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Abstract Cotton is vital cash besides fiber crop and plays pivotal role in economy
in many countries. It thrives well under optimal temperature. Too high and too low
temperatures affect badly its growth and yield. Too low temperature affects its
germination and seedling establishment stages. Particularly, high temperatures influ-
ence many physiological and biochemical processes within cotton plant that result in
poor seed cotton yield. Several researches in different agroecological zones
employed different agronomic practices and modern breeding techniques to mitigate
the heat stress for better cotton production. A bevy of literature regarding heat stress
is presented here.
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B Boron
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CAT Catalase
CER CO2 exchange rate
CICR Central Institute for Cotton Research
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GPX Glutathione peroxidase
GSH Glutathione
HSFs Heat shock factors
HSPs Heat shock proteins
K Potassium
LAI Leaf area index
LAR Leaf area ratio
LEA Late embryogenesis abundant
LEL Leaf electrolyte leakage
Mg Magnesium
Mn Manganese
N Nitrogen
NAR Net assimilation rate
POD Peroxidases
PRK Phosphoribulokinase
PSII Photosystem II
ROS Reactive oxygen species
RuBP Ribulose-1,5-biphosphate
SA Salicylic acid
Se Selenium
SOD Superoxide dismutase

20.1 Introduction: Climate Change Scenario

20.1.1 Global Warming and Its Impact on Agriculture

The worlds’ agricultural growth has declined from 3.2% in 1980s to 2% in 2000,
which is alarming and a threat to food security (Ahmad et al. 2014, 2018; Abbas and
Ahmad 2018; Ahmad and Raza 2014; Ali et al. 2011, 2013a, b, 2014a, b; Usman
et al. 2009). The change in climate conditions particularly rise in temperature is the
major factor affecting growth of agricultural sector leading to food security at risk
(Christensen and Christensen 2007; Ahmad et al. 2017; Amin et al. 2017, 2018;
Rahman et al. 2018; Tariq et al. 2017, 2018). Temperature is anticipated to rise by
2–3 �C in the next 25–45 years. The rise in temperature will also affect rainfall
pattern making it more erratic. Pakistan is anticipated to be one of the most
vulnerable countries in South Asia to climate change. Projected increase in CO2

concentration is anticipated to raise the mean temperature from 1.4 to 5.8 �C
resulting rise of 20–149 cm in sea level in future (IPCC 2007).

Agriculture sector itself, although a noteworthy contributor to gross domestic
product (GDP) and most vulnerable to climate change, may also harm the environ-
ment through greenhouse gas (GHG) emissions adding 20% in the form of methane,
nitrous oxide, and carbon dioxide. About 37% of the total worlds’ emissions from
agriculture production are accumulating from Asia and the Pacific (ADB 2009).
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Earth temperature is increasing exponentially; it has been raised doubled in number
as compared to 50 years ago; greenhouse gases (GHGs) being the major cause. Since
2000, the emission of these gases is increasing due to burgeoning population and
industrialization, thereby the number has reached up to 6 billion metric tons of “CO2

equivalent” worldwide, which is more than 20% increase. Greenhouse gases added
equivalent to CO2 to the environment by different components of agriculture sector
are given in Table 20.1.

Now a days global warming is the main issue for rapid cause of environmental
adversities that needs to be addressed. Temperature is increasing and causing
devastating effects to our planet and our crops. It results in poor germination, poor
seedling emergence, and aberrant vegetative and reproductive growth. High temper-
atures have direct influence on increasing the rate of plants reproductive growth that
shortens period for photosynthesis thereby restricting ideal seed production. Plants
need optimum growth conditions as both higher and lower temperature interferes
with the robust growth of plant, contrarily crop species differ in their behavior
towards changing temperature some are highly tolerant while some exhibit
sensitivity.

Geographical location has significant importance for the change in climate for
crops growth; therefore, Pakistan is more prone to climate change due to its
geographical location (Janjua et al. 2010). Precipitation is also decreased with the
raise in temperature. Mean temperature across the country has increased by 0.5 �C in
the past 30 years, and forecasts indicate a further increase of 1.4–3.7 �C by 2060:
higher than the expected global average. Schlenker et al. (2006) estimated impact of
climate uncertainty on crop yields in United States and established threshold levels
of temperatures for different crops such as 29 �C for corn and soybeans and 33 �C for
cotton. Moreover, temperature more than optimum requirement halts growth of
aforementioned crops with severe yield losses.

Table 20.1 Greenhouse gasses emissions through different activities associated with agriculture

Source/activity
Emission
(Mt CO2)

Year of
estimate Reference

Emissions of GHG through direct agricul-
tural activities

5120–6116 2005 Smith et al. (2007)

Emissions of GHG through indirect agri-
cultural activities

2198–6567 2008 van Der Werf et al.
(2009)

Fertilizer manufacturing 282–575 2007 Bellarby et al.
(2008)

Utilization of energy for animal feed
production

60 2005 Steinfield et al.
(2006)

Pesticide industries 3–140 2007 Bellarby et al.
(2008)
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20.1.2 Cotton Production in the Perspective of Global
Warming

A brief change in temperature leading to exceed plants thermal capability, or thermal
capacity of a plant is considered heat stress (Gür et al. 2010). Cotton yield is
determined by the surrounding environment which has dramatic effects on growth
and development. The temperature fluctuations affect growth and developmental
processes and thus determine up to 70% yield variations in cotton (Farooq et al.
2015; Luo et al. 2014; Nasim et al. 2016; Rahman et al. 2017). Heat stress is often
associated with other ecological stresses like drought (Rehman 2006).

Heat stress decreases the potential of the crop, and it is estimated that crop exhibit
only 25% of its potential due to such environmental stress (Boyer 1982). High
temperature and change in rainfall pattern are major drawbacks in achieving higher
and stable cotton yields (Bange and Milroy 2004; Gwimbi and Mundoga 2010; Iqbal
et al. 2016). Cotton growth and development is maximum at 33 �C, and significant
decline in fruit retention is observed above 36 �C (Luo 2011; Nasim et al. 2016;
Singh et al. 2007). Heat stress is a severe threat to cotton productivity globally (Hall
2001).

20.2 Effects on Cotton Plant

High-temperature stress influences cotton plant in a number of ways such as by
inducing morphological, physiological changes and biochemical alterations thus
limiting the crop performance and lower seed cotton production. Heat stress
has effects on seed germination, seedling and root growth. High temperature effects
on diverse growth phases in cotton are depicted in Fig. 20.1.

The temperature range of 28–30 �C is considered optimum for seed germination
besides cotton seedling development. Cotton root growth is maximum at day/night
temperatures of 30/22–35/27 �C and rise in temperatures to 40/32 �C alter root
distribution pattern resulting in limited downward extension of roots (Reddy et al.
1997a, b). Temperatures higher than 30 �C, but not exceeding 40 �C, increase seed
germination rate leading to early seedling development. Increase in temperature
beyond 40 �C has damaging effects on cotton seedlings. In such conditions, heat-
tolerant genotypes withstand better due to activation of acquired thermo-tolerance
until the temperature approaches 37.7–40 �C (Burke 2001). The extent of damage is
much higher in heat-sensitive genotypes, and the entire fields may be wiped out due
to rapid loss of water when hot winds blow across the cotton fields. Such events
often take place in major cotton-growing countries like India and Pakistan.
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20.2.1 Effects on Plant Growth Besides Development

Although, cotton has a well-defined growth and developmental pattern, however, it
is highly temperature dependent (Iqbal et al. 2016). The rise in temperature generally
results in accelerated growth of plants making crop to mature early and at the same
time limiting the crop to achieve its genetic potential (Reddy and Zhao 2005). The
developmental processes of the plants are more rapid during increased daytime
temperature (Reddy et al. 1996), while the leaf expansion rate in cotton is more
under dark conditions (Krieg and Sung 1986). Continuous increase in temperature
throughout the cotton-growing season shortens the crop duration up to 24 days
(Reddy et al. 1996) or even 35 days earlier from germination to maturity if the
average temperature at global level rises 5 �C (Reddy et al. 1992a, b, c, 1997a, b).

Leaves are more sensitive to temperature variations during early stage of devel-
opment. At about 3 weeks after emergence, leaves expanded six to eight times more
at 28–30 �C temperatures than those at 20–21 �C (Reddy et al. 1992a, b, c, 1997a, b).
Unlike roots, shoots require higher temperature for optimum growth (Arndt 1945;
Pearson et al. 1970). Cooler temperatures cause accumulation of metabolites through
slowing down the plant growth and development, thus making plant to develop more
vegetative branches (Reddy et al. 1992a, b, c). That is why excessive vegetative
growth does not take place at higher daytime temperatures. Plant growth traits like

Fig. 20.1 Effect of higher temperature on agronomic besides physiological attributes of cotton at
numerous stages of development (Zafar et al. 2018)
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LAI, LAR, and NAR respond positively to an increasing temperature up to a
maximum of 35 �C (Jackson 1967).

Temperatures above 30/22 �C are conducive for stem elongation, fruiting
branches as well as fruiting branch nodes at early crop stage (Reddy et al.
1992a, b, c). The number of fruiting sites increases greatly with the increase in
mainstem nodes (Reddy et al. 1992a, b, c). Night temperatures have relatively more
effect in controlling flower initiation (Gipson and Ray 1969). For example, the night
temperature of 25 �C caused delayed flowering and first fruiting branch in upland
cotton (Mauney 1966), and boll maturity was delayed when the night temperatures
were lower (Gipson and Joham 1969).

Temperature variations dramatically affect growth besides potential yield of
cotton (Nasim et al. 2011; Luo et al. 2014; Rahman et al. 2017). Cotton plant
grows efficiently at 33 �C temperature, but the effective fruit bearing declines
considerably when temperature rises beyond 36 �C (Luo 2011; Singh et al. 2007).
Under higher temperatures, production and assimilation of carbohydrates are
inhibited which promotes boll shedding as well as smaller and malformed bolls
(parrot beak), lesser lint quantity, and decreased yields (Hatfield et al. 2008, 2011;
Oosterhuis 2009). However, the cotton genotypes in India and Pakistan are well
adapted to the high-temperature conditions and are successfully grown at tempera-
tures as high up to 46 �C.

Environmental stresses including high temperature at floral development stage
are crucial and limit potential yields (Boyer 1982). The most sensitive growth phase
for cotton to heat stress is reproductive growth stage which includes its pollen tube
growth and development and fertilization (Zinn et al. 2010). Unfavorable weather
variations adversely affect development of ovule, pollen fertility, and anther dehis-
cence or dispersal of pollens (Zinn et al. 2010; Young et al. 2004). Healthy pollen
grains have key roles in fertilization process, but they are more susceptible to
damage by high-temperature stress (Kakani et al. 2005). Therefore, this stress during
anthesis may lead to improper fertilization resulting in lesser number of seeds and
bolls (Kakani et al. 2005; Reddy et al. 1992a, b, c; Snider et al. 2009). Development
of fiber takes place on seeds in the boll; therefore seed number in boll besides ovules
in a locule would determine the quantity and quality of lint fiber to be produced
(Stewart 1986). Variation in seed number in a boll reflects either inadequate fertil-
ization of seed or post-fertilization growth termination of the embryo depending
upon both cultivar and unfavorable ecological conditions (Karmakar et al. 2016;
Stewart 1986). Heat-induced sterility has been a common issue in commercially
grown varieties in Pakistan where most of the initial fruit produced is shed, due to
high temperature, which often triggers extra vegetative growth (Taha et al. 1981).

Increasing temperatures accelerate crop growth and developmental processes
(Rawson 1992; Ziska and Bunce 1997) but also have detrimental effects on overall
crop performance if temperature exceeds than the desirable limits. While cotton is
highly sensitive with raise in high temperature creating heat stress for all growth
stages, fruiting phase is reported to be more sensitive among other growth phases
(Snider et al. 2009, 2010, 2011). For example, 1 �C rise in temperature produced
squares, flowers, and matured bolls by 1.6, 3.1, and 6.9 days earlier, respectively
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(Reddy et al. 1997a, b). Disruption and shortening of fruit maturation period, as a
result of high-temperature stress, limit productivity, causing subsequent yield losses
in cotton (Rawson 1992; Stewart 1986; Wullschleger and Oosterhuis 1990; Ziska
and Bunce 1997) owing to increased shedding of fruit forms and production of
smaller bolls (Reddy et al. 1999; Yfoulis and Fasoulas 1978; Zhao et al. 2005).

Fruit retention is highly sensitive to increased temperature stress, besides duration
of stress is very crucial as it determines the fruit load on a plant. The ideal
temperature for healthy cotton growth is 20–32 �C (Mohamed and Abdel-Hamid
2013; Reddy et al. 1992a, b, c). It is described that maximum growth of cotton
especially number of bolls which is essential for higher lint yield occurs during both
day and night with a temperature of 30 �C day besides 22 �C night, respectively
(Burke et al. 1988; Reddy et al. 1996). For example, Reddy et al. (1992a, b, c) found
30/32 �C temperature to be the most appropriate to gain maximum boll weight. The
cotton plants retained only 50% of the squares and bolls when exposed to 33 �C
average daily temperature and fruit retention declined sharply to none when daily
average temperature was rose to 36 �C (Reddy et al. 1992a, b, c). Similarly, a 12 h
exposure of cotton plants to 40 �C produced only 1% of their mass as bolls (Reddy
et al. 1991). It has been observed that young bolls are relatively more vulnerable to
temperature stress and often shed when the plant faces 32 �C or higher average daily
temperatures (Reddy et al. 1996). However, the cotton crop ably tolerates to short
duration stress imposed by temperatures as high up to 43/45 �C provided there is
ample moisture in the soil.

Among the C3 plants, cotton has relatively more heat-tolerance capability; how-
ever, temperatures higher than optimum stimulate shedding of squares and bolls
resulting in sharp decreases in yield (Oosterhuis 1997; Schlenkera and Roberts
2009). Apart from the intensity and duration of temperature stress having a critical
role in fruit retention, high night temperatures at fruiting phase of cotton are very
deleterious and cause more damage to the seed cotton yield than the high day time
temperatures. Investigations have revealed that high temperatures at night promote
respiration rates, decrease concentrations of leaf soluble carbohydrates (Loka and
Oosterhuis 2010), and increase abscission leading to significantly lower production
(Gipson and Joham 1969).

20.2.2 Effects on Physiological and Biochemical Parameters

Cotton crop is usually grown in arid besides semiarid areas in different countries
where temperatures are quite high during the crop growth periods. The higher
temperatures have limiting effects on growth, physiological, and biochemical
processes.
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20.2.2.1 Effects on Water Relations

The presence of optimum leaf water content maintains cell turgidity and key cell
functions like stomatal regulation, net photosynthetic rate, and translocation of
assimilates to different parts of the plant. Variation in ambient temperature greatly
influences plant water status. A change in the surrounding environment like increase
in temperature than the desired level disturbs the plant water status. Increased
transpiration rates triggered by high temperature result in water loss from the plant
when soil water content is not sufficient. Although high temperatures severely
disrupt the tendency to maintain cell water status under limited moisture conditions,
the plants are able to maintain steady tissue water status under conditions of ample
moisture content. Limited water availability under field conditions often results in
high-temperature stress due to lower rate of evaporative cooling. Increased transpi-
ration rates due to high day temperatures cause reduction in water potential that leads
to perturbation of numerous physiological processes (Tsukaguchi et al. 2003).

20.2.2.2 Effects on Cell Membrane, Anther Dehiscence, and Pollen
Viability

Cell membrane, that surrounds the cytoplasm, is a selectively permeable structure
which separates the interior of cells from outside environment. The cell membrane
should maintain its integrity for normal cell functions by allowing selective sub-
stances to move into or out of cell. Cell membrane is mainly composed of lipids
(up to 80%) and proteins. Under stressful environments such as high temperature,
lipid peroxidation occurs within the membrane causing increase in the fluidity of the
thylakoid membranes thus negatively affecting the efficiency of the photosystem
complex. Under continued heat stress, cyclic photophosphorylation is increased to
disperse excess energies and preserve the more sensitive photosystem II complex
(Schrader et al. 2004; Sharkey 2005). In cotton plant, the ability of membrane
structure to adjust under high-temperature conditions has been identified as a
physiological adaptation toward heat stress (Rahman et al. 2004). Defensive role
of antioxidants cannot be understated when high-temperature stress occurs. Reactive
oxidative species (ROS) increase extensively with increased levels of heat stress
(Wahid et al. 2007) which also activate enzymatic pathways needed to initiate stress
response (Dat et al. 1998; Foyer and Noctor 2005). Though, if stress conditions
prolong, then ROS can also initiate programmed cell death (Gechev et al. 2006).
During stressful periods, sufficient antioxidant pools are necessary to moderate heat-
related responses for proper growth and continued development of cotton (Snider
et al. 2011).

In cotton fruiting period is highly temperature sensitive, and higher temperature
can disrupt the fruit setting process due to pollen abortion at temperatures of
35–39 �C (Min et al. 2014). Often growth of filaments is restricted, while stigmas
elongate properly giving rise to asynchronous development (Brown 2008). Such
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flower abnormalities develop in cotton when high night temperatures cause rise in
canopy temperatures and limit cotton reproductive performance (Zeiher et al. 1994)
due to a decline of up to 84% in anther dehiscence and 78% in pollen viability when
night temperature increased to 30 �C (Ahmed et al. 1992).

The dehiscence of anthers which is highly temperature sensitive is the primary
step in fertilization process. Monitoring of anther dehiscence on daily basis in field
evaluation trials gives handsome information about performance of cotton varieties
under prevailing environmental conditions. For this purpose, up to three flowers
from each varietal plot are collected between 09:30 and 10:30 h and transported to
laboratory in zip-locked polythene bags. The flowers are examined under the
microscope to assess the number of pollen grains that have burst out from the
anthers. The anther dehiscence percentage is calculated on the basis of dehiscent
anthers, i.e., 90% (fully dehiscent), 50% (partially dehiscent), and 10%
(non-dehiscent).

The field studies conducted at Central Cotton Research Institute (CCRI), Multan
Pakistan have revealed that dehiscence of anthers started to decline from first week
of July, remained lowest during third and fourth week and then increased gradually
from first week of August reaching its maximum up to 100% in September.
Although heat-tolerant genotypes maintained highest anther dehiscence during the
period, the trend was, however, similar in all genotypes (Fig. 20.2).

Pollen viability refers to the health of pollens, and it provides information about
the ability of pollens to fertilize. Pollen viability is determined by gently tapping the
inverted flower on a glass slide. The pollens collected on the slide are stained with
vital dye Acetocarmine and observed under the microscope after 6 h at 200�. The
viable pollens show bold red color of the dye, while nonviable pollens remain
colorless (Fig. 20.3). Different physiological and other yield-contributing traits
have positive correlations such as pollen viability, % boll set on first besides second
positions along sympodia, and bolls per plant besides boll weight along with SCY,
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Fig. 20.2 Dehiscence of anthers in three cotton genotypes during the fruiting period (CCRI 2017)
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while cell injury and electrical conductivity have negative correlations with seed
cotton yield (Table 20.2).

Fig. 20.3 Pollen viability in cotton: Pollens with bold red color are viable and those without color
are non-viable (unpublished data of Physiology/Chemistry Section CCRI, Multan)

Table 20.2 Relationship between cotton yield and physiological traits determining heat tolerance

AD% PV (%)
%
BSFP

%
BSSP

RCIL
(%) EC NBPP

BW
(g)

PV (%) 0.97��

% BSFP 0.90�� 0.89��

% BSSP 0.88�� 0.88�� 0.98��

RCIL (%) �0.97�� �0.97�� �0.86�� �0.84��

EC
(μS cm�1)

�0.90�� �0.88�� �0.90�� �0.89�� 0.85��

NBPP 0.60�� 0.58�� 0.58�� 0.60�� �0.59�� �0.54��

BW (g) 0.12ns 0.15ns 0.08ns 0.10ns �0.12ns �0.08ns �0.34��

SCY
(kg ha�1)

0.99�� 0.97�� 0.91�� 0.90�� �0.98�� �0.90�� 0.60�� 0.11ns

AD anther dehiscence, PV pollen viability, BSFP boll set on first position, BSSP boll set on second
position, RCIL relative ell injury level, EC electrical conductivity, NBPP number of bolls per plant,
BW boll weight, SCY seed cotton yield
**Significant at p < 0.01 nsNon-significant
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20.2.2.3 Effects on Photosynthesis and Photorespiration

The process of photosynthesis is vital for different plant functions and survival.
Optimum temperature, light intensity, ample availability of water, and carbon
dioxide have positive influence on photosynthesis. However, extreme temperature
stress is considered the most important limiting factor for photosynthesis (Salvucci
and Crafts-Brandner 2004). Restricted photosynthetic efficiency as a result of
temperature stress has been stated in diverse crops counting cotton (Bibi et al.
2008; Reddy et al. 1991). Maximum net photosynthesis in cotton is noticed at
optimum temperature of 28 �C, and it tended to decrease when temperature reached
at 35 �C (Bibi et al. 2008; Crafts-Brandner and Salvucci 2000; Reddy and Hodges
1995; Snider et al. 2009; Wise et al. 2004) owing to significant reduction in
photosynthetic pigments at higher temperature (Mohamed and Abdel-Hamid
2013). High temperatures during the vegetative stage can destroy components of
leaf photosynthesis, reducing CO2 gain rates thereby limiting the export of assimilate
from leaves to developmental parts (Jiao and Benhua 1996). Higher-temperature
stress affects photosynthetic efficiency of cotton through decreased chlorophyll
content (Snider et al. 2009, 2010), inhibited CO2 exchange rate through limiting
activity of rubisco (Crafts-Brandner and Salvucci 2000; Law and Crafts-Brandner
1999), decreased membrane integrity (Schrader et al. 2004; Bibi et al. 2008; Rahman
et al. 2004), and increased photorespiration (Perry et al. 1983). Inhibition of photo-
synthesis due to higher temperature stress precedes the other detectable stress
symptoms (Berry and Bjorkman 1980) such as the activity of rubisco, regeneration
rate of ribulose-1,5-biphosphate (RuBP), and metabolism of triose phosphate (Wise
et al. 2004). Higher temperature disrupts the fixation of photosynthetic CO2 by
damaging photosystem II (PSII) electron transport mechanism in thylakoid mem-
brane (Berry and Bjorkman 1980). Since PSII function is the most unstable compo-
nent in electron transport (Havaux et al. 1996; Quinn and Williams 1985), its
inhibition results in enhanced chlorophyll fluorescence (Krause and Weis 1991).
That is why the magnitude of heat-induced changes in photosynthesis mechanism is
quantified on the basis of chlorophyll fluorescence (Govindjee 1995; Krause and
Weis 1991; Strasser 1997).

Photorespiration is a process during which plants take up oxygen instead of CO2

when the light intensity is high. High temperatures during the daytime increase
photorespiration and decrease net carbon assimilation in C3 species and thus result in
the loss of carbohydrates (Guinn 1974; Krieg and Sung 1986; Ludwig et al. 1965).
The conditions of continued high temperatures adversely affect plant growth through
increased photorespiration (Arevalo et al. 2004, 2008). During photorespiration,
carbohydrates produced by photosynthesis get utilized for respiratory energy rather
than to fulfill the need of plant developmental processes such as filling of developing
bolls (Loka and Oosterhuis 2010). Moreover, under conditions of high-temperature
plants are unable to accumulate and provide enough quantity of carbohydrates to
match with the plants’ needs (Oosterhuis 1999). Perry et al. (1983) reported that
photorespiration increased linearly with the rise in temperature from 22 to 40 �C:
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photorespiration representing less than 15% to almost 50%, respectively, of the net
photosynthesis. This highlights that the components of photorespiration and photo-
synthesis are highly influenced by temperature variations.

20.2.2.4 Effects on Enzyme Activation

Enzyme activity within plants is highly temperature dependent. Elevated tempera-
tures beyond the desirable limits significantly lower the activity of different
enzymes. The enzyme Rubisco activase regulates activation of ribulose-1,5-
bisphosphate carboxylase/oxegenase (Rubisco) in light (Andrews et al. 1995; Portis
Jr 1992; Salvucci and Ogren 1996). Vital role for Rubisco activase in sustaining
active state of Rubisco during light at levels which are sufficient for photosynthesis
has been reported in numerous studies (Andrews et al. 1995; Eckardt and Portis Jr
1997; Salvucci et al. 1986). Isolated Rubisco activase is mainly sensitive to inacti-
vation by raised temperatures (Crafts-Brandner et al. 1997; Crafts-Brandner and
Salvucci 2000; Salvucci et al. 2001). Therefore, the inactivation of Rubisco activase
offers a potential biochemical explanation of decreased activeness of Rubisco at
raised temperatures (Kobza and Seemann 1989; Krause and Weis 1991; Weis 1981).

20.2.2.5 Effects on Reactive Oxygen Species, Antioxidants, and Heat
Shock Proteins

High-temperature stress induces a number of biochemical alterations in plants as a
defense mechanism including production of antioxidants and heat shock proteins.
ROS are chemically active and unstable compounds which consist of singlet oxygen,
superoxide radical, peroxides, hydroxyl radical, and alpha oxygen. ROS, a natural
byproduct in normal metabolism of oxygen, is involved in cell signaling besides
homeostasis. ROS are produced in excess, in chloroplasts, and mitochondria under
environmentally stressed conditions like heat stress causing damage to cell struc-
tures; the state termed as oxidative stress (Apel and Hirt 2004). The presence of
excess ROS affects normal cell functions due to oxidative damage leading to cell
death if the stress conditions prevail.

As a defense mechanism, plants synthesize different antioxidants to protect cells
from oxidative damage caused by production of excess ROS. For normal cell
functions and growth, there needs to be maintained balance between production
and breakdown of ROS by antioxidants. Antioxidants prevent the oxidation of other
molecules and neutralize the free radicals making them less reactive. The defense
mechanism of plant comprises of different enzymatic components like superoxide
dismutase (SOD), ascorbate peroxidase (APX), ascorbate (ASC), and glutathione
(GSH) (Foyer and Noctor 2005).

Proteins in plant cells are temperature sensitive and are prone to denaturation by
heat stress. As a phenomenon of thermotolerance, plants synthesize proteins which
are termed as HSPs. The HSPs act as chaperones and prevent denaturation of cell
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proteins (Moriarty et al. 2002), promote refolding of denatured proteins (Frydman
2001), and are involved in other stress response mechanisms (Wang et al. 2004).
Synthesis of HSPs increases with the gradual rise in temperature (Abrol and Ingram
1996). The production and accumulation of HSPs has been evidenced in cotton
under controlled temperatures of 38–41 �C (Burke et al. 1985). The HSPs have been
categorized into five groups on basis of molecular weights as HSP100s, HSP90s,
HSP70s, HSP60s, and sHSPs (12–40 kDa) (Wang et al. 2004). In contrast to the
other parts of plants, germinating pollens upon exposure to heat do not exhibit HSPs
synthesis and therefore lose viability (Hopf et al. 1992).

20.2.3 Effects on Fiber Quality

Cotton crop is grown primarily to obtain lint fiber which is composed mainly of
cellulose (>85%). Cellulose is a linear chain polysaccharide made up of glucose
molecules mutually linked by beta-1,4 glycosidic bonds. The ideal temperature
range reported for the synthesis of cellulose is from 25 to 30 �C, and cellulose
synthesis decreases if temperature drops or exceeds this range (Roberts et al. 1992).
Sucrose (carbohydrate), the product of photosynthesis in plants, is the basic com-
pound in cellulose synthesis (Tian et al. 2013); therefore, any change in the concen-
tration of sucrose would directly affect the synthesis of cellulose. Cotton
photosynthetic capacity decreases if average daily temperature rises above 32 �C
(Crafts-Brandner and Salvucci 2000), thus decreasing sucrose synthesis. To produce
healthy fiber, plant should be able to maintain a steady rate of photosynthesis under
varied conditions. Generally, 12,000–15,000 fibers are produced by a single seed
under favorable temperature conditions (Oosterhuis 1997).

Adequate supply of carbohydrates is very crucial in healthy fiber development.
Unfavorable conditions such as high temperatures inhibit assimilation of carbohy-
drates thereby decreasing seed number, seed size, number of fibers per seed, and also
the weight of fiber produced on a seed thus ultimately leading to yield reduction
(Arevalo et al. 2004; Oosterhuis 1999). Rising temperatures have marked effects on
cotton fiber characteristics which may be either positive or negative under different
circumstances. The quality of fiber is determined on the basis of different indices like
fiber length, fiber strength, and fiber micronaire (fineness) which exhibit variable
degree of sensitivities to the environmental factors (Bowman and Gutiérrez 2003;
Bradow and Davidonis 2000; Gokani and Thaker 2002; Gou et al. 2007; John and
Keller 1996; Pettigrew 2008). Increased temperatures may lead to development of
altered fiber traits such as higher micronaire value, more fiber strength, and increased
fiber maturity (Ton 2011). Increased fiber maturity and strength are desirable, while
fiber with higher micronaire is of lower economic value.

Temperature variations have predominant effects on fiber quality parameters
(Pettigrew 2008) and particularly on fiber strength during thickening of secondary
cell wall (Ruan 2007). An average daily temperature of 26 �C is considered optimal
for fiber development (Rahman et al. 2007). Increase in average everyday
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temperature beyond 30 �C or peak day temperature above 35 �C (Pettigrew 2001;
Reddy et al. 1991) inhibits development of quality fiber depending upon the duration
of high-temperature stress (Oosterhuis 1999; Rahman et al. 2007; Reddy et al. 1995).
Similarly, night temperatures also affect fiber quality. Fiber length was found
maximum between 15 and 21 �C night temperatures, and length decreased when
nigh temperature rose above 21 �C (Gipson and Joham 1969; Pettigrew 2008) or
decreased below 15 �C (Gipson and Joham 1969; Zhang et al. 2012). Decrease in lint
index, percentage of lint and lint produced per boll at higher and lower temperature
limits have been evidenced. Fiber growth duration and rate of fiber elongation may
vary among the varieties and with the change in environmental factors (Gipson and
Ray 1969). Fiber elongation, however, requires lower temperature than that opti-
mally required for boll development (Pettigrew 2001). Fiber micronaire (fineness)
has been reported to deteriorate above 33/28 �C temperature regimes (Pettigrew
2008; Reddy et al. 1999).

Sensitivity of fiber to temperature varies with stage of fiber development. The
early stage of fiber elongation such as up to 2 weeks after anthesis has been reported
to be more to night-temperature sensitive than the later stages of fiber elongation
(Gipson and Joham 1969; Xie et al. 1993; Gipson and Ray 1969). Initiation of fiber
elongation starts with the flowering and continues up to 25 days after flowering,
while the secondary cell wall thickening continues during 20–60 days after
flowering, although these processes vary with varieties and overall temperature
conditions or cumulative heat units (Bradow and Davidonis 2010). Relationships
between fiber quality characters besides temperatures are mentioned in Table 20.3.

20.2.4 Effects on Genetics and Molecular Responses

In nature plants suffer from various abiotic stresses throughout the course of their
growth, while heat stress has a unique action mode on physiology of plant cells.
While mostly heat stress becomes exacerbated with the occurrence or severity of salt

Table 20.3 Relationship of fiber quality parameters with temperature conditions

Fiber trait Correlation Temperature condition References

Length of fiber Negative Difference amid maximum
and minimum temperatures

Hanson et al. (1956)

Strength of fiber Positive Maximum or mean maximum
temperature

Hanson et al. (1956)

Strength of fiber Positive Heat-unit-accumulation dur-
ing boll development

Snipes and Baskin
(1994)

Secondary wall depo-
sition (fiber maturity)

Positive Temperature/heat unit
accumulation

Johnson et al. (1997),
Bradow et al. (1996)

Fiber fineness
(micronaire increase)

Positive Heat unit accumulation Johnson et al. (1997),
Bradow et al. (1997)

Source: Singh et al. (2007)
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and drought stress, it is imperative to investigate influence of independent stress
besides biological impact of heat stress in order to alleviate combined effect of these
abiotic stresses. Plant susceptibility to higher temperature depends on developmental
stages, high temperature negatively affecting growth stages of plants. Effects of high
temperature vary within species and among genotypes (Barnabás et al. 2008; Sakata
and Higashitani 2008). The exposure of plants to heat shock by an increase in 5 �C
exceeding from its optimum temperature requirement significantly alters and influ-
ences metabolic and cellular machinery essential for heat stress tolerance (Guy
1999). Plant adaptation under thermal includes changes in cellular structural orga-
nization, i.e., changes in function of organelles besides cellular membrane functions
(Weis and Berry 1988), inhibiting biosynthesis of essential proteins besides enhanc-
ing transcription and translation of HSPs (Bray et al. 2000; Demirel et al. 2014), and
the production of phytohormones, e.g., ABA and antioxidants enzymes (Maestri
et al. 2002).

Fluctuation in temperature is sensed by plants with the aid of complex group of
sensors present in different cellular compartments. Fluidity of cell membrane
increases to activate the lipid-based signaling pathways likely augmented Ca2+

influx besides cytoskeleton reorganization. Signaling between the two pathways
leads to increased production of osmolytes besides osmoprotectants in reaction to
heat stress. However, Arabidopsis CNGC2 gene encrypts a component of membrane
cyclic nucleotide-gated Ca2+ channels which are responsible for sensing and resul-
tantly increase the temperature in plasma membrane in order to tackle heat shock
reaction (Saidi et al. 2009). Mechanism illuminates crucial role of lipid membranes
against heat stress (Horváth et al. 2012). Newly, it was illustrated that signaling
pathways activate specific tissues under heat stress (Mittler et al. 2011).

Heat stress triggers changes in photosynthesis besides respiration, hence leading
to reduction in life cycle resulting in reduced yield of plant (Barnabás et al. 2008).
Initial effect of thermal stress encompasses structural changes in chloroplast protein
with decreased enzyme activity (Ahmad et al. 2010). Furthermore, it causes injuries
in cellular membrane structure with the alteration in cell elongation, expansion, and
differentiation (Potters et al. 2009; Rasheed 2009; Smertenko et al. 1997). Homeo-
stasis of plants is also disturbed with heat stress including biosynthesis of, and
metabolites compartmentalization in plant tissues (Maestri et al. 2002) modification
in activities of starch accumulation, sucrose synthesis, carbon metabolic enzymes,
and down regulation of specific genes responsible for carbohydrate metabolism
(Ruan et al. 2010).

Biosynthesis of various phytohormones increases under heat stress that causes
premature senescence (Larkindale et al. 2005; Larkindale and Huang 2004;
Talanova et al. 2003) such as a bscisic acid synthesis increases due to heat stress
causing abscission of reproductive organs (Binder and Patterson 2009).

Transcriptomic changes in plants occurr in regulating gene expression to combat
with adverse effect of temperature; approximately 5% of plants genes become
upregulated via heat stress, while chaperones are minor part of general heat shock
reaction (Saidi et al. 2011; Aksoy et al. 2015). Most of genes are involved in
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primary/secondary metabolisms, transcription besides translation in response to high
temperature.

Higher accumulation of ROS species works as indicator of heat stress causing
oxidative/cellular damages to plants whereas peroxidation of lipids disturb consist
membrane permeability besides function. Heat stress causes denaturation and
misfolding of freshly synthesized protein. Heat shock factors (HSFs) activate heat
shock proteins (HSP); however, their expression pattern varies between species
(Banti et al. 2010).

Plant development and physiological processes are adversely effected due to heat
stress. Its damage to plant varies depending upon its developmental stage with a
severity during reproduction stage which handicap plants to adapt with changing
environmental conditions (Hall 2001). Higher temperature affects cotton reproduc-
tive development by decrease in pollen viability (Hejnák et al. 2015).

Flowering of plants is decreased due to heat stress which ultimately limits sexual
reproduction (Hedhly et al. 2009; Thakur et al. 2010; Zafar et al. 2018). Numerous
researches were conducted to unravel the effect of temperature under different
conditions by artificial application of high temperature under glass or subjecting
plants to high light intensity in growth chambers, and it was inferred to be deleterious
for bud initiation and other growth stages of plants (Hedhly et al. 2009; Nava et al.
2009). Agronomic leguminous besides cereal crops depicted higher sensitivity at
flowering, whereas horticultural crops depicted decreased fruit formation (Frank
et al. 2009; Saha et al. 2010), which was speculated to be due to reduced availability
of water and nutrients uptake by plant organs for their normal growth and higher
yield (Young et al. 2004).

In depth it was revealed that male gametophyte is sensitive to heat stress as
compared to pistil and female gametophyte which exhibited tolerant behavior
(Hedhly et al. 2009). Heat stress generally stimulates rather than delays the process
of anthesis to hasten flower opening and abnormal reproductive development with-
out accumulation of necessary resources (Zinn et al. 2010). As we abovementioned
about the gene expression changes with heat stress, it also varies in other plant parts
such as tapetum degeneration is observed with a high rate of plant sterility among a
group of species (Endo et al. 2009; Oshino et al. 2007).

Heat stress is also the cause of male sterile plants especially for sensitive species
with impaired pollen development, a major factor for reduced plant yield in such
scenario of environmental pressure (Wassmann et al. 2009; Sakata and Higashitani
2008). For cotton the raise in temperature from 34 to 43 �C during its growth
abruptly disrupts anther formation and limiting physiological processes (Zahid
et al. 2016). It also alters transport of nutrients and minerals within plants due to
disrupted balance of symplastic besides apoplastic phloem loading (Taiz and Zeiger
2006). Cotton plants under pressure of heat stress exhibit lower concentration of
sugars (soluble) in anther walls, pollen-grains, resultantly decreased locular fluid and
pollen viability (Snider et al. 2009). Heat stress promotes development of aborted
tapetal cells, which causes swift progress toward meiotic prophase triggering
programmed cell death and pollen sterility (Parish et al. 2012; Sakata and
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Higashitani 2008). In cotton higher temperature damages developing microspores
e.g., anthers (Min et al. 2013).

20.2.5 Molecular Mechanisms of Heat Tolerance

Plants are capable to adjust themselves according to climate drift by activating genes
responsible to circumvent harsh existing conditions; in this way they protect them-
selves from heat stress (Sánchez-Rodríguez et al. 2011; Qi et al. 2011). This ability
of plants to help them to acclimate to higher temperature by maintaining homeostasis
to prevent heat injury and another unprecedented mechanism such as huge produc-
tion of HSPs (Vierling 1991). The heat tolerance in plants is due to various
multigenic traits directly or indirectly involved during development and mainte-
nance of thermal tolerance, the main players are antioxidant enzymes, gene regula-
tions, lipid membrane stability, and compatible solutes accumulations (Kaya et al.
2001).

A number of studies have highlighted the importance of HSFs which are critical
for heat tolerance, while some have lesser critical part such as HSP101, HSA32,
HSFA1, HSFA3, and knockout of variants showed less impact for heat tolerance
(Schramm et al. 2008; Yoshida et al. 2011). It indicates that complex network is
involved for conferring differential protection against heat stress. Nonetheless, HSPs
have significant role for tolerance which work as molecular chaperones to circum-
vent denaturation of targeted proteins besides likely facilitating refolding of protein
(Ahuja et al. 2010; Lohar and Peat 1998; Scharf et al. 2012).

Heat stress tolerance is dependent upon induction of heat shock proteins (HSP70
and HSP90) in cotton (Gurley et al. 2000). The inhibited expression of HSP70 and
HSP90 in cotton stimulated oxidative stress and reduced the tolerance for heat stress
in cotton genotypes, which exhibited that HSP70 and HSP90 are involved for heat
tolerance (Sable et al. 2018). Although, HSP101 and HSP70 are not normally
required for growth under normal conditions but, however, have significant impor-
tance for tolerance and protein oxidative protection in cotton (Zhang et al. 2016). It is
supported from several studies that HSFs can role as molecular sensors which sense
ROS species and regulate the expression of oxidative stress responsive genes in
cotton (Miller and Mittler 2006; Sable et al. 2018; Sekmen et al. 2014). Moreover, in
cotton HSPs are associated with membrane to form heat shock lipids which stabilize
the membrane during earlier temperature stress (Cottee et al. 2014).

Plants facing any abiotic stress immediately produce ROS-scavenging enzymes
to alleviate oxidative stress produced by ROS species; therefore, plants suffering
from heat stress also produce antioxidant enzymes (SOD, POD, CAT, APX and
GPX) (Sekmen et al. 2014). It was reported that in tolerant plant species the
production of these enzymes is higher as compared to susceptible for protection
from oxidative damages (Abiko et al. 2005). Antioxidant enzymes are found in
almost all the cellular components of plants for detoxification and cellular survival
(Asada 2006; Iba 2002; Mittler et al. 2004). It was reported from dicot model plant
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(Arabidopsis) that APX gene family starts expression during heat stress which is
solely dependent on HSF for heat tolerance (Panchuk et al. 2002).

The LEA proteins, i.e., ubiquitin, besides dehydrins, are key players for
protecting from heat and drought stress moreover drought stress further aggravates
heat stress with least availability of water for plant growth. In cotton, LEA proteins
aid in preventing aggregation and protection from desiccation (Magwanga et al.
2018). The role of ubiquitin was against heat stress, and it was reported that it is
important for the first 30 min for short exposure of plants to heat stress (Huang and
Xu 2008).

Different approaches have been exploited to discover molecular mechanisms
rendering heat tolerance during reproductive organ development especially at the
stage of pollen formation which is necessary to understand and pave path for
developing heat-tolerant cultivars, thereby various genome-wide approaches have
been deployed for heat tolerance cotton breeding program (Min et al. 2014). It was
concluded that numerous mechanisms such as several hormones, antioxidants, and
HSPs are important for reproductive structures tolerance in cotton (Min et al. 2014).

Higher temperature stress has devastating effect on crop yield. In cotton, tolerant
cultivars exhibit higher chlorophyll content, maintain photosynthesis machinery by
adjusting stomatal conductance during heat stress (Hejnák et al. 2015), although to
ensure higher fruit setting and seed cotton production, are important parameters to be
considered with elevated temperatures (Reddy et al. 1992a, b, c). Genetic resources
need to be exploited when there are limited options available for heat tolerance in
cotton; sometimes wild cultivars are used to fix trait through breeding for achieving
higher tolerance (Pradhan et al. 2012).

In heat-tolerant plants, expression of multiple proteins has been observed with an
increase in concentration of phosphoribulokinase (PRK), which is the main compo-
nent of calvin cycle for final RuBP production. Protective proteins (HSP70, HSP90
besides Cpn60) also accumulated with an elevated gene expression to confer pro-
tective role against heat stress (Scafaro et al. 2010).

Likewise, a proteomic study was conducted for comparing protein expression in
cotton among susceptible and tolerant cultivars, and it was observed that accumu-
lation of HSPs was higher in tolerant cultivars making them more tolerant under
adverse temperature (Min et al. 2014). In cotton genetic variation occurs with the
ability of each cotton cultivars to withstand heat stress with increased membrane
stability and chlorophyll contents and minimum electrolyte leakage from tolerant
cultivars (Asha and Ahamed 2013).

Currently global warming is the main issue as we know earth temperature is
increasing every year around the globe which will have severe impact on the crops
growth. On the other hand, human population is also increasing rapidly and to ensure
food security heat-tolerant crops development is necessary to be sure to cope with
future changing climatic conditions. That is also necessary to understand behavior of
crop to changing climatic conditions that what kind of physiological adaptations take
place in plants. Modern genetic approaches are also paving path for tolerant crops
development within a less period of time. Figure 20.4 explains different mechanisms
of heat-tolerance initiated in plants under high-temperature stress.
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20.3 Strategies to Cope with High-Temperature Stress
in Cotton

20.3.1 Variety Selection, Sowing Time Adjustment,
and Irrigation Management

Cotton plant is able to respond with the severity of stress and adopt according to the
harsh environmental conditions. High-temperature stress in cotton is most important
due to its impact in early growth including germination, flowering besides during
boll formation stages. High night temperature also increases overall mean temper-
ature. Relative humidity has direct role to inhibit cooling phenomena during night
leading to higher nighttime canopy and air temperatures. Moreover, higher humidity
during daytime limits transpiration rates thus resulting in higher daytime canopy
temperatures as well.

Cotton growth is influenced due to temperature stress which induces differential
physiological, biochemical, and metabolic changes, by changing plant photosyn-
thetic performance, stomatal conductance, maintaining oxidative balance, carbohy-
drate production, lipid peroxidation, and synthesis of protein for heat tolerance (Bibi
et al. 2008; Roy and Ghosh 1996).

Heat stress is a hard to control phenomenon due to climate change. Different
strategies should be applied to adapt to temperature stress. There exists genetic
variability in cotton varieties and available germplasm express either susceptibility

Fig. 20.4 Schematic
diagram of mechanisms
involved in heat tolerance of
plants (Hasanuzzaman et al.
2013)
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or tolerance in heat stress (Khan et al. 2008). Selection of heat-tolerant varieties is,
therefore, one of the prime management options to avoid heat stress impacts on
cotton crop. Varieties owing leaf characteristics with thick cuticle and waxy surfaces
are better heat tolerant as they can reflect solar radiation to decrease damage of heat
stress (CICR 2000). Generally, most of the commercial cotton varieties are good
absorber of solar radiation and suffer increased heat stress impact. Selection of short
season cultivars might be helpful as they are lesser exposed to heat stress.

The other viable choice is to reduce the exposure of fruiting phase to heat stress
through planting time adjustment. The change in planting time is a good option to
protect the early stages of crop from severe temperatures. Sowing of cotton after
recommended planting time is more vulnerable to damages from heat stress. Sowing
time changes affect the cotton growth, lint yield, and assimilate supply to reproduc-
tive organs (Khan et al. 2017). Planting time needs to be adjusted in such a way that
flowering phase of crop should not face the highest day/night temperatures of the
season allowing it to escape from heat stress damage.

High temperature accelerates water losses from the soil and plant through
increased rates of evaporation and transpiration. Timely irrigation management
would minimize the impacts of heat stress. Irrigation ought to be applied according
to plant needs by observing canopy temperature for ameliorating detrimental effects
of higher temperature (White and Raine 2008). Inadequate availability of water
forces plant to adapt to such conditions by physiological changes through adjusting
stomatal conductance, which increase the incidence of water stress in cotton. It is
necessary to apply water to cope such situations which keeps the canopy cool. In arid
conditions crop is totally dependent on rain, and with deficient soil moisture
conditions, adjustment of row spacing helps to increase lint yield of cotton (Bange
et al. 2008).

20.3.2 Screening for Heat Tolerance

In Pakistan cotton is mostly cultivated in hottest regions (Riaz et al. 2013). The
genotypes commercially grown often face extremely high temperature up to 50 �C
during months (May and June), which is almost 20 �C above than optimal temper-
ature required for its normal growth, thus retarding crop’s performance to a high
extent. Development of heat-tolerant commercial cotton genotypes is a main chal-
lenge (Moreno and Orellana 2011; Zhang et al. 2006). Identification besides confir-
mation of traits that confer tolerance to high temperature remains elusive due to
dynamic responses of plants subjected to heat stress (Rodríguez et al. 2005; Wahid
et al. 2007). Scientists are also working to examine in what way plants could be
managed in high-temperature conditions. Based on importance of high-temperature
stress, physiological, biochemical, and molecular responses have been studied to
screen the newly evolved cotton germplasm. Identification and development of
potential genotypes which possess better tolerance to heat stress could give better
yield performances in heat-prone areas.
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Several methods in natural field environmental conditions are generally being in
practice for selection of heat tolerance. Field research is more advantageous for
understanding the behavior as compared to controlled conditions; however; it has
also limitations to control the environment under field conditions.

Studies have revealed that there exists a relationship between temperature besides
cotton reproductive performance (Brown 2001; Zeiher et al. 1994). Heat stress
damages young squares 15 days prior to flowering. Once developed into flowers
most of these do not open fully owing to their smaller size. Moreover, the flowers
show asynchronous development of male besides female reproductive structures,
and anthers fail either to release pollen or are unable to fertilize due to incompatible
elongation (Fig. 20.5) of filaments and stigmas (Brown 2008). High temperature
affects anther developmental phases causing abnormalities in the structures, pollen
sterility, and premature abortions. For instance, pollen germination and pollen tube
growth at 82.4–86.0 �F (28–30 �C) negatively affect cotton reproductive perfor-
mance. Pollen germination which was maximum at 82.4 �F/28 �C (Burke et al. 2004)
showed a moderate to sharp decline when temperature increased beyond 28 �C to up
to 98.6 �F/37 �C. Likewise, length of germinating pollen tubes increased maximum
at temperatures between 82.4 �F/28 �C and 87.8 �F/31 �C but decreased significantly
at 93.2 �F/34 �C approaching zero at 109.4 �F/43 �C. Higher temperature results in
membrane modification and its composition with higher leakage of ions. Stability of
cell membrane for thermal stability is evaluated with the ability of plants against
hardens reaction to higher temperature besides tolerate harmful metabolic changes
for heat stress (Alexandrov 1964).

Fig. 20.5 Reproductive tissues of cotton flowers exposed to heat-stress (left) and optimum thermal
conditions (right). Heat-stressed-flowers commonly have short filaments which creates illusion of
an elongated stigma. (Modified and adopted from Brown 2008)
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Heat tolerance test was developed to understand stability of cellular membrane by
measuring electrolyte leakage from leaf discs washed in deionized water immedi-
ately after exposure to heat-stress (Sullivan 1972). The EC of exudates from tissues
discs is expressed as measures of CMT to stress (Blum and Ebercon 1981). The
method is, however, more applicable to plants at mature stages.

Temperature variation effects on plants are multifaceted and greatly influence
pollen viability, fruit setting along sympodial branches (% boll set on first and
second positions), and biochemical parameters such as chlorophyll content, crude
protein and proline levels. These parameters may also be considered, while testing
cotton genotypes for heat tolerance as well as yield performance. Relatively new
physiological techniques like CMT, LEL, and anther dehiscence have been
established as reliable and efficient screening methods (Singh et al. 2007).

Stomatal conductance is worthy criteria for higher yield of irrigated crops grown
under environmental adversities (Lu et al. 1998; Rahman 2005; Ulloa et al. 2000).
Canopy temperature is a sensitive technique for measuring tolerance to high tem-
peratures under filed conditions (Oosterhuis and Snider 2009; Snider et al. 2010).
Photosynthesis is also dependent upon stomatal conductance, thereby it is also
sensitive under heat stress conditions, nevetheless it is not practical approach for
screening of germplasm against stress tolerance (Bibi et al. 2008). Important traits
for selection of heat tolerance in pants are given in Table 20.4.

20.3.3 Chemical and Biochemical Interventions to Induce
Heat Tolerance

Various approaches have been employed to induce thermal stress tolerance in plants
such as foliar application of chemicals, seed treatment prior to sowing with some
inorganic salts, oxidants (e.g., H2O2), and osmoprotectants (e.g., growth hormones)
(Wahid et al. 2007).

Seed treatment with high temperature (42 �C) before sowing enhances tolerance
ability of plant and to combat overheating and overcome dehydration; likely it also
aids in higher accumulation of water soluble proteins. Exogenous application is also
a good option such as Ca2+ applications increases plants’ heat tolerance. Calcium in
the form of CaCl2 application just before stress treatment increases antioxidant
enzyme activity leading to protection from heat stress (Kolupaev et al. 2005;
Tikhomirova 1985). Glycine betaine and polyamines, low molecular weight organic
compounds, which confer fruitful to induce heat tolerance in numerous plant species.
Seeds pre-treated with glycine betaine produced plants having low membrane
damage, improved photosynthetic rate, and enhanced leaf water potential besides
more shoot growth (Wahid and Shabbir 2005).

The protective mechanisms activated within plants in response to higher-
temperature stress are described schematically in Fig. 20.6. Plants tolerate to high-
temperature stress by morphological, physico-biochemical changes. In physiological
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response, plants accumulate compatible osmolytes, which aid in increasing retention
of water in plants for improved stomatal regulation and photosynthetic rate. The
morpho-physiological changes include decrease in cell size, stomata closure to
curtail water, increased stomatal and trichomes densities besides greater xylem
vessels. In biochemical alterations, accumulation of stress-related antioxidant
enzymes takes place which augment activities of antioxidants enzymes in plant
cells. Antioxidants alleviate ROS and reduce photo-oxidation damage with

Table 20.4 Important morpho-physiological selectable traits conferring heat tolerance

No. Trait Characteristics References

(A) Morphological traits amenable to direct selection

1. Okra leaf type High leaf N content
High CO2 exchange rate (CER)
High photoelectron transport
rate
Reduced non photochemical
quenching

Pettigrew (2004)

Reduced individual leaf area
Higher photosynthesis

Wells et al. (1986)

2. Lower fruiting height Greater heat tolerance Feaster and Turcotte
(1985)

3. Thicker leaves High N content Hall (2001)

High photosynthetic capacity Wright et al. (1993)

4. Abundant flowering and
fruiting at higher
temperature

Heat tolerance Ehlig and LeMert
(1973)

5. Earliness Reproductive heat tolerance Ahmed et al. (1993),
Ehlers and Hall (1996)

6. Stay-green effect Heat tolerance Reynolds et al. (1997)

7. Pollen selection Pollen selection through heat
treatment
Reproductive stage heat
tolerance

Rodriguez-Garay and
Barrow (1988)

(B) Physiological traits for both direct and/or indirect selection

1. Cell membrane thermosta-
bility (CMT)

Measures resistance of proto-
plasmic proteins to denaturation

Bibi et al. (2003),
Rahman et al. (2004)

Heat and drought tolerance Ashraf et al. (1994)

2. Leaf electrolyte leakage
(LEL)

Heat tolerance Thiaw (2003)

3. Anther dehiscence and pol-
len viability

Reproductive heat tolerance Singh et al. (2007),
Brown and Zeiher
(1998)

4. Stomatal conductance Ulloa et al. (2000),
Rahman (2005)

5. Canopy temperature Oosterhuis et al. (2009)

6. Photosynthesis Bibi et al. (2008)

Source: Singh et al. (2007)
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maintenance of chloroplast integrity. Plant growth regulator’s exogenous applica-
tions are an important alternative to decrease negative impact of temperature stress
by enhancing the antioxidant defense (Sarwar et al. 2017).

Fig. 20.6 Schematic presentation of morphological, physiological and biochemical alteration of
plants to cope with high temperatures. (Modified and adopted from Waraich et al. 2012)
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Foliar applications of essential macronutrients (N, K, Ca, and Mg) and
micronutrients (B, Mn, Se), and Salicylic acid (SA) also help in alleviating adverse
effects of temperature stress. These nutrients enhance antioxidants enzyme concen-
tration in plant cells. Nutrients like K and Ca improve uptake of water with improved
stomatal regulation that makes plant able to survive during exposure of heat stress.
Moreover, K and Ca also help in osmotic balance and maintenance of higher tissue
water potential under temperature stress conditions (Waraich et al. 2012).
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