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Abstract Ranked set sampling (RSS) is a cost efficient design that has been widely
used in agriculture, forestry, ecological and environmental sciences. Frey (Environ-
mental and Ecological Statistics 19(3):309–326, 2012) proposed a sampling scheme
based on to allow for partially ordered sets. This scheme permits a ranker to de-
clare ties and then record the tie structure for potential use in statistical analysis.
We first introduce two nonparametric maximum likelihood estimators (MLEs) of
the population cumulative distribution function (CDF) that incorporate the informa-
tion for partially ordered sets. We compare the proposed MLEs with the standard
nonparametric MLE of the CDF (without utilizing tie information) via Monte Carlo
simulation. Motivated by good performance of the new CDF estimators, we further
derive two mean estimators for partially ordered sets. Our numerical results from
both simulation and real data show that the proposed estimators outperform their
competitors provided that the quality of ranking is not low.

Keywords Imperfect ranking · Nonparametric maximum likelihood estimation ·
Ranked set sampling · Relative efficiency · Ranking ties

1 Introduction

Ranked set sampling (RSS), proposed byMcIntyre (1952), is an appropriate sampling
technique for use in situationswhere ranking sample units in a small set ismuch easier
or cheaper than obtaining their precise values. Ranking can be done by personal
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judgment, eye inspection or using available values of a concomitant variable, and
need not to be completely accurate (perfect). The ranking information is then used by
the researcher to draw a more representative sample from the population of interest,
and therefore statistical inference based on a ranked set sample should be more
efficient than a simple random sample of the same size. RSS has been found to be
useful in various fields including agriculture, forestry, ecological and environmental
sciences, biology, medicine and so on.

To draw a balanced ranked set sample of size N ≡ n × m with set size m, one
draws nm simple random samples (sets) of size m. The units in each set of size m
are then ranked in an increasing magnitude without referring to their precise values.
Then from the first n sets of size m, the sample units with rank 1 are selected for
actual quantification, from the second n sets of size m, the sample units with rank 2
are selected for actual quantification and so on. For balanced RSS, n is the number
of measured sample units with rank i for all i = 1, . . . ,m, and is referred to as the
number of cycles. By contrast, in unbalanced RSS, one needs to determine a vector
n = (n1, . . . , nm) in a way that ni is the number of measured sample units with rank
i and N ≡ ∑m

i=1 ni is the total sample size of the ranked set sample.
Virtually, all standard statistical problems have beenwell addressed in the RSS lit-

erature including estimation of the population mean (Takahasi and Wakimoto 1968;
Wang et al. 2006, 2008; Frey 2011), population variance (Stokes 1980; MacEach-
ern et al. 2002; Perron and Sinha 2004), cumulative distribution function (CDF)
(Stokes and Sager 1988; Kvam and Samaniego 1994; Huang 1997; Duembgen
and Zamanzade 2018), population proportion (Chen et al. 2006, 2007; Zamanzade
and Mahdizadeh 2017; Zamanzade and Wang 2017), mean difference (Wang et al.
2016, 2017), distribution-free confidence intervals (Frey 2007), reliability estima-
tion (Mahdizadeh and Zamanzade 2018) and perfect ranking tests (Frey et al. 2007;
Zamanzade et al. 2012; Frey 2017).

In RSS, the researcher is required to provide a unique rank for each unit in the
set of size m. However, there are situations in which the researcher is not sure
about how to rank two or more sample units in the set and he must break the ties at
random to implement RSS. Such situations occur frequently in studies in agriculture,
forestry, ecological and environmental sciences. To alleviate this difficulty, Frey
(2012) proposed a new variation of RSS (denoted hereafter by RSS-t) in which
the researcher is allowed to declare ties as he wishes. When implementing RSS-
t, the researcher breaks the ties at random, but he also records the tie structure
to be used in the estimation process. Let

{
X [i] j , i = 1, . . . ,m, j = 1, . . . , n

}
be a

balanced ranked set sample of size N = mn, where X [i] j is the j th unit with rank
i . RSS-t includes not only the X [i] j values, but also the indicator variables I[i] jk,
where I[i] jk is one when the j th sample unit with rank i is tied for rank k in its
own comparison set, for i, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n}. Note that ∑m

k=1 I[i] jk is
always at least one because the sample unit with rank i is always tied for itself. Frey
(2012) then developed several mean estimators for RSS-t samples and discussed two
models which allow ties in rankings: discrete perceived size (DPS) and tied-if-close
(TIC) models. Frey (2012) compared mean estimators with/without utilizing the tie
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information under the DPS model via Monte Carlo simulation and concluded that
using tie information would improve efficiency in estimating the population mean.

We describe three nonparametric maximum likelihood estimators (MLEs) of the
population CDF based on RSS-t: one is the standard MLE of the CDF proposed by
Kvam and Samaniego (1994) which ignores tie information, and the other two are
novelwhich incorporate tie information into the estimation process.We then compare
these three likelihood-based estimators: via Monte Carlo simulation. Motivated by
the observation that the two newMLEs of the CDF have better performance than the
standard one, we further propose new mean estimators based on these CDF estima-
tors, to make use of the tie information. We compare the proposed mean estimators
with those in Frey (2012) using both simulated data and real data of body fat per-
centage, which consistently shows that the new estimators beat their competitors as
long as the quality of ranking is good. Note that to estimate a population CDF F(t), a
typical approach is to use the relationship F(t) = E[I (X ≤ t)], where I (·) denotes
the indicator function and the mean of I (X ≤ t) is estimated from the sample. In this
paper, we adopt the approach that constructs a nonparametric maximum likelihood
estimator of the CDF and then finds the mean estimator using E(X) = ∫ +∞

−∞ tdF(t).
As will be shown in Sect. 3.2, the mean estimators resulting from the NPMLEs of
the CDF can perform substantially better than the existing mean estimators when
ranking quality is good.

2 CDF Estimation

2.1 Nonparametric Maximum Likelihood Estimators
for RSS-t

Maximum likelihood estimation of CDF based on a balanced ranked set sam-
ple was developed by Kvam and Samaniego (1994), and its asymptotic behav-
ior was studied by Huang (1997) and Duembgen and Zamanzade (2018). Let
{X(i) j , i = 1, . . . ,m, j = 1, . . . , n} be a balanced ranked set sample of size N = mn
from a population with CDF F(t), obtained under the assumption of perfect rank-
ing. Then, X(i)1, . . . , X(i)n are independently and identically distributed, following
the distribution of the i th order statistic in a sample of size m from the original
population. That is, the CDF of X(i) j is given by Fi (t) = P(X(i) j ≤ t) = Bi (F(t))
where

Bi (F(t)) =
m∑

r=i

(
m

r

)

(F(t))r (1 − F(t))m−r =
∫ F(t)

0
m

(
m − 1

i − 1

)

(F(t))i−1 (1 − F(t))m−i
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is the CDF of the beta distribution with parameters i and m + 1 − i , evaluated at
the point F(t). Therefore, the log-likelihood function of F(t) based on RSS can be
written as

L (F(t)) =
m∑

i=1

n∑

j=1

{
I
(
X(i) j ≤ t

)
log (Bi (F(t))) + (

1 − I
(
X(i) j ≤ t

))
log (1 − Bi (F(t)))

}
,

where I (·) is the indicator function. Log-concavity of Bi (F(t)) in F(t) follows from
the fact that a beta distributionwith parametersα, β ≥ 1 has an increasing hazard rate
(Crowder 2008) and therefore L(F(t)) is a concave function in F(t) as well. Thus,
the MLE of the population CDF based on RSS is well defined and can be obtained
by F̂NM0(t) = arg max

F(t)∈[0,1]
L(F(t)). One can use F̂NM0(t) for estimating F(t) based

on data from RSS-t by simply ignoring the tie structure. Obviously, F̂NM0(t) is not
the true MLE of F(t) unless the rankings are perfect, with no ties allowed.

In what follows, we propose two novel likelihood-based CDF estimators which
incorporate tie information from RSS-t into the estimation process. Suppose that
X [i] j is tied for two or more units in the set of size m. Then, the CDF of X [i] j ,
say F[i] j,T (t) (“T” in the subscript stands for “tie”), is a mixture of CDFs of beta
distributions evaluated at the point F(t), given by

F[i] j,T (t) =
∑m

k=1 I[i] jk Bk (F (t))
∑m

k=1 I[i] jk
.

Therefore, the log-likelihood function of F(t) based on data from RSS-t can be
written as

L1 (F(t)) =
m∑

i=1

n∑

j=1

{
I
(
X[i] j ≤ t

)
log

(
F[i] j,T (t)

) + (
1 − I

(
X[i] j ≤ t

))
log

(
1 − F[i] j,T (t)

)}
,

and the MLE of F(t) based on RSS-t can be obtained as F̂NM1(t) = arg max
F(t)∈[0,1]

L1(F(t)). To guarantee the existence of a unique maximizer of L1(F(t)), we need to
show the concavity of L1(F(t)) in F(t). This requires the log-concavity of F[i] j,T (t),
which follows from Theorem 2 in Mu (2015).

Another way of incorporating the tie information into the likelihood function is to
use a splitting strategy proposed byMacEachern et al. (2004), in which each tied unit
is split among the strata corresponding to the ranks for which the unit is tied. Thus,
if a sample unit is tied for r different ranks, then we assign it to each of those r strata
with equal weight 1

r . This splitting strategy leads to the following pseudo-likelihood
function:
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L2 (F(t)) =
m∑

i=1

{
n′
i F̂i,sp (t) log (Fi (t)) + n′

i

(
1 − F̂i,sp (t)

)
log (1 − Fi (t))

}
,

where

n′
i =

m∑

l=1

n∑

j=1

I[l] j i
∑m

k=1 I[l] jk
(1)

and

F̂i,sp (t) = 1

n′
i

m∑

l=1

n∑

j=1

I[l] j i
∑m

k=1 I[l] jk
I
(
X [l] j ≤ t

)

for i = 1, . . . ,m. The corresponding MLE of F(x) based on pseudo-likelihood is
then given by F̂NM2(t) = arg max

F(t)∈[0,1]
L2 (F(t)).

2.2 Comparison

We now compare the performance of ML-type estimators of the population CDF us-
ing RSS-t samples via simulation in which we consider different parent distributions,
models for generating ties, quality of ranking and varying design parameters. We as-
sume that ranking is done using a perceptual linear ranking model (Dell and Clutter
1972; Fligner and MacEachern 2006), which assumes the ranking of the variable of
interest X in each set of size m is done via a concomitant variable Y , satisfying

Y = ρ

(
X − μx

σx

)

+
√
1 − ρ2Z ,

where μx is the mean of X , σx is the standard deviation of X , Z is a random variable
following the standard normal distribution and the parameter ρ controls the quality
of ranking.

We consider two classes of models for generating ranking ties: discrete perceived
size (DPS) and tied-if-close (TIC), as proposed by Frey (2012). The DPS model
discretizes the values of the concomitant variable Y by rounding Y/c to the largest
integer greater than or equal to Y/c. The TIC model declares the i th and j th units to
be tied if |Yi − Y j | < c. Since the transitivity in TIC model is also required, the i th
and j th units may be still declared tied even if |Yi − Y j | > c as long as there is at
least one unit in the set that bridges the gap. In either model, c > 0 is a user-chosen
model parameter. Frey (2012) pointed out that both DPS and TIC models may show
certain undesirable behavior when the parameters of m and c are changed. For DPS
models, increasing the value of c does not necessarily lead to more ties in each set,
and for TIC models, the number of ties among the units in the set can increase if we
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add an additional unit to it. Frey (2012) further discussed the differences between
two classes of models, but only evaluated the mean estimators under the DPS model
and normal distribution.

In the first simulation study, we compare the overall performance of CDF es-
timators on the real line via the mean integrated square error (MISE), defined as

MI SE(F̂) = E
[∫ +∞

−∞ {F̂(t) − F(t)}2dt
]
. The relative efficiency (RE) of F̂NMi to

F̂NM0 is defined as the ratio of their MISEs, i.e., MI SE(F̂NM0)/MI SE(F̂NMi ) for
i = 1, 2. We set N ∈ {15, 30},m ∈ {3, 5}, ρ ∈ {0, 0.5, 0.8, 1}, and for each com-
bination of (N ,m, ρ), we generate 10,000 RSS-t samples from standard normal
(N (0, 1)), standard exponential (Exp(1)) and standard uniform (U (0, 1)) distribu-
tions under both DPS and TIC models, respectively. For the DPS model, we set
c ∈ {0.5, 1, 2, 4}, and for the TIC model, c ∈ {0.25, 0.5, 1, 2}. The REs are estimat-
ed based on the 10,000 RSS-t samples for each setting. It is worth mentioning that in
both DPS and TIC models, whenever ties occur in the ranking process, we assume
that the researcher is not aware of actual values of tied units, as is typical in practice,
and so he/she selects one of the tied units at random.

Table1 presents RE values of F̂NM1 to F̂NM0 under the DPS model. We observe
that the efficiency gain using F̂NM1 instead of F̂NM0 can be as large as 40% for
the case of perfect ranking ρ = 1, while the efficiency loss is never more than 10%
in the case of completely random ranking. When the quality of ranking is fairly
good (ρ ≥ 0.8), the RE never falls below one; when ρ = 0.5, F̂NM1 is still more
efficient than F̂NM0 for standard normal and standard exponential distributions, but
slightly less efficient than F̂NM0 if the population distribution is standard uniform
and N = 15. This indicates that using tie information, F̂NM1 improves the overall
performance of CDF estimation as long as the quality of ranking is not bad. Also,
note that when RE > 1, the RE is generally an increasing function of c.

The general patterns of the estimated REs of F̂NM1 versus F̂NM0 under the TIC
model in Table2 are similar to those of Table1, except for two major differences:
First, the efficiency gain using F̂NM1 instead of F̂NM0 can be as large as 66% for
the standard exponential distribution and the efficiency loss can be as large as 16%.
Second, the REs for the standard uniform distribution are generally lower and fall
below one in many cases when ρ ≤ 0.8.

The estimated REs of F̂NM2 versus F̂NM0 under the DPS model are presented in
Table3.Weobserve that although theREs are generally lower than those inTable1 for
ρ ≥ 0.5, F̂NM2 is more robust to ranking errors as compared to F̂NM1. The RE values
in Table3 never fall below one when ρ ≥ 0.5, and even for ρ = 0, the maximum
efficiency loss over F̂NM0 never exceeds 4%.

We also observe from Table4 that although the REs are generally lower than those
in Table2, F̂NM2 is more robust to ranking errors under the TIC model as well and
the maximum of efficiency loss using F̂NM2 instead of F̂NM0 never exceeds 4%.

To examine the point-wise performance of the CDF estimators on the real line, we
perform another simulation study inwhich theCDF estimators are compared via their
mean square errors (MSEs) at various points. For a given point t , we define the relative
efficiency of F̂NMi (t) to F̂NM0(t) as RE(t) = MSE(F̂NM0(t))/MSE(F̂NMi (t)) for
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Table 1 Estimating the population CDF under the DPS model: simulated relative efficiencies
(defined as ratio of MI SEs) of F̂NM1 versus F̂NM0

ρ m N c N (0, 1) Exp(1) U (0, 1)
1
2 1 2 4 1

2 1 2 4 1
2 1 2 4

1 3 15 1.03 1.08 1.18 1.27 1.04 1.05 1.10 1.19 1.05 1.11 1.22 1.22

30 1.03 1.08 1.20 1.32 1.03 1.01 1.10 1.21 1.05 1.11 1.25 1.25

5 15 1.06 1.11 1.21 1.32 1.05 1.05 1.11 1.23 1.07 1.15 1.24 1.24

30 1.06 1.12 1.25 1.40 1.03 1.03 1.11 1.27 1.07 1.15 1.25 1.25

0.8 3 15 1.01 1.04 1.09 1.14 1.01 1.01 1.04 1.10 1.02 1.04 1.08 1.10

30 1.02 1.05 1.13 1.19 1.00 1.01 1.05 1.16 1.02 1.05 1.11 1.11

5 15 1.02 1.05 1.11 1.16 1.00 1.02 1.04 1.13 1.02 1.04 1.07 1.06

30 1.03 1.07 1.19 1.24 1.01 1.03 1.08 1.20 1.03 1.06 1.11 1.10

0.5 3 15 1.00 1.01 1.02 1.04 1.00 1.00 1.03 1.07 0.99 0.98 0.97 0.98

30 1.01 1.03 1.08 1.10 1.01 1.02 1.06 1.12 1.00 1.00 1.01 1.00

5 15 1.00 1.01 1.04 1.04 1.00 1.01 1.03 1.09 0.99 0.98 0.98 0.96

30 1.03 1.06 1.12 1.15 1.02 1.04 1.11 1.20 1.01 1.02 1.02 1.02

0 3 15 0.98 0.97 0.95 0.96 0.99 0.97 0.97 0.98 0.96 0.94 0.91 0.90

30 1.00 1.00 1.02 1.03 1.01 1.03 1.05 1.05 0.98 0.97 0.94 0.95

5 15 0.99 0.97 0.96 0.97 0.99 0.99 0.98 0.99 0.97 0.93 0.90 0.90

30 1.01 1.02 1.04 1.06 1.02 1.03 1.07 1.09 0.99 0.99 0.97 0.97

Table 2 Estimating the population CDF under the TIC model: simulated relative efficiencies (de-
fined as ratio of MI SEs) of F̂NM1 versus F̂NM0

ρ m N c N (0, 1) Exp(1) U (0, 1)
1
4

1
2 1 2 1

4
1
2 1 2 1

4
1
2 1 2

1 3 15 1.03 1.09 1.15 1.12 1.03 1.05 1.06 1.07 1.21 1.09 0.97 0.97

30 1.04 1.09 1.18 1.21 1.03 1.05 1.06 1.14 1.24 1.14 1.07 1.07

5 15 1.07 1.17 1.25 1.26 1.06 1.10 1.11 1.21 1.30 1.07 1.02 1.02

30 1.07 1.18 1.35 1.55 1.05 1.09 1.18 1.42 1.36 1.24 1.23 1.23

0.8 3 15 1.02 1.05 1.11 1.14 1.00 1.02 1.05 1.10 0.97 0.96 0.96 0.97

30 1.02 1.06 1.15 1.25 1.01 1.02 1.07 1.19 0.99 0.99 1.03 1.06

5 15 1.03 1.08 1.22 1.28 1.00 1.03 1.13 1.27 0.96 0.93 1.00 1.03

30 1.03 1.11 1.37 1.58 1.01 1.05 1.23 1.52 1.00 1.02 1.15 1.22

0.5 3 15 1.00 1.01 1.05 1.13 0.99 1.00 1.04 1.14 0.97 0.94 0.90 0.95

30 1.02 1.04 1.10 1.25 1.01 1.03 1.09 1.26 0.98 0.96 0.96 1.04

5 15 1.00 1.02 1.13 1.27 1.00 1.00 1.10 1.33 0.96 0.90 0.88 1.01

30 1.03 1.08 1.28 1.59 1.01 1.07 1.26 1.66 0.99 0.98 1.00 1.20

0 3 15 0.98 0.96 0.96 1.06 0.99 0.97 0.98 1.11 0.96 0.93 0.88 0.91

30 1.00 1.00 1.04 1.17 1.00 1.02 1.06 1.24 0.98 0.96 0.94 1.00

5 15 0.98 0.96 0.96 1.21 0.99 0.97 0.99 1.29 0.96 0.90 0.84 0.97

30 1.01 1.03 1.11 1.50 1.02 1.05 1.17 1.62 0.98 0.96 0.94 1.14
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Table 3 Estimating the population CDF under the DPS model: simulated relative efficiencies
(defined as ratio of MI SEs) of F̂NM2 versus F̂NM0

ρ m N c N (0, 1) Exp(1) U (0, 1)
1
2 1 2 4 1

2 1 2 4 1
2 1 2 4

1 3 15 1.05 1.10 1.15 1.15 1.08 1.15 1.16 1.16 1.06 1.12 1.19 1.19

30 1.05 1.11 1.15 1.16 1.09 1.14 1.17 1.16 1.07 1.12 1.21 1.21

5 15 1.07 1.14 1.17 1.16 1.10 1.16 1.19 1.18 1.08 1.16 1.24 1.24

30 1.08 1.15 1.18 1.16 1.10 1.17 1.18 1.18 1.09 1.17 1.23 1.23

0.8 3 15 1.02 1.05 1.07 1.08 1.03 1.05 1.08 1.07 1.03 1.06 1.11 1.13

30 1.02 1.05 1.09 1.09 1.02 1.05 1.07 1.09 1.03 1.07 1.12 1.12

5 15 1.03 1.06 1.09 1.08 1.02 1.06 1.08 1.08 1.03 1.07 1.13 1.13

30 1.03 1.06 1.10 1.09 1.02 1.05 1.07 1.08 1.04 1.07 1.13 1.13

0.5 3 15 1.00 1.01 1.02 1.02 1.00 1.01 1.03 1.03 1.01 1.02 1.03 1.04

30 1.00 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.00 1.01 1.03 1.02

5 15 1.00 1.00 1.02 1.01 1.00 1.01 1.02 1.02 1.01 1.01 1.04 1.03

30 1.00 1.00 1.02 1.02 1.00 1.01 1.02 1.02 1.00 1.01 1.02 1.03

0 3 15 0.98 0.97 0.96 0.96 0.98 0.97 0.96 0.96 0.98 0.97 0.96 0.96

30 0.98 0.97 0.97 0.97 0.99 0.98 0.97 0.97 0.98 0.97 0.95 0.96

5 15 0.98 0.97 0.96 0.96 0.98 0.97 0.96 0.96 0.98 0.97 0.95 0.96

30 0.99 0.97 0.97 0.97 0.99 0.98 0.97 0.98 0.98 0.97 0.96 0.96

Table 4 Estimating the population CDF under the TIC model: simulated relative efficiencies (de-
fined as ratio of MI SEs) of F̂NM2 versus F̂NM0

ρ m N c N (0, 1) Exp(1) U (0, 1)
1
4

1
2 1 2 1

4
1
2 1 2 1

4
1
2 1 2

1 3 15 1.05 1.12 1.18 1.09 1.08 1.14 1.18 1.11 1.21 1.15 1.04 1.04

30 1.06 1.12 1.19 1.09 1.08 1.15 1.18 1.10 1.23 1.15 1.03 1.03

5 15 1.09 1.19 1.21 1.07 1.12 1.20 1.19 1.10 1.28 1.10 1.05 1.05

30 1.09 1.20 1.21 1.06 1.13 1.21 1.19 1.09 1.29 1.08 1.04 1.04

0.8 3 15 1.03 1.07 1.11 1.08 1.02 1.07 1.11 1.09 1.00 1.02 1.04 1.04

30 1.03 1.07 1.12 1.07 1.03 1.06 1.12 1.08 1.00 1.01 1.03 1.03

5 15 1.03 1.09 1.14 1.06 1.03 1.09 1.14 1.09 1.00 1.01 1.06 1.05

30 1.03 1.09 1.14 1.06 1.03 1.09 1.14 1.08 0.99 1.02 1.04 1.04

0.5 3 15 1.00 1.02 1.04 1.06 1.00 1.02 1.05 1.06 0.99 0.98 0.98 1.03

30 1.01 1.02 1.04 1.05 1.00 1.02 1.04 1.05 0.98 0.98 0.98 1.02

5 15 1.00 1.01 1.06 1.05 1.00 1.02 1.06 1.05 0.98 0.97 1.00 1.05

30 1.00 1.01 1.05 1.05 1.00 1.02 1.06 1.05 0.98 0.98 0.99 1.04

0 3 15 0.98 0.96 0.97 1.01 0.98 0.96 0.97 1.02 0.98 0.97 0.96 1.01

30 0.98 0.97 0.97 1.01 0.98 0.97 0.97 1.01 0.98 0.96 0.96 1.01

5 15 0.98 0.97 0.97 1.04 0.98 0.96 0.97 1.03 0.98 0.96 0.97 1.04

30 0.98 0.97 0.98 1.04 0.99 0.97 0.98 1.03 0.98 0.96 0.96 1.03
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Fig. 1 Estimating the populationCDFunder theDPSmodel: simulated relative efficiencies (defined
as ratio of MSEs) of F̂NM1 (t) versus F̂NM0 (t) (represented by � and blue color) and F̂NM2 (t)
versus F̂NM0 (t) (represented by� and red color) as a function of t when the population distribution
is N (0, 1) for ρ ∈ {0, 0.5, 0.8, 1} and c ∈ {0.5, 1, 2, 4}

i = 1, 2, where RE(t) > 1 indicates that F̂(t) is more efficient than F̂NM0(t) at
the point t . We set (N ,m) = (30, 5), ρ ∈ {0, 0.5, 0.8, 1}, c ∈ {0.5, 1, 2, 4} for the
DPS model and c ∈ {0.25, 0.5, 1, 2} for the TIC model, t ∈ {Q0.05, Q0.1, . . . , Q0.95}
where Qp is the pth quantile of the population distribution. For each combination
of (ρ, c, t), we estimate RE(t) using 10,000 RSS-t samples randomly generated
under each tie-generating model, where the population distribution is set to N (0, 1),
and Fig. 1 shows results of the DPS model. We observe that when c = 0.5, the
performance between F̂NM1 and F̂NM2 is almost identical but as the value of c
increases, the difference between their performances becomes more distinguishable.
It is interesting to note that RE(t) of F̂NM1 as a function of t has a “W” (“U”)
shape roughly when the ranking is perfect (imperfect), and its RE(t) falls below one
for values of t around zero when the ranking is not perfect. However, the relative
efficiency of F̂NM2 has an approximate “∧” shape and more stable patterns than
F̂NM1 when the quality of ranking varies; it rarely falls below one. This is consistent
with what we observe in Table3. The relative efficiency of F̂NM2 is higher (lower)
than F̂NM1 when the values of t are near the center (tails).
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Fig. 2 Estimating the population CDF under the TICmodel: simulated relative efficiencies (defined
as ratio of MSEs) of F̂NM1 (t) versus F̂NM0 (t) (represented by � and blue color) and F̂NM2 (t)
versus F̂NM0 (t) (represented by� and red color) as a function of t when the population distribution
is N (0, 1) for ρ ∈ {0, 0.5, 0.8, 1} and c ∈ {0.5, 1, 2, 4}

The results under the TIC model can be found in Fig. 2. Here, the RE curves
of F̂NM1 and F̂NM2 are almost identical for c = 0.25 and 0.5 but become more
distinguishable as the value of c increases. For c = 1 and 2, the RE of F̂NM1 has
a roughly “U” shape and is quite robust to ranking errors for c = 2. Again, this is
consistent with what we observe in Table2.

3 Mean Estimation

3.1 New Nonparametric Estimators Based on MLEs of the
CDF

Let {X [i] j , i = 1, . . . ,m, j = 1, . . . , n} be a balanced ranked set sample of size N =
mn from a population with CDF F(t), in which some sample units are tied with
some others. We develop several mean estimators based on the ML-type estimators
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of F(t) described in Sect. 2, using the fact that the population mean can be written
as a function of F(t), namely

E(X) =
∫ +∞

−∞
tdF(t). (2)

If we replace F(t) in Eq. (2) with any of the MLEs based on data from RSS-t,
i.e., F̂NM0(t), F̂NM1(t) and F̂NM2(t), then we can obtain the corresponding ML-
based nonparametric estimators of the population mean, denoted by μ̂NM0,μ̂NM1

and μ̂NM2, respectively.

3.2 Comparison

Below, we compare the ML-based nonparametric estimators of the population
mean with the estimators proposed by Frey (2012). For this purpose, we set
N ∈ {15, 30},m ∈ {3, 5}, ρ ∈ {0, 0.5, 0.8, 1}, and then for each combination of
(N ,m, ρ), we generate 10,000 RSS-t samples under both DPS and TIC model-
s where the population distribution is standard normal (i.e., N (0, 1)), standard
exponential (i.e., Exp(1)) and standard uniform (i.e., U (0, 1)), respectively, c ∈
{0.5, 1, . . . , 3.5, 4} for the DPS model and c ∈ {0.25, 0.5, . . . , 1.5, 2} for the TIC
model. The competing estimators are listed below.

• The standard mean estimator in RSS which ignores tie information and has the
form μ̂st = 1

nm

∑m
i=1

∑n
j=1 X [i] j .

• The mean estimator based on splitting each tied unit among the strata corre-
sponding to the ranks for which the units were tied. This estimator has the form
μ̂sp = 1

m

∑m
i=1 X̄

′
[i], where

X̄ ′
[i] = 1

n′
i

m∑

l=1

n∑

j=1

I[l] j i
∑m

k=1 I[l] jk
X [l] j ,

and n′
i is given by Eq. (1).

• The isotonized version of μ̂sp, denoted by μ̂iso. This estimator is obtained using
the fact that if the judgment strata are stochastically ordered, then μ[1] ≤ · · · ≤
μ[m], where μ[i] is the true mean of the i th stratum. However, this constraint may
be violated by their estimates X̄ ′

[1], . . . , X̄
′
[m]. Thus, one natural way to improve

μ̂sp is to isotonize the estimates X̄ ′
[1], . . . , X̄

′
[m] using the weighted sample sizes

n′
1, . . . , n

′
m , and the resulting estimates follow the order constraint. The isotonized

version of X̄ ′
[1], . . . , X̄

′
[m] can be given by

X̄ ′
[i],iso− = min

1≤r≤i
max
i≤s≤m

∑s
l=r n

′
l X̄

′
[l]∑s

l=r n
′
l

,
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or

X̄ ′
[i],iso+ = max

i≤s≤m
min
1≤r≤i

∑s
l=r n

′
l X̄

′
[l]∑s

l=r n
′
l

,

for i = 1, . . . ,m (see Eqs. (4) and (5) in Wang et al. 2012). As pointed out by
Wang et al. (2012), when n′

i > 0 for all i ∈ {1, . . . ,m} (i.e., no empty strata exist),
X̄ ′

[i],iso− = X̄ ′
[i],iso+ holds and sowe denote the isotonized version of X̄ ′

[1], . . . , X̄
′
[m]

by X̄ ′
[1],iso, . . . , X̄

′
[m],iso. These isotonized estimates can be computed using the

pool adjacent violator algorithm (PAVA) (see Chap.1 of Robertson et al. 1988),
and the resulting mean estimator is given by μ̂iso = 1

m

∑m
i=1 X̄

′
[i],iso.

Remark 1 Frey (2012) described the isotonized version of μ̂st , say μ̂st,iso, and the
Rao-Blackwellized (RB) versions of μ̂st and μ̂st,iso (note that the RB versions of μ̂sp

and μ̂iso do not produce new estimators). However, these three lead to new estimators
only in unbalanced RSS-t. Since we focus on balanced RSS-t in this paper, we drop
them from our comparison set.

In order to compare different mean estimators, we define the relative efficiency of
each estimator μ̂ versus μ̂st by RE = MSE

(
μ̂st

)
/MSE

(
μ̂

)
. Again, an RE value

larger than one indicates the preference of μ̂ over μ̂st , and thus it shows utilizing
tie information improves efficiency of mean estimation. Here, we only report the
simulated REs from settings with N = 30 in Figs. 3 and 4 for the DPS model and in
Figs. 5 and 6 for the TIC model. Results from settings with N = 15 for both models
are not reported for brevity, because the sample size N does not have much impact
on performance patterns of these estimators. We further note that although μ̂iso has
higher REs than μ̂sp in all considered cases, their RE values are very close so that
they are hardly distinguishable from each other. Thus, we omit μ̂sp in our discussion
below.

Results Under the DPS Model

From comparing the results in Fig. 3 with those in Fig. 4, we observe that the per-
formance patterns for m = 3 are very similar to those for m = 5, except that the RE
values are generally higher (lower) for m = 5 than those of m = 3 if they are larger
(smaller) than one. It is interesting to see the best estimator depends on the quality
of ranking, value of c and the population distribution. If N (0, 1) is the population
distribution, then μ̂iso is the best estimator provided that the quality of ranking is not
very good (ρ ≤ 0.5). But for ρ ≥ 0.8, μ̂NM1 or μ̂NM2 is the best estimator depending
on whether c is larger or smaller than 2. This pattern also holds for Exp(1), in which
μ̂iso is the winner for ρ ≤ 0.5, but it is beaten by μ̂NM1 and/or μ̂NM2 for ρ ≥ 0.8.
For U (0, 1), any of the three ML-type mean estimators can be the best, depending
on the value of ρ. If the ranking is completely random, then the standard ML-type
estimator μ̂NM0 that does not utilize the tie information is the best. If the ranking is
imperfect but better than random, then μ̂NM2 is the best and for perfect ranking case
(ρ = 1), μ̂NM1 is the winner except for c = 1.5 in which μ̂NM2 is slightly better.
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Fig. 3 Relative efficiency of μ̂sp (represented by 	 and black color), μ̂iso (represented by � and
blue color), μ̂NM0 (represented by + and pink color), μ̂NM1 (represented by × and red color)
and μ̂NM2 (represented by � and brown color) to μ̂st as a function of c under the DPS model
for (N ,m) = (30, 3), ρ ∈ {0, 0.5, 0.8, 1}, when the population distribution is standard normal,
standard exponential and standard uniform. Note that the existing mean estimators μ̂sp and μ̂iso
are represented by symbols with closed shapes 	 and �. By contrast, all the three ML-type mean
estimators are represented by symbols with open shapes, with + for μ̂NM0, × for μ̂NM1 and � for
μ̂NM2 (sort of from simple to more complex shapes); they are also represented by red or like colors
(pink, red and brown) from light to dark

Results Under the TIC Model

From Figs. 5 and 6, we find that again the REs are generally increasing or decreasing
in m while the other parameters are fixed, depending on whether they are larger or
smaller than one and the pattern of REs is almost the same form = 3 andm = 5. For
standard normal and exponential distributions, μ̂iso is the best estimator inmost cases
when ρ ≤ 0.5, but it is overtaken by μ̂NM1 and/or μ̂NM2 if the quality of ranking
is fairly good (ρ ≥ 0.8). For the standard uniform distribution, the winner always
belongs to the set of ML-type estimators. If ρ = 0, then μ̂NM0 is the best estimator,
followed by μ̂NM2. This pattern also holds for ρ = 0.5 except for the cases ofm = 5
and c ≥ 1.5 in which μ̂NM2 beats μ̂NM0. For ρ ≥ 0.8, μ̂NM2 is the best estimator
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Fig. 4 Relative efficiency of μ̂sp (represented by 	 and black color), μ̂iso (represented by � and
blue color), μ̂NM0 (represented by + and pink color), μ̂NM1 (represented by × and red color)
and μ̂NM2 (represented by � and brown color) to μ̂st as a function of c under the DPS model
for (N ,m) = (30, 5), ρ ∈ {0, 0.5, 0.8, 1}, when the population distribution is standard normal,
standard exponential and standard uniform. Note that the existing mean estimators μ̂sp and μ̂iso
are represented by symbols with closed shapes 	 and �. By contrast, all the three ML-type mean
estimators are represented by symbols with open shapes, with + for μ̂NM0, × for μ̂NM1 and � for
μ̂NM2 (sort of from simple to more complex shapes); they are also represented by red or like colors
(pink, red and brown) from light to dark

except for the case that c = 0.25 and ρ = 1 in which μ̂NM1 is slightly better than
μ̂NM2. In terms of the overall performance of the estimators under the TIC model,
we recommend using μ̂NM2 if the quality of ranking is fairly good (ρ ≥ 0.8).

4 An Empirical Study

In this section, we use a real dataset to compare the performance of different mean
estimators for RSS-t samples. It contains measurements of body fat percentage along
with several body circumference measurements for 252 men, available at http://lib.
stat.cmu.edu/datasets/bodyfat. The histogram of the body fat percentage along with

http://lib.stat.cmu.edu/datasets/bodyfat
http://lib.stat.cmu.edu/datasets/bodyfat
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Fig. 5 Relative efficiency of μ̂sp (represented by 	 and black color), μ̂iso (represented by � and
blue color), μ̂NM0 (represented by + and pink color), μ̂NM1 (represented by ×, and red color)
and μ̂NM2 (represented by � and brown color), to μ̂st as a function of c under the TIC model for
(N ,m) = (30, 3),ρ ∈ {0, 0.5, 0.8, 1}, when the population distribution is standard normal, standard
exponential and standard uniform, respectively. Note that the existing mean estimators μ̂sp and μ̂iso
are represented by symbols with closed shapes 	 and �. By contrast, all the three ML-type mean
estimators are represented by symbols with open shapes, with + for μ̂NM0, × for μ̂NM1 and � for
μ̂NM2 (sort of from simple to more complex shapes); they are also represented by red or like colors
(pink, red and brown) from light to dark

a fitted normal curve is presented in Fig. 7. Although it is slightly right-skewed, the
distribution can be roughly approximated by a normal distribution.

We treat the body fat dataset as our hypothetical population and suppose that we
are interested in estimating the population mean of the body fat percentage whose
true value is μ = 19.15. To draw an RSS-t sample from this population, we assume
that ranking is done using standardized values of the concomitant variables, including
abdomen circumference, weight and age, under both DPS and TIC models where
the parameter c is set as before. The correlation coefficients between the variable
of interest and the three concomitant variables are 0.81, 0.61 and 0.29, respectively.
So, cases of fairly good ranking (ρ = 0.81), moderate ranking (ρ = 0.61) and poor
ranking (ρ = 0.29) are all considered in this study. We also use the standardized
values of body fat percentage for ranking, and so the case of perfect ranking (ρ = 1)
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Fig. 6 Relative efficiency of μ̂sp (represented by 	 and black color), μ̂iso (represented by � and
blue color), μ̂NM0 (represented by + and pink color), μ̂NM1 (represented by × and red color)
and μ̂NM2 (represented by � and brown color) to μ̂st as a function of c under the TIC model for
(N ,m) = (30, 5),ρ ∈ {0, 0.5, 0.8, 1}, when the population distribution is standard normal, standard
exponential and standard uniform, respectively. Note that the existing mean estimators μ̂sp and μ̂iso
are represented by symbols with closed shapes 	 and �. By contrast, all the three ML-type mean
estimators are represented by symbols with open shapes, with “+” for μ̂NM0, × for μ̂NM1 and �
for μ̂NM2 (sort of from simple to more complex shapes); they are also represented by red or like
colors (pink, red and brown) from light to dark

is included as well. We set N = 30, m ∈ {3, 5}; for each combination of (N ,m), we
draw 10,000 RSS-t samples of size N with replacement from the given population
and compute the relative efficiency as defined in Sect. 3. The estimated REs are
reported in Tables5 and 6 for DPS and TIC models, respectively. Clearly, the RE of
each estimator decreases as the correlation coefficient ρ decreases in each setting.

For the DPS model, we can see from Table5 that if RE > 1, then it generally
increases as the value of m goes from 3 to 5. One of the ML-type estimators is the
best estimator which one depends on the quality of ranking and the value of c. When
the ranking is perfect (ρ = 1), μ̂NM2 is the winner for c ≤ 1 and it is overtaken by
μ̂NM1 for c ≥ 2. It is interesting to observe that as the quality of ranking decreases,
the span of c in which μ̂NM2 beats μ̂NM1 becomes wider and for ρ ≤ 0.61, μ̂NM2
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Fig. 7 Histogram of the body fat percentage along with a fitted normal curve

is superior to μ̂NM1 for all considered values of c. This can be justified by the fact
that μ̂NM1 is obtained under the assumption of perfect ranking. When the quality of
ranking is poor but better than random (ρ = 0.29), all estimators except for μ̂NM1

are better than or comparable to μ̂st and μ̂NM0 is slightly better than the others.
Table6 shows that for the TICmodel, although RE often increases asm increases

if RE > 1, this is not true for some cases including those with c = 2. If the quality
of ranking is not low (ρ ≥ 0.61), then μ̂NM2 is the best mean estimator except for a
couple of cases, in which only μ̂NM1 is slightly better than μ̂NM2.When the quality of
ranking is poor (ρ = 0.29), all estimators except for μ̂iso and μ̂NM1 have comparable
performance; μ̂iso is slightly better, and μ̂NM1 is a bit worse than the others.

Overall, when the quality of ranking is not inferior (i.e., ρ ≥ 0.61), either μ̂NM1

or μ̂NM2 has the highest relative efficiency and their gains in RE over the other
estimators become more noticeable for large values of c. This is consistent with
what we have observed in Sect. 3 for normal data.
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5 Discussion

We have developed two novel ML-type estimators of the population CDF for RSS
samples with tie information available and then used them for constructing new
mean estimators. Using Monte Carlo simulation and a real dataset, we have shown
that in many situations, the new estimators perform better than their competitors in
the literature.

In this paper, we focused on balanced RSS in which tie information is recorded.
It would be interesting to investigate the performance of different estimators when
tie information is available in unbalanced RSS with empty strata and judgment post-
stratification sampling with empty strata which the different versions of isotonized
estimators are not identical anymore.
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