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Abstract The present investigation has been undertaken to assess the effect of axial
conduction and viscous dissipation on heat transfer characteristics in the thermally
developing region of a parallel plate channel with porous insert attached to both
the walls of the channel. Both the walls are kept at uniform heat flux. The fully
developed flow field in the porous region corresponds to Darcy–Brinkman equation
and the clear fluid region to that of plane Poiseuille flow. The effect of parameters,
Brinkman number, Br, Darcy number, Da, Peclet number, Pe, and a porous fraction,
γ p have been studied. The numerical solutions have been obtained for, 0.005 ≤ Da
≤ 1.0, 0 ≤ γ p ≤ 1.0 and −1.0 ≤ Br ≤ 1.0 and Pe = 5, 25, 50, 100 and neglecting
axial conduction (designated by Ac = 0) by using the numerical scheme successive
accelerated replacement (SAR). There is an unbounded swing in the local Nusselt
number because of viscous dissipation.

Keywords Viscous dissipation · Axial conduction · Parallel plate channel partially
filled with a porous material

1 Introduction

Present-day applications involving flow through porous media call for including
viscous dissipation effects in the conservation of energy equation. Some of them
generically are described as internal flows, say, flow through a porous material par-
tially or fully filled, pipes, channels, and in general ducts. In general, if the effective
fluid viscosity is high or temperature differences are small or kinetic energy is high
that warranted inclusion of Forchheimer terms, viscous dissipation can be expected
to be significant. The use of porous media in the cooling of electronic equipment has
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been restored interest in the problem of forced convection in a channel filled with a
porous medium.

Several studies (Agrawal [1], Hennecke [2], Ramjee and Satyamurty [3], and
Jagadeesh Kumar [4]) have shown that the axial conduction term becomes significant
in the equation of energy at the low Peclet number in the case of forced convection
in the ducts. In particular, Shah and London [5] studied the problem of heat transfer
in the entrance region for a viscous incompressible fluid in both two-dimensional
channel and circular cylindrical tube taking into consideration axial conduction term.
Ramjee and Satyamurty [3] studied local and average heat transfer in the thermally
developing region of an asymmetrically heated channel.

Hooman et al. [6] have studied thermally developing forced convection in rect-
angular ducts subjected to uniform wall temperature. Thermally developing forced
convection in a circular duct filled with a porous medium with longitudinal conduc-
tion and viscous dissipation effects subjected to uniform wall temperature studied by
Kuznetsov et al. [7]. Nield et al. [8] investigated the effects of viscous dissipation,
axial conduction with the uniform temperature at the walls, on thermally developing
forced convection heat transfer in a parallel plate channel fully filled with a porous
medium.

In the present paper, the thermally developing region of a parallel plate channel
partially filled with a porous material with the effect of axial conduction and vis-
cous dissipation with wall boundary condition uniform heat flux has been studied.
Numerical solutions for the two-dimensional energy equations in both the fluid and
porous regions have been obtained using numerical scheme successive accelerated
replacement (Ramjee and Satyamurty [3], Satyamurty and Bhargavi [9], and Bhar-
gavi and Sharath Kumar Reddy [10]). The effects of important parameters on the
local Nusselt number have been studied.

2 Mathematical Formulation

Governing equations and the boundary conditions are non-dimensionalizing by
introducing the following non-dimensional variables.

X = x/H,Y = y/H,Uf = uf/uref,Ui = ui/uref,
Up = up/uref, P = p/ρ u2ref, θf = (Tf − Te)/(qH/kf),
θp = (Tp − Te)/(q H/kf)

⎫
⎬

⎭
(1)

In Eq. (1), X and Y are the non-dimensional coordinates. U and P are the non-
dimensional velocity and pressure. The subscripts f and p refer to fluid and porous
regions. θ ,{θ f in the fluid region and θp in the porous region}, is the non-dimensional
temperature. uref is the average velocity through the channel (Fig. 1).
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   (a) Dimensional (b) Non-Dimensional

Fig. 1 Geometry of the physical model of the problem

The non-dimensional governing equations and boundary conditions for momen-
tum and energy equations applicable in the fluid and porous regions become [using
non-dimensional variables given in Eq. (1)].

Fluid Region:

d2Uf

dY 2
= Re

dP

dX
(2)

Uf
∂θf

∂X∗ = Ac
1

Pe2
∂2θf

∂X∗2 + ∂2θf

∂Y 2
+ Br

(
dUf

dY

)2

(3)

In Eq. (2), Re, the Reynolds number is defined by

Re = ρurefH/μf (4)

In Eq. (3), Pe, Peclet number and Br, Brinkman number and X∗ are defined by,

Pe = urefH/αf, Br = μfu
2
ref/(qH), X∗ = X/Pe (5)

when Br < 0 represents the fluid is getting heated. Br > 0 represents the fluid is
getting cooled.

Porous Region:

d2Up

dY 2
− ε

Da
Up = ε Re

dP

dX
(6)

Up
∂θp

∂X∗ = 1

η

(

Ac
1

Pe2
∂2θp

∂X∗2 + ∂2θp

∂Y 2

)

+ Br

Da
U 2

p (7)
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In Eqs. (6) and (7), Da, ε, and η are defined as,

Da = K/H 2, ε = μf/μeff and η = kf/keff (8)

When Ac = 1 in Eqs. (3) and (7) means that axial conduction is included, and
when Ac = 0, axial conduction is neglected. When Ac = 0, the solutions to Eqs. (3)
and (7) in terms of X* do not depend on Pe.

Non-dimensional Boundary Conditions:

dUf

dY
= 0,

∂θf

∂Y
= 0 at Y = 0 (9)

Uf = Up = Ui,
dUf

dY
= 1

ε

dUp

dY
at Y = −1

2
+ γp

2
(10)

θf = θp = θi,
∂θf

∂Y
= 1

η

∂θp

∂Y
at Y = −1

2
+ γp

2
(11)

Up = 0,
∂θp

∂Y
= −η at Y = −1/2 (12)

Inlet conditions

θp(0,Y ) = 0 for − 1

2
≤ Y ≤ −1

2
+ γp

2
(13)

θf(0,Y ) = 0 for − 1

2
+ γp

2
≤ Y ≤ 0 (14)

∂θb

∂X∗ = 0 ⇒ ∂θf,p

∂X∗ = θf,p

θ∗
∂θ∗

∂X∗ at X∗ ≥ X∗
fd for

− 1/2 ≤ Y ≤ 0 {downstream condition} (15)

In Eq. (15), θb is the non-dimensional temperature based on the bulk mean
temperature defined by

θb = T − Te
Tb − Te

= θ

θ∗ (16)

The velocity expressions in fluid and porous regions satisfying the interfacial
conditions are available in Bhargavi and Sharath Kumar Reddy [10].
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3 Numerical Scheme: Successive Accelerated Replacement
(SAR)

Numerical solutions to non-dimensional energy Eqs. (3) and (7) along with the non-
dimensional boundary conditions on θ given in Eqs. (9)–(16) have been obtained
using the numerical scheme successive accelerated replacement [3, 9, 10].

3.1 Local Nusselt Number

After non-dimensionalizing (using Eq. (1)), Nupx, the local Nusselt number at the
lower plate Y = −1/2, is given by

Nupx = hpx(2H)

kf
= −2

(
∂θp/∂Y

)|Y=−1/2

η[θw − θ∗(X)]
= 2

θw − θ∗(X∗)
(17)

4 Results and Discussion

Assumed that ε = μf/μeff = 1 and η = kf/keff = 1. The channel referred to clear
fluid channel when porous fraction, γ p = 0. The channel referred to fully filled with
a porous medium, when porous fraction, γ p = 1.0. The channel referred to partially
filled with a porous medium, when porous fraction, 0 ≤ γ p ≤ 1.0.

4.1 Local Nusselt Number with the Effect of Viscous
Dissipation and Without Axial Conduction

Variation of the local Nusselt number, Nupx against X* for the Darcy number, Da =
0.005 is shown in Fig. 2a, b for Br ≤ 0 and Br ≥ 0, respectively, for porous fractions,
γ p = 0 when axial conduction is neglected (Ac = 0). Similarly, for porous fractions,
γ p =0.2, 0.8 and1.0 are shown inFigs. 3, 4, and5, respectively.Clearly,Nupx displays
an unbounded swing for Br < 0 at say, X∗

ee in all Figs. 2, 3, and 4. This unbounded
swing X∗

sw occurs for γ p ≤ 0.8 But when Br > 0, Nupx displays an unbounded swing
X∗
sw for γ p > 0.8 see in Fig. 5. The value of X∗

sw (which occurs forBr < 0) increases as
γ p increases from 0 to 0.8. The Nusselt number values, as well as the limits, differ if
Da is larger. The local Nusselt number, Nupx displays an unbounded swing for Br <
0 since the bulk mean temperature reaches wall temperature and exceeds because of
viscous dissipation. Beyond X∗

sw, Nupx starts decreasing to reach the limiting value.
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Fig. 2 Variation of local Nusselt number against X* for a Br ≤ 0 and b Br ≥ 0 for axial conduction
neglected (Ac = 0) for γ p = 0
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Fig. 3 Variation of local Nusselt number against X* for a Br ≤ 0 and b Br ≥ 0 for axial conduction
neglected (Ac = 0) for γ p = 0.2
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Fig. 4 Variation of local Nusselt number against X* for a Br ≤ 0 and b Br ≥ 0 for axial conduction
neglected (Ac = 0) for γ p = 0.8
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Fig. 5 Variation of local Nusselt number against X* for a Br ≤ 0 and b Br ≥ 0 for axial conduction
neglected (Ac = 0) for γ p = 1.0

4.2 Local Nusselt Number with the Effect of Viscous
Dissipation and Axial Conduction

Variation of local Nusselt number, Nupx against X* for the Darcy number, Da =
0.005 and at Brinkman numbers, (a) Br = −0.5 and (b) Br = 0.5 for different Peclet
numbers, Pe = 5 and 25, respectively, are shown in Figs. 6, 7, 8, and 9 for porous
fractions, γ p = 0, 0.2, 0.8, and 1.0, respectively. In parallel plate channel partially
filled with a porous medium also, Nupx displays an unbounded swing, X∗

sw for Br < 0
in all Figs. 6, 7, and 8. This unbounded swing depends on porous fractions, γ p. At low
Peclet number, the value of the X∗

sw is more for all porous fractions. This unbounded
swing X∗

sw occurs for γ p ≤ 0.8. But when Br > 0, Nupx displays an unbounded swing
X∗
sw for γ p > 0.8 see in Fig. 9. As Darcy number increases, there is no unbounded

swing in the local Nusselt number for all porous fractions. The qualitative behavior
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Fig. 6 Variation of local Nusselt number against X* for different Peclet numbers, Pe for a Br = −
0.5 and b Br = 0.5 for γ p = 0
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Fig. 7 Variation of local Nusselt number against X* for different Peclet numbers, Pe for a Br = −
0.5 and b Br = 0.5 for γ p = 0.2
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Fig. 8 Variation of local Nusselt number against X* for different Peclet numbers, Pe for a Br = −
0.5 and b Br = 0.5 for γ p = 0.8
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Fig. 9 Variation of local Nusselt number against X* for different Peclet numbers, Pe for a Br = −
0.5 and b Br = 0.5 for γ p = 1.0
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of the present local Nusselt number values with the Jagadeesh Kumar [4] and Ramjee
and Satyamurty [11] are in good agreement for the clear fluid channel (γ p = 0).

5 Conclusions

Numerical solutions have been obtained for 0≤ γ p ≤ 1.0, 5≤Pe≤ 100,−1.0≤Br ≤
1.0 andDa= 0.005, 0.01, and 0.1, using the SAR [3, 9, 10] numerical scheme. There
is an unbounded swing in the local Nusselt number since the bulk mean temperature
reaches wall temperature and exceeds because of viscous dissipation, Br < 0 for the
porous fraction, γ p ≤ 0.8. In the case of porous fraction, γ p > 0.8, unbounded swing
occurs at Br > 0. As, Darcy number increases, there is no unbounded swing in the
local Nusselt number.
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