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Abstract This paper deals with the formulation of an 8-noded degenerated shell
finite element for modeling and analysis of laminated composite shell structures. A
MATLAB code has been developed based on the formulation to analyze the com-
posite shell structures. The formulation is capable of solving both plate and shell
structures. Use of degenerated shell elements allows the formulation to be used
for any type of shells with various shapes and thickness ratios. The formulation is
also capable of solving isotropic and laminated composite materials. The formula-
tion developed has been validated with the results available in open literatures and
software (ANSYS).

Keywords 8-noded elements · Degenerated shells · MATLAB · Laminated
composite shell

1 Introduction

Shells with variable thickness have extensively been used in many fields such as
aerospace, rocket, aviation, and submarine technology. Over the years much research
has been conducted in attempts to produce precise, competent, and reliable shell
elements. Various shell theories have been developed, over the years, based on the
thickness of the shells.

Three separate classes of shell elements have been widely used for analyzing shell
structures: flat elements, curved shell elements, and degenerated shell elements. Flat,
plate-like elements which approximate the curved shell by a faceted surface, hence
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sometimes called facet elements, show completely uncoupled behavior between in-
plane stretching and bending. The coupling between in-plane stretching and bending
only appears indirectly by linking adjacent elements through the nodal degrees of
freedom. These elements are not preferred due to shortcomings such as the absence
of curvature of the elements within the element. Also, slope discontinuity between
neighboring plate elements can generate bending moments in the sections of struc-
ture where they do not exist. The interior of the individual elements will not have any
coupling between bending effects and membrane effects due to curvature of shell.
Curved shell elements are founded on several shell theories which are also quite
popular. These elements have various limitations due to fact that the shell theories
are not consistent with each other. Also, it is very difficult to find appropriate defor-
mation idealizations where truly strain-free rigid body movements are allowed. The
degenerated shell element is not based on any of the available shell theories and can
be applied over a wide range of thicknesses and curvatures. The degenerate solid
approach is used to develop this element, which is formulated on Reissner–Mindlin
assumptions where, the shear deformation and rotary inertia effect of the shell is
considered in the formulation and the 3D field is reduced to a 2D field in form of
mid-surface nodal variables.

In the late sixties, Ahmad et al. [1] developed aMindlin-type, degenerated, curved
shell element which is quite competent as well as effortless. It can be used for any
arbitrary shape and does not depend upon any specific shell theory. In order to elim-
inate shear and membrane locking, Zeinkiewicz et al. [2] improved the degenerated
shell element developed by Ahmad et al. [1], by reducing the order of numerical
integration. Huang & Hinton [3] presented a new nine node degenerated shell ele-
ment formulation. To avoid locking phenomena, they proposed the assumed strain
method where an enhanced interpolation of the transverse shear strains in the natural
co-ordinate system is used. The nine-node degenerated shell element formulation
developed by Huang and Hinton [3] was later extended by Jayashankar et al. [4] to
conduct free vibration analysis of thick laminated composites. Because the degener-
ated shell element formulation works well for both thick and thin shells, nine-noded
degenerated shell element was preferred over conventional solid elements for the
modeling and analysis of laminated composite shell structures. Balamurugan and
Narayanan [5] developed a nine-noded degenerate shell finite element model for the
vibration and active vibration control of piezo-laminated composite plates and shells
bonded with piezoelectric sensor and actuator layers.

Most of the research that has been done on degenerated shells is focused on the
static analysis of structures such as dams, tanks, and dome, etc. Very lesswork is done
on dynamic analysis using degenerated shells and fewer on the dynamic analysis of
composite structures using degenerated shells. The main objective of this paper is to
develop a MATLAB code for dynamic analysis of composite cylindrical shell using
3-D degenerated element which can accurately solve different types of shells and
plates with both isotropic and composite materials.
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2 Methodology

Some of the important aspects of the standard finite element scheme under plane
strain platform are outlined in the following sub-sections.

2.1 3-D Degenerated Shell Element

In present study, we have considered an 8-noded degenerated shell element with
natural coordinate system (ξ, η, ζ ), which is defined by the element geometry and
not by the element orientation in the global coordinate system. The natural elements
are scaled such that the sides of the parent elements are defined by ξ = ±1, η = ±1
and ζ = ±1. A 16-noded solid shell element and equivalent 8-noded degenerated
shell element is shown in Fig 1.

Above element is similar to 8-noded serendipity element so we can use same
shape function as the serendipity element.
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A point in the element can be represented as
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Fig. 1 A 16-noded solid shell element and equivalent 8-noded degenerated shell element
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For thin structures, it is convenient to replaceV3i by a unit vector v3i . Thus equation
changes to
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where, ti is the thickness of the shell at node i .
The displacement field, in the element, can be represented as
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where v2i , v1i , α and β are unit vectors in y and x directions and rotations in x and y
directions respectively as shown in Fig. 2.

Fig. 2 Local and global coordinates of a middle surface shell element
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2.2 Strain Definitions

Strain definitions are needed to find strain displacement matrix [B]. Since the ele-
ments have different coordinate system from global coordinates, we need strains in
local coordinates by converting global strains to local strains.
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Solving Eq. (6) using Eq. (7), we get
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Here lx , ly, lz,mx , . . . are the direction cosines which can be calculated using the
Jacobian matrix of the element.
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Global strains can be written as
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2.3 Strain Displacement Matrix

Strain displacement matrix [B] can be defined as

[B] = [T ][Jac][∂N ] (13)

2.4 Stress Strain Relationship Matrix

Stress strain relationship matrix [D] is considered in local coordinate system and
taken as
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[D] = E
(
1 − υ2

)

⎡

⎢⎢⎢⎢⎢
⎣

1 υ 0 0 0
υ 1 0 0 0
0 0 (1−υ)

2 0 0
0 0 0 Ks (1−υ)

2 0
0 0 0 0 Ks (1−υ)

2

⎤

⎥⎥⎥⎥⎥
⎦

(14)

where E, υ and Ks are modulus of elasticity, Poisson’s ratio and shear correction
factor for the given Isotropic material.

For orthotropic materials, the stress strain relationship matrix [D] will be taken
as
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2.5 Stiffness Matrix

Stiffness matrix [K ] can be expressed as

[K ] =
˚ [

BT
]
[D][B]|J |dξdηdζ (16)

2.6 Mass Matrix

Mass matrix [M] is expressed as
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2.7 Free Vibration

Free vibration equation of the structure, without damping, is given as

[M]ẍ + [K ]x = 0 (19)

2.8 Numerical Integration

We have considered different Gauss points for bending and shear to avoid shear
locking and to get more accurate results.

2.8.1 Isotropic Material

For Isotropic materials, we have taken 3 Gauss points each in ξ and η directions and
two Gauss points in ζ direction in case of bending. For shear, we have taken 2 Gauss
points each in ξ and η directions and one Gauss point in ζ direction.

2.8.2 Composite Material

Composite laminated shell elements require an independent quadrature for each
lamina since the material property (stress-strain relationship matrix [D]) depends
upon the fiber orientation. Thus if ζ l and ζ l+1 define the thickness position of the lth
layer, then

ζ = ζl + tl
t

(
1 + ζ ′) and dζ = tl

t
dζ ′ (20)

where tl is the layer thickness and −1 ≤ ζ ′ ≤ 1 for ζl ≤ ζ ≤ ζl+1.
For each lamina, we have taken 3 Gauss points each in ξ and η directions and

two Gauss points in ζ direction in case of bending. For shear, we have taken 2 Gauss
points each in ξ and η directions and one gauss point in ζ direction.
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3 Results and Discussions

3.1 Convergence Study

3.1.1 Square Plate

A convergence study is performed in order to determine the required number of
mesh division Nx (number of divisions in x-direction) × Ny (number of divisions in
y-direction) at which the objective values converge. Thickness ratio (a/h) is assumed
to be 5. The problem considered here is a cross ply (0/90/90/0) of square cross section
and having simply supported boundary conditions which is defined as

v = w = β = 0 at x = 0, a

u = w = α = 0 at y = 0, b

The elastic properties of the lamina with respect to the material axes has been
taken as E1/E2 = 10, G12 = G13 = 0.6 E2, G23 = 0.5 E2, ν12 = 0.25, and ρ = 1.
Thickness ratio (a/h) is assumed to be 5.

Since it is clear form Table 1 that the program converges at 10 × 10, so we have
taken mesh size as 10 × 10 for square plate.

3.1.2 Cylindrical Shell

A convergence study is performed in order to determine the required number of mesh
division Nh (number of divisions in direction of height) × Nr (number of divisions
in radial direction) at which the objective values converge. The problem considered
here is an isotropic cylindrical shell having bottom side fixed which is defined as

u = v = w = α = β = 0 at z = 0

Table 1 Non-dimensional frequency parameter ω̄ = ωa2/h
√

ρ/E2 of a simply supported (SSSS)
square cross ply (0/90/90/0) plate. a/h = 5

Mode
no.

5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 12 × 12 15 × 15

1 7.714 7.712 7.711 7.711 7.711 7.710 7.710 7.710

2 12.169 12.168 12.168 12.168 12.167 12.167 12.167 12.167

3 12.169 12.168 12.168 12.168 12.167 12.167 12.167 12.167

4 13.507 13.490 13.483 13.479 13.477 13.476 13.474 13.474
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Table 2 Natural Frequency (Hz) of Isotropic cylindrical shell

Mode
no.

Mesh size (Nh × Nr)

8 × 80 8 × 85 8 × 90 8 × 100 9 × 100 8 × 110 8 × 120 8 × 150

1 147.81 147.52 147.29 146.99 146.96 146.81 146.80 146.80

2 148.97 148.67 148.45 148.15 148.11 147.96 147.91 147.89

3 183.61 182.72 182.04 181.13 181.10 180.57 180.50 180.44

The material properties have been taken as E = 71 GPa, v = 0.33, and ρ =
2770 kg/m3. Height of tank is taken as 0.6 m, outer radius 0.15 m and thickness is
taken as 1 mm.

From Table 2, it is clear that the program converges at 8 × 120, so we have taken
mesh size as 8 × 120 for cylindrical shells.

3.2 Validation of Results

The results obtained from MATLAB code, created for solving free vibration of
isotropic and laminated composite plates and shells, are compared with the results
available in open literature and are in good agreement with the literature available in
open source.

We have compared our result with the natural frequencies of composite plate and
isotropic circular cylinder, available in literatures and result generated by ANSYS.

3.2.1 Composite Plate

The problem considered here is a cross ply (0/90/90/0) of square cross section and
having simply supported boundary conditions. The elastic properties of the lamina
with respect to the material axes has been taken as E1/E2 = 10, G12 = G13 = 0.5 E2,
G23 = 0.6 E2, ν12 = 0.25, and ρ = 1. Thickness ratio (a/h) is assumed to be 5.

As we can see fromTable 3, the results obtained for composite plates from present
formulation are in good agreement with the results available in open literature.

Table 3 Non-dimensional frequency parameter ω̄ = ωa2/h
√

ρ/E2 of a simply supported (SSSS)
square cross ply (0/90/90/0). a/h = 5

E1/E2 ratio

10 20 30 40

Exact [6, 7] 8.2982 9.5671 10.326 10.854

Liew et al. [8] 8.4298 9.6782 10.424 10.944

FSDT (present) 8.1974 9.7612 10.6894 11.3315

Degenerated (present) 7.985 9.4399 10.3628 11.016
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Table 4 Natural frequency (Hz) of isotropic cylindrical shell

Frequency mode 1 2 3 4 6

Rawat [9] 146 175 242 263 381

ANSYS (present) 147.1 178.57 241.54 269.21 384.85

Degenerated (present) 146.8 180.56 242.46 272.99 385.31

3.2.2 Isotropic Cylindrical Shell

An Isotropic cylindrical shell of 0.6 m height, 0.15 m outer radius and 0.1 mm
thickness is considered. We have assumed Aluminum as material with E = 71 GPa,
υ = 0.33 and density as 2770 kg/m3. Bottom side of shell is assumed to be fixed and
top is assumed to be free.

It is evident fromTable 4 that the result obtained for isotropic cylindrical shell from
present formulation are in good agreement with results available in open literature
as well as the results obtained from software (ANSYS).

The formulation developed based on 3-D degenerated shell elements has been
validated by comparing results obtained for composite plates and isotropic shells. The
results are in good agreement with open literature and software. Thus we conclude
that the formulation is correct and is able to produce accurate results.

3.3 Parametric Studies

We have considered a laminated composite cylindrical shell with varying no of
lamina, ply angle, and thickness of shell.

Height of cylindrical shell is taken as 0.6 m, outer radius is taken as 0.15 m and
this thickness of shell is taken as 1 mm. Material properties are considered as E1 =
45 GPa, E2 = 10 GPa, υ12 = 0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa, and
density is taken as 2000 kg/m3 (Table 5).

Now we have increased the thickness of the shell to study its effect on natural
frequency. Height of cylindrical shell is taken as 0.6m, outer radius is taken as 0.15m
and this thickness of shell is taken as 2 mm. Material properties are considered as
E1 = 45 GPa, E2 = 10 GPa, υ12 = 0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa,
and density is taken as 2000 kg/m3 (Table 6).

We have again increased the thickness of shell further. Height of cylindrical shell
is taken as 0.6 m, outer radius is taken as 0.15 m and this thickness of shell is taken
as 5 mm. Material properties are considered as E1 = 45 GPa, E2 = 10 GPa, υ12 =
0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa, and density is taken as 2000 kg/m3

(Table 7).
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From parametric study, it is evident that the natural frequency of composite shell
is increasing as we increase the thickness of the shell, which is consistent with our
understanding of composite shells. Other parameters such as fiber orientation and no
of lamina are also varied to understand their impact on natural frequency.

4 Conclusion

In the present work, a finite element formulation has been created for the dynamic
analysis of laminated composite shell using 8-noded 3-D degenerated shell element.
Present formulation is capable of analysis both isotropic and laminated composite
shells of arbitrary geometry. The results generated so far are in good agreement with
the results available in open literature as well as with the software generated results.

4.1 Future Work

Presented work can be extended to material and geometric non-linearity.
This work can also be extended to formulate Functionally Graded Materials

(FGM).
Present work can be coupled with fluid formulation to formulated Fluid-Structure

Interaction.
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