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Preface

This book is an outcome of the selected papers presented at the International
Conference on Mathematical Modelling and Scientific Computing (ICMMSC
2018) held at IIT Indore during July 19–21, 2018. This highly interdisciplinary
conference brought together applied mathematicians and computational scientists
with researchers and engineers in several areas of engineering to have an effective
exchange of ideas for mutual benefits.

The most important task for attaining a practical solution for any real-life
problem arising in science and engineering is to make a good and accurate math-
ematical model of that problem. Once this model is designed, it is important to
numerically solve the mathematical model using appropriate, computationally
viable algorithms and the associated high-quality mathematical software, or by
developing new suitable algorithms and software, if required. This task is com-
monly referred to as scientific computing. Thus, this book forms an integral part of
research and development in almost all branches of applied sciences, engineering,
and technology.

The following types of papers are intended and included in this book: the
state-of-the-art review papers or research monograph based on the keynote and
plenary talks, given by well-known experts from several areas of science and
engineering of interests to the conference; a few highly selected and critically
refereed technical papers, based on contributed presentations; and a few short
papers, based on ongoing but promising research. In addition to the scientific paper
contribution, we also discussed a panel discussion on how to minimize the gap
between mathematicians and engineers on the last day (July 21, 2018) of the
conference.

The book will be of interests to a wide variety of researchers, students, and the
practicing engineers working in diverse areas of science and engineering, ranging
from applied and computational mathematics, vibration problem, computer science,
and numerical optimization to physics, chemistry, biology, electrical, civil,
mechanical, chemical, seismology, aerospace, and medical sciences. Some specific
areas of interests whose readership will be highly benefited by this book include
numerical linear algebra, control theory, mechanical vibration, signal and image

xi



processing, wave propagation, computer vision, computer photography, computa-
tional fluid dynamics, heat and mass transfer, biomedical engineering, computational
physics, and aeronautics.

The book will serve as a valuable reference book for scientists and engineers
working in different areas of science and engineering, and as a textbook for several
types of advanced interdisciplinary courses blending science, mathematics, and
engineering. The presence of such a book will simulate research and education in
science and engineering.

Indore, India Santanu Manna
July 2018 Biswa Nath Datta

Sk. Safique Ahmad
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Abstracts of the Talks Given at ICMMSC 2018

Computational and Optimization Methods for Quadratic
Inverse Eigenvalue Problems Arising in Mechanical
Vibration and Structural Dynamics

Biswa Nath Datta

The quadratic eigenvalue problem is to find eigenvalues and eigenvectors, a
quadratic matrix pencil of the form P kð Þ ¼ Mk2 þCkþK where the matrices M;C
and K are square matrices. Unfortunately, the problem has not been widely studied
because of the intrinsic difficulties solving the problem in a numerically effective
way. Indeed, the state-of-the-art computational techniques are capable of computing
only a few extremal eigenvalues and eigenvectors, especially if the matrices are
large and sparse, which is often the case in practical applications. The inverse
quadratic eigenvalue problem, on the other hand, refers to constructing the matrices
M;C and K given the complete or partial spectrum and the associated eigenvectors.
The inverse quadratic eigenvalue problem is equally important and arises in a wide
variety of engineering applications, including mechanical vibrations, aerospace
engineering, design of space structures, and structural dynamics. Of special prac-
tical importance is to construct the coefficient matrices from the knowledge of the
only partial spectrum and the associated eigenvectors. The greatest computational
challenge is to solve the partial quadratic inverse eigenvalue problem using the
small number of eigenvalues and eigenvectors which are all that are computable
using the state-of-the-art techniques. Furthermore, computational techniques must
be able to take advantage of the exploitable physical properties, such as the sym-
metry, positive definiteness, and sparsity, which are computational assets for
solution of large and sparse problems. This talk will deal with two special quadratic
inverse eigenvalue problems that arise in mechanical vibration and structural
dynamics. The first one, quadratic partial eigenvalue assignment problem
(QPEVAP), arises in controlling dangerous vibrations in mechanical structures.
Mathematically, the problem is to find two control feedback matrices such that a
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small amount of the eigenvalues of the associated quadratic eigenvalue problem,
which are responsible for dangerous vibrations, is reassigned to suitably chosen
ones while keeping the remaining large number of eigenvalues and eigenvectors
unchanged. Additionally, for robust and economic control design, these feedback
matrices must be found in such a way that they have the norms as small as possible
and the condition number of the modified quadratic inverse problem is minimized.
These considerations give rise to two nonlinear unconstrained optimization prob-
lems, known, respectively, as robust quadratic partial eigenvalue assignment
problem (RQPEVAP) and minimum norm quadratic partial eigenvalue assignment
problem (MNQPEVAP). The other one, the finite element model updating problem
(FEMUP), arising in the design and analysis of structural dynamics, refers to
updating an analytical finite element model so that a set of measured eigenvalues
and eigenvectors from a real-life structure are reproduced and the physical and
structural properties of the original model are preserved. A properly updated model
can be used in confidence for future designs and constructions. Another major
application of FEMUP is the damage detections in structures. Solution of FEMUP
also gives rise to several constrained nonlinear optimization problems. I will give an
overview of the recent developments of computational methods for these difficult
nonlinear optimization problems and discuss directions of future research with some
open problems for future research. The talk is interdisciplinary in nature and will be
of interests to computational and applied mathematicians, and control and vibration
engineers and optimization experts.

Energy Based Modeling, Simulation, and Control
of Coupled Systems

Volker Mehrmanna

Motivated by modeling modern energy and transport networks, in particular those
from different physical domains, the modeling framework of port-Hamiltonian
systems is discussed. The classical port-Hamiltonian approach is systematically
extended to constrained dynamical systems (partial differential algebraic equations).
A new algebraically and geometrically defined system structure is derived, which
has many nice mathematical properties. It is shown that this structure is invariant
under Galerkin projections and changes of basis, and that a dissipation inequality
holds and it is automatically stable and passive. Furthermore, the new representa-
tion is very robust to perturbations in the system structure. Using this structure leads
to many advantages for tasks like model reduction or large-scale simulation. There
exist, however, many open problems associated with port-Hamiltonian systems,
which will also be discussed.
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Generalized Finite Element Method: Successes
and Challenges

Uday Banerjee

The generalized finite element method (GFEM) is used to approximate non-smooth
solutions of PDEs associated with many problems of engineering interest, e.g.,
problems involving voids, inclusions, crack propagation, and interface problems.
The GFEM is an extension of the standard finite element method (FEM), where the
standard piecewise polynomial trial space of the FEM is augmented by a suitably
chosen, problem-dependent, enrichment space that often contains non-polynomial
functions. This method (i) allows the use of a simple mesh that does not conform to
the features of the underlying problem and (ii) yields optimal order of convergence.
However, the GFEM yielding the optimal order of convergence could be badly
conditioned for certain choices of the enrichment functions; it could be difficult to
solve the underlying linear system.

In this talk, we will present sufficient conditions on the enrichment space that
will guarantee that the conditioning of the GFEM is not worse than that of the
standard FEM and the conditioning is robust with respect to the position of the
mesh (relative to the features of the underlying problem). A stably well-conditioned
GFEM is called the stable generalized finite element method (SGFEM). We will
present a simple local procedure that changes the GFEM into an SGFEM for a
certain class of problems. However, the choice of enrichment functions is
non-trivial as this local procedure may not work for other problems. We will
illuminate these ideas through two specific applications.

Active Control with the Method of Receptances: Recent
Progresses and its Application in Active Aeroelastic Control

Kumar Singh

The design of active control for large and complex engineering structures requires
accurate modeling and prediction of their dynamic response and instabilities. The
performance of traditional model-based control may be limited due to the errors in
model approximation, size of the problem, and/or availability of limited data for
realizing active control. To overcome some of these challenges, the method of
receptances is developed. This method allows design and computation of controller
gains based on modest size of receptance matrices which can be extracted from
transfer functions associated with available sensors and actuators. The area of active
aeroelastic control deals with developing wing technology for the next-generation
aircraft to achieve increased performance by controlling and manipulating the
aeroelastic response by active means. In these applications, receptance-based
controller design is found to be promising as it eliminates the modeling of complex
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aeroelastic interaction between elastic structure and surrounding aerodynamics. In
this talk, fundamental of the receptance-based control is introduced and recent
progress in this area is highlighted. The effectiveness of the controller designed with
onboard sensors (embedded) and actuators (control surfaces) for suppressing the
flutter instabilities and flutter boundary extension is demonstrated with numerical
examples. The performance of the controller such as its ability to control prescribed
modes of interest without influencing the other modes including the actuator modes
is also presented. Ongoing research in this area and potential for future research are
briefly summarized.

Modeling Chaotic Systems and Spatiotemporal
Transmission Dynamics of Recent Ebola Spread
and Outbreak

Ranjit Kumar Upadhyay

The concept of chaos is one of the major discoveries of the twentieth century.
It (deterministic chaos) has been studied extensively in various fields; here, I will
discuss a few important areas. In spite of abundant past and current work in this
direction, there is still no broadly applicable, convenient, generally accepted defi-
nition of the term chaos. In this talk, I will discuss different definitions of (opinion
about) chaos, including my own opinion which can be applied very generally to
situations that are commonly encountered, including attractors, repellers, periodi-
cally and non-periodically forced systems. I will also discuss some related concepts
like robust chaos, ecological vs mathematical chaos, crisis, edge of chaos, and wave
of chaos and examine the observability of these phenomena in eco-epidemiological
systems. I will present the development of a model epidemic and eco-epidemic
systems (both spatial and temporal) based on sound ecological principle and discuss
why and how the model was developed. What is special about it and what kind of
questions of ecological interest can be answered with the help of this model system?
Different types of paradoxes in ecology and its resolution. Next, I will discuss my
recent work on spatiotemporal transmission dynamics of recent Ebola spread and
outbreak in West Africa. In this talk, I will try to explain the modeling and sim-
ulation for the virus dynamics to better understand and characterize the transmission
trajectories of the Ebola outbreak. I will present the development of a model epi-
demic and eco-epidemic systems (both spatial and temporal) based on sound
ecological/epidemiological principle and discuss why and how the model was
developed. What is special about it and what kind of questions of epidemiological
interest can be answered with the help of this model system? To understand the
Ebola transmission dynamics, we formulate a compartmental epidemic model with
exponentially decaying transmission rates and study the impact of control measures
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on basic public health using an SEIR and SEIRHD models. We compare the
simulated results with the most recent reported data of Ebola-infected cases in the
three most affected countries Guinea, Liberia, and Sierra Leone. I will discuss my
recent work on spatiotemporal transmission dynamics of recent Ebola spread and
outbreak in West Africa. The proposed Ebola epidemic model provides an esti-
mate to the potential number of future cases. Two-dimensional simulation experi-
ments show that infectious population and the number of deaths in Sierra Leone
will increase up to one and a half year without control, but it will decline after two
years.

Mixed-Field Multiterm Extended Kantorovich Method
for Accurate Prediction of Edge Stresses
in Piezothermoelastic Laminates

Santosh Kapuria

Composite and sandwich laminates are widely used in high-performance light-
weight structures in several applications such as aircraft wings, marine propeller
blades, wind turbine blades, spacecraft, and robotic arms. Such laminated structures
also provide the opportunity to accommodate surface-bonded or embedded smart
piezoelectric transducer layers to introduce self-sensing and actuation capabilities.
However, the material discontinuity at the interfaces of adjacent dissimilar layers
and geometric discontinuity at the free edges of such laminated structures give rise
to development of large out-of-plane stresses in the vicinity of free edges (free edge
effect) under thermo-electro-mechanical loadings, which are known to be the prime
reason for initiation of delamination damage in these laminates. Hence, accurate
prediction of free edge stress field, which is truly three-dimensional (3D) in nature,
is essential for designing such structures and to ensure its integrity. Since the 3D
elasticity-based exact analytical solution for the free edge problem is not known,
there has been a continuous effort to develop various numerical and approximate
analytical solutions for the problem, starting from the finite difference method-
based solution of Pipes and Pagano (1970). The extended Kantorovich method
(EKM) is a powerful iterative semi-analytical method for solving partial differential
equations (PDEs), which was proposed by Kerr in 1968 based on a solution process
given by Kantorovich and Krylov in 1936. The author group has recently gener-
alized the method by developing the mixed-field multiterm extended Kantorovich
method (MMEKM) to obtain 3D elasticity solutions of laminated plates. In this
method, both displacement and stress variables are considered as field variables and
are represented as n-term series of the product of separable functions in the inplane
and thickness directions. The iterative solution process alternatively considers the
functions in one direction as known (from initial guess or previous iteration) and
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transforms the PDEs into set of ordinary differential equations (ODEs) for the
functions in the other direction, using the Reissner-type mixed variational principle.
The ODEs are solved analytically. The iterations over the two directions are con-
tinued until the desired convergence is achieved, which generally happens very
rapidly. The mixed-field approach ensures satisfaction of all boundary conditions at
the free edges and interlaminar continuity conditions exactly and pointwise, and
also yields the same order of accuracy for both displacements and stresses.
The MMEKM is employed here to obtain accurate 3D piezothermoelasticity
solution of the free edge stress field in infinitely long laminated panels under
extension, bending, twisting, electric potential, and thermal loadings. The imperfect
interlaminar bonding is modeled using the linear spring-layer model, which is
incorporated in the variational framework. The numerical results exhibit rapid
convergence with respect to the number of terms and iterations and excellent
accuracy for a variety of laminate configurations under all loading conditions. The
solution is general and is applicable to symmetric, unsymmetric, cross-ply and
angle-ply hybrid laminates having surface-bonded or embedded piezoelectric lay-
ers. The solution also successfully captures the singular nature of free edge inter-
laminar stresses in elastic and hybrid laminates under various loadings. The results
show significant effect of electromechanical and thermoelectric coupling on the free
edge stresses in hybrid laminates. Finally, we show how the free edge stresses due
to extension, bending, twisting, and thermal loads can be controlled by applying an
appropriate actuation potential.

Fiedler and Generalized Fiedler Pencils for Rational
Eigenvalue Problems

Rafikul Alam

Linearization is a standard method for computing eigenvalues, eigenvectors, min-
imal bases, and minimal indices of matrix polynomials. Frobenius companion
pencils are examples of linearizations of matrix polynomials. Fiedler and general-
ized Fiedler companion pencils have been introduced recently which provide
structured and unstructured linearizations of matrix polynomials. Rational eigen-
value problems arise in many applications, and the computation of poles and zeros
of rational matrix functions is an important task. For computing eigenvalues,
eigenvectors, poles, minimal bases, and minimal indices of rational matrix func-
tions, we introduce Fiedler and generalized Fiedler companion pencils for rational
matrix functions and show that these pencils are linearizations of the rational matrix
functions in an appropriate sense. We describe the recovery of minimal bases and
minimal indices of rational matrix functions from those of the Fiedler and gener-
alized Fiedler pencils.
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A Mathematical Model for Storage and Recall of Images
in the Human Brain

Govindan Rangarajan

We propose a mathematical model for storage and recall of images in the human
brain using coupled maps. We start by theoretically investigating targeted syn-
chronization in coupled map systems, wherein only a desired (partial) subset of the
maps is made to synchronize. A simple method is introduced to specify coupling
coefficients such that targeted synchronization is ensured. The principle of this
method is extended to storage/recall of images using coupled Rulkov maps that are
often used to model neuronal networks in the brain. The process of adjusting cou-
pling coefficients between Rulkov maps to store (display) a desired image mimics
the process of adjusting synaptic strengths between neurons to store memories.
Thus, our method uses both synchronization and synaptic weight modification. The
stored image can be recalled by providing an initial random pattern to the dynamical
system. The storage and recall of the standard image of Lena are explicitly
demonstrated.

Control of Some Fluid Models

Mythily Ramaswamya

After introducing controllability (reaching a desired state in finite time) and stabi-
lizability (reaching a steady state as time tends to infinity), for ODE systems, I will
discuss these issues for some PDE systems, arising in fluid models.

Data Assimilation by Directly Projecting the Nominal
Dynamics on the Data Manifold

Soumyendu Rahaa and Saurabh Dixita

We describe a differential algebraic equation (DAE) approaches to data assimilation
by augmenting the dynamical system model with an algebraic variable and by
treating the observed data as a constraint manifold. An additional parameter is
analyzed with respect to the state variables and the time variable to study its
dynamical and noise characteristics. The augmented dynamics are then used to filter
and forecast the state variables. As an application of this approach, the heat
equation for a rod is modeled on a graph with the algebraic variable. Together with
the measurements, the system is posed as a semi-explicit index-2 DAE. The
algebraic variable captures the uncertainty in the measurement data with respect to
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temperature and time. This is interpreted as the unmodeled dynamics due to the
inhomogeneities in the thermal diffusivity of the rod. Further statistical analysis is
done to characterize the noisy behavior of the algebraic variable. The nominal
dynamics are then modified with the uncertainty quantified with the algebraic
variable which is now expressed as a random variable that is used to provide sample
paths for the prediction or forecast simulations.

Meshfree Methods: Limitations and Applications

Rama Bhargav

Mathematical modeling provides a tool for conceiving and resolving problems in
the real world, ranging from everyday numeracy level to sophisticated equipments
or research. They have great potential for multidisciplinary work including
designers, manufacturers (CAD and CAM), and academic endeavors. This helps in
crossing the boundaries between students of mathematics to the world outside the
classroom. These models are usually governed either by optimization approach or
by a type of differential equations. For solving these complicated systems, one has
to deal with the numerical approach, maybe grid-based or grid tree methods.
Various grid-based methods, including finite difference, finite element, and
boundary element, sometimes feel themselves limited where the domain is unde-
fined or dealing with phase change or highly irregular domain. In the past two
decades, meshfree methods have emerged into a new class of computational
methods which successfully deal with such problems. The present lecture will
highlight an overview of the development, and type and computational approach
of these methods. Given the proper treatment, how these methods can be made
more efficient eliminating the existing bottleneck of computational expenses in
these methods will also be discussed.

Mathematical Modeling of Electro-osmotic Flows
in Physiological Systems

J. C. Misra

Electro-osmotic flows of physiological fluids in micro-vessels will be discussed
during the lecture. After explaining the basic concepts and the underlying
assumptions, an attempt will be made to develop a mathematical model that
would depict the electro-osmotic flow behavior of a non-Newtonian fluid in a
microchannel. The model will be analyzed in the sequel. Of particular concern in
the investigation will be to examine the effect of heat transfer on electro-osmotic
flow in microvessels under the influence of an external magnetic field. The model

xxiv Abstracts of the Talks Given at ICMMSC 2018



and its theoretical analysis will be based on the consideration of Cattaneo–Christov
heat flux model, because of inherent weaknesses in Fourier’s law of heat con-
duction. Considering that many industrial fluids and most physiological fluids
exhibit non-Newtonian behavior, the fluid that flows electro-osmotically in the
microvessel will be considered non-Newtonian. The theoretical analysis will be
carried out by the use of appropriate analytical and numerical methods. The effects
of Hartmann number, surface zeta potential, and Joule heating on electro-osmotic
flow velocity and temperature will be discussed. The impact of various material
parameters on skin friction and local entropy, as well as on Nusselt number, will
also be discussed. Computational results will be presented for the electro-osmotic
flow of blood in the microcirculatory system.

Heat and Mass Transfer Effects on MHD Nanofluid Flow
Over a Semi Infinite Flat Plate Embedded in a Porous
Medium and Two-phase MHD Flow and Heat Transfer
in a Horizontal Channel

J. Prakash

There are two problems. In the first, we have investigated the effects of radiation
absorption, chemical reaction, and diffusion thermo on free convective heat and
mass transfer flow of a nanofluid past a semi-infinite vertical flat plate embedded in
a porous medium. The temperature and concentration at the surface are assumed to
be oscillatory type. We have considered four types of cubic nanoparticles, namely
silver, aluminum, copper, and titanium oxide which are uniform in size with water
as a base fluid. In the second, we have investigated steady, mixed convective,
laminar flow of incompressible, electrically conducting and heat-absorbing two
immiscible viscous fluids in a horizontal channel where the fluid in the region
(region I) is saturated with porous medium and the region (region II) is occupied by
a clear viscous fluid. A uniform magnetic field is applied in the transverse direction,
the fluids rise in the channel driven by uniform pressure, and the heat transfer is
influenced by thermal radiation. The equations are modeled using the fully devel-
oped flow conditions. An exact solution is obtained for the velocity and temperature
distributions. The graphical results are presented, and the physical aspects are
discussed in detail to interpret the effect of various significant parameters of the
problem. The effect of the skin friction and rate of heat transfer coefficients at the
channel walls are tabulated.
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Numerical Methods in Aeropropulsive Characterization
of Flight Vehicles

Debasis Chakraborty

Over the last few decades, CFD has developed into a rich and diverse subject and
emerged as a major component of applied and basic fluid dynamic research along
with theoretical and experimental studies. Simultaneous development of new
computers, numerical algorithms, physical and chemical models of flow physics is
responsible for the greater impact of CFD in both basic and applied
scientific/engineering problems. Presently, CFD is an integral part of the design
process of airframe and engines for all major aerospace companies in the world.
While experimental testing will always remain an integral part of the design, CFD is
decreasing the dependence on the more expensive, time-consuming experimental
testing or rather using experimental work more effectively and economically.
Three-dimensional Euler, Reynolds-averaged Navier–Stokes (RANS), and large
eddy simulation (LES) solvers are developed in-house using state-of-the-art
numerical techniques and physical models. Systematic validations were carried out
through comparisons against reliable experimental results to assess their predictive
capabilities and range of applications. The codes are regularly upgraded with new
numerical schemes, turbulence models, magneto-hydro-dynamics models, etc. The
grid-free CFD solver is integrated with 6-DOF trajectory equations to study the
store separation problems. Coupled flow solvers are developed for fluid–structure
interaction, hypersonic reentry, and high-speed aerothermal problems. The
indigenously developed CFD codes are routinely used in DRDL to predict various
aerodynamic parameters pertaining to DRDO missile systems. Aerodynamic
characterization of missiles in complete M � d� / flight regime, control surface
deflection studies, heat shield separation of hypersonic air-breathing missiles, store
separation from the aircraft, study of plume impingement on jet deflector,
low-speed (incompressible limit) characterization of vehicles, etc., are some of the
notable applications of the codes.

Core competence is developed in DRDL to simulate turbulent reacting and
non-reacting flows for missile propulsion system design. Important user-defined
functions (UDFs) are developed to apply commercial CFD solvers in design.
Open-source CFD software has been customized to solve many complex propulsion
problems. Systematic validations were carried out through comparisons against
reliable experimental results before applying these indigenous, open-source, and
commercial CFD tools in the design exercises. Extensive non-reacting and reacting
simulations were carried out for the development of flightworthy scramjet propul-
sion system for hypersonic air-breathing cruise vehicle, and CFD simulations
guided the experimental testing. Excellent match is obtained between experiment
and pretest prediction for various performance and flow parameters. Accurate
estimation of heat flux obtained from high-fidelity CFD simulations is used in
thermostructural design of the combustor. Aerodynamic and propulsion parameters
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obtained from end-to-end simulation (comprising of non-reacting flow in external
surfaces and reacting flow in the combustor) provide vital input for mission design.
CFD-based jet vane correlations are adopted in the flight computer for tactical
missiles and form an integral part of missile control and guidance. The problem of
high temperature in the base cavity caused due to interaction of free stream and
exhaust plume at high altitudes could be analyzed only through CFD methods.
Performance prediction of installed air intake of ramjet missiles, solid rocket motor
(SRM) port flow field analysis, combustion instability prediction of SRM, plume–
canister/plume–launcher interaction, etc., are some of the other notable applications
of CFD methods in propulsion system design. Understanding of complex flow
phenomena has reduced the developmental cost and time of the system signifi-
cantly. Development, validation, and application of CFD codes for aeropropulsive
design of missiles will be highlighted in the presentation.

Chaos in Mathematical Modelling

Mohammad Sajid

The aim of this presentation is to exhibit chaos in mathematical modeling. Various
researches are resolved by using chaos theory in the last few decades. It can easily
visualize by using fractals. It is now applicable in almost all disciplines of science,
engineering, and technology. Often, chaotic behavior may get in almost all non-
linear systems. Chaos exists everywhere in the world since it seems that it is
nonlinear world. It is observed that chaotic behavior came into existence in several
mathematical models, like logistic map, delay model, Henon model, Rossler model,
Lorenz model, and so on. Some useful ideas of mathematical models associated to
chaos with their applications are demonstrated here. It may attract mathematicians
and scientists toward chaos in mathematical modeling from different fields of their
researches.

Extension of Wavelets to Topologically Complicated
Domains

Mani Mehra

Differential equations on topologically complicated domains is a relatively new
branch in the theory of differential equations. Some of the examples include dif-
ferential equations on manifolds or irregularly shaped domains and differential
equation on network-like structure. Differential equations on manifolds arises in the
areas of mathematical physics, fluid dynamics, image processing, medical imaging,
etc. Differential equations on network-like structure also plays a fundamental role in
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many problems in science and engineering. The aim of this talk is to show how
wavelets could be extended to network to solve partial differential equations on
network-like structure using spectral graph wavelet.

Controllability of Fractional Differential Equations
with Non-instantaneous Impulses

Muslim Malika

We discussed the fractional calculus and controllability concept. Later, we consider
a control system governed by an abstract fractional differential equation of order
alpha lies between 1 and 2. We are able to prove the exact controllability of the
problem by using the cosine family of operators and Banach fixed point theorem.
Finally, we have given an example to illustrate the application of these results.

Bio-marker Prediction Using Bayesian State-Space
Modeling in Gene Expression Data Analysis

Gajendra K. Vishwakarma

The advancement in computational biology and statistical modeling helps to
identify the genes which causes the disease like cancer by comparing its expression
levels in diseased and healthy people. Bayesian state-space modeling is a new
advancement in statistics which can estimate an unobserved value of a process
using the information from an observed outcome and its relationship. Using these
two ideas, we are trying to model and estimate the expression values of genes which
are significantly different among two groups. The complicated integration of pos-
terior densities is carried out using the Markov chain Monte Carlo (MCMC) sim-
ulations. The study sheds light on the use of Bayesian state-space modeling to
elucidate the behavior of bio-markers.

Computing Nearest Stable Matrices

Punit Sharma and Nicolas Gillis

The stability of a continuous linear time-invariant (LTI) system _x ¼ AxþBu; where
A � Rn;n, B � Rn;m solely depends on the eigenvalues of the stable matrix A. Such a
system is stable if all eigenvalues of A are in the closed left half of the complex
plane and all eigenvalues on the imaginary axis are semisimple. It is important to
know that when an unstable LTI system becomes stable, i.e., when it has all
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eigenvalues in the stability region, or how much it has to be perturbed to be on this
boundary. For control systems, this distance to stability is well understood. This is
the converse problem of the distance to instability, where a stable matrix A is given
and one looks for the smallest perturbation that moves an eigenvalue outside the
stability region. In this talk, I will talk about the distance to the stability problem
for LTI control systems. Motivated by the structure of dissipative Hamiltonian
systems, we define the DH matrix: A matrix A � Rn;n is said to be a DH matrix if
A ¼ J � Rð ÞQ for some matrices J;R;Q � Rn;n such that J is skew-symmetric, R is
symmetric positive semidefinite, and Q is symmetric positive definite. We will
show that a system is stable if and only if its state matrix is a DH matrix. This
results in an equivalent optimization problem with a simple convex feasible set. We
propose new algorithms to solve this problem. Finally, we show the effectiveness of
our method compared to the other approaches and to several state-of-the-art algo-
rithms. These ideas can be generalized to get good approximate solutions to some
other nearness problems for control systems like distance to stability for descriptor
systems, distance to positive realness, and minimizing the norm of static feedback.
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A Green’s Function Approach to Analyze
the Dispersion Characteristics of Love
Type Wave Due to an Impulsive Point
Source in a Piezoelectric Layered
Structure

Anusree Ray and Abhishek K. Singh

Abstract An external source of disturbance in a material, even of point size, give
rise to waves propagating away from the concerned region in its interior at a specified
time. Such an impulse may be best described with the aid of Dirac delta function.
Green’s function is primarily utilized in solving these problems of elastodynamics.
The present study focuses to investigate the propagation characteristics of Love-type
wave influenced by an impulsive point source in a layered structure comprised of a
heterogeneous piezoelectric layer lying over a heterogeneous isotropic half-space.
Green’s function technique is adopted in order to obtain the dispersion equation,
which is further reduced to the classical result of Love wave. For sake of computa-
tion, numerical data of PZT-5H ceramics for the heterogeneous piezoelectric layer
is considered. Influence of heterogeneity, piezoelectricity and dielectric constant
associated with the heterogeneous piezoelectric layer; and effect of heterogeneity
parameter and corresponding magnification factor concerned with heterogeneity in
the isotropic half-space has been reported through graphical delineation.

Keywords Green’s function · Point source · Heterogeneity · Piezoelectricity ·
Love-type wave

1 Introduction

The evolution of wave motions in a material medium may cause due to some exter-
nal source of disturbances. Green’s function provides a visual interpretation of the
demeanor associated to the forces concentrated at a point which act as the source of
disturbance. These forces are functions of spatial coordinates and time andmay orig-
inate through a unit impulsive force, defined with the aid of Dirac’s delta function.
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Green’s function is a key to the solution of such problems of Elastodynamics which
implicate disturbance due to point source. Green’s function is defined depending
on the characteristics of the material medium about how it responds mechanically
to an impulsive force of disturbance. Chattopadhyay and Singh [1] investigated the
propagation behavior of SH-wave propagation due to a point source in a monoclinic
layered structure with the aid of Green’s function. Some more disquisitions on this
ground may be referred from Chattopadhyay et al. [2] and Chattopadhyay and Kar
[3].

Piezoelectric structures has been an interest gaining domain the last decade due
to their emphatic utilization in many functional devices such as sensors, amplifiers,
sonar, air ultrasonic transducers etc. Here, the fact of credit is that this property
of piezoelectric material is reversible. Piezoelectric materials have a wide range
of applications in efficient designing surface acoustic wave (SAW) devices [4, 5].
The concept of piezoelectricity finds huge applications in the field of mechanical
engineering, medical appliances and other modern industrial fields. Piezoelectric
materials are generally brittle in nature. Such etiquette of these materials are respon-
sible for generating cavities, impurities, cracks and hence failure of device during
handling and bonding procedures. Therefore, the mechanical and electrical perfor-
mance of piezoelectric materials needs to be improvised so as to achieve a high
performance. The most preferred way of doing this involves the consideration of a
layer-substrate configuration of piezoelectric structures. Some emphatic works con-
cerning piezoelectric structures/plates are Liu et al. [6], Du et al. [7], Singh et al. [8],
Wang [9].

The current study analyses the propagation characteristics of Love-type wave
influenced by an impulsive point source in a layered structure constituted of hetero-
geneous piezoelectric layer lying over a heterogeneous isotropic elastic half-space.
Green’s function adopted as solution methodology to tackle this of the present study.
Closed form of dispersion equation is obtained analytically and reduced to match
with the standard result of Love-wave.Moreover, special cases have also been derived
from the dispersion relation, and hence compared with some pre-established results.
Moreover, the numerical data of PZT-5H ceramics for the heterogeneous piezoelec-
tric layer has been considered to study the effect of heterogeneity, piezoelectricity
and dielectric constant associated with heterogeneous piezoelectric layer; and het-
erogeneity and corresponding magnification factor concerned with heterogeneity of
isotropic half-space, on the phase velocity of Love-type wave propagating in such a
layered structure.

2 Mathematical Model of the Problem

A heterogeneous piezoelectric layer of thickness H lying over a heterogeneous
isotropic half-space is considered. The said model is specified through a Cartesian
coordinate system having its origin ‘O’ on the uppermost boundary surface (free
surface), y-axis indicates the direction of wave propagation and x-axis is positive
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Fig. 1 Geometry of the problem

pointing normally downwards. An impulsive point source of disturbance is located
at ‘S’, interfacial common surface of the layer and half-space. The polling direction
of piezoelectric material is parallel to z-axis. Geometrical interpretation of the prob-
lem is revealed in Fig. 1. Love type wave propagation is considered through such a
layered structure.

3 Governing Equations and Relations

Seeking harmonic solution for propagation of Love-type wave, the displacement
(u1, u2, u3) of the constituent particles in the heterogeneous piezoelectric layer and
displacements (v1, v2, v3) in heterogeneous isotropic half-space may respectively be
taken as

ui (x, y, t) = ui (x, y)e
iω t , vi (x, y, t) = vi (x, y)e

iω t , (i = 1, 2, 3). (1)

For the characteristic propagation of Love-type wave along y-axis and which
causes displacement in z-direction only, it is assumed that

u1 = 0, u2 = 0, u3 = u3(x, y, t),

v1 = 0, v2 = 0, v3 = v3(x, y, t), φ = φ(x, y, t), (2)

where φ is the electric potential concerned with heterogeneous piezoelectric layer.
Henceforth, the following notations are used

∂ j ≡ ∂

∂ j
, ∂ j j ≡ ∂2

∂ j2
, d j ≡ d

d j
, d j j ≡ d2

d j2
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3.1 Constitutive Relations

The constitutive relations for piezoelectricmaterial are given by the coupled relations
[8]

τi j = Ci jkl Skl − eki j Ek,

Dk = eki j Si j + εki Ei , (3)

where the symbols are defined in Table 1.
Indices i, j, k and l span the range (1, 2, 3).
For the sake of clarity, the above relation (3) may be rewritten in expanded matrix

form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ11

τ22

τ33

τ23

τ31
τ12
D1

D2

D3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0 0 0 e31
C12 C11 C13 0 0 0 0 0 e31
C13 C13 C33 0 0 0 0 0 e33
0 0 0 2C44 0 0 0 e15 0
0 0 0 0 2C44 0 e15 0 0
0 0 0 0 0 2C66 0 0 0
0 0 0 0 2e15 0 ε11 0 0
0 0 0 2e15 0 0 0 ε11 0
e31 e31 e33 0 0 0 0 0 ε33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11
S22
S33
S23
S31
S12
E1

E2

E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Moreover, C66 = (C11 − C12)/2.
For an isotropic material the stress components are given by

σi j = λδi j skk + 2μ2si j ; i, j, k = 1, 2, 3, (5)

where the newly introduced symbols are defined in Table 2.

Table 1 Symbols and their meaning for the heterogeneous piezoelectric layer

Symbols Meaning Symbols Meaning

τi j Components of stress for
the heterogeneous
piezoelectric layer

Dk Components of electric
displacement

εi j Dielectric permittivities eki j Piezoelectric stress
constants

Ci jkl Elastic stiffness constants Si j = ∂ j ui + ∂i u j Mechanical strains

Ei (= −∂iφ) Intensity of electric field
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Table 2 Symbols and their meaning for the heterogeneous isotropic half-space

Symbols Meaning Symbols Meaning

μ2 Shear modulus si j = ∂ j vi + ∂i v j Components of infinitesimal
strain

σi j Stress components for an
isotropic material

δi j Kronecker delta

3.2 Equations of Motion

Due to piezoelectricity prevailing in the layer, the governing equations of motion for
the heterogeneous piezoelectric layer, in absence of body forces may be expressed
as

τi j, j = ρ1∂t t ui ,

Di,i = 0, (6)

where ρ1 is its density. The comma followed by the subscript j(or i) indicates space
coordinate differentiation and the repeated subscript index implies summation with
respect to that index.

The governing equations of motion for the heterogeneous isotropic half-space in
absence of body forces, may be given as

σi j, j = ρ2∂t t vi , (7)

where ρ2 is the density of isotropic material.

4 Dynamics of Heterogeneous Piezoelectric Layer

ForLove-typewavepropagation in piezoelectric layer, expression for the components
of stresses and electric displacements may be obtained with the aid of Eqs. (2) and
(4) as

τ11 = τ22 = τ33 = τ12 = 0,

τ23 = C44∂yu3 + e15∂yφ, τ31 = C44∂xu3 + e15∂xφ,

D1 = e15∂xu3 − ε11∂xφ, D2 = e15∂yu3 − ε11∂yφ, D3 = 0.

⎫⎪⎬
⎪⎭

(8)

Now, the heterogeneity in the piezoelectric layer is taken in such a way that the
elastic constants and density are exponentially varying functions of depth and may
be written in the form

C44 = C (0)
44 e

αx , e15 = e(0)
15 e

αx , ε11 = ε
(0)
11 e

αx , ρ1 = ρ
(0)
1 eαx , (9)
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where α is the heterogeneity parameter, and C (0)
44 , e(0)

15 , ε
(0)
11 , ρ

(0)
1 are the values of

C44, e15, ε11, ρ1 respectively, at the free surface of the layer.
Let us assume that the presence of source of disturbance at the intersection of

interfacial surface and x-axis, is responsible for a force density distribution f1(r, t)
in the heterogeneous piezoelectric layer. Thus, with the help of Eqs. (6), (8) and (9),
the coupled electromechanical field equations are obtained as

C (0)
44

(∇2u3 + α∂xu3
)+ e(0)

15

(∇2φ + α∂xφ
)− ρ

(0)
1 ∂t t u3 = 4π f1(r, t)e

−αx , (10)

e(0)
15

(∇2u3 + α∂xu3
)− ε

(0)
11

(∇2φ + α∂xφ
) = 0, (11)

where ∇2 = ∂xx + ∂yy .
Now, Eq. (11) may be rewritten as

∇2φ + α∂xφ = e(0)
15

ε
(0)
11

(∇2u3 + α∂xu3
)
, (12)

which when substituted in Eq. (10), yields

∇2u3 + α∂xu3 − ρ
(0)
1

μ1
∂t t u3 = 4π f1(r, t)e−αx

μ1
, (13)

where μ1 = C (0)
44 +

(
e(0)
15

)

ε
(0)
11

2

.

In view of Eq. (1), and the substitutions f1(r, t) = f1(r)eiωt and u3(x, y) =
U3(x, y)e−αx/2, Eq. (13) leads to

∇2U3 + k21U3 = 4π f1(r)e−αx/2

μ1
, (14)

where ω(= kc), k and c is the angular frequency, wave number and phase velocity

respectively. Moreover, k21 = ρ
(0)
1
μ1

ω2 − α2

4 .

Now, we define the Fourier transform U 3(x, ξ) of U3(x, y) as

U 3(x, ξ) = 1

2π

∞∫

−∞
U3(x, y)e

iξ ydy, (15)

and the consequent inverse Fourier transform as

U3(x, y) =
∞∫

−∞
U 3(x, ξ)e−iξ ydξ . (16)
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Therefore, in light of Eq. (15), application of Fourier transform on Eq. (14), lead
to

dxxU 3 − η2
1U 3 = 4π f1(x)e

−αx/2, (17)

where f1(r) = δ(y)δ(x − H), η2
1 = ξ 2 − k21 and f1(x) = δ(x−H)

2πμ1
.

5 Dynamics of Heterogeneous Isotropic Half-Space

The only non-vanishing equation of motion for the heterogeneous isotropic semi-
infinite medium derived from Eq. (7) with the aid of Eqs. (2) and (5) may be written
as

∂xσ13 + ∂yσ23 = ρ2∂t t v3, (18)

where

σ13 = μ2∂xv3, σ23 = μ2∂yv3. (19)

The vertical heterogeneity in elastic constants and density of the heterogeneous
isotropic semi-infinite medium (half-space) is considered as follows:

μ2 = μ
(0)
2 + ε sinh b(x − H),

ρ2 = ρ
(0)
2 + ε∗ sinh b(x − H), (20)

where b is the heterogeneity parameter associated with the hyperbolic type of hetero-
geneity in the isotropic half-space; and ε, ε∗ are the magnification factors of hyper-
bolic type of heterogeneity in shear modulus (μ2) and density (ρ2) respectively, of
heterogeneous isotropic half-space. μ

(0)
2 , ρ

(0)
2 are the values of μ2, ρ2 respectively,

at the interfacial surface i.e. at x = H . Using Eq. (1) and substituting the relations
from Eqs. (19) and (20) into Eq. (18) we get

μ
(0)
2

(
∂xxv3 + ∂yyv3

) = −εb cosh b(x − H)∂xv3 −
(
ρ

(0)
2 + ε∗ sinh b(x − H)

)
ω2v3

− ε sinh b(x − H)
(
∂xxv3 + ∂yyv3

)
. (21)

Now, we define the Fourier transform V 3(x, ξ) of v3(x, y) as

V 3(x, ξ) = 1

2π

∞∫

−∞
v3(x, y)e

iξ ydy, (22)



10 A. Ray and A. K. Singh

and the consequent inverse Fourier transform may be defined as

v3(x, y) =
∞∫

−∞
V 3(x, ξ)e−iξ ydξ, (23)

so that when it is employed to Eq. (21), yields an ordinary differential equation given
by

dxxV 3 − η2
2V 3 = 4π f2(x), (24)

where

4π f2(x) = −ε

μ
(0)
2

[
sinh b(x − H)dxxV 3 + b cosh b(x − H)dxV 3

−
(

ξ 2 sinh b(x − H) − ε∗

ε
ω2 sinh b(x − H)

)
V 3,

]
(25)

η2
2 = ξ 2 − ρ

(0)
2 ω2

μ
(0)
2

. (26)

6 Boundary Conditions and Dispersion Relation

In this sectionwe aim to explore the solution of Eqs. (17) and (24) employingGreen’s
function, The admissible boundary conditions may be of the following type:

(i) The upper boundary surface of the heterogeneous layer is free frommechanical
traction and electric potential. Therefore, the boundary conditions at the traction
free boundary surface may be written in mathematical form as follows:

Mechanical traction free condition at x = 0, i.e.

τ31 = 0, (27)

Electrical boundary condition at x = 0, i.e.

φ(x) = 0. (28)

(ii) At the interfacial surface of layer and half-space, the admissible boundary
conditions are

Continuity of stresses at x = H , i.e.

τ31 = σ31, (29)
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Continuity of displacements at x = H , i.e.

U 3(x) = V 3(x), (30)

Electrical boundary condition at x = H , i.e.

φ(x) = 0. (31)

With the aid of Eqs. (28) and (31), the boundary condition in Eqs. (27) and (29)
respectively may be rewritten as

dxU 3 − α

2
U 3 = 0, at x = 0 (32)

and

dxV 3 = C (0)
44

P

[
dxU 3 − α

2
U 3

]
eαH/ 2, at x = H. (33)

It is worthy to mention here that Dirac-delta function (δ(x)) is used to represent
a source of disturbance.

Keeping this into our account, let us take an arbitrary point x0 in the upper layer,
and hence define the Green’s function, G1(x/x0) for the layer which satisfy the
boundary conditions given by

dxG1 − α

2
G1 = 0 both at x = 0 and x = H. (34)

Therefore, G1(x, x0) will satisfy the equation

dxxG1(x, x0) − η2
1G1(x, x0) = δ(x − x0). (35)

Now, multiplying Eqs. (17) and (35) by G1(x, x0) and U 3(x) respectively, then
subtracting and further integrating with respect to x from x = 0 to H , it is obtained
that

H∫

0

[
G1(x, x0)dxxU 3(x) −U 3(x)dxxG1(x, x0)

]
dx

=
H∫

0

4π f1(x)e
−αx/2G1(x, x0)dx −

H∫

0

δ(x − x0)U 3(x)dx, (36)

which on further simplification, and making use of the results of Eqs. (34) and (32),
result in
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G1(H, x0)
[
dxU 3 − α

2
U 3

]
x=H

= 2

μ1
G1(H, x0)e

−αH/2 −U 3(x0). (37)

Interchanging x0 by x in Eq. (37) and using G1(H, x) = G1(x, H),U 3(x) may
be expressed as

U 3(x) = (2/μ1)G1(x, H)e−αH/ 2 − G1(x, H)
[
dxU 3 − α

/
2U 3

]
x=H . (38)

With a similar approach, for any arbitrary point x0 in the half-space, let us assume
G2(x, x0) be the Green’s function for the half-space satisfying the conditions:

dxG2 = 0 at x = H and tends to zero as x → ∞. (39)

Therefore, G2(x, x0) is the solution of the equation

dxxG2(x, x0) − η2
2G2(x, x0) = δ(x − x0). (40)

Multiplying Eqs. (26) and (40) by G2(x, x0) and V 3(x) respectively, then
subtracting and further integrating with respect to x from x = H to ∞, yields

∞∫

H

[
G2(x, x0)dxxV 3(x) − V 3(x)dxxG2(x, x0)

]
dx

=
∞∫

H

4π f2(x)G2(x, x0)dx −
∞∫

H

V 3(x)δ(x − x0)dx, (41)

which after simplification results in

G2(H, x0)
[
dxV 3(x)

]
x=H

= V 3(x0) −
∞∫

H

4π f2(x)G2(x, x0)dx . (42)

Now, interchanging x0 by x in Eq. (42), the expression for V 3 at any point x in
the half space may be written as

V 3(x) = G2(x, H)
[
dxV 3(x)

]
x=H + 4π

∞∫

H

f2(x0)e
γ x0/2G2(x, x0)dx0, (43)

where G2(H, x) = G2(x, H) and G2(x, x0) = G2(x0, x).
Applying the boundary condition as provided in Eqs. (30), (38) and (43)

collectively yield



A Green’s Function Approach to Analyze the Dispersion … 13

2

μ1
G1(H, H)e−αH/2 − G1(H, H)

[
dxU 3 − α

2
U 3

]
x=H

= G2(H, H)
[
dxV 3

]
x=H + 4π

∞∫

H

f2(x0)G2(H, x0)dx0. (44)

In reference to Eqs. (33), (44) leads to

[
dxU 3 − α

2
U 3

]
x=H

= 2

μ1

μ
(0)
2 G1(H, H)e−αH/2

μ
(0)
2 G1(H, H) + C (0)

44 G2(H, H)eαH/2

− 4πμ
(0)
2

∫∞
H f2(x0)G2(H, x0)dx0

μ
(0)
2 G1(H, H) + C (0)

44 G2(H, H)eαH/2
. (45)

With the aid of the Eqs. (25) and (45), Eq. (38) results in

U3(x) = G1(x, H)

μ
(0)
2 G1(H, H) + C(0)

44 G2(H, H)eαH/2

⎛
⎝ 2C(0)

44
μ1

G2(H, H) − ε

∞∫

H

t1G2(H, x0)dx0

⎞
⎠,

(46)

where t1 is provided in Appendix.
Again, in view of the Eqs. (33) and (43), the value of V 3(x) may be found as

V 3(x) = 2C (0)
44

μ1

G1(H, H)G2(x, H)

μ
(0)
2 G1(H, H) + C (0)

44 G2(H, H)eαH/2

+ εC (0)
44

μ
(0)
2

G1(x, H)

μ
(0)
2 e−αH/2G1(H, H) + C (0)

44 G2(H, H)

×
∞∫

H

t1G2(H, x0)dx0 − ε

μ
(0)
2

∞∫

H

t1G2(x, x0)dx0. (47)

The value of V 3(x) may be derived from Eq. (47) by the methodology of succes-
sive approximations.Neglecting the higher powers of ε, taking thefirst approximation
of V 3(x), it may be established that

V3(x) =
(
2C (0)

44

μ1

)
G1(H, H)G2(x, H)

μ
(0)
2 G1(H, H) + C (0)

44 G2(H, H)eαH/2
. (48)

With the aid of Eqs. (48), (46) leads to

U3(x) = 2C(0)
44

μ1

G1(x, H)G2(H, H)

μ
(0)
2 G1(H, H) + C(0)

44 G2(H, H)eαHαH2−2
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− 2εC(0)
44

μ1

G1(H, H)G1(H, H)[
μ

(0)
2 G1(H, H) + C(0)

44 G2(H, H)eαH/αH2−2
]2

∞∫

H

{sinh b(x0 − H)

× dxxG2(x0, H) + b cosh b(x0 − H)dxG2(x0, H) −
(
ξ2 sinh b(x0 − H)

− ε∗
ε

ω2 sinh b(x0 − H)

)
G2(x0, H)

}
G2(H, x0)dx0. (49)

To evaluate U 3(x), the values of G1(x, H) and G2(x, H) must be determined.
Now, we aim to obtain a solution of Eq. (35). For this let us assume two

independent solutions of the equation

dxxG1(x, x0) − η2
1G1(x, x0) = 0, (50)

which vanishes at x = −∞ and x = ∞, as
P1(x) = eη1x and P2(x) = e−η1x .
Therefore, the solution of Eq. (50) for an infinite medium is

P1(x)P2(x0)

W
for x < x0,

P1(x0)P2(x)

W
for x > x0,

where W = P1(x)P ′
2(x) − P2(x)P ′

12(x) = −2η1.
Therefore, for an unbounded medium the solution of Eq. (35) may be expressed

as − e−η1|x−x0|
2η1

.
Since G1(x, x0) should satisfy conditions indicated in Eq. (33), therefore, it may

be assumed that

G1(x, x0) = −e−η1|x−x0|

2η1
+ Aeη1x + Be−η1x , (51)

where A and B are arbitrary constants.
After, evaluating the values of A and B by employing condition (34), G1(x, x0)

may be expressed as

G1(x, x0) = −T0
M

, (52)

where T0 and M are provided in Appendix.
In view of Eq. (52), the expressions forG1(x, H) andG1(H, H)may be obtained

as

G1(x, H) = −T1
M

and G1(H, H) = −T2
M

(53)
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respectively, where T1 and T2 are given in Appendix.
Adopting a similar approach, the expression for G2(x, x0) may be deduced from

Eq. (40) as

G2(x, x0) = − 1

2η2

[
e−η2|x−x0| + e−η2(x+x0−2H)

]
. (54)

Now, the followings may be easily computed from Eq. (54):

G2(H, x0) = − 1

η2
e−η2(x0−H) and G2(H, H) = − 1

η2
. (55)

Substitution of the values obtained in Eqs. (53) and (55) into Eq. (49), it may be
deduced that

U 3(x) = −
(
2C (0)

44

μ1

)
T1

M0 + N0

[
1 + T2b

M0 + N0

{
εη2

2 − ε∗ω2 + εξ 2

4η2
2 − b2

}]
, (56)

where M0 = MC (0)
44 e

αH/2 and N0 = μ
(0)
2 η2T2.

Eliminating higher powers of ε and in reference to Eq. (16), the displacement at
any point in layer may be obtained as

u3(x, y) = −
(
2C(0)

44
μ1

)
e−αx/ 2

∞∫

−∞

(
4η22 − b2

)
T1e

−iξ y

(
4η22 − b2

)
(M0 + N0) − T2b

(
εη22 − ε∗ω2 + εξ2

)dξ . (57)

Now, the integral value in Eq. (57) depends entirely on the poles of the integrand
which are located at the roots of equation

(
4η2

2 − b2
)
(M0 + N0) − T2b

(
εη2

2 − ε∗ω2 + εξ 2
) = 0. (58)

Replacing η1 by iη1 and ξ by k, Eq. (58) may be reduced to

tan η1H =
4η1

{
μ

(0)
2 η2

(
4η22 − b2

)
− b

(
εη22 − ε∗k2c2 + εk2

)}
{
c(0)44 e

αH
(
4η21 + α2

)
− 2αP(2)η2

}(
4η22 − b2

)
+ 2αb

(
εη22 − ε∗k2c2 + εk2

) , (59)

which represents the dispersion relation of Love-type wave propagation under the
influence of a point source in a heterogeneous piezoelectric layer lying over a
heterogeneous half-space.
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7 Cases and Validation

Following are some special cases discussed in order to compare and validate the
obtained result with some previously established results.

Case IWhen isotropic half-space is not heterogeneous i.e. ε = 0, ε∗ = 0 and b =
0, the dispersion Eq. (59) results in

tan η1H = 4η1P (2)η̄2

C (0)
44 e

αH
(
4η2

1 + α2
)− 2αP (2)η̄2

, (60)

where η̄2
2 = k2

(
ρ

(0)
2 c2

μ2
− 1

)
.

Equation (60) is the dispersion relation [8] for the propagation of Love wave in a
heterogeneous piezoelectric layer lying over a homogeneous isotropic half-space.

Case II When both layer and half-space are not heterogeneous i.e. α = 0, ε = 0,
ε∗ = 0, b = 0 the dispersion Eq. (59) takes the form

tan η̄1H = μ2η̄2

C (0)
44 η̄1

, (61)

where η̄2
1 = k2

(
1 − ρ

(0)
1 c2

μ1

)
.

Equation (61) is the dispersion relation [6] for the propagation of Love wave in a
(homogeneous) piezoelectric layer lying over a homogeneous isotropic half-space.

Case III In absence of heterogeneity in both layer and half space; and in absence
of piezoelectric effect in the layer i.e. α = 0, b = 0, ε = 0, ε∗ = 0, e15 = 0, the
dispersion Eq. (59) takes the form

tan

(
kH

√
c2/β2

1 − 1

)
=

μ2

√
1 − c2/β2

2

μ1

√
c2/β2

1 − 1
, (62)

where c(0)
44 and P (2) are replaced by μ1 and μ2 respectively and β1, β2 are provided

in Appendix.
Equation (62) shows that the dispersion relation in Eq. (59) reduces to the standard

Love-wave equation [10] which authenticates the present problem.

8 Computational Results and Discussion

The derived dispersion equation establishes a dependency relationship of the phase
velocity of Love-type wave with the wave number and other parameters associated to
the geometrical configuration concerned with the present study. In order to unravel
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the effect of various influential parameters on the phase velocity of Love-type wave,
numerical computation is performed taking the following data into account:

For the heterogeneous piezoelectric layer [6]:

C (0)
44 = 2.30 × 109N/m2, ρ

(0)
1 = 7500Kg/m3(PZT − 5H).

For the heterogeneous isotropic half-space [11]:

μ
(0)
2 = 7.8 × 109N/m2, ρ

(0)
2 = 3535Kg/m3.

Unless otherwise stated:

αH = 0.1, 0.5, 0.9; bH = 0.1, 0.3, 0.5; e15 = 0, 7, 17, 27(C/m2);
ε11 = 217, 277, 347(∗10−9C2/Nm2); ε = 0.1, 0.3, 0.5(∗10−9C2/Nm2);
ε∗ = 0, 50, 100(kg/m3).

Figures 2, 3 and 4 graphically illustrates firstmode of Love-typewave propagation
portraying the variation of dimensionless phase velocity against dimensionless wave
number for different values of the influencing parameters. It is observed that the
phase velocity decreases with increase in wave number.

Fig. 2 Phase velocity profile (c/β1 vs. kH) of Love wave for different values of (a) heterogene-
ity parameter (αH) associated with the heterogeneous piezoelectric layer and (b) heterogeneity
parameter (bH) associated with the heterogeneous isotropic half-space
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Fig. 3 Phase velocity profile of Love wave for different values of (a) dielectric constant (ε11) and
(b) piezoelectric constant (e15), associated with the heterogeneous piezoelectric layer

Fig. 4 Phase velocity profile (c/β1 vs. kH) of Love wave for different values of (a)magnification
factor (ε) associatedwith the rigidity and (b) ofmagnification factor (ε∗) associatedwith the density
of the heterogeneous isotropic half-space

9 Concluding Remarks

The numerically computed results show the efficacy of heterogeneities, piezoelectric-
ity anddielectric constant on the propagation behaviour ofLove-typewave influenced
due to a point source in a heterogeneous piezoelectric layer lying over a heteroge-
neous isotropic half-space. The outcomes of the current study may be concluded as
follows:
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• Wave number disfavours the phase velocity of Love-type wave in both the cases
when the heterogeneous half-space is with or without heterogeneity.

• Vertical heterogeneity (αH) of exponential type causing heterogeneity in piezo-
electric layer suppresses the phase velocity of Love-type wave.

• Heterogeneity parameter (bH) responsible for hyperbolic type of variation in shear
modulus as well as density associated with heterogeneous isotropic half-space has
a significant disfavouring effect on phase velocity of Love-type wave.

• Piezoelectric parameter
(
e15/μ2

11

)
has a significant effect on the phase velocity

of Love-type wave. With increase in magnitude of piezoelectricity in the velocity
decreases considerably.

• The magnification factor (ε and ε∗) associated to the hyperbolic type of hetero-
geneity in the half-space has a favouring effect on the phase velocity of Love-type
wave. Meticulous examination conclude that magnification factor of heterogene-
ity (ε) concerned with shear modulus have prominent effect on phase velocity of
Love-type wave as compare to that of magnification factor of heterogeneity (ε∗)
concerned with the density.

• Thededuceddispersion equationmatcheswith thewell establishedprevious results
and the classical one, which authenticates the present study.

The well known smart materials, piezoelectric materials, are inherently capable of
actuation and sensing. Therefore, it is of great interest to the researchers and engineers
to study the behaviour of a composite structure comprised of such materials when
interacted with waves and vibrations influenced due to some source of disturbance,
holding a great deal of potential for commercial and industrial applications.

Acknowledgements The authors convey their sincere thanks to Indian Institute of Technology
(Indian School ofMines), Dhanbad, for providing all the necessary facilities to carry out the research
work.

Appendix

t1 = sinh b(x0 − H)dxxV3(x0) + b cosh b(x0 − H)dxV3(x0)

−
(

ξ 2 sinh b(x0 − H) − ε∗

ε
ω2 sinh b(x0 − H)

)
V3(x0)

T0 = (
η2
1 − α2/4

)(
eη1H − e−η1H

)
e−η1|x−x0|

+ (η1 + α/2)eη1x
[
(η1 − α/2)e−η1(H+x0)+ (η1 + α/2)e−η1(H−x0)

]

+ (η1 − α/2)e−η1x
[
(η1 − α/2)eη1(H−x0) + (η1 + α/2)e−η1(H−x0)

]
,

T1 = (
η2
1 − α2/4

)(
eη1H − e−η1H

)
e−η1|x−H |

+ (η1 + α/2)eη1x
[
(η1 − α/2)e−2η1H + (η1 + α/2)

]+ 2η1(η1 − α/2)e−η1x ,
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T2 =
(
η21 − α2/4

)(
eη1H − e−η1H

)
+ (η1 + α/2)eη1H

[
(η1 − α/2)e−2η1H + (η1 + α/2)

]

+ 2η1(η1 − α/2)e−η1H ,

M = 2η1
(
η2
1 − α2/4

)(
eη1H − e−η1H

)
, β1 = √

μ1/ρ1, β2 = √
μ2/ρ2.
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The Role of Adaptation in Plankton
System with Beddington-DeAngelis Type
Functional Response

Nilesh Kumar Thakur, Archana Ojha and S. K. Tiwari

Abstract In this paper two interacting species in presence of adaptation (dormancy
of the predators such as resting eggs) has been discussed. The dormant stage is an
equipment to survive in harsh environment. We have discussed the stability analysis
of systemwithout diffusion and in presence of diffusion. Our numerical investigation
reveals that above the critical value of interference among the zooplankton the system
become stable. Spatiotemporal pattern shows a transient complex spatiotemporal
pattern by increasing the time and space.

Keywords Adaptation · Dormancy · Plankton · Spatiotemporal pattern

1 Introduction

In ecological system, many organisms try to find the way to avoid the harsh condition
which impacts their survival. Dispersal of the organisms may be one of the ways to
avoid harsh condition but it has been observed that certain adaptations such as change
in habitat, diet or dormancy enables organism to survive in harsh environmental con-
dition [1–5]. Many planktonic species produce dormant eggs that can survive for
a long period [6]. For example, the freshwater zooplankton Daphnia can reproduce
both asexually and sexually [7, 8]. Not only dormancy as adaptation but also pools of
dormant eggs in sediment plays an important role for survival of zooplankton dynam-
ics in both freshwater and marine environments [9]. There is very few information
regarding the dormancy and emerging patterns of plankton dynamics.
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Recently, dormancy of the predators reflects much attention due to avoid the harsh
environmental condition. A number of research papers available on the dormancy
of the predators because it helps to understand the different biological study [10–
14]. But very few study on the spatiotemporal of the system in presence of dor-
mancy. In this purposed paper we have considered a minimal plankton model with
Beddington-DeAngelis type functional response, and introduced the predator’s dor-
mancy. The characteristic feature of Beddington-DeAngelis type functional response(

(P, Z) = P
a+bZ+cP

)
is that if b = 0, then it changes into a Holling type-II func-

tional response. If b < 0, predators benefit from co-feeding [15]. In this paper our
objective to understand the role of adaptation (resting eggs, dormancy state of preda-
tor) and emergence of spatiotemporal patterns in enriched environment through a
simple mathematical model.

2 Model System

Consider a reaction-diffusion model where phytoplankton and zooplankton popula-
tions satisfy the following

∂P

∂T
= r P

(
1 − P

K

)
− νPZ

α + βZ + γ P
+ DP�2P,

∂Z

∂T
= eνPZ

α + βZ + γ P
− mZ + DZ�2Z .

(2.1)

The meaning of parameters and their units are defined in [15].
We take the following notations for non-dimensional form of the model system

u = P

K
, v = νZ

K
, x = X

L
, y = Y

L
, t = rT, θ = K

αr
, θ ′ = eνθ,

m = cr,
βK

αν
= ξ,

γ K

α
= η, du = DP

L2r
, dv = DZ

L2r
.

Dimensionless form of the model is as follows:

∂u

∂t
= u(1 − u) − θuv

1 + ξv + ηu
+ du�2u,

∂v

∂t
= θ ′uv

1 + ξv + ηu
− cv + dv�2v.

(2.2)

Now, we introduce the predator dormancy in the model system (2.2), we have
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∂u

∂t
= u(1 − u) − θuv

1 + ξv + ηu
+ du�2u,

∂v

∂t
= μ(u)

θ ′uv

1 + ξv + ηu
+ δw − cv + dv�2v,

∂w

∂t
= τ(u)

θ ′uv

1 + ξv + ηu
− δw − ρw + dw�2w,

(2.3)

with initial condition

u(x, 0) > 0, v(x, 0) > 0, w(x, 0) > 0 for x ∈ [0, L]. (2.4)

and zero flux boundary conditions

∂u

∂x

∣∣∣∣
x=0,L

= ∂v

∂x

∣∣∣∣
x=0,L

= ∂w

∂x

∣∣∣∣
x=0,L

= 0. (2.5)

The zero flux boundary conditions are used for spatially bounded aquatic ecosys-
tems [16].
Here the sigmoid function defined as

μ(u) = 1

1 + exp(−2κ(u − σ))
= 1 + tanh(κ(u − σ))

2
, (2.6)

and τ(u) = 1 − μ(u); κ and σ denote the sharpness and the level of the switching
effect; δ denotes the hatching of dormant predator and ρ denotes the mortality rate
of dormant predator respectively.

3 Stability Analysis of the Model System

Now we analytically study the model system (2.3) without diffusion as well as with
diffusion. Without diffusion we take only interaction part of the model system.

3.1 Local Stability of Non-spatial Model

First of all we study the non-spatial model by dropping the diffusion terms from the
model system (2.3). In this case, the model system reduces to the form:
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du

dt
= u(1 − u) − θuv

1 + ξv + ηu
,

dv

dt
= μ(u)

θ ′uv

1 + ξv + ηu
+ δw − cv,

dw

dt
= τ(u)

θ ′uv

1 + ξv + ηu
− δw − ρw,

(3.1)

with Initial conditions

u(0) > 0, v(0) > 0, w(0) > 0.

Lemma 1 Ω =
{
(u(t), v(t), w(t)) : 0 ≤ u(t)

θ
+ v(t)+w(t)

θ ′ ≤ (1+ζ )

θζ

}
is a region of at-

traction for all solutions initiating in the interior of the positive octant, where
ζ = min(c, ρ).

Proof We define a function

ω = u(t)

θ
+ v(t) + w(t)

θ ′ (3.2)

Differentiating with respect to t , we get

dω

dt
= 1

θ

du

dt
+ 1

θ ′
dv + dw

dt
,

= 1

θ
u(1 − u) − 1

θ ′ (cv + ρw),

≤ 1

θ
u − 1

θ ′ (cv + ρw),

≤ u

θ
− min(c, ρ)

(v + w)

θ ′ .

We choose ζ = min(c, ρ), then

dω

dt
+ ζω ≤ (1 + ζ )

θ
.

By comparison lemma for t ≥ T̃ ≥ 0, we obtain

ω(t) ≤ (1 + ζ )

θζ
−

[
(1 + ζ )

θζ
− ω(T̃ )

]
e−ζ(t−T̃ ).

If T̃ = 0, then

ω(t) ≤ (1 + ζ )

θζ
−

[
(1 + ζ )

θζ
− ω(0)

]
e−ζ t .
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For large value of t , we have

ω(t) ≤ (1 + ζ )

θζ
.

Thus ω(t) = u(t)
θ

+ v(t)+w(t)
θ ′ ≤ (1+ζ )

θζ
, then all species are uniformly bounded for

initial value in R3+. This completes the proof of Lemma1.

For a biologically realistic model, system (3.1) has to be dissipative.
Existence of the interior equilibrium point E∗(u∗, v∗, w∗) has been established be-
low. Here u∗, v∗ and w∗ are defined as

θ ′u∗

(1 + ξv∗ + ηu∗)

(
μ(u∗)

τ (u∗)δ
(δ + ρ)

)
= c, (3.3)

v∗ = (1 − u)(1 + ηu∗)
(θ − ξ(1 − u∗))

, (3.4)

w∗ = τ(u∗)θ ′u∗v∗

(δ + ρ)(1 + ξv∗ + ηu∗)
. (3.5)

Variational matrix at E∗(u∗, v∗, w∗) is as follows:

V =
⎛
⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠ , (3.6)

where

a11 = 1 − 2u∗ − θv∗(1 + ξv∗)
(1 + ξv∗ + ηu∗)2

, a12 = − θu∗(1 + ηu∗)
(1 + ξv∗ + ηu∗)2

, a13 = 0,

a21 = θ ′v∗((1 + ξv∗ + ηu∗)u∗μ′(u∗) + μ(u∗)(1 + ξv∗)
)

(1 + ξv∗ + ηu∗)2
,

a22 = θ ′u∗μ(u∗)(1 + ηu∗)
(1 + ξv∗ + ηu∗)2

− c, a23 = δ,

a31 = θ ′v∗((1 + ξv∗ + ηu∗)u∗τ ′(u∗) + τ(u∗)(1 + ξv∗)
)

(1 + ξv∗ + ηu∗)2
,

a32 = θ ′u∗τ(u∗)(1 + ηu∗)
(1 + ξv∗ + ηu∗)2

, a33 = −(δ + ρ).

Now the characteristic equation of matrix V is given by
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λ3 + A1λ
2 + A2λ + A3 = 0, (3.7)

where

A1 = −(a11 + a22 + a33),

A2 = a11a33 + a11a22 − a12a21 + a22a33 − a23a32,

A3 = a11(a23a32 − a22a33) + a12(a21a33 − a31a23),

A1A2 − A3 = a12(a21a22 + a23a31) − a211(a22 + a33) − (a22 + a33)

× (a22a33 − a23a32) + a11(a12a21 − (a22 + a33)
2).

In the following theorem, we are able to find conditions for the positive equilibrium
point E∗(u∗, v∗, w∗) to be locally asymptotically stable.

Theorem 1 If the positive equilibrium point E∗(u∗, v∗, w∗) of the model system
(3.1) exists. The equilibrium point E∗(u∗, v∗, w∗) is locally asymptotically stable if
the following conditions hold:

(i) 1 < 2u∗ + θv∗(1+ξv∗)
(1+ξv∗+ηu∗)2 ,

(ii) θ ′u∗μ(u∗)(1+ηu∗)
(1+ξv∗+ηu∗)2 < c,

(iii) δθ ′u∗τ(u∗)(1+ηu∗)
(1+ξv∗+ηu∗)2 < (δ + ρ)

(
θ ′u∗μ(u∗)(1+ηu∗)

(1+ξv∗+ηu∗)2 − c
)
.

3.2 Local Stability of Spatial Model

To understand the spatial dynamics of the model system (2.3) we take the form of
the system about E∗(u∗, v∗, w∗) as follows:

∂ ū

dt
= a11ū + a12v̄ + a13w̄,

∂v̄

dt
= a21ū + a22v̄ + a23w̄,

∂w̄

dt
= a31ū + a32v̄ + a33w̄.

(3.8)

where we introduce small perturbations ū = u − u∗, v̄ = v − v∗ and w̄ = w − w∗.
Let us assume the solution of (3.8) is of the form

⎛
⎝ ū

v̄

w̄

⎞
⎠ =

⎛
⎝a1
a2
a3

⎞
⎠ exp(βt) cos(kx),
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where a1, a2 and a3 are sufficiently small constants. k is the wave number and β is
the wavelength. The variational matrix of linearized model (3.8) is given by

J =
⎛
⎝a11 − duk2 a12 0

a21 a22 − dvk2 a23
a31 a32 a33 − dwk2

⎞
⎠ .

The characteristic equation of matrix J is given by

β3 + B1β
2 + B2β + B3 = 0, (3.9)

where

B1 = (du + dv + dw)k2 + A1,

B2 = (dudv + dvdw + dwdu)k
4 − (du(a22 + a33) + dv(a33 + a11)

+ dw(a11 + a22))k
2 + A2,

B3 = dudvdwk
6 − (a11dvdw + a22dudw + a33dudv)k

4 + (du(a22a33 − a23a32)

+ dva11a33 + dw(a11a22 − a12a21))k
2 + A3.

Theorem 2 The equilibrium point E∗(u∗, v∗, w∗) is locally asymptotically stable
in the presence of diffusion if and only if:

B1 > 0, (3.10)

B3 > 0, (3.11)

B1B2 − B3 > 0, (3.12)

From Eq. (3.9) and using the Routh–Hurwitz criterion, the above theorem follows
immediately.

4 Numerical Investigation

In this section, present the numerical investigation of the model system (2.3). To
understand the intensity of interference between individuals of zooplankton we have
plotted the bifurcation diagram, time series and phase portrait of the model system
(3.1) for a particular set of parameters value [15].
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θ = 6.5, θ ′ = 6.05, ξ = 0.02, η = 2.5, c = 0.4, δ = 0.14, ρ = 0.0,

κ = 1.0, σ = 1.4.
(4.1)

All other parameters are same as in Eq. (4.1). Oscillatory dynamics are presented
by isolated “.” marks in the range ξ < ξc = 3.11.

Figure1 describes the bifurcation diagram of the model system (3.1). In Fig. 1
the successive variation of phytoplankton in range 0 ≤ u ≤ 0.9 as a function of
intensity of interference between individuals of zooplankton (i.e. ξ ) which is in the
range 0 ≤ ξ ≤ 5. Under the bifurcation analysis of model system (3.1), we observe
that at the lower value of ξ , the dynamics shows the limit cycle oscillations and higher
value of ξ is responsible for the stable dynamics. Oscillatory dynamics are presented
by the isolated “dot” marks in the range ξ < ξc, where ξc = 3.11 is the critical
point of bifurcation and it shows that after the critical value the dynamics become
stable (c.f. Fig. 1). In Fig. 2a–d we have observed the time series and phase plane
diagram of the model system (3.1). The system dynamics is in oscillatory behaviour
at ξ = 0.02. As we increase the value of ξ = 4.0 the dynamics of model system
becomes stable (c.f. Fig. 2c, d). Hence we can say that the model system attains its
stability at higher value of ξ which can also be seen from bifurcation diagram. To
understand the spatiotemporal dynamics of the model system (2.3) we have taken
same set of parameters value as in (4.1) and the diffusion coefficients are du =
dw = 0.0001, dv = 0.001. For the above set of values of parameters (4.1), we note
that the positive interior equilibrium point E∗ exists, and is given by(u∗, v∗, w∗) =

Fig. 1 Bifurcation diagram of phytoplankton for the model system (3.1) with respect to ξ
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Fig. 2 Time series and phase plane diagram of (3.1) at a, b ξ = 0.02, and c, d ξ = 4.0

(0.0795, 0.1702, 0.4540). For spatiotemporal pattern we use the semi-implicit (in
time) finite-difference method [17]. We consider the following initial condition.

u(x, 0) = u∗ + ε1 sin

(
2π(x − x0)

0.2

)
, v(x, 0) = v∗ + ε1 sin

(
2π(x − x0)

0.2

)

w(x, 0) = w∗ + ε1 sin

(
2π(x − x0)

0.2

)

(4.2)
where ε1 = 5 × 10−4, x0 = 0.1, (u∗, v∗, w∗) = (0.0795, 0.1702, 0.4540).
To obtain the time series of the model system (2.3) we take (u0, v0, w0) = (0.8, 0.6,
0.001). With the above initial condition, we observed that the system shows the
oscillatory behaviour (c.f., Fig. 3) and dormancy reduces the fluctuation in population
densities. Figure4 shows the complex spatiotemporal pattern (mixture of standing
and travelling waves) in the presence as well as in the absence of dormancy of the
predator.
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Fig. 3 Time series of the model system (2.3), a without dormancy, b with dormancy

Fig. 4 Complex spatiotemporal patterns of predator density of the model system (2.3), a without
dormancy, b with dormancy

Now, to understand the effect of space and timewe have plotted the spatiotemporal
patterns of the model system (2.3). First of all we have increased the value of time
from t = 5 to t = 70, and observed that for t = 5 a spatially periodic pattern appears,
and on increasing the value t = 70 the system exhibits periodic pattern in space and
time both (c.f., Fig. 5). Similarly, as we increase the value of space x = 1 to x = 19
the system exhibits transient complex spatiotemporal complex patterns (c.f., Fig. 6).
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Fig. 5 Complex spatiotemporal patterns of predator density of the model system (2.3) with dor-
mancy for a t = 5, b t = 30, c t = 50 and d t = 70

5 Discussions and Conclusions

In this paper we have analysed the dynamical behaviour of plankton system
(phytoplankton-zooplankton) in the presence of predator’s dormancy. The dormancy
enables many animals and plants to survive harsh environmental conditions. There-
fore, the theoretical as well as numerical study presented in this paper is essential for
understanding the ecological implications of dormancy. Our theoretical study shows
that the system is uniformly bounded and locally asymptotic stable in the presence
of predator’s dormancy under some conditions. With the help of numerical simula-
tion we have plotted bifurcation diagram, time series and spatiotemporal pattern of
the model system (2.3) without diffusion as well as with diffusion. Our numerical
investigation reveals that for ξ < ξc, where ξc = 3.11 the dynamics shows the limit
cycle oscillations and for ξ > ξc the system become stable dynamics (c.f. Figs. 1
and 2). Time series and spatiotemporal patterns of the model system (2.3) show that
the dormancy suppresses the fluctuation in population densities (c.f., Figs. 3 and 4).
From Fig. 5 we observed that at t = 5 spatially periodic pattern appears and as we
increase the value of t system shows periodic pattern in space and time both. Sim-
ilarly, as we increase the value of space from x = 1 to x = 19 the system exhibits
transient complex patterns which is a mixture of spatially periodic steady states and
travelling waves (c.f., Fig. 6).
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Fig. 6 Complex spatiotemporal patterns of predator density of the model system (2.3) with dor-
mancy with different values of space a x = 1, b x = 15, c x = 18 and d x = 19
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Exact Traveling Wave Solutions
and Bifurcation Analysis
for Time Fractional Dual Power
Zakharov-Kuznetsov-Burgers Equation

Amiya Das

Abstract In this paper, we introduce the time fractional dual power Zakharov-
Kuznetsov-Burgers equation in the sense of modified Riemann-Liouville derivative.
We briefly describe one direct ansatz method namely (G ′/G)-expansion method
in adherence of fractional complex transformation and applying this method ex-
ploit miscellaneous exact travelingwave solutions including solitary wave, kink-type
wave, breaking wave and periodic wave solutions of the equation. Next we inves-
tigate the dynamical behavior, bifurcations and phase portrait analysis of the exact
traveling wave solutions of the system in presence and absence of damping effect.
Moreover, we demonstrate the exceptional features of the traveling wave solutions
and phase portraits of planar dynamical system via interesting figures.

Keywords Fractional differential equation · Time fractional dual power
ZK-Burgers equation · Traveling wave solution · (G ′/G)-expansion method ·
Bifurcation analysis

1 Introduction

Fractional differential equations (FDEs) has extensive applications in almost all fields
of science and engineering [1–5]. FDEs can be applied in execution of the modeling
with long-range time memory and spatial interaction far better than integer order
partial differential equations. The existence and uniqueness of the solution of Cauchy
type problems, the boundary value problems using fixed-points methods, different
methods to obtain exact and numerical solutions and their stability [6–9] can be easily
handled using FDEs. In literature a number of definitions of fractional derivatives are
available. Some of the popular fractional derivatives are due to Riemann, Liouville,
Grünwald, Weyl [2] etc. Very recently a modified form of the Riemann-Liouville
fractional derivative has been introduced by Jumarie [10]. In the field of nonlinear
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evolution equations, a large number of powerful direct methods are available such
as (G ′/G)-expansion method, Kudryashov method, exponential function method,
first integral method, F-expansion method [11–18] etc. to exploit exact analytical
solutions of FDEs.

Nonlinear partial differential equations (NLPDEs) has been remained at the center
of immense practical importance due to its presence in diversified physical systems
such as water wave theory, plasma physics, condensed matters physics, lattice dy-
namics, nonlinear optics etc. [19–24]. The pioneer NLPDEs are KdV equation [25],
sine-Gordon equation [26], nonlinear Schrödinger equation [27] etc. The exact solu-
tions helps us to understand the mechanism of the complicated physical phenomena
and dynamical processes modelled by these nonlinear evolution equations [28] in
a simplified way. Nowadays another aspect of studying NLPDEs become investi-
gation of dynamical behavior of the exact traveling wave solutions and their phase
portrait analysis in view of dynamical system theory. Jiang et al. [29] investigated
the dynamical behavior of equilibrium points and the bifurcations of phase portraits
of the traveling wave solutions for the CH-γ equation. Das et al. [30, 31] studied the
existence and stability analysis of dispersive solutions of the KP-BBM equation and
KP equation in presence of dispersion effect. Scientific research has been initiated
along the generalization of physically important NLPDEs in the context of fractional
derivatives and discuss the existence of exact traveling wave solutions of these equa-
tions [32, 33]. We plan to enquire the dynamical behavior of these traveling wave
solutions and their stability analysis using dynamical system theory. A study in this
directionmay enrich the understanding of dynamical behavior of nonlinear fractional
partial differential equations.

We consider the dimensionless form of the Zakharov-Kuznetsov (ZK) equation
with dual-power law nonlinearity [34–36]

qt + (aqn + bq2n)qx + c(qxx + qyy)x = 0 . (1)

Here the exponents n and 2n depicts dual-power laws with n > 0 and a, b and c �= 0
are real constants. In case of n = 1, Eq. (1) reduces to the dual power ZK equation

qt + (aq + bq2)qx + c(qxx + qyy)x = 0 . (2)

In Yan et al. [37] demonstrated the symmetry reductions and obtained some poly-
nomial solutions, elliptic periodic solutions and triangular function solutions of Eq.
(2).

The 1-soliton solution of Eq. (1) with dual-power law nonlinearity has been de-
rived by Biswas et al. [36] using the solitary wave ansatz method.

Now we consider the time fractional Burgers equation

qt + aqqx = bqxx , (3)

where x and t indicates the space variable and time variable respectively and q de-
note electrostatic potential. Equation (3) describes dust-acoustic shock wave [38],
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nonlinear ion-acoustic shock wave [39], dust-ion acoustic shock wave [40] and
positron-acoustic shock wave [41] in plasmas.

In this article we introduce the time fractional dual power ZK-Burgers equation
as

Dα
t q + (aq + bq2)qx + c(qxx + qyy)x + μ(qxx + qyy) = 0 , (4)

where a, b, c are real parameters and μ is a damping parameter.

2 Overview on Fractional Calculus

A few well known fractional order derivatives are due to Riemann, Liouville,
Riemann-Liouville, Grünwald, Weyl, Grünwald-Letnikov, Caputo and Riesz frac-
tional derivatives [2]. In this paper, we apply the Jumarie’s modified Riemann-
Liouville form [10]. The fractional derivative of a function f : R → R of order
α in the sense of Jumarie’s modified Riemann-Liouville form is defined as

Dα
x =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
Γ (−α)

d
d x

∫ x
0 (x − η)−α−1[ f (η) − f (0)] d η , α < 0 ,

1
Γ (1−α)

d
d x

∫ x
0 (x − η)−α[ f (η) − f (0)] d η , 0 < α < 1 ,

( f (n)(x))(α−n) , n ≤ α < n + 1 , n ≥ 1 .

Moreover, some interesting properties of the modified Riemann-Liouville derivative
can be listed as

Dα
x x

s = Γ (1 + s)

Γ (1 + s − α)
xs−α , s > 0 , (5)

Dα
x [ f (x)g(x)] = g(x)Dα

x f (x) + Dα
x g(x) , (6)

Dα
x f [u(x)] = f ′

u[u(x)]Dα
x u(x) . (7)

The complex fractional transformation [42] is defined as

q(x, y, t) = q(ξ) , ξ = ktα

Γ (α + 1)
+ lxβ

Γ (β + 1)
+ myγ

Γ (γ + 1)
, (8)

where k, l,m are arbitrary constants which is frequently used to convert a fractional
differential equation into an ordinary differential equation.

3 (G′/G)-Expansion Method for Fractional Differential
Equations

Consider a general nonlinear FDE in an unknown function q = q(x, y, t)
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P(q, Dα
t q, Dβ

x q, Dγ
y q, D2α

t q, D2β
x q, D2γ

y q, Dα
t D

β
x D

γ
y q, . . .) = 0 , 0 < α, β, γ < 1 ,

(9)
where P is a polynomial of q and its fractional partial derivatives.
The traveling wave variable can be considered as the fractional complex transfor-

mation

q(x, y, t) = q(ξ) , ξ = Ktα

Γ (α + 1)
+ Lxβ

Γ (β + 1)
+ Myγ

Γ (γ + 1)
, (10)

which transforms Eq. (9) into a nonlinear ordinary differential equation of integer
order

P(q, q ′, q ′′, q ′′′, . . .) = 0 , (11)

where ′ depicts derivative with respect to ξ . If possible, Eq. (11) is to be integrated
term by term once or more.

The (G ′/G)-expansion method [11, 12] can be briefed in the following steps.
Step 1: Assume that the solution of Eq. (11) can be expressed through a polynomial
in (G ′/G) as

q(ξ) =
m∑

i=1

(G ′/G)i , am �= 0 , (12)

where ai (i = 0, 1, 2, . . . ,m) are constants and G = G(ξ) satisfies the following
auxiliary equation

G ′′ + λG ′ + μG = 0 , (13)

where λ and μ are constants.
Step 2: The homogeneous balance between the highest order derivative and the
nonlinear term appearing in Eq. (11) provides the value of positive integer m.
Step 3: After substituting Eq. (12) along with (13) into Eq. (11) and collecting
all terms having same power of (G ′/G)i , i = 0, 1, 2, . . ., equate each coefficient
of the polynomial to zero. This generates a set of algebraic equations in ai (i =
0, 1, 2, . . . ,m), λ, μ, K , L and M .
Step 4: The solution of the algebraic equation along with the values of ai (i =
0, 1, 2, . . . ,m), λ, μ, K , L , M and the general solutions of Eqs. (13) into (12) yields
a variety of exact solutions of (9).

4 Application of the (G′/G)-Expansion Method on Time
Fractional Dual Power ZK-Burgers Equation

In this section we apply the (G ′/G)-expansion method on the time fractional dual
power ZK-Burgers equation (4) and obtain exact analytical solution. Consider Eq.
(25)
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− vq + al

2
q2 + bl

3
q3 + clq ′′ + μq ′ = 0 , (14)

where “q ′” = d q
d ξ
.

The homogeneous balance between q ′′ and q3 in (14) yields

2 + m = 3m ⇒ m = 1 . (15)

Assume that the solution of (14) can be expressed by a polynomial in (G ′/G) as

q(ξ) = a0 + a1(G
′/G) , a1 �= 0 , (16)

where G = G(ξ) satisfies the second order ordinary differential equation

G ′′ + λG ′ + μG = 0 . (17)

The values of a0, a1 are unknowns and to be determined later. Substituting (16) in
(14) with the help of (17), we find a polynomial equation in (G ′/G). Collecting the
coefficients of (G ′/G)i , i = 0, 1, 2, 3 and equating each coefficients to zero we find
a set of algebraic equations. Solving the set of algebraic equations using Mapple we
get

a0 = −1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

, a1 =
√

−6c

b
,

v = −6bl2c2λ2 + 2bm2 + 3ca2l2 − 24bl2c2μ

12bcl
, (18)

where λ,μ, l and m are arbitrary constants.
Using (18), expression (16) becomes

q(ξ) = −1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

+
√

−6c

b
(G ′/G) , (19)

where ξ = lx + my + 6bl2c2λ2+2bm2+3ca2l2−24bl2c2μ
12bcl

tα

Γ (α+1) .
We substitute the general solution of the auxiliary equation (17) in (19) and obtain

following traveling wave solutions of (4) as follows:
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When λ2 − 4μ > 0,

q1(ξ) = − 1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

+ 1

2

√
λ2 − 4μ

√

−6c

b

(
C1 sinh 1

2

√
λ2 − 4μξ + C2 cosh 1

2

√
λ2 − 4μξ

C1 cosh 1
2

√
λ2 − 4μξ + C2 sinh 1

2

√
λ2 − 4μξ

)

,

(20)

where ξ = lx + my + 6bl2c2λ2+2bm2+3ca2l2−24bl2c2μ
12bcl

tα

Γ (α+1) , C1 and C2 are arbitrary
constants.

For particular values of C1 and C2 for instance, C1 > 0, C2
1 > C2

2 , q1(ξ) can be
expressed as

q1(ξ) = −1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

+ 1

2

√

λ2 − 4μ

√

−6c

b
tanh

(
1

2

√

λ2 − 4μξ + ξ0

)

,

(21)
where

ξ0 = tanh−1 C2

C1
, ξ = lx + my + 6bl2c2λ2 + 2bm2 + 3ca2l2 − 24bl2c2μ

12bcl

tα

Γ (α + 1)
.

It is a kink-type solution (see Figs. 1 and 2).
When λ2 − 4μ < 0,

q2(ξ) = − 1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

+ 1

2

√
4μ − λ2

√

−6c

b

(
−C1 sin 1

2

√
4μ − λ2ξ + C2 cos 1

2

√
4μ − λ2ξ

C1 cos 1
2

√
4μ − λ2ξ + C2 sin 1

2

√
4μ − λ2ξ

)

,

(22)

where ξ = lx + my + 6bl2c2λ2+2bm2+3ca2l2−24bl2c2μ
12bcl

tα

Γ (α+1) , C1 and C2 are arbitrary
constants.

When λ2 − 4μ = 0,

q3(ξ) = −1

2

al
√

− 6c
b + 6clλ − 2m

bl
√

− 6c
b

+
√

−6c

b

C2

C1 + C2ξ
, (23)

where ξ = lx + my + 2bm2+3ca2l2

12bcl
tα

Γ (α+1) , C1 and C2 are arbitrary constants.
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Fig. 1 Kink-type solution (21) for a α = 1, bα = 1/2with a = b = 1, c = −1, l = m = 1√
2
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Fig. 2 Contour plot of the kink-type solution (21) for a α = 1, b α = 1/2 with the same parameters

5 Bifurcation Analysis and Phase Portraits of Time
Fractional Dual Power ZK-Burgers Equation

In this section we discuss all possible periodic motions of Eq. (4) by considering the
traveling wave transformation ξ = lx + my − vtα

Γ (α+1) , where l and m are direction
cosines of the line of propagation of the travelingwavewith velocity v in the xy-plane
such that l2 + m2 = 1. Then Eq. (4) becomes

− vqξ + l(aq + bq2)qξ + lcqξξξ + μqξξ = 0 . (24)

Integrating Eq. (24) we obtain

− vq + al

2
q2 + bl

3
q3 + clqξξ + μqξ = 0 , (25)

where we choose the value of constant of integration as zero. Clearly Eq. (25) is
equivalent to the planar dynamical system
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qξ = z ,

zξ = v

cl
q − a

2c
q2 − b

3c
q3 − μ

cl
z . (26)

Here we discuss the qualitative behavior of the traveling waves of the system (26)
by using bifurcation theory of planar dynamical system [43].

The critical points for the dynamical system (26) are given by (0, 0) , (q1, 0) ,

(q2, 0), where

q1,2 = −3al ± √
9a2l2 + 48blv

4bl
. (27)

Note that the number of critical points depends on the value of v. The details are
given in Table1.

Let M(φe, ψe) be the coefficient matrix of the linearized system of (26) at
fixed point (φe, ψe) and J = det(M(φe, ψe)), T1 =trace(M(φe, ψe)), T2 =
(trace(M(φe, ψe)))

2. Let (φe, ψe) be an critical point of a planar integrable sys-
tem. Then (φe, ψe) is a saddle point if J < 0, a centre point if J > 0, T1 = 0, a cusp
if J = 0 and Poincaré index of (φe, ψe) is zero, a node if J > 0 and T2 − 4J > 0.

The linearized system of (26) at critical point q0 is

[
q ′
z′

]

=
⎡

⎣
0 1

v
cl − a

c q0 − b
c q

2
0 − μ

cl

⎤

⎦

[
q − q0

z

]

≡ M

[
q − q0

z

]

, (28)

where M denotes the coefficient matrix.
Now we discuss the bifurcations of traveling waves via phase portraits of Eq. (26)

in the (q, z) phase plane different parametric values as given in Table1.
Case 1: v > 0 > − 3a2l

16b . At (0, 0), J (0, 0) = − v
cl < 0 and hence (0, 0) is a sad-

dle point. At (q1, 0), J (q1, 0) > 0, T1(q1, 0) = − μ

cl and T2(q1, 0) − 4J (q1, 0) < 0

with 3a2l + 16bv − √
3a2l(3a2l + 16bv) > 2bμ2. Thus (q1, 0) is a stable spiral.

Again at (q2, 0), J (q2, 0) > 0, T1(q2, 0) = − μ

cl and T2(q2, 0) − 4J (q2, 0) < 0 with

3a2l + 16bv + √
3a2l(3a2l + 16bv) > 2bμ2. Thus (q2, 0) is also a stable spiral (see

Fig. 3a).

Table 1 Critical points of (26) for different choices of v

Value of v Number of critical points Critical point

v > − 3a2l
16b , v �= 0 ei ther v >

0 > − 3a2l
16b or − 3a2l

16b < v < 0

3 (0, 0) , (q1, 0) , (q2, 0)

v = − 3a2l
16b 2 (0, 0) ,

(− 3a
4b , 0

)

v < − 3a2l
16b 1 (0, 0)

v = 0 2 (0, 0) ,
(− 3a

2b , 0
)
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Fig. 3 Phase portrait of (26) for a v > 0 > − 3a2l
16b , b − 3a2l
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c = 1 and l = m = 1√
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Fig. 4 Phase portrait of (26) for a v < − 3a2l
16b , b v = 0 with a = b = c = 1 and l = m = 1√

2

Case 2: − 3a2l
16b < v < 0. At (0, 0), J (0, 0) = − v

cl > 0, T1(0, 0) = − μ

cl and T2(0, 0)
− 4J (0, 0) < 0 with−4vcl > μ2. Hence (0, 0) is a stable spiral. At (q1, 0), J (q1, 0)
< 0 and (q1, 0) is a saddle point. At (q2, 0), J (q2, 0) > 0, T1(q2, 0) = − μ

cl and

T2(q2, 0) − 4J (q2, 0) < 0 with 3a2l + 16bv + √
3a2l(3a2l + 16bv) > 2bμ2. Thus

(q2, 0) is also a stable spiral (see Fig. 3b).
Case 3: v = 3a2l

16b . At (0, 0), J (0, 0) = 3a2

16bc > 0, T2(0, 0) − 4J (0, 0) < 0 with−4vcl
> μ2. Hence (0, 0) is a stable spiral. At

(− 3a
4b , 0

)
, J

(− 3a
4b , 0

) = 0 and
(− 3a

4b , 0
)
is a

high order equilibrium point (see Fig. 3c).
Case 4: v < − 3a2l

16b . At (0, 0), J (0, 0) = − v
cl > 0, T2(0, 0) − 4J (0, 0) < 0 and (0, 0)

is a stable spiral (see Fig. 4a).
Case 5: v = 0. At (0, 0), J (0, 0) = − v

cl = 0 and (0, 0) is a high order equi-

librium point. At
(− 3a

2b , 0
)
, J

(− 3a
2b , 0

) = 3a2

4bc > 0, T2
(− 3a

2b , 0
) − 4J

(− 3a
2b , 0

)
< 0

with −4vcl > μ2. Thus
(− 3a

2b , 0
)
is a stable spiral (see Fig. 4b).

In case of no damping μ = 0 and the dynamical system (26) takes the form

qξ = z ,

zξ = v

cl
q − a

2c
q2 − b

3c
q3 . (29)
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This is a planar Hamiltonian system with Hamiltonian function

H (q, z) = z2 − v

cl
q2 − a

3c
q3 − b

6c
q4 . (30)

The linearized system of (29) at critical point q0 is

[
q ′
z′

]

=
⎡

⎣
0 1

v
cl − a

c q0 − b
c q

2
0 0

⎤

⎦

[
q − q0

z

]

≡ N

[
q − q0

z

]

, (31)

where N denotes the coefficient matrix.
We discuss the bifurcations of traveling waves via phase portraits of Eq. (29) in

the (q, z) phase plane for different parametric values as given in Table1.
Case 1: v > 0 > − 3a2l

16b . At (0, 0), J (0, 0) < 0 and hence (0, 0) is a saddle point. At
(q1,2, 0), J (q1,2, 0) > 0 and T1(q1,2, 0) = 0. Thus (q1,2, 0) are two centers and we
obtain a pair of homoclinic orbits at (0, 0) and two families of periodic orbits about
(q1,2, 0) (see Fig. 5a).
Case 2: − 3a2l

16b < v < 0. At (q1, 0), J (q1, 0) < 0 and (q1, 0) is a saddle point. At
(0, 0) and (q2, 0), J (0, 0), J (q2, 0) > 0 and T1(0, 0) = T1(q2, 0) = 0. Thus (0, 0)
and (q2, 0) are two centers and a pair of homoclinic orbits are obtained at (q1, 0) and
two families of periodic orbits about (0, 0) and (q2, 0) (see Fig. 5b).
Case 3: v = 3a2l

16b . At (0, 0), J (0, 0) > 0 and T1(0, 0) = 0. Hence (0, 0) is a center
point. At

(− 3a
4b , 0

)
, J

(− 3a
4b , 0

) = 0 and
(− 3a

4b , 0
)
is a high order equilibrium point

and a family of periodic orbits about (0, 0) and a homoclinic orbit at
(− 3a

4b , 0
)
are

found.Moreover, system (29) has infinite periodic orbits outside the homoclinic orbit
(see Fig. 5c).
Case 4: v < − 3a2l

16b . At (0, 0), J (0, 0) > 0 and T1(0, 0) = 0 and hence (0, 0) is a
center point. Thus a family of periodic orbits about (0, 0) are found (see Fig. 6a
and 7).
Case 5: v = 0. At (0, 0), J (0, 0) = 0. Thus (0, 0) is a high order equilibrium point.
At

(− 3a
2b , 0

)
, J

(− 3a
4b , 0

)
> 0, T1

(− 3a
4b , 0

) = 0 and
(− 3a

4b , 0
)
is a center point. We

obtain a homoclinic orbit at (0, 0) and a family of periodic orbits about
(− 3a

4b , 0
)

(see Fig. 6b).
The first equation of system (29) yields

ξ =
∫

d q

z
= ±

∫
d q

q
√

v
cl + a

3c q + b
6c q

2

= ∓
√
cl

v
ln

∣
∣
∣
∣
∣

1

q

{
( v

cl
+ a

6c
q
)

+
√

v

cl

(
v

cl
+ a

3c
q + b

6c
q2

)}∣
∣
∣
∣
∣
. (32)

We take exponential on both sides of (32) and simplifying obtain
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Fig. 5 Phase portrait of (26) for a v > 0 > − 3a2l
16b , b − 3a2l
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Fig. 7 Contour plot ofH (q, z) = const for a v = −0.6, b v = 1, c v = 2 with a = b = c = 1 and
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Fig. 8 Profile of (33) a positive case, b negative case with l = 1, v = 10 and other parameters are
same as Fig. 6

q(ξ) = 2 e±√
v
cl ξ

cl
v

(
1 − a

6c e
±√

v
cl ξ

)2 − b
6c e

±2
√

v
cl ξ

. (33)

Note that it is a breaking wave solution (see Fig. 8). We simplify Eq. (32) and obtain
the explicit form

q(ξ) = 2
(

a2l
36cv − b

6c + cl
v

)
cosh

(√ v
cl ξ

) ±
(

a2l
36cv − b

6c − cl
v

)
sinh

(√ v
cl ξ

) − al
3c

,

(34)
which also depicts a breaking wave solution (see Fig. 9).

6 Conclusions

In this paper, the time fractional dual power ZK-Burgers equation with fractional
temporal evolution (4) is introduced for the first time. The successful application of
(G ′/G)-expansionmethod alongwith Jumarie’smodifiedRiemann-Liouville deriva-
tive produces miscellaneous exact traveling wave solutions in terms of hyperbolic,
trigonometric and rational functions. These traveling wave solutions turns in to kink
wave and periodicwave solutions for particular choice of arbitrary constants. Further-
more, we discuss the dynamical behavior, bifurcation analysis and phase portraits of
the dynamical system in presence and absence of damping effect. We hope that this
approach can be executed to a variety of NLPDEs which are generalized in context
of fractional temporal evolution.
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Fig. 9 Profile of (34) a positive case, b negative case with l = 1, v = 6 and other parameters are
same as Fig. 6
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Stability Analysis for an SEIQR
Epidemic Model with Saturated
Incidence Rate

Deepti Mokati, Nirmala Gupta and V. H. Badshah

Abstract Mathematics plays an important role in study of biological systems
throughmathematical models. In the present paper, we extended the work of Nirwani
et al. (Nonlinear Anal Differ Equ 4:43–50, 2016) [5] by introducing the transmis-
sion rate η from the exposed class E to infectious class I and converted the model
into an Susceptible-Exposed-Infectious-Quarantine-Recovered epidemicmodelwith
saturated incidence rate. Determine the equilibrium points of the model and basic
reproduction number Rq is obtained. Stability analysis have been discussed of both
equilibrium points by Routh-Hurwitz criteria and Lyapunov function criteria. Also,
Numerical simulations are carried out for the model.

Keywords Epidemic model · Compartmental model · Equilibrium points ·
Quarantine · Basic reproduction number

Mathematics Subject Classification 92D30 · 92D25 · 34D20

1 Introduction

The mathematical analysis of epidemiological models has highly developed in the
last twenty years. Mathematical modeling of infectious diseases has a long history in
mathematical biology. Hethcote [3] developed various models, analyzed mathemat-
ically and applied to infectious disease for many aspects such as passive immunity,
gradual loss of vaccine, stages of infection, disease vectors, vaccination, quaran-
tine. The first Susceptible-Infected-Recovered model was proposed by Kermack and
McKendrick in the year 1927. Pathak et al. studied an SIR epidemic model with an
asymptotically homogeneous transmission function in [6]. Zang et al. [8] discussed
an epidemic model with dependent vaccination. Many Authors studied epidemic
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models with saturated incidence rate. Adebimpe et al. [1] investigated an epidemic
model including population of susceptibility, exposing, infected and recovered with
non-linear incidence rate and discussed stability of disease-free and endemic equi-
libria if R0 < 1 and R0 > 1, respectively with numerical simulations to illustrate
the analytical results. Feng et al. [2] have been formulated a quarantine model for
childhood diseases. Quarantine plays an important role in infectious disease epi-
demiology. It is used to separate and restrict the movement of persons. It helps to
control the spread of infectious diseases. Hethcote et al. [4] described the dynami-
cal behavior of six endemic models: three for quarantine to susceptible (SIQS) and
three for quarantine to recovered (SIQR) for infectious diseases with three forms
of incidence. Wa et al. [7] described the global stability of a vaccinated epidemic
model with quarantine strategy. Nirwani et al. [5] analyzed the stability of a quar-
antine endemic model with saturated incidence rate. Here we have proposed a more
generalized SEIQR epidemic model with saturated incidence rate. Numerical results
are also provided.

2 The Mathematical Model

In the model, consider a population into five classes: susceptible (S), exposed (E),
infectious (I), quarantine (Q) and recovered (R) individuals at time t and the total
number of population at time t is S + E + I + Q + R = N .

The flow of individual depicted in the following transfer diagram (Fig. 1).
The symbol are used here stand for

A = Recruitment rate,
β = Average number of adequate contact rate,
d = natural mortality rate,
α = constant rate,

Iγ

A
1

SI

I

β
α+

Eη Iδ Qε dR

dS dE 1( )d Iα+ 2( )d Qα+

S RE I Q

Fig. 1 Transfer diagram for SEIQR epidemic model
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η = progression rate to symptoms development (the rate at which an Infected
individual becomes infections per unit time),
ε, δ = removal rate constant,
α1, α2 = disease-related death rates,
γ = Recovery rate from the disease.

All parameters are assumed nonnegative.

3 Formulation of the Model

The differential equation corresponding to the transfer diagram are

dS
dt = A − βSI

1+α I − dS
dE
dt = βSI

1+α I − (η + d)E
dI
dt = ηE − (γ + δ + d + α1)I
dQ
dt = δ I − (ε + d + α2)Q
dR
dt = γ I + εQ − dR

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

The feasible region of human population corresponding to the system (1) will be

� =
{

(S, E, I, Q, R):S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0, S + E + I + Q + R ≤ A

d

}

Thus, the proposed model is mathematically well posed and is epidemiologically
reasonable.

4 Equilibrium Points

4.1 Disease-Free Equilibrium

All the equations of the system (1) equate to zero. Then the system of equation
becomes

A − βSI
1+α I − dS = 0

βSI
1+α I − (η + d)E = 0
ηE − (γ + δ + d + α1)I = 0
δ I − (ε + d + α2)Q = 0
γ I + εQ − dR = 0.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2)

Assume that if the disease is not occur, then I = 0.



54 D. Mokati et al.

Thus, the disease-free equilibrium is E 0 = ( S , E, I , Q , R ), i.e., E 0 =
( A

d , 0 , 0 , 0 , 0).

4.2 Endemic Equilibrium (E**)

The system (1) can be written as

A − βS∗ I ∗
1+α I ∗ − dS∗ = 0

βS∗ I ∗
1+α I ∗ − (η + d)E∗ = 0
ηE∗ − (γ + δ + d + α1)I ∗ = 0
δ I ∗ − (ε + d + α2)Q∗ = 0
γ I ∗ + εQ∗ − dR∗ = 0.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3)

On solving the equations, finally, we have endemic equilibrium E∗∗ =
(S∗, E∗, I ∗, Q∗, R∗), where S∗ = (η+d)(γ+d+α1+δ)

ηβ

[
1 + αd(Rq−1)

β+dα

]
, E∗ =

(γ+d+α1+δ)

η

[
d(Rq−1)
β+dα

]
, I ∗ = d(Rq−1)

β+dα
, Q∗ = δ

(ε+d+α2)

[
d(Rq−1)
β+dα

]
, R∗ =

(Rq−1)
(β+dα)

[
γ + εδ

(ε+d+α2)

]
.

The quarantine reproduction number is given by Rq = ηβA
d(η+d)(γ+δ+d+α1)

.

5 Stability Analysis

5.1 Local Stability of Disease Free Equilibrium

Theorem 1 If Rq < 1, then the disease-free equilibrium is locally asymptotically
stable.

Proof The variational matrix of the system (1) at E0 = (
A
d , 0, 0, 0, 0

)
is given by

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−d 0 − βA
d 0 0

0 −(η + d)
βA
d 0 0

0 η −(γ + δ + d + α1) 0 0
0 0 δ −(ε + d + α2) 0
0 0 γ ε −d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Now, its characteristic equation will be

|J − λI | = 0.
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(d + λ) 0 − βA
d 0 0

0 −(η + d + λ)
βA
d 0 0

0 η −(γ + δ + d + α1 + λ) 0 0
0 0 δ −(ε + d + α2 + λ) 0
0 0 γ ε −(d + λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

On solving, we have

−(d + λ)(d + λ)(ε + d + α2 + λ)
[
(η + d + λ)(γ + δ + d + α1 + λ)− ηβA

d

] = 0.

From this, we conclude that three eigen values
λ = −d, λ = −d, λ = −(ε + d + α2) are negative.
For obtaining other two eigenvalues, we have

λ2 + λ
[
(η + γ + δ + α1 + 2d

] + (η + d)(γ + δ + d + α1)
[
1 − Rq

] = 0.

Or λ2 + aλ + b = 0.
Here,

a = η + γ + δ + α1 + 2d > 0.

b = (η + d)(γ + δ + d + α1)(1 − Rq) > 0.

This is possible if Rq < 1.
Hence, it is clearly seen that a > 0, b > 0 and ab > 0.
Thus, by Routh-Hurwitz criteria the theorem is proved.

5.2 Global Stability of Disease-Free Equilibrium

Theorem 2 If Rq < 1, the disease-free equilibrium is global asymptotically stable
and the disease dies out. But if Rq > 1, then it is unstable.

Proof Consider, the Lyapunov function

L = ηE + (η + d)I

then dL
dt = η dE

dt + (η + d) d Idt
or dL

dt = [
η(η + d)(γ + δ + d + α1)

]
(

Rq

η(1+α I ) − 1)I ≤ 0 if Rq < 1.

Hence, the maximal compact invariant set in {(S, E, I, Q, R) ∈ D : dL
dt = 0} is

the singleton {E0}. Using Lasalle’s invariance principle we have proved the theorem.
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5.3 Local Stability of Endemic Equilibrium

Theorem 3 If Rq > 1, the endemic equilibrium E∗∗ is locally asymptotically stable.

Proof At the endemic equilibrium points E∗∗ = (S∗, E∗, I ∗, Q∗, R∗), the varia-
tional matrix will be

J ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−J1 − d 0 −J2 0 0
J1 −(η + d) J2 0 0
0 η −(γ + δ + d + α1) 0 0
0 0 δ −(ε + d + α2) 0
0 0 γ ε −d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where, β I ∗
1+α I ∗ = J1 and

βS∗
(1+α I ∗)2 = J2.

Then, its characteristic equation will be

∣
∣J ∗ − λI

∣
∣ = 0.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(J1 + d + λ) 0 −J2 0 0
J1 −(η + d + λ) J2 0 0
0 η −(γ + δ + d + α1 + λ) 0 0
0 0 δ −(ε + d + α2 + λ) 0
0 0 γ ε −(d + λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

On solving, we have

(d + λ)(ε + d + α2 + λ)[(J1 + d + λ){(η + d + λ)(γ + δ + d + α1 + λ) − J2η}
+ ηJ1 J2] = 0

Clearly seen that two eigen values λ = −d and λ = −(ε + d + α2) are negative
and other eigen values are obtained on solving the equation

[(J1 + d + λ){(η + d + λ)(γ + δ + d + α1 + λ) − J2η} + ηJ1 J2] = 0.

λ3 + [η + 3d + γ + δ + α1 + J1]λ2 + [(d + γ + δ + α1)(η + 2d + J1) + (J1 + d)(η + d) − ηJ2]λ
+ [(J1 + d)(η + d)(d + γ + δ + α1) − ηJ2d] = 0

or λ3 + aλ2 + bλ + c = 0,
where

a = η + 3d + γ + δ + α1 + J1,

b = (d + γ + δ + α1)(η + 2d + J1) + (J1 + d)(η + d) − ηJ2,
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c = (J1 + d)(η + d)(d + γ + δ + α1) − ηJ2d.

It is clearly seen that a > 0, b > 0, c > 0 and ab − c > 0.
Hence, by Routh-Hurwitz criteria, the endemic equilibrium is locally asymptoti-

cally stable.

6 Numerical Analysis and Graphical Representation

In this section, we have analyzed the model numerically and graphically by consid-
ering the set of parameters values. From practical point of view, numerical solutions
are very important beside analytical system.

Case I

S(0) = 10, E(0) = 8, I (0) = 5, Q(0) = 5, R(0) = 5,

A = 3, d = 2.29, γ = 1.5, δ = 0.5, α1 = 0.01, β = 0.5,

α = 3.1, η = 0.05, ε = 0.2, α2 = 0.03, Rq = 0.00325 < 1.

Figure 2 shows that S(t) approaches to its steady state value while E(t), I(t), Q(t)
and R(t) approaches to zero as time progresses , the disease dies out.

Time    t  

S 
E 
I 
Q 
R

Fig. 2 Graph of SEIQR epidemic model when Rq < 1
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S 
E 
I 
Q 
R

Time    t  

Fig. 3 Graph of SEIQR epidemic model when Rq > 1

Case II

S(0) = 10, E(0) = 8, I (0) = 5, Q(0) = 5, R(0) = 5,

A = 3, d = 0.15, γ = 1.5, δ = 5, α1 = 2, β = 2,

α = 4, η = 1, ε = 0.2, α2 = 0.03, Rq = 4.021 > 1.

Figure 3 shows that S(t), E(t), I(t), Q(t) and R(t) approaches to its steady state
value as time progresses, the disease becomes endemic.

7 Conclusion

The mathematical analysis of epidemiological models has highly developed in the
last twenty years. In this paper, we have considered an SIQR epidemic model of
Nirwani et al. [5] with saturated incidence rate and converted into SEIQR epidemic
model which is a modified form. The SEIQR model is used in the modeling of
infectious diseases by computing the amount of people in a closed population that
are susceptible, exposed, infected, quarantined or recovered at a given period of time.
The model can also be used by researchers and health officials to explain the increase
and decrease in people needingmedical care for a certain disease during an epidemic.
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We have found disease-free and endemic equilibria for themodel and analyzed the
stability criteria for the both equilibria. We have seen that the disease-free equilibria
and endemic equilibria are locally asymptotically stable by Routh-Hurwitz criteria
if Rq < 1 and Rq > 1 respectively. We have also discussed globally asymptotically
stability for disease-free equilibrium by Lyapunov function criteria. Also, numerical
simulations are carried out for the model with graphical representation for ordinary
differential equation and numerically found that if Rq < 1, then the disease dies out
and if Rq > 1, the disease becomes endemic. This can be more clearly seen in the
graphs.

In future, we will study of various types of epidemiological models and also
analyze how we can cure the diseases with the help of vaccinated epidemiological
models and various techniques theoretically as well as numerically with graphical
representation.
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Impact of Rectangular/Parabolic Shaped
Irregularity on the Propagation of Shear
Horizontal Wave in a Slightly
Compressible Layered Structure

M. S. Chaki, S. Guha and A. K. Singh

Abstract The present paper enunciates the propagation behaviour of Shear Hori-
zontal (SH) wave in a layered structure comprised of a slightly compressible layer
overlying a slightly compressible half-space with rectangular shaped irregularity and
parabolic shaped irregularity at the common interface in two distinct cases. Disper-
sion relations have been deduced analytically in closed form for both the cases. As
a particular case, the obtained dispersion equations have been found to be in agree-
ment with the classical Love wave equation in isotropic case. The impact of various
parameters, viz. wave number, rectangular shaped irregularity and parabolic shaped
irregularity associated at the common interface, on the phase velocity of SH wave
has been studied for the layered structure. Numerical computation and graphical
illustration has been done in order to analyse the impact of irregularity parameters
(rectangular and parabolic) more profoundly for slightly compressible vargamaterial
which serves as one of the major highlight of the present study.

Keywords Slightly compressible · SH wave · Irregularity · Perturbation method

1 Introduction

Since material technology is capable of producing materials which can bear massive
pressure and large deformations in aspect of industrial applications, slightly com-
pressible (finitely deformed) and incompressible materials are being widely used
now-a-days, viz. engine mounts, off-shore structure flex-joints, vibration insulators
etc. The stress analysis of rubber-like materials offers two rather unique features;
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firstly, these materials are nearly compressible (i.e. their bulk modulii are much
larger than their shear modulii) and secondly, they are capable of experiencing large
deformations. Motivated by the desire to explicate such response, there have been a
number of recent papers aiming at explaining the effect of pre-stress on wave prop-
agation in elastic plates, laminates, half-spaces, and other layered structure. Since
the slightly compressibility seems to be a more accurate presumption as compared
to ideal incompressibility, some significant studies pertaining to this topic have been
conducted by Dowaikh and Ogden [1], Rogerson and Fu [2], Rogerson and Murphy
[3], Sandiford and Rogerson [4], Chattopadhyay and Sahu [5], Rogerson et al. [6],
Chatterjee and Chattopadhyay [7], Scott [8] and so on. A good example of such type
of material is varga material which has drawn attention of many authors due to its
mathematical feasibility.

It is not always feasible to find parallel boundaries in problems of wave propaga-
tion in elastic media and hence, mathematical presumption of irregular boundaries
due to its closeness to the real world scenarios have harnessed abundant attention
of geophysicists and seismologists to understand the seismic activity at mountain
basins and continental margins. As a result, many authors have studied the wave
propagation in different types of irregularities (rectangular, parabolic, corrugated,
triangular etc.) at the interfaces.

Bhattacharya [9] considered the irregularity in the transversely isotropic crustal
layer. Chattopadhyay [10] studied Love wave propagation in the crystal layer with
irregularity and non-homogeneity. Singh et al. [11] analytically discussed Love-type
wave propagation in a piezoelectric structure with irregularity. Recently, Singh et al.
[12] discussed about the impact of irregularity on SH-type wave propagation in
micropolar elastic composite structure.

Till today, no study has been done on horizontally polarized shear wave propaga-
tion in slightly compressible finitely deformed layer/half-space configuration having
rectangular and parabolic shaped irregular interfaces.

2 The Governing Equations

Let B0 and Be be a natural configuration and a finitely deformed equilibrium con-
figuration of an elastic solid respectively where XA and χi (XA) are position vec-
tors in B0 and Be. Now, upon the finite deformation B0 → Be, if an infinitesimal
time-dependent motion is super-imposed in the current configuration Bt with posi-
tion vector χ̄i (XA, t). The deformation gradients associated with the deformations
B0 → Bt and B0 → Be are defined through the component relation [13]

Fi A = (δi j + ui, j )F̄j A, (πi A F̄pA),p = ρüi , πi A = ∂W

∂Fi A
(1)
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where ui (X, t) is a small time-dependent displacement in Be → Bt , δi j theKronecker
delta, πi A denotes Piola-Kirchhoff stress tensor, ρ is the material density and W (F)

is the strain energy function per unit volume.
A system of linearized equations ofmotion can be obtainedwith the help of Taylor

series expansion of the stress tensor about B0 which yields by using Eq. (1) as

Bjilkuk,l j = ρüi , Bjilk = J̄−1 F̄j A F̄lC
∂2W

∂Fi A∂FkC

∣
∣
∣
∣
F=F

, (2)

where J = det F.
Now, Eq. (2) may be rewritten for small order parameter (J − 1) [14] as

Bjilk = J̄−1 F̄j A F̄lC
∂2W

∂Fi A∂FkC

∣
∣
∣
∣
F=F

+ κ J̄δi jδkl + κ
(

J̄ − 1
)

(δi jδkl − δ jkδil) (3)

where κ = ∂2W
∂ J 2 is the bulk modulus and κ ∼ O(J − 1)−1.

Hence the equation of small-amplitude motions in a slightly incompressible
material may be obtained as

B0
j ilkuk,l j + κ J̄ uk,ki = ρüi , B

0
j ilk = J̄−1 F̄j A F̄lC

∂2W

∂Fi A∂FkC

∣
∣
∣
∣
F=F

, (4)

where B0 is associated with the leading-order term W0(F, 1) of the strain energy
function.

Surface traction at a point along with outward normal n in Be may be obtained
by expanding πi A in the form of Taylor series about Be as

τi = B0
j ilkuk,l n j + [

κ( J̄ − 1) + κ J̄
]

uk,k ni − κ( J̄ − 1)u j,i n j . (5)

3 Constitutive Relations and Formulation of the Problem

From strain energy function associated with incompressible elastic material, we
obtain

W0(F, 1) = W0(I1, I2), I1 = trC, I2 = 1

2

(

I 21 − (

trC2
))

, (6)

where I1 and I2 represent the first two principal invariants of the modified right
Cauchy-Green strain tensor C = FTF and tr denotes its trace.

Here we have considered propagation of SH wave in a slightly compressible
finitely deformed layer of finite thicknessH lying over a slightly compressible finitely
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Fig. 1 Geometry of the problem for the case of a rectangular shaped irregularity and b parabolic
shaped irregularity

deformed half-space as shown in Figs. 1a and b. Rectangular and parabolic shaped
irregularities os span s have been considered at the interface.

A rectangular Cartesian coordinate system with origin O at the middle point of
the span of the irregularities has been considered, where x2-axis is taken vertically
downwards and x1-axis lies along the propagation of SH wave. The depth of both
irregularities H ′ is considered below x2 = 0 along with a source of disturbance at
the point O ′ on the x2-axis having depth d

(

d > H ′).
The equations of irregularity is given by

x2 = εh(x1) (7)

where for rectangular irregularity

h(x1) =
{

0 f or |x | > s
2 ;

s f or |x | ≤ s
2 .

and for parabolic irregularity

h(x1) =
{

0 f or |x | > s
2 ;

s
(

1 − 4x21
s2

)

f or |x | ≤ s
2 .

where ε = H ′
s � 1 is small perturbation parameter.

Due to SH wave propagation, the displacement components are assumed as

u1 = 0, u2 = 0, u3 = u3(x1, x2, t), (8)

Equation (8) may now be used in Eq. (4) which upon use of the fact that all non-
zero components of the elasticity tensor take one of the three forms B0

i i j j , B
0
i j j i or

B0
i j i j (i, j = 1, 2, 3), enables the two non-trivial equations of motion for the layer

and half-space to be expressed in the form
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B(1)
1313u

(1)
3,11 + B(1)

2323u
(1)
3,22 = ρ1ü

(1)
3 (9)

B(2)
1313u

(2)
3,11 + B(2)

2323u
(2)
3,22 = ρ2ü

(2)
3 (10)

where B(1)
1313 and B(1)

2323 are components of elasticity tensor with respect to slightly
compressible layer and B(2)

1313 and B(2)
2323 are components of elasticity tensor with

respect to slightly compressible half-space and u(i)
3 and ρi are displacement, initial

stress and density of the slightly compressible layer and half-space for i = 1, 2
respectively.

The two non-zero incremental tractions are obtained from (5) for the layer and
half-space as

τ
(1)
3 = 1

√

ε2(h′(x))2 + 1

[

−εh′(x1)B(1)
1313u

(1)
3,1 + B(1)

2323u
(1)
3,2

]

(11)

τ
(2)
3 = 1

√

ε2(h′(x))2 + 1

[

−εh′(x1)B(2)
1313 u

(2)
3,1 + B(2)

2323 u
(2)
3,2

]

. (12)

4 Boundary Conditions

1. The upper surface of the slightly compressible layer is stress free:

τ
(1)
3 = 0 at x2 = −H (13)

2. The stresses are continuous at the interface x2 = εh(x1):

τ
(1)
3 = τ

(2)
3 (14)

3. The displacements are continuous at the interface x2 = εh(x1):

u(1)
3 = u(2)

3 (15)

5 Solution of the Problem

The solution of the equations of motion (9) and (10) can be considered as

u( j)
3 = U ( j)

3 (x1, x2)e
iωt for j = 1, 2. (16)
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where ω is the circular frequency. Using (16), the Eqs. (9) and (10) reduce to

(B(1)
1313)

∂2U (1)
3

∂x21
+ (B(1)

2323)
∂2U (1)

3

∂x22
+ ρ1ω

2U (1)
3 = 0 (17)

(B(2)
1313)

∂2U (2)
3

∂x21
+ (B(2)

2323)
∂2U (2)

3

∂x22
+ ρ2ω

2U (2)
3 = 0 (18)

Defining the Fourier transform Ū (r)
3 (η, x2) , we obtain

∂2Ū (1)
3

∂x22
+ q2

1Ū
(1)
3 = 0 , (19)

∂2Ū (2)
3

∂x22
− q2

2Ū
(2)
3 = 0 (20)

where q2
1 = ρ1ω

2−η2(B(1)
1313)

B(1)
2323

=
√

ω2

β2
1

− B(1)
1313

B(1)
2323

, q2
2 = −ρ2ω

2+η2(B(2)
1313)

B(2)
2323

=
√

−ω2

β2
2

+ B(2)
1313

B(2)
2323

;

β1 =
√

B(1)
2323
ρ1

represents the shear wave velocity for the upper slightly compressible

finitely deformed layer and β2 =
√

B(2)
2323
ρ2

represents the shear wave velocity for the

lower slightly compressible finitely deformed half-space.
The solutions of Eqs. (19) and (20) are

Ū (1)
3 = A cos(q1x2) + B sin(q1x2) (21)

Ū (2)
3 = De−q2x2 (22)

where A, B and D are functions of η.
The displacement components of the layer and half-space are

U (1)
3 (x1, x2) = 1

2π

∞∫

−∞
(A cos(q1x2) + B sin(q1x2))e

−iηx1dη (23)

U (2)
3 (x1, x2) = 1

2π

∞∫

−∞
(De−q2x2 + 2

q2
eq2x2e−q2d)e−iηx1dη. (24)

In Eq. (24), the second term in the integrand of U (2)
3 physically interprets the

presence of the source in the half-space.
The following approximations can be considered due to small value of ε
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A ∼= A0 + A1ε, B ∼= B0 + B1ε,

D ∼= D0 + D1ε, e±νεh ∼= 1 ± νεh, cos νεh ∼= 1, sin νεh ∼= νεh (25)

where ν is any quantity.
Using the boundary condition (1), we get

(A0 sin(q1H) + B0 cos(q1H)) + ε(A1 sin(q1H) + B1 cos(q1H)) = 0 (26)

Defining the Fourier transform of h(x1) and putting η + λ = k, the boundary
condition (2) and (3) gives

(

A0 − D0 − 2

q2
e−q2d

)

+ ε(A1 − D1) = εR1(k) (27)

B(2)
2323[−q2D0 − D1q2ε + 2e−q2d ] − B(1)

2323[B0q1 + B1q1ε] = εR2(k) (28)

where

R1(k) = 1

2π

∞∫

−∞
[2e−q2d − B0q1 − D0q2]h̄(λ)dλ. (29)

R2(k) = 1

2π

∞∫

−∞
[kλB(1)

1313A0 − B(1)
2323A0q

2
1 − D0kλB

(2)
1313

− 2

q2
kλB1313e

−q2d − D0B
(2)
2323q

2
2 − 2B(2)

2323q2e
−q2d ]h̄(λ)dλ (30)

Taking into consideration the terms not containing ε and the coefficient of ε from
Eqs. (26), (27) and (28), we acquire

A0 sin(q1H) + B0 cos(q1H) = 0,

(A0 − D0) − 2

q2
e−q2d = 0,

B(2)
2323

[−q2D0 + 2e−q2d
] − B(1)

2323B0q1 = 0,

A1 sin(q1H) + B1 cos(q1H) = 0,

A1 − D1 = R1(k),

−B(2)
2323 D1q2 − B(1)

2323B1q1 = R2(k).
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Solving the above equations, the following may be deduced

A0 = 4e−q2d B(2)
2323

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

,

B0 = −4e−q2d B(2)
2323 tan(q1H)

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

,

D0 = 2e−q2d [q1B(1)
2323 tan(q1H) + q2B

(2)
2323]

q2[q2B(2)
2323 − q1B

(1)
2323 tan(q1H)] ,

A1 = R1(k)q2B
(2)
2323 − R2(k)

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

,

B1 = −[R1(k)q2B
(2)
2323 − R2(k)] tan(q1H)

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

,

D1 = R1(k)q1B
(1)
2323 tan(q1H) − R2(k)

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

.

The displacement in the slightly compressible layer is then given by

U (1)
3 = 1

2π

∞∫

−∞

[4e−q2d B(2)
2323 + ε[R1(k)q2B

(2)
2323 − R2(k)]]

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

× [cos(q1x2) − tan(q1H) sin(q1x2)]e−ikx1dk (31)

Case 1 (For Rectangular Shaped Irregularity) From Eq. (7) for rectangular
irregularity, we have

h̄(λ) = 2s

λ
sin

(
λs

2

)

(32)

Using (32) and (31), we get

R1q2B
(2)
2323 − R2 = 2sB(2)

2323

π

∞∫

−∞
[φ(k − λ) + φ(k + λ)]1

λ
sin

λs

2
dλ (33)

where

φ(k − λ) = e−q2d

q2[q2B(2)
2323 − q1B

(1)
2323 tan(q1H)]

[2B(2)
2323q

3
1 − 2B(1)

2323q
2
2q1 tan(q1H)

+ 2B(2)
2323q1q

2
2 tan(q1H) + kλq2B

(2)
1313 + 2q2q

2
1 B

(1)
2323 − 2q2B

(1)
1313kλ + kλB(2)

1313q2]η=k−λ.
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with η + λ = k.
Asymptotic formulae presented by Willis [15] and Tranter [16] and neglection of

powers of 2/s for large s results in

∞∫

−∞
[φ(k − λ) + φ(k + λ)]1

λ
sin

λs

2
dλ ∼= π

2
2φ(k) = πφ(k) (34)

Then, using (34) in (33), we obtain

R1q2B
(2)
2323 − R2 = 2B(2)

2323

H ′

ε
φ(k) (35)

Therefore, the displacement in the slightly compressible layer is

U (1)
3 = 1

2π

∞∫

−∞

4e−q2d B(2)
2323

[

q2B
(2)
2323 − q1B

(1)
2323 tan(q1H)

]
[cos(q1x2) − (tan(q1H) sin(q1x2)]

(1 − H ′
2 φ(k)eq2d )

e−ikx1dk

(36)

Since the integration in Eq. (36) depends entirely on the poles, the following
equation may be considered, in order to find the poles, as the dispersion relation

tan(q∗
1 kH) = H ′B(2)

2323k(q
∗
1 )

3 + H ′kq∗
2 (q

∗
1 )

2B(1)
2323 − (q∗

2 )
2B(2)

2323

H ′kB(1)
2323q

∗
1 (q

∗
2 )

2 − H ′kq∗
1 (q

∗
2 )

2B(2)
2323 − q∗

1q
∗
2 B

(1)
2323

(37)

whereω = ck (whereω is the circular frequency and k is thewave number), q1 = kq∗
1

and q2 = kq∗
2 where q

∗
1 =

√

c2

β2
1

− B(1)
1313

B(1)
2323

, q∗
2 =

√

− c2

β2
2

+ B(2)
1313

B(2)
2323

and β1 and β2 represent

the shear wave velocities for the upper slightly compressible finitely deformed layer
and for the lower slightly compressible finitely deformed half-space respectively.

Case 2 (For Parabolic Shaped Irregularity) From Eq. (11) for parabolic irregularity,
we have

h̄(λ) = 8H ′s
ε

(

2 sin( λs
2 ) − (λs) cos( λs

2 )

(λs)3

)

(38)

Hence,

R1q2B
(2)
2323 − R2 = B(2)

2323

2π

8H ′s
ε

∞∫

0

[φ(k − λ) + φ(k + λ)]
√

π

4

J3/2
(

λs
2

)

(λs)3/2
dλ, (39)

where J3/2
(

λs
2

)

is a Bessel function of the first kind of order 3
2 .
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Using asymptotic formulae [15, 16], and proceeding similarly as before, we obtain

U (1)
3 = 1

2π

∞∫

−∞

4e−q2d B(2)
2323

[ q2B(2)
2323 − q1B

(1)
2323 tan(q1H)]

× [cos(q1x2) − (tan(q1H) sin(q1x2)]
(1 − H ′

6π φ(k)eq2d)
e−ikx1dk (40)

Since the integration in Eq. (40) depends entirely on the poles, the following
equation may be considered, in order to find the poles, as the dispersion relation

tan(q∗
1 kH) = H ′B(2)

2323k(q
∗
1 )

3 + H ′kq∗
2 (q

∗
1 )

2B(1)
2323 − 3π(q∗

2 )
2B(2)

2323

H ′kB(1)
2323q

∗
1 (q

∗
2 )

2 − H ′kq∗
1 (q

∗
2 )

2B(2)
2323 − 3πq∗

1q
∗
2 B

(1)
2323

(41)

where the notations are already described after Eq. (37) in Case 1.

6 Particular Cases

6.1 Case 1

When slightly compressible finitely deformed layer overlies on a slightly compress-
ible finitely deformed half-space having a perfect bonding (i.e. H ′ = 0) at the
interface, the dispersion equations for both cases of irregularities (rectangular and
parabolic) i.e. Equations (37) and (41) transform to Eq. (25) of [7]

tan(q∗
1 kH) = q∗

2 B
(2)
2323

q∗
1 B

(1)
2323

(42)

6.2 Case 2

When the upper layer as well as the lower half-space are considered to be isotropic
(i.e.B1

1313 = B1
2323 = μ1 and B2

1313 = B2
2323 = μ2) and have a perfect bonding

(i.e. H ′ = 0) at the interface, the dispersion equations i.e. Equations (37) and (41)
reduce to the dispersion equation for the classical isotropic elasticity for Love wave
propagation
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tan(kH

√

c2

β2
1

− 1) =
μ2

√

1 − c2

β2
2

μ1

√
c2

β2
1

− 1
(43)

7 Numerical Results and Discussion

In this section, numerical calculation and graphical interpretation have been done in
order to reveal the effect of irregularity parameter (H ′/H, i.e. the ratio of the irregu-
larity span with the thickness of the layer) on SHwave propagation in a slightly com-
pressible finitely deformed layer overlying a half-space in both cases of rectangular
and parabolic shaped irregularities at the interface.

We shall now specify the strain-energy function W0(F̄, 1) to the Neo-Hookean
strain-energy function

W = μ

2
(λ2

1 + λ2
2 + λ2

3 − 3 − 2ln J ) + k ′

2
(J − 1)2 (44)

within which λ1, λ2, λ3 are principal stretches, k ′ = k − 2/3μ, where μ and k ′
(often denoted by λ) are the Lame’ moduli and k is the bulk modulus of the material
in the unstressed configuration [13]. In this case for the strain-energy function, we
have [6]

B0
i j i j = μJ−1λ2

i (45)

For numerical purpose, the following data are taken into consideration [6]

{

λ1 = 1.7, λ2 = 2.0, λ3 = 1.6, μ = 1.0
λ1 = 1.1, λ2 = 0.91, λ3 = 1.0, μ = 0.7

In Fig. 2, the dimensionless phase velocity c/β1 has been plotted against the
dimensionless wave number kH for different values of the ratios of the irregularity
span with the thickness of the layer for the case of rectangular shaped irregular
interface. Curve 1 represents the case of no irregularity condition i.e. H ′ = 0whereas
curves 2 and 3 depict the case of rectangular shaped irregular interface. It is evident
from the figure that phase velocity of SHwave decreases with increase in rectangular
shaped irregularity at the interface.

Similarly, Fig. 3 manifests variation of the parabolic shaped irregularity at the
interface. Curve 1 represents the case of no irregularity condition i.e. H ′ = 0whereas
curves 2 and 3 depict the case of parabolic shaped irregular interface. It has also been
found that parabolic shaped irregularity at the interface decreases the phase velocity
of SH wave.
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Fig. 2 Variation of
dimensionless phase velocity
with dimensionless wave
number for different values
of irregularity parameter for
the case of rectangular
shaped irregularity

Fig. 3 Variation of
dimensionless phase velocity
with dimensionless wave
number for different values
of irregularity parameter for
the case of parabolic shaped
irregularity

In order to reveal the influence of the irregularity parameter more explicitly, sur-
face plots showing variation of dimensionless phase velocity against dimensionless
wavenumber and irregularity parameter for the case of rectangular shaped irregularity
and parabolic shaped irregularity have been drawn in Fig. 4a and b respectively.

A meticulous observation of the Figs. 2, 3 and 4 specifies that the presence of
distinctly shaped irregularity (rectangular/parabolic) decreases the phase velocity
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Fig. 4 Surface plots showing variation of dimensionless phase velocity with dimensionless wave
number and irregularity parameter for the case of a rectangular shaped irregularity and b parabolic
shaped irregularity

of SH wave. An overview and comparative study of the figures concludes that the
rectangular shaped irregularity decreases the phase velocity of SH wave more as
compared to the parabolic shaped irregularity.

8 Conclusion

In the present study, a layer/half-space configuration comprised of slightly compress-
ible finitely deformed material has been considered. At the interface, two different
shapes of irregularities i.e. rectangular and parabolic, have been studied in two dis-
tinct cases for which the dispersion equations for both the cases have been obtained
analytically in closed form. As a particular case, the obtained dispersion equations
have been found to be in agreement with the classical Lovewave equation in isotropic
case. The influence of two types of irregularities i.e. rectangular and parabolic, on
the propagation of shear horizontal wave has been studied through numerical com-
putations and graphical illustrations. The outcomes of the present study may be
encapsulated as follows:

(i) Phase velocity of SH wave gets decreased with the increase in wave number.
(ii) The presence of rectangular as well as parabolic shaped irregularity at the

interface decreases the phase velocity of SH wave.
(iii) The rectangular shaped irregularity decreases the phase velocity of SH wave

more as compared to the parabolic shaped irregularity.

The idealization of incompressibility in modelling the mechanical behavior of
rubber like materials using the theory of finite elasticity is found to be extremely
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effective in predicting the response of rubber when both the original geometry and
boundary conditions are relatively simple. Hence, the findings of the present work
can be employed in designing vibration insulators in bridges and tall buildings which
have direct relevance to modern methods of earthquake protection [17].

Acknowledgements The Authors sincerely thank Indian Institute of Technology (Indian School
of Mines), Dhanbad, India for facilitating us with best environment for research.
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Effect of Source Geometry on
Interdependent Calcium and Inositol
1; 4; 5-Trisphosphate Dynamics
in a Cardiac Myocyte Cell

Nisha Singh and Neeru Adlakha

Abstract Intracellular calcium governs the most versatile and universal signalling
mechanism in living systems which includes contraction of the cardiac tissues, infor-
mation processing in the brain, release of digestive enzymes by the liver etc. Various
investigations have been made on study of calcium signalling in cardiac myocyte to
understand its mechanisms. But most of existing investigations have mainly focused
on study of calcium signalling in cardiac myocyte cell without paying attention on
interdependence of calcium signalling and inositol 1; 4; 5-trisphosphate signalling.
In this paper, we propose a mathematical model to understand the impact of the
source geometry of calcium on these coupled signalling processes. This study sug-
gests that the source geometry plays a vital role in these signalling processes. Also,
calcium and inositol 1; 4; 5-trisphosphate shows a beautiful coordination with each
other, which explains the role of inositol 1; 4; 5-trisphosphate in calcium signalling
in cardiac myocyte cell. Such studies will provide the better understanding of various
factors involved in calcium signalling in cardiac myocytes, which as a result will be
of great use to biomedical scientists for making protocols for various heart diseases
and their cure.

Keywords Calcium signalling · Interdependent dynamics · Inositol
1; 4; 5-trisphosphate signalling · Source geometry

1 Introduction

A wealth of experimental data is available detailing elementary Ca2+ release events
and functional properties of the IP3 receptors [3]. Luo and Rudy [14] proposed a
model of electrical signalling of the cardiac ventricular. They studied concentration
changes due to simulations of ionic currents excluding the impact of IP3. Michailova
et al. [18] proposed a model to study spatiotemporal features of Ca2+ buffering and
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diffusion in atrial cardiac myocytes with inhibited ER without considering role of
IP3 dynamics.

Also, there are many attempt to study these complex signalling in various cells
like neuron [9, 31, 32], astrocyte [10], fibroblast [12, 13], oocyte [19, 20, 22] and
pancreatic acinar cell [16, 17] etc. are reported in the literature and some attempts
are reported in the literature for the study of calcium dynamics in myocytes [14,
15, 18, 26, 27]. Most of the studies reported on calcium diffusion in myocytes
are experimental [8]. Pathak et al. [23–25] have developed mathematical models to
understand Ca2+ signalling dynamics in myocyte cell. But they have not considered
the role of IP3 dynamics in their model. Wagner et al. [33] have worked on a wave
of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog,
Xenopus laevis. The interdependent study of calcium and IP3 dynamics is reported in
most of the above mentioned cells without taking impact of IP3 on calcium dynamics
and vice-versa [1, 4, 29].

Experiments are limited by protocol and therefore computational studies, across
different spatial and temporal scales, are a significant and indispensable tool [3, 5, 28,
30, 34]. In this study, a systematic effort has been made to develop a mathematical
model to understand the dependence of Ca2+ and IP3 dynamics on each other and
also, the effect of source of IP3 andCa2+ on cell signalling process [11]. The proposed
model is used to explain intracellular calcium signalling in a myocyte cell in the
presence of IP3 receptors. A successful model should be able to predict and explain
functional properties involved in the process of calcium signalling [33].

2 Mathematical Model

2.1 Calcium and IP3 Dynamics Model

Here, we have proposed a coupled mathematical model of calcium and IP3 dynamics
in a myocyte cell. The reaction-diffusion equations for Ca2+ and IP3 are given by
[33],

∂[Ca2+]
∂t

= Dcy∇2[Ca2+] + Jipr − Jserca + Jleak
Fcy

(1)

where [Ca2+] shows concentrations of Ca2+ in the cytosol, Dcy represents the diffu-
sion coefficient, and various flux terms involved are expressed as,

Jipr = Viprm
3h3([Ca2+]er − [Ca2+]) (2)

Jleak = Vleak([Ca2+]er − [Ca2+]) (3)
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Jserca = Vserca
[Ca2+]2

K2
serca + [Ca2+]2 (4)

In this proposedmathematicalmodel,Fcy andFer are the volume fractions, relative
to total cell volume, of the cytosol and ER, respectively (with Fcy + Fer = 1).

According to the Li-Rinzel model, however, utilizes time scale arguments to re-
move twoof the three binding reactions, replacing themwith the equilibriumequation
[33],

m = [IP3]
[IP3] + KIP3

[Ca2+]
[Ca2+] + Kac

(5)

Here, h variable shows the fraction of subunits not yet inactivated by Ca2+ which
is expresses as follows,

h = Kinh

Kinh + [Ca2+] , (6)

The reaction-diffusion equation for the cytosolic IP3 concentration in a myocyte
cell can be expressed as [33],

∂[IP3]
∂t

= Dip∇2[IP3] + Jproduction − λ(Jkinase + Jphosphatase)

Fcy
(7)

where Dip represent the diffusion coefficient.

Jproduction = Vproduction
[Ca2+]2

[Ca2+]2 + K2
production

(8)

Jkinase = (1 − θ)V1
[IP3]

[IP3] + 2.5
+ θV2

[IP3]
[IP3] + 0.5

(9)

Jphosphatase = V3
[IP3]

[IP3] + 30
(10)

Also, Jproduction, Jkinase and Jphosphatase are in terms of total cell volume.
The Ca2+ dependence of the 3-kinase degradation pathway is described by a Hill

function,

θ = [Ca2+]
[Ca2+] + 0.39

(11)

Now, this model is formulated using finite difference method to study Ca2+ and
IP3 dynamics and the role of source influx on these dynamics.
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2.2 Mathematical Model to Study Ca2+ and IP3 dynamics

The calcium diffusion in a myocyte cell in the presence of inositol 1; 4; 5-
trisphosphate receptors (IP3R’s) for unsteady state case is represented as [33],

∂[Ca2+]
∂t

= Dcy∇2[Ca2+] + Jipr − Jserca + Jleak
Fcy

(12)

∂[IP3]
∂t

= Dip∇2[IP3] + Jproduction − λ(Jkinase + Jphosphatase)

Fcy
(13)

Here,∇ = ( ∂
∂r ,

∂
∂θ

, ∂
∂z ) and p = (r, θ, z) represents the position coordinateswhere

r = 0, 1, 2, 3 and 4, 0 ≤ θ ≤ 2π and z = 0, 1, 2. The calcium source is located at
(r, θ, z) = (4, π, 1) and IP3 source is located at (r, θ, z) = (4, 0, 1). The initial and
boundary conditions governing the Ca2+ and IP3 diffusion process are given by [7,
25],

(i) Initial conditions

[Ca2+]t=0 = 0.1 µM (14)

[IP3]t=0 = 0.16 µM (15)

(ii) Boundary conditions
It is assumed that near the source the calciumconcentration (at position a), calcium

concentration which can be written as follows:

lim
p→a

(
−Dcy

∂[Ca2+]
∂r

)
= σ (16)

And at the boundary far away from the source the calcium concentration (at
position b) is maintained at background calcium concentration which can be written
as follows:

lim
p→b

[Ca2+] = [Ca2+]∞ = 0.1µM (17)

Also, it is assumed that near the source of IP3 (at position c), the [IP3] can be
written as follows:

lim
p→c

[IP3] = 0.1882(t)6 + 1.3121(t)5 + 3.5391(t)4 + 4.5312(t)3

+ 2.5893(t)2 + 0.3648(t) + 0.1691 ≤ 3
(18)
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And at the boundary far away from the source of IP3 (at position d ), the [IP3] is
maintained at background concentration which can be written as follows:

lim
p→d

[IP3] = 3 µM; t > 0 (19)

Moreover, at rest of the boundary points there is no flux. The mathematical model
equations from (12) to (19) are solved numerically using Crank Nicholson Method.
Then the resulting system provides simultaneous algebraic equations for unknown
nodal concentrations. To solve the resulting equations for each time step Gaussian
elimination method has been employed.

3 Results and Discussion

The proposed mathematical model is solved using numerical technique in which
various standard parameters are used for the computation of numerical results as
shown in Table1 [33]. To facilitate our discussion, all calculations utilize the standard
model parameters in Table1, except where noted otherwise.

The calcium concentration profile at t = 0.03 s, z = 1 (i.e. 50 µm) in myocyte
cell for (a) Point source, (b) Line source, (c) Surface source is shown in Fig. 1. It is
observed from the figure thatmaximumcalcium concentration is at r = 4μm, θ = π

i.e. source of Ca2+. The calcium concentration falls sharply between r = 3 µm and
r = 4µm and then falls gradually and achieves background concentration of 0.1µM
away from source of Ca2+.

The peak calcium concentration is highest in Fig. 1c as compared to Fig. 1a and
b i.e. 0.042 µM. Also, the area of spread of calcium distribution in Fig. 1c is greater
than that in Fig. 1a and b for the same points of time interval i.e. t = 0.03 s. This

Table 1 Parameters for Ca2+ and IP3 signalling

Parameters Values [33] Parameters Values [33]

Vipr 8.5 s−1 Vleak 0.01 s−1

Kip 0.15 µM Kac 0.8 µM

Vserca 0.65 µM/s Kserca 0.4 µM

Kinh 1.9 µM τ 2 s

Vproduction 0.075 µM/s Kproduction 0.4 µM

V1 0.001 µM/s V2 0.005 µM/s

V3 0.02 µM/s λ 30

Dcy 16 µm2/s Der 16 µm2/s

Dip 283 µm2/s [Ca2+]T 1.7 µM

Fcy 0.83 Fer 0.17
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Fig. 1 Ca2+ concentration profile in a cardiac myocyte cell at time t = 0.03 s in the cytosol at
z = 1 (i.e. 50 µm) position for different source geometry a point source, b line source, c surface
source

Fig. 2 Ca2+ concentration profile in a cardiac myocyte cell at time t = 0.06 s in the cytosol at
z = 1 (i.e. 50 µm) position for different source geometry a point source, b line source, c surface
source

is because the calcium influx through plasma membrane channel in case of surface
source is higher than that of line and point source.

At time t = 0.06 s, z = 1 (i.e. 50 µm) the calcium concentration profile in my-
ocyte cell for (a) Point source, (b) Line source, (c) Surface source is represented
in Fig. 2. It is observed from the figure that maximum calcium concentration is at
source of Ca2+ (r = 4µm, θ = π ). The calcium concentration falls sharply between
r = 3 µm to r = 4 µm and then rises gradually till r = 1 µm, after that it falls to
achieves background concentration of 0.1 µM.
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The peak of calcium concentration in Fig. 2c is 0.05µM,which is higher than that
in Fig. 2a and b. Also, the area of spread of calcium distribution in Fig. 2c is greater
than that in Fig. 2a and b for the same points of time interval i.e. t = 0.06 s. This
is due to the calcium influx through plasma membrane channel in case of surface
source is higher than that of line and point source.

4 Conclusion

Mathematical modelling and numerical simulations of calcium and IP3 dynamics in
amyocyte cell predict interesting interdependence on each other and shows impact of
source geometry on these signalling processes.Above results conclude that the source
plays a vital role in calcium and IP3 signalling. In various models given in literature
[6, 21, 25] they have excluded the role of inositol 1; 4; 5-trisphosphate (IP3), but
many experimental works [1, 2, 4] have shown the importance of IP3 dynamics in
calcium dynamics of cell. So, a mathematical model is proposed to understand effect
of inositol 1; 4; 5-trisphosphate (IP3) dynamics on intracellular Ca2+ dynamics and
vice versa in a cardiac myocyte cell, which describes the properties of elemental
calcium release events in the presence of inositol 1; 4; 5-trisphosphate (IP3).

This model shows the effect of source geometry on calcium profile is quite sig-
nificant. Obtained results suggests that the surface source is more effective as well
as efficient to regulate calcium signalling in a myocyte cell as compared to line and
point source. Here, the finite difference method was successfully employed to solve
the problem of calcium diffusion in cylindrical shaped myocyte cell for three dimen-
sional case. Such studies can generate new information and knowledge which can
be useful to understand the mechanisms involved in cardiac cell.
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Wave Interaction with a Floating
Circular Porous Elastic Plate

H. Behera, Siluvai Antony Selvan and Vinay Kumar Gupta

Abstract Wave interactionwith a circular elastic porous plate, floating in a two-layer
fluid is investigated under the linearized theory of water waves. The eigenfunction
expansion method—along with the Darcy’s law for wave past porous structure under
the assumption that the flexible structure is having fine pores and is of homogeneous
structural rigidity—is exploited to obtain an analytic solution of the problem. The
plate deflection and flow distribution around the plate are further computed to study
the effects of various wave and structural parameters. The study reveals that the
porosity of the plate renders major part of the wave energy to dissipate.

Keywords Circular structures · Eigenfunction expansion method · Two-layer
fluid · Plate deflection · Flow distribution

1 Introduction

The floating flexible structures are often used as the breakwater for its characteristics
nature of reducing wave force on the structures by partial reflection and transmission
of an incident wave energy. Wave interactions with various floating structures of
different geometrical configurations have been widely studied over the past few
decades. Garrett [1], using Galerkin’s method, investigated the wave scattering by
circular dock and analyzed the hydrodynamic force exerted due to incident wave.
Meylan and Squire [2] analyzed the behavior of a solitary, circular, flexible ice
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floe brought into motion by the action of long-crested sea waves and studied the
strain field generated in the floe, its surge response and the energy initiated in the
water encircling it. They found that the force on a circular floe or ice cake due to
long crested ocean waves generally increases as the floe diameter or thickness is
increased. Motivated by the design of the circular floating island along the Israeli
coast, Zilman and Miloh [3] applied the shallow water approximation for studying
the wave action on the circular plate. Tsubogo [4] employed the advanced boundary
element method to analyze floating elastic plates subject to a train of plane waves
and used Fourier series expansion instead of finite difference method for discretizing
the free edge conditions of the plate. Surface wave scattering by ice floe of varying
thickness was studied by Bennetts et al. [5] using the multi-mode approximation
method. Sturova [6] studied the unsteady behavior of an elastic articulated floating
flexible plate under the assumption of linear shallow water theory. Mondal et al. [7]
analyzed the surface gravity wave interaction with circular flexible structures using
the small amplitude wave theory and Fourier–Bessel series expansion.

Apart from impermeable floating/submerged horizontal structures, horizontal
porous structures are preferred as effective breakwaters to reduce wave force on
an existing structure for creating tranquility zone near ports and harbors. Cho and
Kim [8] obtained a numerical solution using boundary element method along with
the eigenfunction expansion method for wave scattering by submerged horizon-
tal flexible porous membrane and validated their results with experiments. Yu [9]
presented a comprehensive review on wave interaction with submerged horizontal
porous plate. He analyzed the effects of porosity, length and submerged on reducing
the wave force on the porous plate. Hu and Wang [10] studied the problem of wave
interaction with system of submerged horizontal plate and a vertical permeable wall
using the matched vertical eigenfunction expansion method. Liu et al. [11] studied
wave interaction with submerged porous plates of different configurations. Behera
and Sahoo [12] investigated the surface gravity wave interaction with a submerged
horizontal flexible porous plate under the assumptions of the small amplitude water
wave theory and small structural response.Moreover, the flexible porous plate in [12]
was modeled using the thin plate theory and wave past porous structure was based
on the generalized porous wavemaker theory. The authors observed that owing to the
presence of a horizontal flexible porous plate, a significant amount of wave energy is
dissipated when a wave interacts with the flexible porous plate and thus results in a
very less wave transmission to the lee side of the submerged plate. Koley and Sahoo
[13] analyzed the wave interaction with flexible membrane using Green’s technique.
Meylan et al. [14] studied the water wave scattering and energy dissipation by a
floating porous elastic plate in three dimensions by using the eigenfunction expan-
sion method and boundary and finite element methods. Recently, Behera and Ng
[15] developed an analytic solution for the oblique wave scattering by floating and
submerged porous elastic plates of different structural parameters using the eigen-
function expansion method. In [15], the authors found that a significant amount of
wave energy is dissipated due to the presence of floating and submerged porous
plates, thus resulting in less wave reflection and transmission.
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In general, the ocean has several layers of fluid with varying density. The low-
density fluid floats above the high-density one. Such stratification is mainly due to
the mixing of oil/chemical and solar radiation. Most of the models are made more
accurate by taking stratification into consideration. Using Green’s second identity,
Xu and Lu [16] derived the energy conservation relation for a floating plate in a
two-layer fluid. Recently, Das et al. [17] found the dead water effect in a two-layer
fluid when densities in both the layers are close enough.

All the aforementioned studies considerwave interactionwith floating/submerged
rigid/flexible impermeable/porous structures. However, wave interaction with circu-
lar floating flexible porous elastic plate in a single-/two-layer fluid has receivedmuch
less attention, although the use of floating circular porous elastic structures as break-
water in coastal regions is ubiquitous in protecting various marine facilities. The
present study focuses on wave interaction with flexible and porous floating circular
plate in a two-layer fluid using the small amplitude wave theory and small structural
response to different edge conditions. The problem is analyzed using the eigenfunc-
tion expansion method. The plate deflection and flow distribution around the plate
are presented for various wave and structural parameters.

The rest of the paper is organized as follows. The detailed formulation and bound-
ary conditions for the problem of wave interaction with a floating circular porous
plate in a two-layer fluid are presented in Sect. 2. The method to solve the problem is
described in Sect. 3. followed by discussion of the results in Sect. 4. The conclusion
is given in Sect. 5.

2 Mathematical Formulation

The problem is analyzed in the cylindrical polar coordinates (r, θ, z) with rθ -plane
being the horizontal plane and vertical z-axis is taken positive in downward direction.
Let a thin circular porous elastic plate of radius ‘b’ and thickness ‘a’ be floating
on a two-layer fluid horizontally at z = 0 at finite water depth h 2 as shown in
Fig. 1, and let the center of the plate be at origin. The upper layer (0 ≤ z ≤ h 1)

and lower layer (h 1 ≤ z ≤ h 2) consists of non-homogeneous fluid having densities
ρ1 and ρ2, respectively. The fluid interface between these two layers is denoted by
z = h1. Further, the incompressible and inviscid fluids exhibit the irrotational flow
and follow the simple harmonic with respect to time. Hence, the velocity potential
� j (r, θ, z, t) can be written as � j (r, θ, z) = Re[ϕ j (r, θ, z)e−iωt ], where ω be the
angular frequency and ϕ j (r, θ, z) be the spatial velocity potential which satisfies the
three-dimensional Laplace equation in the j th region is given by

�ϕ j = 0, (1)

where j = 1, 2 and � is the Laplace operator, which is defined as
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Fig. 1 Floating circular porous elastic plate in a two-layer fluid

� ≡ ∇2
rθ + ∂2

z , with ∇2
rθ ≡

(
∂2

∂r2
+ 1

r

∂
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+ 1

r2
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)
and ∂2

z ≡ ∂2

∂z2
.

The normal velocity vanishes at the rigid bed, i.e.,

∂zϕ j = 0 on z = h 2, for j = 1, 2. (2)

In both the modes, the elevations are given by

ξ j (r, θ, z, t) = η j (r, θ, z)e−iωt for j = 1, 3, (3)

where η1 and η3 denote the amplitudes of elevations in surface and internal modes,
respectively. Similarly, the elevation in the plate-covered region is given by

ξ j (r, θ, z, t) = η j (r, θ, z)e−iωt for j = 2, 4, (4)

where η2 and η4 denote the amplitudes of plate deflection and internal mode eleva-
tion in the plate-covered region, respectively. The linearized kinematic and dynamic
conditions at mean free surface in the open-water and plate-covered regions are given
by

iωϕ 1 + gη 1 = 0, (5)

∂zϕ1 + iωη1 = 0, (6)
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∂zϕ2 + iωη2 = −iαI Gϕ2, (7)

where G is the porous-effect parameter and αI is the surface mode progressive wave
number. Similarly, the boundary conditions at the interface z = h 1 for the open-water
and plate-covered regions are given by

∂zϕ j |z=h−
1

= ∂zϕ j |z=h+
1
, (8)

s
(
iωϕ j + gηi

)|z=h−
1

= (
iωϕ j + gηi

)|z=h+
1
, (9)

where i = 3 for j = 1 and i = 4 for j = 2. Substitution of Eqs. (2) and (6) in (7)
yields

s
(
∂zϕ j + Kϕ j

)|z=h−
1

= (
∂zϕ j + Kϕ j

)|z=h+
1
, (10)

where K = ω2/g with g being the magnitude of the acceleration due to gravity,
j = 1, 2 and s = ρ1/ρ2 with ρ1 < ρ2 is the density ratio. The dynamical equation
of flexible porous plate is given by

E I ∇4
rθη2 + N∇2

rθη2 + ρ 2 gη2 − ρpω
2dη2 = −iωρ 2 ϕ2, (11)

where ρp is the density of the plate, E is the Young’s modulus of the plate and
I = a 3

12(1−ν2)
with ν being the Poisson’s ratio. The far-field condition satisfies the

Sommerfeld radiation condition and is given by

lim
r→∞

√
r

{
∂(ϕ − ϕin)

∂r
− iαI (ϕ − ϕin)

}
= 0, (12)

where

ϕin =
∞∑

m=0

I I∑
n=I

(−igHn

2ω

)
f1n(z)εm Jm(αnr) cos(mθ), for 0 < θ < 2π. (13)

with Hn being the known incident wave amplitude, αI and αI I be the progressive
wavenumbers in both surface and interfacial modes, respectively, εm = 1 form = 0,
εm = 2im for m = 1, 2, 3, . . . and Jm being the Bessel function of first kind of order
m. The continuity of pressure and velocity along the interface are given by

ϕ1 = ϕ2 and ∂rϕ1 = ∂rϕ2, on r = b for 0 < z < h 2, 0 < θ ≤ 2π. (14)

It is assumed that the plate is having free-edge condition. Thus, the bending
moment and shear strain vanishes along the edge of the floating circular flexible
porous plate, and the edge conditions on z = 0 and r = b for 0 < θ ≤ 2π are given
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by

[
∂2
r + ν

(
1

r
∂r + 1

r2
∂2
θ

)]
(∂zϕ2 − iα0Gϕ2) = 0, (15a)

[
E I

{
∂r∇2

rθ + (1 − ν)

r2

(
∂r − 1

r

)
∂2
θ

}
+ N

∂

∂r

]
(∂zϕ2 − iα0Gϕ2) = 0. (15b)

3 Method of Solution

The spatial velocity potentialsϕ j (r, θ, z) in the open-water and plate-covered regions
satisfy Eq. (2) along with linearized boundary condition in Eq. (5), and φ j (r, θ, z) in
these regions are given by

ϕ1(r, θ, z) =
∞∑

m=0

(
I I∑
n=I

(−igHn

2ω

)
εm Jm(αnr) f1n(z)

+
∞∑

n=I,I I,1

AmnH
(1)
m (αnr) f1n(z) cos(mθ), (16)

ϕ2(r, θ, z) =
∞∑

m=0

[ ∞∑
n=I,I I,I I I,I V,1

Bmn Jm(βnr)

]
f2n(z) cos(mθ), (17)

where H (1)
m is the Hankel function of first kind of order m and Amn are the constant

coefficients to be determined. The eigenfunctions for the open-water region are given
by

f1n(z) =
{

− sinh{αn(h 2−h 1)}[αn cosh(αn z)−K sinh(αn z)]
αn sinh(αnh 1)−K cosh(αnh 1)

for 0 ≤ z ≤ h 1,

cosh{αn(h 2 − z)} for h 1 ≤ z ≤ h 2.
(18)

Similarly, the eigenfunctions for the plate-covered region are given by

f2n(z) =
(
F(βn) [βn� cosh(βnz) − (K − iα0G�) sinh(βnz)] for 0 ≤ z ≤ h 1,

cosh{βn(h 2 − z)} for h 1 ≤ z ≤ h 2,

(19)

where F(βn) and � is given as,

F(βn) = − sinh{βn(h2 − h1)}
βn� sinh(βnh1) − (K − iα0G)� cosh(βnh1)
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and

� = E I

ρ 2g
β4
n − N

ρ 2g
β2
n − ρp a ω2

ρ 2g
+ 1,

The eigenvalue α satisfies a dispersion relation in the open-water region, which
is given by

tanh(αh 1) + tanh{α(h 2 − h 1)} + K 2[(s tanh{α(h 2 − h 1)} tanh(αh 1) + 1)][
(1 − s)α2 tanh{α(h 2 − h 1)} tanh(αh 1)

] = 1

K
.

(20)

It may be noted that dispersion relation (20) has two real roots αI and αI I , which
correspond to surface and interface modes respectively, and infinitely many purely
imaginary roots for n = 1, 2, 3, . . .. Similarly, the eigenvalue β satisfies a dispersion
relation in the plate-covered region, which is given by

K 2 [s tanh(βh 1) tanh{β(h 2 − h 1)} + 1] − βK [� {s tanh{β(h 2 − h 1)} + tanh(βh 1)}
+ (1 − s) tanh{β(h 2 − h 1)}] + β2 � (1 − s) tanh{β(h 2 − h 1)} tanh(βh 1)

+ iαI G[β � (1 − s) tanh{β(h 2 − h 1)} − �K {1 + s tanh{β(h 2 − h 1)} tanh(βh 1)}] = 0. (21)

It may be noted that all the roots of dispersion relation (21) are complex in nature.
The eigenfunctions for the open-water region [as in Eq. (18)] satisfy the orthogonal
property

Zαn = s

h 1∫
0

f 21n(z)dz +
h 2∫

h 1

f 21n(z)dz.

Using velocity and pressure continuities as in Eq. (14) along with the above
orthogonality relation, the following system of equations are obtained.

⎡
⎣ I I∑
n =I

( −igHn

2ω

)
εm Jm (αnb) +

∞∑
n=I,I I,1

Amn H
(1)
m (αnb)

⎤
⎦Zαn −

∞∑
n =I,I I,I I I,I V,1

Bmn Jm (βnb)Zαnβn = 0, (22)
⎡
⎣ I I∑
n=I

( −igHn

2ω

)
εm J ′

m (αnb) +
∞∑

n=I,I I,1

Amn H
(1)′
m (αnb)

⎤
⎦Zαn −

∞∑
n =I,I I,I I I,I V,1

Bmn J
′
m (βnb)Zαnβn = 0, (23)

where Zαnβn = s
∫ h 1

0 f1n(z) f2n(z)dz+ ∫ h 2

h 1
f1n(z) f2n(z)dz. Further, using free-edge

condition in Eqs. (15a) and (15b), the following system of equations are obtained,

∞∑
n =I,I I,I I I,I V,1

Bmn
[
b2 J ′′

m(βnb) + ν
{
bJ ′

m(βnb) − m2 Jm(βnb)
}]

(−Kβn F(βn)) = 0,

(24)
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∞∑
n=I,I I,I I I,I V,1

Bmn

[
E I

{
b3 J ′′′

m (βnb) + b2 J ′′
m (βnb) −

(
1 + (2 − ν)m2

)
J ′
m (βnb) + (3 − ν)m2 Jm (βnb)

}

+ b3N J
′
m (βnb)

]
(−Kβn F(βn )) = 0. (25)

For somefixed value of m (say M), and n (say N ), the above systemofEqs. (22–
25) is solved to find M(2N + 6) unknowns.

4 Results and Discussion

In this Section, numerical computations have been developed to investigate the defor-
mation of the circular porous plate and flow distribution around the flexible plate in
a two-layer fluid. Similar to Ref. [18], it is found in the present work as well that
the Fourier-Bessel series converges for M = 8 and N = 8. The following wave
and structural parameters are fixed for the numerical computation irrespective of its
change, which is mentioned accordingly. The water depth h 2 = 50 m, density of
water ρ2 = 1025 kg/m3, density ratio s = 0.8, incident wave amplitude HI = 1,
depth ratio h 1/h 2 = 0.5, dimensionless radius of the plate b/h 2 = 2, porous-effect
parameter G = 0.25 + 0.25i, dimensionless thickness of the plate a/h 2 = 0.01,
Poisson’s ratio ν = 0.3, Young’s modulus E = 1 × 109 Pa and compressive force
N = 0.5

√
E Iρ2 g.

Figure 2 illustrates the deflection of flexible porous plate for different values of
the depth ratio h 1/h 2. As the value of the depth ratio h 1/h 2 decreases, the vertical
wave force exerted on the porous plate increases due to more energy concentration
near the free surface. Thus, most of the incident waves are transmitted through the
porous plate which results in more deformation in the plate. As h 1/h 2 → 1, the
deflection of the porous plate in a two-layer fluid approaches the plate deflection in
a single-layer fluid as studied by Mondal et al. [7] in case of wave interaction with a
floating impermeable flexible plate.

In Fig. 3, the deflection in the flexible porous plate is plotted for different values
of the density ratio s. It is found that the deflection of porous plate decreases with

(a) 1 2/ = 0.2h h (b) 1 2/ = 0.5h h (c) 1 2/ = 0.9h h

Fig. 2 Deflection of the flexible porous plate for different value of depth ratio h1/h2 The fixed
parameters are G = 0.25 + 0.25 i and s = 0.8
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(a) 0.5s = (b) 0.8s = (c) 0.9s =

Fig. 3 Deflection of the flexible porous plate for different value of density ratio s. The fixed
parameters are G = 0.25 + 0.25 i and h1/h2 = 0.5

increase in the value of s.For higher values of s, the force acting on the plate decreases
along with wave energy dissipation, which results in less deformation of the porous
plate. As s → 1, the two-layer becomes a homogeneous fluid and the deflection
of plate approaches to that in the case of wave interaction with porous plate in a
single-layer fluid as in Mondal et al. [7] in case of wave interaction with floating
impermeable flexible plate. Figure 4 exhibits the deflection in the circular flexible
porous plate for different values of porous-effect parameter G. It is found that the
deflection decreases with increase in the absolute value of G. With increase in the
absolute value of G, the wave energy dissipation increases which results in the less
deformation in the porous plate.

Figure 5 displays the flow distribution around the circular flexible plate for differ-
ent values of the porous-effect parameter G. In case of impermeable plate (Fig. 5a),
the deformation is more which is due to more wave transmission from wind to lee
side of the plate. However, in case of porous plate (Fig. 5b), there is less transmis-
sion in the lee side of the porous plate due to the wave energy dissipation. Thus, the
surface amplitude in the lee side of plate is reduced significantly by a porous plate
in a two-layer fluid.

(a) = 0G (b) = 0.25 0.25iG + (c) = 0.5 0.5G i+

Fig. 4 Deflection of the flexible porous plate for different value of porous-effect parameter G. The
fixed parameters are h 1/h 2 = 0.5 and s = 0.8
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(a) = 0G (b) = 0.25 0.25iG +

Fig. 5 Flow distribution around the circular flexible plate for different value of porous-effect
parameter G. The fixed parameters are h 1/h 2 = 0.2 and s = 0.8

5 Conclusion

Wave interaction with floating circular flexible porous plate at finite water depth in a
two-layer fluid has been investigated using the eigenfunction expansion method. The
deflection in the floating porous plate and flow distribution around it are computed
and analyzed for various wave and structural parameters. The study reveals that in
the case of a porous plate, a large amount of wave energy is dissipated, and hence
the deflection in the porous plate is reduced significantly in comparison to that in
the impermeable plate. Furthermore, the deflection in the porous plate decreases
significantlywhilemoving from thewind side to lee side of the plate.As h 1/h 2 → 0,
due to themorewave energy dissipation by the porous plate, the deflection of the plate
decreases. Further, from the results of deflection of the structure and flow distribution
around the plate (Figs. 4 and 5), it is concluded that with increasing in absolute vale
of the porous-effect parameters, both deflection of the plate and amplitude of the free
surface elevation in the transmitted region decrease.
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CRG/2018/004521) for the financial support. VKG gratefully acknowledges the financial
support from the SERB, India through “MATRICS” project MTR/2017/000693.
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Dynamics of SH Wave Propagation
in Al/BaTiO3 Composite Structure

Sonal Nirwal and Sanjeev A. Sahu

Abstract The present article manifests the transference of horizontally polarised
shear (SH) wave in an aluminium (Al) plate overlying by a Functionally Graded
Piezoelectric Material (FGPM) layer. The separation of variables method is adopted
to find the solution. The phase velocity of the wave is calculated for both electrically
open and short cases. The significant influence of various affecting parameters on the
phase velocity curve is demonstrated through graphs. Findings may be applicable in
the structural health monitoring, surface acoustic wave (SAW) devices and ultrasonic
inspection techniques.

Keywords Piezoelectric · FGPM · SH wave · Electrically open and short cases

1 Introduction

Smart materials play a crucial role in the manufacturing of modern seismic devices.
In the wide exploration of advanced material technologies, intelligent devices and
smart electronicmultifunctional materials which carrymaterial gradients are needed.
Theoretical and analytical studies of the smartmaterials contribute significantly to the
manufacturing process for useful devices like transducers, Surface Acoustic Waves
(SAW) devices and many more. Intelligent materials such as Functionally Graded
Materials (FGMs) are helpful in several engineering applications which are created
from more than one distinct constituent phases with continuous gradually varying
properties and compositions. FGMs are thoroughly used in the electronic engineering
area, aerospace engineering and spaceflight. Furthermore, to increase the efficiency
work time and capacity of SAW devices and transducers, the gradient piezoelec-
tric (PE) materials and plates are also taken under consideration for their extreme
profound application and significance in SAW devices.
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The piezoelectric effect is the capability of some materials to create an alternat-
ing current (AC) voltage when stress is subjected to the material surface. From the
past few decades, the transference the different types of waves in composite layered-
structure has received considerable attention due to its use in microwave communi-
cation, signal processing and intelligent structure design [1–3]. Kundu et al. studied
the Love wave propagation in a piezoelectric layer overlying in an inhomogeneous
elastic half-space [4]. Love-type wave propagation in a corrugated PE structure is
analysed by Singh et al. [5].

Functionally graded piezoelectric material (FGPM) is a kind of smart PEmaterial
with material composition whose volume fraction changing gradually. The elastic
properties of these smart compositematerial change continuouslywith increasingdis-
tance from the treated surface. Recently, Sahu et al. studied the surfacewave propaga-
tion in an FGPM layered structure [6]. The approximation of surface wave frequency
in the piezo-composite structure is studied by Singhal et al. [7]. Polarized SHwave in
the FGPM layer sandwiched between corrugated piezomagnetic layer and the elastic
substrate is also investigated by Sahu et al. [8]. Manoj et al. analyzed the approx-
imation of surface wave velocity in smart composite structure using the Wentzel–
Kramers–Brillouinmethod [9].Various investigations have been undertaken to exam-
ine the characteristics of surface waves in the piezoelectric/piezomagnetic composite
structures [10, 11].

The present article investigates the transference of the SH wave in Aluminium
(Al)/BaTiO3 composite structure (in which BaTiO3 coated onto the Al plate). The
influence of various affecting parameters on the phase velocity curve (for both
electrically open and short circuit case) is examined graphically.

2 Formulation of the Problem

Considering an FGPM layer of thickness h1 overlying by aluminium (Al) plate of
thickness h2 as illustrated in Fig. 1. TheCartesian coordinate system is taken in such a

Fig. 1 Geometry of the problem



Dynamics of SH Wave Propagation in Al/BaTiO3 Composite … 99

way that y-axis is in the direction of wave propagation and x-axis is positively point-
ing downwards. Therefore, the mechanical displacement components and electric
potential function are given by

u(x, y, t) = v(x, y, t) = 0,w = w(x, y, t),� = �(x, y, t)

2.1 For the Upper FGPM Layer

The governing equation of motion for the piezoelectric layer (without body force
and surface charge density) is given by [8]

[
σ

(p)
i j

D(p)
i

]
=

[
c̄i jlk −ēki j
ēikl ε̄ik

][
S(p)
kl

E (p)
k

]
, (1)

where, σ (p)
i j and S(p)

kl
are the stress and strain tensors respectively; E (p)

k and D(p)
i are

the electrical field and electrical displacement intensity respectively; c̄i jkl , ēki j and
η̄ik are the elastic, piezoelectric, and dielectric coefficients, respectively.

The relation between strain components and mechanical displacement are

S(p)
i j = 1

2

(
∂wi

∂x j
+ ∂wj

∂xi

)
, (2)

where, i, j = 1, 2, 3.
According to the quasi-static Maxwell’s equation, the relation between the

electrical intensity and electrical potential is given by

E (p)
i = −∂φ

∂x
, (3)

where φ denotes the electrical potential function.
The governing equation of motion for a transversally isotropic piezoelectric layer

is given by

σ
(p)
i j,i = ρ1

∂2w

∂2t
,

D(p)
i,i = 0, (4)

where,w is the displacement component;ρ1 is themass density. The comma followed
by the subscript “i” indicates space differentiation with respect to the corresponding
coordinate.

On using Eqs. (1)–(4), the equilibrium equations for the FGPM layer are [8]
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c̄44(x)∇2w1 + ē15(x)∇2φ1 + ∂ c̄44
∂x

∂w1

∂x
+ ∂ ē15

∂x

∂φ1

∂x
= ρ1

∂2w1

∂t2
, (5)

ē15(x)∇2w1 − ε̄11(x)∇2�1 + ∂ ē15
∂x

∂w1

∂x
− ∂ε̄11

∂x

∂φ1

∂x
= 0, (6)

where, w1 and �1 represent the displacement and electric potential function for the
upper layer.

Here we assume that all the material properties of the FGPM layer have the same
exponential function distribution along the x direction

c̄44(x) = cF44e
σ x , ē15(x) = eF15e

σ x , ε̄11(x) = εF
11e

σ x , ρ1(x) = ρFeσ x (7)

where, σ is the exponential factor characterizing the degree of the material gradient
in the x direction.

Using Eq. (7) in Eqs. (5) and (6)

cF44

(
∇2w1 + σ

∂w1

∂x

)
+ eF15

(
∇2φ1 + σ

∂φ1

∂x

)
= ρF ∂2w1

∂2t
, (8)

eF15

(
∇2w1 + σ

∂w1

∂x

)
= εF

11

(
∇2φ1 + σ

∂φ1

∂x

)
. (9)

2.2 For the Lower Plate

The propagation of SH wave in the metal is governed as [11]

cH44∇2w2 = ρH ∂2w2

∂t2
, (10)

where, cH44 = Y
2(1+v) is the shear modulus with Young’s modulus Y; ρH and v is the

mass density and Poisson ratio; w2 is the displacement function and ∇2 = ∂2

∂x2 + ∂2

∂y2

is the two dimensional Laplacian operator.

3 Solution of the Problem

3.1 For the Upper Layer

From Eqs. (8) and (9), we can write
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∇2w1 + σ
∂w1

∂x
= 1

1
ρF

(
cF44 + (eF15)

2

ηF
11

) ∂2w1

∂t2
. (11)

Let us introduce an auxiliary function

ς1 = φ1 − eF15
εF
11

w1, (12)

on substituting the value from Eq. (12) into Eq. (9), we can write as

(
∇2ς1 + σ

∂ς1

∂x

)
= 0. (13)

Assuming that the solution of Eqs. (11) and (13) in the harmonic form as

w1(x, y, t) = f1(x)e
ik(y−ct), (14)

ς1(x, y, t) = g1(x)e
ik(y−ct). (15)

Substituting the value from Eqs. (14) and (15) in Eqs. (11) and (13) and using
Eq. (12), the mechanical displacement and electric potential function are given by

w1(x, y, t) = erx (Q1Cosμ1x + Q2Sinμ1x)e
ik(y−ct), (16)

φ1(x, y, t) =
⎛
⎝(Q3e

m1x + Q4e
m2x ) + e f15

ε
f
11

erx (Q1Cosμx + Q2Sinμx)

⎞
⎠eik(y−ct), (17)

where, r = −σ

2
,m1,2 = −σ ± √

σ 2 + 4k2

2
, μ1 =

√
4k2(c2/β2

1 − 1) − σ 2

2
and

β2
1 = 1

ρF

(
cF44 + (eF15)

2

εF
11

)
.

3.2 For the Lower Plate

Assuming the solution of Eq. (10) in the harmonic form as

w2(x, y, t) = f2(x)e
ik(y−ct), (18)

on substituting the value from Eq. (18) in Eq. (10), we get

w2(x, y, t) = (
Q5e

m3x + Q6e
−m4x

)
eik(y−ct), (19)
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where, m3 =
√
k2(−c2/β2

2 + 1)withβ2
2 = cH44

ρH .

4 Boundary Conditions

(i) The mechanical traction free at the upper surface (x = −h1) is

• σ (p)
zx (−h1, y) = 0. (20)

(ii) The electrical condition at the upper surface (x = −h1) is

• D(p)
x (−h1, y) = 0, (Electrically open-circuit case) (21)

• φ1(−h1, y) = 0. (Electrically-short circuit case) (22)

(iii) Moreover, Continuity of stress, mechanical displacement and electrical poten-
tial at the common interface (x = 0) are

• σ (p)
zx (0, y) = σ (h)

zx (0, y),w1(0, y) = w2(0, y), φ1(0, y) = 0. (23)

(iv) The mechanical traction at the lower surface (x = h2) is

• ch44
∂w2

∂x
= 0. (24)

5 Dispersion Relation

5.1 Dispersion Relation for Electrically Open Case

Substituting the values of w1,�1 andw2 from Eqs. (16), (17) and (19) in Eqs. (20),
(21), (23) and (24) we obtain the algebraic equation with the unknown constants
Qi i = 1, 2,. . ., 6.

Now in order to get the non-trivial solution and hence the dispersion relation, we
equate the determinant of these coefficients (Qi) to zero.
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det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36

Q41 Q42 Q43 Q44 Q45 Q46

Q51 Q52 Q53 Q54 Q55 Q56

Q61 Q62 Q63 Q64 Q65 Q66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (25)

where the definition of Qi i = 1, 2, . . . , 6. are given in Appendix 1.

5.2 Dispersion Relation for Electrically Short Case

Substituting the values of w1,�1 andw2 from Eqs. (16), (17) and (19) in Eqs. (20),
(22), (23) and (24), we obtain the algebraic equation with the unknown constants
Qi i = 1, 2, . . . ,6. Now in order to get the non-trivial solution and hence the
dispersion relation, we equate the determinant of these coefficients (Qi) to zero.

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36

Q41 Q42 Q43 Q44 Q45 Q46

Q51 Q52 Q53 Q54 Q55 Q56

Q61 Q62 Q63 Q64 Q65 Q66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (26)

where the definition of Qi i = 1, 2, . . . , 6. are given in Appendix 2.

6 Numerical Results and Discussion

Based on the dispersion relation(s) [Eqs. (25 and 26)], numerical results are presented
to show the propagation behavior of waves in the considered structure.

For the graphical illustration, the following physical quantities have been taken:
For the FGPM layer [8]

cF44 = 4.4 × 1010 N/m2, eF15 = 11.4 c/m2, εF
11 = 9.82 × 10−9 C2/Nm,

ρF = 5.7 × 103 kg/m3

For the lower Al Plate [12]

v = 0.33,Y = 70 × 103 n/m3, ρh = 2.8 × 103 kg/m3
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Graphs have been sketched to depict the variation of non-dimensional phase veloc-
ity with respect to non-dimensional wave number. Figures 2, 3, and 4 represent the
substantial impact of different parameters (as layer thickness, gradient factor and
elastic coefficient) on the phase velocity curve for both electrically open and short
cases. The solids line represents the curve for electrically open circuit case while the
dotted line represents for electrically short circuit case, wherever they are.

Figure 2 represents the substantial impact of the upper layer thickness on the phase
velocity curve for both electrically open and short circuit case. The figure approved
that the increasing value of wave number leads to decreases in the phase velocity
curve. It can also be noted that the phase velocity curve upswings as the thickness
of the upper layer rise for both electrically open and short circuit cases.

In order to explore the influence gradient factor on the phase velocity curve,
Fig. 3 is plotted. Phase velocity has been also calculated in case of homogeneous
piezoelectric material (σ = 0). Subtle observation of the graphs adduced that, as we
increase thewave number, the phase velocity curve follows a steep decreasing nature.
It can also be noted that the phase velocity of the wave is influenced significantly by
the functionally grading of the material. Increment in the coefficient of the material
gradient raises the phase velocity curve for both open and short circuit cases.

The pronounced influence of elastic parameter on the phase velocity curve for both
open and short circuit case is manifested through Fig. 4. As we continue to draw the
results from Fig. 4, a similar influence is observed as compared to Fig. 3. Moreover,
the impact of the elastic parameter is found less as compared to the gradient factor.

Furthermore, a comparison study from the graphs (Figs. 2, 3 and 4) yields that
the phase velocity curve for the electrically open circuit case is always higher than
that of the short circuit.

Fig. 2 Non-dimensional
phase velocity versus
non-dimensional wave
number for different value of
upper layer thickness
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Fig. 3 Non-dimensional
phase velocity versus
non-dimensional wave
number for different value of
gradient factor

Fig. 4 Non-dimensional
phase velocity versus
non-dimensional wave
number for different value of
the elastic coefficient

7 Conclusions

Based on the graphical demonstration, the following remarks can be carried out.

1. The increasing value of the wavenumber leads to diminishing the phase velocity
curves.
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2. Through the study on the propagation behavior of Love-type waves, the results
conclude that the FGM layer will lead to the increases in the phase velocity
curves.

3. A leap value of gradient factor exerted a favourable impact on the phase velocity
curve.

4. Broader the value of elastic coefficient elevates the phase velocity curve.
5. The phase velocity curves for the open-circuit case is found higher than that of

the short-circuit case.

The present study comprehends mathematical modeling on a smart piezo-
composite structure. This study finds its applications towards designing and opti-
mization of devices and sensors. Such a study could be the bridge between theoretical
computation and practical implication.

Acknowledgements The authors express their sincere thanks to the Science and Engineering
Research Board (SERB), New Delhi, India for providing financial assistance through project No.
YSS/2015/002057.

Appendix 1

For electrically open circuit case

Q11 =
(
cF44 +

(
eF15

)2
εF
11

)
e−rh1 [rCos(μ1h1) + μ1Sin(μ1h1)],

Q13 = m1 e
F
15 e

−m1h1 , Q14 = m2 e
F
15 e

−m2h1 ,

Q12 =
(
cF44 +

(
eF15

)2
εF
11

)
e−rh1 [−r Sin(μ1h1) + μ1Cos(μ1h1)],

Q15 = 0, Q16 = 0, Q21 = −m1ε
F
11e

−m1h1 ,

Q22 = −m2ε
F
11 e

−m2h1 , Q23 = Q24 = Q25 = Q26 = 0,

Q31 = r

(
cF44 +

(
eF15

)2
εF
11

)
, Q32 = μ1

(
cF44 +

(
eF15

)2
εF
11

)
,

Q33 = eF15m1, Q34 = eF15 m2Q35 = −m3c
H
44, Q36 = m4c

H
44,

Q41 = 1, Q42 = Q43 = Q44 = 0, Q45 = −1,

Q46 − 1, Q51 = eF15
εF
11

, Q52 = 0, Q53 = 1, Q54 = 1,

Q55 = Q56 = Q61 = Q62 = Q63 = Q64 = 0,

Q65 = m3c
H
44e

m3h2 , Q66 = m4c
H
44e

−m4h2 .
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Appendix 2

For electrically short circuit case

Q11 =
(
cF44 +

(
eF15

)2
εF
11

)
e−rh1 [rCos(μ1h1) + μ1Sin(μ1h1)],

Q13 = m1 e
F
15 e

−m1h1 , Q14 = m2 e
F
15 e

−m2h1 ,

Q12 =
(
cF44 +

(
eF15

)2
εF
11

)
e−rh1 [−r Sin(μ1h1) + μ1Cos(μ1h1)],

Q15 = 0, Q16 = 0, Q25 = 0, Q26 = 0,

Q21 = eF15
εF
11

e−rh1 Cos(μ1h1), Q22 = −eF15
εF
11

e−rh1Sin(μ1h1),

Q23 = e−m1h1 , Q24 = e−m2h1

Q31 = r

(
cF44 +

(
eF15

)2
εF
11

)
, Q32 = μ1

(
cF44 +

(
eF15

)2
εF
11

)
,

Q33 = eF15m1, Q34 = eF15 m2Q35 = −m3c
H
44,

Q36 = m4c
H
44, Q41 = 1, Q42 = Q43 = Q44 = 0,

Q45 = −1, Q46 − 1, Q51 = eF15
εF
11

, Q52 = 0, Q53 = 1,

Q54 = 1, Q55 = Q56 = Q61 = Q62 = Q63 = Q64 = 0,

Q65 = m3c
H
44e

m3h2 , Q66 = m4c
H
44e

−m4h2 .
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Predator-Prey Model with Prey Group
Defense and Non-linear Predator
Harvesting

Rajat Kaushik and Sandip Banerjee

Abstract This paper is concerned with a predator-prey system with a prey group
defense and non-linear harvesting of the predator incorporating deterrence hypothe-
sis for predators. Inclusion of predator deterrence rate makes the modelling approach
more practicable and exhibits significant impact on the net predation. Taking all pos-
sible interactions into account, model equations are formulated. In brief qualitative
analysis, existence of interior equilibrium and stabilities of all equilibrium points
of the system are discussed to investigate the dynamical behavior of the ecosystem.
Hopf, transcritical and saddle-node bifurcations are illustrated for various parame-
ters. Numerical simulations are ecologically justified and supportive of theoretical
results.

Keywords Predator-prey · Co-existence · Local stability · Hopf bifurcation ·
Stability switches

1 Introduction

Prey group defense has been an area of interest in predator-prey systems [17]. The
defense approach of the preys is followed in the way that the preys at the boundary
of the group hurt most, from the attacks of the predators. The number of preys
remaining on the border of the group is proportional to the length of the perimeter of
the ground region occupied by the group [6]. This perimeter is directly proportional
to the square root of the area of that ground region. If we consider uniform biomass
density throughout the region of the domain, then biomass of the population in any
ground region is equal to the area of that region multiplying by the biomass density
per unit area, which is a constant as per our assumption. Hence, it is logical to insert
the square root term to portray the model with herd behavior.
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In deterrence hypothesis, preys often deter predation by using certain signals to
show that predators have been noticed and subsequent efforts for predations will be
not likely to achieve the desired result [7]. Chemically defended preys can increase
dietarywariness and advertise their unprofitability to predators [11]. The functions of
aposematic signals such as animal coloration, sound, orders [8] are also to rescue the
preys from predators attack, bywarning potential predators that preys are unpalatable
or poisonous. Camouflage is also one of the defense strategies used by undefended
preys showing colour patterns to minimize detection [16]. These kinds of defensive
deterrencemechanismare used to defend against the attacks and discourage predation
[2].

Herd behavior of prey and predator models with the square root functional
response has been studied by many other researchers. Ajraldi et al. [1], Belvisi
and Venturino [3], Bera et al. [4], Braza [6], Gimmelli et al. [9], Ma et al. [10],
Matia and Alam [12], Tang and Song [14, 15], Wang et al. [17], Xu et al. [18]. In
[6], Braza introduced a predator-prey model in which prey population shows herd
behavior to protect themselves from predators. The author revealed the fact that Hopf
bifurcation can be experienced for some parameters in the model and some singu-
larities must take place near the origin in this type of behavior. In [3], S. Belvisi
and E. Venturino considered an eco-epidemic predator-prey model with the influ-
ence of predator-disease on prey group defense. Tang and Song [15] considered a
predator-prey model with group defense taking hyperbolic mortality into account.
Gimmelli and his co-authors [9] developed a predator-prey herd model incorporating
the attack of specialist predators. In [10], Xiangmin Ma and his co-authors general-
ized the herdmodel taking stage-structure for predators with time delay in the model.
In [18], Chaoqun Xu and his co-authors studied a more general predator-prey model
with herd behavior in which global dynamics of the model is discussed. Therefore,
we propose a stage structured predator-prey model, following herd behavior with the
square root functional response.

In all these studies, predator-prey system with herd behavior of prey including
non-linear harvesting of predators as well as prey’s deterrence signals to discourage
predation, is completely missing. Deterrence to predators being a natural phenom-
ena, we have taken it into model formulation as a reduction factor for predation.
Hence, considering predator harvesting and deterrence hypothesis, we propose a
predator-prey model and then ask whether and under what conditions, there will be
co-existence; whether the non-linear predator harvesting will effect the predator’s
survival; the prey’s deterrence will prove a significant step against predator’s attack
or will there be any domination of the predator over prey and vice versa. The organi-
zation of the paper is as follows: In Sect. 2, we develop a predator-prey model with
herd behavior and discuss positivity and boundedness of the system. A qualitative
analysis of themodel is discussed in Sect. 3, which includes existence of steady states
and local stability of the predator-free as well as interior equilibrium point. Singu-
larities of the trivial equilibrium point are observed and brief mathematical analysis
is done to capture the local dynamics in Sect. 3.1, showing unusual behavior near
the origin. Study of bifurcation is provided in Sect. 3.2. The analytical results are
supported by numerical simulations in Sect. 4. The system exhibits Hopf bifurcation
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for many system parameters, which is discussed in detail in this section. The paper
ends with a conclusion in Sect. 5.

2 Model Formulation and Boundedness

Based on the assumptionmentioned above, the predator-prey systemwith prey group
defense and non-linear harvesting of the predator incorporating predator deterrence
hypotheses governed by following non-linear system of the ordinary differential
equations:

dx

dt
= rx

(
1 − x

K

)
−

(
β

1 + ϕ

)√
xy = f(x, y (2.1)

dy

dt
= nβ

1 + ϕ

√
xy − dy − hy

1 + y
= g(x, y) (2.2)

where x(0) > 0, y(0) > 0 and all the parameters of the system viz. r, K , η, β, ϕ, d, h
are positive. Description of all parameters with units is shown in Table 1.

Theorem 1 All solutions of the system (2.1–2.2) that start in R2+ remain positive ∀
t > 0.

Proof From Eq. (2.2)

dy

y
=

{
nβ

1 + ϕ

√
x − d − h

1 + y

}
dt = ϕ(x ,y)dt, (2.3)

where ϕ(x, y) =
{

n β

1+ϕ

√
x − d − h

1+y

}
.

Table 1 Parameters and variables used in the system with their description and units

Variable/parameter Description Unit

x Biomass density of prey Biomass per unit area

y Biomass density of predator Biomass per unit area

r Intrinsic growth rate of prey Per day

K Carrying capacity of environment for prey Biomass per unit area

η Conversion efficiency from prey to predator
biomass

Unit-less

β Natural predation rate Per day

ϕ Deterrence rate that discourages predation Per day

h Non-linear predator harvesting Per day

d Starvation rate of predators Per day
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Integrated Eq. (2.3) in the region [0,t], we get

y(t) = y(0)e

t∫
0

ϕ(x,y)dt
> 0.

Now from Eq. (2.1)

dx√
x

=
{
r
√
x
(
1 − x

K

)
− βy

1 + δ

}
dt = ψ(x, y)dt (2.4)

where

ψ(x, y) =
{
r
√
x
(
1 − x

K

)
− βy

1 + δ

}
.

Integrated Eq. (2.4) in the region [0,t], we get

x(t) =
⎧⎨
⎩x(0) + 1

2

t∫

0

ψ(x, y)dt

⎫⎬
⎭

2

> 0.

Moreover, at x(t)= 0, dx/dt= 0 and y(t)= 0, dy/dt= 0 which ceases x(t) and y(t)
to become negative. Thus, x(t) and y(t) remain positive for all t > 0. This completes
the proof of the theorem.

Theorem 2 All the solutions of the system (2.1–2.2)which start in R2+ are ultimately
bounded.

Proof From Eq. (2.1), we have

dx

dt
≤ r x

(
1 − x

K

)
,

⇒ lim
t→∞ sup x(t) ≤ K .

Let us define

� = η x + y

⇒ d�

dt
≤ η r x

(
1 − x

K

)
− dy

≤ η r x − dy

≤ (η r + η d)K − d �.

Hence

d�

dt
+ d� ≤ (η r + η d)K = δ(say)
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Applying a lemma on differential equation inequalities [5], we obtain

0 ≤ �(x, y) ≤ δ

d
+ (x(0), y(0))

edt
,

and for t → ∞,

0 ≤ � ≤ δ

d
.

Thus, all the solutions of the system (2.1–2.2) enter into region

B =
{
(x, y) : 0 ≤ � ≤ δ

d
+ ε, for any ε > 0

}
.

Hence the theorem.

3 Equilibrium State Analysis

System (2.1–2.2) has following equilibrium points:

(i) The trivial equilibrium point E0 = (0, 0);
(ii) Predator-free equilibrium point E1 = (K , 0);
(iii) Positive equilibrium point E∗ = (x∗, y∗)which satisfies the following system:

rx
{
1 − x

K

}
− β

1 + ϕ
y
√
x = 0 (3.1)

ηβ

1 + ϕ
y
√
x − dy − hy

1 + y
= 0

Theorem 3 If (d + h)2(1 + ϕ)2 < Kη2β2, then system (2.1–2.2) has a unique
equilibrium point (x∗, y∗).

Proof Define

u(x) = r(1 + ϕ)

β

√
x
{
1 − x

K

}
, v(x) = (1 + ϕ)h − ηβ

√
x + d(1 + ϕ)

ηβ
√
x − d(1 + ϕ)

The predator and prey null-cline curves can be given as y = u(x) and y = v(x).
From system (3.1), we have that the interior equilibrium (x*, y*) must satisfy

y∗ = u
(
x∗), y∗ = u

(
x∗).
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By simple calculation, we obtain

u(0) = u(K ) = 0,

u′(x) = r(1 + ϕ)

β

(K − 3x)

2K
√
x

, (3.2)

u′′(x) = −r(1 + ϕ)

β

(3x + K )

4Kx3/2
< 0 for x ∈ (0, K ).

Thus, y = u(x) is a continuous concave downward function on (0, K) satisfying
u (0) = u (K) = 0. Now,

v(x) = 0 f or x = xv = (d + h)2(1 + ϕ)2

η2β2
,

v′(x) = − (1 + ϕ)hηβ

2
(
ηβ

√
x − m

)2√
x

< 0.

Therefore, y = v(x) is a decreasing function which becomes undefined x = d2 (1
+ ϕ)2/(ϕ2β2). Function is negative for x < d2 (1 + ϕ)2/(ϕ2β2) and positive for = d2

(1 + ϕ)2/(ϕ2β2) < x < (d + h)2(1 + ϕ)2/(ϕ2β2). To obtain a unique equilibrium point
both curves should intersect on a unique point for which intercept xv of y = v(x) on
x-axis must be less than intercept K of y = u(x) on x-axis (see Fig. 1) i.e.

(d + h)2(1 + ϕ)2

η2β2
< K .

This completes the proof of the theorem.

Theorem 4 Predator-free equilibrium point E1 is locally asymptotically stable if

Fig. 1 Blue curve represents y = u(x) while red curve represents y = v(x). Intersection of both
curves is (x∗, y∗)
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(d + h)2(1 + ϕ)2 > Kη2β2.

Proof Jacobian matrix at equilibrium point E1 is given as follows:

[J ]E1
=

[
−r −β

√
K

(1+ϕ)

0 ηβ
√
K

(1+ϕ)
− d − h

]
.

Eigenvalues for matrix [J ]E1
are

λ1 = −r < 0, λ2 = ηβ
√
K

(1 + ϕ)
− d − h.

Therefore, condition for local stability for predator-free equilibrium point is
λ2 < 0.

i.e. (d + h)2(1 + ϕ)2 < Kη2β2. This completes the proof of the theorem.

Theorem 5 Interior equilibrium point E∗(x∗, y∗) is locally asymptotically stable if

{
r

2
− 3r x∗

2K
+ hy∗

(1 + y∗)2

}
< 0 and

(
r

2
− 3r x∗

2K

)
hy∗

(1 + y∗)2
+ ηβ2y∗

2(1 + ϕ)2
> 0.

Proof Jacobian matrix at E∗ is given as follows:

[J ]E∗ =
⎡
⎣ r − 2r x∗

K − βy∗

2(1+ϕ)
√
x∗

−β
√
x∗

(1+ϕ)

ηβy∗

2(1+ϕ)
√
x∗

ηβ
√
x∗

(1+ϕ)
− d − h

(1+y∗)2

⎤
⎦ =

[
r
2 − 3r x∗

2K
−β

√
x∗

(1+ϕ)
ηβy∗

2(1+ϕ)
√
x∗

hy∗
(1+y∗)2

]

The corresponding characteristic equation is given as follows:

λ2 − aλ + b = 0, (3.4)

where

a = r

2
− 3r x∗

2K
+ hy∗

(1 + y∗)2
,

b =
(
r

2
− 3r x∗

2K

)
hy∗

(1 + y∗)2
+ ηβ2y∗

2(1 + ϕ)2

For eigenvalues to have negative real part, we must have a < 0 and b > 0. Hence
the theorem.
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3.1 Steady State Analysis of Trivial Equilibrium Point

Since, y/
√
x is not defined at origin, therefore we use the singular dynamics near

the origin assuming x � 1, y � 1. With these assumptions (1 + y) ≈ 1,
√
x y � y

and (1 − x/K ) ≈ 1, system (2.1–2.2) reduces to

dx

dt
≈ r x − β

√
xy

(1 + ϕ)
(3.5)

dy

dt
≈ −dy − hy. (3.6)

From Eq. (3.6), y(t) = y(0)e−(d + h)t, where y(0) � 1. Now consider the following
cases:

i. x = O(y0), then dx
dt ≈ r x and dy

dt ≈ −dy − hy which implies that origin is a
saddle point.

ii. x = O
(
y20

)
, then solution of system (3.5–3.6) is given as follows:

{√
x − βy

(1 + ϕ)(r + 2(d + h))

}
=

{√
x0 − βy0

(1 + ϕ)(r + 2(d + h))

}
er t/2. (3.7)

The dynamics near the origin is as follows:

(a)
{√

x0 − βy0
(1+ϕ)(r+2(d+h))

}
er t/2 = 0 ⇒ solution tends to zero along 	 :{√

x − βy
(1+ϕ)(r+2(d+h))

}
= 0 as shown in the Fig. 2.

Fig. 2 The separatrix curve y = (1 + ϕ)(r + 2d + 2h)
√
x/β is a red dashed curve. Trajectories

above the separatrix show extinct while below the separatrix show saddle behaviour
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(b)
{√

x0 − βy0
(1+ϕ)(r+2(d+h))

}
er t/2 < 0 ⇒ orbit of the model terminates at some

positive y and then decreases to zero.

(c)
{√

x0 − βy0
(1+ϕ)(r+2(d+h))

}
er t/2 < 0 ⇒ orbit of the model shows saddle behavior,

as shown in Fig. 2. As y decreases, x decreases to a minimum value and then
increases further. Hence, locally it looks like a saddle trajectory, but what hap-
pens when orbit goes away from the origin, local analysis cannot answer this
question.

iii. x = O
(
yα
0

)
, then x � √

x y and system (3.5–3.6) reduces to, dx
dt = −β

√
x y

(1+ϕ)
and

dy
dt = −(d + h)y. After solving we get,

y = y(t0) + 2(d + h)(1 + ϕ)

β

{√
x − √

x(t0)
}
.

This curve terminates on y-axis at y = y(t0)
2(d+h)(1+ϕ)

β

√
x(t0) > 0 (as x � y).

This explains that trajectory terminates at x = 0 at some positive value of y and then
predator y also tends to zero due to Eq. (3.6). Prey biomass is not sufficient enough
to survive and go extinct. Ultimately, the predator also follows the same in absence
of food.

3.2 Study of Bifurcations

3.2.1 Hopf Bifurcation

Let us consider ϕ as a bifurcation parameter first. Putting values of rest of the
parameters, system (2.1–2.2) reduces to

ẋ = f (x, y, ϕ), ẏ = g(x, y, ϕ) (3.8)

Let the positive equilibrium point be (x∗(ϕ), y∗(ϕ)) and the eigenvalues for the
linearised system about this equilibrium are λ = α1(ϕ) ± α2(ϕ). Then for a certain
value ofϕ = ϕ0, Hopf bifurcation takes place if the following conditions are satisfied.

I. Non-hyperbolicity condition: α1(ϕ) = 0, α2(ϕ) = ω = 0, where sgn(w) =
sgn[(∂gϕ/∂x))|ϕ = ϕ0

(
x0, y0

)
].

II. Transversality condition: dα1(ϕ)

dϕ
|ϕ = ϕ0 = d = 0

III. Genericity condition: α = 0, where

a = 1

16

(
fxxx + fxyy + gxxy + gyyy

) + 1

16ω

(
fxy

(
fxx + fyy

)

− gxy
(
gxx + gyy

) − fxx gxx + fyygyy with
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fxy = ((
∂2 fϕ

)
/∂x∂y

)∣∣
ϕ=ϕ0

(x0, y0), etc.

The interesting observation in the system (2.1–2.2) is that Hopf bifurcation
exists for not only the critical value of parameter ϕ, but for the critical value of
every parameter present in the system.

3.2.2 Transcritical Bifurcation

Predator-free equilibrium point E1 is locally asymptotically stable if (d + h)2(1 +
ϕ)2 > Kη2β2and unstable if (d + h)2(1 + ϕ)2 < Kη2β2. Therefore, system (2.1–
2.2) exhibits a transcritical bifurcation for (d + h)2(1 + ϕ)2 = Kη2β2, involving
equilibria E* and E1. Also, it is easy to observe that feasibility condition for unique
E* and stability condition for E1 are opposite of each other. System (2.1–2.2) shows
transcritical bifurcation for all the parameters, except r.

Limit points (turning points) are called saddle-node bifurcation points which
are associated with sudden creation of two fixed points. We can see saddle-node
bifurcations also for many of the system parameters.

4 Numerical Simulation

The model is numerically simulated to analyse the dynamics of the predator-prey
system after changing the values of the system parameters. Preselected values of
parameters within biologically meaningful range for numerical simulation are r =
1.5, K = 2, h = 0.3, β = 0.8, ϕ = 0.2, η = 0.9, d = 0.4.

(i) Effect of varying parameter r on the system: Fig. 3 shows dynamics of
the population for K = 2, h = 0.3, β = 0.8, η = 0.9, d = 0.4, ϕ = 0.2. We
analyse the effect with different values for reproduction of preys. At r= 1.5, all
species coexist with interior steady state (Fig. 3a). At r= 2.307, we obtain Hopf
bifurcation as shown in Fig. 3c, d. Increasing prey reproduction rate destabilizes
the equilibrium, giving rise to the occurrence of biomass oscillations (limit
cycle) as shown in (Fig. 3b, d). Corresponding bifurcation diagram for the
phenomenon can be shown in Fig. 7b

(ii) Effect of varying parameterϕ on the system: Figs. 4 and 7a illustrate dynam-
ics for r= 1.5, K= 2, β = 0.8, η = 0.9, d= 0.4, h= 0.3 and varying parameter
ϕ. Prey’s deference signals help in minimizing predation and establish ecolog-
ical balance up to some extent. At low deterrence rate ϕ = 0.14, due to heavy
predation unstable equilibrium with large oscillations is obtained (see Fig. 4a).
When deterrence rate ϕ is increased to 0.2 and 0.52 respectively, it discourages
unrestrained predation, fetch stability to the system and establishes an ecolog-
ical balance with co-existence of all species (see Fig. 4b, c). Hence, stability
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Fig. 3 Time evolution of biomass densities while varying r: parameter values K = 2, h = 0.3, β

= 0.8, ϕ = 0.2, η = 0.9, d = 0.4 with initial conditions x(0) = 0.8, y(0) = 0.5 (for a) and x(0) =
1.4, y(0) = 1.2 (for b) remain as fixed and the values of parameter r for this simulation are taken
as r = 1.5 (a), r = 2.5 (b). Corresponding diagrams for parametric plotting are shown in c and
d respectively

switching takes place at ϕ = 0.1444 (Fig. 7a) and unstable equilibrium turns to
the stable equilibrium state. We obtain a limit point (saddle-node bifurcation)
at ϕ = 0.5966 (see LP in Fig. 7a), hence, at ϕ = 0.52, system shows dif-
ferent behavior with different initial conditions. One positive equilibrium and
predator-free equilibrium, both are locally stable and hence an interesting para-
metric plotting diagram is obtained for different initial conditions (see Fig. 4e).
A transcritical bifurcation is obtained at ϕ = 0.4546 as shown in Fig. 7a. On
further increment in ϕ, sufficient deterrence of predation keeps the preys safe
and ultimately life-dinner requirement for the predators remains unfulfilled,
consequently, predators extinct from the environment as shown in Fig. 4f.

(iii) Effect of varying parameter h on the system: Fig. 5 deals with the dynamics
for parameter values r = 1.5, K = 2, β = 0.8, η = 0.9, d = 0.4, ϕ = 0.2 and
varying parameter h. This numerical dynamics illustrates that controlling the
harvesting rate of predators, we can break the oscillating behavior of the model
and drive it to the stable interior equilibrium of the system (see Fig. 5a, b).
Stability switching with Hopf bifurcation takes place at h = 0.2425 (see HB in
Fig. 5f). We find a limit point (saddle-node bifurcation) at h = 0.5659 (see LP
in Fig. 5f), hence, at h = 0.5, system behaves differently for different initial
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Fig. 4 Time evolution of biomass densities while varying ϕ: parameter values r = 1.5, K = 2, β
= 0.8, η = 0.9, d = 0.4, h = 0.3 remain fixed and the values of parameter ϕ for this simulation are
taken as ϕ = 0.14 with (x(0) = 0.8, y(0) = 0.5) (a), ϕ = 0.2 with (x(0) = 0.8, y(0) = 0.5) (b), ϕ
= 0.52 with (x(0) = 0.8, y(0) = 0.5) (c), ϕ = 0.52 with (x(0) = 1.5, y(0) = 0.1) (d) and ϕ = 0.7
with (x(0) = 1.5, y(0) = 0.1) (f). Parametric plotting for ϕ = 0.52 with different initial conditions
is shown in e

conditions as shown in Fig. 5c–e. Unlike in the previous case (Fig. 4e), trajec-
tory starting from initial condition (0.4, 1.8) tends to predator-free equilibrium
point (Fig. 5e). A transcritical bifurcation occurs at h = 0.4485 which bio-
logically means that further increment of h can wipe out predation population
completely, therefore, for sustainable development, we employ an economic
threshold of the predator. Corresponding bifurcation diagram for the dynamics
is shown in (Fig. 5f).
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Fig. 5 Time evolution of biomass densities while varying h: parameter values r = 1.5, K = 2, β =
0.8, η = 0.9, d = 0.4, ϕ = 0.2 remain fixed and the values of parameter h for this simulation are
taken as h = 0.23 with (x(0) = 0.8, y(0) = 0.5) (a), h = 0.3 with (x(0) = 0.8, y(0) = 0.5) (b), h
= 0.5 with (x(0) = 0.8, y(0) = 0.5) (c) and h = 0.5 with (x(0) = 1.5, y(0) = 0.1) (d). Parametric
plotting for h = 0.5 with different initial conditions is shown in e while corresponding bifurcation
diagram is shown in f
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(iv) Effect of varying parameter K on the system: Fig. 6 shows dynamics of
the species for r = 1.5, h = 0.3, β = 0.8, η = 0.9, d = 0.4, ϕ = 0.2. We
will investigate the effect with different carrying capacity on the system. We

Fig. 6 6 Time evolution of biomass densities while varying K: parameter values r = 1.5, h= 0.3, β
= 0.8, η = 0.9, d = 0.4, ϕ = 0.2. with initial conditions x(0) = 0.8, y(0) = 0.5 remain fixed and the
values of parameter K for this simulation are taken as K = 2.1 (a), K = 2.17 (c), K = 2.25 (f). K =
2.15 is the point of Hopf bifurcation whose dynamics can be shown in a (K = 2.1 < 2.15) and c (K
= 2.17 > 2.15). b, d and f show parametric plotting for the trajectories of a, c and e respectively.
Limit cycle size is increasing gradually as shown in b, d and f respectively
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Fig. 7 Bifurcation diagrams for various parameters ϕ, r, η, and K: red, black and thick green
lines represent stable steady state, unstable steady state and stable limit cycle respectively. In a HB
(0.1444), TB (0.4546) and LP(0.5966) are Hopf, transcritical and saddle-node bifurcation points
respectively. In b HB (2.307) is the point of Hopf bifurcation. In c HB (0.9377), TB (0.7425) and
LP (0.6996) are Hopf, transcritical and saddle-node bifurcation points respectively. In d HB (2.15),
TB (1.3611) and LP (1.265) are the points of Hopf, transcritical and saddle-node bifurcation

obtain transcritical bifurcation at K = 1.361 (see TB in Fig. 7d). Hence, for K
< 1.361, predator-free equilibrium point is obtained with prey biomass K. At
K = 2.1 > 1.361, all species coexist with positive equilibrium point (Fig. 6a).
At K = 2.15, we get that supercritical Hopf bifurcation is obtained as shown in
Fig. 6a (K = 2.1 < 2.15) and c (K = 2.17 > 2.15). As we change the carrying
capacity to K = 2.25, we get a larger limit cycle because of the increased
carrying capacity (Fig. 6e, f). We observe that on increasing carrying capacity,
positive equilibrium state is shifted to a non-equilibrium state in the system.
This phenomenon is known as the paradox of enrichment [13]. Corresponding
bifurcation diagram for the phenomenon is illustrated in Fig. 7d.

(v) Two parameter bifurcation diagram between parameters h and ϕ: Non-
linear harvesting rate of predator h and deterrence rate to discourage predation
ϕ are the key parameters in our system. We now discuss the feasibility of equi-
libria in the h − ϕ parameter space (see Fig. 9). The boundary separating the
region I and region II for E1 and E* respectively, is given by the curve (0.4 +
h)2 (1 + ϕ)2 = 1.0368. For small values of h and ϕ, uncontrolled predation
gives rise to the oscillating behavior which can be shown by region III.
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Fig. 8 Bifurcation diagrams for parameters d and β: In aHB (0.3785), TB (0.5485) and LP (0.5751)
are Hopf, transcritical and saddle-node bifurcation points respectively. In bHB (0.8389), TB (0.66)
and LP (0.6013) are Hopf, transcritical and saddle-node bifurcation points respectively

Fig. 9 Feasibility and
stability regions for the
equilibria of the system in
h-ϕ parameter space

Remark 1 Bifurcation diagrams for rest parameters η, β and d are shown in Figs. 7
and 8. Steady state for x > K = 2 is biologically meaningless because predator
equilibrium is negative for x > 2. However, mathematical significance of this is to
show transcritical bifurcation (TB) at predator-free equilibrium point.

5 Conclusion

In this work, we have presented a predator-prey system with non-linear harvesting
of predators and square root functional response of preys. We have investigated
the equilibrium points and their stabilities. We have evaluated bifurcation analysis
theoretically and that is perfectly justified by numerical simulations.

In the study, we can observe that non-linear harvesting of the predator as well
as deterrence rate to minimize predation is a significant factor for the predator-prey
interactions and affect the stability and coexistence for predator-prey system with
herd behavior of prey. A sustainable harvesting and low prey’s deterrence rate are
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important features in the perfect survival of all the species. Prey’s deterrence phe-
nomenon slows down the unrestricted predation which ultimately reduces periodic
oscillations of the time-evolution and stabilizes the ecosystem. On other hand har-
vesting of predators does not allow predators to dominate on the system. At the
same time, we conclude that uncontrolled harvesting rate or high deterrence rate
to avoid predation, abolish predators completely from the system (see Figs. 5d and
4f) which is also ecologically justified. Therefore, we can make the prey and preda-
tor coexist through controlling the predator-harvesting rate. It is expected that the
results illustrated in this study will be beneficial for the further study of complicated
ecosystems.
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Case Wise Study of Heterogeneity
on the Traversal Characteristics
of Torsional Surface Waves

C. Kumari and S. Kundu

Abstract Within the framework of a heterogeneous anisotropic layer laid over a pre-
stressed half-space, propagation of torsional surface wave is investigated. We have
considered two different cases of heterogeneity function in the anisotropic layer,
namely exponential and trigonometric hyperbolic functions. We have also obtained
two different dispersion equations for both cases of heterogeneities on the torsional
wave propagation in the said model. The effects of heterogeneities and pre-stress on
the torsional wave of phase velocity have been shown graphically for their different
numerical values.

Keywords Torsional · Anisotropic · Heterogeneity · Pre-stress · Phase velocity

1 Introduction

In seismology, we study about the seismic wave. Seismic waves are extremely note-
worthy for ponder because of thesewave contains somuch vitality that they canmake
tremor, avalanches, volcanic emissions etc. Who studied about the seismic wave is
called seismologists. We know, two kinds of seismic wave; Body wave and Surface
wave. Love wave and Rayleigh wave are the part of surface wave, but in recently
we know about another surface wave which is known as Torsional wave. It is also
known as twisting wave because it behaves like twist. Torsional surface wave can just
exist in solid medium rather than electromagnetic, gas, or fluid media. Ewing and
Press [1] described lots of things in their book. They studied about many significant
factors regarding seismic wave propagation, curvature influence of love wave in het-
erogeneous medium, refraction and reflection of waves at the interface of the rigid
boundary, etc. Elastic wave propagation in layered medium is analyzed by Alterman
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and Karal [2] using finite difference approach and studied the development, pulse
width and depth of Rayleigh wave on the half space surface. Apart from it, they also
presented a theoretical seismograms series that showed the variation of surface wave
with the depth and density of the medium. About mechanical deformation and plate
tectonics on Earth, there is a great information in the book of Love [3], Gubbins [4]
Biot [5], and so on.

Torsional waves are the main attraction of researchers nowadays due to its exotic
behavior and inadequate published data. While considering the analysis regarding
wave propagation through layers it is necessary to gather information regarding
rigidity and density of the medium because while earthquake due to generation of
torsional wave rigidity and density variation can be observed. Propagation analysis
of torsional wave is performed by Chattopadhyay et al. [6] and the solution for
displacement along with the effect of inhomogeneity is obtained by utilizing the
fact that material property is dependent on space variable harmonically. Another
investigation of torsional wave is performed by Dey et al. [7] and analyzed the wave
propagation possibility in the nonhomogeneous elastic medium with different types
of rigidity variables such as exponential, polynomial. One point worthy finding of
this investigation is that two torsional wavefronts may be there in certain types of
nonhomogeneity. Chattaraj et al. [8] has showed keen interest towards torsional
surface wave in the fluid saturated poroelastic layer and found that increment in
phase velocity leads to decrease inhomogeneity factor. Another investigation of wave
propagation is performed by Wang et al. [9] using cross-anisotropic inhomogeneous
medium and described the analytical solution for wave vector and wave velocity.
Gupta et al. [10] used heterogeneous half-space to analyze the torsional surface
wave propagation and suggested the effect of rigid boundary on the torsional wave
propagation in a homogeneous layer over a heterogeneous half-space. Some other
related studies on torsional surface wave are due to articles Kundu et al. [12], Alam
et al. [13], Gupta and Bhengra [14], Alam et al. [15].

In the present analysis our main attention is devoted to analyze the propagation of
torsional surface waves passing through pre-stressed elastic half-space attached with
heterogeneous anisotropic layers. In this paper, we have considered two different
cases of heterogeneity function in the anisotropic layer, exponential and trigono-
metric hyperbolic functions. Anisotropic has directionally property, which suggests
diverse properties in various ways, rather than isotropy. A case of anisotropy is light
getting through a polarizer. Another is wood, which is less demanding part along its
grain than the crosswise over it. In the half-space, we have taken pre-stressed elas-
tic property. So we have obtained two different dispersion equations for both cases
of heterogeneities on the torsional wave propagation. The effects of heterogeneities
and pre-stress on the torsional wave of phase velocity have been shown graphically
for their different numerical values. We observed the exceptional impact of initial
pressure display on the wave phase speed. More precisely, an initial force leads to
decrease the torsional wave phase speed. This investigation is done due to it has large
potential to deal with many seismological and geological problems.
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2 Formulation of the Problem

In considering this analysis we have assumed finite thickness (H) heterogeneous
anisotropic media, which is attached over a pre-stressed elastic half-space. From
Fig. 1 it can be seen that we have chosen r-axis in the direction of wave propagation
and parallel to the layer, whereas z-axis is taken into lower half space in such a way
that it is pointing positively downward.

We have considered two different cases of heterogeneity function in the
anisotropic upper layer:

Case 1: N = N0eαz, L = L0eαz, ρ1 = ρ0
1e

αz .

Case 2: N = N0 cosh2(βz), L = L0 cos h2(βz), ρ1 = ρ0
1cos

2(βz).

where N and L are the rigidity moduli, ρ be the density of anisotropic layer and α,
β are heterogeneities parameters.

The equations of motion are

∂τrr

∂r
+ 1

r

∂τrθ

∂θ
+ ∂τr z

∂z
+ τrr − τθθ

r
= ρ

∂2u

∂t2
,

∂τrθ

∂r
+ 1

r

∂τθθ

∂θ
+ ∂τθ z

∂z
+ 2τrθ

r
= ρ

∂2v

∂t2
,

∂τr z

∂r
+ 1

r

∂τθ z

∂θ
+ ∂τzz

∂z
+ τr z

r
= ρ

∂2w

∂t2
, (1)

Fig. 1 Geometry of the problem
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where stress components are τrr , τr z, τrθ , τθθ , τzθ , τzz respectively and displacement
components are the (u, v, w). The condition of torsional wave propagation u = 0, ω
= 0, v = v(r, z, t).

Now non-vanishing equation of motion in the absence of body force for the
propagation of torsional wave is given by

∂τrθ

∂r
+ ∂τθ z

∂z
+ 2τrθ

r
= ρ

∂2v

∂t2
. (2)

2.1 Upper Layer Solution

The stress-strain relation components for medium are given by

τrθ = 2Nerθ , τθ z = 2Lezθ . (3)

Using the above, Eq. (2) reduces to,

N

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
v1 + ∂L

∂z

∂v1
∂z

+ L
∂2v1
∂z2

= ρ
∂2v1
∂t2

. (4)

Let us consider the harmonic wave which propagates along the radial direction in
the form of

v1 = V1(z)J1(kr)e
iωt , (5)

where k, c and J1(kr) are wave number, torsional wave velocity and the Bessel’s
function of first kind as well as of first order respectively.

From Eqs. (4) to (5) we get,

d2V1

dz2
+ 1

L

dL

dz

dV1

dz
− k2N

L

(
1 − ρc2

N

)
V1 = 0. (6)

Now, substituting V1 = φ1(z)√
L

in Eq. (6), we get

d2φ1

dz2
− 1

2L

{
d2L

dz2
− 1

2L

(
dL

dz

)}
φ1 = k2N

L

(
1 − ρc2

N

)
φ1. (7)

Case 1

N = N0 exp(αz), L = L0 exp(αz), ρ1 = ρ0
1 exp(αz). (8)
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Using Eqs. (8) and (7) occurs

d2φ1

dz2
+ m2

1φ1 = 0, (9)

where m2
1 =

[
k2 N0

L0

(
c2

c21
− 1

)
− α2

4

]
and c1 =

√
N0
ρ0

is the velocity.

Case 2

N = N0 cosh
2(βz), L = L0 cosh

2(βz), ρ2 = ρ0
2 cosh

2(βz). (10)

Using Eq. (10) in Eq. (7), becomes

d2φ1

dz2
+ m2

2φ1 = 0, (11)

where m2 =
[
k2 N0

L0

(
c2

c21
− 1

)
− β2

] 1
2
and c2 =

√
N0
ρ0

is the velocity.

Now the solution of Eqs. (9) and (11) is given by

φ = A cos(mi z) + B sin(mi z), i = 1 and 2. (12)

where for Case 1, i = 1 and for Case 2, i = 2.
Therefore the displacement component for the torsional wave propagation in the

anisotropic layer (for Case 1 and Case 2) is given by following equation

v1 = (A cos(mi z) + B sin(mi z))
J1(kr)√

L
eiωt , i = 1, 2. (13)

2.2 Half-Space Solution

L = N = μ = μ0(1 + γ z)2, ρ = ρ0
2 (1 + γ z)2.

The stress-strain relation components for half-space are given by

σrθ = μ

(
∂v2
∂r

− v2
r

)
and σθ z = μ

∂v2
∂z

. (14)

Hence the non-vanishing equation of motion for the torsional wave propagation
with initial stress is given by
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∂σrθ

∂r
+ ∂σθ z

∂z
+ 2σrθ

r
− ∂

∂z

(
P

2

∂vθ

∂z

)
= ρ0

2
∂2v

∂t2
. (15)

Using Eq. (14) in (15), we have

μ

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
v2 +

(
μ − P

2

)
∂2v2
∂z2

= ρ
∂2v2
∂t2

. (16)

Again, we consider the solution of Eq. (16) as

v2 = V2(z)J1(kr)e
iωt . (17)

Using the above equation, Eq. (16) becomes

d2V2

dz2
− n2V2 = 0. (18)

where, n = k
[(

1 − c2

c22

)
/
(
1 − P

2μ

)]1/2
.

The appropriate solution for the half-space is found as,

v2 = De−n zeiωt J1(kr), (19)

where, D is an arbitrary constant.

3 Boundary Conditions and Dispersion Equation

The required boundary conditions for the analyzing this phenomenon include the
continuity of the stress are as follows

1. Stress of the layer vanishes at z = −H so that

τθ z = 0 at z = −H.

2. The continuity of the displacement component gives

v1 = v2 at z = 0.

3. At the interface z = 0, the continuity in the stress gives

τθ z = δθ z at z = 0.

Where v1 and v2 the displacement in the upper layer and the half-space,
respectively.
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UsingEqs. (13) and (19) in the aboveboundary conditions,weobtain the following
equations:

(i) A1 − √
LB1 = 0

(i i) L0mA2 + nμ
√
LB1 = 0

(i i i) A1 sin(mH) + A2 cos(mH) = 0.

Eliminating the arbitrary constants from above eq’s, the dispersion relation for
both cases

tan(mi H) = μk

mi L0

√
1 − c2/c22
1 − P/2μ

, i = 1 and 2, (20)

where μ, k and p are respectively rigidity of the elastic half-space, the wave number
of the wave, pre-stress associated with the half-space.

m1 = k
[
N0
L0

(
c2

c21
− 1

)
− α2

4

] 1
2
for Case 1 and m2 = k

[
N0
L0

(
c2

c21
− 1

)
− β2

] 1
2
for

Case 2.

4 Numerical Calculations and Discussion

So as to get the effect of case wise inhomogeneities and initial stress on the tor-
sional wave propagation, we have considered some numerical examples of material
parameters as follow:

For layer:
N = 1.87 ∗ 109 N/m2, L = 2.64 ∗ 109 N/m2, ρ = 1442 kg/m3, [11].
For half-space:
μ = 78.4 ∗ 109 N/m2, ρ = 3535 kg/m3, [4].
All graphs are obtained between phase velocity (c/c0) and wave number (kH)

on the based on obtaining dispersion Eq. (20) for different values of respective
parameters. Since we have considered two cases so Fig. 2a represents for Case 1 and
Fig. 2b represents for Case 2 and similarly Fig. 3a represents for Case 1 and Fig. 3b
represents for Case 2, each graph consists of two subfigures.

In Fig. 2a and b represent the variation of dimensionless phase velocity (c/c0)
against wave number (kH) for torsional surface wave associated with the layer.
Figure 2a and b show the effect of phase velocity (c/c0) and wave number (kH)
for different values of heterogeneity parameters (0.1, 0.5, 0.9) for both Case 1 and
Case 2. From Fig. 2a and b, we have observed that the phase velocity curves follow
the same trend in both the cases with the variation in wave number and hetero-
geneity parameter. These figures show that the phase velocity of the torsional wave
decreases with the increasing value of wave number, i.e., it is clear from figure that
as the magnitude of heterogeneity associated with layer increases the phase velocity
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(a) Case 1. (b) Case 2.

Fig. 2 Variation of phase velocity (c/c0) andwave number (kH) for different values of heterogeneity
parameters a Case 1 and b Case 2

(a): Case 1. (b): Case 2.

Fig. 3 Variation of phase velocity (c/c0) and wave number (kH) for different values of initial stress
parameters a Case 1 and b Case 2

also increases in both cases. The figure also suggests that the effect of heterogeneity
on the phase velocity of torsional wave is more significant for Case 2 rather than
Case 1.

In Fig. 3a and b also represent the variation of dimensionless phase velocity (c/c0)
against wave number (kH) for torsional surface wave. Figure 3a and b portrayed the
influence of initial stress associated with the half-space with the phase velocity of
torsional. Figure 3a and b show the variation effect of phase velocity (c/c0) and wave
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number (kH) for different values of heterogeneity parameters (0.10, 0.25, 0.40) for
both Case 1 and Case 2. Here we have same observed that these figures show that
the phase velocity of the torsional wave decreases in the increasing value of wave
number, i.e., It is clear from figure that as the magnitude of initial stress associated
with half space increases the phase velocity also increases in both cases. We can
also observe that the effect of initial stress on the phase velocity of torsional wave is
almost similar for both cases; Case 1 and Case 2.

5 Conclusions

Propagation of torsional waves in a non-homogeneous anisotropic layer lying over
a pre-stressed half-space. We have obtained the dispersion equation by using some
assumption and boundary constraints and numeric calculation of velocity is per-
formed with the variation in initial stress, elastic parameters, inhomogeneity. It can
be seen from the graphical representation that increment in initial stress and inhomo-
geneity tends to increase in phase velocity of the torsional surface wave. Obtained
result is illustrated using graphical representation by taking different anisotropic
material. It is also observed that increment in heterogeneities as well as initial stress
leads to increase the phase velocity of the torsional wave. For a graphical representa-
tion,Mathematica software is used to solve the dispersion relation. This investigation
concludes that the presence of initial stress and heterogeneities enhances the phase
velocity of the wave.
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Effect of the Heterogeneity, Initial Stress
and Viscosity on the Propagation
Characteristics of Shear Wave

Raju Kumhar and S. Kundu

Abstract This paper irradiates the influence of initial stress, heterogeneity and vis-
coelasticity on the propagation behavior of shearwave in a heterogeneous orthotropic
layer under initial stress overlying a heterogeneous viscoelastic half-space. A sep-
aration of variables method has been adopted to obtain the analytical solutions for
both the layer and half-space separately. A complex frequency equation has been
derived by using suitable boundary conditions. Thereafter, the complex frequency
equation has been separated into dispersion and absorption equations. The effects of
heterogeneities, initial stress and attenuation coefficient on the phase velocity and
dissipation function of shear wave have been shown graphically.

Keywords Shear wave · Heterogeneity · Viscoelasticity · Orthotropic · Initial
stress · Dispersion relation

1 Introduction

The study of seismic surface waves has been proved as most useful tool in order
to understand the structure of the Earth as well as to comprehend causes of the
earthquake and its consequent damages. Shear wave is a types of seismic surface
waves, in which the movement of the particles is perpendicular to the direction of
wave propagation. The investigation of shear waves propagating in different types
of elastic materials under different physical properties is the topic of great interest
to many seismologists, geologists and researchers. The basic information regarding
the propagation of seismic waves in layered media is available in Ewing et al. [1].
Love [2], Gubbins [3] and Birch [4].

The constituent layers of finite width of the Earth considering them to be isotropic
and homogeneous may not be sufficient to encapsulate most of the engineering prob-
lems including geological materials, response of soils and composites. Orthotropic
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materials are those in which the thermal or mechanical properties are unique and
independent along three mutually perpendicular directions. The most suitable exam-
ple of such types of material are wood, bone, ceramic and cold-rolled steel etc.
Recently, Maity and Kundu [5] investigated the propagation of Love wave in a het-
erogeneous orthotropic layer under initial stress. Moreover, Abd-Alla and Ahmed
[6] have published a paper on the traversal characteristics of Love waves in a het-
erogeneous orthotropic elastic medium influenced by an initial stress overlying
semi-infinite medium.Wang et al. [7] pointed out their valuable research on the prop-
agation behaviour of Love wave in an inhomogeneous orthotropic elastic layer obey-
ing the both exponential and generalized Power Law Models. Taking into account
the possibility and applications, the present problem has been formulated to study the
propagation of shear wave (SH-wave) in a heterogeneous pre-stressed orthotropic
layer over lying a heterogeneous viscoelastic half-space.

The ingredient layers of the Earth medium are usually found heterogeneous at
each level with large alteration and acute changes in the material properties with
respect to the vertical directions. The presence of heterogeneity has high influence
on the traversal characteristics of seismic surfacewave.Many researchers have shown
great interest in studying the propagation of the seismic surface wave considering
different type of heterogeneity in their problem. Some of whom are Manna et al. [8]
studied the Love wave propagation in piezoelectric material resting over a heteroge-
neous elastic half-space with properties varying linearly. Saha et al. [9] examined the
influence of heterogeneity on the propagation of SH-type wave in initially stressed
composite structure. Craster et al. [10] discussed the Long-wave asymptotic theo-
ries: the connection between functionally graded waveguides and periodic media.
Furthermore, the explicit asymptotic modelling of transient Love waves propagated
along a thin coating was studied in detail by Ahmad et al. [11]. The complicated
layers of the Earth owing to their viscous nature significantly affect the propagation
behaviour of seismic wave. The material property of viscoelastic material is due to
conjunction of two physical properties namely viscous and elastic and are primarily
responsible for seismic attenuation. Therefore, the viscoelasticity present in a mate-
rial medium has a great influence in propagation and attenuation of seismic waves
and find extensive applications in many areas such as soil dynamics, fluid dynamics,
earthquake engineering and seismology. Carcione [12] was the first to study the prop-
agation of seismic waves in anisotropic linear viscoelastic media which has attracted
various researchers around the globe. Recently, Kakar and Kakar [13] contributed
their thoughts regarding the traversal of Love wave in a heterogeneous viscoelastic
layered half-space with properties varying both exponentially and quadratically.

In this paper, the analysis of propagation characteristics of shear waves in a
heterogeneous orthotropic medium under the initial stress resting over a heteroge-
neous viscoelastic half-space is presented. For the upper heterogeneous orthotropic
medium, the hyperbolic variation in initial stress, shear moduli and density are taken
as P = P1 cosh2(αz), Qi = ai cosh2(αz) and ρ1 = ρ ′

1 cosh
2(αz) respectively,

while in the heterogeneous viscoelastic half-space, the rigidity, density and viscosity
varies exponentially as μ = μ2eεz, ρ = ρ2eεz and μ′ = μ′

2e
εz respectively. The

effect of all affecting parameters associated with the layer and half-space on the
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traversal characteristics of shear waves have been shown graphically with the help
of Wolfram Mathematica software. Classical relationship of Love wave has been
received as a special case, which validates the undertaken problem. The outcomes
and observations of the present study may play an important role in designing and
constructing suitable kind of hazard resistant buildings as well as understanding the
damage instigated due to earthquakes.

2 Formulation of the Problem

We have considered the traversal of shear waves in a heterogeneous orthotropic
medium under the influence of initial stress P of finite width H resting over a hetero-
geneous viscoelastic half-space. The x-axis is taken in the direction of wave propa-
gation and z-axis is taken vertically downwards, as shown in Fig. 1. Let (u1, v1,w1)

and (u2, v2,w2) are the displacement components for the layer and half-space,
respectively. Now for the propagation of shear wave

u1 = 0 = w1, v1 = v1(x, z, t)

u2 = 0 = w2, v2 = v2(x, z, t)

Fig. 1 Geometry of the problem
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and
∂

∂y
= 0 (1)

In the upper heterogeneous orthotropic medium, the variation in initial stress,
density and shear moduli are taken as:

P = P1 cosh
2(αz), ρ1 = ρ ′

1 cosh
2(αz) and Qi = ai cosh

2(αz) (2)

where P is the initial stress, ρ1 is density, Qi are shear moduli, α is a heterogeneity
constant having dimension that is inverse of length. Here P1, ρ ′

1, ai are the values
of P, ρ1, Qi at z = 0.

The variation in rigidity, density and viscosity of the lower half-space are taken
as:

μ = μ2e
εz, ρ = ρ2e

εz and μ′ = μ′
2e

εz (3)

where ε is the heterogeneity for viscoelastic half-space, μ2, ρ2 and μ′
2 are constant

values related with rigidity, density and internal friction, respectively.

3 Solution of the Upper Layer

In the absence of body force, the dynamical equation for the orthotropic medium
under the influence of initial stress are given by Biot [14] as

∂σ
(1)
11

∂x
+ ∂σ

(1)
12

∂y
+ ∂σ

(1)
13

∂z
− P

(
∂wz

∂y
− ∂wy

∂z

)
= ρ1

∂2u1
∂t2

∂σ
(1)
12

∂x
+ ∂σ

(1)
22

∂y
+ ∂σ

(1)
23

∂z
− P

∂wz

∂x
= ρ1

∂2v1
∂t2

∂σ
(1)
13

∂x
+ ∂σ

(1)
23

∂y
+ ∂σ

(1)
33

∂z
− P

∂wy

∂x
= ρ1

∂2w1

∂t2
(4)

where u1, v1, w1 are the displacement components and wx , wy, wz are the angular
displacement along the direction x, y, z respectively. σ

(1)
i j (i, j = 1, 2, 3) are the

incremental stress components.
The stress-strain relation for orthotropic medium are:

σ
(1)
11 = B11e11 + B12e22 + B13e33,

σ
(1)
22 = B21e11 + B22e22 + B23e33,

σ
(1)
33 = B31e11 + B32e22 + B33e33,

σ
(1)
12 = 2Q3e12,
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σ
(1)
23 = 2Q1e23,

σ
(1)
31 = 2Q2e31, (5)

where Bi j (i, j = 1, 2, 3) are the incremental normal elastic coefficient and Qi (i =
1, 2, 3) are shear moduli. Here ei j is the strain components, which is define by

ei j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, i, j = 1, 2, 3 (6)

With the help of Eqs. (1), (5) and (6), the equation ofmotion (4) for the orthotropic
medium becomes

Q1
∂2v1
∂z2

+ ∂Q1

∂z

∂v1
∂z

+
(
Q3 − P

2

)
∂2v1
∂x2

= ρ1
∂2v1
∂t2

(7)

We may assume v1(x, z, t) = V1(z)ei(ωt−kx), where k and c are the wave number
and the common wave velocity respectively, we have

Q1
d2V1

dz2
+ dQ1

dz

dV1

dz
+

{
ρ1ω

2 + k2
(
P

2
− Q3

)}
V1 = 0 (8)

Using the Eq. (2) in Eq. (8), we obtain

d2V1

dz2
+ 2α tanh(αz)

dV1

dz
+

{
ρ ′
1ω

2

a1
+ k2

(
P1 − 2a3

2a1

)}
V1 = 0 (9)

Substituting V1(z) = φ(z)
cosh(αz) in Eq. (9) to eliminate the term dV1(z)

dz we obtain

d2φ(z)

dz2
+ m2φ(z) = 0 (10)

where m2 = ρ ′
1ω

2

a1
+ k2

(
P1−2a3
2a1

)
− α2.

The solution of Eq. (10) is

φ(z) = F1 cos(mz) + F2 sin(mz) (11)

where F1 and F2 are arbitrary constants.
Therefore, the displacement component of an orthotropic medium is obtained as

v1(x, z, t) = F1 cos(mz) + F2 sin(mz)

cosh(αz)
ei(ωt−kx). (12)
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4 Solution of the Half-Space

The only non-vanishing governing equation without body forces for the traversal of
shear waves in heterogeneous viscoelastic half-space is given by Bhattacharya [15]

∂σ
(2)
12

∂x
+ ∂σ

(2)
23

∂z
= ρ

∂2v2
∂t2

(13)

where

σ
(2)
12 =

(
μ + μ′ ∂

∂t

)
∂v2
∂x

and σ
(2)
23 =

(
μ + μ′ ∂

∂t

)
∂v2
∂z

(14)

From Eqs. (13) and (14), we have

(
μ + μ′ ∂

∂t

)
∂2v2
∂x2

+ ∂

∂z

[(
μ + μ′ ∂

∂t

)
∂v2
∂z

]
= ρ

∂2v2
∂t2

(15)

Assuming that

v2(x, z, t) = V2(z)e
i(ωt−kx) (16)

Substitute the Eq. (16) in Eq. (15), we get

d2V2

dz2
+ 1

μ̄

dμ̄

dz

dV2

dz
+

(
ω2ρ

μ̄
− k2

)
V2 = 0 (17)

where μ̄ = μ + iωμ′
Now, we take the substituting V2(z) = ψ(z)√

μ̄
in Eq. (17) to eliminate the term dV2(z)

dz
we obtain

d2ψ(z)

dz2
−

[
− 1

4μ̄2

(
dμ̄

dz

)2

+ 1

2μ̄

d2μ̄

dz2
−

(
ω2ρ

μ̄
− k2

)]
ψ(z) = 0 (18)

With the aid of Eqs. (3) and (18), Eq. (18) becomes

d2ψ

dz2
− D2ψ = 0 (19)

where

D2 = ε2

4
− ω2ρ2

μ̄2
+ k2 and μ̄2 = μ2 + iωμ′

2
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The solution of Eq. (19) is

ψ(z) = F3e
Dz + F4e

−Dz (20)

where F3 and F4 are arbitrary constants.
Hence, the required displacement component for the viscoelastic half-space will

be of the form

v2(x, z, t) = F4
1√
μ̄2

e−( ε
2 +D)ei(ωt−kx). (21)

5 Boundary Conditions

(i) At z = −H , the upper layer is free from external load, so the stress component
σ

(1)
23 = 0.

(ii) At z = 0,

(a) The components of stress of both the orthotropic layer and viscoelastic
half-space are continuous, i.e. σ (1)

23 = σ
(2)
23 .

(b) Thedisplacement components of both the orthotropic layer andviscoelastic
half-space are also continuous, i.e. v1 = v2o.

Using Eqs. (12) and (21) in the above boundary conditions, we have

[a1m cosh(Hα) sin(Hm) + a1α sinh(Hα) cos(Hm)]F1

+ [a1m cosh(Hα) cos(Hm) − a1α sinh(Hα) sin(Hm)]F2 = 0 (22)

ma1F2 +
(ε

2
+ D

)
F4 = 0 (23)

√
μ̄2F1 − F4 = 0 (24)

Eliminating the arbitrary constants F1, F2 and F4 by the Eqs. (22), (23) and (24),
we get the frequency equation of shear waves as

ϒ(k1, c) = tan[Hm] − μ2
(
1 + i Q−1

)
m(2D + ε) − 2αma1 tanh[Hα]

2m2a1 + μ2
(
1 + i Q−1

)
α(2D + ε) tanh[Hα] = 0 (25)

where Q−1 = ω
μ′
2

μ2
is dissipation function.

Equation (25) is a closed form of complex wave velocity equation of shear wave
propagation in considered layered structure. In fact, the wave number is also complex
and thus may be written as
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k = k1 + ik2 = k1(1 + iδ) (26)

where k1 and k2 are real and δ = k2/k1 is attenuation coefficient.
Therefore, the Eq. (25) is separated into real and imaginary terms as

�[ϒ(k1, c)] = 0 (27)

�[ϒ(k1, c)] = 0 (28)

Equations (27) and (28) are the dispersion and absorption relations of shear waves,
respectively.

6 Special Case

When a1 → a3 → μ1 (rigidity), α → 0 (heterogeneity associated with upper
layer), ε → 0 (heterogeneity associated with half-space), P1 → 0 (initial stress) and
μ′
2 → 0 (viscosity), then Eq. (28) vanishes and Eq. (27) reduces to

tan

[
k1H

√
c2

c21
− 1

]
=

μ2

√
1 − c2

c22

μ1

√
c2

c21
− 1

(29)

where c1 =
√

μ1

ρ ′
1
and c2 =

√
μ2

ρ2
.

Equation (29) expresses the classical relation of Love wave, which coincides the
results obtained by Love [2].

7 Numerical Results and Discussions

Numerical results are provided to show the effect of heterogeneities (α/k1 → upper
layer, ε/k1 → half-space), initial stress (P1/2a1) and attenuation coefficient (δ) on
the traversal characteristics of shear wave in an orthotropic medium under initial
stress overlying viscoelastic half-space. For the computational propose, we take the
following relevant data:

(1) For the upper orthotropic medium [3]:

Q1 = 5.82 × 1010 N/m2

Q3 = 3.99 × 1010 N/m2

ρ1 = 4.5 × 103 kg/m3
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Fig. 2 Variations of a c/c1 and b Q−1 against k1H for different values of heterogeneity parameter
α/k1, when ε/k1 = 0.93, P1/2a1 = 0.15 and δ = 0.75

Fig. 3 Variations of a c/c1 and b Q−1 against k1H for different values of heterogeneity parameter
ε/k1, when α/k1 = 0.90, P1/2a1 = 0.15 and δ = 0.75

(2) For the lower viscoelastic half-space [16]:

μ2 = 4.34 × 1010 N/m2

ρ2 = 2217 kg/m3

μ2

μ′
2

= 60 s−1
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The influence of all these parameters have been demonstrated in Figs. 2, 3, 4 and
5. All the figures have been plotted with vertical axis as dimensionless phase velocity
c/c1 and dissipation function Q−1 against horizontal axis as dimensionless real wave
number k1H .

Figure 2 presents the influence of heterogeneity parameter (α/k1) associated with
the layer on the phase velocity and dissipation function of shear waves. In Figs. 2a, b,
the increasing values ofα/k1 have been taken as 0.90, 0.91, 0.92 and 0.93 for curves 1,
2, 3 and 4 respectively. From these figures, it has been found that the heterogeneity

Fig. 4 Variations of a c/c1 and b Q−1 against k1H for different values of initial stress P1/2a1,
when α/k1 = 0.90, ε/k1 = 0.93 and δ = 0.75

Fig. 5 Variations of a c/c1 and b Q−1 against k1H for different values of attenuation coefficient
δ, when α/k1 = 0.90, ε/k1 = 0.93 and P1/2a1 = 0.15
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has a proportional influence on the increasing value of the phase velocity, but an
inverse effect on the increasing value of the dissipation function.

The effect of heterogeneity parameter ε/k1 along with the half-space on the phase
velocity and dissipation function of propagation of shear wave are discussed in Fig. 3.
The increasing values of ε/k1 for curves 1, 2, 3 and 4 have been taken as 0.93, 0.95,
0.97 and 0.99 respectively in Figs. 3a, b. It can be seen from these figures that due
to the increase in heterogeneity parameter, both the phase velocity and dissipation
function are amplified.

Figures 4a, b can be mentioned as the impact of initial stress on the phase velocity
and dissipation function for the propagation of shear waves. For curves 1, 2, 3 and
4, the values of P1/2a1 have been taken as 0.15, 0.17, 0.19 and 0.21 respectively.
From this figure, it is clear that if the initial stress increases, the dimensionless phase
velocity and dissipation function also get increased. It can be also seen that dissipation
function is slightly affected at the lower frequency region compared with the higher
frequency region.

In Figs. 5a, b, curves have been plotted for dimensionless phase velocity and
dissipation function with respect to dimensionless real wave number by varying
attenuation coefficient δ as 0.75, 0.77, 0.79 and 0.81 for curves 1, 2, 3 and 4 respec-
tively. With the growing value of both wave number and attenuation coefficient, the
phase velocity decreases but the dissipation function increases.

8 Conclusions

In this paper, we have studied the impacts of heterogeneity parameters, initial stress,
and attenuation coefficient on the phase velocity and dissipation function against
real wave number for the propagation of shear waves in a pre-stressed heterogeneous
orthotropic layer lying over a heterogeneous viscoelastic half-space. The dispersion
relation and absorption relation both are enumerated by using the technique of sep-
aration of variables, which coincides with the classical results of Love waves when
the heterogeneity parameters, initial stress and viscoelastic parameter are neglected.
Following significant outcomes can be drawn:

• The phase velocity of shear waves decreases when the real wave number increases,
but the dissipation function also increases.

• The heterogeneity parameters (included in the layer and half-space) and initial
stress exhibit the proportional impact on the phase velocity, but the increment in
attenuation coefficient decreases the phase velocity of shear waves.

• The dissipation function increases with an increment in heterogeneity associated
with the half-space, initial stress and attenuation coefficient, while it decreases
with an increase in the heterogeneity associated with the layer.

Numerical computations of analytical results of the undertaken work may be use-
ful to understand the nature of the propagation of shear waves in the introduced
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model. Moreover, the outcomes of the present study may find their potential applica-
tion in the field of geology, geophysics, including civil engineering and construction
sectors, and could be of interest to the scientific community.
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Haar Wavelet: History
and Its Applications

Mahendra Kumar Jena and Kshama Sagar Sahu

Abstract In this paper, we have given a brief history of the Haar wavelet. Later the
operational matrix which is obtained from Haar wavelet is used to find the numerical
solutions of somedifferential equations. The solutions thus obtained fromoperational
matrix method are compared with exact solution as well as solution from Runge-
Kutta method and Modified Euler’s method is presented.

Keywords Haar wavelet · Operational matrix · Initial value problem
AMS Classification 65L05 · 65L07

1 Introduction

Mathematical modeling of real life problems is bridge between the nature and us.
Most of the models in science, engineering and economics are associated with the
differential equations which may be ordinary differential equation (ODE) or partial
differential equation (PDE). So it is challenging for us to formulate theirmathematical
model and obtain their solutions [4]. It is not always possible to find the exact solution
where we take the help of numerical methods. Some of the methods are Euler’s
method, modified Euler’s method, Runge-Kutta method and many more. Solving
differential equation with better accuracy is appreciable.

One of the recentmethod in computational field isHaarwavelet operationalmatrix
method (HWOM) [1, 6]. In [6], Jena and Sahu describe themethod to solve the linear
initial value problems (IVP) of first and second order. They also provide the method
for first order nonlinear IVP.

This paper is divided into 5 sections. Section1 is the introduction. History and
definition of Haar wavelet is given in Sect. 2. HWOM method is also described in
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this section. Application of Haar wavelet to solve differential equation is given in
Sect. 3. Some numerical examples are illustrated in Sect. 4. Conclusion and future
work is provided in Sect. 5.

2 Haar Wavelet

There are different types of wavelet like Meyer wavelet, Morlet wavelet, Daubechies
wavelet and Haar wavelet. Among them Haar wavelet is the oldest and simplest one.
First, we present a historical background and then the definition is presented. Later
operational matrix from Haar wavelet is constructed.

2.1 Brief History

The trigonometric functions sin x and cos x are of the period 2π . According to
Fourier any periodic function of period 2π can be expressed as sum of sine and
cosine functions. This series is called Fourier series and its theory is called frequency
analysis [5]. This analysis came in 1807 and with this a new concept has been
introduced in mathematics. Later, Fourier gave an idea about convergence of the
Fourier series, orthogonal systems and a mathematical structure that vary with scale.
High scale(low frequency) provides to a non-details global view of the signal and
low scale(high frequency) corresponds to the detail information of hidden pattern of
the signal.

The term wavelet was first found in 1909. It was in the appendix of the thesis of
Alfred Haar. Unfortunately, it was unknown to other researchers. But they search of
such transform which will provide local as well as global information of the signal.
In 1981, same wavelet concept was proposed by geophysicist Jean Morlet. Again
in 1984, he with the physicist Alex Grossmann invented the term wavelet. Till that,
Haar wavelet was the only wavelet which has orthogonal property. However, Yves
Meyer in 1985 constructed the second orthogonal wavelet which is called Meyer
wavelet. In 1988, Stephans Mallat and Meyer introduced the concept of multiresolu-
tion analysis(MRA) [2]. At the same time Ingrid Daubechies explained the method
to construct the compactly supported orthogonal wavelet [3]. Summary of the history
of wavelet is listed below:

• 1909-Family of Haar wavelet
• 1981-Morlet Wavelet (Fig. 1)
• 1984-Morlet and Grossmann - wavelet
• 1985-Meyer orthogonal wavelet (Fig. 2)
• 1988-Mallat and Meyer- MRA
• 1988-Daubechies - Compactly supported orthogonal wavelet
• 1989-Mallat - Fast wavelet transform
• 1997-Chen and Hsiao - HWOM method
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Fig. 2 Meyer wavelet

2.2 Definition of Haar Wavelet

Let m = 2 j , j = 0, 1, . . . , J , k = 0, 1, . . . ,m − 1 and i = m + k + 1. Here, i de-
notes wavelet number, j is wavelet level and k is the translation parameter. The
maximum resolution is J . For the minimum j = 0 and k = 0, we have the minimum
value of i = 2 and maximum value of i = 2M = 2J+1. The Haar wavelet family for
t ∈ [0, 1] is defined as [6–8]

hi (t) =
⎧
⎨

⎩

1 t ∈ [
k
m , k+0.5

m

]

−1 t ∈ [
k+0.5
m , k+1

m

]

0 otherwise

For i = 1, hi = 1 is the scaling function. The Haar wavelet are orthogonal to each
other: ∫ 1

0
hi (t) hl (t) =

{
2− j , i = l
0, i �= l.

(2.1)
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Due to this orthogonal property these wavelets form a good basis. In particular, any
function y (t) which is square integrable in the interval [0, 1] can be expressed as
infinite sum of Haar wavelet

y (t) =
2M∑

i=1

aihi (t) ,

where ai = 2 j
∫ 1
0 y (t) hi (t) dt.

2.3 Operational Matrix

In 1997, Chen and Hsiao [1] described the integration of Haar wavelets which pro-
duces matrices called operational matrices. Let us define Haar wavelet matrix of
order 2M × 2M by H2M×2M = (hi (tl))

2M×2M
i=1,l=1 . Let us define matrices PH and QH

by

(PH)il =
∫ tl

0
hi (t) dt (2.2)

and

(QH)il =
∫ tl

0
dt

∫ t

0
hi (t) dt, (2.3)

where the collocation points tl = (l − 0.5) /(2M). Then the 2M × 2M matrices P
and Q are called operational matrices. Taking 2M = 2 and 2M = 4, we have

H2×2 =
[
1 1
1 −1

]

, (PH)2×2 = 1

4

[
1 3
1 1

]

, P2×2 = 1

4

[
2 −1
1 0

]

,

H4×4 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤

⎥
⎥
⎦ , (PH)4×4 = 1

8

⎡

⎢
⎢
⎣

1 3 5 7
1 3 3 1
1 1 0 0
0 0 1 1

⎤

⎥
⎥
⎦ , P4×4 = 1

16

⎡

⎢
⎢
⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤

⎥
⎥
⎦ .

Similarly,

(QH)2×2 = 1

32

[
1 9
1 15

]

, Q2×2 = 1

32

[
5 −4
8 −7

]
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(QH)4×4 = 1

128

⎡

⎢
⎢
⎣

1 9 25 49
1 9 23 31
1 7 8 8
0 0 1 7

⎤

⎥
⎥
⎦ , (Q)4×4 = 1

128

⎡

⎢
⎢
⎣

21 −16 −4 −12
16 −11 −4 −4
6 −2 −3 0
2 −2 0 −3

⎤

⎥
⎥
⎦ .

Chen and Hsiao [1] derived the following formula

P2m×2m = 1

4m

(
4mPm×m −Hm×m

H−1
m×m O

)

.

3 Applications

Haar wavelet can be localized in both time and scale. Due to this property it is
being applied in many fields of engineering like digital image processing, image
compression, decomposition of image.But here operationalmatrices are used to solve
differential equations. Method to solve first order initial value problem (IVP) [6] is
described below.

Consider the first order linear ordinary differential equation

dU

dt
= [a (t)U + b (t)] , tε [0, T ] ,U (0) = U0. (3.1)

Let us divide the whole interval [0, T ] into n segments such that ti+1 = ti + di . In
terms of local coordinate τ = t−ti

di
, we have u (τ ) = U (t) and in the interval

[
ti , ti+1

]
,

(3.1) becomes
du
dτ

= di [uA (τ ) + B (τ )] (3.2)

where
u (τ ) = [u (τ1) , u (τ2) , . . . , u (τ2M)]

is a row vector and collocation points in the interval [0, 1] are given by

τ j =
(
j − 1

2

)

2M
, j = 1, 2, . . . , 2M.

A (τ ) =

⎡

⎢
⎢
⎢
⎣

a (τ1di + ti ) 0 0 · · · 0
0 a (τ2di + ti ) 0 · · · 0
...

...
... · · · ...

0 0 0 · · · a (τ2Mdi + ti )

⎤

⎥
⎥
⎥
⎦

B (τ ) = (b (τ1di + ti ) , b (τ2di + ti ) , . . . , b (τ2Mdi + ti )) .
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Following [1], we take
du
dτ

= cH (0)
2M (3.3)

where c = [c (1) , c (2) , . . . , c (2M)].
Following [6], we have

c = diUiY S
−1 + di BA−1

(
H (0)

2M

)−1
S−1

where

S =
(

H (0)
2M A−1

(
H (0)

2M

)−1 − di P
(1)
2M

)

,

Y = E
(
H (0)

2M

)−1
, E = [1, 1, 1, . . . , 1]1×2M

4 Numerical Examples

In this section some model problems are solved in HWOM method. The solution
is also compared with the solution which is obtained from Runge-Kutta method,
Modified Euler method and exact solution of the model problem.
Notation:

UH : Haar approximate solution
UR : Runge-Kutta solution
UM : Modified Euler’s solution
Ue: Exact solution

Example 4.1 Consider a first order linear IVP

U
′ = U, U (0) = 1. (4.1)

Exact solution for this model problem is U (t) = et . According to HWOM method
A = I and B = 0, where I is the identity matrix. Hence S = I − di P

(1)
2M and

c = diUiY
(
I − di P

(1)
2M

)−1
. Comparison of error for Runge-Kutta method, Modified

Euler method and HWOMmethod in terms of L2 norm for this problem is presented
in Table1. The comparison of Haar approximate solutionUH , Runge-Kutta Solution
UR , Modified Euler solution UM and exact solution Ue in graph is given in Fig. 3,
where as the error plot for HWOM method is given in Fig. 4.

Example 4.2 Let us consider another model problem

U
′ = t +U, U (0) = 1. (4.2)
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Table 1 L2 Norm of the error
(
U ′ = U,U (0) = 1,Number of points = np.

)

h = 0.01 R-K method Modified Euler
method

HWOM method

np = 100 1.0324 × 10−9 2.0665 × 10−4 6.6586 × 10−6

np = 200 6.7600 × 10−9 1.4000 × 10−3 4.3294 × 10−5

np = 300 2.9714 × 10−8 5.9000 × 10−3 1.8988 × 10−4

np = 400 1.1208 × 10−7 2.2400 × 10−2 7.1546 × 10−4

np = 500 3.9028 × 10−7 7.8100 × 10−2 2.5000 × 10−3
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Fig. 3 Plot of Ue, UH , UR and UM for Example 4.1
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Fig. 4 Error plot for solution of U
′
(t) = U,U (0) = 1
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Fig. 5 Plot of Ue, UH UR and UM for Example4.2

and U (t) = −t − 1 + 2et is the exact solution. Applying HWOM method we have

A = I and B = [1, 1, 1, 1]. So S = I − di P
(1)
2M and c =

(
diUiY + di B

(
H 0

2M

)−1
)

(
I − di P

(1)
2M

)−1
. The comparison of solutions UH , UR , UM and Ue is presented

graphically in Fig. 5.

5 Conclusion and Future Work

In this paper, brief history ofwavelets are given. HWOMmethod is briefly illustrated.
Some numerical examples are provided to show efficiency of HWOM method. We
know that HWOMmethod is of second order method [6]. Solution from this method
provides good approximation although it is not better than Runge-Kutta method.
Question arises “Is there any other wavelet like tools which yields operational matri-
ces?” If it is, then “Is it possible to get order of approximation better than HWOM or
Runge-Kuttamethod?”Answers to these questionsmay lead to some newoperational
matrix method.
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Active Control with the Method
of Receptances: Recent Progresses and Its
Application in Active Aeroelastic Control

Kumar Vikram Singh

Abstract The design of active control for large and complex engineering structures
requires accurate modeling and prediction of their dynamic response and instabili-
ties. The performance of traditional model based control may be limited due to the
errors in model approximation, size of the problem and/or availability of limited
data for realizing active control. To overcome some of these challenges the method
of receptances is developed. This method allows design and computation of con-
troller gains based on a modest size of receptance matrices which can be extracted
from transfer functions associated with available sensors and actuators. The area of
active aeroelastic control deals with developing wing technology for the next gen-
eration aircrafts to achieve increased performance by controlling and manipulating
the aeroelastic response by active means. In these applications, receptance based
controller design is found to be promising as it eliminates the modeling of complex
aeroelastic interaction between elastic structure and surrounding aerodynamics. In
this paper, fundamental of the receptance based control is introduced and recent
progress in this area is summarized. The effectiveness of the controller designed
with on-board sensors (embedded) and actuators (control surfaces) for suppressing
the flutter instabilities and flutter boundary extension is demonstrated with numerical
examples. The performance of the controller such as its ability to control prescribed
modes of interest without influencing the other is also presented. Ongoing research
in this area is briefly summarized in this paper.
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1 Introduction

Flexible structures in various engineering applications are susceptible to vibration
due to the dynamic loading environmentwhichneeds to beminimizedor eliminated to
avoid catastrophic failure, early fatigue damage and reduced service life. These struc-
tural vibrations and related instabilities can be controlled bypassive devices/materials
or by applying feedback controlling force. Passive devices such as dynamic absorbers
are widely used in several practical engineering applications [1, 2], because of their
simplicity, low cost, and easiness to implement. However, they are limited by the
operating range of frequencies and weight penalties. Their performance cannot be
altered due to any change in operating conditions. Active control has a potential to
overcome the disadvantages encountered with existing passive devices by supply-
ing the desirable controlling forces in a dynamic environment (real time). The active
vibration control (AVC) is implemented by means of sensors, actuators, and comput-
ers. The sensors detect vibration levels continuously, the computer then computes the
appropriate amount of feedback control force needed to control vibrations at some
given levels, and the calculated feedback gains are then applied to the structures
by means of actuators. Recent advances in hardware and sensor technologies have
allowed implementation of AVC in various engineering applications. These include
integrated traction control, wheel-slip control and active suspension control [3] in
automobile engineering, active and semi-active tendon control of building vibrations
and cable stayed bridge vibration in civil engineering structures [4–6], active vibra-
tion isolation of helicopters in aerospace applications [7–9]. Developments of smart
sensors and actuators (piezoelectric, magneto-restrictive, magneto-rheological fluids
etc.) to achieve active and/or semi active vibration control in a range of engineering
applications are widely available in literature [10–15].

Active control strategy requires efficient computation of feedback control gains
in real time which can be computed either from the knowledge of the model (based
on energy method, finite element and finite difference method etc.) or by using some
time and/or frequency domain measurements. In general, the dynamic characteristic
of the structure is defined by its eigenvalues (resonant frequencies or poles), and cor-
responding eigenvectors. The location of these eigenvalues or poles in the complex
plane defines the response characteristics of the structure. One of the control objec-
tives is to properly assign and place poles such that vibration suppression and desired
dynamic response of the system can be achieved. By pole placement, the transient
motion of the system can bemanipulated, the damping of the system can be enhanced
and natural frequencies of the system can be kept away from resonance with the time
varying applied harmonic loads. Additionally, by using active control zero assign-
ments or nodal control to suppress the vibration at chosen frequencies and locations
on the structure can be achieved [16]. By both eigenvalues and eigenvectors (natural
frequencies and mode shapes) active eigenstructure assignment problems can be for-
mulated and solved for the precise shaping of the vibratory response of the system
[17, 18].
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In various engineering applications (buildings, structures, automobile etc.), the
model size n is large and existing techniques for pole placement be applied to the
reduced-order model through a first-order state-space realization [19, 20]. The trans-
formation of a natural second-order model of a dynamical system to a first-order
realization destroys some of the nice exploitable structures, such as the symmetry,
positive definiteness, connectivity, etc., which are assets in a computational setting. A
first-order realization might also require inversion of ill-conditioned matrix bringing
numerical stability in computations. Moreover, in practice number of poles which
can be measured and required by to be changed is comparatively small p � 2n. In
such cases, the use of Ackermann’s formula is impractical because for implement-
ing the classical pole placement it is required to have a complete set of closed loop
poles. Assigning a random (stable poles)

{
μ j
}2n
j=1 set may lead to a larger control

force than really needed.Moreover, when the poles aremoved to a desired location of
designer’s interest by the application of active controlling force, the energy is being
transferred to the system including the highermodes. Thismay lead some of the poles
corresponding to the higher modes move towards instability. Such a phenomenon in
control is known as “spillover” [21]. These problems may become critical for large
dimensional systems, which are characterized by many modes and associated large
number of poles governing the dynamics of the system.

2 Traditional Modeling for Active Vibration Control

In general, vibrating structures are approximated by discrete models and their open
loop dynamics is governed by the following set of differential equations,

Mq̈(t) + Cq̇(t) + Kq = f(t), (1)

where the dots denote derivatives with respect to time,M,C,K ∈ �n×n , respectively,
are the system matrices known as the mass (inertia), damping and stiffness matrices
respectively, q(t), q̇(t), q̈(t) ∈ �n×1, are the displacement, velocity and acceleration
degrees of freedom vectors respectively, and f(t) ∈ �m×1 is the external excitation
vector for a general multi-input case withm ≤ n. The natural response of the system
(1) due to external excitation and in the absence of controlling force is known as the
open loop response of the system.

Active Vibration Control (AVC) strategy combines multiple sensors (to sense the
vibration level continuously), computers (to compute the controlling force in real
time) and actuators (to supply the controlling force) for suppressing the vibration
corresponding wide range of dynamic operating conditions as shown in Fig. 1.

The feedback control laws to achieve AVC deals computing and supplying (feed-
back) a controlling force based upon the response (state) measurement such that the
closed loop response of the system will have desired behavior, as defined by con-
trol designers or engineers. The governing closed loop system associated with (1) is
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Fig. 1 Schematic of active vibration control strategy

expressed as,

Mq̈(t) + Cq̇(t) + Kq(t) = Bcu(t) + f(t), (2)

where, u(t) ∈ �m×1 are the controlling force,Bc ∈ �n×m is known as the control dis-
tribution matrix. The feedback controlling force u(t) can be scalar or vector and they
can be distributed through the actuator/s by selecting Bc appropriately. The compu-
tation of the controlling force u(t) depends upon the measurement of state variables
(displacement or velocity) or output measurements of response co-ordinates. The
state feedback control law uses of control forces which are proportional to state
(position and velocity) measurements as,

u(t) = −FT
v q̇ − GT

d q, (3)

where, Fv ∈ �n×m and Gd ∈ �n×m are constant velocity and displacement state
feedback gain matrices respectively. The single input state feedback is a special case
of (3), in which the scalar controlling force

u(t) = −fTv q̇ − gTd q, fv, gd ∈ �n×1, (4)

is distributed by selecting Bc = bc ∈ �n×1 vector. The non-zero entries of bc defines
the location of the actuator and its magnitude is often taken to be the gains of selected
actuators. In practical point of view, it may happen that the scalar control force u(t)
required to achieve the desired control is so large that it cannot be implemented. In
such cases, multi input control vector u(t) provides more flexibility (combination of
sensors and actuators) in minimizing the controller gain norms.

By substituting (3) in (2), the following closed loop system,
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Mq̈(t) + C̃q̇(t) + K̃q(t) = f(t), (5)

where,

C̃ = C + BcFT
v , K̃ = K + BcGT

d . (6)

If there is no external disturbance p(t) = 0, the dynamical behavior of the
open loop system (1) and closed loop system (2) is characterized by the following
eigenvalue problems,

⎧
⎪⎨

⎪⎩

(
λ2
jM + λ jC + K

)
ψ j = 0,

(
λ2
jM + λ jC + K

)T
ϕ j = 0

(
μ2

jM + μ j C̃ + K̃
)
ψ̃ j = 0,

(
μ2

jM + μ j C̃ + K̃
)T

ϕ̃ j = 0
, for j = 1, 2, . . . , 2n

(7)

where, λ j are the open loop eigenvalues with corresponding right and left eigen-
vectors ψ j ,ϕ j , respectively and μ j are the closed loop eigenvalues and ψ̃ j , ϕ̃ j are
the corresponding closed loop eigenvectors. The eigenvalues of (7) are the roots of
following characteristic polynomial

det
(
λ2
jM + λ jC + K

) = 0, det
(
μ2

jM + μ j C̃ + K̃
)

= 0. (8)

These eigenvalues and corresponding eigenvectors may be arranged to form the
spectral and modal matrices as,

� = diag
(
λ j
)
,� = [ϕ1 . . . ϕ2n

]
,� = [ψ1 . . . ψ2n

] ∈ C
n×2n . (9)

When the system matrices are symmetric,M = MT , C = CT , K = KT the left
and right eigenvectors will be same implying ϕ j = ψ j and leading to spectral and
modal matrices defined by (9) with � = � ∈ C

n×2n .
By using the first order realization of the governing differential equations, the

open loop system (1) is often converted to the following state space form,

ẋss = Assxss + Bssuss
yss = Cssxss + Dssuss

, (10)

where, xss = (
q q̇
)T

is the state vector, Ass ∈ �2n×2n is the state matrix,
Bss ∈ �2n×m is the input matrix, uss ∈ �m×1 is the input vector (excitation and/or
controlling force), Css ∈ �s×2n is the output matrix, and Dss ∈ �s×m is transition
(feed-forward) matrix. In the absence of control, the eigenvalues of the state space
system (10) are known as the poles

{
λ j
}2n
j=1 of the open loop system.

Design of a linear and modern control system deals with computing and/or esti-
mating the controller force in time and frequency domain associated with the state
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space system (10) and several tools for controller design are available in literature
[18–20]. For example, the classical eigenvalue or pole assignment problem deals
with finding the control gain vectors/matrices in (3) from the known system matri-
ces/vectors M, C, K, Bc, such that the controlled loop system (7) has the desired
closed loop poles

{
μ j
}2n
j=1. The solution of the classical pole placement problem and

the robust algorithm for such a pole placement is developed in [22].
The partial pole assignment (PPA) for quadratic eigenvalue problems associated

with (2) is first developed in [23] which computes the controller gains without
the state space transformation, such that a partial set of eigenvalues

{
λ j
}p
j=1 are

assigned to a desired set
{
μ j
}p
j=1, while keeping all other eigenvalues unchanged

{
λ j = μ j

}2n
j=p+1. This method ensures that the spillover phenomenon does not occur

and higher modes are not affected by the placement of few open loop poles by
implying that the characteristic equation for the closed loop system satisfies

⎧
⎨

⎩

det
(
μ2

jM + μ j C̃ + K̃
)

= 0, j = 1, 2, . . . , p

det
(
λ2
jM + λ j C̃ + K̃

)
= 0, j = p + 1, p + 2, . . . , 2n

. (11)

They have computed the explicit solution for the control gain vectors associated
with the symmetric quadratic pencil which only requires the systemmatrices, desired
closed loop poles, and those open loop eigenpairs (eigenvalues and corresponding
eigenvectors) which are to be invariant. Subsequent progress in this area could be
found in [24, 25].

It is important to note that for complex structures mathematical models defining
(1) are obtained by using the finite element modeling technique which approximate
the structural properties such as mass and stiffness, joints, boundary conditions, etc.
Moreover, due to the unavailability of accurate damping values, they are always
assumed to be negligible or considered proportionally damped for the purposes
of modal or generalized co-ordinate transformation. These approximation errors in
modeling can be detrimental while applying controlling force in real time. Hence, in
order to implement the state space control or PPA algorithms for large and complex
structures, an observer needs to be designed for estimating the unmeasured states
needed for full state feedback control [18–20].

3 Active Control by the Method of Receptances

To overcome the challenges of the traditional state space modeling approach, or any
model dependent controller-design approach, a new method of receptances is devel-
oped for active vibration control [26]. This approach does not require the knowledge
of models defining the large and complex structures and completely relies on avail-
able frequency response transfer functions which can be extracted from vibration
experiments. The size of the matrices involved in the controller design is small and
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they depend on the number of sensors and actuators available on the structure for
controller design. This method is generic and can be used for wide applications. It
is not limited to particular types of structures and is not limited by physical size or
complexity of the structure. The formulation of this method and subsequent progress
made in this area are highlighted here.

3.1 Formulation and Progress for Active Vibration Control

The dynamic analysis of a structure often lead to the following second order system
of equations in the Laplace domain associated with the open loop system (1),

(
s2M + sC + K

)
q(s) = f(s). (12)

The above dynamical system (12) can also be expressed in terms of receptance
matrix H(s) as follows,

H(s)f(s) = q(s), (13)

where the matrix,

H(s) = (s2M + sC + K
)−1

, (14)

is known as the receptance matrix for the open loop system. The receptance matrix
may also be expressed in terms of the eigenvalues and eigenvectors as follows,

H(s) = (s2M + sC + K
)−1 =

2n∑

j=1

ψ jϕ
T
j(

s − λ j
) + ψ∗

jϕ
∗T
j(

s − λ∗
j

) , (15)

It is important to note that the receptance matrix H(s) in (15) can be extracted
purely from themeasurement and are dominated by the eigenvalues (or poles) closest
to the frequency of excitation as shown in (15) where n is the number of eigenvalues
and eigenvectors describing the system, ϕ j and ψ j are the jth left and right eigen-
vector respectively corresponding to the jth eigenvalue λ j satisfying the eigenvalue
problem (7) for the open loop system.

By substituting the state feedback single input control (4), which is expressed in
the following Laplace domain form,

uc(s) = −(sfTv + gTd
)
q(s) (16)

in the closed loop system (2) the following closed loop system is obtained,

(
s2M + sC + K + bc(gd + sfd)T

)
q(s) = f(s). (17)
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Hence the closed loop receptance can be represented as,

Ĥ(s) = (s2M + sC + K + bc(gd + sfd)T
)−1

. (18)

It is shown in [26] that a rank-1 modification of (18) can be obtained in terms of
the open loop receptances H(s) as follows,

Ĥ(s) = H(s) − H(s)bc(gd + sfv)TH(s)

1 + (gd + sfv)TH(s)bc
. (19)

The characteristics denominator roots of (19) represents the closed loop poles.
Hence for any set of chosen closed loop poles {s j = μ j j = 1, 2, . . . , 2n} the
following linear system of equations can be obtained,

(
gd + μ j fv

)T
r j = −1with r j = H(μ j )bc. (20)

By solving (20) the control gain vectors fv, gd can be computed for a desired pole
placement

{
μ j
}2n
j=1 with the knowledge of available receptance frequency response

transfer function r j while circumventing the knowledge of systemmatricesM,C, and
K. It is shown in [26] that if

{
μ j
}2n
j=1 is closed under conjugation, then the controller

gains fv, gd are real. Similar to describing the denominator dynamics of (19) in linear
systemofEq. (20) for the pole placement, it is also shown that the zero assignment can
be realized by developing the linear systems of equations from the numerator of (19).
The theory and associated examples for poles, zero and simultaneous assignment of
poles and zeros are also shown in [26].

For the case of multi-input control (3) for the system (2), the following closed
loop receptance as a function of open loop receptances are obtained in [27],

Ĥ(s) = adj
(
I + H(s)(Gd + sFv)

T
)

det
(
I + H(s)(Gd + sFv)

T
)H(s). (21)

The control problem for pole placement in this case deals in finding the feedback
control gains defining (21) by solving the following nonlinear set of equations

det
(
I + H(μ j )Q̂(μ j )

)
= 0, for j = 1, 2, . . . , 2n. (22)

Experiments were conducted on T-shaped plate to demonstrate and verify the
receptance based control in [27]. It is shown that by using collocated accelerometers
and inertial actuators, poles and zeros of a system can be assigned for the case
of output feedback control. This approach has also been extended to analyze the
sensitivity of the individual poles by computing their sensitivities with respect to the
controller gains in [28]. The realization of active/hybrid control by this method in
friction induced vibration problems is demonstrated in [29, 30].
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The closed loop system for the case of single input control (17) can have the
following state space form,

(
λ jϕ

T
j ϕT

j

)(
λ j

[
0 M
M C

]
+
[−M 0

0 K

])(
λ jψ j

ψ j

)
= −(ϕT

j bc
)((

gTd + λ j fTv
)
ψ j

)
,

(23)

defining the model uncontrollability and unobservability condition whenever the

right-hand-side of (23) vanishes. Hence, when
(
ϕT

j bc
)

= 0, it is known as the

uncontrollability condition or when
(
gTd + λ j fTv

)
ψ j = 0, it is known to be the

unobservability condition, and under either of these conditions the eigenvalue λ j

remains unchanged by control action.

The uncontrollability condition
(
bT
c ϕ j

)
= 0 requires that the control distribu-

tion vector bc must be perpendicular to both the real and imaginary parts of left
eigenvectors ϕ j . It is shown in [31] that the following selection of bc

bc(s) = b1 + b2
s

, (24)

makes the system uncontrollable for closed loop poles
{
λ j
}2n
j=p+1 . This allowed the

computation of controller gains fv, gd for partial pole assignment such that selected
number of open loop poles are assigned to a new closed loop values

{
μ j
}p
j=1, p < 2n

and
{
λ j
}2n
j=p+1 number of open loop poles remain invariant. By using two different

test structures, one light fiber composite beam controlled by piezoelectric patches and
other a heavy modular structure which is controlled by electromagnetic actuators,
it is shown in [31] that selected poles of these structures can be controlled without
influencing other poles associated with higher modes.

Subsequently, the effect of noise in measured receptance is addressed in [32]
and a sequential multi-input feedback control approach is developed for robust pole
placement.Both passivemodifications in systemmatrices anddesign of active control
by the method of receptances with experimental verification are investigated in [33].
This approach has been implemented for control of flexible links in [34] and for
systems involving asymmetric matrices in [35]. The experimental demonstration of
receptance based control for AgustaWestland W30 helicopter airframe is detailed in
[36].

In order to overcome the challenges of solving nonlinear systems (22) associated
withmulti-input and output feedback control, eigenvalue and eigenvector assignment
by multi-input-multi-output control using experimentally measured receptances is
developed in [37]. The control distribution matrices and feedback gain matrices were
partitioned as a combination of single input control as follows,

Bc = [bc1 bc2 · · · bcm
]
, Fv = [ fv1 fv2 · · · fvm

]
, Gd = [ gd1 gd2 · · · gdm

]
. (25)
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Now by substituting (3) and (25) in (2) the eigenvalue problem associated with
the closed loop system (without external excitation f(t) = 0) can be represented as,

(
μ2

jM + μ jC + K−(
bc1
(
μ j fTv1 + gTd1

)+ bc2
(
μ j fTv2 + gTd2

)+ · · · + bcr
(
μ j fvm + gdm

))

)

v j = 0. (26)

where,
{
μ j
}2n
j=1 is the desired closed loop eigenvalues of for each velocity and v j

for j = 1, 2, . . . , 2n are the associated eigenvectors.
The system (26) can be rearranged as,

v j = H
(
μ j
)(
bc1
(
μ j fTv1 + gTd1

)+ bc2
(
μ j fTv2 + gTd2

)+ · · · + bcm
(
μ j fTvm + gTdm

))
v j .

(27)

Now by denoting,

rμ j,r = H
(
μ j
)
bcr , for j = 1, 2, . . . , 2n, and r = 1, 2, . . . ,m (28)

and,

eμ j,r = (μ j fTvr + gTdr
)
v j , for j = 1, 2, . . . , 2n, and r = 1, 2, . . . ,m, (29)

the eigenvectors v j of the closed loop system of Eqs. (26) can be expressed in terms
of the linear combination available transfer functions rμ j,r as,

v j = eμ j,1rμ j,1 + eμ j,2rμ j,2 + · · · + eμ j,mrμ j,m . (30)

Equation (30) can be now expressed in the following linear systems of equations
for each velocity of interest,

⎡

⎢⎢⎢⎢
⎣

μ jvTj 0 · · · 0 vTj 0 · · · 0
0 μ jvTj · · · 0 0 vTj · · · 0
...

...
...

...
...

...
...

...

0 0 · · · μ jvTj 0 0 · · · vTj

⎤

⎥⎥⎥⎥
⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

fv1
...

fvm
gd1
...

gdm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

eμ j,1

eμ j,2

...

eμ j,m

⎞

⎟⎟⎟
⎠

. (31)

As the eigenvectors v j can be scaled arbitrarily, by choosing a random self-
conjugate pair

(
eμ j,r , eμ j+1,r = eμ j,r

)
associated with the self-conjugate closed

loop pair of poles
(
μ j,r , μ j+1,r = μ j,r

)
in (31) the control gain matrices Fv =[

fv1 fv2 · · · fvm
]
, Gd = [

gd1 gd2 · · · gdm
]
can be obtained. It is shown in [37] that

selection of self-conjugate pairs of poles and eμ j,r ensures the real control gain and
multiple of solutions for control gains can be obtained for various scaling choices of
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eμ j,k . In order to ensure the partial pole assignment, some of the open loop eigenval-
ues (2n − p) can be made invariant in the closed loop system (26), by ensuring the
following unobservability condition

(
bc1
(
λkfTv1 + gTd1

)+ · · · + bcm
(
λkfvm + gdm

))
wk = 0, (32)

for k = p + 1, p + 2, . . . , 2n, p < 2n, where, λk and wk are eigenvalues and
eigenvectors of the open loop system respectively, which remains unchanged. In this
case the (2n − p) equations in (32) can be expressed in the following linear system
of equation form,

⎡

⎢⎢⎢
⎣

λkwT
k 0 · · · 0 wT

k 0 · · · 0
0 λkwT

k · · · 0 0 wT
k · · · 0

...
...

...
...

...
...

...
...

0 0 · · · λkwT
k 0 0 · · · wT

k

⎤

⎥⎥⎥
⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

fv1
...

fvm
gd1
...

gdm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

0
0
...

0

⎞

⎟⎟⎟
⎠

. (33)

By combining (31) and (33) the controller gains to assign the newclosed looppoles{
μ j
}p
j=1 while ensuring the unaffected open loop poles {λk}2nk=p+1 can be obtained

by solving the following linear system of equations,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

μ jvTj 0 · · · 0 vTj 0 · · · 0
0 μ jvTj · · · 0 0 vTj · · · 0
...

...
...

...
...

...
...

...

0 0 · · · μ jvTj 0 0 · · · vTj
λkwT

k 0 · · · 0 wT
k 0 · · · 0

0 λkwT
k · · · 0 0 wT

k · · · 0
...

...
...

...
...

...
...

...

0 0 · · · λkwT
k 0 0 · · · wT

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

fv1
...

fvm
gd1
...

gdm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

eμ j,1

eμ j,2

...

eμ j,m

0
0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (34)

In this way the complete spectrum may be separated into assigned modes and
retained modes to achieve partial pole placement (PPA). The assignment of selected
finite number of modes, which usually can be measured in practice, stability of the
system can be guaranteed without worrying about the other measures being taken to
solve the problem of spillover in the uncontrolled/unobserved modes.

In recent years this receptance based approach has gained more attention and it
is being used for designing different types of controllers and for various engineering
applications. For example, method of receptances is also used for designing control
for the systemswith inherent time delay in the feedback loop. Partial pole assignment
with time delay by combining the receptance matrix and system matrices are shown
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in [38]. For the case of multi-input various methods are investigated by Bai et al.
to compute efficient and robust controller gains for time delayed system in [39–41].
The effect of time delay in friction induced vibration problem [42], output feedback
problem [43], higher order systems [44] and the stability of the closed loop system
[45] using the receptance method are also investigated. Receptance based control is
also developed for nonlinear systems [46, 47], distributed parameter systems [48],
viscoelastic system [49], structural modification for rotor-bearing system [50] and
fluid loaded systems [51]. Partial pole assignment with inaccessible degrees of free-
dom is demonstrated in [52]. Eigenstructure assignment by this method is shown in
[53, 54]. The role of controllability and observability fir the receptancemethod is dis-
cussed in [55]. Robust stabilization of eigenvalue assignment and their sensitivity for
the friction induced vibration problems are shown in [56]. A multi-step method for
higher order system is developed in [57], passive modification for partial frequency
assignment is demonstrated in [58] and partial quadratic eigenvalue assignment and
development the strategy for minimum controller norm by this approach is shown in
[59, 60].

4 Receptance Based Active Aeroelastic Control

Active aeroelastic control deals with the mutual interaction between aerodynamic
forces, structural vibration, stability and the closed loop control to suppress dynamic
flutter instabilities and gust load alleviation. Modeling and design of aeroelastic
and aeroservoelastic control has been investigated in the past and their details can
be found in several monographs [61–63]. Traditionally these problems are often
modeled and solved in state-space form and they are derived in generalized or modal
co-ordinates which may require design of observers/estimators to realize the active
control. The aircraft wings and UAVs are generally embedded with several in-board
sensors and actuators such as strain gages, accelerometers, pitch gyros and servo-
actuators to manipulate the leading and trailing edge control surfaces. The method of
receptance is a natural fit to design the controller for such structures, which allows the
controller design based upon receptances available from the combination of available
sensors and actuators on the aircraft. In this section, with the help of a flexible
wing model [64], the development of receptance based control for the aeroelastic
control application is summarized with several numerical examples. The discussion
is limited to the pole assignment problems for flutter suppression and flutter boundary
extension.

Let us consider a flexible wing model defined by two bending and two torsion
modes, with multiple control surfaces, as shown in Fig. 2. The parameters defining
the wing model is summarized in Table 1.

The closed loop dynamics of the linear aeroelastic system is governed by (2) with
the following system matrices,
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M = m

⎡

⎢⎢
⎣

s5c/5 s6c/6 s4c/4 s5c/5
s6c/6 s7c/7 s5cc/5 s6cc/6
s4c/4 s5c/5 s3c̃/3 s4c̃/4
s5c/5 s6c/6 s4c̃/4 s5c̃/5

⎤

⎥⎥
⎦, (35)

θ

Flexural axis

c

xβ

fx

z

x

ec
fe

y

s

2β

3β

1β

1s

2s

V

Fig. 2 A flexible wing model with multiple control surfaces

Table 1 Parameters for the
flexible wing model shown in
Fig. 4

Parameter Symbol Values

Semi-span (m) s 6

Chord (m) c 1

Mass per unit area (kg/m2) m 10

Air density (kg/m3) ρ 1.225

2D lift curve slope aw 2π

Unsteady torsional velocity term Mθ̇ −1.2c

Fraction of chord e f 0.1

Flexural rigidity EI 400 × 103

Torsional rigidity GJ 200 × 103

Position of flexural axis x f 0.4c

Eccentricity ratio e 0.15
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C(V ) = Cs + ρV

⎡

⎢⎢⎢
⎣

− caws
5

10 − caws
6

12 0 0

− caws
6

12 − caws
7

14 0 0
c2eaws

4

8
c2eaws

5

10
c3Mθ̇ s

3

24
c3Mθ̇ s

4

32
c2eaws

5

10
c2eaws

6

12
c3Mθ̇ s

4

32
c3Mθ̇ s

5

40

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
Ca

, (36)

K(V ) =

⎡

⎢⎢⎢
⎣

4E I s 6s2E I 0 0
6s2E I 12s3E I 0 0

0 0 GJs G Js2

0 0 GJs2 4GJs3/3

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
Ks

+ ρV 2

⎡

⎢⎢⎢
⎣

0 0 −caws4/8 −caws5/10
0 0 −caws5/10 −caws6/12
0 0 c2eaws3/6 c2eaws4/8
0 0 c2eaws4/8 c2eaws5/10

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
Ka

,

(37)

and,

Bc = ρV 2c

⎡

⎢⎢
⎣

−acs31/6 −ac
(
s32 − s31

)
/6 −ac

(
s3 − s32

)
/6

−acs41/8 −ac
(
s42 − s41

)
/8 −ac

(
s3 − s42

)
/8

4cbcs21/4 cbc
(
s22 − s21

)
/4 cbc

(
s3 − s22

)
/4

cbcs31/6 cbc
(
s32 − s31

)
/6 cbc

(
s3 − s32

)
/6

⎤

⎥⎥
⎦ (38)

where, q = (q1 q2 q3 q4
)T

are the generalized coordinates. The stiffness and damp-
ing matrices composed of structural stiffness Ks and structural damping Cs = 0 as
well as the aerodynamic stiffness Ka and damping Ca matrices which are velocity
(V ) dependent due to the contribution of the aerodynamic forces surrounding the

wing plan form. The control is distrusted using the rotation u(t) = (
β1 β2 β3

)T

of the control surfaces which are hinged at the trailing edge of the wing planform.
The control distribution matrix Bc (38) represents the aerodynamic loads on the
control surfaces. The receptance frequency response transfer function between the
control surface rotation and the response degrees of freedom can be represented by
the following matrix,

r(s) = H(s)Bc =

⎡

⎢⎢
⎣

hβ1q1(s) hβ2q1(s) hβ3q1(s)
hβ1q2(s) hβ2q2(s) hβ3q2(s)
hβ1q3(s) hβ2q3(s) hβ3q3(s)
hβ1q4(s) hβ2q4(s) hβ3q4(s)

⎤

⎥⎥
⎦. (39)

Hence the number of control input (m = 3) and measured degrees of freedom (n
= 4) defines the size of receptance matrix which are needed to design the control. For
the case of single control surface m = 1 at the trailing end, the control distribution
matrix (38)and single input control in (2) will have the following form,

Bc = bc = ρV 2c
(

− acs31
6 − acs41

8
cbcs21
4

cbcs31
6

)T
, u(t) = β1(t). (40)
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The control surface parameters are defined as follows: ed =
√
e f
(
1 − e f

)
, bc =

aw/π
(
1 − e f

)
ed , and ac = aw/π

(
cos−1

(
1 − 2e f

)+ 2ed
)
. Alternatively, it is shown

in [65] that the wing model can be defined with control surface rotation as additional
degrees of freedom in the model.

4.1 Example: Pole Placement with Single Control Surface

Consider the case of single input control with the trailing edge control surface having
the length of s1 = s. For the air speed V = 60 m/s the system matrices (35)–(38) are
obtained with the following open loop poles:

λ1,2 = −6.10 ± 111.04i, λ3,4 = −10.00 ± 459.11i
λ5,6 = −11.31 ± 192.66i, λ7,8 = −15.11 ± 14.36i

(41)

The closed loop poles are chosen to be:

μ j = (Re(λ j
)− 15

)+ (Im(λ j
)+ 1

)
i, for j = 1, 2, . . . , 8. (42)

Linear system of equations (20) is solved and the following controller gains are
computed with the available receptance transfer functions r

(
μ j
)
obtained from the

system matrices and control surface input matrix (40) for the chosen closed loop
poles (42),

Fv = fv =

⎛

⎜⎜
⎝

−1.4007
−5.1935
−0.0677
0.2193

⎞

⎟⎟
⎠, Gd = gd =

⎛

⎜⎜
⎝

−18.0772
92.5955
5.7555
86.7900

⎞

⎟⎟
⎠ . (43)

With the control gains (43) the closed loop transfer function (19) can be computed
and they are plotted with open loop receptance transfer functions (39) in Fig. 3 in the
frequency domain (s = jω). It is evident from Fig. 3 that more modal damping at
each corresponding natural frequencies are added, as defined by the chosen closed
loop poles in (42). This process can be repeated for each velocity andflutter instability
can be suppressed by pole placement. This will allow the design of the controller
such that the open loop flutter velocity can be increased and the flutter boundary for
a given aircraft can be extended for a given aircraft. These aspects are highlighted in
the subsequent examples which consider the general solution form (31) for the pole
and partial pole placement.
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Fig. 3 Open loop (OL) and closed loop (CL) transfer functions at V = 60 m/s

4.2 Example: Flutter Boundary Extension via Pole
and Partial Pole Placement

Now we consider the case of multi-input control where the control force is defined
by (3) for the case of three control surfaces (m = 3) with s1 = 0.5s and s2 = 0.75s.
We reconsider the pole assignment defined in (42).

The system of Eqs. (31) is constructed with the knowledge of (27) which requires
the knowledge of closed loop pole in (42) and the receptance transfer functions
obtained between the partitioned control distribution matrix Bc = (

bc1 bc2 bc3
)

as defined in (38) and degrees of freedom. By choosing a random conjugate pair(
eμ j,k , eμ j+1,k = ±i

)
the system of Eq. (31) is solved and the following gains Fv =[

fv1 fv2 fv3
]
and Gd = [gd1 gd2 gd3

]
are computed:

Fv =

⎛

⎜⎜
⎝

2.0640 2.0640 2.0640
7.7255 7.7255 7.7255
0.0567 0.0567 0.0567

−0.2380 −0.2380 −0.2380

⎞

⎟⎟
⎠, Gd =

⎛

⎜⎜
⎝

27.53 27.53 27.53
−127.23 −127.23 −127.23
−4.91 −4.91 −4.91
−82.99 −82.99 −82.99

⎞

⎟⎟
⎠.

(44)
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These feedback gains satisfies the desire pole placement (42) by ensuring,

det

(

μ2
jM + μ jC(V ) + K(V ) −

(
bc1
(
μ j fTv1 + gTd1

)

+bc2
(
μ j fv2 + gd2

)+ bc3
(
μ j fv3 + gd3

)

))

= 0.

(45)

Controller gains are now computed for each velocity (V = 1, 2, 3, . . . , 120) m/s
defining the entire flight envelop. By using controller gains for each velocity the
closed loop poles are computed. In Fig. 4, the real part of open and closed loop poles
are plotted together, demonstrating that by active aeroelastic control the open loop
flutter velocity ~87 m/s is increased to a new closed loop flutter velocity of ~115 m/s.
This extends the flutter boundary bymore than 30% for this wing configuration. Note
that the selection of closed loop poles is arbitrary here for introducing more damping
in the modes and it may place additional requirement for the selection of actuators
driving the control surfaces. Moreover the computation of controller gain is needed
for each velocity.

Alternatively, it is shown in [66] that a single controller gain can be computed for
entire flight envelop by formulating and solving a least square problem associated
with (31). For example, by denoting the system (31) for each velocity Vi as,

G j (Vi )z = ẽ(Vi ), for j = 1, 2, . . . , 2n, k = 1, 2, . . . , r. (46)

Then for the entire flight envelop the following system of equations can be
assembled as follows,

Fig. 4 Real part of eigenvalues of the open loop system (Dots) and closed loop system (Squares)
with velocity dependent gains as a function of velocity
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⎡

⎢⎢⎢⎢⎢⎢
⎣

G j (V1)
...

G j (Vk)
...

G j (Vr )

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

fv1
...

fvr
gd1
...

gdr

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

e jr (V1)
...

e jr (Vk)
...

e jr (Vr )

⎞

⎟⎟⎟⎟⎟⎟
⎠

, for k = 1, 2, . . . , r. (47)

A unique set of controller gains now can be obtained by solving (47) in the least
square sense. By choosing the flight envelop with V1 = 1 m/s and Vr = 120 m/s
with the increment of 1 m/s, following set of unique controller gains are computed
in the least square sense by solving (47) for the pole placement (42),

Fv =

⎛

⎜⎜
⎝

−0.3443 −0.3443 −0.3443
−2.6942 −2.6942 −2.6942
0.0605 0.0605 0.0605
0.0526 0.0526 0.0526

⎞

⎟⎟
⎠, Gd = −

⎛

⎜⎜
⎝

15.23 15.23 15.23
111.77 111.77 111.77
1.47 1.47 1.47
12.68 12.68 12.68

⎞

⎟⎟
⎠.

(48)

With the controller gains in (48) the closed loop poles are computed and their
real part are compared with their open loop counterparts in Fig. 5. It is important to
note that for the entire flight envelop this unique controller gain matrices ensure the
flutter boundary extension from ~87 to ~114 m/s. However, not all the closed loop
poles are placed at the desired location as chosen in (42).

Fig. 5 Real part of eigenvalues of the open loop system (Dots) and closed loop system (Squares)
with unique control gain (48) as a function of velocity
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Fig. 6 Real part of eigenvalues of the open loop system (Dots) and closed loop system (Squares)
as a function of velocity for the case of PPA

For the case of PPA the following closed loop poles are chosen

μ j = (Re(λ j
)− 15

)+ (Im(λ j
)+ 1

)
i, for j = 1, 2 μ j = λ j , for j = 3, 4, . . . , 8,

(49)

which allows the control of the mode contributing to the flutter instability without
affecting any other higher modes of the aeroelastic system. By choosing the pole
placement (49) the controller gains for the case of three control surfaces are computed
for each velocity (V = 1, 2, 3, . . . , 120) m/s in the flight envelop by solving (34).
The real part of the open loop eigenvalues are plotted with the closed loop poles
obtained from the computed controller gains in Fig. 6.

It can be seen in Fig. 6 that the controller introduces the damping at only onemode
which is contributing to the flutter. It achieves the same flutter boundary extension
for the case of full pole assignment as shown is Fig. 4. However, the remaining
eigenvalues were invariant. By constructing the least square system (47) associated
with (34), a unique controller gains can also be computed. Note that the performance
of the controller with unique control gain for an entire flight envelop will depend
on the selection of the closed loop poles and the selection of the velocity range for
which least square system (47) is constructed.

These examples demonstrated the implementation of linear aeroelastic control by
the method of receptances. The selection of unsteady aerodynamic term Mθ̇ in (36)
allowed the receptance of aeroelastic systems to be similar to (14). The receptances
for more complex unsteady aeroelastic interaction will have different form which is
not demonstrated here for brevity. However, the progress in this area is summarized
briefly in the following section.
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4.3 Recent Progress in Receptance Based Active Aeroelastic
Control

The receptance method is promising in the area of aeroelastic control as the recep-
tance transfer function needed for controller design can be obtained from open loop
wind tunnel testing during the design/testing phase or during its flight operation.
In practice the input/output data may be perfectly general, making use of the avail-
able excitation and response signals to and from actuators and sensors respectively.
For example, the input might be the voltage supplied to a motor in order to move
a control surface and the output obtained from accelerometers placed on a wing.
Moreover, measured receptance data (from wind tunnel test or inflight) truly repre-
sent the aeroelastic interactions and do not require the approximation of aeroelastic
interaction between the structure and unsteady aerodynamic forces. This allowed the
several progresses in recent years for designing the active aeroelastic control by the
receptance method.

It is shown in [66] that by designing a single input control force active pole assign-
ment for flutter suppression/boundary extension can be achieved from numerical
receptances for a range of wing configurations subjected to unsteady aerodynamic
loads. The usage of single input feedback control by piezo-actuated ailerons has
been also verified in a wind tunnel testing for flutter suppression [67]. For high per-
formance flexible wings having multiple leading and trailing edge control surfaces,
multi-input state feedback control problems developed in [68] for achieving flutter
boundary augmentation in fighter wingmodels having two and three control surfaces.
It is shown that on the onset of flutter the closed loop system can be stabilized by
designing the prescribed controller output or control surface rotation. State feedback
control problems are developed with actuator dynamics and partial pole assignment
is carried out in [69], which overcame the problem of potential actuator spillover
and facilitated simultaneous control for aeroelastic and actuator modes. The study of
optimal sizing and placement of control surfaces using the receptance based control
were investigated in [70–72] such that minimal controller efforts can be achieved for
enhanced flutter boundaries. To deal with flutter suppression of wings with structural
nonlinearities receptance based control is developed in [73] to assign the limit cycles
to stable oscillations. Receptance method for controlling nonlinear aeroelastic sys-
tem is investigated in [74] and for active flutter suppression with prescribed flutter
margin is shown in [75]. Feedback linearization and control of a nonlinear aeroelastic
system is demonstrated with experimental validation in [76]. Research is currently
underway to mature the receptance based control strategy in various engineering
applications including in the area of active aeroelastic control.
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Numerical Study on the Efficiency
of Magnetophoresis in Human
Vasculature like Conditions

S. Rekha and Sarbari Bhattacharya

Abstract MagneticNanoparticles (MNPs) havebeenproposed as therapeutic agents
for treatment ofmedical conditions like cancer by using themeither as drug carriers to
specific locations in the body or as agents for localized heating. For these treatments
to be effective, a substantial quantity of MNPs need to reach the target site from
the site of injection. However, this may not be the case if blood flow alone is relied
on to transport the MNPs as losses to branching blood vessels that lead to transport
in directions away from the target site can occur. We have carried out numerical
simulations on the flow of a dilute concentration of magnetic particles (MPs), where
inter particle interactions can be ignored, in channels that mimic human vasculature
like conditions. This has been done using Open Field Operation And Manipulation
(OpenFOAM). Blood has been treated as a Newtonian fluid and only laminar flows
are considered. The size of channels and direction of flow, which is always towards
the target site, mimics the situation in arteries and arterioles. We have only taken
into consideration situations where the main channel gives rise to a single daughter
channel at different branching angles to the direction of flow.Wefind that a substantial
number ofMPs are lost to the daughter channel when the branching angle is less than
45° while a moderate loss is seen for branching angles greater than 45°. Application
of an optimum external magnetic field gradient significantly improves the fraction
of particles moving towards the target site in the case of branching angles less than
90° and ensures practically no loss for branching angles greater than 90°.
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1 Introduction

MagneticNanoParticles (MNPs) of diameter less than50nmare generally superpara-
magnetic (SPM) in nature and have the potential for a large variety of applications [1,
2]. The synthesis and characterization of MNPs has become both easier and cheaper
over the years [3]. Today it is possible to synthesizeMNPswith size, shape, magnetic
volume and surfacemodifications to address a particular problem [4, 5].MNPs can be
designed to be biodegradable and low in cytotoxicity when administered in moderate
quantities thus enabling applications, both diagnostic and therapeutic, in the field of
medicine. MNPs are already being used to enhance contrast in Magnetic Resonance
Imaging [6]. MNPs embedded in micron sized beads are used for separating specific
cells from an assay by first magnetically tagging them and then guiding them using
magnetic field gradient [7, 8]. MNPs have been proposed as therapeutic agents for
treatment of cancer either as drug carriers or as local heating agents (Magnetic Fluid
Hyperthermia) [9].

The targeted delivery ofMNPswithin a living system is in its early stage andmuch
more research has to be carried out before this can be put into regular practice [10] for
the treatment of human subjects. The transport of theMNPs from the site of injection
to the target site would rely mainly on the blood flow. If the full benefits of a targeted
delivery treatment are to be realized, a significant fraction of theMNPs injected need
to reach the target site. Owing to the complex nature of human vasculature, if one
relies on blood flow alone, the efficacy of treatment will be compromised as loss of
MNPs can be expected at every branch point encountered during flow towards the
target site. In order to overcome or minimize this, guiding MNPs to the target site
using external magnetic field gradients (EMFG) is essential. Detailed knowledge
and understanding of the human vasculature and the nature of blood flow within it is
necessary to design an optimum EMFG. The strength of the applied EMFG should
be such that the velocity acquired by the MNPs is not significantly greater than the
fluid velocity as this may disturb the flow pattern. Further, as these particles also
interact with each other in the presence of an EMFG, the field strength cannot be
increased arbitrarily as aggregation of MNPs would increase significantly leading
to an increased risk of blocking the flow channels. A trade-off between minimizing
loss of MNPs and EMFG strength has to be made to ensure that the treatment is of
maximum efficacy with minimal risk.

Several theoretical [11, 12], numerical [13–17] and experimental studies [18–23]
have been carried out to study themagnetic guiding ofMNPs in the formof ferrofluids
or magnetic microspheres (MNPs incorporated in a non-magnetic matrix). There are
also some studies which have looked at the magnetophoresis of MNPs in Y-shaped
channels [24–27]. In this study, we simulate the flow of SPMbeads through a channel
in the presence of a daughter channel of uniformwidth branching out at various angles
to the direction of flow in the primary channel, both without as well as in the presence
of an EMFG along the primary flow direction. Using Open Field Operation and
Manipulation (OpenFOAM)—a Computational Fluid Dynamics (CFD) software,
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we study how the guiding efficiency improves in channels with branching angles
from 15° to 120°, with the application of an optimum EMFG.

2 Methods

2.1 Description of the Model

The MNPs, in order to be transported to the target tissue, have to be injected into an
artery. It is known that arteries found in human vasculature vary in diameter from
a few centimeters to a few hundred microns. The main elastic arteries branch out
into several muscular arteries (small arteries) of diameter 0.1–10 mm that branch out
further into arterioles that ultimately deliver blood to specific organs/tissues through
a network of capillaries [28].We have carried out 2D simulations ofmagnetophoresis
of SPM beads of 6 μm diameter (d) in the channel set up described in the earlier
section. The guiding efficiency, which is the ratio of the number of particles that exit
from the main channel (MC) to the total number of particles injected at the inlet (in
percentage), was computed in each case.

Two different values of primary channel width (D) have been considered: (i)
500 μm which mimics an artery and (ii) 50 μm which mimics an arteriole. The
total channel length along the x-axis (L) was taken to be 9D while the length of
the daughter channel was taken to be 4.5D. The daughter channel was assigned a
constant width (Dd) throughout its length and the opening of the daughter channel
was positioned along L in such a way that the length of MC was always 4.5D.

2.2 Mesh Parameters and Boundary Conditions

Gmsh (version 2.15.0), an open software was used to generate finite element mesh of
the channel according to the above description. A 2Dmesh was created and extended
in z-axis (by about 1%ofL) in order to satisfyOpenFOAMcriteria [29]. The channels
were meshed using prism elements of uniform size throughout. The grid size (Δx)
was kept greater than the particle size in all cases (see Table 1).

Table 1 Parameters used for the simulations

D (μm) a (m) NI (At) Mesh size (μm) Time step (ms)

500 0.01 1000 24 0.1a

0.01 3000

50 0.001 3.2 6.25 0.005

aFor simulations with º = 15°, a time step of 0.015 ms was used
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Fig. 1 Finite element mesh of the channel with � = 45° (with Dd = D) with all the physical
surfaces labeled. Arrows indicate the flow direction. 1 is the inlet to the primary channel, 3 is the
outlet for the main channel in the direction of the flow at the inlet and 6 is the outlet for the daughter
channel. 2, 4, 5, 7 and 8 are walls

Surfaces 1–8 were declared as physical surfaces with the enclosed volume to be
filled with fluid while the rest (front and back) were default faces (Fig. 1). Physical
surfaces 1 and 3were treated as the inlet (In) and outlet ofMC (O1) respectivelywhile
physical surface 6 was taken as the outlet of the daughter channel (O2). These three
surfaces were assigned to be patches while the other five surfaces were taken to be
walls [with a no slip boundary condition (BC)] [30]. The default faces were declared
to be empty faces (which ensures that the simulation is indeed in 2D). Uniform
velocity was provided at In, zeroGradient at outlet 1 and 2 and noSlip conditions
at the walls [30]. The pressure (p) at In was set as zeroGradient and at O1 and O2,
it was kept a constant (p = 0). Note, that the channels here are mimicking blood
vessels in the human vasculature. This being a closed system, with all arteries finally
branching down to a capillary bed in the tissues, usage of identical pressure at both
outlets is justifiable. However, this may not always be the case.

2.3 Blood flow

We have treated blood as a Newtonian fluid with a density (ρ f ) of 1086 kg/m3 and
a kinematic viscosity (ηf ) of 10−6 m2/s. The value of kinematic viscosity used here
would match that of a dilute suspension of red blood cells in plasma [31]. Note
that kinematic viscosity of whole human blood depends strongly on the red blood
cell content. Additionally, the value of density taken matches that of the SPM beads
used. This is done so that the effect of gravity can be ignored as the beads become
neutrally buoyant in this fluid. Further, the blood flow was assumed to be laminar for
both cases considered. The velocity of the blood flow in case (i) was assigned a value
of 2 mm/s while for case (ii) it was assigned a value of 0.5 mm/s. These are towards
the lower end of the range of velocities found in channels of similar size in vivo.
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Navier-Stokes equation is discretized (finite volume method) and solved using PISO
(Pressure—Implicit with Splitting of Operators) algorithm to obtain the flow field
[32].

2.4 Super Paramagnetic Beads

The characteristics of SPM bead used in the simulations have been taken from [33].
As mentioned earlier, SPM beads have been assigned a diameter of 6 μm with a
density (ρb) of 1086 kg/m3. SPM beads contains SPM nanoparticles embedded in
a non-magnetic matrix and the magnetic volume susceptibility of the entire bead
(χb) = 0.17 is used to compute the magnetic force acting on it. Magnetization of
the beads have been reported to reach saturation values for magnetic field strengths
greater than 0.5T. The particles were injected randomly across the inlet patch at a rate
of 15 particles/second for a duration of 4 s. Note, SPM beads can be considered as
a spherical aggregate of MNPs with an aggregate diameter of 6 μm and an effective
magnetic susceptibility of χb.

2.5 OpenFOAM Specifications

2.5.1 Solver Modifications and Compilation of a New Particle Force

OpenFOAM—CFD (version 5.0) software was used to perform the numerical sim-
ulations. Euler-Lagrangian approach was used where the blood flow was modeled
as an Eulerian phase with the beads as discrete Lagrangian particles. An existing
solver called nonNewtonianicoFoam was modified to add the Lagrangian particles
to the flow [34]. A two way coupling is envisaged where the fluid and particles are
coupled to each other (Eq. 2). We use a dilute concentration of SPM beads thereby
ignoring any kind of particle-particle interactions. Magnetic field (B) is specified as
a boundary condition along with pressure (p) and Velocity (U).

The equations governing the fluid flow are

∇ ◦ −→
U = 0 (1)

∂
−→
U

∂t
+ ∇ ◦ −→

U
−→
U − �

(
ηf

−→
U

)
− ∇−→

U ◦ ∇ηf = −∇p − −→
Sb (2)

where Sb is the momentum source correction due to the presence of Lagrangian
particles [34].

The forces acting on the SPM bead are drag (Fd), gravity (Fg) and magnetic force
(Fm) due to the presence of EMFG. As this is a case of neutrally buoyant spheres,
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gravitational force plays no role, none the less it is included for extension of the
simulation beyond the case of neutrally buoyant beads.

The expressions used are given below,

Fd = 00.75CdmbμfRe

ρdd2
(3)

where

Cd = 24

(
1 + 1

6
Re

2
3

)
(4)

for particle Reynolds number (Re) < 1000

Fg = mbg

(
1 − ρf

ρb

)
(5)

−→
Fm = mbχb

ρbμ0

(−→
B .∇

)−→
B (6)

where mb is the mass of SPM bead, χb, the magnetic susceptibility of the bead, g,
the acceleration due to gravity and μo, the permeability of free space.

Lagrangian particles (SPM beads in our case) are governed by the equation

mb
d
−→
Ub

dt
= 	

−→
F (7)

A new particle force was compiled to include Fm using a standard paramagnetic
force model as a template. This new particle force model called magneticForce
requires specification of B in the initial boundary condition and χb as an input
parameter. The magneticForce particle model calculates the force on the SPM beads
using the expression in Eq. (6).

2.5.2 External Magnetic Field (B)

The expression for magnetic field along the axis of a coil (Bx) of radius a with N
turns of wire carrying a current I whose center is at the origin is given by [35]

Bx(ρ, x) = μoNI

2π

1

ρ
√

(ρ + a)2 + x2

[(
a2 − ρ2 − x2

)
E(k)

(a − ρ)2 + x2
+ K(k)

]
(8)

where ρ = √
y2 + z2 is the radial distance from the axis of the coil, K(k) and E(k)

are the elliptic integrals of first and second kind respectively with k being the elliptic
modulus given as
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k(ρ, x) =
√

4ρa

(ρ + a)2 + x2
(9)

In order to guide SPM beads into theMC, we need an EMFG along the x-axis. We
use a gradient field created by an anti-Helmholtz pair of coils which are essentially
symmetric coils with centers located at x = −a/2 and +a/2 and the current flows in
one coil in a direction opposite to that in the other.

Banti
x = Bx

(
ρ, x − a

2

)
− Bx

(
ρ, x + a

2

)
(10)

It is clear from Eq. 6 that Fm depends on
(−→
B .∇

)−→
B . In order to increase the

magnitude of Fm and to saturate the magnetization of the SPM beads, we superpose
a uniform magnetic field of 0.5T along with a suitable gradient field produced from
the anti-Helmholtz coil pair. Note that the coordinates of the grid points are obtained
using funkySetFields [36] and are used for the calculation of Banti

x field (using Qt
Octave). This is specified as B in the initial boundary condition and the resultant B
field is shown in Fig. 2a, b for two different values of NI for the same anti-Helmholtz
coil pair.

The simulation was executed for a total time of 5 s using the largest time step (Δt)
that allowed for a simulation (see Table 1) with a Courant number always less than 1,
Courant number being defined as Co = U �t

�x . The guiding efficiency was computed
for all the channel configurations considered. A screen shot of the simulation carried
out in the case of Θ = 30° at t = 2.5 s is shown in Fig. 2, both in the presence and
without the applied EMFG.

2.6 Validation of Code

The code developed is based on the solver “nonNewtonianicoFoam” that already
exists in the OpenFOAM library. This code is similar to the “icoFoam” solver, which
is used to solve incompressible laminar flows of Newtonian fluids except that it is
modified here to handle nonNewtonian fluids [37]. The simulations carried out in this
current work is for Newtonian fluids. Bayraktar et al. [38] have verified the icoFoam
solver for benchmark test cases andvalidated the code. In our study,wehavemodified
the “nonNewtonianicoFoam” solver to incorporate Lagrangian particles and have
also introduced a new particle force model which has been discussed in the earlier
section. In order to validate themodificationsmade,wehave chosen a straight channel
of D = 500 μm and L = 4500 μm with no branches and injected particles manually
at the inlet along various streamlines. The time taken by a particle, for example, on
the axis of the channel (where the fluid velocity is maximum) to reach the outlet of
the channel (to) in the presence and absence of EMFG from the simulations were



192 S. Rekha and S. Bhattacharya

Fig. 2 A screenshot of D = 500 μm, simulation at t = 2.5 s, º = 30° (Units: x and y are in metres
while magnitude of B is in tesla). The particle positions are represented by filled circles that are
scaled to 8 times larger than the particle size for purposes of visibility. a NI = 1000 At (Dd = D),
b NI = 3000 At (Dd = D), c NI = 1000 At (Dd = D/2) and d NI = 0 (Dd = D). Note that the
number of particles flowing along the daughter channel reduces as the strength of the EMFG along
the X-axis increases
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Table 2 Comparison of particle exit time “to” computed fromOpenFoamsimulationswithmodified
solver and new particle force model and numerical solutions of Eq. 11 for a test case of channel
with D = 500 μm without any branch

NI (At) to (s)

OpenFoam simulations Numerical calculations

Coil radius = 0.01 m 0 1.535 1.510

1000 1.095 1.090

3000 0.665 0.680

compared with the values obtained by solving the equation of motion of the magnetic
bead in the fluid flow.

The equation of motion of the bead that was solved numerically is given by

ρbVb
d2x(t)

dt2
= −6πμf(d/2)|vf − dx(t)

dt
| + Vbχb

μ0

∂B2
x(x)

∂x
(11)

where Vb is the volume of the bead, vf is the maximum velocity of the fluid (vf =
0.003 m/s) and Bx is given by Eq. 10 with ρ = 0 (as the bead is considered to be
moving along the axis of the channel) and a superposed uniform field of 0.5T.

It is evident from Table 2 that the simulated and numerically computed values
agree well with each other. The modified solver code as well as the magneticForce
model are thus validated and can be used for further studies now also involving
channel branches.

2.7 Grid Dependency Tests

Test simulations were carried out with varying grid sizes (Δx) both in the case of D
= 500 and 50 μm. The particles were injected manually at the same positions in all
the cases and the time taken to reach either of the outlet (to) was found out from the
simulation results. Results of test simulations for a channel having Θ = 30° branch
are reported below.

Case 1: D = 500 µm

The grid size was varied from 18 to 48 μm and 16 particles were injected manually
at the “inlet” patch. The to value of the particle injected at the 5th position from
the upper wall of the channel for all the cases are shown in Table 3. The to value
decreases from 1.845 to 1.835 s when Δx is decreased from 48 to 36 μm and then
remains unaltered for further reduction down to 18μm. This indicates that the results
are independent of the grid size in this range. A reduction of Δx below 18 μm was
not attempted to avoid large increase in computation time. We have chosen a Δx of
24 μm for the rest of the simulations with D = 500 μm channel.
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Table 3 Variation of particle
exit time to in channels of D
= 500 and 50 μm with
branch at � = 30° and
meshes of varying grid sizes

D (μm) �x (μm) to (s)

500 48 1.845

36 1.835

30 1.835

24 1.835

18 1.835

50 10 1.075

8.0 1.003

6.25 1.000

Highlighted grid sizes are the ones used for the simulation studies
presented in this current work

Case 2: D = 50 µm

Three different meshes with grid sizes of 6.25, 8 and 10 μm were used for the test
simulations. Reduction in Δx below 6.25 μm was not attempted as then the grid
size Δx becomes smaller than the particle size d. Out of the 5 particles injected
manually at the inlet, the to values of the particle injected at 3rd position from the
upper wall of the channel computed for various grid sizes are shown in Table 3 for
comparison. Given that there is practically no variation in the particle exit times
to with the variation in Δx, we conclude that our results are independent of this
parameter.

3 Results and Discussion

In the absence of EMFG, the SPMbeadsmigrated into the daughter channel irrespec-
tive of the branching angle for both the cases. The SPMbeadswere injected randomly
to mimic actual experiments. It was found that the beads which were injected into
the stream lines in the upper half of the primary channel (closer to the opening of the
daughter channel) had a higher probability of entering the daughter channel. This
is because these stream lines are far more affected by the presence of the daughter
channel than the stream lines in the lower half of the primary channel. The flow
which starts out with only an x component of velocity in the primary channel, begins
to develop a y-component around the branching point in order to flow through the
daughter channel. We find that only about 50% of the SPM beads flow through the
MC in the absence of EMFG.

Figure 3a shows the guiding efficiency for the case of the wider channel of D
= 500 μm with the daughter channel of the same width, as a function of branch
angle in the absence of an EMFG as well with two different EMFG strengths whose
specifications are given in Table 1. A substantial increase in the guiding efficiency
is obtained for Θ < 90° in the presence of an EMFG. While SPM beads flowing in
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(a)

(b)

(c)

Fig. 3 Guiding efficiencies computed for channels of various branching angles with and without
EMFG a D = Dd = 500 μm, b D = 500 μm, Dd = D/2 and c D = Dd = 50 μm. Note The
simulations with � = 15° were not carried out as it required a �t ~ 10 ns
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the lower half of the channel (away from the branch opening) continue along the
MC, beads flowing in the upper half of the channel with Fm> Fd remain in the main
channel increasing the guiding efficiency as compared to the situation without an
EMFG. Moreover, the efficiency is better for the stronger gradient field, as is evident
from Fig. 3a. Further, when branching angles are greater than 90°, we obtain 100%
guiding efficiency for both field gradient strengths unlike the situation without the
EMFG. This is because SPM beads moving into the daughter channel are attracted
back into theMCwhen the EMFG, which is along the positive X direction, is present
as this determines the direction of Fm.

Now, given the above results, we conclude that the lower NI value of 1000 At is
a better choice between the two practically realizable anti-Helmholtz coil configura-
tions that we have considered as complications like heating effects and aggregation
will increase with the higher value.

As an extension, we have also carried out simulations with D = 500 μm and Dd

= 250 μm (Fig. 2c), to see how the guiding efficiency is affected by the width of
the daughter channel. While there is a definite loss of SPM beads into the daughter
channel at all angles in the absence of EMFG (Fig. 3b), the loss is smaller when
compared to the case of Dd= D (Fig. 3a). We find that only the beads in stream
lines very close to the upper wall of the primary channel enter the daughter channel
unlike the earlier case where almost all SPM beads in the upper half of the channel
were affected by the presence of the daughter channel. We find that in the presence
of EMFG (NI = 1000 At) the guiding efficiency is improved. We conclude that the
guiding efficiency in the absence of EMFG increases with decrease in the width of
the daughter channel. At the same time, to achieve maximum guiding efficiency in
channels with Θ < 90°, the strength of the EMFG required is practically similar to
that of the case with Dd= D as Fd acting on particles closest to the walls are also
the highest. Note that while the loss of beads in the absence of an EMFG appears
reasonable when only a single branch is considered, this could prove to be a problem
as the number of branches encountered during the flow of the beads to the target site
increases.

Figure 3c shows the guiding efficiency computed for SPM beads in a channel of
D =Dd = 50μm, with and without EMFG. These simulations were carried out with
the idea of gauging the practically realizable EMFG strengths that would be required
to improve the guiding efficiency at such dimensions. The general trend does not
seem to be qualitatively any different from the case of D = Dd = 500 μm.

4 Conclusion

It is evident from the simulations that a significant fraction of magnetic particles
will invariably be lost from the primary channel into a branching daughter channel.
These losses can be reduced by the use of an optimally designed EMFG. Using these
simulations, it may be possible to estimate the total loss of magnetic particles due
to branching channels encountered en route to the target site. This will enable better



Numerical Study on the Efficiency of Magnetophoresis … 197

estimation of the appropriate dosage of magnetic particles that needs to be adminis-
tered at the site of injection in order to achieve effective treatment. Choosing a proper
dosage is a major challenge faced in such therapeutic techniques. Thus, these kind of
simulations can be extremely helpful if one has to customize a magnetophoresis pro-
cedure for an individual undergoing treatment. We plan to extend these simulations
to a more realistic three dimensional situation with differently sized branching chan-
nels and further also incorporate the situation where particles are no longer neutrally
buoyant.
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5. Patsula, V., Kosinová, L., Lovrić, M., Hamzić, L.F., Rabyk, M., Konefal, R., Paruzel, A., Šlouf,
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Numerical Study on Fluid Flow Through
Collapsible Channels

Vedant Dhruv, Ujwal Mishra and Ranjith Maniyeri

Abstract The fluid flow in collapsible channels or tubes is an interesting problem
with several physiological applications; for example, blood flow in veins, air flow
in lungs and wheezing. In this paper, we present a fluid-structure interaction based
model for single-phase fluid flow through a microchannel containing two elastic
walls. A two-dimensional model is developed and simulations have been performed
using a commercial software. The deforming geometry is analyzed using moving
mesh. The flow field and deformation of the elastic walls for different boundary
loads and inlet flow conditions are presented and discussed.

Keywords Collapsible channel · Fluid-structure interaction · Boundary load ·
Microchannel

1 Introduction

The theory of internal fluid flow is nearly two centuries old. The flow through rigid
tubes and between rigid plates has been understood to a great extent. However, sev-
eral real life phenomena, especially in the physiological domain involve internal
flow of fluid through elastic and deformable tubes. In all such cases, employing the
hydrodynamics of flow through rigid tubes is not sufficient as it would not accurately
model the situation. Such tubes or channels which consist of elastic boundaries tend
to ‘collapse’ based on the transmural pressure and thus are known as ‘collapsible
channels.’ The transmural pressure determines the shape of the collapsible channel.
When the transmural pressure is positive and has a large value, the cross-sectional
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area of the channel is circular and the fluid flow can be considered as that of pipe
flow.When the transmural pressure is reduced, a critical value is reached upon which
the tubular channel begins to buckle and attains an elliptical cross-section. At low
values of transmural pressure, the tube is said to be completely collapsed [1]. An
important aspect of flow through collapsible tubes in the self-induced oscillations
and the instabilities created in the flow when transmural pressure drops below cer-
tain value. These oscillations play an important role in several biological processes.
Collapsible channel models can be used to study flow-induced collapse of blood
vessels to carry out auto-regulation of blood supply to internal organs, flow of urine
in urethras, airflow in the bronchial airways, flow-induced deformation of soft palate
and pharyngeal wall which causes snoring, spontaneous flow-induced oscillations in
the cardiovascular system such as oscillations of the external jugular vein, wheezing
in lung airways. Hence, a better understanding of the flow through collapsible tubes
is essential for the study and prevention of cardiovascular diseases (heart stroke) and
lung diseases (asthma and emphysema).

The majority of the work carried out in the area of collapsible channel has been
in the experimental regime. Due to the complexity of the problem, in recent years,
numerical studies have been performed to better understand the flow through col-
lapsible channels. Rosar and Peskin [2] developed a three-dimensional model to
simulate the flow through a collapsible tube. The numerical method used to solve
the equations was immersed boundary method. Cai and Luo [3] developed a plain-
strained elastic beam model with large deflection and incremental linear extension
and utilized finite element method (FEM). Jensen and Heil [4] performed a combi-
nation of asymptotic analysis and numerical simulation to describe high Reynolds
number(Re) unsteady, pressure-driven flow in a finite length channel of which one
wall contains a section of the membrane under longitudinal tension (modelling a
Starling Resistor). Pihler-Puzovic and Pedley [5] have studied high-Re flow for an
incompressible Newtonian fluid in a two-dimensional collapsible channel.

Motivated by these works, in our present paper we develop a fluid-structure inter-
action model to understand the flow through a collapsible channel and study the
deformation of the elastic walls by considering different inlet conditions and bound-
ary loads. The primary application of such an analysis would be to get a better
understanding of the blood flow in human arteries [6].

2 Mathematical Modelling

Figure 1 shows the two-dimensional schematic diagram of the microchannel con-
taining two elastic walls along with the boundary conditions. The outer walls are
fixed and hence the no-slip condition is imposed. The elastic walls are fixed at the
two extreme ends of the channel and are allowed to deform only within the specified
domain.

The total channel length is 300 µm and the spacing between the elastic walls
is 98 µm. The outer walls are at a distance of 50 µm from the elastic walls when
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Fig. 1 Schematic diagram of the microchannel with the elastic walls

they are not deformed. The elastic walls are 1 µm thick. For the fluid domain, the
boundaries on the left are specified as inlet for fluid flow and the boundaries on the
right are specified as outlet with pressure equal to 0 Pa.

The properties of the deformable walls and the incompressible fluid that flows
through the microchannel are shown in Tables 1 and 2 respectively.

Two cases for inlet fluid flow are considered: (i) constant flow velocity of 12 cm/s,
which is the average blood flow speed in the aorta and (ii) a time dependent function
with fully developed laminar characteristics and parabolic velocity profile whose
amplitude changes with time. This function reaches a peak value at 0.215 s and
thereafter gradually decreases to a steady-state amplitude of 0.033 m/s at inlet. Three
cases are considered for the boundary load applied to the elastic walls: (i) zero
boundary load, (ii) constant boundary load of 5 N/m and (iii) sinusoidal boundary
load with maximum amplitude of 5 N/m. Hence we have overall six cases which are
specified in Table 3.

Table 1 Physical properties
of elastic medium

Property Variable Value

Young’s modulus E (N/m2) 2e5

Poisson’s ratio Nu 0.33

Density Rho (kg/m3) 7850

Table 2 Physical properties
of fluid medium (water)

Property Variable Value

Density Dens (kg/m3) 1000

Dynamic viscosity Visc (Pa s) 0.001
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Table 3 Different boundary
loads and inlet flow
conditions

Case Boundary load (N/m) Inlet velocity(m/s)

1a 0 u = 0.12

1b 0 u = umean

2a 5 u = 0.12

2b 5 u = umean

3a 5*sin(t) u = 0.12

3b 5*sin(t) u = umean

Here, the function umean is defined as,

umean = 0.0333 ∗ t2√
t4 − 0.07

[
s2

] ∗ t2 + 0.0016
[
s4

] (1)

Since the present analysis consists of a deformable structure surrounded by fluid
flow, the governing equations of fluid-structure interaction (FSI) are used. Equa-
tions (2) and (3) are the structural andfluid-flowequations respectively. The dynamics
of the boundary is governed by Eq. (4). The commercial software employs an arbi-
trary Lagrangian-Eulerian (ALE) method to solve these equations for a continuously
deforming geometry.

ρs D
2u

Dt2
− ∇ . (F . S(u)) = ρsbs (2)

where u represents the displacements of the structure, bs represents the body forces
applied on the structure, S represents the second Piola-Kirchoff stress tensor, ρs

represents the density of the structure and F represents the deformation gradient
tensor.

ρF dv
dt

|χ + ρF . c .∇v − 2μ∇ . ε(v) + ∇ p = ρF bF ; ∇ . v = 0 (3)

where v denotes the fluid velocity, |χ denotes the derivative is carried out while the
referential domain is constant, p denotes the physical pressure and ρF and μ denote
the fluid density and viscosity respectively. The fluid body forces are represented
by bF and ε(v) represents the strain rate tensor. It can be observed that the ALE
formulation comes into the above equation in fluid acceleration and convective terms.

u�(t) = dF
� (t); .

u�(t) = v�(t); ..
u�(t) = v̇�(t) (4)

where Γ denotes the interface and dF
Γ (t) represents the displacement of the fluid

mesh nodes at the interface.



Numerical Study on Fluid Flow Through Collapsible Channels 203

3 Results and Discussion

We use a time-dependent solver to simulate the fluid flow through the microchannel
consisting of elastic walls. The simulations are carried out from t = 0 s to t = 5 s
with a time step of 0.1 s for all the cases as mentioned in Table 3.

Fig. 2 i–xii Illustration of the flow field, maximum velocity achieved, stresses on the elastic walls
and their deformation for the six cases. i, ii—case 1a; iii, iv—case 1b; v, vi—case 2a; vii, viii—case
2b; ix, x—case 3a; xi, xii—case 3b as shown in Table 3 at t = 0.2 s and t = 4.7 s
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Fig. 2 (continued)

Figure 2i–xii highlights the flow field in the microchannel for all the cases men-
tioned in Table 3 (Fig. 2i, ii represents case 1a; Fig. 2iii, iv represents case 1b; Fig. 2v,
vi represents case 2a; Fig. 2vii, viii represents case 2b; Fig. 2ix, x represents case 3a;
Fig. 2xi, xii represents case 3b) at two intervals; t = 0.2 s and t = 4.7 s. These time
intervals allow us to see what occurs inside the microchannel near the two ends of
the time range, i.e., at initial stages and when the flow has settled to a constant value.
The stresses acting on the elastic walls and their deformation due to the flow of the
fluid are also depicted in Fig. 2.
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Figure 2i, ii, v, vi shows that for zero boundary load or constant boundary load, the
fluid velocity remains the same over the entire time range. The maximum velocity
that is achieved in the channel once the fluid becomes fully developed remains the
same over the entire duration of the simulation time (0.26 m/s for zero boundary load
and 0.25 m/s for constant boundary load). For zero boundary load i.e., cases 1(a) and
1(b) (Fig. 2i–iv) we observe that the elastic walls of the channel collapse towards the
outlet of the domain. This resembles the throat section that is present in nozzles and
consequently the fluid velocity rises and reaches a value much higher than the inlet
velocity and the pressure drops to a value much lower than the surrounding region.
For example, in case 1a, the fluid velocity at the collapse region (x = 260 µm, y =
50 µm) is 0.26 m/s and pressure is 7.545 Pa.

We observe in Fig. 2i–viii that once the fluid velocity attains steady state, the
elastic walls do not undergo further deformation. Hence the deformation present in
cases 3(a) and 3(b) at later time intervals is clearly due to the sinusoidal time-varying
boundary load that has been imposed.

To better understand the deformation of the elastic walls, we consider two points
on each of the walls at a length of 50 and 250 µm. The deflection of each of these
points for all the cases at time intervals of 1 s is presented in Fig. 3.

The data points in Fig. 3a, c are more clustered than those in Fig. 3b, d. This
shows that the elastic walls deformation is more pronounced at the outlet than at the
inlet and that the collapse of the channel occurs near the outlet. This is in agreement
with the results of the study performed by Zhu and Wang [7].

4 Conclusion

A time-dependent study is performed on a two-dimensional microchannel consisting
of two elastic walls to understand the phenomenon of fluid flow through collapsible
tubes. Six test cases are considered with different inlet flow velocities and boundary
loads acting on the elasticwalls.Numerical simulation results for different cases show
that the walls undergo deformation primarily at the outlet region. Moreover, these
deformed walls do not undergo further change once the flow has attained a steady
state. Only upon inducing a time-varying boundary load on the walls, they undergo
further deformation. It is to emphasize here that, the developed mathematical model
and the scientific computing done using commercial software in understanding the
fluid dynamic behaviour of collapsible channels will help the research community
to deduce physical results which are difficult to explore through experimentation.
Hence, suitable mathematical model and the associated numerical simulations are
need of the hour bringing detailed scientific results to solve the real life engineering
problems. Also, in our future work, we plan to improve this primitive model so that
it can simulate physiological processes with better accuracy.
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Fig. 3 a Deformation of point on top wall near inlet. b Deformation of point on top wall near
outlet. c Deformation of point on bottom wall near inlet and d Deformation of point on bottom wall
near outlet
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an Exponentially Permeable Stretching
Sheet with Variable Viscosity
and Prandtl Number
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Abstract The present work focus on water boundary layer flow over an exponential
permeable stretching sheet in the presence of suction/injectionwith variable viscosity
and prandtl number. The nonlinear partial differential equations governing flow and
thermal fields are presented in non-dimensional form using suitable non-similar
transformation. Finally non dimensional partial differential the equations are solved
by the implicit finite difference method in combination with the Quasi-linearization
technique. The numerical results for skin-friction and localNusselt number are shown
graphically to display effects of physical parameters.

Keywords Exponential permeable stretching sheet · Water boundary layer ·
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Cfx Skin friction coefficient
U∞ Free stream velocity

v Velocity component in the y direction
u Velocity component in the x direction
ν Kinematic viscosity
ρ Density

x, y Cartesian coordinates
ReL Local Reynolds number

μ Dynamic viscosity

1 Introduction

The phenomenon ofmixed convectionwater boundary layer flow over an exponential
permeable stretching surface has more practical application in the engineering field.
The well know examples of permeable stretching surface are follow as paper produc-
tion, glass spinning, metal spinning, fiber and extrusion processes, the cooling of an
infinite metallic plate in a cooling bath, the aerodynamic extrusion of plastic sheets,
condensation processes in film, roofing shingles, extraction of polymer and rubber
sheets, wire drawing and glass-fiber. In these engineering industries, the quality of
final product depends on the rate of heat transfer at the stretching surface which is
presented in term of Nusselt number in the current work. Therefore this study may
useful for improvement of quality of final product. Recently the permeable expo-
nential stretching surface and temperature has been getting special attention due to
above mentioned applications in that, surface undergoes stretching due to geophys-
ical situation.

A few earlier studied on boundary layer flow over the surface may be outlined as
follows. Elbashbeshy [1] investigated laminar boundary flow in quiescent fluid over
an exponentially stretching surface subject to the suction. Zaimi et al. [2] studied
boundary layer flow and heat transfer over a permeable stretching/shrinking sheet in
viscous fluid. Thermal radiation and chemical reaction on MHD flow of a nanofluid
past a permeable sheet in the presence of suction has been done by Sandeep [3].
Hafidzuddin [4] discussed boundary layer flow and heat transfer over a permeable
exponential stretching sheet. Ishak [5] performed the steady boundary layer flow
over a moving permeable sheet with various effects of thermal field. Patil [6] ana-
lyzed double diffusive mixed convection boundary layer flows over an exponentially
stretching sheet. Olusoji [7] discussed the heat and mass transfer effect of the elec-
trically conducting micropolar fluid flow past a stretching sheet with influence of
velocity and thermal slip condition. Hayat et al. [8] investigated the MHD boundary
layer of a nanofluid flow moving over a permeable stretching sheet with convective
boundary condition. Srinvasulu et al. [9] discussed MHD boundary layer flow of a
nanofluid over a stretching sheet with the effects of non-uniform heat source and
chemical reaction.



Water Boundary Layer Flow over an Exponentially Permeable Stretching … 209

Few numerical studies report similarity solutions on boundary layer flows over
stretching sheet [10–12]. However, water boundary layer studywith permeable expo-
nentially stretching sheet on moving vertical plate for variable viscosity and Prandtl
number did not attempted upto till date.

The aim of the present work is to investigate the mixed convection water bound-
ary layer flow over an exponentially permeable stretching sheet continuouslymoving
over a vertical plate with variable viscosity and Prandtl number. Consider the water is
a most common application in the engineering field. The coupled non-linear partial
differential equations have been solved numerically using an implicit finite difference
scheme in combination with the Quasi-linear technique used by Singh et al. [13].
Results are compared with the results reported earlier by Tsou et al. [14], Soundal-
gekar andMurthy [15], Ali [16],Moutsoglou and Chen [17], Chen [18] and are found
to be in excellent agreement (Table2).

2 Mathematical Formulation

Let us consider the incompressible mixed convection water boundary layer flow over
an exponentially permeable stretching surface (Fig. 1). The x-axis is taken along the
permeable exponentially stretching sheet in the vertically upward direction and y-
axis is taken to the normal to it. The stretching surface velocity and permeable
exponentially free stream velocity are defined as follows (Table1):Uw(x)=Uexp

(
x
L

)
,

Ue(x)=U∞exp
(
x
L

)

μ = 1

b1 + b2T
and Pr = 1

c1 + c2T
where b1 = 53.41, b2 = 2.43, c1 = 0.068, c2 = 0.004
Governing equations:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= Ue

(
dUe

dx

)
+ 1

ρ

∂

∂y

(
μ

∂u

∂y

)
+ g[β(T − T∞)] (2)

u
∂T

∂x
+ v

∂T

∂y
= 1

ρ

∂

∂y

(
μ

Pr

∂T

∂y

)
(3)

The boundary conditions are given by:

y = 0 : u(x, 0) = Uw(x), v = vw, T = T∞ + (Tw − T∞)exp

(
2x

L

)

y→∞ : u→Ue(x), T→T∞ (4)
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Applying the following transformations:

ξ = x

L
; η =

(
U

xν

)1/2

exp
( x

2L

)
y; ψ(x, y) = (Uxν)1/2exp

( x

2L

)
f (ξ, η);

u = ∂ψ

∂y
; v = −∂ψ

∂x
; u = U exp

( x

L

)
F; fη(ξ; η) = F(ξ, η);

v = −
(

νU

x

) 1
2

exp
( x

2L

){
f

2
(1 + ξ) + ξfξ + η

2
(ξ − 1)F

}
;ReL = UL

ν
;

T = T∞ + (Tw − T∞)exp

(
2x

L

)
θ(ξ, η);Gr = gβT (Tw − T∞)L3

ν2

(5)

to Eqs. (1)–(3), then Eq. (1) is identically satisfied, and Eqs. (2)–(3) reduce to:

(NFη)η + (ξ + 1)

2
fFη − ξF2 + ξλθ + ξε2 = ξ(FFξ − fξFη) (6)

(NPr−1θη)η + (ξ + 1)

2
f θη − 2ξFθ = ξ(Fθξ − fξθη) (7)

where μ = 1

b1 + b2T
; Pr = 1

c1 + c2T
= 1

a2 + a3θ
; N = μ

μ∞
= b1 + b2T∞

b1 + b2T
=

1

1 + a1θ
; a1 = b2(T∞ − Tw)

b1 + b2T∞
; a2 = c1 + cw; a3 = c2(T∞ − Tw); �Tw = (T∞ −

Tw); b1 = 53.41, b2 = 2.43, c1 = 0.068, c2 = 0.004
where

f =
∫ η

0
Fdη + fw

fw can be obtained from the following equation

vw = −
(

νU

x

) 1
2

exp
( x

2L

) {
fw
2

(1 + ξ) + ξ(fξ)w

}

i.e,
{
fw(1 + ξ) + 2ξ(fξ)w

} = −2v0ξ
1
2

(
L

νU

) 1
2

= aξ
1
2 where a = −2v0

(
L

νU

) 1
2

=

constant, is the surface mass transfer parameter with a > 0 for the suction, a < 0
for the injection and a = 0 for an impermeable. Further, vw = v0e

x
2L , is the surface

mass transfer which is also varies with x, v0 is the initial value of the surface mass
transfer. Thus, v > 0 corresponds to the case of suction while v < 0 corresponds to
the case injection.

The non-dimensional boundary conditions become:

F = 1, θ = 1 at η = 0

F = ε, θ = 0 at η = η∞ (8)
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where ε = U∞
U

corresponds to the ratio of free stream velocity to the reference

velocity. The skin friction (Cfx) and Nusselt number (Nux) are defined as:

Cfx = μ
2

(
∂u
∂y

)

y=0

ρU 2
= 2 (ReLξexp(ξ))

−1/2 Fη(ξ, 0)

i.e. Cfx (ReLξexp(ξ))
1/2 = 2Fη(ξ, 0)

(9)

Nux = −x

(
∂T
∂y

)

y=0

(Tw − T∞)
= (ReLξexp(ξ))

1/2 θη(ξ, 0)

i.e. Nux(ReLξexp(ξ))
−1/2 = −θη(ξ, 0)

(10)

The boundary value problem represented by Eqs. (6)–(7) with boundary condition
[Eq. (8)] has been solved numerically using an implicit finite difference scheme in
combination with the Quasi-linearization technique. The non linear partial differen-
tial [Eqs. (6)–(7)] is converted to linear partial differential equations:

X k
1 F

k+1
ηη + X k

2 F
k+1
η + X k

3 F
K+1 + X k

4 F
k+1
ξ + X k

5 θk+1
η + X k

6 θk+1 = X k
7 (11)

Y k
1 θk+1

ηη + Y k
2 θk+1

η + Y k
3 θk+1 + Y k

4 θk+1
ξ + Y k

5 F
k+1 = Y k

6 (12)

with boundary condition

Fk+1 = 1, θk+1 = 1 at η = 0

Fk+1 = ε, θk+1 = 0 at η = η∞
(13)

The coefficient function with iteration index k are know and the functions with iter-
ative index (k+1) are to be determined. The coefficients in Eqs. (11) and (12) are
given by:
X k
1 = N ; X k

2 = −a1N 2θη + (ξ + 1) f2 + ξfξ; X k
3 = −ξFξ − 2ξF ;X k

4 = −ξF ; X k
5 =

−a1N 2Fη; X k
6 = −a1N 2Fηη + 2a21N

3Fηθη + λξ; X k
7 = −a1N 2Fηθη − a1N 2Fηηθ +

2a21N
3Fηθηθ − ξF2 − ξε2 − ξFFξ; Y k

1 = Npr−1; Y k
2 = −2a1N 2pr−1θη + 2a3θηN

+ f
2 (ξ + 1) + ξfξ; Y k

3 = a3Nθηη − a1N 2pr−1θηη − 2a1a3N 2θ2η + 2a21N
3pr−1θ2η; Y

k
4

= −ξF ; Y k
5 = −ξθξ; Y k

6 = a3θ2ηN − a1θ2ηpr
−1N 2 + a3θηηθN − a1θηηθpr−1N 2 −

2a1a3θ2ηθN
2 + 2pr−1a21θ

2
ηθN

3 − ξFθξ

The system is reduced to a systemof linear algebraic equationswith block tri-diagonal
matrix, which is solved by Varga’s algorithm [19]. To ensure the convergence of
numerical solutions to the exact solutions.
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3 Results and Discussion

The numerical results are displayed in terms of velocity profile (F), temperature
profile (θ), skin friction coefficient (Cfx (ReLξexp(ξ))

1/2) and heat transfer coeffi-
cients (Nux(ReLξexp(ξ))−1/2) for various values of ε(0.2 ≤ ε ≤ 2), λ(1 ≤ λ ≤ 3),
ξ(0 ≤ ξ ≤ 2) and a(−1 ≤ a ≤ 1). Figures2 and 3 displays the velocity profile and
Fig. 4 display the temperature profile. The skin friction coefficient and Nusselt num-
ber are shown in Figs. 5 and 6 exponentially permeable stretching surface (see Fig. 1)
to be in excellent agreement (see Table2) velocity are defined as follows (see Table1).

The effects of ε (= 0.5, 1.0 and 1.5) and a (= −1 and 1) on the velocity profile (F)
is presented in Fig. 2. Results indicate that ε and a parameters have high impact on
the appearance of velocity profiles. It is noted that the velocity profile exponentially
increasing trends in F is observed for ε = 1.5 whereas symmetric profile is observed
at ε = 1.0 at a = 1, for all λ. On the other hand, back flow is observed at ε = 0.5,
hence velocity profile decreases with η for all λ. For example, at λ = 1, ξ = 0.5,
velocity increases approximately by 14% with the increases from ε = 0.5 to ε = 1.0
at a = 1.

Figure3 displays the effects of λ (= 1 and 3) and a(= −1, 0 and 1) on the velocity
profile (F) at ε = 0.5 and ξ = 1.0. The velocity profile exponentially decreasing
trends in observed for all values λwithin η(0 ≤ η ≤ 4) and after that constant pattern
is observed. It is seen that the magnitude of velocity overshoot is observed for higher
buoyancy force λ(= 3) and injection parameter (a < 0). The physical reason is that

Fig. 1 Physical model and
coordinate system
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Fig. 2 Effects of ε and a on
velocity profile for ξ = 0.5
and λ = 1
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the buoyancy force effects are more significant in injection parameter. In particular,
increase in ξ from ξ = 0 to ξ = 1 results in an decreases of the velocity profile
approximately 24% for a = 0, at = 0.5 and λ = 3.0.

The effects of ε (= 0.2 and 0.8) and ξ (= 0 and 1) on temperature profile (�) are
presented in Fig. 4 atλ = 2.0 and a = 0.Decreasing trend in� downstreamdirection
η (0 ≤ η ≤ 1), irrespective of ε and ξ. Thereafter constant term is presented for higher
range of η (1.6 ≤ η ≤ 2). The temperature profile decreases with η indicates that an
increase in stream wise coordinate ξ acts as a decelerating pressure gradient and
thus fluid flows slower. In particular for ε = 0.8 and λ = 2.0, the temperature profile
decreases approximately by 99% as ξ increases from 1.0 to 2.0

Figure5 shows the influence of λ (= 2 and 4) and ε (= 0.5 and 1.5) on the skin
friction coefficient [Cfx (ReLξexp(ξ))

1/2]. The skinfriction Cfx (ReLξexp(ξ))
1/2 coef-

ficient increases with increases of λ and ε. This is due to the fact that the increase in ε
enhances the fluid acceleration and hence the skin friction coefficient increases. The
skin-friction coefficient increases approximately by 182% due to increase of ε from
ε = 0.5 to ε = 1.5 at λ = 2.0 and a = 0. Figure6 displays the variation of the λ(= 1
and 2) and ε(= 1 and 2) on heat transfer coefficient [Nux(ReLξexp(ξ))−1/2]. The heat
transfer rate (Nux(ReLξexp(ξ))−1/2) increases with buoyancy parameter (λ) and ε.
In particular, for ε = 1.0 heat transfer rate (Nux(ReLξexp(ξ))−1/2) increases about
61% as ξ from ξ = 0 to ξ = 1 at λ = 1 and a = 0.
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Fig. 3 Effects of λ and a on
velocity profile for and
ε = 0.5 and ξ = 1.0
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temperature profile for λ = 2
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4 Conclusions

In this study the following conclusions may be remarked from the finding of this
numerical investigation.

• The velocity profile overshoot near thewall region increaseswith buoyancy param-
eter (λ) and velocity ratio (ε). In particular, as ξ increases from ξ = 2 to ξ = 3
velocity profile (F) increases from 11% for λ = 1, ε = 0.5 and a = 1.



Water Boundary Layer Flow over an Exponentially Permeable Stretching … 215

Fig. 5 Effects of ε and λ on
skinfriction coefficient
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Fig. 6 Effects of ε and λ on
heat transfer coefficient
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• The temperature profile increases with increase in stream wise coordinate ξ and
decreases velocity ratio (ε). In particular, as ξ increases from ξ = 0 to ξ = 1
temperature profile θ decreases 90%.

• The skin friction coefficient Cfx (ReLξexp(ξ))
1/2 increases with velocity ratio (ε)

and buoyancy parameters (λ). In particular at ε = 0.5, as ξ increase from ξ = 1 to
ξ = 2, the skin friction increases by about 2% at m = 0 and λ = 2.

• Theheat transfer coefficientNux(ReLξexp(ξ))−1/2 decreaseswith buoyancyparam-
eter (λ) and composite velocity (ε). In particular, for λ = 2, as ε increases from
ε = 0.5 to ε = 1.5, the heat transfer rate decrease by about 8% at a = 0 and ξ = 0.
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Table 1 Values of thermophysical properties of water at different temperature [23]

Temperature
(T)(◦C)

Density (g/cm3) Specific heat
(J107/kg K)

Thermal
conductivity
(erg105/cmsK)

Viscosity
(g10−2/cms)

Prandtl no Pr

0 1.00228 4.2176 0.5610 1.7930 13.48

10 0.99970 4.1921 0.5800 1.3070 9.45

20 0.99821 4.1818 0.5984 1.0060 7.03

30 0.99565 4.1784 0.6154 0.7977 5.12

40 0.99222 4.1785 0.6305 0.6532 4.32

50 0.98803 4.1806 0.6435 0.5470 3.55

Table 2 Comparison of the steady state results −θη(0) for λ = 0, ξ = 0, ε = 0, and selected value
of Pr to previously published works

Pr 2 5 7 10 100

Tsou et al. [20] – – – 1.6804 5.545

Soundalgekar and Murty [15] 0.6831 – – 1.6808 –

Ali [16] – – – 1.6713 –

Moutsoglou and Chen [21] – – 1.38703 – –

Chen [22] 0.68324 – 1.38619 1.68008 5.54450

Present work 0.6830 1.151 1.386 1.6801 5.5450

Acknowledgements Let me thanks organization team of International Conference on Mathemati-
cal Modelling and Scientific Computing who brought the platform to express our idea about math-
ematical modelling and simulation in applied mathematics. The current work is completely based
on modelling of fluid dynamics problem and solution has been obtained by using finite difference
method and given in terms of velocity profile (F), temperature profile (θ), skin friction coefficient
(Cfx (ReLξexp(ξ))

1/2) and heat transfer coefficients (Nux(ReLξexp(ξ))−1/2).

References

1. ElbElbashbeshy, E.M.A.: Heat transfer over an exponentially stretching continuous surface
with suction. Arch. Mech. 53, 643–651 (2001)

2. Zaimi, K., Ishak, A.: Boundary layer flow and heat transfer over a permeable stretching /shrink-
ing sheet with convective boundary condition. J. Appl. Fluid Mech. 8, 499–505 (2015)

3. Naramgari, S., Sulochana, C.: MHD flow over a permeable stretching sheet of a nanofluid with
suction/injection. Alexandria Eng. J. 55, 819–827 (2016)

4. Hafidzuddin, E.H., Nazar, R., Arifin, N.M., Pop, I.: Boundary layer flow and heat transfer over
a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J. Appl.
Fluid Mech. 9, 2025–2036 (2016)

5. Ishak, I., Nazar, R., Pop, I.: The effects of transpiration on the flow and heat transfer over a
moving permeable surface in a parallel stream, chem. Eng. J. 148, 63–67 (2009)

6. Patil, P.M., Latha, D.N., Roy, S., Momoniat, E.: Non similar solutions of mixed convection
flow from an exponentially stretching surface. Ain Shams Eng. J. 8, 697–705 (2015)



Water Boundary Layer Flow over an Exponentially Permeable Stretching … 217

7. Olusoji, E.: Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with
velocity and thermal slip conditions (2018)

8. Hayat, T., Imtiaz, M., Alsaedi, A.: MHD flow of Nanofluid over permeable stretching sheet
with convective boundary conditions. Open J. Fluid Dyn. 8(2), 195 (2014)

9. Srinvasulu, T., Bandari, Shankar: MHD boundary layer flow of nanofluid over a nonlinear
stretching sheet with effect of non-uniform heat source and chemical reaction. J. Nanofluids
6(4), 637–646 (2017)

10. Hayat, T., Shafiq, A., Alsaedi, A., Shahzad, S.A.: Unsteady MHD flow over exponentially
stretching sheet with slip conditions. Appl. Math. Mech. 37(2), 193–208 (2016)

11. Bidin, Biliana, Nazar, Roslinda: Numerical solution of the boundary layer flow over an expo-
nentially stretching sheet with thermal radiation. Eur. J. Sci. Res. 33, 710–717 (2009)

12. Cortel, R.: Fluid flow and radiative non linear heat transfer over a stretching sheet. J. King
Saud Univ. Sci. 26, 161–167 (2014)

13. Singh, P.J., Roy, S., Pop, I.: Unsteadymixed convection from a rotating vertical slender cylinder
in an axial flow. Int. J. Heat Mass Transf. 51, 1423–1430 (2008)

14. Tsou, F.K., Sparrow, E.M., Goldstein, R.J.: Flow and heat transfer in the boundary layer on a
continuous moving surface. Int. Heat Mass Transfer 10, 219–235 (1967)

15. Soundalgekar, V.M., Murty, T.V.R.: Heat transfer in flow past a continuous moving plate with
variable temperature. Warme-und Stoffubertragung 14, 91–93 (1980)

16. Ali,M.E.:On thermal boundary layer on a power-law stretched surfacewith suction or injection.
Int. J. Heat Fluid Flow 16, 280–290 (1995)

17. Moutsoglou, T.S.Chen: Buoyancy effects in boundary layers on inclined, continuous, moving
sheets. ASME J. Heat Transf. 102, 371–373 (1980)

18. Chen, C.H.: Laminar mixed convection adjacent to vertical, continuously stretching sheets.
Heat Mass Transf. 33, 471–476 (1998)

19. Varga, R.S.: Matrix Itrative Analysis. Prentice-Hall, Englewood Cliffs, NJ (2000)
20. Tsou, F.K., Sparrow, E.M., Goldstein, R.J.: Flow and heat transfer in the boundary layer on a

continuous moving surface. Int. J. Heat Mass Transf. 10, 219–235 (1967)
21. Moutsoglou, A., Chen, T.S.: Buoyancy effects in boundary layers on inclined continuous mov-

ing sheets. ASME J. Heat Transf. 102, 371–373 (1980)
22. Chen, C.H.: Laminar mixed convection adjacent to vertical continuously stretching sheets.

Heat Mass Transf. 33, 471–476 (1998)
23. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 71st edn. CRC Press, BocaRaton,

FL (1990)



Finite Element Analysis of MHD Blood
Flow in Stenosed Coronary Artery
with the Suspension of Nanoparticles

Ankita Dubey and B. Vasu

Abstract The numerical study presents a two dimensional mathematical modelling
and computational simulation of blood flow in a stenosed coronary artery in the
presence of magnetic field. Blood flow model is considered based on second grade
fluid flow and heat transfer with the suspension of nanoparticles. Vogel’s model is
employed for viscosity of blood as a function of temperature. In order to complete
our model, the variability in design and size of stenosis is considered. The finite
element method is used to solve the transformed conservation equations numeri-
cally in conjunction of variational approach and FreeFEM++. The results show that
an increase in the thermophoresis parameter (Nt ) decreases the velocity while the
increment in the Brownianmotion parameter (Nb) increases the velocity in the whole
domain. An increase in Nt and Brownian motion parameter (Nb), there is an increase
in temperature values and nanoparticles concentration at the throat of the stenosis
and as well as in the remaining domain. These properties changes in the domain by
changing the shapes and designs of the stenosis in the domain.

Keywords Blood flow · Vogel’s model · Nanoparticles ·Magnetohydrodynamics ·
Thermophoresis · Brownian motion · Coronary artery · Stenosis
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α1, α2 Material modules
Gr Grashof Number
B0 Magnetic field
ρ f Density of the base fluid
ρp Density of the nanoparticles
M Magnetohydrodynamics parameter
Nb Brownian motion parameter
Nt Thermophoresis parameter
V Velocity vector
A1, A2 Rilvin Erickson Tensors
J Electric current density
θ Temperature
κ Thermal conductivity
Φ Nanoparticle volume fraction
λ1 Viscoelastic parameter

1 Introduction

Non-Newtonian fluid flows have many important roles in the chemical processing
industry, plastics processing industry, and in other engineering and industrial areas.
Non-Newtonian behaviour is also encountered in the mining industry, where slurries
and muds are often handled, and in applications such as lubrication and biomed-
ical flows. 7% of the human body weight has accounts for blood. In 1981, Fung
[1] represents blood as suspension of various tiny particles, in a continuous saline
solution plasma in which plasma behaves as a Newtonian fluid whereas the whole
blood is a suspension of cells and highly viscous in nature, exhibits the property of
a non-Newtonian fluid (Biswas [2] and Fung [1]). At low shear rate blood shows
a non-Newtonian character but at high shear rate, blood behaves like a Newtonian
fluid which is usually available in large arteries [3, 4]. In the present study, blood is
considered as non-Newtonian fluid as discussed by Baieth [5].

The arterial blood flow has some important role due to its application in engi-
neering and medical field. The presence of arterial stenosis influence the hemody-
namic behaviour of blood flow. The characteristics of blood flow hemodynamics has
great significance in assessment and diagnosis of cardiovascular disease, testing the
hypothesis of disease formation, helping in plan of vascular surgery, modelling the
transport of drugs through the circulatory systems and also determining nanoparticle
concentrations. The study helps to predict the performance of cardiovascular equip-
ments or instruments that have not yet been built such as heart valves, stents, probes
etc.

In human vascular system, it is thought that the stenosis is to be a significant factor
in the onset of coronary artery disease (CAD), a progressive disease characterized [6]
by the accumulation of plaques on the arterywalls, which is one of themajor causes of
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deaths in all the society as discussed in [7]. It is the most common diseases, affecting
the cardiovascular system by the deposition of fatty materials in the coronary artery
which thickens the plaque on the arterial wall. The obstruction of blood flow in artery
due to thickening of wall with plaque is called stenosis. According to Ali et al. [8]
study it is clearly visible that the development of stenosis in an artery results in
the reduction of the blood flow rate or ischemia. In the coronary artery, ischemia
may the constriction of the arterial lumen grows inward and restricts the normal
movement of blood where the transport of blood to the region beyond the narrowing
is reduced. Moreover, under normal physiological condition, the transport of blood
in the human circulatory system depends entirely on the pumping action of the heart
which produces a pressure gradient, throughout the arterial system. Carlos and Kiran
[6] and Mathur and Jain [9] have discussed the blood flow in stenotic artery whereas
Akbar [10] discussed the blood flow modelling in tapered arteries with stenosis.

The new class of fluids which consist of a base fluid with nano-sized particles
(1–100 nm) suspended within them, called nanofluids [11, 12], which appear to
be applicable in heat exchanger, cooling of electronics and diesel electric genera-
tor, nuclear reactor cooling, refrigeration (domestic refrigerator, chillers) solar water
heating, boiler flue gas temperature reduction, diesel combustion cooling, and heating
in buildings, biomedical application, fiber petroleum reservoirs, and nuclear waste
repositories, cameras, micro devices, and displays. Nanofluids have specific prop-
erty to enhance thermo physical properties such as thermal conductivity, thermal
diffusivity, viscosity, and convective heat transfer coefficients compared to those of
base fluids like oil or water. Pak and Cho [13] discussed that the chemically stable
metals (e.g., gold, copper), metal oxides [14] (e.g., alumina, silica, zirconia, titania),
oxide ceramics (e.g., Al2O3, CuO), metal carbides (e.g., SiC), metal nitrides and
functionalized nanoparticles are commonly used as nanoparticles. Kumar et al. [15]
and Giljohann et al. [16] also investigated the effect of the gold nanoparticles sus-
pension in blood, which states that in biomedical sciences and different biomedical
applications the small size of gold nanoparticles is very important. Nowadays for
certain diseases, various nano sized particle drugs are used to increase or decrease
the blood capillary growth and most of them are very effective.

Magnetohydrodynamics (MHD), study the motion of highly conducting fluid
under the influence of the magnetic field. Some of the researches which have been
done on the effects of magnetization on the arterial vessel of the blood flow are
such as Darcy [17], studied fluid flow through porous media whereas Korchevskii
and Marochnik [18], discussed the magneto-hydrodynamic version of blood flow. In
1974, Sud et al. [19] gave an idea about the effect of magnetic field on oscillating
blood flow in arteries. In their study, authors have given a brief report that increment
in the value of the magnetic field shows the increment in flow resistance of the blood
flow in the stenosed artery.

In the present study a small segment of stenosed coronary artery is considered in
which the non-Newtonian blood flow and heat transfer effect due the nano particles
is modelled and studied. The aim of this paper is to simulate the MHD flow and heat
transfer for blood in the stenosed coronary arterywith the suspension of nanoparticles
by using the finite elementmethodwith variational approach in FreeFem++.And also



222 A. Dubey and B. Vasu

to investigate influence of some parameters such as thermophoresis parameter and
Brownian motion parameter on velocity, nanoparticle concentration and temperature
profile.

2 Mathematical Model for Blood Flow

A 2-D mathematical model for blood flow in a coronary artery is considered where
blood flow is modeled as homogeneous fluid flow with the suspension of nanoparti-
cles. The blood is modelled as second grade fluid (Hayat et al. [20]). For the simula-
tion, the stationary case of the coronary artery is assumed i.e., the pulsatile nature of
blood is neglected. The velocity is taken zero at the arterial wall. Coronary artery is
chosen as cylindrical tube and considered the cylindrical coordinates (r, ϕ, z), where
r is the radial direction, the z as axial direction and ϕ as azimuthal direction. Since
the flow is in two dimension so we can neglect the flow and heat transfer in azimuthal
(ϕ) direction i.e. the flow is in only radial (r) and axial (z) direction [7] as shown in
Fig. (1).

Considering blood to be an incompressible second grade non-Newtonian fluid and
the viscosity of blood is taken as the function of temperature as in Vogel’s method
[21].

μ = μ0e
((A/B+θ)−θL ) (1)

Since the natural convection is taken here then the nanofluid’s density is will be
[22]:

ρ = φρp + (1 − φ)ρ f0

∼= φρp + (1 − φ)[ρ f (1 − βT (θ − θL))] (2)

where ρ f0 is base fluid (blood) density and ρ f is the base fluid’s density at the refer-
ence temperature θL . Yadav et al. [23] adopted the base fluid’s density as nanofluid’s
density. Hence the base fluid’s density will be as in Eq. (2). The conservation of
mass, momentum, thermal energy and total mass equation of the nanofluid will be
as:

Fig. 1 Schematic diagram of stenosed coronary artery
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∇ · V (r, z) = 0 (3)

ρ f

(
∂V

∂t
+ (V · ∇)V

)
= divTs + [φρp + (1 − φ)[ρ f (1 − βT (θ − θL ))]]g + J × B (4)

(ρc) f

(
∂θ

∂t
+ (V · ∇)θ

)
= k∇2θ + (ρc)p[Db(∇φ · ∇θ)

+ DT

θL
(∇θ · ∇θ)] (5)

(
∂φ

∂t
+ (V · ∇)φ

)
= Db∇2φ + DT

θL
∇2θ (6)

where φ is the nanoparticles volume fraction. In Eq. (4) the third term on the right
hand side is considered due to the consideration of electrically conducting fluids.
Hence the following equation, presents the Ohm’s law by which we can find the
relation between J and B [24]:

J = σ(E + V × B) (7)

where E represents the electric field and in the last term of above equation the right-
hand side B=B0+b represents the total magnetic field, σ the electrical conductivity,
V, the velocity vector and J represents the electric current density.

For small magnetic Reynolds number [23, 24], the induced magnetic field will be
neglected. Hence:

J × B = −σ B2
0V (8)

Stress for second grade fluid will be

Ts = −pI + μA1 + α1A2 + α2A
2
1 (9)

where α1, α2 are material modules and in general considered to be functions of
temperature.

In Eq. (9), due to the restraint of incompressibility −pI represents the spherical
stress, and the kinematical tensors A1, A2 can be defined by following equations [25],

A1 = ∇V + (∇V )t (10)

An = d An−1

dt
+ An−1(∇V ) + (∇V )t An−1 (11)

where the fluid velocity is taken only in radial and axial direction and represented as
V = [u(r, z), 0,w(r, z)]

For themodel it is required to be compatiblewith thermodynamics in the sense that
all motions satisfy the Clasius-Duhem inequality and it is assumed that the specific
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Helmholtz free energy is minimum in equilibrium, then all the material derivatives
taken in above equations must meet the following conditions [26, 27].

μ ≥ 0, α1 ≥ 0 and α1 + α2 = 0 (12)

The corresponding boundary conditions are:

u = 0,w = U0,
∂w

∂r
= 0,

∂θ

∂r
= 0,

∂φ

∂r
= 0 at r = 0

u = 0,w = 0, θ = θw, φ = φw at r = R(z) (13)

Introducing the non-dimensional parameters

ū = uL0

U0δ
, w̄ = w

U0
, z̄ = z

L0
, r̄ = r

R0
, μ̄ = μ

μ0

θ̄ = θ − θL

θw − θL
and φ̄ = φ − φL

φw − φL
(14)

The nondimensional geometric parameters appearing in the terms defined above
are stenosis height parameter (δ∗ = δ/R0 << 1) and the vessel aspect ratio (ε =
R0/L0).

For the subsequent analysis, we shall assume that δ∗ � 1 and ε = O (1), i.e.,
the maximum height of the stenosis is small in comparison with the radius of the
artery and also that the radius of the artery and length of the stenotic region are of
comparable magnitude. Hence these parameters should be neglected.

Hence the modified non-dimensional form of the governing equations: as follows

∂μ̄

∂ r̄

∂w̄

∂ r̄
+ λ1

[
−1

r̄

(
∂w̄

∂ r̄

)2

+ 2
∂w̄

∂ r̄

∂2w̄

∂ r̄2

]
+ (

Br φ̄ + Gr θ̄
) = 0 (15)

∂μ̄

∂ z̄

∂w̄

∂ r̄
+ λ1

(
− ∂w̄

∂ z̄
∂2w̄
∂ r̄2 − w̄ ∂3w̄

∂ r̄2∂ z̄ + w̄
r̄

∂2w̄
∂ r̄∂ z̄

− 1
r̄

∂w̄
∂ r̄

∂w̄
∂ z̄ + ∂w̄

∂ r̄
∂2w̄
∂ r̄∂ z̄ + 2 ∂w̄

∂ r̄
∂2w̄
∂ z̄∂ r̄

)

+ Gr θ̄ + Br φ̄ − Mw̄ = 0 (16)

∇2θ̄ + Nb(∇φ̄ · ∇ θ̄ ) + Nt (∇ θ̄ · ∇ θ̄ ) = 0 (17)

∇2φ̄ + Nt

Nb
(∇2θ̄ ) = 0 (18)

In this study viscosity of nanofluid is considered as a function of temperature as
given in Vogel’s method [21].

We can rewrite Eq. (1) as [28]
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μ = c

S

[
1 − Aθ̄

B2

]
, where S = μ0e

((A/B)−θL ) (19)

where A, B, c, μ0, θ0 are the different parameters.
After applying the above equation in system of Eqs. (15)–(18), we get

C
∂θ̄

∂ r̄

∂w̄

∂ r̄
+ λ1

[
−1

r̄

(
∂w̄

∂ r̄

)2

+ 2
∂w̄

∂ r̄

∂2w̄

∂ r̄2

]
+ (

Br φ̄ + Gr θ̄
) = 0 (20)

C
∂θ̄

∂ z̄

∂w̄

∂ r̄
+ λ1

(
− ∂w̄

∂ z̄
∂2w̄
∂ r̄2 − w̄ ∂3w̄

∂ r̄2∂ z̄ + w̄
r̄

∂2w̄
∂ r̄∂ z̄

− 1
r̄

∂w̄
∂ r̄

∂w̄
∂ z̄ + ∂w̄

∂ r̄
∂2w̄
∂ r̄∂ z̄ + 2 ∂w̄

∂ r̄
∂2w̄
∂ z̄∂ r̄

)

+ Gr θ̄ + Br φ̄ − Mw̄ = 0 (21)

∇2θ̄ + Nb(∇φ̄ · ∇ θ̄ ) + Nt (∇ θ̄ · ∇ θ̄ ) = 0 (22)

∇2φ̄ + Nt

Nb
(∇2θ̄ ) = 0 (23)

With non-dimensional boundary conditions:

ū = 0, w̄ = 1,
∂w̄

∂ r̄
= 0,

∂θ̄

∂ r̄
= 0,

∂φ̄

∂ r̄
= 0 at r̄ = 0

ū = 0, w̄ = 0, θ̄ = 1, φ̄ = 1 at r̄ = R̄(z) (24)

where U0, L0, R0, μ0, θw, θL andφL denote the reference velocity, reference length
of the blood vessel, reference diameter, reference viscosity, pipe temperature, refer-
ence fluid temperature, and reference nanoparticle concentration in the arterial tube
model respectively.

M = σ B2
0 L0R0

μ0
, Nb = Db(φw − φL)(ρc)p

κ
, Nt = DT (θw − θL)(ρc)p

θ0κ
,

C = cA

SB2
,Gr = (θw − θL)ρ f,wg(1 − φL)L0R0βT

U0μ0
,Re = ρ f U0L0

μ0
,

Br = (ρp − ρ f )L0R0(φw − φL)g

U0μ0
, λ1 = α1U0

μ0R0
,Pr = cpμ0

κ
, Le = μ0

ρ f Db
(25)

3 Applied Numerical Solution

To solve the system of governing equations we have used finite element method of
variational approach with FreeFEM++.
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For weak formulation of the system of differential equations, we define the
function spaces

X = { ū ∈ (H1(�))|ū = a on �in, ū = 0 on �wall}
Q = { ū ∈ (H1(�))|ū = 0 on �in ∪ �wall} (26)

The weak form of Eqs. (20)–(23) is to find u ε X and φ, θ ∈ X such that
uh, vh,wh, qh ∈ Q. Here X and Q are finite dimensional spaces.

So the weak formulation of Eqs. (20)–(23) will be

∫
�

C
∂θ̄

∂ r̄

∂w̄

∂ r̄
· uh d� −

∫
�

λ1
1

r̄

(
∂w̄

∂ r̄

)2

· uh d�

+
∫
�

2
∂w̄

∂ r̄

∂2w̄

∂ r̄2
· uh d� +

∫
�

Br φ̄ · uh d� +
∫
Ω

Gr θ̄ · uh d� = 0 (27)

∫
�

C
∂θ̄

∂ z̄

∂w̄

∂ r̄
· vh d� −

∫
�

λ1
∂w̄

∂ z̄

∂2w̄

∂ r̄2
· vh d� −

∫
�

λ1w̄
∂3w̄

∂ r̄2∂ z̄
· vh d�

+
∫
�

λ1
w̄

r̄

∂2w̄

∂ r̄∂ z̄
· vh d� −

∫
�

λ1
1

r̄

∂w̄

∂ r̄

∂w̄

∂ z̄
· vh d� +

∫
�

λ1
∂w̄

∂ r̄

∂2w̄

∂ r̄∂ z̄
· vh d�

+
∫
�

2λ1
∂w̄

∂ r̄

∂2w̄

∂ z̄∂ r̄
· vh d� +

∫
�

Gr θ̄ · vh d� +
∫
�

Br φ̄ · vh d�

−
∫
�

Mw̄ · vh d� = 0 (28)

∫
�

∇2θ̄ · wh d� + Nb

∫
�

(∇φ̄ · ∇ θ̄ ) · wh d� + Nt

∫
�

(∇ θ̄ · ∇ θ̄ ) · wh d� = 0

(29)∫
�

(∇2φ̄) · qh d� + Nt

Nb

∫
�

(∇2θ̄ ) · qh d� = 0 (30)

Equations (27–30) are solved numerically using FreeFEM++ [29] in fixed mesh
with 6462 triangular elements and number of vertices are 3392. For the mesh, the
minimum step size (hmin) is 0.0001 and the tolerance for computation is <10−6. Clas-
sic Taylor-Hood element (P1, P2) technique is adopted to approximate the velocity,
temperature and nanoparticles volume fraction concentration.
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4 Results and Discussion

In this section the behaviour of the velocity magnitude, temperature and the mass
concentration of nanoparticles for different shape and designs of stenosis is pre-
sented. Figure 2a, b, c d shows plots of the velocity magnitude for two different
values of thermophoresis parameter (Nt ) and Brownian motion parameter(Nb) for
domain � that resembles the case of stenosis (here the blood flow direction is taken
from left to right). Similarly for temperature distribution and nanoparticles concen-
tration for the different values of thermophoresis parameter (Nt ) and the Brownian
motion parameter(Nb) are shown in Figs. 3a, b, c, d and 4a, b, c, d respectively. For
computation of the model, the default values of different parameters are given in
Table 1.

It is observed from Figs. 2a–d and 3a–b, increasing the values of thermophoresis
parameter (Nt ) decreases the value of velocity in whole domain while increasing
the Brownian motion parameter (Nb), the velocity magnitude increases and again
decreases by increasing thermophoresis parameter (Nt ). The value of temperature
decreases in whole domain when Brownian motion parameter (Nb) increases (at the
stenosis and the remaining boundary of vessel before and after stenosis) and increases
with increment of thermophoresis parameter (Nt ). And the increase in value of Nt

increase the concentration in whole domain with the increase in Brownian motion
parameter (Nb) as one can find in Fig. 4a–d.

The three Figs. 5, 6, and 7 are showing the graphs of velocity profile, tempera-
ture distribution and nanoparticles concentration respectively. Figures 5 is showing
velocity changes at z= 0.005 and variation between r-axis and velocity profile which
clearly depicts that the velocity decreases with an increase in thermophoresis param-
eter. To study the effect of Brownian motion parameter (Nb) in above plotted Figs. 5,
6 and 7, the increase in Nb improves the velocity in the mid-way (centreline) of the
artery but reduces at the walls. Brownian motion tries to distribute the particles as
uniformly as possible, which reduces the nanoparticle concentration gradient and
diminishes the regional variations in fluid characteristics. Hence the temperature and
nanoparticles concentration lower at mid-way but improves at the vessel walls and
decreases by increasing Nb.

Two different rates of stenosis are simulated by comparing the magnitudes of the
velocity fields for two cases: diameter of stenosis= 0.4 l0(in Fig. 2a–d) and diameter
of stenosis= 0.3 l0 (in Fig. 8a–d). Here we can see that in the case where the artery is
narrower due to stenosis, the velocity magnitude is increased. Increase in the velocity
magnitude by increasing the value of Brownian motion parameter (Nb) is shown in
Fig. 8a–c, but there is a slight decrement in velocity due to increase in thermophore-
sis parameter (Nt ) which is clearly shown in Fig. 8b–d. Similarly the temperature
distribution and concentration of nanoparticles are shown in Figs. 9a–d and 10a–d for
another shape of stenosis respectively. We see that in the second case the magnitudes
of the temperature in the narrowed part is higher than the first case at the stenosis.
Figures 8a–b depicts that there is an increment in velocity after increasing the ther-
mophoresis parameter (Nt ) and somehow the temperature decreases due to increment
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Fig. 2 Velocity field at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6, c Nb =
0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 3 Temperature distribution at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6, c Nb =
0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 4 Nanoparticle concentration at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6,
c Nb = 0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 6 Temperature profile for diameter of stenosis = 0.4 l0 at M = 0.3, z = 0.005

inBrownianmotion parameter (Nb). It is found that the nonuniformity of nanoparticle
concentration increases when considering the thermophoresis hence the concentra-
tion profiles increased significantly with increase in thermophoresis parameter (Nt )
and Brownian motion parameter (Nb). It is observed that concentration and temper-
ature distributions are more noticeable with increase in thermophoresis parameter
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Fig. 7 Nanoparticles concentration for diameter of stenosis = 0.4 l0 at M = 0.3, z = 0.005

(Nt ) and hence these results are considerably increased within the boundary layer
region for both cases of stenosis.

Figures 11, 12 and 13 are depicts that velocity profile, temperature distribution and
nano-particle concentration for another size of stenosis respectively. From the above
plots one can see that the velocity decreases by increasing thermophoresis parame-
ter while in contrary the temperature and nanoparticles concentration increases by
increasing the value of thermophoresis parameter. It is due to the reason that ther-
mophoresis induces a force on the suspended nanoparticles in the fluid to accumu-
late them in the opposite direction of the temperature gradient, generating a greater
nanoparticle concentration gradient and accentuating the variation in regional prop-
erties. It can be shown that considering nanoparticle migration is consequential to
predict the heat transfer rate with high accuracy.

5 Conclusion

In the present paper, 2D mathematical model of MHD-blood flow, as second grade
non-Newtonian nanofluid through coronary artery is studied numerically using finite
element analysis. The study investigated the behaviour of the blood flow for the
most common cardiovascular disease—stenosis and simulated the flow behaviour
and heat transfer of MHD blood conveying nanoparticles by applying the finite
element method of variational approach and obtained the results for symmetric case
of stenosis. The main outcomes from the present investigation are as follows:
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Fig. 8 Velocity field at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6, c Nb =
0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 9 Temperature distribution at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6, c Nb =
0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 10 Nanoparticles concentration at a Nb = 0.3 and Nt = 0.3, b Nb = 0.3 and Nt = 0.6,
c Nb = 0.6 and Nt = 0.3, d Nb = 0.6 and Nt = 0.6
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Fig. 12 Temperature profile for diameter of stenosis = 0.3 l0 at M = 0.3, z = 0.005

• It is observed that in the first case of stenosis (diameter of stenosis = 0.4 l0),
increasing the thermophoresis parameter (Nt ) caused an increase in nanoparticles
concentration and temperature values in whole domain.

• An increase in Brownian motion parameter (Nb) leads to increase in velocity at
the stenosis and in whole domain.

• For the case where diameter of stenosis = 0.3 l0, in later case, by increasing
stenosis depth the velocity is increased from the earlier case and also by increasing
the Brownian motion parameter (Nb) velocity increases in the whole domain.
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• Also from both the cases of stenosis, it can be concluded from the simulations
shows for both the cases of stenosis the temperature and nanoparticles is increased
at the stenosis by increasing the thermophoresis parameter (Nt ).

• The velocity at the stenotic region is more in second case as compared to first one.
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Comparative Study of Boundary
Conditions in LBM for Incompressible
Laminar Flow

Alankar Agarwal and Akshay Prakash

Abstract In this paper, we conduct a comparative study amongst different boundary
conditions with two dimensional single-relaxation time lattice Boltzmann method
(SRT-LBM), for incompressible laminar flow. Three types of boundary condition are
considered for the simulation: including full-way bounce-back, half-way bounce-
back, and modified bounce-back for the implementation of no-slip boundary condi-
tion on the wall with, pressure (density) boundary condition proposed by Zuo and
He (Phys Fluids 9(6):1591–1598, 1997 [1]) for inlet/oulet. The benchmark fluid
flow problem of steady plane Poiseuille’s flow with Reynolds number, Re = 75
is choosen. The numerical simulations are validated with the analytical solution,
and grid convergence test are performed to compare accuracy of different boundary
conditions.

Keywords Lattice Boltzmann method (LBM) · Single-relaxation time ·
Incompressible flow · Boundary conditions

1 Introduction

In the past few decades, lattice Boltzmann method (LBM) has been adopted by a
large number of researchers for the simulations of incompressible Navier-Stokes
(NS) equations [2, 3]. The method differs from conventional computational fluid
dynamics (CFD) approaches (such as finite difference method, finite volume method
and finite element method) in the sense, that the traditional CFD approaches based
on macroscopic continuum equations, where LBM is based on microscopic laws
of collison-streaming and mesoscopic kinetic equations. The method has gained
significant success over other numerical Navier-Stokes solutions due to its easy
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implementation, high stability and efficient parallelizable nature [4]. LBM has wide
range of applications in multiphase flows, porus media, and turbulents flows. The
interested reader is referred to Succi [5], Chen and Doolen [2], and Aidun et al. [6]
for more information on the LBM.

Boundary treatment plays an important role in the lattice Boltzmann method [7].
Most commonly used boundary condition for the implementation of no-slip are stan-
dard bounce-back scheme, half-way bounce back scheme and modified bounce-back
scheme [8]. Later, in 1997 Zuo andHe [1] proposed velocity wall boundary condition
and pressure (density) flow boundary condition. This study is a comparison of pres-
sure boundary condition proposed by [1] with the various no-slip boundary condition
on 2D steady plane Poiseuille’s flow. The results with these schemes of boundary
conditions gets validated with the analytical solution and comparison amongst these
boundary conditions are made for accuracy.

The remainder of the paper is organized as follows: Sect. 2 provides a succinct
introduction of the single-relaxation time-lattice Boltzmann method (SRT-LBM),
and describes different boundary conditions. Section 3, explains the flow domain and
fluid properties used during the study. Results and discussion are included in Sect. 4
that particularly focuses on the validation, and comparison of different boundary
conditions in terms of error accuracy. Finally, in Sect. 5, conclusion is addressed.

2 Simulation Procedure

2.1 Single Relaxation Time (SRT) LBM Model

The single relaxation time (SRT) is the most commonly used model of LBM for
the complex fluid flow problems. The lattice Boltzmann equation (LBE) for the
SRT-LBM model can be written as:

fk(x, ek�t, t + �t)
︸ ︷︷ ︸

streaming−step

= fk(x, t) − 1

τ

[

fk(x, t) − f eqk (x, t)
]

︸ ︷︷ ︸

collision−step

(1)

where f is the probability density distribution function (i.e. PDDF) describing the
probability of particle at position vector x = (x, y) at time t for the discrete velocity,
ek (k = 1, …, Q) in D-dimensional space, and τ is the non-dimensional relaxation
time parameter due to fluid-particle collision, describes the time taken by the fluid-
particle to reach to equilibrium [9]. The equilibrium probability density distribution
function (i.e. EPDDF) f eqk can be expressed as:

f eqk = ρwk

[

1 + (ek .u)

c2s
+ (ek .u)2

2c4s
− u2

2c2s

]

(2)



Comparative Study of Boundary Conditions in LBM… 243

Fig. 1 Schematic diagram
of D2Q9 square lattice

where u = (u, v) is the liquid velocity vector and cs is the speed of sound. It is related
to the lattice speed c as:

cs = c√
3

c = �x

�t
(3)

�x and �t are the size of lattice and time step size respectively. In this study,
we use the twodimensional nine velocity (D2Q9) square lattice as shown in Fig. 1.
The discrete velocity vector ek and the corresponding weighted function wk for the
(D2Q9) square lattice are [7]:

ek =
⎧

⎨

⎩

[cos{(k − 1)π/2}, sin{(k − 1)π/2}], k = 1−4
[cos{(k − 1)π/2 + π/4}, sin{(k − 1)π/2 + π/4}], k = 5−8
(0, 0), k = 9

(4)

wk =
⎧

⎨

⎩

1/9, k = 1−4
1/36, k = 5−8
4/9, k = 9

(5)

The relaxation time parameter τ is related to the kinematic viscosity that fixes the
rate of approach to equilibrium given by [10]:

ν = 2τ − 1

6

(�x)2

�t
(6)

The macroscopic variables such as density and momentum density can be evalu-
ated directly from the real-valued probability density distribution function (PDDF)
respectively [9]:
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ρ =
∑

k

fk =
∑

k

f eqk

ρu =
∑

k

ek fk =
∑

k

ek f
eq
k (7)

The above expression of density, and momentum density satisfy the traditional
pressure-based solver (i.e. Navier-Stokes solver) for incompressible flow explained
by He and Luo, 1997 using the Chapman-Enskog (CE) expansion [11].

2.2 Boundary Conditions

2.2.1 Pressure Boundary Condition

Zuo andHe [1] proposed pressure (density) flowboundary condition in the year 1997.
For the case of steady plane Poiseuille’s plane, we applied pressure flow boundary
conditions at the inlet andoutlet nodes.Consider a node at the inlet, after the streaming
process, distribution function (f 2, f 3, f 4, f 6, f 7) are known (see Fig. 1). To evaluate
unknown fluid populations (f 1, f 5, f 8) at inlet nodes formulation is given below:

f1 + f5 + f8 = ρ − ( f2 + f3 + f4 + f6 + f7 + f9) (8)

f1 + f5 + f8 = ρu − ( f3 + f6 + f7) (9)

f5 − f8 = ρv − f2 + f4 − f6 + f7 (10)

for the present case v = 0, thus Eq. (10) gives:

f5 − f8 = − f2 + f4 − f6 + f7 (11)

Substituting Eq. (9) in Eq. (8) gives:

u = 1 − [ f2 + f4 + f9 + 2 ∗ ( f3 + f6 + f7)]

ρ
(12)

The bounce-back rule was used to obtained the population f 1 (normal to the inlet).
It gives:

f1 − f eq1 = f3 − f eq3 (13)

From Eq. (2)
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f1 = f3 + 2

3
u (14)

Using f 1, the other unknown fluid populations f 5 and f 8 can be evaluated from
expression in Eqs. (9)–(10)

f5 = f7 − 1

2
( f2 − f4) + 1

6
ρu

f8 = f8 + 1

2
( f2 − f4) + 1

6
ρu (15)

Similar procedure can be used to evaluate the fluid population (f 3, f 6, f 7) at the
outlet nodes.

2.2.2 Wall Boundary Condition

Full-Way Bounce Back

The full-way bounce back scheme implements no-slip boundary condition at thewall,
also referred as to the standard bounce back method [12]. In this method lattices are
located directly at the solid surface (i.e. wall). The method sees to it that no collision
operation is performed, on the fluid node, at the wall, during its implementation.
After the streaming process, the unknown fluid population at the wall is obtained
using the expression below:

fi (x, y, t + �t) = fi (x, y, t + �t) (16)

where, f is the post-streaming distribution function, and (i, i) are the distribution
functions (fluid population) in the direction opposite to each other.

Half-Way Bounce Back

In this approach, wall is located at a half distance between two lattice sites. The
collision operation is performed on all lattice sites. Consider D2Q9 (see Fig. 1)
lattice structure at the upper wall node. After, the streaming process, fluid population
(f 2, f 5, and f 6), the unknown fluid population f 4, f 7, and f 8 can be computed as:

f4(x, ly, t + �t) = f2(x, ly − 1, t + �t)

f7(x, ly, t + �t) = f5(x − 1, ly − 1, t + �t)

f8(x, ly, t + �t) = f6(x + 1, ly − 1, t + �t) (17)

where ly are the upper wall boundary nodes. Similar procedure can be applied to
lower wall boundary nodes for 2D steady plane Poiseuille’s flow.
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Modified Bounce-Back

The implementation of modified bounce back boundary condition is similar to the
full-way bounce back method. It differs only in the sense that it includes collision
operation at the wall nodes during the process.

3 Numerical Setup and Flow System

The simulation were carried out for 2D steady plane Poiseuille’s flow using D2Q9

square lattice for SRT-LBM model. The fluid properties and geometric parameters
are given in Table 1. Figure 2. shows the schematic representation of flow between
two stationary plates. The relaxation parameter for the collision step in Eq. (1) is
choosen to be τ = 0.6.

The convergence criterion for the steady state solution is set to be:

∑

i, j

∣

∣

∣um+1
i, j − umi, j

∣

∣

∣

∑

i, j

∣

∣

∣um+1
i, j

∣

∣

∣

≤ 1.0 × 10−8 (18)

Table 1 Fluid properties and
geometric parameters

Density, ρ (kg/m3) 1000

Dynamic Viscosity, μ (kg/m s) 0.001

Separation between plates,W (m) 0.1

Inlet velocity, u (m/s) 7.5 × 10−4

Length of plates, L (m) 1

Reynolds number, Re 75

Fig. 2 Schematic diagram for flow between two stationary parallel plates
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where umi, j = u(x, y,m�t) is the axial component of velocity vector u at different
grid point and at time instantm. The results are compared with the analytical solution
of plane Poiseuille’s flow governed by the expression:

u(x, y, t) = 1

2μ

dp

dx
y(y − W )

v(x, y, t) = 0 (19)

4 Results and Discussion

In this section, simulation results of 2D plane Poiseuille’s flow with different bound-
ary condition methods are compared with the analytical solution as given in Eq. (19).
Further, grid independence test was performed to compare different approaches of
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Fig. 3 Axial velocity along vertical direction at different position along x-axis with a Zuo-He
+ full way bounce back, b Zuo-He + half way bounce back, c Zuo-He + modified bounceback
boundary condition
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Fig. 4 Velocity distribution of steady planePoiseuille’s flowwith aZuo-He+ fullwaybounce back,
b Zuo-He + half-way bounce back, and c Zuo-He + modified bounce back boundary conditions

boundary conditions. Figure 3(a–c) shows the axial velocity along vertical direc-
tion [i.e. u(y)] at different position along x-axis for various boundary conditions.
Figure 3a is the results obtained after implementing pressure boundary condition at
the inlet/outlet nodes with the full-way bounce back boundary condition method for
the no-slip boundary at the top/bottom wall nodes, Fig. 3b, c are the results from
pressure boundary condition at the inlet/outlet nodes with the half-way bounce-back
and modified bounce back boundary condition method for the no-slip boundary
respectively. Figure 4 shows velocity distribution of steady plane Poiseuille’s flow.

4.1 Grid Independence Test

To perform grid convergence test, simulation were carried out on three different
grid size (i.e., 4, 2, and 1 mm) for the boundary conditions (Zuo-He + full- way
bounce back, Zuo-He + half-way back, and Zuo-He + modified bounce back). The
computational domain for different grid spacing are given in Table 2.

Figure 5a–c shows the comparison of numerical solution with analytical solution
on different grid size for each of the choosen boundary condition. As seen, numerical
scheme with pressure boundary condition and halfway or modified bounce back
shown similar results and are more close to the analytical solution for the fine grid
as comparison to the results with pressure boundary condition and full way bounce
back condition at the wall.

The relative global error between the numerical and analytical solution can be
calculated using:

Table 2 Simulation
parameters and cases

Case 1 Case 2 Case 3

Grid spacing, �x
(mm)

4 2 1

Computational domain
lx × ly

250 × 25 500 × 50 1000 × 100
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Fig. 5 Comparison of numerical solution with analytical solution on different grid size for a Zuo-
He + full way bounce back, b Zuo-He + half way bounce back, c Zuo-He + modified bounce back
boundary condition

Relative global error =
∥

∥uLBM − uanalytical
∥

∥

∥

∥uanalytical
∥

∥

2

(20)

The corresponding error obtained on different grid size with various boundary
conditions are presented in Table 3. As seen, SRT-LBM scheme with full way
bounce back is approximately 1st order accurate whereas scheme with other two
boundary conditions (i.e. half way bounce back and modified bounce back) shown
approximately 2nd order accuracy for incompressible laminar flow.

5 Conclusion

In this study, various boundary conditions in SRT-LBM were assessed for incom-
pressible laminar flow through benchmark fluid flow problem—steady plane
Poiseuille’s flow. The results are compared with the analytical solution, and grid
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Table 3 Relative global error and order of accuracy with different boundary conditions

Boundary
Condition

Case �x
(mm)

Domain (lx ×
ly)

Relative global
error

Order of
accuracy

Zuo-He +
full-way bounce
back

1 4 250 × 25 0.0800

2 2 500 × 50 0.0400 0.9988

3 1 1000 × 100 0.0200 0.9998

Zuo-He +
half-way bounce
back

1 4 250 × 25 0.0180

2 2 500 × 50 0.0051 1.8108

3 1 1000 × 100 0.0014 1.8254

Zuo-He +
modified bounce
back

1 4 250 × 25 0.0180

2 2 500 × 50 0.0051 1.8108

3 1 1000 × 100 0.0014 1.8254

convergence study was performed to compare various boundary conditions. As pre-
sented in results and discussion section, half-way bounce back and modified bounce
back with the pressure boundary condition of Zuo-He [1] show approximately sec-
ond order accuracy comparative to full-way bounce back boundary method that
results with the accuracy of first order. This study is a part of development of solver
for incompressible flow using LBM and further study regarding the stability issue in
boundary conditions is required. Also, based on thework presented here, we continue
to develop the algorithm for other challenging problem of fluid flow, that includes
turbulent flow simulation, multiphase flows, etc.
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Stability Analysis of a Film Flow Down
an Incline in the Presence of a Floating
Flexible Membrane

M. Sani, H. Behera and S. Ghosh

Abstract The present study deals with the effects of floating flexible membrane on
the instability of a gravity-driven flow down an incline. Linear stability of the flow
system is explored using normal-mode analysis. Free surface gravity-driven flow is
unstable atmuch lowerReynolds numbers. Instability of such a flowcan be controlled
either by changing behavioral of the lower wall or by altering the surface waves at
the free surface which is done here by including a floating flexible membrane at the
top of the liquid layer. Influence of membrane tension is taken into account in terms
of stress jump at the free surface. The Orr-Sommerfeld system of the flow is solved
numerically using spectral collocation method. The results displays a destabilizing
role of membrane tension for a wide range of parameters. The growth rate of the
perturbation waves increases with an increase of membrane tension and the critical
Reynolds number becomes smaller. Therefore, it is possible to enhance the instability
of the flow system with help of membrane properties, which may be useful in Ocean
engineering and coating industries.
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1 Introduction

Hydrodynamic modal stability analysis of wall bounded channel flow or semi-
bounded free surface flow is a flourishing area of modern fluid dynamic research.
The knowledge of instability for a flow system has wide range of applications [7, 16,
18] in mechanical, civil, biomedical, geophysics, and agricultural engineering etc.
This among other reasons is why it attracted and continues to attract the attention
of large number of researchers from applied sciences and engineering. In the past
semicentennial, a lot of work has been done on the instability of film flow with a free
boundary down an incline (see [1–3, 10, 17]). Amaouche et al. [1] studied the long
wave instability of an electroconductor fluid film, flowing down an inclined plane
under the action of electromagnetic field. They used the lubrication theory and the
weighted residual approach to check the instability behaviour of the flow system.

A two-dimensional motion of a thin film flowing down an inclined plane under
the influence of the surface tension and the gravity was studied by Ueno and Iguchi
[15]. In their work, a mathematical justification of a thin film approximation between
the solution of the Navier–Stokes equations and those of approximate equations is
elaborated. Earlier, Tshehla [14] investigated the effect of a temperature dependent
variable viscosity on a free surface flow down an inclined plane. The full solution of
the physical problem was handled using Runge–Kutta numerical method.

In the recent decades, researchers have great interest to find out passive or active
control technique to encourage/suppress the free surface flow instabilities depending
on the applications. To control instability of a film flow by passive way, several math-
ematical models have been developed by considering the effects of surface tension
or floating insoluble surfactants at the free surface and slippery/hydrophobic/porous
wall boundary. The effect of surfactant on the instability of filmflowdown an inclined
plane has been studied byBlyth andPozrikidis [3].Anjalaiah et al. [2] investigated the
stability analysis for thin filmflowover a porous substrate in the presence of an insolu-
ble surfactants and they have shown the competing influence of porous layer (which
is modeled by a velocity slip condition) and insoluble surfactants in an effective
way. Apart from stability analysis, gravity wave interaction with floating/submerged
flexible membranes is another branch of study that draws significant attention of the
scientific community. Usingmode expansionmethod and boundary element method,
Cho andKim [5] studied obliquewave interactionwith a submerged horizontal mem-
brane. From their study, they found that the horizontal membrane improved the wave
blocking efficiency as compared to a rigid submerged plate. Later, Cho and Kim [6]
analyzed the effect of circular membrane on wave scattering. Using eigenfunction
expansion method, Sahoo et al. [12] investigated wave scattering by a semi-infinite
floating horizontal elastic plate by considering different edge conditions which were
generalized by Yip et al. [19] for wave scattering by multiple floating membranes.
Karmakar and Sahoo [8] developed an analytic method using eigenfunction expan-
sionmethod alongwith expansion formulae for gravitywave interactionwith floating
membrane due to abrupt change in water depth. Karmakar and Soares [9] also stud-
ied the interaction of oblique incident wave with a moored floating membrane as a
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breakwater for both the cases of finite water depth and shallow water approximation
based on the linearized water wave theory. Mondal et al. [11] studied gravity wave
interaction with floating circular flexible plate andmembrane in both single-and two-
layer fluid using Fourier-Bessel series along with mode-coupling relation. However,
in all the aforementioned studies on floating elastic membrane, the fluid is assumed
to be inviscid. To the best knowledge of the authors, there is no study in the literature
on the instability of viscous free surface flow in the presence of floating flexible
membrane.

In this work, the effects of floating flexible membrane on the instability of a
gravity-driven flow down an inclined plane has been discussed. Linear stability of
the flow system is explored using normal-mode analysis. The instability of the fluid
is passively controlled here using a floating flexible membrane at the top of the
liquid layer. Influence of the membrane tension is taken into account in terms of
stress jump at the free surface. We have studied a Newtonian thin film flow in two
dimensional Cartesian coordinate system. The Orr-Sommerfeld system of the flow is
solved numerically using spectral collocation method. Systematic derivation of the
Orr-Sommerfeld equation for linear stability and numerical results are presented in
the next two sections.

2 Mathematical Formulation

A two-dimensional incompressible Newtonian fluid flowing over an inclined sub-
strate is considered. The top of the flow is bounded by a floating membrane. Inter-
action of fluid surface with a floating flexible membrane is studied in a Cartesian
coordinate system where the x-axis is along the inclined plane and y-axis is being
placed vertically positive upward direction on the plane (see Fig. 1). It is assumed
that a flexible membrane of uniform thickness dm floats on the top of the fluid layer
with membrane deflection y = h(x, t), and the mean surface (at y = H ) is parallel
to the inclined plane y = 0. The fluid motion is incompressible and irrotational. The
governing equations for the flow system are

ux + vy = 0, (1)

ρ
[
ut + uux + vuy

] = −px + μ
[
uxx + uyy

] + gsinθ, (2)

ρ
[
vt + uvx + vvy

] = −py + μ
[
vxx + vyy

] − gcosθ, (3)

where ρ, μ are the density and viscosity of the fluid, respectively. u, v are the com-
ponents of velocity in the x and y increasing directions, respectively and p is the
dynamic pressure exerted by the fluid on the flexible membrane. The term g repre-
sents the acceleration due to gravity and θ is the angle of inclination of the substrate.
The set of dimensional boundary conditions at the free surface (y = h(x, t)) which
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Fig. 1 Schematic diagram for a Newtonian fluid flowing down an inclined plane with a floating
flexible membrane at the free surface

is aligned with the flexible membrane, are the kinematic condition, the balance of
the tangential and normal stresses given by

v = ht + uhx at y = h(x, t), (4)

μ
[−4uxhx + (

uy + vx
)(
1 − h2x

)] = Tx
√(

1 + h2x
)

at y = h(x, t) (5)

p − p∞ = 2μ
(
1 + h2x

)
[
uxh

2
x − (

uy + vx
)
hx + vy

]
− Thxx

(1 + h2x )
3
2

− mmhtt at y = h(x, t),

(6)

where, T is the membrane tension per length, p∞ is the atmospheric pressure and
mm = ρmdm is the uniform mass per unit length of the membrane. Note that, when
the elastic membrane stretched with a constant tension per length (i.e. T = constant)
then Tx = 0 and therefore, the right hand side of the Eq. (5) will be zero. The
boundary conditions at the inclined wall are

u = 0 and v = 0 at y = 0, (7)

which confirms no velocity slip at the wall. The set of equations and boundary
conditions are made nondimensional using the following dimensionless variables:

x̄ = x

H
, ȳ = y

H
, ū = u

V
, v̄ = v

V
, t̄ = tV

H
, p̄ = p

ρV 2
, h̄ = h

H
, T̄ = T

T0
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where H is the mean film thickness of the fluid layer and T0 is a mean reference
tension of the membrane. The characteristic velocity scale V for the fluid layer is
chosen as the maximum velocity of a uniform flat Nusselt film over a rigid substrate
and given by V = gH 2 sin θ

2ν (v is kinematic viscosity). The present study is motivated
by the investigations of Blyth and Pozrikidis [3], Anjalaiah et al. [2] and hence, in
order to compare the results with available results, the formulation is in terms of the
Reynolds number based on the Nusselt film free surface velocity for a film without
membrane over a rigid substrate has been used. The set of dimensionless equations
and conditions look like (after suppressing the over bars):

ux + vy = 0, (8)

ut + uux + vuy = −px + 1

Re

[
uxx + uyy

] + G, (9)

vt + uvx + vvy = −py + 1

Re

[
vxx + vyy

] − Gcotθ, (10)

v = ht + uhx at y = h(x, t), (11)

(
1 − h2x

)(
uy + vx

) − 4uxhx = 0 at y = h(x, t), (12)

Rep = 2
(
1 + h2x

)
[
uxh

2
x − (

uy + vx
) + vy

] − Thxx

(1 + h2x )
3
2

− mmhtt at y = h(x, t),

(13)

u = 0 and v = 0 at y = 0, (14)

where Reynolds number Re = V H/ν andG is the dimensionless gravitational force.
Further, in above equations T and mm are dimensionless membrane tension and unit
mass, respectively.

2.1 Base Solution and Stability Equation

The base flow solution (for velocity and pressure) corresponding to the considered
flow system is obtained from above set of equation and boundary conditions with
unidirectional parallel flow assumption and are given by

U (y) = −y2 + 2y

P(y) = 2cotθ(1 − y)
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Following the work of Anjalaiah et al. [2], the base flow calculation is done by
fixing G Re = 2(G � O(1)). It is important to note that there will be no change in
the behavior of the base flow due to the presence of membrane at the free surface.

Next, the stability of the base state with respect to infinitesimal perturbations
is considered and the flow variables are now taken as the sum of basic state and
perturbed state solution. Substituting u(x, y, t) = U (y) + ũ(x, y, t), v(x, y, t) =
ṽ(x, y, t), p(x, y, t) = P(y)+ p̃(x, y, t), h(x, t) = 1+ h̃(x, t) into the equations of
motion and boundary conditions and linearizing with respect to the small amplitude
perturbations, the equations for the perturbed quantities are obtained as

ũx + ṽy = 0, (15)

Re
[
ũt +Uũx + vUy

] = −Re p̃x + [
ũxx + ũ yy

]
, (16)

Re
[
ṽt +U ṽx

] = −Re p̃y + [
ṽxx + ṽyy

]
, (17)

ũ = 0 and ṽ = 0 at y = 0, (18)

ṽ = h̃t +Uh̃x at y = 1, (19)

h̃Uyy = −ũ y − ṽx at y = 1 (20)

Re p̃ + h̃ Py = 2ṽy − T h̃xx − mmh̃tt at y = 1 (21)

Using Eq. (15) in Eqs. (20) and (21) one can rewrite these equations after some
manipulation as,

h̃xUyy = ṽyy − ṽxx at y = 1 (22)

2 cot θ h̃xx − T h̃xxxx − mm

(
ṽxxt −Uh̃xxtt

)
+ 3ṽxxy + ṽyyy

− Reṽyt − ReU ṽxy = 0 at y = 1 (23)

Let ψ̃ is the stream function of the two dimensional flow and in the form of normal
mode solution,

ψ̃(x, y, t) = φ(y)eik(x−ct)

h̃(x, y, t) = η(y)eik(x−ct)

where, k, c are the wave number and the complex wave speed, respectively and
i ≡ √−1. Expressing velocity components in terms of stream function and using
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all in the perturbation equations and boundary conditions we obtained the following
Orr-Sommerfeld system,

(
D2 − k2

)2
φ − Re

[
ik(U − c)

(
D2 − k2

)
φ − ikUyyφ

] = 0, (24)

Dφ = 0 and φ = 0 at y = 0, (25)

φ + η(U − c) = 0 at y = 1, (26)

Uyyη + D2φ + k2φ = 0 at y = 1, (27)

− ikD3φ + [
Rek2(c −U ) + 3ik3

]
Dφ − m̃mk

4cφ

− [(
2k2cotθ + k4T

) + m̃mk
4Uc

]
η = 0 at y = 1. (28)

where D presents derivative with respect to y. Equations (25)–(28) describe a gen-
eralized eigenvalue problem with c as eigenvalue and we are interested to obtain a
non-trivial solution of the system. The parameter c = cr + ici where cr and ci are
respectively, the wave speed and the growth rate. In this study we have considered
ωi = kci as scaled growth rate of the disturbances. When no membrane is present
on the free surface the above system, in the absence of membrane tension at the free
surface, reduces to the Orr-Sommerfeld equations represent a Newtonian flow down
a rigid inclined substrate given by Yih [17].

3 Numerical Results

The Orr-Sommerfeld system is solved using Spectral collocation method of Canuto
et al. [4] based on Chebyshev polynomials and points which are used for discretizing
the generalized eigenvalue problem described by Eqs. (25)–(28). The solution of this
system yields complex phase velocity c = cr + ici , from which the dimensionless
scaled growth rate ωi = kci is obtained for a wide range of wave number k. The
accuracy of the eigenvalues is tested by varying the number of collocation points used
in the computation and the spurious eigenvalues are eliminated in a special process.
The employed ‘MATLAB’ code for the computations is validated by obtaining the
numerical results for the growth rate of a film flow in the absence of the membrane
on the free surface over a rigid inclined substrate.

We start our numerical computation with angle of inclination θ = 4◦ and θ = 90◦
in Fig. 2 to validate our results with the results of Blyth and Pozrikidis [3] and
Skotheim et al. [13], respectively in the absence of floating flexible membrane (for
mm = 0). It is seen that both the curves are in good agreement. In Fig. 3a, we see
existence of two humps in the growth rate curve when the membrane tension is
very low (T = 0.001). This in turn indicates subsistence of two different unstable
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Fig. 2 The growth rate of the dominant disturbance as a function ofwave number k for a comparison
between present results with the results of Blyth and Pozrikidis [3] (θ = 4◦) and Skotheim et al.
[13] (θ = 90◦) with mm = 0, T ≈ Ca = 0.017716 and Re = 2500

Fig. 3 The growth rate of the dominant disturbance as a function of wave number k for different
values of a membrane tension T for mm = 0.1 and b mass per unit length of the membrane mm
for T = 0.1 when θ = 10◦ and Re = 2000

modes for the perturbed flow with one mode for small wave numbers and other one
at moderate wave numbers (k > O(1)). The long wave instability is weaker than
the instability of shorter waves. An increase in the magnitude of membrane tension
enhances the long wave instability by increasing the growth rate of the unstable
mode, but simultaneously it suppresses the instabilities at higher wave numbers.

Themembrane placed on the free surface is very thin and flexible thus perturbation
inside theflowgives rise disturbance to themembrane and themembrane can generate
some extra waves at the surface. Quite naturally the membrane waves are of small
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Fig. 4 Influence of aReynolds Number Rewith θ = 10◦ and b inclination angle θ with Re = 2000
on the growth rate ωi for T = 0.1 and mm = 0.1

amplitude and long, as a consequence long wave disturbances inside the flow are
becoming stronger and therefore, more unstable in the presence of the membrane.
Uniform mass per unit length of the membrane, mm has very weak influence on the
growth rate of the two dimensional disturbances (Fig. 3b). As the membrane is thin
(dm is small), the unit mass of the membrane is small and thus, we can not use larger
value of mm .

In Fig. 4, we have shown the effects of inertial/viscous forces (Re) and inclination
angle (θ ) on the growth rate of the dominant disturbances. Figure 4a displays, for
a fixed θ as Re increases, the growth of the long wave instability diminishes but
an opposite trend is seen for higher range of wave numbers. This bifurcation of the
growth rate is happening around the wave number k = 1.25. If we keep the Re fixed
and vary θ , a destabilizing effect of θ is found in Fig. 4b, since the growth rate is
increasing with an increase of θ . As a consequence, a vertical film flow is unstable
for all Reynolds numbers and horizontal flow is always much stable.

Finally, to get a clear idea about the instability behavior and the effects of mem-
brane properties, maximum growth rate (ωi,max ) over a range of wave numbers is
calculated and plotted as a function of Re in Fig. 5. Figure 5a displays that the flow
system is stable at very small Reynolds numbers since ωi,max < 0. But, for each T
there exists a critical Re (Rec) and the flow is unstable for all Re > Rec, due to the
positive growth rate of the dominant disturbance. It is also clear from the figure that
the growth rate of the unstable mode amplifying up to a certain value of Reynolds
number and at higher magnitude of inertial forces ωi,max is almost constant for Re.
The membrane tension T is destabilizing the flow by increasing the disturbance
growth rate for all Reynolds numbers. In order to facilitate the effects of membrane
thickness by means of uniform unit mass mm over all Reynolds number, we have
plotted

(
ωi,max

)
as a function of Re in Fig. 5b. We see that the influence of mm is not

significant for the considered values of Re, θ and T. The physical reason behind this
is not very clear to us in this stage. A detailed energy budget analysis may give some
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Fig. 5 Maximum growth rate as a function of Re for different values of a T with mm = 0.1 and
b mm with T = 0.1, and for both the cases θ = 10◦

knowledge on the mechanisms of the instability and we have planed to investigate
the same in future work.

4 Conclusions

The linear stability of a film flow down an inclined substrate in the presence of
floating flexible membrane at the free surface is examined. A hybrid Chebyshev
spectral method is employed to obtain the growth rate of the disturbances and the
critical Reynolds number. The influence of the parameters characterizing the floating
flexiblemembrane and the inclined substrate such asmembrane tension T, membrane
thickness dm and inclination angle θ have been shown by properly choosing the
various fluid and structural parameters. Numerical results show the existence of both
long and short waves instabilities. It is possible to find a k−Rewindow for a range of
other parameters, where the flow over an inclined substrate can be more destabilized
in the presence of a floating membrane at the free surface. The results indicate that
the presence of the flexible membrane enlarges the range of unstable wave numbers
beyond the onset of instability and the unstable region grows. The growth rate of the
perturbation waves increases with an increase of membrane tension and the critical
Reynolds number becomes smaller. Therefore, it is possible to enhance the instability
of the flow system with help of the flexible floating membrane on the top of the fluid
layer.
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On the Dynamics of Transverse Domain
Walls in Ferromagnetic Heterostructures
with Nonlinear Dissipative Effects

Sharad Dwivedi

Abstract This work delineates the investigation of static and dynamical behavior
of transverse domain walls in ferromagnetic heterostructure in which the thin ferro-
magnetic layer is sandwiched between a heavy metal and a metal oxide layers. We
consider the metallic ferromagnet with high perpendicular magnetic anisotropy and
exhibits structural inversion asymmetry. The presence of a strong inversion asymme-
try in the ferromagnetic material leads to additional spin-orbit coupling torque terms
into the dynamics qualitatively different from the standard spin-transfer torques.
The evolution of magnetization inside the ferromagnetic layer is governed by the
one-dimensional model of generalized Landau-Lifshitz-Gilbert-Slonczewski equa-
tion consisting of the standard spin transfer and spin-orbit coupling torque terms
along with the nonlinear dissipation factors viz. viscous and dry-friction. Under this
framework, first, we establish the static magnetization profile in the two faraway do-
mains in the presence of transverse magnetic field once the electric and longitudinal
magnetic fields are switched off. Then, by means of regular perturbation expansion
method, we derive the zero order traveling wave solutions under the influence of
small applied magnetic field and spin-polarized electric currents.

Keywords Domain wall · Micromagnetics · Nonlinear dissipations · Traveling
wave

1 Introduction

The ferromagnetic materials have been widely used in the different applications
emerging from various disciplines of science and engineering. For instance, it has
been used in MRI’s, magnetic sensors, nuclear systems, logic devices, and mod-
ern storage media etc. (cf. [1–3]). In particular, in modern electronic devices,
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ferromagnetic nanowires (nanostrips) have been used to encode the data as a pattern
of domains along these wires (strips). Domains are the uniformly oriented magne-
tized regions separated by a thin transition zones referred as domain walls (DW). In
literature, various types of domain wall have been reported based on their charac-
teristics such as Bloch, Néel, transverse, chiral, vortex, and spiral domain walls. In
this work, we examine the dynamics of transverse domain wall (TDW) (a type of
DW in which the magnetization at the center of the DW is oriented along the trans-
verse direction to the wire (strip) axis) in the presence of small applied magnetic and
electric fields. For the complete description of domain wall motions from both the
theoretical and application viewpoints, we would like to draw the attention of our
readers to the excellent monographs [1, 2].

Experimentally, it has been observed that the DW motions experience the phase
transition in the presence of external sources. For the small value of applied magnetic
(electric) field, DW moves rigidly with a constant velocity along the wire (strip)
axis. This dynamic regime is known as the steady-state regime. The minimum and
the maximum value of the strength of the external sources for which DW motions
remains in the steady-state dynamic regime are referred as the threshold andWalker-
breakdown value. As the strength of the external sources surpasses the breakdown
value, the DW motion becomes oscillatory due to its internal deformation. This
dynamic regime is referred as the precessional dynamic regime. To understand the
DW motions in these dynamic regimes, various techniques have been reported in
literature such as energy estimate methods and the classical theory of differential
equations (cf. [4–8]), approximating the dynamics near the center of DW (cf. [9–
14]), and the regular perturbation expansion method (cf. [15–20]) etc. We adopted
the latter approach in our analysis to draw the analytical results.

In this work, we analyze the TDW motion in ferromagnetic heterostructure (in
which the thin ferromagnetic layer is sandwiched between a heavy metal and a metal
oxide layers) with structural inversion asymmetry in the presence of applied mag-
netic and electric fields. We consider the evolution of magnetization inside the fer-
romagnetic layer is governed by the one-dimensional model of generalized Landau-
Lifshitz-Gilbert-Slonczewski equation with an inclusion of nonlinear dissipative ef-
fects. Moreover, in these heterostructures, the current induced domain wall motion
is described through the standard spin-transfer torques (STT) which originate due to
the transfer of spin angular momentum.

The theoretical evidences (cf. [13, 21–23]) demonstrate that in ferromagnetic ma-
terial with structural inversion asymmetry, an additional torque acts due to the strong
spin-orbit coupling referred as spin-orbit torque (SOT). These SOTs are mainly due
to the Rashba and Spin-Hall effects. More precisely, Rashba effect is due to the
spin-orbit coupling and structural inversion asymmetry that occurs between the dif-
ferent interfaces namely heavy-metal and ferromagnetic layers and metal-oxide and
ferromagnetic layers. Moreover, the Spin-Hall effect (SHE) is due to the Spin-Hall
current that induced from the heavy-metal layer and enters in the ferromagnetic layer.
In addition, these heterostructures experiences an interfacial anisotropic exchange
due to the Dzyaloshinskii-Moriya interaction (DMI) which is an additional torque
qualitatively different from the STTs and SOTs.
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Structure of the article

This article is organized in the following manner: In the next section, we explain the
governing dynamics and the various terms appear in the equation and their physical
significance. In section “Problem under consideration”, we describe the theoretical
model and derive the governing equation under the light of considered assumptions.
In section “Characterization of DW motion”, we investigate the static and dynamic
features of TDW in the presence of small applied magnetic and electric fields. To
be precise, first, we derive the static magnetization profile in the two faraway distant
domains then, we study the zero order traveling wave solutions in the presence of
external sources. Finally, in the last section, we summarize our results and emphasize
the significant issues emerging from this work.

2 Governing Equation

The one-dimensional model of generalized Lifshitz-Gilbert-Slonczewski equation
which describes the magnetization dynamics in ferromagnetic heterostructures with
an inclusion of nonlinear dissipative effects along with the STT and SOT contribu-
tions is given as (cf. [11–13, 22, 23]):

∂m
∂t

= γ (He f f × m) +
[
αG

(
1 + αv

γ 2

(
∂m
∂t

)2
)

+ γαd

|∂m/∂t |

] (
m × ∂m

∂t

)

+ vs (−1 + ζm×)
∂m
∂x

+ γ
vs
v0

[αRE (e2 × m) + (ζαRE + HSH )m × (m × e2)] ,

(1)

where, × denotes the vectorial cross product. Also,m = M/Ms , represents the time
varying normalized magnetization vector field given by:

m : R+ × R → S
2.

S
2 is the unit sphere in R3. Also,M and Ms stand for the magnetization vector field

and saturation value of magnetization respectively.
Now,we elaborate the physical significance of each term present on the right-hand

side of Eq. (1). The first term depicts the undamped precessional motion of magne-
tization towards the total effective field He f f and known as Larmor precession.The
positive constant γ is defined in terms Landè factor g, permeability of vacuum μ0,
electron charge e, and electron mass me as γ = Msμ0ge/me. Moreover, The to-
tal effective field is connected with the micromagnetic energy E by the relation
He f f = −∇mE , the first variation of the energy functional. The total effective field
constitutes of several energy contributions. In our analysis, we take into the account
of exchange, anisotropy, demagnetizing, Zeeman (applied field), and DMI energy
contributions in the total effective field which in turn takes the following form:
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He f f (m) = Hex (m) + Han(m) + Hd(m) + Ha + HDMI. (2)

Now, we give insight to individual field contribution appears in Eq. (2).

• Exchange field (Hex ): This field is responsible for the parallel alignment of mag-
netization orientation inside the ferromagnetic medium and is given as (cf. [12,
14, 20]):

Hex (m) = 2Aex

μ0M2
s

∂2m
∂x2

,

where Aex denotes the exchange constant.
• Anisotropy field (Han): In the absence of external stimulus, the orientation of
magnetization vector tends to align itself along one ormore energetically preferred
directions in a ferromagnetic crystal referred as easy-axes. In case of uniaxial
ferromagnetic nanostrip with high perpendicular magnetocrystalline anisotropy,
the anisotropy field is given by (cf. [10, 12, 14, 20]):

Han(m) = 2Ke

μ0M2
s

(m · e) e

where Ke and e represent the anisotropy constant and the direction of easy axis
respectively.

• Demagnetizing field (Hd ): It is due to the magnetic field generated by the medium
itself and defined as (cf. [10, 12, 13]):

Hd(m) = −N1 (m · e1) e1 − N2 (m · e2) e2 − N3 (m · e3) e3
where N1, N2 and N3 denote the demagnetizing factors that depend on the geom-
etry of the material and satisfy the relation N1 + N2 + N3 = 1. Also, e1, e2, and
e3 represent the canonical basis of R3. We would like to mention that an explicit
expression of Hd is known only for few favourable geometries namely a uniform
magnetized ellipsoid (cf. [7, 8, 24]) and a straight nanowire with the circular cross-
section (cf. [5, 6, 11, 14]). However, the above expression of Hd is often used in
literature as a good approximation also for non-ellipsoidal geometries.

• Zeeman field (Ha): This contribution is due to the effect of applied magnetic field
and is given as:

Ha = h1e1 + h2e2 + h3e3.

where h1, h2, and h3 corresponds to the longitudinal and transverse components
of the applied magnetic field. In addition, we also assume that Ha is constant in
both the time and space variables.

• Dzyaloshinskii-Moriya interaction field (HDMI): It is an additional term in the
exchange interaction occurs in the ferromagnetic heterostructures due to the strong
spin-orbit coupling and given as (cf. [13, 22, 23]):
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HDMI = 2D

μ0M2
s

(
∂m3

∂x
e1 − ∂m1

∂x
e3

)
.

where m = (m1,m2,m3) and the positive constant D stands for the DMI param-
eter.

The second term appears on the right-hand side of Eq. (1) describes the dissipation
of energy in the system comprising of three terms. In which, the first term exhibits
the classical viscous Gilbert dissipation torque responsible for the decay of energy
in ideal ferromagnets without any crystallographic defects. However, the second and
third reflects the nonlinear viscous and dry-friction dissipations corresponding to the
dissipation of energy due to the large angle precession and impurities present in the
ferromagnetic material respectively (cf. [10–12, 25]). The positive dimensionless
constants αG, αv, and αd stand for the standard Gilbert damping, nonlinear viscous
and dry-friction damping coefficients respectively.

The subsequent torque term appearing in Eq. (1) reflects the standard spin-transfer
torque term arising from the injection of spin-polarized electric currents into the
ferromagnet. The STT comprises of adiabatic and non-adiabatic contributions corre-
sponding to the formation and evolution of the domainwall.More precisely, adiabatic
component describes a reactive STT whereas the non-adiabatic term shows the dis-
sipative effect (cf. [11, 13, 21, 23]). The spin-torque velocity vs is directed along the
current motion direction with the amplitude vs = v0 J , J being the current density.
Also, v0 = gμB P/2eMs , in which μB and P denote the Bohr magneton and polar-
ization factor of current respectively. The positive dimensionless constant ζ stands
for the phenomenological non-adiabatic spin-torque parameter.

Finally, the last torque term emerges on the right-hand side of Eq. (1) character-
izes the combined effect of Rashba and Spin-Hall effect due to the strong spin-orbit
coupling taking place between the heavy metal, ferromagnet and metal oxide inter-
faces. The first two terms depict the contribution of Rashba effect and the last STT
like torque term reflects the effect of Spin-Hall current (cf. [11, 13, 22, 23]). Also,
αRE = (

αR P/μ0μBM2
s

)
and HSH = (μBθSH/γ eδMs), whereαR , θSH , and δ denote

the Rashba parameter, Spin-Hall angle and the thickness of the ferromagnetic layer
respectively.

In the subsequent section, we propose the considered problem and emphasize on
the analytical and methodological boundaries within which the problem has been
carried out.

3 Problem Under Consideration

3.1 Theoretical Model

We consider a thin ferromagnetic layer (FML) sandwiched between the heavy metal
layer (HML) and a metal oxide layer (MOL). To be precise, we assume the length,
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Fig. 1 Schematics of a head-to-head transverse domainwall in ferromagnetic nanostrip sandwiched
between the heavy metal and metal oxide layers along with the coordinate axes

width, and thickness of the FML as L , w, δ together with the condition L � w >

δ. We arrange this multilayer structure (heterostructure) in such a manner that its
length, width, and thickness is in the direction of e1, e2, and e3 respectively. In
addition, we consider the ferromagnetic material exhibits the high perpendicular
magnetocrystalline anisotropy and the easy-axis is oriented along the e3-direction.
We, then subject this heterostructure to a static applied magnetic and electric field
which are both constant in time and space variables.We consider the appliedmagnetic
and electric field of the form Ha = h1e1 + h2e2 + h3e3 and vs = vse1 respectively.
A head-to-head domain wall of width λ is nucleated along the FML that separates
the domains with m(x, t) ∼ mL as x → −∞ and m(x, t) ∼ mR as x → +∞ as
portrayed in Fig. 1.

3.2 Mathematical Formulation

Under the light of aforementioned assumptions, we examine the following equation:

∂m
∂t

= γ (He f f × m) +
[
αG

(
1 + αv

γ 2

(
∂m
∂t

)2
)

+ γαd

|∂m/∂t |

] (
m × ∂m

∂t

)

+ vs (−1 + ζm×)
∂m
∂x

+ γ
vs
v0

[αRE (e2 × m) + (ζαRE + HSH )m × (m × e2)] ,

(3)



On the Dynamics of Transverse Domain Walls … 271

with,

He f f = 2Aex

μ0M2
s

∂2m
∂x2

+ 2Ke

μ0M2
s

m3e3 + (−N1m1e1 − N2m2e2 − N3m3e3)

+ (h1e1 + h2e2 + h3e3) +
[

2D

μ0M2
s

(
∂m3

∂x
e1 − ∂m1

∂x
e3

)]
, (4)

along with the physical constraints

∂m
∂t

→ 0 and
∂m
∂x

→ 0 as |x | → ∞.

We introduce the following transformations to convert Eq. (3) in the dimensionless
form (cf. [20, 26]):

x̃ = x

√
Ke

Aex
, ṽs = vs

γ

√
Ke

Aex
, D̃ =

(
2D

μ0M2
s

)√
Ke

Aex

α̃RE =
(

γαRE

v0

) √
Aex

Ke
, H̃SH =

(
γ HSH

v0

) √
Aex

Ke
, t̃ = γ t. (5)

With the help of Eqs. (5), (3) renders the following dimensionless form:

∂m
∂ t̃

= (H̃e f f × m) +
[
αG

(
1 + αv

(
∂m
∂ t̃

)2
)

+ αd

|∂m/∂ t̃ |

] (
m × ∂m

∂ t̃

)

+ṽs (−1 + ζm×)
∂m
∂ x̃

+ ṽs
[
α̃RE (e2 × m) +

(
ζ α̃RE + H̃SH

)
m × (m × e2)

]
,(6)

with,

H̃e f f = K̃e
∂2m
∂ x̃2

+ K̃em3e3 + (−N1m1e1 − N2m2e2 − N3m3e3)

+
(
h̃1e1 + h̃2e2 + h̃3e3

)
+

[
D̃

(
∂m3

∂x
e1 − ∂m1

∂x
e3

)]
.

where K̃e = 2Ke/(μ0M
2
s ) represent the dimensionless anisotropy constant. Also,

ṽs, α̃RE , H̃SH , D̃, h̃1, h̃2, h̃3 depict the respective dimensionless entities.
In the next section, we perform the analysis and study the TDWmotions using the

regular perturbation expansion technique by transforming Eq. (6) into the spherical
polar coordinate system.
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4 Characterization of DW Motion

We consider the unitary magnetization vector in the framework of spherical coordi-
nate system is expressed as:

m(x̃, t̃) = (sin θ cosφ, sin θ sin φ, cos θ) . (7)

where θ(x̃, t̃) represent the angle between the easy-axis and themagnetization vector
known as polar angle andφ(x̃, t̃) referred as the azimuthal angle as depicted in Fig. 1.
We substitute the Eq. (7) in Eq. (6) which in turn render a couple of partial differential
equations of the form:

sin θ

(
∂φ

∂ t̃

)
−

[
αG

(
1 + αv

((
∂θ

∂ t̃

)2

+ sin2 θ

(
∂φ

∂ t̃

)2
))

+αd

((
∂θ

∂ t̃

)2

+ sin2 θ

(
∂φ

∂ t̃

)2
)−1/2

⎤
⎦ (

∂θ

∂ t̃

)
= −K̃e

(
∂2θ

∂ x̃2

)

+K̃e sin θ cos θ

(
∂φ

∂ x̃

)2

+ ζ ṽs

(
∂θ

∂ x̃

)
− ṽs sin θ

(
∂φ

∂ x̃

)
+ D̃ sin2 θ sin φ

(
∂φ

∂ x̃

)

−α̃RE ṽs cos θ sin φ −
(
α̃REζ + H̃SH

)
ṽs cosφ − h̃1 cos θ cosφ − h̃2 cos θ sin φ

+h̃3 sin θ +
(
K̃e + N1 cos

2 φ + N2 sin
2 φ − N3

)
sin θ cos θ, (8)

(
∂θ

∂ t̃

)
+

[
αG

(
1 + αv

((
∂θ

∂ t̃

)2

+ sin2 θ

(
∂φ

∂ t̃

)2
))

+αd

((
∂θ

∂ t̃

)2

+ sin2 θ

(
∂φ

∂ t̃

)2
)−1/2

⎤
⎦ sin θ

(
∂φ

∂ t̃

)
= K̃e sin θ

(
∂2φ

∂ x̃2

)

+2K̃e cos θ

(
∂θ

∂ x̃

) (
∂φ

∂ x̃

)
− ζ ṽs sin θ

(
∂φ

∂ x̃

)
− ṽs

(
∂θ

∂ x̃

)
+ D̃ sin θ sin φ

(
∂θ

∂ x̃

)

+α̃RE ṽs cosφ −
(
ζ α̃RE + H̃SH

)
ṽs cos θ sin φ − h̃1 sin φ + h̃2 cosφ

+ (N1 − N2) sin θ sin φ cosφ. (9)

Static magnetization profile in two faraway domains:

In order to understand the dynamics of TDW profile in the presence of applied
magnetic and electric fields, first, we obtain the static magnetization orientations
in the two distant domains separated by a DW width λ. The static magnetization
profile can be evaluated in the presence of transverse applied magnetic field once the
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electric and longitudinalmagnetic fields are switched off. To perform the analysis, we
assume that the polar and azimuthal angles in the left domain (x̃ → −∞) as θL and
φL respectively. Also, by the symmetrical property of TDW about the center of the
DW, the polar and azimuthal angles in the right domain (x̃ → +∞) is given as θR =
π − θL and φR = φL respectively. Therefore, as x̃ → −∞, themagnetization profile
in the left domain is given as mL = (sin θL cosφL , sin θL sin φL , cos θL) whereas in
the right domain it takes the form as mR = (sin θL cosφL , sin θL sin φL ,− cos θL).

Next, to evaluate the closed form solution of magnetization profile in the two
faraway domains, we apply the following physical constraints:
The static condition:

∂θL

∂ t̃
= 0,

∂φL

∂ t̃
= 0, (10)

and the domain condition:

∂θL

∂ x̃
= ∂2θL

∂ x̃2
= 0; and

∂φL

∂ x̃
= ∂2φL

∂ x̃2
= 0. (11)

By substituting Eqs. (10) and (11) in Eqs. (8) and (9), we obtain:

−h̃1 cos θL cosφL − h̃2 cos θL sin φL + h̃3 sin θL

−α̃RE ṽs cos θL sin φL −
(
ζαRE + H̃SH

)
ṽs cosφL

+
(
K̃e + N1 cos

2 φL + N2 sin
2 φL − N3

)
sin θL cosφL = 0, (12)

−h̃1 sin φL + h̃2 cosφL −
(
ζαRE + H̃SH

)
ṽs cos θL sin φL + α̃RE ṽs cosφL

+ (N1 − N2) sin θL sin φL cosφL = 0. (13)

On solving Eqs. (12) and (13), a straightforward rather a lengthy algebraic compu-
tation yields the following expression:

θL = arccos

(
−h̃3

K̃e + N1 − N3

)
, (14)

φL = arcsin

⎛
⎜⎜⎜⎝

−h̃2
(
K̃e + N1 − N3

)
(N1 − N2)

((
K̃e + N1 − N3

)2 −
(
h̃3

)2
)1/2

⎞
⎟⎟⎟⎠ . (15)
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With the information from Eqs. (14) and (15), we obtain the magnetization in the
left and right domains. However, it is evident from Eq. (15) that the TDW structure

prevails as long as h̃3 remains smaller than the quantity
(
K̃e + N1 − N3

)
.

Dynamics of TDW under small applied magnetic and electric field:

In the presence of external sources,we study the dynamical behavior ofmagnetization
profile under the influence of various parameters involved in the model. We carry
out the analysis using the regular perturbation expansion method. To begin with, first
we introduce an infinitesimal dimensionless parameter ε and set h̃1 = εh̄1, h̃2 =
εh̄2, h̃3 = εh̄3, and ṽs = εv̄s . Also, to understand the long-time behavior of traveling
wave solutions, we scale the time variable as t̃ = ετ .

In view of the above scaling parameters, we seek the solutions of Eqs. (8) and (9)
in the following form:

θ
(
x̃, t̃

) = θ0 (x̃, τ ) + εθ1 (x̃, τ ) + · · · , (16)

φ
(
x̃, t̃

) = φ0 (x̃, τ ) + εφ1 (x̃, τ ) + · · · . (17)

together with the physical constraint:

m (±∞, τ ) = (
εh̄1, εh̄2,±1

) + O
(
ε2

)
. (18)

By inserting Eqs. (16) and (17) in Eqs. (8) and (9), we achieve the following couple
of partial differential equations in the leading order of ε:

αd((
∂θ0
∂τ

)2 + sin2 θ0

(
∂φ0
∂τ

)2)1/2

(
∂θ0

∂τ

)
= K̃e

(
∂2θ0

∂ x̃2

)
− K̃e sin θ0 cos θ0

(
∂φ0

∂ x̃

)2

−D̃ sin2 θ0 sin φ0

(
∂φ

∂ x̃

)
−

(
K̃e + N1 cos

2 φ0 + N2 sin
2 φ0 − N3

)
sin θ0 cos θ0, (19)

αd((
∂θ0
∂τ

)2 + sin2 θ0

(
∂φ0

∂τ

)2
)1/2 sin θ0

(
∂φ0

∂τ

)
= K̃e sin θ0

(
∂2φ0

∂ x̃2

)

+2K̃e cos θ0

(
∂θ0

∂ x̃

)(
∂φ0

∂ x̃

)
+ D̃ sin θ0 sin φ0

(
∂θ0

∂ x̃

)
+ (N1 − N2) sin θ0 sin φ0 cosφ0. (20)

The desired solution of Eq. (20) that satisfies the physical constraint take the form
φ0 (x̃, τ ) = (2n + 1) π

2 which further reduces the Eq. (19) into:

(
∂2θ0

∂ x̃2

)
−

(
K̃e + N1 − N3

2K̃e

)
sin 2θ0 =

(
αd

K̃e

)
. (21)
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We remark that Eq. (21) is difficult to solve, however, an approximate solution as-
suming a small angle deviation of magnetization (sin 2θ0 ≈ 2θ0) can be obtained.
In view of the assumption of small angle deviation of magnetization and the pre-
scribed physical constraint (∂θ0/∂ x̃) → 0 as |x̃ | → ∞, solution to Eq. (21) yields
the following form:

[
θ0 +

(
2αd

K̃e + N1 − N3

)]
+

[(
θ0 +

(
2αd

K̃e + N1 − N3

))2

−
((

2αd

K̃e + N1 − N3

)2

− C

η

)]1/2

= eηx̃+C∗
, (22)

where, the constants C and η are given as C = −
((

2αd/K̃e

)
θL + η (θL)

2
)
and

η =
((

K̃e + N1 − N3

)
/2K̃e

)
.Moreover,C∗ represents the integration constant and

calculated at the center of the DW. To be precise, we impose the physical constraint
that θ0 = (π/2), x̃ = x̄ (τ ),where x̄ (τ )denote the time-varying position of the center
of the DW and (dx̄/dτ) represent the DW velocity. Therefore, the desired solution
of Eq. (21) takes the following form:

[
θ0 +

(
2αd

K̃e + N1 − N3

)]
+

[(
θ0 +

(
2αd

K̃e + N1 − N3

))2

−
((

2αd

K̃e + N1 − N3

)2

− C

η

)]1/2

= Γ eηξ , (23)

where, ξ and Γ are given as:

ξ = (x̃ − x̄ (τ )) ; Γ =
[(π

2

)
+

(
2αd

K̃e + N1 − N3

)]

+
[((π

2

)
+

(
2αd

K̃e + N1 − N3

))2
−

((
2αd

K̃e + N1 − N3

)2
− C

η

)]1/2

.

It is apparent from Eq. (23) that the zero order traveling wave solution θ0 (x̃, τ )

depends on space and time variables x̃ and τ through the traveling wave variable ξ .
It is worth mentioning that the obtained analytical zero order traveling wave solution
exist locally and valid only in the vicinity of the center of DW. However, in the
absence of nonlinear dissipation (dry-friction) factor αd , the solution (23) agrees
with the classical Walker-type form (cf. [15, 16, 20, 27]):

θ0 (x̃, τ ) = 2 arctan
(
e−√

η(x̃−x̄(τ ))
)

.
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In the next section, we summarize the obtained results and discuss the further
problems which branch out from this investigation and are beyond the scope of the
present study.

5 Conclusion

In this work, we study the static and dynamic feature of TDW in a ferromagnetic
heterostructure in the presence of small applied magnetic field and electric currents
under the nonlinear dissipative effects.We obtain a sufficient condition on the applied
magnetic field which ensures the existence of TDW structure. Also, the zero order
traveling solution reflects the magnetization dynamics in the vicinity of the center of
the DW under the influence of small applied magnetic and electric fields. We noticed
that the zero order traveling wave solution yields the magnetization profile in the
ferromagnetic medium. In addition, the higher order traveling wave solutions not
only delineate the various dynamic feature such as the DW velocity in the steady-
state regime, bifurcation value of the external sources for which the motion remains
in the steady-state regime, and the average DW velocity in the precessional dynamic
regime but also incorporate the impact of Rashba, Spin-Hall, and DMI effects into
the DW motion. We intend to address these significant issues in our future work.
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Heat Transfer Analysis
of CNT-Nanofluid Between Two Rotating
Plates in the Presence of Viscous
Dissipation Effect

A. Kumar, R. Singh and R. Tripathi

Abstract In this research study, an investigation of three-dimensional (3D) CNT
based nanofluid flow through a horizontal rotating channel under the influence of
viscous dissipation, is carried out. We have considered that the upper sheet of the
channel is permeable and fixed while the lower sheet is impermeable and the sole
reason for fluid flow initiation is the stretching of the lower sheet. The mathemati-
cal model of the problem is developed and is presented in the form of a system of
nonlinear partial differential equations. Suitable similarity technique is employed to
transform these governing partial differential equations into the set of ordinary dif-
ferential equations which are nonlinear. The transformed equations are then solved
numerically by the bvp4c routine of MATLAB. Computations for the nanofluid
velocity and nanofluid temperature along with skin friction coefficient and Nusselt
number are, carried out for relevant flow parameters. A comparative analysis of
single-wall carbon nanotubes as well as multiwall carbon nanotubes on tempera-
ture and velocity distribution is carried out. Three dimensional flow of CNT-based
nanofluid inside a horizontal channel whose one wall is permeable and the other is
not, has not been considered before. Although up to some extent, such an analysis
has practical bearings in the industries related with lubrication under the influence of
magnetic field. The temperature of the fluid is getting increased with growing values
of Eckert number and rotation parameter while a completely opposite trend is found
for suction/injection and Reynolds number.
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1 Introduction

In recent years, a considerable amount of research has been carried out on nanotech-
nology and nano-composites. The carbon nanotube (CNT) embodies one of the most
significant developments in the area of nanotechnology. Since the last two or three
decades, CNTs have received a great amount of attention by many scientists and
researchers around the world due to their significant applications in different fields
of science. These include applications in materials applications, optics and nano-
electronics. CNTs are a geometrical arrangements of carbon atoms which are rolled
into tubes. Such tubes have a diameter less than 100 nm and are as thin as 1 or 2 nm.
We have discussed the flow of nanofluids with two kinds of CNTs, CNTs with single
wall (SWCNTs) and CNTs with multiple walls (MWCNTs) as they pave the way
for a farfetched range of nanotube applications in science, engineering and in many
industries due to their exclusive construction and extraordinary physical properties.
Considering all the important applications, researchers carried out a comprehensive
amount of research work on the flow of nanofluids suspendedwith carbon nanotubes.
Wen and Ding [1] analyzed the concentration effects of CNTs on thermal conduc-
tivity. In the existence of MWCNTs, the thermal conductivity improvements in base
fluid synthetic engine oil and ethylene glycol scrutinized by Liu et al. [2]. In his inves-
tigation author conclude that the ratio of thermal conductivity for CNT–synthetic
engine oil suspension higher as compared to CNT–ethylene glycol suspension. Xue
[3] presented a new model for effective thermal conductivity of composites based on
CNTs. It is noticed that theoretical outcomes on thermal conductivity of suspension
for CNTs in oil and CNTs in decene are in fine correspondence with the experimen-
tal results. Kamali and Binesh [4] achieved numerical examination for heat transfer
improvement in the presence of carbon nanotube. Sheikholeslami and Ganji [5] used
the OHAM technique to discuss the laminar hydromagnetic nanofluids flow, pass-
ing through a channel filled with porous materials and observed that increasing the
nanoparticle volume fraction results into an improved momentum boundary layer.
Kumaresan et al. [6] in their article, study on the convective heat transfer character-
istics of a secondary refrigerant based CNT nanofluids in a tubular heat exchanger.
Hussain et al. [7] presented an analysis of flow and heat transfer effects for sin-
gle wall (SW) as well as multiwall (MW) carbon nanotubes (CNTs) between two
rotating plates, taking water as the base fluid. They noticed that SWCNTs produce
fewer drag and high heat transfer rate as compared to theMWCNTs. Recently, Hayat
et al. [8] discussed the water-based carbon nanotube flow in the Darcy-Forchheimer
environment due to a rotating disk together with the no-slip condition.

The main aim of all the above conferred research studies made on nanofluids,
was to understand and exploit the heat transfer mechanism, offered by nanoflu-
ids suspended with carbon nanotubes (CNTs). Viscous dissipation phenomena are
something which affects the heat transfer mechanism considerably. Distribution of
temperature in the boundary layer is seriously affected by viscous dissipation and
this works as an internal heat source. Brinkman [9] is considered to be the first
person, depicting the generation of heat owing to viscous dissipation. One thing
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which makes the study of consideration of viscous dissipation in the nanofluid flow
dynamics worthwhile is that the solid particles present in the fluid brings out sup-
plementary disturbance in the stream, and consequently, the flow field gets altered
which gives rise to an enhancement in the dissipation of heat [10]. Inspired by the
importance of viscous dissipation effects, Mah et al. [11] studied the forced con-
vection flow of water-based nanofluid in which nanoparticles of Al2O3 dispersed
uniformly, through a microchannel, taking the influence of viscous dissipation on
entropy generation into consideration. They noticed that viscous dissipation effect
has a contrary effect on the thermal performance for forced convection of nanofluids
in the channel. Sheikholeslami and Ganji [12] scrutinized analytically, heat transfer
of a water-based nanofluid in which Cu nanoparticles dispersed uniformly in the
base fluid, which is squeezed between parallel flat walls. The obtained results show
that rate of heat transfer has direct relationship with the squeeze number as well as
Eckert number when two walls are separated but it has completely reverse associ-
ation with the squeeze number when both the walls are squeezed. A numerically
study to describe the viscous dissipation effect on natural and forced convection flow
of water-Al2O3 nanofluid in a channel, when the walls of the channel were heated
unequally presented by Chen et al. [13]. Khan et al. [14] presented numerical as
well as analytical study for two types of squeezing flows viz. two-dimensional and
axisymmetric flows of Cu-water and Cu-kerosene nanofluids between two parallel
walls, considering viscous dissipation effect into account. Hayat et al. [15] studied
the free and forced convection for Casson fluid with temperature-dependent thermal
conductivity in the presence of viscous dissipation effect. Using homotopy analysis
method, Nayak [16] presented a heat transfer analysis related with thermal radiation
as well as viscous dissipation of nanofluid over a shrinking surface. Kumar et al. [17]
studied the viscous dissipation effect on the three dimensional (3D) flow of ferro-
nanoliquid over a stretchable surface. Sithole et al. [18] studied the hydromagnetic
second grade nanofluid flow over a convectively heated stretching sheet under the
influence of viscous dissipation. Hussain et al. [19] discussed the magnetohydro-
dynamics Sisko nanofluid with cumulative effects of viscous dissipation and Joule
heating in the presence of nanoparticles.

As far as our knowledge is concerned, in all the previous research works, the
heat transfer analysis for the flow of nanofluids suspended with nano carbon tubes
through a channel is carried out without the consideration of viscous dissipation
effects, although such an analysis may have impactful applications in the industries
dealing with heat transfer problems. Our focus in carrying out this research work is to
scrutinize the effect of viscous dissipation on the hydromagnetic flow of nanofluids
suspended with carbon nanotubes (CNTs) in a rotating horizontal channel consisting
of two sheets, one is being stretched (the lower sheet) and other sheet is kept at rest
(the upper sheet) and the fluid suction is allowed to take place on this sheet.
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2 Mathematical Formulation of the Problem

Consider an incompressible, steady three dimensional (3D) laminar flow of water-
based carbon nanotubes flow, between two horizontal parallel sheets in a rotating
channel, taking into consideration the viscous dissipation effect. The mathematical
model of the fluid flow problem is presented in Fig. 1. The Cartesian coordinate
system is chosen in such a way that, sheets are in xz-plane and y-axis is taken in the
direction normal to sheets. The upper sheet, which is considered as porous, assumed
to be situated at y = h while the lower sheet is located at y = 0 and being stretched
by two opposite but equal forces, applied at either end which varies linearly with
the distance; ax (a > 0). It is considered that both the sheets and fluid is rotating
anticlockwise with an angular velocity � about y-axis. The temperature of the fluid
at the upper and lower plates aremaintained at Th and T0 respectively. Since the upper
sheet is taken porous, fluid suction at this sheet is also taken into consideration.

Under the assumption made above, governing equations for the nanofluid flow,
are given as:

∇.q = 0 (1)

ρn f [(q.∇)q] + 2� × q = −∇ p∗ + μn f ∇2q (2)

Fig. 1 Geometry of the problem
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(
ρcp

)
n f [(q.∇)T ] = kn f ∇2T + μn f (∇q)2 (3)

where q(u, v,w) is the velocity of nanofluid. where u, v and w represent the fluid
velocity components in the direction of x, y, z-direction, respectively. T is the tem-
perature of nanofluid. ρn f ,

(
ρcp

)
n f , αn f , μn f and kn f are, respectively, expression

for the nanofluid density, heat capacity, thermal diffusivity, dynamic viscosity and
which can be expressed as follows:

μn f = μ f

(1 − φ)2.5
, ρn f = ρ f (1 − φ) + ρCNTφ,

(
ρcp

)
n f = (

ρcp
)
f (1 − φ) + φ

(
ρcp

)
CNT ,

αn f = kn f(
ρcp

)
n f

,
kn f
k f

=
(1 − φ) + kCNT

kCNT −k f
2φ ln

(
kCNT +k f

2k f

)

(1 − φ) + k f

kCNT −k f
2φ ln

(
kCNT +k f

2k f

) .

where φ is the nanoparticles volume fraction, k f is the thermal conductivity of the
base fluid, kCNT is the thermal conductivity of CNTs, ρ f is the density of base fluid,
ρCNT is the density of CNTs,μ f is the dynamic viscosity of the base fluid. The upper
plate, which is considered as porous, hence at the upper plate, y component of the
fluid velocity is not zero.

Keeping in view, the Prandtl’s boundary layer theory, the governing equations for
the problem under consideration, are given as:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (4)

ρn f

(
u

∂u

∂x
+ v

∂v

∂y
+ 2�0w

)
= −∂p

∂x
+ μn f

(
∂2u

∂x2
+ ∂2u

∂y2

)
(5)

ρn f

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ μn f

(
∂2v

∂x2
+ ∂2v

∂y2

)
(6)

ρn f

(
u

∂w

∂x
+ v

∂w

∂y
− 2�0u

)
= μn f

(
∂2w

∂x2
+ ∂2w

∂y2

)
(7)

(
u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= kn f(

ρcp
)
n f

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)

+ μn f(
ρcp

)
n f

[

2

{(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
}

+
(

∂v

∂x

)2

+
(

∂w

∂z

)2

+
(

∂w

∂x
+ ∂u

∂z

)2
]

(8)
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Subject to the relevant conditions on the boundary:

v = 0, u = uw = ax,w = 0, T = Th at y = 0, (9)

v = −v0, u = 0,w = 0, T = T0 at y = h. (10)

In the last Eq. (10), v0 represents the uniform suction (v0 > 0)/injection (v0 < 0).
Similarity variables are introduced to translate the governing Eqs. (4)–(8) along

with the boundary conditions (9) and (10) into ordinary differential equations
(ODEs):

u = ax f ′(η), v = −ah f (η),w = axg(η), θ(η) = T − T0
Th − T0

, η = y

h
. (11)

Making use of similarity variables given in Eq. (11), the governing Eqs. (4)–(8)
are converted into non-linear ODEs which are presented as follows:

f iv − Re E1
(
f ′ f ′′ − f f ′′′) − 2Kr E1g

′ = 0, (12)

g′′ − Re E1
(
g f ′ − f g′) + 2Kr E1 f

′ = 0, (13)

θ ′′ + Pr Re
E2

E3
f θ ′ + Pr Ec

E4

E3

(
4 f ′2 + g2

) = 0, (14)

The transformed conditions at the boundary are obtained as:

f ′ = 0, f = 0, g = 0, θ = 1 at η = 0, (15)

f ′ = 0, f = S, g = 0, θ = 0 at η = 1. (16)

where Re = ah2

ν f
is Reynolds number, Kr = �h2

ν f
is rotation parameter,

Ec = ρn f a2h2

(ρcp)n f (θ0−θh)
is Eckert number, S = v0

ah . Other dimensionless quantities

E1, E2, E3 and E4, appearing in (12)–(14) are defined as:

E1 = ρn f

ρ f

μ f

μn f
, E2 =

(
ρcp

)
n f(

ρcp
)
f

, E3 = kn f
k f

and E4 = μn f

μ f
.
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3 Skin Friction Coefficient and Nusselt Number

The important physical quantities are skin friction coefficient together with Nusselt
number, defined by:

Cf = τw

0.5ρnfu2w
(17)

Nu = hqw
knf(T0 − Th)

, (18)

where τw denotes shear wall stress and qw is heat flux at wall

τw = μn f
∂u

∂y

∣∣
∣∣
y=0

(19)

qw = −kn f
∂T

∂y

∣∣∣
∣
y=0

(20)

Using the similarity variables (11), skin friction coefficient together with Nusselt
number takes the following form,

Re1/2x C fx = E1 f
′′(0) (21)

Re−1/2
x Nux = −E3θ

′(0) (22)

in which Rex = xUw
ν f

denotes the local Reynolds number.

4 Numerical Method for Solution

Equations (12)–(14), alongwith boundary conditions (15) and (16) are solved numer-
ically using the solver bvp4cofMATLAB.This is basedon a relaxationmethodwhich
makes use of polynomial interpolation on a systematically defined grid. This method
has an accuracy of fourth order.

5 Result and Discussion

Extensive numerical computations are performed for velocity profile i.e. for both
primary and secondary velocities and temperature profile together with the skin
friction coefficient and Nusselt number, to get an insight of the physics involved in
the flow regime for various value of flow parameters which characterize the feature
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of the flow. Also, the effect of the two different types of nanotubes viz. single wall
(SW) and multiwall (MW) carbon nanotubes (CNTs), on the velocity profile and
temperature profile together with the skin friction coefficient and the Nusselt number
for the various value of emerging parameter are shown.

The effect of CNTs with single wall as well as multiple walls, on the primary
velocity f ′ as well as secondary velocity g and temperature θ against the various
value of nanoparticle volume fraction ϕ are presented in Figs. 2, 3 and 4. It is
obvious from Fig. 2 that, on increasing nanoparticle volume fraction gradually, the
changes in the primary velocity f ′ is not very appreciable. It is found that nanofluids
with SWCNTs are relatively slower as compared to nanofluids with MWCNTs,
while a completely opposite behavior is observed in Fig. 3 for secondary velocity
profile i.e. nanofluids with SWCNTs have somewhat advanced velocity profile as
compared to the nanofluidswithMWCNTs. Figure 4 is drawn to observe the behavior
of temperature profile against the nanoparticle volume fraction. It is detected that
temperature profile declines as the nanoparticle volume fraction is increased, though
the temperature profiles for nanofluidswith SWCNTs aswell asMWCNTs are nearly
the same.

Figures 5, 6, 7, 8, 9 and 10 portray the behavior of primary fluid velocity f ′ and
secondary fluid velocity g, under the influence of rotation parameter Kr, Reynolds
number Re, and suction/injection parameter S respectively. Figures 5 and 6 are drawn
to analyze the behavior of both the primary and secondary velocity profiles against
the important factor of the existence of the secondary flow, which is a rotation. It is
seen from Fig. 5 that initially, primary velocity decreases near the lower sheet and
as we move away from lower sheet towards the upper sheet, the behavior is quite
opposite. Since the Coriolis force (which is induced due to rotation) has a tendency

Fig. 2 Primary velocity
profile when Re = Kr = 2,
Ec = 0.2 and S = 1
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Fig. 3 Secondary velocity
profile when Re = Kr = 2,
Ec = 0.2 and S = 1
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Fig. 4 Temperature profile
when Re = Kr = 2, Ec = 0.2
and S = 1
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to suppress the main flow i.e. the primary flow to induce a secondary flow in the flow
field. Therefore, we observe an acceleration in the secondary flowwith an increase in
rotation parameter near the lower sheet. Figure 6 elucidates that secondary velocity
profile decelerates with the increasing values of rotation parameter Kr. Figures 7 and
8 have been plotted to analyzed the behaviour fluid velocity against the variations
in Reynolds number Re. It is noticed from these two figures that primary as well as
secondary fluid velocities both are getting diminished on increasing the Re. Since
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Fig. 5 Primary velocity
profile when Re = 2, Ec =
0.2, φ = 0.4 and S = −3
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Fig. 6 Secondary velocity
profile when Re = 2, Ec =
0.2, φ = 0.4 and S = −3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Kr = 0

Kr = 2

Kr = 4

Kr = 6

Kr = 8

Re expresses the ratio of inertial force (resistance to the change in motion) to the
viscous force, consequently, a rise in Re causes such behavior of fluid velocities.
Figures 9 and 10 are drawn to see how the fluid flow behaves against the variation
in suction/injection parameter S. it is evident from these two figures that for each
suction and injection situation, the velocity in the x-direction as well the velocity
in the w-direction i.e. primary and secondary velocities increase, this is happening
because of an increase in the injecting fluid from the upper plate which results in
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Fig. 7 Primary velocity
profile when Kr = 2, Ec =
0.2, φ = 0.4 and S = 3

Fig. 8 Secondary velocity
profile when Kr = 2, Ec =
0.2, φ = 0.4 and S = 1

enhancing the fluid velocities. Also, it is witnessed that, near the central region of
the channel, change in the primary and secondary velocities is much important as
compared to a velocity near the neighborhood of the lower and upper plate of the
channel. These two figures also portray that the peak value of the velocity gradually
shifts toward the lower sheet for the positive value of S while for negative values of
S, it slightly shifts toward the upper sheet.
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Fig. 9 Primary velocity
profile when Re = Kr = 2,
Ec = 0.2 and φ = 0.4
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Fig. 10 Secondary velocity
profile when Re = Kr = 2,
Ec = 0.2 and φ = 0.4
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Figures 11, 12, 13 and 14 have been plotted to analyze the behavior of nanofluid
temperature θ against Eckert number Ec that symbolizes the viscous dissipation
effect, rotation parameter Kr and suction/injection parameter S respectively. As
observed from Fig. 11, one can one can make a statement that nanofluid temper-
ature is getting increased on increasing the Eckert number Ec; Such a behaviour
is observed due to the fact that Eckert number signifies the quantitative relation of
kinetic energy and enthalpy, an increase in Ec means the dissipated heat is stored in
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Fig. 11 Temperature profile
when Re = Kr = 2, φ = 0.4
and S = 1
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Fig. 12 Temperature profile
when Re = 2, Ec = 0.2, φ =
0.4 and S = −3
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the liquid, which raises the fluid temperature. The effect of rotation parameter Kr on
the nanofluid temperature is portrayed in the Fig. 12. It is fascinating to see from this
figure that temperature profile is getting enhanced on increasing values of Kr, while
the completely opposite trend is found in Figs. 13 and 14 for the suction/injection
parameter S i.e. temperature profile is getting reduced on increasing the value of S
because more fluid is injecting from the upper plate results in a decrease in fluid
temperature within the plates.
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Fig. 13 Temperature profile
when Re = Kr = 2, Ec = 0.2
and φ = 0.4

Fig. 14 Temperature profile
when Kr = 2, Ec = 0.2, φ =
0.4 and S = −3
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The variation in behavior of skin friction coefficient which is a measure of wall
velocity gradient and Nusselt number, which accounts for heat transfer rate at the
sheet, under the impact of various pertinent flow parameter viz. suction/injection
parameter S, rotation parameter Kr, Reynolds number Re, nanoparticle volume frac-
tion ϕ and Eckert number Ec are provided in tabular form in Tables 2 and 3 for
both SWCNTs and MWCNTS respectively. From the Table 2 it can be noticed that
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Table 1 Thermophysical characteristic of carbon nanotubes and base fluid [20]

Physical properties Nanoparticles H2O

MWCNTs SWCNTs

ρ (kg/m3) 1600 2600 997.1

cp (J/kg K) 796 425 4179

k (W/mK) 3000 6600 0.613

Table 2 Skin friction coefficient for SWCNT and MWCNT

S Kr Re ϕ Re1/2x C fx

SWCNT MWCNT

0.5 2 2 0.2 1.5965 1.5860

1 3.5699 3.4835

1.5 9.2229 8.9717

1 0 2 0.2 3.5065 3.1019

2 3.5699 3.4835

4 3.7615 3.8657

1 2 0 0.2 3.1334 3.4336

2 3.5699 3.4835

4 4.0105 3.6338

1 2 2 0.0 3.7513 3.7513

0.1 3.6713 3.6138

0.2 3.5699 3.4835

skin friction coefficient is the increasing function for S, Kr, and Re while on the
other hand C fx tends to decrease with increasing value of ϕ. Table 3 reveals that a
rise, either in the Reynolds number Re or in the value of volume fraction, results in
the enhancement of Nusselt number while it is decreasing on increasing either of
suction/injection parameter, rotation parameter and Eckert number (Table 3).

6 Conclusions

A mathematical model is established for the three-dimensional flow of water-
based nanofluid suspended with carbon nanotubes (CNTs) through a horizontal
channel, taking suction/injection and viscous dissipation effects into consideration.
Noteworthy outcomes of this study can be summarized in the following points:

• More enhancement in primary as well as secondary velocity is observed for
SWCNTs when volume fraction of nanotubes is improved as compared to
MWCNTs.
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Table 3 Nusselt number for SWCNT and MWCNT

S Kr R Ec ϕ −Re−1/2
x Nux

SWCNT MWCNT

0.5 2 2 0.2 0.2 1.4803 1.4782

1 1.3636 1.3524

1.5 1.1460 1.1179

1 0 2 0.2 0.2 1.3655 1.4376

2 1.3636 1.3524

4 1.3578 1.2699

1 2 0 0.2 0.2 1.2887 1.3510

2 1.3636 1.3524

4 1.4410 1.3674

1 2 2 0.1 0.2 1.4758 1.4740

0.2 1.3636 1.3524

0.3 1.2514 1.2308

1 2 2 0.2 0.0 1.3420 1.3420

0.1 1.3624 1.3539

0.2 1.3636 1.3524

• Both primary and secondary velocities are increased as we increase the value of
suction/injection parameter.

• The temperature of the fluid is getting increased with growing values of Eckert
number and rotation parameter while a completely opposite trend is found for
suction/injection and Reynolds number.

• Coefficient of skin friction is getting boosted on increasing either of suc-
tion/injection or Reynolds number whereas the nanoparticle volume fraction does
the vice versa. On the other hand, Nusselt number is perceived to rise on increasing
Reynolds number while rotation parameter and Eckert number have adverse effect
on this physical quantity.
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Modeling of Viscoelastic Fluid Flow Past
a Non-linearly Stretching Surface
with Convective Heat Transfer: OHAM
Analysis

A. Bhattacharyya, G. S. Seth and R. Kumar

Abstract The intention behind carrying out this research problem is to understand
the nature of two-dimensional hydromagnetic flow of an electro-conductive and ther-
mally radiating viscoelastic fluid past a non-linear stretching surface, considering
viscous and Joule dissipation. With a perspective of converting the governing PDEs
into a system of ODEs, appropriate similarity transformation has been incorporated.
Optimal Homotopy Analysis Method (OHAM) is used for solving the converted
non-linear and coupled equations. Impact of several regulatory flow parameters on
temperature, velocity and species concentration are explained via graphs while the
variation of some engineering quantities such as Nusselt number, skin friction coef-
ficient and Sherwood number are shown by tables. One of the major outcomes of this
investigation is that velocity is getting decreased by viscoelastic parameter whereas
the convective heat transfer condition enhances the fluid temperature.

Keywords Viscoelastic fluid · Stretching sheet · Thermal radiation · Heat
transfer · OHAM

1 Introduction

Because of plentiful noteworthy applications in various industrial and scientificfields,
the problems concerning the magnetohydrodynamic flow of incompressible and vis-
cous fluid over a stretching surface have earned a huge significance by the fluid
dynamics fraternity. The pioneering attempt in this regard was made by Sakiadis
[1] who investigated the hydromagnetic flow past a solid surface that moves with
a uniform velocity. Crane [2] inspected two-dimensional MHD flow induced by a
continuously deforming surface. He assumed that the surface deforms linearly with
distance from the origin. Later, extending Crane’s [2] work, Gupta and Gupta [3]
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made an effort to analyze the mass and heat transfer features for magnetohydro-
dynamic flow past a stretching surface subject to blowing or suction. Some other
remarkable research works in this background are due to [4–8].

It is a well-known fact that almost all the liquids we encounters in our life or the
liquids used in various industries do not follow Newton’s law of viscosity, where the
shear stress between two adjacent fluid layers is linearly proportional to the velocity
gradient. Thus it is important to understand the effect of rheological behavior of such
kind of fluids over flow characteristics. Beard and Walters [9] devised a model to
investigate the stagnation point flow of elastic-viscous fluid past a stretching surface.
Siddappa andAbel [10] extended the problemofCrane [2] forWalters liquid-Bmodel
of viscoelastic fluid. Andersson [11] analyzed the problem of Siddappa andAbel [10]
with the existence of a transverse magnetic field. Liu [12] found the solution ofMHD
viscoelastic fluid past a stretching surface along with the heat transfer analytically.
Many authors have contributed in the literature of viscoelastic fluid flows, some of
them are the worth mentioning [13–15].

When the considered fluid is sufficiently viscous, it becomes absolutely worth-
while to discuss the consequence of viscous dissipation in heat transfer analysis.
Significant applications of this effect can be found in food processing, instrumenta-
tion, tribology, lubrication, polymer manufacturing etc. Thus, keeping in mind such
a fruitful impact of viscous dissipation, several leading research works have been
carried out. Cortell [16] inspected the consequence of viscous dissipation on the
thermal boundary layer past a stretching surface having the property of non-linearity.
Recently, viscous dissipation effect on a chemically reactive mixed convectionMHD
Casson nanofluid flow over a permeable stretching surface was explored by Ibrahim
et al. [17]. Apart from viscous dissipation, there also acts a volumetric heat source
in hydromagnetic flows, known as Joule heating. Thus, a lot of profound research
attempts have beenmade to investigate the process of heat transfer taking into account
the simultaneous actions of viscous dissipation as well as Joule heating. Some of the
relevant research investigations are done by Yih [18], Abo-Eldahab and El Aziz [19],
Alam et al. [20] and Jaber [21].

However, in all the above-cited literatures, the consequence of thermal diffusion
(Soret effect) is not taken into consideration. This supposition is justified when the
level of concentration is very low. In general, this effect is neglected in the process
of mass transfer under the postulation that it is of very small order of magnitude
as compared to the effect explained by Fick’s law. But, when a flux in the species
concentration is induced due to temperature gradient, this effect becomes more sig-
nificant. The study of Soret effect finds several important applications inmetal casting
industry, refinement of crude oil etc. In the space science, NASA have created a laser
spectroscopy instrument called the SCOF/FACET interferometer that can measure
Soret phenomena which can be used to study thermodynamic effects in the space.
Eckert and Drake Jr [22] have emphasized the importance of the Soret effect in the
cases concerning separation of isotope and in the mixing of gases having medium
molecular weight (N2, air) and very lowmolecular weight (He, H2). Kumar and Singh
[23] examined Soret effect on magnetohydrodynamic natural convection flow over
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a vertical infinite impulsively started plate. Some other productive research studies
in this context are due to Pal et al. [24], Reddy and Chamkha [25] and Kataria and
Patel [26].

The present article intents to analyze theMHD two-dimensional viscoelastic fluid
flow past a stretching surface which is non-linear, reflecting the effects of thermal
diffusion, viscous dissipation and Joule heating. The physical model considered in
the present investigation finds significant applications in melting metal industries,
polymer etc.

2 Development of the Flow

A two-dimensional steady laminar flow of an electro-conductive, incompressible and
thermally radiating viscoelastic fluid past a non-linearly stretching surface has been
taken under consideration. The orientation of Cartesian coordinate axes is taken in
such a fashion that x-axis is along the stretching surface in the direction of motion
and y-axis is perpendicular to it. The fluid flow takes place in the region y ≥ 0 under
the action of a uniform transverse magnetic field of intensity B0, applied normal to
the stretching surface. The configuration of the model is presented in Fig. 1.

The following assumptions are made in the present study:

• The surface is being stretched with a velocity uw(x) = cxn, where n is stretching
index c being a constant.

Fig. 1 Physical sketch of the problem
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• The effect of polarization is ignored due to the absence of externally applied
electric field.

• Because of the very lowvalue ofmagnetic Reynolds number, the effect ofmagnetic
field which is induced by the fluid flow is neglected [27].

Keeping in mind the assumptions made above and employing Prandtl boundary
layer approximation along with the approximation of Boussinesq, the governing set
of equations representing the flow regime, are given as

∂u

∂x
+ ∂v

∂y
= 0, (1)
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∂y2
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∂2T

∂y2
, (4)

where u and v denote the components of velocity along x and y-axes, respectively, T
is the fluid temperature, ν is the kinematic coefficient of viscosity, C is the species
concentration, k0 is the viscoelastic parameter, σ is the electrical conductivity, ρ is
the fluid density, qr is the radiative heat flux, αm denotes the thermal diffusivity of
the fluid, De represents the coefficient of mass diffusion, cp signifies the specific heat
at constant pressure and DCT is the Soret diffusivity.

The associated conditions at the boundary are

u = uw, v = 0,−k
∂T

∂y
= h f

(
T f − T

)
,C = Cw at y = 0, (5)

u → 0,
∂u

∂y
→ 0, T → T∞, C → C∞ as y → ∞. (6)

where T f is the convective fluid temperature, T∞ is the ambient fluid temperature,
Cw is the concentration of the species at the surface, C∞ is the concentration far
away from the surface, h f is the coefficient of convective heat transfer and k is the
thermal conductivity.

With the help of Rosseland’s approximation, qr for an optically thick fluid can be
given by

qr = − 4σ ∗

3K ∗
∂T 4

∂y
, (7)
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where K ∗ stands for the coefficient of mean absorption and σ ∗ denotes the Stefan-
Boltzmann constant.

Making an assumption that the difference of temperature within the fluid inside
the boundary layer region and free stream is sufficiently small, we can present T 4 by
Taylor series about T∞. Thus expanding it and avoiding the terms of higher orders,
we get

T 4 ∼= 4T 3
∞T − 3T 4

∞. (8)

Incorporating Eqs. (7) and (8) in Eq. (3), we attain
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2.1 Similarity Transform

For the purpose of converting the governing flow equations as well as the bound-
ary conditions into a system of ODE, the following similarity variables have been
introduced.

η = y

√
(n + 1)uw

2νx
, ψ =

√
2uwνx

(n + 1)
f (η), θ(η) = T − T∞

T f − T∞
, φ(η) = C − C∞

Cw − C∞
,

(10)

whereη,ψ, θ andφ are, respectively, similarity variable, stream function, dimension-
less temperature and dimensionless concentration. With these assumptions, taking
u = ∂ψ

∂y and v = − ∂ψ

∂x , Eqs. (2), (9) and (4) yield the form

f ′′′ + f f ′′ −
(

2n

n + 1

)
f ′2 + α

[
n + 1

2
f f iv − (3n − 1) f ′ f ′′′ + 3n − 1

2
f ′′2

]

−
(

2

n + 1

)
M f ′ = 0, (11)

1

Pre f f
θ ′′ + f θ ′ + Ec

[
f ′′2 +

(
2

n + 1

)
M f ′2

]
= 0, (12)

φ′′ + PrLe f φ′ + SrLeθ ′′ = 0. (13)

The corresponding boundary conditions are given by

f = 0, f ′ = 1, θ ′ = −Bi(1 − θ), φ = 1 at η = 1, (14)
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f ′ → 0, f ′′ → 0, θ → 0, φ → 0 as η → ∞, (15)

where M = xσ B2
0

ρuw
is the local magnetic parameter, α = k0uw

μx is the local viscoelastic

parameter, Pre f f = Pr
1+Nr

is the effective Prandtl number [28] where Pr = ν
αm

denotes

the Prandtl number and Nr = 16σ ∗T 3∞
3kK ∗ stands for the radiation parameter, Ec =

u2w
cp(Tw−T∞)

indicates the Eckert number, Bi = h f

k

√
2νx

(n+1)uw
is the Biot number, Sr =

DCT
αm

(Tw−T∞)

(Cw−C∞)
signifies the Soret number and Le = αm

De
is the Lewis number.

2.2 Quantities of Engineering Interests

Physical quantities of practical importance such as local skin friction coefficientC fx ,
local Nusselt number Nux and local Sherwood number Shx are presented as:

C fx = τw

ρu2w
, Nux = xqw

k(Tw − T∞)
and Shx = xqm

De(Cw − C∞)
, (16)

where τw, qw and qm are, respectively, the wall velocity gradient, the wall heat flux
and the mass flux from the surface, given by

τw = μ
(

∂u
∂y

)
y=0

− k0
(
u ∂2u

∂x∂y + 2 ∂u
∂x

∂u
∂y + v ∂2u

∂y2

)
y=0

,

qw = −k
(

∂T
∂y

)
y=0

and qm = −De

(
∂C
∂y

)
y=0

.
(17)

Transforming into dimensionless form, we obtain

C fxRe
1/2
x =

√
n + 1

2

[
1 − 7n − 1

2
α f ′(0)

]
f ′′(0), (18)

NuxRe
−1/2
x = −

√
n + 1

2
θ ′(0) (19)

ShxRe
−1/2
x = −

√
n + 1

2
φ′(0), (20)

where Rex = uwx
ν

is the local Reynolds number.



Modeling of Viscoelastic Fluid Flow Past a Non-linearly … 303

3 Solution Methodology

The system of Eqs. (11)–(13), being coupled and non-linear in nature, restricts us to
obtain solution in closed form. Sowith the purpose of acquiring solution analytically,
optimal homotopy analysis method (OHAM) has been implemented. In OHAM, the
main goal is to express the solutions in terms of series.

Bearing in mind the problem considered by us, the solutions f (η), θ(η) and φ(η)

in terms of series can be expressed as

f (η) = f0(η) +
∞∑

m=1

fm(η), θ(η) = θ0(η) +
∞∑

m=1

θm(η) and

φ(η) = φ0(η) +
∞∑

m=1

φm(η), (21)

where the initial guesses f0(η), θ0(η) and φ0(η) chosen from the boundary condi-
tions, are like below

f0(η) = 1 − exp(−η), θ0(η) = Bi

1 + Bi
exp(−η) andφ0(η) = exp(−η) (22)

and the expressions for fm(η), θm(η) and φm(η) are attained from higher order HAM
deformation systems, given by

L f
[
fm(η) − χm fm−1(η)

] = � f � f
m(η), (23)

Lθ

[
θm(η) − χmθm−1(η)

] = �θ�θ
m(η), (24)

Lφ

[
φm(η) − χmφm−1(η)

] = �φ�φ
m(η), (25)

along with the boundary conditions

fm(0) = 0, f ′
m(0) = 0, f ′

m(η) → 0 and f ′′
m(η) → 0 as η → ∞, (26)

θ ′
m(0) = Biθm(0) and θm(η) → 0 as η → ∞, (27)

φm(0) = 0 and φm(η) → 0 as η → ∞, (28)

where
(
� f , �θ , �φ

)
are convergence control parameters and L f ( f ), Lθ (θ) and Lφ(φ)

denote the auxiliary linear operators given by

L f ( f ) = d4 f

dη4
− d2 f

dη2
, Lθ (θ) = d2θ

dη2
− θ and Lφ(φ) = d2φ

dη2
− φ (29)
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and

� f
m(η) = f ′′′

m−1 +
m−1∑
k=0

fm−1−k f
′′
k −

(
2n

n + 1

) m−1∑
k=0

f ′
m−1−k f

′
k −

(
2M

n + 1

)
f ′
m−1

+ α

(
n + 1

2

) m−1∑
k=0

fm−1−k f
iv
k − α(3n − 1)

m−1∑
k=0

f ′
m−1−k f

′′′
k + α

(
3n − 1

2

) m−1∑
k=0

f ′′
m−1−k f

′′
k ,

(30)

�θ
m(η) = 1

Pre f f
θ ′′
m−1 +

m−1∑
k=0

fm−1−kθ
′
k + Ec

[
m−1∑
k=0

f ′′
m−1−k f

′′
k +

(
2M

n + 1

) m−1∑
k=0

f ′
m−1−k f

′
k

]
, (31)

�φ
m(η) = φ′′

m−1 + Pr Le
m−1∑
k=0

fm−1−kφ
′
k + SrLeθ ′′

m−1, (32)

where

χm =
{
0, m ≤ 1
1, m > 1

. (33)

Now the mth order averaged squared residual errors are defined as:

ε f
m = 1

L + 1

K∑
j=0

[
N f

(
m∑
i=0

fi
(
η j

))]2

, (34)

εθ
m = 1

L + 1

K∑
j=0

[
Nθ

(
m∑
i=0

fi
(
η j

)
,

m∑
i=0

θi
(
η j

)
,

m∑
i=0

φi
(
η j

))]2

, (35)

εφ
m = 1

L + 1

K∑
j=0

[
Nφ

(
m∑
i=0

fi
(
η j

)
,

m∑
i=0

θi
(
η j

)
,

m∑
i=0

φi
(
η j

))]2

, (36)

where L represents the number of discrete points of dimensionless coordinate axis
η, η j = jδη and δη = ηmax

L+1 . In our problem we have selected ηmax = 7. The total
averaged squared residual error εtm at mth order of approximation is given by

εtm = ε f
m + εθ

m + εφ
m . (37)

Table 1 shows the values of total averaged squared residual errors with respect to
optimal convergence control parameters at different order of approximations. Also
the individual averaged square residual errors at different order of approximations
have been presented in Table 2. From the tables one can observe that both the total
and individual averaged squared residual errors reduce gradually as we keep on
increasing the order of approximations.
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4 Results and Discussion

This segment reveals the physics involved in the flow regime as extensive compu-
tations have been done for the velocity field, temperature distribution and species
concentration together with the entities having physical importance under the influ-
ence of several regulatory flow parameters. The results are well demonstrated either
by graphically or by tabular form. The default values of the parameters are chosen as
M = 1.5, α = 0.2, n = 1.5,Pre f f = 1, Ec = 0.1,Bi = 0.2,Sr = 0.2 and Le = 10,
until otherwise specified particularly.

4.1 Velocity Profiles

Influence of magnetic parameterM, stretching index n and viscoelastic parameter α

upon the velocity field f ′(η) have been displayed in Figs. 2, 3 and 4. From Fig. 2
one can observe that fluid velocity is getting reduced as we increase the intensity
of magnetic field. This is due to the effect of transverse magnetic field induces a
retarding body force, namely, Lorentz force, which resist the motion of the flow. As
a result of which the velocity is getting lowered. Figure 3 elucidates the influence of
viscoelastic parameter on the fluid flow. We perceive from the curves of this figure
that viscoelastic parameter slows down the fluid velocity. The viscoelastic parameter
signifies the influence of normal stress coefficient on the flow. So in case of elastic
liquid, strain is responsible for the recovery to the original state. Sowe can’t neglect it,

Table 1 Total averaged squared residual errors with total CPU time at different order of
approximations

m � f �θ �φ εtm CPU time (s)

2 −0.456965 −1.53195 −1.03710 0.00577122 11.1464

4 −0.412080 −1.49244 −1.02869 0.000444044 46.2204

6 −0.411726 −1.45456 −1.04551 0.000113409 263.811

8 −0.412192 −1.39185 −1.03182 0.0000453433 1014.35

Table 2 Individual averaged squared residual errors with total CPU time for optimal convergence
control parameters at m = 8 from Table 1

m ε
f
m εθ

m ε
φ
m CPU Time (s)

2 0.00425313 0.000279281 0.00181989 2.68763

4 0.000191104 0.0000625058 0.000194724 10.2349

6 0.0000177173 0.0000234863 0.0000732957 25.4046

8 3.13846 × 10−6 9.92568 × 10−6 0.0000322758 51.4275

10 7.71555 × 10−7 4.67331 × 10−6 0.0000142378 79.4893
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Fig. 2 Velocity distribution for M

Fig. 3 Velocity distribution for α

Fig. 4 Velocity distribution for n
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however small it may be. Hence, in viscoelastic liquid, the greater degree of recovery
leads to a stronger retardation in the velocity profile due to enhancement of elastic
parameter. Figure 4 shows that a gradual elevation in the stretching index results in
a reducing velocity profile i.e. fluid velocity is getting opposed as we increase the
non-linearity of the stretching sheet.

4.2 Temperature Distribution

Figures 5, 6 and 7 are, respectively, depicted to examine the behavior of temperature
field θ(η) with respect to Pre f f ,Ec and Bi. Fig. 5 portrays the nature of temperature
profiles under the variation of effective Prandtl number i.e. the combined outcome of
the radiation parameter and Prandtl number for heat radiating optically thick fluid. It

Fig. 5 Temperature distribution for Pre f f

Fig. 6 Temperature distribution for Ec
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Fig. 7 Temperature distribution for Bi

is witnessed from Fig. 5 that the thickness of thermal boundary layer as well as tem-
perature diminishes with the growing value of Pre f f . From the expression of Pre f f it
is clear that the effect of Pre f f is inversely proportional to the effect of the radiation
parameter Nr . Nr has a tendency to escalate the effect of conduction and due to this
reason thermal boundary layer becomes thicker. Naturally, an augmentation in Pre f f
results in a downfall in the fluid temperature. An enhancement in the temperature
of fluid is being noticed from Fig. 6 with the increment of Eckert number. Actu-
ally, Eckert number signifies the relative measure of kinetic energy to enthalpy. So
for larger Ec the material particles are more active due to large amount of energy
storage. Hence, enhancement of temperature profile takes place by stronger viscous
dissipative heat. Figure 7 reveals the variation of temperature under the influence of
Biot number. One can point out that temperature of the fluid increases as we keep on
increasing value of Biot number. This explanation can be justified as higher values
of Biot number reveals the greater convective heating at the sheet. Consequently, the
thickness of thermal boundary layer increases.

4.3 Concentration Profiles

The behavior of species concentration φ(η) under the consequence of Lewis number
Le and Soret number Sr are demonstrated in Figs. 8 and 9. It is revealed from Fig. 8
that Soret number enhances the concentration of the species. Physical clarification
behind this fact is that amass flux fromhigher to lower concentration of species driven
by temperature gradient is produced by Soret effect and that is why the diffusive
species with higher Soret values increase the thickness of concentration boundary
layer. From Fig. 9 one can observe that Lewis number exhibits a retarding effect on
the species concentration.
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Fig. 8 Variation of species concentration for Sr

Fig. 9 Variation of species concentration for Le

4.4 Variation of the Physical Quantities

Variation of physical quantities i.e. coefficient of skin friction, Nusselt number and
Sherwood number have been displayed in tabular form in Tables 3, 4 and 5. From
Table 3 it is clear that skin friction coefficient gets enhanced with the intensification
in the values of magnetic parameter, viscoelastic parameter and the stretching index.
From Table 4 it is perceived that effective Prandtl number results in an increment
in the Nusselt number whereas a reverse trend is noticed in case of Eckert number
and Biot number. Table 5 shows that Sherwood number decreases as we increase
the value of Soret number whereas an opposite pattern in the values of this physical
entity is seen for Lewis number.
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Table 3 Variation of local
skin friction coefficient

M α n C fxRe
1/2
x

0.5 0.1 0.5 0.07543526

1.0 0.09453217

1.5 0.12314576

0.5 0.1 0.5 0.07543526

0.2 0.07658472

0.3 0.07711354

0.5 0.1 0.5 0.07543526

1.0 0.07564582

1.5 0.07602134

The bold values indicate that the values of that particular parameter
is being increased gradually

Table 4 Variation of local
Nusselt number

Pre f f Ec Bi −NuxRe
−1/2
x

1 0.1 0.2 0.12622884

3 0.14092449

5 0.14294935

1 0.1 0.2 0.12622884

0.2 0.10557320

0.3 0.08484309

1 0.1 0.2 0.12622884

0.4 0.09654213

0.6 0.07541285

The bold values indicate that the values of that particular parameter
is being increased gradually

Table 5 Variation of local
Sherwood number

Sr Le −ShxRe
−1/2
x

0.1 5 0.30298226

0.2 0.26257384

0.3 0.22180850

0.1 5 0.30298226

10 0.48288903

15 0.63754944

The bold values indicate that the values of that particular parameter
is being increased gradually
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5 Conclusions

Significant outcomes may be summarized as follows:

• The fluid velocity goes down with the intensification in magnetic field. The non-
linearity of the stretching index and the viscoelastic parameter also tend to opposes
the flowing fluid.

• Fluid temperature gets reduced aswe increase the value of effective Prandtl number
whereas Eckert number and Biot number do the vice-versa.

• Species concentration increases with the intensification of Soret number while an
adverse effect is noticed for Lewis number.

• Coefficient of skin friction gradually takes higher values with the enhancement of
magnetic parameter, viscoelastic parameter and stretching index. Local Nusselt
number is seen to be increasing as we keep on rising the value of effective Prandtl
number. On the other hand, a downfall in this physical quantity is observed when
we gradually increase the values of Eckert and Biot number. Sherwood number
acts as a decreasing function of Soret number whereas an opposite scenario takes
place for Lewis number.
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Probabilistic Intuitionistic Fuzzy Set
Based Intuitionistic Fuzzy Time Series
Forecasting Method

Krishna Kumar Gupta and Sanjay Kumar

Abstract IFS can handle non-stochastic non-determinism that arises due to single
membership function for both membership and non-membership grade. PIFS may
handle non-determinacy because of both stochastic and non-stochastic reasons. In
this study, we propose PIFS based FTS forecasting model to control the both kind
of non-determinism along with non-stochastic uncertainty in TS forecasting. The
developed model describes issue of non-determinism which rises due to both ran-
domness as well as linguistic representation of TS data. An aggregation operator to
aggregate the PIFS into IFS is also used in this study. The presented method has been
simulated using financial TS data of TAIEX to confirm it’s outperformance using
RMSE.

Keywords Probabilistic intuitionistic fuzzy set · Intuitionistic fuzzy logical
relation · Stochastic non-determinism · Non-stochastic non-determinism ·
Forecasting

1 Introduction

Time series (TS) forecasting performs the prominent prelude in the field of finance,
medical sciences, meteorology and engineering etc. various statistical techniques
e.g. ARIMA, ARMA, moving average and regression analysis are used for TS fore-
casting. Major drawbacks of TS forecasting methods based on these techniques are
their incapability to handling the linguistic values and non-deteminism caused by
non-probabilistic reasons. Song and Chissom [25–27] proposed fuzzy time series
(FTS) forecasting methods by implementation of fuzzy set [34] to deal with uncer-
tainty caused by the reasons other than randomness. Further Hung and Lin [17],
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Singh and Borah [24], Torbat et al. [29] proposed forecasting methods to improve
accurateness in forecasted values. Chen and Chen [9], Yolcu [33], Chen and Phuong
[10], Xian et al. [31] proposed Granular computing, swarm optimization and other
machine learning based FTS forecasting methods. However, these forecasting meth-
ods are not capable to handle the both stochastic uncertainty and non-deteminism in
TS forecasting simultaneously.

Atanassov [3] introduced intuitionistic fuzzy set (IFS) that contains separate func-
tions for membership and non-membership grade to manage the non-determinacy in
system due to non-stochastic factors. Joshi and Kumar [18] proposed the first intu-
itionistic fuzzy time series (IFTS) forecasting method to include non-determinacy.
Later on, Fan et al. [12], Wang et al. [30], Zheng et al. [35, 36] also proposed
IFTS forecastingmethods based on intuitionistic fuzzy reasoning, intuitionistic fuzzy
c-clustering and order decision and adaptive partition algorithm.Gangwar andKumar
[14], Joshi and Kumar [18], Kumar and Gangwar [21] used IFSs with procedure of
FTS forecasting to include the non-determinism and degree of hesitation.

Probabilistic fuzzy set (PFS) was introduced by Meghdadi [23] to address issue
of both stochastic and non-stochastic uncertainties simultaneously. Liu and Li [22]
proposed probabilistic fuzzy logic system to model both types of uncertainties in
control problems. Various applications of PFS were explored by Fialho et al. [13],
Almeida et al. [2], Hinojosa et al. [15], Tak et al. [28], Huang et al. [16] in different
domains. Agarwal et al. [1] proposed an approach to compute the net conditional
possibility using probabilistic intuitionistic fuzzy rule.

In this study, we propose probabilistic intuitionistic fuzzy set (PIFS) based IFTS
forecasting method that includes non-determinism in the presence of both types of
uncertainties. In this study, PIFS are constructed using a probability distribution func-
tion that assigns probability to membership and non-membership grades. We also
present an aggregation operator to aggregate the probabilistic intuitionistic fuzzy
element (PIFE) into intuitionistic fuzzy element (IFE) using corresponding proba-
bilities. Proposed method is simulated using TS data of TAIEX and its performance
is compare with other existing methods in terms of RMSE.

2 Preliminaries

In this section we review and present definitions of fuzzy set, PFS, IFS and PIFS.

Definition 1 [34] Let X = {x1, x2, . . . , xn} be a discrete set. A fuzzy set, A on
X is defined as A = {〈x, μA(x)〉|∀x ∈ X }. Here, μA : X → [0, 1] and μA(x) is
membership grade of x in A.

Definition 2 [22] Let X = {x1, x2, . . . , xn} be a discrete set. A PFS ˜A is defined
by probability space (Ux ,�, P). Here, x ∈ X with membership grade μ ∈ [0, 1],
Ux is collection of every possible events (μ ∈ [0, 1]) and P is probability assigned
on �(σ − field). For some Bi ∈ Ux , following properties are satisfied.P(Bi ) ≥
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0, P
(∑

Bi
) = ∑

P(Bi ), P(Ux ) = 1. Here, P(Bi) is probability of Bi and Bi ⊆
[0, 1] is a membership grade μi . PFS ˜A can be expressed in terms of union of
confined sub-probability space defined as ˜A ≡ ⋃

x∈X (Ux ,�, P).

Definition 3 [3] Let X = {x1, x2, . . . , xn} be a fixed discrete set. An IFS I on X
is demonstrate as I = {〈x, μI (x), νI (x)〉 : ∀x ∈ X}, here μI : X → [0, 1], νI :
X → [0, 1] represents membership, non-membership functions and μI (x) ∈ [0, 1],
νI (x) ∈ [0, 1] are membership, non-membership grades of x on X with the condition
0 ≤ μI (x)+νI (x) ≤ 1,∀x ∈ X such thatπI (x) = 1−μI (x)−νI (x);πI (x) ∈ (0, 1)
gives the degree of hesitancy.

Definition 4 [1] Let X = {x1, x2, . . . , xn} be a fixed discrete set. A PIFS I ′
is defined by probability space ((Ux , Vx ),�, P). Here, x ∈ X with member-
ship and non-membership grade (μ ∈ [0, 1] and ν ∈ [0, 1]). Ux , Vx are collection
of every possible events (μ ∈ [0, 1], ν ∈ [0, 1]) and P is probability assigned on
�(σ − field). For some Bi ∈ Ux and Ci ∈ Vx following properties are satisfied.
P(Bi ) ≥ 0, P

(∑

Bi
) = ∑

P(Bi ), P(Ux ) = 1 and P(Ci ) ≥ 0, P
(∑

Ci
) =

∑

P(Ci ), P(Vx ) = 1. Here, P(Bi) is probability of Bi and P(Ci) is probability of
Ci. Bi ⊆ [0, 1] is a membership grade μi and Ci ⊆ [0, 1] is a membership grade νi .
PIFS I ′ can be written in terms of the union of finite sub-probability space defined
as I ′ ≡ ⋃

x∈X ((Ux , Vx ),�, P).

3 Proposed Method and Experimental Study

Procedure of proposed PIFS based IFTS forecasting method is explained in this
section. Developed method is implemented to forecast TAIEX data (Table 1) from
01-11-2004 to 31-12-2004 and the experimental result are presented. Following steps
describe the procedure of proposed method and its execution to forecast TAIEX data.

Step 1: Let X = [

Dmin − σ, Dmax + σ
]

be the universe of discourse. Here Dmax,
Dmin and σ are maximum, minimum value and standard deviation of TAIEX data
respectively. Since standard deviation of time series data taken in this study is σ =
94.34 therefore, universe of discourse is defined as X = [5561.83, 6234.03].
Step 2: X is partitioned into n equal length intervals ei . TS data are fuzzified
using triangular fuzzy sets Ai which are constructed using corresponding intervals
ei (i = 1, 2, . . . , n).
Following fuzzy sets A1, A2, . . . , A14 are constructed with equal length intervals
ei (i = 1, 2, . . . , 14).

A1 = [5561.83, 5609.84, 5657.86], A2 = [5609.84, 5657.86, 5705.87],
A3 = [5657.86, 5705.87, 5753.89], A4 = [5705.87, 5753.89, 5801.9],
A5 = [5753.89, 5801.9, 5849.92], A6 = [5801.9, 5849.92, 5897.93],



318 K. K. Gupta and S. Kumar

Table 1 Actual TAIEX data

Date TAIEX data Date TAIEX data Date TAIEX data

01-11 5656.17 22-11 5838.42 13-12 5878.89

02-11 5759.61 23-11 5851.1 14-12 5909.65

03-11 5862.85 24-11 5911.31 15-12 6002.58

04-11 5860.73 25-11 5855.24 16-12 6019.23

05-11 5931.31 26-11 5778.65 17-12 6009.32

08-11 5937.46 29-11 5785.26 20-12 5985.94

09-11 5945.2 30-11 5844.76 21-12 5987.85

10-11 5948.49 01-12 5798.62 22-12 6001.52

11-11 5874.52 02-12 5867.95 23-12 5997.67

12-11 5917.16 03-12 5893.27 24-12 6019.42

15-11 5906.69 06-12 5919.17 27-12 5985.94

16-11 5910.85 07-12 5925.28 28-12 6000.57

17-11 6028.68 08-12 5892.51 29-12 6088.49

18-11 6049.49 09-12 5913.97 30-12 6100.86

19-11 6026.55 10-12 5911.63 31-12 6139.69

A7 = [5849.92, 5897.93, 5945.94], A8 = [5897.93, 5945.94, 5993.96],
A9 = [5945.94, 5993.96, 6041.97], A10 = [5993.96, 6041.97, 6089.99],
A11 = [6041.97, 6089.99, 6138], A12 = [6089.99, 6138, 6186.02],
A13 = [6138, 6186.02, 6234.03], A14 = [6186.02, 6234.03, 6234.03].

Step 3: Using construction method [19], fourteen IFSs Ii (i = 1, 2, . . . , 14) are
constructed corresponding fuzzy sets Ai (i = 1, 2, . . . , 14) on X.
Probabilities to membership grades are assigned using following Gaussian probabil-
ity distribution function.

pμ j =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

l√
2πζi

⎛

⎜

⎜

⎜

⎝

e
−

(

x j−
(

μ j−1
)

li−mi

)2

2ζ2i + e
−

(

x j−
(

1−μ j

)

li−mi

)2

2ζ2i

⎞

⎟

⎟

⎟

⎠

; μ j ∈ [0, 1]

0; otherwise

: pμ j ∈ [0, 1]

where, μ j is membership grade corresponding to crisp input x j . li represents length
of interval. ζi andmi are standard deviation and mean of time series data that lie in
interval. Probabilities of non-membership grades are computed by complimenting
probability of membership grades to 1, i.e.

(

pνi = 1 − pμi ; pνi ∈ [0, 1]
)

and PIFSs
are constructed. A sample of probabilistic intuitionistic fuzzy elements (PIFEs) of
first three values is shown in Table 2.
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Table 2 PIFEs of initial three values

PIFSs/crisp input 5656.17 5759.61 5862.85

I’1 <0.0351 | 0.5187,
0.9636 | 0.4813>

<0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’2 <0.0667 | 0.5087,
0.0024 | 0.4913>

<0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’3 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’4 <0 | 0, 0 | 0> <0.8278 | 0.9463,
0.112 | 0.0537>

<0 | 0, 0 | 0>

I’5 <0 | 0, 0 | 0> <0.1073 | 0.5349,
0.7927 | 0.4651>

<0 | 0, 0 | 0>

I’6 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0.6615 | 0.8574,
0.2439 | 0.1426>

I’7 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0.2656 | 0.5864,
0.7204 | 0.4136>

I’8 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’9 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’10 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’11 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’12 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’13 <0 | 0, 0 |0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

I’14 <0 | 0, 0 | 0> <0 | 0, 0 | 0> <0 | 0, 0 | 0>

Step 4: We use an aggregation operator [32] to aggregate PIFSs into IFS by using
following expression:

Ii =
(

1 − (1 − μi )
pμi , 1 − ν

pνi
i

)

= (ui , vi ); ui , vi ∈ [0, 1]

An IFS corresponding to maximum membership grade of IFE is chosen for the
fuzzification and is assigned to TS data.
Table 3 shows the aggregated intuitionistic fuzzy elements of three initial values.
Step 5: IFLRs are constructed using rule as Ii → I j . Here, I i is intuitionistic fuzzy
production of year n as present state and I j is fuzzy production of year n + 1 as next
state. TAIEX data is fuzzify and applying the procedure for fuzzification which is
given in step 4. IFLRs are determined and IFLRGs are computed (Table 4).
Step 6: Intuitionistic fuzzy relation Ri of first order is described as follows:

Ri = Ri1 ∪ Ri2 ∪ · · · ∪ Rik; 1 ≤ k ≤ i

Ri =
⋃

j

Ri j
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Table 3 IFEs of initial three values

IFSs/crisp input 5656.17 5759.61 5862.85

I1 <0.0184, 0.0177> <0, 0> <0, 0>

I2 <0.0345, 0.9481> <0, 0> <0, 0>

I3 <0, 0> <0, 0> <0, 0>

I4 <0, 0> <0.8107, 0.111> <0, 0>

I5 <0, 0> <0.0589, 0.1024> <0, 0>

I6 <0, 0> <0, 0> <0.6049, 0.1823>

I7 <0, 0> <0, 0> <0.1656, 0.1268>

I8 <0, 0> <0, 0> <0, 0>

I9 <0, 0> <0, 0> <0, 0>

I10 <0, 0> <0, 0> <0, 0>

I11 <0, 0> <0, 0> <0, 0>

I12 <0, 0> <0, 0> <0, 0>

I13 <0, 0> <0, 0> <0, 0>

I14 <0, 0> <0, 0> <0, 0>

Fuzzified data I2 I4 I6

Table 4 IFLRs and IFLRGs
for the TAIEX data

IFLRs IFLRGs

I2 → I4 I6 → I6 I7 → I7 I2 → I4

I4 → I6 I6 → I7 I7 → I9 I4 → I6

I6 → I6 I7 → I6 I9 → I10 I5 → I5, I6

I6 → I8 I6 → I5 I10 → I9 I6 → I5, I6, I7, I8

I8 → I8 I5 → I5 I9 → I9 I7 → I6, I7, I8, I9, I10

I8 → I8 I5 → I6 I9 → I9 I8 → I7, I8

I8 → I8 I6 → I5 I9 → I9 I9 → I9, I10, I11

I8 → I7 I5 → I6 I9 → I9 I10 → I6, I9, I10

I7 → I7 I6 → I7 I9 → I10 I11 → I11, I12

I7 → I7 I7 → I7 I10 → I9

I7 → I7 I7 → I8 I9 → I9

I7 → I10 I8 → I7 I9 → I11

I10 → I10 I7 → I7 I11 → I11

I10 → I10 I7 → I7 I11 → I12

I10 → I6 I7 → I7
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Intuitionistic fuzzified output is carried out as Ii = Ii−1 ◦ Ri . Here, I i and I i−1 are
current and previous states, ‘◦’ is fuzzymax-min composition operator. Crisp outputs
are done by the following expression:

Crisp output =
∑n

i=1 |ui − vi |ai
∑n

i=1 |ui − vi |
Here, ui, vi are membership, non-membership grades of row vectors respectively and
ai is average of equal intervals.

4 Performance Analysis

Proposed PIFS based IFTS forecasting method is compared with fuzzy set and IFS
based forecasting methods suggested by the various researchers [4–9, 11, 18, 20, 26,
30] in terms of RMSE.

RMSE =
√

∑n
i=1 (crisp inputi − crisp outputi )

2

n

where, n is index of data points.
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Fig. 1 Crisp outputs of TAIEX by actual, proposed and some other existing methods
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Table 5 Comparison in
terms of RMSE

Methods RMSE Methods RMSE

Cai et al. [4] 50.33 Cheng et al. [11] 54.25

Chen [5] 84.28 Joshi and Kumar
[18]

52.63

Chen and Chang [6] 60.48 Kocak [20] 50.12

Chen and Chen [7] 57.73 Song and Chissom
[26]

61.17

Chen et al. [8] 52.27 Wang et al. [30] 43.23

Chen and Chen [9] 53.63 Proposed method 49.03

Figure 1 confirms the close association between actual and forecasted TAIEX.
Table 5 shows RMSE of forecasted TAIEX using proposed and other existing fuzzy
and intuitionistic fuzzy TS forecasting methods.

5 Conclusion

Occurrence of stochastic and non-stochastic non-determinacy concurrently in the
system has been an issue in TS forecasting for long time. In this investigation, we
have presented PIFS based forecasting method to address the issue of both types
of the non-determinism. In order to show conveniences of developed method and
it is applied on financial TS data of TAIEX. Reduced amount of RMSE ratify its
outperformance in forecasting TAIEX data. Performance of presented forecasting
method is found superior than the methods proposed by various researchers [4–9,
11, 18, 20, 26]. Even though RMSE in forecasted TAIEX is slightly higher than
that of Wang et al. [30], but capability of proposed method to handle both types of
non-determinism makes it better than the method of Wang et al. [30].
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Investigation of Transient Stability
in IEEE 9-Bus System Using Power
World Simulator

Ravishankar Tiwari, Mayank Goyal and Prashant Prakash

Abstract With the day-by-day increase in power consumption, the transmission and
distribution networks are operating on the verge of stability. The transient stability
studies is one of the important study that helps to maintain the more reliable power
supply with increasing demand in complex network configuration. This paper helps
to understand the problem of transient stability, its effect on the power system. In
this paper IEEE 9-bus system is considered to analyze a list of contingencies and its
effect on the system. The contingency analysis is done using a powerful simulation
tool for different generator bus.

Keywords Transient stability · Rotor angle · Power world simulator

1 Introduction

The degree of stability of power system is an important factor in planning of new
facilities. The sudden major disturbances such as change in load, momentarily fault,
and loss of generation or transmission may create stability problem. The information
related to ability of power system to remain in synchronism undermajor disturbances
is obtained by performing transient stability studies. These studies provide the change
in voltages, currents, powers, machine torques, angles and speeds as well as changes
in system voltage and power flows during and immediately after the faults. If the
power flow solution after clearing the faults converges then it will be indicated that
the system is stable otherwise not. This paper suggested the sequence of corrective
actions could be taken to make the system stable, also calculate the degree of sta-
bility so that system can plan to operate safely. In this paper the IEEE 9 bus system
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having three synchronous machines are used. The performances of the system during
transient period are obtained by numerical techniques with the use of performance
equation (Impedance/admittance form) [1].

2 Mathematical Model Development for Transient Stability
Analysis and Assumptions

For transient analysis it is assumed that—(1) Themechanical input is constant during
the whole rotor swing, (2) Damping D is proportional to relative speed, (3) Steady
state network solution gives the synchronous power, (4) The synchronous machines
are represented by series internal voltage connected behind the series direct axis
reactance, (5) Themechanical rotor angle δ(i) is in phasewith electrical angle for each
machine, and (6) The static and induction load are represented by shunt admittance
connected to the bus [2].

The system is having 3 states prefault, during fault and post fault. (1) Prefault
state give all the initial conditions of angles δ(i). (2) Fault state from t = 0 to t = tclr
(fault clearing time). (3) Post fault state for, t > tclr.

3 Rotor Swing Modeling During Transient

From the law of mechanism related to the rotating bodies, the net torque acting on
the rotating bodies is

T = WR2

g
α (1)

where

T = algebraic sum of all torques, N-m
WR2 = moment of inertia, kgm2

g = acceleration due to gravity, equal to 9.8 m/s2

α = mechanical angular acceleration, rad/s2

The electrical angle

θe = p

2
θm (2)

Frequency f in cycle per second will be

f = P

2
∗ N

60
(3)
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where N is speed in rpm.
Then from Eqs. (2) and (3), the electrical angle in radian is

θe = 60 f

N
θm (4)

The electrical angular position δ in radians of the rotorwith respect to synchronous
reference axis

δ = θr + ω0t (5)

where ω0 is rated synchronous speed in radian/second and ‘t’ is time in seconds.
Then angular velocity or slip with respect to reference axis is

dδ

dt
= dθe

dt
− ω0 (6)

And the angular acceleration is

d2δ

dt2
= d2θe

dt2
(7)

On substituting θe from Eq. (4)

d2δ

dt2
= 60 f

N

d2θm

dt2
(8)

where d2θm
dt2 =∝.

So the net torque will be

T = WR2

g

N

60 f

d2δ

dt2
(9)

The base torque is torque required to develop at rated power at rated rpm i.e.

Base T orque = base kva 550
0.746

2π N
60

in foot - pound.

Therefore the torque in per unit

T =
(
WR22π/g f

)(
N
60

)2 0.746
550

Base kva

d2δ

dt2
(10)

The inertia constant H of a machine is kinetic energy at rated speed in kilowatt
second/kilo-volt ampere and the kinetic energy in foot pound is
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kinetic energy = 1

2

WR2

g
ω2
0 (11)

where ω0 = 2πN
60 .

Therefore

H =
(
WR2/g

)
(2π)2

(
N
60

)2 0.746
550

Base kva
(12)

Substituting in Eq. (10), we get

T = H

π f

d2δ

dt2
(13)

The total torque acting on an alternator rotor are mechanical input torque, torque
due to rotational losses such as frictional, windage losses and core losses, electrical
output torque and damping torque due to prime mover and power system since
electrical and mechanical losses acting on the rotor are in opposite direction. On
neglecting the frictional, windage, core losses and damping, the accelerating torque
is given by

Ta = Tm − Te (14)

where

Tm = mechanical torque and
Te = electrical air gap torque

Thus Eq. (13) becomes

H

π f

d2δ

dt2
= Tm − Te (15)

Since the torque and power are equal in per unit so

d2δ

dt2
= π f

H
(Pm − Pe) (16)

where,

Pm = mechanical input power
Pe = electrical air gap power

The second order differential equation (16) can be break in two simultaneous first
order equation, combined with system performance equation and the solution can
be obtain from Runga Kutta Or modified Euler technique. In this paper the Runga
Kutta method is used.
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Synchronous machine model during transient analysis—Since the transient sta-
bility analysis performed for a very small period of time (in seconds or less), the
synchronous machines can be represented by a constant voltage source behind a
transient reactance with variable angular displacement. Neglect the effect of saliency
and assume constant flux linkage and a small change in speed. The voltage behind
the transient reactance are determined by

E ′ = Et + ra It + j x ′
d It

Induction machine representation—Induction motors loads can be represented by
shunt impedances whereas in case of larger I.M. have significant effects on tran-
sient response of power system so represented in detailed manner. A simple linear
representation has been use to represent transient behavior of an induction motor
including the effect of mechanical and electrical transients with single time constant.
The saliency and the changes of flux can be taken into account by representing the
effect of three phase ac quantities of synchronous machine acting along d-axis and
q-axis.
Load representation—during the transient period motor loads are repre-
sented by their equivalent circuit and other load representation are—static
impedance/admittance between a point of connection and ground or a load of fixed
power factor at constant current, constant real and reactive power demand or in
combination of these [3, 4].

Constant current representation Ip0 = PL− j QL

E∗
P

Static admittance representation yp = Ip0
Ep

Connected at any bus p where Ep is the bus voltage with respect to ground and
Ip0 is the current flowing from bus to ground.

4 Network Equation Formulation

The power system network model can be either with in node/bus or mesh or branch
reference frame. The mathematical model in bus reference frame of n bus system and
taking one bus as a reference gives n − 1 number of linear independent equations.
The equation in admittance from can write as [2]:

⌈
Vector of injected
bus currents IBUS

⌉
=

[
BUS admittancematrix
of Power systemYBUS

][
Vector of node

voltagew.r.t. ground E∗
BUS

]
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⎡

⎢⎢⎢
⎣

I1
I2
...

In−1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

Y11 Y12 · · · Y1,n−1

Y21 · · · · · · Y2,n−1
...

Yn−1,1 · · · · · · Yn−1,n−1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

E1

E2
...

En−1

⎤

⎥⎥⎥
⎦

For computing the angle and frequency trajectory the swing equation discussed
in Sect. 1 Eq. (16) is solved and the results are shown in Sect. 3.

5 Problem Formulation and System Studies

The IEEE9bus system is used to perform the transient analysis. Thenetwork equation
similar to load flow is used to formulate performance equations. The N-R method
is used to solve the performance equation, where the elements of admittance matrix
represent the connection between the bushes including load. The single line diagram
if IEEE 9 bus system is shown in Fig. 1 where the system consists of three generating
unitsG1,G2andG3connected at buses 1, 2 and3 respectively.Thebus 1 is considered
as slack bus whereas 2 and 3 are PV buses. The loads are connected at buses 5, 6 and
8 are considering as load buses. The total generation is 330 MVA whereas the total
load is 315 MW.

Fig. 1 One line diagram of IEEE 9 bus system
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The problem associated with this system is transmission of power during distur-
bances from one machine group to another. During disturbances, the machines of
same group swings together and also machines of other group are greatly deviated
with their relative positions. The balanced three phase faults are considered at bus
3, 2 and 1 one by one and the critical clearing time, relative stability and excitation
control to improve system stability during each case is observed by using Power
world software.

Case I: Three phase fault at bus 3, the critical clearing time for this fault is tclr =
550 ms in Fig. 2. The frequency deviation over different buses with maximum at
fbus2 > fbus1 > fbus3 shown in Fig. 3.
Case II: 3-phase fault at bus 2, the fault should be cleared before tclr = 310 ms. With
the similar deviation in rotor angle, frequency (+1.43 Hz) and excitation as in case
I. The shift in rotor angle is plotted for fault clearing time t < tclr when all machines
are swing together and remain in synchronism.

For time t > tclr, the result are plotted, shows that themachine is out of synchronism
and not swinging together. Frequency variation is uncontrolled and the excitation
control hits its boundary value at bus 2 and is not able to maintain the voltages within
limits.
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Fig. 2 Rotor angle variations for fault clearing time t < 550 ms
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Transient Stability Time Step Results Variables
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Fig. 3 Frequency variations at different buses during fault at bus 3

The variation of excitation voltage due to variation in generator bus voltages
during fault bus 2 is shown in Fig.6.

Case III: Three phase fault at bus 1, it is observed that it would be most critical
3-phase fault on the given system which requires least fault clearing time of tclr =
290 ms or less. The three faults persist for more than 16 cycles will leads to system
to be unstable. The rotor angle, frequency and excitation voltage variation for fault
clearing time t < tclr are similar as in case I and II. For time t > tclr is show in the
figures respectively.
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Transient Stability Time Step Results Variables
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Fig. 4 Variation of excitation control of G1, G2, and G3 before fault, during fault and after clearing
fault for t < tclr

6 Discussion

Several factors affect critical clearing time. We have considered fault location. Three
fault locations were considered for the same damping and inertia constants. A three-
phase fault is done on all the generator buses i.e. on bus 1, bus 2 and bus 3 of the
IEEE 9-bus system. Observations are obtained on Figs. 2, 3, 4, 5 and 6.
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Transient Stability Time Step Results Variables
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Fig. 5 Rotor angle shift

In this paper, the stability of the IEEE9-bus systemhas been studied by plotting the
curves of rotor angle variations, frequency variations, rotor angle shift and variations
in excitation. These variations are obtained for the 3-phase fault on generator buses.
It is recommended to that power system engineers must do proper analysis w.r.t.
transient stability.
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Transient Stability Time Step Results Variables
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Fig. 6 Variation of excitation Efd for fault clearing time at 320 ms > tclr
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Discrete Time Minimum Variance
Control of Satellite System

Deepali Y. Dube and Hiren G. Patel

Abstract This paper is concernedwith the types of stochastic disturbances affecting
the potential of the aerial system. The satellite system for continuous and discrete
time domain is discussed. A phase lead compensator completes the orientation suc-
cessfully. Astrom’s single-input single-output (SISO) model is implemented with
using the minimum variance control strategy. The separation principle then pro-
vides the optimal control law which curtails the cost function to a value as small
as possible. The satellite system is positioned for one quarter revolution with the
co-ordination of generalized minimum variance controller (GMVC) and standard
generalized dual controller (GDC) based on certainty equivalence assumption. The
revolutions in radians are tracked as output of the system for the input specified in
degrees to the system. The controller proved useful in reducing the overshoot and
atmospheric disturbances which allows a stable motion even for larger time delays.

Keywords Discrete time domain · Single-input single-output · Optimal control law

Nomenclatures

e Independent vector
k′ Gain factor
u(t) Control signal
x Radial perturbation
y(t) System output
ωd Damping frequency
ξ Damping ratio
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ξ t Gaussian white noise
GLA Longitudinal disturbance
GP Pressure disturbance
GT Temperature disturbance
Iq Covariance matrix
Ts Time delay
V Loss function
Wx Weiner process
Yr Desired signal

1 Introduction

The existence of stochastic disturbances in the real practical problems has encouraged
the prerequisite to control the system optimally. The resolution to the said problem
is required in the areas involving economy, reliability, stability and security of the
whole system. These also depend on the performance of the regulation. This has
emerged as the main reason of huge progress observed in the area of stochastic
control engineering. Theoretical results are made in use with proper hardware and
software conditions and a powerful control algorithms is also made to utilization.
Astrom introduced the minimum variance control in order to design optimal control
loop. This method has some nicer properties as:

(1) The control signal deviation around the required value is reduced,
(2) It can be applied to the cases where the parameters are known and unknown of

a given system,
(3) Being simple; it does not consume much time,
(4) Disturbances occurring in practical situations are also considered,
(5) No prior knowledge about the process is required,
(6) The respective variation of the system parameters with the desired value is

followed.

A framework introduced by Hunek and Latawiec [1] of implementing mini-
mum variance control of both discrete and continuous time linear time-invariant
multi-input multi-output systems became popular. It concluded that the continuous
processes can be synthesized without the theory of output predictor emulation.

Whereas, Soroka and Shaked [2] the problems dealing with the finite-time,
reduced-order,minimum-variance, full-state estimation of linear and continuous time
invariant systems were of main interest. This was done for the cases where the output
measurement is free of white noise components. An expression of transfer function
provided good insight into the mechanism of the optimal estimation.

Yamamoto et al. [3] discussed the problem of camera vibration in aerial photog-
raphy. It involved the RC helicopter system where the image is affected. Hence the
position of the camera is first controlled by PD tuning method. The estimation done



Discrete Time Minimum Variance Control of Satellite System 339

by least squaremethod involving the later computations by the generalizedminimum
variance control.

A non-linear operator approach to estimation was described and discussed by
Grimble and Naz [4]. The assumed measurements being corrupted by colored noise
signal, a nonlinear filter proposed in paper reduces the generality of the problem and
leads to a very practical non-linear estimation of algorithm. Silveria and Coelho [5]
suggested that while dealing with systems having longtime delays the design proce-
dures require only a small amount of work. The goal was to propose a state-space
design technique for the generalized minimum variance control. The results were
verified by linear algebra. Two examples were provided to prove the effectiveness of
proposed technique.

The problem of minimum variance event triggered output feedback control of LTI
processes was given main concern. It involved the presence of white gaussian noise
too. Also, the optimal event generated was separate from the controller configuration
and was determined by an optimal stopping algorithm. Hence, the paper was able to
minimize the asymptotic average variance of the regulated output of LTI plant.

Analytical results were obtained by Yokoyama and Masuda [6] for the iterative
data-driven PID gain tuning based on generalized minimum variance regulatory
control. It achieved better PIDgains due to generalizedminimumvariance evaluation.
A numerical simulation also proved this technique. The need of controlling various
industrial processes with an extension of the principle of the minimum variance
control have been in abundance supported by above nicer properties of stochastic
control methodology. Also the merit of the method is not to require any advance
statistics about the plant and disturbance action.

In this paper, the problems occurring due to the stochastic disturbance are simpli-
fied in Sect. 2. Mathematical representation of the system model in Sect. 3. Design
of controller is discussed in Sect. 4 and simulation results in Sect. 5, whereas the
conclusion is quoted in Sect. 6.

2 Problem Formulation

It was found that there were meteoric swings on earth’s atmospheric density with
distractions. This has to be taken in while modelling the rigid body dynamics. This
is developed from Newtonian mechanics of securing the satellite in circular orbit [8,
9].

ẍ + b(1 + aξt )ẋ + (1 + aξt ) sin x − c sin 2x = 0 (1)

here x is radial perturbation about the given orbit, ξ t is Gaussian white noise and a,
b, c are constants. The above equation is modeled as 2-dimensional Ito stochastic
differential equation
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d

(
X1
t

X2
t

)
=

(
X2
t

−bX2
t − sin X1

t + c sin 2X1
t

)
dt

+
(

0
−abX2

t − b sin X1
t

)
dWt (2)

The problem due to the atmospheric distractions or swings were modeled in
(3–5). Above equations were evolved virtually in MATLAB with a 2-dimensional
Ito-stochastic differential equation. The weiner process W(x) being analysed with
randomness in the vector (Brownian motion). This concluded a different output
each time the system is manipulated. Atmospheric chaos are necessary for design
of both inlet and engine flight controls and for studying link between the propulsion
and the vehicle structural dynamics for supersonic vehicles. In the referred paper,
a more accurate model was developed by George to represent fractional order of
atmospheric disturbances. Atmospheric model was accomplished by first ascending
the kolmogorov spectral to convert them into finite energy von-karman forms. Hence,
the objective lies for given parameters and the atmospheric conditions with all prior
information, (the poles and zeros describing disturbances for respective acoustic
velocity, temperature, pressure and density) the appropriate time domain simulations
are evaluated. These disturbances also contribute to the problems cited in this paper.
Their respective transfer functions as in [7]:

GLA(s) = 70ε2/9
(s/9.2 + 1)(s/55 + 1)(s/335.5 + 1)

(s/1.46 + 1)(s/30.1 + 1)(s/85.7 + 1)(s/1593.1 + 1)
(3)

GT (s) = (s/33 + 1)(s/45.6 + 1)(s/602.4 + 1)

(s/1.1 + 1)(s/25.1 + 1)(s/109.8 + 1)(s/816.3 + 1)
(4)

GP(s) = (s/33 + 1)(s/45.6 + 1)(s/602.4 + 1)

(s/1.1 + 1)(s/25.1 + 1)(s/109.8 + 1)(s/816.3 + 1)
(5)

hereGLA,GT andGP are the atmospheric disturbance transfer function for longitudi-
nal, temperature and pressure. These exhibit behavioral pattern when in the system
and may cause large instability in satellite control system operations. As shown in
Fig. (1), the response is completely unwanted. It reflects that the disturbance is very
inclined in the right half plane. A specific scaling will allow the satellite to hover
at an altitude for executing spinning maneuver and also communicate the required
messages through sensing.

3 Satellite System

In order to position a satellite communication system at a specific angular location
in such a way that the communication link to the earth station is maintained. This
requires following considerations
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Fig. 1 The affect of stochastic disturbance at the output (Right hand side) via input (left hand side)
of the satellite system

• A pair of bi-directional rockets. These are equipped on the outside wall of the
satellite. It allows the corrections required to be accommodated in the presence of
disturbances offset of the angular position,

• The satellite is a rotating control system object placed in a frictionless space,
• The electrical input voltage controls the torque deployed by a pair of the rockets,
• The perfect position of the satellite system is predicted by the position information
available in the form of electrical signal.

Here, in the paper a digital controllerD(z) of first order phase lead type is utilized.
Thismakes the satellite positionmore stable. The sample rateTs = 3–6 s respectively.
To build the model in a discrete time domain some certain design criteria’s must be
followed: ξ > 0.6, since ωd < 0.1ωs, ωdTs < 0.2π = 360, z = e−0.2 = 0.8187. The
transfer functions utilized in forward and feedback path in continuous time domain
are

G(s) = 1 − e−sTs

s
× 0.02

s2
(6)

Using the residue method above plant is simplified in discrete time domain as

G(z) = 0.0001(z + 1)

(z − 1)2
, (7)
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Aphase lead compensator is involved for the designof satellite position orientation
of a general form as

D(z) = k
z − z0
p − p0

(8)

= k ′

0.036

z − z0
z − z p

(9)

= 11.11
z − 0.8

z + 0.2
(10)

here gain is considered as k′ = 0.4. Hence the response for a 90° angle as input signal
is obtained. It is a step response of the closed loop satellite position control system.

4 Minimum Variance Control

The Astrom model presented a SISO system described by:

y(t) = B(z−1)

A(z−1)
u(t − Ts) + λ

C(z−1)

A(z−1)
e(t) (11)

where B(z−1)/A(z−1) is the process transfer function, λC(z−1)/A(z−1) being the trans-
fer function of the disturbance, u(t) is the control signal, y(t) being the output of noisy
system, e(t) is the sequence of normal independent variables (having zeromean value
of variance one) and Ts is the time delay of the process. Also

A(z−1) = 1 + a1z−1 + · · · + anz−n

B(z−1) = b0 + b1z−1 + · · · + bmz−m

C(z−1) = 1 + c1z−1 + · · · + ckz−k

here t = 0, 1, 2,…, q. The main intension of minimum variance control is to decide
the control signal u(t) in a way that the loss function described as

V = E
{
[y(t + d) − yr ]

2} (12)

is as small as possible with yr as the desired value of controlled signal. When
considering the multi-variable system an extension of Astrom model is used

A(z−1)y(t) = B(z−1)u(t − d) + C(z−1)�e(t), (13)

where y is the q-dimensional output vector, u is the q dimensional control vector, A,
B and C are polynomial matrices of z−1:
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A(z−1) = Iq +
n∑
j=1

z− j A j ,

B(z−1) =
m∑
j=0

z− j B j ,

C(z−1) = Iq +
k∑
j=0

z− jC j

here e is a sequence of normally distributed independent vector variables with zero
mean value and covariance matrix Iq. Here Iq is a q × q unit matrix. Also, the loss
function which is to be minimized

V = [y(t + d) − yr ]
T [y(t + d) − yr ], (14)

Using the separation principle, the optimal control law obtained:

u(t) = B−1
0

[
C(z−1)vr − G(z−1)v(t) − B̃(z−1)u(t)

]
, (15)

A generalized dual control (GDC) in a non-linear form is obtained after
minimizing the cost function

ue(k) = f̂0(k)w(k) − [ f̂0(k) p̂T0 (k) + (1 − λ)pTf 0p0(k)]mo(k)

f̂ 20 (k) + (1 − λ)p f 0(k)
(16)

5 Simulation Results

The simulations are carried out to position the satellite at 900 (one quarter revolu-
tion). The input provided to the system is in degrees with a response explaining the
revolutions in radians for a zero at 0.8 and a pole at 0.2 as the lead compensator into
the system. From Fig. 1, it is observed that the presence of atmospheric disturbances
create an abnormal curve on the behavior of input-output estimates. Hence, there
lies an urgent need of suppression of such stochastic nonlinearities from the system.
The standard adaptive generalized minimum variance (GMV) controller based on
the certainty equivalence (CE) assumption is displayed in Fig. 2. The results of the
simulation of the designed adaptive dual version of the GMV controller are shown in
Fig. 3. The response for the generalized dual controller (GDC) is also studied. As can
be seen in Fig. 3, the adaptive dual controller provides better control performance
and a smaller overshoot. The control of the same plant with a larger time delay can
be considered in future.
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Fig. 2 Simulation results for
the standard adaptive GMV
controller based on the CE
assumption (Ts = 4) for
w (reference signal, green)
and y (actual estimated
signal, blue)

6 Conclusion

In this paper, the satellite system has been described and applied for the synthesis
of the dual version of the generalized minimum variance controller (GMV). The
reward of the depicted controller and the collation with the dual approach have been
emphasized. It’s properties are applied to position the satellite considering angle as an
input. The enhanced potential of the adaptive dual controller has been evinced. The
second order discrete system known to time-varying have been cast-off to experiment
the renewed controller. The advanced controller have been validated and collate using
minimum phase plant. Also, simulation results predict better response for the said
problem for atmospheric disturbances of stochastic nature. The depicted controllers
indicate competent capability for the said problem.



Discrete Time Minimum Variance Control of Satellite System 345

Fig. 3 Simulation results for
the standard GMV controller
based on the CE assumption
with a time delay of Ts = 6
for w (reference signal,
green) and y (actual
estimated signal, blue)
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Hand Talk System for Deaf and Dumb
Person

Vikash Kumar, Sanjeev Kumar Raghuwanshi and Ankit Kumar

Abstract This project is a prototype of data glove which has ability to convert the
movement of figure into visual display and audible sound of predefined language.
I have seen many people who find it difficult to communicate with other due to
language problem or due to problem in vocal chord. In a diverse country like INDIA
where various types of mother tongues is spoken. People form one region of country
when travelled to other region find it difficult to convey their message, which make
it tedious to survive them in other region. So this data glove can convert the speaker
language into the listener language which make it possible to easy communication
between different language speaker. There is approximately 70 million people in
world who are deaf and dumb. These people use sign language to communicate
with each other. But the person with no disability in vocal chord does not learn sign
language, this means that not everyone can understand sign language. So it will be
a tedious task for deaf or dumb person to communicate with other person having no
knowledge of sign language. This data glove can be used to replace code language
which is used during war. A particular command can be converted into a gesture
and the commanding officer have to make particular gesture using his hand and the
command is displayed on the command receiving personnel. Data glove consists
of flex sensor. In this prototype I have used 3 flex sensor which produce 8 output
result. You can increase no of flex sensor up to 5 on one glove which can produce
32 output. The output produce by combination of flex sensor on data glove is in
analog form which is feeded to ADC channel of Arduino microcontroller. Analog to
digital converter of microcontroller convert the analog input into digital form. This
digital pattern is compared with stored data and then according to comparing result a
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particular sentence orword is displayed on a 16 * 2LCDand sameword or sentence is
playedon an8Ospeaker. Speaker andLCDoutput is for dumbpeople communication
while only LCD is only sufficient for deaf person. This model consists of SD card
which make it possible for storing as much audio as required means there will be no
limitation of memory.

Keywords Arduino microcontroller · Flex sensor · Sign language · Ultrasonic
sensor

1 Introduction

Dumb people use sign language to communicate with each other. Now it comes
in mind that what is sign language? In all over the world different sign languages
in these sign languages some different spoken languages is also available, these
spoken Sign language, any means of communication through bodily movements,
especially of the movement of finger, hands and arms [1–3], these sign languages
is useful for the deaf and dumb person those has not able to speak and heard the
sound, with using Sign language we can coarsely expressed as mere shrugs, pointing
or grimaces, or it also delicately nuanced Combination of coded manual signals
reinforced by facial expression and perhaps augmented by words spelled out in a
manual alphabet.Wherever vocal communication is impossible, as between speakers
of mutually unintelligible languages or when one or more would-be communicators
is deaf, sign language can be used to bridge the gap. But this bridge has of no use if
both the speaker who are communicating does not know sign language. Thus there
is a need to develop some device which will convert sign language into voice and
display. So this data glove compensate this need. In this project we have used a
Arduino Uno board, five op-amp circuits as buffer, LCD, speaker [4–6].

2 Details of Components

A. Flex sensors:

Flex sensors are similar to analog potentiometer which can be implemented as a
voltage divider circuit. Flex sensor has carbon resistive element inside them in the
form of thin substrate. More carbon means less resistance.When the substrate is bent
the sensor produces a resistance output relative to the bend radius. Thus flex sensor
measures the amount of bending in terms of change in its resistance. The flex which
I have used in my project is 4.5 inch long (Fig. 1).

This flex sensor have resistance of about 9.3 k� at straight position and when it
bend above 60° [7]. It will change its resistance to 33.3 k�. One terminal of flex
sensor is connected to 5V pin ofmicrocontroller and other pin is connected to op amp
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Fig. 1 Flex sensor used for
gesture analysis of design
hardware set-up

Fig. 2 Flex sensor
connected with impedance
buffer circuit

IC. Cost of one flex sensor is Rs. 850. This flex sensor is unidirectional 2 dimension
sensor. In market bidirectional flex sensor is also available (Fig. 2).

B. Impedance buffer:

Buffer amplifier is simply a circuit which provides impedance transformation from
input to output with the aim of the source signal being unaffected due to change of
load. There are two types of buffer: the voltage buffer and the current buffer. Here in
this project what we are using is a voltage buffer because we need voltage values to be
fed to Arduino to take further actions with these values. A voltage buffer amplifier
is used to transfer a voltage from a first circuit, having a high output impedance
level, to a second circuit with a low input impedance level. The impedance buffer
amplifier prevents the second circuit from loading the first circuit unacceptably and
interfering with its desired operation. In the ideal voltage buffer in the diagram, the
input resistance is infinite, the output resistance zero (impedance of an ideal voltage
source is zero).

Voltage Relation of input and output signal of impedance amplifier.

Vout = {R2/(R1 + R2)} * VIN
Vout = Output voltage
Vin = input voltage
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R2 = 10 K�

R1 = flex sensor.

C. Arduino Uno atmega328:

Microcontroller is the brain of this project. Microcontroller provides platform for
the interaction of SD card module, speaker, LCD, flex sensor. The analog voltage of
each flex is input to the ADC channel of microcontroller. In my project I have used
3 flex sensor. Each flex sensor is connected to the impedance buffer circuit. And the
output of each buffer is connected to analog pin say A0, A1, A2. Now each analog
input is mapped to three different range. I have mapped A0 between 0 and 255, A1
between 255 and 512, A1 between 512 and 768. This mapping is necessary to avoid
any mismatching of different digital pattern. Now the input of each sensor is set to
high or low by comparing input signal with predefined value. Now with three sensor
at high or low state we can have 8 different digital pattern (Table 1 and Fig. 3).

Connections of flex sensors with Arduino are shown in Fig. 4. Although the buffer
is skipped in Fig. 4 but it is use in the practical circuit.

D. Flow chart of source code

Now it’s turn for discussion about source code.
Source code follow basic c language. The source code will have following step:

Write code for LCD interfacing
Write code for SD card interfacing
Write code for Speaker interfacing
Write code for Analog voltage input.

Table 1 Configuration of Arduino Uno microcontroller

Pin no. Function Connected to Arduino pin no.

1 Ground (0 V) Arduino gnd

2 Supply voltage; 5 V Arduino +5

3 Contrast adjustment 10 k potentiometer

4 Low to write to the register; High to read from the
register

8 no digital pin of Arduino

5 R/W adjustment Ground of Arduino

6 Sends data to data pins when a high to low pulse is
given

10 no digital pin of Arduino

D4 5 digital pin

D5 7 digital pin

D6 3 digital pin

D7 2 digital pin

15 5 V

16 Ground
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Fig. 3 Arduino Uno
controller

Fig. 4 Arduino Uno
controller connect with flex
sensor

You have to connect SD card first then connect LCDwith Arduino Uno controller.
As SD card pin have predefined pin connection but you can connect LCD according
to available pin Fig. 5.

E. LCD:

LCD (Liquid Crystal Display) screen is an electronic display module which is easily
programmable and economical. I have used 16 * 2LCD it indicate the 16 character for
every line for available 2 lines indicated character across LCD IS 5 × 7 pixel matrix.
Usable LCD in our project work has two register his name is command register and
data register. Use of command register in LCD has to store the command instruction
and also more work like initializing LCD, setting the position of cursor, clearing
screen of LCD, control the display. Second register is the data register is uses the
tore the display data as in the form of ASCII code.
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Fig. 5 Flow chart of source
code START

Input from each 
analog pin

Compare with predefined data and 
find perfect matching

LCD SPEAKER 

F. Speaker:

In our project we used the common dynamic loudspeaker, his loudspeaker had fol-
lowing specification a lightweight diaphragm, flexible suspension, commonly called
a spider, that constrains a voice coil to move axially through a cylindrical magnetic
gap. Loudspeaker is worked if input signal is in the form of electrical current is cre-
ated the magnetic field in the voice coil. Reference [8] in our hardware research work
we uses the mid range loudspeaker driver that reproduces the sound in the range of
frequency 250–2000 Hz (Figs. 6 and 7).

Fig. 6 Speaker is used to
create the sound of fingure
gesture logic



Hand Talk System for Deaf and Dumb Person 353

Fig. 7 Block diagram of
Hardware setup for analysis
of fingure gesture

Flex
Sensors Buffe Arduino- 

Microcontroller

LCD
Display

Speaker

3 Block Diagram for Purposed Hardware Set-up

The Flex sensors used on the hand gloves system. This hand gloves are uses by the
person. Here the flex sensors can detect the fingure movement is done by the per-
son. For movement of the fingure resistance across the flex sensor changes due to
changes of resistance across flex sensor it generate electrical signal. In this process
basically fingure movements convert the signal into the voltage. Conversion of volt-
age and resistance range after movement of fingure for each movement is recorded
and it is programmed in the Arduino Uno at mega 328 as a reference voltage. The
output coming from the flex sensor through buffer output is given to the Arduino
Uno controller for the comparison with the reference voltage. After comparison, the
measured voltage would lie in the particular range as programmed in the Arduino
Uno controller. Indication of the alpha numeric number would be displayed on the
LCD with using terminal software. Complete system is worked with 5 V DC supply.

4 Result and Discussion for Gesture Analysis for Hardware
Set-Up

The given gesture analysis follow the various possible gestures that can be used in
the project but we have used only two levels for a flex sensor. First level is when it
is in straight condition and second level is when it is bent from straight position. So
in this manner we can get two possible gestures with one flex sensor. Therefore total
possible number of gestures with five flex sensors = 2∧5 = 32 and corresponding
to these gestures the recordings for various essential needs of a person (whether he
needs water or food etc.) can be saved to the sd card (Fig. 8).

Althoughwe have used only 32 gestures but the accuracy is high in our project and
the reason for high accuracy can be understood as follows: as we go on increasing
more levels to each flex sensor then a slightmovement, bent or vibration could change
the gesture and the Arduino would think of it as a change in gesture thus the output
will not remain stable for slight movements and accidental vibrations in the hand.

Use hardware architecture for 3 flex sensor:
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Fig. 8 Movement of fingure
gesture to create the
alphanumeric number that
has display on LCD and
create the sound through
speaker

The Arduino converts the given input voltage (which is less than or equal to 5 V)
into corresponding discrete values between 0 and 1023. Table 2 shows the values
attained by these flex sensors corresponding to our 8 gestures.

Here N represents normal state of a flex sensor or the state when it is in straight
position and B represents the bent position of a flex sensor. So for example a gesture

Table 2 Flex sensor out put
for different figure gesture
configuration

Gesture Sensor1 (�) Sensor2 (�) Sensor3 (�)

NNN 106,108 350,351 606,608

NNB 100,101 346,348 605,606

NBN 116,117 354,355 611,612

NBB 148,149 349,350 606,607

BNN 112,113 348,349 605,606

BNB 118,119 351,352 608,609

BBN 123,124 352,353 609,610

BBB 124,128 352,355 609,611
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written as NNB would mean that it is a gesture where first and second flex sensors
are in straight position and the third flex sensor is in bend position.

Result for flex sensor output:
Deaf people face difficulty in communication with other people therefore for this

purpose they may require interpreters. However interpreters cannot be with always
with them because of their high costs and due to many problems faced while finding
a qualified interpreter. This project “figure gesture recognizing glove” can improve
and make their life significantly easy. The Aim of this project always remained to
be a real world device that translates the motion and movements of the fingure in
recognizable signals and messages. The proposed method can also be extended to
recognize more number of gestures via using accelerometer. And 1024 gestures can
be used by one glove for each hand and with the help of accelerometer the number
of gesture may be raised beyond.

5 Gesture Analysis Use to Control the PC/Laptop

Handgesture Systemcan be used to control the laptop andPCbyusing twoUltrasonic
sensors is connected with our purposed hardware system. Here sensor power supply
is giving through Voltage regulator of Arduino. Our purposed hardware system of
the Arduino microcontroller connected to the Laptop or PC for given the power and
also for Serial communication. Configured connection will be done on PC as shown
below. We used a double side tape to stick it on my PC but you can use your own
creativity [9] (Fig. 9).

Purposed hardware system has using the python program in laptop and computer.
Now you can play any movie on your computer using the VLC media player and
use your hand gesture to control the movie and sound of the play video is given in
Fig. 10 [10].

Fig. 9 Ultrasonic sensor
connection with
Microcontroller
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Fig. 10 Analysis of gesture
use to control the volume of
laptop and open the video
clip

6 Conclusion

Dumb people cannot able to speak, our purposed hardware system can solve the
problem by using on sign language it interpreters for communication. However,
interpreters can solve the problem of Deaf and Dumb but in everyday life mainly
due to high costs and difficulty in finding and scheduling qualified interpreters. This
system will help them in improving their quality of life significantly. The goal of this
project is to design a useful and fully functional real-world product that efficiently
translates the movement of the finger with stable output. Our motivation is to help
deaf and dumb people communicate more easily. The proposed method can also be
extended to recognize more number of gestures via using accelerometer. And 1024
gestures can be used by one glove for each hand and with the help of accelerometer
the number of gesture may be raised beyond. Our purposed hardware can be apply
on to control the Laptop/Pc by using ultrasonic sensor.
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PSI (ψ) Invariant Features for Face
Recognition

Ajaykumar S. Cholin, A. Vinay, Aditya D. Bhat, Arnav Ajay Deshpande,
K. N. B. Murthy and S. Natarajan

Abstract Over last fewdecades,mathematics has played a crucial role in developing
efficient algorithms for Face Recognition (FR) used in biometric systems. FR using
Machine Learning (ML) techniques has impacted FR systems tremendously, towards
efficient and accurate models for FR. Existing FR systems used in biometrics use
ML techniques to learn patterns in the images by extracting various features from
them and often require pre-processed face image data for the learning process. In
this paper, we have used various pre-processing techniques and compared them in
the deployed FR framework. It was observed that the Steerable Pyramid (SP) filter
was the most efficient pre-processing technique among all techniques used for pre-
processing in this work. Though existing feature extraction methods such as SIFT
(Scale-Invariant Feature Transform), SURF (Speeded-Up Robust Features), ORB
(Oriented FAST and Rotated BRIEF) have been used in the past, they have not
been accurate enough in various vision based biometric systems. Hence, a novel
PSI (Pose Scale and Illumination) invariant SURF-RootSIFT technique is proposed
by extending the well known SIFT-RootSIFT feature extraction technique which is
achieved by calculating the Bhattacharya Coefficient between the feature vectors. A
frameworkwhich uses the proposed novel feature extraction technique is deployed in
this work. This paper demonstrates that the novel SURF-RootSIFT based framework
is proven to perform more accurately and efficiently than the other techniques, with
99.65, 99.74 and 97.93% accuracy on the Grimace, Faces95 and Faces96 databases
respectively.

Keywords Face recognition · Image pre-processing · SIFT · SURF · RootSIFT ·
Bhattacharya coefficient · VLAD
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1 Introduction

Face recognition, the problem of identifying the face of a person by digital means has
been a trending area of research for quite some time now. Face recognition is applied
extensively in lots of applications in our day to day lives, for example, a secured lock
system for mobile phones, authenticating bank transactions, face tracking in public
places for surveillance purposes, etc. The techniques proposed to this day have been
shown to be quite successful in solving problems like identifying a person based on
his/her face. Over the years, quite a lot of research has been done on using different
machine learning techniques for face recognition using some classification method
for learning the faces of different people in a given data. Present-day techniques
still pose a plethora of problems, some of them being low accuracy of classification
due to noise in the image and varying illumination levels. So, a lot of work is being
done in the field of face recognition and image processing to tackle such problems
still posed by the present-day techniques and frameworks. Therefore, in this paper
we propose Steerable Pyramid filter (SP) as a pre-processing technique for input
faces along with the novel SURF-RootSIFT as a feature extraction technique which
together have proven to be PSI (Pose Scale and Illumination) invariant and can be
used in a real-time FR systems.

2 Background and Related Work

FR was first attempted in the late 90s. Back then, not much importance was given to
building efficient FR techniques. FR was thought to be as simple as detecting nose,
mouth, eyes etc. Later on, due to the revolutionary improvement in the field ofmathe-
matics, people started applyingmathematics to improve the FRmethods. The concept
of interest points (key points), various metric measures such as Euclidean distance,
Manhattan distance, Minkowski distance, etc. were used for FR [1]. From the past
one or two decades, the concept of pattern recognition and machine intelligence is
ruling the world. Due to the availability of humongous image data, the concept of
big data, machine learning, deep learning are often employed in FR techniques to
build efficient FR models.

Traditionally, ML based FR has been defined as a process made up of three
stages: (1) Image pre-processing, (2) Feature extraction and (3) Training a model
on the image features followed by classification. Image pre-processing is one of
the most important stages in FR to get the fine grained image which is robust to
changes in illumination and rotation. A lot of pre-processing techniques have been
used in FR like applying dimensionality reduction such as PCA [2] and LDA [3, 4]
to get the Eigenfaces and Fisherfaces respectively. Also, various filters are applied
to face images such as Gaussian filter [5], Laplacian filter [6] etc. Though these pre-
processing techniques seem to be working fine, they still cannot produce efficient
results. So, they cannot be used in real time applicationswhere accuracy and time is of
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at most concern. Therefore, in this paper, we propose a pipeline for face recognition
which makes use of the Steerable Pyramid filter [7] at the pre-processing stage which
is proven in the results section to perform better both in terms of speed and accuracy,
producing accurate results. We also did a comparative study considering other filters
such as Gabor Filter [8] and Cellular Neural Networks [9, 10] at the pre-processing
stage.

Feature Extraction from the pre-processed images decides the parameters of learn-
ing for ML models and also gives the complete description of the image with its
descriptors. SIFT [11–13], SURF [14, 15] and ORB [16] are the well known feature
extraction techniques used in FR. SIFT and SURF are both computationally inef-
ficient in terms of time and accuracy. Though ORB is quick enough to satisfy the
time constraints thereby performing better than SIFT and SURF, it still does not pro-
duce accurate results. In this paper we propose a novel technique SURF-RootSIFT
by extending the well known SIFT-RootSIFT [17] feature extraction technique. It
has been shown in results section that SURF-RootSIFT is the most accurate feature
extraction technique.

The Steerable Pyramid [7] is a linear multi-scale, multi-orientation image decom-
position that provides a useful front-end for image-processing and computer vision
applications. This is suitable for pre-processing images in an image classification
system.

The existing work on face recognition done by Abhishree et al. [18] employs
Gabor Filters for the feature extraction process. Gabor Filters with varying filter
parameters were used for extracting features out of an image to tackle the problem
of distortions due to varying illumination, pose and expression. Sharif et al. [19]
proposed a method of using Gabor Filters for face recognition where they filtered
each image using a set of Gabor Filters and used points with maximum intensity
for face matching. In our work, we use the Gabor Filter for pre-processing the input
image and detecting the edges in the image.

VLAD (Vector of Locally Aggregated Descriptors) [20, 21] is an extension of
the BOW (Bag of Words) [21] representation, where the residuals of descriptors
with respect to the centroid of it’s closest cluster is accumulated. This adds more
information in the feature vector and improves the discrimination ability of the
classifier.

Random Forest [22] is an ensemble learning method which uses multiple decision
trees for classification and regression. Multiple decision trees are constructed by
taking subsets of the data. During the testing phase, the classification of a query
instance is obtained based on the classifications predicted by the individual trees.
This work uses Random Forest for classification and selects the classification that
had the majority vote among the trees as the classification of the query instance.
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3 Proposed Framework

The block diagram in Fig. 1 describes the proposed pipeline for face recognition.
This section elaborates the methodologies and approaches adopted at every stage.

Pre-processing is done on the input image using Gabor Filter/Cellular Neural Net-
works/Steerable Pyramids. Feature extraction is then carried out on the pre-processed
image using the proposed SURF-RootSIFT technique. The features extracted are
clustered and then aggregated usingVLAD,which is then used to train aRandomFor-
est Classifier. Later, the match is classified as TP (true-positive), TN (true-negative),
FP (false-positive) or FN (false-negative).

3.1 Pre-processing

3.1.1 Gabor Filter

Gabor filters [8] are a class of bandpass filters used to perform texture analyses, edge
detection, feature extraction etc. The filters make use of the Gabor transform which
is a kind of Fourier transform. For this work, we have used a two-dimensional Gabor
filter which is basically a product of a complex sinusoid and a Gaussian function.
It can be said that a Gabor filter is a Gaussian function modulated with a complex
sinusoid.

The response function of the Gabor Filter can be written as:

g(x, y, λ, θ, ψ, σ, γ ) = e
−1
2σ2 (x

′2+γ 2 y′2)e
i
(

2πx ′
λ

+ψ
)

(1)

where,

x ′ = x cos(θ) + y sin(θ) (2)

y′ = −x sin(θ) + y cos(θ) (3)

λ is the wavelength of the sinusoid,
θ is the rotation of the filter,
ψ is the phase shift,

INPUT 
IMAGE

Pre-processing

(Steerable 
Pyramid )

Keypoint Extrac on 
and Descrip on

(SURF-RootSIFT)

VLAD Random 
Forest 

Classifier

Fig. 1 Block diagram of proposed framework
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Applying

Gabor Filter

Fig. 2 Image after applying Gabor Filter

σ is the standard deviation of the Gaussian function and
γ is a parameter that defines the shape of the filter, namely the spatial aspect ratio.

The input images were pre-processed with the help of sixteen different Gabor
Filters with θ varying from 0 to 15π

16 in steps of π
16 . The other parameters used (λ =

10, ψ = 0, σ = 4, γ = 0.5) were kept the same for all the sixteen filters. The
output image was obtained by taking a combination of the convolution of the sixteen
filters with the input image. Figure 2 shows the result of applying this pre-processing
step to an input image.

3.1.2 Cellular Neural Networks

Cellular Neural Networks (CNN) [9, 10] are a class of neural networks inwhich com-
munication is allowed between neighbouring units only. Chua and Yang introduced
them in their two-part 1988 article [9, 10].

A cellular neural network of size M × N is a network with MN units in M rows
and N columns. Each unit is connected to only its neighbouring units. These units
are called cells. The r-neighbourhood of a cell is defined as:

Nr = {C(k, l); max(|k − i |, |l − j |) ≤ r∀k ∈ {1 . . . M}∀l ∈ {1 . . . N }} (4)

In this paper, we use the CNN model for pre-processing the image introduced
by Crounse et al. [23]. The notations in the following equations are borrowed from
the field of pattern recognition. The behaviour of the CNN is modeled using the
following equation:

dxi j (t)

dt
= −xi j (t) +

∑
C(k,l)∈Nr (i, j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr (i, j)

B(i, j; k, l)ukl(t) + Ii j (5)
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and the output is modeled as,

yi j = f
(
xi j

) = 1

2

(∣∣xi j + 1
∣∣ − ∣∣xi j − 1

∣∣) (6)

where,

ykl is the set of outputs from the cells in Nr ,
ukl is the set of inputs from the cells in Nr ,
xi j is the state value of the cell C(i, j),
A(i, j; k, l) are the template parameters for the feedback of the outputs from
neighbouring units,
B(i, j; k, l) are the template parameters for the inputs from the neighbouring units
and
Ii j is the bias of the cell.
Initially, xi j = 0 and ui j = 0 for all integers i and j , if not defined for the given
data.
For a linear system |xi j | < 1, and so, yi j = xi j

The above equation for the dynamics of the CNN can be now written as:

dxi j (t)

dt
= −xi j (t) +

∑
C(k,l)∈Nr (i, j)

A(i, j; k, l)xkl(t)

+
∑

C(k,l)∈Nr (i, j)

B(i, j; k, l)ukl(t) + Ii j (7)

Figure 3 shows the working of the CNN system. The input to the function f(x) is
the solution of the state equation, where A in Eq. (7) corresponds to the feedback
template and B in Eq. (7) corresponds to the control template.

xi j is calculated and then fed as input to the block labeled f (x) which calculates
yi j , the output value.

The parameters, and together form a template. By changing the template param-
eters, we can carry out different kinds of operations on the image. In this work,

Fig. 3 Working of a cellular
neural network
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Applying

Cellular Neural Network

Fig. 4 Image after applying cellular neural network

edge detection on the input image is carried out as the pre-processing step with the
template parameters for the cellular neural network defined as follows.

A =
⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠, B =

⎛
⎝

−1 −1 −1
−1 8 −1
−1 −1 −1

⎞
⎠, z = −1 (8)

Figure 4 shows the usage of the above template parameter on an input image.

3.1.3 Steerable Pyramids

Steerable Pyramids (SP) [7] is a type of band-pass filter that provides multi-scale,
multi-orientation decomposition of an image and thus can be used effectively in
pre-processing images for computer vision applications. Here, a bank of steerable
pyramid filters is used at each level of the pyramid.

The K th order directional derivative in K +1 orientations forms the basis function
of the steerable pyramid and thus can be used to form any number of orientation
bands. It is over complete but has the advantage of being a tight transform and also
being able to eliminate aliasing [7].

The polar form of the Fourier magnitude of the i th bandpass filter is given by,

Bi ( �ω) = A(θ − θi )B(ω) (9)

where, θ = tan−1(ωy/ωx ), θi = 2π
k and ω = |�ω|.

The desired derivative order is used to determine the angular portion of decom-
position A(θ). The directional derivative in the spatial domain, can be thought of
as multiplication by a ramp function in the Fourier domain, and is given in polar
co-ordinates as,

− jωx = − jω cos(θ) (10)

For the Nth order directional derivative, the angular portion of the filter is cos(θ)N .
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The Radial function B(ω) is constrained by the need to prevent aliasing as well
as the need to build the decomposition recursively.

The constraints on the filter are as follows:

Bandlimiting: L1(ω) = 0 f or |ω| > π/2 (11)

Flat system response: |H0(ω)|2 + |L0(ω)|2⌊|L1(ω)|2 + |B(ω)|2⌋ = 1 (12)

Recursion: |L1(ω/2)|2 = |L1(ω/2)|2⌊|L1(ω)|2 + |B(ω)|2⌋ (13)

Figure 5a shows the block diagram for decomposition. Initially, L0 and H0 filters
are used to separate the image into low and high pass sub-bands respectively. Band-
pass images obtained by pre-processing an image by using Steerable Pyramids are
shown in Fig. 5b.

Fig. 5 a Block diagram for decomposition. b Bandpass images obtained by applying steerable
pyramid to an image
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3.2 Key-Point Extraction and Description

3.2.1 Root-SIFT

It is well known that in the design of SIFT [11–13], Euclidean distance is used as the
metricmeasure. In a domain such as image categorization or texture classification, the
performance of Euclidean distance to compare histograms has been unsatisfactory
when compared to other distance measures like chi square or Hellinger. The fact that
SIFT is a histogram [13], drives us to examine whether it is beneficial to try out the
other histogram distancemeasures [17]. It is indeed observed that Hellinger Kernel is
more efficient when compared with Euclidean distance. The standard dependencies
between the metrics (distances) and kernels are found to be helpful as seen below.

Let us consider x and y as n-vectors each having unit Euclidean norm (‖x‖2 = 1).
The Euclidean distance and the similarity (kernel) between them is represented as
dE (x, y) and SE (x, y) respectively. Then, the relation between dE (x, y) and SE (x, y)
is given by,

dE (x, y)2 = ‖x − y‖22 = ‖x‖22 + ‖y‖22 − 2xT y = 2 − 2SE (x, y) (14)

where SE (x, y) = xT y, and ‖x‖22 = ‖y‖22 = 1. Our interest is to make use of the
Hellinger kernel instead of Euclidean kernel. To achieve this, the L1 normalization
of the histograms (SIFT descriptors) is computed and then the Hellinger kernel (also
known as Bhattacharyya’s coefficient) for these L1 normalized histograms x and y(
i.e.

∑n
i xi = 1 and xi ≥ 0

)
, is defined as:

H(x, y) =
n∑

i=1

√
xi yi (15)

By employing a simple two step algebraic manipulation, the computed SIFT
vectors (descriptors) can be compared with Hellinger Kernel. The first step involves
L1 normalization of the SIFT vector and the second involves taking the square root
of each element resulting in,

SE
(√

x,
√
y
) = √

x
T√

y = H(x, y) (16)

It is seen that the resulting vectors are L2 normalized since SE
(√

x,
√
x
) =∑n

i xi = 1. Hence, we ended up taking the element-wise square root of the L1 nor-
malized SIFT vectors, thereby defining a new descriptor termed RootSIFT. The
crucial significance here is that using the Euclidean kernel (distance) for comparing
RootSIFT descriptors is analogous to comparing original SIFT vectors by making
use of Hellinger Kernel. This is illustrated by the following equation,

dE (
√
x
√
y)2 = 2 − 2H(x, y) (17)
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RootSIFT is favorable to be employed in any FR framework in the place of
SIFT to improve it’s accuracy. In fact, some of the well-known methods such as
k-means which are based on Euclidean distance work effortlessly well with Root-
SIFT descriptors for constructing visual vocabulary (since RootSIFT is also based
on Euclidean distance). In addition to this, some of the other techniques that pose
Euclidean distance as the only requirement on SIFT such as approximate nearest
neighbor methods (in systems that require larger vocabularies), query expansion,
soft assignment of descriptors to visual words [24, 25] and its derivatives [26–29]
can still work very well with RootSIFT. The considerable improvements in efficiency
and performance of RootSIFT has been shown in Sect. 6. These enhancements come
with no additional storage or cost as the conversion from SIFT to RootSIFT seemed
to be an easy task [17].

3.2.2 SURF-Root-SIFT

SURF (Speeded-UpRobust Features) [14, 15] has proven to be a computationally less
expensive substitute to SIFT. Considering this, we make use of SURF to compute
the keypoints in the image. These keypoints can now be used with Root-SIFT as
explained above in Sect. 3.2.1 to generate descriptors corresponding to the keypoints
computed by SURF. From the results shown in Sect. 6, we can see that this method
gives better result than other keypoint detection and description methods.

3.3 VLAD

Techniques likeBag ofwords (BOW) [21] is based on aNatural Language Processing
concept of representing a document as a collection ofwords. This concept is extended
to image classification where a vocabulary is created to simplify images by repre-
senting it as a collection of features that can best describe it. A clustering technique
such as k-means is used to create a codebook of k-centroids. The BOW representa-
tion is then a histogram of a number of descriptors assigned to each centroid. This
representation has an the advantage of generating a fixed length vector irrespective
of the number of detections and also benefits from powerful local descriptors.

VLAD (Vector of Locally Aggregated Descriptors) [20, 21] is a first-order exten-
sion of the BOWmodel. As in BOW, we first create a codebook of k-centroids using
k-means given as:

C = {c1, . . . , ck}, where k is the number of centroids.
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The local descriptor of the image, x is assigned to its nearest neighbor. Feature
quantization is now carried out by accumulating the residuals x − ci , for each x,
where ci = NN (x).

The VLAD vector v of the image is now given by:

vi, j =
∑

x such that N N (x)=ci

x j − ci, j (20)

where i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , d
Here, d is the dimension of the local descriptor and k is the number of clusters.

The dimension of our representation is given by D = k × d.
L2 norm is applied on the vector v,

v = v

‖v‖2 (21)

3.4 Random Forest

Random forest (RF) is one of the machine learning algorithms used for supervised
learning. It falls under the category of ensemble learning methods and can be used
for both classification and regression. For classification, the random forest generates
multiple classification trees. These trees are used to classify an input query instance
into a class. Each classification tree predicts a class for the instance and votes for
that class. The class with the majority vote is assigned to the query instance and is
the prediction of the random forest for that query instance.

This work involves use of random forests for image classification. It has been
observed in the results section that Random Forest method has higher accuracy
compared to other classification techniques namely SVM (Support VectorMachines)
and Gaussian Naïve Bayes (GNB) on the considered benchmark datasets.
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4 Algorithm

Training phase: 
1. For each image in the dataset: 

Apply pre-processing on the image using Gabor Filter / Cellular NN / Steerable Pyramids.
2. For each class in dataset (after pre-processing): 

Extract and aggregate  Root-SIFT/SURF-RootSIFT descriptors of the image. 
3. Construct a vocabulary of  k-clusters from the aggregated descriptors by using K-means algorithm. 
4. For each image: 
Initialize a VLAD Matrix( K x D)  
For each feature in the image:  

Find the centroid closest to the feature vector by using the L2 norm.  
Calculate the difference between the feature vector and the centroid. 
Add the difference to the row of the VLAD matrix. 
Use L2 norm to normalize the VLAD matrix. 
Reshape the matrix to a 1×KD row matrix. 

5. The VLAD vectors and the labels corresponding to them are used to train a Random Forest Classifier. 
Testing phase: 
1. For each image : apply pre-processing using  Gabor Filter / Cellular NN / Steerable Pyramids.
2. For each image : 

Generate Root-SIFT/ SURF-RootSIFT descriptors. 
Calculate the VLAD vector as given above. 
Use the Random Forest Classifier to predict the label corresponding the the obtained vector.

5 Databases

To evaluate the framework we used three benchmark databases namely Faces96 [30],
Grimace [31] and Faces95 [32]. Each database consists of images of equal size. The
Faces96 database consists of images of varying inclination, illumination and size
of face area. Grimace consists of sequence of images similar to Faces96 where the
subject adjusts his/her head and makes grimaces. The Faces95 database consists on
images of varying illumination, background, head-scale, lighting and expression.
Figure 6 illustrates a sample of images (Fig.7).

6 Results and Inferences

In this section, we report the experimental results obtained on benchmark databases
making use of the proposed technique. Comparison of accuracy obtained using the
proposed techniques have been tabulated in Table 1. It can be seen that making use
of the Steerable Pyramid filter along with the proposed SURF-RootSIFT technique
gives a better accuracy. Gabor Filter too, gives good results when compared to results
obtainedwithout using any pre-processing. AlthoughCellular Neural Networkswere
able to detect highest amount of keypoints as shown in Fig. 8, it gave low accuracy
on the benchmark datasets (Fig. 9).
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Fig. 6 a Sample of images from Faces96 database; b Sample of images from grimace database;
c Sample of images from Faces95

From Table 2, it can be seen that the proposed technique performs better than
other methods. SURF based techniques are seen to perform better than SIFT
based techniques and the SURF-RootSIFT technique gives the highest accuracy.
VLAD being an extension of BOW gives better results than the latter, and is seen
to improve accuracy by about 5%. The proposed technique SP-SURF-RootSIFT-
VLAD-RandomForest has the highest accuracy.

From Fig. 7a and b we can see that the number of keypoints detected by using
SURF is clearly higher than those detected using SIFT on a normal image. SURF-
RootSIFT therefore outperforms SIFT-RootSIFT as it computes descriptors over a
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Fig. 7 a SIFT keypoints detected on a normal image. b SURF keypoints detected on a normal
image

Table 1 Comparison of results obtained on benchmark databases

Method 10-fold cross validation accuracy
(%)

Grimace Faces95 Faces96

RootSIFT-VLAD-RandomForest 95.27 94.42 89.23

Gabor-RootSIFT-VLAD-RandomForest 97.22 96.49 92.69

Cellular NN-RootSIFT-VLAD-RandomForest 51.88 50.37 45.45

SP-RootSIFT-VLAD-RandomForest 97.46 98.49 95.62

SURF-RootSIFT-VLAD-RandomForest 97.89 98.27 94.61

Gabor-SURF-RootSIFT-VLAD-RandomForest 99.66 99.49 96.53

Cellular NN-SURF-RootSIFT-VLAD-RandomForest 60.38 58.78 54.91

SP-SURF-RootSIFT-VLAD-RandomForest 99.65 99.74 97.93

fairly higher number of keypoints. The results tabulated in Table 1 show that SURF-
RootSIFT has a better accuracy. From the figures shown in Fig. 10, we can see that
using a suitable pre-processing techniques such asGabor Filter or Steerable Filter can
improve the keypoints detected in the image which can improve the overall accuracy
of the classification system.

Figure 8 shows a comparison of average number of keypoints detected in various
pre-processing techniques used. We can see that using Cellular Neural Networks
increases the number of keypoints detected drastically. Gabor Filter too, increases
the number of keypoints when compared to that of a normal image, whereas using
Steerable Pyramid gives approximately the same number of keypoints as in a normal
image.

Figure 9 shows a comparison of time taken for feature extraction across the various
pre-processing techniques used. We can see that using Steerable Pyramids or Gabor
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Fig. 8 Comparison of number of keypoints detected for different pre-processing techniques

Fig. 9 Comparison of time taken for feature extraction across different pre-processing techniques

Filter decreases the time taken when compared to that of a normal image. Cellular
neural networks are seen to take a lot more time and may not be suitable if the
application is real-time.

7 Conclusion and Future Work

It is crucial to train classification systems for face recognition on datasets contain-
ing images varying in background, lighting, illumination, rotations and translations.
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Table 2 Comparison of accuracy of proposed method with some standard techniques

Accuracy (%)

Method 10-fold 20-fold

SIFT-BOW-SVM 74.37 79.7

SIFT-BOW-GNB 82.77 88.05

SIFT-BOW-RandomForest 76.38 76.38

SURF-BOW-GNB 92.22 93.05

SURF-BOW-SVM 90.5 90.8

SURF-BOW-RandomForest 84.6 86.38

SIFT-VLAD-RandomForest 87.22 88.8

SIFT-VLAD-SVM 90.56 90.82

SIFT-VLAD-GNB 85.3 88.08

SURF-VLAD-SVM 94.3 94.41

SURF-VLAD-GNB 93.46 93.89

SURF-VLAD-RandomForest 93.05 93.47

SP-SURF-RootSIFT-VLAD-RandomForest 99.74 99.28

Therefore, our proposed method was tested on benchmark databases (mentioned in
Sect. 5). Pre-processing is an important stage in a classification system for FR and
affects the overall performance of the system. While it is important to have some
pre-processing on the images, in a real-time scenario, care needs to be taken that it
doesn’t affect the efficiency of classification in terms of time. The proposed technique
improved accuracy of classification when compared to other standard techniques by
about 5%while also being efficient in terms of time taken (as observed in the results).
In a real-time classification systemwhere we would need not only real-time response
but also need them to be accurate, the proposed technique would be a suitable solu-
tion. The proposed technique is also proven to be PSI invariant accounting for real
time applications.

Future work is focused on making the framework more efficient in terms of speed
by making use of various optimization techniques. Also, feature fusion could be
incorporated into the framework.
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Fig. 10 a SIFT keypoint (using Gabor filter). b SURF keypoints (using Gabor filter). c SIFT
keypoints (using steerable pyramid). d SURF Keypoints (using steerable pyramid)
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Performance Analysis of a Modified
Savonius Hydrokinetic Turbine

Sourish Singha and R. P. Saini

Abstract Extraction of hydrokinetic energy from in stream flow can be an effec-
tive, sustain able and environmental friendly replacement of the conventional energy
resources. Savonius hydrokinetic turbine is a vertical axis turbine, which has a poor
efficiency and its operating range under various loading conditions is very short.
The coefficient of performance value curves reported under different investigations
on Savonius hydrokinetic turbine are highly fluctuated in respect of tip speed ratios
(TSR). In order to enhance the efficiency of the turbine and to get less fluctuations
in coefficient of power output curve for smooth operation under higher range of tip
speed ratios, this paper aims to model a modified design of Savonius turbine with
twisted blades and analyze its performance on various operating conditions. For CFD
analysis commercial unsteady Reynolds-Averaged Navier-Stokes (URANS) solver
in conjunction with SST k-ω turbulence model have used. Due to symmetrical cross
sections on different geometrical positions 3D transient simulations are conducted
to find out the average torque. Coefficient of torque and coefficient of power are
analyzed and discussed. The result of this study concluded as very less deviation
in power coefficient curve up to tip speed ratio 1.4, which indicates the increment
of operating range and beyond that TSR value it falls down rapidly. The maximum
power coefficient obtained 0.30 corresponding to a TSR value 1.4 for input water
velocity of 2 m/s.

Keywords Numerical modelling · Twisted Bach type Savonius hydrokinetic
turbine · Computational fluid dynamics (CFD) · Coefficient of torque · Coefficient
of power

S. Singha (B) · R. P. Saini
Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
e-mail: alpsoupr.pah2016@iitr.ac.in

R. P. Saini
e-mail: rajsafah@iitr.ac.in

© Springer Nature Singapore Pte Ltd. 2020
S. Manna et al. (eds.), Mathematical Modelling and Scientific Computing
with Applications, Springer Proceedings in Mathematics & Statistics 308,
https://doi.org/10.1007/978-981-15-1338-1_28

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1338-1_28&domain=pdf
mailto:alpsoupr.pah2016@iitr.ac.in
mailto:rajsafah@iitr.ac.in
https://doi.org/10.1007/978-981-15-1338-1_28


378 S. Singha and R. P. Saini

1 Introduction

In the field of conventional small hydro the power output is directly related to the
discharge and the net head available at the site. But it is not easy to get proper head
and discharge every time for power generation. So the ample and easily available
resources of hydro energy can’t be fully utilized. Therefore harnessing hydrokinetic
energy from locally available canal or high energy flows could be a sustainable and
reliable way to electrify the rural and remote areas. Hydrokinetic technologies have
their geneses in wind energy extraction technologies. Hydrokinetic turbines can also
be set up for a wide range of applications including industrial outflows, irrigation
canals, rivers and tidal streams. The villages which are located in close proximity
to rivers hydrokinetic technology is best suitable for those areas than traditional
hydropower generation [1]. The interest and development of hydrokinetic energy
has grown up from last couple of decades [2].

Savonius hydrokinetic turbine is a vertical axis turbine which was developed by
Finnish engineer S. Savonius in 1931 for wind applications [3]. Savonius hydroki-
netic turbine, drag-type rotor starts rotating at very low fluid velocity as compared to
the conventional hydraulic turbines. It has an ability to accept fluid from any direc-
tion with good starting characteristics at very low speed. Despite such advantages,
Savonius hydrokinetic turbines face low efficiency and large static torque variation.
According to betz limit the theoretical maximum extraction of kinetic energy is 0.59
[4].

2 Literature Reviews and Problem Formulation

The literatures of Savonius hydrokinetic turbine has been reviewed for getting the
design idea ofmodified turbine blade structure. ZhaoZ et al. reported in his numerical
study that for a two bladed helical (180°) Savonius rotor the optimum CP value
can be obtained as 0.20 for 0.3 overlap ratio [5]. For an experimental investigation
conducted by A. J. Alexander et al. concluded an optimum CP value of 0.243 while
using end plate and flat shield [6]. M. A. Kamoji reported CP values ranging from
0.11 to 0.19 at wind velocities of 4 m/s up to 14 m/s respectively for a helical
Savonius turbine with 90° twist angle [7]. Another experimental result obtained by
M.A. Kamoji confirm the Cp values spanning between 0.171 and 0.205 for Reynolds
number 8 × 104 up to 15 × 104 respectively for a modified Savonius rotor with
out shaft [8]. A. Kianifar reported a CP value 0.254 at Reynold’s number 1.5 ×
105 for a 2 bladed Savonius turbine in his numerical and experimental study [9].
By 2D unsteady numerical study S. Roy and U. K. Saha concluded a static CP of
0.224 at wind velocity of 10.44 m/s [10]. C. Jian et al. concluded CP values to be
0.173 and 0.145 for a two bladed two stages Savonius turbine [11]. O. Mojola in
his experimental study under field condition resulted a CP value of 0.267 for a TSR
value of 1.0 and aspect ratio 1.52 [12]. R. E. Sheldahl reported a CP value of 0.24 at
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Reynold’s number 8.64 × 105 [13]. Another experimental investigation on 2 bladed
Savonius rotor conducted by M. A. Kamoji reported that CP value of 0.157 can be
obtained for Reynold’s number 80,000 and aspect ratio of 1.0 [14]. U. K. Saha andM.
J. Rajkumar’s experimental investigation on 3 bladed Savonius turbine with aspect
ratio of 1.83 concludes maximum Cp is 13.99 for twist angle 15° [15]. S. V. Ghatage
and J. B. Joshi’s numerical and experimental research concludes a CP value of 0.216
for a 2 bladed rotor with twist angle of 30° [16]. J. V. Akwa et al. reported that for
Reynolds number ranging from 216,750 to 867,000 calculated CT values are found
in between 0.09 and 0.22 [17].

Reviewing all those researches, which are related to Savonius turbine both in wind
energy extraction field and hydrokinetic energy harnessing field it can be concluded
that optimum CP values have been obtained in the medium range of tested TSR
domain. So, the turbines are optimum in medium loading conditions. Thus it is
necessary to increase its optimumperformanceup to certain value ofTSR for different
loading conditions. The following research will aim for a CFD analysis of a modified
bach type Savonius turbine which will be efficient, will have less fluctuations in CP

value and will be applicable for a wider range of TSR.

3 Geometry Modification and Selection of Parameters

As Savonius turbines have very poor efficiencies, researchers have modified its
geometrical structure since its invention. A conventional semi-circular blade was
designed by the inventor, which has received many changes during investigations by
the researchers. Summing up all the changes a new turbine blade has designed for the
study. The Fig. 1 shows the gradual modifications of the modern Savonius turbine.
The lower most design has used for this study, which is in complex structure with
respect to the conventional designs.

There are various system parameters that are used to design a Savonius blade.
Twist angle of a Savonius rotor is an angle that is between the horizontal surface to
the twist blade surface. Blade arc angle (ψ) is the angle between blade profiles. The
number of stage indicates the number of same or different Savonius models that are
attached in parallel.

Aspect ratio (α) is the ratio of height of the rotor (H) divided by its diameter (D).
Blade shape factor (p/q) is defined as the length of straight blade part (p) to the blade
arc radius (q) for a bach type Savonius blade.

The design of modified bach type Savonius [18] is chosen for the study because of
its improving efficiency capability if some amount of twist angle is provided into it.
As per as the literature [19] the optimum twist angle test was done on the conventional
Savonius geometry and it is found to be 12.5°. The system parameters taken for this
modelling are discussed in Table 1.
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Fig. 1 Evolution of blade design of Savonius turbine used for the study

Table 1 System parameters Aspect ratio (H/D) 1.59

Rotor diameter (D) 159 mm

Rotor height (H) 253 mm

End plate diameter (D0) 175 mm

Enclosure diameter (Dr) 239 mm

Channel cross section (A) 550 mm × 650 mm

Number of blades 2

Number of stages 1

Blade arc angle 135°

Blade shape factor (p/q) 1

Twist angle (α) 12.5°
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Fig. 2 Isometric view of modified twisted Savonius blade

Fig. 3 The blade is shown from the X, Y and Z directions respectively

4 Modeling

The diameter of the blade (D) is kept as 159 mm for the turbine. optimum twist angle
12.5° is provided into the blade. The blade is shown in Figs. 2 and 3.

End plate diameter is taken as 1.1D and rotating zone diameter as 1.5D. The
channel inlet and outlet height is 650 mm and width is 550 mm and channel length is
3000 mm. The base geometry of the model and the end plates can be seen in Fig. 4.

5 Grid Generation

The entire fluid domain is exported to ANSYS MESH (V 18.1) for non conformal
unstructured grid generation. The tetrahedral elements are formed due to meshing
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Fig. 4 a Base geometry and b end plate

of each computational subdomain. Figure 5a shows the rotating zone and stationary
zone and Fig. 5b shows the dense mesh near the blade surface.

Boundary layer has been created near the blade surface for improving quality and
to precisely describe the boundary layer flow characteristics. y+ value less than 1
was recommended to fix the height of first prism layer above the blade surface [20].
Accordingly, the value of y+ has been considered as less than one under the present
investigation. Figure 6 shows the boundary layer formation near the advancing and
returning blade surface.

The mesh quality aspect is described in Table 2:

Fig. 5 a Rotating and stationary zone, b dense mesh near blade surface
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Fig. 6 Boundary layer near, a advancing blade and b returning blade

Table 2 Quality aspect Quality aspect Max value

Skewness 0.84

Aspect ratio 15

Orthogonal quality 0.88

6 Simulation Procedure

ANSYS CFX solver (V18.1) is used to solve the unsteady incompressible Navier-
Stokes equations. The generated mesh is imported into the solver. In order to obtain a
numerical solution, the casewith necessary boundary conditions is defined as Table 3.

The TSR range taken for this analysis is from 0.6 up to 1.6. The TSR is calculated
as,

TSR(λ) = Circumferential velocity

fluid velocity
= ωD

2V
(1)

where,

ω is angular velocity,

Table 3 Boundary
conditions

Name Boundary type Boundary condition

Inlet Inlet velocity 1, 1.5 & 2 m/s

Outlet Pressure flow Pressure flow

Channel walls Free slip wall Stationary

Rotating zone No slip wall Rotates at desired RPM
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D is the diameter of the turbine,
V is the velocity of water.

Depending upon the geometry and Reynolds number various simulation pro-
cesses are available. To calculate the power, torque is considered as the output of the
simulation. Shear stress transport k-ω model is used for this simulation.

The kinematic eddy viscosity is calculated as,

νT = a1k

max(a1ω, SF2)
(2)

Turbulence kinetic energy is calculated as,

∂k

∂t
+Uj

∂k

∂x j
= Pk − β∗kω + ∂

∂x j

[
(ν + σkνT )

∂k

∂x j

]
(3)

Specific dissipation rate is calculated as,

∂ω

∂t
+Uj

∂ω

∂x j
= αS2 − βω2 + ∂

∂x j

[
(ν + σωνT )

∂ω

∂x j

]

+ 2(1 − F1)σω2
1

ω

∂k

∂xi

∂ω

∂xi
(4)

Closure coefficients and auxiliary relations can be governed by the following
equations,

F2 = tanh

⎡
⎣

[
max

(
2
√
k

β∗ωy
,
500ν

y2ω

)]2
⎤
⎦ (5)

Pk = min

(
τi j

∂Ui

∂x j
, 10β∗kω

)
(6)

F1 = tanh

⎧⎨
⎩

{
min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]}4
⎫⎬
⎭ (7)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(8)

φ = φ1F1 + φ2(1 − F1) (9)

where,

α1 = 5
9 , α2 = 0.44

β1 = 3
40 , β2 = 0.0828

β∗ = 9
100
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σk1 = 0.85, σk2 = 1
σω1 = 0.5, σω2 = 0.856
ω is the specific dissipation rate,
k is the turbulent kinetic energy,
F1 is the first blending function,
F2 is the second blending function,
S is the invariant measure of the strain rate,
α, β* is the empirical constants of the SSTmode, y is the distance to the nearest wall,
νt is the turbulence eddy viscosity etc.

7 Results and Discussion

For the water velocity 1 m/s the maximum CT obtained is 0.78 and minimum CT

value obtained is −0.44. The average CT values for tip speed ratios of 0.6 to 1.6
are ranging between 0.39 and 0.17. The average torque values are spanning between
0.626 and 0.269 N-m for increasing values of TSR from 0.6 to 1.6. The input power
is constant which is 20.053 W. The angular velocities are calculated for the rotation
of the fluid domain are staring from 72.070 RPM to 192.187 RPM. RPM values are
taken up to 5 decimal places. The time step size taken for each 15° of rotation are
calculated for the different TSR values spanning between 0.0347 and 0.0130 s.

The CT or coefficient of torque is calculated from Eq. (10).

CT = T

0.5ρAV 2R
(10)

where,

CT is coefficient of torque,
T is the output torque,
ρ is the density of water, V is the velocity of water,
R is the radius of the turbine,
A is the swept area of the turbine.

For the flow velocity of 1 m/sec the corresponding Reynold’s number is found
out to be 17.79 × 104. Variation of CT with respect to rotational angle is shown in
Fig. 7.

The next analysis is done over the flow velocity of 1.5 m/s under different TSR
values. RPM values are changed from 108.105 to 288.281. The input power is same
throughout this case which is 67.679 W. The time step values taken are spanning
between 0.0231 and 0.0087 depending upon the TSR ranging from 0.6 to 1.6. The
average torque is found out to be spanning between 1.43 and 0.612 N-m for the same
TSR values. The maximum CP value for this case is approximately 0.298 for TSR
1.4.
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REYNOLD 'S NUMBER = 17.79 × 10 4
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Fig. 7 Variation of CT with respect to rotational angle for 1 m/s water velocity

The maximumCT found out for this flow analysis of 1.5 m/s is 0.78 and minimum
CT value is −0.43. The Reynold’s number for this flow is calculated and it’s value is
26.73 × 104. In Fig. 8 the variation of CT with respect to rotational angle is shown.

The next simulation results are obtained for 2 m/s water velocity. This case gives
the maximum coefficient of power output, which is 0.30. The angular velocity values
are ranging between 15.094 rad/s up and 40.252 rad/s depending upon the increasing
TSR values. The average torque obtained from this study is found out to be ranging
between 2.55 and 1.09 N-m for various TSR values which are ranging between 0.6
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Fig. 8 CT versus θ for water velocity of 1.5 m/s
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and 1.6. The time step values are taken for 15° of rotation are between 0.0065 and
0.0173 depending upon the different RPM values.

The Reynold’s number found out for this flow of 2 m/s is 35.68 × 104. Maximum
CT is 0.77 and minimum is −0.43. Figure 9 shows the variation graph between CT

for different angle of rotation.
In Fig. 10 the results of CT versus rotational angle θ is shownwhichwas conducted

by Roy and Saha in order to extract the wind energy [18].
The coefficient of power (CP) is calculated as,

REYNOLD 'S NUMBER = 35.68 × 10 4
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Fig. 9 CT versus θ for various TSR for 2 m/s flow velocity

Fig. 10 CT versus rotational angle θ [18]
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CP = Pturbine
Pavailable

= Tω

0.5ρAV 3
= T

0.5ρAV 2R

Rω

V
= CT × TSR (11)

In Table 4 the average CP and CT values are plotted under different TSR and flow
velocities.

The results of this study can be compared with previous investigations. Figure 11
shows CT versus TSR experimental result by Roy and Saha [18] and Fig. 12 shows
the average CT variation for different TSR values by this study. The CT variation
which was experimentally conducted by Roy and Saha has shown in Fig. 13 [18].
Figure 14 indicates the CP variation under different TSR ranges on a study conducted
by Kailash et al. [21]. The CP variation with respect to TSR on various velocities has
been plotted in Fig. 15 as a result of this study.

Fig. 11 CT versus TSR from the study by Roy and Saha [18]
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Fig. 12 CT versus TSR on various water velocity input from this study
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Fig. 13 CP versus TSR for various Reynold’s number conducted by Roy and Saha for Savonis
wind turbine [18]

Fig. 14 CP versus TSR graph obtained by Kailash et al. [21]
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Fig. 15 CP versus TSR on various water velocities from this study
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8 Conclusions

From the results obtained by this numerical approaches followings can be concluded.

(1) The CP values are significantly higher than the previous investigations for most
of the TSR values.

(2) Fluctuation of CP is very less compared to other researches done on Savonius
in hydro kinetic energy extraction field.

(3) The maximum efficiency point for most of the researches lies almost at the
middle of the tested TSR domain, but for this case with increase of TSR values
CP values are less deviated and maximum CP of 0.30 was achieved up to a value
of 1.4 TSR for 2 m/s flow velocity in the channel.

(4) This maximum efficiency point for a wider range of TSR values dominantly
signifies the increment of operating zone under different loading conditions for
smooth and feasible operation of Savonius hydrokinetic turbine.
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Facial Analysis Using Jacobians
and Gradient Boosting

A. Vinay, Abhijay Gupta, Vinayaka R. Kamath, Aprameya Bharadwaj,
Arvind Srinivas, K. N. B. Murthy and S. Natarajan

Abstract Security and identity have become one of the primary concerns of the
people in this digital world. Person authentication and identification is transforming
theway these services are provided. Earlier itwasmainly achieved throughpasswords
and patterns but with significant advancements in face recognition technologies,
it has been exploited in providing authentication in smart phones and computers.
Face Recognition (FR) extends its use in applications like face tagging in social
media, surveillance systemat theaters, airports and so on. The proposedmathematical
model employs linear algebra and mathematical simulations for the task of person
identification.Kernel singular value decomposition is used to denoise the facial image
which is then passed to a feature detector and descriptor based on nonlinear diffusion
filtering. The obtained descriptors are quantized into a vector using an encoding
model called VLAD which uses k-means++ for clustering. Further, classification is
done using Gradient boosting decision trees. The pipeline proposed aims at reducing
the average computational power and also enhancing the efficiency of the system.
The proposed system has been tested on the three benchmark datasets namely Face
95, Face 96 and Grimace.

Keywords Linear algebra · Kernel-SVD · Feature quantization ·
Gradient boosted decision tree

1 Introduction

The need for recognizing a person among the masses is very much important for var-
ious applications.With a wide variety of purposes, face recognition is gaining promi-
nence in almost all the fieldswhere there is a need for interaction between humans and
machines. Face recognition involves recognizing a facial biometric blueprint among
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an already existing database of individuals. This mechanism can be achieved by sev-
eral means. The images of these subjects may be subjected to several mathematical
operations so as to contain these blueprints in the desired format. This technique
which is maneuvered on images of the individuals determines the extent of the cor-
rectness of application which utilizes the design. The system imposed also decides
the computational demand the pipeline expects inmaking the decision of recognizing
the subjects. Hence choosing the right mathematical models plays a prominent role
in directly influencing the end results of the process. These steps involve choosing
right preprocessing techniques, optimal feature extraction algorithm as well as rep-
resenting the extracted features in an appropriate form. This apparatus experiences a
lot of problems when used in an application. Numerous factors affect the image and
impart variations in the end result. Variations in illumination, pose of the subject con-
stitute a major hurdle to overcome. Recognizing these variations and mapping them
to the same class is another challenge to tackle. The procedure may give appropriate
results for frontal views of the person while running poorly when the vision of the
subject is progressed away from the source that is capturing the image. Facial hair
such as mustache and beard can cause loss of features in the lower half of the face,
contributing in delivering imperfect output. The distortions in the image may be due
to the subject itself or variations in the background. These need to be handled to avoid
variations in the decisions. Even though modern techniques claim to overcome these
challenges, the scope for making this process better is perennial. Making the system
computationally superficial is also a characteristic one has to keep in mind before
designing a model. Numerous face recognition algorithms assume that a large num-
ber of samples per person are available for training. This is another setback which
they oversee and is very distant to the real world scenario. There is also a need for
making face recognition resistant to aging. The wrinkles developed over time can
bring significant changes in the outlook of the person. This as a whole can be broken
down into three important key aspects: detecting the region of interest, extracting
the prominent key features and illustrating these features for classification. Most of
the obstacles mentioned hinder the perseverance of the descriptors.This brings out
the need for strategies which can conquer the problems listed. It may be difficult
to design a model which can overcome all the hitches. But contraptions which can
excel at specific conditions can be drafted to fit certain use cases closer to the real
world.

2 Related Work

D. Suter and K. Schindler in their recent work have used incremental kernel SVD
[1] to achieve face recognition with image sets. They have put forth a popular linear
subspace updating algorithm to the nonlinear case by using the kernel methodology
and apply a reduced set construction method to generate sparse expressions [2] for
the derived subspace basis in order to maintain constant processing speed and mem-
ory usage.
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In [3], KPCA was used to extract feature descriptors from numerous images for uti-
lization in mobile robot navigation and localization. RS expansions are constructed
to compress the KPCA-derived bases to reduce computational load during KPC uti-
lization. In [4], AKAZE was used in remote sensing [5] image matching. Distortions
caused by the orientation change of camerawere firstmodeled by various tilts images;
then the key points were localized by improved Accelerated-KAZE (AKAZE) algo-
rithm.The feature points are detected in a nonlinear space constructed byFast Explicit
Diffusion (FED) with the help of variable conductance function, and the resulting
feature points are described by improved SIFT [6] descriptor. In the end euclidean
distance metric was used to determine the correspondences and Random Sample
Consensus (RANSAC) [7] algorithm was used in eliminating the false matches as
well.
Given a collection of local features taken from an image, VLAD is generated by
quantizing local features with a visual vocabulary, recollecting the residual statistics
of quantized features for each of the generated centroids and by summing up the
aggregated residual vectors from each centroid. The search accuracy can be opti-
mized by increasing the size of vocabulary can prove to be costly both in terms
of memory and sheer computational power. Demonstrating a remarkable accuracy-
efficiency trade-off, VLAD has gained prominence from the community and large
number of extensions have been proposed. In [8] an attempt to make an in-depth
analysis of the framework which aimed at increasing the thorough understanding
of its various processing steps and inflating its overall performance was made. It
involved the evaluation of various existing and novel extensions along with the study
of the consequences of several unexplored parameters. It focused on exploring more
productive local features, making the aggregated representation better and tuning the
indexing scheme to get better results. The authors successfully managed to produce
various insights into extensions that contributed, and multiple others that do not.
In [9], discriminative feature descriptors were constructed as an application of Vector
of Locally Aggregated Descriptors. A hierarchical multi-VLAD was introduced to
interpret the trade off between descriptor discriminability and computation complex-
ity. A tree-structured hierarchical quantization (TSHQ) was constructed to speed up
theVLADcomputationwith a large vocabulary. If at all quantization error propagates
from root to leaf nodewithTSHQ,multi-VLADcanbe used; by constructing aVLAD
descriptor for each level of the vocabulary tree to cope up with the quantization error
[10] at that level. Intense analysis with regards to various benchmark datasets has
proven that the proposed approachwas far better the state-of-the-art methods in terms
of retrieval accuracy, fast extraction, as well as light memory cost. A mechanism was
proposed for pose based human action recognition using Extreme Gradient Boosting
[11] by Vina Ayumi. A clear insight on comparisons for gesture recognitions using
SVM [12], Naive Bayes [13] and XGBoost was also delivered. Clustering is basi-
cally a strategy of grouping a set of objects in such a way that objects which share
similar properties are likely to be more closer to each other in comparison to those
data point or objects in different assessments or clusters. A comparative study of
partition-predicated clustering techniques, such as K-Means [14], K-Means++ [15]
and object predicated Fuzzy C-Means clustering algorithmwas presented by Kapoor
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and Singhal. A methodology for obtaining better results by application of sorted and
unsorted data into the algorithms. Gradient Boosting Decision Tree (GBDT) has a lot
of effective implementations such as XGBoost and pGBRT. The implementations are
not satisfactory when there is a lot of data to process. To overcome this hurdle, two
techniques were designed by researchers from Microsoft: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB). LightGBM [16] was used
to speed up the training process of conventional GBDT by over 20 times without
compromising the accuracy.

3 Proposed Methodology

This sections explains about the procedures implemented to achieve face recognition.
The pipeline of the proposed model is represented in Fig. 1.

3.1 Image De-Noising

In order to evaluate a bunch of images which are numerous and are compound in
nature the requirement of subspaces which are nonlinear in nature are required for
analysis. To achieve this, the input data is mapped in a non linear fashion to a space
which is of higher dimension by making use of the function ϕ : Rm ⇒ J and then
singular value decomposition which is in J. The kernel function K introduces a
mapping ϕ which takes the inner product amongst the input data which is mapped
and contained in the feature space. A = [ ϕ(x1) ... ϕ(xn)] is obtained by the alteration
of input data by utilizing ϕ. LetM = ATA , by performing decomposition using eigen
values we can deduce that M = QδQT where M is a matrix which is obtained by
taking the inner product of the corresponding columns in matrix A and is evaluated
by using the kernel regression function. By performing singular factorization of A
the rank r of the matrix is given by the equation:

Ar = [AQr (δr )
−1/2][(δr )1/2][(Qr )

T ] = Urσ r (V r )
T
. (1)

where Qr = Q[:, 1 : r ] andδr = δ[1 : r, 1 : r ]

Fig. 1 Schematic of the proposed pipeline
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The matrix M is positive in nature and is semi-definite which is obtained from the
utilization of the Mercer kernel. Basis Ur is given by the equation:

Ur = AQr (δr )
−1/2 := Aα (2)

Ur which is the basis is obtained by the linear combination of B which is the
input data mapped. One more basis Xr = Bμ which is acquired from B by applying
KSVD to it. The resulting output D can be computed and is given by the equation:

D = (Ur )
T Xr = αT AT Bμ (3)

Kernel function particularly that of ATB is used in the above equation. On applying
SVD on D the equation becomes:

Y T DZ = θ (4)

Here diag(θ) = {θ1,���, θr } are the primary angles formed by span (Ur ) and
span (Xr ). Those functions which are a function of θ are often used to measure the
distance amongst subspaces. Figure2 shows denoising of images.

Fig. 2 Image de-noising using Kernel-SVD
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3.2 Feature Detection and Description

In this method, as a preliminary step the input image is gray scaled. This helps
in removing unwanted features that arise due to variation in color. To detect facial
features in the image at different scale levels, the determinant of the Hessian matrix
is computed for each image.

Li
Hessian = σ 2

i,norm(Li
xx L

i
yy − Li

xy L
i
xy) (5)

Here L represents a filtered image in a non linear scale space. The Fast Explicit
Diffusion technique (FED) to enhance the non linear scale space computation. The
features extracted from the FED technique is used describe the different characteris-
tics of the image. Here, robustness, rotation-invariance is achieved by doing binary
tests between the mean of areas and an estimation of orientation of facial interest
point in KAZE and the rotation of the grid of local binary descriptor respectively.
The information about gradients and intensity are very important for fast detection
and description of features in the image. The descriptor obtained is now used for
feature aggregation and then for classification. Key point detection using AKAZE
can be seen in Fig. 3.

Fig. 3 Keypoint detection using AKAZE
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3.3 VLAD

When the all the vectors of features are obtained after the descriptors are applied on
the images, they now have to be aggregated. These vectors are of large lengths and
contain a lot information about the keypoints being described such as color, location,
intensity, information about neighboring pixels and a lot more. However, all this
information might not be needed for classification. If these features are not ignored
classification becomes harder and the time complexity also increases. Hence, in order
to prevent this we quantize the features using vector of locally aggregated features
VLAD in a non probabilistic Fisher kernel which uses a codebook, computed using
k-means++ algorithm. Each descriptor xt is affiliated with its closest visual word
in the codebook. Let μ1, μ2..., μk represent codewords. The difference xt − μi to a
vector li is cumulated. The algorithm for feature quantization is described below: L2
normalization is applied to V . In the above algorithm the 2nd FOR loop represents
the cumulation of descriptors and the 3rd FOR loop is used for power normalization.
The obtained d dimensional vector is quantized version of our facial descriptors and
is apt for the classification job.

Algorithm 1 Computing the descriptor V from a set of descriptors x1, x2, ..., xt .
Given codewords μ1, μ2..., μk computed using k-means++ algorithm
for i = 1, .., K do
li := 0d

end for
for t = 1, ..., T do
i = argmin j ||xt − μ j ||
li := li + xi − μi

end for
V = [lT1 ...lTK ]
for u = 1, ...Kd do
Vu := sign(Vu)|Vu |α

end for

3.4 Classification Using Gradient Boosted Trees

After the features are quantized into a vector, they are passed to tree boosting algo-
rithms for person classification. Two implementations based on gradient boosted
decision tree have been used in this paper. They provide a comparison between the
speed and accuracy of the model.

The first one is a scalable end-to-end tree boosting algorithm called XGBoost.
Boosting combines a set of relatively weak learners to form a complex predictor
which tends to have a low error rate as they learn from the mistakes of the previous
learner. The previous learners weights are also accounted for and at each iteration
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they are updated with respect to the residual weights. Multiple decision trees are
constructed with a specific number of terminal nodes in the decision tree, six in our
case. This allows intercommunication of node values within tree resulting in better
feature under-standing. Gradient descent is used to minimize the error. This algo-
rithm was designed as a sparsity aware algorithm providing robust and inexpensive
computation.

The second implementation of the gradient boosted decision tree is LightGBM
which uses Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). In order to compute information gain at a faster rate, GOSS sam-
ples data instances with only large gradients as they contribute more to the final
classification. EFB is a greedy technique which bundles exclusive features, that is,
it reduces features to provide robustness at the cost of accuracy.

These two implementations of gradient boosted decision tree provides a robust
and reliable method for classification of facial features.

4 Datasets Used

4.1 Faces95

Faces95 as shown in Fig. 4 is a collection of facial images of 72 individuals with large
head scale variations. The dataset provides images of resolution 180× 200 pixels in
portrait mode. The collection contains images of both male and female subjects, thus
delivering a challenge in the upper half of the region of interest as well. No agitation
is offered in terms of background disfigurements, but slight variations are observed
in the red background because of shadows and changes in illuminations. The person
is not stationary and is subjected to slight movements. The reverberation of this is
observed in brightness changes in the region of interest. The artificial lighting system
adds up to the intensified changes in the glare. The dataset offers meager variations in
the expressions of the subjects which is not a significant obstacle. The same hairstyle
is maintained on all the sample images for a single test subject.

4.2 Faces96

Using a still camera 152 subjects were photographed with 20 images per person.
The database possesses images of size 192× 192 pixels of both male and female
candidates.However one of the paramount hurdles offered by faces96 is the variations
in the background which does not lie in the region of interest. Major challenge
constituted by the dataset is the variations in the trivial parts of the images. The
individuals proffer slightest changes in the expressions while tremendous changes
in the head scale are exhibited. The person also locomotes towards the camera after
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Fig. 4 Sample record from the Faces95 dataset

every test image delivering changes in the lighting conditions as well. They dataset
demonstrates variations in the head tilt, turn, and slant but is not significant enough.
The collection was designed and maintained by Dr. Libor Spacek under Computer
Vision Science Research Projects.

4.3 Grimace

The individual moves his/her head after every picture and makes grimaces on their
faces which gets drastic towards the end of every sequence. A set of 18 individuals
are put through this process to form a collection of faces. The images are of size
180× 200 pixels which have a considerate amount of information for further pro-
cessing. No variations in terms of background and head scale are presented. Although
a considerable amount of discrepancy is unveiled head tilt and turns. Very little vari-
ability is presented in terms of illumination, which is slightly better in case of the
positioning of the head in the image. The database as shown in Fig. 5 offers excessive
fluctuations in the expressions of the figurines which delivers a major challenge for
all mathematical models.

Fig. 5 Subject exhibiting variations in facial expressions
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5 Results and Conclusion

We executed our proposed model over every group of images present in the three
benchmark databases, namely, FACES95, FACES96 and GRIMACE. The results
obtained using our technique on the three datasets are tabulated in Table1. On
FACES95 and FACES96 our model predicts on an average 91% of the time cor-
rectly. Even though the above mentioned datasets contains a high number of classes
(72 and 152), our model is still able to predict each individual with a good confidence
level. GRIMACE contains faces with extreme variations in expression, illumination
and translation, our model is able to correctly identify the person with an accuracy
of 93.33%.

Kernel-SVD plays an important role in denoising the image, reducing a few fea-
tures and thereby helping to lower computation cost in further steps.

Changing the vector size of the feature aggregator impacts the accuracy a lot. On
increasing the number of features in the quantization step, the accuracy of the model
increases till a certain extent which can be seen in Table2.

Table3 shows a direct comparison of XGBoost with LightGBM for feature clas-
sification. Both of these algorithms ran for 500 epochs with maximum depth of each
tree created set to 7 and learning rate set to 0.5. From Table3 it is understood that
LightGBM outperforms XGBoost on all the three datasets by an average margin of
2%.

Table 1 Performance grid of XGBoost

Dataset Accuracy Recall Precision Prediction time
(100 images)

Faces95 0.9214 0.9214 0.9312 0.42ms

Faces96 0.90 0.9010 0.9134 0.94ms

Grimace 0.9333 0.9333 0.9467 0.13ms

Table 2 Feature aggregation with vector of size 100 versus 200

Dataset 200 100

Faces95 0.9214 0.8927

Faces96 0.90 0.8533

Grimace 0.9333 0.9167

Table 3 Comparison of XGBoost with LightGBM

Dataset LightGBM XGBoost

Faces95 0.94 0.9214

Faces96 0.9367 0.90

Grimace 0.9633 0.9333
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The framework proposed is a mathematical model employing Single valued
decomposition for the purpose of image denoising. Further an hessian matrix is com-
puted to extract features from a facial image. The use of gradient boosting algorithm
for classification by minimizing a loss function. The aim of the paper is completed
using mathematical models and hence do justice to the theme of the conference.

A direct comparison of our proposed method with the state of the art models
cannot be made because of the following reasons. Implementation and testing of
the modules are performed on different hardware which might result in different
efficiency results. Datasets used and pre-processing steps followed in the state of the
art models and our proposed methods are different which leads to variation in results.
[17] developed a method for deep hypersphere embedding for face recognition to
achieve a remarkable accuracy of 95% on the YTF dataset. Chain code based local
descriptors are proposed in [18] for the task of face recognition. Karczmarek et al.
[18] was tested on CAS-PEAL, ColorFERET and FG-NET resulting in an average
accuracy of 98%. A deep learning approach for face recognition was developed in
[19] where a trunk branch ensemble convolutional neural network was designed to
solve the problem of pose variation and occlusions resulting in an average accuracy
of 95% on PaSC, COXFace andYouTube faces datasets. A different approach to face
recognition was proposed in [20] using multi-resolution wavelet combining discrete
cosine transform and Walsh transform which resulted in an accuracy of 99.24% on
FACES94 dataset.
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ORB Oriented FAST and Rotated BRIEF
ENN Extended Nearest Neighbor
LoG Laplacian of Gaussian

1 Introduction and Related Work

In the current digital era, protecting sensitive information has become a cumbersome
task. Research shows that biometrics are more prominent than the traditional pass-
words for authentication and authorization. Face recognition is a class of biometrics
that maps a person’s facial features mathematically and stores the information as a
faceprint. Face Recognition even surpasses other biometric modalities because it is
non-intrusive and can identify a distant subject. Face recognition unlike other physi-
ological modalities does not require any special hardware component. Any modern-
day camera can be used for face recognition. Extensive research in the domain of
face recognition has led to various classical techniques like FisherFace, Elastic Graph
Matching, EigenFace etc.

Feature detection and description are one of the most crucial steps for an image
processing task.Over the last decade, Scale Invariant FeatureTransform(SIFT)which
was suggested by Lowe [1], Speed-Up Robust Features(SURF) which was originally
proposed by Herbert Bay [2] and Oriented FAST and Rotated BRIEF(ORB) [3] have
been widely used for face recognition. Some of the popular works include—adapta-
tion of SIFT Features for Face Recognition under Varying Illumination [4], SURF-
Face [5] and ORB-PCA based feature extraction technique for Face Recognition
[6]. The algorithms are subjective to the type of problem that has to be handled.
SIFT is a robust classical algorithm which intents to produce scale and orientation
invariant features [1] with descriptors which will perform well in matching the state
of the image processing pipeline [7]. Analogously, SURF is computationally less
exorbitant and mathematically less complicated [2, 8]. It is preeminent because of its
standout facets like scale and rotation invariance, repeatability, distinctiveness, and
robustness [2]. Similarly, ORB is more efficient than SURF because it uses binary
descriptor for feature detection [3, 8]. But for the scale and rotation invariance, it is
not as much robust as SURF [3, 7].

However, all these feature descriptors need the facial images to be properly aligned
and have a decent contrast. Otherwise, very limited number of key points are detected
in the image which produces poor results. Recently an alternative to the traditional
SIFT descriptor called the Dense SIFT (DSIFT) descriptor was proposed by Wang
[9]. The DSIFT descriptor increases the number of keypoints in an image [9, 10]
which in turn enhances the performance of the Face Recognition system. Thus, we
propose to exploit DSIFT [9], Dense SURF (DSURF) [5] and Dense ORB(DORB)
feature descriptors with a novel pipeline constituting of Laplacian of Gaussian (LoG)
filter [11, 12] for enhancing an input image, Fisher vector (FV) for image feature patch
aggregation and extended nearest neighbor (ENN) classifier [13] for classification,
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in this paper. To evaluate the performance of the proposed descriptors comparisons
were made with each other and also with the traditional descriptors (SIFT [1], SURF
[2] and ORB [3] descriptors). To the best of our knowledge, the application of Dense
SURF (DSURF) [5] and DORB on Face Recognition and their comparison with the
classical techniques has not been explored yet.

The paper is laid out in the following manner: Sect. 2 describes our proposed
system. It contains a detailed explanation of various steps involved along with their
usage in our pipeline. Section 3 describes the experimental design. It discusses the
various datasets used. Section 4 contains experimental results and their graphical
visualization. Section 5 contains various conclusions and inferences that were drawn
from the paper. We have also discussed the future enhancements.

2 Proposed System

This section discusses the different steps involved in this proposed method including
necessary theoretical and mathematical background of each step. The various steps
involved in this approach are depicted below. In the suggested approach, LoG filter
is applied to enhance an input image [11] i.e. improve contrast and brightness of the
image (Fig. 1).

This is depicted in the image below.

Then the enhanced image is passed to various dense feature descriptors. These
descriptors return a feature vector for each of the keypoints in the image. These
obtained feature vectors are passed to the Fisher vector which in turn enhances these
feature vectors and returns the enhanced feature vectors which are more suitable for
classification. Finally, Extended Nearest Neighbour classifier [13] is used to classify
the image. The enhanced feature vectors of all the images in the training dataset and
their corresponding labels are used to fit the classifier model. The resultant model
can then be used to classify any query image.

Input Face 
image

Applying
LoG
filter

Dense 
feature 

extraction

Applying
Fisher
Vector

Classsifing
 using ENN

classifier

Fig. 1 Pipeline for the applied methodology
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The implementation involves several tactical changes in the existing SIFT [1],
SURF [2] and ORB [3] feature descriptors to produce three novel descriptors: DSIFT
[9, 10], DSURF [5] and DORB. The pipeline also includes ENN classifier which is
an improved version of the popular K-Nearest Neighbour (KNN) classifier [13]. The
results obtained are compared with the classical techniques to state the proficiency
of the proposed system.

2.1 Laplacian of Gaussian

2.1.1 Background

Laplacian filter is a second order differential mask [11] which is generally used to
find edges in an image [12]. Laplacian operator is isotropic in nature I.e. it is impartial
and applies uniformly in all directions in an image. It measures the amount of change
in image intensity per change in image position [11].

The Laplacian operator is defined as the dot product of two gradient vector
operators [11]

L(x, y) =
[

∂

∂x

∂

∂y

]
·
[

∂

∂x

∂

∂y

]T

= ∂2

∂x2
+ ∂2

∂y2

The Laplacian operator L(x, y) when applied on an image with intensity values
I(x, y), is defined as

L(x, y) = ∂2 I

∂x2
+ ∂2 I

∂y2

A convolution filter can be used to approximate the Laplacian operator. For doing
so, a discrete kernel is required that can approximate the second order derivatives
used by the Laplacian operator. But, these kernels are highly susceptible to noise
[11]. To overcome this, noise within an image needs to be reduced. Smoothing filters
reduce the noise in an image and generate a less pixelated image [11].

Generally, the Gaussian smoothing filter is used to reduce the sensitivity of an
image to noise. The Gaussian operator is a two-dimensional convolution operator
[14] that blurs an image and removes some details and noise in the process. It uses a
kernel which has a bell-shaped representation. The Gaussian operator is a circularly
symmetric operator [14]. It is given by

G(x, y) = 1

2ψ2
e− x2+y2

2σ2 (σ represents standard deviation)

The distribution is represented as
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(mean is (0,0) and standard deviation is σ)
The Gaussian operator blurs out any point-like object (in this case a pixel) to a

three-dimensional image with certain minimal size and shape. Since the image is
represented using discrete pixel values so, before performing convolution a discrete
approximation of the Gaussian function must be found. Theoretically, the Gaussian
function is always greater than zero, which implies to an infinitely large convolution
kernel. But, practically the Gaussian distribution becomes negligible (approximately
0) beyond 3 standard deviations from the mean. So, the convolution kernel can be
terminated at this point.

Once an appropriate kernel is obtained, standard convolution techniques can be
used to perform Gaussian smoothing. By decomposing the Gaussian kernel into x
and y components [14], we can speed up the convolution step. Thus, we can perform
the two-dimensional convolution by first convolving in the x-direction using the
one-dimensional x component and then convolving in the y-direction using the one-
dimensional y component. The Gaussian operator is the only operator which can be
divided in such a way [14].

Since convolution is associative in nature, the Gaussian smoothing filter can be
convolved with the Laplacian filter [11] and then this LoG filter can be convolved
with the image to produce the desired results. LoG function is defined as

LoG(x, y)

= − 1

πσ4

[
1 − x2 + y2

2σ2

]
e− x2+y2

2σ2 (mean is (0, 0) and standard deviation is σ)

The LoG function is represented as
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(The x and y axes are marked in standard deviations (σ))
LoGfilter hasmany advantages like: (1)GenerallyLaplacian andGaussian kernels

are much smaller than the image, so LoG filter requires fewer arithmetic operations.
(2) The LoG kernel can be precomputed so, that it can be directly convolved with the
image at run-time. Thus, only one convolution is performed per image at run-time.

2.1.2 Usage

Pre-processing images is an integral part of Face Recognition systems. Input images
were enhanced by improving the contrast and brightness, in order to optimize the
performance of the proposed Face Recognition system.

Knowing the advantages of the LoG filter over the traditional Laplacian and
Gaussian filter, LoG filter was chosen for pre-processing the images. LoG filter
measures the amount of change of image intensity per change in image position
[11]. So, the response of the LoG filter will be zero for all the image patches having a
constant pixel intensity. On the other hand, whenever the intensity changes the LoG
filter will return a positive response on the darker side and negative response on the
lighter side [11]. This is depicted in the image below.

So, basically LoG filter is used to highlight all the edges present in an image (since
intensity changes across an edge). This is depicted in the image in Fig. 2. Gaussian
filter removes the additional details and noise from the input image and then the
Laplacian filter predicts the edges in the image. Now, when the filtered image is
subtracted from the original image then, the edges in the resulting image are much
sharper and have higher contrast [11]. So, this enhances the image. This is depicted
in the image in Fig. 2.

Fig. 2 a Original image,
b image obtained after
applying LoG filter and
c image obtained after
subtracting the filtered image
from the original image
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2.2 Feature Descriptors

2.2.1 Dense Sift

SIFT is a feature extraction algorithm which helps in detecting stable feature points
in an image. The sole purpose of SIFT algorithm is to obtain the feature descriptors
that overcome several computer vision challenges such as rotation invariance, scale
invariance and robust to variations in geometric transformations [7]. SIFT extracts
features from a given image by detecting interest points in the image [7]. SIFT
detector is implemented by the Difference-of-Gaussian function. DoG finds possible
interest points that are invariant to scale and rotation [7].

G(x, y, σ) = 1

2πσ2c

(
x2 + y2

)
/2σ2

DoG is accomplished by the convolving the Gaussian Filter on the image at
different scales [7]. DoG image is described as below:

L(x, y, σ) = G(x, y, σ) ∗ l(x, y)

Where the termL(x, y,) represents the convolved image. Eventually, the difference
between successive Gaussian-blurred images is calculated [7]. The operation of the
DoG function is shown below:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ l(x, y) = L(x, y, kσ) − L(x, y, σ)

These key-points reveals detailed information about the location, orientation, and
scale. It then computes the local descriptor for the local region around the keypoint.
The combination of all these computed descriptors gives the entire feature descriptor
for an image [7].

But, SIFT has many limitations. SIFT detector can’t detect enough number of
keypoints if an image is ill-illuminated [9]. The classical SIFT detector is generally
used on large images to make sure that enough number of interest points are detected
[9]. Dense SIFT overcomes these problems by making use of dense pixel grid repre-
sentation of images and considering the regular image grid points as keypoints [9].
Thus, DSIFT is able to detect a sufficient number of keypoints irrespective of the
illumination and size of the image. DSIFT descriptor computes feature descriptors
for each of these keypoints producing a dense representation of facial features. These
descriptors are finally concatenated to form the feature vector for the face [9].

2.2.2 Dense SURF

SURF was proposed to speed up the computation required by feature detection and
extraction [2, 15]. It is made up of a scale and in-plane rotation invariant feature
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detector and descriptor [2]. The feature detector does the job of detecting keypoints
in an image and the is used to describe the features of these detected keypoints by
constructing feature vectors.

SURF feature detector uses the determinant of the approximate Hessian matrix as
the underlying principle [2]. It calculates the determinant at all the points in the image
and detects droplet-like structures wherever the determinant is at maximum [2]. But,
these calculations are quite expensive. So, SURF uses integral images to reduce the
computation time. For any point x = (x, y) in an image at scale, the Hessian matrix
H(x,) is calculated as:

H(x, σ ) =
[
Lxx (x, σ ) Lxy(x, σ )

Lxy(x, σ ) Lyy(x, σ )

]

where Lxx (x, σ ), Lxy(x, σ ), Lyy(y, σ ) are defined as convolutions of Gaussian sec-
ond order partial derivatives on point x in image I. In order to reduce the compu-
tation cost a set of box filters is used by SURF to approximate the Gaussian and
represent the lowest scale for computing the droplets (blobs) [2]. These are denoted
by Dxx (x, σ ), Dxy(x, σ ) and Dyy(x, σ ). The result produced is:

det
(
Happox

) = Dxx Dyy − (
ωDxy

)2
where ω is the weight used for conserving energy between Gaussian kernels and
approximated Gaussian kernels. The value of ω can be calculated as:

ω =
∣∣Lxy(1.2)

∣∣
F

∣∣Dyy(9)
∣∣
F∣∣Lyy(1.2)

∣∣
F

∣∣Dxy(9)
∣∣
F

= 0.912 ≈ 0.9

Here, |XF| is Frobenius Norm.
For incorporating scale invariance, like SIFT, SURF also generates a pyramid

scale space. But it does this in a unique way. Since SURF makes use of box filters
and integral images so it generates the scale space by directly varying the scale of
box filters [2].

SURF feature descriptor is based on the local Haar wavelet responses [2]. It
calculates the sum of Haar wavelet responses and uses it to describe the feature
of a keypoint. To compute the descriptor a square region centered at the key point
is constructed and oriented along the direction given by the orientation selection
method [2]. Now the square region is divided into smaller 4 × 4 square sub-regions.
Now each sub-region is further split into 5 × 5 squares and Haar wavelet response
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is calculated for each of these squares. Haar wavelet response in x-direction and
y-direction are denoted by dx and dy respectively. To increase robustness towards
errors, the responses dx and dy are weighted with a Gaussian centered at the keypoint
[2].

Then the sum of wavelet responses dx and dy is computed over all the sub-regions.
These form the first entries of the feature descriptor of the keypoint [2]. Other entries
are also made in order to capture various types of information.

But, SURF faces problems when an image is small, does not have a proper ori-
entation or is ill-illuminated. DSURF is an enhanced version of SURF. The main
problemwith the classical SURF detector is that the number of false positives is high
[5]. SURF extracts image features by detecting keypoints in the image. But, if the
image is not properly oriented or illuminated then very few keypoints are detected in
the image leading to very few descriptors [5]. So, DSURF overcomes this limitation
by using a dense pixel grid representation for images [5]. It considers the regular
image grid points as keypoints and generates descriptors for them. So, DSURF is
able to generate a good number of descriptors for every image irrespective of the
conditions under which it is captured. Experimental results show that this modified
version of SURF is better as it makes keypoint detection invariant to illumination
and orientation.

2.2.3 Dense ORB

ORBmakes use FAST feature detector and BRIEF descriptor [3]. It adds an orienta-
tion component to the well known FAST descriptor by using the Intensity Centroid
approach [6] and creates a variant of the classical BRIEF descriptor which is rotation
invariant [6].
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The Intensity Centroid approach uses a robust measure of corner orientation. The
centroid is calculated using the moments of an image patch [6]. The (p+ q)th order
moment whose intensity function is I (x, y), can be calculated as:

mpq =
∑
x,y

x p yq I (x, y)

Once the moments are calculated then the centroid is given by:

C =
(
m10

m00
,
m01

m00

)

Now, a vector joining the center and centroid is constructed and the orientation
of the patch is calculated by:

θ = atan2(m01,m10)

where atan2 is arctan. This approach incorporates illumination invariance as angle
measures are independent of the type of corner [6].

Secondly, ORB includes a rotation invariant component called r-BRIEF [6]
which is an improved version of the classical BRIEF descriptor. To achieve rota-
tion invariance, ORB steers the BRIEF in the direction of orientation of key-points
[6].

This is achieved in the following way:
Suppose that for any binary feature set constituting of n tests at a point (xi , yi )

results in a matrix represented as:

S =
(
x1, . . . , xn
y1, . . . , yn

)

Now, by utilizing the patch orientation (Θ) and corresponding rotation matrix
(RΘ) a steered version of the original S can be obtained.

S� = Rθ S

Subsequently, the steered BRIEF operator is defined as:

gn(p,�) := fn(P)|(xi yi ) ∈ S�

But, ORB faces problems when an input image is not properly illuminated. ORB
uses FAST detector with some modifications to make it invariant to orientation but,
it does not handle illumination invariance. So, if an image is ill-illuminated or has
low contrast then FAST detects only a few keypoints and is not able to describe the
image features properly. DORB overcomes this limitation by using a dense pixel grid
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representation for images. It increases the number of keypoints in an image by con-
sidering regular image grid points as keypoints. So, the number of keypoints detected
by DORB is independent of the conditions under which the image is captured. So,
now the r-BRIEF descriptor is able to describe every image properly irrespective of
its illumination and contrast.

2.3 Fisher Vector

2.3.1 Background

Fisher Vector

Patch-aggregation techniques have proved to be effective in recent past, revealing
high performance for a variety of computer vision tasks. FisherVector (FV) is another
patch-aggregation technique which uses Fisher Kerne (FK)l as its underlying prin-
ciple [16]. FK framework derives a kernel by characterizing an image based on
the deviation from a generative data model [17]. The FV is represented vectorially,
which is obtained by the calculating the slope of the log-likelihood to the model
parameters [13, 17, 18]. FV is a high-dimensional vector formed by aggregating vast
set of feature vectors extracted by various feature descriptors (e.g. DSIFT, DSURF,
DORB).

Fisher Kernel

FK is used because of its potential of being used in learning amodel when the training
objects have adifferent underlyinggraph structure. It is basedon the concept of having
similar log-likelihood gradients for similarly structured objects in a generative model
[17, 18].

Let X = {xn, t = 1, 2, . . . ,N} where xn ∈ χ is a set of D-dimensional local
descriptors, like DSIFT, DSURF or DORB descriptors [17]. By the theory of infor-
mation geometry, a Riemannian manifold MA with a local metric is derived by the
Fisher Information Matrix(FIM) Fλ ∈ R

M × M

Fλ = EX∼uλ

[
GX

λ G
XT

λ

]

where uλ is the probability density function for the elements in χ where λ =
λ1, λ2, . . . , λM ∈ R

M which represents a vector with M parameters of uλ.
FKl for two samples X and Y is defined as:

K(X,Y) = GXT

λ F−1
λ GY

λ .



416 A. Vinay et al.

By the Cholesky decomposition, equation can be written as a dot product:

KFK (X,Y ) = G
∧XT

λ G
∧Y

λ

where G
∧X

λ = LλGX
λ = Lλ?λlog uλ(X), G

∧X

λ is known as the Fisher Vector of X. Let
us assume that samples are independent, we can write the equation as below:

G
∧X

λ =
N∑

n=1

Lλ∇λlog uλ(xn).

According to the assumption, FV is a sum of the normalized gradient for each
descriptor. The contribution by each xn can be inferred as an embedding of local
descriptors xn in a high-dimensional space. Gaussian Mixture Model is selected as
uλ [13, 17]. We are denoting T-component GMM by λ = {wt , ut ,Σt , t = 1, . . . , T }
where wt , ut ,Σt are mixture weight, mean vector and covariance matrix of
Gaussian t.

Lλ is calculated by taking square-root of the inverse of FIM. The nor-
malized gradients can be formulated by performing coordinate-wise normal-
ization of the gradient vectors. Initially, the accumulators are initialized as
S0t ← 0, S1t ← 0, S2t ← 0 for ∀ {t ∈R | 1 ≤ t ≤ T}. For each of
the local image descriptors, posterior probability is
derived by γn(t) = wt ut (xn)∑T

j=1 w j u j (xn)
, then update the accumulators with the

S0t , S
1
t , S

2
t with γn(t), γn(t)xn and γn(t)x2n respectively [17]. In terms of statistics,

these computed normalised gradients can be written in the form of 0th-order,
1st-order and 2nd-order statistics:

S0t =
N∑

n=1

γn(t)

S1t =
N∑

n=1

γn(t)xn

S0t =
N∑

n=1

γn(t)x
2
n

After the statistics are computed, the signature of the Fisher Vectors for all the t
components of the GMM needs to be accounted by the following equations:

G
∧X

αt
= (

S0t + Nwt
)
/
√
wt

G
∧X

μt
= (

S1t + μt S
0
t

)
/
√
wtσt

G
∧X

σt
= (

S2t − 2μt S
1
t + (

μ2
t − σ2

t

)
S0t

)
/
√
2wtσ

2
t
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where αt is the re-parametrization of the following the definition of soft-max for-
malism. Using the Eq. (19), the components are calculated separately. All the FV
components are concatenated to form a single vector representing FV.

To improve the results with various linear classifiers it is a necessity to use nor-
malization techniques. Different normalization techniques have been proposed in
past [13, 17]. Some of them are l2-normalization, power normalization. FV depends
on some percentage of the image-specific proportion (ω). Accordingly, this can be
inferred from the fact that two images having the same objects but different scales
have different signatures. l2-normalization is used to eliminate the dependence on
ω.

G
∧X

λ = G
∧X

λ /

√
G
∧XT

λ G
∧XX

λ

Power normalization is applied for all i = 1, . . . ,T(2D + 1) of the form:

[
G
∧X

λ

]
i
− sign

([
G
∧X

λ

]
i

)√∣∣∣G∧X

λ

∣∣∣
i

]

In the experiments performed, power coefficient ρ has been set to 1/2. This adjust-
ment is also referred to “signed square rooting” and has been found advantageous
for image representations [13, 16].

2.4 Extended Nearest Neighbor Classifier

As the name suggests, this classifier is an extension of thewell knownKNNclassifier.
It approximates the optimal Bayes theorem and enhances the performance of KNN
and weighted-KNN classifiers [8].

Classifiers are broadly classified into two types namely parametric classifiers and
non-parametric classifiers. ENN classifier comes under non-parametric classifier. In
non-parametric classifiers, the classification rules are independent of the underlying
distribution of input data [8]. Non-parametric classifiers have been used extensively
recently.

Talking about the KNN classifiers, they have numerous advantages such as simple
implementation, great performance on the data independent of the underlying data
distribution.

But they have a lot of shortcomings, like determining the optimal value of k. A
straightforward approach to solve this would be to try out different values of k and
choose the one which produces optimal results. The second problem is choosing an
appropriate distance measure.

KNNs are influenced heavily by the distribution of predefined classes [19]. The
outcome, i.e. the classification of the test data is more likely to be decided by the class
with higher density. Suppose there are two classes A and B, and class A has a lower
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variance which means that data points appear to be more concentrated and class B
has a distribution which is more spread out. This clearly leads to misclassification of
the test data points since the nearest neighbors from class A will be more dominant.

ENNs works independently of the fact that whether the data points of the class
are well spread or they have a concentrated distribution. ENN doesn’t only classify
the test samples by just finding the nearest neighbors of the predefined classes but
also takes into account the test samples as which are their nearest neighbors [8].

Defining the general class wise Ti as the following:

Ti = 1

nik

∑
x∈S

k∑
r=1

Ir (x, A = A1 ∪ A2)

where, A1 and A2 denote the samples belonging to the class 1 and class 2. And A
is the union of the A1 and A2, k is the number of nearest neighbor. I is the indicator
function, sees if both the sample x and it’s rth nearest neighbor are part of the same
class, defined as follows:

Ir (x, A) =
{
1, i f x ∈ AAi and NNr (x, A)εAi

0, otherwise

where NNr denotes the rth nearest neighbor of x in A.
The intra-class coherence is defined as follows:

θj =
2∑

i=1
Tj
i

fENN = argmax
2∑

t=1
T j
i = argmax

j∈1,2 θ j

ENN.V1

T j
i = 1

n′
i k

∑
x∈Ai∪z

k∑
r=1

Ir
(
x, A′ = A1 ∪ A2 ∪ {z}).

when i = j we have,

T j
i =

(
nikTi + Δn j

i + ki
)

(ni + 1)k

and when,

T j
i = Ti − �n j

i /nik

Therefore we have,
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fENN = arg j∈1,2,...,N max
N∑
i=1

(
T j
i − Ti

)

fENN = arg j∈1,2,...,N max

⎧⎨
⎩

(
T j
i − Ti

)
i= j

+
N∑
i =1

(
T j
i − Ti

)⎫⎬
⎭

The ENN decision rule can be formulated as:

fENN = arg j∈1,2,...,N max
{
�n j + k j − kTj

}

3 Experimental Design

3.1 Face Datasets

3.1.1 ORL (Olivetti Research Laboratory) Dataset

The dataset consists of 40 subjects with 10 distinct images per subject, totaling to
400 images. This dataset is created specifically for Face Recognition. This dataset
consists of very diverse images, captured under various lighting conditions. The
dataset also captures a wide range of facial expressions which makes it a good choice
for unconstrained face recognition (pose, expression, and illumination invariant)
applications.

3.1.2 Faces94

This dataset consists of 153 subjects with 20 images per subject, totaling to 3060
images. The dataset consists of 133 male and 20 female subjects. The images are
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taken from a fixed distance by the camera under the same lighting conditions, so
there are no scale or illumination variations. The subjects are speaking so, there
are considerable expression variations. So, this dataset is generally preferred for
expression invariant applications.

3.1.3 Grimace

This dataset consists of 18 subjects with 20 images per subject, totaling to 360
images. All the images of a subject are taken in a single session with a 0.5-s interval
between two consecutive image captures. During the session, subjects try to make
grimaces by varying their poses and facial expressions. So, this dataset is generally
preferred for pose and expression invariant applications.



Facial Image Classification Using Rotation, Illumination … 421

4 Experimental Results and Visualization

Various experiments were carried out in order to evaluate the performance of our
proposed system. We used Accuracy, Precision and Recall as the performance met-
rics. We compared the results obtained from different dense feature descriptors. We
also compared the results obtained from the dense descriptors with their traditional
counterparts I.e. we compared the results of DSIFT [9] with SIFT [1], DSURF [5]
with SURF [2] and DORB with ORB [3] descriptor.

4.1 Dense SIFT

The traditional SIFT descriptor fails to describe an ill-illuminated, ill-oriented image
properly [9]. Actually the SIFT detector is not able to generate enough number of
keypoints for such an image. DSIFT detector increases the number of keypoints in the
image by making use of regular image grid points as interest points and passes these
new keypoints to the DSIFT descriptor [9]. This is depicted in the figure below. The
DSIFT detector takes a parameterwhich determines the grid size used to represent the
input images. It’s value is dependent on the training dataset. We tuned this parameter
to achieve the optimal results. For the ORL dataset grids containing squares of size 5
pixel × 5 pixel gave the best results. For the Faces94 dataset grids containing squares
of size 4 pixel × 4 pixel produced the best results. Whereas for Grimace dataset grids
containing squares of 3 pixel × 3 pixel gave optimal results.

4.2 Dense SURF

The classical SURF descriptor fails to describe an ill-illuminated, ill-oriented image
properly [5]. SURF detector is not able to generate enough number of keypoints for
such an image. DSURF detector increases the number of keypoints in the image by
making use of regular grid points as keypoints and passes these new keypoints to
the DSURF descriptor [5]. This is depicted in the figure below. The dense SURF
descriptor takes a parameter which determines the grid size used to represent the
input images. Its value is dependent on the training dataset. We tuned this parameter
to achieve the optimal results. For the ORL dataset grids containing squares of size
11 pixel × 11 pixel gave the best results. For the Faces94 dataset grids containing
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squares of size 10 pixel × 10 pixel produced the best results whereas for Grimace
dataset grids containing squares of size 15 pixel × 15 pixel gave optimal results.

4.3 Dense ORB

ORB employs a FAST detector which is rotation invariant [3]. But, it fails to incor-
porate illumination invariance. Because of this, ORB fails if the images are ill-
illuminated or have a low contrast. DORB is able to counter this by using regular
image grid points as keypoints. This way it can detect keypoints even in a poorly lit
image. This is depicted in the figure below. The FAST detector present in DORB,
takes a parameter which determines the grid size used to represent the input images.
For the ORL, Faces94 and Grimace datasets grids containing squares of size 3 pixel
× 3 pixel produced optimal results.

4.4 Performance Evaluation

On theORLdataset, the proposedDSIFT descriptor andDORBdescriptor performed
quite well. DSIFT gave better results than DORB. These two descriptors surpassed
all other descriptors. DSIFT outperformed DORB by an accuracy margin of 0.54%
and DSURF by an accuracy margin of 16.96%. Also, DSIFT outperformed SIFT by
an accuracy margin of 5.41%, DSURF outperformed SURF by an accuracy margin
of 1.39% and DORB outperformed ORB by an accuracy margin of 3.26%.

On the Faces94 dataset, the proposed DSIFT descriptor and DORB descriptor
performed quite well. DORB gave better results than DSIFT. DORB outperformed
DSIFT by an accuracy margin of 0.79% and DSURF by an accuracy margin of
13.56%. Also, DSIFT outperformed SIFT by an accuracy margin of 4.02%, DSURF
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outperformed SURF by an accuracymargin of 0.23% andDORBoutperformedORB
by an accuracy margin of 1.48%.

On the Grimace dataset, the proposed DSIFT descriptor and DORB descriptor
performed quite well. DSIFT gave better results than DORB. DSIFT outperformed
DORB by an accuracy margin of 1.89% and DSURF by an accuracy margin of
17.21%.Also,DSIFToutperformedDSIFTby an accuracymargin of 6.35%,DSURF
outperformed SURF by an accuracymargin of 1.01% andDORBoutperformedORB
by an accuracy margin of 2.3%.

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 94.25 92.10 97.25

Dense SURF 77.29 78.76 84.30

Dense ORB 93.71 91.27 95.00

SIFT 88.84 89.73 91.34

SURF 75.90 77.90 81.14

ORB 90.45 90.89 93.67

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 97.36 97.72 98.11

Dense SURF 84.59 83.20 90.23

Dense ORB 98.15 98.07 99.44

SIFT 93.34 92.50 95.00

SURF 84.36 84.20 88.47

ORB 96.67 96.23 96.16

Feature descriptors Accuracy (%) Precision (%) Recall (%)

Dense SIFT 98.44 96.85 99.32

Dense SURF 81.23 83.48 88.91

Dense ORB 96.55 94.67 97.30

SIFT 92.09 93.43 94.17

SURF 80.22 79.65 84.73

ORB 94.25 94.5 95.23
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4.5 Performance Comparison

5 Conclusion and Future Work

This paper introduces a novel pipeline for Face Recognition. It employs dense feature
descriptors for feature extraction and extended nearest neighbor classifier for the
classification task. This paper also provides a detailed comparison of various dense
feature descriptors (DSIFT, DSURF, and DORB) with themselves and with their
classical counterparts (SIFT, SURF, and ORB). Upon extensive experimentation, we
are able to conclude that DSIFT and DSURF surpass other feature descriptors in
terms of accuracy, precision, and recall. Therefore, these are better suited for face
recognition.

In future, we would focus on making the model more robust and making it work
under unconstrained scenarios i.e. invariant to scaling, illumination, occlusion, and
age.
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Aggregation of LARK Vectors for Facial
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A. Vinay, Vinayaka R. Kamath, M. Varun, Nidheesh, S. Natarajan
and K. N. B. Murthy

Abstract Face recognition is prevailing to be a key aspect wherever there is a need
for interaction between humans and machines. This can be achieved by containing
a set of sketches for all the possible individuals and then cross-validating at nec-
essary circumstances. We propose a mechanism to fulfil this task which is centred
on locally adaptive regression kernels. A comparative study has been presented at
encoding stages as well as at the classification stages of the pipeline. The results
are cautiously examined and analyzed to deduce the best mechanism out of the
proposed methodologies. All the ideologies have been tested for multiple iterations
on benchmark datasets like ORL, grimace and faces 95. The vectorized descriptors
have been subjected to encoding using slightly refined methods of feature aggrega-
tion and clustering to assist classifiers in imputing the test subjects to their respective
classes. The encoded vectors are classified using Gaussian Naive Bayes, Stochastic
Gradient Descent classifier, linear discriminant analysis and K Nearest Neighbour
to accomplish face recognition. An inference on sparse nature of locally adaptive
regression kernels was made from the experimentation. A rigorous study regarding
the discrepancies of the performance of LARK descriptors is reported.

Keywords Adaptive Kernels · Bayesian · Classifier · Feature aggregation · Sparse
features · Image · Classification

1 Introduction

Facial recognition is aimed at computing the similar and dissimilar features of an
individual by combining the digital image data with the features extracted before-
hand. The input image is compared with a library consisting of a collection of images
which might not be similar in all respects to the compared image. This image will
be contrasted with all the images of the library and then list out a collection of
similar images, which often helps us recognise the input image. It can classify the
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dataset that the image is obtained from. A set of unique and recognisable features are
extracted from the images of individuals and are fed into the matchers. This system
identifies the nodal points of prime importance. These points act as main features
which highlight on primary facets such as the distance and breadth of the nose, the
depth of the eye sockets and the measurement of the cheekbones. These systems
work by collating data of nodal points on the digital image of an individual’s face
and storing the data for further interpretation. These face prints are used as a scale
to contrast with data obtained from numerous other faces present in an image or
video. A plethora of applications can be tied up to face recognition. Uses include
fraud detection in visas and passports, increased security which maps facial data of
the card user against ATM’s and banks, tracking of criminals; prevent voters from
committing fraud and to maintain a record of attendance.

Conventionally, the security factor is what most facial recognition systems work
on. There are several advancements in the field of feature extraction and their descrip-
tion which has spread across multiple domains including face recognition, object
detection and automation. These algorithms have played a key role in several appli-
cations as well. Consumer digital imaging requires several features to be considered.
Putting up with uncontrolled lighting conditions, large pose variations, facial expres-
sions, makeup, changes in facial hair, aging, partial occlusions, loss in pixels and
manymore parameters can be a tough nut to crack. This paper is an attempt to exhibit
a pipeline which is not only computationally inexpensive but highly accurate as well.
Locally adaptive regression kernels have proven to be capable descriptors and have
shown significant potential to participate in simple and accurate classification mod-
els. But selectively aggregating features using a clustering approach is very important
to extract feature descriptors for those regions and restrict to regions that is likely
to contain specific interest points. Hence the strategy is to find possible clusters in
the vector space acquire region descriptors from them and match these vectors based
upon their region. The trained classifiers can help us in categorizing these vectors
into our interest regions. The proposed pipeline has shown accuracy up to 96% on
validation on different benchmark datasets. This paper is an attempt to make a com-
parative study to explore the properties of LARKs in order to perform facial image
classification. A post-processing measure has been implemented on the vectorized
LARKs in order to enable us to achieve better results by eliminating overlapping
features and obtain more concise results.

Section 2 dealswith relevantworks that is associatedwith face recognition and any
of the techniques used in the proposed system. Section 3 is an attempt to explain the
mechanisms involved in the pipeline to the core. The results are presented and briefly
critiqued in the Sect. 4. The outcome of the pipeline is analysed and conclusions are
made on the basis of the observations in the Sect. 5.
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2 Related Work

Locally adaptive regression kernels [1] have been widely used for non-parametrized
training free object detection [2] in a real world application. They have squealed
by providing higher accuracy than their counter parts. Several papers used LARK
representation of the vectors to achieve face verification within limited amount of
computational resources. A popular variant of descriptor called local binary patterns
(LBPs) [3] have also shown remarkable outcomes in achieving face recognition.
Since LBPs came into light, various version of LBP as three-patch LBP (TPLBP)
[4], and four-patch LBP (FPLBP) [5] have been proposed by a different set of individ-
uals. These mapped with the OSS measure helped in growth of “one-shot learning”
techniques. Various mechanisms which used learning based descriptors also gained
popularity overtime.

The discourse of face verification based on aging effects has been done by
Ramanathan and Chelappa with the help of Bayesian and Probabilistic Eigen space
[6]. This gave a staggering resultwith only an average error rate of 8.5%. In [7], Ismail
and El-Khoribi with the application of HMT (Hidden Markov Tree) obtained a spec-
ification on numerous databases of face images by a of age difference of 5 months
which was further divided into 4 junctures. With a range disparity of 20 months,
promising results reaching 98% were acquired. An attempt to classify facial images
was done by Turk and Pentland using eigen faces [8]. A simple yet affective approach
assumed face recognition as two dimensional problems and the frame work designed
learned to recognize new faces in an unsupervised manner. Locally adaptive regres-
sion kernels have been used for target detection and localization [9] as well. Bag-
of-words model, which inspired the design of Bag of lark features model [10], has
been used for object recognition by Soon Wei Jun and Safirin Karis. The algorithm
learnt new patterns from the code book it creates and learns to classify using those
features. Locally-constrained linear coding [11] was used instead of VQ coding in
traditional SPM. This performs significantly better than its counter parts on several
benchmarks. The time efficiency of LLC helped it to gain popularity in short time. In
[12], Zhang and Feng evaluated the performance of naive bayes in text classification
applications and gave an improvement over orthodox approach. The new technique
exhibited better results that the conventional method.

Chen andWang focused on achievingmulti-face detection system in real timewith
a bit of hardware acceleration using FPGA [13]. The method used naive bayes for
classification and focusedon achieving the taskusing low-memory and in real-time.A
slightly different approach was proposed in [14], which combined local features and
selected them for naive Bayesian classification. K Nearest neighbour was optimised
to objective function based sparse representation to generate locally linear k nearest
neighbours (LLK) [15]. Themechanism used two classifiers, an LLK-based classifier
and a locally linear nearest mean-based classifier. Novel theoretical analysis was also
presented which included the nonnegative constraint, group regularization and also
threw light on the computational efficiency of the LLK method. In [16], various
classification techniques were benchmarked which helped us rule out the classifiers



430 A. Vinay et al.

and limit our study to the one being used in this pipeline. A case study was performed
using SVM, KNN, LDA and KNN with PCA along with a thorough analysis of the
results to deduce a conclusion of the superiority of the classifiers.

3 Proposed Methodology

3.1 Overview

The region of interest is cropped out from the raw images of an individual to prevent
any distortions in the background. As a further measure LARKs are extracted from
the images and are converted into vectors by removing overlapping from the raw
LARKs which gives a visual impression of the generated LARKs. These vectors act
as descriptors of keypoints for the raw image. Eventually they are used for classifi-
cation and image recognition after aggregation if these features. HOGSVD is then
applied to these vectors for the purpose of dimensionality reduction andmaking them
computationally inexpensive. Bag of Lark Features (BOLF) is a clustering algorithm
which is used to cluster and compile elements having similar features. Locally con-
strained linear coding (LLC) is used as a replacement of SPM approach which is
on similar grounds as the BOLF. Fischer vectors [17] is an extension of the bag of
visual words feature based on visual vocabulary built in low level feature space. This
concept is extended to vectors that describe the keypoints. These algorithms make
the vectors ready to be fed into classifiers. LDA [18] finds a linear combination of
features which selects and classifies objects or lists from analyzed objects. Naive
Bayes classifier is based on the conditional probability of classification which uses
the previous knowledge obtained. Stochastic Gradient Descent (SGD) is a classifica-
tion algorithm used to measure analytically the degree of relation two given amongst
values or images. Using K nearest neighbors [19] an object is classified based on the
majority of votes obtained it’s from its neighbours. These classifiers help to come to
a judgement with regards to recognition (Fig. 1).

Fig. 1 Diagrammatic illustration of the pipeline
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3.2 Locally Adaptive Regression Kernel (LARK)

Kernel Regression is a non-parametric technique to provide a general idea to the user
about the conditional expectation of a completely random variable. The LARK [1]
does not require any prior training to identify the image. In normal regression kernels,
we usually use spatial differences to weigh the input values. However, in the case
of locally adaptive regression kernels, we make use of not only spatial differences
but also the difference in data (pixel gradients). Locally adaptive regression kernels
denote and represent the local structure of an image taken into consideration. It helps
give us a measure of local pixel similarities.

In order to recreate a low quality image on a high resolution image there is a need
for a classic regression kernel, for denoising and deblurring the low quality image.
The kernel regression framework used in the LARK features is explained as follows:

yi = z(xi + εi xi ∈ ω, i = l . . . S) (1)

yi is a denoised sample measured at xi = [x1i , x2i ]T where Z(x) is the required
regression function, εi is an independently and identically distributed zero mean
noise. P is the total number of samples in an arbitrary “window” ω around a position
of interest X.

z(xi ) ≈ z(x) + (∇z(x))T (xi − x) + 1/2!(xi − x)T Hz(x)(xi − x) + · · · (2)

≈ β0 + βT
1 (xi − x)βT

2 vech
(
(xi − x)(xi − x)T

) + · · · (3)

where ∇ and H are gradient and Hessian operators, while vech is the half-
vectorization operator that lexicographically orders the lower triangular portion of
the symmetric matrix into a column stacked vector. β1 and β2 can be mathematically
defined as:

β1 =
[
∂z(x)

∂x1
,
∂z(x)

∂x2

]T

(4)

β2 = 1/2

[
∂2z(x)

∂x21
,
∂2z(x)

∂x22

]T

(5)

The vech operation can be illustrated as below,
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Locally adaptive regression kernel can be formulated as follows:

K (Ci , xi , x) = exp{−(xi − x)Cl(xi − x)} (6)

where,

Ci =
∑

K∈ω

[
z2x1(xk) zx1x(k)zx2x(k)

zx1x(k)zx2x(k) z2x2(xk)

]
(7)

Vectorized LARKs act as key points and descriptors for the image. Overlapping
patches are removed from the vectorized LARKs, hence giving a visual impression
of the generated LARKs. This in turn can be used to plot an image. Different set of
key points can be obtained from the pre-processed images by varying smoothness,
window size and sensitivity, each time resulting in a slightly different set of vectorized
version of LARKs. A unique set of LARKs is obtained every time the parameters are
tweaked. Significant variations are observed in the visual LARKs based on the input
image. These vectors are later exposed to some dimensionality reduction technique
to attain uniformity in processing (Fig. 2).

3.3 Higher-Order Generalized Singular Value Decomposition

The post-processing of these vectors of interest is used to conduct steps that will
reduce the complexity and increase the accuracy of the applied algorithm. We can-
not write a unique algorithm for each of the condition in which an image is taken,
thus, when we acquire an image, we tend to convert it into a form that would allow
a general algorithm to solve it. The acquired image is also noisy (inherent in a sig-
nal) and thus de-noising it is also a crucial step. Most pre-processing steps that are
implemented are either to reduce the noise, to reconstruct an image, to perform mor-
phological operations and to convert the image to binary/greyscale so that operations
can be easily implemented on the image. Here HOGSVD will help in reducing the
computational intensity and help in escalating the process of feature aggregation
(Fig. 3).

This algorithm provides a generalization of the matrix obtained by singular value
decomposition for matrices of order N > 2. It is represented as DiεRm×n each having
a full column rank. Every matrix can be split into components Di = Ui

∑
i V

T

where V similar in all its components is acquired from the eigensystem SV = V�

by acquiring the arithmetic mean S of all pairwise quotients of the matrices Ai AT
i ,

where i �= j. It’s eigen values satisfy the inequality λk ≥ 1. This equality is valid only
if its corresponding eigen vector Vk is a right basis vector of identical significance
in all the matrices Di and Dj where σi,k/σ j,k = 1 for all i and j, and its respective left
basis vector Ui,k is orthogonal to all other vectors in Ui for all i.

HOGSVD of these N matrices are:
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Fig. 2 a Sample image from database. bVisual LARKwith low window size. cVisual LARKwith
high sensitivity. d Visual LARK with low sensitivity

D1 = U1

∑

1

VT (8)

D2 = U2

∑

2

VT (9)

DN = UN

∑

N

VT (10)

Ai = DT
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Si j = 1

2
∗

(
Ai ∗ A−1

j + A j ∗ A−1
i

)
where i ! = j (11)
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N (N − 1)
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−1
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Fig. 3 Dimensionality reduction using HOGSVD

= 2

N (N − 1)

N∑

i=1

N∑

j>i

Sij (12)

SV = V� where S = (v1 . . . vn) and � = diag(lambdak).
Characteristics and applications of HOGSVD include:

1. HOGSVD is used to the extract the key information frommulti-way arrays. Data
analysis, recognition and synthesis problems are multilinear tensor problems
based on the fact that most data that is observed are results of several causal
factors of data formation, and arewell suited formulti-modal data tensor analysis.

2. Currently it is being used in signal processing and big data which includes
genomic signal processing.

3. Collation of HOSVD and SVD has been applied to detect real time events which
are obtained from complex data streams.

4. HOGSVDwas considered one of the best to be applied tomulti-viewdata analysis
andwas successfully applied to discover silico drug fromgene expression (Fig. 4).

Once the vectorizedLARKs are prepared for feature aggregation, the set of vectors
are processed using Bag of LARK features, LLC and Fischer vectors.
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Fig. 4 Overview of the process

3.4 Feature Aggregation

3.4.1 Bag of LARK Features

The bag of LARK features is a logical way of representing data while modelling
the dataset with various processing algorithms. It is a clustering algorithm which
compiles elements of similar features. However, these clustering algorithms cannot
work with the raw image which we consider as an input. It must be represented as a
kernel after multiplying the Kernel RBF—PCS with the locally adaptive regression
Kernel (LARK).

The bag of LARK features is a way of extracting a particular feature from a dataset
of input features present in a codebook. It is called as a “bag” of LARK features as
any information about the origin of the vector in the plain space is disregarded. It is
only concerned whether the particular variable occurs in the cluster present in the
code book.

In the Bag of LARK Features model which we have considered, the set of local
variables from the vectorized version of the locally adaptive regression kernel into
the final set of images is done in a succession of two steps: Clustering and Pooling.

1. Clustering: The clustering part in the original Bag of LARK Features model
is the formation of clusters consisting of similar vectors when the vectorized
model of the locally adaptive regression kernel is plotted. Since this low-level
combination has a large impact on performance, the results are reported to be over
40% similarity for images with pre-processing done and up to 90% similarity for
images which have not undergone any pre-processing.

2. Pooling: Once the clustering is finished and we have obtained a new locally
adaptive regression kernel with every vector replaced with the special vector
from the cluster, all images from the data set are plotted once more and the
same processes is repeated to obtain images with a higher level of accuracy. The
algorithm involving a combination of these two features is the Bag of LARK
features algorithm (Fig. 5).
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Fig. 5 Cluster Dendrogram from bag of LARK features

Using this algorithm, the user can extract images similar to the input image fed
from the given dataset. The Bag of LARK features is a novel scheme of image
classification using mid-level parameters such as codebooks and normalization. The
codebooks are the most significant parameters as they allow to group images with a
richer density to obtain more accurate results.

3.4.2 Locally Constrained Linear Coding (LLC)

The locally constrained linear coding is a clustering technique which is simple but
extremely effective. It can be used as a suitable replacement to the SPM approach
based on the bag-of-features (BoF) approach which requires non-linear classifiers to
achieve a good image classification performance.

The locally constrained linear coding algorithm constraints to project each of
the image descriptor which is the vectorized form of the locally adaptive regression
kernel (LARK) for our case into its local database system. The projected co-ordinate
vectors are then max-pooled to generate the final representation of the image.

LetX be a set ofDDimensional local descriptors extracted froman image. i.e. X =
[x1, x2, . . . , xn] ∈ R

D×N . Given a codebook with M entries from the image vectors
of locally adaptive regression kernel considered, B = [b1, b2, . . . , bm] ∈ R

D×M .
Different coding schemes convert each image descriptor into M-Dimensional code
to generate the final image representation.

The locally constrained linear coding incorporates the locality constraint instead
of the sparsity constraint which leads to several favourable properties. Specifically,
the LLC uses the following criteria:

min
n∑

i=0

∥∥xi − Bci x
2 + λ

∥∥di � Ci‖ (13)
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where � denotes element wise multiplication and di ∈ I RM is locality adaptor that
gives freedom for each basis vector.

The locally constrained linear coding algorithm is preferred as it provides a supe-
rior image classification performance compared to other clustering or classification
techniques.

Once we process the images using the Bag of LARK Features algorithm and
the Locally Constrained Linear Coding algorithms, we then teach the computer the
datasets which we have considered in the paper. The classification and identification
of the data input image is done using the proposed techniques.

3.4.3 Fischer Vectors

The Fisher Vector (FV) representation of images can be seen as an extension of the
popular bag-of-visual word (BOV). Both of them are based on an intermediate rep-
resentation, the visual vocabulary built in the low-level feature space. If a probability
density function (in our case a Gaussian Mixture Model) is used to model the visual
vocabulary, we can compute the gradient of the log likelihood with respect to the
parameters of themodel to represent an image. The FisherVector is the concatenation
of these partial derivatives and describes in which direction the parameters of the
model should be modified to best fit the data. This representation has the advantage
to give similar or even better classification performance than BOV obtained with
supervised visual vocabularies, being at the same time class independent.

We model the visual vocabulary with a Gaussian mixture model (GMM) where
each Gaussian corresponds to a visual word. Let λ = {

ωi , μi ,
∑

i, i = 1 . . . N
}
be

the set of parameters of p where ωi , μi ,
∑

i denote the weight, mean vector and
covariance matrix in the LARK.

p(x |λ) =
N∑

i=1

ωi pi (x |λ) =
N∑

i=1

ωi N
(
x |μi

∑
i
)

(14)

Let
{
xt , xt ,∈ R

D, t = 1 . . . T
}
be the set of local descriptors of the image, then

by using Baye’s formula we have.

γi (xt ) = ωi pi (x |λ)
∑N

j=1 ω j p j (x |λ)
(15)

In the BOV representation, the low-level descriptor is hence transformed into a
high level N-dimensional descriptor.

γt = [
γ1xt , γ2xt , . . . , γnxt ,

]
(16)

where
∑N

n=1 γnxt = 1 is an accumulation of these probabilities over low level
descriptors.
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3.5 Classifiers

3.5.1 Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) is basically an optimization algorithmwhich
is used to calculate analytically the degree of relation between two given data values
or images for the particular case that we have considered. It has a simple goal to
best estimate a target function (f) that maps input data (x) onto output variable (y).
It also describes the basic algorithm of all classification and regression problems. It
provides a process of optimization to find the set of coefficients that result in the best
estimate of the target file. Gradient descent is a slow technique which cannot often be
run on very large datasets because of the time constraints. In these cases, we use the
Stochastic Gradient Descent. Usually, every descent of the gradient algorithm has a
prediction for each instance in the dataset. This is not recommended as there maybe
millions of instances present. However, in case of the Stochastic Gradient Descent,
update to the coefficients is performed for each training instance rather than at the
end of the batch of the data instances. It utilises a single new sample data in each
iteration and processes the end data in a stream-like fashion. SGD optimization is
linearly scalable in time and the computational time can be sped up to two or three
times in magnitude.

Consider a supervised learningmodel,wherewe are given a set of samples (a, b) ∈
A × B taken from the probability distribution P(a, b). The conditional probability
represents the relation between the input variable a and the output variable b. The
difference between the estimated variable b̂ and the true variable b is represented by
a loss function l(b, b). Using SGD algorithm, we try to estimate the function f that
minimises this expected risk.

E( f ) =
∫

l( f (a), b)dP(a, b) = E[l( f {a), b)] (17)

Due to its incremental behaviour, SGD has features that support online adaptation
of classification functions and a classification model that is available at any given
point of time. This enables us to give complete solutions in cases where the time
constraints do not allow us to give a retraining of the classification model (Fig. 6).

3.5.2 Gaussian Naive Bayes

ANaive Bayes is a classifier with an inbuilt powerful algorithm for the classification
of millions of data files and records with only a limited number of attributes. The
Bayes theorem is an integral part of the Naive Bayes classification system. It is based
on conditional probability which is calculating the probability of an even occurring
based on prior knowledge. The formulae for calculating conditional probability can
be explained as follows:
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Fig. 6 Tuning alpha value in stochastic gradient descent using a plot

P(H |E) = P(E |H) ∗ P(H)

P(E)
(18)

where,

P(H) is the probability of the hypothesis H being true
P(E) is the probability of evidence.
P(E |H) is probability of evidence given that the hypothesis is true.
P(H |E) is probability of hypothesis given evidence is present.

The Naive Bayes classifier predicts the probabilities for each of the class that is
considered such as the probability of the given data or record belongs to a particular
class. Hence the class with the highest probability is considered as the most likely
class. When an image is processed and the features are extracted, the Naive Bayes
naturally assumes that all features are unrelated to each other. One feature being
present or absent does not affect any other feature in any way.

Gaussian Naive Bayes is a particular type of Naive Bayes algorithm that considers
all the attribute values to be continuous and an assumption is made that all the values
associatedwith each other are grouped into aNormalDistribution. The basic theorem
upon which the Gaussian Naive Bayes algorithm works is given as:

P(xi |y) = 1
√
2πσ 2

y

exp

(

−
(
xi − μy

)2

2σ 2
y

)

(19)
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The Gaussian Naive Bayes algorithm [17] is a fast and reliable algorithm that can
be used for Binary and Multiclass classification. It can also be easily trained on a
small dataset but is not recommended for a larger dataset due to the time constraints.
It can also deal with missing attributes in a given data file. Consider a set of image
files that we have taken as an input, here each image is represented by an individual
vector representation called as the Bag of LARK Features representation. We then fit
the Gaussian Naive Bayes algorithm by initially teaching a dataset to the computer
memory and then the target elements are classified by comparing them with the
elements implemented into the database.

3.5.3 Fischer Linear Discriminant Analysis

Fischer Linear Discriminant Analysis or commonly known as Linear Discriminant
Analysis [20] is a classification technique that is used in statistics, pattern recogni-
tion and machine learning to find a linear combination of features which selects or
classifies objects or lists from the analysed objects. The transformation is based on
maximizing mean square error between original data vectors and data vectors that
can be estimated from the reduced dimensionality vectors (Fig. 7).

The left plot shows the samples from two classes along with the histograms
resulting from the projection onto the line joining the class means. The right plot
shows the corresponding projection based on theFischer linear discriminant, showing
the greatly improved class separation.

Assume we have a set of D-dimensional samples X = {
x (1), x (2), . . . x (m)

}
, N1

of which belong to class C1 and N2 of which belong to class C2. We also assume the
mean vector of the two classes in X-space.

uk = 1

Nk

∑

i∈Ck

x (i) where k = 1, 2, . . . . (20)

Fig. 7 LDA on a custom dataset
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And in y-space:

ûk = 1

Nk

∑

i∈Ck

θT x (i) = θT uk where k = 1, 2, . . . (21)

One way to define a measure of separation between two classes is to choose the
distance between the projected means, which is in y-space, so the between class
variance is:

û2 − û1 = θT (u2 − u1) (22)

Also, we define the within–class variance for each class Ck is:

ŝ2k =
∑

iεCk

(
y(i) − ûk

)2
where k = 1, 2, . . . (23)

Then, we get the between-class variance and within-class variance; we can define
our objective function J (θ) as:

J (θ) =
(
û2 − û1

)

ŝ21 + ŝ22

2

(24)

If maximising the objective function J, we are looking for a projection where
examples from the class are projected very close to each other and at the same time,
the projected means are as farther apart as possible.

For the Multi-Classes Problems we see that the fisher’s LDA generalizes
gracefully. Assuming we still have a set of D-dimensional samples X ={
x (1), x (2), . . . x (m)

}
and there are totally C classes. Instead of one projection y as

mentioned we will seek (C − 1) projections where:

yi = θT
i X ⇒ y = TX (25)

We will use the scatters in space-x as follows:
Within-class scatter matrix:

SW =
C∑

i=1

Si where Si =
∑

i∈Ci

(
x (i)−ui

)(
xi − ui

)T
,

ui = 1

Ni

∑

i∈Ci

x (i) (26)
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Between-Class scatter matrix:

SB =
C∑

i=1

Ni (ui − u)(ui − u)T where u = 1

m

m∑

i=1

x (i) = 1

m

C∑

i=1

Niui (27)

Total scatter matrix:

ST = SB + SW (28)

3.5.4 K Nearest Neighbours

This is a non-parametric methodology to perform classification and regression. Input
comprises of k-nearest examples which are to be trained in feature space. Output is
either the one obtained by classification or regression. It works on the principle of
representative based learning where approximation on the function is discharged
provincially and the resulting calculation is often delayed in unit organisation. The
neighbours are obtained from a collection of objects where the category of the class,
the property and value of the object is familiar in nature.

The tuples (A, B),(A1, B1), …, (An, Bn) where the values are in Rd*{1, 2}, B
being the class identifier for A the equation is given by:

A

B
= r ∼ Pr where r = 1, 2, . . . (29)

Here Pr denotes a probability distribution.
By interchanging the tuples (A(1)B(1)), …, (A(n)B(n)) in a way that ||A{1} − a||

⇐ · · · ⇐||A{n} − a||.
The similarity of KNN is obtained by measuring the distance between two points

using distance metrics between data points. The Euclidean distance is given by the
equation:

d
(
x, x ′) = (

(
x1 − x ′

1

)2 + (
x2 − x ′

2

)2 + · · · + (
xn − x ′

n

)2
)
1
2 (30)

From the above graph the boundary between the red and blue interface becomes
smoother for increasing values of k. As the value of k tends to infinity it becomes
either blue or red in colour depending completely upon the larger proportion (Fig. 8).
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Fig. 8 KNN output for different values of k on a custom dataset

3.6 Datasets and Experimentation

To test the righteousness of the methodology for variations, corresponding datasets
were used. They helped in the testing and the analysis of the methodology that was
used in the paper.

3.6.1 ORL Faces

Formerly known as ‘The ORL Dataset of Faces’, the dataset holds images from the
early 1990s captured at the Cambridge University Computer Laboratory. It contains
ten unique images of 40 different individuals, subjected to various variations such
as the time of capture of the image, lighting of the images, facial expressions of the
individuals and other accessories worn by the individuals. Each of the images has
a standard 92 × 112 pixels with a set 256 grey levels per unit. The dataset was a
unique dataset as lots of different image variations were considered while taking the
images.
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Fig. 9 A sample ORL dataset

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers;
the loader will convert these to floating point values on the interval [0, 1], which
are easier to work with for many algorithms. The “target” for this database is an
integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an
unsupervised or semi-supervised perspective (Fig. 9).

3.6.2 Grimace

This unique dataset is an assembly of 18 different individuals designed and main-
tained by Dr. Libor Spacek. Grimace [20] has a main objective to focus on variations
between male and female candidates. The dataset contains 20 portraits of each of
the candidate considered at a resolution of 180 × 200 pixels. The background is
kept same throughout all the images with small uniform head scale variations. The
lighting changes are minimal and little to no variations in hairstyle of the considered
candidates (Fig. 10).

3.6.3 Faces95

Once again, a Brain Child [21] of Dr. Libor Spacek, this particular dataset contains
portraits of 72 different and distinct subjects. Sequences of 20 images were captured
while the subjectwas asked to step towards the camera after every snap thatwas taken.
This kind of a special dataset offers a huge head scale variation and minor variations
due to the difference in the depth of the shadows that is varied each time the subject
takes a step towards the camera. This results in a discrepancy in red background.
Noticeable changes in lighting occur due to the artificial lighting systems used.
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Fig. 10 A sample Grimace faces dataset

4 Results and Inference

The results obtained are presented below in a concise manner in the table that is
shown in Table 1.

Accuracy assessment is an important path of any classification project. It compares
an input image with another image that is present in the dataset which is classified
and gives an accurate report of the matching between the two images that have been
considered. Recall is also known as sensitivity in image processing and classification.
It is the fraction of relevant instances that have been taken or considered in the
total instances that are present in the dataset. It is basically a measure of relevance.
Following observations weremade from the obtained values during experimentation.

1. LARK needs a lot of variance in the data. Any preprocessing done to the input
image is likely to affect the result of the classification.

2. Some data sets like the FACE95 datasets have low precision/recall because they
do not have a lot of variations or variables when compared to the other datasets

3. The challenges that are offered by the datasets need to be handled better and all
the variables need to be considered. Only then we will be able to achieve the
precision and accuracy that we require.

Out of three feature aggregation techniques LLC always yielded poor results
compared to other two techniques. We can deduce that LLC is not a suitable pair for
clustering of LARK vectors. Bag of LARK features showed remarkable results on
several iterations for all the datasets with an aggregate of over 15% better accuracy
than other techniques. It was clearly observed that HOGSVD as a post processing
step did not help much in increasing the accuracy. On an average all the combina-
tions of aggregation mechanism and classifiers yielded 10% higher accuracy without
HOGSVD. This proves that the dimensionality reduction does lead to loss of fea-
tures and LARKs give high covariance values in all the dimensions. The precision
as well as recall was exceptionally high for grimace dataset which proves that the
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pipeline can handle changes in facial expressions very well. The results for ORL
dataset was just above average for any combination. This reflects that the pipeline
does not perform well when the region of interest shift is small or the distortions in
the background are very high. There is a scope making the pipeline completely scale
and orientation invariant as ORL does offer head scale and orientation invariance
to certain extent. Out of all the classifiers LDA performed outstanding with every
combination the pipeline has to offer.

5 Conclusion and Future Work

Locally Adaptive Regression Kernels have proven to be capable descriptors. It can be
concluded that LARKdescriptors are sparse in nature and are suffice themselves.Any
form of processing to achieve dimensionality reduction will lead to degeneration of
features and degrade the performance of the system. They show little to no variance
on repeated trails and give high accuracy when paired with different classifiers.
From the experimentation, it is deduced that any form of pre-processing or post-
processing in the form of dimensionality reduction or denoising does lead to loss
of features and declined accuracy. The methodology requires feature rich images
and loss of data in any form is not tolerated by the mechanism. Feature aggregation
helped us in clustering the vectors into groups, similar to our interests. Since the
regional descriptors were procured from the constructed clusters vectors using these
aggregated vectors for classification yielded better results.

A comparative study performed has shown that Bag of LARK features and
stochastic gradient descent comprise the best combination in the pipeline used. It
was observed that LLC delivered lesser accuracy when paired with Higher-Order
generalized singular value decomposition. Grimace dataset posed least challenges
to the system and consistently provided very good results on several iterations of the
mechanism. The other classifiers performed up to the mark on faces95, while ORL
dataset delivered harder set of challenges.

The need for a better algorithm with respect to pre-processing the images is
of high prominence. A suitable algorithm which denoises the image without the
loss of significant features is essential. The model looks promising and can deliver
better results if worked on. There is scope for better classifiers as well. Future work
includes pairing these post-processed LARKs with artificial neural networks for
better classification, designing an algorithm for pre-processing the images before
using locally adaptive kernels on them. The encoding system which aggregates the
features can elevate the rightness if worked on.
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