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Abstract The Harten-Lax-van Leer (HLL) based Convective-Pressure-Split (CPS)
approximate Riemann solver (HLL-CPS) is a popular upwind scheme designed to
discretize the Euler system of equations that governs compressible high speed flows.
However, the HLL-CPS scheme is known to possess two major drawbacks: high
numerical dissipation on shear waves and susceptibility to numerical shock insta-
bility. In this paper, we demonstrate that the accuracy of the shear waves can be
recovered by directly employing an HLLC-type anti-diffusive term in the discretized
pressure system of the HLL-CPS scheme.We show that the resulting scheme, termed
HLLC-CPS, can be made shock stable by selectively controlling this anti-diffusive
term in the vicinity of a numerical shock front using a pressure-ratio based control
parameter. Numerical results show the efficacy of the proposed scheme.

Keywords Euler equations · Convective-pressure split · Numerical shock
instability · Riemann solvers · Contact and shear preserving

1 Introduction

Computation of high-speed compressible flows, governed by the Euler system of
equations, continues to be a major challenge in the field of Computational Fluid
Dynamics. Complexities arise inaccurately and robustly resolving the genuinely
nonlinear waves like the shock wave and expansion fans, the linearly degenerate
waves like the contact wave and shear wave and the mutual interactions between
these wavefields. Over the past several decades, various upwind schemes have been
developed to address this challenge. The two major categories of these schemes are
the Flux Vector Splitting (FVS) schemes and the Flux Difference Splitting (FDS)
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schemes.While the FVS schemes work by decomposing the total Euler flux vector at
an interface into an upwind and downwind contribution based on local wavespeeds,
the FDS schemes seek the solution of a Riemann problem to estimate the numerical
flux at an interface. Themost cost-effective implementation of the FDS schemes is the
approximate Riemann solvers and the most popular of them include the Roe scheme
[1], the HLL scheme [2], the HLLC scheme [3] etc. Although the superior accuracy
has rendered these schemes more popular than the FVS schemes over the years, they
still lack the inherent robustness of the FVS schemes against the phenomenon of
numerical shock instability [4].

A particular scheme that represents a combination of the philosophy of the FVS
and the FDS schemes, yet remains distinct from each of them, is the AUSM scheme
of Liou et al. [5]. The AUSM scheme is notable for pioneering the philosophy of
Convective-Pressure Splitting (CPS) by arguing that since the Euler equations com-
prise of separable convective and pressure systems with distinct physics of prop-
agation, it is meaningful to decompose it accordingly and discretize these compo-
nents independently. The AUSM scheme rivaled most of the approximate Riemann
solvers in its accuracy while closely retaining the robustness of the FVS schemes in
shock-capturing. The philosophy of CPS that was put forward by this scheme had
subsequently inspired several other schemes [6–8]. Most of these schemes used a
one-sided differencing for the convective component and aMach number or velocity-
based polynomial approximations for the pressure component.

Recently, Mandal et al. [9] proposed an interesting CPS based approximate
Riemann solver called the HLL-CPS scheme. In this scheme, the Euler flux is first
decomposed into its respective convective and pressure systems based on either
AUSM-type or Zha-Bilgen-type [6] splitting. The resulting convective system was
governed by a single linear wave and the pressure system was governed by two non-
linear waves and a stationary contact wave.While the convective system is upwinded
based on locally averaged fluid velocity, the pressure system is subjected toHLL-type
discretization inspired by the AUFS scheme of Sun et al. [10]. The contact ability
was introduced explicitly by replacing the density jumps appearing in the numerical
dissipation of the pressure system to pressure jumps using an isentropic condition.
The individually discretized convective and pressure systems are then coupled to
each other using the slowest and fastest wavespeeds that occur as the solution of
the local Riemann problem. The HLL-CPS scheme was shown to be as accurate
as the HLLC scheme at least on several inviscid problems. It also inherited several
appealing features like positivity, entropy satisfaction without explicit entropy fixes
and flux differentiability from the HLL scheme. Further, all versions of the scheme
were shown to avoid numerical shock instability on selected problems. The HLL-
CPS formulation has been shown to work effectively even on the Toro-Vazquez-type
flux splitting [11] and has been easily extended to its genuinely multidimensional
version [12], which clearly demonstrates the versatility of the method. However,
recent studies reveal that the HLL-CPS scheme has two major drawbacks. Firstly,
the numerical dissipation tuning employed to resolve stationary contacts adversely
affected the capability of the scheme to resolve shear waves [13]. Secondly, our
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experience shows that the HLL-CPS may succumb to numerical shock instability on
certain problems.

To alleviate these shortcomings, in this work, we propose a new low diffusion
approximate Riemann solver based on the CPS philosophy. Although we reuse the
framework made available by the HLL-CPS scheme, the proposed scheme differs
from it specifically in the discretization of the pressure system. In particular, we
show that full accuracy on the linearly degenerate wavefields can be recovered by
simply introducing an HLLC-type anti-diffusive term into the formulation. Further,
we demonstrate that the proposed scheme could be made robust against numerical
shock instability by simply controlling this anti-diffusive term in the vicinity of a
numerical shock front.

2 Formulation

The governing equations for x-directional-split inviscid compressible flow can be
expressed in their conservative form as,

∂U
∂t

+ ∂F(U)

∂x
= 0 (1)

where U and F(U) are the vector of local conserved variables and grid normal
fluxes at any interfaces given respectively as U = [ρ, ρu, ρv, ρE]T and F(U) =[
ρu, ρu2 + p, ρuv, (ρE + p)u

]T
. In these expressions, ρ, u, v, p and E stands,

respectively, for density, normal velocity, tangential velocity, pressure, and specific
total energy. The system of equations are closed through the equation of state. In the
above expression the grid tangent fluxes are neglected in a finite volume discretiza-
tion because they do not contribute to the flux across an interface. A semi discretized
form of Eq. (1) that uses a conventional Finite Volume based two-state approximate
Riemann solver on a two-dimensional quadrilateral mesh with a cell element i of
area |Ωi| can be written as,

dUi

dt
= − 1

|Ω|i
4∑

k=1

[FRiemann(UL,UR)]�sk (2)

whereUL,UR indicates the initial conditions of a local Riemann problem across kth
interface of cell i and FRiemann is the Riemann flux operator at any interface with face
length�sk . In this work we use the Zha-Bilgen type flux splitting strategy [6] to split
the total Euler flux vector into its convective (FC) and pressure (FP) systems as,

F = FC + FP
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where,

FC = u

⎛

⎜
⎜
⎝

ρ

ρu
ρv
E

⎞

⎟
⎟
⎠ FP =

⎛

⎜
⎜
⎝

0
p
0
pu

⎞

⎟
⎟
⎠ (3)

For the proposed scheme, the convective part is discretized using a simple local
average velocity based upwinding similar to [9].

FC = Mk

⎛

⎜
⎜
⎝

ρ

ρu
ρv
E

⎞

⎟
⎟
⎠

k

ak (4)

k =
{
L if ū ≥ 0
R if ū < 0

(5)

where the local average velocity ū = uL + uR
2

Mk =

⎧
⎪⎨

⎪⎩

ū

ū − SL
if ū ≥ 0

ū

ū − SR
if ū < 0

(6)

and

ak =
{
uL − SL if ū ≥ 0
uR − SR if ū < 0

(7)

The SL = min(0, uL − aL, ũ − ã) and SR = max(0, uR + aR, ũ + ã) are the
wavespeeds. The pressure part can be discretized using the two-wave HLL Riemann
solver as in [9],

FP = SRFP
L − SLFP

R + SRSL(UR − UL)

SR − SL
(8)

Now, instead of tuning the term (UR − UL) to recover accuracy on linearly degenerate
waves like contact waves and shear waves as advocated in the HLL-CPS scheme, we
simply add an HLLC-type anti-diffusive term to the pressure discretization. Hence,
we write,

FP = SRFP
L − SLFP

R + SRSL(UR − UL)

SR − SL
+ ωAHLLC (9)
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(a) Stencil forω i, j+1/2 (b) Stencil forω i+1/2, j

Fig. 1 Stencils for evaluation of the anti-diffusion control parameter ω. a On horizontal interfaces.
b On vertical interfaces

where the anti-diffusion term AHLLC can be written as,

AHLLC =
{
SL(U∗LHLLC − UHLL∗ ), if SL ≤ 0 ≤ SM
SR(U∗RHLLC − UHLL∗ ), if SM ≤ 0 ≤ SR

(10)

where, SM is the estimated speed of the contact and shear wave and can be obtained
as suggested in [14]. Since this anti-diffusive term is responsible for triggering shock
instability [15], a pressure-ratio based control parameter ω is introduced in order to
control this term in the vicinity of strong normal shocks. The control parameter ω is
given as,

ωi,j+1/2 = mink(fk), k = 1...4 (11)

The term fk denotes a pressure-ratio based function that uses a predefined stencil
around a particular interface as shown in Fig. 1a. At any interface k, fk is defined as,

fk = min

(
pR
pL

,
pL
pR

)5

k

(12)

We term the resulting scheme as HLLC-CPS-Z (Zha-Bilgen split). We note that an
HLLC-CPS-A and an HLLC-CPS-T can also be constructed in similar fashion by
starting, respectively, with the AUSM-type or the Toro-Vazquez-type flux splittings
although we choose not to discuss them presently. In the next section, we test the
HLLC-CPS-Z scheme for its accuracy on linearly degenerate waves and robustness
against numerical shock instability.
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3 Results and Discussions

3.1 Subsonic Laminar Flow Over a Flat Plate

A M = 0.1 laminar flow over a flat plate is used as a test case to demonstrate the
capability of the proposed HLLC-CPS-Z scheme to satisfactorily resolve a shear
dominated viscous flow. The domain is divided into 31 × 33 Cartesian cells with
fifteen cells retained in the boundary layer.Viscous fluxes are discretized using simple
averaging. The CFL number is taken to be 0.7. In Fig. 2, we plot the normalized
longitudinal velocity profiles ( u

u∞ ) against the Blasius parameter η = y
√
u∞/μL. It

can be clearly seen that HLLC-CPS-Z scheme has a marked improvement over the
HLL-CPS-Z scheme in capturing the boundary layer.

3.2 Two-Dimensional Supersonic Shear Flow

This problem investigates the inviscid contact capturing ability of a given scheme by
simulating a fluid system consisting of two different density fluids sliding over each
other at different speeds [16]. The top fluid is chosen to have conditions (ρ, p,M )top
= (1, 1, 2) while the bottom fluid is chosen to have conditions (ρ, p,M )bottom = (10,
1, 1.1). The domain of 1.0 × 1.0 is coarsely discretized using 10 × 10 cells. The
simulation is run for 1000 iterations using a CFL number of 1.0. All simulations
are plain first-order accurate. Figure3 shows a comparison of the density variation
along y-location at the center of the domain. The plot clearly shows that while the
HLL-CPS-Z scheme diffuses the interface to an unacceptable level, the proposed
HLLC-CPS-Z scheme is able to retain it exactly.

Fig. 2 Comparison of
velocity profiles computed
by the HLL-CPS-Z scheme
and the proposed
HLLC-CPS-Z scheme for a
M = 0.1 laminar flow over a
flat plate
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Fig. 3 Variation of density along the y-direction at the center of the domain in the two-dimensional
supersonic shear flow

(a) HLL-CPS-Z (b) HLLC-CPS-Z

Fig. 4 Results for M = 7 standing shock instability problem

3.3 Standing Shock Instability

This simple test case evaluates the ability of a numerical scheme to compute an
isolated normal shock front without allowing random perturbations to grow and dis-
tort the initial shock structure or produce contaminated post-shock values [17]. A
normal shock of strength M = 7 is located in the middle of an unit-dimensional
domain divided into 26 × 26 Cartesian cells. The CFL number is 0.5. First-order
solution is sought. Figure4 shows thirty density contour lines equally spanning val-
ues from 1.0 to 7.4 for this experiment at t = 50 units. From the figure, it is evi-
dent that HLL-CPS-Z scheme produces this variant of shock instability while the
HLLC-CPS-Z scheme is completely free of this.
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Fig. 5 Results for M = 20
supersonic flow over a blunt
body problem
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(a) HLL-CPS-Z
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(b) HLLC-CPS-Z

3.4 Supersonic Flow Over Bluntbody

This problem investigates the susceptibility of the numerical scheme to produce
the dreaded “Carbuncle” phenomenon. A unit-dimensional cylinder is placed in a
M = 20 inviscid flowwith free streamconditions chosen as (ρ, u, v, p) = (1.4, 20.0,
0.0, 1.0). The computationalmesh consists of 320× 40body-fitted structured quadri-
lateral cells in circumferential and radial directions, respectively. To trigger the insta-
bility, the centerline grid is perturbed to the order of 10−3. The CFL number for the
computation is taken to be 0.5 and First-order simulation is run for 20,000 iterations.
The results showing twenty density contours equally spanning value from 1.4 to
8.5 are shown in Fig. 5. The contours clearly show the presence of instability in the
HLL-CPS-Z scheme while the HLLC-CPS-Z scheme is completely free of it.

4 Conclusions

In this paper we propose a novel approximate Riemann solver called the
HLLC-CPS-Z scheme for robust and accurate computation of high speed flows. The
proposed scheme is primarily based on the Convective-Pressure split (CPS) strat-
egy wherein the total Euler flux is split into a convective and pressure systems. The
resulting convective and pressure systems are discretized similar to the HLL-CPS
scheme [9]. However, for resolving contact and shear waves accurately, we introduce
an HLLC-type anti-diffusive term to the pressure system in contrast to the numeri-
cal dissipation tuning employed by the HLL-CPS scheme. This anti-diffusive term
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is also selectively controlled near strong shocks using a pressure-ratio-based con-
trol parameter to prevent the occurrence of numerical shock instability. Numerical
results demonstrate that the HLLC-CPS-Z scheme possesses superior accuracy on
linearly degenerate waves while displaying high robustness against numerical shock
instability.
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