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Abstract Numerical simulation of wave propagation is essential to understand the
physical phenomenonof thewide variety of practical problems.However, the require-
ment of minimum grid point density per wavelength limits the computational stabil-
ity, convergence, and accuracy of simulation of engineering application by numerical
method. The purpose of this paper is to provide an improved framework for simula-
tion of linear and nonlinear elastic wave propagation and guided-wave-based damage
identification techniques feasible in the context of online structural healthmonitoring
(SHM). Nonstandard wavelet-based multi-scale operator developed by using finite
element discretization is used to represent waves. The proposed masking eliminates
the requirement of a very large number of nodes in finite element method neces-
sary for the propagation of such waves. The method is also useful in the situation
where higher harmonics of propagating waves are ignored due to very high computa-
tional cost. Thewavelet-based finite element scheme achieves an excellent numerical
simulation and expresses an applicability for the guided waves’ study.

Keywords Nonstandard wavelet operator · Structural health monitoring ·
Multi-scale simulation · Higher harmonics · Lamb waves

1 Introduction

Wave propagation can be characterized by the localized region of the sharp gradient
of field variable which changes its locations in spacewith time. This gives permission
to recognize the unusual nature that could be suitable for ultrasonic nondestructive
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testing techniques. Guided-wave-based nondestructive techniques offer to evaluate
the integrity of critical structures and to find out damage position, shape, and size [1,
2]. Several numerical techniques have been proposed to analyze the wave equations.
Due to their relatively simple mathematical expressions and the possibility to be
applied to the very large class of engineering problems, finite difference [3], boundary
element [4], and finite element [2] based methods have been used by many authors
for the simulation of guided Lamb waves. Finite element method (FEM) [2, 5] is
a widespread numerical method used to simulate elastic guided wave propagation
problem. Finite difference method (FDM) has also been used for the study of wave
simulation and damage interaction by several researchers. Although FDM schemes
are well situated for wave propagation in homogeneous media, however, the major
limitation of the FDM schemes is that stiffness jumps due to continuously changing
physical properties cause stability problems [6]. Furthermore, boundaries as well
as discontinuities between different types of media lead to fairly accurate solutions
and can generate severe errors [7]. With this in mind, more recently, Delsanto et al.
have proposed the local interaction simulation approach (LISA) in combination with
the sharp interface model [7]. Recently, customized elements and geometric multi-
scale finite element method have been introduced to analyze various types of wave
propagation problems [8]. The finite element method, which has been preferred
for elastic wave propagation, is not suitable to simulate nonlinear waves or higher
harmonics of propagating waves. A drastic increase of nodes for the simulation of
nonlinear wave problems demands some necessary alteration in FEM which must
be numerically efficient and straightforward.

In recent years, wavelet-based numerical methods gain much attention for solv-
ing partial differential equations. The major advantage of this approach allows one
to examine a problem in different resolutions, simultaneously. In addition, wavelet-
based schemes are efficient in problems comprising singularities and sharp transitions
in solutions for limited zones of a computation domain. Initially, Beylkin et al. [9]
employed the study of numerical computation based on wavelet. Several mathe-
maticians and scientists have established the superiority of wavelet-based methods
for solving elliptic partial differential equations [10, 11]. The adaptivity of wavelets
is one of the leading advantages for the implementation of wavelets in numerical
analysis [12, 13]. Liandrat and Tchamitchian have solved regularized 1D Burgers’
equation by using spatial wavelet approximation [14]. Later, Beylkin and Keiser
[15], Vasilyev and Bowman [16], and Kumar and Mehra [17] have developed differ-
ent wavelets-based algorithms and tested on 1D Burgers’ and advection–diffusion
equations. Researchers have increased the usage of wavelets for solution of par-
tial differential equations (PDEs) after the development of the lifting scheme by
Swelden [17] and stable completion by Carnicer et al. [18]. A review of wavelet
techniques for the solution of PDEs has been presented by Dahmen [19]. How-
ever, a very few researchers have applied the wavelet-based method for analyzing
wave propagation problem. Hong and Kennett proposed wavelet-based method for
the numerical modeling and simulation of elastic wave propagation in 2D media
[20]. Chen and Yang et al. presented the wave motion analysis of short wave in
one-dimensional structures [21]. Mitra and Gopalakrishnan proposed wavelet-based
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spectral finite element method (WSFEM) for simulation of elastic wave propagation
in one- and two-dimensional situations [22]. In the literature, some researchers have
used wavelets as basis function to solve PDEs but most researchers have applied the
wavelet-based adaptive technique in finite difference schemes. These papers have
presented the adaptive method for propagation of a single wave, but there is a need
for different algorithms for more than one waves propagating with different veloc-
ities. Generation of higher harmonics due to material nonlinearity is not addressed
in these papers.

Multi-scale modeling is one possible solution for higher harmonics in wave prop-
agation simulation. Wavelet-based multi-scale method leads to fast and locally adap-
tive algorithms. The compactly supported refinable basis functions aremain potential
advantage of the wavelet [10, 11]. However, these methods are unable to compete
with conventional finite elementmethod. In this paper, proposed technique is inspired
by the interesting paper by Krysl et al. [23].

This paper presents multi-scale adaptive approach for solving the wave propaga-
tion problem. In the proposed wavelet-based technique, FEM is preferred due to its
capability to handle complex boundary and loading conditions instead of any other
methods. This multi-scale transformation hierarchically filters out the less significant
frequencies and offers an operative framework to retain the necessary frequencies of
the wave. In this procedure, the finest level of the coefficient matrix is calculated once
for the whole domain while the adaptively compressed coefficient matrix, which is
very small compared to complete coefficient matrix, is used in everymarching step of
the solution. This paper is presenting wavelet-based nonstandard operator to improve
finite element simulation of linear and nonlinear wave propagation in a large struc-
ture. We use nonstandard operator because it is more efficient than standard operator
[24]. This will not only be useful to the structural health monitoring, but it can also
be used where waves with higher harmonics move at different group velocities. A
simple description of the nonstandard operator along with necessary algorithm and
mathematical comments is provided to remove an execution headache connected
with adaptive grid techniques. The algorithm is applied to 2D plane strain problem,
but it is general and independent of domain dimensions.

2 Mathematical Formulation

2.1 Lamb Waves

In an elastic medium, elastic waves are defined as propagating disturbances that
transport energy without any material transfer. Elastic waves of plane strain that
exist in free plates are called Lamb waves. For an orthotropic and symmetrical plate,
particle motion is often outlined through the elemental elastodynamic differential
equation of wave
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∂l(Cklmn∂nwm) = ρ∂2
t wk, (k, l,m, n = 1, 2). (1)

Substituting stress relation in governing equations and Lamb wave can be
expressed as
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are longitudinal velocity and shear velocity, respectively,

where λ = Eν
(1+ν)(1−2ν)

and μ = E
2(1+ν)

are Lamé constants, E is Young’s modulus,
and ν is Poisson ratio. The 2D plane strain problem is discretized into the set of finite
element equations as

[K ][u] + [M][ü] = 0, (3)

where [u] and [ü] are unknown coefficient vectors. [K ] and [M] are global stiffness
and mass matrix, respectively.

2.2 Multi-scaling Using Wavelets

The idea of multi-scale exploration is to interpolate an unknown field at a coarse level
with the assistance of supposed scaling functions.Any enhancement to initial approx-
imation is accomplished by adding “details” rendered by basis functions referred to
as wavelets. Amulti-scaling analysis forms a sequence of closed subspaces to satisfy
certain self-similarity relations as well as completeness and regularity relations. The
basis functions in Wj are called wavelet functions. Wavelet functions are symbol-
ized by ψ j,k . These scaling and wavelet functions are employed for wavelet-based
multi-scaling. A function f ∈ L2(R) is approximated by its projection P j f onto
the space Vj and the projection of f on Wj as Q j f , we have

P j f = P j−1 f + Q j−1 f. (4)

If the coefficient vector of P j f (or coefficients of scaling functions) is C j =
{C j,0, . . . ,C j,v( j)}T and coefficient vector of Q j f (or coefficients of some wavelets)
is d j = {d j,0, . . . , d j,w( j)}T, then we can write wavelet transform as

C j = [Tj ]
[
C j−1

d j−1

]
. (5)
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Thematrix [Tj ] is used to achieve next higher level by transforming scaling and detail
coefficients of Vj−1 and Wj−1 spaces, respectively. In this paper, B-spline wavelet
and Daubechies (D4) wavelet [25] are used for wave propagation.

2.3 Nonstandard Multi-scale Decomposition of Finite
Element Matrix

Two observations can be made while solving some PDEs using the wavelet bases: (i)
In theoretical terms, most of the available wavelet methods have stable Riesz basis
and better condition number than FEM or FDM. (ii) But in practical applications,
wavelet methods are not yet ready to compete with the traditional FEM approach.
One important reason is while the FEM can always produce a sparse matrix with
more regular sparsity patterns, use of wavelet bases does not produce such sparse
matrices. But the combination of wavelets with other methods, such as FDM, FEM,
and recently SEM [22], show good results. Here, we have used FEM discretization
to derive a sparse matrix, as the FEM remains the most versatile tool to solve PDEs.

Let us consider a continuous wave field u(x, y) and v(x, y) for a source of excita-
tion over 2D homogeneous medium. The approximation of the continuous wave field
on the discrete domain is denoted by u j and v j . It represents the discrete wave field
that is obtained with a classic time–space finite element method for a sufficiently fine
discretization of Vj ⊂ R2. The 2Dwavelet transform cascades projections of the dis-
crete wave field over different approximation grids V1, V2, V3, . . . , Vj of increasing
resolution.

In this multi-scale algorithm, we used NS operator proposed by Beylkin [26]. To
the best of authors’ knowledge, no one researcher has used NS operator in wavelet–
FEM coupling or wavelet–FDMcoupling. It has been proved by Beylkin [26, 27] that
NS operator is more efficient than the standard form of operator used by most of the
researchers. In this paper, we have used NS operator in two-dimensional wavelet–
finite element coupling technique. The finite element equations for the transient
problem, Eq. 3, can be expressed in the expanded form as

⎡
⎣
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]
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k j
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We can apply the wavelet transformation on the field variables of both the
directions:
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The organization of the matrix after three-level transform of nonstandard form
can be extended and expressed in the new notations as [24]

(8)

In order to solve it, Gines et al. [24] proposed nonstandard LU decomposition.

3 Results and Discussion

Elastic waves have been employed for identification of damage in the thin wall struc-
tures such as plates and pipes [5]. Guided Lamb waves are excited in the structures
through narrowband burst signals. In order to evaluate the performance of wavelet-
based multi-scale method. We considered an example in which a 50 × 50 mm2

homogeneous, isotropic aluminum plate with a density of 2700 kg/m3. The simula-
tion of Lamb wave in this plate with 400 kHz central frequency is presented in Fig. 1.
Contour plots of the displacement in the x-direction at three different time instants
are well depicted in this figure.

Nonlinear Lamb wave is more sensitive to small-scale damage identification.
However, the investigations of the higher harmonics in propagating Lamb waves
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Fig. 1 Contour plots of the displacement in the x-direction at three different time frames for
isotropic plate

were ignored due to high computational cost. To see the efficiency of the wavelet-
based method, higher harmonics are added in the Lamb wave and propagation of
waves is observed. This study uses the following actuation function with 400 kHz
central frequency:

E(t) =
{

fo sin(�t) ∗ (sin(0.1�t))2 + 0.1 fo sin(2 ∗ 5�t) ∗ (sin(�t))2, t < 10π
/

�

0, otherwise,

where � is the frequency of excitation and Eo is the maximum amplitude. The
excitation signal on a plate with a higher harmonics is shown in Fig. 2. An aluminum
plate of 200 mm length and 2 mm thickness is used in the analysis. Poisson’s ratio =
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Fig. 2 Excitation signal for Lamb wave with higher harmonics

0.3, density= 2700 kg/m3, andYoung’smodulusE = 69GPa are assumed asmaterial
properties. The Lamb wave in this material has longitudinal velocity CL = 5299 m/s
and transverse velocity CT = 3135 m/s. The waves are actuated by employing pin
forces applied to the left boundary of the plate. The excitation forces are parallel to
the longitudinal (propagating) direction. In-phase pin forces are applied to the top
and bottom edge nodes of the plate for excitation of fundamental symmetric (S0)
modes, and the antisymmetric modes are propagated by imposing out-of-phase pin
forces. In this paper, we considered the cases in which the pure S0 mode is excited.
Ten cycles Hanning-window actuation is given through excitation function to deliver
a limited cycle sinusoidal tone burst.

Higher frequency wave propagation problems demand enormous computer
resources because of very large number of time integration steps and highly dense
mesh. Generally, in the case of Lamb wave, 20 elements per wavelength are required
but this is not sufficient for higher harmonic simulation. Figure 3 depicts themeasured
nodal displacement response of time-domain signals obtained using FEM simulation
of the plate with 40, 80, and 120 elements per wavelength. It can be observed that
higher harmonics are not properly visible in the response of the plate with 40 ele-
ments per wavelet. On the other hand, as shown in the same figure, higher harmonics
are visible for 80 elements per wavelength.



Multi-scale Simulation of Elastic Waves Containing … 9

0 10 20 30

A
m

pl
itu

de
10-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (  S)

Fig. 3 Comparison of response of plate for 40, 80, and 120 elements per wavelength

In the present analysis, B-spline and Daubechies (D4) wavelet are used to estab-
lish robustness and sensitivity ofwavelet-basedwave propagationmethod. To capture
higher harmonics in the plates, FEM uses 17,080 uniformly distributed nodes while
half of the FEM nodes are required after application of one level of wavelet trans-
form. Nodal displacement response of plate received from B-spline and D4 wavelet
transform at level 1 along with FEM results is demonstrated in Fig. 4. It establishes
good agreement between conventional finite element and proposed wavelet-based
method. It can be observed that B-spline wavelet produces response close to FEM
results, while there is some deviation in the results of D4 wavelet. Further, we exam-
ined wavelet-based method at various levels of wavelet transform to find the level
up to which this method can work efficiently. These results show some attenuation
but wavelets are not eliminating higher frequency components of waves which are
important in many analyses.
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Fig. 4 Comparison of higher harmonic Lamb waves plates response at wavelet transform level 1

4 Conclusion

The spatial derivative operators in the wave equations are handled using multi-
resolution transforms in a physical domain. We presented a wavelet-based frame-
work to reduce the size of global stiffness matrix of finite element analysis which
is becoming too large in the case of nonlinear wave propagation problem. Wavelet-
based method is not only to develop the compressed stiffness matrix, but also to
propagate higher harmonics of waves using least number of nodes and able to reduce
the computational cost significantly.Without disturbing the programming advantages
of FE regarding the implementation of boundary conditions and efficient numerical
integration of interpolation functions, wavelet-based methods are able to reduce the
size ofmatrix asmuch as one by a sixteenth of original FEmatrix. These fundamental
characteristics show that the wavelet-based method can be utilized for more complex
wave propagation problems.
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