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Abstract Medical imaging produces massive amounts of data. Computer aided di-
agnosis (CAD) systems that use traditional machine learning algorithms to derive
insights from the data provided in the medical industry struggle to perform at a com-
petent level regarding sensitivity and false positive minimization. This paper looks at
some of the current methods used to improve CAD systems in the domain of form-
ing breast cancer diagnosis with mammograms. This paper presents deep learning
models that use Convolutional Neural Networks (CNN) to identify abnormalities in
mammographic studies that can be used as a tool for the diagnosis of breast can-
cer. We run two experimental cases on two public mammogram databases, namely
MIAS and the DDSM. Firstly, the abnormality severity was classified. Secondly,
the combination of abnormality type and its severity were compared in multi-label
classification. Two CNN architectures, namely miniature versions of VGGNet and
GoogLeNet, were also compared. We were able to achieve a best AUC of 0.85 for
the classification of abnormality severity on the DDSM data set and a best Hamming
loss of 0.27 on the MIAS data set for the multi-label classification task.
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1 Introduction

It was estimated that in 2017, the health care industry generated 150 exabytes of
data and that by 2020, that figure will increase to 2300 exabytes [1]. Researchers at
IBM postulated that medical imaging constitutes over 90% of medical data [2]. A
primary source of image generation in health care are mammograms, a conventional
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means of screening breast cancer. Traditionally, mammograms would have to be
inspected by a radiologist for signs of breast cancer. Manual inspection is an error-
prone, costly, and time exhausting task. To alleviate the challenges associated with
manual inspection, computer aided detection and diagnosis systems that used pattern
recognition and learning algorithms for inspection were designed and deployed [3].
By2008, a reported 74%of allmammography examinationwere screenedusingCAD
[4]. The effectiveness of early CAD systems was usually compromised by the lack of
discriminative power of the classifiers that were used and the high computational cost
of performing the inspection task. Additionally, CAD systems were used in problem
specific domains and were biased towards how the system programmer believed the
interpretation task ought to be performed, and as a result, CAD systems produced
high false positive rates. Recently, deep learning models have been used to boost
accuracy and to alleviate the previously mentioned problems.

The rest of this paper is structured in the following manner: Sect. 2 highlights
the severity and prevalence of breast cancer currently and discusses problems with
current CAD systems. This sectionwill also briefly discussmodern approaches to im-
proving the performance ofCADsystems. Section3 is a literature review surrounding
the applications of machine learning in CAD systems for mammographic analysis.
The data sets used to evaluate the model are discussed in Sect. 4. Section5 provides
an in depth description of the models presented in this paper. Section6 presents the
results obtained by the presented deep learning models, as well as a discussion sur-
rounding these results. The paper concludes with Sect. 7, where a summary of the
article is given along with a brief review of how this work could be taken forward.

2 Problem Background

2.1 Mammography and Breast Cancer

Breast cancer is the most prevalent cancer among the female population worldwide.
Mammography is used to detect breast cancer and has shown to reduce mortality due
to breast cancer by 38–48% [5]. Amammogram examination captures images of each
breast from two angles using a low-intensity x-ray. These images are inspected for le-
sions, both malignant and benign, characteristic masses, and microcalcifications [6].
Zonder and Smithuis outlined the standard reporting procedure for mammographic
screening [7]. Firstly, the indication of the screening must be detailed. Secondly,
breast composition is described. Thirdly, any significant findings, which could be
masses, asymmetry, calcifications, or distortions, need to be specified. Then a com-
parison against previous screenings can be made, and an assessment can be made by
assigning a Breast Imaging Reporting and Data System (BI-RADS) category. The
most prominent problem that exists with a diagnosis frommammograms, and indeed
is pervasive throughout cancer imaging, is the human error inherent in radiology. The
possible source of errors may be fatigue, distraction, inexperience, or an insufficient
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number of previous cases to make a correct diagnosis. The authors of [8] estimated
that up to 30% lesions could be missed during screening. These factors led to the
emergence of CAD systems.

2.2 Deep Learning

The techniques applied for identifying breast cancer in early CAD systems made use
of support vector machines (SVM), k-nearest neighbour (KNN), and linear discrim-
inant analysis (LDA) [6]. State-of-the-art techniques make use of deep learning, a
new method from the domain of artificial intelligence and machine learning. Deep
learning uses neural networks that are constructed with multiple hidden layers to
improve and enhance the recognition accuracy of various data types, particularly
images in the case of convolutional neural networks (CNN). Due to the deep archi-
tecture of these networks, representations that would have been previously hidden
can be discovered and fundamentally enhance classification accuracy [9]. A large
amount of data is required to train a deep learning model, causing its widespread use
on large data sets. Deep convolutional neural networks have yielded excellent results
in medical applications, as is shown in the related work section.

3 Related Work

The use of deep learning methodologies on mammograms in the identification of
breast cancer is currently a popular research area, and a fair amount of research on
applying deep learning in this problem domain has been published in recent years.
In 2016, Kooi et al. performed a comparative study between traditional CAD sys-
tems and CNN’s at high and low sensitivity [3]. Their data set consisted of 45,000
images. The authors never specified whether this data set was publicly available
but we assume that it was privately collected by their institution. The effects of
different preprocessing methods were compared, such as augmentation and manual
segmentation. They found that data augmentation slightly improved CNN perfor-
mance. Additionally, CNN’s slightly outperformed the traditional CAD system at
low sensitivity but had comparable performance at high sensitivity. Ultimately, the
best performing CNN achieved an area-under-curve (AUC) score of 0.941. Later
in 2016, Wang et al. researched identifying microcalcifications and other lesions
in mammograms to improve the diagnostic accuracy of all microcalcifications [6].
The authors used a semi-automated segmentation technique to categorize all calci-
fication types and a discrimination classifier model to assess accuracy. The authors
stated their models were tested on a large data set consisting of over 1200 sam-
ples generated from mammograms collected between 2011 and 2015 at SunYat-sen
University Cancer Center (Guangzhou, China) and Nanhai Affiliated Hospital of
Southern Medical University (Foshan, China). An accuracy of 87.3% was achieved,
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1.5% better than the best performing SVM model. Jain and Lèvy produced the final
major work of 2016 that was associated with deep learning in mammography. To
our knowledge, they were the first authors to attain state-of-the-art results with a
CNN on a publicly available data set, namely the Digital Database for Screening
Mammography (DDSM). The DDSM is the largest publicly available data set of
mammograms to our knowledge [10]. They evaluated and compared two prominent
CNN architectures, AlexNet and GoogLeNet, to a shallow baseline CNN. Overall,
the GoogLeNet architecture achieved the best accuracy score of 92.9%, slightly out-
performing AlexNet, which achieved 89.0% accuracy, while the baseline network
could only achieve 60.4% accuracy [11]. In 2017, Mohamed et al. aimed to use deep
learning to distinguish between scattered and heterogeneous density masses found
in mammograms [9]. The model used was CNN based in conjunction with an exten-
sive mammogram data set. The data set that was used was of 22,000 mammogram
images collected from their institution. The metric that the authors of [9] used to
evaluate their system was an AUC score from a receiver operator (ROC) curve. A
final AUC score of 0.9882 was achieved. In 2018, Kim et al. wanted to assess the
feasibility of using a data-driven imaging bio-marker (DIB), which features a deep
CNN algorithm, for use in mammography [4]. Again, the data set used was based on
mammograms collected at a private institution. The authors were able to prove the
viability for DIB in mammography by achieving AUC scores of 0.903 and 0.906 for
the test and validation sets, respectively. Finally, a recent work that utilized a Faster
R-CNN was proposed by Ribili et al. They trained and tested their models on public
data sets. The model was trained on the DDSM and validated with the INbreast data
set. They achieved an AUC of 0.95 with the validation set. Although some of these
systems achieve remarkable results, many of them were trained and tested on private
data sets, giving a little context to their respective models. Furthermore, in all the
cases above, binary classification was used, whether it was classifying abnormalities
as malignant or benign, or classifying the class of the abnormality. Our paper will use
only publicly available mammogram data sets and will investigate the performance
of multiple CNN architectures in single and multiple label scenarios to make a fair
comparison among methods.

4 Experimental Setup

Medical data is inherently highly sensitive, despite this, there exist several publicly
available data sets for mammography. To evaluate our models, we used the mam-
mographic image analysis society (MIAS) digital mammogram database and the
Digital Database for Screening Mammography (DDSM). MIAS is the oldest avail-
able mammogram data set and has been widely used in literature to assess a variety
of approaches. MIAS consists of 322 mediolateral oblique images in a portable gray
map (.pgm) format [12]. Additionally, MIAS provides a label for the severity of a
mammographic study, and the class label of any abnormalities present. We will take
advantage of these labels to implement a multi-label classifier. The MIAS data set
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is split into 208 normal, 63 benign, and 51 malignant cases. The DDSM is a much
larger data set thanMIAS andwill be the primary data set used to evaluate themodels
presented in this paper. The DDSM consists of 2620, four view (mediolateral oblique
and craniocaudals of each breast), mammographic studies which amounts to 10,480
images in total [10]. The mammographic studies found in the DDSM were collated
from four separate hospitals in the USA, with different digitizers being used to con-
vert the the film-based studies to a lossless JPEG format. The images found in the
DDSMmay contain chain code overlays and each digitizer introduces it’s own noise
and artifacts to an image. Overlayed ground truth information regarding suspicious
regions in an image were provided by both data sets. However, we have chosen only
to consider the overall classification of a mammographic exam (i.e. normal, benign,
or malignant) during training, as to remove as much domain knowledge from the
model as possible.

5 Model

5.1 Pre-processing

Both the .pgm and ljpeg formats of the MIAS and DDSM data sets respectively are
incompatible with many image processing and deep learning APIs and need to be
converted to a compatible format. All images were converted into .png (portable
network graphics) format while maintaining the original resolution. These .png im-
ages are resized to smaller dimensions, in our case 128×128 pixels due to RAM
limitations, and flattened before being loaded into memory. The raw pixel intensities
of the images are scaled to the range [1], and the labels associated with the images
are then also loaded into memory. Once all necessary data is in memory, the data set
can be split into sections for training and testing. We used a 70–30 split for testing
and training.

5.2 Convolutional Neural Networks

This paper looks to evaluate the performance of two neural network architectures
and their multi-label variants. The neural network architectures that we investigated
were scaled down architectures of the VGGNet and GoogLeNet, the implementation
details of which can be found in [13]. These architectures are visualized in Fig. 2a,
b respectively.

The mini VGGNet features the ReLU (Rectified Linear Unit) activation function
and also uses batch normalization, max pooling and dropout. Batch normalization
can be quite effective at minimizing the number of epochs required to train the neural
network and works by normalizing a given inputs activations before that input moves
to the networks next layer [14]. The pooling layers reduce the spatial dimensions of
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the input volume. Dropout is used tominimize overfitting by randomly disconnecting
neurons between layers. We used 25% dropout for both architectures. The final layer
of VGGNet has a softmax activation classifier.

The mini GoogLeNet makes use of convolution modules and inception modules.
The convolutional modules are responsible for applying a convolutional filter, af-
ter which batch normalization and activation take place. At the inception module,
branching occurs. The branching is because the convolutions are applied in parallel,
and the features derived are concatenated. An example of a small inception module
can be seen in Fig. 1. Downsampling is used to reduce spatial dimensions. Just like
the mini VGGNet, a softmax classifier is used in the last layer.

During training, the parameters within each network are optimized using stochas-
tic gradient descent (SGD), and the batch size was set to 32. The initial learning rate
was set to 0.005. Categorical cross-entropy was used as the loss function. For the
case of multi-label classification, the final layer used a sigmoid activation function
for classification (Fig. 2).

Fig. 1 Visualization of an
inception module for the
MiniGoogLeNet architecture

Fig. 2 a The mini VGGNet
architecture. b The mini
GoogLeNet architecture. The
final activation layer is a
softmax activation for a
single label classification
class or a sigmoid activation
for a multi-label
classification task
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6 Results

To generate results with these models, we would run the models under two exper-
imental cases. Firstly, the models would perform a multi-class classification task
over the DDSM data set. The class labels would correspond to the types of mammo-
graphic studies found in the data set, namely normal, benign, and malignant cases.
To measure loss across training and validation, categorical cross-entropy was used.
Other metrics collected to evaluate model performance included precision and re-
call. Finally, the multi-label architectures would be applied to the MIAS data set so
that the type of abnormality could be classified, along with its severity. A sigmoid
activation layer replaced the softmax activation layer used in previous experiment
to achieve multi-label classification. Binary cross-entropy was used to evaluate loss
during training and validation of the models, and a Hamming loss metric was calcu-
lated for each model. All experimental cases were run over 30 epochs, with the same
hyperparameters mentioned in Sect. 5.

6.1 CNN Classification Comparison for Abnormality
Detection

In [15], the authors compared the performance of common CNN architectures on
mammographic data set in cases where models had been trained from-scratch and
pre-trained models. One of the data sets they used was the CBIS-DDSM, a well
curated subset of the original DDSM. Although the architectures used in [15] are
the deeper variants of ours, it is still useful to use their results for the VGG-16 and
GoogLeNet architectures as a reference point for our results.

The results for the first experimental case are summarized in Table 1 and the
confusion matrices for each model’s performance can be seen in Fig. 4. Additionally,
we have included each networks ROC curve in Fig. 3. In comparison to the trained
from-scratch VGG-16 network used in [15], our mini VGGNet performed slight
poorer with a best AUC of 0.68 in comparison to their AUC of 0.702. The training
accuracy’s were very close, with our model achieving 59.47% to their 58%. From
Fig. 4a, we can see that the mini VGGNet struggled to discriminate between benign
and malignant cases. The mini GoogLeNet also struggled, although to a lesser de-

Table 1 Performance comparison of the presented architectures on the DDSM data set

Architecture Accuracy Loss Recall Precision
(%)

Test (%) Val (%) Test Val

miniVGGNet 59.47 46.12 0.84 1.51 48.23% 46.19

miniGoogLeNet 76.19 66.16 0.55 0.72 66.84% 67.63
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Fig. 3 Comparison of the ROC curves generated by each network on the DDSM where a is the
mini VGGNet and b is the mini GoogLeNet

Fig. 4 Comparison of the confusion matrices generated by each network on the DDSM

gree, to distinguish between benign and malignant cases. However, in comparison to
the GoogLeNet used in [15], the mini GoogLeNet demonstrated generally good per-
formance with an AUC score of 0.85 and training accuracy of 76.19%. Additionally,
the validation precision and recall rates were satisfactory. The GoogLeNet of [15]
attained an AUC score of 0.59 and an accuracy of 59.8%, although it is worth noting
that they used a slower learning rate and only trained their network for 12 epochs.
Regarding the difference in performance between the two models we have evaluated
here, we suspect that the differencemay be due, in part, to the use of the same dropout
percentage on both networks. Larger networks usually benefit more from the use of
dropout, and because the VGGNet is a shallower network than GoogLeNet, it may
have been wiser to use less regularization on the mini VGGNet [16].
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Table 2 Performance comparison of the presented architectures on the MIAS data set

Architecture Accuracy Loss Hamming
loss

Test (%) Val (%) Test Val

miniVGGNet 97.68 75.82 0.07 0.84 0.27

miniGoogLeNet 85.50 78.02 0.35 1.27 0.3

6.2 MIAS Multi-label Classification

For thefinal experiment, theMIASdata setwas used because of the labels provided by
the data set. TheCNNarchitecturesweremodified tomake amulti-label classification
through the use of a final sigmoid activation layer. The results for each network are
summarized in Table2. Here, we see that the mini VGGNet outperformed the mini
GoogLeNet. The accuracy achieved by the mini VGGNet, 97.68%, is very high and
suggests that overfitting is taking place. The MIAS data set has a small number of
samples, especially for deep learning tasks, and the small size of the data set may be
causing themodels, especially theminiVGGNet, to fail to generalizewell.Moreover,
MIAS is an imbalanced data set which undermines the use of the accuracy metric as
the primary performance measure. A commonly used metric to evaluate multi-label
classification is Hamming loss. Hamming loss computes a value between 0 and 1 that
indicates how many times on average, the relevance of an example to a class label is
incorrectly predicted [17]. The Hamming loss of each architecture does not indicate
the same levels of performance as the accuracy scores do, but are still satisfactory
nevertheless.

7 Conclusion and Future Work

In this paper, we presented two deep learning models that could be used to (a) clas-
sify abnormalities inmammographic studies and (b) provide amulti-label description
of a mammogram regarding the severity and class of abnormalities. The mini VG-
GNet struggled to classify abnormalities in the DDSM data set and only achieved an
AUC of 0.68. On the MIAS data set for multi-label classification, the mini VGGNet
indicated signs of overfitting but did achieve an acceptable Hamming loss value.
The mini GoogLeNet demonstrated satisfactory performance for both experimental
cases. From-scratch training on limited medical data set for models to perform tasks
such as multi-class and multi-label abnormality classification is a great challenge for
neural networks. The miniature GoogLeNet we tested here demonstrated promising
results, and taking this work forward, we may investigate from-scratch performance
of other deep CNN architectures such as ResNet. Deep learning solutions to detect
indicators of cancer in mammograms have achieved excellent results in the litera-
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ture and could be extended to other biomedical imaging problems, like lung cancer
screening, because deep learning provides versatile solutions that are applicable to
a wide range of problem domains.
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