
Dependable Person Recognition
by Means of Local Descriptors
of Dynamic Facial Features

Aniello Castiglione1 , Giampiero Grazioli2, Simone Iengo2, Michele Nappi2 ,
and Stefano Ricciardi3(B)

1 Department of Science and Technology, University of Naples Parthenope,
Naples, Italy

castiglione@ieee.org, castiglione@acm.org
2 Department of Computer Science, University of Salerno, Fisciano, Italy

{g.grazioli,s.iengo1}@studenti.unisa.it, mnappi@unisa.it
3 Department of Biosciences, University of Molise, Campobasso, Italy

stefano.ricciardi@unimol.it

Abstract. In this work, a complementary approach that adds a dynamic
component to face biometrics is proposed. The dynamic appearance and
the time-dependent local features characterizing the face of an individ-
ual during speech utterance are indeed considered in their spatial and
temporal components. Ultimately, the aim is to capture, represent and
compare facial patterns related to speech utterance, to improve biometric
system dependability thanks to an intrinsically difficult to forge descrip-
tor. The proposed approach applies the concept of dynamic texture to
the domain of person identification through dynamic facial patterns mod-
eled by means of the Volume Local Binary Pattern (VLBP) descriptor,
which effectively combines local features and movement. To the aim of
improving the efficiency of this technique, only the occurrences of the
Local Binary Patterns related to Three Orthogonal Planes (LBP-TOP)
have been considered. A deep feed forward network has been trained
and optimized on video samples from the XM2VTS database concerning
utterance of a given sentence. The results obtained in the recognition
task performed on test video sequences confirm that the proposed app-
roach features state-of-the-art performances with regard to accuracy and
robustness of the identification.

Keywords: Biometrics · Face recognition · Image analysis · Face
biometrics · Dependability

1 Introduction

Dependability of biometric systems is a key aspect in their worldwide diffusion
and everyday usage, regardless of the specific application they are supposed
to improve, and it is tightly related to the overall reliability in the process of
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accessing a given resource or a given place. Nevertheless, it is worth noting that
while a given biometric system could perform well in terms of accuracy and
robustness (i.e. featuring low False Acceptance Rate and high False Rejection
Rate), this does not automatically means it is dependable [24]. Dependability of
a biometric system, indeed, implies much more than a high performance of the
processing pipelines (though the latter is a fundamental requirement), since it
involves other aspects such as the reliability of the capture process, the capabil-
ity to cope with uncontrolled conditions and, not secondarily, the resistance to
attacks from malicious users.

In this work we focus on this last aspect of the dependability of a biometric
system, with particular regard to face biometrics which represents one of the
most diffused way to perform person authentication and identification in a con-
tactless and natural way. The idea inspiring the proposed approach is to increase
the level of resistance of face biometrics to presentation attacks [4], by exploiting
face dynamics related to utterance of a given sentence. These dynamic facial fea-
tures are subject dependent and represent a sort of motion signature involving
much greater difficulty in counterfeiting it, compared to static face representa-
tions. To this aim, video capture of face changes during sentence utterance (see
Fig. 1) are used to extract dynamic local features from face lower half, by means
of the LBP-TOP variant of the Volume Local Binary Pattern (VLBP) method.
These spatial-temporal features are then used to train a deep feed-forward neural
network and subsequently to find correspondences between the probe descriptor
and the available gallery. The experiments conducted on audiovisual samples of
the public XM2VTS dataset show state-of-the-art recognition accuracy exceed-
ing 99%, along with a high robustness to intra-class variations (the way sentence
is pronounced by the same subject) and good independence from the choice of
the sentence, confirming the advantages of using inherently dependable dynamic
facial features.

The rest of this paper is organized as follows: Sect. 2 resumes a selection
of works related to the present study; Sect. 3 presents in detail the proposed
approach to inherently safer face biometrics; Sect. 4 describes the results from the
experiments carried out. Finally, Sect. 5 draws conclusions, along with directions
for future research.

2 Related Works

Our proposal is aimed at extracting, representing and matching dynamic facial
features related to the way a sentence is pronounced. Consequently, besides face
recognition, related works comprise studies and papers dealing with different
interconnected topics, typically based on lip-motion representation and analysis
for audio-visual speech or speaker recognition [8,10,25,30]. Lip feature extrac-
tion from human image is useful in several applications. First systems exploited
only audio information. Later, visual parts have been also used, either combined
with audio or individually. Mouth regions in lip reading domains can typically
be represented in two ways: grayscale pixel-level information or high level visual
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Fig. 1. A sequence of frames showing the effects of uttering a sentence on the lower face
region. Regions comprised between upper and lower lip, nose-base and upper-lip, chin
contour and mouth are all affected to a variable degree depending on both anatomical
characteristics and specific speaking habits.

information (geometry, like width, height, surface and mouth opening). In [18]
a lip feature extraction algorithm based on Local Binary Patterns (LBP) and
Stacked Sparse Autoencoders (SSAE) is presented. According to this method,
LBP texture features are extracted from lip images. Then high-level features
are extracted using SSAE, which adopts an unsupervised learning to discrimi-
nate high-level features. As final step, the method uses fine-tuning in order to
improve overall performance. This method features a wide applicability along
with high classification accuracy. In [20] the authors propose a spatio-temporal
approach to track lip movements, learning from visemes of the French language.
It implements three modules. First, a lips tracking system through which lips are
segmented using both color and geometric information, since mouth has differ-
ent color from face skin. Then, a second processing stage implements lip motion
tracking by using a particle filter. Finally, visual information are extracted and
classified, to allow the recognition of the pronounced viseme.

On a parallel line of research, the work described in [3] can continuously clas-
sify if a person is speaking in a video sequence based on lip movement. Firstly,
head area is segmented; then, a skin detection technique is applied in order to
segment the face area. Next, based on both geometry and color as in [20], the
mouth area in each frame is further segmented. A first rough mouth opening
detection is based on the fact that the opening area has a darker gray level than
its average. Subsequently, only frequency components between 1 Hz to 10 Hz of
the detected feature signal are considered to classify the speaking activity by
comparing with a threshold. Another method to detect silence sections is pro-
posed in [27]. In this case, the author analyzes geometric parameters such as lip
contour’s time trajectory, namely interolabial width and height. This method
achieved 80% of correct silence detection and 5% of false one. One of the first
methods for automated features extraction from lips motion has been proposed
in [7] as a potentially valuable resource to improve the resistance of audiovi-
sual authentication systems to replay attacks by means of a liveness-verification
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test [22]. Following works [11] and [12], have more formally described the dynamic
characteristics of lip-motion which account for its advantage as a secure biomet-
ric descriptor. In these approaches the motion component of the captured image
sequence is extracted from orientation maps and is then combined to simulta-
neously extracted speech features to achieve a higher user verification precision.
Speaker recognition by lip-motion and speech-reading is also proposed in [5],
where a specific experiment based on Hidden Markov Model (HMM) is per-
formed to assess the saliency of lips dynamics. In [26] a statistical approach for
lip activity detection and speaker detection in videos is proposed. The main idea
is to apply signal detection techniques to a feature extracted from mouth region
intensities.

Neural Networks (NNs) have been extensively used in speech recognition
as feature extractors in HMM-based speech recognizers [15]. Linear short-term-
memory networks (LSTMs) started to replace larger parts of the speech process-
ing system by HMMs. An end-to-end neural network system [13] outperformed
HMM-based systems, achieving the best error (16%) on the large Switchboard
Hub5’00 speech recognition benchmark [14]. HMM integrated with a multi-
boosted learning approach is also exploited by the authors of [17] to devise
a comprehensive lip-password enabled speaker verification system. Local spatio-
temporal descriptors based on LBP-TOP and a support-vector-machine (SVM)
classifier are proposed in [32], while in [19] user authentication through silent
utterance of a pass-phrase is approached as a high dimensional time series match-
ing problem. The prospective anti-spoofing advantage of facial dynamics have
been first explored in [28] through a combination of Dynamic Mode Decomposi-
tion algorithm, LBP and SVM. More recently, a mobile-phone based approach
to lip-motion enabled user verification has been proposed in [31] by means of
a specialized active shape model algorithm and Gaussian mixture model of lip
motion.

With regard to the various descriptors and methods cited above, the proposed
approach exploits dynamic facial features not restricted to the sole lips region,
but including all the surrounding regions of the lower portion of the face at both
the appearance and the motion level, thus resulting in a more discriminant and
robust physical/behavioral biometrics, providing a more dependable an accurate
recognition performance.

3 Method Description

The rationale of analyzing dynamic local features is motivated by the assumption
that the motion patterns of points belonging to those face regions more directly
affected during utterance of a given sentence can effectively characterize an indi-
vidual. In this analysis, we decided to focus only on the visual aspect of speech
without considering the audio component, since we are interested in a unimodal
system. According to this approach, the succession of frames captured during
utterance, contains highly discriminant spatial and temporal information [21].
We are interested not only in the information related to face texture, but also
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Fig. 2. Schematic view of the overall processing pipelines for the proposed method.

in their changes over time within the frames sequence, producing dynamic tex-
tures. As proved by numerous works in the literature [1,2,6,9], indeed, dynamic
textures analysis provides the following advantages:

– local texture analysis capturing spatial and temporal information;
– features robust to image transformations;
– computational simplicity;
– good robustness to lighting variation;
– multi-level resolution analysis.

The overall processing pipeline of the proposed method consists of several
stages, from subject acquisition to face detection and normalization, and then
to dynamic features extraction and recognition, as depicted in Fig. 2. Subject
acquisition involves the capture of a video sequence that has to be normalized
with regard to the number of frames by means of a re-sampling process aimed at
obtaining a clip whose length is consistent to the length of any gallery samples.
Each frame of the sequence is therefore analyzed by a face detector [29] that
allows to identify the image region in which the subject’s face is present. Subse-
quently, up to 59 facial features are found on the face crop previously detected
by means of an efficient landmarks predictor based on [16]. By exploiting these
numbered landmarks, the frame is cropped again retaining only the lower face
region comprised below the ideal line connecting landmark #2 to landmark #12
(refer to Fig. 3). Finally, the video segments thus obtained are converted into
gray-scale and spatially resampled to a resolution of 200× 200 pixels. At the
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lowest level, the proposed approach is based on the Local Binary Pattern [23],
one of the most used and reliable texture descriptor.

Fig. 3. Facial landmarks considered for facial ROI cropping.

The LBP descriptor replaces the value of each pixel of the image with a
decimal value, which is called LBP code and encodes the local structure of the
pixel’s neighborhood. This is achieved starting from a kernel (central) pixel and
considering a serie of neighboring points; for each of them a thresholding is
performed with respect to the central pixel value. Concatenating the 0 and 1,
calculated through the thresholding operation, a binary value is obtained (see
Fig. 4). This value corresponds to the LBP code of that neighborhood. For each
block on which LBP is applied, the LBP histogram (i.e. the occurrence of the
LBP code in that specific area) is then computed.

The extension to the temporal domain of this simple local descriptor, is
known as Volume Local Binary Pattern or VLBP and is particularly suited to
describe dynamic-textures such as those resulting by the aforementioned acqui-
sition process. The VLBP descriptor computes the LBP value for each pixel
belonging to an area of the space-time volume defined by the dynamic texture,
and for each area calculates the histogram, or the occurrence of the LBP codes.
To this aim each frame has to be break down into blocks, through a grid. In
the present work, we found an adequate partitioning value by using a 4× 4
grid applied to the lower face crops resulting by previously described normal-
ization process, resulting in 16 different areas, each of the size of 50 px. The
rationale behind this breakdown was preserving the dynamic characteristics for
each block. The number of neighboring points that are considered for each pixel
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kernel determines the number of bits used to represent the LBP code, there-
fore the width of the histogram. The latter corresponds to the feature vector
relative to the block to which it belongs. The dimensions on which it is applied
are X and Y (referring to the spatial domain of each frame) and Z (referring to
the frame number in a time sequence) and allow to analyze the local structure
not only spatially, but also in its temporal evolution. For each pixel the VLBP
code is calculated considering not only the spatial neighborhood, but also the
temporal one (see Fig. 5). Consequently, the histogram computed for each block
appears to be considerably larger than the histogram resulting from classic LBP,
since it takes into consideration more pixels around the central one, leading to
a considerable increase in feature vector dimension. To the aim of reducing the
computational complexity of the VLBP technique we used a simpler version of
it referred as Local Binary Pattern on Three Orthogonal Planes (LBP-TOP),
which considers only 3 orthogonal planes for analyzing the local features and is
extensively described in [33].

Fig. 4. LBP pattern generation process.

The (LBP-TOP) technique reduces the number of possible patterns by 2(3p
+ 2) (when considering only 3 planes in the Z dimension) to 3 * 2p, where p
represents the number of neighboring points. In this work 36 spaced points were
used on a circumference of radius 6, centered on the pixel of interest. The patterns
thus obtained are then scaled into integers that can be represented on 8 bits. The
binary patterns obtained are extracted from the XY, XZ and YZ planes. The
histograms obtained from the three planes are linked together obtaining a single
vector of features (Fig. 6). An extension of the original operator is the so-called
“uniform pattern”, which can be useful to further reduce the length of the feature
vector without losing relevant information. Some binary patterns, indeed, occur
more often than others in image textures. An LBP code is said to be uniform
when it contains only binary patterns that have at most two transitions 0–1 or
1–0. The histogram relative to an LBP technique with uniform pattern will have
a distinct bin for each uniform pattern, while it will have a single bin for all
non-uniform patterns. In the specific case, considering the value of LBP code
expressed on 8 pixels (with possible values between 0 and 255), there are 58
different uniform patterns and therefore the final histogram will consist of 59
bins, where the 59th represents the “other” class.

The resulting feature vector was used to train a fully-connected deep feed-
forward (DFFN) neural network schematically depicted in Fig. 7. This network
architecture has been preferred over the popular Convolutional Neural Network
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(CNN) which typically results much more computationally expensive, requiring
a better hardware and more time for training. The number of hidden layers was
determined experimentally and the final configuration featuring three hidden
levels was the most effective and efficient found. The network provides in output
a percentage of probability of belonging to each class, for each sample shown
in the testing phase. The class with the highest percentage is then selected,
without the use of particular thresholds. The choice of parameters, activation
functions and architecture was determined on an experimental basis; a number
of tests was therefore performed, modifying the combinations of these variables.
It is worth noting that fitting too much parameters to a dataset can led to bad
performance on real application or challenging tests, different to training ones.
The choice of a good feature representation helped us to reduce this risk to a
minimum. However, it is practically impossible to make an absolutely generic
model because it would need a infinite dataset. To this regard our approach used
processing and features representation as most general as possible, with the ReLu
activation function chosen for the input layer, the sigmoid activation function
for the three hidden layers and the softmax for the output layer. The number
of input nodes was set equal to the size of the feature vector (19824), while the
number of output node is determined by the number of possible subjects (295).

Fig. 5. VLBP descriptor generation.

The network was implemented through the Keras framework with Tensorflow
backend; the optimizer and the evaluation metric used are respectively SGD
(Stochastic Descending Gradient) and accuracy. All the other parameters of the
network, such as the number of epochs, batch size, learning rate, momentum,
decay and dropout have been optimized experimentally. The best performing
configuration resulted to be the following: epochs = 20, batch-size = 32, learning-
rate = 0.1, decay = 0.000001, momentum = 0.

4 Experiments

The experiments described below were conducted the on XM2VTS public
database, which is a reference dataset for audiovisual speaker recognition and lip-
based speech/speaker recognition. The test-bed was a Fujitsu Celsius machine,
featuring an Intel Xeon Octa-Core 2.10 GHz processor and 128 GB of RAM.
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Fig. 6. LBP-TOP descriptor generation.

XM2VTS comprises records of 295 subjects, characterized by a great inter-class
variability, both from a demographic and an ethnic point of view. Furthermore,
the variability of the same subject in different sessions, such as the growth of
beard, presence or absence of the glasses and the change of the hairstyle, also
provides wide intra-class variations (see Fig. 8). The dataset, acquired in a con-
trolled environment, is composed of video clips in which each subject pronounces
different sentences.

Fig. 7. Network layout of the fully connected Deep Feed-Forward Network architecture
used in the proposed method.
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More in detail, the dataset is composed of 3 sections: the first contains 4
sessions in which the user pronounces the phrase “Joe took father’s green shoe
bench out”; the second contains the rotation of the face from left to right (not
used in this work); finally in the third there are 4 sessions, for each of which the
subjects repeat twice the sequences “zero one two three four five size seven eight
nine” and “five zero six nine two eight one three seven four” interspersed with a
small pause. The acquisition of 295 subjects has been carried out at a resolution
of 720 * 576 at 25 fps.

As mentioned in Sect. 3, several pre-processing operations were required for
the use of the video clips. In the first instance, the two 2 sequences contained
for each session were separated into the same video file. The separation was
achieved by dividing the video in half; although not very refined, this solution
has led to optimal results. For each segment thus obtained, the number of frames
was calculated, determining the minimum (84 frames) and the maximum (344
frames). Utterance speed is comprehensibly different for each subject according
to several factors. One of them depends on the type of sentence to be pronounced,
since numbering the digits from zero to nine is simple and natural for everyone
as it is mnemonic. For the other sequences, however, the individual needs to
learn the order of the digits, and of the words, to then pronounce them quickly.
In the latter case, we notice a strong temporal difference in the videos of the
different sessions. To this variability is added a further variability due to the
characteristic speech speed of every subject. Therefore a resampling operation
has been performed in order to uniform the feature vector.

The network was trained on the ordered sequence and three experiments
were then conducted to evaluate the robustness of the LBP-TOP descriptor in
identifying the subjects. In the first experiment the sequence “zero one two three
four five size seven eight nine” was used, dividing it into 80–20% respectively for
the train and for the test.

The ROC (Fig. 9) and FAR/FRR (Fig. 10) curves, graphically describe the
behavior of the system. The robustness of the proposed approach is confirmed by
the EER value of 0.03 and the CMC (Fig. 11), which is 99.8% already at rank-0,
reaching 100% at rank-2. This implies a correct classification for almost all the
samples, with a very high probability of assignment as shown by the FAR/FRR
curve. For the CMC curve only the first 6 of 295 rank have been reported in
order to better appreciate the step between rank 0 and 2.

Afterwards, the network was tested on the unordered sequence (“five zero
six nine two eight one three seven four”) on which she was not trained. In this
test the percentage dropped to 98.9%. Finally, to verify the robustness of the
model, for the third test, the non-numerical sequence “Joe took fathers green
shoe out” was used in the test phase. The accuracy rate was 98.4%. Table 1 report
a summary of the results obtained for the three types of sentences pronounced by
the subjects in the database. It is worth to note that if a sequence of separated
images of the same persons was used rather than a video recording the actual
face motion due to speech, the recognition performance would be very low even
for a genuine subject. This is directly due to the kind of motion information the
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Fig. 8. Inter-class and intra-class variability in XM2VTS dataset.

method is able to represent, which consists in organized changes of the lower
face region instead than a generic difference between a sequence of frames.

Fig. 9. ROC curve for the proposed method.

The proposed method’s behavior, depicted by the results of the experiments,
confirms its intrinsic reliability in applicative contexts where the risk of coun-
terfeiting is potentially high. The face dynamic signature provided, indeed, is
much more difficult to be forged than any conventional static face descriptor. At
the same time, the low Equal Error Rate make a biometric system based on the
proposed descriptor suited to medium to high security applications.
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Fig. 10. FAR/FRR curve and EER for the proposed method.

Fig. 11. CMC curve for the proposed method.
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Table 1. Resume of the experiments.

5 Conclusions

We presented a method for person recognition exploiting LBP-TOP based rep-
resentation of dynamic facial features to provide increased dependability in face
biometrics thanks to the intrinsic difficulty in forging such a time-dependent
descriptor. The proposed deep feed forward network, trained and tested on the
audiovisual speech samples from XM2VTS database, delivered a 99.8% recog-
nition rate dropping to 98.4% in challenging testing conditions, achieving in
both cases state-of-the-art performance level. Future research will concern more
challenging experiments including other public datasets and a direct comparison
with the best methods available in literature. An extension of this work could
also include the audio component of the speech samples for implementing a bi-
modal biometric system, to further improve both accuracy and reliability of the
proposed method.
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