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Abstract Cognitive Radio (CR) based Vehicular Ad hoc Network (VANET) or
CR-VANET has become a very promising research domain. VANET is used to
reduce road accidents, traffic congestion, and to provide other user experiences such
as uninterrupted entertainment services. CR, on the other hand, solves bandwidth
scarcity issue of VANET. For the high-speed mobility of the vehicles, the cognitive
process of CR faces several challenges. Machine Learning (ML) has arrived as an
integral tool to handle such challenges. Q-learning algorithm, a member of
Reinforcement Learning (RL), which is a type of ML, is the most suitable for
CR-VANET as it does not need any prior environment model and training dataset.
But the problem is that it takes a longer time for learning purposes. In this paper, a
dynamic ML framework is proposed. Case-based reasoning learning, cooperative
spectrum sensing, teacher-student transfer learning approach will be aligned with
the Q-learning for the faster convergence regarding the spectrum sensing issues in
CR-VANET. The framework will accelerate the learning of the vehicles, and that is
very important for the energy-efficient and real-life VANET implementation.
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1 Introduction

Every year, around 1.25 million people die from the road accidents [1] and the
resulting congestion incurs a huge amount of money (In the U.S. alone, congestion
cost $305 billion in 2017 [2]). VANET has emerged as a solution to these alarming
situations. For implementing VANET, a gigantic amount of real-time data (such as
of GPS (Global Positioning System), radar, camera, LIDAR (Light Detection and
Ranging), Sonar, sensors data), and infotainment data will be exchanged in the
coming years. According to Intel, each smart vehicle is going to generate and
consume approximately 4 terabytes of data in on average per day driving by
2020 [3].

IEEE 802.11p or IEEE 1609, also known as Dedicated Short-Range
Communications (DSRC) standard is reserved for the vehicular networks with
75 MHz bandwidth in the frequency range of 5.85 to 5.925 GHz. This allocated
bandwidth is not sufficient enough to accommodate such a massive amount of data
[4]. On the other hand, licensed bandwidths or frequencies such as TV band or
military radio band are not properly utilized [5]. The report shows that more than
60% bandwidth of below 6 GHz spectrum is not being used or not properly utilized
[6]. CR, the concept coined by Mitola & Maguire [7], has emerged as the solution
in the bandwidth scarcity problem. CR users are allowed to sense and use these
underutilized licensed channels dynamically in an opportunistic manner, as well as
for spectrum mobility that allows users to vacate licensed channels re-occupied by
licensed users (primary users or PUs). The latency for the safety message exchange
must be lower than 100 ms, but in general, the cognitive processes takes around 2 s
time [8]. Moreover, a huge amount of network overhead is transmitted due to such
cognitive processes and unnecessary repetitive computational tasks have to be
performed. These will lead to unnecessary energy consumption.

ML can be applied in CR-VANET to make it more intelligent to adapt the
uncertain radio environment to solve those issues. It can ensure faster decision,
reliability, energy efficiency, and enhanced QoS [9]. There are three main categories
of ML techniques: supervised learning, unsupervised learning, and RL. Other
learning methods such as semi-supervised learning, online learning, and transfer
learning are the variation of these three categories [10]. Q-learning, a type of among
several RL algorithms, is found as the most suitable for the CR-VANET scenario
due to its adaptability with the dynamic environment, model-free requirement, and
working capability without training dataset [11]. Here, agents face an unpredictable
environment by selecting appropriate actions by using mathematical approaches
and receiving rewards consequently. The main issue faced by a Q-learning agent is
that it takes longer learning phases, i.e. a huge number of iterations are required for
the convergence. This is due to its learning itself all alone. In this paper, a dynamic
learning framework has been proposed. The objective of this framework is to
reduce the overall learning time of the vehicles about the vacant spectrums on the
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surrounded environment. The idea of teacher-student approach (a type of transfer
learning which is a feature of ML) along with case-based reasoning (CBR) will
accelerate the learning time of Q-learning. In a teacher-student approach, an already
learned vehicle (teacher) will share its own sensing information to the learning
vehicle (student) [12]. CBR, another type of ML, tries to solve new problems by
reusing past solutions that were used to solve similar problems. This cognitive
process uses prior stored ‘case’ (results and experience) to fit a new similar problem
situation [8].

The remainder of this paper is organized as follows: Sect. 2 discusses the related
works, Sect. 3 provides the overview and the problem formulation of Q-learning,
Sect. 4 discusses the proposed framework, Sect. 5 describes the performance
evaluation methods and parameters, and finally, Sect. 6 concludes the paper.

2 Related Works

Several works were done in the fields of spectrum sensing in CR-VANETs by using
Q-learning. In [13], the author proposed architecture by using Q-learning and CBR
for VANET to enable automatic learning of the radio environment by the vehicles.
The authors in [14] showed that by using this learning, the total energy con-
sumption due to the spectrum sensing can be reduced to only about 1.72% com-
pared to the traditional spectrum sensing method. In [15], the authors used deep
Q-learning for designing an optimal data transmission scheduling scheme in
CR-VANET to minimize transmission costs. They used cache memory for taking
the decision. Their scheme’s convergence took place after 13,000 to 20,000 itera-
tions at 28 m/s vehicle speed. Morozs et al. in [16] proposed a scheme, which
integrates distributed Q-learning and CBR aimed to facilitate a number of learning
processes running in parallel. They got the best result after 1,000,000 iterations. RL
method was considered for the CR network with RF energy harvesting in [17].
Their proposed scheme was for the optimum switching between the transmit mode,
energy harvesting mode, and receiving mode of the CR users. They got average
throughput converges to 0.68 after 1,000,000 iterations.

The above-mentioned works found very good performance in spectrum sensing
in terms of higher probability of PUs detection with a lower probability of false
alarm, but with a very slow convergence rate. They needed a huge number of
iteration to learn the environment optimally. For the practical point of view, these
learning times are quite infeasible. Authors in [18] gave some insights about the
way to accelerate Q-learning time, though it was theoretical and was not considered
the aspects of CR-VANET. This paper is targeted to reduce such learning time (i.e.
make the convergence faster).
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3 Q-Learning Algorithm

Q-learning, the most used type of RL, is an on-line algorithm, which enables an
agent to learn in an interactive manner with its surrounding environment. The main
aim of Q-learning is to exploit the long-term rewards receiving in the future. It does
not require any environment model and dataset for the training. In Q-learning, an
agent or the learner (say a CR based vehicle) is interacting with the radio envi-
ronment (comprising everything outside the agent).

From Fig. 1, it is shown that, at each step t, the agent observes the state of its
surrounding environment st �S, where S is a set of possible states. Based on
knowledge gained at st, the agent selects an action at �A, where A is a set of actions.
At the next step t + 1, the environment transits to a new state st+1 and the agent gets
a reward of rt. Based on the reward table, the agent chooses the next action (it may
be beneficial or may be harmful) and then they update a new value called Q-value
mapping of state-action pairs Q (st, at). Several Q-values are stored in the Q-table.
For example, in CR-VANET scenario, an action might be choosing any spectrum
for accessing, the state might be the location and time of the vehicle. If the sensed
spectrum faces interferences by the PUs, the agent would get a negative reward,
otherwise gets a positive reward.

After every action, the agent gets the reward and updates its Q-value based on
Eq. (1).

Fig. 1 Q-learning approach
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Qnewðstate; actionÞ  ð1� aÞQoldðstate; actionÞ
þ a rewardþ cmaxQoldðnext state; all actionsÞð Þ

* Qtþ 1ðst; atÞ  ð1� aÞQtðst; atÞþ a rtþ 1ðstþ 1; atÞþ cmax
a2A

Qtðstþ 1; aÞ
� �

ð1Þ

Here,

a: The learning rate, which determines how much the new Q-value overrides the
previous Q-value. a ranges from 0 to 1. The higher value of a means the higher
speed of the learning process (may lead to faster convergence), but sometimes
stability is lost and failed to converge. The lower the value of a, smoother the
learning process but slower rate of convergence.
c: The discount factor, which implies how much importance is given to future
rewards.
r: The reward received by the agent. The short-term reward is called the delayed
reward and the future reward is called the discounted reward.

There are two policies for taking action. When the agent chooses for exploitation
(uses existing knowledge to select the best action), it uses an optimal policy and
when it chooses for exploration (needs more knowledge), it uses a random policy.
The agent receives positive delayed rewards when it selects a proper action for a
particular state. Positive value increases and the respective Q-value, and vice versa
[19]. Therefore, the target of Q-learning is to get an optimal policy (agent behavior)
p: S ! A, which can maximize the reward at state S [20].

The optimal Q-value for a particular state can be written as:

Vp� ðstÞ ¼ max
a2A

Qtðst; aÞ ð2Þ

Therefore, the optimal policy can be written as:

p�ðstÞ ¼ argmax
a2A

Qtðst; aÞ ð3Þ

From the above discussions, it is clear that the convergence rate depends on the
quality of Q-table and the value of a and c. The more reward an agent accumulated,
the better Q-table would get, and therefore, the convergence will be faster. But the
issue is Q-learning algorithm is learning totally by itself, not taking any helps from
others. For better performance and convergence, it has to face the tradeoff between
exploration and exploitation. More exploration provides better decision (sacrifices
immediate rewards hoping for more future rewards), but slower convergence, on
the other hand, quick exploitation might provide faster convergence, but poorer
performance. If the Q-table is updated with more rewarded state-action pairs,
overall convergence would be faster.
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4 Proposed Dynamic Machine Learning Framework

In this paper, a dynamic ML framework that includes Q-learning and CBR has
been developed. Teacher-student transfer learning approach has also been used in
the framework. Here, a learned vehicle (teacher) shares its own sensing information
to the learning vehicle (student) [12]. The vehicle chooses the best ML based on the
proposed framework. Suppose, if the user chooses the same known path at the same
time of the day, the CBR would be used, and if the environment is unknown to the
CBR-database, Q-learning method would be used.

In this proposed theme, like teacher-student approach in [12], a learned vehicle,
for example, might have the best action-state pair or best Q(st, at). If the learning
vehicle is getting Q value from this learned vehicle, it does not need additional
exploration for that state. For example, in Fig. 2, a learning car (A) has broadcasted
a request for the spectrum sensing information to the neighbor vehicles. A is in say
stk state, on the request it will include this state value. A teacher (say B) has the
best-rewarded information regarding state stk, so it will then forward Q(stk, atk) as
the response to A. Another car (C) say, for example, does not have information
regarding the stk state. So, it would not respond. After getting the Q(stk, atk) from B,
the car A will keep this Q value to its Q-table. So, in future, when car A is in the
same state (stk), it would not go for exploration state. In this way, by cooperation, a
learning vehicle can increase its learning process. Figure 3 shows the proposed
framework. This framework will provide faster convergence and reduce the overall
sensing time, hence, provides the energy efficient and improved QoS CR-VANET.
This framework is also described in Algorithm 1 and the Q-learning algorithm in
Algorithm 2. Here, when a vehicle selects the destination and starts its journey, it
will search its own database whether the route (the road) is already known or
unknown. The ith vacant spectrum information contains the location (li), time (ti),
and channel (ci). If the information is found known by the searching database, it
retrieves spectrum information from the database (learned previously) and uses that
vacant channel.

Fig. 2 Teacher-student transfer learning approach
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If the route is found unknown, the vehicle will look for whether the DSRC’s
common control channel (CCH) is available or not. If it’s found available, it
broadcasts a query message to its neighbor vehicles for learning the free channel of
that route on that time. If the vehicle gets the responses from several vehicles, it will
use any suitable combining method (like maximal-ratio combining or MRC) to
choose the best channel. It will then test whether the channel is really free or not by
using any detection method. If it finds interference-free, it will use that channel and
stores this information (li, ti, ci) to the database and to the Q-table. If the vehicle
finds CCH unavailable or detects interference or does not get information from any
vehicle, it will go for non-cooperative spectrum sensing by using a primary
transmitter detection method. Q-learning will be used for taking further action and
get backs as rewards/punishments. Here, the action means selecting the spectrum to
use, the agent gets a reward when it finds interference-free (absence of PUs) and
gets punishment when it finds interference on its chosen spectrum. After some
iterations, it will be converged and then updates the database. It will add (li, ti, ci)
into the database. For the Q-learning, the ɛ-greedy policy has been considered.

Fig. 3 Proposed framework of dynamic machine learning in CR-VANET
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In, e-greedy policy, the agent chooses exploration with a small probability e and
exploitation with probability (1 − e).
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The overall learning will not be solely depending on previous data, not on CSS
only nor on Q-learning only. The proposed learning is a kind of hybrid learning and
will eventually become faster and more reliable. The main concept here is that, at
first step, every vehicle searches its own database, if it finds, it uses that vacant
frequency. If it does not find information from its own database, it would ask for
help from other surrounding vehicles. The vehicles that already know about the
sensing information (on that route and on that time) will deliver their learned
sensing information to that vehicle. Here, the teacher-student transfer learning
approach has been used. After getting the information from several vehicles, the
vehicle would use fusion or combining technique. Learned sensing information will
be fed to the database and to the Q-table. If all these stages fail, it will go for the
non-cooperative SS and RL phases. This system provides faster spectrum infor-
mation and increases the convergence rate.

5 Performance Evaluation

For the performance evaluation purposes, SUMO (Simulation of Urban MObility)
simulator, Network simulator 3 (NS3), and Python programming will be used.
Figure 4 shows the steps of getting the results for the performance evaluation. By
using SUMO, the real-life mobility model and VANET will be designed, then this
will be integrated with the NS3 to add the feature of CR. After running the sim-
ulation, spectrum data of CR-VANET would be obtained. These data will be fed to
the Python, wherein the framework of Q-learning, CBR, teacher-student, and CSS
would be implemented. After performing data analysis by Python, the results would
be obtained.

Following performance metrics would be used for the performance measure-
ments of the proposed framework:

Fig. 4 Steps in performance evaluation
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Convergence rate: it defines how fast an agent (vehicle) learns the surrounded
complex environment or simply the number of iterations needed for an algorithm to
start providing the best optimal value. The faster the convergence rate (less iteration
required), the better the algorithm performs. The aim of this paper is to make the
convergence faster (learns the system within a short period of time).

The probability of false alarm versus the probability of detection: the probability
of false alarm means the probability of declaring about the presence of a PU, though
that sensed spectrum is not really occupied by any PU. On the other hand, the
probability of detection represents the probability declaring the presence of a PU
and that sensed spectrum is truly occupied by that PU. In CR-VANET, it is one of
the most used performance metrics.

Energy efficiency: It is the measurement by which the performance of a system
can be evaluated. When a system provides the same services but with less energy
consumption compared to other systems, then it can be said that the earlier system
performs better in terms of energy and it is an energy efficient system.

Delay: It is one of the major issues in CR-VANET scenario. It is the difference
between the theoretical time taken by a system and the actual time it takes to
perform any task. The cognitive process should be performed with a very lower
delay. High delay reduces the overall performance of a system.

This research work is expecting a higher probability of detection and lower
probability of false alarm, faster convergence, higher energy efficiency, and lesser
delay compared to the existing techniques and methods for the spectrum sensing in
CR-VANET scenario.

6 Conclusion

Vehicular Ad hoc Network (VANET) has emerged as one of the major solutions to
enhance road safety, reduce traffic congestion, and improve quality-of-service
(QoS). Cognitive Radio (CR), on the hand, has appeared to alleviate the spectrum
scarcity issue of exponentially growing VANETs. Machine learning tools are now
becoming an integral part of CR-VANET to boost its advantages. In this paper, a
dynamic machine learning framework has been proposed. The framework consists
Q-learning, case-based reasoning, and teacher-student transfer learning concept.
The proposed framework is expected the improvement in terms of convergence
rate. The proposed method is also expected to provide reliable learning to the
vehicles in very dynamic environments with reduced delay and network overhead.
In future work, we will analyze, design, and validate this proposed dynamic
machine learning framework with considering various challenges such as PU
activity models, hidden PUs problem, Doppler effects and so on.
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