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Abstract The deployment of sensor nodes (SNs) in smart homes induces multi-
path transmission of signals in indoor environments (IEs). These paths occur due
to the presence of household utility objects, which produce several reflected com-
munication paths between the sender and the receiver. In order to determine the
effective position of a target SN in a wireless sensor network (WSN), certain local-
ization schemes are required in conjunction with trilateration methods. Therefore, it
is worthwhile to estimate the uncertainties in the range for time of arrival (TOA) lo-
calization of SNs subjected to non-line of sight (NLOS) conditions. In this article, we
provide a technique to characterize the variations in the range corresponding to the
TOA based on the well-known Tsallis’ entropy framework. In this model, the non-
extensive parameter q characterizes the variations in the localization range caused
due to multipath components. In this context, we optimize the Tsallis entropy subject
to the twomoment constraints (i.e., mean and variance) along with the normalization
constraint. Our proposed model is in excellent agreement with the synthetic data in
contrast to themixturemodel. This paper also provides a new approach for estimating
the parameters corresponding to the mixture model and the proposed q−Gaussian
model by minimizing the Jensen–Shannon (JS) symmetric measure between the two
models and the synthetic data.
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1 Introduction

In the recent times, the development of the smart homes has drastically increased
with the availability of various smart sensors and energy-efficient resources. Sev-
eral smart devices like the smartphones, televisions, HVAC (heating, ventilation,
and air conditioning) systems, etc., have contributed to the growth of these smart
homes. These technologies employ several sensors for acquiring data from varying
locations. So, it is quite difficult to infer the actual location of a target sensor node
(SN) due to the ubiquity of scattering objects and multiple transmission paths. Thus,
for transmission in indoor environments (IEs), the ultra-wideband (UWB) technol-
ogy is considered to be the most reliable approach for facilitating communication
between the smart devices [1–4, 26]. The UWB technology has marked a prime
development in wireless communication industries, with the ability to support high
data rate transmission over a short range. It also consumes less power which makes
it an energy-efficient choice for personal area networks (PANs). The time of arrival
(TOA)-based ranging is used distinctively with the UWB technology for localizing
the sensors in a wireless sensor network (WSN). The TOA ranging can make com-
plete utilization of the high bandwidth and appropriately manages the time delay
resolution of the UWB technology [14, 15].
In IEs, the data transmission path between the source and the sink can be located
either by using a line of sight (LOS) or non-line of sight (NLOS) propagation. In
smart homes, the NLOS propagation indicates a lack of direct communication path
between the source and the sink, due to the presence of obstacles, vi z., furniture and
walls. A major concern with indoor complex networks is the transmission of data
over the UWB channel in NLOS environments. The execution of a TOA-based UWB
communication relies on accessibility of a direct signaling path between the source
and the sink [10]. Thus due to the ambiguity in the existence of an explicit data
path between the source and the sink, the TOA localization can exhibit significant
variations in its range.
In this paper, we employ a straightforward approach to characterize the variations
in range by using the well-known Tsallis’ entropy framework. This framework was
proposed to depict the consolidation of the power-law behavior and tail fluctuations
of dynamical systems in statistical mechanics [5–9]. We first consider the localiza-
tion of SNs by using the UWB-based TOA approach to infer the location of an SN.
In IEs, the uncertainties in range caused due to multiple paths can be characterized
by using the proposed model, i.e., the q−Gaussian distribution which is determined
by maximizing the Tsallis entropy. Here, we consider a network of sensor nodes sup-
portingmultipath transmission; thus, a prior information about the location of a set of
SNs is essential in order to infer the location of other SNs in the network. Therefore,
by using an efficient sensor localization techniques, the initial cost associated with
the deployment of SNs, as well as the cost for powering each node in a WSN, can be
reduced greatly. As we are considering a multipath UWB communication between
the SNs, the prime source of error is due to the presence ofmultiple paths between the
transmitter and the receiver. Therefore, due to the presence of these errors originating
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from various points in a WSN, the estimates obtained using the TOA localization
get degraded [10, 16]. So, it becomes quite challenging and inevitable to character-
ize the variations in range for multipath communication channels. Here, we employ
maximum Tsallis’ entropy framework subjected to the normalization constraint, and
the first two moment constraints, which yields the q−Gaussian distribution. The
different values of the non-extensive parameter q characterize the variations in range.
Beck and Cohen [18] proposed a superstatistics framework for modeling complex
systems, by averaging over the environmental fluctuations. Thus by following [18],
we design a mixture model for the variations in range by incorporating the fluctua-
tions caused due to multipath components.
We also present a robust technique for estimation of the parameters corresponding
to the PDFs of the mixture model and the proposed model, in order to characterize
the synthetic data.
The rest of this paper is as follows: Sect. 2 illustrates the problem statement. In Sect. 3,
we derive the q−Gaussian distribution using the maximum Tsallis’ entropy frame-
work. The parameter estimation techniques corresponding to the mixture model and
our proposedmodel are discussed in Sect. 4. Section5 deals with the characterization
of range for different values of q. Finally, in Sect. 6 we provide the conclusion and
future works.

2 Problem Statement

When a signal travels from the sender (or transmitter) to a receiver, then its propaga-
tion time can be estimated by using the TOA technique. Generally, TOA estimation
is used along with UWB technology for an energy-efficient ranging in IEs with mul-
tiple propagation paths. We use localization of SNs to quantify the signal obtained
from a heterogeneous set of sensors. Figure1 illustrates the deployment of several
SNs in a smart home. These SNs are positioned abundantly throughout the smart
home and can be used to sense diverse indoor environments.

Figure2 shows the existence of multiple transmission paths in ubiquity of several
interfering objects. These signals undergo scattering and reflection due to interference
of several objects present in an indoor environment. The interfering objects scatter
the waves while being transmitted from the transmitter (Tx) to the receiver (Rx)
which leads to difficulty in identifying the actual location of a target node.
We can model the UWB channels having multipath components by utilizing the
impulse response [11], i.e.,

h (t) =
m∑

l=0

alδ (t − τl), (1)

where al is the amplification factor for the lth multipaths and τl represents the time
delay of the channel.
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Fig. 1 Deployment of multiple sensors in a smart home environment

Fig. 2 Variations in range under the presence of multiple paths in IEs

Therefore, using Eq. (1), the received signal corresponding to the TOA estimate can
be characterized using [13] as

ri,l (t) =
n∑

i=0

m∑

l=0

ai,l s
(
t − τi,l

) + ni,l (t), (2)

where s (t) represents the transmitted signal and ni,l (t) denotes the additive white
Gaussian noise. Thus, it can be observed that under NLOS conditions these channels
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reflect dense multipath effects and time delays which may affect the overall perfor-
mance of the system.
Let us consider the sensor nodes to be deployed in an indoor environment. If we
consider the TOA ranging for determining the location of the sensor nodes, then
their range can be given as

ri = di + ni , i = 0, 1, 2, . . . , n, (3)

where ri is the measure of the range between a source and receiver for i th sensor
nodes and di is the distance between the source and the i th sensor and can be stated
as

di = ||x − x1||2 =
√

(x − xi )
2 + (y − yi )

2, (4)

here, (x, y) ∈ X is a set of remote source locations and (xi , yi ) ∈ Xi is the set of
recognized coordinates of the i th sensor, and ni is the additive white Gaussian noise,
such that ni ∼ N

(
0, σi

2
)
.

Thus if we characterize the range in terms of a Gaussian distribution [19], then its
probability density function (PDF) can be expressed as

f (ri ) = 1√
2πσi

e
− (ri−di )

2

2σi
2 , (5)

where ri ∼ N
(
di , σi

2
)
, with σi

2 representing the variance corresponding to ri .
However, the variations

(
σi

2
)
in the range ri can be characterized by inverse Gamma

distribution [17, 18, 20]. So, the parameter σi can be considered to be a random
variable such that

βi = 1

σi
2

∼ Gamma (a, b) , (6)

wherea andb are the shape and scale parameters, andβi is the inverse of the variations
caused in the range for i th SNs.
Let g (σi ) be the variational range distribution and be defined as

g (σi ) = 1

ba� (a)
βi

a−1e− βi
b , βi ≥ 0. (7)

The PDF for the gamma distribution in compliance with the synthetic data is illus-
trated in Fig. 5.
The unconditional distribution of range is obtained by averaging over the gamma
distribution [17, 25],

p (ri ) =
∞∫

0

f (ri |σi ) g (σi ) dσi , (8)
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where f (ri |σi ) is the conditional probability distribution of ri for a given σi .
Now, we have

p (ri ) =
∞∫

0

√
βi

2π
e− βi (ri−di )

2

2
1

ba� (a)
βi

a−1e− βi
b
1

2
(βi )

− 3
2 dβi . (9)

So, the probability distribution corresponding to the variations in range observed in
an indoor multipath environment is given as

p (ri ) = � (a − 1)

2
√
2πba� (a)

[
1

b
+ (ri − di )

2

2

]−(a−1)

. (10)

The above mixture model along with the synthetic data is shown in Fig. 6.

3 Proposed Model

In order to obtain accuracy in inferring the location of SNs in an IE, we need to
characterize the variations in the measurement of the range observed due to mul-
tipath components. If we consider ri to be a random variable, then by applying
Tsallis entropy [6, 7, 21–23], the uncertainties in the range obtained in Eq. (3) can
be characterized through the non-extensive parameter q and is expressed as

Sq (ri ) = 1 − ∫ ∞
−∞

[
fq (ri )

]q
dri

q − 1
. (11)

Here, we investigate the probability distribution corresponding to the variations in
range for smart home sensors bymaximizing theTsallis entropy framework subjected
to the normalization constraint and the moment constraints.
Thus, the constraint for normalization can be given as

∞∫

−∞
fq (ri ) dri = 1. (12)

The first two constraints for the moments of ri can be specified as

∞∫

−∞
fes (ri ) ridri = μ, (13)
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and

∞∫

−∞
fes(ri − μ)2dri = σ 2, (14)

where μ and σ 2 indicate the mean and variance.
Therefore, the probability distribution in Eqs. (13) and (14) corresponding to any

probability fq can be expressed as

fes (ri ) = [
fq (ri )

]q
/∫ [

fq (ri )
]q
dri , (15)

where fes (ri ) denotes the escort probability and is used to represent the asymptotic
decay of q moments. Since we are using a parameter q, so the type of expectation
used for defining the variations in the range is called the q−expectation. Thus, by
considering the Lagrangian, for any stationary SN, we can optimize the range of the
received signal as

L
(
fq , ri

) = 1 − ∫ ∞
−∞ fq(ri )

q
dri

(q − 1)
+ ω1

⎛

⎝1 −
∞∫

−∞
fq (ri ) dri

⎞

⎠

+ ω2

(
μ −

∫ ∞

−∞
ri fes (ri ) di

)
+ ω3

(
σ 2 −

∫ ∞

−∞
fes(ri − μ)2dri

)
,

(16)
where ω1, ω2 and ω3 are the Lagrangian parameters. Now by employing the Euler–
Lagrange equation, we have

∂L

∂ fq (ri )
− d

dri

(
∂L

∂ fq ′ (ri )

)
= 0 (17)

Thus, by using Eq. (17) in association with Eqs. (11)–(16), we have

fq (ri ) = 1

z

(
1 − 1 − q

(3 − q) σ 2
(ri − μ)2

)1/(1 − q)
, 1 < q < 3, (18)

where z = σ

√
(3−q)π

q−1

�
(

3−q
2q−2

)

�
(

1
q−1

) and is called the normalization constant. FromEq. (18),

we obtain the maximum value for the entropy probability distribution corresponding
to the variations in range of the TOA estimate.
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4 Parameter Estimation

In this section, we discuss the parameter estimation for the mixture model obtained
in Eq. (10) and the proposed q−Gaussian distribution obtained in Eq. (18). The shape
parameter ‘a’ and scale parameter ‘b’ of the mixture distribution can be estimated
through the probability distribution of ‘σi ’. The random variable σi is defined as

σi (ri ) ≡
[
1

N

N∑

τ=1

|vτ [t : t + τ ]|
]2

, i = 1, 2, . . . , n, (19)

where N is the number of samples per time stamp (τ ) and vτ represents the variations
in the range within the interval [t, t + τ ].

The estimate of non-extensive parameter ‘q’ can be expressed through the gener-
alized Jensen–Shannon (JS) symmetric measure. Thus, the symmetric JS divergence
measure can be defined as

JS
(
fq (ri ) ||g (ri )

) = 1

2
KL

(
fq (ri ) || fq (ri ) + g (ri )

2

)

+ 1

2
KL

(
g (ri ) || fq (ri ) + g (ri )

2

) (20)

where K L (.) is the generalized Kullback–Leibler measure. This measure provides
the distance between the proposed distribution fq (ri ) and the empirical distribution
g (ri ) [7, 24]. Thus, the K L measure is given as

KL
(
fq (ri ) ||g (ri )

) =
n∑

k=1

fqk (ri ) log2

∣∣∣∣
fq (ri )

gk (ri )

∣∣∣∣ (21)

The optimal value corresponding to the non-extensive parameter q is attained at
which the symmetric JS divergence is minimum.
Thus, the optimal value of the q̂ estimate provides a closed agreement between the
synthetic data and the proposed theoretical distribution. Therefore, the optimal value
of q is estimated as

q̂ = argmin
q∈(1,3)

{
JS

(
fq (ri ) ||g (ri )

)}
(22)

5 Results and Discussion

In this section, we plot the PDF for the maximum entropy obtained in Sect. 3 for the
different values of q, viz., q = 1.5 (proposed model), q = 1.37 and q = 1.45. It can
be observed that at q = 1.5, our model successfully captures the variations in range
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Fig. 3 q−Gaussian PDFs for different values of q, viz., q = 1.5 (proposed model), q = 1.37 and
q = 1.45

caused due to indoor multipath propagation. It is worth noting that for q = 1.5 (as
shown in Fig. 3), themodel exhibits the longmemory behavior and extensively entails
the extreme fluctuations in the range. In order to validate our model, we generate
synthetic data usingMATLAB incorporatingmultipath components. Figure4a shows
the trend plot for the synthetic data with a sample size of 1000, and Fig. 4b shows its
respective histogram.We transformed the variations in range for indoor environments
to the gamma distribution, obtained in Eq. (7), and its compliance with the synthetic
data is shown in Fig. 5. In IEs, the presence of dense multipath and the ubiquity of
NLOS conditions causes degradation in the estimation of TOA. From Fig. 6, it can
be observed that our proposed framework captures the dense multipath components
of the generated signal even at the tail end. From the above discussions, we can
draw an inference that when q = 1.5, the model provides a better characterization
for the uncertainties in the TOA estimation. Further, we can obtain greater precision
for estimating the range of SNs, using TOA with resolutions for providing more
accuracy in temporal and multipath components.

6 Conclusion and Future Work

In this paper, we discussed the UWB-based TOA localization and variations in its
range for indoor environments. We characterized the variations in range for TOA
localization by using Tsallis’ entropy framework. The maximized Tsallis entropy
subjected to the first two moment constraints (i.e., mean and variance) along with
the normalization constraint is derived. It is observed that our model captures the
variations in the localization range in the existence of dense multipaths in indoor
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Fig. 4 a Representation of the trend plot with sample size 1000. b Representation of histogram
corresponding to the trend plot
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Fig. 5 Representation of the gamma PDF in convergence with the synthetic data for a = 9.04432
and b = 0.0285463

environments. Our proposed q−Gaussian model operates well over the synthetic
data in contrast to the mixture model. It is observed that the q−Gaussian distri-
bution provided a better characterization of the variations in the localization range
for q = 1.5. This paper also presented a new approach for estimation of parameters
corresponding to the mixture model and our proposed model, by minimizing the JS
symmetric measure between the two models and the synthetic data.

In the future, we will provide an intrinsic stochastic differential equation (SDE)
model and its corresponding Fokker–Planck equation, to entail the variations in the
localization range for densely positioned indoor environments.



Characterization of Range for Smart Home Sensors Using Tsallis’ Entropy Framework 275

-25 -20 -15 -10 -5 0 5 10 15 20 25

Range(r
i
)--->

0

0.05

0.1

0.15

0.2
P

D
F

--
->

Synthetic data

Mixture model

Proposed q-Gaussian distribution

Fig. 6 Fitting of PDFs for the mixture model for a = 9.04432 and b = 0.0285463 along with the
proposed q−Gaussian model over the synthetic data for uncertainties in range, obtained for q = 1.5
with μ = 0.0428 and σ = 1.4138.
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