (9) can be rewritten as

Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

∑
1≤m≤(p−1)/4

(
m

p

)
+ 1

2

∑
(p−1)/4≤m≤(p−1)/2

(
m

p

)

= 1

2

[
p − 1

4

]
+ 1

2

p−1
2∑

m=1

(
m

p

)
.

Now, by Lemma 2 (1), we get
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Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

√
p

π
L(1, χp).

Hence

Q(p, S4) − 1

2

[
p − 1

4

]
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5. This proves the result. �
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On Class Number Divisibility of Number
Fields and Points on Elliptic Curves

Debopam Chakraborty

1 Introduction

The class group of a number field K measures how far its ring of integers is from
having unique factorization into irreducible elements. It is the quotient of the group
of all fractional ideals of K by the subgroups of principal fractional ideals. It is well
known from class field theory that the ideal class group is also the Galois group of
the maximal unramified abelian extension of K .

The class number problem originated even before the concept of ideal was discov-
ered. It came from the work of Legendre and Euler in quadratic forms. Later in 1801,
Gauss proposed three conjectures regarding class number of quadratic number fields
in his book “Disquisitiones Arithmeticae”. Two of them were about number fields
with negative discriminant and they have been completely answered through contri-
bution of several mathematicians, most notably Hecke, Deuring, and Heilbronn in
1930. For real quadratic fields, Gauss conjectured that there will be infinitely many
real quadratic fields with class number as one. This is still an open problem and not
much progress has been made regarding this conjecture till now.

2 Class Number Related Questions

Difficulty in solving the Gauss’ Conjecture for Real Quadratic Fields, leads mathe-
maticians to turn their focus on several related class number questions for number
fields such as investigating class number divisibility for number fields of smaller
degree, class number of a number field and its relation with fundamental unit, points
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on an elliptic curve, and the behavior of the class number of number field generated
from that point.

Soleng [5] gave a construction of families of quadratic number fields from an
elliptic curve having ideal class group isomorphic to the torsion group of the curve.
A. Sato constructed quadratic number fields with class number divisible by 5 from
elliptic curves in [4]. Lemmermeyer [3] showed amethod for constructing unramified
quadratic extension of cubic fields using points on suitable elliptic curves.

The main focus of the talk is to give a glimpse of aforementioned work of Soleng
and also to present one original work of the speaker [2] (a joint work with Prof.
AnupamSaikia)whichwas inspired by the aforementionedwork of F. Lemmermeyer.

3 Homomorphisms from the Group of Rational Points on
Elliptic Curves to Class Group of Number Fields

In his 1994 paper [5], R. Soleng was looking to find the correspondence between
rational point on an elliptic curve and nontrivial ideal classes of number fields. To find
the answers of the previously mentioned questions, Soleng has started with defining
a particular subset of E(Q), named as set of “primitive points” defined as follows:

Definition 3.1 Let P = (x, y) be a rational point on the elliptic curve E : Y 2 =
X3 + a2X2 + a4X + a6 defined over Z. The point P is said to be “primitive” if
gcd(x, 2y, x2 + a2x + a4) = 1.

The point at infinity is considered as primitive by convention.

Then using the following two results, he explicitly gave a homomorphism from a
subgroup of the Mordell–Weil group of E(Q) to the ideal class group of Q(

√
a6).

Proposition 3.2 Let E be an elliptic curve defined over the rational integers by
the equation Y 2 = x3 + a2X4 + a4X + a6, then the subset of E(Q) consisting of
primitive points is a group.

Theorem 3.3 (Soleng) Let E be an elliptic curve defined over Z by the equation

Y 2 = x3 + a2X
2 + a4X + a6

and let E(Q)prim be the subset of the Mordell–Weil group consisting of primitive
points, then the map

P = ( A

C2
,
B

C3

) → (A,−kB + √
a6),

where k is an integer satisfying kC3 + l A = 1 for some l ∈ Z, is a homomorphism
from the group of primitive rational points on the curve to the ideal class group of
the order Z + Z

√
a6 in Q(

√
a6).



On Class Number Divisibility of Number Fields and Points on Elliptic Curves 111

The previously mentioned theorem has many interesting consequences that have
been noted by the author himself in the same paper. It gives an affirmative answer to
a conjecture of Yves Hellegourach.

4 A Construction for Biquadratic Fields of Even Class
Number

As mentioned earlier, Lemmermeyer [3] showed a method for constructing unrami-
fied quadratic extension of cubic fields using points on suitable elliptic curves.

The genus field ofQ(
√
a,

√
b) has been discussed in detail by Yi and Zhe [6], Bae

and Yue [1], and Yue [7] when at least one of a and b is a prime of the form 1 mod
4. Here we present quadratic unramified extensions of infinitely many biquadratic
fields Q(

√
r ,

√
m) where, if m is suitably chosen, both r and m will be composite

or none of r and m will be a prime congruent to 1 mod 4. The construction can be
applied for infinitely many biquadratic fields Q(

√
ri ,

√
3) where ri ’s are square-free

composite numbers. The main theorem is as follows.

Theorem 4.1 Let m �= 0, 1 be a square-free integer which is divisible by 3 if it is
positive. Let P0 = ( r0

t20
, s0
t30

)
be any non-torsion point of the elliptic curve y2 = x3 + m

such that r0 is oddandnon-square. Let
( ri
t2i
, si
t3i

)=2i P0 for eachnatural number i . Then

the biquadratic field Ki = Q(
√
ri ,

√
m) has an everywhere unramified quadratic

extension Ki (
√

βi ), where βi is either ±(si + t3i
√
m) or 3(si + t3i

√
m).

The proof of the main theorem depends on the result of the following lemmas:

Lemma 4.2 Consider the duplication formula for the point P = ( r
t2 ,

s
t3 ) on y2 =

x3 + m:

(
r(2P)

t (2P)2
,
s(2P)

t (2P)3

)
= 2P =

(
r(9r3 − 8s2)

(2st)2
,
27r6 − 36r3s2 + 8s4

(2st)3

)
(1)

Suppose m is square-free and r is odd. If 3 � s, the fractions on the right-hand side
are already in their reduced form. When s = 3s ′ the fractions on the right-hand side
above reduces to

(
r(2P)

t (2P)2
,
s(2P)

t (2P)3

)
= 2P =

(
r(r3 − 8s ′2)

(2s ′t)2
,
r6 − 12r3s ′2 + 24s ′4

(2s ′t)3

)
. (2)

Lemma 4.3 Let P = (
r
t2 ,

s
t3

)
beanon-torsionpoint of the elliptic curve Em satisfying

certain conditions with t even. Then α and its conjugate ᾱ over Q(
√
r) generate

coprime ideals in the ring OK of integers in K . Moreover, there exists an ideal a in
OK such that 〈α〉 := αOK = a2.
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Lemma 4.4 The extension K (
√

β) over K = Q(
√
r ,

√
m) is quadratic and unram-

ified at all finite primes.

Lemma 4.5 The infinite primes do not ramify in K (
√

β)/K.

It can also be shown that one can start with a non-torsion point P0 and repeat the
procedure of the previous section for each multiple Pi = 2i (P0) = ( ri

t2i
, si
t3i

)
.
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Small Fields with Large Class Groups

Florian Luca and Preda Mihăilescu

1 Introduction

It is a folklore expectation, that for a given abelian group G, one can construct
quadratic fieldsK/Qwhich class groupC(K) = G.Manypapers have beenpublished
in the literature showing how one can construct fields K of a given degree d over
Q whose class groups contain a copy of H , where H is some given abelian group,
usually of small rank (that is, a group which can be realised as a subgroup of (Z/nZ)r

for some small r ).Wemention papers byMestre [5], Bilu and Luca [1], Levin [4] and
Bilu and Gillibert [2]. For example, Mestre [5] showed that there are infinitely many
quadratic K such that C(K) contains a copy of (Z/5Z)3, while Bilu and Gillibert
[2] have extended Mestre’s result. In private discussions of the second author at
the Harish-Chandra Research Institute, Francois Biasse mentioned that having a
simple construction of small degree fields with large class groups might be useful
in cryptography. Another interesting connection relates class groups to so-called
algebraic lattices, with numerous applications in coding and cryptography. However,
recent research showed that algebraic lattices do not, in general, behave like random
lattices with respect to the shortest vector problem (SVP), which is easier to solve
in the case of classes from the minus part of abelian extensions, where Stickleberger
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annihilators can be used [3].Our constructionswork inCMfields, so theStickelberger
attack can be avoided.

With this motivation, in this paper, we offer the following result:

Theorem 1 Let K be a CM extension of Q. Let p be an odd prime and n a positive
integer. Then there is an abelian extension L/K of degree p such that C(L) contains
a copy of (Z/pZ)n.

A related result is given by Washington in [6] Proposition 3.8, and the proof uses
different arguments from ours.

2 Proof of the Theorem

Throughout this paper, all the fields denoted K and L are Galois and CM, that is
quadratic imaginary extensions of a totally real extension ofQ. LetK be an arbitrary
Galois CM field and Q = {qi : i = 1, 2, . . . , n} be a set of n primes such that qi is
totally split in K and qi ≡ 1 (mod p). Put N = �1≤i≤nqi . We will take L ⊃ K to
be a suitable degree p extension of K, which we will describe shortly.

First, somenotation. The global complex conjugation of the fieldC embeds canon-
ically in Gal(L/Q), and we denote this embedding by j ∈ Gal(L/Q). Complex
conjugation acts naturally on various groups attached to L. For example, it induces a
canonical decomposition of the group of principal ideals P(L) of L and therefore of
the class groupC(L) and in particular of the p-Sylowgroupdenoted A(L) = (C(L))p,
in minus and class parts. In the instance of the principal ideal group, these are given
by

P(L)+ = {(α)j+1 : (α) ∈ P(L)}, P(L)− = {(α)1−j : (α) ∈ P(L)}.

That is, P(L)+ and P(L)−} are principal ideals of the form (αᾱ) andα/ᾱ, respec-
tively. Clearly, P(L)2 = P(L)− · P(L)+, and similarly for all other groups. Since p
is odd, we have that A(L) = A(L)p

k+1 for some large enough k, therefore we deduce
that in fact

A(L) = A(L)p
k+1 = A+(L) · A−(L).

Form ∈ N, we denote by ζm a primitivem-th roots of unity and byCm = Q[ζm] the
m-th cyclotomic extension. Recall thatCm,Cm ′ are linearly disjoint overQwhenever
gcd(m,m ′) = 1.

Lemma 1 Let CN = Q[ζN ]. Then there is a subfield F ⊂ CN of degree p over Q
such that all the primes qi are ramified in F/Q for all i = 1, . . . , n.

Proof Induction on n. For n = 1, the index N is prime and CN is totally ramified
at q and it contains a unique extension of degree p over Q; the claim follows by
letting F be this extension. Assume next that n > 1. Let M ⊂ CN be the maximal
p-elementary subextension of Q in CN . Thus, Gal(M/Q)p = 1 and M is maximal
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with this property. ThenM is the compositum of n cyclic fields of degree p, obtained
for each of the primes qi as in the case n = 1. In particular, GN := Gal(M/Q) ∼=
(Z/pZ)n .

When n = 2, the inertia group I (qi ) ⊂ GN of each of the two primes q1 and q2
fixes one of the p2−1

p−1 = p + 1 subfields of degree p in CN . Consequently, there are
(p + 1) − 2 = p − 1 > 0 subfields of degree p inM, in which both primes ramify.
For n > 2, the inertia groups I (qi ) fix subfields with Galois groups of p-rank equal
to n − 1. A simple combinatorial argument implies that there are pn−1

p−1 subfields of
M, which are fixed by a cyclic group of order p. Out of these, only n of them are fixed
by some inertia group I (qi ) for some i ∈ {1, . . . , n}. Thus, there are pn−1

p−1 − n > 0
fields in which all the qi ’s are totally ramified, and we choose F in any of these
subfields. �

Wenow letK be an arbitrary Galois CMfield, Q be a list of n primes as above, and
F ⊂ CN be cyclic extension of degree p overQ inwhich all these primes are ramified,
which exists by Lemma 1. We let L = KF. This is an abelian extension of degree p
of K, for otherwise F will be a subfield of K; this is false, since the qi ’s ramify in F
but not in K (being split in K, by hypothesis). Let � = Gal(F/Q) = Gal(L/K) be
generated by σ, so� = 〈σ〉. We writeN = ∑p−1

i=0 σi for the algebraic norm attached
to this group and s = σ − 1 for a generator of its augmentation. The next fact follows
from the Hasse Norm Principle.

Lemma 2 There is an injective homomorphism

ψ : P(K)−/N (P(L)−) ↪→ A−(L). (1)

Let R = (Z/pZ)[K:Q]/2 and

δ =
{
1 if ζp ∈ K;
0 otherwise.

Then there is a map of Fp-modules,

κ : Rn/(Z/pZ)δ ↪→ P(K)−/N (P(L)−),

such that the map
ψ ◦ κ : Rn/(Z/(p · Z))δ ↪→ A−(L) (2)

is an injection. In particular, the p-rank of A−(K) is at least as large as n · [K+ :
Q] − δ.

Proof The group K
×/N (L×) has exponent p, since for x ∈ K

× ⊂ L
× we have

x p = N (x) ∈ N (L×). Thus, N := P(K)−/N (P(L)−) has exponent p. We define
an injection

ψ : N → Ker(N : A−(L) → A−(K))



116 F. Luca and P. Mihăilescu

as follows. Let a ∈ A−(L) have normN (a) = 1 and let A ∈ a be some ideal. Then
N (A) = (α) ∈ P(K) and N (A1−j ) = (α/ᾱ) is a principal ideal whose generator
is uniquely defined up to roots of unity. Indeed, suppose that (α) = (β) and thus
(α1−j ) = (β1−j ) as principal ideals. Then there is a unit ε ∈ K such that α1−j =
εβ1−j as algebraic numbers. By multiplying with the complex conjugate, we obtain
ε1+j = 1. The Kronecker Unit Theorem implies that ε must be a root of unity.
If ζp /∈ K, then α1−j is the unique generator of its principal ideal, otherwise all
the generators are of the form ζkpα

1−j for k ∈ {0, 1, . . . , p − 1}. In this case, we
have a surjective morphism ι : (K×)− → P−(K) with kernel 〈ζp〉. Note also, that
Aj ∈ a−1 since a ∈ A−(L), thereforeA1−j ∈ a2. If (α1−j ) ∈ N (P−(L)), then there
is an ideal B ∈ P−(L) such that N (B) = (α1−j ). Hence, N (A1−j /B) = 1, and
since Ker(N : P(L) → P(K)) = Ps(L), it follows in particular that a ∈ (A−(L))s .
Suppose that (α1−j ) /∈ N (P−(L)). Then, for any B ∈ a, there is some B ∈ P(L)

with B · B = A, and thus

N (B1−j ) ∈ (α1−j ) · N (P−(L)).

To the class a = (α1−j ) · N (P−(L)) ∈ N, we have thus awell-defined association
ψ(a) = a2 ∈ A−(L), since the previous argument shows that it does not depend on
the choice of (α1−j ) · N (P−(L)). The same argument also shows injectivity, since
we have seen that all idealsB ∈ a have image N (B1−j ) ∈ a. The arguments given
above actually suffice for showing that ψ is an isomorphism

ψ : N → Ĥ 1(�, A−(L)),

where Ĥ 1 is the Tate cohomology group. This fact is irrelevant to our context.
It remains to estimate the size of N. The Hasse Norm Principle implies that if

A = (α1−j ) ∈ N (P−(L)), then α1−j must be a norm at all ramified primes.
Let q ∈ Q. By construction q ramifies in L/K. We assumed it to be totally split

in K/Q, so let q ⊂ K be a prime above q. Then all the other primes above q are
conjugate under GK = Gal(K/Q), and the completion Kq is isomorphic to Qq , the
field of q-adic rationals. If Q ⊂ L is the ramified prime above q, then LQ/Kq is
the subfield of degree p in the ramified qth cyclotomic extension of Qq , which is
isomorphic to FQ by restriction of primes. Local class field theory teaches us that

Qq/N (FQ) ∼= Gal(FQ/Qq) ∼= Gal(LQ/Kq),

under the local Artin symbol. Since the extension is tamely ramified, the norm defect
is a subgroup of the roots of unity of order q − 1 denoted W ⊂ Z

×
q . More precisely,

there is g ∈ Z with g(q−1)/pl−1 ≡ 1 (mod q), where l = vp(q − 1), such that for
any x ∈ Zq , we have x /∈ N (FQ) if and only if x ∈ gc · N (FQ) for some integer c
coprime to p.

Let A = (α1−j ) ∈ a ∈ N be a principal ideal and suppose thatα1−j ≡ c (mod q).
Then 1/α1−j ≡ c (mod q̄). Let q+ = q · q̄ and θq ∈ O(K)/q+ be the unique residue
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class verifying θq ≡ c (mod q) and θq ≡ c (mod q̄). This defines an injective mor-
phism

θq : Z/pZ ↪→ O(K)/q+.

For each τ ∈ Gal(K+/Q), one defines in a similar way a morphism θτ (q) :
Z/pZ ↪→ O(K)/τ (q+). By the Chinese Remainder Theorem, we have

O(K)/qO(K) ∼= �
τ∈ Gal(K+/Q)

O(K)/τ (q+).

We define θ : R ↪→ O(K)/qO(K) as the product of the maps θq mapping into
O(K)/qO(K) via the Chinese Remainder Theorem decomposition. Thus, for c =
(cτ )τ∈ Gal(K+/Q) ∈ R, we let

θ(c) ≡ θτ (q)(cτ ) mod τ (q+).

By construction, ifα1−j (mod )q+ ∈ θ(R \ {0}, then A /∈ N (L×). The construc-
tion can be performed for each prime q ∈ Q and we obtain a map

θ : R ↪→ O(K)/(NO(K)),

which can be extended to a map θ̄ : R → N in the natural way. Since the map ι :
(K×)− → P−(K) has the kernel 〈ζp〉, we obtain κ = ι ◦ θ, which is by construction
injective, since we factor R out by Z/(p · Z)δ , which is the factor corresponding to
the kernel. Finally, by combining κ with ψ, we see that (2) holds as claimed, which
completes the proof. �

Theorem 1 is a direct consequence of Lemma 2. Note that if K is an imaginary
quadratic extension and p > 3 or p = 3 and ζ3 /∈ K, we still have (Z/pZ)n ↪→
A−(L) ⊂ A(L). Also, if ζp ∈ K and thus δ = 1, we also have [K+ : Q] ≥ p−1

2 > 1
for p > 3, and thus we construct a class group of p-rank at least 2n − 1 by using
the n ramified primes. If p = 3 and K+ = Q, we need to assume K = Q[ζ3]. In the
case of K = Q[ζ3], we need n + 1 ramified primes in order to construct a field with
class group of 3-rank at least n.

The general case is considered in the following corollary.

Corollary 1 LetK be a Galois CM extension and G be a finite abelian group of odd
exponent e = exp(G). Then there is an abelian extension L/K of exponent e whose
class group contains a copy of G.

Proof When e = p j is a prime power, we argue like in Lemma 2, the proof of which
does not depend on the exponent j being equal to 1, since the Hasse Norm Principle
holds in arbitrary cyclic extensions. If e is composite, one argues separately for each
prime power dividing e and uses the fact that the abelian group G is a direct sum of
its p-Sylow subgroups. �
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1 Introduction

The Jacobi’s tremendous mathematical legacy has many contributions to the field
of mathematics, among which are the Jacobi symbol, the Jacobi triple product, the
Jacobian in the change of Variables theorem and the Jacobi elliptic functions. Among
his multiple discoveries, Jacobi sums appear as one of the most important findings.
In any given finite field Fq , Jacobi sums of order emainly depend on two parameters.
Therefore, these values could be naturally assembled into a matrix of order e. Jacobi
initially proposed these sums as mathematical objects, and for more certainty, he
mailed them to Gauss in 1827 (see [11, 29]). After 10 years, Jacobi [30] published
his findings including all the extensions provided by other scholars such as Cauchy,
Gauss and Eisenstein. It is worth mentioning that while Gauss sums suffice for a
proof of quadratic reciprocity, a demonstration of cubic reciprocity law along simi-
lar lines requires a foray into the realm of Jacobi sums. In order to prove biquadratic
reciprocity, Eisenstein [18] formulated a generalization of Jacobi sums. As illustrated
in [27], Jacobi sums could be used for estimating the number of integral solutions
to congruences such as x3 + y3 ≡ 1 (mod p). These estimates played a key role in
the development of Weil conjectures [50]. Jacobi sums could be used for the deter-
mination of a number of solutions of diagonal equations over finite fields. Jacobi
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sums were also utilized in primality test by Adleman, Pomerance, and Rumely [2].
The Problem of congruences of Jacobi sums of order e concerns to establish certain
congruence conditions modulo an appropriate element, which is useful to determine
an element inZ[ζe] as a Jacobi sum of order e. It is worthmentioning that congruence
conditions for Jacobi sums play major role for determination of algebraic character-
ization/ diophantine systems of Jacobi sums, hence of all Jacobi sums together with
the absolute value and prime ideal decomposition of Jacobi sums.

Cyclotomic number is one of the most important objects in number theory and in
other branches of mathematics. These number have been extensively used in coding
theory, cryptography, and in other branches of information theory. One of the central
problems in the studyof these numbers is the determination of all cyclotomic numbers
of a specific order for a given field in terms of solutions of certain Diophantine
system. This problem has been treated by many mathematicians including Gauss
who had determined all the cyclotomic numbers of order 3 in the field Fq with prime
q ≡ 1 (mod 3). Complete solutions to this cyclotomic number problem have been
computed for some specific orders. For instance, the cyclotomic numbers of prime
order e in the finite field Fq with q = pr and p ≡ 1 (mod e) have been investigated
by many authors (see [32] and the references therein). Cyclotomic numbers of order
e over the field Fq with characteristic p, in general, cannot be determined only in
terms of p and e, but that one requires a quadratic partition of q too.

In this survey article, we discuss some interesting results concerning the Jacobi
sums and its congruences, and cyclotomic numbers as well as the current status of
the problem. Starting from Gauss, this topic has been studied extensively by many
authors and thus there exist a large number of research articles. Due to the versatility,
this survey may miss out some interesting references and thus, some interesting
results too and thus this article is never claimed to be a complete one.

2 Definitions and Notations

Let e ≥ 2 be an integer, p a rational prime, q = pr , r ∈ Z+ and q ≡ 1 (mod e). Let
Fq be a finite field of q elements. We can write q = pr = ek + 1 for some k ∈ Z+.
Let γ be a generator of the cyclic group F∗

q and ζe = exp(2π i/e). Also for a ∈ F∗
q ,

indγ (a) is defined to be a positive integer m ≤ q − 1 such that a = γ m . Define a
multiplicative character χe : F∗

q −→ Q(ζe) by χe(γ ) = ζe and extend it on Fq by
putting χe(0) = 0. For integers 0 ≤ i, j ≤ e − 1, the Jacobi sum Je(i, j) is defined
by

Je(i, j) =
∑

v∈Fq

χ i
e(v)χ j

e (v + 1).

However, in the literature a variation of Jacobi sums are also considered and is
defined by
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Je(χ
i
e, χ

j
e ) =

∑

v∈Fq

χ i
e(v)χ j

e (1 − v).

Observe that Je(i, j) = χ i
e(−1)Je(χ i

e, χ
j
e ). When q = 2r , χ i

e(−1) = χ i
e(1) = 1

and both the Jacobi sums coincide. Otherwise χ i
e(−1) = (−1)ik and hence the two

Jacobi sums differ at most by sign.
For 0 ≤ a, b ≤ e − 1, the cyclotomic number (a, b)e of order e is defined as the

number of solutions (s, t) of the following:

γ es+a + γ et+b + 1 ≡ 0 (mod q); 0 ≤ s, t ≤ k − 1. (2.1)

or

One can define, for 0 ≤ a, b ≤ e − 1, the cyclotomic numbers (a, b)e of order e
is as follows:

(a, b)e : = #{v ∈ Fq |χe(v) = ζ ae , χe(v + 1) = ζ be }
= #{v ∈ Fq \ {0,−1} | indγ v ≡ a (mod e), indγ (v + 1) ≡ b (mod e)}.

The cyclotomic numbers (a, b)e and the Jacobi sums Je(i, j) are well connected
by the following relations [11, 46]:

∑

a

∑

b

(a, b)eζ
ai+bj
e = Je(i, j), (2.2)

and ∑

i

∑

j

ζ−(ai+bj)
e Je(i, j) = e2(a, b)e. (2.3)

(2.2) and (2.3) together show that if we want to calculate all the cyclotomic numbers
(a, b)e of order e, it is sufficient to calculate all the Jacobi sums Je(i, j) of the same
order, and vice-versa.

3 Properties of Jacobi Sums and Cyclotomic Numbers

We begin this section with the following theorem which is recalled from [1, 4, 11].

Theorem 3.1 The following statements hold

(i) If m + n + s ≡ 0 (mod e)) then

Je(m, n) = Je(s, n) = χ s
e (−1)Je(s,m)

= χ s
e (−1)Je(n,m)
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= χm
e (−1)Je(m, s)

= χm
e (−1)Je(n, s).

In particular,

Je(1,m) = χe(−1)Je(1, s) = χe(−1)Je(1, e − m − 1).

(ii) Je(0, j) =
{

−1 i f j �≡ 0 (mod e),

q − 2 i f j ≡ 0 (mod e).

(iii) Je(i, 0) = −χ i
e(−1) i f i �≡ 0 (mod e).

(iv) Ifm + n ≡ 0 (mode)but not bothm andn zeromodulo e, then Je(m, n) = −1.
(v) For (k, e) = 1 and σk a Q automorphism of Q(ζe) with σk(ζe) = ζ k

e , we
have σk Je(m, n) = Je(mk, nk). In particular, if (m, e) = 1, m−1 denotes
the inverse of m (mod e) then σm−1 Je(m, n) = Je(1, nm−1).

(vi) J2e(2m, 2s) = Je(m, n).

(vii) Je(1, n)Je(1, n) =
{
q i f n �≡ 0,−1 (mod e),

1 i f n ≡ 0,−1 (mod e).
(viii) Let m, n, s be integers and l be an odd prime, such that m + n �≡ 0 (mod 2l)

and m + s �≡ 0 (mod 2l). Then

J2l(m, n)J2l(m + n, s) = χm(−1)J2l(m, s)J2l(n, s + m).

(ix) Let m, n, s be integers and l be an odd prime, such that m + n �≡ 0 (mod 2l2)
and m + s �≡ 0 (mod 2l2). Then

J2l2(m, n)J2l2(m + n, s) = χm(−1)J2l2(m, s)J2l2(n, s + m).

In the next theorem, we state some basic properties of the cyclotomic numbers of
order e.

Theorem 3.2 ([11], Berndt) The cyclotomic numbers of order e have the following
properties:
i. (a, b)e = (a′, b′)e if a ≡ a′ (mod e) and b ≡ b′ (mod e).
ii. (a, b)e = (e − a, b − a)e along with the following:

(a, b)e =
{

(b, a)e if k is even or q = 2r,
(b + e

2 , a + e
2 )e otherwise.

iii.
e−1∑

a=0

e−1∑

b=0

(a, b)e = q − 2,
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iv.
e−1∑

b=0

(a, b)e = k − na,

where na is given by

na =
{
1 if a = 0, 2 | k or if a = e

2 , 2 � k;
0 otherwise.

v.
e−1∑

a=0

(a, b)e =
{
k − 1 if b = 0;
k if 1 ≤ b ≤ e − 1.

(3.1)

vi. (a, b)′e = (r 0a, r 0b)e,
where the prime (′) indicates that the cyclotomic number is taken with respect to the
generator γ r0 in place of γ in F∗

q .

4 Jacobi Sums and It Congruences

Gauss theories represented the cornerstone of Jacobi sum findings. Many research
work have been conducted by a number of mathematicians in an attempt to find out
the Diophantine system that characterize the coefficients of Jacobi sums, i.e., giving
a Diophantine system whose unique solution provides the coefficients of a particular
Jacobi sum. Jacobi sums are particularly used for obtaining the cyclotomic numbers
of the same order and vice-versa (i.e., the cyclotomic numbers of order e are known
if one knows all the Jacobi sums of order e and vice-versa). Evaluating all the Jacobi
sums of order e is relatively intricate. A number of authors devoted for the evaluation
of Jacobi sumswith certain order. Obtaining the concerned relations helps in reducing
the complexity of evaluating all Jacobi sums as well as the cyclotomic numbers. The
evaluations and relationships of Jacobi sums of orders 3, 4, and 7 were introduced
by Jacobi himself in a letter [29] to Gauss in 1827. Relationship between the sums
of orders e for e ≤ 6, e = 8, 10, and 12 were established by Dickson [15]. In later
stages, Muskat [41] established the relation of order 12 in terms of the fourth root of
unity to resolve the sign of ambiguity. Dickson [17] found specific relationships for
sums of orders 15, 16, 20, and 24.Muskat [41] developed Dicksons work for e = 15
and 24 and extended it to sums of order 30. Complete methods of e = 16 and 20
exist inWhiteman [53] andMuskat [42], respectively. In fact, before Dickson’s work
[15–17], Western [51] determined Jacobi sums of orders 8, 9, and 16. An important
issue that should be borne in mind is that all theories showed that Jacobi sums of
higher orders can be expressed in terms of Jacobi sums of lower orders. Dickson
[16] gave some particular relationships for sums of orders 14 and 22. Muskat [40]
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provided complete results for order 14. Dickson [17] also investigated sums of orders
9 and 18, while Baumert and Fredrickson [8] gave corrections to some of his results
and removed the sign of ambiguity. Zee also found relationships for sums of orders
13 and 60 in [57], and investigated the sums of order 22 in [58]. Relationships for
orders 21, 28, 39, 55, and 56 are provided in one ofMuskat and Zee research works
[43]. Berndt and Evans [9] obtained sums of orders 3, 4, 6, 8, 12, 20, and 24 and
they also determined sums of orders 5, 10, and 16 in [10].

Parnami et al. [45] showed that for an odd prime l, it is sufficient to calculate
Jl(1, (l − 3)/2) number of Jacobi sums for l > 3 and Jl(1, 1) for l = 3 to obtain
all the Jacobi sums of order l. Thus, it reduced the complexity to l2 − (l − 3)/2
for l > 3 and l2 − 1 for l = 3. Acharya and Katre [1] indicated that calculating all
the Jacobi sums of order 2l is not essential, and it is enough to calculate J2l(1, n)

for 1 ≤ n ≤ 2l − 3, n odd or 1 ≤ n ≤ 2l − 2, n even number of Jacobi sums. In
[3], we showed that Jacobi sums of order 2l2 can be determined from the Jacobi
sums of order l2. The Jacobi sums of order 2l2 can also be obtained from J2l2(1, n),
1 ≤ n ≤ 2l2 − 3 for n odd (or equivalently, 2 ≤ n ≤ 2l2 − 2 for n even). Further
the Jacobi sums of order l2 can be evaluated if one knows the Jacobi sums Jl2(1, i),
1 ≤ i ≤ l2−3

2 .
For some small values of e the study of congruences of Jacobi sums is available in

the literature. For l an odd prime, Dickson [16] obtained the congruences Jl(1, n) ≡
−1 (mod (1 − ζl)

2) for 1 ≤ n ≤ l − 1. Parnami, Agrawal and Rajwade [45] also
calculated this separately. Iwasawa [28] in 1975, and in 1981 Parnami, Agrawal,
and Rajwade [44] showed that the above congruences also hold (mod (1 − ζl)

3).
Further in 1995, Acharya andKatre [1] extended thework on finding the congruences
for Jacobi sums and showed that

J2l(1, n) ≡ −ζ
m(n+1)
l (mod (1 − ζl)

2),

where n is an odd integer such that 1 ≤ n ≤ 2l − 3 and m =indγ 2. Also in 1983,
Katre and Rajwade [31] obtained the congruence of Jacobi sum of order 9, i.e.,

J9(1, 1) ≡ −1 − (ind 3)(1 − ω)(mod (1 − ζ9)
4),

where ω = ζ 3
9 . In 1986, Ihara [26] showed that if k > 3 is an odd prime power, then

Jk(i, j) ≡ −1 (mod (1 − ζk)
3).

Evans ([21], 1998) used simple methods to generalize this result for all k > 2,
getting sharper congruences in some cases, especially when k > 8 is a power of 2.
Congruences for the Jacobi sums of order l2 (l > 3 prime) were obtained by Shi-
rolkar and Katre [46]. They showed that

Jl2(1, n) ≡
{

−1 + ∑l
i=3 ci,n(ζl2 − 1)i (mod (1 − ζl2)

l+1) i f gcd(l, n) = 1,

−1 (mod (1 − ζl2)
l+1) i f gcd(l, n) = l.
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Recently, we [3] have determined the congruences (mod (1 − ζl2)
l+1) for Jacobi

sums of order 2l2 in terms of the coefficients of Jacobi sums of order l. We split the
problem into two cases:
Case 1. n is odd. This case splits into four subcases:
Subcase i. n = l2.
Subcase ii. n = dl, where 1 ≤ d ≤ 2l − 1, d is an odd and d �= l.
Subcase iii. 1 ≤ n < 2l2 − 1 with gcd(n, 2l2) = 1.
Subcase iv. n = 2l2 − 1.
Case 2. n is even. In this case the Jacobi sums J2l2(1, n) can be calculated using the
relation J2l2(1, n) = χ2l2(−1)J2l2(1, 2l2 − n − 1). More precisely, we proved

Theorem 4.1 Let l ≥ 3 be a prime and q = pr ≡ 1 (mod 2l2). If 1 ≤ n ≤ 2l2 − 1
and 1 ≤ d ≤ 2l − 1 are odd integer, then a congruence for J2l2(1, n) overFq is given
by

J2l2 (1, n) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ−w

l2
(−1 + ∑l

i=3 ci,(l2−1)/2(ζl2 − 1)i ) (mod (1 − ζl2 )l+1), if n = l2,

−ζ
−w(dl+1)
l2

(−1 + ∑l
i=3 ci,(l2−1)/2(ζl2 − 1)i )(−1 + ∑l

i=3 ci,dl−1(ζ
(−1−dl)/2
l2

− 1)i )

(mod (1 − ζl2 )l+1) if d �= l odd integer and n = dl,

ζ
−w(n+1)
l2

(−1 + ∑l
i=3 ci,(l2−1)/2(ζl2 − 1)i )(−1 + ∑l

i=3 ci,(l2−1)/2(ζ
n
l2

− 1)i )

(−1 + ∑l
i=3 ci,(−1−n)(ζ

(1−l2)/2
l2

− 1)i ) (mod (1 − ζl2 )l+1), if gcd(n, 2l2) = 1, 1 ≤ n < 2l2 − 1,

−1 (mod (1 − ζl2 )l+1), if n = 2l2 − 1,

where ci,n are as described in the Theorem 4.2 and w = indγ 2 with γ a generator
of F∗

q .
If n is even, 2 ≤ n ≤ 2l2 − 2 the congruences for Jacobi sums J2l2 (1, n) can be
calculated using the relation J2l2(1, n) = χ2l2(−1)J2l2(1, 2l2 − n − 1). Also if d in
the theorem is even then J2l2(1, dl) = χ(−1)J2l2(1, 2l2 − dl − 1) and 2l2 − dl − 1
is odd. Thus the congruences for J2l2(1, n) gets completely determined and hence
that of all Jacobi sums of order 2l2.

Also in [3], calculated the congruences of Jacobi sums J9(1, n), 1 ≤ n ≤ 8 which
is not covered in [46] and revised the result congruences of Jacobi sums of order
l2 for l ≥ 3 a prime. Hence Theorem 5.4 [46] is precisely revised as the following
theorem:

Theorem 4.2 Let l ≥ 3 be a prime and pr = q ≡ 1 (mod l2). If 1 ≤ n ≤ l2 − 1,
then a congruence for Jl2(1, n) for a finite field Fq is given by

Jl2(1, n) ≡
{

−1 + ∑l
i=3 ci,n(ζl2 − 1)i (mod (1 − ζl2)

l+1) i f gcd(l, n) = 1,

−1 (mod (1 − ζl2)
l+1) i f gcd(l, n) = l,

where for 3 ≤ i ≤ l − 1, ci,n are described by equation (5.3) and cl,n = S(n) is given
by Lemma 5.3 in [46].



126 Md. Helal Ahmed and J. Tanti

5 Cyclotomic Numbers

Since the time of Gauss, many authors have approached the problem of determining
cyclotomic numbers in terms of the solutions of certain Diophantine systems. Such
a problem arises when Gauss solving his period equation in the case in terms of
the uniquely determined L of the Diophantine system 4p = L2 + 27M2, L ≡ 1
(mod 3). In 1935, a series of three papers were published by Dickson, in which he
reviewed and extended the theory of cyclotomy. In the first one [15], he considered
the cases for cyclotomic numbers of order e ≤ 6, e = 8, 10, and 12. In the second
paper [16], he explained the general theory for cyclotomic numbers of prime order
and twice of a prime order and he clearly studied the cases e = 14 and 22. In the
third paper [17], he discussed cyclotomic numbers of orders e = 9 & 18, and in the
last part of this paper, he singled out a part entitles

Theory for φ(e) = 8, e = 15, 16, 20, 24, 30.

However, the case e = 30 was completely ignored and one relation associated
with e = 16 was also omitted. The case e = 15 was left with the sign of ambiguity
and only introductory discussionswere given to e = 20 and 24. The sign of ambiguity
for e = 15 was resolved by Muskat [41]. Here he also provided a complete analysis
for e = 24 and 30.

The cyclotomic number may be defined for e = 1; in that case we have (0, 0)1 =
q − 2. The determination of cyclotomic numbers of order e = 2 inFp was considered
by Dickson in [15] in terms of the period equation [[15], Sect. 9]. He showed that
(a, b)2’s are uniquely determined by p = ek + 1 and period equation becomes η2 +
η + c = 0, where c = −1/4(p − 1), if k is even and c = 1/4(p + 1), if k is odd.
Again the case e = 2 was considered by Whiteman [52] in terms of the Jacobsthal
sums by which his Diophantine system become p = a2 + b2; a = (ψ4(1) + 2)/2
and b = ψ4(γ )/2. The delightful book by Davenport [14], for e = 2, the cyclotomic
numbers do not depend upon the generator γ , they are given by

(0, 0)2 = (q − 5)/4, (0, 1)2 = (1, 0)2 = (1, 1)2 = (q − 1)/4, i f q ≡ 1 (mod 4);

(0, 0)2 = (1, 0)2 = (1, 1)2 = (q − 3)/4, (0, 1)2 = (q + 1)/4, i f q ≡ 3 (mod 4).

The determination of the cyclotomic numbers of order l = 3 inFp was considered
by Gauss in [24] in terms of the solutions of the diophantine system 4p = L2 +
27M2, L ≡ 1 (mod 3), when he obtained his period equation in this case in terms
of the uniquely determined L . The three cyclotomic periods of order 3 satisfy x3 +
x2 − p − 1

3
x − 1

27 (3p − 1 + pl) = 0. These equations determine L uniquely, but

M is determined only upto sign. Gauss gave formulae for cyclotomic numbers of
order 3 in terms of L and M .
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Theorem 5.1 [24] For a prime p ≡ 1 (mod 3), write

4p = L2 + 27M2, L ≡ 1 (mod 3).

Then the nine cyclotomic numbers of order 3 are given by

(0, 0)3 = (p − 8 + L)/9,

(0, 1)3 = (1, 0)3 = (2, 2)3 = (2p − 4 − L + 9M)/18,

(1, 1)3 = (0, 2)3 = (2, 0)3 = (2p − 4 − L − 9M)/18,

(1, 2)3 = (2, 1)3 = (p + 1 + L)/9.

He says that these formulae give the cyclotomic numbers of order 3 for some
generator γ of Fp∗ . If M is replaced by −M in all the formulae then one gets
cyclotomic numbers corresponding to some other generator γ ′ of Fp∗ . One says
that the cyclotomic problem in Fp for l = 3 was solved by Gauss. However, the
solution does not make it clear which sign of M goes with which γ , without an
alternative evaluation of some cyclotomic numbers of order 3, say (1, 0)3 or (1, 1)3.
In a footnote to the section 358 of [24] (p. 444, English edition or p. 432, German
edition) Gauss remarks: “As far as the ambiguity of the sign of M in 4p = L2 +
27M2, L ≡ 1 (mod 3), for the determination of cyclotomic numbers of order 3, is
concerned, it is unnecessary to consider this question here, and by the nature of the
case it cannot be determined because it depends on the selection of the primitive
root g mod p. For some primitive roots, M will be positive, for others negative”.
Later, this case l = 3 was again taken up by Dickson [15] and considered the same
diophantine equation. But his calculation was again a Gauss type of ambiguity. In
1952, Whiteman [52] considered the same case and resolved the sign of ambiguity
using Jacobsthal sums and his Diophantine system became 4p = c2 + 3d2; c ≡ 1
(mod 3) and d ≡ 0 (mod 3). Further, Hall [25] and Storer [48] generalized the
results of Gauss and Dickson for l = 3 to finite fields of q = pr elements. However,
when p ≡ 1 (mod 3), their results for Fq again have a Gauss and Dickson type of
ambiguity.

For a prime p, the theory for cyclotomy [15] is well known. The corresponding
theory has been developed for pq in [56]. Further these theories were extended in
[47] in connection with the construction of finite difference sets. The above mention
cases for p or pq, the cyclotomic constants depend upon one or more representation
as binary quadratic forms of the type s2 + Dt2. In [48], T. Storer established the
uniqueness for pr of cases e = 3, 4, 6, 8, by same generalizing procedure in [47].
For the cases e = 3 and e = 4, the unique proper representation are

4pr = s2 + 27t2; s ≡ 1 (mod 3)
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and
pr = s2 + 4t2; s ≡ 1 (mod 4)

respectively. Cyclotomic numbers of order e over finite Fq with characteristic p,
in general, can not be determined only in terms of p and e, but that one requires
a quadratic partition of q too. The cases for e = 6 and e = 8, the unique proper
representation were established in terms of the binary quadratic form s2 + Dt2 and
two such forms, respectively.

The formulae for cyclotomic numbers of order 4 (p ≡ 1 (mod 4), p prime) in
terms of the quadratic partition p = s20 + t20 , s0 ≡ 1 (mod 4)was obtained byGauss
[23], which fixes t0 upto sign and s0 uniquely. Further, Dickson [15] also worked
in this account and his diophantine equation was p = x2 + 4y2, x ≡ 1 (mod 4).
However, Gauss and Dickson did not resolve the sign of ambiguity in t0 and y
respectively, viz., given a generator γ of Fp∗ , it is not clear that which sign of
t0 and y gives correct formulae for the cyclotomic numbers corresponding to γ .
Again the case e = 4 was considered by Whiteman [52] and resolve the sign of
ambiguity using Jacobsthal sums. The corresponding result of Hall [25] for Fq by
setup q = pr ≡ 1 (mod 4) also has a similar sign of ambiguity in the case when
q = p ≡ 1 (mod 4). Later Katre and Rajwade [34] resolve the sign of ambiguity
and they gave the formulae to determine the cyclotomic numbers of order 4 as
for k even,

(0, 0)4 = 1/16(q − 11 − 6s),

(0, 1)4 = 1/16(q − 3 + 2s + 4t),

(0, 2)4 = 1/16(q − 3 + 2s),

(0, 3)4 = 1/16(q − 3 + 2s − 4t),

(1, 2)4 = 1/16(q + 1 − 2s),

and for k odd,
(0, 0)4 = 1/16(q − 7 + 2s),

(0, 1)4 = 1/16(q + 1 + 2s − 4t),

(0, 2)4 = 1/16(q + 1 − 6s),

(0, 3)4 = 1/16(q + 1 + 2s + 4t),

(1, 1)4 = 1/16(q − 3 − 2s).

The next case l = 5 was treated by Dickson [15] for prime p, using the prop-
erties of Jacobi sums. Dickson considered the Diophantine system 16p = x2 +
50u2 + 50v2 + 125w2, v2 − 4uv − u2 = xw, and x ≡ 1 (mod 5). These system
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has exactly eight integral simultaneous solutions. If (x, u, v, w) is one solution, also
(x,−u,−v,w) and (x,±u,∓v,−w) are solutions. The remaining four are derived
from these four by changing all signs. In terms of these solutions Dickson gave
formulae for cyclotomic numbers of order 5. Again, Dickson could not tell which
solution goes correctly with γ . Later, Whiteman [52] considered the same diophan-
tine system for cyclotomic numbers of order 5 and resolve the sign of ambiguity
using Jacobsthal sums. Katre and Rajwade [33] for the determination of a unique
solution, they considered a fifth root of unity in terms of a solution of Dickson’s
diophantine system.

Determination of cyclotomic numbers of order e = 6, Dickson [15] showed that
36 cyclotomic constants (a, b)6 depend solely upon the decomposition A2 + 3B2 of
the prime p = 6k + 1. Due to the signs of ambiguity, he took 2 be a cubic residue of
p, γ m ≡ 2 (mod p) and m ≡ 1 or 4 (mod 6). The same case again considered by
Berndt and Evans [10] by taking q = p2. Later, Hall [25] and Storer [48] extended
the case by considering q = pr .

The case e = 7 [37], the cyclotomic numbers can be given in terms of Dickson-
Hurwitz sums using the work of Muskat [40] or a theorem of Whiteman [54]. In
[37], Leonard and Williams obtained the cyclotomic numbers of order e = 7 in
terms of the solutions of a certain triple of Diophantine equations, analogous to the
expressions for the cyclotomic numbers of order 5 in terms of the solutions of a pair
of Diophantine equations [54]. They used the result of Muskat [40] to evaluate the
cyclotomic numbers of order 7. If p ≡ 1 (mod 7) then there are exactly six integral
simultaneous solutions of the triple of Diophantine equations

2x21 + 42(x22 + x23 + x24 ) + 343(x25 + 3x26 ) = 72p,

12x22 − 12x24 + 147x25 − 441x26 + 56x1x6 + 24x2x3 − 24x2x4 + 48x3x4 + 98x5x6 = 0,

12x23 − 12x24 + 49x25 − 147x26 + 28x1x5 + 28x1x6 + 48x2x3 + 24x2x4 + 24x3x4
+ 490x5x6 = 0,

satisfying x1 ≡ 1 (mod 7), distinct from the two trivial solutions (−6t, ±2u, ±2u,

∓2u, 0, 0), where t is given uniquely and u is given ambiguously by

p = t2 + 7u2, t ≡ 1 (mod 7).

If (x1, x2, x3, x4, x5, x6) is a nontrivial solution with x1 ≡ 1 (mod 7) then two
others solutions are given by (x1,−x3, x4, x2, (−x5 − 3x6)/2, (x5 − x6)/2) and
(x1,−x4, x2, −x3, (−x5 + 3x6)/2, (−x5 − x6)/2). Each of the other three can be
obtained fromone given above by changing the signs of x2, x3, x4. The result obtained
in [37] is almost similar for p ≡ 1 (mod 5), result obtained in [15], and which is
implicit in the work of Dickson [15, 16], does not appear in the literature.
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Dickson [15] showed that in the case of e = 8, the 64 cyclotomic constants (a, b)8
depend solely upon the decompositions p = x2 + 4y2 and p = a2 + 2b2; x ≡ a ≡ 1
(mod 4), where the signs of y and b depend on the choice of the generator γ . There
are four sets of formulas depending on whether k is even or odd and whether 2 is
a biquadratic residue or not. Further, Lehmer [36] improved the results of Dickson
and gave the complete table of cyclotomic numbers (a, b)8 of order 8.

The cyclotomic problem for e = 9 was studied by Dickson [17] and he gave
a simple complete theory for e = 9. Each cyclotomic numbers are expressed as a
constant plus a linear combination of p, L , M, c0, c1, c2, c3, c4, c5, where

4p = L2 + 27M2, L ≡ 7 (mod 9)

and

p =
(

5∑

i=0

ciβ
i

)(
5∑

i=0

ciβ
−i

)
(β be a primitive ninth root of unity)

is a factorization of p in the field of ninth roots of unity. Further, he provided a
theorem tomake the correct choiceM . In 1967, again the case e = 9were considered
by Baumert and Fredricksen [8]. They carried out the result of Dickson [17]. But
they worked little bit further Dickson [17] did. They gave simple relation to choose
M as Dickson gave.

The cyclotomic numbers of order 10 was initially considered by Dickson [15],
later the same case discussed elaborately by Whiteman [54].

The case e = 11 were considered by Leonard andWilliams [38]. They considered
the Diophantine equations

1200p = 12w2
1 + 33w2

2 + 55w2
3 + 110w2

4 + 330w2
5 + 660(w2

6 + w2
7 + w2

8 + w2
9 + w2

10),

0 = 45w2
2 + 5w2

3 + 20w2
4 − 540w2

5 + 720w2
6 − 720w2

10 − 288w1w5 + 30w2w3

− 120w2w4 − 72w2w5 + 200w3w4 − 360w3w5 + 360w4w5 + 1440w6w7

− 1440w6w8 + 1440w7w8 − 1440w7w9 + 1440w8w9 − 1440w8w10 + 2880w9w10,

0 = 45w2
2 − 35w2

3 − 80w2
4 + 720w2

9 − 720w2
10 − 144w1w4 − 144w1w5

+ 150w2w3 − 96w2w4 − 216w2w5 + 160w3w4 + 120w3w5 + 240w4w5

+ 2880w6w7 − 1440w6w9 + 1440w7w8 − 1440w7w10 + 1440w8w9

+ 1440w8w10 + 1440w9w10,
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0 = 45w2
2 + 5w2

3 + 20w2
4 − 540w2

5 + 720w2
7 − 720w2

10 − 96w1w3 − 48w1w4

− 144w1w5 + 126w2w3 + 108w2w4 − 360w2w5 + 20w3w4 − 60w3w5

+ 600w4w5 + 1440w6w7 + 1440w6w8 − 1440w6w10 + 1440w7w8

+ 1440w7w10 + 1440w9w10 + 2880w8w9,

0 = 27w2
2 + 35w2

3 − 40w2
4 − 360w2

5 + 720w2
8 − 720w2

10 − 72w1w2 − 24w1w3

− 48w1w4 − 144w1w5 + 114w2w3 + 48w2w4 + 144w2w5 + 320w3w4

+ 1440w6w7 + 1440w6w9 + 1440w6w10 + 2880w7w8 + 1440w7w9

+ 1440w8w9 + 1440w9w10,

w3 + 2w4 + 2w5 ≡ 0 (mod 11),

w2 − w4 + 3w5 ≡ 0 (mod 11).

In terms of the solutions of above Diophantine equations, they gave the complete
formulae for cyclotomic numbers of order 11. Further, determination of cyclotomic
problem is somewhat incomplete, when they found the solutions of abovementioned
Diophantine systems using Jacobsthal-Whiteman sums.

The cycloyomic problems for e = 12 was considered by Dickson [15] and he
showed that cyclotomic constants (a, b)12 depend solely upon the decomposition
p = x2 + 4y2 and p = A2 + 3B2 of the prime p = 12k + 1, where x ≡ 1 (mod 4)
and A ≡ 1 (mod 6). But his analysis depends upon elaborate computations and
is not entirely definitive. For settlement of signs of ambiguity for case e = 12, he
considered lots of small cases, viz., 2 be a cubic residue of p, 3 be a biquadratic
residue and non-residue of p. For odd case, again he considered 2m ≡ 2 (mod 12)
and 2m ≡ 10 (mod 12). For even case 2m ≡ 8 (mod 12) and 2m ≡ 4 (mod 12).
Later, the same case was considered by Whiteman [55] in a different direction. To
evaluate the complete solution of cyclotomic, he divided the prime into 12 different
classes and obtained formulae holding for different classes.

The study of cyclotomic numbers of order 14 started by Dickson [16] in 1935.
Dickson proved that it is possible to represent the cyclotomic numbers (a, b)e as a
linear combination of the Dickson-Hurwitz sums Be(i, v), 0 ≤ i ≤ e − 1, if e is an
odd prime or twice of an odd prime. Dickson’s result that given the septic character
of 2, the B14(i, v) can be given as a linear combination of the B7(i, v), has been
employed to express the (a, b)14 in terms of the B7(i, v). Muskat [40] determined
the cyclotomic numbers (a, b)14 explicitly in terms of the Be(i, v) where e is twice
of an odd prime and the transformation is due to the Whiteman [54].

The study of cyclotomic numbers of order 15 was began by Dickson [17] in 1935
and completed byMuskat [41] in 1968. Dickson calculation had a sign of ambiguity.
Muskat [41] resolve the sign of ambiguity. In 1986, Frisen, Muskat, Spearman,
and Williams [22] considered the same case by setup q = p2 ≡ 1 (mod 15). They
showed that as p ≡ 4 (mod 15), 28 different cyclotomic numbers were evaluated by
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p = A2 − AB + B2, A ≡ −1 (mod 3), B ≡ 0 (mod 3),

p = T 2 + 15U 2, T ≡ −1 (mod 3),

and p ≡ 11 (mod 15), 29 different cyclotomic numbers were evaluated by

p = X2 + 5U 2 + 5V 2 + 5W 2, X ≡ −1 (mod 5),

XW = V 2 −UV −U 2.

In [13], Buck, Smith, Spearman, and Williams used Dickson and Muskat evalu-
ations of the Jacobi sums of order 15 to obtain the values of the Dickson-Hurwitz
sums B15(i, v) of order 15 defined by

B15(i, v) =
14∑

h=0

(h, i − vh)15.

Further, they used a special case of a theorem of Friesen, Muskat, Spearman, and
Williams [22] and express each cyclotomic number in terms of the Dickson-Hurwitz
sums. Using the values of Dickson-Hurwitz sums of order 15, they derived an explicit
formulae for the cyclotomic numbers of order 15. Each cyclotomic numbers of order
15 can be expressed as an integral linear combination of the integers p, 1, a, b, c,
d, x, u, v, w, b0 b1 b2 b3 b4 b5 b6 b7. The integers a, b, c, d, x, u, v, w have the
following properties:

p = a2 + 3b2, a ≡ −1 (mod 3),

p = c2 + 15d2, c ≡ −1 (mod 3),

p = x2 + 5u2 + 5v2 + 5w2,

xw = v2 − uv − u2, x ≡ −1 (mod 5).

Lehmar [35] raised the question whether or not constants α, β, γ, δ, ε can be
found such that

265(a, b)16 = p + αx + βy + γ a + δb + ε, (5.1)

at least for some (a, b)16 after written the article [36]. To answer this question, she
undertook the following experiment on the SWAC (National Bureau of Standards
WesternAutomatic Computer). The cyclotomic constants of order 16were computed
for eight primes p of the form 32n + 1 for which 2 is not a biquadratic residue. She
found that (5.1) is not satisfied for any (a, b)16 when the signs of y and b are taken
in accordance with the results on cyclotomic constants of order 8. The calculations
exhibited eight solutions, while the formula gave only six. A similar computation for
primes p of the form 32n + 17 also led to a negative result. She regretfully conclude
that the cyclotomic constants of order 16 are not expressible in terms of these [17]
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quadratic partitions alone. The SWAC experiment left an open the question that the
Eq. (5.1) can be satisfied for any prime p for which 2 is a biquadratic residue. In [53],
Whiteman gave formulae for cyclotomic constants of order 16 in affirmative, and six
of the cyclotomic constants in terms of parameters of quartic, octic and bioctic Jacobi
sums. He further gave a table of formulas for (a, 0)16. Later, Evans and Hill [20]
gave complete table for cyclotomic numbers of order 16. The computations were
performed on the Burroughs 6700 at UCSD by employing the algorithms described
in [53]. They stated that it is not possible to accomplish sign resolutions with the
use of formulae from Whiteman’s result, so they utilized the methodology of [19]
to give elementary resolutions of sign ambiguities in quartic and octic Jacobi and
Jacobsthal sums in certain cases.

Dickson [17] gave relation to determine the cyclotomic numbers of order 18. But
he did not provide a complete table for cyclotomic numbers of order 18. Baumert and
Fredricksen [8] considered the case of cyclotomic numbers of order 18 again. They
split the solution into cases and introduce the parameters B = I nd 2 and T = I nd 3.
Introduced parameters reduced actual parameters to p, L , M, c0, c1, c2, c3, c4, c5
as appeared in the determination of the cyclotomic numbers of order 9. They gave
complete listing of all cyclotomic numbers of order 18 (k odd and k even) in an
unpublished mathematical tables file of Mathematics of Computation. Further, by
the use of cyclotomic formulas given in Table 5 and 6, they proved Theorem 5.2 as
an application to difference sets.

Theorem 5.2 Theonly residue difference set ormodified residue difference setwhich
exists for e = 18 is the trivial 19 − 1 − 0 difference set.

In [17], Dickson gave a sketchy discussions for cyclotomic numbers of order
e = 20. He did not give the exact formulae for cyclotomic numbers of order 20.
In 1970, Muskat and Whiteman [42] gave the complete formulae for cyclotomic
numbers of order e = 20. They obtained the cyclotomic numbers of order 20 in
terms of the cyclotomic numbers of orders two & four and Jacobi sums of orders
5, 10 & 20.

In 1982, PAR [45] considered the general e cases; e be an odd prime, q = pr ,
p ≡ 1 (mod e). They indicate a general method for solving the cyclotomic problem
over Fq . They calculated the cyclotomic numbers of orders e ≤ 19. The Diophantine
systems they considered is as follows

q =
e−1∑

i=0

a2i −
e−1∑

i=0

aiai+1, (i.e., 2q = (a0 − a1)
2 + (a1 − a2)

2 + · · · + (ae−1 − a0)
2),

e−1∑

i=0

aiai+1 =
e−1∑

i=0

aiai+2 = · · · =
e−1∑

i=0

aiai+(e−1)/2,

1 + a0 + a1 + · · · + ae−1 ≡ 0 (mod e),
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a1 + 2a2 + 3a3 + · · · + (e − 1)ae−1 ≡ 0 (mod e),

which generalizes the diophantine systems ofGauss–Dickson andLeonardWilliams.
Moreover they gave a rejection condition

p �
∏

λ((n+1)a)>a

Hσa ,

which fixes certain Jacobi sums upto conjugate. They gave full details of the trans-
formation (for r = 1) connecting above mentioned Diophantine system with the
classical ones for l = 3, 5, but they did not connect the cases for e > 5 because the
rejection condition was too complicated. But their solutions had again Gauss and
Dickson type ambiguity.

Further in 1985, Katre and Rajwade [32] solved the cyclotomic problem for
any prime e in Fq , q = pr , p ≡ 1 (mod e). For solving the cyclotomic prob-
lem, they added a new condition to Parnami et al. [45] diophantine systems, i.e.,
p|H ∏

λ((n+1)a)>a(b − ζ
σa−1

l ), where a−1 was taken mod l, l be an odd prime and
(a, l) = 1. For cyclotomic numbers of order 2 in Fq , they told that one can determine
the cyclotomic numbers by (0, 0)2 = (q − 5)/4, (0, 1)2 = (1, 0)2 = (1, 1)2 = (q −
1)/4 if q ≡ 1 (mod 4), (0, 0)2 = (1, 0)2 = (1, 1)2 = (q − 3)/4, (0, 1)2 =
(q + 1)/4 if q ≡ 3 (mod 4). The problem arises in Parnami et al. [45] to connect
the Jacobi sums and eth root of unity, they considered γ (q−1)/e ≡ 1 (mod e) gave
the proper connection between the Jacobi sums and the eth root of unity mod p.
Additional condition in Katre and Rajwade [32] also resolve the sign of ambiguity
arose in Parnami et al. [45].

For l an odd prime, Acharya and Katre [1] determined the cyclotomic numbers of
order 2l over the field Fq for q = pr with the prime p ≡ 1 (mod 2l) in terms of the
solutions of the diophantine systems considered for the l case except that the proper
choice of the solutions for the 2l case was made by additional conditions (iv′), (v′),
(vi ′) which replace the conditions (iv), (v), (vi) used in the l case. These additional
conditions determine required unique solutions thereby also giving arithmetic char-
acterization of the relevant Jacobi sums and then the cyclotomic numbers of order
2l are determined unambiguously by the following theorem. In the same, they also
showed how the cyclotomic numbers of order l and 2l can be treated simultaneously.

Theorem 5.3 [1] Let p and l be odd rational primes, p ≡ 1 (mod l) (thus p ≡ 1
(mod 2l) also), q = pr , r ≥ 1. Let q = 2lk + 1. Let ζl and ζ2l be fixed primitive
l − th and 2l − th roots of unity, respectively. Let ζl and ζ2l be related by ζl = ζ 2

2l ,

i.e., ζ2l = −ζ
(l+1)/2
l . Let γ be a generator of F∗

q . Let b be a rational integer such
that b = γ (q−1)/ l in Fp. Let m = indγ 2. Let Jl(i, j) and J2l(i, j) denote the Jacobi
sums in Fq of order l and 2l (respectively)related to ζl and ζ2l (respectively). For
(m, l) = 1, let σm denote the automorphism ζl �→ ζm

l of Q(ζl). For (m, 2l) = 1, let
τm denote the automorphism ζ2l �→ ζm

2l ofQ(ζl). Thus if m is odd then σm = τm and if
m is even then σm = τm+l . Let λ(r) andΛ(r) denote the least nonnegative residues of
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r modulo l and 2l (resp.). Let a0, a1, . . . , al−1 ∈ Z and let H = ∑l−1
i=0 aiζ

i
l . Consider

the arithmetic conditions (or diophantine system)

(i) q = ∑l−1
i=0 a

2
i − ∑l−1

i=0 aiai+1,

(i i)
∑l−1

i=0 aiai+1 = ∑l−1
i=0 aiai+2 = · · · = ∑l−1

i=0 aiai+(l−1)/2,

(i i i) 1 + a0 + a1 + · · · + al−1 ≡ 0 (mod l).
Let 1 ≤ n ≤ l − 2. If a0, a1, . . . , al−1 satisfy (i) − (i i i) together with the addi-

tional conditions
(iv) a1 + 2a2 + 3a3 + · · · + (l − 1)al−1 ≡ 0 (mod l),
(v) p �

∏
λ((n+1)m)>m Hσm ,

(vi) p|H ∏
λ((n+1)m)>m(b − ζ

σm−1

l ), where m−1 is taken (mod l),
then H = Jl(1, n) for this γ and conversely.

Let 1 ≤ n ≤ 2l − 3 be an odd integer. If a0, a1, . . . , al−1 satisfy (i) − (i i i) together
with the additional conditions
(iv)′ a1 + 2a2 + 3a3 + · · · + (l − 1)al−1 ≡ u(n + 1) (mod l),
(v)′ p �

∏
Λ((n+1)m)>m H τm ,

(vi)′ p|H ∏
Λ((n+1)m)>m(b − ζ

τm−1

l ), where m−1 is taken (mod 2l),
then H = J2l(1, n) for this γ and conversely.

(In (v)′ and (vi)′, m varies over only those values which satisfy 1 ≤ m ≤ 2l − 1
and (m, 2l) = 1.)

Moreover, for 1 ≤ n ≤ l − 2 if a0, a1, . . . , al−1 satisfy the conditions (i) − (vi)
and if we fix a0 = 0 at the outset and write the ai corresponding to a given n as
ai (n) then we have Jl(1, n) = ∑l−1

i=1 ai (n)ζ i
l and the cyclotomic numbers of order l

are given by
l2(i, j)l = q − 3l + 1 + ε(i) + ε( j) + ε(i − j) + l

∑l−2
n=1 ain+ j (n) − ∑l−2

n=1∑l−1
k=1 ak(n)

where

ε(i) =
{
0 if l|i,
l otherwise,

and the subscripts in ain+ j (n) are considered modulo l.
Similarly, for n odd, 1 ≤ n ≤ 2l − 3, if a0, a1, . . . , al−1 satisfy the conditions (i) −

(i i i) and (iv)′ − (vi)′ and if we fix a0 = 0 at the outset andwrite the ai corresponding
to a given n as bi (n) then we have J2l(1, n) = ∑l−1

i=1 bi (n)ζ i
l and the 4l

2 cyclotomic
numbers (i, j)2l are given by
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4l2(i, j)2l = q − 3l + 1 + ε(i) + ε( j) + ε(i − j) + l
l−2∑

n=1

ain+ j (n) −
l−2∑

n=1

l−1∑

k=1

ak(n)

− {(−1) j + (−1)i+k + (−1)i+ j }{l +
l−1∑

k=0

bk(l) +
l−2∑

u=0

l−1∑

k=0

bk(2u + 1)}

+ (−1) j l{bν(−i)(l) +
l−1∑

u=0

bν( j−2iu−2i)(2u + 1)} + (−1)i+ j l{bν( j)(l)

+
l−1∑

u=0

bν(i+2 ju+ j)(2u + 1)} + (−1)i+kl{bν(− j)(l) +
l−1∑

u=0

bν(i−2 ju−2 j)(2u + 1)},

where

ν( j) =
{

Λ( j)/2 if j is even,
Λ( j + l)/2 if j is odd,

and Λ(r) is defined as the least nonnegative residue of r modulo 2l.

For q ≡ 1 (mod l), but p does not necessary ≡ 1 (mod l). Let r be the least
positive integer such that q = pr ≡ 1 (mod l). In the case when r is even, Anuradha
and Katre [6] obtained the Jacobi sums and cyclotomic numbers of order l and 2l just
in terms of q. For e = l, 2l and when r is odd, the cyclotomic problem was treated
by Anuradha [7] in her Ph.D. thesis, and thus the problem for the order e is settled for
all q ≡ 1 (mod e), for e = l, 2l. Again, for such primes, Shirolkar and Katre [46]
obtained formulae for cyclotomic numbers of order l2 in terms of the coefficients
of Jacobi sums of orders l and l2. Recently, Ahmed et al. [4] obtained formulae for
the determination of cyclotomic numbers of orders 2l2 in terms of the cyclotomic
numbers of orders l, 2l, l2 and the coefficient of some special types of Jacobi sums
of order l2 and 2l2.

6 Concluding Remarks

Recently, Ahmed et al. [5] introduced a new idea to the construction of cyclotomic
matrix and further, the author’s developed a secured Public-key cryptography model
applying the principle of cyclotomic matrices. Earlier, Leung et al. [39] constructed
Hadamard matrices of order 4p2 obtained from Jacobi sums of order 16 and they
proved the following result.

Theorem 6.1 Let p ≡ 7 (mod 16) be a prime. Then there are integers a, b, c, d
with

a ≡ 15 (mod 16),

b ≡ 0 (mod 4),
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q2 = a2 + 2(b2 + c2 + d2),

2ab = c2 − 2cd − d2.

If
q = a ± 2b or

q = a + δ1b + 4δ2c + 4δ1δ24d wi th δi = ±1,

then there is a regular Hadamard matrix of order 4q2.

Betsumiya, Hirasaka et al. [12] gave upper bounds for cyclotomic numbers of
order e over a finite field with q elements, where e is a positive divisor of q − 1.
In particular, they showed that under certain assumptions, cyclotomic numbers are

at most
⌈
k
2

⌉
, and the cyclotomic number (0, 0)e is at most

⌈
k
2

⌉
− 1, where k =

(q − 1)/e. They proved the following.

Theorem 6.2 Let q be a power of an odd prime p and k a positive divisor of q − 1.
Then we have the following:

(i) (a, b)e ≤
⌈
k
2

⌉
for all a, b with 0 ≤ a, b < e if p > 3k

2 − 1;

(ii) (a, b)e ≤
⌈
k
2

⌉
− 1 for each a with 0 ≤ a < e if k is odd and p > 3k

2 ;

(iii) (0, 0)e ≤
⌈
k
2

⌉
− 1 if p > 3k

2 ;

(iv) (0, 0)e = 2 if p is sufficiently large compared to k and 6|k;
(v) (0, 0)e = 0 if p is sufficiently large compared to k and 6 � k.

P. van Wamelen [49] has characterized the Jacobi sums of order e corresponding
to any given generator γ of F∗

q . So far this is the most satisfactory solution of the
problem, as it takes up the case when e is any integer ≥ 3 and q is any prime power
for which q ≡ 1 (mod e) and he proved.

Theorem 6.3 Let e ≥ 3, p a prime, q = pr ≡ 1 (mod e). Let q = e f + 1. Let gm =
gcd(e,m), gn = gcd(e, n), g = gcd(e,m + n), g0 = gcd(gm, gn). Let εg(k) = 1
if g|k, and 0 if g � k. There is a unique polynomial H ∈ Z[x] such that H(x) =
a0 + a1x + a2x2 + · · · + ae−1xe−1 and the coefficients satisfy the following three
conditions:
1. (a)

e−1∑

j=0

a2j = q + g0e f
2 − f (gm + gn + g).

(b) For k = 1, 2, . . . , e − 1

e−1∑

j=0

a ja j−k = εg0(k)g0e f
2 − εgm (k) f gm − εgn (k) f gn − εg(k) f g
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where we consider the subscripts of the a’s modulo e.
2.

e−1∑

k=0

kak ≡
{
0 (mod e) if e is odd,
(q − 1)/2(gm + gn) (mod e) if e is even.

3. For every d dividing e let Bd ∈ Z[x] be such that its reduction modulo p is the
minimal polynomial of γ (q−1)/d over Fp and

∏
k∈Dd

Bd(ζ
k
d ) is not divisible by p2 in

Z[ζd ]. Then H(ζd) must satisfy the following conditions:
(a) if none of m, n and m + n are divisible by d,

q|H(ζd)
∏

k∈Dd

Bd(ζ
k−1

d )(sd,q (mk)+sd,q (nk)−sd,q (mk+nk))/(p−1),

where k−1 is taken modulo d.
(b) if m ≡ −n �≡ 0 (mod d)

H(ζd) = −χm
d (−1),

(c) if exactly one of m and n are divisible by d

H(ζd) = −1,

(d) if both m and n are divisible by d

H(ζd) = q − 2.

If H is the unique polynomial satisfying these three conditions, then

H(ζd) = J (χm, χn).
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1 Introduction

The divisibility properties of the class number of quadratic fields help to understand
the structures of their (ideal) class groups. The class number or more precisely the
class group of quadratic fields is one of the most fundamental and curious objects in
algebraic number theory. This topic has been studied extensively by many authors
since the time of Gauss and thus, there is a good amount of research work around
it. The existence of infinitely many real (resp. imaginary) quadratic fields each with
class number divisible by a given integer n ≥ 2 is well known. In particular, it was
Nagell [15] who proved that there are infinitely many imaginary quadratic fields
whose class number is divisible by a given integer n ≥ 2. On the other hand, for
real quadratic field case, Yamamoto [20] and Weinbeger [21] independently showed
that there are infinitely many real quadratic fields whose class number is divisible by
a given integer n ≥ 2. However, after three decades, Ichimura [10] proved that the
assumptions considered by Weinbeger [21] were not so necessary and therefore a
slight modification could be enough. In the current years, it becomesmore interesting
and important to explicitly determine real as well as imaginary quadratic fields whose
class number is divisible by a given integer n ≥ 2. It is also important to study the
structure of the class groups of quadratic fields. In this direction, numerous results
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have been offered by many authors (see [2–6, 8, 9, 11–14, 18]). This paper is along
the same lines, but it carries more information since it deals with a pair of quadratic
fields.

Let kd = Q(
√
d) and km = Q(

√
m) be two quadratic fields with discriminants

Dd and Dm , respectively. In this paper, we show that there exist infinitely many pairs
(kd , km) with each class number divisible by 3 and satisfying the property that either
Dd | Dm or Dm | Dd . More precisely, we prove

Theorem 1.1 Let p ≡ ±4 (mod 9) be a prime and � ≥ 1 an integer. The class

numbers ofQ(
√
p12�+2 − 4) andQ

(√
4−p12�+2

3

)
are divisible by 3. Moreover, there

are infinitely many such pair of quadratic fields with class number divisible by 3.

Remark 1.1 If D and d denote the discriminants of Q(
√
p12�+2 − 4) and

Q

(√
4−p12�+2

3

)
, respectively, then d | D.

2 Some Useful Results

In this section, we discuss some important results that are needed to prove the main
result. For a square-free positive integer d, by h(d) and h(−d) we mean the class
number of the real quadratic fieldQ(

√
d) and the imaginary quadratic fieldQ(

√−d),
respectively. We denote the fundamental unit of Q(

√
d) by

εd =
{

t+u
√
d

2 if d ≡ 1 (mod 4),

t + u
√
d if d ≡ 2, 3 (mod 4),

where t and u are known as the coefficients of εd . We first recall the following result
of Artin, Ankeny and Chowla [1, Proposition 2.4].

Proposition 2.1 Let m ≡ 1 (mod 3) be a square-free positive integer. If d = 3m,
then the following holds:

h(−m) ≡ −u

t
h(d) (mod 3).

We now assume the following trinomial:

p(x) = xn − ax + b (a, b ∈ Z).

Let K be the minimal splitting field of p(x) , that is,

K = Q(α1, α2, . . . , αn),
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where α1, α2, . . . , αn are the roots of p(x). Then the discriminant of p(x) is defined
as

Dp =
∏

i< j

(αi − α j )
2.

We are now in a position to recall the following result which was proved in [19].

Proposition 2.2 If n is a prime, p(x) is irreducible over Q and the Galois group
of K over Q is a symmetric group Sn of n items, then K is unramified extension of
Q(

√
Dp) with Galois group An.

3 Proof of the Theorem 1.1

In this section, we prove Theorem 1.1 using the results that have been discussed in
Sect. 2 and Siegel’s theorem on integral points on a curve.

We consider the trinomial

f (x) = x3 − 3x + p6�+1,

where � is a positive integer and p is a prime of the form:

p ≡ ±4 (mod 9).

One gets the discriminant of f (x) as follows:

D f = 27(4 − p2(6�+1)).

Since p ≡ ±4 (mod 9), so that p2(6�+1) − 4 ≡ 3 (mod 9). This shows that 3 |
(p2(6�+1) − 4), and thus one can write p2(6�+1) − 4 = 3m for some positive integer
m. Therefore

D f = −81m.

We see that p2(6�+1) − 4 ≡ 3 (mod 9) and p2(6�+1) − 4 = 3m together imply
m ≡ 1 (mod 3).

Proposition 3.1 3 divides the class number of the imaginary quadratic field
Q(

√−m).

Proof Let K be the minimal splitting field of f (x) and G the Galois group of K
over Q.

Reading modulo 2, we see that f (x) ≡ x2 + x + 1 (mod 2) since p is an odd
prime. It is easy to see that f (x) is irreducible over Z2, and thus it is irreducible over
Q too. Therefore G ∼= S3, and hence the Galois group G over Q(

√−m) is a cubic
cyclic group. More precisely, K is a cubic cyclic extension of Q(

√−m).
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Since the polynomial f (x) is irreducible overQ and G ∼= S3, so that by Proposi-
tion 2.2 K over Q(

√−m) is unramified. Therefore by Hilbert class field theory, K
is a subfield of the Hilbert class field of Q(

√−m). This shows that class number of
Q(

√−m) is divisible by 3. �

Proposition 3.2 3 divides the class number of the imaginary quadratic field
Q(

√
p12�+2 − 4).

Proof Let d = p12�+2 − 4. Since p is odd prime, so that d ≡ 1 (mod 4) and thus
the fundamental unit of Q(

√
d) is of the form

εd = t + u
√
d

2
.

One checks that Norm(εd) = 1 gives the Pell-type equation

t2 − u2d = 4.

We see t = p6�+1 and u = 1 is the smallest solution of this equations, and hence

εd = p6�+1 + √
d

2
is the fundamental unit in Q(

√
d).

Since u = 1, so that Propositions 2.1 and 3.1 together conclude that h(d) ≡ 0
(mod 3). This completes the proof. �

Wenowgive the proof of Theorem 1.1. Propositions 3.1 and 3.2 together complete
the proof of the first part. It remains to show that the infinitude of the pair

(

Q(
√
p12�+2 − 4),Q

(√
4 − p12�+2

3

))

.

It is easy to see that there are infinitely many prime numbers of the form p ≡ ±4

(mod 9) satisfying m = p12�+2 − 4

3
�= �. We assume that S is the set of all such

primes that give the same field more than once. Thus if p1 ∈ S, then one can write

p12�+2
0 − 4

3
= Db2,

where b is an integer and D is a square-free positive integer. Therefore if

Q

⎛

⎝

√

−
(
p12�+2 − 4

3

)⎞

⎠ = Q

⎛

⎝

√√√√−
(
p12�+2
0 − 4

3

)⎞

⎠ ,

then there are integers x and y with gcd(x, y) = 1 such that
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(
p12�+2 − 4

3

)
x2 = Db2y2.

This shows that
(
p, by

x

)
is an integral on the curve

X12�+2 = 3DY 2 + 4.

For any positive integer D, this is an irreducible algebraic curve (see [16]) of
genus bigger than 0. From Siegel’s theorem (see [7, 17]), it follows that there are
only finitely many integral points (X,Y ) on this curve. Therefore S is finite and
hence there are infinitely many imaginary quadratic fields of the form Q(

√−m),
where 3m = p12�+2 − 4. Again corresponding to each Q(

√−m), one gets a real
quadratic field Q(

√
p12�+2 − 4). Thus, we complete the proof of Theorem 1.1.
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1 Introduction

Mixed polynomial–exponential type equations are of classical and current interest.
These equations have been studied extensively by several mathematicians over the
years, and thus there are many interesting and fundamental results. These equations
appear in most of the topics of numbers theory; in particular. in the study of class
numbers/class groups of number fields. In this article, we would like to survey some
results concerning the solvability/insolvability of

x2 + Dm = λyn, (1.1)

where D and λ are fixed positive integers, in positive integers x, y,m and n when
λ = 1, 2, 4. We will also provide a sketch of the proof of some important results.
This is by no means a complete survey along this topic, and thus it may miss many
references and interesting results.

When y = A is fixed in (1.1), the resulting equation is known as a Ramanujan–
Nagell type equation, viz.,

x2 + D = λAn. (1.2)

We now recall the following result of Siegel [77] which gives the finiteness of the
number of solutions in x and n of (1.2).
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Theorem 1.1 Let f (x) ∈ Z[X ], and P(x) denotes the greatest prime factor of a
positive integer x. If f (x) has at least two distinct roots, then P( f (x)) → ∞ as
|x | → ∞.

The famous Ramanujan–Nagell equation,

x2 + 7 = 2n (1.3)

is a particular case of (1.2). It was Ramanujan [73] who conjectured that all the
solutions (x, n) of (1.3) are given by

(x, n) ∈ {(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)}.

Ljunggren stated the same problem in 1943. It was Nagell who settled it in 1948.
Some alternative proofs have been offered by some other authors. For instance,
Chowla et al. [30] gave a proof using Skolem’s p-adic method.

We now consider the case when λ = 1 and A = p an odd prime, that is the
following:

x2 + D = pn, p � D. (1.4)

In 1960, Apéry [1] proved that (1.4) has at most two solutions. Further Beukers [11,
12] proved that (1.4) has atmost one solutionwith some exceptions. These exceptions
are

(p, D) ∈ {(3, 2), (4t2 + 1, 3t2 + 1)}

for a positive integer t . For these exception cases, there are exactly two solutions.
Using hypergeometric methods, Beukars proved these results.

2 The Equation x2 + Dm = yn

In this section, we discuss some important results concerning the solutions in positive
integers of (1.1) when λ = 1. More precisely, we consider the following:

x2 + Dm = yn . (2.1)

Many special cases of (2.1) for m = 1, that is the following equation

x2 + D = yn (2.2)

have been considered by many authors, but most results for general n are of recent
origin. Basically (2.1) is known as the generalized Ramanujan–Nagell equation. This
is a kind of exponent-type Diophantine equation and has been studied extensively
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in recent times. When n = 3, it is an elliptic curve. Mordell studied this type of
equation more carefully and illustrated most of the important results in his book
[59]. For n > 3, it is a hyperelliptic curve which seems to be more difficult to study.
But there is also a vast amount of literature.

Fermat showed that when D = 2 and n = 3, the only solution is given by
(x, y) = (5, 3); a proof was published by Euler in [35]. The first result for gen-
eral n was due to Lebesgue [48] who proved that when D = 1, there is no solution.
It was Nagell [65] who proved that there is no solution for D = 3 and 5, but did not
complete the proof for D = 2.He also generalized Fermat’s result in [66] and showed
that for D = 2 the equation has no solution other than x = 5. A result rediscovered
by himself in [67], who also showed in [68] that when D = 4, the only solution is
due to x = 2 and x = 11. Chao [29] proved that x = 3 gives the only solution for
D = −1, a result which had been sought for many years as a case of the Catalan
conjecture; so-called Mihǎilescu’s theorem. The case when n is even can easily be
treated, since then D is to be expressed as the difference of two integer squares. On
the other hand, for the case n odd, there is no loss of generality in considering the
only odd primes p, one has to consider the positive values of D. For D = 3, Cohn
(2.2) proved that it has no solution in positive integers x ,y and n ≥ 3. There are
only a few results for general n = p in (2.2). Blass in [16], and Blass and Steiner
jointly in [17] proved (2.2) for n = 5 and 7. Cohn [32] gave a brief summary of (2.2).
He developed a method by which he found the solutions for 77 values of D up to
100. His methods are inventive but elementary, in the sense that they do not rest on
deep tools from Diophantine approximation. The smallest value of D not treated by
Cohn is D = 7. The difficulty comes from the fact that 8 = (1 + √−7)(1 − √−7)
in the imaginary quadratic field Q(

√−7). Mignotte and de Weger [58] solved (2.2)
for D = 74 and obtained (x, y, n) = (13, 3, 5), (985, 99, 3). They also proved that
(2.2) has no solution for D = 86. Indeed, Cohn solved these two equations of type
(2.2) except for p = 5, in which difficulties occur since the class numbers of the
corresponding imaginary quadratic fields are divisible by 5. Bennett and Skinner [8]
used theory of Galois representations andmodular forms to solve completely the case
when D = 55. They obtained (x, y, n) = (3, 2, 6), (3, 4, 3),(419, 56, 3). They also
obtained (x, y, n) = (11, 6, 3), (529, 6, 7) when D = 95. The 19 remaining values,
namely D = 7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100
are clearly beyond the scope of Cohn’s method. Most of these cases were consid-
ered by Bugeaud, Mignotte, and Siksek and solved in [20]. Note that Cohn [32]
proved that there is no solution at all for 46 values of D, namely, 1, 3, 5, 6, 8, 9, 10,
14, 21, 22, 24, 27, 29, 30, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58,
59, 62, 66, 68, 69, 70, 73, 75, 78, 82, 84, 85, 88, 90, 91, 93, 94, and 98. The 31 val-
ues of D for which (2.2) has solutions are given in Table1 with the values of x as
well.

Bugeaud, Mignotte, and Siksek also proved that the only solution in positive
integers x, y and n ≥ 3 of (2.2) are given by

(x, y, n) ∈ {(1, 2, 3), (3, 2, 4), (5, 2, 5), (11, 2, 7), (181, 2, 15)} .
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Table 1 Values of D for which (2.2) has solutions

C x C x C x C x

2 5 20 14 53 26,156 77 2

4 2,11 26 1,207 54 17 80 1

11 4,58 32 7,88 56 5,76 81 46

12 2 35 36 61 8 83 140

13 70 40 52 64 8 89 6

16 4 44 9 65 4 96 23

17 8 48 4,148 67 110 97 48

19 18,22434 49 24,524 76 7,1015

However, they showed that (2.2) has no more solutions than that of (1.3) when
D = 7. Earlier results on x2 + 7 = yn were due to Lesage [49] and to Siksek and
Cremona [78]. On the other hand, Sury [86] presented an elementary proof of (2.2)
for D = 2 and n > 1 that the only solution is (x, y, n) = (±5, 3, 3). Recently, Hoque
and Saikia investigated (2.2) for any positive integer D in [39]. They used this fact
to study the class number of associated imaginary quadratic field.

In some recent papers, some more complicated cases where D is a product of
more than one prime powers have been considered. Let

S = {p1, p2, . . . , ps}

denote a set of s-distinct primes andS the set of nonzero integers composed only of
the primes from S. Let P be the maximum element from S and P the product of the
primes of S. In recent years, (2.2) has been considered also in the more general case,
when D is no longer fixed but D ∈ S with D > 0. It follows from [75, Theorem 2]
that n in (2.2) can be bounded from above by a computable constant depending only
on P and s. In [38], an effective upper bound was derived for n which depends only
on P .

Luca solved (2.2) completely in [55] when D = 2a3b with n ≥ 3 and gcd(x, y) =
1. The solutions are as follows:

(x, y) =

⎧
⎪⎨

⎪⎩

(7, 3), (23, 5), (7, 5), (47, 7), (287, 17) if n = 4,

(5, 3), (11, 5), (10, 7), (17, 7), (46, 13), (35, 13), (595, 73),

(995, 97), (2681, 193), (39151, 1153) if n = 3.

Muriefah, Luca, and Togbé determined all solutions of (2.2) for the case D = 5a13b

with gcd(x, y) = 1. In this case, all the solutions are given by

(x, y, a, b) =
{

(70, 17, 0, 1), (142, 29, 2, 2) if n = 3,

(4, 3, 1, 1) if n = 4.
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Cangul, Demirci, Luca, Pinter, and Soydan [21] obtained all solutions of (2.2) for
D = 2a11b with gcd(x, y) = 1. The case D = 2a3b11c was also considered by Can-
gul, Demirci, Inam, Luca, and Soydan in [22]. In this case, the solutions of (2.2)
are given with the condition gcd(x, y) = 1. The complete solution of (2.2) when
D = 5a11b with gcd(x, y) = 1 has been obtained by Cangul, Demirci, Soydan, and
Tzanakis [23] with some exceptions. Pink and Rabai [72] determined all solutions
of (2.2) when D = 5a17b with gcd(x, y) = 1. Godinho, Marques, and Togbé [36]
solved completely (2.2) when D = 2a5b17c under the assumption gcd(x, y) = 1.
Soydan [81] found all the solutions of (2.2) with D = 7a11b for the nonnegative
integers a, b, x, y, n ≥ 3, where x and y are coprime, except when a, x are odd and
b is even. Cenberci and Peker [24] investigated the case D = 19m , while Soydan,
Ulas, and Zhu [82] solved completely (2.2) when D = 2a19b under the assumption
of gcd(x, y) = 1. Soydan [83] proved that if D = ±5αpn , then (2.2) has no solutions
in positive integers α,x ,y with gcd(x, y) = 1, x is odd, n ≥ 7, and p /∈ {2, 5}. Pink
[70] obtained all the non-exceptional solutions of (2.2) for the case D = 2α3β5γ7δ .
Godinho, Marques, and Togbe [37] found all positive integer solutions of (2.2) with
D = 2a3b17c and D = 2a13b17c, gcd(x, y) = 1. In [74], Saradha and Srinivasan
discussed (2.2) for p1

1, · · · , pr
r = DsDt2 , where Ds is the square-free part of D and

α1,α2, · · · ,αr are positive integer unknowns. They obtained several interesting
results concerning some of the values of Ds ≤ 10000. Further, for the case D = pl ,
p ∈ {11, 19, 43, 67}, it was proved in the same paper that (2.2) may have a solu-
tion only if D = 3β5γ . Le and Zhu [47] solved completely (2.2) when D = pl with
p ∈ (11, 19, 43, 67), where the class number h(−d). Here h(−d) = 1 denotes the
class number of the imaginary quadratic field Q(

√−p). In [89], Zhu discussed (2.2)
when D = pa , where p a prime and n = 3. For D = pa , we refer to Bugeaud [18].
Berczes and Pink [10] extending the above result of Saradha and Srinivasan and Le
and Zhu, solved completely (2.2) for D = d2l+1 in the case h(−d) ∈ {2, 3}, where
d > 0 is a square-free integer.

Recently, several authors became interested in the casewhenonly the prime factors
of D are specified. For example, the case when D = pk with a fixed prime number
p. Arif and Muriefah [2] solved x2 + 2k = yn under certain assumptions. Cohn [31]
considered theDiophantine equation x2 + 2k = yn , where n ≥ 3 and k was supposed
odd, and demonstrated that there were exactly three families of solutions. The same
problem with even k appears to be of rather greater difficulty and was considered by
Arif and Abu Muriefah [2]. They made the following conjecture:
If k = 2m, the diophantine equation x2 + 2k = yn has precisely two families of
solutions, given by x = 2m for all m and by n = 3, x = 11.23M if m = 3M + 1.

Arif and Abu Muriefah gave a partial answer to this conjecture in [2] and
also did Cohn in [34]. However, they finally proved the conjecture in [4]. Le
[46] and Siksek [79] presented an alternative proof of the same. Le [46] veri-
fied a conjecture of Cohn [31] by determining all the solutions of the Diophan-
tine equation x2 + 2k = yn in positive integers x, y, k, n with 2 � y and n ≥ 3, viz.,
(x, y, k, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).Arif andMuriefah [3] proved that
the Diophantine equation x2 + 3m = yn , n ≥ 3 has only one solution in positive
integers x, y,m and the unique solution is given by m = 5 + 6M , x = 10.33M ,
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y = 7.32M and n = 3, when m is odd. It is also proved that there is no solution
when n is even. Luca proved this conjecture in [54]. Luca and Togbé [56] found all
the solutions of the equation x2 + 72k = yn where x ≥ 1, y ≥ 1, k ≥ 1 and n ≥ 3
and solutions are given by

(x, y, k) =
{

(524.73λ, 65.72λ, 1 + 3λ) if n = 3,

(24.72λ, 5.7λ, 1 + 2λ) if n = 4 where λ ≥ 0 is any integer.

In 2008, Liqun [50] found all the solutions of the equation X2 + 3m = Y n with the
help of a deep result due to Bilu, Hanrot, and Voutier. In [51], he proved that the Dio-
phantine equation x2 + 5m = yn , n > 2,m > 0 has no positive integer solutionwhen
2 � m, nor when 2 | m under the additional condition gcd(x, y) = 1, with the help
of Bilu, Hanrot, and Voutier’s method. Muriefah [63] established that the equation
x2 + 52k = yn , where k > 0 and n > 3, may have a solution in integers (x, y, k, n)

only when 5 | x and p � k, where p any odd prime dividing n, by using a recent
method of Bilu, Hanrot, and Voutier [14]. Finally, Muriefah and Arif [61] proved
that the equation x2 + 52k+1 = yn , n ≥ 3 has no solution in positive integer x ,y for
all k ≥ 0. Several results have been also obtained by Muriefah and Arif in [62] for
D = q2k , where q is an odd prime. The equation (2.1) is naturally well connected
with the investigation of the class number of the imaginary quadratic number field
Q(

√−D). The solvability of some special cases of (2.1) has been used in [25–27,
40] to investigate the class numbers of associated imaginary quadratic number fields.
Arif and Muriefah [5] determined all the solutions of the equation x2 + q2k+1 = yn ,
when q is an odd prime, q � 7 (mod 8), n is an odd integer ≥ 5, n is not a multiple
of 3 and gcd(n, h) = 1, where h is the class number of the field Q(

√
( − q)) has

exactly two families of solutions given by Table2
Zhu discussed x2 + qm = y3 completely in [89]. Soydan, Demirci, and Cangul

[80] found all the solutions of the equation x2 + 11m = yn , in positive integers x ,y
with oddm > 1 and n ≥ 3.Berczes and Pink [9] solved the equation x2 + p2k = yn ,
where 2 ≤ p ≤ 100 is a prime and integer unknowns x, y, n, k satisfying x > 0, y >

1, n ≥ 3 prime, k � 0, and gcd(x, y = 1. They also proved that there is no solution
of the equation x2 + p2k = y p in integer unknowns (x, y, p, k) with x ≥ 1, y > 1,
p ≥ 5 prime, k ≥ 0, and gcd(x, y) = 1. Peker and Cenberi [71] proved that the
equation x2 + 19m = yn has solution for not only 2 | m but also 2 � m. One can
remark that many cases of (2.1) are yet to be considered.

Table 2 Solutions of x2 + q2k+1 = yn given by Arif and Muriefah

x y q k n

22434 × 195M 55 × 192M 19 5M 5

2759646 × 3415M 377 × 192M 341 5M 5
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3 The Equation x2 + Dm = 2 yn

The Diophantine equation
x2 + D = 2yn, (3.1)

with some restrictions, has received a little attention. Cohn [33] showed that the only
solution to (3.1) for D = 1 are x = y = 1 and x = 239, y = 13, and n = 4. Tengely
considered [88] the equation

x2 + q2m = 2y p, (3.2)

where m, p, q, x , and y are integer unknowns with m > 0, p and q odd primes and
x and y coprime. More precisely, he proved the following:

Theorem 3.1 There are only finitely many solutions (x, y,m, q, p) of (3.2) with
gcd(x, y) = 1, x, y ∈ N such that y is not a sum of two consecutive squares, m ∈ N,
and p > 3, q are odd primes.

In order to prove this theorem, he proved the following proposition which provides
bounds for p.

Proposition 3.1 If x2 + q2m = 2y p admits a relatively prime solution (x, y) ∈ N
2,

then

(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p ≤ 3803 if u + δ4v = ±qm, qm ≥ 503,

p ≤ 3089 if p = q,

p ≤ 1309 if u + δ4v = ±qm,m ≥ 40,

p ≤ 1093 if u + δ4v = ±qm,m ≥ 100,

p ≤ 1009 if u + δ4v = ±qm,m ≥ 250.

He also proved

Theorem 3.2 The only solution (m, p, q, x) in positive integers m, p, q, and x with
p, q odd primes, of the equation

x2 + q2m = 2.17p

is (1, 3, 5, 99).

He also solved (3.2) when q = 3. More precisely, he proved

Theorem 3.3 If the equation
x2 + 32m = 2y p

with m > 0 and p prime admit a coprime integer solution (x, y), then

(x, y,m, p) ∈ {(13, 5, 2, 3), (79, 5, 1, 5), (545, 53, 3, 3)}.
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Proposition 3.2 There exists no coprime integer solution (x, y) of

x2 + 32m = 2y p

with m > 0 and p < 1000, p ≡ 5 (mod 24) or

p ∈ {131, 251, 491, 971}

prime.

The Thue equations related to the remaining primes p < 1000 were solved by G.
Hanrot.

Proposition 3.3 (G. Hanrot) There exists no coprime integer solution (x, y) of

x2 + 32m = 2y p

with m > 0 and

p ∈ {59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947} .

Muriefah, Luca, Siksek, and Tengely [64] investigated (3.1) both in the casewhere
D is a fixed integer as well as in the case where D is the product of powers of fixed
primes. They showed that in some cases, this equation can be solved by appealing
to the theorem of Bilu, Hanrot, and Voutier [14] on primitive divisors of Lehmer
sequences. More precisely, they prove the following results.

Theorem 3.4 Let D > 0 be an integer satisfying D ≡ 1 (mod 4) and write D =
cd2, where c is square-free. Suppose that (x, y) is a solution of (3.1)with x, y ∈ Z

+,
gcd(x, y) = 1 and p ≥ 5 a prime. Then one of the following is true:

(i) x = y = D = 1,
(ii) p divides the class number of the quadratic field Q(

√−d),
(iii) p = 5 and (D, x, y) is one of (9, 79, 5), (125, 19, 3), (125, 183, 7), and (2125,

21417, 47),

(iv) p |
(
q − (−d

q )
)
, where q is some odd prime such that q | d and q � c. Here

(
−d
q

)
denotes the Legendre symbol of the integer −d with respect to the prime

q.

Theorem 3.5 The only solutions of (3.1) with x, y coprime integers, n ≥ 3,
and D ≡ 1 (mod 4), 1 ≤ D ≤ 100 are 12 + 1 = 2�1n, 792 + 9 = 2�55, 52 +
29 = 2�33, 1172 + 29 = 2�193, 9932 + 29 = 2�793, 112 + 41 = 2�34, 692 +
41 = 2�74, 1712 + 41 = 2�114, 12 + 53 = 2�33, 252 + 61 = 2�73, 512 + 61 =
2�113, 372 + 89 = 2�93.

As a consequence of Theorem 3.4, one gets the following:
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Corollary 3.1 Let q1, . . . qk be distinct primes satisfying qi ≡ 1 (mod 4). Suppose
that (x, y, p, a1, . . . ak) is a solution to the equation

x2 + qa1
1 . . . qak

k = 2y p,

satisfying x, y ∈ Z
+, gcd(x, y) = 1, ai ≥ 0, p ≥ 5 prime. Then one of the following

is true:

(i) x = y = 1 and all the ai = 0,
(ii) p divides the class number of the quadratic fieldQ(

√−d) for some square-free
d dividing q1q2 . . . qk,

(iii) p = 5 and (
∏

qai
i , x, y) = (125, 19, 3), (125, 183, 7), (2125, 21417, 47),

(iv) p | (q2
i − 1) for some i .

Muriefah, Luca, Siksek, and Tengely solved completely the following equations
under the restrictions gcd(x, y) = 1 and n ≥ 3:

x2 + 17a1 = 2yn,

x2 + 5a113a2 = 2yn, and

x2 + 3α111α2 = 2yn .

They also proved when d � 1 (mod 4), one may try to use the modular approach
[8] to solve the equation.

in [87], Tengely gave a method to resolve the equation

x2 + a2 = 2yn

in integers n > 2, x , y for any fixed a. He determined all solutions for odd a with
3 ≤ a ≤ 501.

Zhu et al. [90] described all the solutions of the equation

x2 + p2m = 2yn

with gcd(x, y) = 1, n > 2, where p be an odd prime. They also proved that this
equation has no solution (x, y,m, n) when n > 3 is an odd prime and y is not the
sum of two consecutive squares. This extends the work of Tengely in [88].

However, in 1942, Ljunggren gave a very complicated proof of the fact that the
only positive integer solutions of the equation

X2 + � = 2Y 4
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are (X,Y ) = (1, 1) and (239, 13). Later, Steiner and Tzanakis [84] gave a simpler
solution of Ljunggren’s problem. This is accomplished by reducing the problem to a
Thue equation and then solving it by using a deep result ofMignotte andWaldschmidt
on linear forms in logarithms and continued fractions.

4 On the Equation x2 + Dm = 4 yn

There are many results in the literature concerning various extensions and general-
izations of the following equation:

x2 + Dm = 4yn . (4.1)

In 1972, Ljunggren [53] proved some results concerning the solvability in positive
integers x , y, and q of (4.1) for a fixed positive integer D ≡ 3 (mod 4) without any
square factor greater than 1 when n = q is an odd prime and m = 1.

Luca, Tengely, and Togbé [57] determined that the only integer solutions (D, n,

x, y) of (4.1) with x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, D ≡ 3 (mod 4), 1 ≤ D ≤ 100
are given in Table3.

They also determined the integer solution of (4.1) when D = 5a11b, 7a13b with
x, y ≥ 1, gcd(x, y) = 1, n ≥ 3 and a, b ≥ 0. In [43], Le proved that if n > 8.5.106,
then the equations

d1x
2 + 22md2 = yn with 2 � y

and
d1x

2 + d2 = 4yn

have no positive integer solutions (x, y) with gcd(x, y) = 1. Le [45] also showed in
his note that the generalized Ramanujan–Nagell equation

Table 3 Solutions of (4.1) when m = 1 and D ≡ 3 (mod 4), 1 ≤ D ≤ 100

(3,n,1,1) (3,3,37,7) (7,3,5,2) (7,5,11,2)

(7,13,181,2) (11,5,31,3) (15,4,7,2) (19,7,559,5)

(23,3,3,2) (23,3,29,6) (23,3,45,8) (23,3,83,12)

(23,3,7251,236) (23,9,45,2) (31,3,1,2) (31,3,15,4)

(31,3,63,10) (31,3,3313,140) (31,6,15,2) (35,4,17,3)

(39,4,5,2) (47,5,9,2) (55,4,3,2) (59,3,7,3)

(59,3,21,5) (59,3,525,41) (59,3,28735,591) (63,4,1,2)

(63,4,31,4) (63,8,31,2) (71,3,235,24) (71,7,21,2)

(79,3,265,26) (79,5,7,2) (83,3,5,3) (83,3,3785,153)

(87,3,13,4) (87,3,1651,88) (87,6,13,2) (99,4,49,5)
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D1x
2 + D2 = 4pn

has at most two positive integer solutions (x, n) except (D1, D2, p) = (1, 7, 2),
(3, 5, 2), (1, 11, 3), and (1, 19, 5), where D1, D2 are positive integers with 2 � D1D2

and gcd(D1, D2) = 1 and p be a prime with p � D1D2. Le and Hunan [44] proved
that the equation

D1x
2 + Dm

2 = 4yn

with D1, D2, x, y,m, n ∈ N, gcd(D1x, D2y) = 1, 2 � m, n an odd prime,n � h
(−D1D2), has only a finite number of solutions (D1, D2, x, y,m, n) with n >

5. Moreover, the solutions satisfy 4yn < exp exp 470, where D1, D2 ∈ N and
h(−D1D2) denote the class number of the imaginary quadratic field Q(

√−D1D2).
Many special cases of the diophantine equationax2 + bm = 4yn where (ax, by) = 1,
a, b are square-free integers, y > 1, m is odd, a, b, x , y, m, solved a family and n be
positive integers and n is an odd prime, have been considered in the last few years
(see [15, 19, 42, 85]). Le [43, 45] studied this equation in full generality and proved
that it has only a finite number of solutions (a, b, x, y,m, n) with n > 5. Hua and
Voutier [41] used the method of Thue and Siegel, based on explicit Pade approxima-
tions to algebraic functions, to completely solve a family of quartic Thue equations.
Using this result, they considered the Diophantine equation

X2 + 1 = dY 4

and proved that this equation has at most one solution in positive integers when
d ≥ 3. Arif and Al-Ali [6] showed that the Diophantine equation

ax2 + b2k+1 = 4yn, (4.2)

where a, b, x, y, k, n are positive integers such that (ax, b) = 1, a, b are square
free integers, k ≥ 0, n is an odd prime, (n, h) = 1 where h is the class num-
ber of the field Q

(√−ab
)
and y > 1, has no solutions in (a, b, x, y, k, n) when

n > 13 and has exactly six solutions for 7 ≤ n ≤ 13, given by (a, b, k, n, y) =
(1, 7, 0, 13, 2), (1, 7, 1, 7, 2), (1, 19, 0, 7, 5), (3, 5, 0, 7, 2), (5, 7, 1, 7, 3), (13, 3,
0, 7, 4). Further if a = 1, n = 5, then 4.2 has exactly 2 solutions given by k = 0
and (b, y) = (7, 2), (11, 3).

Bugeaud [19] applied a new, deep result of Bilu, Hanrot, and Voutier to solve
completely some exponential Diophantine equations of the type D1x2 + D2 = λ2y p,
where D1,D2 are given coprime positive integers, λ ∈ {1, 2} and x , y, and p ≥ 3 are
unknown.

Bhatter, Hoque, and Sharma [13] completely solved (4.1) for any nonnegative
integer x ,y,m, and n when D = −19. More precisely, they proved.
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Theorem 4.1 Let k ≥ 0 be an integer. The Diophantine equation

x2 + 192k+1 = 4yn (4.3)

has no solutions in positive integers x, y, n except

(x, y, n) ∈
{(

19t × 192(k−t)+1 − 1

2
, 19t × 192(k−t)+1 + 1

4
, 2

)

, (559 × 197m , 5 × 192m , 7)

}

with t,m ∈ Z≥0 satisfying k = 7m in case of the second solution, and n 	= 1. For
n = 1, it has infinitely many solutions in positive integers x, y, n.

Recently, Chakraborty et al. [28] completely solved (4.1) when −D is one of
7, 11, 19, 43, 67, 163.
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1 Introduction

A number field k is a finite extension of the field of rational numbers Q. Quadratic
(number) field is a degree 2 extension of Q. Every quadratic field k is of the form
Q(

√
d), where d is a square-free integer. If d is positive (respectively, negative), then

the quadratic field k = Q(
√
d) is called real (respectively, imaginary). A number

β ∈ C is said to be an algebraic integer if β is a root of a nonzero, monic polynomial
over Z. The set of all algebraic integers in k forms a ring which is known as ring of
integers of k. It is denoted byOk . In general, unlike in Z, the unique factorization of
algebraic integers into primes (irreducibles) does not hold in Ok , that is, Ok is not
a principal ideal domain in general. Therefore, it is interesting and of considerable
importance to understand how far Ok fails to be a PID. As a result, to measure
this failure, the concept of the ideal class group or simply class group of a number
field appeared. Starting from the time of Gauss, this topic has been extensively
explored by many authors and thus there exist a vast amount of research articles.
Gauss conjectured that there are only nine imaginary quadratic fields with class
number 1. Baker [2] and Stark [40] proved this conjecture independently. Heegner
[21] had already proved this conjecture but unfortunately, his proof was incorrect or
at the best, incomplete. Stark found that the gap in the proof is very minor and he
filled that gap and completed the proof in [41]. Gauss also gives a list of imaginary
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quadratic fields with very low class numbers, and he believes that list to be complete.
Baker and Stark independently in [3, 39], respectively, and jointly in [4], completely
classified the list of imaginary quadratic fields with class number 2. Oesterlé [36]
gives the analogous list of imaginary quadratic fields with class number 3. Finally,
all the imaginary quadratic fields with class numbers up to 100 were classified by
Watkins [42]. On the other hand, the divisibility of the class numbers of number
fields is also very important for understanding the structure of the class groups of
number fields. Interested readers can consult [14–17, 23, 25, 26, 29, 32, 38, 43]
and the references therein, for more details on the divisibility properties of the class
numbers of quadratic number fields.

In this survey article, we discuss some interesting results concerning the criteria
for the class number of certain Richaud–Degert type real quadratic number fields
to be 1 and 2. We also provide the outlines of the proof of some of these important
results. Due to the versatility of these problems, this survey may miss out some
interesting references and thus some interesting results as well. Therefore this article
is never claimed to be a complete survey.

2 R–D Type Real Quadratic Fields and Some Conjectures

We begin this section with the following definition and notation.

Definition 2.1 Let d = n2 + r with d �= 5 be a square-free positive integer satisfy-
ing

r | 4n and n < r ≤ n.

In this case, the field k = Q(
√
d) is called real quadratic field of Richaud–Degert (in

brief, R–D) type.

The following result gives the fundamental unit in R–D type real quadratic fields.
This result was proved by Degert [20] in 1958.

Proposition 2.1 (Degert [20]) Let k = Q(
√
n2 + r) be a real quadratic field of

Richaud–Degert type. Then fundamental unit ε of k and its norm N (ε) are given
as follows:

ε =

⎧
⎪⎨

⎪⎩

n + √
n2 + r , N (ε) = − sgn r, if |r | = 1,

n+√
n2+r
2 , N (ε) = − sgn r, if |r | = 4,

n2+r
|r | + 2n

|r |
√
n2 + r , N (ε) = 1, if |r | �= 1, 4.

Let k = Q(
√
d) be a real quadratic field with fundamental discriminant D and

h(d) denote the class number of k. Inmodern terms,Gauss conjectured the following:

(C1) h(d) = 1 for infinitely many d. Another form is “there exist infinitely many
real quadratic fields of the formQ(

√
p), p ≡ 1 (mod 4) of class number 1”.
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This conjecture is still open. In connection to (C1), Chowla and Friedlander [18]
stated the following conjecture:

(C2) If D = m2 + 1 is a prime with m > 26, then the class number of Q(
√
D) is

greater than 1.

This conjecture concludes that there are exactly seven real quadratic fields of the
form Q(

√
m2 + 1) whose class number is 1, and they are corresponding to

m ∈ {1, 2, 4, 6, 10, 14, 26}.

In 1988, Mollin and Williams [35] proved this conjecture under the assumption of
generalized Riemann hypothesis (GRH). Chowla also posted a conjecture analogous
to (C2) on a general family of real quadratic fields. More precisely, he gave the
following conjecture.

(C3) Let D be a square-free integer of the form D = 4m2 + 1 for some positive
integer m. Then there exist exactly six real quadratic fields Q(

√
D) whose

class number is 1. These six fields are corresponding to D ∈ {5, 17, 37, 101,
197, 677}.

Yokoi [44] investigated this conjecture. He, however, stated one more conjecture on
another family of real quadratic fields. Precisely, he stated the following:

(C4) Let D be a square-free integer of the form D = m2 + 4 for some positive
integer m. Then there exist exactly six real quadratic fields Q(

√
D) of class

number one. These fields are corresponding to D ∈ {5, 13, 29, 53, 173, 293}.
Kim et al. [28] proved that at least one of (C3) and (C4) is true. They also concluded
that there are at most seven real quadratic fields Q(

√
D) whose class number is 1

for the other case. Biró proved the conjectures (C3) and (C4) in [6, 7]. On the other
hand, Hoque and Saikia [24] proved that there are no real quadratic fields of the form
Q(

√
9(8n2 + r) + 2) whose class number is 1 when n ≥ 1 and r = 5, 7. Hoque and

Chakraborty [22] showed that if d = n2 p2 + 1 with p ≡ ±1 (mod 8) a prime and
n an odd integer, then the class group of Q(

√
d) is always nontrivial. Recently,

Chakraborty and Hoque [11] proved that if d is a square-free part of an2 + 2, where
a = 9, 196 and n is an odd integer, then the class group ofQ(

√
d) is always nontrivial.

It is more interesting to investigate some conditions for a real quadratic field to
have a given class number, say N . Applying algebraic method, Yokoi [44] proved
that for a positive integer m, the class group of Q(

√
4m2 + 1) is trivial if and only

if m2 − x(x + 1), 1 ≤ x ≤ n − 1, is a prime. In [33], Lu obtained this result using
the theory of continued fractions. Kobayashi [30] determined some strong conditions
that this as well as some other families of real quadratic fields to be of class number 1.
However,Byeon andKim [8] established somenecessary and sufficient conditions for
the class number of Richaud–Degert type real quadratic fields to be 1. Analogously,
they also obtained some necessary and sufficient conditions for the class number
of Richaud–Degert type real quadratic fields to be 2. On the other hand, Mollin
[34] obtained some analogous conditions for class number 2 using the theory of
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continued fractions and algebraic arguments. Along the same lines, some criteria
for the class numbers of some R–D type real quadratic fields to be 3 were deduced
in [13]. Recently, the author along with Chakraborty and Hoque [12] classified the
order 4 class groups of certain real quadratic fields of R–D type using some group
theoretic arguments.

3 Dedekind Zeta Values

In this section, we discuss two different ways, due to Siegel and Lang, respectively,
of computing special values of zeta functions attached to a real quadratic field.
Throughout this section, if not stated, k is a real quadratic field of Richaud–Degert
(R–D) type, more precisely k = Q(

√
d) with radicand d = n2 + r satisfying r | 4n

and −n < r ≤ n.
The Dedekind zeta function of a number field k is defined by

ζk(s) =
∑

a

1

N(a)s
, s = σ + iτ and σ > 1,

where the sum is running over all the integral ideals of k. We can also express this
zeta function as an Euler product:

ζk(s) =
∏

℘

(
1 − 1

N(℘)s

)−1

,

where product runs over all the integral prime ideals.
Zagier [45] described the following formula by direct analytic methods when k is

a real quadratic field, by specializing Siegel’s formula [37] for ζk(1 − 2n) for general
k. For n = 1, we have the following form (see [45]).

Theorem 3.1 Let k be a real quadratic field with discriminant D. Then

ζk(−1) = 1

60

∑

|t |<√
D

t2≡D (mod 4)

σ

(
D − t2

4

)

,

where σ(n) denotes the sum of divisors of n.

Lang gives another method of computing special values of ζk(s), whenever k is
a real quadratic field. Let A be an ideal class of a real quadratic field k = Q(

√
d)

with discriminant D. And let {r1, r2} be an integral basis of an integral ideal a inA−1

with. We define
δ(a) := r1r

′
2 − r ′

1r2,



Partial Dedekind Zeta Values and Class Numbers of R–D Type … 167

where r ′
1 and r

′
2 are the conjugates of r1 and r2, respectively.

Let ε be the fundamental unit of k. Then we can find a matrix M =
[
a b
c d

]

with

integer entries satisfying

ε

[
r1
r2

]

= M

[
r1
r2

]

, (3.1)

since {εr1, εr2} is also an integral basis of a. We can now state the result of Lang
[31]:

Theorem 3.2 By keeping the above notations, we have

ζk(−1,A) = sgn δ(a) r2r ′
2

360N (a)c3
{
(a + d)3 − 6(a + d)N (ε) − 240c3(sgn c)

× S3(a, c) + 180ac3(sgn c)S2(a, c) − 240c3(sgn c)S3(d, c)

+ 180dc3(sgn c)S2(d, c)
}
,

where Si (−,−) denotes the generalized Dedekind sum as defined in [1] and N (a)
represents the norm of a.

Wenote thatBanerjee,Chakraborty, andHoqueobtained some important formulae
for computing zeta values attached to both real as well as imaginary quadratic fields
in [5]. However, these formulas are not helpful here.

To apply Theorem3.2, one needs to determine the values of a, b, c, d and gen-
eralized Dedekind sum. The following result of Kim [27] determines the values of
a, b, c, and d.

Lemma 3.1 The entries of matrix M are given by

a = Tr

(
r1r ′

2ε

δ(a)

)

, b = Tr

(
r1r ′

1ε
′

δ(a)

)

, c = Tr

(
r2r ′

2ε

δ(a)

)

and

d = Tr

(
r1r ′

2ε
′

δ(a)

)

.

Furthermore, det(M) = N (ε) and bc �= 0.

Proof By (3.1) and taking its conjugate, we get

[
εr1 ε′r ′

1
εr2 ε′r ′

2

]

= M

[
r1 r ′

1
r1 r ′

1

]

. (3.2)

Also we can see that

[
r1 r ′

1
r2 r ′

2

]−1

= 1

δ(a)

[
r ′
2 −r ′

1−r2 r1

]

.

Hence by multiplying above matrix in (3.2), we get the desired result. �
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Kim also derived the following expressions in [27] for special values of gener-
alized Dedekind sum by using reciprocity law. These expressions are also required
to compute the special value of zeta functions for ideal classes of respective real
quadratic fields.

Lemma 3.2 For any positive even integer m, we have

(i) S3(m ± 1, 2m) = ±S1(m + 1, 2m) = ∓m4−50m2+4
960m3 .

(ii) S3(m + 1, 4m) = −m4−180m3+410m2−4
7680m3 .

(iii) S3(m − 1, 4m) = m4−180m3−410m2+4
7680m3 .

(iv) S2(m − 1, 2m) = S2(m + 1, 2m) = m4+100m2−6
1440m3 .

(v) S2(m − 1, 4m) = S2(m + 1, 4m) = m4+820m2−6
11520m3 .

Lemma 3.3 For any positive integer m, we have

(i) S2(±1,m) = m4+10m2−6
180m3 .

(ii) S3(±1,m) = ±−m4+5m2−4
120m3 .

4 Class Number Criteria

In this section, we calculate the value ζk(−1,A) for an ideal class A in k, and then
equate these values with ζk(−1) to derive the results. Throughout this section, k is
a Richaud–Degert (R–D) type real quadratic field. The following result appeared in
[8].

Theorem 4.1 Let k = Q(
√
n2 + r) be a real quadratic field of R–D type with |r | �=

1, 4. If n2 + r ≡ 2, 3 (mod 4), then h(d) = 1 if and only if

ζk(−1) = 4n3(r2 + 1) + 2nr(3r2 + 5r + 3)

180r2
.

Proof LetI denote the principal ideal class. Since |r | �= 1, 4, so that the fundamental
unit in k is given by

ε = n2 + r

|r | + 2n

|r |
√
n2 + r .

In this case, r1 = √
n2 + r and r2 = 1 forms an integral basis of Ok . Let a = Ok =

[r1, r2]. Then by Lemma3.1, one gets

[
a b
c d

]

=
[

2n2+r
|r |

2n(n2+r)
|r |

2n
|r |

2n2+r
|r |

]

.

It is easy to observe that
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2n2 + r

|r | = n
2n

|r | + sgn(r) ≡ sgn(r)
(2n

|r |
)
.

By using Lemma (3.3), we get

240c3(sgn c)S3(a, c) = 240c3S3
(
2n2 + r

|r | ,
2n

|r |
)

= 240 × 43S3
(

sgn(r),
2n

|r |
)

= −8n

r4
(4n4 − 5n2r2 + r4).

Similarly,

180ac3(sgn c)S2(a, c) = 180ac3S2
(
2n2 + r

|r | ,
2n

|r |
)

= −2n

r5
(2n2 + r)(8n4 + 20n2r2 − 3r4).

Also,

(a + d)3 − 6(a + d)N (ε) = 8sgn(r)
(2n2 + r)3

r3
− 12sgn(r)

2n2 + r

r
.

Substituting the above values in Lang’s formula, we get

ζk(−1, I) = 4n3(r2 + 1) + 2nr(3r2 + 5r + 3)

180r2
.

We know that
ζk(−1) ≥ ζk(−1, I)

and equality holds if and only if h(d) = 1. �

In a similar fashion, one can obtain similar results for other cases. Hence, we
summarize the criteria for class number 1 as follows:

Theorem 4.2 Let k = Q(
√
n2 + r) be a real quadratic field of R–D type. Then

h(d) = 1, for each case, if and only if we have the following value of ζk(−1)

I. If n2 + r ≡ 2 (mod 4) and |r | = 1

ζk(−1) = 4n3 + 5n ± 6n

180

II. If n2 + r ≡ 1 (mod 4)
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ζk(−1) =
{

n3+5n±6n
360 , if|r | = 4,

n3+14n
360 , if|r | = 1.

and if |r | �= 1, 4

ζk(−1) =
{

2n3(r2+1)+n(3r3+50r2+3r)
720r2 , if n even,

2n3(r2+16)+n(3r3+20r2+48r)
720r2 , if n odd.

One needs the following result to derive class number 2 criteria.

Theorem 4.3 Let k = Q(
√
d) be a real quadratic field with d be square-free. Then

we have the following results:

I. If d ≡ 1 (mod 8), then (2) splits, i.e.,

(2) =
(
2,

1 + √
d

2

)(
2,

1 − √
d

2

)
.

II. If d ≡ 2, 3 (mod 4), then (2) ramifies, i.e.,

(2) =
{

(2, d)2, if d ≡ 2 (mod 4),

(2, 1 + d)2, if d ≡ 3 (mod 4).

III. If d ≡ 5 (mod 8), then (2) remains prime.

One can consult [19] for detail proof of this result.

Let A be the ideal class containing
(
2, 1±√

d
2

)
or (2, α + d), where α = 0 or 1

depending on d ≡ 2 (mod 4) or d ≡ 2 (mod 4). Now, one can get the following
result.

Theorem 4.4 Let k = Q(
√
n2 + r) be a real quadratic field of R–D type. Then the

following hold:

I. If n2 + r ≡ 2 (mod 4), then

ζk(−1,A) =

⎧
⎪⎨

⎪⎩

2n3(r2+1)+nr(3r2+50r+3)
360r2 , if n odd and |r | �= 1, 4,

2n3(r2+16)+nr(3r2+20r+48)
360r2 , if n even and |r | �= 1, 4,

2n3+25n±3n
360 , if |r | = 1.

II. If n2 + r ≡ 3 (mod 4), then

ζk(−1,A) =

⎧
⎪⎨

⎪⎩

2n3(r2+1)+nr(3r2+50r+3)
360r2 , if n even and |r | �= 1, 4,

2n3(r2+16)+nr(3r2+20r+48)
360r2 , if n odd and |r | �= 1, 4,

2n3+25n±3n
360 , if|r | = 1.
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III. If n2 + r ≡ 1 (mod 8), then

ζk(−1,A) =
{

2n3(r2+1)+n(3r3+410r2+3r)
2880r2 , if |r | �= 1, 4,

n3+104n
1440 , if |r | = 1.

Proof We will give the proof for the case when n2 + r ≡ 1 (mod 8) and |r | = 1.

Let a :=
(
2, 1+√

d
2

)
∈ A−1. Then an integral basis for a is {r1 = 1+√

d
2 , r2 = 2} and

thus δ(a) = 2
√
d . By Lemma 3.1, we get

[
a b
c d

]

=
[
n + 1 d−1

4
4 n − 1

]

.

Since n2 + 1 ≡ 1 (mod 8), so 4|n, and therefore n ± 1 ≡ ±1 (mod 4). Hence
by Lemma 3.3, we obtain

240c3(sgn )S3(d, c) = 240c3S3(n − 1, 4) = 240 × 43S3(−1, 4) = 360,

240c3(sgn c)S3(a, c) = 240c3S3(n + 1, 4) = 240 × 43S3(1, 4) = −360,

180dc3(sgn )S2(d, c) = 180dc3S2(n − 1, 4) = 180 × 43dS2(−1, 4) = 410(n − 1).

180ac3(sgn )S2(a, c) = 180ac3S2(n + 1, 4) = 180 × 43aS2(1, 4) = 410(n + 1),

Therefore by Theorem3.2, we have

ζk(−1,A) = n3 + 104n

1440
. �

Theorem 4.5 Let k = Q(
√
n2 + r) be R–D type real quadratic field. Then

I. d = n2 + r ≡ 1 (mod 8)
(i) h(d) > 1 for |r | = 1 except d = 17.
(ii) h(d) > 1 for |r | �= 1, 4 except d = 33.

II. d = n2 + r ≡ 2, 3 (mod 4)
(i) h(d) > 1 for |r | = 1 except d = 2, 3.
(ii) h(d) > 1 for |r | �= 1, 4 except r = ±2.

Proof We will give the details of the proof for the case I(i), and other cases can be
handled along the same lines.

Let n2 + 1 ≡ 1 (mod 8). Then by above theorem,

ζk(−1,A) = n3 + 104n

1440
.
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and by Theorem4.2,

ζk(−1, I) = n3 + 14n

360
.

If h(d) = 1, then ζk(−1, I) = ζk(−1,A), i.e.,

n3 + 104n

1440
= n3 + 14n

360
.

Thus we get d = 17. Hence for d �= 17, we have h(d) > 1.

Theorem 4.6 Let k = Q(
√
n2 + r) be a real quadratic field of R–D type. Then

h(d) = 2 if and only if

I. If d = n2 + r ≡ 2 (mod 4)

ζk(−1) =

⎧
⎪⎨

⎪⎩

2n3(r2+1)+nr(3r3+14r2+3r)
72r2 , if n odd, |r | �= 2 and |r | �= 1, 4,

2n3(r2+4)+n(3r3+8r2+12r)
72r , if n even |r | �= 2 and |r | �= 1, 4,

10n3+35n±15n
360 , if d �= 2, 3 and |r | = 1.

II. If d = n2 + r ≡ 3 (mod 4)

ζk(−1,A) =

⎧
⎪⎨

⎪⎩

2n3(r2+1)+nr(3r3+14r+3r)
72r2 , if n even, |r | �= 2 and |r | �= 1, 4,

2n3(r2+4)+n(3r3+8r2+12r)
72r , if n odd |r | �= 2 and |r | �= 1, 4,

10n3+35n±15n
360 , if d �= 2, 3 and |r | = 1.

III. If d = n2 + r ≡ 1 (mod 8)

ζk(−1) =

⎧
⎪⎨

⎪⎩

2n3(r2+1)+n(3r3+122r2+3r)
576r2 , if n even, d �= 33 and |r | �= 1, 4,

2n3(r2+13)+n(3r3+98r2+39r)
576r2 , if n odd, d �= 33 and |r | �= 1, 4,

n3+32n
288 , if d �= 17 and |r | = 1.

We note that detailed proof of this theorem can be found in [9].
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√
p and

√
2 p for Primes p ≡ 3
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1 Introduction

Looking for example at the following continued fraction expansions of
√
d for d = p

and d = 2p, where p is a prime integer equal to 3 modulo 4, one is lead to guess the
behavior given in Theorem1:

d = p or d = 2p p mod 8 L a0 aL
√
d

d = p = 43 3 5 6 5 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]
d = 2p = 2 · 43 3 5 9 8 [9, 3, 1, 1, 1, 8, 1, 1, 1, 3, 18]

d = p = 59 3 3 7 7 [7, 1, 2, 7, 2, 1, 14]
d = 2p = 2 · 59 3 5 10 10 [10, 1, 6, 3, 2, 10, 2, 3, 6, 20]

d = p = 31 7 4 5 5 [5, 1, 1, 3, 5, 3, 1, 1, 10]
d = 2p = 2 · 31 7 2 7 6 [7, 1, 6, 1, 14]

d = p = 47 7 2 6 5 [6, 1, 5, 1, 12]
d = 2p = 2 · 47 7 8 9 8 [9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18]

This behavior in the case of d = p was presented orally in [8] and in written form
in [1, Proposition 4.1]. However it had already been proved in [2, Corollary 2, p.
2071]. Our present proof is different and applies both to d = p and d = 2p. It is
based on the arithmetic of quadratic number fields and their ideal class groups in the
narrow sense (as in [5, 6]).
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Theorem 1 Let p ≡ 3 (mod 4) be a prime integer. Let l ≥ 1 be the length of the
period of the continued fraction expansion

√
d = [a0, a1, . . . , al ] of d = p or d =

2p. Then (i) a0 = �√d� and al = 2a0, (ii) ak = al−k for 1 ≤ k ≤ l − 1, (iii) l = 2L
is even, (iv) al/2 = aL is the integer in {a0 − 1, a0} of the same parity as d. Moreover,
L is even if and only if p ≡ 7 (mod 8).

2 Continued Fraction Expansions of Quadratic
Irrationalities

Let d > 1 be a not perfect square integer. The continued fraction expansion ω0 =
[a0, a1, . . .] of ω0 = (P0 + √

d)/Q0 with P0, Q0 ∈ Z, and Q0 dividing d − P2
0 , can

be computed inductively by writing ωk = [ak, . . .] as ωk = (Pk + √
d)/Qk , where

the Pk, Qk ∈ Z are inductively defined by ak = �(Pk + √
d)/Qk� and ωk = ak +

1/ωk+1, hence by Pk+1 = akQk − Pk and Qk+1 = (d − P2
k+1)/Qk . (Hence Qk+1 =

Qk−1 + 2ak Pk − a2k Qk for k ≥ 1 and the Qk’s are rational integers, by induction on
k). Recall that ω0 ∈ Q(

√
d) is called reduced if ω0 > 1 and −1/ω′

0 > 1, where ω′
0 is

the conjugate of ω0 in Q(
√
d). By induction, using ωk = ak + 1/ωk+1, it is easy to

see that ifω0 is reduced then so are all theωk’s. The continued fraction expansionα =
[a1, . . . , al ] of an irrational real numberα is purely periodic (of length l) if and only if
α is a reduced quadratic irrationality of the formα = (P + √

d)/Q for some not per-
fect square integer d > 1 and some P ∈ Z, Q ∈ Z≥1 and Q dividing d − P2. In that
case,−1/α′ = [al, . . . , a1] (e.g., see [3,XV, p. 311]).Now, ifω0 = [a0, a1, . . . , al−1]
is reduced, using ωk = ak + 1/ωk+1, we obtain Mk := Z + Zωk = Z + Zω−1

k+1 =
ω−1
k+1Mk+1 and M0 = ω−1

1 M1 = ω−1
1 ω−1

2 M2 = · · · = ε−1
Ml = ε−1

M0, where ε =
ω1ω2 . . .ωl = ω0ω1 . . .ωl−1. Therefore, ε is a unit of the moduleM0 = Z + Zω0 ⊆
Q(

√
d). Hence ε is a unit of norm N (ε) = ∏l−1

k=0(ωkω
′
k) = (−1)l (as ωk > 1 and

−1/ω′
k > 1).

Now, setting g = �√d�, it is easy to check that ω0 = g + √
d is reduced. Its con-

tinued fraction expansion ω0 = [2g, a1, . . . , al−1] is therefore purely periodic and
ω1 = [a1, . . . , al−1, 2g] = 1/(ω0 − 2g) = 1/(

√
d − g) = −1/ω′

0 = [al−1, . . . , a1, 2g].
Hence, ak = al−k for 1 ≤ k ≤ l − 1. Assume that d is divisible by a prime p ≡
3 (mod 4). The unit ε = ω0ω1 . . .ωl−1 = xd + yd

√
d ∈ M0 := Z + Zω0 = Z[√d]

satisfies (−1)l = N (ε) = x2d − dy2d ≡ x2d (mod p). Hence, l = 2L is even, ω0 =
[2g, a1, . . . , aL−1, aL , aL−1, . . . , a1], ωL = [aL , . . . , a1, 2g, a1, . . . , aL−1] and
ωL+1 = [aL−1, . . . , a1, 2g, a1, . . . , aL ] = −1/ω′

L . Using ωL+1 = (PL+1 + √
d)/

QL+1 and ωL = (PL + √
d)/QL , we obtain QLQL+1 = (PL+1 + √

d)(
√
d − PL).

Looking at the coefficients of
√
d in this identity, we obtain PL+1 = PL . Hence,

PL = PL+1 = aL QL − PL and d − P2
L = QLQL+1, i.e.,

2PL = aL QL , and 4d − a2L Q
2
L = 4QLQL+1.
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Hence, QL divides 4d and if 4 divides QL , then 4 divides d. Hence, we obtain

Lemma 2 Let d ≡ 2, 3 (mod 4) be a positive square-free integer such that at least
one prime p ≡ 3 (mod 4) divides d. HenceZ[√d] is the ring of algebraic integers of
the real quadratic fieldQ(

√
d) of discriminant 4d and the units ofZ[√d] are of norm

+1. Let l ≥ 1 be the length of the period of the continued fraction expansion
√
d =

[a0, a1, . . . , al ] of d = p or d = 2p. Then (i) a0 = �√d� and al = 2a0, (ii) ak = al−k

for 1 ≤ k ≤ l − 1, (iii) l = 2L is even, and (iv) QL is a square-free integer dividing
4d such that 1 < QL < 2

√
d and aL = �ωL� ∈ {�2√d/QL�, �2

√
d/QL� − 1}.

Moreover, L is even if and only if the ideal I = QLZ + (PL + √
d)Z of norm QL

which is principal in the wide sense is also principal in the narrow sense.

Proof Set α = QLω1 . . .ωL ∈ Q(
√
d). Since I = QLML = QLω1 . . .ωLM0 =

αZ[√d], this ideal I is principal. Since the sign of the norm of α is (−1)L (recall
that ωk > 1 and −1/ω′

k > 1 for k ≥ 0), the ideal I is principal in the narrow sense if
and only if L is even. Finally, ωL = (PL + √

d)/QL is reduced if and only if QL ≥ 1
and |√d − QL | < PL <

√
d, which implies 1 < QL < 2

√
d and 2

√
d

QL
− 1 < ωL

< 2
√
d

QL
. �

Notice that (iii) is related to [7, Satz 14, p. 94] and [4, Theorem 1].

3 Proof of Theorem 1

Lemma 3 Let p ≡ 3 (mod 4) be a prime integer. Take d = p or d = 2p and let the
notation be as in Lemma2. Then QL = 2. Hence, I is the prime ramified ideal P2 of
norm 2 of the ring of algebraic integers Z[√d] of the real quadratic field Q(

√
d) of

discriminant 4d and aL is the integer in {�√d�, �√d� − 1} of the same parity as d.
Proof Assume that d = p or d = 2p, where 7 < p ≡ 3 (mod 4) is prime. Then QL

is square-free, 1 < QL < 2
√
d ≤ 2

√
2p < p and QL divides 4d = 4p or 8p. Hence

QL = 2. For p = 3, we have
√
3 = [1, 1, 2] and

√
6 = [2, 2, 4], and for p = 7,

we have
√
7 = [2, 1, 1, 1, 4] and √

14 = [3, 1, 2, 1, 6] and in these four cases, we
have QL = 2. Since QL = 2, we have aL ∈ {�√d�, �√d� − 1} and 4d − a2L Q

2
L =

4p − 4a2L = 4QLQL+1 = 8QL+1 implies that aL has the same parity as d. �

Lemma 4 Let p ≡ 3 (mod 8) be a prime integer. Take d = p or d = 2p. The prime
ideal P2 of norm 2 of the ring of algebraic integers Z[√d] of the real quadratic field
Q(

√
d) of discriminant 4d is principal in the narrow sense if and only if p ≡ 7

(mod 8).

Proof Since the discriminant 4d ofQ(
√
d) has exactly 2 distinct prime divisors, the

2-rank of its narrow ideal class group is equal to 1 and the class of order 2 in the
narrow class group is either the class of the prime ideal P2 above the prime 2 or the
class of the prime ideal Pp above the prime p.
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First, assume that d = p. IfPp = (α) = (x + y
√
p)were principal in the narrow

class group, then we would have p = N (α) = x2 − py2, hence p would divide
x = pX and 1 = pX2 − y2 would imply 1 ≡ −y2 (mod p) and p ≡ 1 (mod 4), a
contradiction. Hence, the ideal class of Pp is the class of order 2 in the narrow class
group.

If P2 = (α) = (x + y
√
p) is principal in the narrow sense, then N (P2) = 2 =

N (α) = x2 − py2. Hence, x and y are odd and 2 = x2 − py2 ≡ 1 − p (mod 8),
i.e., p ≡ 7 (mod 8).

If P2 is not principal in the narrow sense, then P2Pp = (α) = (x + y
√
p) is

principal in the narrow sense and N (P2Pp) = 2p = N (α) = x2 − py2. Hence p
divides x = pX and y = pY and 2 = pX2 − Y 2. Hence, X and Y are odd and
2 = pX2 − Y 2 ≡ p − 1 (mod 8), i.e., p ≡ 3 (mod 8).

Second, assume that d = 2p. IfP2Pp = (α) = (x + y
√
2p)were principal in the

narrow class group, then we would have 2p = N (α) = x2 − 2py2. Hence 2p would
divide x = 2pX and we would have1 = 2pX2 − y2. Hence, y would be odd and
we would have 1 + y2 ≡ 2 (mod 8). Hence X would be odd and we would have
2p ≡ 2pX2 ≡ 1 + y2 ≡ 2 (mod 8) and p ≡ 1 (mod 4), a contradiction. Hence,
the ideal class of P − 2Pp is the class of order 2 in the narrow class group.

IfP2 = (α) = (x + y
√
2p) is principal in the narrow sense, then x2 − 2py2 = 2.

Hence y is odd, x = 2X is even, 2X2 − py2 = 1, and p ≡ py2 ≡ 2X2 − 1 ≡ 1, 7
(mod 8), i.e., p ≡ 7 (mod 8).

If P2 is not principal in the narrow sense, then Pp = (x + y
√
2p) is principal in

the narrow sense and x2 − 2py2 = p. Hence p divides x = pX and pX2 − 2y2 = 1.
Hence X is odd and p ≡ pX2 ≡ 1 + 2y2 ≡ 1, 3 (mod 8), i.e. p ≡ 3 (mod 8). �
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