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Preface

It is our pleasure to present the proceedings of the Third Workshop on Computer
Vision Applications (WCVA 2018). The workshop was colocated with the 11th Indian
Conference on Computer Vision, Graphics and Image Processing (ICVGIP), at the
International Institute of Information Technology (IIIT) Hyderabad. Keeping in line
with the traditions established from the past workshops, WCVA 2018 provided an
appropriate platform for academic researchers as well as industry and government
research labs to present and discuss their ideas on novel techniques for various
computer vision applications.

The proceedings consists of 10 papers. All papers had an oral presentation during
the workshop meeting on December 18, 2018. We thank the general chairs Prof. Rama
Chelappa and Prof. Santanu Chaudury for their mentorship and all the reviewers for
their careful and timely review. There were 32 papers submitted which were distributed
to a technical program committee comprised of 31 well-qualified reviewers. All the
papers were reviewed by 3 or more reviewers.

The WCVA program also included an inaugural talk by Prof. Santanu Chaudhury,
Director IIT Jodhpur, and a keynote talk by Prof. Saket Anand from IIIT Delhi. The
keynote talk covered an important area and was titled “Computer vision for Wildlife:
from Conservation to Conflict Management.” Afterwards, there were oral presentations
of all the selected papers. We hope that the workshop papers capture the most
important works being carried out by the Indian as well as the international researchers
in important application areas of computer vision.

Finally, we thank the organizers of ICVGIP 2018 for providing the local logistic
arrangement and administrative assistance, which was essential for the execution of the
workshop. We would also like to thank all the authors for submitting their original
work and all the participants for their interest and support.

December 2018 Chetan Arora
Kaushik Mitra
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Abstract. In this paper, we explore the augmentation of depth maps
to improve the performance of semantic segmentation motivated by the
geometric structure in automotive scenes. Typically depth is already
computed in an automotive system to localize objects and path plan-
ning and thus can be leveraged for semantic segmentation. We construct
two networks that serve as a baseline for comparison which are “RGB
only” and “Depth only”, and we investigate the impact of fusion of
both cues using another two networks which are “RGBD concat”, and
“Two Stream RGB+D”. We evaluate these networks on two automotive
datasets namely Virtual KITTI using synthetic depth and Cityscapes
using a standard stereo depth estimation algorithm. Additionally, we
evaluate our approach using monoDepth unsupervised estimator [10].
Two-stream architecture achieves the best results with an improvement
of 5.7% IoU in Virtual KITTI and 1% IoU in Cityscapes. There is a large
improvement for certain classes like trucks, building, van and cars which
have an increase of 29%, 11%, 9% and 8% respectively in Virtual KITTI.
Surprisingly, CNN model is able to produce good semantic segmentation
from depth images only. The proposed network runs at 4 fps on TitanX
GPU, Maxwell architecture.

Keywords: Semantic segmentation · Visual perception · Automated
driving

1 Introduction

Recently, semantic segmentation has gained a huge attention in the field of com-
puter vision. One of the main applications is autonomous driving where the
car is able to understand the environment by providing a class for each pixel
c© Springer Nature Singapore Pte Ltd. 2019
C. Arora and K. Mitra (Eds.): WCVA 2018, CCIS 1019, pp. 1–13, 2019.
https://doi.org/10.1007/978-981-15-1387-9_1
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in the scene and consequently has the ability to react accordingly [14]. In this
work, we investigate the usage of geometric cues to improve accuracy of semantic
segmentation.

Most of semantic segmentation algorithms mainly rely on appearance cues
and do not exploit geometry related information. In this paper, we investigate
usage of depth as a geometric cue for semantic segmentation task in autonomous
driving application where there is a strong geometric structure. The road surface
is typically flat and all the objects stand vertical on it. This is exploited explicitly
in the formulation of a commonly used depth representation namely Stixels [6].
The contributions of this work include:

1. Detailed study of the impact of depth for segmentation in automated driving.
2. Systematic study of fusing RGB and Depth on semantic segmentation using

four CNN networks.
3. Experimentation on two automotive datasets namely Virtual KITTI and

Cityscapes.

The rest of the paper is organized as follows: Sect. 2 reviews the related work
in segmentation, depth computation and role of depth in semantic segmentation.
Section 3 illustrates the details of our four architectures to systematically study
the effect of fusing depth with appearance for semantic segmentation. Section 4
discusses the experimental results in Virtual KITTI and Cityscapes. Finally,
Sect. 5 provides concluding remarks.

2 Related Work

2.1 Semantic Segmentation

Siam et al. [25] presented a detailed survey on automated driving particularly
for semantic segmentation. The advancement of semantic segmentation until the
present can be categorically discussed in three phases. It started with patch-wise
training as reported in [8] for classification. [8] proposed multi-scale pyramid pro-
cessing through 3-stage network followed by a classical segmentation approach as
post processing. Grangier et al. [11] proposed a pixel level classification approach
using deep network to avoid post processing but it could not remove patch-wise
training.

Next level of progress was pixel-wise classification through end-to-end learn-
ing as reported in [1,18,22]. Fully convolutional network (FCN) [18] was the
first deep learning based technique that did not use patch-wise training, rather
it directly learned from the heatmaps. Series of upsampling layers were used to
obtain the dense predictions. Later deconvolution layer was proposed in Segnet
[1] in place of unpooling layer. Introduction of skip connection from encoder to
decoder was another contribution to this work for output reconstruction.

Recently feature extraction from multi-scale input has been heavily explored
and can be found in [4,8,22–24,31]. Though [8] used feature maps from encoder
using skip connections to merge heatmaps from different resolution but space
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reduction in encoder side hurt the final prediction. U-net [24] pools encoded
feature maps from initial layers that are concatenated with the decoded feature
maps and upsampled for the next layers. To avoid loss of resolution, broadening
the receptive field by applying dilated convolution has shown better results.

2.2 Depth in Automated Driving Systems

Depth estimation is very critical for automated driving. Having image semantics
without localization is seldom useful. In a typical automated driving pipeline,
depth is already computed and can be leveraged for semantic segmentation. In
this sub-section, we summarize the different mechanisms by how depth can be
estimated.

Classical Geometric Approach. Dense depth is computed to understand
the spatial geometry of the scene. Stereo cameras have been commonly used in
front camera automated driving systems. Disparity estimation methods using
classical geometric matching algorithms are quite mature. Alternatively, Struc-
ture From Motion (SFM) approaches can be used for monocular cameras. But
they suffer from issues like handling moving objects, focus on expansion, etc.
Accurate Depth could be useful for semantic segmentation and could be passed
on as an extra channel. However, SFM estimates are quite noisy and also the
algorithm variations over time could affect the training of the network. But in
[2] some cues from the noisy point-cloud was inferred to act as features for seg-
mentation. The cues proposed were: height above the camera, distance to the
camera path, projected surface orientation, feature track density, and residual
reconstruction error. The work in [16] proposed a way of jointly estimating the
semantic segmentation and structure from motion in a conditional random field
formulation.

CNN Based Depth Estimation. In recent years, several CNN-based monoc-
ular depth estimation approaches are trained in a supervised way which requires
a single input image with no assumptions about the scene geometry or types
of objects which are present. For autonomous driving application, unsupervised
methods are very beneficial due to the lack of reliable annotated datasets that
have depth maps provided for outdoor driving scenes. Unsupervised depth esti-
mation is an open point of research. [32] used temporal information of video
sequence to capture depth while [11] referred to as “monoDepth” used left-right
consistency for stereo images to train the network while the depth is estimated
from monocular images in inference. We exploit this approach to generate depth
maps for both Virtual KITTI, and Cityscapes datasets in our experiments.

LIDAR Sensors. LIDAR sensors provide depth estimation with better accu-
racy and range compared to camera based estimation algorithms. However, their
measurements are sparse in the image lattice as illustrated in Fig. 1. This leads
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to problems in learning a dense convolutional neural networks features directly
and requires handling of sparsity [28]. But they can be fused with camera based
dense depth. The method in [21] fused a sparse LIDAR for semantic segmenta-
tion using elastic fusion [30]. Generally, this is a good research problem to be
pursued as LIDAR is becoming a standard sensor in automated driving systems.

Fig. 1. Visualization of depth estimation (top) in automated driving scenes, adapted
from [20]. It illustrates the output of a commonly used depth estimation algorithm
called SGM we use in this paper and CNN based depth estimation which is closer to
ground truth. Velodyne LIDAR depth re-projected on to a wide-angle image frame
(bottom) to illustrate the level of sparsity.

2.3 Usage of Depth in Semantic Segmentation

FuseNet [12] is quite close to the work in this paper. They show that concatenat-
ing RGB and Depth slightly degrades mean IoU while the two-stream approach
improves mena IoU by 3.65% in SUN RGB-D dataset. Ma et al. [19] combine
depth and RGB for multi-view semantic segmentation where depth was lever-
aged to re-warp different views. Lin et al. [17] uses FCN based cascaded feature
network with branch predictors and show an improvement of 2% in IoU com-
pared to RGB baseline in NYU dataset. A detailed empirical study on role of
depth for semantic segmentation and object detection was done in [3] and they
show 2% improvement in IoU in VOC2012 dataset. Weiyue et al. [29] incorpo-
rate depth aware architecture design and obtain a larger improvement of 10%
IoU in NYU dataset.

Apart from color, depth is another dimension and its influence for seman-
tic segmentation task is relatively less explored. Above mentioned works that
use RGB-D cameras are mainly focused for indoor scenes. On the other hand,
different road conditions, diverse lighting states and presence of dense shadow
make the automotive scenes very challenging for semantic segmentation however,
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better geometric structure for the scene is one thing to be exploited. From the
extensive literature study, it appears that there is no systematic study done on
the influence of depth for automotive scenes and this motivated our work.

3 Semantic Segmentation Models

In this section, the four architectures used in this paper are illustrated.
(Figure 2(c)) shows RGBD network which is based on concatenation of RGB
image and Depth map as a four layer input. (Figure 2(d)) shows the two stream
RGB+D network. RGB-only and Depth-only are shown in (Fig. 2 (a), (b)), and
they are used as baselines for comparison.

(a) Input RGB

(b) Input Depth

(c) Input RGBD

(d) Two Stream RGB+D

Fig. 2. Four types of architectures constructed and tested in the paper. (a) and (b)
are baselines using RGB and Depth only. (c) and (d) are depth augmented semantic
segmentation architectures.

Table 1. Quantitative analysis of our four networks on Virtual KITTI dataset.

Network type IoU Precision Recall F-Score

RGB 66.47 78.23 75.6 73.7

D 55 75.72 70.31 69.39

RGBD (concat) 66.76 77.6 72.4 72.3

RGB + D (2-stream add) 68.6 82.4 77.73 76.73

RGB + D (2-stream concat) 72.13 82.5 79.96 79.59
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Table 2. Semantic Segmentation Results (Mean IoU) on Virtual KITTI dataset (GT
- Ground Truth, mD - monoDepth)

Type Mean TruckCar Van Road Sky VegetationBuildingGuardrailTrafficSignTrafficLightPole

RGB 66.47 33.66 85.69 29.04 95.91 93.91 80.92 68.15 81.82 66.01 65.07 40.91

D (GT) 55 67.6858.03 56.3 73.81 94.38 53.64 43.95 14.61 53.97 56.51 42.67

RGBD

(GT)

66.76 65.34 91.74 56.9395.46 94.4178.17 54.91 73.42 60.21 46.09 30.46

RGB+D

(GT-

add)

68.6 43.38 91.59 29.19 96.01 94.32 85.17 77.6 80.13 69.54 72.73 32.09

RGB+D

(GT-

concat)

72.1362.84 93.3238.42 96.3394.2 90.46 79.04 90.85 72.22 67.83 34.4

D (mD) 46.1 36.05 75.46 33.2 77.3 87.3 39.3 32.3 6.8 42.14 45.9 15.9

RGB+D

(mD-

add)

67.05 42.9 86.9 43.5 96.2 94.1 88.07 65.94 85.4 65.7 51.25 30.13

RGB+D

(mD-

concat)

68.92 40.57 86.1 50.3 95.95 93.82 81.63 70.43 86.3 68.66 67.58 35.94

Table 3. Semantic Segmentation Results (Mean IoU) on Cityscapes dataset (SGM -
Semi Global Matching, mD - monoDepth)

Type Mean BicyclePersonRider MotorcycleBus Car Fence BuildingRoadSidewalkSky TrafficSign

RGB 62.47 63.52 67.93 40.49 29.96 62.13 89.16 44.53 87.86 96.2274.98 89.79 59.88

D

(SGM)

47.8 39.84 54.99 29.04 11.29 48.1 82.36 34.32 78.42 95.1467.78 81.18 27.96

RGBD

(SGM)

55.5 56.68 60.27 34.64 21.18 58 86.94 36.47 84.7 94.8470.39 84.64 45.48

RGB+D

(SGM-

add)

63.4866.46 67.85 42.3141.37 63.1 89.77 46.2888.1 96.3875.66 90.23 60.78

RGB+D

(SGM-

concat)

63.13 65.32 67.79 39.14 37.27 69.7190.0642.75 87.44 96.6 76.35 91.0659.44

D (mD) 40.89 36.63 44.6 18.5 7.3 37.5 77.78 16.16 77.01 92.8354.87 89.33 24.67

RGB+D

(mD-

add)

61.39 66.23 67.33 39.9 44.01 55.7 89.1 40.2 87.34 96.4775.7 88.7 57.7

RGB+D

(mD-

concat)

63.03 65.85 67.44 41.33 46.24 66.5 89.7 33.6 87.25 96.0173.5 90.3 59.8

3.1 One-Stream Networks

This network is based on FCN8s [18] architecture and it’s used in our RGB-
only and Depth-only experiments. The fully connected layers of the VGG16
are changed to a fully convolutional network where the first 15 convolutional
layers are used for feature extraction. The output segmentation decoder follows
the FCN architecture where 1× 1 convolutional layer is used followed by three
transposed convolution layers for up-sampling. Introduction of skip connections
within encoder was not tried as residual learning is not much effective for smaller
networks as shown in [7]. Skip connections from encoder to decoder are exploited
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to extract high resolution features from the lower layers which are added to the
upsampled feature maps. The loss function used for semantic segmentation is
illustrated below.

L = − 1
|I|

∑

i∈I

∑

c∈CDataset

pi(c) log qi(c) (1)

where q denotes predictions and p denotes ground-truth. CDataset is the set of
classes for the used dataset.

3.2 RGBD Network

Four channels which are the original RGB image layers concatenated with the
depth map are used as an input to the network, where depth layer is normalized
from 0 to 255 to have the same value range as the RGB. The VGG pretrained
weights are utilized, however the first layer is changed so that it accepts an input
of four channels, where the corresponding weights are initialized randomly. Depth
map Ground Truth is used in the case of Virtual KITTI to eliminate the errors
due to depth estimation algorithms. For Cityscapes, disparity maps computed
using SGM algorithm [13] are exploited where, it is a commonly used depth
estimation algorithm in automated driving.

3.3 Two Stream (RGB+D) Network

Inspired from [15,26,27], a two-stream network using two VGG6 encoders is used,
where each encoder processes a different input. One for the RGB input, and the
other for the depth map. Fusion between feature maps from both encoders is done
using two approaches. The first one is the usage of summation junction (RGB+D
Add), while the other is concatenation instead of summation (RGB+D concat).
By concatenation, depth dimension of the feature vector is doubled, however we
aim to give the network more flexibility to learn more complex fusion approach
to improve result. Afterwards, The same decoder used in the one-stream network
is used for upsampling

4 Experiments

In this section, we present the datasets used, experimental setup and results.

4.1 Datasets

We choose two datasets namely Virtual KITTI [9] and Cityscapes [5] since they
contain outdoor road scenes and this is consistent with our application as it
is focused on automated driving. Additionally, Virtual KITTI provides per-
fect Ground Truth Depth annotation which helps us to evaluate our algorithm
excluding the depth calculation errors. Typically, depth is calculated in auto-
motive applications using stereo images or structure from motion. We utilize
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Cityscapes depth maps which are based on SGM algorithm using stereo images.
Virtual KITTI is a synthetic dataset that consists of 21,260 frames containing
road scenes in an urban environments in different weather conditions. We exploit
both depth and semantic segmentation annotations. Cityscapes is a well known
dataset containing real images of road scenes. It consists of 20000 images having
coarse semantic segmentation annotation and 5000 having fine annotation. We
only use the fine annotations in our experiments and we intentionally use noisy
SGM depth to understand the effects of relatively noise depth estimations, and
we provide evaluation using IoU metric on the validation set that contains 500
frames.

4.2 Experimental Setup

We have used Virtual KITTI and Cityscapes dataset where the dimension of each
image is 375 × 1242 and 1024 × 2048 (later down-scaled to 512 × 1024 during
training) respectively. For all experiments, we transferred the encoder weights
of VGG pre-trained model on ImageNet for the segmentation task. Transfer
learning helped us to get better initialization of the encoder at the beginning
of the joint encoder-decoder training for semantic segmentation. Dropout with
probability 0.5 is used in our model particularly for 1 × 1 convolutional layers.
Very popular Adam optimizer is used with an initial learning rate of 1e−5 along
with L2 regularization in the loss function and a factor of 5e−4 to avoid over-
fitting. To evaluate the efficacy of our proposal, widely used Intersection over
Union (IoU) is measured for both datasets, also precision, recall and F-score are
used for Virtual KITTI dataset.

4.3 Experimental Results

We provide qualitative evaluation on both datasets separately using IoU metric
as shown in Tables 1, 2 and 3. Video links of the four architectures results are
also provided for both datasets. In addition to depth annotations provided with
the datasets, we generated depth maps using unsupervised approach [10] for
both datasets and compared results against Ground Truth in Virtual KITTI,
and noisy SGM in Cityscapes.

Table 1 illustrates that depth augmentation consistently improves results in
all four metrics reported. An improvement of 5.7% in IoU, 3.8% in Precision,
4.36% in Recall and 5.9% in F-score is shown. Class-wise evaluation is listed
in Table 2. Although the overall improvement is incremental, there is a large
improvement for certain classes, for example, trucks, van, Building and Traffic
Lights show an improvement of 32%, 28%, 9% and 8% respectively. Cityscapes
results are reported in Table 3, and it shows a relatively moderate improvement
of 1% in IoU. However, results show that even noisy depth maps with invalid
values due to depth estimation errors can improve semantic segmentation.

In summary, the network that concatenates depth with RGB feature maps
shows better results than others as observed on VKITTI. As per the results on
CityScapes, the impact of feature map concatenation and addition with RGB is
fairly close, however results from monoDepth [10] estimator using concatenated
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(a) Input Image (b) Depth Ground Truth

(c) RGB only output (d) Depth only output

(e) RGBD output (f) RGB+D (Two Stream-Add) output

(g) RGB+D (Two Stream-Concat) output (h) Ground Truth

Fig. 3. Qualitative comparison of semantic segmentation outputs from four architec-
tures on VKITTI dataset using GT

(a) monoDepth [10] estimator (b) monoDepth only output

(c) RGB+monoDepth (Two Stream-Add) (d) RGB+monoDepth (Two Stream-Concat)

Fig. 4. Qualitative comparison of semantic segmentation outputs using monoDepth
[10] estimator

feature maps happened to outperform added feature maps. Qualitative results
of all four proposals are demonstrated in on Virtual KITTI (Figs. 3 and 4) and
Cityscapes (Figs. 5 and 6).
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(a) Input Image (b) SGM Depth map

(c) RGB only output (d) Depth only output

(e) RGBD output (f) RGB + D (Two-Stream-Add) output

(g) RGB + D (Two-Stream-Concat) output (h) Ground Truth

Fig. 5. Qualitative comparison of semantic segmentation outputs from four architec-
tures on Cityscapes dataset using SGM depth estimator

Test results of both datasets are shared publicly on YouTube in1 and2. Depth-
only network is reported to study the performance depth cue alone can do to
semantic segmentation. Surprisingly, depth provides good results especially for
road, vegetation, vehicle, and pedestrians. This is also consistent with the results
obtained by [12] when depth only is tested for indoor scenes. We noticed that

1 https://youtu.be/cfLUvE9knBU.
2 https://youtu.be/vsYaVbcILbw.

https://youtu.be/cfLUvE9knBU
https://youtu.be/vsYaVbcILbw
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(a) monoDepth [10] estimator (b) monoDepth only output

(c) RGB+monoDepth (Two Stream-Add) (d) RGB+monoDepth (Two Stream-Concat)

Fig. 6. Qualitative comparison of semantic segmentation output from monoDepth esti-
mator

there is degradation of accuracy relative to RGB baseline whenever there is
noisy depth. Hence next step would be to make more systematic evaluation of
the depth that is loosely coupled within the network. It is observed that the joint
network has outperformed depth only network with a negligible margin, perhaps
the network does not really know how to learn these two completely different
cues and thus these two modalities are not logically fused in the network. Our
future plan includes construction of multi-modal architectures to achieve better
amalgamation of heterogeneous cues.

5 Conclusion

In this paper, we focused on the impact of a relatively unexplored cue that
is depth for semantic segmentation task. We designed four different segmenta-
tion networks that receive input as RGB only, depth only, RGBD concatenated
and two-stream RGB and depth. Our experimental results of four models on
two automotive datasets namely Virtual KITTI and Cityscapes demonstrate a
reasonable improvement in overall accuracy and good improvement for a few
specific classes for the network that uses simple depth augmentation. We believe
the present study furnishes adequate evidence on the impact of the depth for
accurate semantic segmentation. In future work, we build a better depth aware
more robust model to fully utilize its complementary nature.
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Abstract. According to a WHO report, approximately 253 million peo-
ple live with vision impairment, 36 million of which are blind and 217
million have moderate to severe vision impairment. In a recent estimate,
the major causes of blindness are Cataract, Uncorrected refractive index,
and Glaucoma. Thus in medical diagnosis, the retinal image analysis is a
very vital task for the early detection of eye diseases such as Glaucoma,
diabetic retinopathy (DR), Age-macular Degeneration (AMD) etc. Most
of these eye diseases, if not diagnosed at an early stage might lead to
permanent loss of vision.

A critical element in the computer-aided diagnosis of Digital Fundus
images is the automatic detection of the optic disc region. Especially for
the Glaucoma case, where cup to disc diameter ratio (CDR) is the most
important indicator for detection. In this paper, we present a nonrigid
registration based robust optic disc segmentation method using image
retrieval based optic disc model maps that detect optic disc boundaries
and surpasses the state-of-the-art performances. The proposed method
consists of three main stages: (1) a content-based image retrieval from the
model maps of OD using Bhattacharyya shape similarity measure, (2)
constructing the test image specific anatomical model using the SIFT-
flow technique for deformable registration of training masks to the test
image OD mask, and (3) extracting the optic disc boundaries using a
thresholding approach and smoothen the image by applying morpholog-
ical operations along with the final ellipse fitting. The proposed work
has used three datasets RIM, DRIONS and DRISHTI with 835 images
in total. Our average accuracy values for 685 test images is 95.8%. The
other performance parameter values are Specificity is 95.54%, Sensitiv-
ity is 96.13%, Overlap is 86.46% and Dice metric is 0.924 respectively,
which clearly demonstrates the robustness of our optic disc segmentation
approach.

Keywords: Computer vision · Image registration · Retinal image ·
Optic disc · Computer-aided detection (CAD) · Morphology · Optic
disc (OD)
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1 Introduction

According to current eye disease statistics more than 42 million people are cur-
rently blind in the world, 80% of which could have been prevented or cured by
early detection [1,14]. India is the second most populous country in the world
and shares 17.5% of the world’s population. Thus, in case of any health prob-
lem lead to a rapid increase in global morbidity rate. Currently, India has more
than 15 million blind people, which is expected to increase to 16 million by
2020 [3,14]. Some of the most prevailing eye diseases are Cataract, Glaucoma,
Diabetic retinopathy and Age-related macular degeneration. Glaucoma is the
second leading cause of blindness in the world. It is also called silent-thief as the
progression of disease is gradual and one might not able to diagnose it at early
stage. In developing countries most of the population lives in remote and rural
areas, therefore, it is not possible to reach out with due to a limited number
of trained opticians and resources. As mentioned in [15], that eight minutes per
eye is needed for complete segmentation of optic disc and cup. Thus, there is
great need to have a cost-effective automatic computer-based diagnostic systems
to enable even the people in remote and rural areas to get a medical diagno-
sis in time. Also, this CAD system will provide a preliminary evaluation of the
patient’s eye. Using Internet of things (IOT) based techniques we can further
develop a system where the patients periodically test their eye while sitting at
home using a handheld device and diagnostic system will evaluate the patient
parameters which can further be uploaded into the virtual cloud and finally can
be retrieved by the professionals at any time. This not only saves the doctor’s
time and effort but makes the procedure plat-form independent i.e. it will be
able to work under different environment conditions where no instructions from
a medical practitioner are necessary and able to interpret the results sensibly.

For the screening of most of the eye diseases, the detection and segmentation
of optic disc is an important step. For e.g. in Glaucoma professionals look for the
cup to disc diameter ratio (CDR) as the key parameter for the diagnosis. The
optic nerve examination includes the analysis of a fundus (retinal) image, which
is the photograph of the inner surface of the eye opposite to lens and includes
different anatomical structures (features) like retina, optic disc, macula, fovea
and blood vessels. In a healthy fundus image with good contrast and resolution,
segmentation of the optic disc is a tractable problem, but the situation becomes
difficult when the pathological condition occurs. In a diseased fundus image, the
contrast is no longer uniform and segmenting the region of interest becomes a
challenging task.

A number of methods have been proposed for the optic disc segmentation.
Some of the traditional image processing techniques used template matching
approach along with highly saturated intensity in red channel for disc segmenta-
tion [3,4]. Abdel-Ghafar et al. [18] proposed a simple segmentation technique
based on the edge detector and the circular Hough transform (CHT). The
method uses the green channel for processing as it has the highest contrast and
morphological operations are used to remove the blood vessels. After applying
the “Sobel operator” to the green channel, the image is thresholded and result-
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ing points are given as input to the circular Hough transform. The algorithm
claims that the largest circle was consistently found to be an optic disc with
its center as the approximated OD center. A watershed-based OD segmentation
approach is proposed by Welfer et al. [19]. Other methods have used circular
Hough Transform [8] and region growing techniques [10] with a prior knowledge
of seed point in the region of interest. Active shape model [10] based techniques
such as changes method for active contours [10] have been very popular in the
medical imaging, but they fail to extract the exact boundary of optic disc in case
of low gradient between optic disc and background and when the PPA region
is present around OD which has the same color characteristics as that of optic
disc. Also, AC based methods often fail to control the contour formation process
as they either terminate far outside or inside the OD boundary. Additional chal-
lenges include segmenting the low quality and blurred images, making allowances
for anatomical variations in resolution, contrast and optic disc inhomogeneities.
Figure 1 shows some examples of such variations like poor contrast and PPA.

Fig. 1. Example of blurred and pathological optic disc (Color figure online)

In this paper for optic disc segmentation, we presented a robust automated
optic disc segmentation system for retinal images. Our method mainly consists
of three main stages as shown in the proposed architecture in Fig. 2. In the first
subsection of the method we have build a anatomical model maps for optic disc
with pre-segmented masks being marked by experts. The top 5 similar masks
have been selected based on similarity coefficient between test image and model
masks. The highly ranked masks retrieved by this method are usually a good fit
for the test fundus image. In the second subsection, for the chosen masks the
method first calculates the corresponding pixels between the test image and each
of the model images which provides the transformation mapping for each of the
pixel. Finally, it aligns the model masks using the transformation mapping. In the
last subsection a thresholding has been applied to the combined segmented masks
obtained by summing the outputs from each of the model map transformation.
In order to smooth the optic disc boundary morphological closing has been used
along with the ellipse fitting as optic disc is slightly vertically oval as per the
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literature. A detailed assessment of the approach compared to other state-of-the-
art methods have been discussed in the later sections. In Fig. 2 the test image has
been compared with the Atlas images using projection profile knowledge and the
best five masks have been selected based on Bhattacharyya coefficient. Finally,
SIFT features comparison is done between target image and given image in order
to warp the model mask into the desired test optic disc mask. In the last step, the
obtained probabilistic mask has been thresholded to get the segmented binary
image. The proposed approach has huge advantage for the OD segmentation as
it uses both prior knowledge of optic disc (unlike other model based approaches
e.g. active contour) and require less amount of images in the atlas dataset (unlike
machine learning models). Moreover as medical images are subjective in nature,
this approach has helped us in handling this subjectivity.

Fig. 2. Proposed architecture for optic disc segmentation
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2 Proposed Method

2.1 CBIR Model from the Fundus Atlas for Inter-Image Matching

The Optic disc is a bright circular region in a fundus image. According to litera-
ture [3], disc is the brightest portion in the red channel of the retinal image. For
the extraction of disc boundary, we have used a pre-processing step of cropping
the Region of Interest from the complete retinal image and to do so we have
used the work of [5] on optic disc detection i.e. finding a point inside the optic
disc boundary, in order to have a initial seed point for cropping the region for
the optic disc. The algorithm uses the vessel convergence property at the optic
disc along with the disc characteristics (shape, size, and colour) to find a point
inside the disc boundaries. The RIM dataset contains the cropped region hav-
ing ROI as OD portion, but for DRISHTI and DRIONS the above mentioned
pre-processing step has been implemented.

The segmentation task in medical imaging poses a number of challenges such
as light artifacts while capturing images, dust particles, multiplicative noise,
motion during imaging, low contrast, sampling artifacts caused by acquisition
equipment and finally anatomical variations due to pathological conditions.
Therefore, using classical segmentation methods like gradient, and threshold-
ing based, which do not have a prior knowledge of the object to be segmented,
usually produce unsatisfactory results on medical images. Thus in order to solve
the above problem, we proposed a retinal image atlas dataset into the system
which gives variation in sizes, shapes, position with respect to the optic disc.
The atlas images have been created by selecting the best optic disc images i.e.
those images which contain no pathology like peripheral atrophy (PPA) or disc
haemorrhage around the optic disc boundary. All these atlas images have been
manually labelled, in consultation with retinal specialists. The atlas construction
has been done in such a way that it covers all varieties of optic disc in terms of
shape, size and color.

Fig. 3. Plot shows the horizontal (left) and vertical (right) projection profiles of test
and one of the atlas image

For the test image, we first identify a subset of images (i.e. five in our case)
from the model maps that are most similar to the test fundus ROI image, using
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a content-based image retrieval (CBIR) inspired approach, and use this subset of
training images including their corresponding OD masks to develop a test image
specific OD model. The content based image retrieval has been done by calculat-
ing the intensity projection profiles along vertical and horizontal directions. For
the atlas images the horizontal and vertical projection profiles are pre-computed
in order to speed up the CBIR search process. For the similarity measurement
between two distributions of test image and the atlas images Bhattacharyya
coefficient has been used, which is as follows:

BC(I1, I2) = α

n∑

x=1

√
p1(x)p2(x) + (1 − α)

m∑

y=1

√
q1(y)q2(y) (1)

where p1(x) and p2(x) are the horizontal projections, q1(y) and q2(y) are the
vertical projections of images I1 and I2 images respectively, x and y are the
histogram bins of the projection profiles and n and m are the number of bins
of the projection profiles and profile histograms and α = n

n+m . The value of α
varies for 0 to 1, but for the experimental work we have n = m and thus results
into α = 0.5.

Figure 3 shows the horizontal and vertical profile histograms of an example
image. Left image shows the horizontal projection profile between the test image
and one of the best matching atlas image and right image shows the vertical pro-
jection profile respectively. The other distance metrics used in literature [28] for
similarity measurement are Euclidean, Manhattan etc. but the chosen coefficient
give the best possible performance under given conditions. We select a set of best
fit training atlases from the anatomical database of segmented optic disc images
to learn a test specific OD model. The registration performance for our method
is significantly improved when a personalized OD model is designed by compar-
ing the test ROI with the pre-segmented optic disc images in the database using
a fast similarity measure based on Bhattacharyya coefficient.

In our proposed work, the similarity index has been calculated for both red
and green channels, as red channel represents the saturated optic disc region for
healthy images and thus works for most of the cases, but for abnormal conditions,
the green channel performs better. Thus, the best channel has been selected
based on the performance parameter value being calculated.

2.2 SIFT-Flow Deformable Warping of OD Atlas

Image registration scheme calculates a transformation mapping from the source
image to target image by matching corresponding pixels of the images. The local
image feature descriptors such as Scale Invariant Feature Transform (SIFT) [25],
Histogram of Gradient (HOG) [26], shape and curvature descriptors can be used
to match the correspondence. In this work, we used the SIFT descriptor which
is among the best performing local image feature descriptors.

In computer vision image alignment remains a difficult task and the goal
becomes even more difficult in the object recognition scenario, where the goal is
to align different instances of the same object category. Similar to well known
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Fig. 4. SIFT descriptors for test image (1st column) and atlas image (2nd column)
respectively.

computer vision image alignment technique of optical flow where an image is
aligned to its temporally adjacent frame, we used SIFT flow [27], a method to
align an image to its nearest neighbors in a database containing a variety of
objects. The SIFT features allow robust matching across different scene/object
appearances, whereas the discontinuity preserving spatial model allows matching
of objects located at different parts of the scene. Experiments show that the
proposed approach robustly aligns complex scene pairs containing significant
spatial differences. Our work is focused on inter-image similarity with deformable
warping for creating a test image specific OD atlas. We found that the SIFT-flow
algorithm worked well for this task. The SIFT features of the ROI are calculated
as follows. First, image gradient magnitude and orientation are computed at
each pixel. The gradients are weighted by a Gaussian pyramid in a K × K
region. Then the regions are subdivided into k × k quadrant. The histogram of
gradient orientations is calculated for 8 bins for each of the quadrant. Finally
the orientation histograms are concatenated to construct the SIFT descriptor
for the center pixel in all K × K regions. In definition of SIFT descriptors K,
and k are chosen to be 16 and 4 respectively [27], thus for each pixel we have a
128 dimensional feature vector. We have shown in Fig. 4 two such SIFT images
(also called per-pixel sift descriptor) corresponding to test image (on left) and
an atlas image (on right side).

Once the SIFT descriptors haven been calculated for the image, the regis-
tration algorithm computes the correspondence between the test image and the
atlas image by matching the SIFT descriptors. The SIFT flow algorithm con-
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sists of matching densely sampled, pixel-wise SIFT features between two images,
while preserving spatial discontinuities [27].

The algorithm applies the transformation mapping by shifting each pixel in
the atlas OD masks according to the calculated shift distances being given by
the flow vectors. The registration stage is repeated for each of the top chosen
masks (5 in our case). The obtained OD mask for the test image is calculated
by adding all the transformed masks from each of the atlas OD regions and each
pixel in the image represents the confidence level of the specific pixel belonging
to the optic disc region.

2.3 Thresholding with Mask Smoothing

The obtained probabilistic masks can be smoothed further in order to enhance
the robustness of the method. A smoothing filter is then applied on the decision
values to achieve a smoothed decision value. In our implementation, mean filter
and Gaussian filter are tested and the mean filter is found to be a better choice
for the case. The smoothed decision values are then used further to calculate
the binary decisions for all pixels using a threshold. A threshold value of 0.7 has
been calculated empirically for all set of test images.

In our experiments, we have assigned a +1 and 0 to the disc (object) and
non-disc (background) samples. An image closing morphological operations has
been applied for disc shaped structuring element in order to remove the spikes
present at disc boundary. At last, for smooth and continuous boundary ellipse
fitting is done to the segmented optic disc region. Mostly medical experts label
the optic disc as smooth curve, and to get that smoothness ellipse has been
fitted. In fact this fitting has not changed the performance to a large extend (a
little improvement by 0.3% in accuracy has been observed after ellipse fitting).

3 Experimental Results

3.1 Digital Retinal Image Datasets

The proposed method is evaluated using three different retinal databases, these
are DRISHTI-GS1 dataset of 101 images [13,16] provided by Medical Image
Processing (MIP) group, IIIT Hyderabad, DRIONS dataset of 110 images and
finally RIM (RIM-1 and RIM-2) dataset of 624 images. In DRISHTI-GS1 dataset
all images were taken with the eyes dilated, centered on OD with a Field-of-View
of 30-degrees and of dimension 2896×1944 pixels and PNG uncompressed image
format. The optic disc has been marked by experts for all 101 images.

The DRIONS database consists of 110 colour digital retinal images. The
images were acquired with a colour analogical fundus camera, approximately
centred on the ONH and they were stored in slide format. In order to have the
images in digital format, they were digitised using a HP-PhotoSmart-S20 high-
resolution scanner, RGB format, resolution 600×400 and 8 bits/pixel. The optic
disc annotations have been done by two medical experts using a software tool.
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Finally the RIM-1 database contains 169 optic nerve head images and each
image has 5 manual segmentation from ophthalmic experts. The RIM-2 database
consists of 455 images with disc annotated by the experts.

Figure 5 shows a subset of test images with the expert labeling in black color
along with segmented OD boundary in green color respectively. The proposed
method gives pretty good performance for DRISHTI and DRIONS datasets.
Also for the RIM database which contains most of the PPA, blurred and poor
intensity images the method gives satisfactory performance as shown in Fig. 5
last row images. The key advantage of the proposed method is that it works
for inter database images i.e. in RIM database most of the portion of ROI is
covered by the OD region whereas in DRIONS and DRISHTI the OD takes
a small portion of the complete ROI. So, in spite of the OD size variability
for a fixed image dimension the proposed method is able to extract very good
estimation of the true OD boundary.

For the designing of atlas retinal images we have selected a subset of images
from each of the datasets. The anatomical atlas consists of 85 RIM images from
624 images, 35 DRISHTI-GS images from a set of 101 images and 31 images from
the 110 DRIONS images respectively. Thus in total 150 retinal images have been
selected for the atlas model and 724 images is used for testing purpose.

3.2 Evaluation Metrics

In the literature several algorithms have proposed different evaluation metrics
for the segmentation purpose. The validation metrics True positive (TP), True
negative (TN), False positive (FP), and False negative (FN) have been used for
verifying the quality of segmented image. Here TP, FP, TN, FN represents the
pixels correctly classified as foreground, falsely classified as foreground, correctly
detected as background, and falsely detected as background respectively. All the
metrics used have been calculated pixel-wise. In our work of comparing the
performance of proposed method with the state-of-the-art we have used these
above metrics to find the Accuracy, Specificity, Sensitivity, Region Overlap and
Dice metric. Their mathematical expressions have been given below:

(ACC)Accuracy(A,B) =
(TP + TN)

(P + N)
∗ 100 (2)

(SPE)Specificity(A,B) =
TN

(TN + FP )
∗ 100 (3)

(SEN)Sensitivity(A,B) =
TP

(TP + FN)
∗ 100 (4)

(DM)DiceMetric(A,B) =
2 ∗ TP

FP + 2 ∗ TP + FN
(5)

(OL)RegionOverlap =
TP

(TP + FN + FP )
∗ 100 (6)
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Fig. 5. Optic disc segmentation results. Here green and black colour represents the
proposed and expert boundary respectively (Color figure online)
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Table 1. Proposed algorithm performance parameters for different databases

Datasets ACC SPE SEN OL DM

RIM 94.89 94.49 95.95 84.89 0.92

DRISHTI 99.15 99.43 97.38 93.44 0.96

DRIONS 99.30 99.50 96.55 90.64 0.95

AVG Perf. 97.88 97.81 96.56 89.66 0.95

For Bhattacharyya coefficient calculation, the value of α = 0.5 has been
considered as the image has been interpolated to square image.

Table 1 shows the performance parameter values for all the datasets along
with the average performance of the proposed algorithm. We can see that the
proposed method works well for DRISHTI and DRIONS datasets and also for
the RIM dataset which contains most of the PPA images along with the blurred
and intensity artifacts one’s. The performance of proposed method for DRIONS,
RIM and DRISHTI-GS datasets can be compared with state-of-the-art methods
as shown in Tables 2, 3, and 4 respectively.

Table 2. Comparison of methods for optic disc segmentation for DRIONS database.
The symbol “-” represents no result has been reported for the case

Methods ACC SPE SEN OL DM

Walter et al. [22] - - - - 0.612

Morales et al. [23] 99.34 - - - 0.9084

CHT and Graph cut [24] 95.0 99.0 85.0 85.0 0.91

DRIU [20] 94.89 94.49 95.95 84.89 0.92

Zilly et al. [21] 99.15 99.43 97.38 93.44 0.96

Proposed method 99.3 99.5 96.45 90.64 0.95

Table 3. Comparison of methods for optic disc segmentation for RIM database. The
symbol “-” represents no result has been reported for the case

Methods ACC SPE SEN OL DM

Lu’s [9] 91.0 - - - -

DRIU [20] - - - 88.0 0.97

Zilly et al. [21] - - - 89.0 0.94

Proposed method 96.21 97.9 92.33 88.0 0.94
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Table 4. Comparison of methods for optic disc segmentation for DRISHTI-GS
database. The symbol “-” represents no result has been reported for the case

Methods ACC SPE SEN OL DM

DRIU [20] - - - 88.0 0.97

Zilly et al. [21] - - - - -

A Sev. [11] - - - 89.0 0.94

Joshi et al. [13] - - - - 0.96

Proposed method 99.15 99.42 97.28 93.44 0.96

4 Conclusion

We have presented a robust optic disc boundary detection method that is based
on a test image specific atlas using the projection profile similarity selection
and SIFT-flow nonrigid registration with refinement using filter smoothing and
thresholding. We evaluated the algorithm on 712 test images with normal and
pathological optic disc regions using three different databases. The experimental
results showed an accuracy of 95.8% compared to expert segmentation gold
standard. The other performance parameter values are Specificity is 95.54%,
Sensitivity is 96.13%, Overlap is 86.46% and Dice metric is 0.924 respectively.
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Abstract. Bird species classification has received more and more atten-
tion in the field of computer vision, for its promising applications in biol-
ogy and environmental studies. Recognizing bird species are difficult due
to the challenges of discriminative region localization and fine-grained
feature learning. In this paper, we have introduced a Transfer learning
based method with multistage training. We have used both Pre-Trained
Mask-RCNN and a ensemble model consists of Inception Nets (Incep-
tionV3 net & InceptionResnetV2) to get both the localization and species
of the bird from the images. we have tested our model in an Indian bird
dataset consist of variable size, high-resolution images are taken from
camera in various environments (like day, noon, evening etc.) with dif-
ferent perspectives and occlusions. Our final model achieves an F1 score
of 0.5567 or 55.67% on that dataset.

Code is available at: https://github.com/AKASH2907/bird-species
-classification. Implemented in Keras [20].

Keywords: Bird species classification · Deep networks · Transfer
learning · Multistage training · Object detection

1 Introduction

Bird species are recognized as useful biodiversity indicators. They are responsive
to changes in sensitive ecosystems, whilst population-level changes in behavior
are both visible and quantifiable. Suffered from great species variation, it is diffi-
cult for non-professionals to identify the sub-category of a bird only by its appear-
ance. However, it is exhausting to annotate all the images by human beings with
expert knowledge. Thus, an automatic classification system for bird species are
needed, which will be a great convenience for many practical applications. For
researchers working outdoors, shoot photos can be classified and analyzed imme-
diately by the system, illustrated books are no more needed. For the public, the
system could provide much fun when combined with culture information like
poems and legends. It will arouse people’s interest in birds and could benefit
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the protection of birds. Apart from that, classifying bird species is an interesting
problem for Fine-grained categorization, also known as subcategory recognition,
which is a sub field in object recognition. In recent years, fine-grained classifi-
cation stood out from basic-level classification, bringing promising applications
and new challenges to computer vision society.

In this Bird Species Classification Challenge, our main focus was to classify
birds from high-resolution photographs taken from a camera. In this task, to
improve classification task, we have also provided localization of birds in the
respective images with their class labels. The Main Challenges involving in this
problem are given below.

1. Large Intensity variation in images as pictures are taken in different time of
a day (like morning, noon, evening etc.)

2. Various poses of Bird (like flying, sitting with different orientation)
3. Bird localization in the image as there are some images in which there are

more than one bird in that image
4. Large Variation in Background of the images
5. Various type of occlusions of birds in the images due to leaf or branches of

the tree
6. Percentage of the object (bird) area in the image
7. Less number of sample images per class and also class imbalance.

We have proposed an end to end deep learning based approach using transfer
learning to learn both micro and macro level features from Bird ROIs. We have
used pre-trained Mask-RCNN to get the Bird ROIs from the images and used
Multistage training method to remove class imbalance partially & boost up the
accuracy of our model. Further information about the model is given in the
respective section.

2 Related Work

In recent years, there is a number of existing works to automate the classification
of the bird using audio data rather images. For this purpose, Feature Extraction
from audio signals has some advantages like species have distinctive calls and no
line of sight is needed for detection. However, there are some disadvantages also
like an individual bird may emit no audio at all for an extended period of time
and can’t able to count the no of birds precisely. Due to this reasons, there are
growing number of studies to use computer vision and image-based techniques
for this problem [2,4,5]. Atanbori et al. [4] proposed a method to use motion
features including curvature and wing beat frequency. Combined with Normal
Bayes classifier and a Support Vector Machine classifier. Pang et al. [2] intro-
duced discriminative features for bird species classification based on parts of
birds and Marini et al. [5] proposed an approach to use a color segmentation
to eliminate background elements and compute normalized color histograms
to extract a feature vector for classification. Bird Species Classification with
visual data is also important in the domain of fine-grained classification and
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there is a significant contribution to bird species classification problem respect
to this domain [1,3,6,7]. There are also some few shots and deep learning based
approaches [1,6,13] regarding this problem which has achieved a considered
amount of accuracy in their respective datasets. These deep learning models
failed miserably on our dataset. Therefore, we provide a robust solution to the
area of classifying bird species in high-resolution images.

3 Dataset

In this paper, we have used the dataset from the CVIP 2018 Bird Species chal-
lenge. Training dataset consists of 150 images with 16 species of birds and testing
dataset contains 158 images. The dataset contains high resolution images rang-
ing from 800 × 600 to 4000 × 6000. The dataset is class imbalanced with 5
images in one species to 20 images in other species. Those bird images were
taken in different environments, occlusions, perspectives. Due to those situa-
tions, it becomes really hard to recognize bird from the images without their
localization. Overview of the dataset is shown in Fig. 1 below.

Fig. 1. Dataset overview
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4 Proposed Approach

4.1 Data Augmentation

To increase the number of training samples per class and reduce the effect of
class imbalance, data augmentation is used. Relevant image augmentation tech-
niques are chosen according to the bird type of each class. Those techniques
are Gaussian Noise, Gaussian Blur, Flip, Contrast, Hue, Add (add some values
to each channel of the pixel), Multiply (multiply some values to each channel
of the pixel), Sharp, Affine transform. As the dataset was quite small, the net-
works trained on the dataset, overfitted the dataset and does not generalize well
on 150 images. After data augmentation, training dataset increased from 150
images to 1330 images. Some of the data augmentations were not used for some
classes to reduce the effects of class imbalance. Augmentation techniques per
class were chosen according to the context and practical viability of the birds
in that environment. More details on those augmentation techniques per class
were mentioned in the table below (Table 1).

Table 1. Table for data augmentation techniques for each of bird species

Species Gaussian Noise Gaussian Blur Flip Contrast Hue Add Multiply Sharp Affine Total

blasti Yes Yes Yes Yes Yes No No No No 90

bonegl Yes Yes Yes Yes Yes Yes Yes Yes Yes 78

brhkyt Yes Yes Yes Yes Yes Yes Yes Yes Yes 65

cbrtsh Yes Yes Yes Yes Yes Yes Yes Yes Yes 91

cmnmyn Yes Yes Yes Yes Yes Yes Yes Yes Yes 91

gretit Yes Yes Yes Yes Yes Yes Yes Yes Yes 78

hilpig Yes Yes Yes Yes Yes Yes Yes No No 80

himbul Yes Yes Yes Yes Yes No No No No 99

himgri Yes Yes Yes Yes Yes No No No No 100

hsparo Yes Yes Yes Yes Yes No No No No 81

indvul Yes Yes Yes Yes Yes No No No No 81

jglowl Yes Yes Yes Yes Yes Yes Yes Yes Yes 78

lbicrw Yes Yes Yes Yes Yes Yes Yes Yes Yes 78

mgprob Yes Yes Yes Yes Yes Yes Yes Yes Yes 78

rebimg Yes Yes Yes Yes Yes Yes Yes No No 80

wcrsrt Yes Yes Yes Yes Yes Yes Yes No No 80

4.2 Bird ROI (Region of Interest) Detection

To eliminate background elements or regions and also extract features from
specific bird class, pretrained Object Detection deep nets are used. In this Model,
we have used Mask R-CNN [8] to localize birds in each image from both test &
training dataset. We have used the pretrained weights of Mask R-CNN, trained
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on the COCO dataset [14] which contains 1.5 million object instances with 80
object categories (including birds) (Fig. 2).

Mask R-CNN [8] comprises two architectures: Faster R-CNN [17] and Fully Con-
nected Network [18]. The details of the two architectures are summarized as
below:

(1) Faster R-CNN [17] runs a parallel network with two heads: Classification
head and Bounding Box Regression head. Faster R-CNN also uses a small
convolutional network as Region Proposal Network (RPN) to refine the
region of interest.

(2) Fully Connected Networks (FCN) [18] is a meta-algorithm used for semantic
segmentation process. It is built from convolutional, pooling, downsampling
and upsampling layers. Due to absence of dense layers in FCN, the number
of parameters are less and hence computation time reduces drastically. Due
to the inclusion of pixel level info in ROI alignment, it works better in
comparison to ROI pooling that is used in Faster R-CNN.

4.3 Transfer Learning

In our case, transfer learning learns both micro and macro level feature extracted
from bird images for classification. We have used ImageNet [9] pretrained weights
to initialize our Deepnet model for training. ImageNet contains 1.2 million images
belonging to 1000 classes. Training using pretrained ImageNet weights help us
to learn fine-grained as well as global level features beforehand and learn the
deepnet more specific & discriminative features for each bird species which leads
to increase the accuracy of our model.

In our task, we used Inception V3 [11] and Inception ResNet V2 [10] for
finetuning. We used VGG-16/19 [16] initially, but the classification accuracy
was very low. Then, we moved on to ResNet [15] and Inception V3 [11] that
have almost similar accuracy on ImageNet dataset, in our case Inception V3
performed better. Inception ResNet V2 is derived from the base architectures of
Inception and ResNet. It has good accuracy as well as less computation time.

Inception V3 have features like Batch Normalization, Factorization and var-
ied size kernels that helps to learn the global and local features. Also, the compu-
tation time reduces well due to the factorization method. Inception ResNet V2
incorporates the backbone from Inception and ResNet modules. From ResNet,
skip connections were introduced that improved the accuracy by retaining fea-
tures deep into the layers. In Inception modules, skip connections were intro-
duced alongwith Factorization to design Inception ResNet V2 architecture. It
reduced the computation time as well as helped in the propagation of all the
features deeper into the layers.
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Fig. 2. Mask R-CNN cropped birds images

4.4 Ensemble Model Architecture

We have used InceptionResNetV2 [10] & InceptionV3 [11] deepnet architectures
to create a ensemble model as our classification model. The prediction vector
from Inception V3 [11] and Inception ResNet V2 [10] weights are generated for
each image at the time of testing. There are two cases with Mask R-CNN:

(1) Birds Detection: If the Mask R-CNN detect birds in the image, then a batch
of cropped bird images are created. The whole batch for that particular
image is evaluated using both network weights. Both the prediction vectors
are compared and then the species is assigned based on the prediction value
with the highest weight or prediction confidence value of the species of bird
is finally predicted.

(2) No Bird Detection: The original image is predicted for the species of the
bird using both the architecture weights. Though, the number of such cases
is very less. The species with the highest predicted value is added to the
final prediction vector.

Figure 3 illustrates the overall process of bird detection and species classifi-
cation using Mask R-CNN and ImageNet models respectively.

5 Experiments

5.1 Multi-stage Training

We used multi-stage training to improve the accuracy of the model. Firstly,
we trained the Inception V3 architecture and then Inception ResNet V2 archi-
tecture on data augmented original images. In the second stage, we used the
pretrained weight on original images to train on cropped images generated from
Mask R-CNN. All the images are resized to 416 × 416. The accuracy of the
model increased by 2–3 % after training on the cropped images. The multi-stage
training helps to learn fine-grained features using cropped images of birds and
the original images are used to learn the global spatial features present in the
image.
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Fig. 3. Overall architecture of our bird species classification system

5.2 Testing

At the time of testing, the images are passed from Mask R-CNN pre-loaded with
COCO weights. The cases of Mask R-CNN is discussed in the Ensemble Model
Architecture. Here, we have used ‘categorical cross-entropy’ as loss function &
Adam as an Optimizer to train both deep networks. For fine-tuning of the deep-
net models, we have tested on various types of activation functions and Swish
activation function [12] performed best among all of them.

6 Evaluation

Evaluation Metric. For the challenge, we used three evaluation metrics -

1. Precision: It is the ratio of correctly predicted positive observations to the
total observations. It is defined as:

TruePositives

TruePositives + FalsePositives
(1)

2. Recall: It is the ratio of correctly predicted positive observations to all the
observations in the relevant class.

TruePositives

TruePositives + FalseNegatives
(2)

3. F1-score: It is the harmonic mean of precision and recall.

2 ∗ precision ∗ recall

precision + recall
(3)

The evaluation metrics are calculated from the Confusion matrix. In confu-
sion matrix, True positives is equal to sum of diagonal elements. False positives
is equal to the sum of each column excluding diagonal elements. False negatives
is equal to the sum of each row elements excluding diagonal elements.
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7 Results

Table 2 contains the F1-scores obtained from different architectures trained on
original images and Mask R-CNN crops as discussed in Multi-Stage Training.
The Inception ResNet V2 model trained firstly on resized original images and
then on Mask R-CNN cropped images gives the best results at the time of
training. The final trained weights of this model was used to predict the specie
of bird.

Table 2. Accuracy during Multi-Stage Training on InceptionResnetV2 & InceptionV3
models.

Model architecture Data subset Train Validation Test

Inception V3 Images 91.26 12.76 30.95

Images + Crops 93.97 15.50 41.66

Inception Resnet V2 Images 97.29 29.17 47.96

Images + Crops 92.29 33.69 49.09

Table 3 summarizes the class averaged precision, recall, and F1 scores. In the
ensemble method, the prediction vector for both Inception V3 and Inception
Resnet V2 is compared for each class predicted. The network with a higher
probability of a particular species was appended to the final prediction file.

Table 3. Evaluation metrics (in %) on test dataset

Model architecture Precision Recall F1

Mask R-CNN + InceptionV3 48.61 45.65 47.09

Mask R-CNN + InceptionResnetV2 53.62 48.72 51.05

Mask R-CNN + Ensemble Model 56.58 54.8 55.67

We also used the confusion matrix to get more intuition about the per-
formance of different ImageNet architectures. The confusion matrix for final
architecture is shown in Fig. 4. From the confusion matrix, we can see that our
approach failed miserably in four classes particularly.

In order to study the limitations of our architecture, we also analyzed our
approach on Caltech-UCSD Birds-200-2011 [19] dataset. The main problem we
faced that the images in this dataset are very different from our dataset. The
images are well-uniform and in every image, birds at least cover 90% of the
image. The images in this dataset contain only one instance of bird species per
image. Hence, the addition of the Mask R-CNN to the ImageNet pipeline does
not provide any substantial additional gains.
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Fig. 4. Confusion matrix of Mask R-CNN + Ensemble model

8 Error Analysis

From the confusion matrix, cmnmyn, gretit, hsparo, indvul, mgprob, and rebimg
classes have poor accuracy. Few training samples per class with large variance
in the object (bird) size in the image and class imbalance are the main rea-
sons for those misclassifications. Though there are some other reasons like small
bird ROIs, the similarity in bird body part’s color & background color, occlu-
sion, and variation in lighting condition in training and testing dataset. For
those conditions, deep nets can’t be able to learn those discriminative features
(both micro features like color, gradients, textures etc. and macro features like
shape, color patch etc.). Various lighting condition (like a picture taken during
daylight, dawn, dusk, evening etc.) affected our model most as due to low back-
ground light, many micro-features of the bird like color, texture, gradients etc.
are lost. Different poses of bird also reduced our model’s accuracy though it is
compensated with micro-level features of the bird. A possible solution for those
problems is discussed further in the later section (Fig. 5).

Fig. 5. Few examples of images where Mask R-CNN fails to detect birds
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9 Conclusion and Future Work

In this paper, we have proposed a method to both localize and classify the
species of the bird from high-definition photographs taken from a camera by
using an end-to-end approach with Mask R-CNN, transfer learning, and multi-
stage training. We have considered this challenge and as a few shot classification
problem and proposed to use bird localization in images to boost up the accuracy
of our model. Transfer learning helped our model to learn more specific and
converge loss function more quickly with good accuracy on the test dataset. In
future, we are planning to extend this work using a Part Model-based approach
with NTM (Neural Turing Machine) and Visual Attention Network.
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Abstract. In this paper, we propose an end-to-end automatic face
attendance system using Convolutional Neural Networks (CNNs). Atten-
dance of a student plays an important role in any academic organization.
Manual attendance system is very time consuming and tedious. On the
other hand, automatic attendance system through face recognition using
CCTV camera can be fast and can reduce the man-power involved in
that process. Here, we have pipelined one of the best existing architec-
tures such as: (i) Single Image Super-Resolution Network (SRNet) for
image super-resolution, (ii) MTCNN for face detection and (iii) FaceNet
for face recognition in order to come up with a novel idea of marking
attendance. Due to poor video quality of CCTV camera, it becomes dif-
ficult to detect and recognize faces accurately and this may reduce the
attendance accuracy. To overcome this limitation, we propose a CNN
framework called SRNet which super-resolves a given low resolution (LR)
image and also increases the face recognition accuracy. We make use of
five different datasets i.e. RAISE and DIV2K for SRNet, VGGface2 for
FaceNet, LFW and our own dataset for testing and validation purpose.
The proposed face attendance system displays a sheet which consists of
a list of absent and present persons and the overall attendance record.
Our experimental results show that the proposed approach outperforms
other existing face attendance approaches.

Keywords: Deep learning · Convolutional Neural Networks · SRNet ·
MTCNN · FaceNet · Face attendance

1 Introduction

Advances in the field of face detection and recognition using CNN can be
exploited to eliminate human intervention in marking attendance. Face recog-
nition of images captured by a CCTV camera eliminates manual efforts, saves
time and is a cost effective solution. But many a times due to low spatial reso-
lution of CCTV video footage, some students are not detected and recognized
which results in absentees in the list. Making a robust automatic face attendance
system for LR image from a CCTV camera could be an active area of research.
c© Springer Nature Singapore Pte Ltd. 2019
C. Arora and K. Mitra (Eds.): WCVA 2018, CCIS 1019, pp. 39–50, 2019.
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In the proposed approach, we make use of a pipe-lined architecture based
on CNN to build an end-to-end face attendance system. We capture a video
frame from a CCTV camera. Now, if its spatial resolution is poor then it is
passed through the proposed SRNet module. SRNet is trained using MSE based
loss function which results in SR images with better Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) measures in addition to preservation
of high frequency details in the image. The SR image is then fed to a Multi-Mask
Cascaded Neural Network (MTCNN) [30] that detects faces in the image in a
coarse-to-fine manner. It also results in five essential facial landmark positions.
The detected faces are cropped around the bounding boxes, aligned and then
given to FaceNet [21], a face recognition module which is used to identify those
faces. Finally, recognized faces are marked in attendance sheet. Following are
the main contributions of the proposed face attendance system:

– The proposed automatic face attendance system using CNNs has a multi-task
and a multi-frame architecture which gives better accuracy as compared to
other existing face attendance methods.

– Performance of the proposed SRNet shows significant improvement as com-
pared to other state-of-the-art methods in terms of PSNR and SSIM.

2 Related Work

CNN Based Single Image Super-Resolution (SISR) Methods: Dong
et al. [5] propose three convolutional layered end-to-end model called SRCNN in
which a bicubic interpolation is used at first to upsample the given LR image.
Thereafter, the very deep convolutional network (i.e., VDSR) [9] is proposed by
increasing the depth of network as 20 convolutional layers. In VDSR, the global
residual learning paradigm is adopted to generate the final residual image. Deep
recursive convolutional network (i.e., DRCN) is proposed by Kim et al. [10] where
16 recursive layers are used to keep a small number of model parameters. DRCN
obtains better PSNR value than that of obtained using SRCNN and VDSR
methods. Tai et al. [25] propose deep recursive residual network (i.e., DRRN)
and extend the local residual learning approach [7] with 52-layered deep network.
Recently, Lai et al. [12] introduce progressive reconstruction approach for SISR
and propose a model called LapSRN in which the SR images are progressively
reconstructed at multiple pyramid levels. In LapSRN, the more robust Charbon-
nier loss function [2] is used to train their network and obtain better SR images.
Recently, Ledig et al. [13] propose a SR method called super-resolution using
residual network (i.e., SRResNet) which sets a new state-of-the-art performance
in SISR.

CNN Based Face Detection and Recognition: Pioneer work in face detec-
tion is carried out by Viola and Jones [27]. They propose a face cascade detector
which learns a rich set of image features using Haar-classifier and yields an
extremely efficient classifier based on the AdaBoost algorithm. This detector
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works well in real-time but its performance degrades with large appearance vari-
ance. Yang et al. [29] train the CNN to discover facial parts responses from arbi-
trary uncropped face images. Li et al. [14] introduce a CNN-based face bounding
box calibration step in the cascade form to obtain a high quality localization.
Multi-Task Cascaded Convolution Network (MTCNN) [30] use a deep cascaded
multi-task framework to exploit the inherent correlation between detection and
alignment to boost up their performance.

Taigman et al. [26] propose a facial alignment system based on explicit 3D
modelling of faces. Sun et al. [23] perform face recognition using two supervi-
sory signals simultaneously i.e. face identification and verification. Unlike 3D
modelling, it is based on simple 2D affine transformation. To overcome the chal-
lenges of pose and illumination, FaceNet [21] presents a unified system for face
verification, recognition and clustering.

Attendance System: Rathod et al. [19] propose a face attendance system based
on Viola Jones [27] face detection by using HoG based features extraction and
SVM classifier for recognition. Chintalapati et al. [3] develop an automated face
attendance management system which use Viola Jones for face detection followed
by histogram equalization for feature extraction using PCA and finally SVM
for multi-class classification. These methods are based on conventional machine
learning algorithms which have limited learning ability. University classroom
attendance proposed by Fu et al. [6] integrate two deep learning algorithms -
MTCNN for face detection and Center-Face [28] for recognition. Though their
approach obtains high accuracy but it is only well suited for images from a high
resolution camera.

3 Methodology

Figure 1 displays the block schematic representation of the proposed end-to-end
automatic face attendance system which consists of the following five modules:

– Super-resolution module
– Face detection module
– Intermediate processing
– Face recognition module
– Attendance module

Super-Resolution Module: This module is used to reconstruct the HR image
from the given LR observation captured using the CCTV camera. The architec-
ture of the proposed SR method i.e. SRNet is displayed in Fig. 2 for ×4 upscaling
factor. 9× 9 filters in the beginning of SRNet increase the size of the receptive
field and help in extracting prominent features. Inspired by VGG architecture
[22], remaining filters are 3× 3 to create a deeper model with less number of the
parameters to be trained. M = 16 number of residual blocks are used. In order
to up-sample the feature map in SRNet by ×4, we use two resize-conv’s where
each of them up-samples by a factor of 2. We use the residual network suggested
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Fig. 1. Block schematic representation of the proposed end-to-end automatic face
attendance system.

by Lim et al. [15] in which batch normalization (BN) layers are removed from
original residual network proposed in [7]. This helps to reduce the GPU memory
[15]. As shown in Fig. 2, the local residual learning (LRL) is used in the residual
network as shown in Fig. 2. This LRL helps to solve the problem of exploding
or vanishing gradient since the higher layer gradients are directly passed to the
lower layer in residual block. We also adopt global residual learning (GRL) as
suggested by Kim et al. [9] in which the model’s output is added with the bicubic
interpolation of the input image to generate the residual image. Such GRL helps
the network to learn the identity function for LR test image and stabilze the
training process and also reduces the color shifts in output image. However, we
modify the GRL network by passing the bicubically interpolated image through
two convolution layers which helps us to extract more useful features of LR
image further (see Fig. 2). Instead of using transpose layer [16] to upsample the
feature maps inside the network, we use resize convolution (i.e., nearest-neighbor
interpolation followed by a single convolution layer) as suggested by Odena et
al. [17]. The use of such upsampling layer reduces the checkerboard artifacts in
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Fig. 2. Block diagram of proposed super-resolution network: SRNet. Here, k, s and n
indicate the size of filters, stride value and number of filters in feature map respectively
and M = 16 in the network.

Fig. 3. Cascaded framework for face detection using MTCNN [30].

the SR image. However, this approach still creates some checkerboard artifacts
for some specific loss functions [20]. Hence, we add two convolution layers after
resize convolution layer in the proposed method which can work as an additional
regularization term to reduce the checkerboard artifacts further.

The most commonly used pixel-wise MSE loss function is used to train the
proposed SRNet model. The MSE loss function between HR image, IHR and
super-resolved image ISR is defined as,

lMSE =
1

r2wh

rw∑

x=1

rh∑

y=1

(IHR
x,y − ISR

x,y )2. (1)

Here, r is the downsampling factor while h and w is denoted as the height and
width of the LR observation, respectively. By minimizing the MSE loss function,
we can obtain high PSNR value. Hence, this MSE loss function is used in most
of the state-of-the-art SISR methods to obtain better PSNR values [4,5,9,10].

Face Detection Module: After the reconstruction of SR image using SRnet,
the next step is to detect the present faces in that image. Hence, we use state-
of-the-art face detection module called Multi-Task Cascaded Neural Network
(MTCNN) [30]. This framework uses a cascaded architecture for multi-task
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learning. There are three stages of convolutional layers to predict face and essen-
tial landmark points. Figure 3 shows the step-by-step flow of this face detection
framework. In the first stage, the shallow CNN is used to produce multiple
candidate windows through a fast Proposal Network (P-Net). Then, Refinement
Network (R-net) results in refined windows by discriminating face windows from
non-face windows. Finally, Output Network (O-Net) identifies the face regions
with more accuracy and creates bounding boxes around the faces.

Intermediate Processing: In this module, the detected faces with bounding
boxes are cropped and saved in a separate temporary folder. This step helps
in making face recognition procedure easier especially when there are multiple
faces in a single image. Faces that are turned in different directions make face
recognition difficult. Therefore, the cropped face images are passed to the face
alignment stage where basic affine transformations like scaling and rotation are
performed to align the faces. The alignment process generates a more tightly
cropped image and removes the unwanted background.

Face Recognition Module: The aligned face images are applied to face recog-
nition module. Here, we employ FaceNet [21], a face recognition framework,
which is based on the Inception-Resnet v1 model [24]. This model generates
a 512-dimensional Euclidean embeddings for each face during training process.
To train the deep neural network, FaceNet employs Triplet loss function. The
loss function ensures that an image xa

i (anchor) of a specific person is closer to
all other images xp

i (positive) of the same person than it is to any image xn
i

(negative) of any other person. Hence the loss function is given by [21],

L =
N∑

i

[||f(xa
i ) − f(xp

i )||22 − ||f(xa
i ) − f(xn

i )||22 + α], (2)

where α is the margin between positive and negative pairs and f(x) is the gener-
ated embedding. The face embeddings are used as a measurement of face simi-
larity. Pairs of faces of the same person with different pose and illumination have
less output distance between them whereas faces of distinct people have large
distances.

Face Attendance Module: In this module, face attendance sheet is created
based on the recognized faces. Before the attendance is marked, the faculty is
prompted to enter his name, the name of the subject and the date for which
he/she wants to mark the attendance. These details get updated in the atten-
dance sheet. Our database consists of the three folders based on the courses
offered by the institute: undergraduate (UG), post graduate (PG) and PhD. The
database contains a list of students enrolled in a particular course. Month-wise
and subject-wise attendance is marked in the excel sheet according to the roll
numbers present during each lecture. The identified faces are recognized using
their roll numbers. The roll numbers follow a naming convention (for example
P17EC003). In the roll number, the first letter gives the information of course
name, the next two numbers give details of admission year, the third and fourth
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letters show the name of department and the last three numbers signify the serial
number of particular student. We have a four tier directory structure as,

Course Name
Admission Year

Department
Faculty Name

From the roll number of the recognized student, we extract the path to the
attendance sheet and the attendance of the student is marked for the current
date and subject.

4 Experimental Results

We have tested and validated the performance of the proposed end-to-end face
attendance system on LFW dataset. However, the proposed method SRNet has
been tested on Set5, Set14 and BSD100 benchmark datasets. Results of SRNet
are compared with the online supplementary materials of other existing state-
of-the-art methods such as SRCNN1 [5], LapSRN2 [12] and EnhanceNet3 [20].
For quantitative comparison, the common evaluation metrics i.e., PSNR and
SSIM are used and the same are calculated after converting SR images into
YCbCr color space and removing the four boundary pixels of Y-channel images
as suggested in [15,20].

Training Details and Hyper-parameter Settings: All the modules in our
pipelined architecture have been chosen with due care considering their pros
and cons. These modules have their own advantages when used as individual
blocks, however, in our proposed work we have pipelined them and we lever-
age their individual performance capabilities to build an end-to-end application
based on face recognition. These modules are trained individually to optimize
the performance of our end-to-end pipelined network.

To train the proposed method SRNet, we use two datasets: RAISE and
DIV2K. Before the training process, images are augmented with flipping, ran-
dom rotation (upto 270◦) and downscaling (by a factor of 0.5 to 0.7 randomly)
operations. The HR images are bicubically downsampled with a factor r = 4 to
produce the corresponding LR images. Inspired from Kim et al. [9], we adopt a
two-stage training strategy to train proposed SRNet model which helps to avoid
undesired local minima. At first stage, the proposed SRNet is trained on RAISE
dataset upto 8× 105 number of iterations with a learning rate of 10−4 using
MSE loss function. After this, the same model is further trained upto 4× 105

number of additional iterations with same learning rate and loss function on
DIV2K dataset. The Adam optimizer [11] with β1 = 0.9 is used to optimize the
SRNet model.

1 https://github.com/jbhuang0604/SelfExSR.
2 http://vllab.ucmerced.edu/wlai24/LapSRN/.
3 http://webdav.tuebingen.mpg.de/pixel/enhancenet/.

https://github.com/jbhuang0604/SelfExSR
http://vllab.ucmerced.edu/wlai24/LapSRN/
http://webdav.tuebingen.mpg.de/pixel/enhancenet/
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For face detection task, we choose a pre-trained model of MTCNN4 [30]
framework which was trained on WIDER FACE dataset. This dataset consists
393,703 labelled face image with bounding boxes in 32,203 images. The MTCNN
framework jointly performs the task of face detection and alignment and outper-
forms other state-of-the-art methods [29] [14] in terms of speed and validation
accuracy. We use the face recognition module FaceNet5 [21] which is trained
on VGGFace2 dataset which consists of 3.31 million images of 9131 subjects.
FaceNet trains its deep convolutional network based on an online Triplet based
loss function. Here, we employ transfer learning approach [18] to further train
FaceNet on our own dataset of students. In the proposed work, we have acquired
50 photos of every student and then same are used with image augmentation to
transform each photo randomly into 10 different photos, so in total it consists
500 photos for each person. Since we have considered 16 students for this work,
therefore our training dataset has 8000 images.

Table 1. Quantitative comparison in terms of PSNR and SSIM of the proposed SRNet
with other existing CNN based SR methods. Here, highest measures are indicated in
bold.

PSNR SSIM

Method Set5 Set14 BSD100 Set5 Set14 BSD100

Bicubic 28.4302 26.0913 25.9619 0.8109 0.7043 0.6675

SRCNN [5] 30.0843 27.2765 26.7046 0.8527 0.7425 0.7016

SelfExSR [8] 30.3485 27.5539 26.8531 0.8631 0.7551 0.112

VDSR [9] 31.3537 28.1101 27.2876 0.8839 0.7691 0.725

DRCN [10] 31.5405 28.1219 27.238 0.8855 0.7686 0.7232

LapSRN [12] 31.5417 28.1852 27.3175 0.8863 0.7706 0.7259

MS-LapSRN [12] 31.7368 28.3559 27.4241 0.8899 0.7749 0.73

EnhanceNet-E [20] 31.7568 28.4297 27.5112 0.8886 0.7771 0.7319

SRNet 32.0916 28.5397 27.5212 0.8933 0.7795 0.7343

Testing and Evaluation: Performance of the proposed SRNet model is quanti-
tatively compared in terms of PSNR and SSIM measures in Table 1. In this table,
we observe that SRNet has the highest PSNR and SSIM values as compared to
other existing CNN based SR methods.

In order to see the importance of super-resolution task, the original image is
downsampled by different factors like 2, 3 and 4 to reduce its spatial resolution.
These images are then given to the face detection module with or without passing
through SRNet. Figure 4a shows the results of detected faces for these two cases.
By looking at the figure, one can notice that the face detection module with

4 https://github.com/kpzhang93/MTCNN face detection alignment.
5 https://github.com/davidsandberg/facenet.

https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://github.com/davidsandberg/facenet
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Fig. 4. (a) Face detection ability of SRNet with different downsampling factors. (b)
Procedure of updating attendance sheet on daily basis.(Reader can zoom-in for better
view.)

Table 2. Quantitative measurement of face detection module with and without SRNet
on the images of WIDER FACE dataset.

Original LR image Downsampled by 2 Downsampled by 3

W/o/with SRNet (%) W/o/with SRNet (%) W/o/with SRNet (%)

Precision 99.3/92.45 98.68/93.53 98.98/94.18

Recall 30.12/79.65 10.48/45.01 3.42/24.32

F1 Score 46.25/85.56 18.07/60.77 6.61/38.65

Accuracy 29.96/74.46 10.47/43.66 3.42/23.96

SRNet can detect 10 students out of 11 in each of the downsampled images
while the face detection module without SRNet can detect only a few students
when the image resolution becomes very poor, as seen in the last row of Fig. 4a.
Thus, SRNet helps to detect faces even in very low spatial resolution images and
poorly lit conditions.

We evaluate face detection module on WIDER FACE dataset. Total 292
group images consisting of 2861 faces from this dataset are first downsampled by
a factor of 4 which form the original LR images. These are further downsampled
by factor of 2 and 3 in order to evaluate our results on very low resolution images.
These downsampled images are applied to the proposed SR module which results
in SR images. The LR and the corresponding SR images are passed though
face detection module and quantitative measurements such as precision, recall,
F1 score and accuracy are calculated. Table 2 summarizes these quantitative
measurements calculated from the results of face detection task on WIDER
FACE dataset.
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Table 3. Performance comparison between end-to-end face attendance systems. Here,
highest measure is indicated in bold.

Model Accuracy

Chintalapati et al. [3] 0.95

FaceTime [1] 0.9502

Proposed framework (without SR module) 0.9665

Proposed framework (with SR module) 0.9680

Figure 4b depicts the procedure of updating the attendance sheet on a daily
basis. Here, the first row shows the result of face detection module where faces
of students are detected during the different lectures. The second row displays
the result obtained from face recognition module. It shows the respective roll
numbers of recognized faces with their confidence score. Finally, the attendance
sheet is prepared based on the recognized roll numbers (see third row in Fig. 4b).

We compare the performance of our proposed framework with the other exist-
ing end-to-end face attendance systems. Table 3 lists the accuracy obtained using
the different existing end-to-end face attendance systems. We evaluated the per-
formance of our proposed system on 6000 pairs of LFW faces and it could achieve
an accuracy of 96.80%. Here, one can notice that the proposed framework obtains
better accuracy value when compared to other existing frameworks. We also val-
idated and tested our system on low quality images without super-resolution
and it could obtain an accuracy of 96.65%.

5 Conclusion

In this paper, we propose a novel pipe-lined architecture for an end-to-end real
time face attendance system based on super resolution and CNN based face
detection and recognition. The proposed SRNet is a promising module in this
work and is the main highlight that sets our work apart from other existing face
attendance management systems [1,6,19,19]. Experimental results demonstrate
that the proposed system works well even with low resolution images captured
in real time by a CCTV camera and obtains an accuracy of 96.80% on the
LFW benchmark dataset for evaluation. The marked improvement in the end-
to-end system opens the door for implementing this system as a convenient
biometric approach in any organization. Future work will focus on building a
GUI application that can run on smartphones and can be accessed handily from
anywhere. Hazy images due to motion blur can be enhanced by employing image
deblurring techniques. Also, we are working on optimizing the system even for
a large classroom by further improving the performance of SRNet so that it can
super resolve even tiny faces of back-benchers and can work for any angle of
coverage.
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Abstract. Accurate detection of the iris is a crucial step in several bio-
metric tasks, such as iris recognition and spoofing detection, among oth-
ers. In this paper, we consider the detection task to be the delineation
of the smallest square bounding box that surrounds the iris region. To
overcome the various challenges of the iris detection task, we present
an efficient iris detection method that leverages the SSD (Single Shot
multibox Detector) model. The architecture of SSD is modified to give
a lighter and simpler framework capable of performing fast and accu-
rate detection on the relatively smaller sized iris biometric datasets. Our
method is evaluated on 4 datasets taken from different biometric applica-
tions and from the literature. It is also compared with baseline methods,
such as Daugman’s algorithm, HOG+SVM and YOLO. Experimental
results show that our modified SSD outperforms these other techniques
in terms of speed and accuracy. Moreover, we introduce our own near-
infrared image dataset for iris biometric applications, containing a robust
range of samples in terms of age, gender, contact lens presence, and
lighting conditions. The models are tested on this dataset, and shown
to generalise well. We also release this dataset for use by the scientific
community.

Keywords: Biometrics · Iris detection · SSD

1 Introduction

Iris recognition plays a major role in modern biometry because the muscular
pattern of the iris is unique for all humans, and remains unchanged over time.
Detection of the iris region is the first step in iris-based biometric systems, and
is important in the performance [6] of the entire pipeline. However, it is still
a challenging and time consuming task, with much scope for improvement. As
such, we focus only on iris region detection in this paper.

In most iris recognition systems, the subsequent step after iris localisation
is normalisation of the isolated iris region, with further processing done on this
image [6,11]. Several current methods involve localising the iris of the eye with
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a circular boundary. These algorithms are time and computationally inefficient.
Moreover, many biometric images usually have partial occlusion of the iris region
by either eyelids or eyelashes. This leads to a noisy image, as can be seen in Fig. 1,
leading to a restriction in the overall performance.

Fig. 1. Noisy normalised image due to partial occlusion by lower eyelid, taken from
[11]

However, with the advent of powerful deep learning techniques that have
dominated computer vision problems in recent years, CNN-based methodologies
can be leveraged to overcome the limitations of the traditional techniques sur-
veyed above. CNNs have shown themselves to be excellent at feature extraction,
detection, and recognition [12,14,18], and have already proven their worth in
several biometric applications, including iris-based [16].

These techniques perform well under noisy conditions [10,27], and show
potential for applications where easier iris region detection might be facilitated
by localising the entire iris region, including occlusions and additional noise
such as the pupil. Thus, for detection in this paper, we use the smallest square
bounding box that completely encapsulates the iris. A novel, lighter and faster
framework for detecting the iris region based on the Single Shot Multibox Detec-
tor [15] is proposed. It is evaluated and compared with Daugman’s [6] algo-
rithm, HOG+linear SVM methodology with sliding window approach [5], and
the YOLO [21] network. The proposed framework shows very promising results
and speedy, accurate detection despite challenges like noise, occlusion and spec-
ular reflections.

The rest of this paper is organised as follows: Sect. 2 presents related work,
Sect. 3 summarises the problem, Sect. 4 briefly describes the datasets, Sect. 5
describes the methodology, and Sect. 6 presents the experiments and results.
Finally, Sect. 7 presents the concluding remarks of this paper.

2 Related Works

The most well-established technique for iris recognition in use today was given in
a seminal paper by Daugman [6]. For iris region detection, it defines an integro-
differential operator which fits the circular boundaries of the iris and the pupil
by maximising the radial Gaussian via gradient ascent.
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This method is modified [28] by applying Hough Transform to a gradi-
ent decomposition to approximate the centre of the pupil, while the integro-
differential operator fits the iris boundary. In [23] the inner boundary is localised
by using the Daugman integro-differential operator, and the outer boundary is
modelled using points considered to be the vertices of a triangle inscribed in the
circular boundary. This is a faster and computationally cheaper technique than
Daugman as it does not involve optimisation.

In [19] the Gabor filter is used to roughly identify the pupil centre, and
subsequently, the intero-differential operator localises the iris such that the real
centre is in the near vicinity of the rough position of the pupil centre. In, [29],
Gabor filters are used for feature extraction and generating a descriptor. Then
the proposed probabilistic fuzzy matching scheme is used to compute similarity
scores.

In [20], the pupil region is isolated via application of the kNN algorithm on
formulated function, and the outer iris region is detected by contrast enhance-
ment and thresholding. In [26], authors present an algorithm which uses the
regional properties of the pupil to extract its area and determines the inner iris
contour by iterating points, and then comparing and sorting them. Similarly the
outer iris contour is determined by an iterative searching methodology, using the
pupil centre and approximate radius.

Recently, deep learning based methods have been effectively used in iris recog-
nition systems and related tasks. The authors, in [17], explore the application
of pre-trained CNNs to the problem of iris recognition, and demonstrate the
effectiveness of their off-the-shelf features for the task. In [2], the authors discuss
in detail the network design of a Fully Convolutional Deep Neural Network for
iris segmentation, and provide comprehensive comparisons with other methods.

In [1], the authors investigate iris recognition in a visible light environment,
and propose a CNN-based method for iris segmentation in the presence of envi-
ronmental noise of visible light. In [4], a multi-task CNN is proposed to carry out
iris localisation, and compute the probability of a presentation attack from the
input ocular image. In [24], the authors evaluate baselines for square bounding
box location of the iris, and set a benchmark for deep learning-based detectors
for the problem.

3 Problem Formulation

Even though Iris based biometric systems are popular, lot of constraints exist.
The main challenges faced by current techniques are high computational cost
and time consumption for iris detection, inability to deal with scale change,
poor performance due to occlusion by eyelashes/eyelid, requirement of iris cen-
tring etc. More limitations arise due to ambient conditions such as noise, light
reflections etc. In this paper, we propose a modified SSD model uniquely suited
for addressing these issues, described in the following sections.
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4 Datasets

Four established datasets were chosen from existing biometric applications and
literature for this study, namely: Notre Dame Cosmetic Contact Lenses 2013
(NDCLD13) [8], Notre Dame Contact Lens Detection 2015 (NDCLD15) [7], IIIT
Delhi Contact Lens Iris (IIITD CLI) [13,30] and CASIA-Iris V3 Interval [3]. An
original dataset is also introduced as a part of this study: the IrisDet dataset,
which has also been evaluated in this paper.

The NDCLD13 data set contains near-IR images, taken under two sensors.
4200 images (3000 in training set and 1200 in test set) are under the LG4000 sen-
sor and 900 images (600 in training set and 300 in test set) are under the AD100
sensor. The NDCLD15 is an expanded dataset that comprises 7300 images, with
6000 images in the training set and 1300 images in the test set. The IIITD CLI
dataset contains a total of 6570 near-IR illumination images taken from 101 sub-
jects using either the Cogent iris sensor or the VistaFA2E sensor. 3000 images
comprise the training set (1500 images each corresponding to the two sensors)
with the rest comprising the test set for validation and testing. The CASIA-Iris
V3 Interval dataset contains 2639 iris images, acquired using a camera that uses
circular near-IR LED illumination. All images have a distinctive circular pat-
tern visible in the pupil region. The training set consists of 1500 images, with
the remainder being used as the test set. Figure 2 shows sample images.

IrisDet Dataset : This dataset, created during the course of this study, contains
1893 images of the ocular region, taken from 175 subjects, and acquired under
near-IR illumination. All images were taken using the IriShield MK2120U single
iris camera, and have a resolution of 640×480 pixels (Fig. 3). Although not clas-
sified, subjects satisfy either of three conditions: no contact lenses, clear contact
lenses, and coloured contact lenses. This dataset differs from all others in this
study, in that, about half the images are off-centre, and have been taken in varied
lighting conditions, depending on the usage of a goggle. This adds more diversity
to the training samples, and helps to train more robust models, as demonstrated
in Sect. 5. The training set contains 1300 images, with the remaining 593 being
used as the test set. We make this dataset and its annotations available to the
scientific community.1

5 Proposed Methodology

5.1 Network Framework

The proposed iris detection framework is based on the Single Shot MultiBox
Detector(SSD) [15], which can be broken down into two simple major steps:
extraction of multi-scale feature maps, and application of small convolution fil-
ters for object detection. The starting point is the SSD300 variant, wherein the
1 Print and sign the license agreement available at Saksham Jain’s website. Scan and

email it to both authors, upon which the download link to the dataset will be sent
to the interested researcher.
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Fig. 2. Dataset sample images (left to right, top to bottom) (i)-NDCLD:AD100, (ii)-
NDCLD:LG4000, (iii)-NDCLD15, (iv)-IIITDCLI:Cogent, (v)-IIITDCLI:VistaFA2E,
(vi)-Casia-IrisV3

Fig. 3. (i) Shows an image from the introduced IrisDet and (ii) shows manual annota-
tion (https://github.com/tzutalin/labelIm)

image input resolution is 300 × 300, after which the convolutional layers are
applied to the image. The SSD benefits from transfer learning, and uses the
VGG16 model [25], trained on ImageNet [14], to do so. The architecture of the
network is demonstrated in Fig. 4. The early network layers upto Conv 5 3 form
the base of the network, and have the transferred VGG16 pre-learned weights.
Transfer learning is used because it enables the model to directly obtain the
learned “objectness” [9], from the pre-trained network, and thus allows it to
successfully learn the iris features from smaller-sized training sets, despite noise
or partial occlusion.

The SSD uses multi-scale feature maps for object detection [15], to better
handle variation in location, scale and aspect ratio. Different resolution layers
are better at detecting objects at different scales. This eliminates the need for
the eye to be at a set distance from the camera, except due to inherent camera
constraints. These constraints mean however, that biometric cameras capture
images of the entire ocular region, meaning that the iris size itself is constrained.
This allows for the removal of lower resolution feature maps which are primarily
for detecting large-sized objects. Therefore, in the proposed variant (Fig. 4),
only the 38 × 38, 19 × 19 and 10 × 10 feature maps are taken as the prediction
source layers. This has the added effect of making the model lighter [31], giving
it greater speed without much loss of accuracy for this application. All feature

https://github.com/tzutalin/labelIm
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Fig. 4. Architecture of the proposed model

maps contain a certain number of default bounding boxes (discussed in Sect. 5.2)
to start off, and bounding box predictions based on them are made.

The objectness scores [9] and the bounding box location offsets (offset
between predicted and default boxes) are determined by applying the object-
ness and location filters respectively to the feature maps. The default boxes are
matched to the groundtruth using objectness, and the model is further modified
and simplified by a logistic regression layer to binarise the objectness scores.

5.2 Default Bounding Boxes

The HOG+SVM [5] pipeline uses a sliding window strategy for detection, which
is limited in terms of speed and is computational cost. Use of region proposals
(eg. Faster R-CNN) [22] is much better in terms of both, but prone to mistaking
background patches as objects due to inability to contextualise the whole picture.
YOLO [21] overcomes this by working in a global context. However YOLO itself
has limitations, in that it is spatially constrained on boundary box predictions
[21] and somewhat struggles when different scales are involved. SSD, however,
overcomes all of these limitations, since it “sees” the whole picture, and adds
several feature layers after the base network, after which manually pre-selected
bounding boxes are used, as per the requirements of the application.

In the proposed approach, the three feature maps are broken down into a grid
formed by 1 × 1 cells, with the default bounding boxes centred on these cells.
There is a single prediction per default box, to keep the number of predictions
manageable. These centres are given by [15]:

(cxdef , cydef ) = (
i + 0.5
|sn| ,

j + 0.5
|sn| )

where sn is the size of the nth feature map, and i, j ∈ [0, 1, 2, 3....|sn|). i and j
represent the indexes for the default box and matched groundtruth box, respec-
tively. The bounding box location offset, ie. offsets of the predicted bounding
boxes to the default boxes for each cell (discussed in Sect. 5.3), is used for box
location in place of a global coordinate system.
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According to the defined problem, the iris bounding box must be the smallest
square bounding the iris. Thus, the aspect ratio of the default bounding boxes
is chosen as 1, with the side length of the square determined by the scales,
sck ∈ {0.1, 0.18, 0.33} selected as per the requirement [15], from the feature map
layers. An extra default box with scale, sc =

√
sck · sck+1 is also added for each

cell.

5.3 Matching the Default Boxes to the Groundtruth

This step is required so that the groundtruth box can be assigned to a specific
default box with which it has the highest IoU (Intersection over Union) value. If
the two have a higher IoU value than 0.5 (taken as the threshold in this paper),
the default boundary box is considered to be a positive match (the box label is
set to 1) otherwise it is a negative match (the box label for is set to 0), due to
the logistic decision boundary. Simultaneously, the actual objectness score, and
the location offset are also recorded. The objectness score, p always lies between
0 and 1, and since the detection task is solved involving a logistic function layer,
the bounding box label x is either 0 or 1. The bounding box location offset is
given [15] by:

gcxj =
cxgt − cxdef

adef

gcyj =
cygt − cydef

adef

a = log(
agt

adef
)

where (cx, cy) is the matched bounding box centre, j means the same as above,
and a is the side of the box. The indexes def and gt respectively denote the
default bounding box and groundtruth bounding box.

In case there is conflict where two default boxes are matched with the same
groundtruth, the one with the higher IoU value is chosen. Once the positive
matches are finalised, the calculated cost function (described in Sect. 5.4) for the
corresponding predicted bounding boxes is minimised.

It is natural that far more negative matches are present than positive ones.
This can lead to unstable training, due to the resulting class imbalance. Thus,
hard negative mining is carried out [15], keeping the ratio of positive matches
to negatives at 1:3, for stabler training. This way, the class imbalance can be
taken advantage of by having the model learn which predictions are poor. Thus,
negative samples during the training phase have a positive impact on actual
performance. This is also an added advantage over YOLO, since incorrect local-
isation is described to be the main source of errors for it [21].

5.4 Loss Function

The loss function or the training objective is a weighted combination of the
individual loss functions for the confidence of class prediction, ie. the objectness
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score, and the bounding box location offsets. The confidence loss can be described
by:

Lconf = −
N∑

i∈Pos

xi log(pi) −
N∑

j∈Neg

(1 − xj) log(1 − pj)

where, p, x, i, and j hold the same meanings as in the above sections. The
location loss can be described by:

Lloc =
N∑

i∈Pos

∑

m∈(cx,cy,a)

xmSmoothL1(lmi − gmj )

The location loss is calculated using the Smooth L1 loss, ie. the absolute value
loss which is less sensitive to anomalies than L2. Here, l denotes the predicted
box offsets, and g denotes the matched groundtruth box parameters. The final
loss function [15] is given bye:

Lnet =
1
N

(αLloc + Lconf )

The value of α is determined via cross validation, and is taken as 1 here.

6 Experiments and Results

In this paper, we evaluate the proposed SSD-based framework, and compare it
with the well-established Daugman [6] technique2, as well as the HOG+SVM and
YOLO baselines described in [24]. The implementation of our methodology uses
the popular Keras library and is done in python. The experiments are performed
on the five datasets mentioned in Sect. 3, on a single Nvidia GeForce GTX 960M
GPU accelerated system.

Fig. 5. Positive (green bounding boxes) and Negative (red bonding boxes) Results
(Color figure online)

2 Implementation: https://github.com/Qingbao/iris.

https://github.com/Qingbao/iris
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The training and testing splits for the datasets are given in Table 1. We use
four standard metrics, namely Accuracy, Precision, Recall, and Intersection over
Union (IoU), for the evaluation.

Table 1. Train/test splits for the five datasets

Dataset training/
test split

NDCLD13 NDCLD15 IIIT CLI Casia IrisDet

AD100 LG4000 VistaFA2E Cogent IrisV3

Training set 600 3000 6000 1500 1500 1500 1300

Test set 300 1200 1300 1530 2040 1139 593

Since we are not using any large datasets, we utilise data augmentation such
as random expansion, flipping and random cropping the images for improved
performance. The proposed method makes use of an Non-Maximum Suppression
threshold of 0.5, and only those iris bounding squares are accepted, which have
a greater than 0.5 objectness score.

Examples of the detection results obtained with our method are shown in
Fig. 5. Most failure cases seem to occur in images where the iris is too close to
the image border. We perform four experiments, as described below:

Individually Trained and Tested : In this experiment, all models are trained and
tested on images corresponding to the same sensor with the Daugman method
being applied to the test sets. The proposed approach gave the best results in all
the metrics as well as lesser processing time than the other methods (with only
YOLO being the faster). The state of the art results obtained are demonstrated
in Table 2.

Collectively Trained and Tested : In this experiment, the models are trained on
a combined training set taken from all the datasets, and consequently tested
on a similarly combined test set, so as to check the ability of the methods to
generalise when more varied training samples are provided. Once again, the
proposed scheme outstrips the other methods across all metrics (with YOLO
being the closest in performance), showing more robustness. Table 3 shows the
results obtained, and Fig. 6 portrays the precision vs recall curve for both our
proposed SSD variant and YOLO, and highlights the superiority of the proposed
scheme.

Trained on Four, Tested on One: In this experiment, the models are trained on
a combined training set (containing 11800 images) taken from any four datasets,
and subsequently tested on a single test set taken separately from the remaining
dataset, one at a time. Due to much greater variation and amount of training
samples, all models generalise well, with our proposed method outperforming the
others, as shown in Table 4. However, when tested against the IrisDet dataset,
the values across all metrics are relatively lower, which may be attributed to the
fact that all other datasets have a very low representation of images in which
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Table 2. Trained and tested on same sensor

Metric Method NDCLD13 NDCLD15 IIIT CLI Casia IrisDet

AD100 LG4000 VistaFA2E Cogent IrisV3

Accuracy Daugman 94.28 97.53 96.67 95.38 96.34 97.38 94.74

HOG+SVM 96.57 96.77 96.83 97.93 96.61 92.23 96.16

YOLO 98.39 98.68 98.48 98.28 98.19 97.21 96.60

Proposed 99.31 99.41 99.26 99.62 99.33 98.49 98.26

Precision Daugman 82.49 92.15 89.80 89.34 92.82 96.23 90.06

HOG+SVM 94.35 92.72 91.18 92.22 87.99 88.48 86.58

YOLO 95.12 97.83 95.76 93.71 95.88 96.02 92.65

Proposed 97.47 99.17 97.22 95.23 97.02 98.19 94.60

Recall Daugman 84.60 93.41 91.63 85.49 86.24 96.38 95.92

HOG+SVM 92.39 96.72 96.04 94.51 96.44 96.97 95.13

YOLO 98.78 97.81 97.28 97.85 96.02 97.79 95.67

Proposed 99.56 98.26 97.99 98.42 97.51 98.49 96.50

IoU Daugman 80.41 89.67 85.34 80.82 82.61 90.95 90.12

HOG+SVM 87.52 87.76 86.85 87.23 84.76 86.17 85.16

YOLO 93.84 95.66 93.25 91.76 91.84 91.24 90.73

Proposed 94.25 97.21 94.98 93.67 93.10 92.36 92.04

Table 3. Collectively trained and tested

Method Training set Test set Accuracy Precision Recall IoU

Daugman – All five 86.54 86.28 94.04 81.09

HOG+SVM All five All five 89.67 90.16 92.71 91.14

YOLO All five All five 98.32 95.20 97.13 92.54

Proposed All five All five 99.27 96.67 98.91 95.52

the iris is significantly off-centre. This lowers the robustness of such a model in
a potential single iris biometric application where proper centering may not be
a guarantee.

Trained on One, Tested on Four : In this experiment, we see how well the trained
models generalise across datasets. This means that the models are trained on
separate training sets consisting of 1800 randomly selected images from each of
the five datasets (one at a time), and are subsequently tested on a single test set
comprising 600 testing samples from the remaining datasets (each dataset having
equal representation). For all methods, there is a fall in the values of each metric,
which may be attributed to the differences in the way the images were taken,
as well as the inherent differences in the camera sensors and environments. The
results are presented in Table 5, and show that while all the metric values are
higher under our proposed methodology, they are also relatively higher across all
metrics when trained on the IrisDet dataset. Thus demonstrating that IrisDet
allows for a higher generalisation capability regardless of the model.
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Fig. 6. Precision vs Recall curve comparison for our SSD-based model and YOLO

Table 4. Trained on four datasets and tested on the remaining one

Method Training set Test set Accuracy Precision Recall IoU

HOG+SVM Others NDCLD13 92.16 94.26 90.98 92.64

Others NDCLD15 92.16 93.12 91.60 94.25

Others IIITDCLI 93.45 93.62 94.20 93.56

Others CasiaV3 89.96 88.62 89.23 90.13

Others IrisDet 94.23 95.32 93.69 94.36

YOLO Others NDCLD13 97.68 97.15 98.32 96.98

Others NDCLD15 96.85 97.23 96.16 98.32

Others IIITDCLI 95.67 95.50 96.68 95.63

Others CasiaV3 96.85 98.23 97.96 95.64

Others IrisDet 94.13 94.51 93.65 95.67

Proposed Others NDCLD13 99.76 98.34 98.68 97.13

Others NDCLD15 99.27 98.58 97.24 96.86

Others IIITDCLI 99.38 98.95 97.78 96.67

Others CasiaV3 98.98 98.85 97.45 97.17

Others IrisDet 99.03 98.15 96.89 96.06

For all four metrics, our SSD-based method yields the best results. The pro-
cessing speed of the proposed method (0.11 s per frame) is also much faster
than that of Daugman’s (5.20 s per frame) and HOG+SVM (6.72 s per frame),
although it loses out to the YOLO detector (0.043 s per frame). However, if a
more powerful GPU is used, the detection speed can be increased much further.
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Table 5. Trained on a Single Dataset and Tested on Collection of the Remaining Four

Method Training set Test set Accuracy Precision Recall IoU

HOG+SVM NDCLD13 Others 86.65 85.94 87.25 83.16

NDCLD15 Others 88.16 87.64 89.32 86.00

IIITDCLI Others 89.38 90.42 91.03 87.97

CasiaV3 Others 82.67 82.88 83.26 80.01

IrisDet Others 90.67 91.08 89.89 83.16

YOLO NDCLD13 Others 94.64 94.23 93.46 91.09

NDCLD15 Others 94.89 95.08 93.61 90.92

IIITDCLI Others 93.64 93.41 92.63 91.39

CasiaV3 Others 91.08 90.86 90.31 89.84

IrisDet Others 94.36 94.03 92.86 91.81

Proposed NDCLD13 Others 95.75 95.86 95.33 93.14

NDCLD15 Others 96.95 95.83 96.22 93.10

IIITDCLI Others 97.08 95.90 96.04 93.63

CasiaV3 Others 95.66 94.84 94.13 92.86

IrisDet Others 97.87 96.69 96.63 94.14

7 Conclusions

In this paper, we adapt the SSD model for the detection of the iris region,
which overcomes several limitations of current techniques such as high computa-
tional cost for iris location, and inability to deal with noise, specular reflections,
change in scale, poor performance due to occlusion by eyelashes/eyelid, etc. The
proposed SSD-based model shows state-of-the-art results, and demonstrates its
superiority over existing techniques. Additionally, we introduce and evaluate the
IrisDet dataset, which provides the most robust training response. The model,
trained on IrisDet, is capable of iris detection on varying scales of ocular images
(depending on the eye to camera distance), and also handles off-centre irises. The
model shows a lot of potential for extending it to end-to end iris recognition.
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Abstract. Detection of falls of elderly people is a trivial yet an immedi-
ate problem due to the growing age of the population. This demands the
need for autonomous self care systems for providing a quick assistance.
The three basic approaches used for fall detection include non-invasive
vision based devices, ambient based devices and wearable devices. The
paper tries to improve upon the state-of-art of accuracy to 98% using
vision based system. This was achieved through transfer learning by
extending the idea of action recognition using dynamic images which
is a standard RGB image containing the appearance and dynamics of
a whole video sequence. Such information is vital in dealing with appli-
cations like human action recognition. Since we are also looking for a
cheap and scalable solution, the use of a 360◦ camera seems reasonable
and reliable. The top view provided by this camera gives a better per-
spective than any other alternatives by giving an un-obstructive view of
the subjects.

Keywords: Fall detection · Dynamic images · Convolutional Neural
Networks

1 Introduction

Physical weakness is a major concern for elderly leading to high frequency of
falls impacting their health. According to Ambrose et al. [1], falls are one of the
major causes of mortality in old adults. One out of three adults aging 65 or above
experience high incidence of falls. The impact of these falls is a major concern
for health care systems. These falls might not only lead to severe injuries but
also might disturb the mental health such as fear of falling, loss of independence
etc. Moreover, the costs associated with it are not negligible: countries like the
United States and the United Kingdom, with very different health care systems,
spent US$23.3 and US$1.6 billion, respectively, in 2008 [7]. Taking into account
the growth of aging population, these expenditures are expected to approach
US$55 billion by 2020.
c© Springer Nature Singapore Pte Ltd. 2019
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Computer Vision techniques have gained an edge over the other techniques
due to the advances in deep learning techniques and availability of data in abun-
dance. Classification of daily activities using these concepts has become an easier
task. Human Fall Detection is one such application which has great potential in
helping elderly people and people with special needs.

The growth of deep learning has had a major impact on computer vision
thereby improving the results of many tasks, such as segmentation and object
recognition [14]. In this paper, we present a novel approach which takes advan-
tage of Convolutional Neural Networks (CNN) for fall detection (Sect. 3). More
precisely, we introduce a CNN that learns how to detect falls from dynamic
images (a concept introduced in [5]). Fall datasets are typically of small size.
Therefore we take advantage of CNNs by sequentially training the model on
Imagenet dataset [8] followed by UCF101 action dataset [23], following the app-
roach of [25]. This is then fine-tuned on our custom dataset for the two class
problem of fall detection applying transfer learning.

The rest of the paper is organized as follows. Section 2 describes the related
work in the domain of fall detection. Section 3 hovers over the concept of dynamic
images, explains the neural network architecture used and the usage of transfer
leaning for fine-tuning as done in the paper. Section 4 explains the experiments
and results performed and Sect. 5 gives the conclusion of the paper.

2 Related Work

The literature of fall detection is divided between sensor-based and vision-based
approaches. The sensor-based fall detection trivially use accelerometers. These
devices provide acceleration measures such as vertical acceleration in the case of
falls, which are very different compared to daily activities, allowing us to distin-
guish them. Vallejo et al. [24] and Sengto and Leauhatong [22] proposed feeding
a Multilayer Perceptron (MLP), the data of a 3-axis accelerometer (accelera-
tion values in x, y, and z-axis). Kwolek and Kepski [13] used a Kinect camera
to obtain an Inertial Measurement Unit (IMU) combined with the depth maps.
They also used a Support Vector Machine (SVM) classifier, feeding it the Kinect
and the data from the IMU. Approaches like the latter and [12] combined sensors
with vision techniques. However, they used vision-based solutions only to verify
the prediction of the sensor-based approach.

The purely vision-based approaches focus on the frames of videos to detect
falls. Computer vision techniques extract meaningful features such as silhouettes
or bounding boxes from the frames to facilitate detection. Some solutions use
those features as input for a classifier (e.g., Gaussian Mixture Model (GMM),
SVM, and MLP) to automatically detect a fall. Tracking systems are also used
extensively; for example, Lee and Mihailidis [15] applied tracking techniques
in a close environment to detect falls. They used connected-components label-
ing to compute the silhouette of a person and extracting features such as the
spatial orientation of the center of the silhouette or its geometric orientation.
This information helps them to detect positions and also falls. Mubashir et al.
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[19] tracked the person’s head to improve their base results using a multiframe
Gaussian classifier, which was fed with the direction of the principal compo-
nent and the variance ratio of the silhouette. Rougier et al. [21] suggested using
silhouettes as well, which is a common strategy in the literature. Applying a
matching system along the video to track the deformation of the silhouette,
they analyzed the shape of the body and finally obtained a result with a GMM.
Another common technique is computing the bounding boxes of objects to iden-
tify a person within it and then detect for a fall using the extracted features
(see, for instance, [16,18]). Many solutions are based on supervised learning,
that is, extracting lots of features from raw images and using a classifier to learn
a decision from labeled data. Supervised learning is the most sought approach
for extracting features from raw images and using the labeled data. This is the
case, for example, of Charfi et al. [6], who extracted 14 features, applied some
transformations (the first and second derivatives, the Fourier transform, and the
Wavelet transform), and used an SVM for classification. Harrou et al. [11] used
Multivariate Exponentially Weighted Moving Average (MEWMA) charts.

Vision-based fall detection systems can also make use of 3D structures by
means of multiple cameras or used powerful depth sensors to extract depth maps.
The Kinect camera is very popular given its low price and high performance.
Auvinet et al. [2] built a 3D silhouette to analyze the volume distribution along
the vertical axis by making use of a kinect camera. Such a camera was also
used by Gasparrini et al. [10] to extract 3D features and then use a tracking
system to detect the falls. Diraco et al. [9] used depth maps to compute 3D
features. Planinc and Kampel [20] used kinect software which provides body
joints to obtain the orientation of the major axis on their position. Mastorakis
and Makris [17] applied 3D bounding boxes extending the idea of 2D bounding
boxes. Other methods include considering videos as 3D volumes instead of 2D
frames considering the temporality as the third dimension. The above methods
took advantage of the 3D information obtained from the camera systems which
may have drawbacks such as multiple cameras with depth sensors might be
difficult to deploy. A 2D system is an ideal option when one looks into the
deployment perspective as they are cheaper.

The current existing video representations either considers videos as a stack
of still images or as a transition between similar frames. Optical flows and
motion history images are quite famous when considering such representations.
Approaches such as optical flow, where there is an estimation of optical flow
between successive frames and summarization of motion between principle com-
ponents, suffer from the lighting conditions of the environment. Dynamic Images
out-perform these methods when such scenarios are considered [5].

Considering CNN for such detection techniques, can be attributed to the fact
that CNNs are able to capture short term temporal features which is the general
requirement for detecting falls. Eventhough RNNs like LSTM, which store both
long and short term memory (patterns) and parse the video frames sequentially
to get frame level information, they are computationally intensive and these
methods do not suit our task when compared to CNNs. The essence of CNNs
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was to extract out the features such as local motion patterns, which otherwise
can only be extracted using hand-crafted methods. The idea of rank pooling,
on which the dynamic images are based, is trivially a hand-crafted technique.
Nevertheless, it paves a way for faster and easier processing of data, as multiple
frames can be converged into a single dynamic image to process which otherwise
would have required every frame to be processed.

3 Materials and Methods

3.1 Dynamic Images

Dynamic Image is a form of 2D representation for a video where multiple frames
are overlaid on top of each other to segregate the static background from the
foreground motion. This is done through rank pooling where each frame is associ-
ated with a weight as explained in [5]. Since data exists in 2D format as a result
of dynamic images, we can make use of two dimensional CNN architectures
instead of computation heavy three dimensional CNNs. This helps in reducing
the computational requirements drastically and can easily be used in real time
embedded systems.

The rank pooling performed in order to generate a dynamic image is done
through assigning weights to each particular frame of a video. This requires
a model to be trained for acquiring the above mentioned weights, which is a
tedious and time consuming process. The need for accurate optimization for these
weights has the disadvantage of computing the derivative for backpropagation.
Particularly in case of CNNs, efficient computation is required along with end-to-
end learning for training on large datasets. Hence, we have opted for approximate
rank pooling, where these weights are approximated through a mathematical
expression generalizing gradient based optimization. This way, the computation
required for generating a dynamic image was drastically improved, with no loss
in the performance. The derivation of the approximate rank pooling can be
observed as below (Fig. 1):

Let the frames of the video be represented as f1, f2, ..., fT . Let the feature
vector extracted from each frame in the video be ϕ(ft). Let At = 1/t

∑T
τ=1 ϕ(fτ )

be the time average of these feature vectors of all the frames in the video. A
ranking function associates to each time t a weight w(t|v) = 〈v,At〉, v is the
vector of parameters. Learning v is a convex optimization problem formulated
as follows:

v∗ = ρ(f1, ..., fT ;ϕ) = argminvE(v),

E(v) =
λ

2
||v||2 +

2
T (T − 1)

∑

q>t

max(0, 1 − w(q|v) + w(t|v)). (1)



Human Fall Detection Using Dynamic Images 69

Fig. 1. Dynamic image obtained from a set of frames

The approximate rank pooling derivation is done by considering the first step
of gradient optimization of the above Eq. (1), starting with v =

−→
0 , the first

approximated solution obtained by gradient descent v∗ =
−→
0 − η∇E(v)|

v=
−→
0

∝
−∇E(v)|

v=
−→
0
, for any η > 0, where

∇E(
−→
0 ) ∝

∑

q>t

∇max(0, 1 − w(q|v) + w(t|v))|
v=

−→
0

=
∑

q>t

∇〈v,At − Aq〉 =
∑

q>t

At − Aq.

v∗ can be further expanded as

v∗ ∝
∑

q>t

Aq − At =
T∑

t=1

ctAt
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where ct are scalar coefficients. Expanding summation leads to
∑

q>t

Aq − At = (A2 − A1)

+ (A3 − A2) + (A3 − A1)
.

.

.

+ (AT − A1) + (AT − A2) + ... + (AT − AT−1)

Observing the above equation we can derive ct as

ct = 2t − T − 1 (2)

v∗ can be further broken down as,

v∗ ∝ ctAt = αtϕ(ft)

where αt coefficients are given by

αt = 2(T − t + 1) − (T + 1)(HT − Ht−1), (3)

where Ht =
∑t

i=1
1
i is the t-th Harmonic number and H0 = 0. Rank pooling

reduces to

ρ̂(f1, f2, .., fT ;ϕ) =
T∑

t=1

αtϕ(ft). (4)

So the dynamic image computation reduces to multiplying each of the frame of
the video extracted an multiplying them with αt. We can approximate αt to a
linear in t as follows ignoring the harmonic number part.

αt = 2t − T − 1

3.2 Neural Network Architecture

Resnet50 model which was trained on Imagenet dataset was taken as the base
model for training on UCF action recognition dataset, where few layers like
temporal pooling and app-rank pooling were added to incorporate the concept
of dynamic images. The obtained model is an 101-class action recognition model.
This model is used as our base model for training on the fall dataset which is a
binary classification task.

Two different approaches were taken for designing the network architecture
namely Single Dynamic Image (SI) and Multi Dynamic Image (MDI). In case of
SI, the entire video is pooled into a single dynamic image which is then sent into
a series of convolution layers before sending into the fully connected layers. They
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are then passed through a classifier layer. In case of MDI, a video is broken down
into a small set of frames where each set is rank pooled for a dynamic image.
Each dynamic image is sent through a series of convolution layers after which
they are temporally pooled. This is then followed by a further set of convolutions
and a classifier layer. These are explained in the Figs. 2 and 3.

Fig. 2. Single dynamic image

Fig. 3. Multi dynamic image
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The convolution block as can be seen in the Figs. 2 and 3, typically consists
of a convolution layer, a BatchNorm layer, a max-pool layer for pooling, and a
ReLU activation function layer. These layers extract out various features required
for proper training which is the general case when convolutional neural networks
are considered. Also a drop out layer with a drop-out value of 0.5 was used
while training for prevention of over-fitting. Adam Optimizer was used as the
optimizer.

3.3 Finetuning

Typically deep learning techniques requires immense data. Since we are dealing
with real world problem, we lack significant amount of data. Therefore we used
transfer learning in this scenario to make use of weights and biases of pre-trained
model for action recognition. This pre-trained model, which was output of fine-
tuning resnet50 (pre-trained on Imagenet database) on UCF101 dataset, was
also an application of transfer learning. Action Recognition and Fall Detection
are related domains. Therefore it makes sense to apply transfer learning as it will
converge faster while training. Figure 4 represents the transfer learning pipeline
that has been demonstrated in this paper.

3.4 Dataset Details

The dataset used for performing training and testing was a custom dataset
named Fall360 dataset. This dataset is introduced for two scenarios of “fall”
and “activities of daily living” in the indoor environment. A roof-mounted omni-
directional camera with a lens of 360◦ field of view was used for the recordings.
It can comprehensively cover the entire area with no blind spots that makes it
a dependable approach. Its inclusion reduces the setup complexity, maintenance
cost and latency. There is no publicly available fall detection dataset recorded
by a 360-degree camera lens to the best of our knowledge. It is the first of its
kind. A Balanced dataset for both the scenarios of fall and activity of daily liv-
ing (ADL) is created. The fall scenario includes five most occurring fall types for
an indoor environment, that are front fall, back fall, side fall, imbalanc and fall
on standing from chair. Other scenario of activity of daily living also contains
five most common activities of daily routine like sitting on a chair, lying down,
picking an object, squatting and walking. Liberty has been given to the individ-
uals to act freely and in their natural way. With 22 volunteers, approximately
1300 videos are recorded for each scenario with variable illumination conditions
including natural light at daytime.

Algorithms like LSTM, CNN etc. require predefined input sequence, there-
fore, sub-sampling of videos is needed to a fixed duration. After several experi-
ments, 5 s was taken as the optimal duration that is sufficient to cover pre-activity
transition, activity and post-activity transition from both the scenarios. Further
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Fig. 4. Transfer learning pipeline

processing of the video clips has been done by estimating motion descriptors like
Lucas-Kanade optical flow, Horn-Schunck optical flow, Farneback optical flow
and frame differencing. To extend the dataset activities performed in low light
conditions captured by the camera’s IR night vision were included. The simu-
lated environment was made more realistic by adding more background objects
in the room.

The entire dataset was divided into a 75–25% ratio for train split and test
split. To account for more reliability three splits were made with test splits
having no common data points. The data set consists of videos of 22 different
persons each having around 60 videos for both fall and non fall. First 25% of
each person’s videos of both fall and non-fall were considered for the test-set
and the remaining for the train-set for the case of split-1. i.e., for the case of fall,
if person-1 has 60 videos in split-1, first 15 videos of him falling will be in the
test-set and the remaining 45 in the train-set. For the case of split-2, his 16th to
30th i.e., the next 25%, were considered for the test-set and remaining for the
train-set. Similarly the next 25%, i.e., 31st to 45th in test-set were considered
for the subsequent split-3.

The camera that was used for this dataset preparation was “D3D FishEye
Smart Camera, 360◦ Panoramic Camera”. This camera has a better shell life
compared to any other camera. Tables 1 and 2 describe the construction of the
data-set using this camera. Figure 5 show cases some of the frames taken from
one of the scenario SF (sideways falling action) of one of the 22 persons.
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Table 1. Types of the fall, taken into the Fall Scenario of Fall360 dataset

S. no Fall description Name of fall Fall code

1 Fall anteriorly while walking Front fall FF

2 Fall posteriorly while walking Back fall BF

3 Fall sideways while walking Side fall SF

4 Fall due to loss of balance while
walking

Imbalance IF

5 Fall while trying to get up from chair
or after getting up from chair

Fall on standing from
chair

CF

Fig. 5. Figure explaining the scenario of SF mentioned in table1

Table 2. Types of the ADL, taken into the Nonfall Scenario of Fall360 dataset

S. no Fall description Name of fall Fall code

1 Walking towards an office chair and sitting on it Sitting on chair SC

2 Lying down on floor Lying down LD

3 Walking towards the object and picking it up Picking an object PO

4 Sitting on floor cross legged/straight legged/on knees Squatting SQ

5 Walk with different pace Walking WK

3.5 Implementation Details

We used MATLAB-2017a as the platform, using NVidia GTX-1080 GPU. The
environment utilized had CUDA-8 library for using the GPU with gcc-4.9 ver-
sion. We used MatConvNet, library for implementing the base CNN architec-
ture, and modified the classification layer and the base model considered for
fine-tuning. The code which we followed for the sake of training can be found at
[3]. We have changed the data-set which the training model takes to our Fall360
dataset along with the changes mentioned above. The base models which we used
for training can be found at [4]. Although we tried with multiple base models,
best accuracy was achieved considering the model, resnext50-rgb-arpool-split1 at
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[4] which is the resnet50 model trained for action recognition (also convergence
was fast for this model).

4 Experiments and Results

The dataset was made into three different splits each for training and testing to
match the distribution followed by UCF101 dataset for action recognition. The
splits made were ensured of having no common data points between the training
and testing lists. Two different approaches, SI and MDI were used in the paper
as mentioned in Sect. 3.1. Therefore six different experiments for training on fall
detection dataset were performed and results of testing can viewed in tables,
Tables 3 and 4.

As seen in the two tables, Tables 3 and 4, Single Dynamic Image is having
more accuracy than the Multi Dynamic image case which can be attributed to
the fact that window size in the case of MDI can lead to a skewed distribution of
the action over multiple dynamic images. This phenomenon can lead to misclas-
sification of the actions and hence the accuracy. Size of the window considered
plays a crucial role in case of MDI. As MDI is more a powerful method, optimal
window size is to be considered which should be in proportion to the length of
fall.

Table 3. Results for accuracies of single dynamic image

Fall accuracy Non-fall accuracy Mean accuracy

Split-1 98.8 97.1 97.9

Split-2 98.5 98.8 98.7

Split-3 98.8 95.6 97.2

Table 4. Results for accuracies of multi dynamic image

Fall accuracy Non-fall accuracy Mean accuracy

Split-1 97.9 97.4 97.6

Split-2 95.8 98.8 97.3

Split-3 99.1 96.5 97.8

4.1 Comparison with 3DCNN and CNN-LSTM

In another not yet published work, the same dataset was tested for fall detec-
tion using 3DCNN and LSTM models. The experiment results showed that the
3DCNN model trained and validated for the same videos provide 95.3% accuracy
on the test set. For the LSTM model, 2DCNN was used for feature extraction
and LSTM for fall detection. This model also suits well to fall event detection
with 91.62% accuracy. Despite both the methods giving accuracies over 90%,
our method out-performed these.
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4.2 Real Time Analysis

For real time analysis, we considered the camera, Logitech C930e Full HD Web-
cam, whose frame rate was 30 fps. We considered an interval of 30 s, where 900
frames (30 fps × 30 s) were processed.

The total time taken to classify this 30 s interval was 35.518 s.
Our window size was 30 frames, i.e., there would be an inference for every

30 frames (and hence 30 epochs). For each epoch the time taken turned out to
be 1.184 s (35.518/30).

As it takes 1 s for extracting these 30 frames (as camera specification is
30 fps), 0.184 s is the time taken to classify these 30 frames. For this we assumed
the multi-dynamic image (dicnn) model.

5 Conclusion

In this paper, we have successfully applied transfer learning techniques from
action recognition to fall detection which achieved an accuracy around 98% on
our custom fall database, which is better than the current state-of-art accuracy.
The main objective of this paper is to create a vision based solution to detect
human fall in an constrained environment of a room. The static nature of a room
environment boosts dynamic image technique to extract more foreground details
compared other forms of feature extraction there by focusing more on the action
(fall) achieving better accuracies. To the best of our knowledge, this is the first
time the concept of dynamic images was used in the field of fall detection.

The general tendency of vision based fall detection techniques is to take each
frame of a video as independent entity and loose the temporality associated
with it. Our paper overcomes this limitation by making use of dynamic images
as input to the network as mentioned in the Sect. 3.2.

We believe that the above mentioned vision based solution is an easy to
deploy and reliable solution which helps in creating better and safer environments
for elderly.
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Abstract. In this paper, we propose a geometric feature and frame seg-
mentation based approach for video summarization. Video summariza-
tion aims to generate a summarized video with all the salient activities of
the input video. We propose to retain the salient frames towards genera-
tion of video summary. We detect saliency in foreground and background
of the image separately. We propose to model the image as MRF (Markov
Random Field) and use MAP (Maximum a-posteriori) as final solution
to segment the image into foreground and background. The salient frame
is defined by the variation in feature descriptors using the geometric fea-
tures. We propose to combine the probabilities of foreground and back-
ground segments being salient using DSCR (Dempster Shafer Combi-
nation Rule). We consider the summarized video as a combination of
salient frames for a user defined time. We demonstrate the results using
several videos in BL-7F dataset and compare the same with state of
art techniques using retention ratio and condensation ratio as quality
parameters.

Keywords: Video summarization · Graph cut · Geometric features ·
Dempster Shafer Combination Rule (DSCR)

1 Introduction

In this paper, we propose a feature based approach for video summarization.
Video summarization aims to generate a summarized video with all the salient
activities of the input video. We propose to retain the salient frames towards
generation of video summary. Due to huge content available in the internet in
form of videos, searching the most appropriate and effective information is time
consuming for the user. Video summarization is the method to generate a short
video containing the most effective frames of the available video. Video summa-
rization finds its applications in video surveillance systems [3,24,26] in which
computer vision algorithms, such as tracking, behavior analysis, and object seg-
mentation, are integrated in cameras and/or servers. It also finds its applications
in movie trailer generation, sport summary generation etc.
c© Springer Nature Singapore Pte Ltd. 2019
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Many researchers have worked on video summarization. Objects and people
within a video play vital role for video summarization [18]. This is because, we
generally represent the events in a video by people/objects and their activities.
Moreover, people/objects in the video have the high-level of the semantic per-
ception. Also, along with this, humans usually are more attentive towards the
moving objects in a video [6,8]. However, researchers consider the problem of
extracting the moving objects from a video that has changes in illumination,
high noise, bad contrast and multimodal environment as a challenging problem
[2,22]. However, in the videos with low contrast, the edges of objects are given
higher prominence [22]. Also, this method is further sensitive to the variation in
the shape and position of the object.

To resolve these problems, we can apply the theory of edge-segments (i.e.
groups of connected sequential edge pixels) [8]. But, [4,6] claims that the edge-
segments based methods fail when the video has shape matching errors or local
shape distortion. The state of the art methods for object detection use the
ellipses or circles to represent curve fragments [6]. Even then, the problem per-
sists if the video has low illumination [6]. Also, we observe that in real world, an
object can take up any shapes other than circular, elliptical, parabolic, or hyper-
bolic curve. Thus, the object detection methods that approximate the shapes to
the primitive structures fail in such circumstances. However, we can easily fit a
conic part for simple objects.

In [10], authors use a set of similar objects to build a model for summariza-
tion. Authors in [16] present a part-based object movement framework. Authors
in [14] apply object bank and object-like windows to extract the objects and then
they perform story based video summarization. Authors in [5] propose a com-
plementary background model. Pixel-based motion energy and edge features are
combined in [23] for summarization. Authors in [12] propose a background sub-
traction method to detect foreground objects for video summarization. Authors
in [13] modify the previous idea for Aggregated Channel Features (ACF) detec-
tion and a background subtraction technique for object detection.

In [21], authors propose a video summarization technique by merging three
multi-modal human visual sensitive features, namely, motion information, fore-
ground objects, and visual saliency.

Authors in [15] propose a min-cut based approach for generating storyboard.
Also authors in [15] modify the previous idea and propose a Bayesian foraging
technique for objects and their activities detection to summarize a video. The
grid background model is applied in [7]. Authors of [17], deploy a key-point
matching technique for video segmentation. Authors in [8] apply Spatio-temporal
slices to select the states of the object motion.

Authors in [9] propose a learning based approach for video summarization.
They describe the Objects in a video by Histogram of Optical Flow Orientations
and then apply a SVM based classifier. Authors in [19] propose unsupervised
framework via joint embedding and sparse representative selection for video
summarization. The objective function is two-stream in nature. The first objec-
tive is to capture multi-view correlations using an embedding, that assists in



Video Summarization 81

extracting a diverse set of representatives and the second is to use L−2 norm to
model the sparsity while selecting representative shots for the summary. Authors
in [28] uses RNN to exploit the temporal relationship between frames for saliency
detection. Authors in [20] makes use of fully connected neural network for video
summarization. However all these techniques need high computational capability
which makes it highly impossible for low-cost real time implementation.

Authors in [27] apply a modularity cut algorithm to track objects for sum-
mary generation. Gaussian Mixture model based approach is employed in [4].
The key frames are selected based on the parameters of cluster. Authors in [4,6],
use geometric primitives (such as lines, arcs) for distinguishable descriptors than
edge-pixels or edge-segments.

These primitives are independent of the size of the object, and also they
are efficient for matching and comparisons. They are also invariant to scale and
viewpoint changes. Thus, these geometric primitives represent objects with com-
plex shapes and structures effectively. Also, they are useful in cognitive system
[11].

In this paper, we propose to fuse the techniques of foreground/background
segmentation and the use of geometric features for saliency detection in order to
achieve video summarization. Towards this, we make the following contributions:

– We propose to detect the saliency of a frame by detecting the saliency of its
foreground and background separately and then combine the probabilities of
foreground and background being salient to check the saliency of a frame.

• We propose to model the image as an MRF and use MAP using graph-cut
as final solution for foreground and background segmentation.

• We propose to combine the probabilities of foreground and background
being salient using the Dempster Shafer Combination rule (DSCR).

– We propose to use the changes in the variant of the geometric features (such
as lines, arcs) to decide the saliency of a frame. For efficient extraction of
geometric primitives,

• We propose to extract the PCA features to detect the principle compo-
nents of foreground and background frames.

• We convert the image from RGB to YCbCr and compute PCA on Y
channel of the frame to retain the chromic information.

– We demonstrate the results using the BL-7F dataset and compare the results
using the state-of-the-art techniques with the help of the quantitative param-
eters such as condensation ratio and retention ratio.

2 Proposed Framework

We demonstrate the proposed framework in Fig. 1. We propose to detect the
saliency of a frame by detecting the saliency of its foreground and background
separately. We propose to detect the changes in the PCA and Geometric Prim-
itives such as lines and contours by computing difference in standard deviation
of the segments and comparing the difference with a heuristically set threshold.
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Fig. 1. Proposed framework

The threshold for background is kept much lower as compared to that of fore-
ground with an intuition that any small motion in background is much significant
as compared to small motion in foreground. We find separate probabilities for
foreground and background segments being salient. We combine the two proba-
bilities using DSCR to obtain joint probability. We decide if the given frame is
salient based on the decision boundary set upon the joint probability.

2.1 Foreground and Background Segmantation

We propose to separate the foreground of the scene from the background using
Energy Minimization via Graphcut. We model every frame as MRF (Markov
Random Field) and use MAP (Maxima A Posteriori) estimate as the final solu-
tion. In this framework, we use the grid graph containing image pixels for MRF.
Here, we try to find the labelling for the pixels in the image f with minimum
energy.

E(f) = Esmooth(f) + Edata(f)

Where Edata(f) is defined by,

Edata(f) =
∑

p∈P

Dp(fp)

Here Esmooth(f) measures the extent to which f is not piecewise smooth,
whereas the Edata(f) measures the total disagreement between f and the
observed data. Researchers have proposed many different energy functions. The
form of Esmooth(f) is typically,

Esmooth(f) =
∑

p,q∈N

u{p, q}.T (fp �= fq)
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here, T is indicator function. It will output 1 if the input condition is true. We
use Potts Model in which, discontinuities between any pair of labels are penalized
equally. This is, in some sense, the simplest discontinuity preserving model.

We then obtain the two segments of the image, one corresponding to fore-
ground and the other corresponding to background. The foreground and back-
ground segmentation for two datasets is shown in Fig. 2.

Fig. 2. Segmentation of image into foreground and background frames: (a), (d) are
original images. (b), (e) are the corresponding foreground frames. (c), (f) are the cor-
responding background frames

2.2 Saliency Detection of Foreground and Background Frames

We demonstrate the saliency detection block in Fig. 3. The input for the saliency
detection is the segmented frame (Foreground or background). We propose to
use the changes in the variant of geometric primitives to decide the saliency of
a frame. We extract the variant of geometric features, named the frame feature
descriptors (FFD). The process of FFD extraction is demonstrated in Fig. 4.
We then find the standard deviation between the extracted feature vectors of
the consecutive frames. The probability of frame being salient is decided by the
extent with which the obtained standard deviation is greater than a heuristically
set threshold.
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Fig. 3. Saliency detection of foreground and background frames

2.3 Extraction of Frame Feature Descriptors (FFD)

The process of FFD extraction is demonstrated in Fig. 4. We convert the RGB
frames of the video to YCbCr to retain the colour information. We apply PCA
on ‘Y’ channel of the image to get PCA transformed ‘Y’ channel. We convert the
output to RGB to obtain the images with enhanced principal components. We
extract geometric features from images with enhanced principal components.

Fig. 4. Extraction of frame feature descriptors (FFD)

We extract the objects present in the salient frames as geometric features.
We apply Canny edge detection to find the edges of the objects. Using these
edges we find the geometric features like line segments and contours. Contours
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represent the largest area in the frames. Hence we find the difference in the
frames by monitoring the change in the position of the line segments present in
the area of the contours.

2.4 Joint Probabability Using DSCR

We combine the two probabilities using Dempster Shafer Combination Rule
(DSCR) to obtain the joint probability. We decide if the given frame is salient
based on the decision boundary set upon the joint probability. Let P1 and P2

be the probabilities to be combined. DSCR combines two hypothesis consisting
of three parameters, mass of belief, mass of disbelief and mass of uncertainty
rather than two probabilities. We construct hypothesis, hyp1 and hyp2 as a set
of mass of belief (m(b)), disbelief (m(d)) and ambiguity (m(u)) respectively. We
set mass of belief (m1(b)) for hyp1 as P1 and mass of belief (m2(b)) for hyp2 be
P2. We assume mass of disbelief (m1(d)) for hyp1 and hyp2 to be 0 and mass of
ambiguity (m1(u) and m2(u)) for hyp1 and hyp2 as 1−P1 and 1−P2 respectively.
We combine hyp1 and hyp2 using combination table as shown in Table 1.

Table 1. Combination table

∩ mbelief
1 mdisbelief

1 mambiguity
1

mbelief
2 ψ1 ∅ ψ1

mdisbelief
2 ∅ ψ2 ψ1

mambiguity
2 ψ2 ψ2 Ω

In the combination table, the product of mass of belief of one hypothesis and
mass of disbelief of other hypothesis gives rise to conflict and is represented by
∅. The product of mass of belief and mass of belief or the product of mass of
belief and mass of uncertainty represents joint belief and is represented by ψ1.
Similarly ψ2 represents the joint disbelief.

The Combined belief of two evidences is considered as Joint probabilities and
is given by:

JointProbability =
∑

ψ1

1 − ∑ ∅
We decide if the given frame is salient based on the decision boundary set

upon the joint probability. The advantage of using DSCR for combining the two
probabilities is that it emphasis of the fact that if P1 is the probability of frame
being salient, then 1−P1 need not be the probability of frame being non-salient.
It can be uncertainty as well.
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3 Results and Discussions

We evaluate our approach using BL-7F dataset. In this dataset, 19 surveillance
videos are taken from fixed surveillance cameras located in the seventh floor of
the BarryLam Building in the National Taiwan University. Each video consists
of 12,900 frames with a duration of 7 min and 10 s. We compare our results using
Retention ratio and Condensation ratio as evaluation metrics.

Table 2. Comparison of condensation ratio (in percentage) of the proposed method
with the different state-of the art techniques [1,18,25] for different surveillance videos.
Here RR = retention ratio and is seen to be 1 for the results, unless mentioned.

Video Duration of

given video

(min:sec)

Duration of

summarized video

(min:sec)

Valdes et al.

IAMIS 2008

Almedia et al.

ISM 2010

S. Ou et al.

JSTSP 2015

Proposed

framework

bl-0 07:10 00:03 49.53 51.60 93.02 99.29

bl-1 07:10 00:08 36.27 91.6 83.02 97.97

bl-2 07:10 00:09 61.8 50 75.34 97.92

bl-3 07:10 00:02 56.744 98.83 96.27 99.45

bl-4 07:10 00:13 64.41 88.37 80.69 97.03

bl-5 07:10 00:04 36.27 90.46 85.58 99.05

bl-6 07:10 00:05 22.32 100 (RR = 0) 95.35 98.8

bl-7 07:10 00:05 30.93 95.34 88.37 98.8

bl-8 07:10 00:01 22.32 99.3 98.37 99.74

bl-9 07:10 00:09 17.9 95.58 90.93 98.01

bl-10 07:10 00:08 93.48 93.48 74.19 99

bl-11 07:10 00:07 68.6 62.09 73.95 98.31

bl-12 07:10 00:04 48.37 50 69.06 96.42

bl-14 07:10 00:14 63.72 94.88 83.25 96.62

bl-15 07:10 00:07 94.65 89.53 84.18 98.31

bl-16 07:10 00:26 89.53 89.53 76.15 93.85

bl-17 07:10 00:28 61.16 51.16 77.67 93.35

bl-18 07:10 00:03 61.62 95.11 85.16 99.24

Retention ratio is the ratio of number of objects in the summarized video to
the number of objects in the original video.

RR =
number of objects in summarized video

number of objects in input video

Condensation ratio is the ratio of length of summarized video to length of the
input video.

CR = (1 − length of summarized video

length of input video
) ∗ 100

We find that the proposed method gives better results as compared to results
obtained from the other state-of-the-art techniques. Retention ratio for the pro-
posed method is unity for all videos and Condensation ratios are also very high
compared to the existing methods. The comparison of the condensation ratio (in
percentage) of the proposed method with the different state-of the art techniques
[1,18,25] for different surveillance videos is demonstrated in Table 2.
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4 Conclusions

In this paper, we have proposed a geometric feature and frame segmentation
based approach for video summarization. We detected saliency in foreground
and background of the image separately. We proposed to model the image as
MRF (Markov Random Field) and use MAP (Maximum a-posteriori) as final
solution to segment the image into foreground and background. The salient frame
was effectively defined by the variation in feature descriptors using variant of
geometric features. We proposed to combine the probabilities of foreground and
background segments being salient using DSCR (Dempster Shafer Combination
Rule). We modelled the summarized video as a combination of salient frames for
a user defined time. We have demonstrated the results using several videos in BL-
7F dataset and compared the same with state of art techniques using retention
ratio and condensation ratio as quality parameters to prove the superiority of
the proposed method over the other algorithms.
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Abstract. Biometric systems commonly utilize multi-biometric app-
roaches where a person is verified or identified based on multiple biomet-
ric traits. However, requiring systems that are deployed usually require
verification or identification from a large number of enrolled candidates.
These are possible only if there are efficient methods that retrieve relevant
candidates in a multi-biometric system. To solve this problem, we analyze
the use of hashing techniques that are available for obtaining retrieval. We
specifically based on our analysis recommend the use of supervised hash-
ing techniques over deep learned features as a possible common technique
to solve this problem. Our investigation includes a comparison of some of
the supervised and unsupervised methods viz. Principal Component Anal-
ysis (PCA), Locality Sensitive Hashing (LSH), Locality-sensitive binary
codes from shift-invariant kernels (SKLSH), Iterative quantization: A pro-
crustean approach to learning binary codes (ITQ), Binary Reconstructive
Embedding (BRE) and Minimum loss hashing (MLH) that represent the
prevalent classes of such systems and we present our analysis for the fol-
lowing biometric data: Face, Iris, and Fingerprint for a number of stan-
dard datasets. The main technical contributions through this work are as
follows: (a) Proposing Siamese network based deep learned feature extrac-
tion method (b) Analysis of common feature extraction techniques for
multiple biometrics as to a reduced feature space representation (c) Advo-
cating the use of supervised hashing for obtaining a compact feature rep-
resentation across different biometrics traits. (d) Analysis of the perfor-
mance of deep representations against shallow representations in a prac-
tical reduced feature representation framework. Through experimentation
with multiple biometrics traits, feature representations, and hashing tech-
niques, we can conclude that current deep learned features when retrieved
using supervised hashing can be a standard pipeline adopted for most uni-
modal and multimodal biometric identification tasks.

Keywords: Biometric systems · Supervised hashing

1 Introduction

There has been tremendous growth in personal digital data stored across the
Internet. With the proliferation of social media applications, this trend has
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increased. These data majorly comprising of images of persons has become a
means to identify people. But the size of this data is enormous to the tune of
billion in the case of Facebook as it has got more than 2 billion users. Similarly,
Twitter, Instagram, and other social media applications have millions of images
of the users. Several countries across the world also maintain a unique identifica-
tion system of their citizens. These systems store various biometric features like
face, iris and fingerprint images of the persons in addition to other credentials. In
order to use these images for identification purposes, indexing techniques using
approaches like multidimensional trees comes into the picture. But indexing has
always been a challenging task in the case of biometric databases due to various
challenges like high dimensional feature representations, a varying number of
dimensions for same trait and scalability. Further, with an extensive collection
of data available over the internet, there is a need for faster indexing and search
so that finding nearest neighbors can be done quickly.
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Fig. 1. Precision Recall curves for LFW Face database with Siamese, Gist, Overfeat
and VGG-16
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Fig. 2. Precision Recall curves for CASIA Fingerprint database with Siamese, Gist,
Overfeat and VGG-16

Various biometrics traits usually need high dimensional feature representa-
tion, and they suffer from the curse of dimensionality. For instance, a face has
a large number of feature points making it a feature rich biometric trait. For
example, a face image of size 100 × 100 can have feature points up to 10,000.
Due to the easy availability of non-intrusive surveillance systems, the face could
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Fig. 3. Precision Recall curves for CASIA Iris database with Siamese, Gist, Overfeat
and VGG-16

be easily used to recognize people. However, it requires handling large databases
of faces for identification.

Feature representation of biometric data can affect the performance of the
indexing mechanism. Previously some methods in the literature have used heuris-
tics based feature representation. The indexing mechanism in such pipelines
mostly use tree data structure like Kd-Tree. But these data structures are not
very useful in handling the curse of dimensionality and storage requirements as
these methods were dealing with feature representation in the real space itself.
Thus these methods could not work well with high dimensional data in the order
1K features or more. Fortunately, there have been some attempts recently to use
binary hashing techniques in the visual object recognition and scene recognition,
as an effort to enhance the speed of the image retrieval and reduce the storage
requirement. To the best of our knowledge, there has been no systematic analy-
sis of this approach in the domain of biometric identification. Therefore, in this
paper we explore the possibility of including supervised binary hashing in the
existing pipeline of the biometric identification system.

There have been a few instances where the use of hashing techniques for
biometric data proposed in the past. Tulyakov et al. [14] proposed a hashing
method for fingerprint data. In this method, minutiae points are represented as
complex numbers and hash functions are constructed based on some complex
function which is independent of the order of minutiae points. Sutcu et al. [13]
proposed a hash function based on one way transform function, designed as a
sum of properly weighted and shifted Gaussian functions for biometrics. Ngo
et al. [6] proposed a method for dimensionality reduction using random thresh-
olding projection to improve the accuracy of the face recognition. Rathgeb and
Uhl [10] proposed a hashing based on thresholding for Iris based recognition
system. But most of these proposals are specific to some specific biometric data,
and their main focus was on improving security in the verification pipeline and
not the retrieval speed improvement or storage space optimization.

In this paper, we propose a feature extraction mechanism based on Siamese
Network [4]. In our implementation, we used three convolution layers and one
fully connected layer. It is observed that the deep learned features got from
this model provides comparable performance with other pre-trained models con-
sidered. We also advocate the use of supervised hashing method in the exist-
ing pipeline of biometric identification system to reduce the dimensionality of
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Fig. 4. Comparing hashing methods - MLH, BRE, and ITQ with respect to Bit vs
Recall Performance

biometric databases. Such a suggestion is based on the thorough evaluation of
various feature representations and hashing techniques for multiple biometric
traits. These methods, in general use random projection to map feature vectors
in real space to binary space such that similar items in real space concerning
Euclidean distance mapped to objects of low Hamming distance in binary space.
In the evaluation, we considered both supervised and unsupervised techniques. It
is observed that supervised methods are better than unsupervised ones. Finally
the performance of the methods are compared under these classes which generate
a binary and non-binary representation of the data.

The paper is organized as follows. Section 2 describes the proposed approach,
where we briefly covers the various hashing methods used in our experiments and
also discusses the details of Siamese network based feature generation. Section 3
is devoted to experimentation and analysis. In Sect. 4 we discusses the results to
form concluding remarks and finally Sect. 5 concludes our findings.
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Table 1. Area under the curve values for LFW Face database for Siamese(4096D) vs
Gist(512D) vs Overfeat(4096D) vs VGG-16(8192)

Face - Siamese

Bits 16 32 64 128 256

MLH 0.29 0.50 0.63 0.75 0.82

BRE 0.23 0.37 0.51 0.6 0.69

ITQ 0.39 0.44 0.49 0.54 0.56

SKLSH 0.24 0.45 0.61 0.73 0.83

LSH 0.17 0.25 0.31 0.40 0.51

PCA 0.21 0.22 0.19 0.18 0.20

Face - Gist

MLH 0.30 0.68 0.77 0.83 0.88

BRE 0.22 0.43 0.61 0.73 0.78

ITQ 0.34 0.40 0.49 0.51 0.53

SKLSH 0.10 0.23 0.27 0.61 0.59

LSH 0.24 0.32 0.36 0.40 0.49

PCA 0.21 0.19 0.14 0.13 0.14

Face - Overfeat

MLH 0.35 0.68 0.80 0.83 0.85

BRE 0.26 0.42 0.62 0.74 0.79

ITQ 0.42 0.43 0.50 0.52 0.45

SKLSH 0.29 0.33 0.49 0.56 0.74

LSH 0.34 0.37 0.43 0.43 0.44

PCA 0.22 0.21 0.19 0.19 0.15

Face - VGG-16

MLH 0.23 0.38 0.44 0.59 0.78

BRE 0.19 0.29 0.41 0.54 0.63

ITQ 0.28 0.17 0.37 0.44 0.47

SKLSH 0.15 0.16 0.19 0.32 0.39

LSH 0.15 0.16 0.26 0.33 0.40

PCA 0.24 0.21 0.20 0.20 0.18

2 Proposed Approach

The focus of this study is to evaluate whether it is possible to obtain a compact
representation for multiple biometric data. We propose a modification in the
existing bio-metric identification/verification pipeline. Where we feed the iden-
tification stage of such system with binary codes equivalent to the real space
feature representation. For the evaluation, we conduct experiments starting
with generation of both non deep and deep learned features for Face, Iris,
and Fingerprint databases. The features are generated using Gist, VGG-16,
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Table 2. Area under the curve values for CASIA Fingerprint database for
Siamese(4096D) vs Gist(512D) vs Overfeat(4096D) vs VGG-16(8192)

Fingerprint - Siamese

Bits 16 32 64 128 256

MLH 0.28 0.56 0.74 0.83 0.88

BRE 0.23 0.42 0.58 0.70 0.76

ITQ 0.36 0.43 0.39 0.49 0.46

SKLSH 0.29 0.31 0.55 0.72 0.80

LSH 0.29 0.39 0.43 0.47 0.49

PCA 0.22 0.19 0.19 0.19 0.20

Fingerprint - Gist

MLH 0.28 0.56 0.71 0.81 0.87

BRE 0.26 0.45 0.57 0.68 0.75

ITQ 0.29 0.33 0.36 0.32 0.31

SKLSH 0.24 0.27 0.34 0.53 0.65

LSH 0.18 0.26 0.32 0.32 0.41

PCA 0.25 0.21 0.21 0.18 0.16

Fingerprint - Overfeat

MLH 0.33 0.64 0.76 0.85 0.89

BRE 0.25 0.42 0.57 0.68 0.74

ITQ 0.31 0.33 0.35 0.35 0.38

SKLSH 0.25 0.28 0.31 0.51 0.62

LSH 0.20 0.29 0.32 0.34 0.40

PCA 0.23 0.25 0.22 0.20 0.17

Fingerprint - VGG-16

MLH 0.26 0.44 0.58 0.72 0.79

BRE 0.20 0.29 0.42 0.52 0.60

ITQ 0.36 0.39 0.47 0.54 0.55

SKLSH 0.11 0.22 0.27 0.36 0.55

LSH 0.20 0.24 0.35 0.42 0.49

PCA 0.26 0.23 0.20 0.22 0.17

Overfeat (OF), and a custom designed Siamese network (SIA). The various fea-
ture dimensions obtained are 512, 8192, 4096, and 4096 respectively. Once such
features are available, we explored various hashing mechanisms to get approxi-
mate nearest neighbours of the query data. We used unsupervised methods like
PCA, LSH, SKLSH and ITQ. We also considered supervised methods like BRE,
and MLH.

We then conduct analysis of retrieval performance for binary code lengths
16, 32, 64, 128, and 256 bits corresponding to combinations of feature
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Table 3. Area under the curve values for CASIA Iris database for Siamese(4096D) vs
Gist(512D) vs Overfeat(4096D) vs VGG-16(8192)

Iris - Siamese

Bits 16 32 64 128 256

MLH 0.33 0.56 0.66 0.79 0.86

BRE 0.32 0.44 0.58 0.66 0.74

ITQ 0.40 0.38 0.42 0.44 0.45

SKLSH 0.30 0.39 0.56 0.70 0.81

LSH 0.28 0.37 0.39 0.44 0.47

PCA 0.22 0.22 0.18 0.19 0.19

Iris - Gist

MLH 0.21 0.54 0.73 0.80 0.85

BRE 0.18 0.36 0.51 0.61 0.67

ITQ 0.59 0.60 0.65 0.65 0.67

SKLSH 0.39 0.40 0.59 0.80 0.89

LSH 0.48 0.49 0.56 0.65 0.68

PCA 0.40 0.33 0.28 0.26 0.22

Iris - Overfeat

MLH 0.24 0.52 0.70 0.80 0.83

BRE 0.18 0.39 0.52 0.61 0.67

ITQ 0.30 0.37 0.33 0.37 0.40

SKLSH 0.18 0.25 0.39 0.54 0.65

LSH 0.20 0.28 0.38 0.33 0.37

PCA 0.25 0.21 0.22 0.18 0.15

Iris - VGG-16

MLH 0.20 0.37 0.51 0.61 0.72

BRE 0.19 0.27 0.40 0.52 0.61

ITQ 0.31 0.32 0.33 0.40 0.38

SKLSH 0.16 0.21 0.33 0.35 0.51

LSH 0.17 0.19 0.28 0.26 0.36

PCA 0.25 0.22 0.19 0.19 0.20

representations and hashing methods. The details of the analysis is reported
in the Experimentation section. In the following subsections we present a
brief overview of the hashing methods and feature representations used in the
experiments.

2.1 Hashing Methods

In this section, we explores the various hashing methods in the literature. An
overview of hashing techniques are presented to gain sufficient insight on theses
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Table 4. MAP values for comparing effect of code length on various hashing methods

Feature MLH BRE ITQ

SIA Gist OF Vgg SIA Gist OF Vgg SIA Gist OF Vgg

Face

256 0.9 0.9 0.87 0.82 0.75 0.8 0.8 0.67 0.5 0.53 0.48 0.61

128 0.81 0.85 0.85 0.62 0.67 0.74 0.75 0.58 0.48 0.51 0.52 0.56

64 0.69 0.79 0.81 0.47 0.6 0.62 0.63 0.43 0.42 0.48 0.42 0.49

32 0.53 0.73 0.73 0.41 0.38 0.45 0.43 0.32 0.36 0.37 0.35 0.19

16 0.36 0.43 0.47 0.26 0.35 0.27 0.34 0.21 0.29 0.3 0.37 0.32

Fingerprint

256 0.9 0.9 0.91 0.81 0.77 0.78 0.76 0.62 0.33 0.37 0.42 0.56

128 0.84 0.84 0.87 0.74 0.72 0.7 0.69 0.53 0.36 0.35 0.38 0.54

64 0.75 0.74 0.78 0.59 0.6 0.6 0.58 0.43 0.29 0.33 0.36 0.46

32 0.6 0.58 0.67 0.46 0.44 0.47 0.45 0.3 0.33 0.31 0.3 0.39

16 0.35 0.33 0.4 0.28 0.3 0.31 0.28 0.21 0.26 0.24 0.27 0.34

Iris

256 0.89 0.89 0.86 0.75 0.75 0.7 0.7 0.64 0.31 0.54 0.43 0.54

128 0.81 0.83 0.83 0.63 0.69 0.64 0.64 0.54 0.31 0.51 0.39 0.54

64 0.7 0.77 0.73 0.53 0.57 0.54 0.54 0.42 0.31 0.48 0.33 0.44

32 0.56 0.6 0.55 0.38 0.45 0.39 0.42 0.28 0.26 0.44 0.34 0.39

16 0.36 0.31 0.32 0.22 0.34 0.25 0.22 0.2 0.3 0.46 0.26 0.32

methods that form the crux of this paper. Our main observation after empirical
analysis leads to recommending the use of supervised binary hashing for the
representation of biometric data.

Locality Sensitive Hashing (LSH). LSH [1,3] is an unsupervised data inde-
pendent hashing method, which reduces dimensionality of input data by mapping
similar items to same buckets with high probability.

Locality-Sensitive Binary Codes from Shift-Invariant Kernels
(SKLSH). SKLSH [9] proposed by Raginsky and Lazebnik is also an unsu-
pervised data independent hashing method. It uses random projection to obtain
a binary encoding of data such that similar data points map to binary strings
with low Hamming distance.

Iterative Quantization (ITQ). Iterative Quantization is a simple and efficient
dimensionality reduction scheme, proposed by Gong and Lazebnik [2] to reduce
the quantization error by mapping the high dimensional data to the vertices of
a binary hypercube (zero-centered).
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Binary Reconstructive Embedding (BRE). Binary Reconstructive Embed-
ding (BRE) is a supervised hashing method proposed by Kulis and Darell [5].
The method uses the learning of hash functions that minimize reconstruction
error between the original distances and the Hamming distances of the corre-
sponding binary embeddings. A scalable coordinate-descent algorithm is used for
the proposed hashing objective to learn hash functions in a variety of settings
efficiently.

Minimum Loss Hashing for Compact Binary Codes (MLH). Norouzi
and Blei proposed Minimum loss hashing [7] which is a supervised binary hash-
ing technique that uses random projections to map high-dimensional input into
binary codes. It assigns a 1, if the bit corresponding to the input is on one side of
the hyperplane and 0, if it is on the other side. Then a hinge-like loss function in
SVM, which based on some threshold ρ bits in the Hamming space assign a cost
to a pair of binary codes and a similarity label. Finally, it learns a parameter
matrix w which maps high dimensional inputs to binary codes by minimizing
the empirical loss over training points.

2.2 Feature Representations

We implemented a custom Siamese neural network (SIA) based on [4]. The one
leg of the network contains three convolution layers and two fully connected lay-
ers. The kernel size is 3×3 with stride of 1 and no padding. The ReLU activation
function is applied after each convolution layer. The first two convolution layer
is also followed by max pooling layer. In the fully connected layer, we flatten the
output of convolution layer and then sigmoid function is used to obtain a 4096
dimension feature vector. Another sigmoid function is also applied before we
take a single-valued vector output. We feed two images of dimension 105 × 105
in parallel into two legs of the Siamese network to detect the similarity between
them. We randomly feed a pair of similar or a pair of dissimilar images during
every iteration. The output from each leg of the network is compared to see if
the images are similar or not. We used Binary cross entropy with logits as
the loss function. We used a learning rate of 0.0001 and Adam as the optimizer
with a weight decay of 1−e5. This experiment could achieve an accuracy above
96% for Face and Iris case, but accuracy in the case of the Fingerprint was about
90 (Fig. 5).

We also extracted feature descriptors using Overfeat (OF) [11] CNN, and
torch CNN using VGG-16 [12] training model. The implementation provided by
CILVR lab at New York University [11] are used to extract Overfeat features.
We used the torch CNN with VGG-16 training model which runs only on CPU.
We took the output from the fc7 layer of both CNNs, which gives 4096 and 8192
dimension feature vectors respectively.

We used the original implementation provided by Olivia and Torrabla [8] for
extracting Gist features of 512 dimensions.
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Fig. 5. Proposed Siamese network

3 Experimentation

We performed our experiments on popular databases of the Face, Iris, and Fin-
gerprint which ensure variation in the database and across the databases relevant
to the feature points. Some of the images in the Face database are profile picture
in the case of face images. Some of the iris images taken with spectacles on and
some fingerprint images are rotated. Each database has undergone three traver-
sals of training and query traversal. The Face database we use is Labeled Faces
in the Wild (LFW) which consists of 13,233 images. The Iris database we use
is CASIA-Iris-Thousand version 4.0 of 1000 subjects. The CASIA Fingerprint
image database Version 5.0 of 500 subjects is used as the Fingerprint database.
Both of these databases consist of 20,000 images.

We divide each data set into 1000 training samples and 3000 testing samples.
On each training set, the Euclidean distance for each data point is computed to
find their 100 ground-truth neighbours. Then we compute precision and recall
statistics during testing using the ground-truth neighbours and non-neighbours.

3.1 Analysis of Feature Vector Representations

We analyze the retrieval performance concerning feature representation of dif-
ferent modalities, using Precision-Recall for the MLH and BRE which are the
supervised hashing techniques. We also compare the Precision-Recall perfor-
mance of unsupervised method ITQ to establish the superior performance of
supervised methods over the unsupervised methods. We evaluate the feature
representations obtained from Siamese network, Gist, Overfeat, and VGG-16 for
bit sizes ranging from 16 to 256 bits. The Precision-Recall graphs for this com-
parison are provided in Figs. 1, 2 and 3. We have omitted the curves of LSH,
SKLSH, and PCA to avoid cluttering. Also, we have not included the Precision-
Recall curves for 16 bit and 32 bit representation to save the space. It is observed
that the performance is not good for these code lengths in general. We have also
provided mean average precision (MAP) values in Table 4. We observe that the
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Siamese feature representation is performing better for Face and Iris concern-
ing MAP values for a bit size of 256. Overfeat performed slightly better in the
case of Fingerprint for a bit size of 256. The Gist representation is also giving
comparable performance. The VGG-16 representation provides a slightly infe-
rior performance, which is more visible (from Tables 3 and 4) for the lower bit
sizes up to 64 bits of all the modalities. We observed that consistent retrieval
performance achieved across all the modalities, with Siamese, Gist or Overfeat
representation.

3.2 Analysis of Hashing

We can infer from Fig. 4, and Tables 1, 2 and 3 most of the unsupervised methods
are inferior to supervised methods, such as MLH and BRE. We also compare
the unsupervised method ITQ as it was performing better in 16 bit and 32 bit
case of Iris. If we ignore the lower bit cases (16 and 32) of Iris, in all other
cases MLH was performing better. Among the unsupervised methods, SKLSH
was performing better for the 128 bit and 256 bit case and ITQ otherwise. It
is recommended to use the supervised method MLH with 128 bit or 256 bit to
achieve a better retrieval performance across all modalities. Some of the unsu-
pervised methods show better performance in the Bit versus recall curves. But
their precision performance is poor compared to supervised methods as obvious
from the Tables 1, 2, 3 and 4. This means that the relevant items retrieved may
be containing more false items.

3.3 Biometric Wise Analysis of Methods

All biometric databases retrieved with better accuracy by supervised methods,
especially the MLH, compared to unsupervised methods except for 16 and 32 bit
cases of Iris database. It is evident from Tables 1, 2, 3 and 4, the Fingerprint gave
the maximum accuracy with 256 bit size with overfeat feature representation.

3.4 Computation Factors

The training time for supervised techniques was taking around 12 to 14 h on core
i7 desktop with 16 GB RAM. The training time was almost uniform regardless
of the modalities or feature representation in the supervised setting. But on an
i7 machine with 8 GB RAM it took nearly two days to finish the training. The
unsupervised techniques were taking a maximum of a couple of minutes for the
entire process for all modalities. The feature vector generation with Gist took
the least time, an hour, with VGG-16 it took nearly 6 h, and with Overfeat takes
more than 24 h. Siamese network took around 2 h for Iris and Face and 6 h for
the Fingerprint case when running on GTX 1080 Ti.
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4 Discussion

Experimentation results show that MLH supervised method works consistently
well with all biometric databases for binary code size from 64 bits to 256 bits.
So for any of the Face, Fingerprint and Iris databases, MLH can be the best
choice. In the case where (16 and 32 bit cases of Iris) unsupervised methods are
superior, but the overall accuracy is less in those cases. So it is recommended to
use MLH on the combination of the above three biometric databases sets, with
a binary code size of 256 bits.

If we ignore computational limitations regarding feature vector generation
time or training time, then MLH provides the best accuracy over Siamese and
Overfeat feature representations for a bit size of 256 bits. Both methods were
performing comparably well. We also observed that maximum accuracy obtained
for Face and Iris databases with Siamese and Gist. In the case of the Fingerprint
database, Overfeat provided maximum accuracy.

As we have seen previously, supervised methods are performing consistently
well across all data sets for 128 and 256 bit sizes regardless of the computational
need and biometric modality. Then if we have to find a trade-off between accu-
racy and storage, then 128 bit could be the best choice. This is recommended
because, with 128 bit, accuracy is closer to that of 256 bits, while it needs less
storage size compared to 256 bit case.

From Tables 1, 2, 3 and 4 and Figs. 1, 2 and 3, we found that MLH over
Siamese features for Face and Iris and MLH over Overfeat feature representation
of the Fingerprint database performed most accurate for a bit size of 256.

So if we consider the computational time for preparing the feature repre-
sentation, then it would be better to choose Siamese feature representation. We
suggest this because it gives better or comparable performance to the pre-trained
feature representation for all data sets, for bit sizes of 256 bits.

5 Conclusions

Our experimentation and analysis show that MLH supervised hashing method
performs consistently better than unsupervised methods for all bit lengths except
16 bit case of Iris database across all feature representations. So it would be ideal
to use a setting where supervised hashing employed for multimodal biometric
data retrieval with feature representations being either Siamese or Overfeat and
a bit size of 256. Gist features are also found to be competitive with deep learning
based general features.
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Abstract. Distracted driver has been a major issue in today’s world
with more than 1.25 million road incidents of fatality. Almost 20% of all
the vehicle crashes occur due to distracted driver. We attempt to create
a warning system which will make the driver attentive again. This paper
focuses on a simple yet effective Convolutional Neural Network technique
which can help us to detect if the driver is safely driving or is distracted
which is a binary classification task. It would help in improving the safety
measures of the driver and vehicle. We propose two techniques for dis-
tracted driver detection achieving state of the art results. We achieve an
accuracy of 96.16% for the 10 class classification. We propose to decon-
struct the problem into a binary classification problem and achieve an
accuracy of 99.12% for the same. We take advantage of recent techniques
of transfer learning combined with regularization techniques to achieve
these results.

Keywords: Distracted driver detection · Driver pose estimation ·
ADAS · Deep learning

1 Introduction

One of the major issues in self-driving technology as well non automated driving
has been driver distraction. According to a report of World Health Organization
(WHO) [18], more than 1.25 million fatalities and 20–50 million incidents of
injuries occurred due to this issue worldwide in year 2017 and its expected to
be 5th leading cause of death worldwide by the year 2030 across 80 countries.
Reports by National Highway Traffic Safety Administrator (NHTSA) [11] state
that this number of fatalities has been increasing worldwide with a major increase
in poorer countries and the major cause of this has been the usage of cell phones
during driving. According to the National Crime Research Bureau (NCRB),
India has one of the highest rates of on-road fatalities in the world. 0.15 million
deaths took place in 2016 alone out of which 0.135 million were due to negligent
and distracted driving, which keeps on increasing as to date.

NHTSA describes distracted driving as “any activity that diverts attention
of the driver from the task of driving” which is majorly classified into cognitive,
c© Springer Nature Singapore Pte Ltd. 2019
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visual and manual. It could range from activities such as Talking to passenger,
Looking behind, Moving Object, Changing Radio Stations, Eating or Drinking,
Using cellphones etc. In our research work, we focus on detecting whether the
driver is distracted and warning him against it and not on how the driver is
distracted. This could help us in creating facilitatory functions which would
alert the systems about the driver distraction and take preventive measures to
warn the driver about it. And if no action was taken by the driver, the system
would slow down or stop the vehicle to avoid accidents and help in improving
the safety of drivers and passengers.

In this paper, we propose an approach to answer the question of driver dis-
traction by implementing a Convolutional Neural Network which provides a good
detection rate for detection of distracted driver and help in improving the driver
and road safety. Remainder of this paper is structured as follows: Sect. 2 briefs
about recent research in driver state monitoring. Dataset is described in Sect. 3.
Section 4 contains details of technical approach. Results are discussed in Sect. 5.
Section 6 presents conclusion and future scope.

2 Related Work

We get a small review on recent and relevant work from literature for the pose
estimation of distracted driver. According to a report [11], use of cellphones is
one of the biggest cause for driver distraction. So the research was conducted for
cell phone detection while driving by Zheng et al. [20]. This work was improved
in 2015 by Das et al. [3] by creating a dataset for hand detection in the car
and achieved an average precision of 70.09% using ACF object detector. Similar
work was also depicted by Seshadri et al. [13] for cell phone usage detection
and classification using Supervised Descent Method and HoG with AdaBoost
Classifier for achieving 93.9% accuracy at 7.5fps. A higher accuracy of 94.2%
was achieved beating the state of the art models by the method of Faster RCNN
by Le et al. [8] on the above dataset. It majorly focussed on detection of the face
and hand regions for detecting cell-phone usage.

Zhao et al. [21] created a more inclusive dataset with obtaining a view of
the driver from side and considering various activities such as: Eating, Talking
on a cell phone, operating shift gear handle and driving safe. They were able to
achieve 90.5% classification accuracy using a contourlet transform and random
forest and they boosted their system using PHOG and MLP that yielded an
accuracy of 94.75% [22]. So continuing the challenge, Yan et al. [19] proposed a
method implementing CNN and achieved a 99.78% accuracy. Ohn-bar et al. [12]
also proposed an ensembled fusion of classifiers to achieve better results.

These datasets focused upon the limited distractions that could occur. Also
most of them are inaccessible to most researchers as datasets are not publicly
available. In 2016, State Farm [4] hosted a competition for distracted driver
detection on 10 different postures and this was the first database which was
made publicly available. Many approaches were proposed based on traditional
methods such as SIFT, HoG with SVM and BoW. However, CNN’s were the
most effective technique in achieving state of the art results [6].
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Fig. 1. Ten classes of distracted driver detection dataset

In 2017, a new dataset [1] was created which was similar to State Farm’s
dataset for the distracted driver and was publicly available. Authors proposed
to use an Ensemble of 5 different CNN to achieve high accuracy which made
it computationally expensive and too complex to be used in real time which is
very important for autonomous driving. Baheti et al. [2] also proposed a CNN
based approach for distraction detection and classification on this dataset. It is
to be observed that all the approaches from literature are based on detecting and
classifying the distraction. However, detecting whether the driver is distracted or
not and alerting him is more important than identifying the cause of distraction.
Hence in our research, we propose to work on driver distraction as binary classi-
fication problem instead of ten class classification and achieve good accuracy.

3 Dataset Description

The AUC distracted driver dataset [1] used in this paper consists of primarily
10 classes as (c0) Adjust Radio, (c1) Drinking, (c2) Driving Safe, (c3) Hair and
Makeup, (c4) Reach Behind, (c5) Talking using Left hand on the cellphone, (c6)
Talking to Passenger, (c7) Talk using right hand on the cellphone, (c8) Texting
with left hand, and (c9) Texting with right hand. Figure 1 shows sample images
of each class resized to 299 × 299. Videos were shot in 4 different cars and 31 par-
ticipants were called up from 7 different countries. The dataset consists of total
of 17308 images of 1920 × 1080 resolution divided into the training set (12977)
and test set (4331). We use this dataset as it is for ten class classification prob-
lem. Figure 2(a) shows original distribution of the dataset amongst 10 classes. As
our major issue of Driver distraction should be addressed first which makes the
problem statement a binary classification instead of a categorical classification.
So, we propose to only detect driver’s distraction and divide the dataset into
only two classes viz. (i) Driving Safely and (ii) Distracted Driver Detected as a
binary classification problem. Data distribution of the same is shown in Fig. 2(b).
Since This might seem to further simplify the quintessential task of our problem
statement, since binary classification may come to be seen as easier than the
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(a) Original Class Distribution in Ten Classes (b) Proposed Class Distribution

Fig. 2. Category-wise dataset distribution

categorical classifications for the modern CNN architectures which are available.
It can be observed from Fig. 2(b) that we face a massive class imbalance for our
problem statement which makes the task more difficult.

4 Our Approach

Convolutional Neural Network (CNN) is a class of Deep Neural Networks mostly
used in analysing images. CNNs have wide range of applications like image clas-
sification, object detection, action recognition etc. Motivated by the performance
of CNN in various tasks of computer vision, we explore VGG and InceptionRes-
NetV2 architecture for detecting driver distraction.

4.1 Network Architectures

VGG16 Architecture: VGG16 is a CNN architecture proposed by Simonyan
and Zisserman [14] which achieved good performance in ImageNet classification
as well as localisation challenge. We trained the classical VGG16 architecture
initially to address the problem. The VGG16 architecture as shown in Fig. 3
consists of 13 sequential layers of connecting Convolutional Layers of 3 × 3 filter
size, 2×2 max-pooling operation with a stride of 2 with basic activation function
ReLU. Then these layers are followed by a simple flatten layer followed by two
dense layers of 4096 neurons which is further followed by the Softmax layer
with dimension of number of classes N. In our case N = 10 for categorical
classification and N = 2 for binary classification.

InceptionResnetV2: We also explored InceptionResnetV2 [16] architecture
which is another recent and powerful technique of classification. It is basically a
combination of InceptionV3 and ResNet with 50 layers. Figures 4 and 5 illustrates
the concept of inception module and residual block respectively. It consists of
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Fig. 3. VGG16 architecture for 10 class classification

Inception Modules in the first half of layers followed by a residual block. We
train the network for distracted driver detection by applying concept of transfer
learning.

Inception Module: Inception Module is combination of a layer of distributed
convolution operations and max-pooling 3 × 3 acts as a layer to zoom inside
the filters and understand the deeper spectrum of the layer [17]. The 1 × 1
convolution is a key as it helps in dimensionality reduction of its feature map.
This is massively helping in reducing the computational capacity of the network
as described in Fig. 4.

Fig. 4. Understanding Inception module in a single layer [17]
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ResNet Module: The skip connection was introduced in the ResNet [5] as it
helps in recollecting the knowledge of older layers. Considering x as the input
and our convolution operations can be considered as f(x), then we concatenate
the original input with this convolution operation as f(x)+x which helps in not
forgetting the vital information from above layers.

Fig. 5. Understanding ResNet module in a single layer [5]

4.2 Regularization Techniques and Fine Tuning

To improve the performance of networks and reduce overfitting, we imply various
regularization techniques. We fine tune the VGG16 architecture by replacing the
activation function with LeakyReLU, also introducing Batch Normalization after
every layer to boost convergence, add dropout and weight regularization to avoid
overfitting to the training data which we will see in the following sections.

Dropout: We apply the technique of dropout as proposed by Hinton et al. [15]
which can be understood as following. Consider a simple Neural Network with
L number of hidden layers, Let l ε {1,...,L} be the index of the hidden layers of
the Neural network. Let z(l) denote the vector of input into layer l, y(l) denote
the vector of outputs from layer l (y(0) = x is the input). W (l) and b(l) are the
given weights and bias for the appropriate layer l. The feed forward operation of
a standard neural network can be simply described as (for l ε {1,...,L − 1} and
any hidden unit i) as shown in Eq. 1.

z
(l+1)
i = w

(l+1)
i yl + bl+1

i

yi = f(z(l+1)
i ),

(1)

where f is any particular activation function. For example f(x) = tanh(x) with
dropout, the feed-forward operation becomes,

rlj ∼ Bernoulli(p)

ỹ(l+1) = rl � y(l)

zi
l+1 = wi

l+1ỹl + bi
(l+1)

yi
(l+1) = f(zi(l+1))

(2)



108 S. Thakur et al.

It helps us in reducing the overfitting by regularizing the network by ran-
domly dropping out/turning off some neurons. It reduces interdependent learning
of neurons which optimizes the neuron for the task.

LeakyReLU: Among the various activation functions, we choose to implement
LeakyReLU [9]. The major advantage of LeakyReLU over ReLU is during Back-
propagation. It does not completely shut off a neuron and updates its gradient
weights negatively to the incoming change. This allows having better gradient
updates than ReLU. It can be understood by a simple mathematical equation
shown in Eq. 3.

f(x) =
{

x ε x > 0;αx ε x < 0, 0 < α < 1
}

(3)

where α is the parametric value provided during the time of compilation, and
by default we choose it to be α = 0.1 by default. It is fast and efficient in nature
in terms of convergence which has made it popular in recent times.

Batch Normalization: Batch Normalization [7] is a simpler technique of
boosting the convergence rate of the model by performing the task of normaliza-
tion over every mini batch after every convolutional layer. This helps in boosting
the gradient descent since data normalization helps in finding the descent slope
in an easier way. Since Normalization comes with mean shifting, we can be sure
that the data isn’t disoriented and becomes correlated with learning better.

L2 Regularization: L2 weight regularization [10] is also known as Ridge Regres-
sion. It adds a squared magnitude of coefficient as a penalty term to the kernel
losses as shown in Eq. 4. Regularization is a very important technique in machine
learning to prevent overfitting. Mathematically speaking, it adds a regulariza-
tion term in order to prevent the coefficients to fit too perfectly over the training
data.

w∗ = argminw −
∑

j

(
t(xj −

∑

i

wihi(xj))

)2

+ λ

k∑

i=1

w2
i (4)

where there is a squared penalty term to help with the kernel regularization.

Transfer Learning with Pre-trained Weights: Transfer learning is a tech-
nique which helps in transferring the knowledge of one dataset to another. In
transfer learning, a neural network is previously trained on some other dataset
and then the weights are finetuned with respect to our application. This tech-
nique helps in the faster convergence of networks as well as producing better
results since models are not trained from scratch. It also helps in delivering a
better accuracy to the network.



Pose Estimation for Distracted Driver Detection 109

Optimizer SGD: The Stochastic Gradient Descent optimizer is a great choice
during transfer learning since unlike other learning algorithms, it is much more
stable and the loss can be controlled very easily. It can also be boosted with some
Momentum and Nesterov property. Equation 5 shows the process of updating
weights in backpropagation with SGD.

w := w − η∇Qi(w) + αΔw (5)

where the parameter w which minimizes Q(w) is to be estimated, and η is a step
size which is called as learning rate and α is the momentum that is passed as a
hyperparameter.

Cross-Entropy Loss Function: For finding the loss in the classification, we
choose the cross entropy loss function. It creates a function that evaluates the
compatibility in a prediction and its related ground truth label by minimizing
the error shown in Eq. 6.

E =
1
m

m∑
i=1

c∑
k=1

y
∗(k)
i log

(
yk
i

)
(6)

where, y
∗(k)
i and y

(k)
i are respectively the ground-truth label and the predicted

output of the ith image of the kth class with m training images. The total number
of classes is given as c; in this case, c = 10 for 10 class experiment and c = 2 for
binary class experiment. The loss is then back-propagated to update the network
parameters with SGD the optimizer.

5 Experimentation and Results

We explore two networks viz. VGG16 and InceptionResnetV2 for the task of
distracted driver detection. The networks were trained on an Intel Core i7 Pro-
cessor with 16 GB RAM and a P5000 GPU with 2560 Cuda cores and 16 GB
of VRAM and with a TensorFlow back-end accompanied by Keras front end for
faster development of the 10 class classification problem. For the binary class
classification, we used MATLABR12018a with CUDA backend and then the
Binary cross-entropy was used as the loss function with metrics set to accuracy.
We used the Stochastic Gradient Descent optimiser with learning rate of 0.0001
and with a momentum of 0.9 with Nesterov per epoch decay rate of 10−6 for
both of them. Batch size was set to 64 and training was carried out for 300
epochs for the 10 class classification. The batch size and epochs were set to 32
and 25 for the binary classification problem.

We observe that both the models tend to overfit on the training set produc-
ing a 100% accuracy on the training set and in order to reduce the over-fitting,
we chose to add regularization methods which significantly improved our perfor-
mance. We experimented with several hyperparameters such as varying dropout,
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Table 1. Confusion matrix for 10 class classification problem

c0 317 0 4 0 3 0 2 0 0 0
c1 3 322 14 0 0 0 2 0 0 0
c2 2 2 879 2 0 5 4 7 3 15
c3 9 2 0 474 5 2 0 0 1 1
c4 0 0 0 10 295 0 1 0 0 0
c5 6 0 0 0 0 299 0 0 0 0
c6 3 0 0 1 0 2 394 0 2 1
c7 9 0 1 0 0 0 0 288 1 2
c8 11 0 0 0 0 0 4 2 271 2
c9 9 0 0 0 0 0 7 0 1 626

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

regularization strengths, different weight initialization, activation functions, opti-
mizers and after rigorous experimentation, we chose a set out of them based on
the mixture which gave a maximum accuracy. The set was chosen as L2 regular-
ization strength of 0.03 and a Linearly increasing dropout from 0.3 to 0.5 after
every sub convolutional block. Weights are initialised with orthogonal weight
initialization and Leaky ReLU activation function is used with α = 0.3. Weights
are updated with stochastic gradient descent optimiser.

Performance of distracted driver detection is evaluated on 10 class classifi-
cation problem as well as binary classification problem. We freeze the VGG16’s
first 3 layers and update the weights of remaining layers in backpropagation.
Results of VGG16 architecture for 10 class classification are evaluated and con-
fusion matrix of the same is depicted in Table 1. We used pre-trained ImageNet
weights for weight initialization for deploying the models before training. With
the regularized version of VGG16 network, 10 class classification accuracy of
96.16% is achieved and processes 42 fps on an average for categorical classifica-
tion.

Next, we evaluate the performance of distraction detection with only two
classes as described earlier. Since we assume that driver can be distracted in
multiple scenarios but the distraction could yield to an accident no matter how-
ever insignificant it may be, so we propose to use second network with a much
higher accuracy for the pose estimation and also having a computationally less
expensive model. After experimentation on binary classification, we found out
that VGG16 tends to poorly handle class imbalance which causes the network to
be biased. Network automatically gets biased to the class with higher number of
samples and doesn’t learn well about the class having less samples. Retraining
VGG16 with class balancing techniques like weighted backprop could be replaced
with application of fine tuning. So instead of trying to deal with class imbalance
techniques, we preferred to choose InceptionResNetV2 and fine-tune its top layer
instead which helped in improving the performance.
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Table 2. Summary of comparison with other earlier approaches from literature for 10
classes

Model Source No. of parameters Accuracy

AlexNet [1] Original 62M 93.65%

Skin segmented 62M 93.60%

Face 62M 84.25%

Hands 62M 89.52%

Face+Hands 62M 86.68%

InceptionV3 [1] Original 62M 95.17%

Skin segmented 62M 94.57%

Face 62M 88.82%

Hands 62M 91.62%

Face+Hands 62M 90.88%

Real-time system [1] – 94.29%

Majority voting ensemble [1] – 95.77%

GA-weighted ensemble [1] – 95.98%

VGG16 [2] 138M 96.31%

Regularized VGG16 138M 96.16%

InceptionResnetV2 54M 94.93%

Table 3. Confusion matrix for the binary classification

Position Safe driver Distracted driver

Safe driver 881 13

Distracted driver 25 3412

We observe that InceptionResnet V2 performs better on binary classification
whereas VGG16 with ImageNet pre-trained weights performs better for the 10
class classification. We fine tuned the InceptionResnetV2 for binary classifica-
tion with L2 regularization by adding a single node after the final layer and keep
the whole network frozen. Fine tuning the InceptionResNetV2 produces cate-
gorical classification accuracy of 94.93%. Results are compared with state-of-art
networks from literature in Table 2. It processes 61 fps for binary classifica-
tion. Table 3 shows the confusion matrix for binary classification and we can see
that higher accuracy for detecting whether the driver is safely driving or not
is achieved. We evaluate the performance of binary classification i.e safe and
unsafe driving in terms of Accuracy, Sensitivity, Specificity and Recall which are
defined as follows.
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Table 4. Binary classification accuracy with proposed method

Model Accuracy Sensitivity Specificity Precision

InceptionResnetV2 99.12% 0.9854 0.9927 0.9724

Regularized VGG16 99.07% 0.9843 0.9924 0.9712

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity = TP
TP+FN (8)

Specificity =
TN

TN + FP
(9)

Precision =
TP

TP + FP
(10)

Here, TP , FP , TN and FN stand for True Positives, False Positives, True
Negatives and False Negatives respectively. Table 4 shows that both the networks
achieve good classification accuracy.

6 Conclusion and Future Work

Distracted driver is one of the leading issues in increased number of road crashes
and accidents. Hence detection of the driver pose can help us in deciding whether
he is safely driving or not in order to save lives. We develop a CNN based system
for pose estimation of the driver and alerting him if he is distracted. We focus
on detecting the driver distraction and not focusing on by which activity he is
distracted. We imply various regularization techniques to reduce overfitting. We
achieved 96.16% accuracy for the 10 class classification and 99.12% for binary
classification. Results are compared with state-of-art methods from literature
for driver pose estimation. This system processes 42 fps for 10 class problem
and processes 63 fps for the binary classification on an NVIDIA P5000 GPU
with 16 GB VRAM. As an extension of this work, we are planning to create a
computationally smaller and efficient network which is faster in nature and is
more deployable practically.
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Abstract. This paper addresses an approach for classification of hyper-
spectral imagery (HSI). In remote sensing, the HSI sensor acquires hun-
dreds of images with very narrow but continuous spectral width in vis-
ible and near-infrared regions of the electromagnetic (EM) spectrum.
Due to the nature of data acquisition with contiguous bands, the HS
images are very useful in classification and/or the identification of mate-
rials present in the captured geographical area. However, the low spa-
tial resolution and large volume of HS images make the classification of
those images as a challenging task. In the proposed approach, we use an
autoencoder with convolutional neural network (AECNN) for classifica-
tion of HS image. Pre-processing procedure with autoencoder leads to
obtain optimized weights in the initial layer of CNN model. Moreover,
features are enhanced in the HS images by utilizing the autoencoder.
The CNN is used for efficient extraction of the features and same is
also utilised for the classification of HS data. The potential of the pro-
posed approach has been verified by conducting the experiments on three
recent datasets. The experimental results are compared with the results
obtained in the geoscience and remote sensing society (GRSS) Image
Fusion Contest-2018 held at IEEE International Geoscience and Remote
Sensing Symposium (IGARSS)-2018 and other existing frameworks for
HSI classification. The testing accuracy of classification for the proposed
approach is better than that of the other existing deep learning based
methods.

Keywords: Autoencoder · CNN · Feature extraction · Hyperspectral
classification

1 Introduction

Hyperspectral imagery (HSI) is a collection of images acquired in the spectral
range of visible and near-infrared regions of the EM spectrum. It provides hun-
dreds of spectral channels over a same captured geographical area [3]. Due to
this, HS images are very useful in the classification and/or identification of the
materials present in the captured scene. The HSI classification has been widely
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used in a variety of applications. However, it considered to be as a challenging
task due to its nature of mixed pixels and large amount data volume [27]. This
demands more efficient and robust techniques for HSI classification in order to
extract features from the HSI data. In the last few decades, many researchers
have attempted to address this problem. In the early phase, spectral domain clas-
sifiers such as multimodal logistic regression (MLR) [15], random forest (RF) [9]
and support vector machines (SVMs) [22] were utilised for HSI classification.
Recently, methods based on sparsity [5], Markov random fields (MRFs) [14] and
morphological profiles (MPs) [2] are used for HSI classification and show the
promising improvement over the traditional methods since they use both spatial
and spectral details for HSI image classification.

In the field of computer vision, the deep learning based image classification
has been an active area of research mainly due to the remarkable performance
achieved through it. Specifically, in deep learning a lot of attention has been
attracted by the convolutional neural network (CNN) which has an ability to
extract features automatically from any kind of images. Also, it can be imple-
mented as an end-to-end framework for multitask learning which is used in many
applications such as multimedia search, vehicle detection, pedestrian detection
and face detection. In addition to that, CNN can be widely used in the object
localization [23], detection [24], recognition [13] and classification problem [11].
In comparison to the traditional image classification methods, the CNN can
extract the features efficiently and classification map can be generated directly.
In the literature, many methods have been proposed for classification of HSI
data using different CNN models which aim to extract efficient high level deep
features from HSI data [25]. Furthermore, multiple features can be learned simul-
taneously to extract more representative features. Learning of multiple features
have been applied successfully in many image processing applications in com-
puter vision field viz., multimedia search [17], vehicle detection [4], pedestrian
detection [32] and face detection [8]. Furthermore, deep learning has become an
area of interest of so many researchers and eventuated hot topic owing to simple
strategy of algorithms, increase in speed and higher accuracy. In specific, a lot of
attention has been attracted by convolutional neural network (CNN) due to its
outstanding performance. CNN is used in so many domains such as object local-
ization [23], object detection [24], solve the classification problem [11], object
recognition [13], etc. In contrast to the traditional rule based methods for the
feature extraction, CNN can extract deep features by learning hierarchical fea-
tures from low level to high level. It has ability to extract features automatically
from any category of images. Furthermore, CNN can be implemented as an end
to end framework for multitask processing. Classification map can be directly
generated using CNN. Therefore, various CNN models have been used for the
classification of HSI.

Chen et al. [6] have introduced the first framework for HSI classification
using many convolutional layers. This model extracts the invariant and nonlin-
ear features from the hyperspectral images. Zhao et al. [30] have implemented a
deep CNN model with dimension reduction algorithm for spatial-spectral feature
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extraction from hyperspectral image. In [20,29], authors have proposed the HSI
classification by constructing the CNN network with hierarchical feature extrac-
tion. Furthermore, Aptoula E. et al. [1] learn the several attribute profiles as an
input to the CNN framework and stacked up on raw hyperspectral data. They
efficiently classify the hyperspectral data by capturing its spectral and geometric
properties. The aforementioned CNN models have focused on automatic spatial
and spectral feature extraction. Zhao et al. [31] presented a different strategy
that composite the extracted features by deep learning at multiple spatial scales
which improves the performance of HSI classification at some extent. Selection
of partial view strategy is utilized to combine the various view and applied as an
input to the specific CNN architecture for land use classification [18]. Moreover,
Xu et al. [26] presented a data classification of multi-source data. They use two
tunnel CNN framework (i.e. extraction of spatial and spectral features separately
by a single module) and fusion is performed on the multi-source data. Neverthe-
less, there are lack of investigations to classify various similar kind of features
from HS image in the above work. Therefore, it is necessary to explore CNN
framework which is able to extract spectral and spatial features simultaneously
from various HS images and utilised the same for HSI classification.

In this paper, we use an autoencoder with CNN to improve the classification
accuracy of the HSI classification. In the image classification, first it is neces-
sary to enhance the features present from input hyperspectral image. Usually, an
autoencoder can be used for feature enhancement due to its effective represen-
tation of the features at abstraction level with reduced dimensionality. Further-
more, the enhance feature map obtained through the autoencoder is fed to the
CNN which extracts efficient features at each subsequent layer. The final classi-
fication is performed through the softmax classifier. Hence, the proposed frame-
work includes simple architecture which does not require any post-processing
module for classification. In proposed method, the CNN network consists two
convolution layers with rectified linear unit (ReLU) activation function and three
fully connected dense layers with leaky rectified linear unit (LReLU) and para-
metric rectified linear unit (PReLU). The final layer is implemented by including
the number of classes of the HS image. The key contributions in this paper are
as follow: (1) The proposed method consists shallow CNN network which is effi-
cient and robust for HSI classification, (2) the proposed approach uses a CNN
network with autoencoder in order to enhance the features of the HSI data and
(3) the use of Adam optimizer in the proposed method makes the approach
computationally efficient which is also well suited for large parameters. The rest
of this paper is organized as follows: Sect. 2 introduces overall framework of
the implemented method and also presents the detail discussion of the proposed
model. The experimental results and discussions are presented in Sect. 3. Finally,
Sect. 4 concludes the paper.
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Fig. 1. Framework of the proposed method AECNN. Here, k, s and N indicate the
number of filters, stride and nodes in the network, respectively.

2 Proposed Architecture Pipeline

In Fig. 1, we display the framework of the proposed method for classification of
HS image. It consists of shallow architecture by using autoencoder and CNN. In
the literature, it is proved that autoencoder is very efficient for the enhancement
of the non-linear features on high dimensional data [7]. Moreover, pre-trained
network give consistently better generalization. Our visualizations point to the
observations that pre-trained networks learn qualitatively different features com-
pared to networks without pre-training. The unsupervised pre-processing using
autoencoder works as a regularizer that affects the starting point of the super-
vised training of the CNN model. Basically, unsupervised training using autoen-
coder favors the hidden units that compute features of the input x (input to
CNN network) that correspond to major factors of variation in the true P (x)
i.e., probability of occurring of input x. Assuming that some of these are near
features useful at predicting variations in y (actual output of CNN network),
unsupervised pre-training sets up the parameters near a solution of low predic-
tive generalization error. Additionally, it is also observed that with a small train-
ing set, usually researchers are not giving importance in minimizing the training
error, because of overfitting issue. The training error is not a good way to dis-
tinguish between the generalization performances of two models. In that case,
unsupervised pre-training helps to find apparent local minima that have better
generalization error. Our main goal is to efficiently classify the densely connected
classes of the HSI dataset (i.e. Houston). Dataset of Salinas and Pavia could per-
form better without use of an autoencoder but it could not be achieved by Hous-
ton dataset due to more number of classes with similar nature. Therefore, an
autoencoder is used as a preprocessing task to obtain optimize weights at initial
layer of CNN. Moreover, it is also observed that result of CNN module without
using an autoencoder does not perform better as training attempts overfitting
due to shallow architecture of CNN. As we increase the number of layers of CNN
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with various filter sets and number of channels to improve efficiency, it incredibly
increases the complexity of architecture. The module without an autoencoder
obtains less than 25% accuracy on Salinas and Pavia dataset, attains 17% accu-
racy on Houston dataset. Same module could obtain better accuracy by adding
small preprocessing module (i.e. an autoencoder with three layers only). Approx-
imately 100% reconstruction is obtained at the output of autoencoder and it is
observed that the features are enhanced better than the original hyperspectral
image. It acts as a kind of network pre-conditioner, putting the parameter val-
ues in the appropriate range for further supervised training. Therefore, accurate
feature enhancement is done by pre-processing the hyperspectral image with the
autoencoder. It also initializes the CNN model to a point in parameter space
that somehow renders the optimization process more effective, in the sense of
achieving a lower minimum of the empirical cost function. The replacement of
autoencoder with CNN has also been verified experimentally and we found that
CNN requires more layers with more number of kernels in order to obtain the
same level of accuracy. Due to this, it also increases the complexity and training
period of the architecture. Here, autoencoder takes an original data as input
(x) and encode it in hidden layer (y) by mapping, y = ReLU(Wx + b), where,
W and b are the weight and bias of the autoencoder, respectively. The dimen-
sionality of the intermediate latent representation is dynamic for all dataset due
to large difference in size of them such as 210, 215 and 225 for Salinas, Pavia
and Houston, respectively. Finally, it generates the output (x′) by decoding the
data from hidden layer (y) as, x′ = σ(W ′y + b′). Here, the reconstructed error
is measured by using square error function as,

Loss(x, x′) = ||x − x′||2. (1)

In the autoencoder, since the number of input nodes are same as the number of
pixels in an HS image, the pixel’s information is propagated through the network
by discarding the nodes which are redundant. Finally, it reconstructs the original
features at the output layer and obtains features with better enhancement. The
output of the autoencoder i.e., x′ is used as a input to the convolution layer of
CNN.

The CNN consists two convolution layers with kernel of 1 × 1 to extract
multiple features efficiently. First layer includes 512 kernels to extract deep fea-
tures. A network without activation function works as a linear regression model
which does not perform the given task in a better way. Hence, it requires to use
non-linear activation function in order to learn complicated and complex form
of data. Earlier, sigmoid function was used as an activation function but due to
the vanishing gradient problem, now-a-days, rectified linear unit (ReLU) is used
[21]. Hence, it is preferred to use at initial layer. The basic ReLU function is
mathematically defined as, f(x) = max(0, x). where, x represents the value of
that particular node. ReLU describes that function is activated above the zero
value; hence its partial derivative is one. Thus, the problem of vanishing gradient
does not exist. Moreover, it saturates at zero which is more helpful to use as a
input features. However, it has disadvantage during optimization due to zero
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gradient whenever unit is inactive. That means algorithm would never adjust
the weights for initially inactive nodes. Again, number of kernels are increased
by multiple of two of initial number of kernels to extract high level features
at second layer i.e. 1024. Classification task demands more robust features to
classify each object present in image. Hence, There are three dense layers are
used. First, output data from convolutional layer is processed with 2048 nodes
in the first dense layer. It could be possible that the learning becomes slow with
training of ReLU function having zero gradient. This problem could be overcome
by Leaky ReLu (LRelu) which is mathematically describes as,

f(x) =
{

x, if x > 0;
0.01x, otherwise. (2)

It allows small non-zero gradient when nodes are inactive and sacrifices the
sparsity for the gradient during optimization which is more robust [19]. Moreover,
parametric ReLU (PReLU) [10] makes the use of coefficient of leakage (a) into
a parameter that is learned along with the other neural network parameters. It
improves the model fitting with low computational cost and reduces the risk of
over-fitting. Hence, second dense layer is implemented with 1024 nodes and data
mapping is performed on that layer by utilizing the concept of PReLU which is
described as,

f(x) =
{

x, if x > 0;
ax, otherwise. (3)

Finally, softmax function is used at the output layer with the nodes having the
total number of classes. The softmax layer is specifically used for classification
problem to compute the probability of each classes. It can be expressed as,

P (ŷ = c|x) =
exp(xT Wc)∑C

k=1 exp(xT Wk)
. (4)

Equation (4) describes the predicted probability of cth class, defined by given
input vector x and weight vector W . The loss function in the network measures
the performance of the classification. For more than two number of classes, cate-
gorical cross entropy is preferred and it can be calculated by separating the loss
for each class label and then sum the result of individual as,

L(y, ŷ) = −
M∑

c=1

yclog(ŷc). (5)

Furthermore, the appropriate optimizer could enhance the results with better
efficiency. Hence, Adam is preferred to optimize the model for the training of high
dimensional hyperspectral image. Adam takes the benefits of adaptive gradient
and RMS propagation by instead of adapting the learning rate parameter on the
average, it uses average of the gradient’s second moment [12]. Hence, it calculates
an exponential moving average of the gradient and the squared gradient. It is
calculated by,

W
′
ij+1 = Wij − η√

v̂t + ε
m̂t, (6)
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where, m̂t = mt

1−αt
1

and v̂t = vt

1−αt
2
. Where, mt = α1mt−1 + (1 − α1)gt represents

the decaying average of past gradient and vt = α2vt−1 + (1 − α2)g2t which is
decaying average of past squared gradient, α1 and α2 are decay rate which is
close to 1.

3 Experimental Results

The potential of the proposed method has been verified by conducting the exper-
iments on three different HSI datasets: 1. Salinas, 2. Pavia and 3. Houston. We
use Keras tensorflow libraries in order to implement the algorithm in a com-
puter system configured with Intel (R) Core (TM) i7-7700 CPU @3.60GHz × 8,
32 GB RAM and a GPU NVIDIA GeForce GTX 1070 with 8-GB GDDR5. In
the experiments, the pixel-wise annotation is performed using ERDAS Imagine
and data is exported to generate .mat file for importing in the algorithm. The
original dataset has been divided into two parts for training (70% samples) and
testing (30% samples). All experiments have been conducted with batch size
of 64. Epochs are set to 150 for Salinas and Pavia dataset, and 500 for Hous-
ton dataset. The classification performance of HSI data is measured in terms of
accuracy and efficiency coefficient called kappa (κ) to validate the quantitative
performance of the proposed method. Another performance evaluation param-
eters such as precision, recall rate and f1-score are also measured. To illustrate
the performance of the proposed algorithm, we have also compared the quantita-
tive performance of the proposed method with the different CNN based methods
such as CNN-PPF [16], 3D-CNN [28] and the recently proposed two tunnel CNN
(2T-CNN) method [26].

3.1 Experimental Evaluation on Salinas Dataset

First experiment is conducted on the Salinas dataset. It is acquired by the Air-
borne Visible Infrared Imaging Spectrometer (AVIIS) sensor which includes 224
spectral bands over Salinas, California. The size of the images in this dataset is
512×217 pixels with geometric resolution of 3.7 m. It contains 16 classes includ-
ing vegetables, bare soils and vineyard fields. The classification map obtained
using the proposed method for this dataset is displayed in Fig. 2 along with the
original and its ground-truth images. The evaluation parameters such as preci-
sion, recall rate, f1-score and accuracy are measured for each classes. The overall
classification accuracy and kappa coefficient are also evaluated and same are
depicted in Table 1 for the proposed method along with the other existing HSI
classification methods. We obtain 98.06 % accuracy and kappa of 0.9785 value
using the proposed method which show the better performance of the proposed
method over the recently proposed existing methods.



122 H. Patel and K. P. Upla

Fig. 2. The classification map obtained using the proposed method on Salinas dataset:
(a) Salinas dataset, (b) ground-truth classification map and (c) classification map
obtained using the proposed method.

Fig. 3. The classification map obtained using the proposed method on Pavia University
dataset: (a) Pavia University Dataset, (b) ground-truth classification map and (c)
classification map obtained using the proposed method.

3.2 Experimental Evaluation on Pavia Dataset

Pavia University dataset is acquired by Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor over university of Pavia, Northern Italy. It has 103
spectral bands ranging from 0.43 to 0.86 µm with 610 × 340 pixels and the
spatial resolution of 1.3 m. This dataset has 9 classes. Figure 3 shows the classifi-
cation performance obtained using the proposed method on Pavia dataset. The
accuracy and kappa measurement along with other evaluation parameters are
displayed in Table 2 and they show that the proposed method obtains 99.95%
accuracy with kappa value of 0.9993. Here, it is observed that the values of
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Table 1. The different quantitative measures obtained using the proposed method for
Salinas dataset.

Classes SamplesPrecisionRecall f1-scoreAccuracy(%)

ProposedCNN-PPF

[16]

3D-CNN

[28]

2T-CNN

[26]

Brocoli green weeds 1 209 1.00 1.00 1.00 100 100 98.36 100

Brocoli green weeds 2 372 1.00 1.00 1.00 99.05 99.88 98.43 99.09

Fallow 198 1.00 1.00 1.00 98.00 99.60 92.97 99.49

Fallow rough plow 117 1.00 1.00 1.00 100 99.49 99.46 99.16

Fallow smooth 266 1.00 1.00 1.00 99.46 98.94 91.38 99.68

Stubble 361 1.00 1.00 1.00 100 99.97 99.83 100

Celery 370 1.00 1.00 1.00 100 100 99.68 99.64

Grapes untrained 1131 0.99 0.90 0.94 99.66 88.68 68.94 91.36

Soil vinyard develop 643 1.00 1.00 1.00 99.76 98.33 98.45 99.45

Corn senesced green weeds 330 1.00 1.00 1.00 99.49 98.60 73.31 97.66

Lettuce romaine 4wk 107 1.00 1.00 1.00 100 99.54 90.85 100

Lettuce romaine 5wk 180 0.99 1.00 1.00 100 100 98.31 100

Lettuce romaine 6wk 106 1.00 1.00 1.00 100 99.44 97.43 100

Lettuce romaine 7wk 90 1.00 1.00 1.00 99.51 98.96 94.76 99.00

Vinyard untrained 739 0.87 0.98 0.92 93.14 83.53 63.75 88.00

Stone-Steel-Towers 191 1.00 1.00 1.00 99.73 99.31 89.83 100

Avg./Total 5413 0.98 0.98 0.98 98.06 94.80 85.24 97.72

κ 0.9785 0.9325 0.8360 0.9745

Table 2. The different quantitative measures obtained using the proposed method for
Pavia dataset.

Classes SamplesPrecisionRecall f1-scoreAccuracy(%)

ProposedCNN-PPF
[16]

3D-CNN
[28]

2T-CNN
[26]

Asphalt 665 1.00 1.00 1.00 100 97.42 69.42 98.69

Meadows 1845 1.00 1.00 1.00 100 95.76 58.51 99.21

Gravel 215 1.00 1.00 1.00 100 94.05 78.86 99.05

Trees 309 1.00 1.00 1.00 100 97.52 99.02 99.05

Painted metal sheets 140 1.00 1.00 1.00 100 100 100 100

Bare Soil 488 1.00 1.00 1.00 99.79 99.13 63.35 99.92

Bitumen 146 1.00 1.00 1.00 100 96.19 93.82 99.93

Self-Blocking Bricks 385 1.00 1.00 1.00 99.74 93.62 57.54 97.99

Shadows 85 1.00 1.00 1.00 100 99.60 97.67 100

Avg./Total 4278 1.00 1.00 1.00 99.95 96.48 67.85 99.13

κ - 0.9993 0.9582 0.6040 0.9883

these quantitative measures are better when compared to the same with other
existing HS classification methods.
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Table 3. The different quantitative measures obtained using the proposed method for
Houston dataset.

Classes Proposed method 2T-CNN [26]

SamplesPrecisionRecall f1-scoreAccuracy(%)Accuracy(%)

Healthy grass 43072 0.92 0.96 0.94 96.52 83.38

Stressed grass 36804 0.92 0.92 0.92 93.84 84.21

Stadium seat 32564 0.75 0.72 0.74 75.15 –

Paved parking lot 71367 0.91 0.91 0.91 92.05 92.51

Unpaved parking lot 8953 0.83 0.76 0.79 78.69 92.63

Deciduous tree 49446 0.95 0.94 0.94 94.28 –

Bare earth 39114 0.83 0.84 0.84 85.93 98.58

Train 100206 0.84 0.90 0.87 90.84 –

Evergreen tree 102229 0.98 0.97 0.97 97.21 93.18

Artificial turf 44117 0.95 0.94 0.94 94.49 99.60

Road 13876 0.70 0.62 0.66 66.91 78.66

Highway 7465 0.74 0.61 0.67 66.13 52.90

Railway 70500 0.92 0.92 0.92 93.15 82.16

Car 16046 0.81 0.63 0.71 66.87 –

Residential building 17915 0.89 0.78 0.83 81.34 85.45

Non-residential building 32671 0.68 0.76 0.72 79.46 69.14

Major throughfare 9741 0.78 0.52 0.63 56.17 –

Sidewalk 53603 0.84 0.90 0.87 91.62 99.79

Unclassified 2523 0.59 0.46 0.52 53.75 –

Avg./Total 752212 0.88 0.88 0.88 87.92 84.08

κ 0.8684 0.8274

3.3 Experimental Evaluation on Houston Dataset

The third experiment is conducted on Houston dataset which is most recent
HSI dataset with highest number of classes. The HS images in this dataset are
acquired by National Center for Airborne Laser Mapping (NCALM) and they are
made available through IEEE GRSS Data Fusion Contest 2018. It covers a 380–
1050 nm spectral range with 50 bands at a 1-m ground sampling distance (GSD).
It includes 20 classes with range from natural land cover (e.g., water, grass, tree
and bare earth) to man-made objects (e.g., vehicles, roads and buildings). The
classification results obtained using the proposed method for this dataset are
depicted in Fig. 4. In this figure, boxes with different colors indicate that the
selected samples are used for testing. The quantitative measurement param-
eters have been displayed in Table 3 and it shows that the proposed method
obtains 87.92% testing accuracy and kappa of 0.8684 value which are highest
among the other existing HSI classification methods. In addition to that, we
have compared our results with winner of the GRSS Image Fusion Contest-2018



AECNN: Autoencoder with CNN for Hyperspectral Image Classification 125

Fig. 4. Classification map obtained using the proposed method on Houston dataset.
Here, boxes with different colors indicate the testing samples and its classification maps
are displayed in (b)–(f).

on HSI classification. They obtained 77.39% accuracy and kappa value of 0.7300
which proves that proposed method attains the better performance.

Since this dataset consists more number of classes, same is used to obtain
the other quantitative measures such as precision, recall rate, f1-score, accuracy
and number of detected samples of individual classes from total tested sam-
ples by using the proposed method which depicted in Table 3. The architecture
in the proposed method is comparatively less complex than that of the other
existing methods. Also, the hybrid concept of autoencoder and CNN provides
better extraction of robust and deep features and same also helps to improve
the efficiency of the proposed algorithm.
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4 Conclusion

In the proposed method, we use a simple two layered autoencoder with CNN to
classify HSI data. Due to the use of an autoencoder as a preprocessing task, the
CNN model extracts the features efficiently from the hyperspectral data. This
pre-processing procedure leads to obtain optimized weights in the initial layer of
CNN model. In other words, it works as a regularizer that affects the starting
point of the supervised training of the CNN model. The use of autoencoder also
reduces the complexity as compared to the corresponding CNN architecture.
Also, the CNN based feature extraction improves the classification accuracy
of the proposed method. The experiments have been conducted on the three
different recent HSI datasets which show that the proposed method performs
better when compared to the same with the other existing HS image classification
methods.
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