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Abstract Random disposal and accumulation of commodity plastics in the open
environment after their end use is an issue that has triggered a lot of concerns both
in public and academic debates owing to their seemingly high contribution toward
the environmental pollution and potential impacts on biota and human health. Thus,
finding the greener solution to this problem has got immense socio-economic and
ecological significance. As a result, there is an increasing trend of using biodegrad-
able or compostable polymeric materials. It has been demonstrated that the incor-
poration of plants-based reinforcing fillers into biodegradable polymers to construct
composite materials have proved benefits in various applications. A great deal of
research has been performed in order to develop novel sustainable polymeric mate-
rials having tailored physical properties over a wide range. As a consequence, by
using bio-based fillers, new composite materials have been developed and commer-
cialized. In this chapter, initially, the attention will be made on the review of different
methods of extracting microcrystalline (MCC) and nanocrystalline (NCC) celluloses
from different agro-based wastes using a series of thermo-mechanical and chemi-
cal processing routes. After a quick review on the structure-properties correlation
of the micro- and nanocomposites of copolyesters, we shed light on biodegradable
green composites with special emphasis on their morphological studies and correla-
tions to deformation and degradation behavior. On the ground of the results obtained
from our laboratory complemented by literature works, the structure-property cor-
relations of copolyester-based composites have been discussed. Finally, the chapter
concludes highlighting the new trends, major challenges, and opportunities relevant
to the related research field.
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1 Introduction

One of the recent trends in materials science and engineering is to use polymers in
different high-tech applications taking into account for their safe disposal after use.
Polymers are being used extensively from the very early days of twentieth century,
and nowadays, we can hardly imagine any fields in everyday life where the polymers
are completely absent [1–6].

Asmost of the synthetic polymerswe use today originate from rawmaterials based
on fossil fuels, which is going to be used up quite quickly that, in the near future, we
would not have alternative sources. Therefore, we need to think about the alternatives
of synthetic polymers and at the same time, think for the lesser use of the polymers
introducing enhanced functionality and recyclability into the conventional polymers
[1, 6]. Nowadays, scientists are trying to develop renewable resources-based fillers
such as microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), hemi-
celluloses, lignin, chitosan, proteins as well as the inorganic fillers, namely layered
silicates, silica, calcium carbonate, carbon black, graphene, multiwalled carbon nan-
otube (MWCNT), etc. [2–13]. Depending upon the nature and compatibility of the
fillers with polymers, the property of the composite materials can be modulated.
Such composites find applications in aerospace engineering, medical devices, tissue
engineering, and in designing the smart drug delivery systems [10, 14–21].

Moreover, inorganic fillers used in polymer composites on disposal after their
utility into the open environment usually may give hazardous impacts to life. Many
of them are toxic for living beings human health as the chemicals used for com-
patibilization as well as for fire retardancy (such as brominated polystyrene, tetra-
bromophthalic anhydride, and decabromophenyl oxide) are proved to pose threat to
the natural environment [22, 23].

As an alternative, the greener methods have been introduced by using regenerated
natural resources (such as cellulosic fibers) which give similar or evenmore advanced
properties than the reinforcement effects in the conventional composites with inor-
ganic fillers [3, 10]. It has been known that the cellulose fibers are stronger than
several mineral-based fibers, have a high volume-to-weight ratio, and can be easily
dispersed homogeneously into polymer matrices via common processing techniques
[4, 7]. On the other hand, the renewable resources have the advantages of being inex-
pensive, regenerative, and local availability [2, 4, 8]. These may reduce significantly
the use of fossil fuel by-products and promote green economy and smart materials
development [17, 24–26].

Thus, the bio-based and biodegradable plastics are emerging as reliable alterna-
tives to conventional commodity plastics [27, 28]. Several of them, however, have
generally the problem of poor mechanical properties, difficulty in tuning crystalliza-
tion behavior, high manufacturing costs, and reduced ease of processing. Currently,
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biodegradable polyesters such as polybutylene adipate-co-terephthalate (PBAT),
polyethylene terephthalate (PET), polylactic acid (PLA), polybutylene succinate
(PBS), polycaprolactone (PCL), and polyglycolic acid (PGA) are being investigated
[8–11, 25]. Among them, completely biodegradable blends and composites based on
PBAT, PCL, PLA, and PHB are becoming quite popular [27–29]. Irrespective of the
materials chosen for technical applications, it is a key issue to control themorpholog-
ical details of the material at different length scales to design the tailored properties
profile [10, 13, 25, 27]. As a consequence, a comprehensive understanding of the
correlation between morphology, mechanical properties, and degradation behavior
of such systems is required.

This chapter aims at discussing the structure and properties of a biodegradable
copolyester-based composite materials with special attention to their mechanical,
morphological, and biodegradation behavior. A brief introduction about the filler
preparation and corresponding characterization techniques will be followed by an
overview of natural fibers-based polymer composites. Then, the detailed discussion
on the structure-properties correlation of the copolyester–natural fibers composites
will be presented. The degradation behavior of the composites under soil burial
condition will be discussed with an emphasis on molecular weight reduction and
degradation mechanism. Finally, the chapter will be concluded highlighting some
new trends and challenges in developing completely biodegradable and compostable
composite materials.

2 Preparation and Characterization Techniques

The preparation of fillers for composites fabrication and the characterization of poly-
mer interface as well as the morphology of the composite are some important aspects
of tailoring the properties profile of the materials.

2.1 Preparation of Micro-and Nanocrystalline Cellulose

The common sources ofMCCandNCCare the plant-based natural fibers such as sisal
[30, 31], kenaf [32, 33], castor oil plant [34], bamboo [35–37], jute [2], pineapple leaf
[38], cotton [39, 40], and ramie [41]. There are many processes to extract MCC and
NCC from the bioresources which can broadly be classified as chemical, mechanical,
and bacterial ones [5, 42–45].

2.1.1 Chemical Method

After preliminary treatments such as washing, drying, chopping, pulverizing, and
sieving, the raw plant fibers are subjected to strong alkali treatment. The process is



292 J. Giri and R. Adhikari

Scheme 1 Mercerization of
cellulose fiber with NaOH
followed by acid treatments
to microfibrillate the
cellulose macrofibers [35]
Scheme 2 Oxidative
bleaching of cellulose
microfibers by sodium
hypochlorite (NaClO)
solution for synthesis of
white crystalline MCC [6]
called as mercerization and causes the fibers to undergo fibrillation and delignigfi-
cation [35, 38]. Usually, alkali solutions used for this process are from caustic soda
or caustic potash [38, 46] whereby the optimization of alkali concentration and pro-
cessing temperature are important issues to consider [47]. The mercerization further
involves the addition of Na+ groups into the cellulosic molecular segments which
can later be removed by treating with acids (Scheme 1) [35]. The treatment with
acids such as (COOH)2, HCOOH, CH3COOH, dilute H2SO4, and HCl also acts to
dissolve the amorphous regions in the cellulose [48].

The raw fibers are converted towhite shining crystals on bleachingwith chemicals
such as NaClO, NaCl, NaClO3, NaClO2, and H2O2. These usually produce nascent
chlorine or oxygen to bleach the fibers and at the same time also dissolve hemicellu-
loses and amorphous regions exposing neat cellulose crystallites [6, 38, 46, 49–52].
Scheme 2, for instance, shows the bleaching action of the NaClO.

Cellulose fibers then easily give rise to the production of MCC. Further disin-
tegration into the nanosized crystals can be achieved by controlled hydrolysis with
strong acids under constant and vigorous stirring and sonication. The chemical dis-
integration is quite challenging in term of purification of the cellulosic fiber as a lot
of mass loss may occur. Acid treatments leading to the formation of the NCC have
been reported by several authors [53–55] by variation of acid concentration, time
of treatment, temperature, and freeze-drying procedures. As a result, the NCC crys-
talline aggregates having several tens of nanometers width and up to several hundred
nanometer lengths can be obtained.

2.1.2 Mechanical Method

(a) Compression and roller mechanical technique

In compression mechanical method, cellulosic fibers are placed between beds
of two metal plates at high force of 10 ton for 10 s, whereas in roller mechanical
technique, fibers are passed between two rollers in which one is mobile while the
other is fixed. These techniques were used to fibrillate wood dust and corn stover
into cellulose nanofibers [54, 55].

(b) Homogenization

In this technique, cellulose fibers are passed through a narrow valve at very high
pressure and released suddenly to normal pressure which acts as the shear force to
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explode the inner fibers. The basic concept of this technique is to release all binding
forces initially applied to the nanofibers while forming macroscopic fibers. Usually
raw and mercerized fibers are employed for homogenization. This technique was
used for nanofibrillation of hard and softwood pulps, banana peels, and sugar cane
baggage [45, 46, 56, 57].

(c) Ultrasonication

Ultrasonication is an electro-mechanical process of disintegrating macrocellulose
into the NCC. Sound energy of more than 20 kHz is used to agitate particles present
in the aqueous cellulose suspension which leads to the microscopic disintegration
followed by breakage of intermolecular bonds [49, 58]. Besides the energy of the
ultrasonic waves, the treatment time, temperature, and presence of impurities can
significantly alter the yield, morphology, and hence the properties of the NCC.

2.1.3 Bacterial Synthesis

One of the most important features of the bacterial cellulose is its chemical purity,
which distinguishes it from the cellulose extracted from higher plants, usually asso-
ciated with hemicelluloses and lignin, removal of which involves several steps. Due
to their unique ultra-fine and uniformly reticulated structure, the bacterial nanocel-
lulose find wide applications in paper, textile, food, and cosmetics industries as well
as in tissue engineering and medicine [59].

Bacteria such asAcetobacter xylinus, Rhizobium,AgrobacteriumEscherichia coli,
and Sarcina have been found to biosynthesize cellulose nanofibers with highly crys-
talline texture [60, 61]. Further, NCC andMCC fibrils can be synthesized by bacteria
in the presence of glucose, oxygen, nitrogen, and micronutrients. In this process, var-
ious carbon compounds in the nutrition media are utilized by the microorganisms
to polymerize their molecules into a single, linear β-1, 4-glucan chains and secrete
outside the bacterial cell. First, nascent β-1,4-glucan chains are produced. Then,
a number of such chains combine to form interwoven microfibrils to give a thick
gelatinized network of the fibers [59]. The amount and nature of bacterial cellulose
production vary, besides the nature of the microorganisms with the type of carbon
sources (such as glucose, mannitol, glycerol, fructose, sucrose, and galactose) [62].

2.2 Preparation of Polymer Composites

There is a vast number of references available for fabrication of polymer composites
involving biodegradable polymers and natural fibers. In brief, the commonprocessing
route involves the physicalmixing of the components in a drum, followed by agitation
inside an internal mixture under inert atmosphere and palletization. The samples
fabricated during melt compounding of the pellets are then subjected to molding
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by various means such as compression, blowing, casting, injection and spinning,
calendaring, blowing, and printing [4, 6–9, 11, 13, 14, 25, 35, 36, 41].

2.3 Characterization Techniques

There are wide varieties of techniques that characterize the specific properties of the
polymeric materials. The choice of the techniques depends primarily on the nature
of the properties that are relevant for the particular application. For the degradable
materials intended for packaging, insulation and other low load-bearing fabrications,
the stability against thermal and mechanical stress as well as the structural details
linked to those properties are of particular interest. In this section,we briefly highlight
the techniques used for such characterizations. For the detailed information on those
issues, the readers are referred to specific monographs and reviews [63–68].

2.3.1 Structural Characterization by Microscopy

Morphological characterization of materials is generally performed by microscopic
(optical as well as electron microscopy) and X-ray diffraction techniques. These
methods provide awide range of information on different length scales. The structural
details of fibers and polymer composites ranging from a few Angstroms up to over
100 mm can be evaluated by these tools [7] (Fig. 1).

The optical microscopy (OM) offers the overview imaging of the microscopic
structures which are a few microns up to a few millimeters in dimension. Polarizing

Fig. 1 Resolution ability of different microscopic tools [69]
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Fig. 2 Micrographs showing morphology of natural fibers at different length scales: a optical
photograph of the fibers embedded in a polymer matrix, b microcrystalline cellulose (MCC), and
c nanocrystalline cellulose obtained from the MCC [71]

optical microscopy (POM) gives, in most cases, the clear idea about the microscopic
dimension as well as information about the structural heterogeneity of the materials
including macroscopic crystalline textures [66, 70].

Scanning electron microscopy (SEM) [6, 71–74] and transmission electron
microscopy (TEM) [56, 71, 74–76] offer the resolution of up to individual nanofibers
illuminating the insight into the polymer–fiber interface. The SPM including scan-
ning tunneling microscopy (STM) and scanning force microscopy (SFM) can easily
go into atomic resolution domain of materials characterizations [62–68]. Thus, it can
be easily followed that the scanning probe techniques and electron microscopy (EM)
possess the central position among the modern nanoscale characterization tools for
detailed characterization of the polymeric materials.

As illustration, Fig. 2 shows themorphology of cellulosic fibers on different length
scales as observed by POM, SEM, and TEM. The overview of the natural fibers along
the longitudinal axes is presented in Fig. 2a in which the grayscale of birefringence
in the fiber surface represents the crystalline texture of the fibers. The field emission
SEM imaging of the chemically processed MCC fibers illustrated in Fig. 2b depicts
quite uniformly distributed cellulosic fibers while the micrograph in Fig. 2c shows
the structure of individual nanofiber obtained from the same stuff as presented in
Fig. 2b via strong acid treatment [71]. It should be, nevertheless, admitted that the
information obtained by microscopic tools is limited to very local structural details.
For more integral structural details of the materials, diffraction and spectroscopic
techniques are required.

2.3.2 X-Ray Diffraction and Spectroscopic Characterization

Many polymericmaterials, including natural polymers and fibers, are semicrystalline
in nature and their crystalline behavior can be well revealed by X-ray diffraction
(XRD). In this method, the intensity of the peaks along with the 2θ values precisely
signifies the crystalline behavior. The diffractogram can be used to calculate the
crystallinity index, determine the nature of crystals as well as quantify the d-spacing
(practically the distance between two crystalline layers) [66, 77, 78]. The crystallinity
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index can be calculated as [77]:

Crystallinity index (%) = I200 − Iam
I200

× 100%

where

I200 Intensity value for crystalline cellulose, and
Iam intensity value for amorphous cellulose.

It can be concluded that the cellulosic fibers depict the crystalline peaks at the 2θ
values between 12° and 25° of the diffractogram [38, 46, 71, 79, 80]. For instance, the
XRD patterns of banana peel MCC fibers obtained by a series of mechano-chemical
processing steps are presented in Fig. 3. The size of the nanocrystals wasmanipulated
by allowing the cellulosic nanomaterial through the homogenizer for 3, 5 and 7 times
which resulted in the decrease of the particle size in the same order (which have been
designated as N3, N5, N7, respectively in Fig. 2 [46]. The figure shows an increasing
trend of the crystallinity on decreasing the particle size of NCC.

In the similar manner, the crystallization behavior of polymers and composites
with natural fibers can be determined by XRD [81, 82]. The method allows the
observation of influence of filler incorporation in nucleation of crystalline phases, of
the polymer matrix.

Fig. 3 XRD patterns for banana peel (Bran), NCC (N0) and the NCC passing through homogenizer
for 3 (N3), 5 (N5) 7 (N7) times [46]
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Spectroscopic techniques such as Fourier transform infrared (FTIR), Raman, and
X-ray photoelectron spectroscopy (XPS) can be utilized in order to accessmolecular-
level information on the interaction between different phases, nature of the interface,
etc. In particular, in FTIR spectra, the spectral positions on wavenumber scale are
directly linked to different functional groups and thus may signify the interaction at
the interfacial region. The information can be later linked with the resulting physico-
chemical properties of the materials [36, 83–85].

We illustrate the application of spectroscopy in characterization of polymer com-
posites comprising biodegradable copolyester, the PBAT, and 5 wt% each of micro-
(M5) and nanocrystalline (N5) celluloses, see Fig. 4. Let us first examine the peaks
corresponding to the copolyester. The small peaks located at 1460–1354 cm−1 [86]
give IR absorption for vibrational stretching of C–H bond in the CH3 group of PBAT.
Moreover, the peak at 1099 cm−1 indicates the presence of C–O–C stretching vibra-
tion of the ester bond of the PBAT. Similarly, the peak centered at 723 cm−1 represents
the aromatic ring present in the polymer [87].

Figure 4 further shows the absorption spectra of the M-5 composites which are
exactly similar in pattern as of the PBAT [85]. The PBAT, M-5, and N-5 all show
absorption peaks at 2959–2845 cm−1 (corresponding to C–H stretching) [32, 88], the

Fig. 4 FTIR absorption spectra of the PBAT compared to that of M-5 and N-5 composites [85]
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intense peak at 1711 cm−1 (representing C=O stretching), and another intense peak
at 1247 cm−1 (corresponding to C–O stretching of carbonyl group) [47, 85, 89].

In the spectra of the composites surfaces, there are no peaks corresponding to
the MCC and the NCC. The presence of the only peaks corresponding to the PBAT
in both the composites indicates the dominance of PBAT toward the surface of the
composite films. The FTIR spectra further illustrate that, in spite of good compati-
bility between MCC as well as NCC with the PBAT, there is no significant bonding
of chemical nature, also supporting the notion of microscopic results [85]. In brief,
the spectroscopic data act as signature for chemical identity of the materials also
illustrating the presence of any chemical interaction in the interfacial region and
preference of any components toward the surface.

2.3.3 Mechanical, Thermal, and Degradation Behavior

Mechanical properties of polymeric materials and fibers can be determined by differ-
ent methods such as tensile as well as compression, impact, and dynamic mechanical
testing [68]. On the other hand, thermal and degradation behavior can be measured
by various techniques as well [67]. These measurements not only provide the mate-
rials specific properties profile of the substances but also record the signature of
various chemical treatments and interfacial modifications. Here, we present as an
example of the effect of micro- and nanofibrillation of the cellulosic fibers on their
thermostability [85].

The plot in Fig. 5 illustrates of thermogravimetric analysis of MCC and NCC
[85]. Both show two-step degradation processes. The MCC shows an initial weight
loss of up to 7% at around 120 °C which corresponds to the removal of water and
other volatile substances. The MCC itself starts to degrade at 225 °C, the major
degradation occurring at Tmax of 373 °C. The complete thermal degradation of the
MCC takes place at around 400 °C [85].

Similarly, NCC losses its weight by 10% due to the removal of water and other
volatile substances at around 120 °C while its degradation starts at 231 °C followed
by the major degradation occurring at Tmax of 300 °C. The complete degradation of
the NCC occurs at 408 °C leaving the residual mass of 22.16% in the form of char
after combustion at 600 °C. Thus, on comparing thermal behavior, one can observe
that the MCC is found to be more thermally stable than the NCC [85].

Thus, the thermogravimetric measurements allow the comparison of the ther-
mostability of the materials at hand, irrespective of whether the materials are the
natural fibers or their blends or the composites with polymers.
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Fig. 5 TGA thermograms of MCC and NCC extracted from WS [85]

3 Natural Fibers and Degradable Green Composites

3.1 Natural Fiber Composites

It has been pointed out that the common fillers of both scientific and economic inter-
ests have been derived fromwood flour [90–96], rice husks [96, 97], and other natural
resources such as flax, sisal, kenaf, kraft, and jute. [98–101]. Particular attention has
been paid in many previous studies on the use of agricultural and carpentry wastes
(such as rice husks, cotton rests, and saw dusts. [90–92, 102]) as reinforcing filler
to prepare the novel composite materials. A large volume of scientific data con-
cerning the processing, properties, and morphological aspects of natural fillers in
polyolefins [91, 102], polyesters [103], and thermosetting resins [104] can be found
in the literature. Aiming at the study of the thermal, mechanical, and morphological
properties of the composites of commodity plastics such as polypropylene (PP) and
polyethylene (PE), the former was blended with carpentry waste of the wood Shorea
robusta and investigated for morphological, mechanical, and thermal properties of
the composites [105]. The morphological results are presented in Fig. 6.

Figure 6a is the SEM image of fracture surface of neat PP/60 wt% wood flour
composite. There are sharp ridges at the interfacial region, formed by incompatibility
between the components [105]. Figure 6b presents the SEMmicrographs of the cor-
responding sample as presented in Fig. 6a but containing 5 wt% maleic anhydrides
grafted PP (PP-g-MA) as a compatibilizer in the polypropylene matrix. The fracture
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Fig. 6 SEM images of composites containing 60 wt%wood flour in PPmatrix; a no compatibilizer
and b with compatibilizer [105]

surface morphology of the composite presented is quite similar to that presented in
Fig. 6a with typical structures of the wood fibers and the surrounding polypropylene
matrix. However, the wood structures in Fig. 6b appear rougher and have no cracks
at the boundaries with the matrix. The filler particles further keep their basic mor-
phology, but exhibit coarser surface textures implying the presence of good bonding
between the particles and matrix [105].

Suchmorphological behavior is typical of hydrophobic polymerswith hydrophilic
natural fibers. There is generally a clear indication of role of compatibilizers in the
morphological properties of the composites [10].

The results so far outlined in this section help to illustrate the basic morphology
of natural fibers composites and the effect of compatibilizer on morphology and
thus on resulting properties of the materials [105]. The presence of natural fibers
in contact with commodity plastics may facilitate the weathering process of the
polymer. However, it should be kept in mind that these composites are unable to
spontaneously biodegrade. In the next section, the structure and properties of some
completely degradable composite materials will be illuminated.

3.2 Degradable Polymer Composites

Biodegradable polyesters and copolyesters [30, 106–108] have been recently used
as a matrix to prepare new materials. Among the biodegradable polymers, PLA and
polybutylene succinate (PBS), aliphatic–aromatic copolyesters, etc., have got par-
ticular commercial attention due mainly to their biodegradability and sustainability
[28, 29, 36, 52].

Thus, aiming at the development of completely biodegradable compositematerials
based on locally available low-cost bamboo flour (BF) as filler, structure-properties
correlations in the composites of the aliphatic–aromatic copolyester (a commercial
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Fig. 7 Scanning electron micrographs of the Ecoflex/BF composites: a 20 wt% BF and b 60 wt%
BF; cryo-fractured surface of the specimens [36]

product, the PBAT, called as Ecoflex) and BF were studied. For instance, the SEM
micrographs of the fracture surfaces of two different composites (having 20 and
60 wt% of alkali-treated bamboo flour) are presented in Fig. 7 [36].

In the composites with 20 wt% BF (Fig. 7a), both the matrix and filler can be
easily recognized. At several locations, BF fibers which have been pulled-out from
thematrix can be observed. Also, the holes formed by the pulled-out fibers are visible
on the micrographs [36].

At high BF content, the matrix fraction practically disappears on the micrographs
as it functions only as binding materials for the BF. In the composite with 60 wt%
BF (Fig. 7b), the fibers are as randomly and uniformly distributed as in the case of
low filler content composite. The fibers have no preferential orientation. It is indeed
very interesting to note that a very large amount of BFs can be dispersed into the
polymer matrix without using any compatibilizer [36].

For gaining closer insight into the morphology of the Ecoflex/BF composites, the
compression-molded samples were studied by wide-angle X-ray scattering (WAXS)
using reflection modes which provided the information on the structure of materials
on the surface aswell as bulk of the specimens. The results are presented in Fig. 8 [36].
In the pure Ecoflex, several peaks corresponding to the semicrystalline framework of
the matrix could be ascertained. The Ecoflex crystalline reflections of the composites
observed at values of 2θ 17.3°, 20.2°, and 23° progressively disappeared, implying
that the structure of the matrix was gradually destroyed by the presence of BFs. As a
result, in the compositeswith 40%BFormore, the structure of theBFs predominated,
and the diffractogram of cellulose appeared [36].

It was demonstrated that quite high amount of BF could be easily incorporated
quite homogeneously into the biodegradable polymeric matrix. The filler weakly
adhered to the matrix as demonstrated by the pulling-out of BFs on the electron
micrographs, which was further attested by thermogravimetric analysis [36].

The tensile mechanical properties of Ecoflex/BF composites are presented in
Fig. 9 [36]. The results illustrate that the pristine polymer exhibits large plastic
deformation, accompanied by yielding, cold drawing, and strong strain-hardening



302 J. Giri and R. Adhikari

Fig. 8 WAXS patterns of Ecoflex/BF composites containing various amount of BFs recorded in
reflection mode [36]

Fig. 9 Tensile stress–strain curves of Ecoflex/BF composites having various BF concentrations
[36]
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phenomena showing elongation at break of 800%and tensile strength of over 30MPa.
The addition of 20 wt% of the filler BF results in a drastic reduction in both strain
at break and tensile strength. Nevertheless, the yield strength of the composites
increases with filler content. The composites were thus reported for being suitable
for low load-bearing applications [36].

In spite of the matrix being degradable, such materials (as the composites based
on PLA, PHB, Ecoflex, etc.) may not be termed as completely degradable as the filler
and matrix remain intact due to the presence of compatibilizers at the filler/matrix
interface [30, 36, 103]. In the next section, we will deal with the composite materials
usingmicro- and nanocrystalline celluloses derived from agricultural wastes and also
shed light on the degradation behavior of such materials.

3.3 Completely Degradable Green Polymer Composites

The completely degradable green composites are those in which the polymers are
derived from green sources. Besides, all the constituents of the composites must
undergo degradation under soil composting conditions. Such composites are indeed
the need of the present situation. Degradable polymers with aromatic ring usually
do not go biodegradation or composting process as breakage of such ring needs high
energy, and in the soil, there are no microbes which can enzymatically deteriorate the
aromatic rings to convert the polymers into simpler forms [14]. Polymers containing
simple hydrolysable chemical bonds (such as ester, ether bonds) get easily decom-
posed under soil burial conditions and attacked by microorganisms and minerals [30,
109]. Thus, PLA, PHA, PHBV, and their composites with bio-fillers such as MCC,
NCC, starch, hydroxyapatite, lignin, chitin, and chitosan are used to prepare com-
pletely green composites [36, 83, 85]. These composites even due to the presence of
the biogenic fillers undergo early degradation. There are many research reports on
evaluating the effect of filler nature and duration of soil burial on the biodegradation
of polymeric materials [2, 83, 85, 110–112].

3.3.1 Introduction to Biodegradation

Polymers comprise giant molecules which may undergo degradation when their
bonds break. The later process can be induced by exposure of the materials to light
(such as UV radiation), environmental weathering, and soil composting or microbial
incubation [29, 42, 112–114].

Incubating the polymeric materials with specific microorganisms may break the
macromolecules during their metabolic activity. The bacteria produce primary and
secondary metabolites or some specific enzymes which have the capacity to break
the stereospecific and stereoselective bonds. Bacillus subtilies, Aspergillus niger,
Streptococcus aureos candida, and E. Coli are some of the organisms which are
been proved as potential agents for degradation of polymeric materials [16, 78, 109,
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113–115]. Besides the nature of microbes, the types, and dimension of biogenic
filler and the surrounding environment in terms of pH, temperature, and presence of
different ions affect the degradation process [62, 70, 87, 90, 94, 109, 110, 116, 117].

Soil offers a natural environment in the upper layer of earth crust the habitat for
different organisms such as bacteria, virus, fungi, insect, small rodents, reptile, and
mammals. Usually, we expect the good degradation process when the soil contains
a large population of microorganisms, acidity and the corrosive minerals contents
[27–29].

Turning toward the renewable flora-based resource of the nature, either from
agriculture or from the forest products, it can be observed that major part of the plant
bodies is made up of macromolecular cellulosic materials [6, 33, 38, 41, 43, 44,
46–48]. After end use of the products, a large part of agricultural and forest residues
become wastes. Thus, it is wise to utilize such wastes as renewable resources to
prepareMCCandNCC,which is in linewith principles of green chemistry signifying
the conversion of waste to value-added products [28, 117–121].

3.3.2 Morphological Characterization

In this section, among different kinds of biodegradable polymer composites, we
focus on the structural characterization of some PBAT-based composite materials.
An agricultural waste, the wheat stalk, was used for the extraction of MCC and
NCC by thermo-chemical and mechanical treatments. The MCC and NCC were
then compounded with the PBAT via melt mixing. For example, the lower (top) and
higher (bottom) magnification SEMmicrographs depicting the internal morphology
of the composite comprising 40 wt% MCC (i.e., the sample M-40) are shown in
Fig. 10 [85].

The micrograph with lower magnification (Fig. 10a) shows that there are regions
with relatively smoother as well as rougher textures. The smoother areas represent
the less deformed parts, whereas the rough areas stand for not deformed ones during
fracture surface preparation. Nevertheless, at the first glance, it can be observed that

Fig. 10 Lower (top) and higher (bottom) magnifications of SEM micrograph of cryo-fractured
surface of PBAT composite 40 wt% of MCC [85]
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the composite is a quite homogeneous mixture of the polymer and the MCC. The
average thickness of theMCCfibers is 5μmwhile the average length is about 100μm
[85].

A closer look in Fig. 10b reveals further that there is a quite strong physical inter-
action between the polymer matrix and filler although there is no specific chemical
bonding [85].

The properties of the composites were evaluated via soil composting tests, con-
tact angle as well as water absorption measurements, scanning electron microscopy
(SEM), and gel permeation chromatography (GPC) [85]. The cellulosic filler was
found, as per SEM results, to uniformly disperse in the polymer matrix forming
a quite homogeneous composite which visibly degraded completely within a few
months under soil composting and showed high water absorption, these properties
being enhanced with the filler content [85]. Compared to the neat PBAT, the com-
posites showed enhanced surface hydrophilicity thereby increasing the vulnerability
of degradation. In spite of the seemingly remarkable decrease in mechanical stability
of the polymers under soil burial for several months, no substantial lowering of the
molecular weight was observed [85].

These results are in consistence with the conclusions drawn in similar works
reported in the literature including blends and composites with chitosan [122], starch
[123], clay [124], and other systems comprising polylactides and other degradable
systems [45, 53, 125].

For the sake of comparison, in Fig. 11, we present the morphology of a nanocom-
posite of the PBAT comprising 5 wt% of the NCC [85]. Indeed, the nanofiller con-
tent that brings the significant effect of large surface areas on the properties of the
nanocomposites lies in the range of 1–5 wt% [126–128]. Thus, it makes sense to
present the results comprising a lower amount of the nanofiller.

The dispersion of the NCC in the polymer matrix is uniform, with no noticeable
tendency of agglomeration of the filler into the polymer matrix. The agglomeration
tendency of the nanofiller into the polymer is a sign of the incompatibility of the
filler with the adhering matrix [129]. The micrographs presented in Fig. 11 depict

Fig. 11 Lower (top) and higher (bottom) magnifications SEM micrographs of PBAT composite
comprising 5 wt% of NCC [85]
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a reasonable PBAT/NCC compatibility, which is also supported by the presence of
cylinder shaped fillers with the thickness in the range of 40–80 nm [85].

Looking at the thickness of individual nanocrystals and corresponding microcrys-
tals, the average number of the nanocrystals per microcrystal bundle can be estimated
to be approximately 100. Thus, it can be concluded that the nanofibrillation could
bring, in case of cellulosic materials, an increase in the surface area by about 100
times. Hence, the nanocomposites can be considered to be much more effective than
the conventional ones [85].

3.3.3 Surface Properties

The surface property of the composites, particularly the hydrophilicity, also correlates
with their susceptibility toward biodegradation. The nature of the surface determines
how thematerial responds with highly polar substances such as water. During contact
angle measurements, generally, the water droplets form the angles with interacting
surfaces whose dimension depends upon hydrophilicity or hydrophobicity of the
substrate. Higher contact angle represents hydrophobicity, whereas the lower contact
angle stands for hydrophilicity [85, 130, 131].

Figure 12 shows spontaneous contact angles formed by water droplets on the sur-
faces of pure PBAT and two different composites [85]. At first glance, the contact
angle on the PBAT surface looks slightly larger (implying slightly higher hydropho-
bicity) than on that of the composites. Indeed, the contact angles measured for
the surfaces of PBAT, M-5 and N-5 composites are 83.3°, 77.1°, and 70.1°. The
decreased hydrophobicity of the composites surfaces compared to the pure PBAT
can be attributed to the presence of the hydrophilic cellulosic fractions [132]. The
fact, that the spontaneous contact angles of both M-5 and N-5 composites are simi-
lar, further illustrates that the hydrophobicity of the specimens primarily depends not
only on the chemical nature but also on the dimensional nature (micro- or nanoscale)
of the bio-. The results imply that the lower the particle size of the hydrophilic fillers,
the higher would be the ease of filler dispersion in composites and thus higher would
be the interaction with water. The result is consistent with literature work [131].

The results from surface contact angle measurement, however, suggest that there
is some segregation of the cellulose toward the sample surface that attracts water
onto it although there was no clear evidence of surface segregation of the filler as per
spectroscopic and microscopic data [133].

In summary, the wetting behavior can be correlated with the degradation suscep-
tibility of the composites at hand, the nanocomposites being more susceptible to
water absorption and thereby providing higher ease of degradation under soil burial
conditions (to be discussed in the next section) [85, 134, 135].

The composites dealt with in Figs. 10, 11, and 12 have been found to possess
excellent water absorption tendencies, thereby increasing the ease of hydrolysis and
bond cleavage under microbial attack.
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Fig. 12 Photographs showing spontaneous contact angles of water droplets on the PBAT surfaces
of a pure PBAT, b composite comprising 5 wt% of MCC, and c composite comprising 5 wt% of
NCC [85]

3.3.4 Degradation Under Soil Burial Conditions

Morphological investigations of the materials subjected to degradation under soil
burial conditions were carried out. Thus, the information on the physical states upon
various stress conditions was obtained. The structural features of the samples after
the experiments are presented in Fig. 13 [85].

The photographs in Fig. 13 show that compared to the highly ductile nature of the
PBAT, on soil composting, both the PBAT as well as its composites became quite
brittle [85]. The surface of the composites was found to be attacked by the microbes.
After 4 months of composting, the samples turned very brittle, the fragility of the
specimen ismore pronounced for the composites having a higher amount of theMCC
[85].



308 J. Giri and R. Adhikari

Fig. 13 Photographs of different PBAT/MCC composites subjected to soil burial for different
periods of time as indicated [85]

Among the results presented in Fig. 13, morphological features of the composite
M-20were further studied in detail by scanning electronmicroscopy. In the beginning
of the degradation, the voids of various diameters appeared on the samples surfaces,
as a result of consumption of the filler particles as nutrients, by the microbes. With
increasing soil burial period, the fillers content decreased which completely vanish
after 4 months.

It can be expected that the degradation process of the composites materials under
soil burial condition is accompanied by a drastic reduction in the molecular weight
(Mw) of the polymers which finally would lead to embrittlement of the polymeric
materials. Thus, the molecular weight of the polymers after the various interval of
soil burial was analyzed [136–138].

The variation of themolecular properties of the PBAT in neat form and in the form
of composites was investigated by gel permeation chromatography (GPC) using PS
standard [85].

It was found that, under soil burial conditions, the Mw values of the pure PBAT
decreased from 48.62–21.60 kg/mol in 4 months. In the case of the composite com-
prising 40 wt% of MCC, the Mw values decreased in same way [85]. Molecular
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weight lowering was also observed on soil composting of poly(butylene sebacate)
[110].

The PBAT showed significant ease of degradation in molecular weights under
soil burial conditions which was further enhanced by the presence of the cellulosic
filler. However, it was stressed that the polymer chains did not completely degrade
but rather turned into smaller fragments that might be present for longer times as
microscopic particles in the soil forming a sort of microplastics aggregates [85].

4 Biodegradation Mechanisms

Usually, any kind of degradation starts from the points of weak bonding in the
heterogeneous materials. It is known that the chemical linkages, such as with ester,
ether, amide, and hydrogen bonds are susceptible to hydrolysis that are easily attacked
by chemicals and microbes [139–141] .

The degradation process may proceed with the action of some kinds of acids or
enzymes on those weak active sites thereby fragmenting the giant molecules into
smaller entities including the liberation of some gases. The polymeric materials can
even undergo photolytic degradation on long exposure to sunlight, microwaves, or
UV-radiations and generate free radicals [42].

The biodegradation is a complex process which has been considered to take places
in three basic stages [139]: biodeterioration, biofragmentation, and assimilation, in
which also the influence of the abiotic factors cannot be undermined. The biodiversity
of themicroorganisms and their efficacy toward the formation of complex biofilm and
their catalytic abilities transform the degraded substances to the nutrients represent
highly sophisticated natural phenomena [62, 115].

The biodeterioration stage can be pretty well assessed by thermal and micro-
scopic methods while the fragmentation stage can be monitored by evaluating the
changes in the molecular characteristics. The production of carbon dioxide gas is a
simple signature of the bioassimilation process which, of course, involves the forma-
tion of various kinds of metabolites and microbial biomass [59–62, 115, 116]. The
terminal groups and gaseous substances, as well as the biofilms produced during
the degradation processes, can be analyzed by different spectroscopic techniques
[30, 109, 114, 139].

In case of polyesters and copolyesters, which have been primarily dealt with in
this work, two important biodegradation mechanisms have been found effective; see
Schemes 3: and 4: [139].

I. Hydrolytic mechanism

See Scheme 3.

II. Main chain scission

See Scheme 4.
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Scheme 3 P BAT degradation via hydrolytic attack on carbonyl group of ester to liberate free
–COOH and –OH groups; the letters “p” and “n” refer to the degree of polymerization of respective
segments

Scheme 4 PBAT degradation by chain scission at different positions of the macromolecular
skeleton under different conditions

5 Summary, Trends, and New Opportunities

In this chapter, we attempted to offer an overview, with recent research outputs
and applications, the structure-properties correlations of biodegradable copolyesters-
based polymer composites. The results can be summarized as follows.

• The lignocelluloses based micro-and nanofillers can be synthesized by various
chemical, mechanical, and bioinspired (or biosynthetic) methods and be evalu-
ated in terms of their structural and molecular characteristics via spectroscopic,
microscopic, and scattering and chromatographic techniques.

• The MCC and NCC fillers can be incorporated up to a pretty high weight fraction,
easily into the biodegradable copolyester matrix even without the use of compat-
ibilizers. However, the practical applications of such composites are limited for
low load objects fabrication.

• The copolyester-based composite materials undergo rapid fragmentation process
under soil burial conditions leading to highly brittle materials. The molecular
weight degradation has been, however, found to be not that significant within a
few months duration.
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There is a trend of utilizing the copolyesters and their composites for biomedical
applications [9, 10, 21], for smart packaging films [14, 16, 106] and functional
coatings and for flexible conducting materials [15]. These strategies are achieved by
introducing different functional groups via grafting onto the natural polymer chains
and then making graft and block copolymers with synthetic polymers. The challenge
will be then to find suitable routes for biodegradation as the latter is a complex process
and a single microbial strain would not be sufficient for the targeted biodegradation.
In this case, microbial communities can be employed.

There are several biodegradation pathways for polymeric materials including
degradable copolyesters which have been successfully employed. However, the
routes for controlled degradation processes leading to the solution to the funda-
mental environmental problems are yet to evolve. In our Nepalese context, due to
the presence of large microbial biodiversity in the region, and proven opportunities
to design the microbial communities via uncomplicated genetic manipulation, there
are unparalleled opportunities. The thermophilic and cold-loving bacteriamight offer
great potential in terms of degradation of the polymers, in general, which still needs
to be explored.
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