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Abstract Face Recognition is immensely proliferating as a research area in the
paradigm of Computer Vision as it provides an extensive choice of applications in
surveillance and commercial domains. This paper throws light upon the comparison
of various dense feature descriptors (Dense SURF, Dense SIFT, Dense ORB) with
each other and also with their classical counterparts (SURF, SIFT, ORB) using a
novel technique for recognition. This proposed technique uses Laplacian of Gaussian
filter for enhancement of the image. It applies various dense and classical feature
descriptors on the enhanced image and outputs a feature vector. In order to achieve
high performance, this feature vector is given to Fisher vector since Fisher Vector
is a feature patch-aggregation method. Finally, extended nearest neighbor Classifier
is used for classification over the orthodox k-nearest classifier. Experiments were
carried out on three diverse datasets—ORL, Faces94, and Grimace. On scrutinizing
the results, Dense SIFT and Dense ORB were found to be preeminent as measured
by various performance metrics. 98.44 on Grimace, 98.15 on Faces94.
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ORB Oriented FAST and Rotated BRIEF
ENN Extended Nearest Neighbor
LoG Laplacian of Gaussian

1 Introduction and Related Work

In the current digital era, protecting sensitive information has become a cumbersome
task. Research shows that biometrics are more prominent than the traditional pass-
words for authentication and authorization. Face recognition is a class of biometrics
that maps a person’s facial features mathematically and stores the information as a
faceprint. Face Recognition even surpasses other biometric modalities because it is
non-intrusive and can identify a distant subject. Face recognition unlike other physi-
ological modalities does not require any special hardware component. Any modern-
day camera can be used for face recognition. Extensive research in the domain of
face recognition has led to various classical techniques like FisherFace, Elastic Graph
Matching, EigenFace etc.

Feature detection and description are one of the most crucial steps for an image
processing task.Over the last decade, Scale Invariant FeatureTransform(SIFT)which
was suggested by Lowe [1], Speed-Up Robust Features(SURF) which was originally
proposed by Herbert Bay [2] and Oriented FAST and Rotated BRIEF(ORB) [3] have
been widely used for face recognition. Some of the popular works include—adapta-
tion of SIFT Features for Face Recognition under Varying Illumination [4], SURF-
Face [5] and ORB-PCA based feature extraction technique for Face Recognition
[6]. The algorithms are subjective to the type of problem that has to be handled.
SIFT is a robust classical algorithm which intents to produce scale and orientation
invariant features [1] with descriptors which will perform well in matching the state
of the image processing pipeline [7]. Analogously, SURF is computationally less
exorbitant and mathematically less complicated [2, 8]. It is preeminent because of its
standout facets like scale and rotation invariance, repeatability, distinctiveness, and
robustness [2]. Similarly, ORB is more efficient than SURF because it uses binary
descriptor for feature detection [3, 8]. But for the scale and rotation invariance, it is
not as much robust as SURF [3, 7].

However, all these feature descriptors need the facial images to be properly aligned
and have a decent contrast. Otherwise, very limited number of key points are detected
in the image which produces poor results. Recently an alternative to the traditional
SIFT descriptor called the Dense SIFT (DSIFT) descriptor was proposed by Wang
[9]. The DSIFT descriptor increases the number of keypoints in an image [9, 10]
which in turn enhances the performance of the Face Recognition system. Thus, we
propose to exploit DSIFT [9], Dense SURF (DSURF) [5] and Dense ORB(DORB)
feature descriptors with a novel pipeline constituting of Laplacian of Gaussian (LoG)
filter [11, 12] for enhancing an input image, Fisher vector (FV) for image feature patch
aggregation and extended nearest neighbor (ENN) classifier [13] for classification,
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in this paper. To evaluate the performance of the proposed descriptors comparisons
were made with each other and also with the traditional descriptors (SIFT [1], SURF
[2] and ORB [3] descriptors). To the best of our knowledge, the application of Dense
SURF (DSURF) [5] and DORB on Face Recognition and their comparison with the
classical techniques has not been explored yet.

The paper is laid out in the following manner: Sect. 2 describes our proposed
system. It contains a detailed explanation of various steps involved along with their
usage in our pipeline. Section 3 describes the experimental design. It discusses the
various datasets used. Section 4 contains experimental results and their graphical
visualization. Section 5 contains various conclusions and inferences that were drawn
from the paper. We have also discussed the future enhancements.

2 Proposed System

This section discusses the different steps involved in this proposed method including
necessary theoretical and mathematical background of each step. The various steps
involved in this approach are depicted below. In the suggested approach, LoG filter
is applied to enhance an input image [11] i.e. improve contrast and brightness of the
image (Fig. 1).

This is depicted in the image below.

Then the enhanced image is passed to various dense feature descriptors. These
descriptors return a feature vector for each of the keypoints in the image. These
obtained feature vectors are passed to the Fisher vector which in turn enhances these
feature vectors and returns the enhanced feature vectors which are more suitable for
classification. Finally, Extended Nearest Neighbour classifier [13] is used to classify
the image. The enhanced feature vectors of all the images in the training dataset and
their corresponding labels are used to fit the classifier model. The resultant model
can then be used to classify any query image.

Input Face 
image

Applying
LoG
filter

Dense 
feature 

extraction

Applying
Fisher
Vector

Classsifing
 using ENN

classifier

Fig. 1 Pipeline for the applied methodology
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The implementation involves several tactical changes in the existing SIFT [1],
SURF [2] and ORB [3] feature descriptors to produce three novel descriptors: DSIFT
[9, 10], DSURF [5] and DORB. The pipeline also includes ENN classifier which is
an improved version of the popular K-Nearest Neighbour (KNN) classifier [13]. The
results obtained are compared with the classical techniques to state the proficiency
of the proposed system.

2.1 Laplacian of Gaussian

2.1.1 Background

Laplacian filter is a second order differential mask [11] which is generally used to
find edges in an image [12]. Laplacian operator is isotropic in nature I.e. it is impartial
and applies uniformly in all directions in an image. It measures the amount of change
in image intensity per change in image position [11].

The Laplacian operator is defined as the dot product of two gradient vector
operators [11]

L(x, y) =
[

∂

∂x

∂

∂y

]
·
[

∂

∂x

∂

∂y

]T

= ∂2

∂x2
+ ∂2

∂y2

The Laplacian operator L(x, y) when applied on an image with intensity values
I(x, y), is defined as

L(x, y) = ∂2 I

∂x2
+ ∂2 I

∂y2

A convolution filter can be used to approximate the Laplacian operator. For doing
so, a discrete kernel is required that can approximate the second order derivatives
used by the Laplacian operator. But, these kernels are highly susceptible to noise
[11]. To overcome this, noise within an image needs to be reduced. Smoothing filters
reduce the noise in an image and generate a less pixelated image [11].

Generally, the Gaussian smoothing filter is used to reduce the sensitivity of an
image to noise. The Gaussian operator is a two-dimensional convolution operator
[14] that blurs an image and removes some details and noise in the process. It uses a
kernel which has a bell-shaped representation. The Gaussian operator is a circularly
symmetric operator [14]. It is given by

G(x, y) = 1

2ψ2
e− x2+y2

2σ2 (σ represents standard deviation)

The distribution is represented as
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(mean is (0,0) and standard deviation is σ)
The Gaussian operator blurs out any point-like object (in this case a pixel) to a

three-dimensional image with certain minimal size and shape. Since the image is
represented using discrete pixel values so, before performing convolution a discrete
approximation of the Gaussian function must be found. Theoretically, the Gaussian
function is always greater than zero, which implies to an infinitely large convolution
kernel. But, practically the Gaussian distribution becomes negligible (approximately
0) beyond 3 standard deviations from the mean. So, the convolution kernel can be
terminated at this point.

Once an appropriate kernel is obtained, standard convolution techniques can be
used to perform Gaussian smoothing. By decomposing the Gaussian kernel into x
and y components [14], we can speed up the convolution step. Thus, we can perform
the two-dimensional convolution by first convolving in the x-direction using the
one-dimensional x component and then convolving in the y-direction using the one-
dimensional y component. The Gaussian operator is the only operator which can be
divided in such a way [14].

Since convolution is associative in nature, the Gaussian smoothing filter can be
convolved with the Laplacian filter [11] and then this LoG filter can be convolved
with the image to produce the desired results. LoG function is defined as

LoG(x, y)

= − 1

πσ4

[
1 − x2 + y2

2σ2

]
e− x2+y2

2σ2 (mean is (0, 0) and standard deviation is σ)

The LoG function is represented as
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(The x and y axes are marked in standard deviations (σ))
LoGfilter hasmany advantages like: (1)GenerallyLaplacian andGaussian kernels

are much smaller than the image, so LoG filter requires fewer arithmetic operations.
(2) The LoG kernel can be precomputed so, that it can be directly convolved with the
image at run-time. Thus, only one convolution is performed per image at run-time.

2.1.2 Usage

Pre-processing images is an integral part of Face Recognition systems. Input images
were enhanced by improving the contrast and brightness, in order to optimize the
performance of the proposed Face Recognition system.

Knowing the advantages of the LoG filter over the traditional Laplacian and
Gaussian filter, LoG filter was chosen for pre-processing the images. LoG filter
measures the amount of change of image intensity per change in image position
[11]. So, the response of the LoG filter will be zero for all the image patches having a
constant pixel intensity. On the other hand, whenever the intensity changes the LoG
filter will return a positive response on the darker side and negative response on the
lighter side [11]. This is depicted in the image below.

So, basically LoG filter is used to highlight all the edges present in an image (since
intensity changes across an edge). This is depicted in the image in Fig. 2. Gaussian
filter removes the additional details and noise from the input image and then the
Laplacian filter predicts the edges in the image. Now, when the filtered image is
subtracted from the original image then, the edges in the resulting image are much
sharper and have higher contrast [11]. So, this enhances the image. This is depicted
in the image in Fig. 2.

Fig. 2 a Original image,
b image obtained after
applying LoG filter and
c image obtained after
subtracting the filtered image
from the original image
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2.2 Feature Descriptors

2.2.1 Dense Sift

SIFT is a feature extraction algorithm which helps in detecting stable feature points
in an image. The sole purpose of SIFT algorithm is to obtain the feature descriptors
that overcome several computer vision challenges such as rotation invariance, scale
invariance and robust to variations in geometric transformations [7]. SIFT extracts
features from a given image by detecting interest points in the image [7]. SIFT
detector is implemented by the Difference-of-Gaussian function. DoG finds possible
interest points that are invariant to scale and rotation [7].

G(x, y, σ) = 1

2πσ2c

(
x2 + y2

)
/2σ2

DoG is accomplished by the convolving the Gaussian Filter on the image at
different scales [7]. DoG image is described as below:

L(x, y, σ) = G(x, y, σ) ∗ l(x, y)

Where the termL(x, y,) represents the convolved image. Eventually, the difference
between successive Gaussian-blurred images is calculated [7]. The operation of the
DoG function is shown below:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ l(x, y) = L(x, y, kσ) − L(x, y, σ)

These key-points reveals detailed information about the location, orientation, and
scale. It then computes the local descriptor for the local region around the keypoint.
The combination of all these computed descriptors gives the entire feature descriptor
for an image [7].

But, SIFT has many limitations. SIFT detector can’t detect enough number of
keypoints if an image is ill-illuminated [9]. The classical SIFT detector is generally
used on large images to make sure that enough number of interest points are detected
[9]. Dense SIFT overcomes these problems by making use of dense pixel grid repre-
sentation of images and considering the regular image grid points as keypoints [9].
Thus, DSIFT is able to detect a sufficient number of keypoints irrespective of the
illumination and size of the image. DSIFT descriptor computes feature descriptors
for each of these keypoints producing a dense representation of facial features. These
descriptors are finally concatenated to form the feature vector for the face [9].

2.2.2 Dense SURF

SURF was proposed to speed up the computation required by feature detection and
extraction [2, 15]. It is made up of a scale and in-plane rotation invariant feature
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detector and descriptor [2]. The feature detector does the job of detecting keypoints
in an image and the is used to describe the features of these detected keypoints by
constructing feature vectors.

SURF feature detector uses the determinant of the approximate Hessian matrix as
the underlying principle [2]. It calculates the determinant at all the points in the image
and detects droplet-like structures wherever the determinant is at maximum [2]. But,
these calculations are quite expensive. So, SURF uses integral images to reduce the
computation time. For any point x = (x, y) in an image at scale, the Hessian matrix
H(x,) is calculated as:

H(x, σ ) =
[
Lxx (x, σ ) Lxy(x, σ )

Lxy(x, σ ) Lyy(x, σ )

]

where Lxx (x, σ ), Lxy(x, σ ), Lyy(y, σ ) are defined as convolutions of Gaussian sec-
ond order partial derivatives on point x in image I. In order to reduce the compu-
tation cost a set of box filters is used by SURF to approximate the Gaussian and
represent the lowest scale for computing the droplets (blobs) [2]. These are denoted
by Dxx (x, σ ), Dxy(x, σ ) and Dyy(x, σ ). The result produced is:

det
(
Happox

) = Dxx Dyy − (
ωDxy

)2
where ω is the weight used for conserving energy between Gaussian kernels and
approximated Gaussian kernels. The value of ω can be calculated as:

ω =
∣∣Lxy(1.2)

∣∣
F

∣∣Dyy(9)
∣∣
F∣∣Lyy(1.2)

∣∣
F

∣∣Dxy(9)
∣∣
F

= 0.912 ≈ 0.9

Here, |XF| is Frobenius Norm.
For incorporating scale invariance, like SIFT, SURF also generates a pyramid

scale space. But it does this in a unique way. Since SURF makes use of box filters
and integral images so it generates the scale space by directly varying the scale of
box filters [2].

SURF feature descriptor is based on the local Haar wavelet responses [2]. It
calculates the sum of Haar wavelet responses and uses it to describe the feature
of a keypoint. To compute the descriptor a square region centered at the key point
is constructed and oriented along the direction given by the orientation selection
method [2]. Now the square region is divided into smaller 4 × 4 square sub-regions.
Now each sub-region is further split into 5 × 5 squares and Haar wavelet response
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is calculated for each of these squares. Haar wavelet response in x-direction and
y-direction are denoted by dx and dy respectively. To increase robustness towards
errors, the responses dx and dy are weighted with a Gaussian centered at the keypoint
[2].

Then the sum of wavelet responses dx and dy is computed over all the sub-regions.
These form the first entries of the feature descriptor of the keypoint [2]. Other entries
are also made in order to capture various types of information.

But, SURF faces problems when an image is small, does not have a proper ori-
entation or is ill-illuminated. DSURF is an enhanced version of SURF. The main
problemwith the classical SURF detector is that the number of false positives is high
[5]. SURF extracts image features by detecting keypoints in the image. But, if the
image is not properly oriented or illuminated then very few keypoints are detected in
the image leading to very few descriptors [5]. So, DSURF overcomes this limitation
by using a dense pixel grid representation for images [5]. It considers the regular
image grid points as keypoints and generates descriptors for them. So, DSURF is
able to generate a good number of descriptors for every image irrespective of the
conditions under which it is captured. Experimental results show that this modified
version of SURF is better as it makes keypoint detection invariant to illumination
and orientation.

2.2.3 Dense ORB

ORBmakes use FAST feature detector and BRIEF descriptor [3]. It adds an orienta-
tion component to the well known FAST descriptor by using the Intensity Centroid
approach [6] and creates a variant of the classical BRIEF descriptor which is rotation
invariant [6].
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The Intensity Centroid approach uses a robust measure of corner orientation. The
centroid is calculated using the moments of an image patch [6]. The (p+ q)th order
moment whose intensity function is I (x, y), can be calculated as:

mpq =
∑
x,y

x p yq I (x, y)

Once the moments are calculated then the centroid is given by:

C =
(
m10

m00
,
m01

m00

)

Now, a vector joining the center and centroid is constructed and the orientation
of the patch is calculated by:

θ = atan2(m01,m10)

where atan2 is arctan. This approach incorporates illumination invariance as angle
measures are independent of the type of corner [6].

Secondly, ORB includes a rotation invariant component called r-BRIEF [6]
which is an improved version of the classical BRIEF descriptor. To achieve rota-
tion invariance, ORB steers the BRIEF in the direction of orientation of key-points
[6].

This is achieved in the following way:
Suppose that for any binary feature set constituting of n tests at a point (xi , yi )

results in a matrix represented as:

S =
(
x1, . . . , xn
y1, . . . , yn

)

Now, by utilizing the patch orientation (Θ) and corresponding rotation matrix
(RΘ) a steered version of the original S can be obtained.

S� = Rθ S

Subsequently, the steered BRIEF operator is defined as:

gn(p,�) := fn(P)|(xi yi ) ∈ S�

But, ORB faces problems when an input image is not properly illuminated. ORB
uses FAST detector with some modifications to make it invariant to orientation but,
it does not handle illumination invariance. So, if an image is ill-illuminated or has
low contrast then FAST detects only a few keypoints and is not able to describe the
image features properly. DORB overcomes this limitation by using a dense pixel grid
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representation for images. It increases the number of keypoints in an image by con-
sidering regular image grid points as keypoints. So, the number of keypoints detected
by DORB is independent of the conditions under which the image is captured. So,
now the r-BRIEF descriptor is able to describe every image properly irrespective of
its illumination and contrast.

2.3 Fisher Vector

2.3.1 Background

Fisher Vector

Patch-aggregation techniques have proved to be effective in recent past, revealing
high performance for a variety of computer vision tasks. FisherVector (FV) is another
patch-aggregation technique which uses Fisher Kerne (FK)l as its underlying prin-
ciple [16]. FK framework derives a kernel by characterizing an image based on
the deviation from a generative data model [17]. The FV is represented vectorially,
which is obtained by the calculating the slope of the log-likelihood to the model
parameters [13, 17, 18]. FV is a high-dimensional vector formed by aggregating vast
set of feature vectors extracted by various feature descriptors (e.g. DSIFT, DSURF,
DORB).

Fisher Kernel

FK is used because of its potential of being used in learning amodel when the training
objects have adifferent underlyinggraph structure. It is basedon the concept of having
similar log-likelihood gradients for similarly structured objects in a generative model
[17, 18].

Let X = {xn, t = 1, 2, . . . ,N} where xn ∈ χ is a set of D-dimensional local
descriptors, like DSIFT, DSURF or DORB descriptors [17]. By the theory of infor-
mation geometry, a Riemannian manifold MA with a local metric is derived by the
Fisher Information Matrix(FIM) Fλ ∈ R

M × M

Fλ = EX∼uλ

[
GX

λ G
XT

λ

]

where uλ is the probability density function for the elements in χ where λ =
λ1, λ2, . . . , λM ∈ R

M which represents a vector with M parameters of uλ.
FKl for two samples X and Y is defined as:

K(X,Y) = GXT

λ F−1
λ GY

λ .
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By the Cholesky decomposition, equation can be written as a dot product:

KFK (X,Y ) = G
∧XT

λ G
∧Y

λ

where G
∧X

λ = LλGX
λ = Lλ?λlog uλ(X), G

∧X

λ is known as the Fisher Vector of X. Let
us assume that samples are independent, we can write the equation as below:

G
∧X

λ =
N∑

n=1

Lλ∇λlog uλ(xn).

According to the assumption, FV is a sum of the normalized gradient for each
descriptor. The contribution by each xn can be inferred as an embedding of local
descriptors xn in a high-dimensional space. Gaussian Mixture Model is selected as
uλ [13, 17]. We are denoting T-component GMM by λ = {wt , ut ,Σt , t = 1, . . . , T }
where wt , ut ,Σt are mixture weight, mean vector and covariance matrix of
Gaussian t.

Lλ is calculated by taking square-root of the inverse of FIM. The nor-
malized gradients can be formulated by performing coordinate-wise normal-
ization of the gradient vectors. Initially, the accumulators are initialized as
S0t ← 0, S1t ← 0, S2t ← 0 for ∀ {t ∈R | 1 ≤ t ≤ T}. For each of
the local image descriptors, posterior probability is
derived by γn(t) = wt ut (xn)∑T

j=1 w j u j (xn)
, then update the accumulators with the

S0t , S
1
t , S

2
t with γn(t), γn(t)xn and γn(t)x2n respectively [17]. In terms of statistics,

these computed normalised gradients can be written in the form of 0th-order,
1st-order and 2nd-order statistics:

S0t =
N∑

n=1

γn(t)

S1t =
N∑

n=1

γn(t)xn

S0t =
N∑

n=1

γn(t)x
2
n

After the statistics are computed, the signature of the Fisher Vectors for all the t
components of the GMM needs to be accounted by the following equations:

G
∧X

αt
= (

S0t + Nwt
)
/
√
wt

G
∧X

μt
= (

S1t + μt S
0
t

)
/
√
wtσt

G
∧X

σt
= (

S2t − 2μt S
1
t + (

μ2
t − σ2

t

)
S0t

)
/
√
2wtσ

2
t
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where αt is the re-parametrization of the following the definition of soft-max for-
malism. Using the Eq. (19), the components are calculated separately. All the FV
components are concatenated to form a single vector representing FV.

To improve the results with various linear classifiers it is a necessity to use nor-
malization techniques. Different normalization techniques have been proposed in
past [13, 17]. Some of them are l2-normalization, power normalization. FV depends
on some percentage of the image-specific proportion (ω). Accordingly, this can be
inferred from the fact that two images having the same objects but different scales
have different signatures. l2-normalization is used to eliminate the dependence on
ω.

G
∧X

λ = G
∧X

λ /

√
G
∧XT

λ G
∧XX

λ

Power normalization is applied for all i = 1, . . . ,T(2D + 1) of the form:

[
G
∧X

λ

]
i
− sign

([
G
∧X

λ

]
i

)√∣∣∣G∧X

λ

∣∣∣
i

]

In the experiments performed, power coefficient ρ has been set to 1/2. This adjust-
ment is also referred to “signed square rooting” and has been found advantageous
for image representations [13, 16].

2.4 Extended Nearest Neighbor Classifier

As the name suggests, this classifier is an extension of thewell knownKNNclassifier.
It approximates the optimal Bayes theorem and enhances the performance of KNN
and weighted-KNN classifiers [8].

Classifiers are broadly classified into two types namely parametric classifiers and
non-parametric classifiers. ENN classifier comes under non-parametric classifier. In
non-parametric classifiers, the classification rules are independent of the underlying
distribution of input data [8]. Non-parametric classifiers have been used extensively
recently.

Talking about the KNN classifiers, they have numerous advantages such as simple
implementation, great performance on the data independent of the underlying data
distribution.

But they have a lot of shortcomings, like determining the optimal value of k. A
straightforward approach to solve this would be to try out different values of k and
choose the one which produces optimal results. The second problem is choosing an
appropriate distance measure.

KNNs are influenced heavily by the distribution of predefined classes [19]. The
outcome, i.e. the classification of the test data is more likely to be decided by the class
with higher density. Suppose there are two classes A and B, and class A has a lower
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variance which means that data points appear to be more concentrated and class B
has a distribution which is more spread out. This clearly leads to misclassification of
the test data points since the nearest neighbors from class A will be more dominant.

ENNs works independently of the fact that whether the data points of the class
are well spread or they have a concentrated distribution. ENN doesn’t only classify
the test samples by just finding the nearest neighbors of the predefined classes but
also takes into account the test samples as which are their nearest neighbors [8].

Defining the general class wise Ti as the following:

Ti = 1

nik

∑
x∈S

k∑
r=1

Ir (x, A = A1 ∪ A2)

where, A1 and A2 denote the samples belonging to the class 1 and class 2. And A
is the union of the A1 and A2, k is the number of nearest neighbor. I is the indicator
function, sees if both the sample x and it’s rth nearest neighbor are part of the same
class, defined as follows:

Ir (x, A) =
{
1, i f x ∈ AAi and NNr (x, A)εAi

0, otherwise

where NNr denotes the rth nearest neighbor of x in A.
The intra-class coherence is defined as follows:

θj =
2∑

i=1
Tj
i

fENN = argmax
2∑

t=1
T j
i = argmax

j∈1,2 θ j

ENN.V1

T j
i = 1

n′
i k

∑
x∈Ai∪z

k∑
r=1

Ir
(
x, A′ = A1 ∪ A2 ∪ {z}).

when i = j we have,

T j
i =

(
nikTi + Δn j

i + ki
)

(ni + 1)k

and when,

T j
i = Ti − �n j

i /nik

Therefore we have,
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fENN = arg j∈1,2,...,N max
N∑
i=1

(
T j
i − Ti

)

fENN = arg j∈1,2,...,N max

⎧⎨
⎩

(
T j
i − Ti

)
i= j

+
N∑
i =1

(
T j
i − Ti

)⎫⎬
⎭

The ENN decision rule can be formulated as:

fENN = arg j∈1,2,...,N max
{
�n j + k j − kTj

}

3 Experimental Design

3.1 Face Datasets

3.1.1 ORL (Olivetti Research Laboratory) Dataset

The dataset consists of 40 subjects with 10 distinct images per subject, totaling to
400 images. This dataset is created specifically for Face Recognition. This dataset
consists of very diverse images, captured under various lighting conditions. The
dataset also captures a wide range of facial expressions which makes it a good choice
for unconstrained face recognition (pose, expression, and illumination invariant)
applications.

3.1.2 Faces94

This dataset consists of 153 subjects with 20 images per subject, totaling to 3060
images. The dataset consists of 133 male and 20 female subjects. The images are
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taken from a fixed distance by the camera under the same lighting conditions, so
there are no scale or illumination variations. The subjects are speaking so, there
are considerable expression variations. So, this dataset is generally preferred for
expression invariant applications.

3.1.3 Grimace

This dataset consists of 18 subjects with 20 images per subject, totaling to 360
images. All the images of a subject are taken in a single session with a 0.5-s interval
between two consecutive image captures. During the session, subjects try to make
grimaces by varying their poses and facial expressions. So, this dataset is generally
preferred for pose and expression invariant applications.
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4 Experimental Results and Visualization

Various experiments were carried out in order to evaluate the performance of our
proposed system. We used Accuracy, Precision and Recall as the performance met-
rics. We compared the results obtained from different dense feature descriptors. We
also compared the results obtained from the dense descriptors with their traditional
counterparts I.e. we compared the results of DSIFT [9] with SIFT [1], DSURF [5]
with SURF [2] and DORB with ORB [3] descriptor.

4.1 Dense SIFT

The traditional SIFT descriptor fails to describe an ill-illuminated, ill-oriented image
properly [9]. Actually the SIFT detector is not able to generate enough number of
keypoints for such an image. DSIFT detector increases the number of keypoints in the
image by making use of regular image grid points as interest points and passes these
new keypoints to the DSIFT descriptor [9]. This is depicted in the figure below. The
DSIFT detector takes a parameterwhich determines the grid size used to represent the
input images. It’s value is dependent on the training dataset. We tuned this parameter
to achieve the optimal results. For the ORL dataset grids containing squares of size 5
pixel × 5 pixel gave the best results. For the Faces94 dataset grids containing squares
of size 4 pixel × 4 pixel produced the best results. Whereas for Grimace dataset grids
containing squares of 3 pixel × 3 pixel gave optimal results.

4.2 Dense SURF

The classical SURF descriptor fails to describe an ill-illuminated, ill-oriented image
properly [5]. SURF detector is not able to generate enough number of keypoints for
such an image. DSURF detector increases the number of keypoints in the image by
making use of regular grid points as keypoints and passes these new keypoints to
the DSURF descriptor [5]. This is depicted in the figure below. The dense SURF
descriptor takes a parameter which determines the grid size used to represent the
input images. Its value is dependent on the training dataset. We tuned this parameter
to achieve the optimal results. For the ORL dataset grids containing squares of size
11 pixel × 11 pixel gave the best results. For the Faces94 dataset grids containing
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squares of size 10 pixel × 10 pixel produced the best results whereas for Grimace
dataset grids containing squares of size 15 pixel × 15 pixel gave optimal results.

4.3 Dense ORB

ORB employs a FAST detector which is rotation invariant [3]. But, it fails to incor-
porate illumination invariance. Because of this, ORB fails if the images are ill-
illuminated or have a low contrast. DORB is able to counter this by using regular
image grid points as keypoints. This way it can detect keypoints even in a poorly lit
image. This is depicted in the figure below. The FAST detector present in DORB,
takes a parameter which determines the grid size used to represent the input images.
For the ORL, Faces94 and Grimace datasets grids containing squares of size 3 pixel
× 3 pixel produced optimal results.

4.4 Performance Evaluation

On theORLdataset, the proposedDSIFT descriptor andDORBdescriptor performed
quite well. DSIFT gave better results than DORB. These two descriptors surpassed
all other descriptors. DSIFT outperformed DORB by an accuracy margin of 0.54%
and DSURF by an accuracy margin of 16.96%. Also, DSIFT outperformed SIFT by
an accuracy margin of 5.41%, DSURF outperformed SURF by an accuracy margin
of 1.39% and DORB outperformed ORB by an accuracy margin of 3.26%.

On the Faces94 dataset, the proposed DSIFT descriptor and DORB descriptor
performed quite well. DORB gave better results than DSIFT. DORB outperformed
DSIFT by an accuracy margin of 0.79% and DSURF by an accuracy margin of
13.56%. Also, DSIFT outperformed SIFT by an accuracy margin of 4.02%, DSURF
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outperformed SURF by an accuracymargin of 0.23% andDORBoutperformedORB
by an accuracy margin of 1.48%.

On the Grimace dataset, the proposed DSIFT descriptor and DORB descriptor
performed quite well. DSIFT gave better results than DORB. DSIFT outperformed
DORB by an accuracy margin of 1.89% and DSURF by an accuracy margin of
17.21%.Also,DSIFToutperformedDSIFTby an accuracymargin of 6.35%,DSURF
outperformed SURF by an accuracymargin of 1.01% andDORBoutperformedORB
by an accuracy margin of 2.3%.

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 94.25 92.10 97.25

Dense SURF 77.29 78.76 84.30

Dense ORB 93.71 91.27 95.00

SIFT 88.84 89.73 91.34

SURF 75.90 77.90 81.14

ORB 90.45 90.89 93.67

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 97.36 97.72 98.11

Dense SURF 84.59 83.20 90.23

Dense ORB 98.15 98.07 99.44

SIFT 93.34 92.50 95.00

SURF 84.36 84.20 88.47

ORB 96.67 96.23 96.16

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 98.44 96.85 99.32

Dense SURF 81.23 83.48 88.91

Dense ORB 96.55 94.67 97.30

SIFT 92.09 93.43 94.17

SURF 80.22 79.65 84.73

ORB 94.25 94.5 95.23
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4.5 Performance Comparison

5 Conclusion and Future Work

This paper introduces a novel pipeline for Face Recognition. It employs dense feature
descriptors for feature extraction and extended nearest neighbor classifier for the
classification task. This paper also provides a detailed comparison of various dense
feature descriptors (DSIFT, DSURF, and DORB) with themselves and with their
classical counterparts (SIFT, SURF, and ORB). Upon extensive experimentation, we
are able to conclude that DSIFT and DSURF surpass other feature descriptors in
terms of accuracy, precision, and recall. Therefore, these are better suited for face
recognition.

In future, we would focus on making the model more robust and making it work
under unconstrained scenarios i.e. invariant to scaling, illumination, occlusion, and
age.
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