
Chapter 18
Abiotic Stresses Mediated Changes
in Morphophysiology of Cotton Plant

Sibgha Noreen, Shakeel Ahmad, Zartash Fatima, Iqra Zakir, Pakeeza Iqbal,
Kamrun Nahar, and Mirza Hasanuzzaman

Abstract Cotton plant is a warm-weather-loving perennial shrub and now has been
domesticated to an annual crop cycle for commercial purposes. It belongs to genus
Gossypium (G. hirsutum L., G. barbadense L., G. herbaceum L., G. arboreum L.),
widely grown in arid, semiarid, and tropical climates. Globally, of these,G. hirsutum
L. (the upland cottons) occupies about 95% of total 33–35 million hectares (2.5% of
arable land) of land under cotton cultivation. Cotton crop is not only a natural fiber
resource but also a food and feed for billions of humans and livestock. The projected
increase in population is 9.0 billion by 2030, which would require an additional
quantum of fiber and cotton seed production by more than 70% over the current level
of productivity. Cotton plant having an indeterminate growth habit is highly vulner-
able to occurrence of persistent and/or intermittent changes in the environments. The
footprints of abiotic stresses are more visible on growth and development than those
of biotic stresses. In the days to come, under the aegis of climate change, the
sustainability of cotton productivity from productive and marginal lands rests by
maintaining balance between vegetative and reproductive development from seed-
lings through maturity. The prevalence of imbalance state (either short or long

S. Noreen (*)
Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
e-mail: sibgha.noreen@bzu.edu.pk

S. Ahmad (*)
Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin
Zakariya University, Multan, Pakistan
e-mail: shakeelahmad@bzu.edu.pk

Z. Fatima · I. Zakir
Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan

P. Iqbal
Department of Botany, University of Agriculture, Faisalabad, Pakistan

K. Nahar
Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

M. Hasanuzzaman
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University,
Dhaka, Bangladesh

© Springer Nature Singapore Pte Ltd. 2020
S. Ahmad, M. Hasanuzzaman (eds.), Cotton Production and Uses,
https://doi.org/10.1007/978-981-15-1472-2_18

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1472-2_18&domain=pdf
mailto:sibgha.noreen@bzu.edu.pk
mailto:shakeelahmad@bzu.edu.pk
https://doi.org/10.1007/978-981-15-1472-2_18


duration) could lead to loss in farm income. The potential yield could be harvested
by transitioning cotton plant from “green cotton” to “white cotton.” This is an effort
to manipulate the plant for transporting its greater photo-assimilates from source to
sink organs. Farm manager is ought to be proactive and skillful in adopting certain
management tools, monitoring crop development, selection of tolerant/resistant
cultivars, nutrient management, and phytosanitary measures to reinforce cotton
plant for abreasting the external vagaries.

Keywords Morphophysiological attributes · Abiotic stresses · Cotton · Plant
mapping · Source-sink relationship

Abbreviations

AP Ascorbate peroxidase
CAT Catalase
CO2 Carbon dioxide
DD Degree-days
DPA Days post-anthesis
EDU Ethylene diurea
ET Evapotranspiration
GHG Greenhouse gas
GR Glutathione reductase
HSP Heat shock proteins
LEA Late embryogenesis abundant
O3 Ozone
Pn Net photosynthesis
PPFD Photosynthetic photon flux density
ROS Reactive oxygen species
SOD Superoxide dismutase

18.1 Introduction

Cotton plant is a perennial shrub or tree, which has been domesticated to an annual
growth habit and highly prone to climatic conditions. It belongs to genus Gossypium
(G. hirsutum L., G. barbadense L., G. herbaceum L., G. arboreum L.) and is
comprised of 50 species, of which 45 are diploid and the remaining 5 being
tetraploid. The major cultivated cotton types are “the Upland cottons”
(G. hirsutum L.) and “Pima/Sea Island/Egyptian cotton/extra long staple”
(G. barbadense L.). Cotton plant is a unique one and follows sigmoidal curve for
its growth and development. Having an indeterminate growth habit has a periodic
and well-defined predictable growth patterns. It is mainly grown in subtropical and
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tropical climates between 37 �N latitude and 32 �S latitude, covering an area of
33–37 million hectares across 100 countries.

Cotton is a rapidly renewable resource, a leading natural fiber and second largest
oilseed crop in agricultural production (Ahmad et al. 2014, 2017, 2018; Abbas and
Ahmad 2018; Ahmad and Raza 2014; Ali et al. 2011, 2013a, b, 2014a, b). It
produces spin able fibers for commercial use in textile industry. It is also a major
source of edible oil for humans and meal as a vegetable protein for livestock
production (www.icac.org) (Giband et al. 2010). The best cotton produces now
achieve more than two bales of cotton per mega liter (ML) of water. It is a vital
agricultural commodity and multibillion US Dollar industries that underpin both
developed and developing economies (Amin et al. 2017, 2018; Khan et al. 2004;
Rahman et al. 2018; Tariq et al. 2017, 2018; Usman et al. 2009). More than
400 million people derive their livelihood by engaging in farming, processing,
textile, and garment industries.

Currently, the primary challenge is to enhance tolerance to drought and salt
stresses to maintain its productivity on marginal lands (Rasapula et al. 2011).
Thereby, there is a greater need to understand the basics of certain physiological
processes in response to changing climatic conditions (Boyles et al. 2005). The
productivity of cotton will have to be increased by 70% over the current level of
production, with simultaneous reduction in greenhouse gas (GHG) emissions with-
out any loss in biodiversity and habitats under the expected vagaries of climate
changes (Burney et al. 2010).

To make cotton crop to be sustainable, commercial, and cost-effective, it is
necessary to know regarding plant growth along with its response to ecological
stresses. A comprehensive understanding of physiological processes along with their
response toward stress is necessary to design strategies for managing stresses for
maximizing productivity and profitability.

18.2 Growth and Development

Cotton being a perennial one exhibits as an indeterminate growth habit. This means
that fruiting bodies are developed over a longer period of times, and compensates its
loss of fruiting bodies following the footprints of certain stresses, e.g., drought,
salinity, pollutants, extreme temperature, insect-pests and disease attack, and other
physiological disorders.

Cotton seedlings emerge 5–10 days after planting, and cotyledons are arranged
directly opposite on main stem. Leaves on main stem along with branches are
spirally arranged on the stem in a three-eighths polyllotoxy about the cotyledonary
node (Fig. 18.1). The development of reproductive organs starts about 4–5 weeks
after planting. The bolls develop rapidly after fertilization and reach at their full size
within 3 weeks. During the growth period, plant produces two types of branches,
monopodial (vegetative) and sympodial (reproductive) ones. The first sympodial
branch generally arises from sixth or seventh node on main stem. The monopodial
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branch grows in zigzag manner along with arise manifold fruiting positions. With
progressive growth, new sub-standing leaves are produced and supply carbohydrates
to the developing fruits. As the plant enters into the reproductive phase, the vege-
tative growth is slowed down and the greater proportion of photo assimilates are
diverted toward developing bolls. This is the pivotal stage, where balance between
vegetative and reproductive growth has to be maintained progressive as long as
weather favors for turning into cut out stage.

18.3 Source-Sink Relationship

The environmental stresses impact largely on the production of metabolites and its
redistribution between source and sink organs. The development of imbalance
between source and sink quantum and occurrence of osmotic adjustment results in
reduction of photosynthetic process, leaf and root growth, and abscission of fruiting
bodies (Kirkham et al. 1972; Terry et al. 1971; Baker and Boker 2010). The
productivity of assimilates is dependent upon genetic make-up of species, architec-
tural characteristics of cultivars degree of lobing, and eco-adophic factors (Baker and

Fig. 18.1 Developing fruiting branch and other structures. (Source: Adapted after William and
Bange 2018)
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Boker 2010). The rate of net photosynthesis (Pn) is maximal during leaf expansion
(16–20 days) period and starts declining toward ontogeny (Constable and Rawson
1980; Reddy et al. 1991; Wullschleger and Oosterhuis 1990).

Photosynthetic rate and production of fruiting bodies is maximal at optimum
temperature of 30/20 �C and declines at 40/30 �C (Reddy et al. 1990), while seedling
growth is stopped below 16 �C (Warner and Burke 1993). The photosynthetic rate is
declined drastically at water potential (ψ i) of �1.2 MPa drought stress condition
(Marani et al. 1985) and results in irreversible process (Bielorai and Hopmans 1975;
Hsiao et al. 1982). The decrease in leaf expansion, vegetative growth, and leaf
abscission leads to lowering in amount of capturing light (Sinclair and Ludlow
1985). Among the nutrients, nitrogen deficiency syndrome results in reduction in
stem extension, leaf area index, and photosynthetic efficiency (Fernandez et al.
1993) and increases stomatal closure due to production of higher quantity of
cytokinins and abscisic acid (Radin et al. 1987).

18.3.1 Sources of Assimilates

The synthesis of assimilates is affected by atmospheric CO2, O3, and agrochemicals,
and exogenous application applied mineral nutrients and osmoprotectants (Baker
and Boker 2010). These enrichment of CO2 causes increase in photosynthesis and
biological yield to the proportion of 37% and 40%, respectively (Reddy et al. 1997),
whereas, its rate is reduced by 5.9% due to elevated O3 concentration from 0.03 to
0.107 μL L�1 (Reddy et al. 1989). However, application of plant growth regulators,
viz., mepiquat chloride, gibberellic acid, and indolebutyric acid, causes increase in
proliferation of roots and photosynthetic rate (Oosterhuis and Zhao 1993).

18.3.2 Sinks of Assimilates

Cotton plant accumulates starch in phloem and chloroplasts through photosynthetic
process in the presence of higher quantum of CO2 and radiance (photosynthetic
photon flux density, PPFD) during day time and is translocated to growing points at
night (Baker and Boker 2010). The supply of assimilates is shared equally between
shoots and roots (Kimball and Mauney 1993); however, roots maintain sinks
strength by more than six times than that of fruiting bodies (Fye et al. 1984). The
growth rate is reduced at �1.2 MPa (leaf water potential (ψ i)) during midday, which
affects in balancing share between resource and sink (Marani et al. 1985). The
growth and development of reproductive organs is enhanced at 27 �C and declines
at 33 �C temperature (Baker et al. 1983), while greater proportion bolls are shed at
35/25 �C and eventually stopped at 40/30 �C temperature. The dray matter yield
capsule of bolls is increased linearly with quantum of sink up to 20 DPA (days post-
anthesis) and maximal at 30 DPA (Stewart 1986).
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The occurrence of various physiological events is interacted by genetic makeup
of genotypes, interception of light, photosynthetic rate, eco-edaphic factors, and
farm management practices (Stewart 1986). The plastochron at main stem is
2–3 days leaf�1, and 6–7 days leaf�1 at sympodial branches occurs at 27 �C
temperature (Reddy et al. 1993). The source-sink relationship is imbalanced on the
occurrence of reproductive organs (Baker et al. 1983). The shortfall of assimilates
delays in initiation of nodal positions on main stem as well as on sympodia (Reddy
et al. 1993). The quantum of production and redistribution pattern of assimilates
leverage the loss in bolls and productivity (Constable et al. 1991).

18.4 Mapping of Cotton Plant

Plant diagrams are utilized to map bolls positions along with stages of development
of all flowering on the day of sampling and to evaluate success of productivity input
resources (Oosterhuis 1990). Opening of successive flowers on sympodia appears at
interval of 6–7 days (horizontal interval), and first follower on successive branches
opens at 3 days interval (vertical interval), besides second, third, and later flowers are
likewise separated. This order is thus spirally outward and upward. The number of
fruiting positions along sympodia varies greatly due to genetic constitution of the
genotype, nutritional management, controlling insect-pest attack, and eco-edaphic
and farm management factors. The retention of bolls on the first, second, and third
sympodial positions contributes around 60%, 30%, and 10% toward total cotton
productivity (Pervez et al. 2005a, b). Among these contributing factors, the meeting
of nutritional needs cause substantial retention of harvestable bolls on the sympodia
(Pervez et al. 2005a, b). Furthermore, the lint quality gathered from bolls on
sympodia also tends to reduce away from main stem (Jenkins et al. 1990)
(Figs. 18.2, 18.3, and 18.4).

Growth and maturation of cotton are temperature dependent, thereby occurrence
of various growth stages can be predicted by calculating degree-days (DD) at
threshold temperature of 15.6 �C (60 �F) and no upper threshold (Fry 1983). DD
means the accumulation of heat units associated with everyday maximum besides
minimum temperature during each day (El-Zik et al. 1980). The accumulated heat
units for a particular growth stage help in maintaining the events during growing
season (Landivar and Benedict 1996) (Table 18.1).

Under favorable growing environments, the plenty of irrigation water and exces-
sive nitrogenous fertilization would result in rank growth, which causes heavy
economic loss. The excessive vegetative growth may be checked by foliar spray of
mepiquat chloride, for diverting its photo-assimilates from vegetative to reproduc-
tive organs. Thereby, developing bolls become great sinks for carbohydrates, H2O,
besides nutrients, and leaving a little food for vegetative development.
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18.5 Fiber Development

Cotton fibers begin development as single cell that begin to form on unfertilized
seeds called ovules (William and Bange 2018). On the physiological basis, quality of
fiber is determined by interaction of genetic potential of genotype and environmental
fluctuations experienced during growth period by cotton plant (Bradow and
Davidonis 2010) (Table 18.2).

18.6 Abiotic Stresses

18.6.1 Extreme Temperature Stress

The temperature is the predominant among cardinal ecological aspects which influ-
ences crop growth and productivity since the beginning of germination/emergence

Fig. 18.2 Schematic cotton flowering pattern. (Redrawn from Oosterhuis 1990 and Pervez et al.
2005a, b)
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Fig. 18.3 Fruit production efficiency without fertilizer application. (Modified and adapted after
Pervez et al. 2005a, b)
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Fig. 18.4 Fruit production efficiency at 125 kg K ha�1. (Modified and adapted after Pervez et al.
2005a, b)

Table 18.1 Phenological stages

Phenological event Temp (�C) Days after planting References

First square 27 27 Reddy et al. (1993)

Square to bloom 27 20 Hesketh and Low (1968)

24 Reddy et al. (1993)

26 Hesketh et al. (1972)

Bloom to open boll 27 48 Reddy et al. (1992)

61 Hesketh and Low (1968)
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stage and throughout one’s life span (Burke and Wanjura 2009). Although cotton
originates from hot climates, its yield is decreased appreciably due to higher
temperatures especially during reproductive phase (Zhao et al. 2005). The minimum
temperature for planting seed is 15.5 �C (60 �F) (Christiansen and Rowland 1986)
and temperature of 35 �C for root development (McMichael and Burke 1994) for
irrigated, while thermal kinetic window is 23.5–25 �C for rainfed cotton. The
lowering of temperature from 30 to 18 �C causes reduction in hydraulic conductivity
of roots, resulting in reduced proliferation of roots (Bolger et al. 1992).

The prevalence of higher temperature during early stage of growth affects the
productivity to a greater proportion (Burke and Wanjura 2010). During reproductive
phase, the increased in temperature from 18 to 28 �C resorts to increased fruiting
branches from 5 to 16, while no fruiting branches are produced beyond 36 �C in
Pima cottons. The phenomenon of sterility in flower occurs at temperature greater
than 38 �C (Taha et al. 1981) and progression of fruiting structures (Reddy et al.
1995). The higher temperature causes increase in oxidative stress, lowers photosyn-
thesis, and depletes ATP and carbohydrates (Oosterhuis and Snider 2010). The
efficiency of metabolic activity in Upland cotton is the highest at its optimal thermal
window of 23–32 �C (Snider et al. 2009). However, metabolic activity and mem-
brane functions are diminished at 20–23 �C and below 15 �C, respectively.

18.6.2 Mineral Nutrients Stress

The success of cotton cultivation depends upon an adequate availability of macro-
and micronutrients and eco-edaphic factors during the season (Mullins and
Burmester 2010). Cotton having an indeterminate growth habit, contrarily to deter-
minate ones, requires greater quantity of nutrients during its reproductive phase
compared to vegetative phase (Pervez et al. 2005a, b). However, availability of
nutrients during each growth period is pertinent to avoid any deficiency syndrome
(Hodges and Constable 2010; Rochester 2012) (Table 18.3). The proportionate
amount of translocation and/or relative redistribution of nutrients from vegetative
to reproductive organs causes causal effects on cotton productivity. Nitrogen nutri-
ent is more mobile than those of K, S, Ca, Mg, Fe, Mn, and B for their translocation

Table 18.2 Phenological events of cotton plant (Gossypium hirsutum L.)

Growth stages

Calendar days Degree daysa

(Base 15.6 �C)Range Average

Sowing to emergence 5–20 10 50

Emergence to square 40–60 50 450

Square to bloom 20–27 23 330

Bloom to open boll 40–80 58 950

Normal crop production 190–210 200 >2800
aDegree days (DD) ¼ Max temp �15.6 �C + Min temp 15.6 �C/2
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from leaves, stems, and capsule wall (Rosolem and Mikkelsen 1991). A greater
quantum of N, P, and Zn is accumulated in the bolls and thereafter removed to
seedcotton produce (Rochester 2007). The in-season nutritional status could be
assessed by leaf tissue and petiole-nitrate analysis (Constable et al. 1991). The
chlorophyll meters (Makhdum et al. 2002) and leaf/canopy reflectance sensors are
also becoming more commonplace (Constable et al. 1991). The deficiency syndrome
could be corrected by foliar and/or side dressing of nutrients (Makhdum et al. 2002).

Cotton plant follows sigmoidal curve for growth, dry matter production, and
nutrient uptake after greatly during course of development (Oosterhuis 1990). The
accumulation of nutrient is maximal at peak flowering for utilization of assimilates
between vegetative and reproductive organs (Schwab et al. 2000). It accumulates
29%, 22%, and 21% of nitrogen, phosphorus, and potassium nutrient, at full
flowering stage under irrigated condition (Halevy et al. 1987) (Tables 18.4, 18.5,
18.6, 18.7, and 18.8).

Cultivars vary in their nutrient uptake due to difference in demand between upper
ground parts and root system (Kerby and Adams 1985), and also amount of
externally application of fertilizers; e.g., N uptake is increased from 110 to
322 kg N ha�1 by adding nitrogenous fertilizer from 0 to 180 kg N ha�1 (Pervez
et al. 2005a, b).

The appearance of deficiency syndrome is an outcome of inhibition of chloro-
phyll formation and/or occurrence of oxidative stress due to limited utilization of
photo assimilates (Hodges and Constable 2010). During the discourse of growth,
concentration of N, P, K, Fe, Cu, and Zn drops, while Ca, Mg, Na, Mn, S, and B
increased in leaf tissues with advancement in age (Boquet and Breitenback 2000).
The fruiting bodies especially bolls are the major sinks of nutrients, and their
accumulation vary appreciably due to eco-edaphic factors, genetic makeup of

Table 18.3 Physiological basis of fiber development

Fiber development Description

Initiation It occurs just pre-flowering and at flowering. It is initiation of
fiber cells on seed coat which can take up to 3 days. Thereafter,
second set of fiber cells are initiated and develop into the fuzz

Elongation This is rapid expansion besides growth of fiber cell’s primary
wall. Finally, fiber length is affected by length of besides rate of
fiber elongation

Secondary wall thickening or
fiber thickening

The secondary wall is formed where cellulose is laid down in
layers inside fiber cell’s primary wall. Deposition is affected due
to fluctuations and formation of fiber growth rings. Due to
fluctuations in photosynthesis on an everyday basis and forma-
tion of fiber growth rings. Cellulose layers are composed of two
layers. The thicker is formed during day besides porous layer is
formed at night

Maturation Fiber cells dry out and fiber becomes a twisted ribbon-like
structure. Mature fiber is easily detached from fuzzy seed
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cultivars, temperature and drought stresses, amount of nutrients in the rhizosphere,
and other agronomic practices under different ecologies (Constable et al. 1988).

The removal of nutrients by harvestable portion determines the amount of
nutrients required for gathering the targeted yield. Thereby replenishment of nutri-
ents in consonance with nutrient(s) removal is pertinent to maintain soil fertility
(Rochester 2007).

18.6.2.1 Boron Stress

Boron is most vital micronutrient for cotton (Rosolem and Costa 1999). The
deficiency syndrome appears on younger growing parts due to limited translocation
in plant system (Rosolem and Bogiani 2011). There is a very narrow range between
sufficiency and toxicity levels of boron. Its toxicity causes negative effects on
photosynthesis, chlorophyll constituents, cell division, and lignin development
(Reid 2007). The reproductive phase is highly prone to boron deficiency (Zhao
and Oosterhuis 2002). The requirement is about 340 g B ha�1, of which 12% is
retained in seed cotton and remaining is stored in other plant parts (Zhao and
Oosterhuis 2003).

18.6.3 Drought Stress

Among the abiotic stresses, drought is the most limiting aspect for growth besides
development of cotton. Cotton is being grown extensively is arid and semiarid
regions, where irrigation supplies are limited most of times. Cotton is “xerophyte,”

Table 18.4 Uptake of nutrients at maturity

Nutrients

Maximum uptake
(kg ha�1),
(g ha�1)

Maximum
uptake rate
(kg ha�1 day�1)

Time of maximum
uptake (days from
sowing)

Percentage taken
up during
flowering

Nitrogen 332 2.1 102 55

Phosphorus 49 0.7 110 75

Potassium 312 3.2 115 61

Sulfur 71 0.8 101 63

Calcium 289 2.6 112 55

Magnesium 72 0.7 108 61

Iron 2592 24.0 130 46

Manganese 829 6.5 123 49

Boron 652 6.5 118 60

Copper 77 0.9 119 61

Zinc 272 3.7 109 73

Source: Hodges (1992)
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Table 18.5 Pattern of nutrients uptake at full bloom stage

Nutrient

Total
uptake
(kg ha�1),
�(g ha�1)

Uptake index
(kg/100 kg lint),
�(g/100 kg seed
cotton)

Peak uptake rate
(kg ha�1 day�1),
�(g/ha�1 day�1)

% of total
uptake at
full bloom
stage Reference

Nitrogen 51–301 8–51 2.54–3.87 23–39 Mullins
and
Burmester
(1991)

Phosphorus 8.2–72.3 1.3–3.3 0.31–0.48 21.36 Mullins
and
Burmester
(1991)

Potassium 53–393 12.1–27.0 2.2–3.5 35 Mullins
and
Burmester
(1991)

Magnesium 35–104 3.0–6.4 0.3–0.8 30–52 Mullins
and
Burmester
(1992)

Calcium 60–70 6–77 1.5–3.1 46–49 Mullins
and
Burmester
(1992)

Sulfur 15.6–25.1 1.0–6.8 0.34–0.49 30 Mullins
and
Burmester
(1993)

Zinc 25–38 5–7 1.9–4.1 25–45 Mullins
and
Burmester
(1993)

Manganese 451 � 175 30.0 8.2–14.4 35–47 Mullins
and
Burmester
(1993)

Copper 28 � 14 4.0 0.34–1.33 29–58 Mullins
and
Burmester
(1993)

Iron 600–814 242 23–27 41–60 Mullins
and
Burmester
(1993)

Boron 66–17 9.3 – – Alimov
and
Ibragimov
(1976)

(continued)
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Table 18.5 (continued)

Nutrient

Total
uptake
(kg ha�1),
�(g ha�1)

Uptake index
(kg/100 kg lint),
�(g/100 kg seed
cotton)

Peak uptake rate
(kg ha�1 day�1),
�(g/ha�1 day�1)

% of total
uptake at
full bloom
stage Reference

Molydenum 1.97–4.03 – – – Alimov
and
Ibragimov
(1976)

Cobolt 2.44–4.35 – – – Alimov
and
Ibragimov
(1976)

Sodium 4.3–17.1 – – – Bassett
et al.
(1970)

Table 18.6 Uptake of nutrients at various growth stages

Uptake (kg ha�1)

Stage of growth Plant organ Nitrogen Phosphorus Potassium

First flower bud Leaves 7.3 0.47 6.0

Stems 1.6 0.14 8.9

Total 8.9 0.61 14.9

First flower Leaves 21.4 1.23 19.7

Stems 9.1 0.64 19.7

Capsule 5.7 0.66 4.9

Total 36.2 2.53 44.3

Peak flowering Leaves 28.0 1.32 28.3

Stems 11.2 0.97 26.4

Capsule 3.7 0.77 7.3

Seed 13.5 1.47 10.1

Lint 1.1 0.27 4.3

Total 57.5 4.80 76.4

First boll split Leaves 29.8 1.29 35.1

Stems 12.6 1.15 31.4

Capsule 3.2 1.09 15.0

Seed 28.5 3.97 24.3

Lint 1.2 0.71 9.4

Total 75.3 8.21 115.2

Maturity Leaves 10.6 0.54 11.2

Stems 8.9 0.75 16.9

Capsule 3.2 0.72 18.3

Seed 46.5 7.61 22.8

Lint 1.0 0.40 7.6

Total 70.2 10.02 76.8
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a plant which requires less water, and tolerant to heat besides drought. Cotton plants
avoid adverse weather possibly due to deep well-distributed root system along with
indeterminate growth pattern. Evapotranspiration (ETc)-based requirement of water
is to be 2.0 mm day�1 (20,000 L ha�1) through vegetative stage besides 6 and
8 mm day�1 during flowering and early-bulling period (termed as critical window).
It requires around 80–85% of total water during this “critical window”; however,
moisture stress during this stage caused severe yield losses. Contrarily, excessive
moisture coupled with higher amount of nitrogenous fertilizers during vegetative and
boll opening stages results in reduced growth and lowering of yields.

Table 18.7 Pattern of accumulation and timings of nutrients by cotton boll

Nutrient
Maximum uptake per boll
(mg/boll), (μg/boll)

Maximum
uptake (per day)

Time of maximum uptake
(days from anthesis)

Nitrogen 111 36 19

Phosphorus 21.4 0.71 19

Potassium 10.3 3.2 19

Sulfur 17.5 0.37 26

Calcium 31.0 0.82 27

Magnesium 17.2 0.45 21

Iron 221 5.6 24

Manganese 111 2.5 22

Boron 118 3.8 18

Copper 30 0.91 19

Zinc 104 3.0 18

Adapted after Constable et al. (1988)

Table 18.8 Proportional nutrients uptake towards differential yield level

Lint yield (kg ha�1)

Nutrients uptake (kg ha�1), a(g ha�1) % Exported

1000 1800 2400 1000 1800 2400

Nitrogen 63 175 290 66 52 46

Phosphorus 13 27 41 82 69 60

Potassium 77 167 250 21 17 15

Sulfur 10 39 62 42 21 18

Calcium 71 94 155 3 3 2

Magnesium 16 36 63 45 34 25

Irona 227 820 1620 40 17 11

Manganesea 152 355 655 5 3 2

Borona 75 320 560 22 13 11

Coppera 25 52 81 51 38 31

Zinca 58 119 203 99 73 61

Adapted after Rochester (2007)
aNutrients uptake (g ha�1)
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Plants undergo a series of integrated events, varying from signaling stress and
transduction to the gene expression as an effort to acclimatize under the stressful
conditions. The drought stress is evidenced at whole plant, cellular and molecular
levels (Chaves et al. 2009). Water stress caused reduction in photosynthesis and
growth, because of stomatal closure along with lowered activity of photosynthetic
enzymes (Chaves et al. 2009) and efficiency of chloroplast to fix carbon dioxide
(Bota et al. 2004). At the cellular level, the oxidative stress is occurred due to
generation of reactive oxygen species (ROS) with concurrent working in stress
signal transduction pathway (Foyer and Noctor 2009). The appreciable changes
occur in protein synthesis and biological functions at molecular level in response
to drought stress. The gas exchange parameter, viz., net photosynthesis, stomatal
conductance, and transpiration rate, while fluorescence parameters, i.e., effective
quantum yield of PSII (Φ psII), and electron transport rates are declined in response
to drought. However, quantum of hydrogen peroxide, malondialdehyde (MDA), and
anthocyanin levels are enhanced under drought stress (Deeba et al. 2012).

The plant having intrinsic self-defense system accumulates heat shock proteins
(HSP) besides late embryogenesis abundant (LEA) proteins and also accumulates
compatible solutes and potassium to maintain water potential gradient (Loka et al.
2011; Oosterhuis and Wullschleger 1987). Under the stressful conditions, the pro-
duction of abscisic acid and ethylene causes abscission of bolls and other fruiting
bodies (Dumka et al. 2004), thereby, results in retention of lower amount of fruits,
boll weight, and loss in yield (Saini 1997; Ritchie et al. 2009).

The water use efficiency is reduced because of reduction in photosynthesis and
transpiration rate (Loka et al. 2011). It varies greatly due to fruiting habits of
varieties, load of fruiting bodies, and stage of growth (Parida et al. 2007). Water
under water stress ROS, like peroxide radicals, hydrogen peroxide besides hydroxyl
radicals are generated (Faria et al. 1997) and cause oxidative stress. Under this
condition, antioxidant defense comes into play its role as scavenger. The major role
is played by antioxidant species, viz., superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (AP), glutathione reductase (GR), and carotenoids along with
α-tocopherol come in to action to work as scavenger (Gaspar et al. 2002).

Deleterious effects of draught stress can be ameliorated by foliar spray of some
asmoprotectants, viz., glycine betaine, salicylic acid, RGR-IV (containing
gibberellic acid and indolebutyric acid), and 1-methylcyclopropene. These
chemicals enhance production and accumulation of osmolytes in the plant system
to protect enzymatic system, lipid peroxidation, and photosynthetic apparatus
(Allakhverdiev et al. 2003; Gorham et al. 2000; Waseem et al. 2006; Zhao and
Oosterhuis 1997; Loka and Oosterhuis 2011).

On an average, irrigation water usage is 1214 L to produce 1.0 kg lint plus 2.0 kg
seed. Globally, 87% of total production is harvested by using 644 L irrigation water
kg�1 lint. The water productivity can be enhanced by rainwater harvesting, irrigation
with precision timing based on ET, irrigation through alternate furrows, sprinklers,
or subsurface drip irrigation. The soil and moisture conservation methods like
minimum tillage, mulching, cover crops or intercrop, and efficient pest besides
weed control could result in improving water use efficiency and water productivity.
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18.6.4 Salinity Stress

Salinity in topsoil and subsoil is one of key abiotic ecological stresses to cotton
production. Globally, one-third of total agricultural land is salt affected, which lies in
arid and semiarid environments. Although, cotton is categorized as one of the most
tolerant crops (Maas 1990), however, its growth and development and economic
yield are affected to a greater proportion (Higbie et al. 2010; Khorsandi and
Anagholi 2009). The salt stress reflects differential response in cotton, due to quality
of irrigation water, amount of rainfall, and proportionate amount of salts in soil.
Among the cotton species, viz., varieties of Gossypium barbadense L. has greater
tolerance capacity compared to G. hirsutum L., besides G. arboretum L. (Abul-Naas
and Omran 1974).

At onset of growth and development, germination besides seedling stages is
highly prone to salt stress (Oliveira et al. 1998; Malik and Makhdum 1987; Gorham
et al. 2010). The presence of salinity at >282 mol m�3 (NaCl) causes damaging
effects on root growth (Silberbush and Ben-Asher 1987). The shoot growth is
inhibited due to reduction in soil water potential and vapor pressure deficit
(Shalhevet and Hsiao 1986; Gorham et al. 2010). The toxicity of salts can be
ameliorated through adequate nutrition (Brugnoli and Björkman 1992). During the
reproductive development, the photo-assimilates from source to sink are restricted,
causing burden on reduced number of fruiting bodies, heavy fruit drop, and lowering
in retention of bolls, thereby leading to economic loss in yield and fiber quality
(Moreno et al. 2000; Ahmad 1994), and reducing the values of fiber length, fiber
strength, fiber fineness, and amount of oil content in seed (Muhammed and
Makhdum 1973; Ahmad 1994).

The salt stress causes stomatal closure and increased resistance to CO2 diffusion
rapid senescence (Gorham et al. 2009), chlorophyll constituents ‘a’ and ‘b’ (Ahmad
and Abdullah 1980; Jafri and Ahmad 1995), excessive buildup of Na+ along with
Cl� in leaf tissues leading to osmotic stress (Zhang et al. 2012) and reduced
movement of osmolytes from source to sink (Jafri and Ahmad 1995).

The salt-tolerant varieties maintain lower K+/Na+ ratio than salt-sensitive ones
(Läuchli and Stelter 1982; Nawaz et al. 1986). The higher K+/Na+ ratios occur due to
restricted movement of K+ and Cl� in the phloem (Abdullah and Ahmad 1986). The
assimilation of Ca2+ and Na+ ions from root cells causes greater efflux of K+ (Cramer
et al. 1985) and maintenance of selectivity of K+ over Na+ in plasma membrane
(Gorham et al. 2010). The plant accumulates greater proportion of protein (Brugnoli
and Björkman 1992), while assimilation of N, P, and K is decreased (Subbarao et al.
1995) enhancing leaf phosphorylase activity in leaf (Rathert 1983). Cotton plants
develop salt tolerance and water stress by greater production besides accumulation
of K+, sucrose, glucose, amino acids, proline, and glycine betaine (Lin et al. 1995;
Gorham 1996). The presence of antioxidant defense system (catalase, ascorbate
peroxidase, superoxide dismutase, glutathione reductase) improves salt tolerance
in cotton (Banks et al. 2000; Li et al. 1998).
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The tolerance capacity can be enhanced by soaking cotton seed with CaSO4 and
foliar spray of kinetin solution, MC BU TTB, and polystimuline K (10–20 ppm)
(Gorham et al. 2000; Stark and Schmidt 1991). The exogenous application of
gibberellic acid (GA3) mitigates the burden of salinity by enhancing growth, greater
uptake of K+ with simultaneous reduction in Na+ ion (Ibrahim 1984; Gossett et al.
2000). Cotton may be successfully cultivated by adopting certain agronomic mea-
sures, e.g., cultivation on furrows with plastic mulching (Dong et al. 2010),
maintaining plant density at 4–5 plants m�2 (Zhang et al. 2012), alternate irrigation
with saline and non-saline water (Moreno et al. 1998), furrow irrigation and/or drip
irrigation (Ghani et al. 2007), sprinkling system (Meiri et al. 1992), application of
nitrate nitrogen rather than ammonium nitrogen (Leidi et al. 1991), addition of soil
amendments (sand, gypsum (calcium sulphate)), growing sesbania alone, or
intercropping (Tiwari et al. 1993; Tiwari 1994). Apart from these, cultivation of
salt-tolerant cultivars would be more valuable and cost-effective (Malik and
Makhdum 1987; Iqbal et al. 1991; Gorham et al. 2010).

18.6.5 Air Pollution Stress

The footprints of air pollution comprised of primary (N2, O2, CO2, methane, and
anthropogenic compounds) and secondary (O3, peroxyacetyl nitrate, H2O2, and
oxygenated compounds) pollutants affect growth and development (Temple and
Grants 2010). Among these, ozone (O3) causes deterioration in cell membrane and
partial and/or complete loss of turgor pressure at 0.25 ppm on higher (Runeckles and
Chevone 1992; Heagle et al. 1986). The net photosynthesis (Pn) in appreciably
reduced at >0.20 ppm (Grantz and Farrar 2000).

In response to O3 exposure, the attributes of photosynthetic efficiency, abscission
of leaves, and yield are reduced due to decreased efficiency in CO2 assimilation
(Miller et al. 1988). However, cotton plant has an in-built compensatory mechanism
to tolerate the adverse effects of O3 (Temple 1990). The root organ is highly prone to
O3 stress compared to shoot organ, because of reduced root hydraulic capacity
(Grantz and Yang 1996). Cotton varieties vary greatly in their relative tolerance to
O3 and other pollutants (Runeckles and Chevone 1992), and yield is reduced from
15% to 20% (Heck et al. 1988).

Cotton is quite responsive to increased concentration of CO2 from 550 to
650 ppm and causes enhancement I growth by 65% and yield by 50% (Kimball
and Mauney 1993; Mauney 2010), net photo synthesis from 65% to 70% (Inoue
et al. 1990); total biomass by 37%, increase in LAI of 4 (Mauney et al. 1994), C/N in
ratio leaves and stems (Hendrix 1992), boll loading period and yield (Mauney et al.
1994), and water use efficiency by 19–28% (Dugas et al. 1994). However, under
changing climatic condition, the cotton yield may decrease due to interactive effect
of increased temperature and carbon dioxide (Reddy et al. 1996). The adverse effect
of O3 could be scavenged by exogenous application of some antioxidants, viz.,
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citrate, ascorbate, and ethylene di-urea (EDU) ([N-2-(2-oxo-1-imidozolidimyl)
ethyl]-N0-phenyl urea) (Manning and Krupa 1992), overhead sprinkler (Grantz
et al. 1997) and breeding of varieties resistant to O3 by employing conventional
and molecular engineering technology (Grantz and McCool 1992).

18.7 Future Perspective

A number of advances have been made in revealing basics of physiology of cotton in
consonance with rapid development of highly productive varieties and be resilient to
external environment. In the present times, primary challenge is to enhance the
tolerance level to drought and salinity for maintaining the productivity on the
marginal lands. Presently much progress has been made in the development of
biotech cotton varieties, which has accounted for more than 50% of world cotton
production. The development of drought tolerant and/or water-efficient varieties
would be required in the wake of declining freshwater supplies for irrigation
purpose.
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