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Abstract Optimization is carried out to achieve the best out of given resources while
satisfying constraints on performance, state variables, and resources thus avoiding
the excessive use of resources and decrease the cost associated. Structural systems
need to be designed for a minimum of weight, compliance, displacement, frequency,
etc., to save cost and get optimal performance. For this, structural optimization is
carried out. Topology optimization is one type of structural optimization in which
topology of the structure is changed. Generally, topology optimization is performed
using methods like solid isotropic material with penalization (SIMP), level set-based
methods, phase field method, evolutionary structural optimization (ESO), and bidi-
rectional evolutionary structural optimization (BESO). In the present work, a modi-
fied evolutionary algorithm is proposed for structural optimization with consideration
to strain energy distribution. Addition of material is performed on a partially void
space instead of material removal. As the final optimum structure bears only a frac-
tion of initial structure, the method of structure growth using addition approach is
better for computational efficiency. This method initially takes a void input design
domain but to make numerical computation easy, negligible density is assumed. The
objective is to achieve critical strain energy per unit volume which is less than the
modulus of resilience according to the maximum strain energy criterion. According
to the maximum strain energy theory, a safe structure should have strain energy per
unit volume less than the modulus of resilience. Hence, the objective is to find a
structure satisfying the above criterion with minimum weight. The main focus of the
work is to find optimum topology. Effect of multiple loads, rate of material addition,
and effect of the magnitude of loads are also considered for structural optimization.
The results are close to the results reported in the literature.
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1 Introduction

The world is facing the scarcity of resources and there is a demand for only the
best products in a very high-technological competitive market. To solve this prob-
lem and hence minimize the wastage of resources, there is a need to find the best
solution among all the solutions of a design problem in such a way that that function-
ality of the design is not hampered. Structural optimization aims to utilize structural
resources most efficiently. Today, optimization of structures has become mandatory
for different applications. Structural optimization is much found in the aerospace
and automotive industries where weight minimization is the key criteria for design.
Structural optimization can be classified into size optimization, shape optimization,
and topology optimization. Size optimization is carried out to determine the optimal
size, dimensions of cross-sectional areas, thickness, moment of inertia, etc. Shape
optimization helps in identifying the optimal geometry of boundaries for the struc-
tures carrying loads. Among these three, topology optimization is the most general
and gives more design freedom to engineers by expanding the design space to look
for the optimal solution, and hence, it is most rewarding economically.

Bendsoe and Sigmund [1] mentioned that topology optimization is carried out to
get the best distribution of the material in a design domain. Topology optimization
determines the best connectivity, shape, and location of voids in a design domain.
Woon et al. [2] carried out shape optimization by moving the boundary and internal
nodes of the structure. Optimal coordinates are found using genetic algorithm and also
mirroring option helps in reducing the computational time of symmetrical problem to
half. Ding [3] mentions that boundary of the physical problem can be represented by
using the nodes, piecewise polynomials, and B-spline models. Smooth boundaries
are required to avoid stress concentration and to make the manufacturing process
easy. Bendsoe [4] described topology optimization as a process of removing the
material from the places of negligible contribution to the load carrying capacity of
the structural member. It is carried for minimizing the compliance of the structure
by the method of solid isotropic material with penalization (SIMP). In topology
optimization, material density is chosen as a continuous variable varying from zero
to one within an element of finite element mesh. Optimal density is obtained through
an optimization algorithm by choosing the densities of each element as variable as
explained by Bendsoe [4, 5]. Solid isotropic material with penalization considers the
density of element as a design variable and penalizes density based on this power law
model such that less contributing elements have minimum effect on the final design,
and penalization is applied as mentioned by Duysinx and Bendsge [6].

An evolution algorithm is proposed by Xie and Steven [7] using a rejection ratio to
remove the elements of lower stress. In optimization, constraints play a greater role
in the outcome of the algorithm. Generally, in structural optimization, constraints
are the volume, weight, and also sustaining the external loads. Xie and Grant [§]
described a method for obtaining the optimal structure using an evolutionary struc-
tural optimization (ESO) method which works on the local stress of the individual
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elements. In ESO algorithm, the material is removed from very low stressed loca-
tions in every iteration using a rejection ratio. Lagaros et al. [9] presented a hybrid
method to reduce the computational cost combining genetical algorithm method with
the SQP method. This hybrid method first uses the GA to get the nearest solution to
optimum solution, and then in the second half, the SQP method is used to achieve
convergence to optimal quickly. Chu et al. [10] developed an optimization algorithm
with the objective as stiffness. Lower sensitivity elements of FEA are removed using
stiffness sensitivity which is measured by the change in the strain energy.

Abolbashari and Shadi [11] examined the effect of mesh size, rejection ratio, and
type of element on the optimal shape and found that the optimum shape is depen-
dent on these parameters. Huang and Xie [12] developed a bidirectional algorithm
to increase the rate of convergence of the optimal solution. This algorithm adds
the material at critical locations and removes the material from low stressed areas.
Tanskanen [13] studied the theoretical aspects of ESO method and found that this
method is equivalent to the compliance minimization problem. Li et al. [14] worked
on areference factor for suppressing checkerboard pattern in the optimal solution. Li
etal. [15] mentioned that Vonmises stress criteria and stiffness criteria are equivalent
in the evolutionary structural optimization problems. Kwok et al. [16] proposed a
topology optimization method based on the principal stress lines.

Genetic algorithms also have been used in structural topology optimization.
Rajeev and Krishnamoorthy [17] used the genetic algorithm to optimize truss prob-
lems. Deb and Surendra [18] also used GA for optimizing the location of nodes for a
truss member. Members having negligible area assumed to be absent in the final solu-
tions. Balamurugan et al. [19] claimed that a two-stage adaptive genetic algorithm is
converging quickly to obtain a global solution. Deepak et al. [20] studied and com-
pared different formulations for the topology optimization of compliant mechanisms.
Mutual strain energy formulation found to be better for compliant mechanisms. Jog
[21] proposed topology optimization for reducing structural vibrations. Dynamic
compliance is used to optimize the structures vibration levels. This ensures that nat-
ural frequency is away from the dynamic frequency of the structures. Nandy et al.
[22] optimized the structures for reducing the radiated noise.

Querin et al. [23] applied the bidirectional evolutionary algorithm (BESO) for a
fully stressed design using Vonmises stress criterion by removing elements where
stress is low and adding elements to void regions near high-stress locations in the
design domain. BESO is another method in evolutionary optimization techniques
which has provisions of both adding and removing material simultaneously from
design domain from less critical regions, i.e., places in design domain where sensi-
tivity number is low and add material to void regions, where material required will
be more based on high sensitivity number of void elements. The number of ele-
ments to be added and deleted is based on heuristic criteria, not on sensitivity of void
elements which causes this method to fail without producing optimal topology and
also causing numerical problems like mesh dependency problems and checkerboard.
From the literature, the points are noted. (1) Many algorithms remove the material
from the initial domain [1]. In this method, material addition method for topology
optimization is proposed. (2) In the existing algorithms, strain energy distribution
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as a criterion for structure topology design based on element addition approach is
not presented. (3) Available algorithms did not consider the effect of change in the
magnitude of loads, multiple loads on the structures. In our work, the addition of
material is adopted instead of removal. The strain energy distribution is considered
for optimization. We found the elements which are contributing more to the final
solution so that they can be strengthened by adding material. Finite element anal-
ysis (FEA) is carried out to know these high contributing elements. As the entire
process happens iterationwise, it is enough to check the given structure is safe or
not according to the failure criteria chosen. This helps to stop the algorithm at safe
design.

2 FEA Formulation

In our work, finite element analysis is used to know the critical locations in the struc-
tural component. FEA preprocessing divides the design domain into small finite ele-
ments and generates a mesh. Variation of field variables is approximated with shape
functions. Rate of change of field variables variation gives the strain at required loca-
tions on the element. FEA analysis is carried out using the four-noded quadrilateral
element. Isoparametric FEA method is used to approximate the field variables and
geometric variables on the element at any location. Field variables are interpolated
using nodal values (notation of nodal displacements at jth node are u; and v; in X-
direction and Y-direction, respectively) and shape functions (notation of ith shape
function is N;).

In an element, geometric variables are approximated using the following relations
with four known geometric coordinates. The four shape functions for the quadratic
element are shown below:

_A-nd-s o (d+nd-s)

Ny 2 ;
4 4
N3 = W; Ny = (l_r)él& (1)

In an element, geometric variables are approximated by using the following
relation with four known geometric coordinates.

{i}:éN{i} @)

Displacement of field variables is approximated within the element with known
displacements at the four nodes of the element.
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In FEA, the physical element in (x, y) coordinate is mapped to master element in
(r, s) coordinate. Transformation matrix J is used to map the special derivatives
available in (7, s) coordinate back into (x, y) coordinate. Strain vector € is determined
using [e] = [B] x [U]. [B] is the strain—displacement matrix and [U] is the displace-
ment matrix. Stiffness for an element is calculated using the following relation. The
thickness of the element is assumed as 1 unit.

1
(K] = //[B]T[D]BIJldrds 4)
-1

where [ D] is material constitutive matrix.

3 Proposed Method

A method is proposed with consideration to strain energy distribution. Initially, 2D
design domain is divided into a certain number of finite elements having a partially
dense material equivalent to a void space. The void space is ensured by multiplying
regular density stiffness matrix with negligible density factor of 10-8 similar to SIMP
methodology. Loading and boundary conditions are selected on nodes according to
the physical problem. The field variable such as displacement and their derivatives
such as strains and stresses are obtained with finite element analysis. Then critical
elements (elements with high strain energy value) are identified among all elements
in the design domain. The critical elements are strengthened at each iteration by
adjusting the density factor to 1 for those elements. This procedure is continued until
the maximum energy in any element is just below the critical level, i.e., the structure
becomes safe so the density of all elements in optimum topology is one, and this gives
distinctly sharp boundaries of the final design. The entire algorithm is implemented
using MATLAB. The flowchart of the algorithm is shown in Fig. 1.

4 Results and Discussions

In this study, four case studies are considered. In each case study, the design domain
is divided into 5000 finite elements and then assigned a density factor of 10-8. The
properties of material considered are Young’s modulus (£) = 200 GPa and Poisson’s
ratio = 0.3. Plane stress conditions are considered. The final solution consists of
elements whose density factor is 1.



624 S. Bairy et al.

I

[ Identify initial domain

.

Formulate element K, F and
multiply K with density factor

—

|
v |
[Fommlate and solve KcL'G=FcJ ‘

[ Calculate elemental strain energy }

~

Store this element no. in max.
Strength element no.

S

Max (elemental
Strain energy)
-3

Modulus of
resilence

Fig. 1 Flowchart of the proposed algorithm

Change density factor of
critical element to 1

i

Identify most critical element
~

4.1 Case Study 1: Effect of Dimensions of the Initial Domain
on the Final Optimized Result

Consider a simply supported beam of length 5 m and height 0.4 m with a load of
100 KN applied at the bottom of the mid-section and self-weight of the beam is not
considered as shown in Fig. 2. The FEM formulation is based on 2D plane stress
elements.

The structure is optimized using the proposed method and the final solution is
consisting of 516 elements shown in Fig. 3. In each iteration, one element is added,
and so, the total number of iterations is equal to the number of elements in the
final solution. Initially, strain energy dropped significantly with the addition of the
elements until connectivity between the load and the support is established. While
establishing connectivity, the strain energy is almost constant. Again, it dropped
while forming new connectivity. The strain energy plot with respect to the iteration
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Fig. 2 Simply supported beam with applied load
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Fig. 3 Topology optimization of the simply supported beam

number is shown in Fig. 4. The percentage of final material with density factor 1 is
10.32 with respect to the initial domain.
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Fig. 4 a Iterative result at 109th iteration and b result at 300™ iteration
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Fig. 5 Optimized result for os
different dimension (height -
=0.5m)

The representative intermediate results at iteration number 109 and at 300 where
strain energy dropped considerably are shown in Fig. 4.

The dimensions of the beam are changed by increasing its height 0.5 m and the
corresponding result is shown in Fig. 5. The percentage of final material is 10.4 with
respect to the initial domain. This result shows that the optimal results will depend
upon the dimensions of the initial domain.

4.2 Case Study 2: Effect of the Rate of Material Addition
on the Optimization Result

In this case study, the effect of the rate of the amount of material addition on the final
solution is studied. For this case, a simply supported beam with a length of 4 m and
a height of 3 m is considered. A load of 50 KN is applied at the bottom of the middle
section as shown in Fig. 6.

Rate of material addition has effect on final topology because if material added per
iteration is more than it may cause inclusion of some elements which may be having

Fig. 6 Initial domain of 4m
simply supported beam I-

. .

3m

l 50 KN
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less strain energy in other subsequent iterations, therefore, optimal topology may not
be captured but it reduces computational time with less number of elements added
per iteration topology development is more detailed with more computational effort.
Optimal solution with the addition of 15 elements at a time is having 912 elements
(18.24% of the initial domain) in the final solution as shown in Fig. 7, whereas with
the addition of 5 elements per iteration, the solution is having 330 elements as shown
in Fig. 8. The solution resulted in the addition of a single element per iteration (66%
of the initial domain) is shown in Fig. 9. So, for more refined final topology, the low
rate of material addition is better.

This effect is also studied with another example of a cantilever beam of 1.5 m
length and 3 m height. It is loaded at the middle with 100 KN as shown in Fig. 10.
Change in rate of addition gave the same shape structure but the number of elements
in the final optimum solution is different as shown in Fig. 11. The optimal structure
for the addition of single element per iteration is having 105 elements (2.5% of the

Fig. 7 Optimized result for 3;
material addition rate of 15

5

1.5

0.5

[} 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Fig. 8 Optimized result for material addition rate of 5
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Fig. 9 Optimized result for 3
material addition rate of 1

13

os

Fig. 10 Initial domain for a 3
cantilever beam
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initial domain) and the optimal structure for the addition of 2 elements per iteration
is having 156 elements (3.12% of the initial domain).

4.3 Case Study 3: Effect of Magnitude of Applied Load
on the Optimized Result

Generally, if the magnitude of the load is changed, size optimization is carried out
on the optimized topology so that structure can be strengthened at critical locations.
Here, in our study, the effect of the magnitude of the load on optimized structure is
shown without considering the size optimization. For this case, a cantilever beam of
size is considered as shown in Fig. 12. The optimization process produces a solution
with few members so the optimum result is truss-like structure when the beam is
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(a) (b) (©)

Fig. 11 a Optimal shape for 1 element addition, b optimal shape for 2 element addition, and
¢ Optimum shape from literature (Xie and Steven [7])

Fig. 12 Initial domain for | 25m i
cantilever beam | |

3m

subjected to smaller loads since for smaller loads, few members are sufficient. The
optimized results for the cantilever beam with less load (150 KN) and a high load
(1500 KN) are shown in Fig. 13.

Effect of increasing the load on the optimum solution causes the addition of more
members in optimum topology. The percentage of material with 150 KN load is 3.8
and that with 150 KN is 7.2.
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(b)

Fig. 13 a Solution for 150 KN and b solution for 1500 KN

4.4 Case Study 4: Effect of Multiple Loads

Consider a simply supported beam of length 5 m with a load of 150 KN as shown
in Fig. 14. Two more loads of the same magnitude are added at 1.25 and 3.75 m as

Fig. 14 Simply supported 5m
beam with a single load ll‘ 4
1.5m
l 150 KN
Fig. 15 Simply supported 5m
beam with multiple loads I4 %
1.5m
¥

l 150 KN l 150 KN liSIJKN

1.25m | 1.25m I 1.25m 1.25m

150 KN

¥
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(a) (b)

Fig. 16 a Simply supported beam with a single load and b simply supported beam with multiple
loads

shown in Fig. 15. The optimum solution for single and multiple loads is shown in
Fig. 16.

The multiple loads generate extra members between the point of application of
load and support to give strength to structure. The percentage of final material with
a single load is 7 and that of multiple loaded beams is 7.8.

5 Conclusion

In this paper, a modified evolutionary algorithm which is heuristic is proposed for
topology optimization with strain energy distribution as a criterion. Optimum struc-
tures obtained using this method are close to the existing optimum solutions [8].
Proposed algorithm strengthens highly strained elements through increasing their
density factor. This is a material addition process. Results depend on the chosen
failure criteria. The algorithm ensures the optimum solution to be safe as per max-
imum strain energy criteria. From the case studies, it is observed that, if loads of
a structure changes, the corresponding topology also changes. The multiple loaded
beams have more intermediate members to bear extra loads than a single load case.
The main focus of the work is to capture the topology well, and the results can be
further improved so that the structures are manufacturable using the filter techniques
[24]. The present work can be applied to other 2D structural domains and can be
extended to 3D domains.
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