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Multi-scale Simulation of Elastic Waves
Containing Higher Harmonics

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

Abstract Numerical simulation of wave propagation is essential to understand the
physical phenomenonof thewide variety of practical problems.However, the require-
ment of minimum grid point density per wavelength limits the computational stabil-
ity, convergence, and accuracy of simulation of engineering application by numerical
method. The purpose of this paper is to provide an improved framework for simula-
tion of linear and nonlinear elastic wave propagation and guided-wave-based damage
identification techniques feasible in the context of online structural healthmonitoring
(SHM). Nonstandard wavelet-based multi-scale operator developed by using finite
element discretization is used to represent waves. The proposed masking eliminates
the requirement of a very large number of nodes in finite element method neces-
sary for the propagation of such waves. The method is also useful in the situation
where higher harmonics of propagating waves are ignored due to very high computa-
tional cost. Thewavelet-based finite element scheme achieves an excellent numerical
simulation and expresses an applicability for the guided waves’ study.

Keywords Nonstandard wavelet operator · Structural health monitoring ·
Multi-scale simulation · Higher harmonics · Lamb waves

1 Introduction

Wave propagation can be characterized by the localized region of the sharp gradient
of field variable which changes its locations in spacewith time. This gives permission
to recognize the unusual nature that could be suitable for ultrasonic nondestructive
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testing techniques. Guided-wave-based nondestructive techniques offer to evaluate
the integrity of critical structures and to find out damage position, shape, and size [1,
2]. Several numerical techniques have been proposed to analyze the wave equations.
Due to their relatively simple mathematical expressions and the possibility to be
applied to the very large class of engineering problems, finite difference [3], boundary
element [4], and finite element [2] based methods have been used by many authors
for the simulation of guided Lamb waves. Finite element method (FEM) [2, 5] is
a widespread numerical method used to simulate elastic guided wave propagation
problem. Finite difference method (FDM) has also been used for the study of wave
simulation and damage interaction by several researchers. Although FDM schemes
are well situated for wave propagation in homogeneous media, however, the major
limitation of the FDM schemes is that stiffness jumps due to continuously changing
physical properties cause stability problems [6]. Furthermore, boundaries as well
as discontinuities between different types of media lead to fairly accurate solutions
and can generate severe errors [7]. With this in mind, more recently, Delsanto et al.
have proposed the local interaction simulation approach (LISA) in combination with
the sharp interface model [7]. Recently, customized elements and geometric multi-
scale finite element method have been introduced to analyze various types of wave
propagation problems [8]. The finite element method, which has been preferred
for elastic wave propagation, is not suitable to simulate nonlinear waves or higher
harmonics of propagating waves. A drastic increase of nodes for the simulation of
nonlinear wave problems demands some necessary alteration in FEM which must
be numerically efficient and straightforward.

In recent years, wavelet-based numerical methods gain much attention for solv-
ing partial differential equations. The major advantage of this approach allows one
to examine a problem in different resolutions, simultaneously. In addition, wavelet-
based schemes are efficient in problems comprising singularities and sharp transitions
in solutions for limited zones of a computation domain. Initially, Beylkin et al. [9]
employed the study of numerical computation based on wavelet. Several mathe-
maticians and scientists have established the superiority of wavelet-based methods
for solving elliptic partial differential equations [10, 11]. The adaptivity of wavelets
is one of the leading advantages for the implementation of wavelets in numerical
analysis [12, 13]. Liandrat and Tchamitchian have solved regularized 1D Burgers’
equation by using spatial wavelet approximation [14]. Later, Beylkin and Keiser
[15], Vasilyev and Bowman [16], and Kumar and Mehra [17] have developed differ-
ent wavelets-based algorithms and tested on 1D Burgers’ and advection–diffusion
equations. Researchers have increased the usage of wavelets for solution of par-
tial differential equations (PDEs) after the development of the lifting scheme by
Swelden [17] and stable completion by Carnicer et al. [18]. A review of wavelet
techniques for the solution of PDEs has been presented by Dahmen [19]. How-
ever, a very few researchers have applied the wavelet-based method for analyzing
wave propagation problem. Hong and Kennett proposed wavelet-based method for
the numerical modeling and simulation of elastic wave propagation in 2D media
[20]. Chen and Yang et al. presented the wave motion analysis of short wave in
one-dimensional structures [21]. Mitra and Gopalakrishnan proposed wavelet-based
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spectral finite element method (WSFEM) for simulation of elastic wave propagation
in one- and two-dimensional situations [22]. In the literature, some researchers have
used wavelets as basis function to solve PDEs but most researchers have applied the
wavelet-based adaptive technique in finite difference schemes. These papers have
presented the adaptive method for propagation of a single wave, but there is a need
for different algorithms for more than one waves propagating with different veloc-
ities. Generation of higher harmonics due to material nonlinearity is not addressed
in these papers.

Multi-scale modeling is one possible solution for higher harmonics in wave prop-
agation simulation. Wavelet-based multi-scale method leads to fast and locally adap-
tive algorithms. The compactly supported refinable basis functions aremain potential
advantage of the wavelet [10, 11]. However, these methods are unable to compete
with conventional finite elementmethod. In this paper, proposed technique is inspired
by the interesting paper by Krysl et al. [23].

This paper presents multi-scale adaptive approach for solving the wave propaga-
tion problem. In the proposed wavelet-based technique, FEM is preferred due to its
capability to handle complex boundary and loading conditions instead of any other
methods. This multi-scale transformation hierarchically filters out the less significant
frequencies and offers an operative framework to retain the necessary frequencies of
the wave. In this procedure, the finest level of the coefficient matrix is calculated once
for the whole domain while the adaptively compressed coefficient matrix, which is
very small compared to complete coefficient matrix, is used in everymarching step of
the solution. This paper is presenting wavelet-based nonstandard operator to improve
finite element simulation of linear and nonlinear wave propagation in a large struc-
ture. We use nonstandard operator because it is more efficient than standard operator
[24]. This will not only be useful to the structural health monitoring, but it can also
be used where waves with higher harmonics move at different group velocities. A
simple description of the nonstandard operator along with necessary algorithm and
mathematical comments is provided to remove an execution headache connected
with adaptive grid techniques. The algorithm is applied to 2D plane strain problem,
but it is general and independent of domain dimensions.

2 Mathematical Formulation

2.1 Lamb Waves

In an elastic medium, elastic waves are defined as propagating disturbances that
transport energy without any material transfer. Elastic waves of plane strain that
exist in free plates are called Lamb waves. For an orthotropic and symmetrical plate,
particle motion is often outlined through the elemental elastodynamic differential
equation of wave
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∂l(Cklmn∂nwm) = ρ∂2
t wk, (k, l,m, n = 1, 2). (1)

Substituting stress relation in governing equations and Lamb wave can be
expressed as

C2
L

∂2u

∂x2
+ (C2

L − C2
T )

∂2v

∂x∂y
+ C2

T

∂2u

∂y2
+ fx = ∂2u

∂t2
, (2(a))

C2
L

∂2v

∂y2
+ (C2

L − C2
T )

∂2u

∂x∂y
+ C2

T

∂2v

∂x2
+ fy = ∂2v

∂t2
. (2(b))

C2
L = λ+2μ

ρ
and C2

T = μ

ρ
are longitudinal velocity and shear velocity, respectively,

where λ = Eν
(1+ν)(1−2ν)

and μ = E
2(1+ν)

are Lamé constants, E is Young’s modulus,
and ν is Poisson ratio. The 2D plane strain problem is discretized into the set of finite
element equations as

[K ][u] + [M][ü] = 0, (3)

where [u] and [ü] are unknown coefficient vectors. [K ] and [M] are global stiffness
and mass matrix, respectively.

2.2 Multi-scaling Using Wavelets

The idea of multi-scale exploration is to interpolate an unknown field at a coarse level
with the assistance of supposed scaling functions.Any enhancement to initial approx-
imation is accomplished by adding “details” rendered by basis functions referred to
as wavelets. Amulti-scaling analysis forms a sequence of closed subspaces to satisfy
certain self-similarity relations as well as completeness and regularity relations. The
basis functions in Wj are called wavelet functions. Wavelet functions are symbol-
ized by ψ j,k . These scaling and wavelet functions are employed for wavelet-based
multi-scaling. A function f ∈ L2(R) is approximated by its projection P j f onto
the space Vj and the projection of f on Wj as Q j f , we have

P j f = P j−1 f + Q j−1 f. (4)

If the coefficient vector of P j f (or coefficients of scaling functions) is C j =
{C j,0, . . . ,C j,v( j)}T and coefficient vector of Q j f (or coefficients of some wavelets)
is d j = {d j,0, . . . , d j,w( j)}T, then we can write wavelet transform as

C j = [Tj ]
[
C j−1

d j−1

]
. (5)
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Thematrix [Tj ] is used to achieve next higher level by transforming scaling and detail
coefficients of Vj−1 and Wj−1 spaces, respectively. In this paper, B-spline wavelet
and Daubechies (D4) wavelet [25] are used for wave propagation.

2.3 Nonstandard Multi-scale Decomposition of Finite
Element Matrix

Two observations can be made while solving some PDEs using the wavelet bases: (i)
In theoretical terms, most of the available wavelet methods have stable Riesz basis
and better condition number than FEM or FDM. (ii) But in practical applications,
wavelet methods are not yet ready to compete with the traditional FEM approach.
One important reason is while the FEM can always produce a sparse matrix with
more regular sparsity patterns, use of wavelet bases does not produce such sparse
matrices. But the combination of wavelets with other methods, such as FDM, FEM,
and recently SEM [22], show good results. Here, we have used FEM discretization
to derive a sparse matrix, as the FEM remains the most versatile tool to solve PDEs.

Let us consider a continuous wave field u(x, y) and v(x, y) for a source of excita-
tion over 2D homogeneous medium. The approximation of the continuous wave field
on the discrete domain is denoted by u j and v j . It represents the discrete wave field
that is obtained with a classic time–space finite element method for a sufficiently fine
discretization of Vj ⊂ R2. The 2Dwavelet transform cascades projections of the dis-
crete wave field over different approximation grids V1, V2, V3, . . . , Vj of increasing
resolution.

In this multi-scale algorithm, we used NS operator proposed by Beylkin [26]. To
the best of authors’ knowledge, no one researcher has used NS operator in wavelet–
FEM coupling or wavelet–FDMcoupling. It has been proved by Beylkin [26, 27] that
NS operator is more efficient than the standard form of operator used by most of the
researchers. In this paper, we have used NS operator in two-dimensional wavelet–
finite element coupling technique. The finite element equations for the transient
problem, Eq. 3, can be expressed in the expanded form as

⎡
⎣

[
k j
uu

] [
k j
uv

]
[
k j
vu

] [
k j
vv

]
⎤
⎦[

u j

v j

]
=

⎡
⎣

[
f j
u

]
[
f j
v

]
⎤
⎦. (6)

We can apply the wavelet transformation on the field variables of both the
directions:
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[ [
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] [0]
[0] [

T T
]
]⎡
⎣

[
k j
uu

] [
k j
uv

]
[
k j
vu

] [
k j
vv

]
⎤
⎦[

[T ] [0]
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[
d1

]
[
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]
[
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]
[
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]

⎤
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[ [
T T

] [0]
[0] [

T T
]
]⎡
⎣

[
f j
u

]
[
f j
v

]
⎤
⎦.

(7)

The organization of the matrix after three-level transform of nonstandard form
can be extended and expressed in the new notations as [24]

(8)

In order to solve it, Gines et al. [24] proposed nonstandard LU decomposition.

3 Results and Discussion

Elastic waves have been employed for identification of damage in the thin wall struc-
tures such as plates and pipes [5]. Guided Lamb waves are excited in the structures
through narrowband burst signals. In order to evaluate the performance of wavelet-
based multi-scale method. We considered an example in which a 50 × 50 mm2

homogeneous, isotropic aluminum plate with a density of 2700 kg/m3. The simula-
tion of Lamb wave in this plate with 400 kHz central frequency is presented in Fig. 1.
Contour plots of the displacement in the x-direction at three different time instants
are well depicted in this figure.

Nonlinear Lamb wave is more sensitive to small-scale damage identification.
However, the investigations of the higher harmonics in propagating Lamb waves
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Fig. 1 Contour plots of the displacement in the x-direction at three different time frames for
isotropic plate

were ignored due to high computational cost. To see the efficiency of the wavelet-
based method, higher harmonics are added in the Lamb wave and propagation of
waves is observed. This study uses the following actuation function with 400 kHz
central frequency:

E(t) =
{

fo sin(�t) ∗ (sin(0.1�t))2 + 0.1 fo sin(2 ∗ 5�t) ∗ (sin(�t))2, t < 10π
/

�

0, otherwise,

where � is the frequency of excitation and Eo is the maximum amplitude. The
excitation signal on a plate with a higher harmonics is shown in Fig. 2. An aluminum
plate of 200 mm length and 2 mm thickness is used in the analysis. Poisson’s ratio =



8 A. Sharma et al.

Time (  S)
0 5 10 15 20 25 30 35

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2 Excitation signal for Lamb wave with higher harmonics

0.3, density= 2700 kg/m3, andYoung’smodulusE = 69GPa are assumed asmaterial
properties. The Lamb wave in this material has longitudinal velocity CL = 5299 m/s
and transverse velocity CT = 3135 m/s. The waves are actuated by employing pin
forces applied to the left boundary of the plate. The excitation forces are parallel to
the longitudinal (propagating) direction. In-phase pin forces are applied to the top
and bottom edge nodes of the plate for excitation of fundamental symmetric (S0)
modes, and the antisymmetric modes are propagated by imposing out-of-phase pin
forces. In this paper, we considered the cases in which the pure S0 mode is excited.
Ten cycles Hanning-window actuation is given through excitation function to deliver
a limited cycle sinusoidal tone burst.

Higher frequency wave propagation problems demand enormous computer
resources because of very large number of time integration steps and highly dense
mesh. Generally, in the case of Lamb wave, 20 elements per wavelength are required
but this is not sufficient for higher harmonic simulation. Figure 3 depicts themeasured
nodal displacement response of time-domain signals obtained using FEM simulation
of the plate with 40, 80, and 120 elements per wavelength. It can be observed that
higher harmonics are not properly visible in the response of the plate with 40 ele-
ments per wavelet. On the other hand, as shown in the same figure, higher harmonics
are visible for 80 elements per wavelength.
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Fig. 3 Comparison of response of plate for 40, 80, and 120 elements per wavelength

In the present analysis, B-spline and Daubechies (D4) wavelet are used to estab-
lish robustness and sensitivity ofwavelet-basedwave propagationmethod. To capture
higher harmonics in the plates, FEM uses 17,080 uniformly distributed nodes while
half of the FEM nodes are required after application of one level of wavelet trans-
form. Nodal displacement response of plate received from B-spline and D4 wavelet
transform at level 1 along with FEM results is demonstrated in Fig. 4. It establishes
good agreement between conventional finite element and proposed wavelet-based
method. It can be observed that B-spline wavelet produces response close to FEM
results, while there is some deviation in the results of D4 wavelet. Further, we exam-
ined wavelet-based method at various levels of wavelet transform to find the level
up to which this method can work efficiently. These results show some attenuation
but wavelets are not eliminating higher frequency components of waves which are
important in many analyses.



10 A. Sharma et al.

0 10 20 30 40

A
m

pl
itu

de
10 -3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FEM
B-spline
D4

Time (  S)

Fig. 4 Comparison of higher harmonic Lamb waves plates response at wavelet transform level 1

4 Conclusion

The spatial derivative operators in the wave equations are handled using multi-
resolution transforms in a physical domain. We presented a wavelet-based frame-
work to reduce the size of global stiffness matrix of finite element analysis which
is becoming too large in the case of nonlinear wave propagation problem. Wavelet-
based method is not only to develop the compressed stiffness matrix, but also to
propagate higher harmonics of waves using least number of nodes and able to reduce
the computational cost significantly.Without disturbing the programming advantages
of FE regarding the implementation of boundary conditions and efficient numerical
integration of interpolation functions, wavelet-based methods are able to reduce the
size ofmatrix asmuch as one by a sixteenth of original FEmatrix. These fundamental
characteristics show that the wavelet-based method can be utilized for more complex
wave propagation problems.
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Effect of Skewness on Random
Frequency Responses of Sandwich Plates

R. R. Kumar, Vaishali, K. M. Pandey and S. Dey

Abstract This study presents the effect of skewness in natural frequency responses
of sandwich plates. The free vibration analysis is carried out by using higher order
zigzag theory (HOZT) considering random input parameters. It satisfies the trans-
verse shear stress continuity condition and the transverse flexibility effect. The in-
plane displacement throughout the thickness is assumed to vary cubically while
transverse displacement is considered to vary quadratically within the core and con-
stant at top and bottom plates. An efficient C0 stochastic finite element approach is
developed for the implementation of proposed plate theory in the random variable
surrounding. Compound stochastic effect of all input parameters is presented for the
different degrees of skewness in sandwich plates. Intensive Monte Carlo simulation
(MCS) is employed for solving the stochastic-free vibration equations and statis-
tical analysis is conducted for illustration of the results. The present algorithm for
sandwich plate is validated with previous literatures and it is found to be in good
agreement.

Keywords Monte Carlo simulation · Sandwich plate · Natural frequency · Higher
order zigzag theory · Skewness

1 Introduction

A sandwich plate is a multilayered plate having two face sheets and a core embed-
ded in between them through adhesive. The face sheets are relatively thin but of high
strength and stiffness material, whereas the core is made up of relatively thick and
lower density material. The high specific strength and stiffness of sandwich struc-
tures make them suitable for crucial engineering applications like automobile, civil
construction, aerospace, and marine industries. Sandwich plates are widely used in
design and construction of aerospace craft. In such application, these materials are
subjected to wide environmental changes such as pressure, temperature, density, and
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humidity. This inevitable change in surrounding affects the vibrational response of
the structure. Therefore, it is essential to include the actual operating condition in
order to get the changes in vibration characteristic of sandwich plate. The vibra-
tion response of the aerospace craft is usually carried out in atmospheric condition
rather than actual unevenly varying condition for the cause of convenience. Thus, it is
essential to consider the material and geometric uncertainty in order to accommodate
above-mentioned environmental changes as well as other inaccuracies occurring dur-
ing design and fabrication of the sandwich plate. The cost-effective sandwich panel
requires sandwich core of low-cost material which exhibits better weight sensitive-
ness aswell. The development and automation in production processesmake possible
the production of low-cost sandwich panel. The sandwich panel is not considered for
low-cost application due to insufficient knowledge about their cost-saving potential.
The manufacturing of such sandwich structure always experiences spatial variabil-
ity due to manufacturing imperfections and other inaccuracies. Moreover, dynamic
behavior of sandwich structure possesses high statistical variation due to unavoidable
skewness occurring during complex fabrication processes. Various interdependent
parameters influencing the properties are core thickness, number of face sheet layer,
face sheet and corematerial properties, and topology of core. Because of these param-
eters, uncertain responses can be seen and the system properties become inevitably
random in nature. So to have a safe and realistic design, we must not neglect these
inherent uncertainties. This cannot be obtained through usual deterministic approach.
So, to incorporate the source uncertainties in design and analysis of the mechanical
system, it is required to quantify the present uncertainties.

Recently, Grover et al. [1] worked on sandwich plate and studied the parametric
uncertainties influencing the deflection statics and after that they also ensured the
validity by comparing it with that of Monte Carlo simulation having finite element
solution. Earlier, Aguib et al. [2] worked onmagnetorheological elastomer core sand-
wich beam. The proposed structure was directly applied to civil engineering. Nayak
et al. [3] studied the free vibration response on sandwich plates in damped random
environment. Jin et al. [4] studied the natural frequency response by considering a vis-
coelastic core sandwich beam. For honeycomb sandwich beams, Debruyne et al. [5]
analyzed the design parameters’ variability. The compressibility effect in transverse
direction is studied using laminate mechanics by Plagianakos and Papadopoulos [6]
and Liu [7] carried out the analytical study on sensitivity analysis for natural frequen-
cies and their mode shapes. SFEMwas furthermore studied by Gadade et al. [8]. The
vibration characteristic was studied by Scarpa and Tomlinson [9] on regular hexag-
onal honeycomb cells and re-entrant auxetic honeycomb cells. Later, spectral finite
element method was used by Ruzzene [10]. By using this method, we can accurately
evaluate the acoustic properties of honeycomb. An optimized study of truss-core
sandwich panel was done by Denli and Sun [11]. A similar study was also presented
by Franco et al. [12]. With recent advancement in finite element software, for exam-
ple, ABAQUS and ANSYS, the efficiency and accuracy have greatly increased. The
study of stochastic natural frequency including the effect of noise was done by Dey
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Fig. 1 Skewed plate

et al. [13]. Recently, stochastic analysis is carried out by Kumar et al. [14–19], Karsh
et al. [20–26], and Mukhopadhyay et al. [27, 28]. Most of the research is carried
out by using deterministic approach, whereas few researchers focused on stochastic
approach.

Here, the effect of skewness (Fig. 1) on natural frequency response, having taken
into consideration the compound variation of all input parameters, is studied. There-
after, this paper is presented as: Theoretical formulation is described in Sect. 2,
result and discussion are illustrated in Sect. 3, whereas conclusion and future scope
are presented in Sect. 4.

2 Theoretical Formulation

The strain–displacement equation [29] can be shown as

{ε̄(�)} =
[
∂u(�)

∂x

∂v(�)

∂y

∂w(�)

∂z

∂u(�)

∂x
+ ∂v(�)

∂y

∂u(�)

∂z

+∂w(�)

∂x

∂v(�)

∂z
+ ∂w(�)

∂x

]
, (1)

i.e., {ψ(�)} = [a(�)]{ψ(�)},

where [a] is unit step function. The equation for generalized displacement vector is
given as

{s(�)} =
n∑

k=1

ζi (�)si (�), (2)

where {s} = {U0V0W0θxθyUuVuWuUlVlWl}T. Equation (1) is used to give strain
vector equation

{ψ(�)} = [a(�)]{s(�)}. (3)
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The strain–displacement matrix can be represented as [a]. The dynamic equilib-
rium equation for natural frequency analysis is written by using Hamilton’s principle
as

[r(�)]{_s} = λ2[m(�)]{_s}, (4)

where [r(�)] is the random natural frequency. The global mass matrix [m(�)] is

[m(�)] =
nu+nl∑
k=1

˚
ρk(�)[n]T[ j]T[n][ j]dxdydz =

¨
[n]T[k(�)][n]dxdy, (5)

whereρk(�) is stochastic mass density of kth order, [j] is of the order of 3X11, and
[n] is the shape function matrix. The equation for stiffness matrix [k(�)] is given as

[k(�)] =
nu+nl∑
kl

ρk(�)[ j]T[ j]dz. (6)

For storing the global stiffness in one array, we have used the skyline technique.
For getting static solution, Gaussian decomposition scheme is used and for free
vibration analysis simultaneous iteration technique is used.

3 Results and Discussion

Here, HOZT is applied to a sandwich plate (simply supported boundary condition)
of length (l) = 10 cm, width (b) =10 cm, and thickness (t) = 1 cm to demonstrate
the proposed finite element (FE) model. The present model is having eight-layer
symmetric cross-ply laminate having core thickness of 0.8 and face sheet thickness
of 0.1 with equal layers on both sides of core. Here, the first, second, and third
natural frequencies without any skewness are compared with 15°, 30°, 45°, and 60°
skewed plates. The material properties considered for the present analysis are shown
in Table 1.

Based on the present model, the natural frequencies for the first mode obtained
for 30° and 45° skew angles and the results of Wang et al. [30] and Kulkarni and
Kapuria [31] are tabulated in Table 2. Such a small deviation between various results
obtained for natural frequencies is shown in Table 2, which can justify the accuracy
and applicability of HOZT.

It is evident from Fig. 2 that with increase in skew angle, fundamental and third
natural frequencies initially increase for (φ) = 15° and 30°, decrease for (φ) =
45°, and then again increase up to maximum for (φ) = 60°, whereas second natural
frequency initially increases for (φ) = 15° and 30° and decreases for (φ) = 45° and
60°. The mean value of second natural frequency for (φ) = 45° and 60° remains
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Table 1 Material properties Core Face sheet

E1 (GPa) 0.5 38.6

E2 = E3 (GPa) 0.5 8.27

G12 = G13 (GPa) 0.4 4.14

G23 (GPa) 0.2 1.656

υ12 = υ13 = υ23 = υ32 0.27 0.26

υ21 = υ31 0.006 0.006

P (kg/m3) 1000 2600

Table 2 Natural frequency
of (0°/90°/0°/90°) sandwich
plate

Skew angle
(φ) (°)

Present study Wang et al.
[30]

Kulkarni and
Kapuria [31]

30 1.8889 1.9410 1.9209

45 2.5806 2.6652 2.6391

almost same which lies in between φ = 15° and φ = 30°. This corroborates the fact
obtained vide probability density function (PDF) plots.

4 Conclusions

Based on higher order zigzag theory (HOZT), the accuracy and applicability of
the proposed finite element model for free vibration analysis of sandwich plates
are studied. The novelty of the present study includes the skewness effect on free
vibration of sandwich plates. The natural frequency of sandwich plate is compared
with that of skewed sandwich plate by means of probability density function (PDF)
plots. The first, second, and third natural frequencies of unskewed sandwich plates are
compared with plates having skewness of 15°, 30°, 45°, and 60°. It is observed that
the unavoidable source uncertainties cause significant deviation of natural frequency
from the mean deterministic value. Therefore, it is of utmost importance to consider
the effect of skewness and source uncertainty in design and analysis of sandwich
plate and other complex structures for safe and realistic design. Based on these
observations, the present work can be extended to deal withmore complex structures.
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Fig. 2 Random natural frequency (rad/s) of sandwich plates for a first, b second, and c third natural
frequencies with skew angle, (ϕ) = 0°, 15°, 30°, 45°, and 60°
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Design and Simulation of 3-DoF Strain
Gauge Force Transducer

Ankur Jaiswal, H. P. Jawale and Kshitij Shrivastava

Abstract Force transducers are capable of determining the magnitude of force
applied by measuring strain deformations. The strain induced on the transducer is
measured using strain gauges. Usually, the force transducers, being unidirectional,
are able to sense only axial force or torque. This paper presents an innovative force
transducer for sensing triaxial loads and moments pertaining to its unique shape
which allows strategic placement of strain gauges. The transducer is designed in a
frame-like structure by stacking three cantilever beams one in each orthogonal axis.
Each frame is sensitive to the load applied in the corresponding orthogonal direc-
tion. This configuration provides advantage of uniform sensitivity in triaxial loading
applications with negligible cross sensitivity. The transducer is having a proportional
force and moment conversion due to its single body structure and isotropic material
properties. A new design for the transducer is also proposed and the comparative
behavior of both, for uniaxial and triaxial loading, is presented. The two designs
are analyzed by FE analysis in ABAQUS for principle and shear strain with varying
loading conditions.

Keywords Force transducers · FE analysis · Strain gauges
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1 Introduction

Force transducers are extensively used to measure the applied force on structural
members. It generally consists of an elastic load-bearing element which undergoes
strain deformation upon application of force or torque. This deformation could be
measured using strain gauges, thus converting the applied force into a proportional
electric signal.

Traditionally, force transducers are uniaxial and multiple such transducers could
be used to contrive multiaxial transducers. For instance, Kaneko [1] demonstrated
that a combination of two similar three-axis force sensors could form one six-axis
force sensor and developed a characteristic matrix, connecting the load and sensor
output vectors. Svinin and Uchiyama [2] proposed a generalized theoretical model
for multidimensional force sensor designed using elastic components connected in
parallel.

Kim et al. [3] and Kim [4] described a design and development procedure of
a six-component force and moment sensor. They derived equations for calculating
rated strains on the components of the sensor and performed a finite element (FEM)
analysis for confirming the strains obtained from the theoretical analysis. Liu and
Tzo [5] proposed identical T-shaped bar-type six-axis force sensor. They calculated
the sensitivity of force-sensingmember with respect to design parameters using finite
element analysis in conjunction with a design optimization. Liu et al. [6] designed
a six-dimensional piezoelectric heavy force sensor based on load-sharing principle.
They performed a finite element analysis using ANSYS software for calculating
the static and dynamic response of the designed sensor under heavy loading. The
experiments on the fabricated sensor demonstrated very less nonlinearity errors and
verified the numerical results. Liang et al. [7] and Sunand et al. [8] derived the
equations of force and moment for the six-component force sensor and determined
the theoretical value of strains. This result was validated using finite element method
(FEM) and optimization method by trial and error, employing the response surface
methodology (RSM).

Bayo and Stubbe [9] proposed a frame/truss-type six-axis sensor for robotic appli-
cations. They employed the axial deformation behavior of the six-axis sensor to
eliminate disadvantages of the crossbar and obtained better measure of isotropy and
decoupling. They also compared the performance parameters (condition number,
overall static and dynamic stiffness, strain gauge sensitivity) and found significant
improvement over the earlier design of six-axis wrist force sensor. Chao and Chen
[10] applied penalty method to optimize the geometrical design parameters of a
wrist-type elastic force sensor. They used calibration matrix along with strain gauge
sensitivity as a performance index for design optimization. Based on these design cri-
teria theydevised a novel decoupledwrist force sensorwith enhanced force sensitivity
and minimum stiffness.

Kang [11] formulated closed-formsolutionof forwardkinematics for 6-DoFStew-
art platform based force transducer using linearization approach. Later, Dwarakanath
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et al. [12] performed design parameter sensitivity analysis for optimal size of Stewart
platform based force transducer and fabricated a prototype of the sensor.

Present study is an extension to the work done by Deshpande et al. [13]. They
did a mathematical analysis of a novel three-axis force transducer and validated the
analytical results with experimental results. This paper incorporates finite element
analysis to study the behavior of the initial design of force transducer (FT1) and
determines the optimal locations for mounting the strain gauges. A modified design
of the force transducer (FT2) is also proposed in order to enhance the performance
of the cantilever-beam-type force-sensing elements. In the new design, the principal
stress and shear stress are also analyzed using finite element analysis for various
loading conditions. The comparison of analysis results is presented herewith. This
sensor could find its application in robotic manipulators and multiaxial load cells.

2 Force Sensing in Strain Gauges

Force transducers are deployed for knowing the numerical value of the applied force
and torque on the body, which is ideally equal to the true value of the applied load.
The output of the transducer depends on the characterized relationship between the
output value and the property under measurement. Force transducers are designed
so as to have elastic member for loading elements in any of the six loading axes.
The input loading creates deflection in the elastic member which in turn creates
proportional elongation also known as strain. The strain is measured as a quantifiable
change in resistance of the coiled conductor in the strain gauge. Thus, strain gauges
proportionally convert the strain developed into change in the electric current at
output terminals [14].

There are various methods used to determine torque and force applied on any
elastic member among which the most common method is using strain gauges. The
strain gauge can be configured to distinguish tensile and compressive strains, to give
conversions in the form of positive or negative signals, thus making it possible to
distinguish expansion as well as contractions of the members having strain gauges
on it. The gauge factor is fundamental term correlating the sensitivity of the strain
gauge. It is defined as the ratio of change in electrical resistance (R) to themechanical
strain ε captured by gauge conductor coil, and expressed as

R = ρL

A
(1)

GF = �R/R

�L/L
= �R/R

ε
(2)

where

ρ = Resistivity/conductivity constant,
L = Length of the sensor,
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A = Cross-sectional area of sensor,
R = Electrical resistance of sensor,
ε =Mechanical strain, and
GF = Gauge factor.

Strain gauge rosettes are geometric combination of strain gauges which could be
mounted on elastic transducer element to capture strains in desired loading axes. The
strain induced due to loading is reliant on the shape and geometric configuration as
well as the elastic modulus of that element. Every strain gauge in a rosette captures
the local strain at that location, and through combination of these individual strain
gauges, proportional force is estimated [15].

Usually, forces in real-life scenarios are multidirectional, dynamic, and fluctuat-
ing in nature. This makes it difficult for single-axis sensor to completely perceive
the applied load. Multi-axis force transducers are well suited for such situations,
which transfer input signals at elastic members due to applied force and torque to
proportional voltage and estimates the proportional output with respect to external
force/torque applied as input. The important applications are found in force and
torque sensors including robotic control and manipulation, aerospace and industries
[16].

3 Design of the Transducer

This paper presents an innovative design for a force transducer capable of sensing
triaxial loads and moments. The transducer is designed in a frame-like structure by
stacking three cantilever beams upon each as depicted in Fig. 1. Each frame carries
its individual strain rosettes which are sensitive to a specific orthogonal loading
direction. Stacking all three frames into a single structure produces a 3-DoF force-
sensing transducer.

This paper also discusses variations to the original design of the transducer in
order to enhance its sensing capabilities. The alterations were proposed to attain
uniform stress distribution and better strain dispersion among the structuralmembers.
Figure 2a depicts the original and Fig. 2b depicts modified designs of the force
transducer. The two designs are further evaluated for stress distribution patterns
using FE analysis. For the sake of simplicity, the original design of the transducer
will be denoted as FT1 and themodified new designwould be denoted as FT2, further
along this paper.
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Fig. 1 a CAD model depicting the force transducer (green) also schematics of pulleys and
deadweight for loading (brown). b Experimental setup [14]

(a) FT1 (b) FT2

Fig. 2 CAD model depicting transducer designs a FT1 (original design) and b FT2 (modified
design)
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4 Transducer Analysis Using FEA

Finite element analysis is a numerical approach to determine the behavior of a struc-
ture under static or dynamic loading conditions. In FEM, a mathematical model
compatible with the geometric and material properties of the structure is discretized
into small, multiple finite elements. The change in field quantity over the entire
domain of the structure is derived by analyzing these discrete finite elements. The
FE model analysis was limited to static loading conditions. There are various com-
mercial packages available for FE analysis. ABACUS was chosen for performing
the static FE analysis on both the transducer designs.

4.1 Material Properties

The material used for constructing the transducer was considered to be isotropic
and homogeneous. Standard structural steel properties were assumed as shown in
Table 1.

4.2 FE Mesh Properties

Themeshing for FE analysis was performed inABAQUSusing a ten-noded quadratic
tetrahedron element (C3D10). Size of the mesh was program controlled. Figure 3
illustrates the meshing pattern for FT1 and FT2 transducer designs.

4.3 Boundary Conditions

The transducer was constrained in all directions at its base to depict a fixed–fixed
boundary condition. This was done to replicate a real-life scenario when the trans-
ducer is firmly placed on a solid surface. The load was applied on the topmost surface
of the transducer. The load was applied for uniaxial and triaxial loading conditions,
with varyingmagnitudes, in order to achieve a detailed analysis. The boundary condi-
tions and loading patterns were kept identical for FT1 and FT2 transducers as shown
in Fig. 4.

Table 1 Transducer material
properties

Young’s modulus 200 GPa

Poisson’s ratio 0.3

Density 7850 kg/m3
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(a) FT1 (b) FT2

Fig. 3 Meshed FE model of force transducer a FT1 (original design) and b FT2 (modified design)

4.4 Loading Parameters

The static analysis was performed by applying various discrete load levels having
uniform increment from 0.2 to 2N. Loadswere applied in all three uniaxial directions
(x, y, and z) independently.A triaxial loadingwas also applied for the same load levels.
The load was applied on the cube-shaped block at the top of the transducer.

5 Results and Discussion

5.1 Principal Strain Analysis

Maximum principal strain contour on different elements of transducers FT1 and FT2
at 0.2 N, 1 N, and 2 N loads is depicted in Fig. 5a, c, e and Fig. 5b, d, f, respectively.
Table 2 enumerates the maximum principal strain for different magnitudes of load
in FT1 and FT2.

Figure 6 represents the linear relationship betweenmagnitude of load and induced
strain exhibited by the FT1 and FT2 transducers. It is observed that maximum
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(a) FT1 (b) FT2

Fig. 4 Boundary conditions and loading patterns for a FT1 and b FT2

strain occurs on the element which is sensitive to the direction of applied force.
The experimental results of FT1 transducer [14] confirm this linear relationship.

Figure 7 shows the strain difference between FT1- and FT2-type transducerswhen
the applied load is same. It is observed that the strain difference also increases linearly
with load.

The modified design, FT2, has additional blocks at the end of each sensing ele-
ment, which provide rigidity to the cantilever-sensing element. It is observed that in
single loading conditions, the induced strain values in FT2 transducers are higher
than FT1 transducers. It is also observed that in triaxial loading conditions, the strain
difference between FT1 and FT2 is higher compared to single loading conditions.
This infers that the modified design is more sensitive to smaller variations in the load.
The advantage of the modified design is that it detects the strain when the applied
load is very small and when there is a small variation in the applied load.
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(a) FT1 at 0.2N (b) FT2 at 0.2N

(c) FT1 at 1N (d) FT2 at 1N

(e) FT1 at 2N (f) FT2 at 2N

Fig. 5 a–f Principal strain distribution for FT1 and FT2
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Fig. 6 Change in maximum principal strain at various load magnitudes
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Fig. 7 Principal strain difference curve between FT1 and FT2

5.2 Shear Strain Analysis

The transducer FE model was analyzed for shear strain by applying biaxial com-
binational loading of varying magnitude. The load increment was similar to that
used in principal strain analysis. The moment generated in the sensing element of
the transducer was neglected in this analysis. The strain gauge deployed for direct
strain estimation measures both the normal and shear components of the strains. The
analysis carried out gives a better visualization of shear patterns as shown in Fig. 8a,
c, e for FT1 and Fig. 8b, d, f for FT2. The maximum shear elastic strain in FT1 and
FT2 is given in Table 3.
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Fig. 8 a–f Maximum shear
elastic strain in FT1 and FT2

(a) FT1 (b) FT2 

(c) FT1 (d) FT2 

(e) FT1 (f) FT2
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Table 3 Value of strain obtained from ABAQUS for maximum shear elastic strain in FT1 and FT2

FT1 FT2

Load (N) Maximum shear strain (* e−5) Load (N) Maximum shear strain (* e−5)

x-y y-z z-x x-y y-z z-x

0.2 4.977 2.274 4.586 0.2 6.757 2.113 7.126

0.4 9.937 4.541 9.157 0.4 13.41 4.191 14.14

0.6 14.95 6.83 13.77 0.6 20.17 6.304 21.26

0.8 19.88 9.084 18.32 0.8 26.85 8.383 28.28

1 24.89 11.37 22.93 1 33.6 10.5 35.4

1.2 29.89 13.66 27.55 1.2 40.34 12.61 42.53

1.4 34.82 15.91 32.09 1.4 47.02 14.69 49.54

1.6 39.83 18.2 36.71 1.6 53.77 16.8 56.67

1.8 44.76 20.46 41.25 1.8 60.43 18.88 63.68

2 49.77 22.74 45.86 2 67.18 20.99 70.8

The variation in maximum shear strain with respect to applied load is represented
in Fig. 9. The transducer exhibits linear relationship between load and induced shear
strain in both FT1- and FT2-type transducers. The FT2 transducer exhibits higher
strain values in x-y and z-x loading directions, whereas FT1 has higher strain magni-
tude in y–z direction. Figure 10 represents the shear strain difference between FT1-
and FT2-type transducers when the applied load is same.

It is evident from the data enumerated in Tables 2 and 3 that FT2 shows enhanced
stress concentration levels for similar loading conditions as FT1 for majority of
the cases. This leads to more localized strain and provides an advantage of better
stress sensitivity. One exception to the case could be noted in Y–Z principal shear

Fig. 9 Change in maximum shear strain at various load magnitudes
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Fig. 10 Shear strain difference curve between FT1 and FT2

stress loading, where FT2 shows the reduced sensitivity than its predecessor. It is
also observed that change in maximum principal strain is least in X-direction. The
member most sensitive to the X-directional loading is at the bottom and attached to
the base. The rigidity provided by the fixed–fixed boundary condition and increased
mass in the modified design could be attributed for this deficit. It warrants further
research and possible alterations to the design of FT2 in order to rectify this problem.

6 Conclusions

This paper describes a detailed analysis of strain estimation in a triaxial force trans-
ducer which has engineering applications in platform-type sensor. The experimental
observations reflect that the strain concentration at specific locations modifies the
characteristics of the transducer. A comparative study of the strain estimation for
two different transducer designs is also presented, which is necessary for the safe
design andmanufacturing of the transducers. The analysis of the strain patterns helps
in determining the location ofmaximum stress concentration, which provides an esti-
mate location to mount the strain gauges. Some of the notable observations from the
FE analysis are summarized below:

1. The experimental results for transducer FT1 show that a linear increase in load
causes a linear increase in strain on the sensing element [13]. The transducer FT1
has been tested and validated in simulation environment.

2. The estimation of strain for FT2 has been done by simulation and results suggest
that the strain in the sensing elements increases linearly with the applied load, as
in the case of FT1.
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3. In transducer FT2, the blocks added at the end of each sensing element confine
the principal strain to a smaller region as compared to FT1. The advantage of the
modified design is that it detects the strain when the applied load or the variation
in the applied load is very small.

The strain-sensing capability of the proposed design (FT2) is better than that of the
FT1 transducer. This kind of transducer finds applications in serial- and spatial-type
parallel manipulators used for payload sensing.
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AMicromechanical Study of
Fibre-Reinforced Composites with
Uncertainty Quantification and Statically
Equivalent Random Fibre Distribution

S. Koley, P. M. Mohite and C. S. Upadhyay

Abstract The effects of manufacturing defects creates uncertainty on the mechani-
cal response of unidirectional fibre-reinforced composites. These are studied through
modelling of three-dimensionalRepresentativeVolumeElement (RVE). In this study,
an algorithm is developed to generate the microstructure of unidirectional fibre rein-
forced composite with both regular and random fibre distribution and then analyzed
using mathematical theory of homogenization to estimate the homogenized or effec-
tive material properties. Here, the RVEs are modelled with random fibre distribution
but increasing the number of fibres gradually and also randomly varying their posi-
tions. This variation in the randomness of the fibre distribution affects the effective
properties. Also, the effect of different loading conditions is investigated. The sig-
nificance of this structural distribution of heterogeneities on the overall effective
behaviour is discussed for random structures and uncertainties that occur in compos-
ite materials. The variations in the predicted elastic properties for the given volume
fraction of the abovementioned scenarios are comparedwith the experimental values
and good agreement is achieved. There is a significant percentage change in trans-
verse shear moduli, G23 and ν23, which are 21.87 and 35.20% with respect to the
experimental results.

Keywords Composite materials · Microstructure · Randomness · Effective
properties

1 Introduction

Composite materials have become an advisable choice in aerospace and other indus-
tries due to their high strength to weight ratio and high modulus [1]. In fibre rein-
forced composites, fibres are the main load-carrying members. Therefore, fibre
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volume fraction and fibre distribution morphology have a crucial influence on the
strength and stiffness properties of composite material. To study these effects, many
researchers addressed micromechanics of composite material. The issue concerning
the micromechanical study is the generation of RVE with the desired dimensions
and spatial distribution of reinforcements in RVE, which highly depends upon the
manufacturing process. Many methods have been developed for the generation of
RVE model with a random distribution of fibres using Poisson point distribution [2].
In this microscopic scale approach, the constituents are employed in conjunction
with homogenization to predict the composite behaviour. Here, the average mechan-
ical characteristics of a lamina have to be estimated from the known characteristics
of the fibre and matrix materials taking into account the fibre volume fraction and
fibre packing arrangement. The current study in micromechanics is to estimate the
effective elastic properties of the RVE of the material with an equivalent random dis-
tribution of fibres [3, 4]. Effective elastic properties of composite material depend on
the shape, properties and spatial distribution of the fibre. Among the various uncer-
tainties present, the following uncertainties have been considered for the analysis:
(a) effects of volume fraction (b) effect of the randomness in the fibre arrangements
(c) effect of the uncertainty in the geometry of the fibre cross section.

In the current study, amicromechanical study [5] is proposed to calculatemechani-
cal properties of compositematerialwith regular fibre array and randomfibre arrange-
ment in a unit cell model [6]. In this case, an image of the cross section of a certain
unidirectional ply is taken and transformed into a computer recognizable format by
using binary image processing technique. From the binary image, RVEs are gen-
erated with single fibre and random fibre distribution by defining different scatter
conditions and also to incorporate randomness in the RVE. The evaluation of the
effect of fibre arrangements on the mechanical properties should be both qualita-
tive and quantitative [7]. To achieve this goal, a comprehensive study is carried out
with RVEs having 1, 12, 20 and 50 fibres. The overall properties are calculated as
an average over the respective volumes of the constituents. Mathematical theory of
homogenization [8] is used to obtain a suitable constitutive model at the macroscopic
level. In the next study, we considered the RVEs with fibres randomly distributed in
a periodic unit cell but with different fibre cross sections, i.e. circular, distorted and
elliptical cross sections. Then, we studied how these different fibre cross sections
affect the mechanical properties.

2 Characterization of Uncertainties in Composites

Due to the complex manufacturing process, the composite renders randomness in
the material parameters. The instability in properties such as elastic modulus, fibre
distribution and volume fraction measurements result in variability in the response of
composite materials. Uncertainty can be addressed by means of material, geometric
and structural considerations [2].
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Fig. 1 Greyscale image to binary image

Fig. 2 Random fibre distribution. aMoving window technique used to calculate RVE, bDeviation
of fibre from their ideal distribution

Initially, scatter has been estimated in the fibre distribution from digital image
analysis. Using these data, information about the location of centre of the fibres, dis-
tribution of fibre radius and distance between neighbouring fibres are obtained. Then,
the obtained statistical parameters are utilized to construct a statistically equivalent
RVE based on certain numerical algorithms [9]. Figure1 is a micrograph image of
composite microstructure of size 706 × 678 pixels (Fig. 2).

From the image, for an ideal distribution of fibre, four random fibres are chosen
along the breadth. Then, ideal positions are calculated from the deviation of centre
of fibres in the original micrograph. Figure3 also shows centres of ideal fibre distri-
bution. After extracting the actual coordinates of the fibre centres, we estimate the
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Fig. 3 RVE with regular and random fibre distribution. a Regular fibre arrangements in a square
domain, bModelling of RVE with random fibre distribution

ideal coordinates and then, the deviation from the real to the ideal coordinates are
calculated. By doing this process, scatter has been estimated and with reference to
this, an RVE is modelled with the random distribution of fibres.

3 Generation of RVE

In the estimation of effective properties of composite materials, the generation of
RVE plays a vital role. A new algorithm has been proposed to generate the RVE
achieving fibre volume fraction nearly 60% and the fibres are evenly distributed
throughout the RVE. According to Hill [10] and Kanit et al. [11], representative
volume should have two main properties: Its structure is “entirely typical” for the
composite and it should contain a “sufficient number” of microstructure elements so
that boundary conditions at the surface do not affect its effective properties.

Considering the above characteristics of generating theRVE, it has been generated
with a random arrangement of fibres with reference to the scatter from the above
micrograph. The RVEs with ideal/regular arrangements of fibres are shown in Fig. 3
by maintaining the fibre volume fraction of 0.6.

Figure3 shows the scatter of the fibres from the original position to the random
position but maintaining the minimum distance so that the fibres do not intersect
each other. In Fig. 3, the fibres are displaced randomly both in x and y directions and
maintaining the periodicity at the edges. The RVE possesses very similar microstruc-
tural features as in the original micrograph, such as fibre aggregation zones and also
maintaining the geometric periodicity, i.e. periodicity across faces, edges and corners.
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4 Mathematical Theory of Homogenization

This theory establishes mathematical relations between micro and macro-fields [8],
using a multi-scale perturbation method, the effective properties emerge as a conse-
quence of these relations. The local displacement field in the cell is given as

u(x; y) = u0(x) + εu1(y) (1)

where x is the actual coordinate, y is the scaled unit cell coordinate, u0(x) is the
macro response and u1(y) is the periodic micro correction, ε denotes the ration of the
RVE size to the global structural dimension. u1(y) can be obtained from each of the
six fundamental macro-strains eijx , by solving the periodic cell problem with applied
unit macro strain.

− ∂

∂yj
(Cε

ijkle
y
kl(χ

rs)) = ∂

∂yj

(
Cijrs(y)

)
(2)

where χ rs is y periodic. From the periodic solution, the total strain eij(u) ≈ exij(u0) +
eyij(u1) ≈ (1 + Mijkl)exkl (u0), where Mijkl are the pointwise influence functions and
they depend on vf at the level of the cell.

5 Results and Discussion

In the present study, an in-house finite element code is developed to determine the
homogenized properties of composite materials using the mathematical theory of
homogenization. Polymericmatrix such as 3501-6 epoxy andAS4 carbon fibremate-
rial is considered in this study. These properties are given in Soden et al. [12]. The
focus of the analysis is to study both the longitudinal, transverse and shear behaviour
of the material at the microscale.

5.1 Prediction of the Elastic Constants of RVE with Single
Fibre (Circular Cross Section)

RVE is modelled with single fibre keeping the fibre volume fraction 0.6. The RVE
model is meshed with three-dimensional four-node tetrahedral elements. Effective
properties for this RVE are estimated and the results are tabulated in Table1.

Mechanical properties for the composite laminae were considered from experi-
ment studies carried out in Soden et al. [12].

Predicted effective elastic constants are given in Table1, which are close to the
experimental results (see Table2). The typical percentage differences of the effective
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Table 1 Effective properties of RVE model with single fibre

Vf E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

0.60 139.58 9.55 9.55 4.70 4.70 3.06 0.25 0.25 0.26

Table 2 Effective properties of T-300/3501-6 epoxy composite (experimental results) [12]

Vf E1 E2 G12 G23 ν12 ν23

(GPa) (GPa) (GPa) (GPa)

0.60 138 11.00 5.50 3.93 0.28 0.40

elastic constants are –1.14% for E1, 13.21% for E2 and E3, 14.45% for G12 and G13

and 21.87% for G23 with respect to the experimental results.

5.2 Prediction of the Elastic Constants of RVE with 12, 20
and 50 Fibres

RVEs are generated with 12, 20 and 50 fibres maintaining the volume fraction of
0.6. Here, the fibres are randomly distributed as shown in Fig. 4. Three cases are
considered: Case 1: RVE with 12 fibres, Case 2: RVE with 20 fibres and Case 3:
RVE with 50 fibres. For Case 1, three RVE models are generated, for Case 2, four
RVEmodels are generated and for Case 3, eight RVEmodels are generated. In Fig. 4,
sample RVEs of each case are shown but the results are given for all the models.

Observations are made for the prediction of the effective elastic constants of the
RVEs with randomly distributed fibres (Table3).

Case 1: Three RVE models are considered, i.e. RVE 1, RVE 2 and RVE 3. Axial
modulus, E1 predicted for all the three RVEs with different fibre arrangements has
percentage difference less than 1% with respect to the effective properties of RVE

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 4 Micrograph of RVEs with 12, 20 and 50 fibres
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Table 3 Effective properties of RVE model with 12 fibres

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 138.19 8.77 8.88 4.51 4.81 3.57 0.25 0.25 0.26

RVE 2 138.70 8.96 8.88 4.91 4.67 3.52 0.25 0.25 0.31

RVE 3 138.54 9.06 9.01 5.06 4.86 3.50 0.25 0.25 0.30

Average 138.48 8.93 8.93 4.83 4.78 3.53 0.25 0.25 0.29

SD 0.26 0.15 0.07 0.28 0.10 0.03 0.00 0.00 0.03

% error 0.19 1.68 0.78 5.80 2.09 0.85 0.00 0.00 10.34

Table 4 Percentage change in the effective properties of RVEs with 12 fibres with respect to RVE
model with single fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 0.98 8.13 6.95 4.01 –2.28 –16.36 –1.31 0.67 –19.91

RVE 2 0.62 6.11 6.88 –4.44 0.72 –14.74 0.52 –0.71 –18.71

RVE 3 0.74 5.06 5.59 –7.71 –3.46 –14.24 0.44 –0.40 –15.51

Table 5 Effective properties of RVE model with 20 fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 139.23 8.83 8.84 5.02 5.10 3.69 0.25 0.25 0.32

RVE 2 139.42 9.13 9.21 4.97 5.22 3.52 0.25 0.25 0.29

RVE 3 139.45 9.08 9.12 4.94 5.04 3.54 0.25 0.25 0.29

RVE 4 139.45 9.11 9.23 4.90 5.20 3.51 0.25 0.25 0.29

Average 139.39 9.04 9.11 4.96 5.17 3.57 0.25 0.25 0.30

SD 0.11 0.14 0.18 0.05 0.11 0.09 0.00 0.00 0.01

% error 0.08 1.55 1.98 1.01 2.13 2.52 0.00 0.00 3.33

with single fibre given in Table4. The standard deviation for all the properties is
less than 1 but the percentage error is more for G12 and ν23, i.e. 5.8% and 10.34%,
respectively and for the other properties, it is less than 2%.

But for the transverse shearmodulus,G23 the percentage difference ismuch higher
compared to axial shear modulus G12 and G13 and it is about 15%.

Case 2: Four RVE models are considered and observations are made for the
predicted effective elastic constants. Axial modulus, E1 for all the four RVEs are
very close to the RVE with single fibre and also with the experimental value. The
standard deviation for all the properties is less than 1 (Table5).

Axial modulus, E1 predicted for all the four RVEs with different fibre arrange-
ments has a percentage difference less than 1% as given in Table6. But for RVE 1,
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Table 6 Percentage change in the effective properties of RVEs with 20 fibres with respect to RVE
model with single fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 0.25 7.49 7.32 –6.74 –8.54 –20.39 0.40 0.63 –21.57

RVE 2 0.12 4.28 3.47 –5.68 –11.07 –14.74 –0.32 0.91 –11.30

RVE 3 0.09 4.86 4.38 –5.16 –7.27 –15.49 –0.16 0.59 –13.43

RVE 4 0.09 4.47 3.29 –4.34 –12.26 –14.39 –0.63 1.19 –11.11

Table 7 Effective properties of RVE model with 50 fibre (circular cross section)

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 136.19 9.20 9.28 4.93 5.20 3.53 0.25 0.25 0.28

RVE 2 136.01 9.10 9.14 5.01 5.16 3.61 0.25 0.25 0.29

RVE 3 136.04 9.20 9.24 4.24 5.05 3.57 0.25 0.25 0.28

RVE 4 136.73 9.27 9.26 5.45 5.41 3.60 0.25 0.25 0.28

RVE 5 136.64 9.25 9.28 5.41 5.44 3.59 0.25 0.25 0.28

RVE 6 136.47 9.22 9.21 5.43 5.40 3.59 0.25 0.25 0.29

RVE 7 136.44 9.21 9.16 5.36 5.29 3.60 0.25 0.25 0.29

RVE 8 136.60 9.31 9.26 5.45 5.29 3.56 0.25 0.25 0.28

Average 136.39 9.22 9.23 5.17 5.28 3.59 0.25 0.25 0.28

SD 0.28 0.06 0.05 0.43 0.14 0.02 0.00 0.00 0.01

% error 0.21 0.65 0.54 8.32 2.65 0.56 0.00 0.00 3.52

the percentage difference is more compared to the other three RVE models. This is
because the number of fibres at the edges of this RVE is more.

The percentage difference for transverse shear modulus, G23 is much more for
RVE 1, i.e 20% compared to other three RVE models. It is observed that the average
values of the elastic properties of RVE models with 20 fibres is higher comparable
to RVE with 12 fibres.

Case 3: Eight RVE models are considered, i.e. RVE 1 to RVE 8 and it is observed
that there is a reduction in effective axial modulus E1 compared with the RVEs with
12 and 20 fibres. The standard deviation is less than 1 for all the properties but the
percentage error is also less than 1%except forG12,G13 and ν23. The percentage error
for G12, G13 and ν23 are 8, 2 and 3%, respectively. But if we notice the percentage
changewith respect to RVEwith single fibre, for the shear, i.e the axial shearmodulus
G13 and transverse shear modulus G23 are more than 9% (Tables7,8).

In the next study, RVEs with uncertainty in fibre cross section are considered.
Here, three cases are considered, Case 1: RVE with circular cross section, Case 2:
RVE with a distorted cross section and Case 3: RVE with an elliptical cross section.
For all the three cases, eight RVE models are generated.
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Table 8 Percentage change in the effective properties of RVEs with 50 fibres with respect to RVE
model with single fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 2.42 3.60 2.77 –4.93 –10.52 –15.34 –0.44 0.79 –9.03

RVE 2 2.56 4.66 4.22 –6.68 –9.66 –17.75 –0.16 0.52 –12.81

RVE 3 2.53 3.60 3.16 9.78 –7.46 –16.58 –0.16 0.52 –9.76

RVE 4 2.04 2.86 2.93 –16.01 –15.03 –17.46 0.52 0.39 –8.76

RVE 5 2.10 3.02 2.74 –15.10 –15.78 –17.19 0.36 0.52 –8.45

RVE 6 2.22 3.32 3.43 –15.57 –14.79 –17.03 0.44 0.28 –10.19

RVE 7 2.25 3.51 4.01 –14.03 –12.43 –17.31 0.59 –0.04 –11.11

RVE 8 2.13 2.40 2.96 –16.01 –12.49 –16.02 0.91 –0.24 –8.37

Table 9 Effective properties of RVE model with 50 fibre (distorted cross section)

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 132.18 9.12 9.07 5.41 5.28 3.50 0.25 0.25 0.29

RVE 2 131.63 8.96 8.89 5.24 5.11 3.53 0.25 0.26 0.30

RVE 3 131.48 8.97 9.00 5.02 5.07 3.47 0.25 0.25 0.29

RVE 4 130.91 8.99 8.98 5.22 5.17 3.46 0.25 0.25 0.29

RVE 5 130.11 8.95 8.95 5.21 5.15 3.43 0.25 0.26 0.29

RVE 6 131.48 8.99 8.99 5.33 5.33 3.47 0.25 0.25 0.29

RVE 7 130.65 8.95 8.91 5.30 5.21 3.47 0.25 0.26 0.30

RVE 8 131.79 9.13 9.08 5.55 5.41 3.49 0.25 0.25 0.29

Average 131.28 9.01 8.99 5.29 5.22 3.48 0.25 0.25 0.29

SD 0.68 0.07 0.07 0.16 0.12 0.03 0.00 0.00 0.00

% error 0.52 0.78 0.78 3.02 2.30 0.86 0.00 0.00 0.00

RVE with circular fibre cross section has been discussed in the previous section.
Now, RVE with distorted fibre cross section are considered. Observations are made
for the distorted fibre cross section, where the effective properties for all the models
aremuch less than the values comparedwith the RVEwith single fibre. This ismainly
due to reduction of fibre volume fraction (Table9).

The standard deviation is less than 1 for all the properties but the percentage error
is also less than 1% except for G12 and G13 (Table10).

From these tables, it can be seen that the values of E1, E2 and E3 show about 7%
change. Similarly, this change for G12 is about 18% and for G13 and G23 is 15%
when compared to that of RVE with single fibre. Further, there is a change in fibre
volume fraction for each RVE as they contain fibres with distorted cross section. This
distortion also affects the percentage change in the effective properties.

For the last case, RVEs are modelled with elliptical fibre cross section with
+ 0.5% of the radius of the circular fibre cross section as major axis and –0.5%
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Table 10 Percentage change in the effective properties of RVEs with 50 fibres with respect to RVE
model with single fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 5.29 4.44 4.96 –15.06 –12.37 –14.09 –0.08 –0.83 –11.19

RVE 2 5.69 6.14 6.79 –11.47 –8.77 –15.27 –0.24 –1.07 –15.93

RVE 3 5.79 5.97 5.70 –6.75 –7.89 –13.38 –1.03 –0.67 –13.12

RVE 4 6.21 5.79 5.91 –10.99 –9.94 –13.03 –0.87 –0.99 –13.19

RVE 5 6.78 6.18 6.21 –10.85 –9.55 –12.06 –0.99 –1.19 –13.54

RVE 6 5.79 5.76 5.82 –13.44 –13.29 –13.26 –0.87 –0.87 –13.62

RVE 7 6.39 6.23 6.65 –12.77 –10.84 –13.33 –0.67 –1.35 –15.01

RVE 8 5.58 4.35 4.83 –18.08 –15.12 –13.86 0.12 –0.91 –11.19

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 5 Micrograph of RVE with different fibre cross sections

of the circular fibre cross section as minor axis as shown in Fig. 5. The fibres are
distributed throughout the window with random orientations, i.e. the major axis of
the elliptical fibre cross section is placed randomly in the y–z plane.

The effective properties are shown in Table11. The effective properties for E1, E2

and E3 are less than the experimental values but the shear values are almost the same
or more than the experimental values. The standard deviation for all the properties
are less than 1 but the percentage change is greater than 1 forG12 andG13 (Table12).

Observations are obtained for the fibres with elliptical fibre cross section, the
percentage change for effective axial modulus E1 is about 3% whereas for E2 and E3

it is about 5%. The percentage change for shear moduli is more than 18%.

6 Conclusion

In the present study, a statistical representation of unidirectional fibre composite with
random fibre distribution at microscale has been developed. A numerical tool devel-
oped using MATLAB generates the RVE for a volume fraction of 60%. Geometric
periodicity is implemented while developing the RVE to ensure the continuity of the



A Micromechanical Study of Fibre-Reinforced Composites with Uncertainty … 47

Table 11 Effective properties of RVE model with 50 fibres (elliptical cross section)

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 135.94 9.26 9.19 5.52 5.31 3.57 0.25 0.25 0.28

RVE 2 135.94 9.15 9.09 5.48 5.29 3.62 0.25 0.25 0.29

RVE 3 136.31 9.21 9.23 5.27 5.23 3.58 0.25 0.25 0.28

RVE 4 136.39 9.26 9.22 5.50 5.29 3.59 0.25 0.25 0.28

RVE 5 136.48 9.27 9.27 5.41 5.34 3.58 0.25 0.25 0.28

RVE 6 135.91 9.16 9.19 5.27 5.42 3.58 0.25 0.25 0.29

RVE 7 135.93 9.18 9.28 5.12 5.58 3.55 0.25 0.25 0.28

RVE 8 135.93 9.26 9.25 5.35 5.31 3.54 0.25 0.25 0.28

Average 136.11 9.22 9.22 5.37 5.35 3.58 0.25 0.25 0.28

SD 0.24 0.05 0.06 0.14 0.11 0.03 0.00 0.00 0.00

% error 0.18 0.54 0.65 2.61 2.06 0.84 0.00 0.00 0.00

Table 12 Percentage change in the effective properties of RVEs with 50 fibres with respect to RVE
model with single fibre

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 2.60 2.91 3.69 –17.45 –12.88 –16.41 0.83 –0.48 –9.72

RVE 2 2.60 4.13 4.74 –16.59 –12.62 –18.13 0.63 –0.20 –12.92

RVE 3 2.33 3.46 3.26 –12.13 –11.17 –16.90 0.28 0.28 –9.57

RVE 4 2.28 2.89 3.41 –17.04 –12.51 –17.25 0.75 –0.04 –9.57

RVE 5 2.21 2.81 2.87 –15.11 –13.60 –16.77 0.52 0.28 –8.64

RVE 6 2.62 4.02 3.63 –12.15 –15.27 –16.86 –0.12 0.48 –10.73

RVE 7 2.61 3.79 2.78 –8.87 –18.69 –15.69 –0.59 0.99 –8.68

RVE 8 2.61 2.97 3.07 –13.72 –12.84 –15.49 0.36 –0.08 –8.60

fibres across the neighbouring RVEs. Mathematical theory of homogenization has
been materialized for the prediction of effective stiffness. Eight RVEs are modelled
for circular, distorted and elliptical fibre cross sections with random fibre distribution
and studied how these uncertainties affect the effective properties.

The key conclusions that can be made from this study are listed as

1. For RVE with 12 fibres, the percentage error is more for G12 and ν23, i.e. 5.80%
and 10.34%, respectively and for the other properties, it is less than 2%.

2. In particular, the percentage change of predicated transverse shear moduli G23

fromUDcomposites with fibre distributed at randomover transverse cross section
has higher values comparable to the experimental data. For the RVE with single
fibre, the percentage change is 21.87%with respect to experimental result and for
the other RVEs with more number of fibres, not only the transverse shear moduli
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has higher value but there is also increase in percentage change values for axial
shear between 6–17%.

3. The percentage change with respect to single fibre RVE, E1 is about 2% for
circular and elliptical fibre cross section whereas for distorted fibre cross section,
it is about (5–6)%.The uncertainty of fibre cross section is studied and the effective
properties are estimated. It is observed that E1 is about 136 GPa for the models
with circular fibre cross section but it is reduced to (130–131) GPa for distorted
fibre cross section which is mainly due to reduction in fibre volume fraction.
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Free Vibration Analysis of Laminated
Composite Plates and Shells Subjected
to Concentrated Mass at the Centre

Arpita Mandal, Chaitali Ray and Salil Haldar

Abstract In this present paper, we deal with free vibration analysis of laminated
composite plates and shell panels with concentrated mass at the centre of the shell.
Two types of mass lumping schemes (RWOERI and RWERI) have been proposed
in the present study. In one of the mass lumping schemes, effect of rotary inertia
has been included. First-order shear deformation theory has been incorporated in
the formulation. The entire finite element programme has been written using FOR-
TRAN language. A nine-noded isoparametric shallow shell element has been used.
Cylindrical composite shell panels having different boundary conditionswith various
concentrated masses at the centre have been analysed.

Keywords Cylindrical composite shell · Mass lumping scheme · Rotary inertia ·
Concentrated load

1 Introduction

Due to the curved configuration, shell structures offer better performance in carrying
load and moment for the combined bending and membrane action. The multilayered
laminated composite material contributes extra advantage due to lightweight and
tailorable properties. The analysis of laminated composite structures has attracted
several researchers since few decades. A significant number of literature are available
on free vibration of normal shell panels. However, investigation on shell panels with
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concentrated mass is very rare. Very few studies on free vibration of composite plates
with concentrated mass are reported in the available literature till date.

Bhimaraddi [1] worked on free vibration analysis of doubly curved shallow shell
panels on rectangular planform using three-dimensional elasticity theory. Boay [2]
made a study on natural frequencies of plates without and with a concentrated mass
using Rayleigh-energy method. Low et al. [3] made a comparative study of frequen-
cies for plates carrying concentrated mass. A free vibration analysis of rectangular
isotropic plate carrying a concentrated mass at different positions is analysed and
presented by Boay [4]. Low et al. [5] made a comparison between the analytical
and experimental results in terms of the frequencies for plates carrying concentrated
mass. Sheikh et al. [6] carried out a study on vibration of plates in different situations
using a high-precision shear deformable element.

It is found from the extensive literature review that most of the researchers
have paid attention towards the numerical analysis of isotropic plates with con-
centrated mass mostly. The literature review also reveals that the study on free
vibration response of shell panels with concentrated mass and, in particular, studies
on laminated composite shell panels with concentrated mass are very rare. There-
fore, the present investigation has attempted to conduct a numerical modal analy-
sis on composite plates and shell panels with concentrated mass to obtain natural
frequencies.

2 Mathematical Formulation

2.1 Finite Element Model for Modal Analysis

The finite element model has been developed in the present study and a computer
code is prepared using FORTRAN. The nine-noded laminated shell element with
five degrees of freedom (u, v, w, θ x and θ y) at each node has been considered for the
present formulation.

The nodal displacement components at any node ‘r’ of the element can be written
as

{δr }T =
{
ur vr wr θxr θxr

}
(1)

where

u =
9∑

r=1

Nrur , v =
9∑

r=1

Nrvr ,w =
9∑

r=1

Nrwr , θx =
9∑

r=1

Nrθxr , θy =
9∑

r=1

Nrθyr

and u, v and w are the translational displacements and θ x and θ y are the rotations
about y- and x-axis, respectively. The shape functions Nr are developed by applying
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Lagrangian interpolation function. The effect of shear deformation can be expressed
as the following, where the bending rotations are independent field variables.

{
∅x

∅y

}
=

[
θx − ∂w

∂x
θy − ∂w

∂y

]
(2)

and Øx and Øy are the average shear rotation throughout the thickness of laminated
shell as shown in Fig. 1.

The constitutive relationship with respect to its reference plane may be expressed
as

{σ } = [D]{ε} (3)

where σ is the stress resultants vector and can be expressed as

{σ }T = [
Nx Ny Nxy Mx My Mxy Qx Qy

]
(4)

Fig. 1 Deformation of the shell panel
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{ε}T =
[(

∂u

∂x
+ w

R

)(
∂v

∂y

)(
∂u

∂y
+ ∂v

∂x

)
− ∂θx

∂x
− ∂θy

∂y
−

(
∂θx

∂y
+ ∂θy

∂x

)
− ∅x − ∅y

]

(5)

where [D] is the rigidity matrix of laminated shell and written as

[D] =
⎡
⎢⎣

[
Ai j

]
3×3

[
Bi j

]
3×3 [0]3×2[

Bi j
]
3×3

[
Di j

]
3×3 [0]3×2

[0]2×3 [0]2×3 [Alk]2×2

⎤
⎥⎦ (6)

where (Aij), (Bij), (Dij) and (Alk) are extensional, extension–bending coupling,
bending and transverse shear stiffness matrices, respectively, and defined as

Ai j =
n∑

k=1

(
Qi j

)
(zk − zk−1), Bi j =

n∑
k=1

(
Qi j

)(
z2k − z2k−1

)

Di j =
n∑

k=1

(
Qi j

)(
z3k − Z3

k−1

)
, Alk =

n∑
k=1

KS(Qlk)(zk − zk−1)

where KS = 5
6 and zk is the distance of kth layer from the reference plane.

The stiffness matrix [K]e of an element derived from the concept of virtual work
method may be written as

[K ]e = +1∫
−1

+1∫
−1

[B]T [D][B]|J |dεdη (7)

where [B] is the strain–displacement matrix and |J | is the determinant of Jacobian
matrix. Applying the idea of consistent mass matrix, a lumped mass matrix has been
developed as follows:

[M] = ρh
+1∫
−1

+1∫
−1

[
[Nu]

T[Nu] + [Nv]
T[Nv] + [Nw]

T[Nw] + h2

12

[
Nθx

]T[
Nθx

]

+h2

12

[
Nθy

]T[
Nθy

]]|J |dεdη (8)

where

[Nu] = [[Nr ][N0][N0][N0][N0]] [Nv] = [[N0][Nr ][N0][N0][N0]]

[Nw] = [[N0][N0][Nr ][N0][N0]]
[
Nθx

] = [[N0][N0][N0][Nr ][N0]][
Nθy

] = [[N0][N0][N0][N0][Nr ]]

where ρ is the density of the material,Nr is the corresponding interpolation function,
[N0] is a null matrix and h is the thickness of the laminate.
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The rotary inertia in the mass matrix has significant contribution to the dynamic
behaviour of thicker laminates. However, the rotary inertia cannot be included in
the consistent mass matrix formulation. The lumped model of mass matrix has been
derived to include rotary inertia and expressed in the last two terms in Eq. (8). The
in-plane movement of mass is defined by first two terms in the mass matrix given
in Eq. (8). Transverse movement of mass contributes the major inertia and defined
by the third term. The effect of rotary inertia has been examined by developing two
types of proportionate mass lumping schemes. The effect of in-plane and transverse
movements of mass has been considered in the first lumping schemes. This lumping
scheme has been defined as RWOERI (mass lumping without rotary inertia) and may
be expressed as

mwl
ii = mii∑

mii
me

(i = 1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 23, 26,

27, 28, 31, 32, 33, 36, 37, 38, 41, 42, 43) (9)

where mwl
ii are the ith diagonal elements corresponding to u, v and w in the proposed

model of lumped mass matrix, mii is the ith diagonal element of the consistent mass
matrix and me is the actual mass of element.

The mass lumping scheme considering the effect of rotary inertia (RWERI) along
with in-plane and transverse movement is expressed as

mwl
ii = mii∑

mii
me

(i = 1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 23, 26,

27, 28, 31, 32, 33, 36, 37, 38, 41, 42, 43) (10)

mθxl
i i = h2

12

mii∑
mii

me (i = 4, 9, 14, 19, 24, 29, 34, 39, 44) (11)

mθxl
i i = h2

12

mii∑
mii

me (i = 5, 10, 15, 20, 25, 30, 35, 40, 45) (12)

The element stiffness and the mass matrices have been generated and assembled
together to form the global stiffness matrix [K0] and the global mass matrix [M0].
The equation of motion for the free vibration analysis is expressed as

[K0]{δ} = ω2[M0]{δ} (13)

Equation (13) is solved by using the simultaneous iterative technique following
Ref. [7] to compute the natural frequencies.

The present finite element formulation has been validated by solving several
numerical problems and comparing the results with published literature. The effect
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of rotary inertia in mass matrix has been studied (RWERI) and the convergence has
also been verified.

3 Results and Discussions

3.1 Simply Supported Cross-ply Laminated Shell

Non-dimensional fundamental frequencyof simply supported cross-ply [0°/90°] lam-
inated shell panelwith thickness ratio of a/h= 10 has been evaluated using the present
formulation with different mesh divisions. Both mass lumping schemes have been
applied in the present study. The relative material properties are E1/E2 = 25, G12 =

Table 1 Non-dimensional fundamental frequency of laminated cross-ply [0°/90°] cylindrical shell,

λ = (ωa2/h)
√

(ρ/E2) (a = b, a/h = 10, Rx = R, Ry = inf)

R/a Bhimaraddi [1] Present results

3-D FSDT HSDT Mass lumping
Schemes

Mesh division Results

2 9.3627 9.3653 9.5664 RWOERIb 6 × 6a 9.551

8 × 8 9.552

12 × 12 9.553

16 × 16 9.553

RWERIc 6 × 6 9.496

8 × 8 9.498

12 × 12 9.498

3 9.1442 9.0563 9.2642 RWOERI 6 × 6 9.315

8 × 8 9.317

12 × 12 9.317

RWERI 6 × 6 9.262

8 × 8 9.263

12 × 12 9.263

4 9.0613 8.9403 9.1506 RWOERI 6 × 6 9.234

8 × 8 9.235

12 × 12 9.236

16 × 16 9.236

RWERI 6 × 6 9.180

8 × 8 9.182

12 × 12 9.182

aMesh divisions, bresult without effect of rotary inertia, cresult with effect of rotary inertia
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Table 2 Fundamental frequency (λ = ω
2π ) (in Hz) of a rectangular plate having a concentrated

mass at the plate centre

Concentrated mass (kg) Present result (RWERI) Boay [4] Sheikh et al. [6]

3 18.053 18.03 17.93

4 15.703 15.73 15.65

5 14.082 14.12 14.04

G13 = 0.5E2, G23 = 0.2E2, γ 12 = γ 13 = γ 23 = 0.25. Non-dimensional fundamental
frequency λ = wa2

√
(ρ/E2)/h obtained from the present formulation is shown in

Table 1 and compared with those obtained from closed-form solution. Bhimaraddi
[1] has used the three-dimensional theory of elasticity to obtain exact solution. It
is observed from Table 1 that the present results are in very good agreement with
published results and also converge with mesh refinement. From Table 1, it is clear
that the results obtained using RWERI (considering rotary inertia) show a better
agreement with published literature than RWOERI (without rotary inertia). Here, a
and b are the curve length of the edges of the shell panels and a = b.

3.2 Rectangular Plate Having Lumped Mass at the Centre

The fundamental frequency of an isotropic rectangular plate (0.71 m long, 0.42 m
wide, and 2.0 mm thick) having concentrated mass at the centre with the self mass
has been studied. The plate is simply supported at two opposite smaller sides and
clamped along the other two longer sides. Fundamental frequency (λ = ω

2π ) obtained
from the present formulation for varying mass is shown in Table 1 and compared
with those obtained from closed-form solution [4] (using Ritz Method). Sheikh et al.
[6] have presented the same results using FSDT. The relative material properties are
E = 70.0 Gpa, G = 26.92 Gpa, γ = 0.3, ρ = 1770 kg/m3 (Table 2).

3.3 Cross-ply Laminated Cylindrical Shallow Shell Having
Lumped Mass at the Centre

A cross-ply [0°/90°] laminated shell panel having lumped mass at the centre with
thickness ratio of a/h = 10 and different boundary conditions has been analysed
using the present formulation. The relative material properties are E1/E2 = 25, G12

=G13 = 0.5E2,G23 = 0.2E2, γ 12 = γ 13 = γ 23 = 0.25. First three natural frequencies
obtained from the present formulation are shown in Table 3. Here, a and b are the
curve length of the edges of the shell panels and a = b.
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Table 3 Fundamental frequency of laminated cross-ply [0°/90°] cylindrical shell, λ =
(ωa2/h)

√
(ρ/E2) (a = b, a/h = 10, Rx = R, Ry = inf)

R/a Boundary condition Concentrated mass (kg) Present result (RWERI)

Mode1 Mode2 Mode3

3 Four edges simply
supported

0 9.263 21.655 22.118

3 6.165 13.136 21.655

4 5.341 13.132 21.654

5 4.778 13.130 21.655

Four edges clamped 0 18.999 27.199 29.420

3 7.680 21.985 27.200

4 6.651 21.984 27.199

5 5.949 21.983 27.199

4 Four edges simply
supported

0 9.1820 21.691 21.980

3 6.124 13.101 21.691

4 5.305 13.098 21.691

5 4.746 13.096 21.691

Four edges clamped 0 17.683 27.246 28.566

3 7.538 20.817 27.247

4 6.529 20.816 27.246

5 5.840 20.815 27.246

4 Conclusions

It is found from thepresent numerical analysis that there is a significant effect of rotary
inertia on the free vibration of laminated plates and shell panels. It is recommended
that the mass lumping scheme with rotary inertia is more suitable for both plates
and shell panels. In this present investigation, both simply supported and fixed shell
panels with different R/a ratio have been taken under consideration. For all the cases,
results show the same pattern with the increasing value of applied lumped mass. The
present study reveals that the fundamental frequency of plates and shell panels with
lumped mass at the centre decreases with the increment of the applied lumped mass
value. Another observation from this study is that with the increment of lumpedmass
value, the rate of change of the frequency increases the clamped shells.
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Buckling Analysis of Thick Isotropic
Shear Deformable Beams

Kedar S. Pakhare, Rameshchandra P. Shimpi and P. J. Guruprasad

Abstract This paper presents buckling analysis of thick isotropic shear deformable
beams using single variable new first-order shear deformation theory (SVNFSDT )
for beams. As in the case of Timoshenko beam theory, SVNFSDT is a displacement-
based first-order shear deformation beam theory and assumes constant transverse
shear strain through the thickness of the beam. SVNFSDT has only one unknown
function and has striking resemblance to that of Bernoulli–Euler beam theory as
far as expressions for governing differential equation, moment, and shear force are
concerned. Hence, efforts involved in obtaining buckling solutions using SVNFSDT
are only marginally higher as compared to those involved in the case of Bernoulli–
Euler beam theory. Numerical results are presented for rectangular isotropic beams
with several values of beam thickness-to-length ratio and with physically meaningful
boundary conditions. To demonstrate the efficacy of numerical results of buckling
analysis obtained using SVNFSDT, these results are compared with corresponding
results available in the literature.

Keywords Shear deformation beam theory · Single variable beam theory

1 Introduction

Bernoulli–Euler beam theory (BEBT ) is the simplest and an extremely important
beam theory. It is being utilized widely for preliminary analysis of beam-like struc-
tures. However, BEBT neglects the effects of transverse shear deformation present
through the thickness of the beam. It should be noted that for beams with higher
thickness-to-length ratio, effects of shear in beam deformation become significant.
Therefore, BEBT can provide reasonably accurate results only for slender beams
wherein effects of shear in beam deformation do not play an important role. For thick
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beams in which shear deformation effects are significant, the use of BEBT overesti-
mates the buckling loads. Hence, it is necessary to have beam theories which account
for effects of transverse shear strain which are prominent in case of thick beams. The
beam transverse shear strain is assumed to have a constant value through the beam
thickness in the case of first-order shear deformation beam theories (FSDT ). In order
to approximately satisfy the constitutive relation between the beam transverse shear
stress and the beam transverse shear strain, FSDT utilize a shear correction coef-
ficient. Timoshenko beam theory (TBT ) is the first FSDT and has two unknown
functions. On the other hand, the beam transverse shear strain is assumed to have a
polynomial variation through the beam thickness in the case of higher-order shear
deformation beam theories (HSDT ). Although FSDT and HSDT are adequate for
analyzing shear deformable beams, they generally have coupled governing differen-
tial equations, increased number of independent unknowns, and require specification
of increased number of beam boundary conditions.More details regardingFSDT and
HSDT are presented in Ghugal and Shimpi [1]. Higher accuracy offered by HSDT
comes with a price of longer computation time and effort [2]. Pakhare et al. [3] have
developed single variable new first-order shear deformation theory (SVNFSDT ) for
isotropic beams based on new first-order shear deformation theories (NFSDT ) by
Shimpi et al. [4]. Unlike TBT, SVNFSDT has single governing differential equation
involving single unknown function and requires specification of only two physically
meaningful boundary conditions at each end of the beam.

Buckling of beam is a functional failure phenomenon wherein beam loses its
ability to carry lateral loads when compressive force acting along the beam length
reaches a critical value. Beam thickness-to-length ratio and hence shear deformation
effects have direct implications on critical buckling loads wherein increase in beam
thickness-to-length ratio causes reduction in non-dimensional critical buckling load.
Thai [5] has performed stability analysis of nanobeams using nonlocal shear defor-
mation beam theory. Shimpi et al. [6] have utilized single variable HSDT to perform
stability analysis of thick beams.

In this paper, SVNFSDT is used to perform buckling analysis of thick isotropic
shear deformable beams. Numerical results obtained using SVNFSDT are compared
with existing results in order to demonstrate the effectiveness of thepresentedmethod.

2 Theoretical Formulation

In accordance with the recent work by Pakhare et al. [3] and Shimpi et al. [4] on
NFSDT, single valued displacement fields are assumed for the beam, which are on
similar lines to the displacement fields givenbyShimpi el al. [4]. Lateral displacement
“w” is split into a bending component “wb” and a shearing component “ws”. These
two components of lateral displacement are functions of longitudinal coordinate “x”
alone. Longitudinal displacement “u” is a function of longitudinal coordinate “x”
and lateral coordinate “z”. Assumed displacement field is given below:
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u(x, z) = −z
dwb

dx
(1)

w = wb(x) + ws(x) (2)

Using assumed displacement field and linear strain-displacement relations,
expressions for strains are obtained. These strains are then used in stress–strain
relations pertaining to linear elastic isotropic material so as to get expressions for
stresses. Shear correction coefficient “k” is incorporated in stress–strain relations.
By using value of shear correction coefficient equal to 5/6 which is typically utilized
in TBT for the beam with rectangular cross section, bending moment “Mx” of the
proposed theory is given below:

Mx = −E I
d2wb

dx2
(3)

whereas shear force “Qx” of the proposed theory is given below:

Qx = −E I
d3wb

dx3
(4)

As stated by Shimpi et al. [6], conditions of gross equilibrium for the beam acted
upon by an axial tensile load “Nx” are given below:

Nx
dw

dx
+ dMx

dx
− Qx = 0 (5)

dQx

dx
= 0 (6)

Beam gross equilibrium equations are utilized to obtain the relation between wb

and ws. Equations (3), (5), (6) along with the relation between wb and ws are utilized
to derive governing differential equation of SVNFSDT for beam under the influence
of an axial compressive load which is given below:

[
E I − h2(1+ μ)No

5

]
d4wb

dx4
+ No

d2wb

dx2
= 0 (7)

In Eq. (7), “μ” is Poisson’s ratio and “E” is modulus of elasticity of the beam
material, “h” is the beam thickness, “I” is the beam cross-sectional area moment of
inertia, and “No” is axial compressive load acting on the beam.

General solution of Eq. (7) can be given as below:

wb = C1 + C2x + C3 cos(βx) + C4 sin(βx) (8)
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where C1, C2, C3, and C4 are arbitrary integration constants whose values can be
found out by using boundary conditions imposed on the beam and

β2 = N0[
E I − h2(1+μ)N0

5

] (9)

Depending upon the type of end supports, physically meaningful boundary con-
ditions, viz, free, clamped, and simply-supported boundary conditions can be pre-
scribed at each end of the beam in terms of the displacements. Furthermore, as in
Timoshenko and Goodier [7], it is possible to represent two distinct beam clamped
boundary conditions, viz, “clamp type 1” and “clamp type 2” in the present beam
theory.

Four linear algebraic equations in C1, C2, C3, and C4 can be obtained by sub-
stituting general solution given by Eq. (8) in four boundary conditions imposed on
the beam, two at each beam end. Then, critical buckling load for the beam can be
obtained by performing eigenvalue buckling analysis on these four linear algebraic
equations.

3 Numerical Results and Comparison

In this section, numerical results obtained by utilizing SVNFSDT pertaining to buck-
ling of rectangular isotropic simply-supported shear deformable beams for vari-
ous values of beam thickness-to-length ratio are presented. SVNFSDT is then uti-
lized to present variation of buckling loads with beam thickness-to-length ratio for
beams with different fixity conditions. SVNFSDT is also utilized to present effects
of two distinct beam clamped boundary conditions of the theory on buckling loads
of clamped-simply-supported beam.

Table 1 compares non-dimensional critical buckling loads (Ncr = (NoL2)/(EI))
obtained using SVNFSDT with corresponding results available in the literature for
simply-supported beam (SS beam).

Maximum percentage difference between critical buckling load obtained using
RBT and SVNFSDT is 0.011% with respect to RBT for a beam thickness-to-length
ratio of 0.20. Comparison presented in Table 1 confirms the accuracy of the buckling
analysis carried out using SVNFSDT for thin as well as thick rectangular isotropic
beams.

Figure 1 depicts the variation of Ncr obtained using SVNFSDT with respect to
beam thickness-to-length ratio for clamped-clamped beam (CC beam) with “clamp
type 1” boundary conditions, clamped-simply-supported beam (CS beam) with
“clamp type 1” boundary conditions and SS beam.

For a given beam thickness-to-length ratio, critical buckling load increases as
fixity conditions on ends of the beam changes from simply-supported to clamped
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Table 1 Comparison of non-dimensional critical buckling loads (Ncr = (NoL2)/(EI)) for SS beam
obtained by various theories (μ = 0.3)

Beam
thickness-to-length
ratio

Non-dimensional critical buckling loads (Ncr)

BEBT [5] TBT [5] Reddy’s
beam
theory
(RBT ) [5]

Simple
single
variable
beam
theory [6]

SVNFSDT

0.01 9.8696 9.8671 9.8671 9.8671 9.8671

0.02 9.8696* – – 9.8595 9.8595

0.05 9.8696 9.8067 9.8067 9.8067 9.8067

0.10 9.8696 9.6227 9.6228 9.6227 9.6227

0.15 9.8696* – – 9.3309 9.3309

0.20 9.8696 8.9509 8.9519 8.9509 8.9509

0.25 9.8696* – – 8.5055 8.5055

0.30 9.8696* – – 8.0179 8.0179

0.35 9.8696* – – 7.5091 7.5091

0.40 9.8696* – – 6.9969 6.9969

Results with * are calculated by the present authors

Fig. 1 Variation of non-dimensional critical buckling loads (Ncr = (NoL2)/(EI)) with respect to
beam thickness-to-length ratio
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Fig. 2 Effects of “clamp type 1” and “clamp type 2” conditions on the variation of non-dimensional
critical buckling loads (Ncr = (NoL2)/(EI)) with respect to beam thickness-to-length ratio for CS
beam

(Fig. 1). Also for any beam fixity conditions, increase in beam thickness-to-length
ratio causes Ncr to decrease.

Figure 2 depicts the effects of “clamp type 1” and “clamp type 2” conditions on the
variation of Ncr obtained using SVNFSDT with respect to beam thickness-to-length
ratio for CS beam.

ForCS beam,Ncr is higher for the beamwith “clamp type 2” boundary conditions
as compared to the beam with “clamp type 1” boundary conditions for a given beam
thickness-to-length ratio (Fig. 2). Hence “clamp type 2” boundary conditions make
the beam stiffer as compared to “clamp type 1” boundary conditions. With reduction
in beam thickness-to-length ratio, effects of clamping conditions attenuate.

4 Concluding Remarks

In this paper, buckling analysis of thick isotropic shear deformable beams is per-
formed by using single variable new first-order shear deformation beam theory. For
thick isotropic rectangular beams with various beam fixity conditions, influence of
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shear deformation on critical buckling loads is presented. To demonstrate the effec-
tiveness of the presented method, obtained results are compared with corresponding
results available in the literature. For clamped-simply-supported beam, effect of two
distinct clamp boundary conditions on non-dimensional critical buckling loads is
also presented. These results and comparisons prove that the buckling analysis of
thick isotropic shear deformable beams carried out with easy to use SVNFSDT is
reliable for a range of beam fixity conditions as well as beam thickness-to-length
ratio.
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Spectral Finite Element for Dynamic
Analysis of Piezoelectric Laminated
Composite Beams

Namita Nanda

Abstract In this paper, a frequency-domain spectral finite element model (SFEM)
is developed for dynamic analysis of piezoelectric laminated composite beams. The
displacement field of the beam is represented by the first-order shear deformation
theory (FSDT). The electric potential for the piezoelectric layer is expressed in
two ways: (i) distributed linearly through the thickness and (ii) layerwise through
thickness distribution consistent with the FSDT. The governing differential equation
of motion for piezoelectric laminated composite beam is obtained using Hamilton’s
principle. These time-domain equations are transformed to frequency domain using
the Fourier transformation. The spectral element is derived from the exact solution of
the frequency domain governing equations of motion. The formulation is validated
by comparing the results of the natural frequencies with the published finite element
method (FEM) results. The developed element is used to perform dispersion, free
vibration analysis, and elastic wave propagation in laminated composite beam fully
or partially covered with surface-bonded piezoelectric layer.

Keywords Spectral element · Piezoelectric · Dynamic analysis · Composite ·
Beam

1 Introduction

Recently, the study of piezoelectric materials in structures has received significant
attention due to the increasing demands of high structural performance requirements.
The piezoelectric materials tend to produce an electric potential when mechanical
stress is applied (direct piezoelectric effect). Conversely, applying electric poten-
tial, mechanical deformation is produced (converse piezoelectric effect). Therefore,
piezoelectric materials are used both as sensors and actuators. Numerous analytical
models have been developed for smart composite structures, including piezoelectric
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laminated composite beams. Many researchers used the conventional finite element
method to study the dynamic behavior of structures. However, the conventional FEM
requires very fine mesh to obtain reliable dynamic solutions of such structures. This
creates very large problem size which costs more computational effort and time [1].
A more efficient method is the frequency-domain spectral finite element method [2].
In this method, the discretization of the time-domain solution to frequency domain
in terms of spectral amplitudes (Fourier coefficients) is done using the fast Fourier
transform (FFT). The fundamental difference between FEM and SFEM is that the
spectral element stiffness matrix is exact and frequency dependent. The governing
equations are solved in the frequency domain, which are transformed from time-
domain equations using the discrete Fourier transform. These responses are then
transformed back to the time domain using the inverse FFT. Due to the exact for-
mulation of the system, only one spectral element is sufficient for solution in most
cases where thousands of finite elements are required.

The frequency-domain SFEM considered in the present study is different from
the time-domain SFEM proposed by Patera [3]. In time-domain SFEM, Legendre
polynomials or Chebyshev polynomials are used as shape functions to formulate the
finite element matrices in the time domain. The element mass matrix formulated is
diagonal hence the computational cost is less expensive than conventional FEM. This
method has been used for wave propagation analysis in laminated composite beams,
plates, and panels [4–7]. Though the method is more robust and has high accuracy,
the problem size remains large. The time-domain SFEM analysis is inadequate to
furnish most of the useful frequency domain properties such as wave dispersion and
nature of each wave modes.

The frequency-domain SFEM proposed by Doyle [2] has been widely used by
researchers to study wave propagation in structures. Wave propagation analysis in
isotropic beams has been studied [8–11] using this frequency-domain SFEM. Lee
et al. [11] presented a brief review of the spectral element method in structural
dynamics. Spectral element models for wave propagation and dynamic analysis of
composite beams have been developed [12–15]. A spectral finite element based on
an efficient layerwise theory has been developed by Nanda et al. [16] for wave
propagation analysis of anisotropic beams. Wavelet spectral finite element method
has also been used to study wave propagation in laminated composite plates with
transverse cracks [17].

Many theories and models have been developed for analyzing piezoelectric lam-
inated composite structures [18–21] with different displacement field and electric
potential approximations. However, the studies on smart piezoelectric composite
structures using SFEM are limited [22, 23] and have not been well addressed. More-
over, these spectral element formulations used linear variation of the electric potential
through the thickness. However, the electric potential distribution is actually nonlin-
ear due to the induced potential effects. In the present work, a spectral finite element
model in the frequency domain is presented for the free vibration and high-frequency
wave propagation analyses of piezoelectric laminated composite beams. The dis-
placement field of the beam is represented by first-order shear deformation theory
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with both linear and layerwise through thickness distribution of electric potential
[21] in the piezoelectric layer.

2 Theory and Formulation

The constitutive relations for the piezoelectric smart beam are

σx = Q̂11εx − ê31Ez, τzx = Q̂55γzx , Dz = ê31εx + η33Ez (1)

where σx , τzx , εx , γzx , Dz , and Ez denote the axial stress, shear stress, normal
strain, shear strain, electric displacement, and electric field, respectively. Q̂11, Q̂55,

ê31, and η33 are the reduced elastic, piezoelectric, and dielectric coefficients. The
displacement field of the beam is represented by the first-order shear deformation
theory. The in-plane and transverse displacements u and w are represented as

u(x, z, t) = u0(x, t) + zψ0(x, t), w(x, z, t) = w0(x, t) (2)

where u0,w0, andψ0 denote the in-plane displacement, the transverse displacement,
and the rotation of the mid-surface, respectively.

The strain–displacement relation is given as

εx = ∂u

∂x
, γzx = ∂u

∂z
+ ∂w

∂x
(3)

The electric potential (φ) for the piezoelectric layer (Fig. 1) is expressed in two
ways:

(i) Linear distribution through the thickness.

The electric potential and the electric field of the ith piezoelectric layer is expressed
as

Piezoelectric layer

Fig. 1 Geometry of a multilayered piezoelectric smart beam
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φi (x, z) = (z − zi−1)φ0i (x)/hi , Ei
z = −∂φi/∂z = −φ0i/hi (4)

where hi is the thickness of the ith piezoelectric layer.

(ii) Through thickness distribution consistent with FSDT [21].

The electric potential of the ith piezoelectric layer is

φi (x, z) = φ̄i (x) + (φ̃i (x)(z − z̄i )/hi ) − (ê31h
2
i (1 − 4(z − z̄i )

2/h2i )ψ
′
0/8η33)

(5a)

where φ̄i = (φi + φi−1)/2, φ̃i = φi − φi−1, · · · z̄i = (zi + zi−1)/2 and φi , φi−1 are
the electric potential at the top and bottom faces of the ith piezoelectric layer and ψ

′
0

is the first derivative of ψ0. From Eq. (5a), it is observed that the electric potential
is quadratic in thickness direction. The first two terms describe the conventional
linear part. The quadratic term represents the bending deformation contribution to
the potential.

The resulting electric field is

Ei
z = −∂φi/∂z = −(φ̃i (x)/hi ) − (ê31(z − z̄i )ψ

′
0/η33) (5b)

The spectral elements developed using the above representations for φ using
Eqs. (4) and (5a, 5b) are denoted as FSDT-A and FSDT-M, respectively.

The equations of motion and the corresponding variationally consistent bound-
ary conditions for the beam with piezoelectric layers are derived from Hamilton’s
principle, which states that

t2∫

t1

(δT − δU + δW )dt = 0 (6)

where t1 and t2 are the starting and finish time, respectively; δT and δU are the
first-order variations of total kinetic and total strain energies of the piezoelectric
composite beam, respectively, and δW denotes the total virtual work done by the
external mechanical and electrical forces. These variations are obtained as

δT =
∫

z

ρ(u̇δu̇ + ẇδẇ)bdz (7)

δU =
∫

z

(σx∂εx + τzx∂γzx − Dz∂Ez)bdz (8)

The variation of the virtual work done by external surface force q and the applied
surface charge density q0 is expressed as
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δW =
∫

q∂w0bdx −
∫

q0∂φbdx (9)

SubstitutingEqs. (7–9) intoEq. (6) and usingEqs. (1–3), the governing differential
equations of the smart composite beams are expressed as

∂u0 : I0ü0 + I1ψ̈0 − Nx,x = 0 (10a)

∂w0 : I0ẅ0 − Qx,x − F2 = 0 (10b)

∂ψ0 : I1ü0 + I2ψ̈0 − Mx,x + Qx = 0 (10c)

∂φ : Gk
z + q0 = 0 (10d)

where F2 is the applied distributed force along the z-direction andGk
z =

L∑
k=1

Dz
1
h p
dz.

The coefficientGk
z is obtained for FSDT-A and FSDT-Musing the expressions for Dz

and Ez from Eqs. (1), (4), and (5a, 5b), and subsequently the electric-field potential
function in terms of primary displacement variables is found out from Eq. (10d).

The stress resultants are defined as

Nx =
L∑

k=1

zk∫

zk−1

σxdz , Mx =
L∑

k=1

zk∫

zk−1

σx zdz , Qx =
L∑

k=1

zk∫

zk−1

τzxdz (11)

Thus,

⎧⎨
⎩

Nx

Mx

Qx

⎫⎬
⎭ =

⎡
⎣ A11 B11 0
B11 D11 0
0 0 A55

⎤
⎦

⎧⎨
⎩

∂u0/∂x
∂ψ0/∂x

ψ0 + ∂w0/∂x

⎫⎬
⎭ −

⎧⎨
⎩

N p
x

M p
x

0

⎫⎬
⎭ (12)

where
{
N p

x , Mp
x
} =

zk∫
zk−1

ê31Ez(1, z)dz

Equation (9) is subjected to the boundary conditions at x = 0, and x = l as given
below:

u0 = u∗
0, or Nx = N ∗

x

w0 = w∗
0, or Qx = Q∗

x

ψ0 = ψ∗
0 , or Mx = M∗

x (13)

The general solution of the homogeneous form of Eqs. (10a, 10b, 10c, 10d) is
written in the spectral form as
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u0(x, t) =
N∑

n=1

û(x, ωn)e
iωn t =

N∑
n=1

(ũ j e
−ik j x )eiωn t

w0(x, t) =
N∑

n=1

ŵ(x, ωn)e
iωn t =

N∑
n=1

(w̃ j e
−ik j x )eiωn t

ψ0(x, t) =
N∑

n=1

ψ̂(x, ωn)e
iωn t =

N∑
n=1

(ψ̃ j e
−ik j x )eiωn t (14)

where û, ŵ, and ψ̂ are the Fourier coefficients (or spectral components) of the
axial, flexural, and shear deformations, respectively, ũ j , w̃ j , and ψ̃ j are the wave
amplitudes, which are evaluated from the essential and natural boundary conditions,
ωn is the discrete frequency at the nth sampling point, and k j is the wavenumber.
The summation is performed up to the Nyquist frequency in FFT ωN , where N is the
number of samples.

Substituting Eq. (14) into the governing differential Eqs. (10a, 10b, 10c, 10d), we
get

⎡
⎣ ( Ã11k2 − I0ω2

n) 0 (B̃11k2 − I1ω2
n)

0 ( Ã55k2 − I0ω2
n) ik A55

(B̃11k2 − I1ω2
n) −ik A55 (D̃11k2 + A55 − I2ω2

n)

⎤
⎦

⎧⎨
⎩

ũ j

w̃ j

ψ̃ j

⎫⎬
⎭ = 0 (15)

where Ã11, B̃11, and D̃11 are the modified stiffness coefficients due to ê31 and η33
terms. Equation (15) will have a nontrivial solution by setting the determinant of the
coefficient matrix of ũ j , w̃ j , and ψ̃ j to zero. This gives a sixth-order characteristic
equation in terms of the wavenumber k j ,

awk
6
j + bwk

4
j + cwk

2
j + dw = 0 (16)

The coefficients aw, bw, cw, and dw are not listed here due to their lengthy appear-
ance. Since Eq. (16) is a cubic equation in k2j , there are three pairs of wavenumbers,
±k1, ±k2, and ±k3: three for forward modes and three for backward modes. These
three modes constitute the axial mode (mode 1), flexural mode (mode 2), and the
shear mode (mode 3).

The solution for the spectral components of the displacement field (Eq. 14) is
obtained as

⎧⎨
⎩

û(x, ωn)

ŵ(x, ωn)

ψ̂(x, ωn)

⎫⎬
⎭ =

⎡
⎣ R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ũ1e−ik1x

ũ2e−ik1(l−x)

ũ3e−ik2x

ũ4e−ik2(l−x)

ũ5e−ik3x

ũ6e−ik3(l−x)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(17)
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where R1 j , R2 j , and R3 j are the amplitude ratios for the three modes of propagation.
At nodes 1 (x = 0) and 2 (x = l), the spectral amplitudes of the nodal displacements
û1 = û(0, ωn), ŵ1 = ŵ(0, ωn), ψ̂1 = ψ̂(0, ωn), û2 = û(l, ωn), ŵ2 = ŵ(l, ωn), and
ψ̂2 = ψ̂(l, ωn) of the element of length l are expressed as

ûe(ωn) = T1(ωn)ũ (18)

where

ûe = [
û1 ŵ1 ψ̂1 û2 ŵ2 ψ̂2

]T
and ũ = [

ũ1 ũ2 ũ3 ũ4 ũ5 ũ6
]T

.

The elements of the matrix T1 for j = (1, . . . 6) are given by

T1(1, j) = R1 jΛ(0),T1(2, j) = R2 jΛ(0),T1(3, j) = R3 jΛ(0),

T1(4, j) = R1 jΛ(l),T1(5, j) = R2 jΛ(l),T1(6, j) = R3 jΛ(l) (19)

where Ri j is the eigenvector matrix [16] and Λ(x) is a
diagonal matrix containing the exponential terms, Λ(x) =
diag(e−ik1x , e−ik1(l−x), e−ik2x , e−ik2(l−x), e−ik3x , e−ik3(l−x)).

The nodal stress resultants
(
N̂1, Q̂1, M̂1, N̂2, Q̂, M̂2

)
corresponding to the natural

boundary conditions in Eq. (13) is

F̂e(ωn) = T2(ωn)ũ = T2T−1
1 û = K̂(ωn)û (20)

where F̂e =[
N̂1 Q̂1 M̂1 N̂2 Q̂2 M̂2

]T
The elements of the matrix T2 for j = (1, . . . 6) are given by

T2(1, j) = ( Ã11R1 j + B̃11R3 j )Λ
′
(0), T2(2, j) = A55[R2 jΛ

′
(0) + R3 jΛ(0)],

T2(3, j) = (B̃11R1 j + D̃11R3 j )Λ
′
(0), T2(4, j) = −( Ã11R1 j + B̃11R3 j )Λ

′
(l),

T2(5, j) = −A55[R2 jΛ
′
(l) + R3 jΛ(l)], (6, j) = −(B̃11R1 j + D̃11R3 j )Λ

′
(l)
(21)

Here K̂(ωn) is the exact dynamic stiffness matrix of the piezoelectric laminated
beam.

3 Results and Discussion

The SFEM developed using Eqs. (4) and (5a, 5b) for φ (FSDT-A and FSDT-M,
respectively) are employed to perform dispersion, free vibration, and wave propa-
gation analyses of smart composite beams. The results for natural frequencies of a
piezoelectric cantilever beam using the present SFEM are compared with the FEM
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results [21]. The beam has length L = 100mm and thickness h= 5mm. The material
properties are for steel:E1 =E2 =E3 = 210GPa,G12 =G23 =G13 = 80.77 GPa, ν12

= ν13 = ν23 = 0.3, ρ = 7850 kg/m3 and for PZT G1195 N: E1 = E2 = E3 = 63 GPa,
G12 = G23 = G13 = 24.2 GPa, ν12 = ν13 = ν23 = 0.3, d31 = d32 = 254× 10−12 m/V,
η11 = η22 = 1.53×10−8, η33 = 1.5×10−8 F/m, ρ = 7600 kg/m3. The performance
of both the FSDT-based spectral elements is evaluated over a wide range of thickness
ratios (h p/h), which is the ratio of the thickness of the piezoelectric layer to the total
beam thickness. Tables 1 and 2 present the natural frequencies in Hertz for different
thickness ratios for both open and closed-circuit electrical boundary conditions. The
closed-circuit condition is obtained by grounding both the lower and upper surfaces
of piezoelectric layer. In open-circuit condition, only the lower surface of the piezo-
electric layer is grounded. The comparison shows good agreement with the published
results. The free vibration results reveal that the natural frequencies predicted by the
conventional FSDT-A show significant deviation from those of the coupled FSDT-M
when the thickness ratio is more. This may be because of the predominant induced
potential effect. The accuracy of the coupled FSDT-M based SFEM is established
from the close agreement of the results with the ANSYS 2D solutions.

To study the effect of material properties of PZT layers, a cantilever composite
beam (L = 600 mm, h = 30 mm) with a surface-bonded piezoelectric layer of PZT
5A and G1195 N is considered (Fig. 2). The material properties of graphite–epoxy
composite [0/90/90/0] and piezoelectric layers are

Composite: E1 = 181 GPa, E2 = E3 = 10.3 GPa, G12 = G13 = 7.17 GPa, G23 =
2.87 GPa, ν12 = ν13 = 0.28, ν23 = 0.33, ρ = 1578 kg/m3.

PZT 5A : E1 = E2 = 61 GPa, E3 = 53.2 GPa,G12 = 22.6 GPa,G23 = G13 = 21.1
GPa, ν12 = 0.35, ν13 = ν23 = 0.38, d31 = d32 = –171×10−12 m/V, d33 = 374×10−12

Table 1 Comparison of natural frequencies (Hz) of a piezoelectric cantilever beam in open-circuit
condition

Thickness ratio (h p/h) FSDT-M
(present)

FSDT-M
[21]

ANSYS 2D
[21]

FSDT-A
(present)

FSDT-A
[21]

0.05 398.87 398.93 399.07 398.87 398.93

0.1 382.69 382.67 382.81 382.69 382.66

0.2 355.84 356.03 356.16 355.84 355.87

0.3 337.52 337.45 337.57 336.91 336.89

0.4 326.54 326.57 326.64 325.01 325.17

0.5 321.96 322.03 322.02 319.21 319.24

0.6 321.35 321.48 321.37 316.47 316.61

0.7 321.35 321.54 321.37 313.72 313.76

0.8 317.69 317.58 317.72 305.79 305.71

0.9 302.43 302.41 302.33 284.42 284.40

1.0 261.54 261.62 261.63 232.24 232.14
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Table 2 Comparison of natural frequencies (Hz) of piezoelectric cantilever beam in closed-circuit
condition

Thickness ratio FSDT-M
(present)

FSDT-M
[21]

ANSYS 2D
[21]

FSDT-A
(present)

FSDT-A
[21]

0.05 396.42 396.36 396.50 396.12 396.36

0.1 377.72 377.49 377.63 377.50 377.47

0.2 345.74 345.71 345.86 345.46 345.55

0.3 322.73 322.65 322.79 321.96 322.06

0.4 308.66 308.62 308.73 307.01 307.13

0.5 302.81 302.86 302.91 299.68 299.88

0.6 303.23 303.30 303.27 298.16 298.13

0.7 306.45 306.53 306.43 298.46 298.35

0.8 307.69 307.59 307.46 295.41 295.31

0.9 298.48 298.43 298.35 280.15 280.17

1.0 261.64 261.62 261.63 232.24 232.14

Fig. 2 Cantilever composite
beam with a PZT layer at the
top

L
hc

hp

Composite beam

PZT layer

m/V, d15 = d24 = 584×10−12 m/V, η11 = η22 = 1.53× 10−8 F/m, η33 = 1.5× 10−8

F/m, ρ = 7600 kg/m3.

Table 3 compares the first four natural frequencies of cantilever composite beam
(hp/h = 0.1, 0.5, 1.0) with two different piezoelectric layers, viz., PZT-5A and
G1195 N at the top using both FSDT-A- and FSDT-M-based SFEM. The study
of natural frequencies in Table 3 shows that, with increase of thickness ratio, FSDT-
A results deviate significantly from those of the coupled FSDT-M for both PZT-5A
and G1195 N. These deviations become more significant in case of a beam with
PZT G1195 N layer than those for the beam with PZT-5A layer at higher thickness
ratios, i.e., 0.5 and 1.0. This is because the modulus induced in PZT G1195 N is
more than PZT-5A. At higher modes, the differences in frequencies obtained using
FSDT-M and FSDT-A spectral elements are noteworthy. Coupled FSDT-M-based
SFEM is used to study free vibration, dispersion, and wave propagation analysis
of cantilever composite beams. A four-layered cantilever composite beam with two
PZT-5A patches at the top as shown in Fig. 3 is considered. The geometric properties
of the beam are L1 = 200 mm, L2 = 150 mm, L3 = 200 mm, Lp = 25 mm, hc =
10 mm, and hp = 1 mm. Table 4 compares the first four natural frequencies of the
beam for three lamination sequences [0]4, [0/90/90/0] and [0/90/0/90].

Next, the dispersion relation, i.e., the variations of the nondimensional wavenum-
ber (kih) with the frequency is studied. For this, a cantilever steel beam with a
piezoelectric layer of G1195 N at the top is considered. The material and geometric
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Table 3 Comparison of the first four natural frequencies (Hz) of cantilever composite beam
[0/90/90/0] with a piezoelectric layer at the top

Thickness
ratio

Mode no. PZT-5A PZT G1195 N

FSDT-A FSDT-M FSDT-A FSDT-M

0.1 1 104.37 104.37 106.20 106.20

2 614.62 614.62 623.78 623.78

3 1577.1 1577.1 1603.4 1603.4

4 2706.3 2706.3 2729.5 2729.5

0.5 1 57.983 58.594 60.425 61.035

2 355.84 357.67 370.48 374.76

3 963.75 966.80 1004.6 1015.0

4 1738.3 1738.9 1813.9 1815.8

1.0 1 37.842 39.673 38.452 43.335

2 236.21 245.36 239.87 269.77

3 649.41 674.44 661.62 741.58

4 1242.7 1289.1 1267.7 1416.0

Fig. 3 Cantilever composite
beam covered with two PZT
patches at the top

hc

hp

Composite beam

Actuator SensorLp

L1 L3L2

Lp

Table 4 Comparison of the
first four natural frequencies
(Hz) of cantilever composite
beam with two PZT-5A
patches at the top

Mode no. [0]4 [0/90/90/0] [0/90/0/90]

1 47.607 44.556 31.738

2 292.36 274.05 198.36

3 801.39 748.29 548.71

4 1574.7 1463.0 1073.0

properties are the same as described in the previous problem. Figure 4 shows the dis-
persion relations for the asymmetric beam with and without a surface-bonded PZT
layer using the FSDT-M. It is noticed that the wavenumbers corresponding to axial
(k1h), flexural (k2h), and shear rotation (k3h) modes with piezoelectric layer being
more than that of the beam without the piezoelectric layer. Moreover, the wavenum-
bers of all these modes increase with the increase of thickness of the piezoelectric
layer. The cutoff frequency, i.e., the frequency at which the evanescent wave mode
(imaginary wavenumbers) changes to propagating wave mode (real wavenumbers),
decreases with an increase of thickness ratio.

The FSDT-M-based spectral element is then used for wave propagation in a smart
composite beam subjected to modulated tone burst excitations. A graphite–epoxy
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Fig. 4 Dispersion relations
with and without PZT layer
at the top
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composite [0/90/90/0] beam with PZT-5A actuator and sensor (Fig. 3) is considered.
The Lamb wave is generated using five-cycle sinusoidal tone burst modulated by
Hanning window with center frequency of 100 kHz (Fig. 5). The wave signal of
100 kHz frequency with peak voltage of 200 is applied to the PZT actuator and the
response measured at the PZT sensor is shown in Fig. 6. The geometric properties
of the beam for this example are L1 = 300 mm, L2 = 200 mm, L3 = 300 mm, Lp =
5mm, hc = 5mm, and hp = 0.5mm. The first peak in Fig. 6 is the symmetric S0 mode
and the second peak is the antisymmetric A0 mode. Symmetric modes are described
as extensional or axial modes whereas the antisymmetric modes are described as the
flexural modes. The group speed (Cg = Re [dωn/dkj]) for the S0 and A0 modes at
100 kHz frequency are obtained as 7785.5 m/s and 1702 m/s. The time of arrival of
the S0 and A0 modes at the sensor found from group speed relation (L2/Cg) are 26
µs and 118 µs, respectively, which are in good agreement with the times of flight of
S0 and A0 modes in the wave propagation response (Fig. 6).

Fig. 5 Tone burst excitation
with 100 kHz center
frequency (frequency
spectrum at the inset)
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Fig. 6 S0 and A0 mode
response measured at the
PZT sensor
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The axial and flexural velocity responses of the same symmetric cross-ply
[0/90/90/0] cantilever beam (Fig. 3) due to axial and transverse excitation of 100 kHz
frequency with a peak voltage of 200 applied to the PZT actuator are investigated.
The beam has L1 = 300 mm, L2 = 200 mm, L3 = 500 mm, Lp = 5 mm, hc =
5 mm, and hp = 0.5 mm. The response at a distance of 200 mm from the actuator is
plotted. Figures 7 and 8 are the axial and flexural velocity response of the cantilever
beam obtained using the developed FSDT-M-based SFEM. The group speed Cg for
the axial and flexural modes at 100 kHz frequency are obtained as 7785.5 m/s and
1682 m/s, respectively. The time of arrival of the first peak of the excitation cor-
responding to axial mode from group speed relation is 26 µs (= 0.2/7785.5). The
second and third peaks correspond to the reflection from the left and right boundaries
and the time of arrival is obtained as 103 µs and 155 µs, respectively. These values
of the time of arrival of axial mode are in perfect agreement with the times of flight
in the wave propagation response (Fig. 7). Similarly, the time of flight of the flexural
mode in the wave propagation response in Fig. 8 is matching well with the time of
arrival obtained from group speed (= 0.2/1682).

Fig. 7 Axial velocity
response due to axial load at
the PZT actuator
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Fig. 8 Transverse velocity
response due to transverse
load at the PZT actuator
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4 Conclusions

This paper presents the frequency-domain spectral finite element method for disper-
sion, free vibration, andwave propagation analyses of piezoelectric composite beams
based on the first-order shear deformation theory. The electric potential distribution
through the thickness of the piezoelectric layer is expressed in two ways, i.e., linear
and coupled layerwise through thickness potential distribution consistent with the
FSDT. The results for natural frequencies for a piezoelectric cantilever beam using
the SFEM developed here are compared with the FEM results. The SFEM results
using FSDT-A and FSDT-M show large deviation from each other when the piezo-
electric layer thickness is increased. This shows the predominant induced potential
effect when the thickness ratio is increased. The comparison proved the superiority of
the spectral finite element formulation based on coupled layerwise through thickness
potential distribution over the conventional linear potential distribution in the piezo-
electric layer. Furthermore, the developed spectral element has been used to study
the free vibration in composite beams fully and partially covered with PZT layer
at the top. The dispersion studies show that at a given frequency, the wavenumbers
corresponding to axial, flexural, and shear rotation modes with piezoelectric layer
are more than that of the beam without the piezoelectric layer. The cutoff frequency
decreases with the increase of thickness ratio. A detailed analysis of wave propaga-
tion of composite beamswith PZT actuator and sensors is also provided. The times of
flight of axial and flexural modes in the wave propagation response are corroborated
from the group speeds.
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Determination of Interlaminar Stress
Components in a Pretwisted Composite
Strip by VAM

Santosh B. Salunkhe and P. J. Guruprasad

Abstract The interlaminar stress components can cause delamination (separation
of laminae), resulting in the failure of material before its elastic limit. Thus, the accu-
rate prediction of the stress components in the composite laminates is vital for the
prediction of onset and progress of delamination. Our aim is to analytically arrive
at a close approximation solution for interlaminar stress components using recovery
relations through 1-D analyses. In this study, the development of an efficient ana-
lytical approach to obtain the 3-D elasticity solutions by using recovery relations is
achieved. In order to get these stress components accurately, a procedure combining
VAM-based framework with approximation method is developed. The approximate
method is based upon the stress distribution from more appropriate, sophisticated,
and simple polynomials on the equilibrium equation of elasticity. The resulting solu-
tion satisfies all the boundary conditions and the compatibility. A parametric study
is carried out to understand the nature of 3-D stress components along the thick-
ness of various symmetric, quasi-isotropic, and antisymmetric stacking sequences
by this approach. The effectiveness of our approach is demonstrated by comparing
the results for interlaminar normal and shear stress components along the interface
and through the thickness near free edge under axial strain with those of the available
in literature and 3-D FEM for the symmetric, antisymmetric, angle-ply, and cross-ply
laminates. This newly described approach shows a good agreement and the computa-
tional efficiency. This approach effectively predicts the 3-D stress components with
great time-saving.
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1 Introduction

The fiber-reinforced laminated composites are widely used in a variety of weight-
conscious and high-performance applications, i.e., military, aerospace structures, and
much more. The composite provides an added advantage of tailoring the material
properties along with good specific strength. The tailoring capabilities of composite
material properties can be used to manipulate the structure with required coupling
characteristics. However, fiber-reinforced composite laminate show failure modes
classified as follows:

1. In-plane fiber fracture and
2. Out of plane

(a) delamination failure,
(b) matrix failure, and
(c) fiber-matrix debonding or fiber splitting.

Usually, these failure initiates at fiber–matrix interface and progresses into delam-
ination process and eventually leads to complete failure. The interlaminar stress
components are responsible for delamination resulting in the failure of material
before reaching its elastic limit. Therefore, the detailed study of interlaminar stress
components for accurate prediction of the structural behavior and the progressive
delamination under the influence of continued loading is mandatory.

In case of analytical, semi-analytical and numerical studies, over the last few
decades, researchers have practiced many techniques to estimate the stress compo-
nents at free edges. The complete review is available in the review articles by Kant
et al. [1], Wang et al. [2], Sen et al. [3] and Mittelstaedt et al. [4]. In particular, the
methods can be divided into the following: perturbation method by Hsu et al. [5],
boundary layer theory by Tang et al. [6], higher order plate theory by Pagano [7],
andWhitney et al. [8], layerwise theory by Noiser et al. [9], interlaminar shear stress
continuity theory by Liu [10], variational approach by Yin [11], global local model
by Pagano [7] and Whitney et al. [8], Galerkin’s method by Wang et al. [12], and
approximate elasticity solution by Kim et al. [13] and Puppo et al. [14].

Hayashi [15]was the first researcherwho estimated the interlaminar stress compo-
nents in angle-ply laminates under axial tension by the analytical approach. Further,
a similar type of analysis on [45/ − 45]s glass–epoxy laminates has been done by
Puppo et al. [14]. The pioneering work at the numerical level has done by Pipes et
al. [16] in 1970. Further, significant scientific work has been done by R. B. Pipes
and his co-worker in the modeling and analyses of the free edge effects correctly and
their many papers concerning to the free edge effect are available.

Pipes et al. [17] have used finite difference method in order to solve a coupled
second-order partial differential equilibrium equation for a laminate with tensile
loading and traction free boundary conditions. During his study, he observed that
the interlaminar shear stress grows rapidly near the free edge which is “approxi-
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mately one laminate thickness from the free edge of width”. It is often known as the
“boundary layer effect” or “free edge effect”. It was also showed that themismatch of
shear coupling coefficients between the two adjacent plies is responsible for soaring
in an interlaminar shear stress in the angle-ply laminate. Later, several researchers
have used these results as a reference result for validation. Further, Pagano [18]
solved for cross-ply [0/90]s laminate by using the analytical solution. He showed
that the interlaminar normal stress σ33 is increasing near the free edge and it can
cause delamination for cross-ply laminate. Similarly, Wang et al. [2] also used to
solve cross-ply [0/90]s and [90/0]s laminates by using finite element method. In the
same paper, they used [90/0/45/ − 45]s laminate which is a combination of angle-
ply and cross-ply laminate for understanding the behavior of σ33 near free edges. For
same geometric and material properties, they observed that the stacking sequence
[45/ − 45/0/90]s and [90/0/45/ − 45]s gives tension and compression through the
thickness, respectively, for the axial extension. Further, through the experiments, they
observed that the laminate [45/ − 45/0/90]s stacking sequence undergoes delami-
nation in the midplane, while laminate [90/0/45/ − 45]s stacking sequence did not
delaminate. Next, Makeev et al. [19] developed an iterative method for the one-term
approximate solution of partial differential equations. This approach can be applied
to several boundary value problems.

From literature, it is observed that some of the researchers solved angle-ply lam-
inate ([45/ − 45]s), some of them used cross-ply laminate ([90/0]s or [0/90]s), and
some of them solved quasi-isotropic ([90/0/45/ − 45]s) laminate. Further, some
of the researchers used analytical solution and some of them used finite element
method while some of them used finite difference method. However, which method
is a best fit for the assessment of a given mechanical problem including free edge
effects in the laminate structures cannot be answered universally and priorly. It fur-
ther appears through literature that the results obtained from various approaches have
shown some of the similarity, but in some cases, discrepancies were also observed.
These discrepancies do exist in sign as well as in the magnitude of the interlam-
inar stresses. As a requirement, an analysis method should be in good agreement
between the possible correctness and computational expense. There are very few
methods available which gives closed-form solution by using recovery relation to
get interlaminar stress components and satisfy the above requirements. Nonetheless,
there are challenging opportunities, for predicting the interlaminar stress components
accurately and efficiently.

Following the above motive, a new analytical methodology is used by the author.
The present method gives a closed-form solution by using recovery relation. The
proposed approach is a combination of the VAM and the approximation method. We
know that VAM is the powerful mathematical tool to address the linear as well as
nonlinear challenges in beam modeling. Berdichevskii [20] was the first researcher
who usedVAM formodeling shell structure, by simplifying the original 3-D problem
to a 1-D problem by sustaining strain energy. The final results from this approach
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include linear as well as nonlinear stiffness terms. Further, this theory was developed
and much work has been done by Hodges and his co-workers [21–24]. Next, the
approximation approach used in this paper is based on an assumed stress distribution
derived from more sophisticated solution and on the equilibrium equations of elas-
ticity. This method involves the use of polynomial, and it is an extension of Pagano
and Pipes approach. Further, the precision of the method is examined by correlating
the present results, wherever possible, with the data available in the literature and the
3-D FEM. Finally, the method is used to study the thickness-wise 3-D stress behavior
of pretwisted, antisymmetric, symmetric, quasi-isotropic, and crossed ply laminated
strip. In particular, the proposed approach can provide a correct 3-D elasticity solu-
tion for any laminated composite strip through 1-D analysis in a computationally
efficient manner.

2 Mathematical Formulation

In the first part of this section, VAM is employed to develop reduced-order 1D strip-
like model. In the latter part of the section, the approximation method is employed
to obtain out of plane stresses.

2.1 Strip Kinematics and Formulation

A three-dimensional structural problem can be reduced to a 1D problem by consider-
ing the relative ratios of their three dimensions. Regarding this, the VAM is a unique
synergy to bring the traditional asymptotic and variational formulations without any
ad hoc assumption. An asymptotic formulation is based on the existence of small
parameters. In the strip, thickness-to-width and width-to-length ratios are minimal.
The correct 3D energy of the strip can be found by asymptotically expanding these
small parameters. Further, the variational method is adopted. Here, one should note
that the terms of the energy functional are dropped off at an energy level, not at the
strain displacement relation level. The detailed procedure and formulation can be
found in [24–28]. This exercise is shortly explained here for completeness and also
gives some insight into the VAM theoretical foundation. The geometry of the strip
is shown in Fig. 1. Here and throughout the paper, Greek indices assume values 2
and 3, and Latin indices assume 1, 2, and 3. Repeated indices are summed over their
range except where explicitly indicated. From the general formulas, one can write
the nonlinear three-dimensional strain field for delaminated strip as
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Fig. 1 Pretwisted strip configuration
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The 2D strain measures can be extracted from the 3D strain measures by using
the relation �αβ = εαβ + x3ραβ , where εαβ are the middle surface membrane strains
and ραβ are the middle surface. The expressions for membrane strains, which are
obtained by inspection of Eq. (1) are bending curvatures.
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To receive the zeroth-order 2D strain energy density through VAM, use the non-
underlined terms from the above equation in energy functional and integrate over the
thickness. Thus, one can get zeroth-order approximation. Similarly, to get first-order
approximation consider the complete above equation, i.e., admit underlined term.
The 2D strain energy density can be expressed as
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where the A, B, and D terms in the strain energy represents membrane, bending and
coupling stiffness matrices, respectively. Following the procedure of minimization
by using variational minimization principle and after integratingU2D along the width
direction, the 1-D strain energy, U1D , can be expressed in terms of the linear and
nonlinear 1-D strain measures as,

U1D = 1

2
εTL [SL ]εL + εTL [SLN ]εN + 1

2
εTN [SN ]εN (4)

where [SL ] is linear, [SLN ] linear–nonlinear, and [SN ] nonlinear stiffness matrix. The
terms of these stiffnesses are given in Appendices and εL is linear and εN nonlinear
strain measures which are defined as follows:

εL = {γ11,κ1,κ2,κ3}T
εN = {κ2

1,κ
2
2,κ2γ11,κ2κ3,κ2κ1}T

and the matrices [SL ], [SLN ], and [SN ] can be thought of as partitions of a 9 × 9
matrix [S]. The terms of the linear and nonlinear stiffness matrices are presented in
[27]. The term γ1,κ1,κ2 and κ3 represents the one-dimensional generalized strains
associated with extension, torsion, and bending.
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2.2 Recovery of 3-D Stress Components

VAM is used to develop reduced-order 1-D strip-like model. Further, based on the
theory, a finite element formulation is generated for the structural analysis, where
the linear and nonlinear cross-sectional stiffnesses derived from VAM serves as the
input. After solving the differential equations by finite element method, we have a
solution for 1-D displacement. From this, one can obtain the 1-D generalized strain
measures through the nonlinear beam constitutive law. Knowing the 1-D strains and
curvatures fromwhich one can obtain the warping solutions. Further, 2-D strain field
can be obtained using the already established kinematics. Now, the plane stress field
can be obtained using the plane stress reduced transformed stiffness matrix which
depends on the ply orientation. Expressions for the in-plane stress components are
given below:

σ11 = Q11�11 + Q12�22 + Q132�12;
σ22 = Q12�11 + Q22�22 + Q232�12;
τ12 = Q13�11 + Q23�22 + Q332�12

(5)
The �αβ are related to 3-D strain measures which can be simplified in 2-D strain
measures by �αβ = εαβ + x3ραβ . The Qαβ represents transformed reduced stiffness
matrix. Here and throughout the paper, Latin indices run from 1 to 3 while Greek
indices run from 1 to 2; repeated indices are summed up over their ranges. This
expression can be simplified for zeroth order is as
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(6)
Similarly, the expressions for the first-order stress are given below:
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The warping terms wi , wi,2, w3,22 used above are for healthy case available in paper
of [24]. The superscript 0 and I above the warping terms represents the zeroth and
the first-order approximation, respectively. For a case of in-plane loading, however,
the present theory produces only in-plane stress components. These values from the
variational asymptotic method are shown in Fig. 2. Results are compared with the
3-D finite element result. It shows that results are accurate for interior regions
removed from free edges. However, discrepancies at the free edge are due to the
following issues:

• In strain energy, the strain terms are restricted to the zeroth and the first-order
approximation.

• Procedure of the dimensional reduction adopted in this work is based on the 2-D
strain energy functional as a starting point. It will be reduced to 1-D strain energy
functional through VAM. It makes ad hoc assumption of the line originally normal
to the midplane remains normal even after deformation.

(a) (b)

Fig. 2 a Variation of (a) τ12 and b σ22 in the interface along the width of laminate and comparison
between the results of present approach by using VAM and the 3-D finite element method
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These issues can be resolved by considering the 3-D strain energy functional as a
starting point and through asymptotically correct dimensional reduction procedure
using VAM. By this process, a 3-D problem is reduced to a 1-D beam problem and
the constitutive law associated with the warping fields is obtained. For primary study,
the goal was set to develop an analytical solution based on 1-D, which can produce
accurate 3-D elasticity solution with less computational time. By using present VAM
approach, it is not possible to get interlaminar shear stress components. To estimate
these components near the free edges, approximation method which is based on
global 3-D equilibrium equations is used, which is mentioned in next subsection.

2.3 The Approximation Method

This method is based on assumed stress distribution from more sophisticated solu-
tions and equilibrium equation of elasticity, and it is an extension of the approach of
Pagano and Pipes [29]. In this method involve the use of polynomial for one lami-
nate thickness from free edge, and constants of the polynomials are determined from
interface continuity or by traction free conditions. A midplane coordinate system is
considered at the free edge. Due to symmetry and antisymmetry of the stress com-
ponents, only half portion of the width of laminate is considered. Now, we assume
[29] the shear stress τ12 has following distribution along the width:

τ k
12 = (

A1x2 + A2x
2
2

)

σ0Q
k
0, 0 ≤ x2 ≤ h

τ k
12 = σ0Q

k
0, h ≤ x2 ≤ b

(8)

In Eq.8, σ0Qk
0 denotes the value of τ12 in the kth ply as determined from the VAM-

based 1-D theory.Here, k represents the layer number; A1 and A2 represent constants.
To solve the stress components in free edge boundary layer, we use the equilibrium
equation without considering the body forces.

∂σk
11
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12

∂x2
+ ∂τ k

13
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For uniaxial loading, the axial stress is independent of x1, then equilibrium equation
becomes
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substituting Eq.8 into Eq.10
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After integration
τ k
13 = −σ0 (A1 + 2A2x2)

(

hQk
1 + x3Q

k
0

)

(12)

since τ12 is constant within each ply. The value of hQk
1 is determined by the require-

ment that τ13 vanish on the top or bottom of the surface. By following the boundary
conditions, the value of constants A1 and A2 are determined.

τ k
12(h, x3) = σ0Q

k
0

τ k
13(h, x3) = 0

(13)

The value of constants are A1 = 2/h and A2 = −1/h2. Now the complete equation
can be written is as

τ k
12 = x2

h

(

2 − x2
h

)

σ0Q
k
0, 0 ≤ x2 ≤ h

τ k
12 = σ0Q

k
0, h ≤ x2 ≤ b

(14)

τ k
13 =

( x2
h

− 1
)

�k
13, 0 ≤ x2 ≤ h

τ k
13 = 0, h ≤ x2 ≤ b

(15)

In the above equation

�k
13 = 2σ0

(

x3Qk
0

h
+ Qk

1

)

(16)

Similarly, for σ22 following distribution has been assumed:

σk
22 = σ0P

k
0 F(x2), 0 ≤ x2 ≤ h

σk
22 = σ0P

k
0 , h ≤ x2 ≤ b

(17)

where σ0Pk
0 is determined from the VAM-based 1-D theory, and F is variable along

the free edge. To solve these stresses in the free edge boundary layer, we use the
second equilibrium equation.

∂τ k
12

∂x1
+ ∂σk

22

∂x2
+ ∂τ k

23

∂x3
= 0 (18)

As we know, τ12 is independent of x1. Then Eq.18 become

∂σk
22

∂x2
+ ∂τ k

23

∂x3
= 0 (19)

Substituting Eq.17 into Eq.19

∂τ k
23

∂x3
= −σ0P

k
0
dF

dx2
(20)
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Integrating along the thickness (x3),

τ k
23 = −σ0

(

Pk
1 h + x3P

k
0

) dF

dx2
(21)

InEq.21, value of Pk
1 h is determinedby interface continuity conditions or the require-

ment that τ23 vanish on the laminate surface.
The third equilibrium equation is as

∂τ k
13

∂x1
+ ∂τ k

23

∂x2
+ ∂σk

33

∂x3
= 0 (22)

With τ13 being independent along the length, Eq.22 becomes

∂τ k
23

∂x2
+ ∂σk

33

∂x3
= 0 (23)

Differentiating Eq.21 with respect to x2 and substituting

∂σk
33

∂x3
= σ0(P

k
1 h + x3P

k
0 )

d2F

dx22
(24)

Integrating the above equation

σk
33 = σ0

(

Pk
2 h

2 + Pk
1 hx3 + Pk

0

2
x23

)

d2F

dx22
(25)

The value of Pk
2 h

2 is determined by the requirements that σ33 vanish on the top or
bottom of the surfaces. Similarly, we can find σ33

σk
33 =

[

1 − 3(1 + C)
x2
h

]

σ̃k
33, 0 ≤ x2 ≤ h

3

σk
33 = −C σ̃k

33,
h

3
≤ x2 ≤ h

σk
33 = 0, h ≤ x2 ≤ b

(26)

In the above equation

σ̃k
33 = Kσ0

(

Pk
2 + Pk

1
x3
h

+ Pk
0
x23
2h2

)

(27)

and C and K are constants. The σ33 produces the moment and the stress distribution
of Eq.26 must be self-equilibrating,

∫ h
0 σk

33 dx2 = 0 (28)
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Substituting Eq.26 into this integral yields and performing this integration gives the
value of C = 1

5 and Eq.26 becomes

σk
33 = 1

5

(

5 − 18
x2
h

)

σ̃k
33, 0 ≤ x2 ≤ h

3

σk
33 = σ̃k

33

5
,

h

3
≤ x2 ≤ h

σk
33 = 0, h ≤ x2 ≤ b

(29)

Comparing Eq.25 with Eq.29 it is easily seen that

d2F

dx22
= K

5h2

(

5 − 18
x2
h

)

0 ≤ x2 ≤ h

3

d2F

dx22
= −K

5h2
h

3
≤ x2 ≤ h

(30)

Integration yields

dF

dx2
= Kx2

5h2

(

5 − 9
x2
h

)

+ Ka0 0 ≤ x2 ≤ h

3

dF

dx2
= −Kx2

5h2
+ Ka1

h

3
≤ x2 ≤ h

(31)

Substituting for in Eq.21, we get

τ k
23 = −Kσ0

h

(

Pk
1 h + Pk

0 x3
)

[

x2
5h

(

5 − 9
x2
h

)

+ a0h

]

, 0 ≤ x2 ≤ h

3

τ k
23 = Kσ0

h

(

Pk
1 h + Pk

0 x3
)

(

x2
5h

− a1h

)

,
h

3
≤ x2 ≤ h

τ k
23 = 0, h ≤ x2 ≤ b

(32)

Since τ k
23 is a free edge stress, it must vanish at x2 = 0. Thus, a0 = 0. The constant

a1 is determined from continuity at x2 = h/3, with the result a1 = 1
5h and Eq.32

becomes

τ k
23 = 36

25

(

5 − 9x2
h

)

�k
23
x2
h

, 0 ≤ x2 ≤ h

3

τ k
23 = 36

25

(

1 − x2
h

)

�k
23,

h

3
≤ x2 ≤ h

τ k
23 = 0, h ≤ x2 ≤ b

(33)
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In the above equation

�k
23 = − 5

36
σ0K

(

Pk
1 + x3

h
Pk
1

)

(34)

Integrating Eq.31, we get

F = K

(

x22
2h2

− 3x32
5h3

+ b0

)

0 ≤ x2 ≤ h

3

F = K

(

x2
5h

− x22
10h2

+ b1

)

h

3
≤ x2 ≤ h

(35)

Substituting these results in Eq.19

σk
22 = Kσ0P

k
0

[

x22
h2

(

1

2
− 3x2

5h

)

+ b0

]

0 ≤ x2 ≤ h

3

σk
22 = Kσ0P

k
0

[

x2
h

(

1

5
− x2

10h

)

+ b1

]

h

3
≤ x2 ≤ h

σk
22 = σ0P

k
0 , h ≤ x2 ≤ b

(36)

Since σk
22 is a free edge stress, it must vanish at x2 = 0. Thus, b0 = 0. The constants

b1 is determined from continuity condition at y = h
3 , with the result

b1 = 1

45
(37)

Now, K is determined from continuity condition at y = h, with the result

K = 90

7
(38)

Now, Eq.19 becomes

σk
22 = 9

7

(

5 − 6
x2
h

)

Pk
0
x22
h2

, 0 ≤ x2 ≤ h

3

σk
22 = −1

7

(

9
x22
h2

− 18
x2
h

+ 2

)

σ0P
k
0 ,

h

3
≤ x2 ≤ h

σk
22 = σ0P

k
0 , h ≤ x2 ≤ b

(39)
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By keeping value of K, Eqs. 27 and 34 become

σ̃k
33 = 90

7
σ0

(

Pk
2 + Pk

1
x3
h

+ Pk
0
x23
2h2

)

(40)

�k
23 = −25

14

(

Pk
1 + x3

h
Pk
0

)

σ0 (41)

3 Results and Discussion

This section begins with the validation of the proposed modeling approach for inter-
laminar stress components. The geometric and material properties corresponding to
each case against which the present method has been compared are given in Table1.
The geometric representation of laminate structure has been shown in Fig. 3. The
method is then extended for the pretwisted, antisymmetric, or symmetric laminated
composite strip of solid cross section. All the results are for thin laminated compos-
ite strip subjected to uniform axial extension. Moreover, these results are an average

Table 1 Aterial and geometric properties
Materials E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) ν12 ρ (kg/m3) l (m) b (m) T/ply

(m)

Graphite–
epoxy
[16]

137.9 14.48 5.86 5.86 0.21 1520 2 0.04 0.0025

Glass–
epoxy
[30]

44.1 12.4 4.46 3.40 0.29 1520 0.254 0.026 0.000075

Graphite–
epoxy
[9]

132 10.8 5.65 4.40 0.24 1520 2 0.08 0.0013

Fig. 3 The geometry and
nomenclature of 3-D
laminate



Determination of Interlaminar Stress Components … 95

value calculated from the gauss points located near to the interface. The discussion
is for all the stress components through the thickness of few laminates. At the end
of section, the results are summarized.

3.1 Verification and Validation

In this section, many interlaminar stress components and in-plane stress components
results have been compared with the literature to evaluate the performance of the
present method. The results are for through the thickness near to the free edge and at
the interface of the composite laminate. Specifically, the results are compared with
Pipes et al. [16] for the symmetric angle-ply laminate, Wang et al. [2] for cross-ply
and quasi-isotropic laminate under the axial extension.

In Fig. 4a, the behavior of all 3-D stress components along the width at interface
between 45◦ and −45◦ for a graphite–epoxy laminate are shown. The material and
geometric properties are given in the first row of Table1. These geometrical and
material properties are same as that of Ref. [16]. It is observed from the figure that
the values and the trend of stress components of the present approach are almost
the same with the corresponding results. Though small differences observed are due
to the difference in the finite difference method used by Pipes et al. [16] and the
finite element method used in the current work. Furthermore, in the present case all
3-D stress components has been predicted from the 1-D approach. However, in the
reference all 3-D stress components results are predicted from the 2-D approach. It
can be observed from Fig. 4a that the values of stress components start to decrease or
increase near the free edge, i.e., at x2/b = 0.8. This portion of the width of the free
edge is a function of geometry, ply orientation and the properties of the laminate.
However, a simple thumb rule proposed by Pipes et al. [16] is that the width of the
boundary layer is equal to the laminate thickness. In Fig. 4a, the value of τ13 increases

(b)(a)

Fig. 4 a Result of stress components in the interface between the +45◦ and −45◦ under axial
extension along thewidth. b Interlaminar shear stress τ13 distribution through the laminate thickness
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Fig. 5 Variation of the
interlaminar stress τ13 along
the thickness at the free edge
of a [45◦/ − 45◦]s laminate
and its comparison between
the present and the reference
results

and becomes high near the free edge and at the same time σ11, τ12 decreases. This
can be explained by the interlaminar stress transfer for the angle-ply laminate which
occurs due to themismatch in the shear coupling coefficient between θ and−θ layers.
The mechanism of interlaminar stress transfer for angle-ply laminate is also called as
the first mode mechanism. The interlaminar shear stress can be one of the reasons for
delamination at the free edge in case of angle-ply laminates. The interlaminar normal
stress σ33 disappears at all interfaces as well as on free edge. It can be understood that
this stress may not do any damage to the angle-ply laminate. The present method is
further extended to evaluate the performance of through the thickness of the laminate.
In Fig. 4b shows the distribution of interlaminar shear stress τ13 across the laminate
thickness at the free edge. It is witnessed from the figure that shear stress τ13 vanishes
at free surface and laminate midplane, while it attains the maximum value in the
interface between the 45◦ and −45◦ layers. Figure5 shows the distribution of τ13
stress along thickness for [45◦/ − 45◦]s laminate. Stress distribution through the
thickness, distribution of stress component near to the free edge region is compared
with Pipes et al. [16]. All the above results and their comparison with Pipes et al. [16]
result shows that there is not much variation in the two results.

In Fig. 6, the comparison has been made between the present and Ref. [2] results
for [90◦/0◦]s and [0◦/90◦]s laminate. The result shows a good correlation at the
free edge. However, the results are inaccurate at the interior regions removed from
free edge. This is because they found out the results of interior regions by using
CLT and the present results are by using VAM. It is noted that when the cross-
ply lamina is subjected to tensile loading in one direction; it shrinks in the other
direction perpendicular to the applied load. If the laminae with different Poisson’s
ratios are bonded together, then the interlaminar stress is being produced to force all
laminae to deform uniformly at the interfaces. This mechanism of interlaminar stress
transfer due to mismatch of Poisson’s ratio between cross-ply laminate is termed the
second mode mechanism. In such a situation, the values of σ11 and τ12 are same for
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(b)(a)

Fig. 6 a Variation of interlaminar normal stress σ33 in the interface of a [90◦/0◦] and [0◦/90◦]
laminate along the normalized width and its comparison between the reference and present result.
b Interlaminar shear stress τ23 result at interface (along the normalized width) of [90◦/0◦] and
[0◦/90◦] in a [90◦/0◦]s and [0◦/90◦]s graphite/epoxy laminate, respectively, and its comparison
between the present and the reference result

Fig. 7 Variation of
interlaminar stress τ23 along
the thickness at free edge of
[90◦/0◦]s laminate and its
comparison between present
and reference results

all over width. However, the values of interlaminar normal stress σ33 for [0◦/90◦]s
layup drastically increases from negative to positive. Whereas in [90◦/0◦]s laminate,
contrary behavior has been observed. From this one can predict that the interlaminar
normal stress σ33 is responsible for delamination in the case of cross-ply laminate.
Further, it can be observed that the interlaminar shear stress τ23 value starts from zero
and increases but near the end of an interface ( x2 = 0.99*h), it tends to become zero.
From this, it can be concluded that the τ23 could not be responsible for delamination
in the case of cross-ply laminate. Similarly, through the thickness at x2 = h/3, results
of interlaminar shear stress τ23 is presented in Fig. 7. The results are compared with
the most favorable literature results. Again, it demonstrates a good agreement. From
the above studies, a hostile behavior in angle-ply and cross-ply laminates is noticed.
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Fig. 8 Variation of
interlaminar normal stress
σ33 in the interface of a
[90◦/0◦/45◦/ − 45◦]
laminate along the width and
its comparison of present,
3-D FEM and reference
result

To evaluate the performance of the present method, the quasi-isotropic laminate
is considered for the study. In Fig. 8, the value of σ33 has been shown at different
interfaces for the [90◦/0◦/45◦/ − 45◦]s . Here, the values of σ33 are starting from
almost zero for all the interfaces. However, when they reach near x2/b = 0.7, the
value of σ33 for all the interfaces start decreasing except for the interface four which
is the interface of 90◦ and 0◦. A similar trend of σ33 for [90◦/0◦]s laminate has
been seen in Fig. 8. The results are correlated with the result of Wang et al. [2] and
3-D FEM and it shows a good agreement. Further, Fig. 9 shows the comparison
between the present and the reference [2] thickness-wise result for the interlaminar
normal stress at the free edge for the two quasi-isotropic ([90◦/0◦/45◦/ − 45◦]s and
[45◦/ − 45◦/0◦/90◦]s) laminate under the uniform axial extension. It is observed that
the [45◦/ − 45◦/0◦/90◦]s laminate produces tension through the entire thickness
of the free edge, while the [90◦/0◦/45◦/ − 45◦]s laminate produces compression
through the thickness. The results are in a good agreement with the literature for
these two cases. This investigation shows that the stacking sequence has an intense
impact on the laminate strength. Therefore, it is essential to know all the stress
components during the initial design phase.

In an another analysis, the interlaminar shear stress results have been compared
with the results of Rose et al. [31] for [10◦

2/ − 10◦
2]s laminated composite beam. The

material and the geometric properties are given in the third row of Table1. Figure10
shows a good correlation between the present and the literature result for interlaminar
shear stress τ13. Same explanation regarding angle-ply is applicable in this case also.

Further, the interlaminar shear stress results are compared with the results of
Noiser et al. [9]. The material and the geometric properties have been given in the
third row of Table1. The variation of the interlaminar shear stress at the free edge
for [0◦/45◦/90◦]s symmetric laminate is displayed in Fig. 11. The result shows a fair
agreement. The discrepancy may be due to the inability of the present method to
handle a thick laminated composite beam.
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(b)(a)

Fig. 9 a The effect of stacking sequence on interlaminar normal stress in quasi-isotropic
graphite/epoxy laminate and its comparison between the present and reference result. b Variation
of interlaminar stress τ13 along the thickness at the free edge of a [90◦/0◦/45◦/ − 45◦]s laminate
of graphite/epoxy material and its comparison between the present and the reference results

Fig. 10 Variation of
interlaminar stress τ13 along
the thickness at free edge of
a [10◦

2/ − 10◦
2]s laminate and

its comparison between
present and reference results

It can be concluded that the trend and the magnitude of the interlaminar stress
components along the thickness and width matches well within the limits of error.
Thus, this approach has been proved to deliver results efficiently. In the next section,
all the six stress components behavior along the thickness of the different ply stacking
sequences have been computed and plotted.
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Fig. 11 Variation of the
interlaminar stress τ13 along
the thickness at the free edge
of a [0◦/45◦/90◦]s laminate
and its comparison between
the present and the reference
results

3.2 Discussion on Through the Thickness Stress Components
Near the Free Edge

In this section, the approach is applied to the additional laminates to check the utility
of the method. In addition to this, it will be helpful to check the effect of out of
plane deformation on interlaminar stress components between the asymmetric and
the symmetric laminates. This section gives the behavior of the stress components
through the thickness for the different layup orientations. The 3-D FEM simulation
are run for the present case of the cantilevered beam. In the simulation, a strategy
was formed such that the top and the bottom surface yield traction. However, in
real practice, the top and the bottom surfaces are traction free. For simplicity, these
conditions are relaxed in the present case. Excluding the top and the bottom surface of
geometry, all the results between the proposed scheme and the 3-D FEM are showing
a good agreement. These discussions are restricted to the transverse stress-related
studies. These stress results are shown for symmetric or asymmetric, cross-ply, angle-
ply and quasi-isotropic laminate subjected to an axial loading of 1000N. For the stress
analyses, the following boundary conditions have been enforced:

1. The stress boundary conditions on the top and bottom surfaces are given by

σ33(x1, x2,±h

2
) = 0

τ13(x1, x2,±h

2
) = 0

τ23(x1, x2,±h

2
) = 0

(42)
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2. The interface boundary conditions are given by

σ33(x1, x2) = σ33(x1, x2)
τ13(x1, x2) = τ13(x1, x2)
τ23(x1, x2) = τ23(x1, x2)

(43)

The parametric study has been are carried out due to the following things:

1. The interlaminar stress components changes due to the stacking sequence under
a uniform axial load.

2. It will help to understand the behavior of stress components along the thickness.
3. To check the computational efficiency and the accuracy of the present method.

The implementation of the developed approach is demonstrated first for the
Winckler’s type ([α2/(90◦ − α)4/α2/α2/(α − 90◦)4/α2]T ) antisymmetric laminate.
This layup exhibits a strong nonlinear extensional-twist coupling. This coupling is
nonlinear in nature, and generally, it is called as trapeze effect. Before the 3-D stress
analyses, the author validated static, dynamic, and the stability results by using the
present approach for the same laminate. The static validation for healthy and dam-
aged laminate is provided in the author’s paper [27]. Therefore, from the previous
study, it is observed that the method is capable of capturing nonlinearity. For this
analysis also, the cantilevered strips made of graphite/cyanate and glass/epoxy are
considered with Winckler’s type layup corresponding to α = 20◦. The material and
the geometrical properties corresponding to AS4/3501-6 are shown in the second
row of Table1.

The distribution of the stress components through the laminate thickness is shown
in Fig. 12. Similarly, the results are also validated for the symmetric layupwith all the
geometric and the material properties remain the same to the antisymmetric layup
orientation. The 3-D stress components results for the symmetric Winckler’s type
layup are shown in Fig. 13. The in-plane stress results are exactly matching with the
3-D elasticity solution. Hence, by using the present formulation (which makes no ad
hoc kinematic assumption) the 3-D analyses (capturing nonlinearity) can be carried
out without depending on the computationally expensive 3-D FE analyses. These
two figures show that the thickness-wise stress distribution for the same physical
condition.By comparing these twofigures following salient observation canbe noted:

• Axial stress σ11 of the symmetric layup is more as compared to the antisymmetric
and less fluctuation along the thickness is observed. In both cases, the stress pattern
is symmetric about its midplane of the laminate.

• Both the transverse shear stresses and the normal transverse stresses are found to
be more in the antisymmetric layup.

• Smooth transitions are observed and are represented by least quadratic functions
for σ33 for both cases between the plies. The linear variations of τ13 and τ23 near
the free edge get influenced due to the alternating stacking sequence of angle-ply
laminates. This resulted in sharp transitions for τ13 and τ23 between the plies.

• These significant variations of interlaminar stress components may be due to con-
straining of the axial twist of general laminates under extension. It is to be noted
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(b)

(d)(c)

(e) (f)

(a)

Fig. 12 Stress distribution through the thickness of the antisymmetric Winckler’s type of laminate
at the free edge due to the axial loading when α = 20◦

that the same physical layers are used in the two laminates. It is clearly seen that by
changing the stacking sequences in the laminate (from symmetric to Antisymmet-
ric), the numerical values of both stress components are considerably increased,
almost throughout the entire thickness of the laminate. Thus, it is envisioned here
that by changing the fiber orientations from symmetric to antisymmetric, the state
of interlaminar stresses can be significantly changed. One can easily see the vari-
ation of the plot between in these two type of layup in Figs. 12 and 13.
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(b)

(d)(c)

(e) (f)

(a)

Fig. 13 Stress distribution through the thickness of the symmetric Winckler’s type of laminate at
the free edge due to axial loading when α = 20◦

• Maximum positive value of σ33 takes place at midplane of the antisymmetric
laminate whereas at the same position, the value is zero in the symmetric laminate.

• Similarly, the values of interlaminar shear stress variation at the midplane are
drastic in the antisymmetric laminate whereas at same position value is zero in the
symmetric laminate.
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• The nonlinear analyses of the same antisymmetric layup were carried out. The
comparison for the magnitudes of the stress components shows more difference
between them.

• By altering the stacking sequences of the individual layers and the fiber orienta-
tions, the interlaminar stress components can be controlled to avoid the free edge
effect.

A comparison is further extended for the layup orientation [45◦/0◦/45◦/0◦/45◦/0◦]s .
The material and the geometric properties have been given in the first row of Table1.
The stress results for the angle-ply laminate under the extensional loading are given
in Fig. 14. The comparisons are shown for through the thickness profile in the figure,
and a good agreement between them can be observed.

To understand the effect of stacking sequence, the quasi-isotropic laminate with
ply properties shown in the first row of Table1 under the uniform axial extension
has been considered. A good correlation can be observed for the stress distribution
across the thickness with 3-D FEM results in Fig. 15. Some deviations observed are
due to the higher thickness to width ratio of the laminate. This drawback can be
overcome by using the higher order terms in asymptotic series. All the interlami-
nar stress components approaches zero near the top and the bottom surface of the
laminate. As shown in Fig. 15, the interlaminar shear is symmetric concerning the
midplane interface. The maximum interlaminar shear and the normal stress occur at
the midplane of laminates.

In all the above cases, in the composite structure under the mechanical load, the
results achieved from the present 1-D formulation matched almost with its corre-
sponding elasticity and the 3-D FE solutions. The present results in Table2 show
that the 1-D VAM and the approximation method-based formulation reduces the
computational time without much dishonor to the exactness. Such a simplified and
a computationally efficient approach is most useful in the analyses of laboratory
coupon type specimens to minimize the free edge effects.

4 Conclusion

The key feature of any successful structural design is to predict the structural response
at a given condition accurately. By keeping this thing in mind, here in the work, our
goal was set to develop an analytical solution based on 1-D, which can produce accu-
rate 3-D elasticity solution with less computational time. To achieve the goal, the
1-D analytical approach based on the variational asymptotic method and the approx-
imate method were used to recover an accurate 3-D elasticity solution. This approach
also satisfies the interlaminar displacement continuity and the transverse equilibrium
requirements as demanded by the exact 3-D formulation. Based on the derived theory,
the numerical codes were developed in-house. The 3-D displacements, interlaminar
normal, and the shear stress distributions were obtained. To check the correctness of
it, results were compared to the available literature for the different layup orienta-
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(b)

(d)(c)

(e) (f)

(a)

Fig. 14 Stress distribution through the thickness of [45/0/45/0/45/0]s laminate at free edge due
to axial loading

tions. They show a good agreement especially with the numerical solution of Pipes
[16, 17], Pagano [7, 18, 29], Sen [3], and Wang [32, 33]. Further, the deviation in
the results was less than 1% when compared to the commercial 3-D finite element
packages. Subsequent to the analyses results obtained from the recovery relation, the
following things are confirmed and noted:
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(b)

(d)(c)

(e) (f)

(a)

Fig. 15 Stress distribution through the thickness of [90/0/45/ − 45]s laminate at free edge due
to axial loading

• Mechanism of the free edge effect in angle-ply laminates is due to the mismatch
in the shear coupling coefficients between the adjacent layers.

• In-plane shear stress components vanish at the free edge in angle-ply laminates.
• In cross-ply laminates, the interlaminar normal stress appears to be singular at the
free edge.

• In cross-ply laminates, themechanismof the free edge effect is due to themismatch
in Poisson’s ratio between 0◦ and 90◦ plies.
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Table 2 Comparison between ANSYS® and present (VAM) simulation time

Sr. No. Model Computing time (hh:mm:ss)

ANSYS® Present

I Linear

1
[

20◦
2/ − 70◦

4/20
◦
2/ − 20◦

2/70
◦
4/ − 20◦

2

]

T 2:44:20 00:00:30

2
[

20◦
2/ − 70◦

4/20
◦
2/20

◦
2/ − 70◦

4/20
◦
2

]

T 02:33:00 00:00:35

3 [0◦/45◦/90◦]s 01:00:00 00:00:20

II Nonlinear

1
[

20◦
2/ − 70◦

4/20
◦
2/ − 20◦

2/70
◦
4/ − 20◦

2

]

T 06:30:00 00:00:35

• In quasi-isotropic laminate, the stacking sequence plays a vital role in the devel-
opment of interlaminar stresses.

• The effect of interlaminar stress was found to be restricted near the laminate free
edge.

• The approach presented in this paper is possibly the simplest and the efficient of
all the currently available methods.

• It is attractive and can be extended during the design phase in order to study the free
edge stress components and their effect under the static and the fatigue loading.

• The computational time in this case is also very less as compared to the 3-D finite
element solver, i.e., ANSYS®.

• The development of an analytical solution for the interlaminar 3-D stress compo-
nents by using 1-D approach is important from the point of saving the time as well
as can be built into machine intelligence.
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A Study on Wrinkling Characteristics
of NBR Material

Vaibhav S. Pawar, Rajkumar S. Pant and P. J. Guruprasad

Abstract This work details wrinkling for hyperelastic materials with the Ogden
material model. First, generalized expressions are derived for stresses and tangent
stiffness terms. Material constants obtained through testing work have been used to
determine stiffness terms as well as second Piola–Kirchhoff’s stress for a range of
stretch ratios. This is then followed with a new model based upon modified defor-
mation gradient tensor and hence Green tensor. Wrinkling parameter is monitored
with material constants and stretch ratios. Analytically performance of material has
been accessed for different conditions of uniaxial tension, equi-biaxial loading and
plane strain condition. It has been observed that over a range of stretches; uniaxial
condition and plane strain condition results in a situation which is consistent in the
context of wrinkling, i.e. possibility of wrinkling gets boosted. On the other hand,
when equi-biaxial loading or stretch ratio approaches unity for a region, chances of
wrinkling being triggered reduce substantially. Developed numerical models are val-
idated against tested work on planar hyperelastic structures for the cases of uniaxial,
biaxial as well as shear loading. It has been observed that numerical results obtained
hint possible scenarios of wrinkling.

Keywords Cauchy’s stress · Ogden model · Wrinkling · Hyperelastic material

1 Introduction

Nitrile rubber (NBR) is a synthetic rubber consisting of the phase of acryloni-
trile and butadiene, popularly known as acrylonitrile-butadiene rubber [1]. Traces
of other metallic inclusions are generally used during the manufacturing of NBR.
This includes Sulphur, Zinc oxide, TDP oil, etc. This type of material finds its uses in
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hydraulic hoses, seals, gaskets, tank liners, aircraft applications. One of the dominant
application is in themedical section.Doctors use to haveNBRgloves for surgical pro-
cedures. Such gloves are susceptible to wrinkling. The wrinkle is fold or bifurcation
or generation of the wavy surface due to the inability ofmaterial to resist compressive
loads. This class of problem has been tackled in the literature by two approaches.
First being tension field theory, in which secondary principal stresses are assumed to
be zero and analytical formulations are built [2–4]. But it is not easy to determine the
wrinkling details such as wavelength and amplitude from this approach. The second
approach is based on the bifurcation theory. This treats the problem on the lines of
buckling of plates. Wrinkling of NBR is considered in this paper. The material under
study is incompressible hyperelastic. Further, Ogden’s constitutive rule is represent-
ing the characteristics of the same. The formulation accounts for wrinkling features
by introducing a wrinkling tensor and modified stretches in the kinematics. Material
constants are obtained from experiments with the in-house developed test rig. Test
prototype has been developed to take care of large deformations with large strains
under uniaxial, biaxial as well as shear conditions. It also generates stress relaxation
data. Wrinkling measurements are done using non-contact method with a brand new
technique using the Arduino controller.

2 Methodology

2.1 Wrinkling Criteria

There are three different criteria, which determine the existence of wrinkling in a
membrane, rubber or soft tissue.

1. Principal stress criterion,
2. Principal strain criterion, and
3. Combined criterion, including both principal stresses and principal strains.

For the wrinkling criterion based on principal stresses/strains, the membrane is
said to be in a taut condition when both the principal stresses/strains are positive. If
both principal stresses/strains are zero, then the slack condition of membrane results.
Obviously, wrinkling will not be there for the taut and slack states. Thus, wrinkling
occurs in the membrane when the minor principal stress/ strain is zero and the major
principal stress/strain is tensile. Tension field theory is depending upon fictitious
wrinkled surface and everything is required to be derived based upon following
or similar geometry as shown in Fig. 1. As shown, in a direction perpendicular to
uniaxial stress direction, the material is not able to resist compression as compressive
stiffness or bending stiffness of the material is very small. Based upon the deformed
configuration of the figure, wrinkling strain is defined as

Wrinkling strain = β − 1

β
(1)
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Fig. 1 Wrinkling configuration details

where β is wrinkling parameter, which decides the amount of wrinkling and defined
with respect to pseudo-deformed surface or fictitious non-wrinkled average surface.
Deformed length is L ′ = β ∗ L

Forwrinkling based on the combined criterion, themembrane is in a taut condition
when the minor principal stress is positive and is in the slack condition when the
major principal stress is zero. When the minor principal stress is negative and the
maximum principal strain is positive, the membrane gets wrinkled. Here, σ1 and
σ2 are the major and minor principal stresses, respectively, e1 and e2 are major and
minor strains, respectively, ν is Poisson’s ratio.

The wrinkling criteria are summarized below:

a. Principal stress criterion

i. σ1 > 0 and σ2 > 0 taut
ii. σ2 ≤ 0 and σ1 > 0 wrinkled
iii. σ2 ≤ 0 and σ1 ≤ 0 slack

b. Principal strain criterion

i. e1 > 0 and e2 > −ve1 taut
ii. e2 ≤ −ve1 and e1 > 0 wrinkled
iii. e2 ≤ 0 and e1 ≤ 0 slack

c. Combined criterion

i. σ1 > 0 and σ2 > 0 taut
ii. σ2 ≤ 0 and e1 > 0 wrinkled
iii. σ1 ≤ 0 and e1 ≤ 0 slack

Principle strain criterion is used in user subroutine developed for predicting the
occurrence of wrinkling. The procedure used in this subroutine for finite element
implementation of wrinkling is summarized in Fig. 2. At the start of every increment,
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Fig. 2 Implemented wrinkling scheme

ABAQUScalls the subroutinewith trial strain increment and trial strain obtained from
the previous increment except for thefirst increment.At the start of thefirst increment,
strain increment executed based on tangent stiffness owing to linear elasticity is
obtained. At each increment, strain increment is rotated in the principal direction
within the framework. Based upon the framework used in the implementation, the
state of the membrane is accessed. Accordingly, the scheme picks suitable tangent
stiffness available and updates stress at the end of increment. Next trial increment is
evaluated based upon stress updates of the previous increment. This loop continues
until the convergence criteria get satisfied. Tolerance (TOLR) is set of the order of
10−12. Since the problem is of large deformation, Jaumann’s rate of Kirchoff’s stress
is used for tangent stiffness updates. This being incompressible material, Jaumann’s
rate of Kirchoff’s stress is the same as Jaumann’s rate of Cauchy’s stress.

NBR is tested for uniaxial testing and is calibrated. It has been observed that the
Ogden model, reduced-order model of order 2 are best for representing the material
and both the models are found to be stable.
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2.2 Material Model

The stored energy function for rubber-like material is given by Ogden [2] in terms
of principal stretches as

∅(λ1, λ2, λ3) =
N∑

p=1

μp

αp
(λ

αp

1 + λ
αp

2 + λ
αp

3 − 3) (2)

where N, μp and αp are material constants. Under the assumption of incompress-
ibility, one can rewrite it as

∅(λ1, λ2, λ3) =
N∑

p=1

μp

αp
(λ

αp

1 + λ
αp

2 + λ
−αp

1 λ
−αp

2 − 3) (3)

In general shear modulus results from

2μ =
N∑

p=1

μpαp (4)

With N = 3 and by fitting the material parameters, the material behaviour of
rubbers can be described very accurately. For particular values of material constants,
the Ogden model will reduce to either the Neo-Hookean solid (N = 1, α = 2) or
Mooney–Rivlin material (N = 2, α1 = 2, α2 = −2, with the constraint condition of
λ1λ2λ3 = 1).

Using the Ogden material model, the three principal values of the Cauchy stresses
can now be computed as

σ j = p + λ j
dφ

dλ j
(5)

where σ j = λ j Pj

Now considering an incompressible material under uniaxial tension, with the
stretch ratio given as λ = l

l0
, the principal stresses are given by

σ j = p +
N∑

p=1

μpλ
αp

j (6)

The pressure p is determined from incompressibility and boundary condition.

σ2 = σ3 = 0, yielding
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σ j =
N∑

p=1

(μpλ
αp

j − μpλ
− 1

2 αp

j ) (7)

It can be rightly said that, for rubber and biological materials, more sophisticated
models are necessary. Such materials may exhibit non-linear stress–strain behaviour
at modest strains, or are elastic up to large strains. These non-linear stress–strain
behaviours need to be accommodated using specifically tailored strain-energy density
functions.

3 Result and Discussion

Typical wrinkling configuration and parameters involved in the model are high-
lighted in Fig. 1. Ogden model captured material response for both cases of with
wrinkling parameter and without wrinkling parameter. On the onset of wrinkling,
when secondary principal stress is approaching zero, the maximum principal stress
determined are shown in Fig. 3. In realtime conditions, situations result such that
uniaxial tension condition may prevail which forces other two stretches to be equal
or sometime plane strain assumptions may sustain while it may be possible that
equi-biaxial stretch involves in some of the applications. Second Piola–Kirchhoff’s
stress is used as a stress measure. Incompressibility condition is accommodated by
imposing constraints. The associated multiplying parameter is obtained to ensure the
plane stress problem. Wrinkling depth, orientation and associated loads are captured
experimentally.

Figure 4 evaluates the performance of NBR under the conditions of uniaxial,
equi-biaxial and plane strain conditions analytically. Since the grip of the test rig
developed is such that samples can be fixed over a wide range of width, uniaxial and
plane strain situations can be immediately achieved. Since the prototype is developed
by keeping a wide range of stretch ratios in mind, equi-biaxial condition can be
maintained as well. Secondary principle stress variations with almost all possibilities
are shown in Fig. 4. All the cases are depicted in terms of true stresses as the problem
is of large deformation. The developed framework has considered Jaumann rate of
Kirchoff’s stress as already mentioned for quick convergence. As the material is
incompressible, it can be termed as Jaumann’s rate of Cauchy’s stress as well, which
is required in the Eulerian description. Over a range of stretch, it is possible to have
negative compressive stress for plane strain and for uniaxial condition it is zero. As
opposed to this, if equi-biaxial case is to be dealt with, most zones are turning out
to be wrinkle free. For unequal stretch ratios, the intermediate scenario appears as
shown in Fig. 4.

Figure 5 depicts maximumCauchy’s principal stresses against corresponding true
strain over a range for whichmaterial was tested. No significant difference resulted in
stress for the different cases that have been considered in this study. The behaviour
has been captured perfectly through the Ogden model, reduced-order polynomial
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Fig. 3 Maximum principal stress at the onset of wrinkling using Ogden material model

model of order 2 and order 3. Most of the applications such as large shear, pure
shear and biaxial loading conditions can be approximated as plane strain problem.
For wide grip of the specimen with comparable width, this case is different from
the uniaxial loading case; and it follows the plane strain assumptions. With a slight
stretch in the perpendicular direction to loading as is the case of typical NBR tubes
or gloves, secondary principal true stress is approximately zero. Hence such NBR
gloves or tubes wrinkle. This is illustrated in Fig. 5 for low true strains. For low
strength NBR, these effects get more pronounced.

In general, the use of tension field theory captured wrinkling but only orientation
can be obtained with this theory. Implicit solution schemes for user subroutines in
the finite element package require the calculation of the tangent stiffness matrix.
Primarily this is done by resolving the stiffness matrix in principal directions and
then back into the original coordinate system; thus rendering FE program to have
co-rotational part to be dealt in subroutine through transformation tensor R. There
is an additional shear stiffness that gets developed due to changes in the shear stress
which will change the direction of the principal stresses. These are related to the
current principal stresses and stretches (Cauchy’s stresses and stretches).



116 V. S. Pawar et al.

Fig. 4 Secondary principal stress against true strain for different cases of NBR

4 Summary

This work presents the analytical development of wrinkling using the Ogden model
and the same has been numerically treated using user subroutines. NBR of moderate
strength has been considered for the analysis and the developed framework is applied
to it. Merits and demerits of the type of test used in the context of the developed
prototypes have been discussed. Conditions for wrinkling have been elaborated and
possible situations are addressed. For small strains, it can be concluded that as the
strength of NBR gets reduced with the reduction in polymer percentage, chances of
wrinkling get triggered. This is true for larger stretch ratios for biaxial loading and
in general for plane strain and uniaxial conditions where the width of such structure
is small compared to length.
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Fig. 5 Maximum principal true stress against true strain for different cases of NBR
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First Ply Failure Study of Laminated
Composite Conoidal Shells Using
Geometrically Nonlinear Formulation

Kaustav Bakshi and Dipankar Chakravorty

Abstract The literature clearly indicates that the failure of laminated composite
plates have been studied in detail while composite shell structures have received lim-
ited attention. Though few recent papers reported first ply failure of conoidal shells
in order to apply these shell forms confidently in industrial applications, the failure
investigations need to be continued for different parametric variations keeping the
industrial requirements in mind. This study attempts to fill the lacuna. An isopara-
metric finite element code considering geometrically nonlinear strains and constant
shear deformation along the thickness direction of the shell is proposed to study fail-
ure initiation in uniformly loaded laminated conoidal shell roofs having two adjacent
boundaries simply supported and other two adjacent edges clamped. Moreover, fail-
ure locations and modes or tendencies of failure are also reported. The results are
studied for varying stacking orders and laminations. This study recommends that the
practicing engineers must adopt 30°/−30°/30° laminate to maximize load-carrying
capacity of the shell for the edge condition taken up here.

Keywords First ply failure · Laminated conoidal shell · Geometrically nonlinear
finite elements · Constant shear deformation

1 Introduction

The conoidal shells are stiffer and easy to cast compared to singly curved cylindrical
and doubly curved spherical shell surfaces. Additionally, the conoidal shell form
allows natural ventilation and entry of diffused sunlight from both ends which is pre-
ferred in medicinal and chemical plants. Thus the practicing civil engineers choose
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conoidal shells as roofs to cover large unsupported areas one finds in aircraft hangers,
stadiums and shopping malls. The high specific strength/stiffness of the laminated
composites render lesser foundation force and seismic force compared to conven-
tional reinforced cement concrete shell roofs. Moreover, the material offers designer
flexibility, where the relatively stronger direction of a lamina can be oriented along
the major direction of load transfer. Keeping these advantages in mind the practic-
ing civil engineers prefer the laminated conoids over the isotropic ones. A group of
researchers startedworking on bending and dynamic responses of laminated conoids.
Dey et al. [1] studied static bending responses of laminated composite conoids.Ghosh
and Bandyopadhyay [2] applied an isoparametric finite element formulation to study
static responses of isotropic conoidal shells with cut-outs. Dynamic analysis of stiff-
ened conoids was conducted by Nayak and Bandyopadhyay [3] using eight noded
doubly curved elements. Das and Chakravorty [4] studied the free vibration of lam-
inated conoids for complicated edge conditions. Bending responses of delaminated
conoids were reported by Kumari and Chakravorty [5]. But the authors did not study
the damage initiation and propagation in the composite material. Dynamic instability
of laminated conoids was reported by Pradyumna and Bandyopadhyay [6].

A shell roof can be confidently used in practical applications when the allowable
load before failure is known to the practicing engineers. The failure of the laminated
composite is progressive as indicated by Singh and Kumar [7]. The failure initiates at
the weakest ply in the laminate. The failure initiation is termed as the first ply failure.
If the latent damage remains undetected and unprotected then the cracks propagate
within the laminate and culminate to total collapse under service condition. Such a
sudden catastrophe can be avoided by studying failure initiation in composite shell
roofs. The failure of composite plates was studied by many researchers in detail.
Reddy and Reddy [8] reported the failure of composite plates using geometrically
linear and nonlinear strains. Kam et al. [9] conducted an experiment to study failure
initiation and propagation in laminated plates. Sathish Kumar and Srivastava [10]
worked on the failure of stiffened plates. The failure study of composite plates was
continued by Lal et al. [11] and Coelho et al. [12] where the authors studied pro-
gressive failure of the composite material using geometrically nonlinear formulation.
The research reports on laminated composite shells are really scanty compared to
the study carried out on composite plates. Prusty et al. [13] and Adali and Cagdas
[14] worked on the failure of singly curved and doubly curved shell panels using
geometrically linear strains. The present authors worked on failure initiation in lam-
inated conoids using geometrically linear [15] and nonlinear strains [16]. The failure
initiation in clamped conoids [15] and a conoid with a set of parallel edges clamped
and other edges free [16] were studied by the present authors. The failure study on
composite conoidal shells still requires attention from the researchers for industrially
important parametric variations to apply these shell form confidently in industrial
applications. Thus the present study focuses on failure initiation in conoids with two
adjacent boundaries simply supported and other two adjacent edges clamped. This
paper also reports the failure location on the shell surface and modes of failure.
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2 Mathematical Formulation

Aconoidal shell having radii of curvaturesRyy andRxy is taken up herewhere the total
laminate thickness ‘h’ is consisting of thin arbitrarily oriented layers (h = h1 + h2 +
…) (see Fig. 1). The reference axes (x and y) are taken up at the shell mid-surface.
The ‘z’ axis is oriented along the thickness direction of the shell.

The displacement at any arbitrary point is expressed in Eq. (1) assuming a constant
shear deformation acting along the z-axis.

u = u0 + zα, v = v0 + zβ,w = w0 (1)

u, v, w, α, β are shown in Fig. 1. u0, v0, and w0 are the degrees of freedom at the
mid-surface.

{ε} = {ε}L + {ε}NL (2)

{ε}L and {ε}NL are linear and nonlinear mid-surface strains, respectively. The
linear strains are adopted from Kumari and Chakravorty [5] for an undamaged shell.
The nonlinear strains are the same as those were reported in [16]. The laminate
constitutive relationship is given as the following:

{F} = [D]{ε} (3)

The stress resultants {F} and laminate stiffness matrix [D] are adopted from
Kumari and Chakravorty [5] for an undamaged shell.

Fig. 1 The conoidal shell with global reference axes and degrees of freedom
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2.1 Finite Element Formulation

The isoparametric finite element code is generated using the same element reported
by Bakshi and Chakravorty [15]. The strain–displacement relation is expressed in
Eq. (4).

{ε} = ([B]L + 1

2
[B]NL){ui } (4)

[B]L is taken up from Kumari and Chakravorty [5] for an undamaged shell. The
nonlinear matrix [B]NL is the same as it was reported in [16].

2.2 Governing Differential Equation

The total potential energy (π ) of the conoid [refer to Eq. (5)] is minimized with
respect to its displacements to derive the governing equation of shell bending.

π = 1

2

¨

A

{ε}T [D]{ε}d A −
¨

A

{u}T {q}d A (5)

The external load intensity on the shell is {q}, shell displacements are {u}, and
laminate strains are {ε}.

The governing equation is given as the following:

∂π

∂{u} = ψ (6)

For geometrically linear analysis,Ψ = 0. For the nonlinear analysis, it is expressed
as the following:

ne∑

i=1

ψi =
ne∑

i=1

⎛

⎝
¨

A

∂{ε}T
∂{u} [D]{ε}dxdy −

8∑

i=1

¨

A

{Ni }T {q}dxdy
⎞

⎠

i

(7)

ne = number of elements. A = Area of the shell. {Ni} = Shape functions [5].
The residual load {ψ} = Internal load {P} − external load {R}

where P =
ne∑
i=1

(˜
A

∂{ε}T
∂{u} [D]{ε}dxdy

)

i

=
ne∑
i=1

(˜
A

[
B̄

]T
[D]{ε}dxdy − {Q}

)

i
[
B̄

] = [B]L + [B]NL , {R} =
8∑

i=1

˜
A
[Ni ]T {q}dxdy

The governing differential equation is solved following the Newton–Raphson
iterative approach (Fig. 2).
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Fig. 2 The Newton–Raphson method

Displacement of the shell for the nth iteration is calculated following Fig. 2.

	{u}n = [KT ]{−ψn} (8)

The total displacement after ‘n’ iterations is {un} = {un−1} + 	{u}n
The stiffnessmatrices ([KT ] and [K s]) are the sameas reported in [16]. The element

stiffness matrices and load vectors are computed using 2 × 2 Gauss quadrature rule.
The iterative approach converges following the criterion reported by Chattopadhyay
et al. [17]. The converged displacements of the conoid are used to calculate the
stresses and strains for each lamina following the procedure elaborated in [15]. The
stresses and strains for a given lamina are applied to failure theories like maximum
stress, maximum strain, Tsai–Wu, Tsai–Hill, and Hoffman failure criterion [8] to
identify failure initiation in the composite shell. The failure modes are identified
following the steps given in [15].
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Table 1 Nondimensional central displacements (ŵ × 103) of simply supported composite spherical
shell under uniformly distributed load

Lamination 0°/90° 0°/90°/0° 0°/90°/90°/0°

Reddy [18] 16.980 6.697 6.833

Present FEM 17.009 6.707 6.835

a/b = 1, a/h = 100, E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, ν = 0.25, E22 = 106

N/cm2, R/a = 1030

3 Numerical Problems

Accuracy of the proposed code is confirmed by the solution of benchmark problems.
The first benchmark problem compares the nondimensional static displacements
of a spherical shell obtained from the proposed code with the closed-form results
reported by Reddy [18]. The comparison is furnished in Table 1, where the elastic
constants and geometric dimensions of the shell are also presented. A uniform 8 ×
8 mesh is adopted by the proposed code to obtain the results furnished in Table 1.
The nondimensional form of displacement adopted in this study is the same as it was
reported by Reddy [18].

The second benchmark problem shows a comparison of static deflections of an
isotropic conoidal shell calculated using the proposed code and the values reported
by Hadid [19]. Figure 3 shows the comparison. The dimensions, elastic constants,
and Poisson’s ratio of the isotropic shell are furnished in that figure.

The third problem compares the load values corresponding to failure initiation
in a laminated composite clamped plate calculated using the proposed code with
the results previously published by Kam et al. [9]. The authors obtained the failure
load values through the experiment and by using an isoparametric finite element
formulation. Both the results are compared with the present outcome to confirm the
accuracies of the geometrically nonlinear formulation andfirst ply failure formulation
of the proposed code. Table 2 shows the comparison where the dimensions of the
plate are also reported. The material properties adopted by Kam et al. [9] is reported
in Table 3.

Apart from the benchmark problems, the proposed code is also used to investigate
failure initiation in uniformly loaded conoids. The shell is simply supported along
x = 0 and y = b and clamped along x = a and y = 0. The material constants are
reported in Table 3. The failure loads of the shell are studied using eight number of
divisions along each of its plan directions.

4 Results and Discussion

Table 1 confirms accuracy of the proposed static formulation as the central displace-
ments of the spherical shell obtained using the proposed finite element code are in
a close match with the results reported by Reddy [18]. Figure 3 confirms that the
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Fig. 3 The comparison of static deflections of an isotropic conoidal shell

Table 2 Nonlinear first ply failure loads in Newton for a (0◦
2/90

◦)s plate

Failure theories Side/thickness Failure loads [9] Experimental
failure load [9]

Failure loads
(proposed code)

Maximum stress 105.26 147.61 157.34 135.94

Maximum strain 185.31 218.10

Hoffman 143.15 133.21

Tsai–Wu 144.42 134.50

Tsai–Hill 157.58 134.91

Length = 100 mm, ply thickness = 0.155 mm

proposed code accurately formulated the conoidal shell geometry as good agreement
is noted between the proposed results with the data reported by Hadid [19]. The first
ply failure and geometrically nonlinear formulations are correctly formulated in the
proposed code as it is found in Table 2 that the experimental and numerical failure
loads reported by Kam et al. [9] show a close match with present results.

The additional problems concentrate on failure initiation in uniformly loaded
conoidal shells. The failure initiation is studied for three different fiber orienta-
tions. The fibers run along 0°, 45°, and 90° with global x-axis of the shell. These
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Table 3 Elastic constants,
permissible stresses and
strains Q-1115 composite

Elastic constants Permissible
stresses (MPa)

Permissible strains

E11 = 142.5 GPa XT = 2193.50 Xεt = 0.01539

E22 = 9.79 GPa XC = 2457.0 Xεc = 0.01724

E33 = 9.79 GPa YT = ZT = 41.30 Y εt = Zεt =
0.00412

G12 = G13 =
4.72 GPa

YC = ZC =
206.80

Y εc = Zεc =
0.02112

G23 = 1.192 GPa R = 61.28 Rε = 0.05141

ν12 = ν13 = 0.27 S = 78.78 Sε = 0.01669

ν23 = 0.25 T = 78.78 T ε = 0.01669

laminations are stacked in symmetric and antisymmetric orders to form two- and
three-layered laminates by keeping the total material thickness as fixed. The nondi-
mensional first ply failure loads of the shell for different laminations and stacking
orders are reported in Table 4. The dimensions of the shell are furnished with the
table. The nondimensional failure pressure (NFL) is obtained by using the expres-
sion, NFL = (F/E22)(a/h)4, where ‘F’ is the failure load in MPa. Apart from the
failure pressure, failure initiation location on the shell surface, first failed ply number
and failure modes or tendencies are also reported in that table. The first lamina is the
topmost one (see Fig. 1). The highest number is assigned to the bottommost lamina.
It is obvious that the working load of a laminate can be obtained by assigning the
factor of safety to the minimum failure pressure for a given laminate.

An in-depth study of Table 4 shows that the practicing civil engineers must adopt
the angle-ply laminates for the conoids as the nondimensional failure pressure values
are greater in magnitude for angle-ply laminations than the cross-ply ones. The
minimum failure pressure is yielded by Hoffman failure theory for the cross-ply
laminations and by maximum strain theory for the angle-ply ones. It is important
to note from Table 4 that all the cross and angle-ply laminates taken up here fail
through transverse tension acting perpendicular to the fiber and they fail at points
lying on the simply supported boundaries of the conoid. It can be concluded from
these observations that diagonal tension caused by a shear force acting at the simply
supported edges of the shell is the cause of failure for all the laminates considered
in Table 4.

In cross-ply laminates, the fibers run along the beam direction of the conoid in 0°
lamina and along the arch direction in 90° lamina. The elastic modulus of a lamina
is relatively higher along its fiber direction. It is noted from Table 4 that the 90°
lamina fails first for both the 0°/90° and 0°/90°/0° laminates. The diagonal tension
has almost equal components along x and y directions of the shell. The arch direction
of the conoid is stiffer than the beam direction by virtue of the curved geometry of
the shell. The 90° fiber, being aligned along the arch direction of the conoid makes
the beam direction a relatively weaker side of the shell. Thus, for both the 0°/90°
and 0°/90°/0° laminates, the component of diagonal tension acting along the arch
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Table 4 Nondimensional first ply failure pressure, failed ply number, failure location, and failure
modes/tendencies of laminated conoid

Lamination Failure
criteria

Nondimensional
failure pressure
(NFL)

Failed
ply

Failure
location
(x, y) (m,
m)

Failure
mode/failure
tendency

0°/90° Maximum
stress theory

1510.73 2 (0, 0.75) 2

Maximum
strain theory

1502.55 1 (0.25, 1) 2

Hoffman
failure
theory

1496.42L 2 (0, 0.75) 2

Tsai–Hill
failure
theory

1500.51 2 (0, 0.75) 2

Tsai–Wu
failure
theory

1497.45 2 (0, 0.75) 2

0°/90°/0° Maximum
stress theory

1927.48 2 (0, 0.75) 2

Maximum
strain theory

1922.37 2 (0, 0.75) 2

Hoffman
failure
theory

1865.17L 2 (0, 0.75) 2

Tsai–Hill
failure
theory

1891.73 2 (0, 0.75) 2

Tsai–Wu
failure
theory

1866.19 2 (0, 0.75) 2

45°/−45° Maximum
stress theory

1991.83 2 (0, 0.88) 2

Maximum
strain theory

1621.04L 2 (0, 1) 2

Hoffman
failure
theory

1971.40 2 (0, 0.88) 2

Tsai–Hill
failure
theory

1979.57 2 (0, 0.88) 2

Tsai–Wu
failure
theory

1973.44 2 (0, 0.88) 2

(continued)
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Table 4 (continued)

Lamination Failure
criteria

Nondimensional
failure pressure
(NFL)

Failed
ply

Failure
location
(x, y) (m,
m)

Failure
mode/failure
tendency

45°/−45°/45° Maximum
stress theory

3266.60 3 (0, 0.13) 2

Maximum
strain theory

2939.73L 3 (0, 0.13) 2

Hoffman
failure
theory

3250.26 3 (0, 0.13) 2

Tsai–Hill
failure
theory

3245.15 3 (0, 0.13) 2

Tsai–Wu
failure
theory

3161.39 3 (0, 0.13) 2

Note 1 Failure mode/tendencies as 2 indicates tensile matrix cracking [15]
Note 2 a/b = 1, a = 1000 mm, h = 10 mm, hh = 200 mm, hl = 50 mm
Note 3 ‘L’ indicates minimum failure pressure

direction of the conoid is appropriately encountered by a higher permissible limit of
normal stress (2193.5 MPa). But the component along beam direction acts directly
to the matrix which is weaker in normal strength (41.3MPa) and cracks in transverse
tension. For 45°/−45° and 45°/−45°/45° ones, the fibers are oriented along the
diagonal direction of the shell. Naturally, in the case of angle-ply laminates, the
lamina is relatively stronger along the major direction of load transfer. This is why
the failure pressures yielded by the angle-ply laminates are higher than their cross-ply
counterparts. The angle-ply shells do not fail through shear at all and they finally fail
when the transverse tension exceeds the permissible limit. The symmetric stacking
sequences of the cross and angle-ply laminates offer greater failure to pressure the
antisymmetric ones. Among the laminations considered in Table 4, the 45°/−45°/45°
shows the highest load-carrying capacity.

The study so far reveals that the three-layered symmetric angle-ply laminate
(45°/−45°/45°) yields maximum nondimensional failure pressure for given material
consumption. The failure study of the conoidal shell is further extended to explore
how the first ply failure pressure varies with different fiber orientation (θ°) in a
θ°/−θ°/θ° laminate. The θ°/−θ°/θ° shells are studied for varying θ° ranging from
0° to 90° and the result is reported in Fig. 4.

The figure clearly indicates that the nondimensional failure pressure does not
follow a monotonous pattern with θ° in case of θ°/−θ°/θ° laminate. The curve
initially increases with increasing θ° and attains the peak (3590.4) for θ = 30°. The
failure pressure of the 30°/−30°/30° laminate is 18% more than the failure pressure
obtained for the conventional 45°/−45°/45° one. The 30°/−30°/30° laminate fails
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Fig. 4 Nondimensional first ply failure pressure for varying ‘θ°’ in θ°/−θ°/θ° laminate

at the bottommost lamina and on the simply supported boundary (x = 0.38 m, y =
1.0 m). The top and bottom layers contribute to the bending rigidity of the shell and
the middle layer contributes significantly to resist the shear stress. Thus, a proper
balance of bending and shear rigidities is attained and this is why the failure pressure
is maximum for the 30°/−30°/30° laminate.

5 Conclusion

The present study leads to the following conclusions,

(1) The proposed code is capable of adequately predicting the failure initiation in
laminated conoidal shells as it is noted from the solution of the benchmark
problems.

(2) Two- and three-layered laminates of the cross and angle-ply laminations are
taken up to form different conoidal shell options which are studied in this paper.
Among the laminates considered here, the angle-ply ones are recommended for
use in practical engineering applications as they show higher nondimensional
failure pressures compared to the cross-ply laminates.
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(3) The symmetric stacking orders found to fail in higher magnitudes of externally
superimposed pressure compared to the antisymmetric orders. Thus, the practic-
ing civil engineers must adopt the three-layered symmetric angle-ply laminate
to fabricate the conoidal shell option studied here.

(4) Among the angle-ply laminations studied in this paper, it is found that for a
constant quantity of material use, the 30°/−30°/30° laminate shows the highest
failure pressure. Thus the 30°/−30°/30° laminate is recommended for practi-
cal use. The bottommost lamina of the 30°/−30°/30° laminate fails first. The
failure initiates from a point lying on the simply supported boundary of the
30°/−30°/30° shell.
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Analysis of Transformed Sixth-Order
Polynomial for the Contraction Wall
Profile by Using OpenFOAM

R. Lakshman and Ranjan Basak

Abstract While designing thewind tunnel components, extreme care is taken for the
designing of the contraction wall profile. Contraction plays an important role in flow
uniformity and turbulence reduction inside the test section. Due to this, researchers
are having a greater interest in the designing of a contraction wall profile. The sixth-
order polynomial curve proposed by Sargison et al. is a well-acknowledged design
for the contraction wall profile. Almost all design criteria were considered for the
designing of the sixth-order polynomial curve except the proportionality criteria of
inlet and outlet radii. According to the design criteria, the inlet radius must be larger
compared to the outer radius of the contraction but in the sixth-order polynomial
design, both the radii are almost similar. A transformed polynomial design was
proposed by Daniel Brassard to meet this design criterion by changing the value of
polynomial according to a proposed variable α. In this paper, the open-source CFD
tool OpenFOAM was used to analyse the transformed sixth-order polynomial. The
adverse pressure gradient, uniformity of flow, and turbulence intensity inside the test
section as well as at the contraction outlet was taken into account for the analysis. The
comparative results from the analysis show that the transformed polynomial model
is giving better outcomes than the conventional sixth-order polynomial model.
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1 Introduction

A wind tunnel is an aerodynamic tool that can simulate the fluid flow around a body
as well as the forces produced at the fluid–body interface. Wind tunnels are basically
categorized with respect to the tunnel geometry (open-circuit wind tunnel or closed-
circuit wind tunnel) or by the wind speed in the test section relative to the speed of
sound [1]. With the help of instrumentation measurement of local as well as the total
velocity along with the temperature and pressure can be done using a wind tunnel.
Flow visualization can also be done inside the test section by using smoke generators.
The main parts of a conventional wind tunnel are the settling chamber, contraction,
diffuser, test section and drive section [2]. Due to the wide real-world applications,
plenty of efforts has been done in designing wind tunnel [3, 4]. Lots of researches
are going on in the field of optimized designing of wind tunnel components. The
creation of uniform flow inside the test section is the key objective of wind tunnel
design.

The contraction plays a crucial role in producing a uniform flow with minimal
turbulence inside the test section. Many research works have been done on the wind
tunnel contraction design [5–11]. The prime objectives for the design of contraction
are to improve the uniformity of flow, minimization of turbulence inside the working
section, minimization of the boundary layer thickness at the entry of the test section
and to evade boundary layer separation inside the contraction. The design of the con-
traction wall profile using a higher order polynomial equation got more significance
in due time. The present work investigates the transformed sixth-order polynomial
profile for the contraction wall profile of the wind tunnel.

2 Sixth-Order Contraction Profile

Flow uniformity inside the test section of a wind tunnel is directly affected by the
contraction design. The criteria that should be satisfiedwith the design of the contrac-
tion wall profile ensures uniform flow at the contraction outlet. So that the velocity
or pressure gradients should not create a progression of boundary layer thickness
or generation of boundary layer separation. Sargison et al. proposed a sixth-order
polynomial curve that fits in with all the following seven conditions that define the
contraction profile [12].

y(x = 0) = H ; y′(x = 0) = 0; y′′(x = 0) = 0;
y(x = l) = h; y′(x = l) = 0; y′′(x = l) = 0; y′′(x = i) = 0; (1)

where ‘i’ is the position of inversion point from the inlet, l refers to the total length
of contraction, H and h represent height at the inlet and the outlet of the contraction,
respectively. The location of the inversion point has been found to be one of the
main factors in the optimization of the design. For finding the optimal position of
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inversion point, the degree of curvature at contraction inlet is varied. In their paper,
0.6 was found to be the optimal position of inversion point. Solving the following
matrix equation provides the values of unknown coefficients.

Aw = B; (2)

where

A =

⎡
⎢⎢⎣

30i4 20i3 12i2 6i
l6 l5 l4 l3

6l5 5l4 4l 3l2

30l4 20l3 12l2 6l

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
−h
0
0

⎤
⎥⎥⎦, w =

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ (3)

3 Transformation of Contraction Design

The design for the contraction must ensure a larger radius at inlet compared to the
outlet radius of the contraction profile. But in most of the higher order polynomial
designs, both inlet and outlet radii of the profiles are nearly similar. For providing
better results, transformed polynomial curves were proposed by Daniel Brassard by
making the inlet and outlet radius of the contraction proportional to their area [13].
The transformed polynomial profiles were obtained by varying the value of poly-
nomial according to a proposed variable ‘α’. An analysis of transformed fifth-order
polynomial profile showed better results compared to untransformed polynomial
curve design [14]. In this paper, the analysis of transformed sixth-order polynomial
is evaluated by providing various values for ‘α’ in the following equation:

y =
(
η
(
H

1
α

i − H
1
α
e

)
+ H

1
α
e

)α

(4)

where, η is the sixth-order polynomial designed by Sargison et al. for the contraction;
‘α’ is some function of ζ (where ζ = x/l); ζ is the dimensionless distance from the
contraction inlet, with ζ = 1 at the contraction outlet and ζ = 0 at the inlet of the
contraction.

By judicious selection of ‘α’ (either as a constant or as a function of ζ ), the radius
at the inlet and radius ant the outlet of the profile can be made proportional to their
area. The values of α considered for the present analysis are 2, 1.5, 0.9, 0.7, 0.5, sine
function of ζ , the quadratic function of ζ . Figure 1 shows the profiles generated by
giving different values of ‘α’.
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Fig. 1 Various profiles obtained by using different values of α

4 Numerical Setup

For solving the incompressible, steady-state, Reynolds-averaged Navier–Stokes
equations, a segregated method for the velocity–pressure coupling was used in the
computations. The OpenFOAM-provided solver SimpleFOAM [15] is employed for
obtaining the solution. SimpleFOAMutilizes the SIMPLE algorithm to yield distinct
pressure and velocity equations. TheK-εmodel is selected for computing Turbulence
properties. The mass andmomentum steady-state equations in a stationary frame can
be written as follows [16].

δu

δx
+ δv

δy
= 0 (5)

u
δu

δx
+ v

δu

δy
= −δP

δx
+ μ∇2u + δ

δx

(
−ρu′2

)
+ δ

δy
(−ρu′v′) (6)

u
δv

δx
+ v

δv

δy
= −δP

δx
+ μ∇2v + δ

δx
(−ρv′2) + δ

δy
(−ρu′v′) (7)

After creating structural grids for the geometry, areas adjacent to the walls are pro-
vided with very fine grids. SnappyHexMesh utility in OpenFOAM is used for mesh-
ing the models. The model has meshed into hex-dominant meshes having 202,140
elements with 100,483 nodes (Fig. 2). A grid convergence study was also conducted
to eliminate spatial error.
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Fig. 2 aGeometrical model of wind tunnel contraction along with the test section. bHex-dominant
mesh created using SnappyHexMesh utility. c Detailed mesh view along the corner of the geometry

4.1 Geometry and Grid

The geometricalmodel involves the three-dimensional contraction alongwith the test
section of 0.52 length. The dimension details of the geometry are given in Table 1.

The extension of the geometricalmodel up to the test section improves the stability
of the computation as well as enhances the flow uniformity. Figure 2 shows the
structure and the mesh grid generated for the geometrical model. The minimum y+

Table 1 Details of the
geometry

Element Dimension (m)

Inlet of contraction 0.75 × 0.75

Outlet of contraction 0.2 × 0.2

Length of contraction 1.0

Test section length 0.52
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Table 2 Details of the grids selected for the grid convergence study

Grid Type Refinement level No of cells No of faces No of points

Coarse 1 20,034 61,980 22,038

Medium 2 51,091 168,516 66,459

Fine 3 202,140 676,034 272,040

Very fine 4 700,077 2,393,935 995,022

value for the geometry created for the computation was below 5. The pressure at the
outlet and velocity at the inlet are used as boundary conditions. For the numerical
simulation, the residual value of 10−5 was taken as the convergence criterion. A
grid independence study was done to estimate discretization errors and to finalize
the satisfactory mesh size. With the help of SnappyHexMesh utility in OpenFOAM,
four sets of grids were generated for the grid independence study.

4.2 Grid Convergence

Four grid levels were selected (coarse, medium, fine, and very fine) for the grid con-
vergence study. The grid level was changed using SnappyHexMesh utility available
on OpenFOAM by changing the refinement level from 1 to 4. The details about the
number of cells, faces, and points in each refined grids are shown in Table 2. Velocity
U = (2.1, 0, 0) m/s, the turbulent length scale l = 1 mm and the turbulence intensity
I = 2% was given at the domain inlet as the boundary condition. A constant zero-
pressure condition is given as the outlet boundary condition. Non-slipwall conditions
(|U| = 0 m/s and δP/δn = 0) is given to the side and upper walls. The spatial error
can be eliminated by selecting the grid with the least difference in result compared
to the subsequent level. By doing so the solution will be depending on the physics
and boundary condition but not on the type of grid applied [16].

In this study, the velocity (U) and the coefficient of the pressure value (CP) along
the contraction were selected as the criterion for the study. The results obtained were
plotted and was shown in Figs. 3 and 4.

From the result, it was found out that the difference in results between very fine and
fine grids is much inferior compared to the difference in results between medium and
the fine grid. Therefore, the fine grid with 202,140 cells is selected for the numerical
simulation in the current study.

4.3 Validation of SimpleFOAM Solver

SimpleFOAM solver available in OpenFOAM was selected for the simulation of
the present study. The data obtained from the wind tunnel test conducted at the
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Fig. 3 a Velocity variation along the axis of contraction for various grids selected. b Velocity
variation along the outlet zone of contraction

Fig. 4 a Coefficient of pressure variation along the axis of contraction for various grids selected.
b Coefficient of pressure variation along the outlet zone of contraction

College of Engineering, Adoor is used for the validation of SimpleFOAM solver.
The contraction cone of the wind tunnel has a length of 1 m with an inlet cross
section of 0.75 m× 0.75 m and an outlet cross section of 0.2 m× 0.2 m, followed by
a test section of 0.52m length. The velocity profilewas plotted using the data obtained
from the Pitot-static tube placed at a distance of 0.5 m from the test section inlet. The
same dimension of wind tunnel set up is used for the simulation. The open-source
geometry tool SALOME was used for creating geometry. Figure 2 shows the details
of the mesh created for the geometry. The kinematic viscosity of air is taken at 30 °C
(υ = 1.6036× 10−5 m2/s). Inlet velocity, U is taken as 2.1m/s and a constant pressure
p = 0 Pa was given at the domain exit. The velocity profile at a distance of 0.5 m
from the inlet of the test section was taken for the comparison between the simulation
and the one obtained experimentally. As displayed in Fig. 5, the comparative result
between the experimental value and the simulation result shows good agreement
with each other.
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Fig. 5 Comparison of the velocity profile obtained at x = 0.5 m from the test section inlet

In this paper, the dimensions of contraction and test section used for the validation
is taken for the computation. In order to obtain steady condition flow, contraction
along with the test section was considered for the geometry. The SnappyHexMesh
utility is used for meshing the geometry. Figure 2 shows the mesh grid generated.
The same boundary condition which is used for validation is applied for the analysis
(velocity at inlet = 2.1 m/s and outlet pressure is equated to atmospheric pressure).

5 Results and Discussion

The boundary layer separation can occur if there is a reversal in flow direction by
the section of the boundary layer nearer to the wall causes. Wall shear stress is an
important parameter to find the presence of separation. The points where the value
of wall shear stress becomes zero or negative suggests a possibility of separation at
that point. Shear stress distribution along the wall was plotted for each profile and
found that none of them are subjected to separation. The wall shear stress distribution
for all the contraction profiles is shown in Fig. 6. It is found that all the models are
having a positive value for wall shear stress which proves the absence of separation.

The wall pressure coefficients along the contraction for all the transformed and
untransformed profiles are shown in Fig. 7. This dimensionless parameter coefficient
of pressure, C was used to normalize the data. There is a risk of separation if the
pressure gradient is high enough. If there is a constant pressure region on the CP
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Fig. 6 Wall shear stress contour plot for the profiles when a α = 0.5, b α = 0.7, c α = 1.5, d α =
2, e α = quadratic function of ζ , f α = sine function of ζ , g untransformed

Fig. 7 a Pressure coefficient along the contraction, b magnified view at the outlet of contraction

graph in this adverse pressure gradient region, it indicates the presence of separation.
The expression for finding Cp is as shown below.

Cp = (P − P∞)

0.5ρU 2

where P is the static pressure measured along the wall, P∞ is the static pressure at
the outlet of contraction and U is the mean value of the velocity measured at the
contraction outlet.

From the figure, the adverse pressure gradient is found at the inlet and outlet
portion of the contraction. The outlet adverse pressure gradient is found to be more
significant compared to the inlet. From the comparison, it is clear that the adverse
pressure is more when the alpha value is less and a lesser adverse pressure gradient
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is seen for the profile having higher alpha value (α = 1.5 and α = 2). On comparing
Quadratic function and sine function, the quadratic function is having superior results.

The prime objective of the design of contraction is to improve the uniformity of
flow inside the test section. Figure 8 shows the velocity profile at the mid vertical
plane of theworking section. The same graphwas used to analyse the flow uniformity
along the test section. Due to the growth in turbulence intensity, flow uniformity is
found to be disturbed adjacent to thewalls. It is seen that the flowuniformity is getting
better with the increase in the value of ‘α’. It is also detected that the contraction with
‘α = quadratic function of ζ ’ hold better uniformity than other contraction profiles.

Figure 9 shows the turbulence intensity profile for the various profiles (both trans-
formed and untransformed). The turbulence intensity value is very much depended
on the contraction profile and contraction ratio. If the turbulence intensity in the test
section is very high, it may generate unfavorable conditions and measurements. So
the value of turbulence intensity inside the test section must be kept as low as possi-
ble. From the figure, it is clear that the value of turbulence is falling with an increase

Fig. 8 a Velocity profile at the contraction outlet along the vertical plane, b magnified the view of
the velocity profile at the contraction outlet along the vertical plane

Fig. 9 a Turbulence intensity at the contraction outlet. b Turbulence intensity at the mid-vertical
plane of the test section
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Table 3 The average turbulence intensities and uniformity at the outlet of contraction and test
section midplane for various values of α

Value of α Average turbulence intensity (%) Flow uniformity (%)

At contraction
outlet

At test section
midplane

At contraction
outlet

At test section
midplane

0.5 6.735 6.368 86.210 88.403

0.7 6.077 5.958 87.332 88.555

1.5 5.441 5.352 87.224 88.246

2 5.255 5.225 87.287 88.163

The quadratic
function of ζ

5.716 5.628 87.454 88.428

Sine function
of ζ

5.652 5.580 87.177 88.321

Untransformed 5.426 5.439 87.227 88.254

in the value of α. The profile with α = 2 shows better performance compared to
others. Among the quadratic function of ζ and sine function of ζ , it is seen that better
results are obtained for the quadratic function of ζ compared to the sine function. It
is also found that the value of turbulence intensity is increasing at lower values of α.
Table 3 shows the average turbulence intensities and average uniformity calculated
at the contraction outlet, as well as at the midplane of the test section.

6 Conclusion

The proportionality of inlet and outlet radius with respect to their cross-sectional
area is one of the key design criteria for the contraction of the wind tunnel. While
analysing the sixth-order polynomial contraction proposed by Sargison et al., it was
found that the inlet radius and outlet radius are not having much difference. This
can be resolved by using a transformed polynomial curve using the Eq. (2). Both
the normal and transformed curves were analysed based on uniformity of flow, tur-
bulence intensity, and adverse pressure gradient by using open source CFD tool
OpenFOAM. Experimental data were taken for validation of results. The results
show the transformed contraction is having better results compared to the untrans-
formed polynomial profile. As the value of alpha is increasing it was found that the
uniformity and turbulence intensity is getting better. This analytical study thus proves
the significance of using transformed curves for the design of the contraction of the
wind tunnel.

Although this analysis (using the k-ε model turbulence model) found that the
transformed polynomial curves are performing better compared to untransformed
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curves, further studies can be conducted by using different turbulence models to
make it certain.
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Fatigue Life Assessment of an Existing
Railway Bridge in India Incorporating
Uncertainty

Mrinal Chanda, Kishore Chandra Misra and Soumya Bhattacharjya

Abstract Fatigue Life Assessment of an existing railway steel truss bridge near
Dumdum, Kolkata is presented. The deterministic approach using the Palmgren–
Miner rule and probabilistic approach by (i) available probabilistic formulations and
(ii) direct Monte Carlo Simulation (MCS) have been adopted in the study. The bridge
is unique of its type since the movement of traffic is transverse to the main span of
the truss. The truss bridge is modeled in STAADPro.V8i SS5 with a moving load of
(i) coal rakes, (ii) Passenger rakes, and (iii) EMU cars. The train running schedule,
composition of train and loading is obtained from the Indian Railway. After analysis,
the stress range time spectra is obtained and the reservoirmethod is applied to evaluate
the damage. Also, the probability of fatigue failure of the bridge is estimated which
indicates a risk of 77% damage of the critical members after 80 years. It is observed
that fatigue failure is supposed to occur in between 80 and 90 years of service. The
probabilistic approach with direct MCS yields the most conservative prediction.

Keywords Fatigue life · Monte Carlo simulation · Steel bridge · Palmgren–Miner
rule

1 Introduction

The Indian Railway (IR) in its vast network is having over one lakh bridges and most
of them are steel bridges. The assessment of fatigue life of such existing bridges is
a major issue in the perspective of ever-increasing traffic load (e.g., fatigue failure
of Jubilee bridge in Bandel, West Bengal). There have been lots of studies on the
assessment of fatigue life in deterministic [1] and probabilistic format [2] in the past
fewdecades. Solimon et al. [3] predicted the life of existing fatigue prone steel bridges
by integrating Structural Health Monitoring (SHM) data by probabilistic bilinear S-
N approach. The effect of changing the value slope of AASTHO S-N lines below
the constant amplitude fatigue threshold on the fatigue life is investigated through a

M. Chanda · K. C. Misra · S. Bhattacharjya (B)
Department of Civil Engineering, IIEST Shibpur, Shibpur, West Bengal, India
e-mail: soumyaiiests@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
B. N. Singh et al. (eds.), Recent Advances in Theoretical, Applied, Computational
and Experimental Mechanics, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-1189-9_12

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1189-9_12&domain=pdf
mailto:soumyaiiests@gmail.com
https://doi.org/10.1007/978-981-15-1189-9_12


146 M. Chanda et al.

parametric study. Krejsa [4] described methods for probabilistic assessment of the
reliability of steel structures and bridges that are exposed to cyclic loads taking into
account the propagation of fatigue cracks from surface. Ye et al. [5] presented a
critical review of the fatigue life assessment of railway bridges. Lee and Cho [6]
presented a new approach for probabilistic fatigue life prediction for bridges using
finite element model updating based on SHM data. Ding and Chen [7] evaluated
fatigue damage using closed-form spectral methods considering narrowband and
Gaussian response characteristics. After a thorough literature survey, scarcity is noted
regarding the fatigue life assessment of existing railway bridges in India. Thus, in this
study, the fatigue life assessment of an existing railway trussed bridge near Dumdum,
Kolkata is accomplished by (i) deterministic approach using Palmgren-Miner rule
[8] using IS:800-2007 [9] (Approach I), (ii) Monte Carlo Simulation (MCS) on
Approach I to incorporate uncertainty in load and parameters (Approach II), (iii)
Probabilistic approach as per formulation of Crandall and Mark [10] (Approach III),
and (iv) Probabilistic approach as per Wirscheng [2]. The bridge is unique of its type
since the movement of traffic is transverse to the main span of the truss. The truss
bridge is modeled in STAAD.Pro.v8iSS5 [11] with moving load of (i) coal rakes,
(ii) Passenger rakes, and (iii) EMU cars. The train running schedule, composition of
train and loading is obtained from the IR. After analysis, the stress range time spectra
is obtained and the reservoir method is applied to evaluate damage by approach I.
The uncertainty in loading and strength parameters are incorporated by the MCS in
approach II. In approach III, the expectation of damage is estimated through zero-
crossing rate of random stress assumingRayleigh distribution for stress range history.
In approach IV the probabilistic fatigue life is assessed assuming the stress range
history to be lognormal. Also, the probability of failure of the bridge is evaluated
following [12] (approach V) considering the endurance strength of the material. In
Sect. 2, these four approaches are presented in brief followed by the modeling of the
bridge in Sect. 3 and results and discussion in Sect. 4.

2 Fatigue Life Assessment Approaches

As mentioned, Approach I is a deterministic approach and approaches II to V are
probabilistic approaches. A brief formulation of these approaches is presented in the
following subsections.

2.1 Approach I

This approach is based on the Palmgren–Miner’s rule and uses the S-N curve of IS:
800-2007 [9]. The calculation of the remaining fatigue life is generally manifested
through the calculation of the damage accumulation. The task is to find the year of
operation when Damage (D) exceeds unity. This method, based on the S-N approach,
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Table 1 Yearly number of
the run of trains in the IR in
2017

Types of train Goods train Passenger train EMU train

Yearly number
of cycle

1600 4380 7300

is called the linear Palmgren–Miner’s rule for damage accumulation and is expressed
by the form

D =
∑ ni

Ni
(1)

where ni is the number of cycles occurring at the stress range spectrum for ith type
train. Ni is the number of cycles corresponding to a particular fatigue strength for the
induced stress range magnitude, �σi by the ith type train and obtained from the S-N
curve. The standard S-N curve can be expressed in the form of Basquin equation as

NSb = C (2)

where N is the number of stress cycles to failure at a constant amplitude stress range
S, and C and b are the material parameters, termed as the fatigue strength coefficient
and the fatigue strength exponent, respectively. The ni is obtained from the stress
range spectrum using Reservoir method following the approach of Lee and Noori
[13]. The traffic flow data as in 2017 through the IR is obtained as in Table 1. The
extrapolated cumulative number of train run in upcoming years is presented in Fig. 1,
which is based on the trend and perspective of growth in the IR in the past few years.
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Fig. 1 Cumulative train flow data
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2.2 Approach II

In this approach, the involved parameters, viz. wheel loading of different trains,
yearly number of trains, dynamic magnification factor, S-N curve parameters b and
C are assumed to be uncertain with the lognormal distribution. The Coefficient of
Variation (COV) for wheel load for goods, passenger, and EMU train are assumed
as 36%, 30% and 25% based on statistical analysis. The COV for the number of
trains, dynamic magnification factor, b and C are taken as 15%, 10%, 10%, and
10%, respectively. The uncertainty is incorporated through a direct Monte Carlo
Simulation (MCS). The MCS converges at around 1.2 lakhs simulation.

2.3 Approach III

Based on Crandall and Marks [10] approach, if the stress history follows the normal
distribution, the peak follows Rayleigh’s distribution as

f (S) = S

σ 2
s

exp

(
− S2

2σ 2
s

)
(3)

where σs is the standard deviation of random stress range, S. Then, it is possible to
derive the expected damage E(D) in the probabilistic sense [10] as

E(D) = ωT

2πC

(√
2σS

)α

�

(
1 + b

2

)
(4)

where ω the frequency of load is cycle variation and T is expected fatigue damage
time.

2.4 Approach IV

This approach [2] is similar to approach I. But, in place of the MCS, second-moment
reliability method is used. The approach assumes that the involved parameters are
lognormal. This approach attempts to find after how many years of operation the
fatigue reliability (or probability of failure) becomes less than the acceptable limit
(or more than the safety threshold). The probability of failure is estimated by p f =
φ(−β), where, φ is the CDF of the standard normal distribution function and β is
safety index. Then, following [2]

β =
ln

(
Ñ

/
Ns

)

σlnN
(5)



Fatigue Life Assessment of an Existing … 149

where Ns is the intended service life and the tilde denote median values.

Ñ = C̃ D

B̃bSbe
σlnN =

√
ln

[(
1 + V 2

C

)(
1 + V 2

D

)(
1 + V 2

B

)]
(6)

The V ’s denotes the coefficient of variation, B is the blanket random variable
denoting uncertainty in stress range [2].

2.5 Approach V

If the induced repeated stress is below the endurance strength of the material, the-
oretically the component will not fail no matter how many cycles are repeated. In
this approach, the endurance strength of a material in fatigue is estimated following
Mischke [12]. The endurance strength is given by Se as

Se = KaKbKcKdKeK f ∅Sut (7)

where Ka, Kb, Kc, Kd , Ke, K f ,∅ and Sut are Surfacemodification factor, Sizemod-
ification factor, Loading modification factor, Temperature modification factor, Stress
concentration, and notch sensitivity modification factor, Fatigue strength factor,
empirical random proportionality factor and the mean ultimate tensile strength of
the material, respectively. These are assumed to be random normal whose mean
values are obtained from Mischke [12] and COV is assumed to be 10%. Then, the
reliability that the endurance strength is not exceeded is estimated by the first-order
second-moment method.

3 Model of the Bridge

The present study focuses on the fatigue life assessment of the Dumdum bridge in
Kolkata. The plan view of the bridge is shown in Fig. 2. The length of the bridge
along train movement is 6 m and the bridge span is 30 m. The height of the truss from
the deck is 6 m. The direction of the traffic is transverse to the bridge span direction.
One typical bridge is considered for analysis and is modeled in STAADPro Select
Series 6. The moving load as per the IR specification of the train configuration is
applied on the bridge (Fig. 3). The load data of three kinds of railway goods rakes is
considered to act as a moving load over the span of the bridge. The specification of
a load of each rake are as follows:

(i) Taken over coal rakes (Composition − engine + 55 BOXN, Rake Length =
624.15 m, Total Weight = 5140 t);
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Fig. 2 Layout plan of the trussed bridge

Fig. 3 STAAD model of the bridge

(ii) Passenger rakes (Composition − engine + 15 coaches, Rake Length = 373 m,
Total Weight = 2175 t.);

(iii) EMU cars (Composition − 2 engine cum bogie + 7 coaches = 153 m, total
weight = 1195.2 t).

Apart from the bearings, the most critical member of the truss where maximum
stress range occurs is also shown in Fig. 3 in red.

4 Results and Discussion

A typical stress spectrum obtained after the STAADPro analysis is shown in Fig. 4.
It will provide ni by the reservoir method. The maximum axial stress in the truss
member, effective stress (including dynamic magnification factor) and the number
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Fig. 4 Stress range spectra for passenger train

Table 2 Maximum axial stress and N for various type of rakes

Goods train Passenger train EMU cars

Maximum axial stress range in N/mm2 277 266 186

Effective stress range in N/mm2 340 327 229

Number of cycles to fatigue failure 488,500 549,108 1,598,802

of cycles to failure for each category of train (Ni) is shown in Table 2. Then, by using
Eqs. (1) and (2) the fatigue life estimated through Approach I, deterministically. The
bridge is in operation from the year 2017. It is observed that the fatigue life of the
bridge is 85 years.

Now, the uncertainty information on the involved parameters (see Sect. 2.2) is
incorporated by the direct MCS and the probabilistic fatigue life is estimated as
80 years by Approach II. In approach III, assuming S-N curve parameters as of
approach I, σS as of approach II the probabilistic fatigue life is estimated by Eq. (4)
as 90 years. The trend of accumulated damage over operation year by approach III is
shown in Fig. 5. Since the extrapolated growth rate model of the train is considered
as linear in Fig. 1, the trend of accumulated damage over the operation year is also
linear. The probabilistic fatigue life is further assessed following Approach IV. The
variation of Probability of failure by Eqs. (5) and (6) over the operation year is
presented in Fig. 6. It can be observed that the truss attains 77% failure after 80 years
of operation.

The endurance strength of the member material is estimated in Approach V
by Eq. (7). The mean values of the parameters are Ka = 0.09106, Kb = 1,
Kc = 0.774 (1, 0.163), Kd = 1, Ke = 0.5722, K f = 1.0, ∅ = 0.505 (1, 0.146)
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following equations mentioned in Mischke [12] and based on the fabrication of the
considered bridge. The uncertainty is incorporated in the parameters as mentioned
in Sect. 2.5 by the direct MCS. The MCS converges at 10,000 iterations yielding a
probability of failure of most critical as 13%. In a nutshell, the fatigue life obtained
by various approaches is presented in Table 3. It may be observed that the MCS
based probabilistic fatigue life approach yields the most conservative result. How-
ever, predictions by all the approaches are in close conformity yielding the range of
80–90 years, which further indicate acceptability of all the approaches and accuracy
of the assumptions. In the most conservative sense the bridge is expected to exhaust
its fatigue life in the year 2097 (Approach II) and in optimistic sense the same is in
the year 2107 (Approach III).
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Table 3 Fatigue life by
various approaches

Sl no Approaches Expected fatigue life (years)

1 Approach I 85

2 Approach II 80

3 Approach III 90

4 Approach IV 88

However, the main limitation of the study is its assumed linear extrapolated traffic
growth rate data, which is supposed to vary in the future. Though uncertainty on this
extrapolated data is duly incorporated in the study, there is always a chance of higher
deviation than the assumed COV.

5 Conclusions

Fatigue Life Assessment of an existing railway bridge of India, viz. Dumdum bridge,
Kolkata is presented. The fatigue Life is investigated both by the deterministic and
probabilistic approaches. The bridge is modeled in STAAD Pro and analyzed for
moving load. Uncertainty in various parameters is considered through available prob-
ability formulation and by the direct MCS. All the approaches yield similar results,
with approach II (by the MCS) predicting the most conservative assessment. The
expected fatigue life of the trussed bridge is in between 80 and 90 years. As per
approach II, the fatigue life of the bridge is supposed to be exhausted in 2097. It is
observed from the Figure that there is a 77% chance of fatigue failure of the critical
members at 80 years. The approach V estimates a 13% probability of failure of the
most critical member in consideration to the endurance strength.
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Numerical Simulation of Acoustic
Emission Waveforms Generated
by Tension and Shear Cracks in RCC
Beams

Arun Roy, Paresh Mirgal and Sauvik Banerjee

Abstract The objective of this paper is to model acoustic emission (AE) sources
and examine the propagation characteristics of AE waveforms generated by these
sources in—concrete structures using finite element (FE) simulation. In order to
model AE sources in the form of tensile and shear cracks, a new simulation technique
is developed, where the sudden release of nodes is introduced at the crack face on a
stressed concrete FE model. In this context, two different concrete models are used
for the study, namely the concrete half-space model and the concrete beam model.
The resulting AE waveforms are analysed using the wave speed and scalogram to
classify various types of AE sources. It is shown that due to a tensile crack at the
surface, S-waves and surface (or Rayleigh) waves are formed, whereas, a shear crack
at the surface, predominantly produces S-waves. On the other hand, body waves (P-
and S- waves) are predominantly formed for internal tensile as well as shear cracks.
The developed simulation technique and signal processing tools are expected to be
helpful for the direct correlation of AE waveforms with the recorded signal and
identification of various AE sources in an experiment.

Keywords Acoustic emission · Crack classification · Half-space model ·
Scalogram
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1 Introduction

Heavy cracking, excessive deflections, corrosion in civil engineering structures are
considered asmajor threats as they prevent the structure from performing its intended
use or reduces its service life considerably.Depending upon its importance, structures
are needed to be monitored and evaluated for the material condition in order to
maintain their stability and serviceability performance. Assessment of structural
characteristics like residual strength of concrete, corrosion, crack surface, etc., are
used to identify current situation and future durability problem of structure which
demands continuous monitoring of a structure. AE had been developed in the early
1980s,which then evolve as a standardized healthmonitoring technique for in-service
structures. In simple words, AE is the propagation of elastic waves due to the release
of internal energy, which is generated due to the irreversible structural change of
material. An AE sensor records the elastic motion that follows crack initiation and
propagation events within the material and transforms them into electric waveforms,
which can help in understanding the nature of damage and deterioration level.

The AE events can be analysed qualitatively or quantitatively. Qualitative analysis
methods make use of basic parameters of recorded signals, which are directly or
indirectly used to assess the condition of the structure or identify the nature of the
source event.A relatively small amount of parameter data,which requires less amount
of time and storage space make this an economical approach. This is also considered
as a limitation, as a complicated signal recorded with few parameters might be a
misleading interpretation. Quantitative analysis provides a recording of signals in
terms of waveforms, which allows for more comprehensive but time-consuming
analysis [1].

Although a lot of other techniques for crack closure are available including surface
measurements by displacement gauges, enlarged photographs of surface displace-
ment, strain gauges placed across the crack surface, ultrasonicmethods, photo-elastic
techniques, and surface replicas, the results obtained from these were often contra-
dictory [2]. According to available literature, the acoustic emission technique began
in the 1950s with the research work on metal carried out by J. Kaiser, although
acoustic emission on the rock was known in mining technology. Terminology wise
the use of ‘AE’ was initiated by B. H. Schofield in the U.S. in 1954. The recent
application of AE to concrete engineering started in the late 1970s [3]. In the present
scenario, AE is a commonly used NDE technique for structural health monitoring of
concrete structures. Its major objectives include localizing the damage, quantifying
the severity of damage and characterizing the nature of the source. Basically, there
are two approaches by which AE data can be analysed: Parametric approach and
Waveform approach [1]. In the parametric approach, the parameters are extracted
from the AE data without saving the waveforms. The parameters like hit, amplitude,
count, rise time, duration are recorded to monitor the AE activities [4], and also to
evaluate the extent as well as the nature of the damage. This approach tends to be
more feasible if a huge amount of AE activity occurs during a short period of time. In
waveform approach, the signals are recorded and are post-processed at a later stage.
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Thismethod demands the ability to record and store asmany signals as possible along
their waveform so that they can be converted from analog to digital (A/D) signals.
These requirements can be easily met by newly developed high capability sensors as
well asmultichannel acquisition systems.With the advent of increased computational
power and greater availability of software based on finite element methods, several
studies have been done on this area, which proves that finite element (FE) modeling
has a major role in simulating elastic wave propagation associated with structural
vibrations, acoustic phenomena and ultrasound problems [5]. FEM has been used
to generate elastic waves from fatigue cracks in a large isotropic plate-like structure
to produce the quantitative analysis. The simulations on the two-dimensional (2D)
model showed that fatigue cracks can be introduced in plates in a realistic way by
the sudden release of nodes in finite element mesh [6]. However, there are limited
literature presenting quantitative results for materials like concrete [7, 8].

In this study, the AE sources are modelled in the form of tensile and shear cracks,
with the sudden release of nodes at the crack face on a stressed concrete FE model in
an effort to examine the propagation characteristics of the waveforms generated by
these sources in the concrete structures using finite element (FE) simulation. The aim
is to develop a direct correlation of AE waveforms with the recorded signal and the
identification of various AE sources in an experiment conducted. Towards this, two
different concrete models are used for the study, namely concrete half-space model
and concrete beam model. The resulting AE waveforms are analysed using the wave
speed and scalogram to classify various types of AE sources.

2 Methodology

An innovativemodelling technique is developed by applying the principle of superpo-
sition in fracture mechanics problems. By this approach, we can separate a complex
problem into two simple problems, thus reducing computational resources and time.
The principle of superposition can be applied to identical geometries for linearly
elastic bodies. Since we are dealing with linearly elastic bodies, this principle can be
exploited to solve fracture mechanics problems.

Consider a centrally cracked plate with two different loads, σ as far-field stress
and line loads σ c at the cracked face as shown in Fig. 1. Invoking the principle of
superposition, stress at any point in the vicinity of the crack tip is given by the sum
of stresses of configuration m and n,

σ = σm + σn

For a crack that occurs suddenly, configuration m is a static problem while con-
figuration n is a dynamic one as shown in Fig. 1. Since we are interested in the events
after the formation of a crack, configuration n is our main concern. So we could use
a coarser mesh for the static part (configuration m) and finer mesh for the dynamic
part (configuration n). This method is also effective for studying different modes
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Fig. 1 Principle of superposition [9]

of fracture separately, by applying the required stress at the crack face as shown in
configuration n.

This method can be easily adapted for modelling different modes of fracture. In
this study, twomodes of fracture are modelled using this technique. Mode-I (Tensile)
and Mode-II (Shear). In Mode-I, pure tensile stress is applied at the surface, and for
Mode-II, pure shear is applied. For tensile crack, the approximate flexural strength
of concrete (IS 456) is applied at the crack surface.

σ c = 0.7
√

f ck

For shear crack, the maximum shear strength for M20 concrete (IS 456) was
applied at the crack face.

σ c = 2.8N/mm2

3 FE Analysis

Finite element modelling is carried out using commercially available FE package
ABAQUS. Two types of models, a concrete half-space model and concrete beam
model are considered for this study as shown in Fig. 2.

All thesemodels are preparedwith geometric andmaterial properties asmentioned
in Table 1. Each model is created as two parts and joined using tie constraint, which
ties two separate surfaces together so that there is no relative motion between them.
CPS4R, a 4-node bilinear plane stress quadrilateral element is assigned from the
ABAQUS/Standard element library. The geometric order of the element is assigned
as linear. Mesh size is different for each model according to its size. Quadratic
structured mesh with minimized mesh transitions is used for an aluminium plate
with mesh size as 0.375 mm. In the case of the semi-infinite model, since the model
is very large, fine meshing requires enormous time and memory for analysis. Also,



Numerical Simulation of Acoustic Emission … 159

Fig. 2 Schematic representation of concrete half-spacemodel and concrete beammodelwith sensor
positions and crack source

Table 1 Material properties
of various models considered

Material property Value

Material Concrete

Modulus of elasticity 22,360 MPa

Poisson’s ratio 0.15

Density 2400 kg/cm3

Element property

Element CPS4R, 4-noded quadrilateral

Geometric order Linear

Structure Quadratic

Step property

Time increment 1e(−8) s

Time period 0.004 s

the area of concern is near to the crack, so a different type of meshing was adopted
which provides a transition from fine to coarse mesh as we move away from the
centre. It also has a minimal effect of reflection caused by mesh transitions. Fine
mesh is having a mesh size of 0.5 mm and coarse mesh 10 mm. For concrete beam
model, the same quadratic structured mesh with minimized mesh transitions is used.
Loading and support conditions are also varied for every model. Concrete beam
model is created as per the experimental setup. The size and loading conditions are
identical to the flexural strength test specified in IS 516 (1959) [10].

For M20 grade of concrete, static Young’s modulus (E) is 22.36 GPa, Poisson
ratio (υ) is 0.15 and density (ρ) is 2400 kg/m3. The longitudinal wave velocity is
3136.4 m/s, whereas the transverse wave velocity is 2012.6 m/s.

VL =
√

E(1 − υ)

ρ(1 + υ)(1 − 2υ)

VT =
√

E

2ρ(1 + υ)
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Fig. 3 a Static analysis, b dynamic analysis

Static analysis is done in ABAQUS/Standard with a time period of 1 s. Dynamic
analysis is done in ABAQUS/Explicit with a time period of 0.0004 s. The time
increment is fixed with a user-defined time increment of 10−8 s. This value is set
manually to get the results at the same interval, which will be easier for the post-
processing of the signal. The stress state of theABAQUS/Standardmodel is imported
to ABAQUS/Explicit model using predefined fields command.

For the static part of the analysis, the model is statically loaded in
ABAQUS/Standard and the stresses at the crack face are recorded as σ c. The exact
model is created in the ABAQUS/Explicit platform for dynamic analysis as shown
in Fig. 3. In the latter case, a fine mesh is generated considering the time increment
and frequency of the stress wave.

The previously recorded stresses (σ c) are applied at the crack face in opposite
directions. Since these stresses are instantaneously applied to the model, the elastic
wave propagates from the crack face. The displacement time history is recorded at
the relevant nodes (these nodes correspond to the sensor position in an experimental
setup). The output signal is imported to the MATLAB platform for post-processing.
The signal is frequency filtered for the range of interest and the results are analysed.

4 Result and Discussion

4.1 Comparison of Lead Break Source and Crack
in Simulation

Pencil-Lead breaks are widely used as a reproducible source for test signals in acous-
tic emission applications. This type of source is also referred to as Hsu–Nielsen
source, based on the works of Hsu and Nielsen. A lead pencil is used to apply pres-
sure on the surface under investigation until the lead breaks. The sudden release of
pressure, at the point of breakage, creates amicroscopic displacement and an acoustic
wave associated with that. This is one of the most common artificial sources because
of its simplicity in implementation, in the laboratory as well as the field. The lead
break source was modelled in ABAQUS using the Eqs. 1 and 2 given in [5] and
applied to the half-space model.

F(x1; x2; t) = f (t)δ(x1)δ(x2) (1)
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Fig. 4 Comparison of crack versus lead break source (filtered signal)

where

f (x) =
{ t(t−τ )

τ 2 , 0 < t < τ

1 − e−2.1(t−τ ), t ≥ τ
(2)

From Fig. 4, it is clear that the response from the lead break source is not able
to simulate an actual crack. The amplitude of the lead break signal is having large
variations when compared with that of crack.

Though the pattern is almost the same, it cannot reproduce the higher frequency
components. These are justifiable considering the fact that these waveforms vary
significantly with respect to the type of crack, crack length, thickness, the total
length of plate etc., which can’t be included in a single lead break source. There
are several functions that can resemble a lead break source. In order to obtain the
most appropriate function resembling the crack, we have to adopt a trial and error
procedure, which is not considered in the present work.

4.2 Concrete Half-Space Model

To avoid reflections from the edges of a beam, a semi-infinite half-space model is
considered in this study. The material properties and modelling methodology are
similar to that of the beam model except for the size of the model. In this case,
sensors are also placed along 45° as shown in Fig. 5.

4.2.1 Tensile Crack

The time history of y-displacement (vertical) of nodes located at three different
locations are recorded under tensile and shear cracks. Figure 6 shows the recorded



162 A. Roy et al.

Sensors

45 0 LINE

Fig. 5 Schematic representation of crack in the concrete half-space

Fig. 6 a Recorded and filtered signal at output nodes, b magnitude scalogram for a tensile crack
received at a distance of 150, 300, 450 mm at 0° angle with the bottom edge of the half-space

and frequency filtered signal along with the respective scalogram at the output node
located at 0° with the bottom edge at 150, 300 and 450 mm due to a tensile crack.
From the scalogram shown in Fig. 6b, it is clear that the major frequency content of
the signal occurs at the time of around 84.5 µs for the sensor located at a distance
of 150 mm from the crack and the velocity is found out to be 1776 m/s. This can
be due to an S-Wave or Rayleigh (R) Wave because they both have almost similar
theoretical velocity. S-Wave has a velocity of 1820 m/s and R-wave has a velocity
of 1779 m/s. The corresponding frequency content is 40 kHz.

Figure 7 shows the variation of recorded and frequency filtered signals, and the
corresponding scalogram for a tensile crack at the output node located at 45° with
the bottom edge at 150, 300 and 450 mm.

As shown in Fig. 7, two distinct peaks are observed in signals. Better resolution
of these peak signals is observed with an increase in distance between crack and
the sensor. In the filtered signal for the first plot, we can notice that the first peak
occurs at 71 µs. Since the crack is located at a distance of 150 mm, the velocity
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Fig. 7 a Recorded and filtered signal at output nodes, b magnitude scalogram for a tensile crack
received at a distance of 150, 300, 450 mm at 45° angle with the bottom edge of the half-space

equals to 2987 m/s. The theoretical velocity of the P wave is 3116 m/s. The second
peak occurs at a time of 117 µs, which corresponds to a velocity of 1928 m/s. The
respected frequency contents are 58 kHz for the first peak and 25 kHz for the second
peak. The scalogram of the above waveforms presented in Fig. 7b shows that the
separation of peaks is visible as the distance of the sensors increases. So the first
peak corresponds to P-Wave and the second peak corresponds to S or R-Waves.

4.2.2 Shear Crack

Figure 8 shows the variation of recorded and filtered signals for a shear crack for
sensor position of 150 mm, 300 mm and 450 mm, respectively at 0° angle with the

Fig. 8 a Recorded and filtered signal at output nodes, b magnitude scalogram for a shear crack
received at a distance of 150, 300, 450 mm at 0° angle with the bottom edge of the half-space
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Fig. 9 a Recorded and filtered signal at output nodes, b magnitude scalogram for a shear crack
received at a distance of 150, 300, 450 mm at 45° angle with the bottom edge of the half-space

bottom edge of the half-space along with magnitude scalogram. From Fig. 8a, we
can observe that the first peak occurs at a time of 82.72 µs at a 150 mm sensor, with
a velocity of 1813 m/s. The theoretical surface (R) wave velocities in concrete are
around 1800 m/s. So the first peak corresponds to an S-Wave.

From the scalogram shown in Fig. 8b, it is clear that the maximum value of
frequency is 50 kHz. So from the frequency content its evident that the wave is
S-Wave because Rayleigh wave will have less frequency.

Figure 9a shows the recorded and filtered signals at the output node located at 45°
with the bottom edge at 150, 300 and 450mmdue to a shear crack. The corresponding
scalogram is also presented in Fig. 9a. In the filtered signal, 2 different peaks are
noticeable, which occurs at a time of 69 µs and 123 µs, respectively. Corresponding
velocities are 3074 and 1710 m/s. So we can deduce that the first peak is that of
a P-Wave. We can also notice the separation of peaks as the distance of sensors
increase.

From Fig. 9b, we can see that for the first plot the major frequency content lies
around 65 kHz, which occurs at 90 µs. It is evident that in all the three figures the
maximum frequency value is around 50–65 kHz. So we can infer that for a shear
crack measured at the same surface it will have predominantly S-Wave. But for the
second and third plot we can see a separation of frequencies, which is represented by
a circle. So by comparing waveforms and the scalogram from Fig. 9, we can deduce
that it is the shear wave that is separating from the P-Wave. So, in this case, S-Wave
and P-Wave are having comparable frequencies.

From the above results for half-space model for tensile and shear crack, we can
conclude the following:

1. Waves received at sensors places at 0° angle with the bottom edge, shows that
surface waves are predominant for both tensile and shear cracks.
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2. For Surface cracks, waves received at sensors placed at 45° angle with the bottom
edge, both P- and S-waves are obtained with distinct frequency peaks separated
as longer sensor distance.

4.3 Concrete Beam

The displacement time history of nodes at six different locations are recorded under
tensile and shear cracks. The nodes are located at a distance of 50, 100 and 150 mm
from the middle of the beam. Three of them are at the bottom and the other three
at the top. Similar to half-space two different modes of cracks are modelled: tensile
and shear.

4.3.1 Tensile Crack

Figure 10 shows the recorded signal for a surface tensile crack received at the bottom
sensor located at a distance of 100 mm from the middle of the beam. The recorded
signal is similar to that of the half-space in the initial portion, and later on, the
reflections from boundaries affect the signal. Hence only the first 100 µs of the
recorded signals are considered in each case. Recorded signals are filtered with an
elliptical high pass filter above 20 kHz. The waveform is similar to that of half-
space with tensile crack signals received at sensors placed at 0° angle with the
bottom edge. The high-frequency peak at 60 µs with a velocity of 1666 m/s with the
major frequency contents at 40 kHz, indicates that the signal contains predominantly
S-Wave and R-Wave.

Fig. 10 a Recorded and filtered signal at a bottom output node located at a distance of 100 m from
a surface tensile crack, b magnitude scalogram of the signal
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Fig. 11 a Recorded and filtered signal at a top output node located at a distance of 100 m from a
surface tensile crack, b magnitude scalogram of the signal

Figure 11 shows the recorded signal for a surface tensile crack received at the top
sensor located at a distance of 100 mm from the middle of the beam. The recorded
waveform received at the top sensor, placed at 141.42 mm from crack has 2 peaks,
which are similar to the recorded waveform for tensile crack signals, received at
the sensors placed at 45° angle with the bottom edge in half-space. The initial peak
occurs at 44 µs, corresponding to a velocity of 3214 m/s and 2nd peak at 60 µs
with a velocity of 2357 m/s with the frequency content of 120 kHz and 60 kHz
respectively. From the scalogram, the Higher frequency content of nearly 120 kHz
corresponding to the first peak is observed along with a lower frequency content of
60 kHz corresponding to the later part of the waveform. So we can infer that the first
peak corresponds to P-Wave and the second peak can be that of an S-Wave or surface
wave.

4.3.2 Shear Crack

Figure 12 shows the recorded signal for a surface shear crack received at the bottom
sensor located at a distance of 100 mm from the middle of the beam. The high-
frequency peak at 59 µs with a velocity of 1694 m/s with major frequency content
at 50 kHz indicates that the signal contains predominantly S-Wave and R-Wave.

Figure 13 shows the recorded signal for surface shear crack received at a distance
100 mm from the middle of the beam. Similar to the recorded signal obtained in half-
space, it has 2 peaks. The higher frequency corresponding to the first peak and lower
frequency for the later part of the waveform is observed. The initial peak occurs at
45 µs, corresponding to a velocity of 3142 m/s and 2nd peak at 60 µs with a velocity
of 2357 m/s with the frequency content of 110 kHz and 70–90 kHz respectively. So
we can infer that the first peak corresponds to P-Wave and second can be S-Wave or
surface wave.
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Fig. 12 a Recorded and filtered signal at the bottom output node located at a distance of 100 m
from a surface shear crack, b magnitude scalogram of the signal

Fig. 13 a Recorded and filtered signal at the top output node located at a distance of 100 m from
a surface shear crack, b magnitude scalogram of the signal

4.4 Crack Inside the Beam

Internal crack is also modelled in ABAQUS. The crack with a length of 10 mm,
placed in the middle of the beam as shown in Fig. 14. The nodes above and below
the crack surface are given symmetric boundary conditions (horizontal symmetry).
The sensor is at the same location as that of surface cracks as shown in Fig. 14.

Figure 15 shows the recorded signal of internal tensile crack at the bottom sensor
located at a distance of 100 mm from the middle of the beam. Two distinct peaks are
observed with high-frequency contents. For sensor placed at 111.8 mm, the initial
peak occurs at 37 µs, corresponding to a velocity of 3021 m/s and 2nd peak at 80 µs
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Fig. 14 Schematic representation of internal tensile and shear crack

Fig. 15 a Recorded and filtered signal at the bottom output node located at a distance of 100 m
from an internal tensile crack, b magnitude scalogram of the signal

with a velocity of 1863 m/s with the frequency content of 110 kHz and 80 kHz
respectively. So we can infer that the first peak corresponds to P-Wave and second
can be S-Wave or surface wave.

Similar behaviour of the waves is observed in case of internal shear cracks. It
also shows a similar pattern as the half-space shear crack signal recorded at internal
sensors. Figure 16 shows the recorded signal of internal shear crack at the bottom
sensor located at a distance of 100 mm from the middle of the beam.

Two distinct peaks are observed with high-frequency contents. The initial peak
occurs at 38 µs, corresponding to a velocity of 2942.19 m/s and second peak at
62µs with a velocity of 1803 m/s with the frequency content of 100 kHz and 80 kHz
respectively. So we can infer that in this case also, the first peak corresponds to
P-Wave and second can be S-Wave or surface wave.

From the above results for 2D concrete beam model for tensile and shear crack,
we can conclude the following,
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Fig. 16 a Recorded and filtered signal at the bottom output node located at a distance of 100 m
from an internal shear crack, b magnitude scalogram of the signal

1. For surface cracks, surface waves are dominated if the signals are recorded on
the same surface. For these surface waves, the frequency content of 60–90 kHz
was observed.

2. For surface cracks, P-waves become prominent with higher frequency content
100–120 kHz for the signals received on the other surface of the beam.

3. For Internal cracks, both P-waves and S/R-waves are seen for recorded signals
on the surface.

5 Conclusion

Two different models were used for the study, concrete half-space model and beam
model. The major conclusions gathered from the study are explained below.

1. Due to a tensile crack at the surface, P-Waves, S-Waves, and surface (R) waves
are formed in the beam and half-space. P-Wave is having less amplitude when
compared to S-Waves so they are not clearly visible in the scalogram. Since the
S-Waves and surface waves are having almost the same velocity they can’t be
distinguished in the unfiltered signal.

2. Shear crack at surface predominantly produces S-Waves. Surface waves and
P-Waves are not generated.

3. Body waves (P and S waves) are predominantly formed for internal tensile as
well as shear crack. But the interaction of body waves with the surface causes
the formation of surface waves. Body waves also have significant amplitude and
energy when compared to surface waves.
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The study has to be extended by analysing differentmodels and conducting several
experimental studies. The model has to be analysed three dimensionally in order to
include the effect of side reflections also.
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Applicability of Tricycle Modelling
in the Simulation of Aircraft Steering
System

S. Sathish, L. Suryanarayanan, J. Jaidev Vyas and G. Balamurugan

Abstract Aircraft nose wheel steering system is simulated on MATLAB–Simulink
platform to understand the influence of tyre–ground interaction and aircraft ground
dynamics on the steering behaviour of the aircraft. The aircraft steering systemmodel
generally includes the Nose Landing gear model, Aircraft Dynamics model and Tyre
model. In most of the literature, bicycle modelling method is adapted with two
main gears lumped together and a nose landing gear, whereas tricycle modelling
method with all the three gears is more appropriate and accurate way of predicting
the aircraft steering response. In the present work, the mathematical formulation for
the tricycle model is developed and it is observed that the resultant equations are non-
linear and coupled, whereas the bicycle model is represented with linear and coupled
equations. For the same inputs parameters, both tricycle and bicycle models are
simulated. Results obtained from both the models are within 5% difference with the
introduction of additional non-linearity in the tricycle modelling. Hence for aircraft
with nosewheel steering, bicyclemethod is sufficient for predicting steering response
but for the all-wheel steering system (steering on both nose and main landing gear),
it is more appropriate to use the tricycle modelling method to predict the accurate
steering response.

Keywords Aircraft steering system · Aircraft-on-ground dynamics · Landing
gear · Bicycle and tricycle modelling method

Nomenclature

Symbol Definition (Units)

WOW Weight on Wheels (kgf)
MW Main Wheel
NW Nose Wheel
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MLG Main Landing Gear
NLG Nose Landing Gear
LNW Distance between Nose wheel and centre of gravity (m)
LMW Distance between Main wheel and centre of gravity (m)
L Wheel Base (m)
βMW Sideslip at Main Wheel (rad)
βNW Sideslip at Nose Wheel (rad)
FYMW Lateral Force in Main Wheel (N)
FYNW Lateral Force in Nose Wheel (N)
Mz Yawing Moment (N-m)
C.G Centre of Gravity
β Slip of Aircraft (rad)
V Aircraft Resultant Velocity (m/s)
Vx Longitudinal Velocity (m/s)
Vy Lateral Velocity (m/s)
r Yaw rate (rad/s)
MA/C Mass of Aircraft (kg)
Izz Moment of inertia of the aircraft about C.G (kg-m2)
δf Steering Angle (rad)
b Wheel Track (m)
βMWL Sideslip at Left Main Wheel (rad)
βMWR Sideslip at Right Main Wheel (rad)
FYMWL Lateral Force in Left Main Wheel (N)
FYMWR Lateral Force in Right Main Wheel (N)
CSNW Cornering stiffness of Nose wheel tyre (N/rad)
CSMW Cornering stiffness of Main wheel tyre (N/rad)
CSMWL Cornering stiffness of Left Main wheel tyre (N/rad)
CSMWR Cornering stiffness of Right Main wheel tyre (N/rad)
Je Equivalent inertia of NLG (kg-m2)
Be Equivalent damping constant of the NLG (N-m/rad/s)
k Load stiffness coefficient (N m/rad)
Tnet Net Torque (N-m)
Ta Applied Torque on Steering Actuator (N-m)
Tr Resistive Torque from Tyre-Ground Interaction (N-m)
LL Reference radius of steering pinion (m)
PL Hydraulic Pressure (N/m2)
A Piston area of steering actuator (m2)
SASNW Self-Aligning Stiffness of Nose Wheel (N/rad)
e Caster length (m)
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1 Introduction

Landing gear systems are used in aircraft for energy absorption during landing and
for aircraft ground manoeuvring. Tricycle arrangement of landing gear is commonly
used inmost of the aircraft because of its stability and less expensive design. Steering
system is one of the major subsystems associated with the aircraft landing gear
systems for steering operation on the ground using landing gear alongwith the rudder
steering. The rudder steering is used at higher speeds and landing gear steering is
used during taxiing or any other manoeuvring at lower speeds when the aircraft is on
the ground. Aircraft Steering is done by using Nose Wheel Steering (Nose Gear) in
most of the aircrafts. All-wheel steering (Nose+Main Gear) is used in large aircraft
during sharp turns. In this paper, simulation studies are carried out using the different
ground dynamic models to understand the steering response of the aircraft steering
system for the given pilot inputs.

2 Literature Survey

In the available literature [1–6], more emphasis is given on bicycle modelling for
the aircraft ground dynamics model. Biannic et al. [1] developed a simplified Linear
Fractional Transformation Model for predicting the aircraft-on-ground forces to be
used for the development of robust ground control systems. Pouly [2], Pouly et al.
[3] used bicycle methodology to simulate aircraft steering system. Ross et al. [4]
developed high-fidelity non-linear model for lateral control of aircraft-on-ground
using bicycle methodology. Chen et al. [5] proposed a non-linear control model with
kinematic constraints of nose wheel cornering and the tyre side-slip effects, to predict
the steering response of the aircraft. Pavan et al. [6] predicted the steering response
of the given aircraft using bicycle methodology and analysed the hydraulic system
based on the torque output from the aircraft steering simulations.

Though the tricycle modelling is more accurate, very few authors have reported
this method [7, 8]. Duprez et al. [7] developed a feedback linearizing control model
using tricycle method to predict the yaw rate control during aircraft on ground. Chen
et al. [8] developed a dynamical adaptive backstepping controller to address the path
following the control problem of the aircraft on ground. Also, the comparison and
applicability of these modelling methods have not been discussed in the available
literature.

In this paper, mathematical models for tricycle modelling are formulated and
their mathematical relationships are compared with the bicycle model formulations.
Steering response results are obtained from both the models and are compared in
detail for similar inputs.
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Fig. 1 Aircraft landing gear
with steering arrangement
[6]

3 Aircraft Steering System

Typical Modern Aircraft Steering System consists of a mechanical arrangement
for wheel rotation, steer control unit, hydraulic valves and actuators as shown in
Fig. 1. Mechanical arrangements such as rack and pinion, planetary gears, Bell crank
mechanism, push–pull rods, etc., can be used for steering operation on ground.

Pilot mechanical input on the pedals or tiller is converted to electrical signals
through potentiometers [6]. Steer Control Unit regulates the flow on the hydraulic
valves based on the input signals which enables the motion of actuators attached
to the mechanical arrangement. This arrangement ensures in acquiring the desired
steering response of aircraft with the help of the steer control unit.

Typical architecture of the aircraft steering system [6] is shown in Fig. 2.

4 Aircraft Bicycle Model

Aircraft nose wheel steering system includes Nose Landing gear (NLG) model,
Aircraft Ground Dynamics model and Tyre model. Aircraft ground dynamics model
is commonly modelled as bicycle/single-track model as shown in Fig. 3. This two
degree of freedommodel simplifies the aircraft model to study the effects of steering
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Fig. 2 Typical aircraft steering system architecture [6]

Fig. 3 Single track/bicycle representation of aircraft model

input on the attitude and path of the aircraft. Major assumptions are rigid landing
gear, low slip angles for linearization of tyremodel, constant low aircraft velocity and
no roll or pitch movement on the ground. In the bicycle model, both the main landing
gears are assumed as single gear with four tyres (for twin wheel arrangement) and
one nose gear with two tyres.

From Fig. 3, Force balance along the lateral direction and Moment balance about
C.G of aircraft results in equations of motion as [6],
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.

Vy =
[ −1

Ma/c
×

(
CSNW × Vy + r × LNW

Vx
+ 2 × CSMW × Vy − r × LMW

Vx

)]

+
[
CSNW × δf

Ma/c

]
− [r × Vx] (1)

.
r =

⎡
⎢⎢⎣−1

Izz
×

⎛
⎜⎜⎝
CSNW × LNW × Vy + r × LNW

Vx

−2 × CSMW × LMW × Vy − r × LMW

Vx

⎞
⎟⎟⎠

⎤
⎥⎥⎦ +

[
CSNW × LNW × δf

Izz

]
.

(2)

Equations (1) and (2) are solved to get lateral velocity (vy) and yaw rate (r) to
predict the lateral resisting force and sideslip on the tyres which are given by

FYNW = CSNW ∗ βNW (3)

FYMW = CSMW ∗ βMW (4)

βNW = δf −
(
Vy + r × LNW

Vx

)
(5)

βMW = −
(
Vy − r × LMW

Vx

)
(6)

These are linear and coupled equations that can be solved using state-space meth-
ods in MATLAB–Simulink for the unknowns, lateral velocity, Vy and yaw rate, r. Vy

and r are used in calculating side slip using Eqs. (5) and (6). Using sideslip, resistive
torque is calculated as shown in Eq. (20).

5 Aircraft Tricycle Model

Tricycle modelling of aircraft steering system as shown in Fig. 4 is more appropriate
as aircraft contains generally one nose gear and two main gears. Two main gears
are located at the semi track distance from CG and hence steering response on the
two gears could be different. Assumptions are the same as considered in the bicycle
model except that both the main gears are modelled separately.

From Fig. 4, Force balance along the lateral direction and moment balance about
CG of aircraft results in equations of motion for tricycle aircraft model as

Ma/c

( .

Vy +rVx

)
= FYNW + FYMWL + FYMWR (7)

Izz
.
r = FYNW LNW − FYMWL LMW − FYMWR LMW (8)
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Fig. 4 Tricycle representation of aircraft model

Sideslip on the nose and main wheel are given as

βNW = δf −
(
Vy + r × LNW

Vx

)
(9)

βMWL = −
(
Vy − r × LMW

Vx + r
(
b
2

)
)

(10)

βMWR = −
(
Vy − r × LMW

Vx − r
(
b
2

)
)

(11)

From the assumption of linear tyre model,

FYNW = CSNWβNW = CSNW ×
[
δf −

(
Vy + r × LNW

Vx

)]
(12)

FYMWL = CSMWLβMWL = CSMWL ×
[
−

(
Vy − r × LMW

Vx + r
(
b
2

)
)]

(13)

FYMWR = CSMWRβMWR = CSMWR ×
[
−

(
Vy − r × LMW

Vx − r
(
b
2

)
)]

(14)
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Substituting Eqs. (9) to (14) above on Eqs. (7) and (8) and defined in terms of
unknowns as

.

Vy =

⎡
⎢⎢⎢⎣

−1

Ma/c
×

⎛
⎜⎜⎜⎝
CSNW × Vy + r × LNW

Vx
+ CSMWL × Vy − r × LMW

Vx + r × (
b
2

)
+CSMWR × Vy − r × LMW

Vx − r × (
b
2

)

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

+
[
CSNW × δf

Ma/c

]
− [r × Vx] (15)

.
r =

⎡
⎢⎢⎣−1

Izz
×

⎛
⎜⎜⎝
CSNW × LNW × Vy + r × LNW

Vx
− CSMWL × LMW

×Vy − r × LMW

Vx + r × (
b
2

) − CSMWR × LMW × Vy − r × LMW

Vx − r × (
b
2

)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

+
[
CSNW × LNW × δf

Izz

]
(16)

As seen above, Eqs. (15) and (16) are coupled, non-linear and hence they cannot be
solved using linear state-space methods. Non-linearity arises because of the presence
of unknown term, r in the denominator of sideslip terms. The function block approach
in MATLAB-Simulink is first applied to the bicycle model to validate the approach
with state-space methods and the same is applied to tricycle model.

6 Landing Gear and Resistive Torque Model

Torque balance equation [6] of Landing Gear with reference to Fig. 1 is given as

Jeδ̈f + Beδ̇f + kδf = Tnet (17)

Tnet = Ta − Tr (18)

Ta = APL LL (19)

Tyre Resistive Torque Equation [6] is given as,

Tr = 2SASNWβNW − 2eCSNWβNW (20)

As seen from Eq. (20), resistive torque model is depending only on nose wheel
parameters as steering operation in most of the aircraft are done using nose wheel
alone. Hence the controller system is going to depend on this resistive torque model
apart from bicycle or tricycle method for aircraft ground dynamics model.
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7 Simulations

Aircraft steering system is modelled inMATLAB-Simulink and it is shown in Fig. 5.
The error between pilot input and steering response output is fed to the controller
unit which controls the hydraulic system. Based on the steering response, hydraulic
flow parameters are changed by the controller which changes the applied torque.
This is a closed-loop feedback system where the hydraulic flow is changed until the
desired steering response is obtained.

Input Steering Profile is considered as shown in Fig. 6.

Fig. 5 Simulink model of the aircraft steering system

Fig. 6 Input steering profile
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Aircraft data [6] is given in Table 1.
2DOF Aircraft Model contains the function blocks to solve for lateral velocity

and yaw rate as shown in Fig. 7.

Table 1 Aircraft input data

Parameter Value Units

Mass of aircraft 17,690 kg

Moment of inertia of the aircraft about C.G 189,740 kg-m2

Distance between nose wheel and centre of gravity 3.81 m

Distance between main wheel and centre of gravity 0.58 m

Longitudinal velocity 6 m/s

Cornering stiffness of nose wheel tyre 33,015 N/rad

Cornering stiffness of main wheel tyre 48,287 N/rad

Effective bulk modulus of fluid 8 * 108 N/m2

Total volume of actuator chamber 0.0014 m3

Piston area of the steering actuator 0.0053 m2

Reference radius of steering pinion 0.1 m

Equivalent damping constant of the NLG 10 N-m/rad/s

Load stiffness coefficient 100,000 N m/rad

Equivalent inertia of NLG 1.0 kg-m2

Caster length 0.1 m

Self-aligning stiffness 38,000 N/rad

Fig. 7 Simulink function blocks method to solve aircraft ground dynamics model
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8 Results and Discussions

Both the bicycle and tricycle models are simulated with typical aircraft data [6] with
the longitudinal velocity of 6 m/s for a typical input steering profile. Comparison
of various parameters between the bicycle and tricycle model is shown in Table 2.
As expected, there is no difference in nose wheel parameters because of the same
equations prevail for both the models. There is an increase of 5% in slip angle on
the main wheel because of the additional track parameter in the tricycle equations.
In addition, it is found that there is a difference of 3% in lateral force on the main
wheel between the models.

Variation of for lateral force and sideslip on main gear for bicycle and tricycle
modelling method is shown in Fig. 8.

In the sensitivity study 1, both the models are simulated with different steer rates
to understand its influence on themodellingmethods as shown in Table 3. Parameters
such as slip angle, lateral force, yaw rate, etc., increase slightly with an increase in
the steering rate of aircraft. For 50% increase in steering rate, the slip angle and
lateral force at the nose wheel increase by 12%.

In the sensitivity study 2, both themodels are simulatedwith different longitudinal
velocities of aircraft to understand its influence on the modelling methods as shown
in Table 3. Also, it is observed that with an increase in the linear velocity, slip angles

Table 2 Comparison
between bicycle and tricycle
model

Parameters Bicycle model Tricycle model

Max yaw rate (rad/s) 0.168 0.168

Max lateral velocity (m/s) 0.390 0.390

Slip angle at MWL (deg) 4.60 4.39

Max lateral force at MWL
(N)

3872 3700

Max slip angle at MWR
(deg)

NA 4.82

Max lateral force at MWR
(N)

NA 4000

Fig. 8 Comparison of lateral force and sideslip between tricycle and bicycle method on MLG
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Table 3 Comparison between Bicycle and tricycle model for different steering rate (Study 1)

Parameters Bicycle model Tricycle model Bicycle model Tricycle model

Steering rate (deg/s) 2.5 5

Max yaw rate (rad/s) 0.1685 0.1685 0.1775 0.1775

Max lateral velocity
(m/s)

−0.39 −0.39 −0.42 −0.42

Slip angle at MWL
(deg)

4.6 4.3 4.9 4.7

Max lateral force at
MWL (N)

3872 3700 4137 3948

Max slip angle at MWR
(deg)

NA 4.8 NA 5.1

Max lateral force at
MWR (N)

NA 4000 NA 4319

becomemore than 5 deg and hence the linear tyremodel considered in the simulations
is not applicable. For a 33.3% increase in longitudinal velocity, a 32% increase in
slip angle and lateral force is observed (Table 4).

Table 4 Comparison between bicycle and tricycle model for different longitudinal velocity (Study
2)

Parameters Bicycle
model

Tricycle
model

Bicycle
model

Tricycle
model

Bicycle
model

Tricycle
model

Bicycle
model

Tricycle
model

Longitudinal
velocity
(m/s)

4 6 8 10

Max yaw
rate (rad/s)

0.094 0.094 0.168 0.168 0.275 0.275 0.442 0.442

Max lateral
velocity
(m/s)

−0.078 −0.078 −0.390 −0.390 −1.22 −1.22 −3.18 −3.18

Slip angle at
MWL (deg)

1.80 1.72 4.60 4.39 9.85 9.28 20.00 18.35

Max lateral
force at
MWL (N)

1503 1450 3872 3700 8380 7820 18,000 15,400

Max slip
angle at
MWR (deg)

NA 1.85 NA 4.82 NA 10.35 NA 21.25

Max lateral
force at
MWR (N)

NA 1560 NA 4000 NA 8720 NA 17,900
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9 Conclusions

In the above study, the lateral forces and slip angles on the main wheel are predicted
frombicycle and tricyclemodellingmethods. It is observed that the bicyclemodelling
methodology is 5% less accurate when compared to tricycle method. The steering
actuator response is based on the resistive torque generated on the tyres. When the
nose wheel steering is used, resistive torque is calculated using lateral forces and slip
angles from the nose gear alone. Hence, the bicycle or tricycle modelling method
will not change the steering actuator response. But in tri-wheel steering, resistive
torque is calculated using lateral forces and slip angles from both the gears. If the
bicycle model is considered in the all-wheel steering system, the predicted steering
actuator response will be different from actual because of the difference in the lateral
forces and slip angles of the main gear. Hence, it is concluded that the bicycle model
is sufficient in the simulation of the nose wheel steering system as in many aircraft
but tricycle modelling is required in the simulation of the tri-wheel steering system
as in some wide-body aircraft to predict the right steering response.
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Free Vibration and Stress Analysis
of Laminated Box Beam
with and Without Cut-Off

Raj B. Bharati, Prashanta K. Mahato, E. Carrera, M. Filippi and A. Pagani

Abstract This paper presents the free vibration and static analysis of composite box
beam using refined beam theory. The structural model based on one-dimensional
(1D) is derived in the Carrera Unified Formulation (CUF) framework. The principle
of virtual displacement has been used along with CUF to formulate the finite ele-
ment arrays in the terms of fundamental nuclei, which either do not depend on the
expansion order or on the class of the beam model. In the present study, the various
composite box beam models with and without cut-off model using different aspect
ratio has been analyzed the free vibration and static analysis. The results of free
vibration analysis are compared to published literature. The present study indicates
the high-level accuracy reached by refined beam models with lower computational
costs than 3D solid elements.

Keywords Free vibration · Static analysis · Refine one-dimensional model · Box
beam · Composite beams · Carrera unified formulation

1 Introduction

In modern times, laminated composite beams, plates, and shells are extensively used
in high-speed aircraft, rocket, launch vehicle, aerospace, or civil structures due to
their high specific strength and stiffness, excellent fatigue and corrosion resistance.
In engineering application, many structures are required stiffness-to-weight ratio,
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thus the structure made of laminated composite materials represents efficient con-
structive solutions. To analyze the mechanical behavior of such type of structures
are extremely complex process. Although a considerable number of analytical and
numerical methods have been proposed over the years. To analyze the structural
behavior of this type of structure, the beam theories are extensively used. In the case of
modeling of weight-sensitive structures, the one-dimensional (1D) approach is more
significant due to its simplicity and low computational cost and more efficient than
two-dimensional (2D) (plate and shell) and three-dimensional (3D) (solid) elements.
The classical theories that are most employed are proposed by Euler–Bernoulli [1]
and Timoshenko [2], which are also known as first-order shear deformation theories
(FSDTs).

Formodeling the composite structure these theories are inadequate. Several higher
order shear deformation theories (HSDTs) are purposed for the composite structure,
which can be classified into two main categories: equivalent single layer (ESL)
and layer-wise (LW) theories. The ESL enables to produce piecewise continuous
displacement and transverse stress in the thickness direction of the laminate structures
[3, 4]. In this approach, the number of unknowns is independent of the number of
layers, for example, first-and second-order shear deformation theories [5, 6]. Third-
order shear deformation theories were purposed for the analysis of beams [7] and
plates [8]. Arya et al. [9] presented a HSDT for the static analysis of laminated
composite beams. Later, Li et al. [10] extended this refined model to study the free
vibration of angle-ply laminated beams. And recently, Sahoo and Singh [11] studied
new inverse zig-zag shear deformation theories for the static analysis of sandwich
laminated plates. Carrera [12] compared different 2D theories to investigate the
effects of the curvature and shear deformation on the buckling and vibrations of
cross-ply laminated shells. Although ESL exhibits many applications in static and
dynamic analysis of composite beams, it results in efficient theories for laminate
structures. Themain drawbackof theESLapproach is that the continuity of transverse
shear and normal stresses is not always assured. In the domain of LW, a continuous
displacement assumption is considered in each separate layer. In LW approach, the
number of degrees of freedom (DOFs) depends directly on the number of layers. In
the LW approach the required computational cost is more than the ESL approach.
Robin and Reddy [13] used LW theory to develop modeling of thick composites.
Shimpi and Ainapure [14] presented a trigonometric shear deformation theory to
develop modeling of two-layered cross-ply beams. Later, the same theory extended
and utilized [15] for free vibration analysis of cross-ply laminated beams.

The present work has focused on refined theories with generalized displacement
variables for the free vibration and stress analysis of the laminated box beam. For
preliminaries model, the Carrera unified formulations (CUF) are used. CUF formu-
lation has been developed over the last decade for plate/shell models [12, 16–18]
and it has recently been extended for beam modeling [19]. In this study the cross
section of laminated box beammade of orthotropic material with discretized with 16
nine-node elements (16L9). Two types of cross-sectional distribution 16L9 (a) and
16L9 (b) are used for the analysis as shown in Fig. 2. A combination of orthotropic
fiber composite layers is used to be a construction of walls. The objective of this
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Fig. 1 Coordinate frame
work of the beam model

study is to develop a laminated box beam model with cut-off and without cut-off
and this model is used for analysis in the form of free vibrations, displacements, and
stresses with the help of refined one-dimensional beam theories. For finite element
formulation, CUF framework is used to prepare a model, which is a hierarchical for-
mulation leading to very accurate and computationally efficient finite element (FE)
models. The laminated box made of two orthotropic layers with same thickness. In
order to demonstrate the effectiveness of the proposed refined elements, the results
in terms of natural frequencies, and displacements, are computed and compared with
the available research literature.

2 The Structural Model: Carrera Unified Formulation

According to the Carrera Unified Formulation the displacement fields
uT (x, y, z, t) = {

uxuyuz
}T

, for the displacement vector, uτ (y) with expansion of
generic functions, Fτ (x, z)

u(x, y, z, t) = Fτ (x, z)uτ (y) τ = 1, 2, . . . , T (1)

where T stands for the terms in expansion, in Einstein’s generalized notation it stands
for summation, uτ is the displacement vector, and Fτ represents expansion function
to approximate the behavior of the cross section of box beam.

In this work Eq. (1) consists of Lagrange polynomials, which are used to build the
1Dhigher ordermodels. In this paper, the nine points (L9) cross-sectional polynomial
(Fig. 2) set was adopted and the interpolation functions are given as:

Fτ = 1

4

(
r2 + rrτ

)(
s2 + ssτ

)
, τ = 1, 3, 5, 7

Fτ = 1

2
s2τ

(
s2 − ssτ

)(
1− r2

) + 1

2
r2τ

(
r2 + rrτ

)(
1− s2

)
, τ = 2, 4, 6, 8

Fτ = (
1− r2

)(
1− s2

)
, τ = 9 (2)
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Fig. 2 Cross-sectional distribution of L9 elements of laminated box beam

where r and s vary from−1 to+1, whereas rτ and sτ are the coordinates of the nine
points whose locations in the natural coordinate frame. The displacement of a L9
element therefore

ux = F1ux1 + F2ux2 + F3ux3 + · · · + F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + · · · + F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + · · · + F9uz9 (3)

where ux1 . . . ux9 represents the displacement field of the components x of the L9
element.

The stress and strains are

σp = {σzzσxxσxz}T , εp = {εzzεxxεxz}T
σn =

{
σzyσxyσyy

}T
, εn =

{
εzyεxyεyy

}T
(4)

where the subscripts p and n stands for the terms lying cross section and planes,
respectively.

Hooke’s law and strain–displacement relations are, respectively,

σp = C̃ ppεp + C̃npεn

σn = C̃npεp + C̃nnεn

εp = Dpu

εn =
(
Dny + Dnp

)
(5)

where

Dp =
⎡

⎢
⎣

0 0 ∂
∂z

∂
∂x 0 0
∂
∂z 0 ∂

∂x

⎤

⎥
⎦, DnA =

⎡

⎣
0 ∂

∂z 0
0 ∂

∂x 0
0 0 0

⎤

⎦, Dny =
⎡

⎢
⎣

0 0 ∂
∂y

∂
∂y 0 0

0 ∂
∂y 0

⎤

⎥
⎦ (6)
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Box beam is a complex laminated structure, for such type of structure can be
considered constituted by a certain number of straight orthotropic layers, material
coordinate system (1; 2; 3) generally do not coincide with the physical coordinate
system (x; y; z) as shown in Fig. 1. The matrices of the material coefficient of the
generic material k based on the above approach are

C̃k
pp =

⎡

⎣
C̃k
11 C̃

k
12 C̃

k
14

C̃k
12 C̃

k
22 C̃

k
24

C̃k
14 C̃

k
24 C̃

k
44

⎤

⎦, C̃k
pn =

⎡

⎣
C̃k
15 C̃

k
16 C̃

k
13

C̃k
25 C̃

k
26 C̃

k
23

C̃k
45 C̃

k
46 C̃

k
43

⎤

⎦, C̃k
nn =

⎡

⎣
C̃k
55 C̃

k
56 C̃

k
35

C̃k
56 C̃

k
66 C̃

k
36

C̃k
35 C̃

k
36 C̃

k
33

⎤

⎦ (7)

For the sake of brevity, shape function and explicit form of the coefficients are
shown in [12]. To handle for arbitrary shaped cross section, classical finite element
technique is adopted here and generalized displacement vector becomes

uτ (y) = Ni (y)qτ i (8)

where Ni (y) is the shape function and qτ i is the nodal displacement vector:

qτ i =
{
quxτ i

quyτ i
quzτ i

}T
(9)

3 The Equation of Motion in the CUF Framework

The equation of motion can be directly derived from the Principle of Virtual
Displacement (PVD), which states

δL int = δLext + δL ine (10)

where δL int, δLext, δL ine, and δ stands for internal work, external work, inertial work,
and virtual variation, respectively.

With the help of Eqs. (1), (3), (4), and (5), the virtual variation can be written as

δL int = δqT
τ i K

i jτ sqsi (11)

where K i jτ s is in the form of a fundamental nucleus for the stiffness matrix and can
be written as follows:

K i jτ s = I i jl

∫ {
DT

np(Fτ I )
[
C̃k
npDp(Fs I ) + C̃k

nnDnp(Fs I )
]

+DT
p (Fτ I )

[
C̃k

ppDp(Fs I ) + C̃k
pnDnp(Fs I )

]}
dA

++I i j,yl

∫ [
DT

np(Fτ I ) + DT
p (Fτ I )C̃

k
pn

]
FsdA + IAy
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+ I i,y jl I TAy

∫
Fτ

[
C̃k
npDp(Fs I ) + C̃k

nnDnp(Fs I )
]
dA

+ I i,y j,yl I TAy IAy

∫
Fτ C̃

k
nn FsdA (12)

where apex k denotes the layer and

IAy =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ (13)

(
I i jl , I i j,yl , I i,y jl , I i,y j,yl

)
=

∫

l

(
Ni N j , Ni N j,y, Ni,y N j , Ni,y N j,y

)
dy (14)

Similarly for the inertial loads

δL ine = δqT
τ i M

i jτ s q̈s jdy (15)

where q̈ stands for nodal acceleration and Mi jτ s stands for mass matrix in the form
of fundamental nucleus:

Mi jτ s = I i jl

∫ (
Fτ ρ

k I Fτ

)
dA (16)

Similarly for the external loads

δLext = PδuT (17)

δLext = Fτ Ni PδqT
τ i (18)

P = {
Pux Puy Puz

}T
(19)

After assembly of global FEmatrices, the undamped dynamic problem as follows:

Mq̈ + Kq = 0 (20)

Introducing harmonic solution, it is possible to compute the natural frequencies,
ωk by solving a classical eigenvalue problem,

(−ω2
k M + K

)
qk = 0 (21)
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Table 1 The different lamination sequences of the layered box beam

Layup Flanges Webs

Top Bottom Left Right

Case 1 θ θ θ θ

Case 2 θ θ 0 0

Case 3 0 0 θ θ

Case 4 θ k1 θ k1 k2 θ k1 k2 k3 θ

Note k1 = −1, k2 = 2, k3 = −1

4 Analysis of Composite Box Beam

4.1 Free Vibration Analysis

In this section, the free vibration analysis of composite box beam is discussed. The
cantilever box beam is prismatic with length L = 762 mm, width b = 24:21 mm,
and height h= 13:46 mm. Each wall of the box beam has a total thickness equal to t
= 0.762 mm was consider in the first numerical example. The length to height ratio,
L/h is assumed equal to 10 and each layer of the structure is made of an orthotropic
material, whose density and mechanical properties along the fiber (L) and transverse
(T ) directions areρ=1601kg/m3,EL =142GPa,ET =9.8GPa,GLT =6GPa,GTT =
4.83 GPa, ν = 0.5. The box beam made of single and double layers and lamination
schemes are reported in Table 1. The Lagrange Element (LE) consists of 9 four-
noded (9B4) beam elements along the longitudinal axis and various approximations
of the cross-sectional kinematics are assumed shows in Fig. 2 where each rectangle
represents one L9 (Fig. 3) polynomial set. The two 16L9 models are considered
for the free vibration analysis. Natural frequencies of the box beam reported in
Table 2 and the computed results were compared with the finite element solution
provided by [16]. The compared results have good agreement with references. The
natural frequencies related to the mode number for the various aspect ratio and
stacking sequences of 16L9(a) and 16L9(b) models were shown in Fig. 4 and Fig. 5
respectively. From the results given, it should be clear that aspect ratio and stacking
sequences can significantly influence the natural frequencies of the model.

4.2 Static Analysis

In this section the static analysis of a composite box beam has been discussed, the
box beam was clamped at the one end while a point load applied at the other end.
The magnitude of the applied load was F = −5000 N. The geometrical data of the
structure were as the previous and length to height ratio was equal to the 10. 9B4
elements were used to describe the box beam and the number of beam elements was
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Fig. 3 L9 element in the natural coordinate system

Table 2 Comparison of natural frequencies for Case 1 and 3 with θ = 45°

Present Ref. [16]

16L9(a) 16L9(b) 16L9(a) 16L9(b) MSC-Nastran

Case 1 231.79 231.47 232.02 233.28 232.38

Case 3 610.56 605.58 610.78 605.73 604.52
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Fig. 4 Natural frequencies for 16L9(a) model of box beam
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Fig. 5 Natural frequencies for 16L9(b) model of box beam

derived from the convergence analysis. The vertical displacement reported in Table 3
for the various cases and computed results were compared with shell element of the
commercial software. The vertical displacement was computed at two points ‘a’ and
‘b’ those projected on the middle of top and bottom surface at the free end of the
beam. The computed results were compared with commercial software and have a

Table 3 Vertical displacement of box beam with and without cut-off model

Without cut-off With cut-off

CUF model Shell
element

CUF model Shell
element16L9(a) 16L9(b) 16L9(a) 16L9(b)

Case 1 Wa [m *
10−1]

−2.02 −2.39 −2.58 −2.32 −2.57 −2.73

Wb [m *
10−1]

−1.52 −1.51 −1.56 −1.82 −1.69 −1.69

Case 2 Wa [m *
10−1]

−1.34 −1.71 −1.94 −1.39 −1.74 −2.02

Wb [m *
10−1]

−0.63 −0.63 −0.66 −0.67 −0.66 −0.68

Case 3 Wa [m *
10−1]

−0.63 −1.29 −1.64 −0.77 −1.33 −1.63

Wb [m *
10−1]

−0.14 −0.17 −0.19 −0.28 −0.21 −0.22

Case 4 Wa [m *
10−1]

−1.95 −2.33 −2.51 −2.31 −2.53 −2.77

Wb [m *
10−1]

−1.67 −1.71 −1.74 −2.03 −1.91 −1.95
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Table 4 Natural frequencies (Hz) of box beam with and without cut-off model

Without cut-off With cut-off

CUF model Shell element CUF model Shell element

16L9(a) 16L9(b) 16L9(a) 16L9(b)

Case 1 514.70 513.56 510.64 489.52 501.55 503.42

Case 2 741.72 738.7 735.26 737.78 741.33 737.25

Case 3 1251.73 1222.93 1193.36 1067.37 1169.48 1167.86

Case 4 518.87 498.84 495.61 498.19 485.67 482.38

good agreement. The study shows that the different stacking sequence can influence
the vertical displacement of the box beam.

4.3 Effects of Cut-Offs

In this section, the static and free vibration analysis of a composite box beam with
cut-off has been discussed. The cut-off located on the center of the bottom surface
of the box beam, the dimension of the cut-off was width (bc) = 11:343 and length
(lc) = 44:866 mm. The vertical displacement and natural frequencies of box beam
(L/h = 10) without and with cut-off have been reported in Table 3 and Table 4
respectively. The computed results are in good agreement with shell elements model
of commercial software. For the static analysis, themagnitudeof the applied forcewas
F =−5000 N. Vertical displacement and natural frequencies have been analyzed for
various cases. The computed results show that the cut-off model was more displaced
than the without cut-off model for static analysis and natural frequencies of cut-off
model were lower than the without cut-off model for free vibration analysis. The
natural frequencies related to the mode number for case 1 and case 3 of 16L9(b)
models have been shown in Figs. 6 and 7. The graph shows that the low variation
trends of frequencies at lowermodes and highermodes but more variation in between
lower and higher modes.

5 Conclusion

In this present work, free vibration and static analyses of composite box beam have
been carried out. The analyses were performed by means of a refined beam model
based on the Lagrange Expansion (LE). The principle of virtual displacement has
been used along with CUF to formulate the finite element arrays in the terms of
fundamental nuclei, which neither depend on the expansion order nor the class of the
beammodel. The present methodology can deal with full material anisotropy and the
cut-off also can be easily implemented in the box structure. Various composite box
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Fig. 6 Natural frequencies for 16L9(b) model of box beam for case 1

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

5.00E+03

0 2 4 6 8 10 12

FR
EQ

U
EN

CY
 (H

Z)

MODE NUMBER

Without cut-off With cut-off

Fig. 7 Natural frequencies for 16L9(b) model of box beam for case 3

beams have been analyzed and in the domain to focus on the parametric studies have
been performed to see the effects of cut-off versus free vibration and static analysis.
The computed results show that the different stacking sequence and aspect ratio
can influence the results of both free vibration and static analysis. The results were
compared with published literature obtained in LE expansion of CUF models. The
provided comparison shows that with lower computation cost, the 1D-CUF approach
yields eventually the same results of the 3D solid element solution.
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Free Vibration Analysis
of the Functionally Graded Porous
Circular Arches in the Thermal
Environment

Mohammad Amir and Mohammad Talha

Abstract In the present study, free vibration analysis of porous functionally graded
material (FGM) circular arches has been performed using finite element methodol-
ogy. The present mathematical model is formed on the higher-order shear deforma-
tion theory (HSDT). The mechanical properties of the functionally graded material
arches are varying along the thickness direction. The effective mechanical proper-
ties of FGM are defined by a modified power law in terms of volume fractions of
its constituents. Two distributions of porosity are considered, viz., even and uneven
porosity distributions. Convergence and a comparative study have been executed to
verify the present formulation. The effect of various influencing parameters, viz.,
volume fraction index, temperature change, porosity index, and thickness to length
ratio, with both distributions of porosity (even and uneven porosity distributions), on
the frequency parameter of the arch have been studied.

Keywords Circular arch · FGM · Thermal environment · Vibration analysis ·
Porosity

1 Introduction

The functionally graded materials (FGMs) are advanced composite materials in
which mechanical properties are varying continuously and uniformly from one face
to the other. The material gradation can be in the radial direction or along the length
of the arch. Due to the smooth alteration of the mechanical properties, stress concen-
tration, and residual stresses can be avoided, unlike traditional composites. Typically,
the FGM materials are the graded mixture of metal and ceramic, where the metallic
constitute provides superior fracture toughness and the ceramic constitute provides
admirable corrosion and thermal resistance competence [1]. Because of exceptional
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properties of FGM, like high specific strength, ability to withstand ultrahigh temper-
ature gradients and high specific stiffness, their use in spacecraft, nuclear reactors,
and space structures has been increased [2]. The curved beams and circular arches
are being widely used as structural members in various engineering applications
such as in civil, mechanical and aerospace industries [3]. Therefore, it is important
to analyze and find out the vibrational behavior of these structures in order to avoid
catastrophic failure.

The FGMs are difficult to manufacture, microstructural voids, or porosities may
arise in the FGMs because of the substantial difference in the solidification tempera-
ture of the material constituents, during the process of sintering [4, 5]. The porosity
also affects the response of the FGM structure, for example, Ebrahimi et al. [6]
scrutinized the vibration response of the FGM porous beam subjected to different
types of thermal loadings using the semi-analytical method. Ebrahimi and Jafari
[7] obtained Navier solution for the analysis of thermomechanical vibrations of the
porous FGM beams under the various thermal loading conditions, viz., uniform,
the linear, sinusoidal temperature rises, and nonlinear. They modified power law to
calculate the mechanical properties of the FGM with the even and uneven porosity
distributions. Gupta and Talha [8] examined the effect of the porosity on the vibration
characteristics of the FGM plates and found that the porosity noticeably affected the
vibration response of a thin plate. Sometimes the porous FGMs can be very useful
in biomaterial applications, such as bone replacements and dental implants [9].

The FGM structures like arches are frequently used in various engineering appli-
cations. Malekzadeh [10] scrutinized the vibration analysis of the FG thick arches
under thermal environment condition. He found that the material properties depen-
dent on temperature have a notable effect on the natural frequency. The in-plane
thermomechanical vibrations of FGM circular beams using beam theory approach
have been studied by Eroglu [11]. Filipich and Piovan [12] discussed the analyti-
cal solution for dynamics of the thick FGM curved beams using the power series
method. They also implemented the neutral axis shifting concept to minimize the
algebraic calculations. Lim et al. [13] scrutinized the free vibration response of func-
tionally gradient arches under the thermal environment condition analytically, using
state-space method.

It is carrying out from the literature that the thermos-elastic vibration analysis
of the FGM porous circular arches has not been proclaimed to the best of authors’
knowledge. So in this paper, the effect of porosity on frequency parameters of FGM
arches under the thermal environment is analyzed. It is assumed that mechanical
properties are temperature dependent and varying along with the thickness. To incor-
porate even and uneven porosity distributions in the formulation the modified power
laws have been chosen. To obtain the final governing equation of the vibrations for
the arch, a C0 continuous finite element method has been used. The validation and
convergence studies have been executed to establish the efficacy of the current finite
element model. The effect of various influencing parameter, viz., porosity index (α),
temperature change (�T ), porosity distribution type, volume fraction index (n), and
the thickness to length ratio (h/L) on the natural frequency of the arches have been
investigated.
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2 Theory and Formulation

Consider an FGM circular arch with the thickness h, length of the arch (along A-
A′) L = Rθ0, and the mid-surface radius of the arch R as displayed in Fig. 1. The
curvilinear coordinate axes (ξ, z) are used to obtain the present formulation, where
ξ = rθ and z = r − R.

2.1 Power Law Distribution for Porous FGM Circular Arch

The circular arch made of porous FGM and having continuously varying mechanical
properties along the thickness is considered. The bottom surface of FGM circular
arch (z = −h/2) is metal-rich, while the top surface (z = h/2) is assumed to be
ceramic-rich. In this paper, even and uneven distributions of the porosity throughout
the thickness of FG circular arches have been considered. In the even distribution,
the porosity disseminated uniformly over the cross section, whereas in uneven dis-
tribution, the porosity occurred frequently in the neighboring of the middle region
of the cross section as displayed in Fig. 2.

Fig. 1 The geometry and the coordinates of the FGM arch

Fig. 2 Cross section of the FGM arch with the even and uneven porosity distributions
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For the even distribution, the effective mechanical properties are obtained by a
power law as

H(z) = (Hc − Hm)
(
0.5 + z

h

)n + Hm − α(Hc + Hm) (1)

The effective mechanical properties of the FGM circular arch for the uneven
porosity distribution can be declared as in [7]:

H(z) = (Hc − Hm)
(
0.5 + z

h

)n + Hm − α

2
(Hc + Hm)

(
1 − 2|z|

h

)
(2)

Figure 3a, b shows the alteration of effectivemechanical properties of porousFGM
with z/h for the even and uneven porosity distributions. The effective property E(z)
is calculated for even (Eq. 1) and uneven (Eq. 2) porosity distributions of the FGM
at Ec = 390Gpa, Em = 214Gpa, and α = 0.1. The effective elastic constant for
the even porosity distribution at the porosity index (α = 0.1) reduces throughout the
thickness as shown in Fig. 3a. But for the uneven porosity distribution, the effective
elastic constant reduces utmost at z/h = 0 as given in Fig. 3b, because, at the middle
plane the porosity concentration is maximum. While in case of even distribution the
pores are spread uniformly throughout the thickness.

Where α is the porosity index, Hc and Hm are the mechanical properties of
the ceramics and metal, respectively. The mechanical properties of the FGM are
considered as temperature dependent and declared as a function of temperature:

H = H0(H−1T
−1 + 1 + H1T + H2T

2 + H3T
3) (3)

where H−1, H0, H1, H2, and H3 are the temperature-dependent coefficients as given
in Table 1 and T is the temperature [5, 6, 9, 10].

Fig. 3 The variation of the effective elastic modulus of porous FGM with z/h at α = 0.1 for the
various n; a even porosity b uneven porosity
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Table 1 The coefficients of the temperature-dependent mechanical properties of the FGMs

Materials Properties H0 H−1 H1 H2 H3

Si3N4 [7] E (Pa) 348.43 ×
109

0 −3.070 ×
10−4

2.160 ×
10−7

−8.946 ×
10−11

αexp (K−1) 5.8723 ×
10−6

0 9.095 ×
10−4

0 0

ν 0.24 0 0 0 0

ρ (kg/m3) 2370 0 0 0 0

SUS304 [7] E (Pa) 201.04 ×
109

0 3.079 ×
10−4

−6.534 ×
10−7

0

αexp (K−1) 12.33 ×
10−6

0 8.086 ×
10−4

0 0

ν 0.3262 0 −2.002 ×
10−4

3.797 ×
10−7

0

ρ (kg/m3) 8166 0 0 0 0

Ti–6Al–4V
[10, 11]

E (Pa) 122.9 × 109 0 −4.605 ×
10−4

0 0

αexp (K−1) 7.43e ×
10−6

0 7.483 ×
10−4

−3.621 ×
10−7

0

ν 0.2888 0 1.108 ×
10−4

0 0

ρ (kg/m3) 4420 0 0 0 0

ZrO2 [10,
11]

E (Pa) 132.2 × 109 0 −3.805 ×
10−4

−6.12 ×
10−8

0

αexp (K−1) 13.3 ×
10−6

0 −1.421 ×
10−3

9.549 ×
10−7

0

ν 0.3330 0 0 0 0

ρ (kg/m3) 3657 0 0 0 0

2.2 Kinematic Relations and Displacement Field

Using the curvilinear coordinate axes (ξ , z) the displacement field is defined in the
terms of midplane displacements and the higher-order rotation terms. By incorpora-
tion of the traction-free conditions on the top and the bottom surface of the arch and
accommodating C0 continuity the modified displacement field becomes

ū(ξ, z) = u(ξ) + zφξ (ξ) − 4z3

3h2
(
φξ (ξ) + βξ (ξ)

)

w̄(ξ, z) = w(ξ) (4)

where βξ = ∂w
∂ξ
; The primary field variables are represented as
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{�} = {
u, w, φξ , βξ

}
(5)

The compressed or matrix form representation of the displacement as

{
ū(ξ, z, t)
w̄(ξ, z, t)

}
= {

Ū
} = [

N̄
]{�}, where N̄ =

[
1 0 (z − 4z3/3h2) −4z3/3h2

0 1 0 0

]

(6)

The strain terms for the circular arch are linearly defined as [14, 15]

εξξ = 1

(1 + z/R)

(
∂ ū

∂ξ
+ w̄

R

)

γξ Z = 1

(1 + z/R)

(
∂w̄

∂ξ
− ū

R

)
+ ∂ ū

∂z
(7)

The strain vector is given as

{ε} =
{

εξξ

γξ z

}
(8)

The linear stress–strain relations of the FGM circular arch under thermal
environment conditions are defined as

{
σξξ

τξ z

}
=

[
Q11 0
0 Q55

]({
εξξ

γξ z

}
−

{
δ

0

}
�T

)
(9)

whereQi j and δ are thematerial elastic coefficients and thermal expansion coefficient,
respectively. �T is a change in the temperature.

2.3 Finite Element Methodology

A C0 continuous finite element formulation is applied with 2 noded elements and 4
dof at each node. The generalized displacement and strain vectors are expressed as

{�} = [N ]{�}e and {ε} = [B]{�}e (10)

The strain energy and the kinetic energy of the FGM circular arch are given as

Us = 1

2

∫

V

{ε}T {σ }dV = 1

2
b

L∫

0

{
Λe

}T
[B]T [D][B]

{
Λe

}
dξ
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= 1

2

{
Λe

}T [
Ke

]{
Λe

}
(11)

Tk = 1

2

∫

V

ρ
{ ˙̄U

}T{ ˙̄U
}
dV = 1

2
b

L∫

0

ρ
{
�̇

}eT
[N ]T [N ]

{
�̇

}e
dξ

= 1

2

{
�̇

}eT
[M]

{
�̇

}e
(12)

The variational principle can be used to derive the governing equation for the
free vibration of the FGM circular arch, which is a generalized principle of virtual
displacement. The equilibrium equation for free vibration analysis can be obtained
as

[M]
{
�̈

} + [K ]{�} = 0 (13)

or

[K ]{�} = λ[M]{�} (14)

where λ is the eigenvalue, which can be obtained by incorporating the end conditions
of the arch.

3 Numerical Results

To determine the efficacy and precision of the present finite element model, con-
vergence and validation studies are carried out. The validation is performed for free
vibration analysis of straight FGMbeamwith even and uneven porosity distributions.
The simply supported (S-S) straight beam made of FGM (SUS304/Si3N4) is consid-
ered whose mechanical properties are assumed to be temperature dependent and are
given in Table 1. The frequency parameters of the FGM straight beam are evaluated
at �T = 20K and also compared with those results presented by Ebrahimi and
Jafari [7]. It is seen from Table 2 that the present results are in reasonable agreement
with those results presented by Ebrahimi and Jafari [7].

Table 3 shows the first three frequency parameters of the FGM circular arch
for the h/L = 0.2 are compared with those results given by Malekzadeh [10] and
Eroglu [11]. The mechanical properties of FGM (Ti–6Al–4V/ZrO2) are considered
as temperature dependent as provided in Table 1. The frequency parameters of FGM
circular arch have been obtained for clamped–clamped boundary conditions with
temperature change �T = 400 K, θ0 = 60◦, and n = 2. It is noticeable that the
current results are in the excellent agreement with those results presented by Eroglu
[11] and Malekzadeh [10]. It is also evident from this study that performance and
rate of convergence of the present model are very good in terms of solution accuracy.
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Table 2 Comparison of the frequency parameters λ̄ of S-S FGM straight beam with the porosity
at L/h = 20 and �T = 20K

n Even porosity Uneven porosity

α = 0 α = 0.1 α = 0.2 α = 0 α = 0.1 α = 0.2

0 Present 6.38672 6.94562 7.84147 6.38672 6.70292 7.0885

Ref. [7] 6.30389 6.88939 7.82479 6.30389 6.64111 7.04845

0.5 Present 4.41545 4.48376 4.57254 4.41545 4.50182 4.59810

Ref. [7] 4.27875 4.36908 4.47876 4.27875 4.38047 4.49154

1 Present 3.88201 3.88076 3.87884 3.88201 3.93159 3.98587

Ref. [7] 3.72764 3.74463 3.75865 3.72764 3.79112 3.85843

2 Present 3.49029 3.45061 3.40190 3.49029 3.51835 3.54861

Ref. [7] 3.33104 3.30844 3.27411 3.33104 3.37261 3.41549

5 Present 3.16545 3.10088 3.02325 3.16545 3.17928 3.19398

Ref. [7] 3.01417 2.96886 2.90872 3.01417 3.04242 3.0708

Table 3 Comparison and
convergence study of the

frequency parameter λ̄ of the
FGM circular arch at n = 2,
h/L = 0.2 and �T = 400 K
with the C-C boundary
condition

No of
elements

λ̄1 λ̄2 λ̄3

5 5.8553 10.4816 13.5889

10 5.2831 9.0384 12.7836

20 5.1324 8.6054 12.6305

30 5.1041 8.5229 12.6034

40 5.0942 8.4938 12.5940

50 5.0896 8.4803 12.5897

Ref. [10] 5.069
(0.406%)

8.401
(0.943%)

12.606
(−0.129%)

Ref. [11] 5.064
(0.505%)

8.299
(2.184%)

12.652
(−0.492%)

The dimensionless frequency parameter is defined as λ̄ = λL2/h
√

ρm/Em , where
L = Rθ .

Table 4 displays the frequency parameter of the FGM (Ti–6Al–4V/ZrO2) porous
circular arch for different values of h/L (h/L = 0.2, 0.1, 0.05), gradient indices (n =
0, 1, 2, 5), porosity indices (α = 0, 0.1, 0.2) for both even and uneven distributions at
�T = 400 K and θ0 = 60◦. On observing Table 4, it is concluded that the frequency
parameter (λ̄) reduces with the increase in the value of n. This is because of the
metallic content in FGM increases with an increase in the value of n, consequently
stiffness decreases and hence frequency decreases. In case of even distribution of
porosity, on increasing the value of α, the frequency parameter increases up to n <
1 but decreases after n ≥ 1. In case of uneven distribution of porosity the frequency
parameter ever increases with increasing in α. This is due to the modulus term in
the expression for the uneven distribution of porosity. The influence of thickness to
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Table 4 Influence of porosity on the frequency parameter of the fully clamped FG circular arch
with the volume fraction indices (n) at �T = 400 K, and θ0 = 60◦

h/L n Even porosity Uneven porosity

α = 0 α = 0.1 α = 0.2 α = 0 α = 0.1 α = 0.2

0.2 0 5.6522 5.7033 5.7681 5.6522 5.7006 5.7536

1 5.2119 5. 2108 5.2091 5.2119 5.2356 5.2609

2 5.0896 5.0752 5.0570 5.0896 5.1067 5.1245

5 4.9740 4.9476 4.9147 4.9740 4.9850 4.9961

0.1 0 8.7536 8.8330 8.9335 8.7536 8.8215 8.8965

1 8.0799 8.0793 8.0781 8.0799 8.1096 8.1418

2 7.8869 7.8653 7.8382 7.8869 7.9063 7.9272

5 7.7030 7.6624 7.6118 7.7030 7.7131 7.7236

0.05 0 14.0980 14.2256 14.3873 14.0980 14.3027 14.5276

1 13.0111 13.0092 13.0061 13.0111 13.1518 13.3045

2 12.7284 12.6958 12.6546 12.7284 12.8528 12.9873

5 12.4553 12.3948 12.3192 12.4553 12.5649 12.6829

length ratio (h/L) is noticed that the frequency parameter increases with a decrease
in the value of h/L.

Table 5 presents the dimensionless frequency parameter of the porous FGM (Ti–
6Al–4V/ZrO2) circular arch. In this table, the effect of temperature rise on the fre-
quency parameter of the porous circular arch with the porosity is studied. The fre-
quency parameter (λ̄) of the FGM porous circular arch have been determined for the
various values of the porosity index (α = 0, 0.1, 0.2) and volume fraction index (n
= 0, 1, 2, 5) at �T = 0, 100, 200, 300 K, h/L = 0.2 and θ0 = 60◦ for the both even
and uneven distributions of porosity as given in Table 5. It is noticed that for the both
even and uneven distributions of porosity, the frequency parameters start declining
with the rise in the temperature. This is because of the value of elastic moduli reduces
with rising in the temperature.

4 Conclusions

A C0 finite element method has been adopted to scrutinize the frequency response
of the porous FGM circular arch with clamped–clamped boundary conditions in the
thermal environment. The effect of porosity (microstructural defects) on the free
vibrations of the FGM circular arch is examined. It is concluded that the frequency
parameters reduce with the rise in the temperature for both even and uneven poros-
ity distributions. The frequency parameters reduce with the increase in the volume
fraction index. It is also observed that the frequency parameters always increase by
decreasing the value of thickness to length ratio.
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Table 5 The change in the frequency parameter of the C–C FGM circular arch with distinct values
of n, α, and �T, at θ0 = 60◦, and h/L = 0.2

�T (K) n Even porosity Uneven porosity

α = 0 α = 0.1 α = 0.2 α = 0 α = 0.1 α = 0.2

0 0 6.3288 6.3826 6.4510 6.3288 6.3817 6.4396

1 5.8625 5.8607 5.8584 5.8625 5.8890 5.9172

2 5.7322 5.7162 5.6963 5.7322 5.7515 5.7717

5 5.6089 5.5801 5.5445 5.6089 5.6217 5.6347

100 0 6.1727 6.2263 6.2943 6.1727 6.2247 6.2817

1 5.7095 5.7078 5.7056 5.7095 5.7353 5.7628

2 5.5802 5.5645 5.5449 5.5802 5.5989 5.6186

5 5.4580 5.4296 5.3944 5.4580 5.4703 5.4828

200 0 6.0086 6.0616 6.1289 6.0086 6.0596 6.1154

1 5.5505 5.5489 5.5469 5.5505 5.5756 5.6024

2 5.4228 5.4075 5.3882 5.4228 5.4410 5.4600

5 5.3022 5.2743 5.2397 5.3022 5.3140 5.3260

300 0 5.8354 5.8877 5.9539 5.8354 5.8852 5.9397

1 5.3848 5.3835 5.3816 5.3848 5.4093 5.4353

2 5.2595 5.2445 5.2258 5.2595 5.2771 5.2955

5 5.1410 5.1138 5.0800 5.1410 5.1524 5.1639
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Vibration Response of Shear Deformable
Gradient Plate with Geometric
Imperfection

Ankit Gupta and Mohammad Talha

Abstract The vibration analysis of the geometrically imperfect functionally gra-
dient (FGM) plate has been performed using hybrid higher order deformation the-
ory. The present theory contains the nonlinear variation of thickness coordinate in
in-plane and transverse displacement. The equation of motion for FGM plates are
obtained through variational principle. The solution has been performed using a
finite element method by employing C0 continuous isoparametric formulation with
72 DOF/element. The parametric study has been done to examine the influence of
geometric configurations, volume fraction index and various modes of geometric
imperfection on the vibration characteristics of the FGM plate.

Keywords Geometric imperfection · Vibration · Thickness stretching effect ·
Functionally graded plate

1 Introduction

Functionally gradient materials (FGMs) are advanced materials having the progres-
sive variation of their constituent materials along the predetermined direction [1].
Since the past three decades, these materials have proven their worth in numer-
ous applications such as aerospace, civil, biomechanical, and mechanical industries
[2]. The ability to retain the structural integrity under extreme thermal–-mechanical
loading makes theses material suitable for structural application as well.

Considerable investigations have been perpetrated to inspect the vibrational
attributes of gradient structures. Early research efforts for dynamic analysis of FGM
plate have been presented by Praveen and Reddy [3] in which nonlinear time-
dependent thermoelastic examination of FGM plate has been studied using a finite
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element method. The buckling and vibration response of the FGM polygonal plate
using TSDT has been studied by Cheng and Batra [4]. Ferreira et al. [5] employed
FSDT and TSDTwith the global collocation method to examine the vibration behav-
ior of gradient plates. Neves et al. [6] explored the structural characteristics of sand-
wich gradient plates using a meshless technique and HSDT. Talha and Singh [7]
employed a modified displacement field with thirteen DOFs/node to demonstrate
the displacement and vibration attributes of a gradient plate. Gupta and Talha [8, 9]
developed non-polynomial HOSNT to analyze the flexural and vibration response
of the gradient plate.

In this article, the vibration behavior of the gradient plate with initial geometric
imperfection has been investigated using non-polynomial HOSNT. The effective
material properties of the gradient plate have been computed using sigmoid rule.
Initial geometric imperfection in the plate has been incorporated using a generic
function that is capable to model various imperfection modes such as sine, global,
and local. Comparative studies are provided to illustrate the correctness of the present
formulation.

2 Mathematical Idealization

2.1 Problem Formulation

In the present study, a gradient plate with a cross section (a × b × h) is considered
for the vibration analysis as shown in Fig. 1.

2.2 Displacement Model

A hybrid HOSNT developed by the authors [10] is used in this study for the vibration
analysis of the gradient plate.

U = u − z

[
Ax +

(
�H

h

)
Bx

]
+ Nsinh−1

(
�z

h

)
Bx

V = v − z

[
Ay +

(
�H

h

)
By

]
+ Nsinh−1

(
�z

h

)
By

W = w + �cosh2
(

�z

h

)
Bz (1)

where H = − hcosh2(�/2)√
(1+�2/4)

−1−1
, and the value of the shape parameter “κ“ is 3.4. The

associated field variables are
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Fig. 1 Pictorial representation of gradient plate

{�} = {
u v w Ax Ay Bx By Bz

}T
. (2)

The expression for strains developed can be given as

εxx = ∂U/∂x; εyy = ∂V/∂y; εzz = ∂W/∂z

γxy = ∂U/∂x + ∂V/∂y; γxz = ∂U/∂z + ∂W/∂x; γyz = ∂V/∂z + ∂W/∂y (3)

The Stress–Strain relations of the gradient plate is written as [11]:

{σ }6x1 = Qi j {ε}6x1 (4)
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Q11 = Q22 = Q33 = E(z)
(
1 − υ2

)
1 − 2υ2 − 2υ3

Q12 = Q21 = Q13 = Q31 = Q23 = Q32 = E(z)υ(1 + υ)

1 − 2υ2 − 2υ3

Q44 = Q55 = Q66 = E(z)

2(1 + υ)

2.3 Various Material Properties of Gradient Material

In this study, the Sigmoid law has been employed to compute the effective Young’s
modulus and density of the gradient plate and is written as

{
Vol1f r (z)

} = 1 − 0.5(1 − 2z/t)n{
Vol2f r (z)

} = 0.5(1 + 2z/t)n

Employing the rule of mixture, the effective Young’s modulus and density of the
gradient material can be computed by

{
E(z)
ρ(z)

}
=

{
Ec

ρc

}
Vol1f r (z) +

{
Em

ρm

}(
1 − Vol1f r (z)

)
for 0 ≤ z ≤ t/2

{
E(z)
ρ(z)

}
=

{
Ec

ρc

}
Vol2f r (z) +

{
Em

ρm

}(
1 − Vol2f r (z)

)
for − t/2 ≤ z < 0

2.4 Characteristics Equation

The characteristics equation for the Eigenvalue problem is given as

[K ]{
} = λ[M]{
} (5)

with λ = ω2, where is the frequency of vibrated plate.
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3 Results and Discussion

In this section, first validation examination has been accomplished to exhibit the
exactness of the present solution, then after some new results have been shown for
geometrically imperfect FGM plate. The Young’s modulus and density of metal (Ti–
6AL–4V) is Em = 105.7 × 109 Pa and ρm = 4429 kg/m3 and for ceramic (Si3N4) is
Ec = 322.27× 109 Pa and ρm = 2370 kg/m3, respectively. The generic imperfection
function is employed to generate various geometric imperfection models as shown
in Eq. (6) [12].

ζ̄ = hς cos
[
β1π

( x

a
− χ1

)]
/ cosh

[
α1

( x

a
− χ1

)]
× cos

[
β2π

( y

b
− χ2

)
/ cosh

[
α2

( x

b
− χ2

)]]
(6)

where “ς“ is the Imperfection parameter. Various modes of imperfection can be
obtained using different parameters as presented in Fig. 2 and Table 1.

(i) Perfect (ii) S-type

(iii) G-type                                       (iv) L-type

Fig. 2 Modes of geometric imperfection
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Table 1 Geometric imperfection models

Type α2 α2 β1 β2 χ1 χ2

Perfect plate 0 0 0 0 0 0

Sine-type 0 0 1 1 0.5 0.5

Global-type 0 0 1 1 0.5 0.5

Local-type 20 10 3 1 0.2 0.2

Table 2 Validation of frequency parameter of (SSSS) Al/ZrO2 gradient plate

Mesh size n

0 0.25 1 5 100

2 × 2 0.0941 0.0912 0.0874 0.0876 0.0823

3 × 3 0.0939 0.0911 0.0873 0.0873 0.0821

4 × 4 0.0922 0.0893 0.0856 0.0859 0.0806

5 × 5 0.0915 0.0886 0.0849 0.0854 0.0801

6 × 6 0.0914 0.0885 0.0848 0.0852 0.0799

Akavci [13] 0.09203 0.08895 0.08489 0.08576 0.0790

3.1 Validation Analysis

Example 1 To verify the authenticity of the present method, an Al/ZrO2 gradient
plate has been considered in this example. The calculated results are compared with
the referred results given by Akavci [13]. The nondimensional frequency is assumed
as

(
ω̄ = ωh

√
(ρc/πEc)

)
. Akavci [13] used non-polynomial HSDT to perform the

vibration analysis of FGM plate. Table 2 presents the comparative study of the fre-
quency of SSSS gradient plate. The results reflect the reasonable agreement with the
referred results.

3.2 Numerical Study

3.2.1 Influence of Geometric Imperfection and Geometric
Configurations

Tables 3 and 4 present the nondimensional frequency of Ti–6Al–4V/Si3N4 gradient
plate having different a/h and geometric imperfection with simply supported and
fully fixed boundary constraints. The “n” and b/a is considered as 1. It is noticed
that the frequency parameter increases with a/h ratio. It is also observed that the G-
type imperfection has a noteworthy influence on the frequency of the gradient plate,
whereas the influence of L-type imperfection is least. Themaximum change between
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Table 3 Change in frequency of (SSSS) gradient plate with a/h and geometric imperfection (n =
1, b/a = 1)

Modes a/h

5 10 20 50 100

Perfect 1.0308 1.2046 1.2420 1.2561 1.2587

Sine-type 1.0221 1.2424 1.2697 1.2803 1.2824

% difference* 0.8440 3.1380 2.2303 1.9266 1.8829

Global-type 1.0094 2.0394 2.6731 2.5640 2.5442

% difference 2.0760 69.301 115.225 104.124 102.129

Local-type 1.0259 1.2051 1.2472 1.5283 1.7239

% difference 0.4754 0.0415 0.4187 21.6702 36.9588

*%difference =100* (Perfect plate frequency − Imperfect plate frequency/Perfect plate frequency)

Table 4 Change in frequency of (CCCC) gradient plate with a/h and geometric imperfection (n
= 1, b/a = 1)

Modes a/h

5 10 20 50 100

Perfect 1.7039 2.1089 2.2920 2.3947 2.4199

Sine-type 1.7409 2.1381 2.3102 2.4088 2.4333

% difference 2.1715 1.3846 0.7941 0.5888 0.5537

Global-type 1.8577 3.3921 3.4341 3.3444 3.3330

% difference 9.0264 60.8469 49.8298 39.6584 37.7330

Local-type 1.7230 2.1094 2.2952 2.5619 3.3570

% difference 1.1210 0.0237 0.1396 6.9821 38.7247

the results obtained from the perfect plate and the imperfect plate is 3.1380, 102.129
and 36% for S-type, G–type and L-type imperfection, respectively, for CCCC bound-
ary condition. It is noteworthy that the influence of imperfection is more in thin
plates. The consistent behavior is observed for SSSS boundary constraint as shown
in Table 4.

Tables 5 and 6 depict the change of frequency of gradient plate with b/a and
geometric imperfection for SSSS and CCCC boundary constraints, respectively. It is
found that the nondimensional frequency increases with b/a. Again the same obser-
vation is perceived as outlined in the previous discussion that G-type imperfection
has a substantial impact on the frequency. It is also evident that the change in nondi-
mensional frequency is more in the case of a rectangular plate compared to the square
plate.
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Table 5 Change in nondimensional frequency of (CCCC) gradient plate with b/a and geometric
imperfection (n = 1, a/h = 10)

Modes b/a

1 1.5 2 2.5 3

Perfect 2.1089 2.4278 2.9625 3.5697 4.2066

Sine-type 2.1381 2.4785 3.0322 3.6574 4.3118

% difference 1.3846 2.0883 2.3527 2.4568 2.5008

Global-type 3.3921 4.2595 5.1168 5.9837 6.8742

% difference 60.8469 75.4469 72.7190 67.6247 63.4146

Local-type 2.1094 2.4287 2.9637 3.5712 4.2084

% difference 0.0237 0.0371 0.0405 0.0420 0.0428

Table 6 Change in nondimensional frequency of (SSSS) FGM plate with b/a and geometric
imperfection (n = 1, a/h = 10)

Modes b/a

1 1.5 2 2.5 3

Perfect 1.2046 1.3192 1.5289 1.7777 2.0460

Sine-type 1.2424 1.3896 1.6320 1.9128 2.2126

% difference 3.1380 5.3366 6.7434 7.5997 8.1427

Global-type 2.0394 2.9937 3.8567 4.1483 4.1438

% difference 69.3010 126.9330 152.2533 133.3521 102.5318

Local-type 1.2051 1.3203 1.5306 1.7800 2.0489

% difference 0.0415 0.0834 0.1112 0.1294 0.1417

3.2.2 Influence of Geometric Imperfection and “n”

The change in frequency with “n” and geometric imperfection with fully fixed and
simply supported boundary constraints is given in Table 7 and 8. It is clear that
the frequency decreases as “n” increases. This is because that as “n” increases, the
metallic fraction in the gradient plate increases, therefore the stiffness decreases. It
is noteworthy that the effect of imperfection is more in gradient plate having more
metallic contents.

3.2.3 Effect of Geometric Imperfection and Boundary Constraints

The consequence of the presence of geometric imperfections and various boundary
constraints on the frequency of the gradient plate is given in Table 9. It is clear that the
fewer constraints imposed on the boundary leads in a decrement in the frequency. It is
obvious because less constraint at the boundary of the plate results in the decrement
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Table 7 Variation of frequency of (CCCC) gradient plate with “n” and geometric imperfection
(b/a = 1, a/h = 10)

Modes “n”

0 1 2 5 10 100

Perfect 2.1916 2.1089 2.0606 2.0181 2.0053 1.9992

Sine-type 2.2217 2.1381 2.0895 2.0467 2.0338 2.0277

% difference 1.3734 1.3846 1.4025 1.4172 1.4212 1.4256

Global-type 3.6804 3.3921 3.2877 3.2074 3.1847 3.1742

% difference 67.9321 60.8469 59.5506 58.9317 58.8141 58.7735

Local-type 2.1921 2.1094 2.0611 2.0186 2.0058 1.9997

% difference 0.0228 0.0237 0.0243 0.0248 0.0249 0.0250

Table 8 Variation of frequency of (SSSS) gradient plate with “n” and geometric imperfection (b/a
= 1, a/h = 10)

Modes “n”

0 1 2 5 10 100

Perfect 1.2571 1.2046 1.1738 1.1467 1.1385 1.1345

Sine-type 1.2951 1.2424 1.2117 1.1846 1.1764 1.1725

% difference 3.0228 3.1379 3.2288 3.3051 3.3289 3.3494

Global-type 2.1332 2.0394 2.0138 1.9954 1.9906 1.9885

% difference 69.6921 69.301 71.5624 74.0124 74.8441 75.2755

Local-type 1.2576 1.2051 1.1744 1.1472 1.1390 1.1351

% difference 0.0397 0.0415 0.0511 0.0436 0.0439 0.0528

in the stiffness. It is notable that the impact of imperfection is maximum in the case
of FFFF whereas least in CCCC boundary constraint.

4 Conclusions

In this article, the vibration behavior of the geometrically imperfect gradient plate
has been investigated using hybrid HOSNT. It is concluded that the geometric imper-
fection has a prominent effect on thin plates. The L-type and G-type imperfection
have minimum and maximum effect on the frequency parameter of the FGM plate.
It is also concluded that the influence of geometric imperfection decreases as the
constraint at the boundaries of the gradient plate increases.
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Table 9 Change in nondimensional frequency of gradient plate with various boundary constraints
and geometric imperfection (b/a = 1, a/h = 10)

Model n Boundary conditions

CCCC CFCF SSSS CFSF FFFF

Perfect 0 2.1916 1.3983 1.2571 0.9784 0.8806

5 2.0181 1.2835 1.1467 0.8928 0.8007

10 2.0053 1.2750 1.1385 0.8865 0.7950

Sine-type 0 2.2217 1.4214 1.2951 1.0673 0.1930

% difference 1.3734 1.6520 3.0228 9.0862 78.0831

5 2.0467 1.3060 1.1846 0.9764 0.1922

% difference 1.4171 1.7530 3.3051 9.3638 75.9960

10 2.0338 1.2975 1.1764 0.9697 0.1921

% difference 1.42123 1.76471 3.32894 9.38522 75.8364

Global-type 0 3.6804 2.5870 2.1332 1.7695 1.9474

% difference 67.9321 85.0104 69.6921 80.8565 121.145

5 3.2074 2.3013 1.9954 1.6683 1.8548

% difference 58.9317 79.2988 74.0124 86.8616 131.647

10 3.1847 2.2852 1.9906 1.6654 1.8483

% difference 58.8141 79.2314 74.8441 87.8624 132.491

Local-type 0 2.1921 1.3988 1.2576 0.9874 0.0254

% difference 0.02281 0.03576 0.03977 0.91987 97.1156

5 2.0186 1.2839 1.1472 0.9011 0.0253

% difference 0.0247 0.0311 0.0436 0.9296 96.8402

10 2.0058 1.2754 1.1390 0.8947 0.0253

% difference 0.0249 0.0313 0.0439 0.9249 96.8176
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Characterization of 2D Nanomaterials
for Energy Storage

Akarsh Verma and Avinash Parashar

Abstract Objective of this article is to explore the influence of hydrogenation on
the mechanical and fracture properties of two-dimensional nanomaterials mainly
graphene and hexagonal boron nitride (h-BN) nanosheets. Classical mechanics-
based molecular dynamics approach was used in conjunction with AIREBO and
ReaxFF interatomic potentials to capture the realistic behavior of graphene and h-
BN, respectively. It was predicted from the simulations that full as well as partial
(50%) hydrogenation has deteriorating effect on the properties of graphene; but, in
contrast has a favorable influence on the fracture properties of h-BN. Out-of-plane
displacement in the hydrogenated nanosheets has a significant impact on the overall
properties of these 2D nanomaterials. This study gives important design guidelines
to fabricate nanomaterials for the hydrogen energy storage.

Keywords Graphene · Hexagonal boron nitride · Molecular dynamics · Fracture ·
Hydrogen

1 Introduction

During the last couple of decades, graphene, and h-BN have emerged as the most
promising and fascinating two-dimensional (2D) nanomaterials [1, 2]. Their excep-
tional mechanical and thermal properties are attributed to its space frame honey-
comb lattice structure and quantum confinement. Researchers are exploring diver-
sifying areas of applications that include microelectronics, biomedical, reinforcing
nanocomposites, desalination membrane, clean energy devices, and solar cells for
utilizing these aforementioned 2D nanomaterials [3].

Hydrogen chemical group is a highly combustible and potential futuristic energy
source for an uncontaminated and sustainable economy; but, its room temperature
storage has raised a few questions to the materials scientific community. Ozturk
et al. [4] proposed a 3D carbon-based nanoporous material (containing fullerene
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compound sandwiched between graphene sheets) for the hydrogen storage applica-
tion. In addition to the hydrogen storage dilemma, water desalination, and separation
of ions also make these 2D nanomaterials prone to hydrogenation effect [5, 6].

In the present scrutiny, molecular models were designed in the background
of molecular dynamics (MD) based simulations technique. Accomplishment of
MD computational study depends on the interatomic chemical potential that is
mainly used for perceiving the bonded and nonbonded atomistic interaction. Herein,
the adaptive intermolecular reactive empirical bond order (AIREBO) potential is
employed in all the simulations for calculating and analyzing atomistic interactions
between carbon–hydrogen chemical systems in graphene [7]; whereas, reactive force
field (ReaxFF) is utilized for graphene, h-BN and hydrogen chemical systems [8,
9]. For the per atom stress tensor, virial stresses [10, 11] were predicted using the
mathematical formula (refer Eq. 1):

σα
i j = 1

ϕα

⎛
⎝1

2
mαvα

i vα
j +

∑
β=1,n

r j
αβ f iαβ

⎞
⎠ (1)

The brittle behavior of graphene and h-BN leads to characterizing them from
the fracture point of view, that is quantified by the fracture toughness/critical stress
intensity factor (K IC) as described in the Eq. 2:

KIC = Yσ
√

πa (2)

here, Y is the dimensionless geometry parameter (Y ≈ 1), σ is the normal virial stress
value at the first bond rupture instant and a is half of the central crack length present
in graphene and h-BN sheet. To avoid thermal disturbances and maintain a realistic
room temperature, all the computations were executed at room temperature (300 K)
under NPT ensemble [12]. Open source code software large-scale Atomic/Molecular
MassivelyParallel Simulator (LAMMPS)was employed for this simulations [13, 14];
whereas, open visualization tool OVITO was executed for post handling of dump
files produced by LAMMPS [15, 16]. The authors have taken an integration time
step of 0.5 fs and the nanomaterials were subjected to a tensile deformation (strain
rate being equal to 0.0005 ps−1). The nanosheet size was taken to be 270 Å (in length
and breadth) and the periodic boundary conditions were taken.

2 Results and Discussion

Preliminary computations were carried out to validate the AIREBO and ReaxFF
potential factors for graphene and h-BN, respectively. After validation, tensile test
was conducted for predicting the mechanical behavior of these nanomaterials, as
shown in Figs. 1 and 2. It was concluded from Fig. 1 that failure stress and strain
considerably reduced for the fully and partially hydrogenated graphene sheets as
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Fig. 1 Stress–strain response of pristine, fully and partially hydrogenated sheets of graphene at
300 K

Fig. 2 Stress–strain
response of pristine, fully
(H-BN) and partially (H-BN)
hydrogenated h-BN
nanosheets at 300 K
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compared to pristine one. Moreover, the partially hydrogenated graphene (with 50%
coverage) has comparatively higher fracture strength than the fully hydrogenated
one. Out-of-plane displacement in the hydrogenated graphene and the change in its
hybridization state from sp2 to sp3 were attributed as themain reasons behind diluting
the properties of graphene (see Fig. 3). The out-of-plane displacement leads to an
increase in carbon–carbon bond length, thus, decreasing its bond strength. Besides
this, decrement in contribution of s-orbital and increment of p-orbital (directional
dependent) lead to bond strength deterioration in the in-plane direction. Hence, we
observed an overall deteriorating tensile strength for the hydrogenated graphene
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Fig. 3 Out-of-plane displacement in hydrogenated graphene
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Table 1 Fracture toughness
of pristine and hydrogen
passivated crack edges for
graphene

Material Configuration K IC
(MPa m−1/2)

ZZ AC

Graphene Pristine 3.54 2.65

Fully hydrogenated 2.77 2.40

Partially hydrogenated (50%) 2.85 2.43

h-BN Pristine 4.35 4.17

Fully hydrogenated 5.13 5.13

Partially hydrogenated (H-BN) 4.49 5.03

structure. Similar kind of declining effect was predicted for hydrogenated h-BN as
shown in Fig. 2. Despite the reduction in fracture stress of fully hydrogenated (100%
coverage) aswell as partially hydrogenated (50%coveragewithH atomattached only
to B atoms) h-BN nanosheets, a noteworthy enlargement in fracture toughness of H-
BN (partially hydrogenated) was detected. The improvement in fracture toughness
of H-BN was accredited to shifting of the polarization charge state of hydrogen with
increase in the strain values and also to the crack tip blunting phenomenon. Similar
kind of effort was implemented to witness the influence of hydrogen passivation
of crack tip atoms on the fracture toughness of aforementioned 2D nanosheets. The
fracture toughness in terms of stress intensity factor (K IC) was estimated and has been
showcased in Table 1. It may be predicted from this table that the hydrogenation has
deteriorating effect on K IC of graphene, but it helps in improving the K IC of h-BN
nanosheets. This enhanced fracture toughness would enable these 2D nanomaterials
to soak large energy erstwhile to failure and augmented toughness too, leading to
amended energy storage and structural applications.

Thus, we have shown that the molecular dynamics-based simulation helps in
predicting positive aswell as negative impact of hydrogenation onh-BNandgraphene
nanosheets, respectively.

3 Conclusion

Molecular dynamics-based simulations have been conducted to analyze the effect of
hydrogen adatoms on the mechanical and fracture properties of 2D nanomaterials
(graphene and hexagonal boron nitride (h-BN) nanosheets in particular). AIREBO
and ReaxFF interatomic potentials were used to capture the realistic behavior of
graphene and h-BN, respectively. It was predicted from the simulations that full as
well as partial hydrogenation has deteriorating effect on the properties of graphene
because of the transition in hybridization state and significant out-of-plane displace-
ment; but, in contrast has a favorable influence on the fracture properties of h-BN.
This work gives significant design guidelines to fabricate 2D nanomaterials for the
hydrogen energy storage application.
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Cold Expansion of Elongated Hole:
A Realistic Finite Element Simulation

S. Anil Kumar and N. C. Mahendra Babu

Abstract Elongated holes are found in many aerospace structural components and
are prone to fatigue failure due to the stress concentration effect at the edge of the
hole. Different approaches like shape reworking, shape optimization, and cold expan-
sion combined with interference fitting are currently used as a repair/life extension
option, to overcome fatigue cracking problems around elongated holes. In practice,
these approaches lead to either addition of material or modification of geometry. A
novel and economical method derived from renowned hole cold expansion process
is proposed in the literature to enhance the fatigue life of elongated hole without
adding material and modifying hole geometries. Benefit of implementing proposed
novel cold expansion method for elongated hole is investigated in this work through
a simplified three-dimensional nonlinear Finite Element simulation. Distributions of
induced beneficial residual stress around and along the thickness direction of elon-
gated hole are predicted from the FE simulation. The results indicate introduction of
significant beneficial residual stresses throughout the thickness surface of elongated
hole. These beneficial residual stresses are responsible for fatigue life extension and
can be further used to quantify the achieved fatigue life enhancement.

Keywords Elongated hole · Cold expansion · Beneficial residual stresses · Fatigue
life enhancement

1 Introduction

Aircraft industries are continuously facing challenges in developing the lightweight
structures with increased durability and damage tolerance. One such example is
the frequent in-service fatigue cracking problems around fuel flow vent holes of
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wing pivot fittings in F-111 aircarfts [1–3]. These fuel flow vent holes are machined
elongated holes with semi-circular ends (i.e., noncircular holes) in wing pivot fitting
components for the purpose of allowing fuel flow in the wings. Among several
such functional elongated holes in wing pivot fittings, some of the elongated holes
are extremely vulnerable for premature fatigue cracking owing to flight operational
loads [4–6]. To repair the fatigue-damaged elongated holes, different life extension
approaches, viz., shape reworking, shape optimization, and cold expansion combined
with interference fitting approaches are used in practice [1–6].

In shape reworking approach, the material layers on the elongated hole bound-
aries are progressively machined to slightly higher sizes so that the material layers
containing fatigue cracks are completely eliminated [1, 4]. Although shape rework-
ing eliminates fatigue cracking problem during repair stage, it is not possible to
avoid fatigue cracking problems which arise during later stages of service life of the
component. The shape optimization approach involves optimizing fatigue-damaged
elongated hole shapes with an objective of minimizing stress concentrations and
maximizing fatigue life/damage tolerance by employing optimization algorithms [1,
6]. Although optimization of elongated hole shapes significantly reduces the peak
stresses at stress concentration locations, the production of optimized hole shapes
often poses difficulties due to complexities in hole geometries. Hence, to overcome
the limitations of shape reworking and shape optimization approaches, cold expan-
sion combinedwith interferencefitting approach is developed. In this approach, a spe-
cially designed oversized mandrel/sleeve combination made of hardened material is
permanently inserted into elongated hole opening causing cold expansion combined
with interference fitting. As a result, compressive residual stresses are developed
around damaged elongated hole impeding the fatigue crack initiation/propagation
under in-service operational loads [1–6]. Though the cold expansion combined with
interference fitting approach is found to be capable of enhancing the fatigue life
of elongated holes to larger extents, it leads to addition of extra material on the
wing pivot fitting assemblies. Application of proceeding approaches in repairing
fatigue-damaged elongated holes lead to either shape modification or material addi-
tion thereby posing a difficulty in meeting one of the mandatory air force durability
and damage tolerance certification requirements. This requirement insists to pre-
vent or repair fatigue-damaged structural holes without adding extra material and
imposing costly structural replacements [7, 8].

To overcome the aforementioned limitations of different life extension
approaches, a novel cold expansion method which is derived from the renowned
hole cold expansion process is proposed in Ref. [9] for enhancing the fatigue life of
elongated holes. Although the novel method of cold expansion for elongated holes
is proposed, none of the researchers have previously attempted to investigate the
method in detail and quantify resulting fatigue life enhancement benefits. Hence, an
attempt is made in the present work to realistically simulate the novel cold expan-
sion method for typical elongated hole in Al 7075-T651 plate and adequately predict
the cold expansion-induced beneficial residual around the elongated hole and its
thickness directions by developing a simplified FE framework.
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2 A Novel Cold Expansion Method for Elongated Hole

The proposed novel cold expansion method can be implemented on fatigue-damaged
or aged elongated hole in two steps as schematically illustrated in Fig. 1. In the first
step, a specially designed hardmetal insert is tightly fitted into elongated hole opening
in such away that circular hole region is obtained at one of the ends as shown in Fig. 1.
Further, a hardened and tapered mandrel of size greater than the diameter of hole
region is gradually forced into hole region from one (entry) side and subsequently
removed from the other (exit) side. As an effect, the material surrounding semi-
circular end region of the elongated hole is cold expanded similar to regular cold
expansion process [9–11].

In the second step, the hard insert is reversed and again fitted into elongated hole
opening so as to obtain circular hole region at other end of the elongated hole. The
obtained circular hole region is further cold expanded by gradually passing the over-
sized mandrel and the operation is completed by removing the insert. This novel
method of cold expansion process can be applied to critical elongated holes either
during manufacturing stage or repair stage. As a result of cold expansion, perma-
nent compressive residual stresses are induced around stress concentration locations
such as semi-circular ends of elongated hole. The extent of compressive residual
stresses induced around semi-circular ends of elongated hole depends on the dia-
metrical interference between maximum diameter of the mandrel and diameter of
the circular hole region. Although the compressive residual stresses are induced
in all three-dimensions such as radial, tangential, and transverse (thickness) direc-
tions, the residual stresses induced in tangential directions are effective in prevent-
ing fatigue crack initiations/propagations. Hence, these tangential residual stresses
(σ θ ) are termed as beneficial residual stresses which actually lead to fatigue life
enhancement of cold expanded elongated holes.

Hardened 
Mandrel 

Insert

Elongated 
Hole

Step 1 Step 2

Insert in Reversed 
Position 

Oversized Portion 

Fig. 1 Schematic of steps involved in cold expansion of elongated hole
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3 Three-Dimensional Finite Element Simulation of Cold
Expansion of Elongated Hole

To investigate the benefit of implementing proposed cold expansion method to elon-
gated hole, a three-dimensional nonlinear FE simulation is carried out. For the pur-
pose of simulation, a typical elongated hole configuration made of aircraft grade Al
7075-T651 material as shown in Fig. 2 is considered. Owing to the symmetry of the
geometry considered (Fig. 2), only quarter symmetry FE model is created in FEA
tool (ANSYS) as shown in Fig. 3. In this model, 9,568 numbers of 8-noded solid
185 element types are used after ensuring mesh convergence through the number
of trial runs. The material properties for present FE simulation are obtained from
the true stress–strain curve reported in Ref. [12]. These properties include elastic
modulus = 72 GPa, Poison’s ratio = 0.3 and yield strength (σ y) = 506 MPa. The

Fig. 2 Dimensions (mm) of the plate with elongated hole (R—radius of the semi-circular end,
C—spacing between semi-circular ends)

Fig. 3 Quarter symmetry FE model of the plate with elongated hole
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nonlinear material behavior is modeled using tangent modulus of 1000 MPa under
Mises plasticity option with isotropic hardening rule.

The situation of implementing proposed cold expansionmethod to elongated holes
can be considered as equivalent to sequential cold expansion of two closely spaced
adjacent circular holes (Fig. 1). Taking this consideration into account, themechanics
of cold expansion process around closely spaced adjacent holes have been reviewed
from the published literature [12–16]. It is identified that either simultaneous or
sequential cold expansion of closely spaced adjacent holes (hole center-to-center
spacing is equal to two times the hole diameter) induces approximately same level
of compressive residual stresses around the holes. Hence, during simulation of cold
expansion for elongated hole, it can be considered that both circular hole regions
(at either semi-circular ends) are simultaneously cold expanded for the purpose of
simplifying FE modeling and reducing computational time.

The complete cold expansionmethod for elongated hole is simulated in two stages,
viz., gradual expansion of thematerial layer by layer on semi-circular end during first
stage and release of expanded material layer by layer in the same sequence during
second stage. For accounting the effects of layer by layer material expansion and
relaxation, the total thickness (3 mm) of the plate is divided into 8 equal elemental
divisions as shown in Fig. 3. These eight divisions are further grouped as three layers
having three elemental divisions in each layer. This grouping of layers is only for
the purpose of studying through-thickness effects, whereas, in the actual plate, the
material along the thickness is continuous. In the first stage of simulation, each layer
along the thickness direction is sequentially expanded one after the other starting
frommandrel entry side (top plane) and moving towards the exit side (bottom plane)
of the plate. The expansion of each layer is simulated by applying the displacements
that cause circular hole region to expand by 2% of its diameter (expansion level).
This indicates the gradual engagement of mandrel into circular hole region from
the entry side (top plane), expansion of material along hole thickness direction and
removal of mandrel from the exit side (bottom plane).

In the second stage of simulation, all the displacements which are applied in the
first stage of simulation are successively removed layer by layer starting frommandrel
entry side towards the exit side of the plate. This indicates the gradual elastic-plastic
recovery (spring-back) of expandedmaterial on the circular hole region starting from
mandrel entry side to exit side. Throughout the simulation, the effect of insert in
elongated hole slot is considered by constraining the displacements on straight edge
portion of elongated hole boundary. Whereas, in actual cold expansion situations,
after cold expansion of circular hole regions at either end of elongated hole, the insert
is permanently ejected-out thereby leaving the semi-circular ends in cold expanded
state. Thus, after the complete FE simulation, the semi-circular ends of elongated
hole are in cold expanded state.
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4 Results and Discussions

4.1 Validation of Finite Element Simulation Framework

Tovalidate the FE simulation framework developed for simulating the cold expansion
of elongated hole in the present work, either experimental or numerical results are not
available in literature. Hence, for validating the present FE simulation framework, the
case of two adjacent circular holes whose radius equal to end radii of elongated hole
is considered in the configuration identical to elongated hole configuration shown in
Fig. 2. For this case having two adjacent circular holes in the plate of dimensions
shown in Fig. 2, the results of sequential cold expansion process are available [16].
Therefore, for the purpose of validation, a separate half-symmetry FE model having
two adjacent circular holes is developed as shown in Fig. 4 using 14,896 numbers of
8-noded solid 185 element type after testing mesh convergence.

To capture through-thickness variation effects, the thickness (3 mm) of the plate
is discretized into 8 equal elemental divisions as shown in Fig. 4. The complete simu-
lation of cold expansion around adjacent circular holes is carried out through several
loading steps by following the FE simulation framework employed for elongated
hole. From the FE simulation on cold expansion of adjacent circular holes for 2%
expansion level, the beneficial residual stress distribution is predicted and presented
in Fig. 5. It is evident from Fig. 5 that cold expansion-induced beneficial residual
stresses vary throughout the thickness of holes starting from a minimum magnitude
of 228MPa (compressive) to maximummagnitude of 606MPa (compressive). Also,
the beneficial residual stress variations on top and bottom planes of two adjacent
holes are predicted and validated with published results [16] as shown in Fig. 6.
This validation study shows that present simplified FE simulation framework is

Fig. 4 Quarter symmetry FE model of the plate with two adjacent circular holes
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Fig. 5 Beneficial residual stress distribution around adjacent circular holes

Fig. 6 Variation of normalized beneficial residual stresses over the normalized distance on hole
centerline section
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capable of realistically predicting through-thickness variations of cold expansion—
induced beneficial residual stresses. Hence, the developed simplified FE simulation
framework is reliably extended to simulate the cold expansion of elongated hole.

4.2 Beneficial Residual Stresses Around Cold Expanded
Elongated Hole

The beneficial residual stress distributions predicted around cold expanded elongated
hole is as shown in Fig. 7. It is clear from Fig. 7 that significant beneficial residual
stresses are induced around the hole and along the thickness direction of critical
locations, viz., semi-circular ends of elongatedhole.These beneficial residual stresses
are found to significantly vary throughout the thickness of elongated hole starting
from the top plane to the bottom plane. Under remote fluctuating loads, sections HH1

and VV1 shown in Fig. 2 are found to be critical for fatigue failures around elongated
hole.Hence, the variations of beneficial residual stresses ondifferent planes (top,mid-
thickness, and bottom) of critical sections (HH1 andVV1) are predicted and presented
in Figs. 8 and 9. Also, the through-thickness variations of beneficial residual stress
at two critical locations (H and V) on elongated hole boundary is predicted as shown
in Fig. 10.

Along with the thickness of location ‘H’, the beneficial residual stresses vary
from a minimum magnitude of 171 MPa (compressive) on bottom plane to 613 MPa
(compressive) on a plane which is at a distance of 2.25 mm from top plane (Fig. 10).

Fig. 7 Beneficial residual stress distribution around elongated hole
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Fig. 8 Variation of normalized beneficial residual stresses over the normalized distance on
centerline section HH1 of elongated hole

Fig. 9 Variation of normalized beneficial residual stresses over the normalized distance on section
VV1 of elongated hole
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Fig. 10 Variation of beneficial residual stresses through the thickness of critical locations H and V
of elongated hole

Similarly, along the thickness of location ‘V’, the beneficial residual stresses vary
from a minimum magnitude of 444 MPa (compressive) on bottom plane to 633 MPa
(compressive) on a plane which is at a distance of 0.75 mm from top plane (Fig. 10).
In the region between elongated hole edge and edge of the plate, the magnitudes
of beneficial residual stresses are found to be maximum at semi-circular end and
gradually decays over the distance away from the semi-circular ends as observed
from Figs. 8 and 9. On top, mid-thickness and bottom planes, the beneficial residual
stresses remain compressive up to 1.25 mm distance from the elongated hole edge (H
and V) as shown in Figs. 8 and 9. Beyond this region, equilibrating tensile residual
stresses of small magnitudes are induced up to certain distance and further decays
to negligible magnitude as observed in Figs. 7 and 8. Similar trend is observed
for all the planes along the thickness direction. Due to the minimum magnitude of
beneficial residual stress on bottom plane (Fig. 10), the locations on this bottom plane
are the most probable locations for fatigue crack initiation/propagation. As observed
fromFigs. 7, 8, 9 and 10, the through-thickness variation of cold expansion—induced
beneficial residual stresses are due to nonuniform expansion/recovery of the material
and difference in material support conditions along the thickness direction.

Thus, the developed FE simulation framework is simple to implement and capable
of adequately predict the cold expansion-induced beneficial residual stresses around
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the hole and alongwith the thickness of elongated holes. The present predictions con-
firm the presence of significant beneficial residual stresses around the semi-circular
ends and its thickness directions. As a result, the possibility of fatigue crack initia-
tion/propagation around the semi-circular end locations is reduced thereby leading to
appreciable fatigue life enhancement of elongated hole without adding extra material
and modifying hole geometry.

5 Conclusions

• The simplified three-dimensional nonlinear FE simulation framework for real-
istically simulating the novel cold expansion method for elongated hole is
developed

• The through-thickness variations of cold expansion-induced beneficial residual
stresses around the elongated hole and along the thickness directions are predicted

• Induced beneficial residual stresses are found to significantly vary throughout the
thickness of elongated hole owing to nature of cold expansion process

• Induced beneficial residual stresses reduce the tendency of fatigue crack initi-
ation/propagation at the stress concentration locations (semi-circular ends) of
elongated hole thereby leading to significant fatigue life enhancement

• The beneficial residual stress predictions from the present FE simulation can be
further used to quantify the exact fatigue life enhancement benefit which can be
achieved due to cold expansion.
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Sciences, Bengaluru-58 for carrying out this research work.
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Effect of Module on Wear Reduction
in High Contact Ratio Spur Gears Drive
Through Optimized Fillet Stress

R. Ravivarman, K. Palaniradja and R. Prabhu Sekar

Abstract The current study intends to predict the wear obstruction of high contact
ratio spur gears over optimized fillet stress between the wheel and pinion. As the
fillet region of the wheel is considered to be the critical region with high stress
concentration, it becomes essential to study the wear depth at this enhanced bending
strength. The optimization of fillet stress is carried out through profile modification
technique and the tooth wear of the gear drive is examined using contact analysis
and analytical method by taking in the tooth load distribution at the contact points,
fillet stress and strength during contact for various work cycles. This examination
additionally investigates the impact of module over depletion of material from the
tooth surface of the transmission system and lastly the outcomes are conferred that
the reduced stress for the high contact ratio gear drive has enhanced wear resistance.

Keywords High contact ratio · Optimized · Module · Spur gear · Wear reduction

Nomenclature

E Modulus of rigidity in GPa
F Distribution of load in N
R Radius of curvature in mm
X Space between the contact and pitch point in mm
a Semi contact width in mm
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h Wear depth in mm
ha Addendum coefficient in mm
i Gear ratio
k Tooth thickness factor
m Gear module in mm
p Base pitch in mm
s Sliding distance in mm
v Sliding velocity in m/s
z Teeth number

Symbols

α Pressure angle in degree
θ Angle of half tooth thickness at any engagement contact in degree
ν Poisson’s ratio
σ Stress in MPa
ω Angular velocity in rad/s

Subscripts

N Normal in direction for the tooth
a Addendum
b Base circle
g Wheel
i Contact at any engagement
n Meshing cycle
p Pinion
o Pitch circle
max Maximum

Abbreviations

FE Finite element
FHPDTC First highest point of double tooth contact
FLPDTC First lowest point of double tooth contact
HPTC Highest point of tooth contact
LPTC Lowest point of tooth contact
SHPDTC Second highest point of double tooth contact
SLPDTC Second lowest point of double tooth contact
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1 Introduction

Nowadays power transmission drives demand for efficient load-carrying capacity
under minimum wear, noise and vibration with compactness. This competitive sce-
nario brings the high contact ratio gears into play as a swap for normal spur gear
drives. Since high contact ratio gear drive gives the added advantage of increased
contact ratio without the need for helical gears, which introduces thrust forces in the
system. Bending of tooth and depletion of material from tooth surface is the signif-
icant reason for the major modes of failure which happen due to contact pressure
and insufficient strength during the bending of tooth. This contact pressure and fillet
stress is a significant parameter in disturbing the load-carrying ability of gear drives.
In common inadequate contact, strength tends to failures like wear, surface pitting,
and scoring.

In the accessible literature, numerous examinations have been done to predict the
tooth wear of gear drives by changing the tooth profile. This variation in the tooth
profile will cause changes in the tooth load distribution which will in turn lead to
attrition of the tooth profile [1, 2]. Subsequently, it ends up vital to assess the wear
profundity of the tooth profile during contact. Archard’s [3] characterized a summed
up equation for predicting the tooth wear during frictional sliding of the transmission
system. The strength of the tooth profile during the bending in spur gear was studied
and exploited byAndrews [4] using numerical analysis. The impact of load in sintered
spur gear and the wear on the surface of the tooth was represented by Dhanasekaran
and Gnanamoorthy in their study [5, 6]. Performance of a metallic involute spur
gear drive was well predicted by Walton [7] under a dry and unlubricated condition
and compared. Sivakumar et al. [8] directed an examination on the combat tracked
vehicle(s), for enhancing the contact ratio of the transmission drive. The efficiency
of non-standard normal contact ratio gears was obtained by Prabhu Sekar et al. [9]
which aids the advantages of this improved bending strength drives. In all cases, just
constrained investigation has been carried out on the removal of material from teeth
surfaces of high contact ratio gear drive. In this work, an effort was carried out to
predict the tooth wear depth by utilizing the method of altering the tooth thickness
for different modules through finite element analysis.

2 Critical Contact Points of the Gear Teeth

In the course of power transmission, the full load (FN) is shared by two consecutive
teeth of the meshing spur gear for an instant of time (double pair contact regions—
BC and DE) and for the remaining instant three teeth takes the full load (triple pair
contacts regions—AB, CD and EF). Hence, it is important to get the critical contact
point (Fig. 1) and its radial distance [10] which is given by Eqs. (1)–(6).

rHPTC = rap (1)
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AB

CP D
EF

LPTCFLPDTC

FHPDTCSLPDTC
SHPDTC

HPTC

Fig. 1 Critical contact positions during meshing

rSHPDTC =
√(√

r2ap − r2bp − AF + 2pb
)2

+ r2bp (2)

rSLPDTC =
√(√

r2ap − r2bp − pb
)2

+ r2bp (3)

rFHPDTC =
√(√

r2ap − r2bp − AF + pb
)2

+ r2bp (4)

rFLPDTC =
√(√

r2ap − r2bp − 2pb
)2

+ r2bp (5)

rLPTC =
√(√

r2ap − r2bp − AF
)2

+ r2bp (6)

AF =
√
r2ap − r2bp +

√
r2ag − r2bg − a0 sin α0 (7)

3 Methodology

3.1 FE Model of High Contact Ratio Transmission Drive

The fillet stress and contact pressure are assessed using FE analysis for which a code
has been developed in Ansys Parametric Design Language (APDL). Bi-dimensional
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five teeth model during contact (Fig. 2 and Table 1) with plain strain condition
and four-noded quadrilateral elements (PLANE 42) with two degrees of freedom is
assumed. CONTA172 (Contact) and TARGE169 (Target) is utilized for study from
ANSYS. For this examination, the face width is taken uniform throughout the plane.
Optimized edge length is found by performing a convergence study at the critical

(a) Bi-Dimensional Model teeth during contact (b) Fine meshed region

(b) Pressure distribution in contact point (b) Von Mises stress in contact point

Fig. 2 FE model of high contact ratio drive

Table 1 Input variables Variables Units Symbols Readings

Pressure angle ° αo 20°

Modulus of rigidity GPa E 210

Teeth number in pinion zp 50

Gear module mm m 1

Gear ratio i 1.5

Addendum coefficient mm ha 1.2

Poisson’s ratio ν 0.3

Input load N FN 10

Input speed rpm Np 500
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regions of the gears. Rim portion of the gears is arrested in both the axis and the
rim of the pinion is arrested only in the radial axis whereas in the other axis, the
tangential force is applied in the rim.

3.2 Prediction of Tooth Wear Depth

Generalized equation by Anderson and Erikson [11] for calculating the tooth wear
depth is specified as

hi,n = hi,(n−1) + Jw(σH)i
(
sp

)
i (8)

where

Jw = J
H , wear coefficient—5 × 10−16 m2/N [12]

h—wear depth

Sliding distance at any instant engagement point is by [12]

(
sp

)
i = 2ai

((
vp

)
i − (

vg
)
i(

vp
)
i

)
(9)

Semi contact width (ai) established during engagement along the contact path is
specified as

ai =

√√√√√4Fi
πb

(1−ν2
p)

Ep
+ (1−ν2

g)
Eg

1
(Rp)i

+ 1
(Rg)i

(10)

Respective, peripheral velocity is known by

(
vp

)
i = ωp

(
Rp

)
i (11)

(
vg

)
i
= ωg

(
Rg

)
i

(12)

The radius of curvature at any instant engagement point is specified as [12].

(
Rp

)
i = rop sin α0 − Xi (13)

(
Rg

)
i = rog sin α0 + Xi (14)

Tooth profile layout with the coordinates is presented in Fig. 3. Equation (8)
reveals the amount of wear depth after each working cycle. Totally 2000 working
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Fig. 3 Tooth layout with loading points

cycles is considered for the study in which the profile is updated periodically. Initial
coordinates are specified as (xi, yi) and the worn out coordinates are mentioned as(
x ′
i , y

′
i

)
,

x ′
i = xi − hi cos θ ′

i (15)

y′
i = yi − hi sin θ ′

i (16)

where

xi = Ri cos θi

yi = Ri sin θi

4 Optimization of Fillet Stress Through Profile
Modification of Gear Tooth

In profile modification technique, the tooth thickness is modified along the reference
line which is considered to be an effective technique in gear design as suggested
by Prabhu Sekar and Muthuveerapan [13–15]. By varying the tooth thickness factor
(kp), the fillet stress of the pinion is optimized with respect to the gear. The tooth
layout utilized for analysis and the critical points for the loading [10] in the wheel
and pinion of high contact ratio gears engaged for finite element analysis are shown
in Fig. 2. In this examination, the optimized fillet stress is accomplished between the
gear drives by varying the thickness of the tooth at the pitch line. It is inferred that
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Fig. 4 Variation of fillet stress for tooth thickness

the unbalanced maximum fillet stresses begin to decrease with reduction in tooth
thickness factor (kp = 0.42) by which the required kp for achieving the balanced
fillet stress (σ t max) decreases eventually. The optimum estimation point of tooth
thickness factor (kp) for attaining the balanced σ t max between the pinion and wheel
is determined (Fig. 4). Maximum balanced stress at the fillet is achieved (σ t maxp =
σ t maxg = 15.269 MPa) at kp = 0.4854. Henceforth, the tooth load-carrying capacity
of the spur gear drive is improved through the design modification suggested than
the unbalanced one.

5 Effect of Module Over Wear Depth

The effect of module (m) on high contact ratio spur gear drive is examined for the
increase of gear module (m = 1, 2 and 3) in optimized event. Along the contact
path of instantaneous engagement points, the predicted values of load distribution
of the gear drive, stress at the fillet region, contact pressure and wear depth are
studied.While balancing themaximum bending stress for different module, the tooth
thickness factor (kp) is found to be constant because the ratio in which the size of the
gear changes is also constant for increasing module. From Fig. 5b, it is evidenced a
certain amount of decline in maximum balanced fillet stress for increasing module
(Table 2) is observed as stated in Lewis equation where gear module is inversely
proportional to fillet stress.

It is observed that the load share (Fig. 5a) is identical during the complete course of
mesh cycle that is primarily because of the joint impact in constant bending moment
arm and critical tooth thickness factor (kp). As m increases, the contact pressure
decreases during the total course of the work cycle due to the influence of the radius
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(a) Load share along the path of contact

(b) (σt)max along the path of contact (for balanced stress)

Fig. 5 Effect of module on high contact ratio spur gear drive

of curvature (Fig. 5c). The accumulated wear depth reduces considerably along the
contact path because of the reduced contact pressure and sliding distance. Thus, the
material worn out from the pinion tooth surface is lower in the high contact ratio
gear drive when the module increases (Fig. 5d).



248 R. Ravivarman et al.

(c) Contact pressure (σH) along the path of contact

(d) Wear depth (h) along the path of contact

Fig. 5 (continued)

Table 2 Balanced fillet stresses for different modules

Module (m) Balanced maximum fillet stress (σ t)max
MPa

Contact pressure (σH)max MPa

1 15.269 199.724

2 7.656 140.571

3 5.118 113.587
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6 Conclusions

The maximum amount of material worn from the tooth surface on the high contact
ratio spur gear drive (for optimized fillet stress) is assessed through the contact
analysis and the subsequent conclusions have been brought down.

• In a transmission drive with a higher gear ratio, the bending strength of the wheel
and pinion is not same which is optimized through profile modification.

• In increasingmodule, the balanced bending stress decreases since the critical tooth
thickness of the teeth increases m number of times.

• There is a decrease in contact pressure observed during the complete course of the
mesh cycle because of the increase in the radius of curvature.

• A high contact ratio gear drive with optimized stress in the fillet region has
improved wear resistance for increasing gear module due to the influence of
reduced contact pressure and fillet stress.

Acknowledgements Deepest gratitude of thanks to the INSPIRE Fellowship scheme of DST,
Government of India for supporting with monetary assistance.
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Force Estimation on a Clamped Plate
Using a Deterministic–Stochastic
Approach

Akash Shrivastava and Amiya R. Mohanty

Abstract Here, amodel-based force estimation technique is presented for a clamped
plate. The present technique uses a deterministic–stochastic technique to estimate
unknown forces acting at known locations.This approach requires amodally reduced-
order model and limited measurements of structural response to unknown forces.
Numerical examples are presented for a clamped plate with different loading con-
ditions. Gaussian noise is added in the response obtained from the full-order finite
element model. The responses at unmeasured locations are predicted using system
equivalent reduction expansion process (SEREP). The effects of the number of mea-
surement andmeasurement noise level are shown. The results show that the proposed
technique can successfully be used for force estimation of plate type structures.

Keywords Kalman filter · Force estimation · Finite element method · SEREP ·
Reduced-order model

1 Introduction

The forward and inverse problems are two important areas of research in structural
dynamics. In the forward problem, the governing differential equations are solved
to obtain structural responses for known forces and constraints. In the inverse prob-
lem approach, the excitation forces or structural parameters are obtained, which are
difficult to measure directly. The regularization and statistical inversion [1] are two
types of approaches to solving an inverse problem.

Themost commonengineering structures are plates, and their analysis is important
in the fields of civil, mechanical, and aerospace engineering. The plate structures are
often exposed to different loading environments. There are plenty of techniques

A. Shrivastava (B) · A. R. Mohanty
Acoustics and Condition Monitoring Laboratory, Mechanical Engineering Department, Indian
Institute of Technology, Kharagpur 721302, India
e-mail: shri.aka1990@gmail.com

A. R. Mohanty
e-mail: amohanty@mech.iitkgp.ernet.in

© Springer Nature Singapore Pte Ltd. 2020
B. N. Singh et al. (eds.), Recent Advances in Theoretical, Applied, Computational
and Experimental Mechanics, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-1189-9_21

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1189-9_21&domain=pdf
mailto:shri.aka1990@gmail.com
mailto:amohanty@mech.iitkgp.ernet.in
https://doi.org/10.1007/978-981-15-1189-9_21


252 A. Shrivastava and A. R. Mohanty

proposed by the researchers to solve a forward problem, e.g., obtaining strains,
stresses for known forces. However, limited research work has been done in the field
of the inverse problem. There are some deterministic kinds of solutions are proposed
to solve inverse problems. In the last two decades, the deterministic–stochastic type
approaches are proposed for unknown input estimation.

Here, a deterministic–stochastic type unknown force estimation technique is pre-
sented that uses a mathematical model of the system under consideration and system
equivalent reduction expansion process (SEREP). Therefore, these techniques are
now briefly reviewed.

To estimate unknown input, a Kalman filter-based technique is presented by Tuan
et al. [2]. Later, this technique was applied for the estimation of external forces acting
on beam [3] and plate [4] type structures. This algorithm consists of two parts, in
the first part innovations and gains are calculated, and in the second part, the inputs
are estimated using the recursive least-square algorithm. This technique requires a
fading (or forgetting) factor ‘γ’ in the second step, which compromises between fast
adaptive capability and loss of estimation accuracy and set to a value between 0 and
1. Later, a modification was presented for ‘γ’ using fuzzy logic inference [5]. In all
the available literature of this technique, either single degree-of-freedommodel, full-
order finite element model [3], or experimentally identifiedmodel [4] are used. Finite
element modeling is widely used to analyze engineering structures, e.g., plate. The
full-order finite element model requires measurements of all the degrees-of-freedom.
However, in a practical situation, only limited response measurements are available.
Lourense et al. [6] presented an online unknown input estimation technique for force
identification using limited output measurements, where modal parameters (natural
frequency, modal damping) were used to form a mathematical model of the system.
Recently, authors of the present paper have used a reduced-order model of the rotor
system for unbalance [7] and strain estimation [8]. Authors of the present paper have
also proposed a technique for force estimation in the clamped plate using reduced-
order model [9] where the bandwidth of the force is limited by the number of modes
considered in the system model and the number of modes depends upon the number
of response measurements. To circumvent this issue the SEREP [10] method is used
in the present work to obtain approximate responses at unmeasured locations and to
increase the bandwidth of forces to be identified.

The aimof thiswork is to provide an efficient approach to estimate unknown inputs
on a plate using reduced-order model. The paper is structured as follows. Section 2
consists of formulations that are used for force estimation. Numerical simulations
are presented for a clamped steel plate in Sect. 3. In Sect. 4, the results and discussion
are presented. Finally, conclusions are presented in Sect. 5.
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2 Formulations

2.1 State-Space Modeling

The present technique uses state-space modeling of the system. The equation of
motion of a linear dynamic system can be described by Eq. (1)

Mz̈(t) + Cż(t) + Kz(t) = S f f (t) (1)

where M, C, and K are the mass, damping, and stiffness matrices, respectively.
Matrix S f is the force selection matrix, and f (t) is the external force vector. The
physical displacement, velocity, and acceleration are represented by z(t), ż(t) and
z̈(t), respectively.

Using coordinate transformation z(t) = Φp(t) and premultiplying ΦT in Eq. (1)
we obtain [6]

ΦT MΦ p̈(t) + ΦTCΦ ṗ(t) + ΦT KΦp(t) = ΦT S f f (t) (2)

where matrix Φ contains modal vectors and p(t) is the modal coordinates.
For mass-normalized eigenvectors Φ, following expression holds,

ΦT MΦ = I, ΦT KΦ = Ω2, ΦTCΦ = Γ

where I represents unity matrix of appropriate dimension, Ω2 is a diagonal matrix
containing undamped eigenfrequencies ωi , and the matrix Γ contains 2ςiωi in its
diagonal, ςi represents ith modal damping ratio.

Now consider modal displacements and velocities as states, i.e. x(t) = {
p ṗ

}T
,

the state-space representation of Eq. (2) can be given as

ẋ(t) = Acx(t) + Bc f (t)

y(t) = Gcx(t) (3)

where Ac, Bc, and Gc are state transition matrix, input influence matrix, and output
matrix, respectively, and these matrices are defined as,

Ac =
[

0 I
−Ω2 −Γ

]
, Bc =

[
0

M−1S f

]
, Gc =

[
SdΦ SvΦ

]

Output vector y(t) consists of displacements and/or velocities. Matrices Sd and
Sv represent selection matrices for displacements and velocities, respectively. The
discrete time equivalent of Eq. (3) can be written as

xn+1 = Axn + B fn
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yn = Gxn (4)

where n represents time-index. Matrices A, B, and G are the discrete time equivalent
of matrices Ac, Bc, and Gc, respectively.

Use of the reduced-order model provides a two-fold advantage: it allows the
use of available measurements for limited degrees-of-freedom and it reduces the
computational time. A reduced-order model of the system is obtained by selecting
the dominant modes that adequately describe the system’s behavior. In this case, only
a few mode shape vectors (Φr ) and corresponding natural frequencies (Ωr ) are used
in Eq. (3).

2.2 The Kalman Filter and Recursive Least-Square
(KF-RLS) Based Input Estimation

The linear dynamic system with modeling and measurement errors can be described
by following set of equations,

xn+1 = Axn + B fn + wn

yn = Gxn + vn (5)

where wn and vn are the random Gaussian noise vectors correspond to process and
measurement noise with known covariance Q and R, respectively.

The KF-RLS based input force estimation technique is presented in Table 1, for
detailed derivation refer the reader to Ref. [2]. The initial state and error estimates
are assumed to be known. The innovation covariance S(n), Kalman gain Ka(n), and
innovation Z(n) are identified in the first step and used in the second step for the
estimation of force, which is represented by F

∧

(n).

3 Numerical Example

A clamped plate is considered here for the verification of the present approach.
Finite element model of the plate is shown in Fig. 1, and Table 2 summarizes plate’s
properties. The Kirchhoff plate theory is used in the finite element modeling with a
4-noded quadrilateral finite element.

The following steps are followed in numerical simulations:

1. The displacement response is obtained using Eq. (4) for known transverse force
acting at a particular location.

2. Noisy response is simulated by adding Gaussian random noise (yrand), the added
noise can be expressed as, yrand = NL × ystd × r, where NL is the percentage
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Table 1 Equations for input estimation based on KF-RLS algorithm [2]

Initialization

Initial state, x̂0 = E[x0]
Initial error covariance, Px

0 = E[(x − x̂0)T ]
Simple Kalman filter

x̄(n/n − 1) = Ax̄(n − 1/n − 1)

P(n/n − 1) = AP(n − 1/n − 1)AT + Q

S(n) = GP(n/n − 1)GT + R

Ka(n) = P(n/n − 1)GT S−1(n)

P(n/n) = [I − Ka(n)G]P(n/n − 1)

Z(n) = y(n) − Gx̄(n/n − 1)

x̄(n/n) = x̄(n/n − 1) + Ka(n)Z(n)

Recursive least-square

Bs(n) = G[AMs(n − 1) + I ]B
Ms(n) = [I − Ka(n)C][AMs(n − 1) + I ]
Kb(n) = γ−1Pb(n − 1)BT

s (n)[Bs(n)γ−1Pb(n − 1)BT
s (n) + S(n)]−1

Pb(n) = [I − Kb(n)Bs(n)γ−1Pb(n − 1)]
F
∧

(n) = F
∧

(n − 1) + Kb(n)[Z(n) − Bs(n)F
∧

(n − 1)]

Fig. 1 Finite element model
of a clamped plate with node
numbering

x

yz

a

b

clamped

clamped

1 3 5 7

15 17 19 21

29 31 33 35

43 45 47 49

Table 2 Material, physical, and modal properties of clamped steel plate

Length (a)
(mm)

Width (b)
(mm)

Thickness
(mm)

Density
(kg/m3)

Young’s
modulus
(GPa)

First four
natural
frequencies
(Hz)

150 150 2.5 7800 210 954.6, 1940,
1940, 2793.2
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noise level, ystd is the standard deviation of the exact response, and r is random
sequences with zero mean and unit variance.

3. Force identification is performed using proposed approach.

The following parameters are selected in all the cases presented in next section:
null initial conditions, sampling frequency is 20,000 Hz, fading factor γ = 0.1.
Process noise is not considered and the measurement noise covariance R can be
calculated as (NL × ystd)2.

The normalized mean square error between the true and estimated force has been
used to quantify the estimation accuracy,

Error (%) = 100×

√
N∑

i=1
( f (i) − F

∧

(i))2

√
N∑

i=1
f (i)2

4 Results and Discussions

In the first example, three different measurement sets are used to estimate a low-
velocity impact applied at node 17. First two modes are used to form reduced-order
model, and the displacement responses with 5% measurements noise level are used.
It is clear from Fig. 2 that the accuracy of estimated force is increased when more
number of simulated responses is included in the output vector. Here, the simulated
response means the response obtained by solving full-order finite element model,
and the predicted response means the response obtained by expanding simulated
response using SEREP method.
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Fig. 2 a The plot of true and estimate impact force at node 17, b zoomed portion of (a) (details of
measurement sets are given in Table 3)
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Table 3 Normalized mean square error for three different measurement sets used to estimate
low-velocity impact at node 17 (measurement noise level NL is 5%)

Measurement sets Node numbers NMSE (%)

Simulated responses Predicted responses using
SEREPa

1 17,25 4.68 3.28

2 17, 25, 27, 33 3.82 6.95

3 17, 25, 27, 33, 24, 31 2.05 7.62

aResponses are predicted using simulated responses at node 17, 25, and first two modes

In Table 3, normalized mean square errors are presented for different cases where
simulated, and predicted responses are used for force estimation. It can be observed
that the error decreases when the number of simulated response is increased. But,
when predicted responses from SEREP are used, the error is increased. This loss of
accuracy is due to the error present in predicted responses. However, the percentage
NMSE is below 10%, and only two simulated responses (at node 17 and 25) are used
to form all the measurement sets. For the sampling frequency of 20,000 Hz, the esti-
mated force convergences to the actual forcewithin 450 time-steps. Effect of reduced-
order modeling on converges and CPU time for different sampling frequencies is
presented in Ref. [9].

In another example, random load acting at node 17 is estimated from predicted
responses at nodes 17 and 25 using simulated responses at nodes 9 and 19. The
simulated and predicted response at node 25 is shown in Fig. 3. It can be observed
that the predicted response matches well with the simulated response. The actual and
estimated force is shown in Fig. 4 for different measurement noise levels.
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Fig. 3 a Time history and b details of simulated and predicted (using SEREP) displacement at
node 25 due to a random load applied at node 17 (for prediction, response at nodes 9, 19, and first
two modes are considered)
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Fig. 4 a The plot of true and estimated random force at node 17, b zoomed portion of (a)

Now, a case of sinusoidal load is presented where a harmonic load of frequency
500 Hz is acting at node 17 and estimated using predicted responses at nodes 17
and 25. The predicted responses and estimated force are presented in Figs. 5 and
6, respectively. It can be seen that the estimated force follows well the actual force.
In this case, the percentage NMSE errors are 4.45, 5.26, and 7.17 for measurement
noise level of 1, 5, and 10%, respectively.
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Fig. 5 a Time history and b details of simulated and predicted (using SEREP) displacement at
node 25 due to a sinusoidal load applied at node 17 (for prediction, response at nodes 9, 19, and
first two modes are considered)
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Fig. 6 a The plot of true and estimated sinusoidal force at node 17, b zoomed portion of (a)

5 Conclusions

In this paper, a Kalman filter-based input estimation technique is used for force iden-
tification on a clamped plate. Full-order finite element model is used in numerical
simulations for response generation and the SEREP technique is used for response
prediction. The proposed approach uses a reduced-order model of the dynamic
system. The proposed approach has been verified for different types of loads and
measurement noise levels.

The following conclusions can be drawn from the present study:

1. The Kalman filter and recursive least-square technique can be used to estimated
external transverse forces acting on plate type structures. Based on the obtained
results, it can be concluded that all kinds of loads can be estimated using the
present approach.

2. The SEREP technique can be used to predict responses prior to force estimation,
which can further reduce the number of response measurements. However, it is
found that the use of predicted response in force estimation causes an increase
in estimation error.

A force location identification technique is expected to combine with the present
approach to make it more effective. As future work, the proposed approach can be
verified experimentally.
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Dynamic Analysis of Composite
Cylinders Using 3-D Degenerated Shell
Elements

Pratik Tiwari, Dipak Kumar Maiti and Damodar Maity

Abstract This paper deals with the formulation of an 8-noded degenerated shell
finite element for modeling and analysis of laminated composite shell structures. A
MATLAB code has been developed based on the formulation to analyze the com-
posite shell structures. The formulation is capable of solving both plate and shell
structures. Use of degenerated shell elements allows the formulation to be used
for any type of shells with various shapes and thickness ratios. The formulation is
also capable of solving isotropic and laminated composite materials. The formula-
tion developed has been validated with the results available in open literatures and
software (ANSYS).

Keywords 8-noded elements · Degenerated shells · MATLAB · Laminated
composite shell

1 Introduction

Shells with variable thickness have extensively been used in many fields such as
aerospace, rocket, aviation, and submarine technology. Over the years much research
has been conducted in attempts to produce precise, competent, and reliable shell
elements. Various shell theories have been developed, over the years, based on the
thickness of the shells.

Three separate classes of shell elements have been widely used for analyzing shell
structures: flat elements, curved shell elements, and degenerated shell elements. Flat,
plate-like elements which approximate the curved shell by a faceted surface, hence
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sometimes called facet elements, show completely uncoupled behavior between in-
plane stretching and bending. The coupling between in-plane stretching and bending
only appears indirectly by linking adjacent elements through the nodal degrees of
freedom. These elements are not preferred due to shortcomings such as the absence
of curvature of the elements within the element. Also, slope discontinuity between
neighboring plate elements can generate bending moments in the sections of struc-
ture where they do not exist. The interior of the individual elements will not have any
coupling between bending effects and membrane effects due to curvature of shell.
Curved shell elements are founded on several shell theories which are also quite
popular. These elements have various limitations due to fact that the shell theories
are not consistent with each other. Also, it is very difficult to find appropriate defor-
mation idealizations where truly strain-free rigid body movements are allowed. The
degenerated shell element is not based on any of the available shell theories and can
be applied over a wide range of thicknesses and curvatures. The degenerate solid
approach is used to develop this element, which is formulated on Reissner–Mindlin
assumptions where, the shear deformation and rotary inertia effect of the shell is
considered in the formulation and the 3D field is reduced to a 2D field in form of
mid-surface nodal variables.

In the late sixties, Ahmad et al. [1] developed aMindlin-type, degenerated, curved
shell element which is quite competent as well as effortless. It can be used for any
arbitrary shape and does not depend upon any specific shell theory. In order to elim-
inate shear and membrane locking, Zeinkiewicz et al. [2] improved the degenerated
shell element developed by Ahmad et al. [1], by reducing the order of numerical
integration. Huang & Hinton [3] presented a new nine node degenerated shell ele-
ment formulation. To avoid locking phenomena, they proposed the assumed strain
method where an enhanced interpolation of the transverse shear strains in the natural
co-ordinate system is used. The nine-node degenerated shell element formulation
developed by Huang and Hinton [3] was later extended by Jayashankar et al. [4] to
conduct free vibration analysis of thick laminated composites. Because the degener-
ated shell element formulation works well for both thick and thin shells, nine-noded
degenerated shell element was preferred over conventional solid elements for the
modeling and analysis of laminated composite shell structures. Balamurugan and
Narayanan [5] developed a nine-noded degenerate shell finite element model for the
vibration and active vibration control of piezo-laminated composite plates and shells
bonded with piezoelectric sensor and actuator layers.

Most of the research that has been done on degenerated shells is focused on the
static analysis of structures such as dams, tanks, and dome, etc. Very lesswork is done
on dynamic analysis using degenerated shells and fewer on the dynamic analysis of
composite structures using degenerated shells. The main objective of this paper is to
develop a MATLAB code for dynamic analysis of composite cylindrical shell using
3-D degenerated element which can accurately solve different types of shells and
plates with both isotropic and composite materials.
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2 Methodology

Some of the important aspects of the standard finite element scheme under plane
strain platform are outlined in the following sub-sections.

2.1 3-D Degenerated Shell Element

In present study, we have considered an 8-noded degenerated shell element with
natural coordinate system (ξ, η, ζ ), which is defined by the element geometry and
not by the element orientation in the global coordinate system. The natural elements
are scaled such that the sides of the parent elements are defined by ξ = ±1, η = ±1
and ζ = ±1. A 16-noded solid shell element and equivalent 8-noded degenerated
shell element is shown in Fig 1.

Above element is similar to 8-noded serendipity element so we can use same
shape function as the serendipity element.

N1 = (1 − ξ)(1 − η)(−ξ − η − 1)

4
;

N2 =
(
1 − ξ 2

)
(1 − η)

2
;

N3 = (1 + ξ)(1 − η)(ξ − η − 1)

4
;

N4 = (1 + ξ)
(
1 − η2

)

2
;

N5 = (1 + ξ)(1 + η)(ξ + η − 1)

4
;

N6 =
(
1 − ξ 2

)
(1 + η)

2
;

N7 = (1 − ξ)(1 + η)(−ξ + η − 1)

4
;

N8 = (1 − ξ)
(
1 − η2

)

2
;

(1)

A point in the element can be represented as
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Fig. 1 A 16-noded solid shell element and equivalent 8-noded degenerated shell element
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where,
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For thin structures, it is convenient to replaceV3i by a unit vector v3i . Thus equation
changes to
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where, ti is the thickness of the shell at node i .
The displacement field, in the element, can be represented as
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where v2i , v1i , α and β are unit vectors in y and x directions and rotations in x and y
directions respectively as shown in Fig. 2.

Fig. 2 Local and global coordinates of a middle surface shell element
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2.2 Strain Definitions

Strain definitions are needed to find strain displacement matrix [B]. Since the ele-
ments have different coordinate system from global coordinates, we need strains in
local coordinates by converting global strains to local strains.

{
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Also
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between global and local coordinate system.

Solving Eq. (6) using Eq. (7), we get
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⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Here lx , ly, lz,mx , . . . are the direction cosines which can be calculated using the
Jacobian matrix of the element.

(
nx , ny, nz

) =
(
dx

dξ
,
dy

dξ
,
dz

dξ

)
×

(
dx

dη
,
dy

dη
,
dz

dη

)
(8)

(
lx , ly, lz

) =
(
nx , ny, nz

)
∣∣(nx , ny, nz

)∣∣ (9)

(
mx ,my,mz

) = (
nx , ny, nz

) × (
lx , ly, lz

)
(10)

Global strains can be written as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γyz

γxz

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

∂ξ

∂x
∂η

∂x
∂ζ

∂x 0 0 0 0 0 0
0 0 0 ∂ξ

∂y
∂η

∂y
∂ζ

∂y 0 0 0

0 0 0 0 0 0 ∂ξ

∂z
∂η

∂z
∂ζ

∂z
∂ξ

∂y
∂η

∂y
∂ζ

∂y
∂ξ

∂x
∂η

∂x
∂ζ

∂x 0 0 0

0 0 0 ∂ξ

∂z
∂η

∂z
∂ζ

∂z
∂ξ

∂y
∂η

∂y
∂ζ

∂y
∂ξ

∂z
∂η

∂z
∂ζ

∂z 0 0 0 ∂ξ

∂x
∂η

∂x
∂ζ

∂x

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

[Jac]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ
∂u
∂η
∂u
∂ζ
∂v
∂ξ
∂v
∂η
∂v
∂ζ
∂w
∂ξ
∂w
∂η
∂w
∂ζ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ
∂u
∂η
∂u
∂ζ
∂v
∂ξ
∂v
∂η
∂v
∂ζ
∂w
∂ξ
∂w
∂η
∂w
∂ζ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
8∑

i=1

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

∂Ni
∂ξ

0 0 − ∂Ni
∂ξ

ζ ti l2i
2

∂Ni
∂ξ

ζ ti l1i
2

∂Ni
∂η

0 0 − ∂Ni
∂η

ζ ti l2i
2

∂Ni
∂η

ζ ti l1i
2

0 0 0 − Ni ti l2i
2

Ni ti l1i
2

0 ∂Ni
∂ξ

0 − ∂Ni
∂ξ

ζ tim2i

2
∂Ni
∂ξ

ζ tim1i

2

0 ∂Ni
∂η

0 − ∂Ni
∂η

ζ tim2i

2
∂Ni
∂η

ζ tim1i

2

0 0 0 − Ni tim2i
2

Ni tim1i
2

0 0 ∂Ni
∂ξ

− ∂Ni
∂ξ

ζ ti n2i
2

∂Ni
∂ξ

ζ ti n1i
2

0 0 ∂Ni
∂η

− ∂Ni
∂η

ζ ti n2i
2

∂Ni
∂η

ζ ti n1i
2

0 0 0 − Ni ti n2i
2

Ni ti n1i
2

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

[∂N ]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui
vi
wi

αi

βi

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(12)

2.3 Strain Displacement Matrix

Strain displacement matrix [B] can be defined as

[B] = [T ][Jac][∂N ] (13)

2.4 Stress Strain Relationship Matrix

Stress strain relationship matrix [D] is considered in local coordinate system and
taken as
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[D] = E
(
1 − υ2

)

⎡

⎢⎢⎢⎢⎢
⎣

1 υ 0 0 0
υ 1 0 0 0
0 0 (1−υ)

2 0 0
0 0 0 Ks (1−υ)

2 0
0 0 0 0 Ks (1−υ)

2

⎤

⎥⎥⎥⎥⎥
⎦

(14)

where E, υ and Ks are modulus of elasticity, Poisson’s ratio and shear correction
factor for the given Isotropic material.

For orthotropic materials, the stress strain relationship matrix [D] will be taken
as

[D] = 1

1 − υ12υ21

⎡

⎢
⎢⎢⎢⎢
⎣

E1 υ21E1 0 0 0
υ12E2 E2 0 0 0
0 0 G12 0 0
0 0 0 KsG13 0
0 0 0 0 KsG23

⎤

⎥
⎥⎥⎥⎥
⎦

(15)

2.5 Stiffness Matrix

Stiffness matrix [K ] can be expressed as

[K ] =
˚ [

BT
]
[D][B]|J |dξdηdζ (16)

2.6 Mass Matrix

Mass matrix [M] is expressed as

[M] =
˚

ρNT N |J |dξdηdζ (17)

where ρ is the density of material. And

[N ] =
8∑

i=1

⎡

⎣
Ni 0 0 − Ni ti l2i

2
Ni ti l1i

2
0 Ni 0 − Ni tim2i

2
Ni tim1i

2
0 0 Ni − Ni ti n2i

2
Ni ti n1i

2

⎤

⎦ (18)
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2.7 Free Vibration

Free vibration equation of the structure, without damping, is given as

[M]ẍ + [K ]x = 0 (19)

2.8 Numerical Integration

We have considered different Gauss points for bending and shear to avoid shear
locking and to get more accurate results.

2.8.1 Isotropic Material

For Isotropic materials, we have taken 3 Gauss points each in ξ and η directions and
two Gauss points in ζ direction in case of bending. For shear, we have taken 2 Gauss
points each in ξ and η directions and one Gauss point in ζ direction.

2.8.2 Composite Material

Composite laminated shell elements require an independent quadrature for each
lamina since the material property (stress-strain relationship matrix [D]) depends
upon the fiber orientation. Thus if ζ l and ζ l+1 define the thickness position of the lth
layer, then

ζ = ζl + tl
t

(
1 + ζ ′) and dζ = tl

t
dζ ′ (20)

where tl is the layer thickness and −1 ≤ ζ ′ ≤ 1 for ζl ≤ ζ ≤ ζl+1.
For each lamina, we have taken 3 Gauss points each in ξ and η directions and

two Gauss points in ζ direction in case of bending. For shear, we have taken 2 Gauss
points each in ξ and η directions and one gauss point in ζ direction.
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3 Results and Discussions

3.1 Convergence Study

3.1.1 Square Plate

A convergence study is performed in order to determine the required number of
mesh division Nx (number of divisions in x-direction) × Ny (number of divisions in
y-direction) at which the objective values converge. Thickness ratio (a/h) is assumed
to be 5. The problem considered here is a cross ply (0/90/90/0) of square cross section
and having simply supported boundary conditions which is defined as

v = w = β = 0 at x = 0, a

u = w = α = 0 at y = 0, b

The elastic properties of the lamina with respect to the material axes has been
taken as E1/E2 = 10, G12 = G13 = 0.6 E2, G23 = 0.5 E2, ν12 = 0.25, and ρ = 1.
Thickness ratio (a/h) is assumed to be 5.

Since it is clear form Table 1 that the program converges at 10 × 10, so we have
taken mesh size as 10 × 10 for square plate.

3.1.2 Cylindrical Shell

A convergence study is performed in order to determine the required number of mesh
division Nh (number of divisions in direction of height) × Nr (number of divisions
in radial direction) at which the objective values converge. The problem considered
here is an isotropic cylindrical shell having bottom side fixed which is defined as

u = v = w = α = β = 0 at z = 0

Table 1 Non-dimensional frequency parameter ω̄ = ωa2/h
√

ρ/E2 of a simply supported (SSSS)
square cross ply (0/90/90/0) plate. a/h = 5

Mode
no.

5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 12 × 12 15 × 15

1 7.714 7.712 7.711 7.711 7.711 7.710 7.710 7.710

2 12.169 12.168 12.168 12.168 12.167 12.167 12.167 12.167

3 12.169 12.168 12.168 12.168 12.167 12.167 12.167 12.167

4 13.507 13.490 13.483 13.479 13.477 13.476 13.474 13.474
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Table 2 Natural Frequency (Hz) of Isotropic cylindrical shell

Mode
no.

Mesh size (Nh × Nr)

8 × 80 8 × 85 8 × 90 8 × 100 9 × 100 8 × 110 8 × 120 8 × 150

1 147.81 147.52 147.29 146.99 146.96 146.81 146.80 146.80

2 148.97 148.67 148.45 148.15 148.11 147.96 147.91 147.89

3 183.61 182.72 182.04 181.13 181.10 180.57 180.50 180.44

The material properties have been taken as E = 71 GPa, v = 0.33, and ρ =
2770 kg/m3. Height of tank is taken as 0.6 m, outer radius 0.15 m and thickness is
taken as 1 mm.

From Table 2, it is clear that the program converges at 8 × 120, so we have taken
mesh size as 8 × 120 for cylindrical shells.

3.2 Validation of Results

The results obtained from MATLAB code, created for solving free vibration of
isotropic and laminated composite plates and shells, are compared with the results
available in open literature and are in good agreement with the literature available in
open source.

We have compared our result with the natural frequencies of composite plate and
isotropic circular cylinder, available in literatures and result generated by ANSYS.

3.2.1 Composite Plate

The problem considered here is a cross ply (0/90/90/0) of square cross section and
having simply supported boundary conditions. The elastic properties of the lamina
with respect to the material axes has been taken as E1/E2 = 10, G12 = G13 = 0.5 E2,
G23 = 0.6 E2, ν12 = 0.25, and ρ = 1. Thickness ratio (a/h) is assumed to be 5.

As we can see fromTable 3, the results obtained for composite plates from present
formulation are in good agreement with the results available in open literature.

Table 3 Non-dimensional frequency parameter ω̄ = ωa2/h
√

ρ/E2 of a simply supported (SSSS)
square cross ply (0/90/90/0). a/h = 5

E1/E2 ratio

10 20 30 40

Exact [6, 7] 8.2982 9.5671 10.326 10.854

Liew et al. [8] 8.4298 9.6782 10.424 10.944

FSDT (present) 8.1974 9.7612 10.6894 11.3315

Degenerated (present) 7.985 9.4399 10.3628 11.016
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Table 4 Natural frequency (Hz) of isotropic cylindrical shell

Frequency mode 1 2 3 4 6

Rawat [9] 146 175 242 263 381

ANSYS (present) 147.1 178.57 241.54 269.21 384.85

Degenerated (present) 146.8 180.56 242.46 272.99 385.31

3.2.2 Isotropic Cylindrical Shell

An Isotropic cylindrical shell of 0.6 m height, 0.15 m outer radius and 0.1 mm
thickness is considered. We have assumed Aluminum as material with E = 71 GPa,
υ = 0.33 and density as 2770 kg/m3. Bottom side of shell is assumed to be fixed and
top is assumed to be free.

It is evident fromTable 4 that the result obtained for isotropic cylindrical shell from
present formulation are in good agreement with results available in open literature
as well as the results obtained from software (ANSYS).

The formulation developed based on 3-D degenerated shell elements has been
validated by comparing results obtained for composite plates and isotropic shells. The
results are in good agreement with open literature and software. Thus we conclude
that the formulation is correct and is able to produce accurate results.

3.3 Parametric Studies

We have considered a laminated composite cylindrical shell with varying no of
lamina, ply angle, and thickness of shell.

Height of cylindrical shell is taken as 0.6 m, outer radius is taken as 0.15 m and
this thickness of shell is taken as 1 mm. Material properties are considered as E1 =
45 GPa, E2 = 10 GPa, υ12 = 0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa, and
density is taken as 2000 kg/m3 (Table 5).

Now we have increased the thickness of the shell to study its effect on natural
frequency. Height of cylindrical shell is taken as 0.6m, outer radius is taken as 0.15m
and this thickness of shell is taken as 2 mm. Material properties are considered as
E1 = 45 GPa, E2 = 10 GPa, υ12 = 0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa,
and density is taken as 2000 kg/m3 (Table 6).

We have again increased the thickness of shell further. Height of cylindrical shell
is taken as 0.6 m, outer radius is taken as 0.15 m and this thickness of shell is taken
as 5 mm. Material properties are considered as E1 = 45 GPa, E2 = 10 GPa, υ12 =
0.3, G12 = 5 GPa, G23 = 4 GPa, G13 = 5 GPa, and density is taken as 2000 kg/m3

(Table 7).
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From parametric study, it is evident that the natural frequency of composite shell
is increasing as we increase the thickness of the shell, which is consistent with our
understanding of composite shells. Other parameters such as fiber orientation and no
of lamina are also varied to understand their impact on natural frequency.

4 Conclusion

In the present work, a finite element formulation has been created for the dynamic
analysis of laminated composite shell using 8-noded 3-D degenerated shell element.
Present formulation is capable of analysis both isotropic and laminated composite
shells of arbitrary geometry. The results generated so far are in good agreement with
the results available in open literature as well as with the software generated results.

4.1 Future Work

Presented work can be extended to material and geometric non-linearity.
This work can also be extended to formulate Functionally Graded Materials

(FGM).
Present work can be coupled with fluid formulation to formulated Fluid-Structure

Interaction.
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A New Hybrid Unified Particle Swarm
Optimization Technique for Damage
Assessment from Changes of Vibration
Responses

Swarup K. Barman, Dipak Kumar Maiti and Damodar Maity

Abstract Unified particle swarm optimization (UPSO) and artificial bee colony
(ABC) are two effective swarm based techniques to solve inverse damage detec-
tion problems. A hybrid algorithm of ABC and UPSO named UPSO_Scout has
been proposed in the present paper. Comparisons among these three algorithms are
demonstrated using three structural problems (beam, plane truss and space truss)
considering natural frequencies and mode shapes as damage indicators. Proposed
algorithm shows improved performance than UPSO and ABC for damage detection.
Slow convergence speed of ABC reduces its effectiveness for larger problem. UPSO
is sometimes prone to fall in local minima despite of its faster convergence speed.
Efficacy of the proposed algorithm has also been examined in noisy environment.

Keywords ABC · UPSO · Frequency · Modeshapes · Damage detection ·
UPSO_Scout

1 Introduction

Structural health monitoring (SHM) has been turned into a significant area of study
within the civil, mechanical and aerospace engineering research community in recent
years. Damage identification at initial phases is a crucial part of structural healthmon-
itoring to evaluate the safety and to ward off the cataclysmic failure of the structure.
A number of non-destructive tests are available to identify and quantify the damages.
Among all the methods, damage identification using vibrational characteristics has
become popular in recent years. Existence of damage changes the dynamic response
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parameters (frequency, mode shapes, FRF, etc.) by altering the physical properties
(mass, stiffness, damping, etc.) of the structures. Identification and quantification of
damage can be carried out through investigating these changes in dynamic parame-
ters. This is called inverse method for damage detection. Adams et al. [1], Cawley
and Adams [2], Messina et al. [3] used change in natural frequency to detect damage
in beams. Yang [4] used modal residual force criteria as damage indicator. Majumder
et al. [5] used frequency change to detect damages in truss. Seyedpoor [6], Dinh-
Cong et al. [7] used modal strain energy for damage detection for beam and truss.
Mohan et al. [8] used frequency response function (FRF) to detect damage in beam
and space frame. Kaveh and Zolghadr [9], Fei Kang et al. [10], Nanda et al. [11],
Ding et al. [12], Nhamage et al. [13], Mishra et al. [14] , Barman et al. [15, 16],
Kim et al. [17] used combined frequency and mode shapes data to quantify damage
in different structures, as beam, plate, frame, truss etc. Another crucial attribute in
inverse method of damage detection is to employ efficient optimization tool to save
computational time and cost. Various soft computing tools such as particle swarm
optimization (PSO) [6, 8], genetic algorithm (GA) [18], neural network (NN) [19],
artificial bee colony (ABC) [12], ant colony optimization (ACO) [5], modified charge
system search (CSS) [9], fuzzy cognitive map (FCM) [20], unified particle swarm
optimization (UPSO) [11, 15, 16] antlion optimization (ALO) [14] etc. have been
used by the researchers to solve the inverse problem commendably.

So, above literature review has given a clear idea about how metaheuristic tech-
niques have been gaining popularity from last two–three decades in the field of
damage detection of structures. However, no optimization techniques are full proof
as each of them has their advantages and disadvantages in particular field of appli-
cation. So, the researchers have been trying to make new robust hybrid algorithm
by mixing two or more original algorithms as per the suitability of their particular
field of applications. Hybrid algorithms show improved performance compared to
the parent algorithms. So, keeping that in mind a new and effective optimization
algorithm UPSO_Scout, which is a hybrid algorithm combining the features of ABC
into UPSO has been proposed in the present study. Proposed algorithm has been used
to solve inverse problem with an aim for detecting damages in the beam and truss of
varying complexity. Natural frequencies and mode shapes are used as the diagnostic
parameters. Performance of the proposed algorithm has also been scrutinized in case
of noisy vibration data.

2 Mathematical Background

2.1 Finite Element Formulation

The finite element model for isotropic beam has been formulated using one-
dimensional two noded element. Each node has two degrees of freedom (δy, θz)
(Fig. 1a). Beam rigidity E I and cross-sectional area A are considered same through-
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(a) (b)

Fig. 1 a Beam element b Space truss element

out the length of the element. Element stiffness matrix and element mass matrix,
respectively, are given by [21].

[K ]e = E I

l3

⎡
⎢⎢⎣

12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤
⎥⎥⎦ [M]e = ρAl

420

⎡
⎢⎢⎣

156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

⎤
⎥⎥⎦

Here, l is length of the element and ρ is mass density of the material. Finite ele-
ment formulation of truss structures have been formulated using two-dimensional
two noded truss element with two (δx , δy) and three (δx , δy, δz) degrees of free-
dom (Fig. 1b), respectively, for plane and space truss. Axial rigidity E A and cross-
sectional area A are considered same throughout the length of the element. Element
stiffness matrix and element mass matrix in element coordinate system, respectively,
are given by [21].

[k]e = E A

l

[
1 −1

−1 1

]
[m]e = ρAl

6

[
2 1
1 2

]

Here, l is length of the element and ρ is mass density of the material used.
These matrices can be transformed into global coordinate system using the following
equation, respectively.

[K ]e = [T ]T [k]e[T ] [M]e = [T ]T [m]e[T ]

where T is a transformation matrix. For plane truss

[T ] =

⎡
⎢⎢⎣

c s 0 0
−s c 0 0
0 0 c s
0 0 −s c

⎤
⎥⎥⎦

Here, c = cosα, s = sin α. α is the inclination of the element axis with global X
axis.
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For space truss

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 m3 0 0 0
n1 n2 n3 0 0 0
p1 p2 p3 0 0 0
0 0 0 m1 m2 m3

0 0 0 n1 n2 n3
0 0 0 p1 p2 p3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{m1, n1, p1} are the direction cosines of global X axis with respect to local x, y, z
axis, respectively. Similarly {m2, n2, p2} and {m3, n3, p3} are the direction cosines
of global Y and Z axis, respectively with respect to local x, y, z axis.

2.2 Damage Model

Only one damage parameter per structural element is considered as all the materials
are considered isotropic. So, damaged stiffness matrix of an element can be written
as

Kdam = (1 − α)Kundam, α ∈ [0, 1] (1)

where Kdam and Kundam are damaged and undamaged element stiffness matrix,
respectively. α is damage parameter.

2.3 Frequency and Mode Shapes Based Objective Function

The objective function considered here is given below, Nanda et al. [11]:

F(%damage in each element) =
√√√√1

n

i=n∑
i=1

((
f mi
f ai

)
− 1

)2

+
i=n∑
i=1

(1 − MACi i ) (2)

where

MACi i =
∣∣ϕT

miϕai

∣∣2
(
ϕT
miϕmi

)(
ϕT
aiϕai

) (3)

Here, n stands for the number of modes, f and ϕ denote the frequency and cor-
responding mode shape, respectively. Suffix m and a stand for measured response
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of damaged structures and computed response through FEM, respectively. MAC
denotes the modal assurance criteria (MAC).

2.4 Frequency and mode shapes with noise

In practical measurement of vibration characteristics there may be possibility of
error, which is characterized as noise in the measured data. Data with noise can be
obtained from the noise free data using following expression mentioned by Mohan
et al. [8].

Hn = H(1 + 2 ∗ NL(ranf − 0.5)) (4)

Where, Hn and H are respectively with noise and noise free data; NL is noise level
(0.05 relates to 5 % noise level); is a random number between 0 and 1.

3 Optimization Algorithms

3.1 Unified Particle Swarm Optimization (UPSO)

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart [22] as
a stochastic optimization algorithm based on concepts and rules that govern socially
organized populations in nature, such as bird flocks, fish schools and animal herds
to search for food or to avoid predators. UPSO is a refinement of PSO and was first
proposed by Parsopoulos and Vrahatis [23]. Basic steps involved in UPSO are as
follows:

(i) Random initialization of swarm position and velocity:
xi j ∈ [xmin, xmax], vi j ∈ [−vmax, vmax],

vmax = 0.5 ∗ (xmax − xmin),∀i ∈ N ,∀ j ∈ S
(ii) Evaluate the swarm.
(iii) Cycle = 1.
(iv) Repeat.
(v) Calculate pb: the best position ever visited by individual particle; gb: the best

position ever visited by all particles; l b: best position ever visited by any of
its neighbour.

(vi) Update velocity:

V t+1
i j = μGt+1

i j + (1 − μ)Lt+1
i j , V t+1

i j ∈ [−vmax, vmax] (5)
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Here,

Gt+1
i j = χ

[
vti j + c1r1

(
pbi j − xti j

) + c2r2
(
gbi j − xti j

)]
(6)

Lt+1
i j = χ

[
vti j + c1r3

(
pbi j − xti j

) + c2r4
(
lbi j − xti j

)]
(7)

μ(t) = exp

(
t log(2.0)

tmax

)
− 1 (8)

Update position:

xt+1
i j = xti j + V t+1

i j , xt+1
i j ∈ [xmin, xmax] (9)

(vii) Evaluate the swarm and update pb, gb, l b.
(viii) Memorize the best solution achieved so far.
(ix) Cycle = Cycle + 1.
(x) Until termination criteria.

where r1, r2, r3 and r4 are random number independent of each other between [0,
1]; c1 and c2 are cognitive and social parameter, respectively; χ is the constriction
factor [24]. In the present study the termination criteria is when either the objective
function assumes a predefined value or maximum iteration is reached. The UPSO
parameter used in the present study are as follows: for better convergence c1 = c2 =
2.05; χ = 0.72984.

3.2 Artificial Bee Colony (ABC)

Artificial bee colony (ABC) algorithm [25] simulates the behaviour pattern of a
honey bee colony. Inside a bee hive, bees share information about food source with
each other in the dancing area through waggle dance. In ABC algorithm, the position
of a food source represents a possible solution to the optimization problem and the
nectar amount of a food source corresponds to the quality (fitness) of the associated
solution. The number of the employed bees or the onlooker bees is equal to the
number of solutions in the population. The steps involved in ABC algorithm are

(i) Random initialization of population: xi j ∈ [xmin, xmax],∀i ∈ SN ,∀ j ∈ D
(ii) Fitness evaluation.
(iii) Cycle = 1.
(iv) Repeat.
(v) Produce new solution for employed bees (Eq. 10) and evaluate them.

xt+1
i j = xti j + rand[−1, 1]

(
xti j − xtk j

)
(10)

k ∈ {1, 2 . . . ., SN } and j ∈ {1, 2 . . . ., D} are chosen randomly, but k �= i.
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(vi) Apply greedy selection process for employed bees.
(vii) Calculate probability pi for each solution xi :

pi = Fitnessi/
SN∑
n=1

Fitnessn

(viii) Produce new solution for onlooker bees (Eq. 10) based on the probability and
evaluate them.

(ix) Apply greedy selection process for onlooker bees.
(x) Determine the abandoned solution for the scout bee and if exists replace it

with a randomly created solution:

xi j = xmin + rand[0, 1](xmax − xmin) (11)

(xi) Memorize the best solution achieved so far.
(xii) Cycle = Cycle + 1.
(xiii) Until termination criteria.

In each cycle only one scout bee is allowed. In ABC, abandoned solution is
decided through a parameter called ‘limit’. So, if a particular solution within the
population cannot be improved for a number of cycles equal to ‘limit’, that position
is considered as abandoned. It can be considered from the following expression:

limit = SN ∗ D (12)

In the present study the termination criteria is when either the objective function
assumes a predefined value or maximum iteration is reached.

3.3 Scout Unified Particle Swarm Optimization
(UPSO_Scout)

In this section, a hybrid UPSO algorithm has been proposed by combining the scout
bee phase of ABC algorithm with the existing UPSO algorithm to enhance its explo-
ration property, and hence to enhance its performance for damage detection problems.
The algorithm is named as scout unified particle swarm optimization (UPSO_Scout).
The steps involved in this algorithm are mentioned below:

(i) Random initialization of swarm position and velocity:
xi j ∈ [xmin, xmax], vi j ∈ [−vmax, vmax],

vmax = 0.5 ∗ (xmax − xmin),∀i ∈ N ,∀ j ∈ S
(ii) Evaluate the swarm.
(iii) Cycle = 1.
(iv) Repeat.
(v) Calculate pb, gb, l b.
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(vi) Update velocity (Eq. 5) and position (Eq. 9).
(vii) Evaluate the swarm and update pb, gb, l b.
(viii) Determine the abandoned particle and if exists, replace it with a new particle

with a position (Eq. 11) and velocity (Eq. 13).

vi j = rand[0, 1] ∗ 2 ∗ vmax − vmax (13)

(ix) Memorize the best solution achieved so far.
(x) Cycle = Cycle + 1.
(xi) Until termination criteria.

Only one scout is allowed per cycle as mentioned in the case of ABC also. As in
the case of ABC here also ‘limit’ is a very important parameter, which is problem
specific.

4 Numerical Results

4.1 Problem Definition

A MATLAB based computer programming is developed for damage detection
through finite element model updating. Efficiency of the proposed algorithm
UPSO_Scout in comparisonwith ABC andUPSO is demonstrated for damage detec-
tion. All the computations have been performed using an Intel Core i5-4570 CPU
3.20 GHz processor with 8 GB of RAM on a 62 bit windows operating system.
Three structural problem are considered for the study: (i) Isotropic cantilever beam
[8] (Fig. 2a), (ii) 25member plane truss [26] (Fig. 2b), (iii) 72member space truss [9]
(Fig. 2c). The material properties for each structure are mentioned in their respective
figures. Frequencies and mode shapes are considered as damage indicator. At first
natural frequencies of undamaged are validated against the results given in literature
(Table 1). For brevity, only a limited number of modes have been included in the
analysis. The number of modes should be enough so that the total effective modal
mass of the model in any given direction is at least 80–90% of the actual mass of the
structure [27, 28]. So, for all three structures more than 90% of the total mass can
be incorporated in the analysis as cumulative effective modal mass by considering
only first eight modes (Table 2). Thus, first eight modes are considered for damage
detection purpose. Single and multiple element damage cases have been considered
to demonstrate the effectiveness of the algorithms. Effectiveness of the three algo-
rithms has been compared with respect to success rate and average convergence
speed. Success rate is defined as the number of successful runs per 100 numerical
runs. A particular numerical run for which the objective function has reached below
a specified tolerance limit within the specified number of iterations, is termed as
successful run. Specific parameters of the optimization algorithms for each structure
have been mentioned in Table 3.
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(a) Cantilever beam

(b)  25 member plane truss (c)  72 member space truss

Fig. 2 Details of the structures

4.2 Damage Detection Using Noise Free Data

The results obtained from the numerical study for the three structures have been
presented here.

4.2.1 Isotropic Cantilever Beam

Damage has been modelled as percentage reduction in the bending stiffness for the
particular element. Two damage cases are selected for demonstration of the algo-
rithms and mentioned in Table 4. First eight natural frequencies of damaged struc-
tures are mentioned in Table 5. 100 numerical experiments are conducted for each
damage case. Damage prediction for E1 and E2 damage cases by three algorithms
are shown in Fig. 3a and b, respectively. All three algorithms are capable of detecting
damages for both damage cases E1 and E2. A summary of all the numerical experi-
ments conducted in the cantilever beam has been presented in Table 6. Mean number
of function evaluation represents the average convergence speed. Among the three
algorithmsABChas the lowest convergence speed (highermean function evaluation)
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Table 3 Parameter setting for optimization algorithms

Optimization
algorithm

Parameters Isotropic beam 25 member
plane truss

72 member
space truss

UPSO Swarm size 30 50 90

Maximum
iteration

500 1000 10,000

Max. tol. limit 1E−05 1E−06 1E−07

ABC Swarm size 30 50 90

Maximum
iteration

500 1000 10,000

Abandonment
limit

300 20 6480

Max. tol. limit 1E−05 1E−06 1E−07

UPSO_Scout Swarm size 30 50 90

Maximum
iteration

500 1000 10,000

Abandonment
limit

20 20 20

Max. tol. limit 1E−05 1E−06 1E−07

Table 4 Details of damage cases

Damage case Description

E1 5% in element 1

E2 20% in element 1 + 15% in element 4 + 10% in element 8

Table 5 Natural frequencies of damaged isotropic beam

Damage
case

Natural frequency (Hz) for mode

1 2 3 4 5 6 7 8

E1 161.6 1015.7 2849.7 5593.0 9257.6 13844.0 19344.0 25703.5

E2 155 982.8 2746.3 5475.7 9045.5 13550.8 18931.7 25073.7

and UPSO has highest convergence speed. Convergence speed of UPSO_Scout is
slightly lower than UPSO. However, success rate of UPSO_Scout is much higher
(100%, 100%) for damage case (E1, E2) in comparisonwith the success rate ofUPSO
(84%, 90%) andABC (46%, 0%). Also, in terms of computational timeUPSO_Scout
found to be least time consuming, while ABC is highest time consuming algorithm.
So, UPSO_Scout has been found to be performed better in comparison with UPSO
and ABC.
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Fig. 3 Damage prediction by the algorithms: a damage case E1 b damage case E2

Table 6 Summary of damage detection for isotropic beam

Damage case Optimization
algorithm

Number of function
evaluation

Success rate Computational
time (s)

Mean Standard
deviation

E1 UPSO 1151.07 288.27 84/100 612.26

ABC 18824.35 4857.15 46/100 3945.91

UPSO_Scout 2280.73 2402.31 100/100 414.67

E2 UPSO 3405.67 908.16 90/100 830.02

ABC – – 0/100 4761.91

UPSO_Scout 4087.24 2145.66 100/100 743.13

4.2.2 25 Member Plane Truss

In this case of 25 member plane truss, damage has been modelled as the percentage
reduction in axial stiffness of the particular member. Two damage cases have been
considered and mentioned in Table 7. First eight natural frequencies of damaged
structures are mentioned in Table 8. 100 numerical experiments are conducted for
each damage case. Damage prediction for E3 and E4 damage cases by UPSO and
UPSO_Scout is shown in Fig. 4a and b, respectively. Comparison among the three
algorithms can be performed from the summary of the experiments, presented in
Table 9. ABC has failed to minimize the objective function and thus failed to detect
the damage in both the cases. UPSO has slightly faster average convergence rate
compared toUPSO_Scout for all the cases.However, the success rate ofUPSO_Scout

Table 7 Details of damage cases

Damage case Description

E3 5% in element 15

E4 20% in element 15 + 15% in element 20 + 10% in element 1
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Table 8 Natural frequencies of damaged plane truss

Damage case Natural frequency (Hz) for mode

1 2 3 4 5 6 7 8

E3 30.33 68.92 96.3 181.7 222.79 275.5 318.39 352.01

E4 30.22 68.5 94.51 181.15 218.6 272.62 306.42 347.95
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Fig. 4 Damage prediction by the algorithms: a damage case E3 b damage case E4

Table 9 Summary of damage detection for plane truss

Damage case Optimization
algorithm

Number of function
evaluation

Success rate Computational
time (s)

Mean Standard
deviation

E3 UPSO 4418.82 750.95 85/100 14735.12

ABC – – 0/100 131428.6

UPSO_Scout 14402.48 5176.61 100/100 18854.16

E4 UPSO 16799.12 10234.35 57/100 40680.65

ABC – – 0/100 131428.6

UPSO_Scout 23681.58 7125.71 81/100 37547.45

is much higher (100%, 81%) for damage case (E3, E4) in comparison with the
success rate of UPSO (85%, 57%) and ABC (0%, 0%). In case of E3 UPSO has
taken least computational time, whereas, in case of E4 UPSO_Scout has taken least
computational time. So, UPSO_Scout has been found to have superior performance
in comparison with UPSO and ABC.
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Table 10 Details of damage cases

Damage case Description

E5 5% in element 17

E6 20% in element 17 + 15% in element 1 + 10% in element 35

Table 11 Natural frequencies of damaged space truss

Damage case Natural frequency (Hz) for mode

1 2 3 4 5 6 7 8

E5 6.02 6.05 10.48 18.35 25.47 25.48 26.44 37.93

E6 6.02 6.04 10.48 18.26 25.06 25.47 25.82 37.13

4.2.3 72 Member Space Truss

In the case of 72member space truss, damage has beenmodelled in similar manner as
the plane truss. Two damage cases have been considered and mentioned in Table 10.
First eight natural frequencies of damaged structures are mentioned in Table 11.
100 numerical experiments are conducted for each damage case. Damage prediction
for E5 and E6 damage cases by UPSO and UPSO_Scout are shown in Fig. 5a, b.
Performance of the three algorithms can be compared from the summary of the
experiments, presented within Table 12. ABC has failed to detect the damage in both
the cases. UPSO_scout has faster average convergence speed compared to UPSO for
damage case E5. The difference in convergence speed between these two algorithms
is not significant enough for damage case E6. However, success rate of UPSO_Scout
ismuch higher (100%, 77%) for damage case (E5, E6) in comparisonwith the success
rate of UPSO (86%, 19%) and ABC (0%, 0%). Again, UPSO_scout is found to be
least time consuming for both the damage cases. Thus, UPSO_Scout has been found
to have superior performance in comparison with UPSO and ABC.
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Fig. 5 Damage prediction by the algorithms: a damage case E5 b damage case E6
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Table 12 Summary of damage detection for space truss

Damage
case

Optimization
algorithm

Number of function
evaluation

Success
rate

Computational
time (s)

Mean Standard
deviation

E5 UPSO 331453.30 78558.17 86/100 1310792.26

ABC – – 0/100 5544000.9

UPSO_Scout 202288.00 40424.97 100/100 645073.96

E6 UPSO 466721.10 127478.80 19/100 2607481.1

ABC – – 0/100 5544000.6

UPSO_Scout 492086.80 197575.10 77/100 1868391.8

Table 13 Details of noise levels

Noise level N1 N2 N5 N6 N7 N10

Noise in frequency (%) 0.1 0.2 0.5 0.6 0.7 1

Noise in mode shapes (%) 1 2 5 6 7 10

4.3 Damage Detection Using Noisy Data

The relative measurement error of frequency is about 1% and the mode shape is
about 10% in practical cases [29]. To incorporate this error we have considered
a range for different noise levels, where the noise for frequency is varying from
0 to 1% and the same for mode shapes is varying from 0 to 10%. The different
noise levels are mentioned in Table 13. As from the previous section, it is clear
that overall performance of UPSO_Scout is better than the other two; in this section
only capability of the same is investigated for damage detection using noisy data.
Figure 6 depicts the damage detection scenario using noisy data for six damage
cases (E1–E6) considered before. For single element damage cases (E1, E3 and E5)
where the amount of damage is very low (5%), the algorithm gives almost correct
representation of damage up to noise levelN2.But, for higher level of noise (N5,N10)
the algorithm fails to differentiate between the change in vibrational parameter for
noise and damage, as damage is very low and gives false representation of damage.
Whereas the three element damage cases (E2, E4, E6) have comparatively higher
magnitude of damage in the range of 10–20% and these cases have been investigated
for noise cases starting from N5 and gradually for higher noise levels (N6, N7, N10).
For these damage cases except E6 the algorithm has been able to detect damages
almost accurately for noise level up to N7. At noise level N10 the algorithm detects
the damage location correctly but failed to quantify the damages correctly. For E6
(Fig. 6f) the algorithm has been able to detect damages for noise level N1 but failed
for noise level N2.
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Fig. 6 Damage prediction by the UPSO_Scout in noisy environment : a damage case E1 b damage
case E2 c damage case E3 d damage case E4 e damage case E5 f damage case E6

5 Conclusions

In the present study, the finite element formulation is developed for beam, plane
and space trusses to find out natural frequencies and mode shapes for undamaged
and damaged structures. The finite element-based computer code is developed in the
MATLAB environment. Inverse algorithms based on UPSO, ABC and UPSO_Scout
are developed to detect and quantify damages in such structures. The requirements
of number of modes in damage detection have been decided based on cumulative
effective modal mass for all three structures. The proposed algorithm is found to be
more capable to recover from local minima without losing its convergence speed in
comparison with UPSO and ABC. UPSO_Scout has produced more number of suc-
cessful runs compared to UPSO and ABC. Thus, damage can be predicted correctly
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with the help of UPSO_Scout even with a small number of numerical experiments,
and overall computational efforts can be reduced significantly. Thus UPSO_Scout
algorithm is found to be more reliable than UPSO and ABC to assess damages in
structures.UPSO_Scout algorithmalso performs satisfactorily in damage assessment
in case of noisy environment.
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Semi-active Control of a Three-Storey
Building Structure

P. Chaudhuri, Damodar Maity and Dipak Kumar Maiti

Abstract This paper proposes two different semi-active control methods. Linear
Quadratic Gaussian (LQG) controller is used as the first method for feedback control
of the structure. The second method has used structural stabilization using pole
placement and optimizing the response by pattern search genetic algorithm approach.
Magnetorheological (MR) damper is attached to the structure to provide the required
damping force. A clipped optimal control method is used to provide the required
voltage to the MR damper to generate the desired control force to the structure.

Keywords Linear Gaussian quadratic controller · Feedback control · Genetic
algorithm · Clipped optimal control

1 Introduction

Semi-active [1] control of a system has come to acceptance more than active and
passive control systems in structural control nowadays. These systems havemanaged
to possess the adaptability of active control systems alongwith their intrinsic stability
as passive control systems. These systems can be operated using very low power.
Different control methods [2] and optimization methods can be implemented easily
with semi-active systems. This can further exceed the performance of that of active
control systems.

Magnetorheological (MR) damper [3] is one semi-active device that seems to
be particularly suitable for seismic protection. MR dampers [4, 5] are semi-active
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devices. Therefore, they have very low power requirements and a controllable damp-
ing force. They can be made to achieve large force capacities as well. They also have
a low sensitivity to temperature changes.

This study proposes two different semi-active control methods. The first method
is Linear Quadratic Gaussian (LQG) controller used for semi-active feedback con-
trol of the structure. The second method involves structural stabilization using pole
placement and adding compensatory gain and optimizing the response by pattern
search genetic algorithm (GA) approach. Clipped optimal control strategy has been
used to calculate the voltage required for MR damper to produce the desired control
damping force to the structure.

2 Mathematical Formulation

A three-story shear building model has been taken up from Mahdi and Abdelhafid
[6] and is shown in Fig. 1. A linearMR damper is attached to produce optimal control
damper force from the required calculated voltage using clipped optimal controller.
State space design of the model has been done to implement the proposed control
designs. The controller Kc(s) has been developed both by using LQG methods and
genetic algorithms each. Block diagrams of this semi-active control system are shown
in Figs. 1 and 2.

Fig. 1 A three story building control structure
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Fig. 2 Block diagram of feedback control

2.1 State Space Formulation

Considering a seismically excited structure, state space representation (Ogata, 5th
Edition [7]) of a linear structure is written in Eqs. (1) and (2).

ż = Az + Bx (1)

y = Cz + Dx (2)

where z(.) is the “state vector”, z(.) ∈ Rn;
y(.) is the “output vector”, y(.) ∈ Rq;
x(.) is the “input (or control) vector”, u(.) ∈ Rp;
A(.) is the “state (or structure) matrix”, dim[A(.)] = n × n,
B(.) is the “input matrix”, dim[B(.)] = n × p,
C(.) is the “output matrix”, dim[C(.)] = q × n,

D(.) is the feed-forward matrix
p is the number of inputs
q is the number of outputs
n are the number of state variables

The State space model has been prepared according to the Eqs. (1) and (2) are
shown in Eq. (3).

A =
[−M−1C −M−1K

E 0

]
B =

[−M−1� −E
0 0

]
C = [E]D = [0] (3)
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where [E] and [0] are identity and zeros matrices of suitable sizes. The vectors z and
x can be written in Eq. (4)

z =
[
u̇
u

]
and x =

[
f
ẍg

]
(4)

The structure is controllable up to four numbers of states out of six states. The
control force required is producedby a single linearMRdamper using clippedoptimal
control strategy.

2.2 Control Theory Implementation

A three degree of freedom seismically excited structure is assumed to be controlled
with the control forces obtained from a single MR damper. The combined structure
is considered to be linear and the equation of motion is written in Eq. (5).

Mü + Cu̇ + Ku = � f − M�ẍg (5)

where f is the controlled damper force, defined by Eqs. (6) and (7), u = [ u1 u2 u3 ]′
are the floor displacements of the frame structure with respect to the ground.

The state space equation and output equations are modified in Eqs. (6) and (7).

ż = Az + B f + Gẍg (6)

y = Cz + Df + vm (7)

where ẍg is a unidirectional ground acceleration, f is the measured damper force
provided by MR damper to the structure and z is the state vector. y is the measured
output vector, and v is the noise vector provided to the structure.

2.3 Linear Quadratic Gaussian (LQG) Design

The controller Kc(s) has been developed using LQG [8] methods which has been
defined substantially. The major advantage of the LQG design is that it not only
controls the output response of the controllable states to desirable values but also
reduce the response of uncontrollable states. For a continuous-time linear structure,
defined on t ε [t0, t1], described by Eqs. (6) and (7) the state feedback law u = −kx
minimizes a quadratic cost function defined in Eq. (8).
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J = xT (t1)F(t1)x(t1) +
t1∫

t0

(xT Qx + uT Ru + 2xT Nu)dt

N ≥ 0, Q(t) ≥ 0, R(t) ≥ 0 (8)

where E is the expected value. T is the final time. Using Matlab programs, the gain
matrix K matrix has been computed by solving the algebraic Riccati equation.

2.4 Genetic Algorithm (GA)

It is a population based probabilistic search [10] and optimization technique [11]. A
population [9] of initial solution of sizeN (N = 100, 200, 300) is generated at random
in the beginning. The solutions are represented with number of strings [12]. A string
is divided into a number of substrings equal to the number of design variables. The
length of each substring can be calculated in Eq. (9).

l = log2

(
xmax
1 − xmin

1

ε

)
(9)

where l is the length of each sub-string; ε is the precision level; xmax1 and xmin
1 are

the maximum and minimum values of one design variable or substring. The fitness
value of each full GA string is calculated from the substring values with the following
relation given in Eq. (10).

x1 = xmin
1 + xmax

1 − xmin
1

2l − 1
× D (10)

where

x1 is the real value of one sub-string;
D decoded value for the binary sub-string. The objective function is expressed as

given in Eq. (11)

F(x1, x2, x3) = fi (X) ± Pi (11)

where Pi = CΣϕik(X)2 = is the static penalty function for constraint optimization.
Rank-based reproduction selection scheme is used to rank out the strings according
to their fitness values [12]. Multiple point crossover scheme is used on each pair of
strings. A bit-wise mutation scheme is developed to provide a local change in the
current solution. One generation of a GA is completed after the population of strings
is modified using the schemes. The whole procedure is repeated through a number
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Fig. 3 A flowchart for genetic algorithm

of cycles until a termination criterion is satisfied that is either the objective function
acquire a predefined value or maximum iteration is reached. A flowchart is shown in
Fig. 3.

2.5 Clipped Optimal Controller

A type of clipped optimal controller [13] is introduced in this study. The controller
Kc(s) is designed both by LQG and GA each to estimate the desired control force,
f c (Eq. 12). y is the measured responses and f is the measured damper force. L is a
Laplace transform.
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fc = L−1

[
Kc(s)L

[
y
f

]]
(12)

This force f c will be provided by the MR damper. Force generated by the MR
damper can only be changed by changing the voltage applied to the MR damper.
This desired voltage (Eq. 13) required for MR damper to produce the desired force
f c is supplied by the linear clipped optimal controller.

v = VmaxH{( fc − f ) f } (13)

where Vmax is the voltage required for the saturation of the magnetic field of the
MR damper and H is the Heaviside step function and v is the voltage required. The
controller algorithm of linear variation of the desired control force with the required
voltage is shown in Fig. 4.

Fig. 4 A linear clipped
optimal control algorithm

3 Results and Discussions

A three-storey frame model as shown in Fig. 1 spanning one bay in X direction and
Z direction each is chosen for the present work. El-Centro (CA, USA) earthquake
data (October, 1942) has been used as dynamic load to the structure. State space
design of the model has been done to implement the proposed control design. The
compensator gain has been suitably adjusted by adding a pole for a stable root locus
diagram of the open-loop system. Suitable controllers from LQG design and genetic
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Table 1 System Matrices of
three-story building

Mass matrix, [M] M =

⎡
⎢⎢⎣
98.3 0 0

0 98.3 0

0 0 98.3

⎤
⎥⎥⎦ kg

Stiffness matrix, [K] K =

⎡
⎢⎢⎣

12 −6.84 0

−6.84 13.7 6.84

0 −6.84 6.84

⎤
⎥⎥⎦105

N/m

Damping matrix, [C] C =

⎡
⎢⎢⎣

175 −50 0

−50 100 −50

0 −50 50

⎤
⎥⎥⎦

Ns/m

Location matrix of MR
damper force

� = [ 1 0 0]T

External force distribution
matrix

� = [ 1 1 1]T

algorithm are incorporated to control the dynamic response of the structure. An MR
damper is attached to the model. The required control force has been calculated to
produce optimum damper force using clipped optimal control method. The system
matrices of the model are shown in Table 1.

The State space model has been prepared according to the Eq. (3). The structure
is controllable up to four numbers of states out of six states.

Case 1. Step responses of the outputs in the uncontrolled model, LQG controlled,
and GA controlled model are shown in Figs. 5, 6, and 7.

It can be clearly shown in the figures above that LQG design and GA control can
reduce the responses to great extent. In GA controlled structure the step response
can be smoothened out further to a steady state response with specific rise time and
peak amplitude. It, therefore, reduces the noise generated in the structure and gives
a steady state output.

Case 2. Dynamic responses of the outputs in the uncontrolled model, LQG
controlled, and GA controlled model due to El-Centro (CA, USA) earthquake
acceleration (October, 1942) are shown in Figs. 8, 9, and 10.

LQG controller and GA controller were used as a feedback controller to the
structure to control the responses due to dynamic load. The required control force
to be generated by the MR damper is regulated using the clipped optimal controller.
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Fig. 5 Uncontrolled step response

Fig. 6 LQG controlled step response

From figures it can be observed that LQG and GA control are both efficient in
reducing the vibration response to a large extent.
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Fig. 7 GA controlled step response

Fig. 8 Uncontrolled output response

Case 3. Horizontal displacements andMaximumdisplacement values of the floors
due to earthquake in the uncontrolled, LQG designed, and GA optimized structure
is shown in the Figs. 11 and 12.

It can be observed that horizontal displacements of floors have come to nil when
the structure is controlled with semi-active control methods. Earthquake data of
different magnitude and duration has been taken and a comparative study is done to
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Fig. 9 LQG controlled output response

Fig. 10 GA controlled output response
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Fig. 11 Horizontal
displacements in floors
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Fig. 12 Maximum
displacements in floors
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show the flexibility of both themethods. The rootmean square value of displacements
in each floor for all earthquake data has been tabulated in Table 2.

The efficiency of both the methods can be clearly observed in Table 2. The LQG
controlled and GA controlled structures have shown a significant reduction in the
displacement values for the structure.

Table 2 RMS value of the displacements

Earthquakes used Maximum
magnitude (mm/s2)

Duration (s) Root mean square displacement
(mm)

Uncontrolled LQG GA

Elcentro NS 3.13 35 36.0087 0.0230 0.0233

Arizona NS 0.05 180 11 0.033 0.029

Fukushima EW 0.0037 120 10 0.011 0.010

Lomapreita 28.87 40 10.5 0.5 0.5
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4 Conclusion

The controller is designed using both the conventional LQG method and genetic
algorithm. These methods can show much flexibility to produce desirable range of
outputs in different loading conditions. The clipped optimal controller has been used
to get the optimized voltage required by MR damper to produce damper force. Suit-
able MR dampers can be placed to the structure and the responses can be studied.
Both the methods have shown significant efficiency in reducing the seismic vibra-
tion of building. The proposed methods of controlling the structure itself can be
implemented in higher storey space frame building.
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A Direction-Based Exponential
Crossover Operator for Real-Coded
Genetic Algorithm

Amit Kumar Das and Dilip Kumar Pratihar

Abstract In this paper, a new direction-based exponential crossover operator (DEX)
for a real-coded genetic algorithm (RCGA) has been developed. Its name indicates
that this newly designed DEX is influenced by the directional knowledge of the
problem. This knowledge about a problem actually helps to decide the search direc-
tion of the algorithm in the variable space to move toward the globally optimum
solution. Now, the task of collecting this data is quite tricky and may have several
ways. However, we suggest one approach to obtain this knowledge during the evo-
lution of solutions. Utilizing this prior knowledge during the crossover operation,
the children solutions are created with a biasness of that search direction. This, in
fact, makes the searching mechanism of an RCGA more efficient. To measure the
performance of the DEX, ten classical benchmark test functions have been taken and
the experiments are done using an RCGA with the proposed crossover operator, and
the results are compared with another popular crossover operator, namely, simulated
binary crossover (SBX).

Keywords Exponential crossover · Directional crossover · Genetic algorithm ·
Metaheuristic technique · Global optimization

1 Introduction

Optimization is the method of searching the best feasible candidate out of several
potential solutions. In real-world applications, it deals with many nonlinear complex
problems, which have one or more than one design variables and constraints. The
purpose of optimizing a process or the design of a product is the reduction in various
costs, such asmaterial, rejection, and labor, or to increase the overall performance and
profit [1]. Although traditional deterministic algorithms had been used for solving
several optimization problems, these are not found to be suitable in case of solv-
ing large-scale problems with ill-conditioned or non-smoothed objective function.
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Therefore, researchers had copied the Mother Nature to obtain new ways to solve
the problems and consequently, several nature-inspired optimization techniques have
been designed and successfully implemented to solve a variety of problems. Among
several bioinspired algorithms, Genetic algorithm [2] (GA), Particle swarm opti-
mization [3] (PSO), Differential evolution [4] (DE), Ant colony optimization [5]
(ACO), Bat algorithm [6] (BA), etc., are the most popular evolutionary optimization
techniques available in the literature.

Genetic algorithm (GA) is one of the most robust stochastic algorithms used in
different types of applications. It is very easy and straightforward to implement, able
to handle a large variable space and very flexible in assigning the objective function
and the constraints [7]. It works based on Darwin’s principle of natural selection.
It consists of three stochastic operators, such as selection, crossover, and mutation.
In the selection scheme, better solutions (in terms of their fitness values) are given
advantages for creating mating pools. During crossover, the properties of twomating
parents are exchanged to obtain two new children solutions. After this operation, the
solutions may find sudden changes while passing through the mutation operator,
which helps the algorithm to overcome the problem of local optimum. Among these
three main operators of a GA, the crossover scheme has a great role in searching
for new solutions to reach the globally optimal point. Several attempts were made
to design an efficient crossover operator of a GA. Wright [8] proposed a heuristic
crossover operator, in which one child is created out of two parents and the child
has a bias toward the better parent. Radcliffe [9] suggested a crossover operator,
namely, flat crossover. In this type of recombination, one child solution is obtained
randomly in between a pair of parents. Michalewicz [10] introduced an arithmetical
crossover with two variants, such as uniform and nonuniform arithmetical crossover.
Eshelman and Schaffer [11] developed a blend crossover operator (BLX-α), where
the locations of the children solutions to be created by the parents, are calculated
using the parameter α. The suggested standard value for α was equal to 0.5. Deb
and Agrawal [12] proposed the simulated binary crossover (SBX), in which two
offspring are generated from a pair of mating parents. It imitates the concept of a
single-point crossover on binary strings in continuous space. Ono and Kobayashi
[13] developed a unimodal normal distribution crossover operator (UNDX). In this
scheme, two or more children solutions are generated from three parent solutions.
To demonstrate the performance of the said operator, only three problems were
solved, which might not be sufficient to conclude anything firmly. Tsutsui et al.
[14] suggested a simplex crossover (SPX), where to create the offspring, three or
more parents were used. From some numerical experiments, they inferred that SPX
could give a better performance, where the objective function is multimodal and/or
it has epistasis with a medium number of mating parents. Another operator, namely,
parent-centric crossover (PCX) was developed by Deb et al. [15] for real parameter
optimization and its performance was compared with the other popular crossover
operator like SPX, UNDX, etc. However, it was tested on three problems only, which
might not be sufficient enough to conclude anything significant. Utilizing the Laplace
distribution to evaluate the location of the offspring solution, Deep and Thakur [16]
proposed a new crossover operator, namedLaplace crossover (LX). Apart from these,
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Kuo and Lin [17] suggested a directed crossover for an RCGA. This recombination
method was designed based on the reflection and expansion search mechanism of
Nelder-Mead’s simplex approach. Chuang et al. [18] developed a parallel-structured
RCGA, in which a direction-based crossover (DBX) was proposed. From the various
simulation results, it was observed that this method could yield good performance
for multimodal and high-dimensional hybrid objective functions only.

It is to be noted that there are several crossover operators for the RCGA available
in the literature of GA. However, the novel concept of deriving the most-favorable
search direction and its application to yield new children solutions are missing in
most of the crossover schemes. In this paper, we introduce a direction-based expo-
nential crossover operator (DEX) for a real-coded genetic algorithm (RCGA), where
two offspring are generated from a pair ofmating parents using exponential functions
and predetermined directional information of the decision variables. In the proposed
DEX operator, most-promising directional information is used in an efficient way for
creating the children solutions. Moreover, two probability terms, such as directional
crossover probability (pcd) and exploration probability (pe) are introduced in the pro-
posed DEX to preserve a superior balance between the exploitation and exploration
of the search process and these are found to be the novelties of the present study.
The remaining part of the text is arranged as follows: Sect. 2 describes the details of
the proposed crossover operator, whereas the results and discussion are presented in
Sect. 3. At the end, some conclusions are made in Sect. 4.

2 The Proposed DEX Operator

In this section, a novel crossover scheme is proposed, namely, direction-based expo-
nential crossover (DEX). It uses exponential functions and predetermined informa-
tion regarding the appropriate directions of the design variables to make the search
process efficient. This operator has been designed in two stages:

• Getting directional knowledge of the design variables,
• Obtaining children solutions applying directional knowledge and exponential
functions.

2.1 Getting Directional Knowledge of the Design Variables

The name of this crossover scheme clearly indicates that DEX is influenced by the
directional knowledge of the problem. The collected information of the variables
actually helps to decide the search direction of the algorithm in the variable space
to move toward the globally optimal solution. Now, the task of obtaining this data is
difficult and may have several ways for the same. Here, we propose one method to
get this information during evolution.
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At first, we have to calculate the average numerical value of the current population
for each decision variable. This calculation is to be done for each generation. Now,
for each variable, we have to make comparisons between the average value obtained
in the current generation and that calculated in the previous generation. When the
average value of a variable in the current generation is observed to bemore compared
to that of the previous generation, then the direction for that variable is considered as
the positive in that generation. In another case, when the average value of a variable
becomes less than that in the previous generation, the direction for the variable is
taken as the negative in that particular generation. An example has been shown in
Fig. 1with a 2-D variable space. In this example, at (T + 1)th generation, the obtained
directional information is positive for both the variables.

In this way, for every generation, except for the first and second ones, we can
obtain the directional information for the design variables. For the second gener-
ation, the calculated average values of the variables are compared with the best
solution available in that generation and in a similar way, the directional information
is obtained. However, it is not required to derive the directional knowledge for the
very first generation as there is no crossover taking place in that generation.

Fig. 1 In 2-D plane, the directional knowledge at (T + 1)th generation
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2.2 Obtaining Children Solutions Applying the Directional
Knowledge and Exponential Functions

Utilizing the obtained directional knowledge of the variables, the locations of the
children solutions are controlled to a greater extent. However, there are other aspects
which are also responsible for determining the positions of the offspring. A more
detailed description of this scheme is given below in a few steps.

First step: Let us say, the population size of the solutions is taken as N . After
the selection operation, N/2 pairs of mating solutions are created randomly from the
N number of selected members. A mating pair participates in crossover, while the
generated random value (ranging from 0 to 1) is observed to be either less than or
equal to the crossover probability (pc). Otherwise, the mating pair is not allowed to
join in crossover.

Second step: After the first step, the recombination operator is applied variable-
wise for the mating solutions, which are permitted to join in the crossover. Here,
another probability, say variable-wise crossover probability (pcv) is applied to decide
whether the crossover is going to occur or not to a certain variable position. This
concept of pcv is implemented in a similar way to that of pc as mentioned in first
step.

Third step: The mating parents, which have passed through the said two steps
and are allowed to join in the crossover, exchange their properties to yield children
solutions according to the scheme described in this step. We consider a user-defined
very small positive number, say ε. Depending on the value of ε, there may occur two
scenarios, in which two different crossover schemes are adopted as follows:

• Scenario 1: Absolute difference between the two mating parents is more than ε

Between the two mating parents, let us take the smaller one as p1 and the larger
one as p2. Then, a parameter, say val, is calculated using the Eq. (1):

val = 1 − 0.5{e
(p2−p1)

(yu−yl ) } (1)

where yu and yl are the upper and lower boundaries of the decision parameters,
respectively. Now, whenever the directional knowledge for a variable is found to be
positive and a random number (varying from 0 to 1) is observed to be either less than
or equal to a parameter, say directional crossover probability (pcd), two children
solutions (c1 and c2) are generated using the Eqs. (2) and (3).

c1 = val × (p1 + p2) + αr × e(1−r) × (1 − val) × (p2 − p1), (2)

c2 = (1 − val) × (p1 + p2) − α(1−r) × e(r−2.5×r) × val × (p2 − p1), (3)

where α is the spread factor, which generally varies from 0 to 4, and r is a random
number created in the range of (0,1). However, if the directional information of the
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variable is seen to be positive and a random number (generated between 0 and 1) is
found to be greater than the value of pcd, the offspring c1 and c2 are created by the
given two equations (Eqs. 4 and 5) as follows:

c1 = val × (p1 + p2) − αr × e(1−r) × (1 − val) × (p2 − p1), (4)

c2 = (1 − val) × (p1 + p2) + α(1−r) × e(r−2.5×r) × val × (p2 − p1). (5)

In another case, where the directional information is found to be negative for a
variable and a random value lying in the range of (0, 1), is found to be either less
than or equal to the value of pcd, the children solutions (c1 and c2) are yielded using
the Eqs. (4) and (5). Similarly, generations of the offspring c1 and c2 are done by
utilizing the Eqs. (2) and (3), respectively, when the directional information of the
variable is obtained as negative and the value of pcd is found to be less than a number
randomly created in the range of 0–1.

• Scenario 2: Absolute difference between two mating parents is less than or equal
to ε

In this case, a pair of mating pool is allowed to participate in the crossover only
when a random number (varying from 0 to 1) is obtained as either less than or equal
to a parameter, say exploration probability (pe). If this condition is satisfied, that
is, the two parents take part in the crossover, the children solutions are produced
exactly in the same way as described in scenario 1, except the equation for deriving
the parameter val (that is, Eq. 1). In this case, the parameter val is evaluated using
the mathematical expression given in Eq. (6):

val = 1 − (0.5 × Er )

⎧
⎨

⎩

(
E (1−r)
r

)
×e

(p2−p1)
(yu−yl )

⎫
⎬

⎭
(6)

where Er is the exploration ratio and it takes a numerical value which is seen to be
very near to 1, and r is a random number varying in the range of 0–1.

If a child solution is found to be greater than the upper limit of the variable (yu)
or less than the lower limit of the variable (yl), then its value is taken as the value of
yu or yl , respectively. These are called the variable limiting conditions.

Fourth step: This is the last step of the proposed scheme, where the newly gener-
ated offspring (c1 and c2) are recognized. If a random value (yielded between 0 and
1) is obtained as either less than or equal to 0.5, then c2 and c1 are considered as the
first child and second child of the generated pair of solutions, respectively. In another
case, c1 and c2 are recognized as the first child and second child of the yielded pair of
solutions, respectively, if a random value, varying from 0 to 1, is found to be greater
than 0.5. These defined conditions are denoted as children recognition conditions.

A pseudo-code of the proposed crossover operator is presented in Table 1.
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Table 1 The pseudo-code of the DEX operator

Input: A mating pair ( and ) with number of decision variables, DEX
parameters
Output: Generated children solutions ( and )
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11.                           
12:
13:
14:
15:
16:
17.                               
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
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3 Results and Discussion

To measure the performance of the newly designed crossover operator, we have
taken ten classical benchmark test functions as given in Table 2. All the problems
are assumed to have 30 dimensions (that is, d = 30). A real-coded genetic algorithm
(RCGA) with DEX and polynomial mutation operator [19], has been run for 50
times for each of these test functions and the best solution obtained after each run
has been captured. The best, worst, mean, median, and standard deviation of the
obtained results are found out for each of these test functions. Similar experiments
have been carried out with an RCGA equipped with simulated binary crossover and
polynomial mutation operator.

Table 2 Ten benchmark test functions

Function Mathematical formulae Variable
boundaries

F01: Sphere
f (x) =

d∑

i=1
x2i

[−100, 100]d

F02: Sum of
different
powers

f (x) =
d∑

i=1
|xi |i+1

[−100, 100]d

F03: rotated
hyper-ellipsoid f (x) =

d∑

i=1

i∑

j=1
x2j

[−65, 65]d

F04: Griewank
f (x) =

∑d
i=1 x

2
i

4000 −
d∏

i=1
cos(xi/

√
i) + 1

[−600, 600]d

F05: Trid
f (x) =

d∑

i=1
(xi − 1)2 −

d∑

i=2
(xi xi−1)

[−d2, d2]d

F06:
Dixon-price f (x) = (x1 − 1)2 +

d∑

i=2
i(2x2i − xi−1)

2
[−10, 10]d

F07: Powell
f (x) =

d/4∑

i=1
[(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i )2 + (x4i−2 −
2x4i−1)

4 + 10
(
x4i−3 + x4i )4

]

[−10, 10]d

F08: Alpine
f (x) =

d∑

i=1
|xi sin(xi ) + 0.1xi |

[−10, 10]d

F09: Bent ciger
f (x) = x21 + 106

d∑

i=2
x2i

[−10, 10]d

F10: Schaffer
F7

f (x) =
1

d−1

d−1∑

i=1

[(
x2i + x2i−1

)0.25 + (
x2i + x2i+1

)0.25
sin2

(
50

(
x2i + x2i+1

)0.1
)]

[−100, 100]d
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Table 3 Selected special
parameters’ values of DEX
operator

Parameter Selected value

α 1.0

pcv 0.8

pcd 0.7

ε 1.0E−100

Er 0.9999

pe Linearly decreasing from 0.5 to 0 over the
generations

3.1 Parameters’ Settings

To make a fair comparison, the common controlling parameters of both the algo-
rithms, such as population size (N = 60), number of variables (d = 30), crossover
probability (pc = 1.0), mutation probability

(
pm = 1

d

)
, user-defined index parame-

ter for polynomial mutation operator (ηm = 10), and maximum number of genera-
tions (max_gen = 500), have been kept the same. The user index parameter for SBX
crossover operator (ηc) is taken as 2. Both the algorithms stop, if these are run for
the maximum number of generation. Special parameters of the DEX operator, such
as spread factor (α), variable wise crossover probability (pcv), directional crossover
probability (pcd), small positive number (ε), exploration ratio (Er ), and exploration
probability (pe) are determined after several trial experiments and a set of suitable
values of these parameters is selected to test the said ten benchmark functions. These
chosen parameters’ values are given in Table 3.

The obtained results are given in Table 4, where the best ones are marked in bold.
In addition, the average number of function evaluations ( favg) and average CPU
time (in seconds) required in 50 runs to reach a particular accuracy of the objective
function value (i.e., equal to 1 for F06 and 0.1 for others) for all the test functions
are also provided in Table 4.

From the results, it is clear that RCGA with DEX operator is performing better
than the RCGA with SBX operator for the ten benchmark functions. Moreover, it is
observed that the proposed algorithm takes less CPU time to reach a particular accu-
racy of the objective function compared to that of the other. It might have happened
due to the fact that the directional information derived from the problem itself has
been utilized for creating the approximate children solutions in the RCGAwith DEX
operator. Moreover, the use of exploration probability (pe) and exploration ratio (Er )
enhances the exploration capability of the RCGA, and this capability decreases over
the generationmaintaining a proper balance between the exploration and exploitation
phenomena of the optimization algorithm.
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4 Conclusion

In this study, a new direction-based exponential crossover (DEX) is proposed and
described in detail. The proposed crossover operator is influenced by the directional
information of the decision variables and this information is gathered from the prob-
lem using a newly developed method. This information helps to decide the locations
of the children solutions and it makes the search process of the algorithm more effi-
cient. Also, in the developed crossover operator, there is a method to inject more
exploration capability into search process and this is reduced gradually over the gen-
erations, keeping a nice balance between the exploration and exploitation capabilities
of anRCGA.The proposedDEXhas been tested on the ten classical benchmark func-
tions and the results are compared with that of the other crossover operator, such as
simulated binary crossover (SBX). The obtained results clearly indicate that the pro-
posed crossover operator outperforms the SBX operator for these test cases. The
performance of the DEX will be tested in future for more number of test functions
and real engineering optimization problems. Moreover, an effort will be taken to
make the parameters of the DEX operator as self-adaptive or self-determinative, so
that the user intervention may be avoided.
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Axial Deformation Characteristics
of Graphene-Sonicated Vinyl Ester
Nanocomposites Subjected to High Rate
of Loading

B. Pramanik, P. R. Mantena and A. M. Rajendran

Abstract The mechanical characteristics of vinyl ester nanocomposites were inves-
tigated under a high rate of axial loading. The thermoset composites were sonicated
with exfoliated graphite nanoplatelet (xGnP) and added with carboxyl-terminated
butadiene nitrile (CTBN). High-strain rate axial tests were accomplished employing
a split-Hopkinson pressure bar (SHPB) test-setup following a direct and a reverse
impact method. Finite element analysis (FEA) and parametric optimization of the
specimen geometry were performed using ANSYS Mechanical APDL®. Observing
multi-surface fractures validated uniformity of stress distributionwithin the specimen
gauge length. A laser occlusion expansion gauge (LOEG) technique was considered
for measuring axial strain. The loading pulse within the transmitted bar was signifi-
cantly low. Hence, an alternative approach (considering the pulse within the incident
bar only) was applied for obtaining the stress–time history. A conventional SHPB
setup provided a high rate of compressive deformation response. Both flow strength
and energy absorbability of the participating material systems showed significantly
lower under tension than under compression at a high rate. Nano-reinforcement
marginally enhanced these mechanical characteristics for pristine vinyl ester under
a high rate of tension. The material system responded detrimental under a high rate
of compression.
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1 Introduction

Vinyl ester-based composites find applications in chemical storage tanks, pipelines,
aerospace, automotive, wind energy, military, marine, and other fields of applica-
tion. The extended molecular chain turns vinyl ester resin as a promising candi-
date in dynamic loading situations [1, 2]. Multiple researchers [3–8] attempted the
inclusion of reinforcement in vinyl ester composites for improving the mechanical
properties. This research incorporated graphite nanoplatelet with CTBN liquid rub-
ber for improving the performance of this nanocomposite. The previous research
[9–13], showed that the participant composite systems are rigid in stiffness but weak
in strength, and demonstrated a brittle failure. It is evident that the tensile stress con-
centration initiates the failure of rigid and weak materials. Hence the investigation of
the high strain-rate axial response of such materials requires serious consideration.

The split-Hopkinson pressure bar (SHPB) invented by Hopkinson [14] and
improved by Davies [15] and Kolskey [16] is the most widely accepted laboratory
test setup for obtaining the mechanical response at a high rate of loading. Harding
et al. [17] first tailored this bar apparatus for performing the tensile tests at a high rate
of loading.Many researchers [18–25] addressed the difficulties of producing a tensile
pulse, optimizing the geometry of the tensile test specimen and the corresponding
gripping system.

In this investigation, the dynamic characteristics of xGnP sonicated with CTBN
added vinyl ester nanocomposites had been determined under a high rate of uniaxial
tension and compression. First, a reverse-loading SHPB technique was employed to
perform the dynamic axial test in tension. Dog bone-shaped specimen geometry of
the tensile test was optimized based on finite element analysis of stress distribution
within the specimen and fixture assembly using ANSYS Mechanical APDL®. Dur-
ing dynamic test event, high-speed photography showed the stress equilibrium and
uniformity within the specimen gauge span. A noncontact laser occlusion technique
[26] replaced the complex on-specimen stain gage technique for obtaining tensile
strain. Finally, conventional compressive SHPB tests were performed. Both dynamic
tensile and compressive strength and energy absorbability of the participant mate-
rial system are reported and compared. The effects of xGnP sonication and CTBN
inclusion on the dynamic response of vinyl ester composite system were evaluated.

2 Experimental Setup

This research exploited a traditional compression and a reverse impact-based ten-
sion SHPB apparatus. The reverse SHPB consists of a laser occluding expansion
gage system for conducting high rate tensile tests on the participating composite
specimens.
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2.1 Material Description

DERAKANE 510A-40 [2] thermoset vinyl ester nanocomposites of 10 mm (0.4
in.) thick panels are tested for the high rate tensile and compressive characteri-
zation. The vinyl ester contains 38 weight % styrene, along with Butanone per-
oxide, N, N-Dimethylaniline, Cobalt Naphthenate, and 2–4-Pentanedione addi-
tives to improve fire retardancy, chemical resistance, and toughness. The pris-
tine vinyl ester thermoset (VE) is sonicated [7, 12, 26] in two batches with each
of 1.25 weight % (1.25xGnP+VE), and 2.5 weight % (2.5xGnP+VE) exfoliated
graphite nanoplatelets respectively. The 10.0 weight % liquid CTBN rubber glob-
ules (1.25xGnP+CTBN+VE and 2.5xGnP+CTBN+VE) were added to one of the
batches to improve the toughness of the composite material without decrementing
the other mechanical properties, including glass transition temperature [5]. Drzal and
Fukushima [7] described the processing technique of those composite systems.

2.2 Dynamic Tensile Test Setup

The tensile SHPB system as shown in Fig. 1 consists of a steel barrel having a
steel hollow cylindrical striker bar. A compressed air vessel was connected with a
solenoid switch valve to one end of the barrel. The striker wasmounted on two Teflon
rings for achieving frictionless sliding motion inside the barrel. The striker bar was
propelled by the rapid release of air pressure from the compressed air vessel. The
hollow cylindrical striker slides over the aluminum incident bar, inside the barrel and
impacts the aluminum collar, mounted at the end of the incident bar, causing a tensile
stress wave within the incident bar. A thin ring-shaped polyurea pulse shaper was
used for producing a trapezoidal incident pulse. The SHPB bar system was retarded
by a momentum bar, which was trapped against a block of putty-clay. The specimen
was sandwiched between an incident bar and a transmission bar and was loaded with

Fig. 1 SHPB set-up for direct tensile tests including LOEG device
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tensile stress. A part of the incident wave was reflected back to the incident bar, and
the other part was transmitted into the aluminum transmission bar.

Two batches of strain gauges were installed at a distance away from the specimen
on the incidence and the transmission bars as the strain gauges can capture the
commencement of the incident, reflected and transmitted pulses distinguishably.
Each batch consisted of two gauges positioned on the transversely reverse sides of the
bar and coupled in series network (Fig. 1). This arrangement eliminates the flexural
influence of the bars and ensures uniaxial strain measurement. A digital oscilloscope
was linked to each batch of the strain gauges, via a Wheatstone bridge circuit and a
signal conditioner. The oscilloscope displayed the signal potential history over the
entire test duration and stored in the database. Strain pulse response in SHPB bars
at the strain gauge locations was applied in the 1-D wave equation and the tensile
stress experienced by the test specimen was obtained.

2.3 Optimization of Specimen Geometry

Adog bone-shaped specimen and dovetail grippingmechanism [24] shown in Fig. 2a
was adopted to reduce thewave dispersion, possibly caused due to complex specimen
attachment configurations of previously attempted pinned [17], threaded [20], or
cemented [23]fixtures.Aplane-stress FEAwas carried out to parametrically optimize
the specimen geometry that prevented pre-mature failure of the specimen or the
fixture due to undesirable stress concentrations, and also to ensure uniform stress
distribution within the loading zone in the specimen.

The pulse width over time dictates the required least length of the loading zone
within the specimen. The pulse needs to propagate back and forthwithin the specimen
more than three times before yield or failure initiates. It ensures the internal stress
equilibrium within the specimen. The wave speed in the specimen was estimated
over quasi-static properties previously obtained [9] as per ASTM 638-08 [27].

The fundamental assumption for this FEA was the homogeneity of the material
integrity in case of the load transfer. Only geometric influence of the components has
been considered for this analysis. The FE model was constructed into two parts. One
part was of the dog bone-shaped specimen, and the other part was of the dovetail
end fixture. Figure 2b illustrates the load and the boundary condition considered
in those models. The geometry was modeled using ANSYS Mechanical APDL®

graphics tool and merged as an assembly (Fig. 2c). The models meshed with 10-
noded elements (SOLID187 in ANSYS®) having quadratic displacement behavior
is appropriate for modeling irregular meshes. Quarter symmetry of the geometry
was considered to decrease the total number of nodes of the model. It allowed denser
mesh and improved the accuracy of results.

The contact elements were modeled along the interface between the fixture and
the specimen. The contact along the angular surfaces was defined with normal and
tangential components. The contact elements follow a linear constitutive behavior



Axial Deformation Characteristics of Graphene-Sonicated … 329

Fig. 2 a Development of direct tensile specimen geometry, b boundary condition applied in stress
analysis of specimen and fixture assembly, c ANSYS model, d von-Mises stress distribution in
ANSYS simulation, e specimen dimensions, and f fixture dimensions (all dimensions in inches)

normal to the surface. The aluminum fixture surface was chosen as the master sur-
face. A stiffness-penalty method was considered for explaining the friction between
the fixture and the specimen. Figure 2d shows a uniformly distributed tensile load
applied at the end of the specimen. The end of the fixture was constrained from axial
translation. The color-map of vonMises stress distribution for an imposed distributed
load is shown in Fig. 2d. The von Mises stresses were distributed uniformly along
the specimen gauge section and validated the optimization of the specimen (Fig. 2e)
and fixture (Fig. 2f) geometry. A CNCmachine, equipped with a carbide tipped tool,
machined the optimized specimens for performing the test series.

2.4 Development of LOEG

A Laser Occluding Expansion Gauge, incorporated for measuring tensile strain
response, worked through occluding a thin parallel laser sheet by either the specimen
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fixture ends in case of direct dynamic loading, or the deforming specimen geometry
in case of indirect dynamic loading [26]. This idea was adopted from the work of
Ramesh and Narsimhan [28] on measuring radial strains in compression Kolsky bar
experiment and the later work of Chen et al. [29] on dynamic tensile response of low
strength brittle solid.

The LOEG consisted of a 635 nm wavelength laser system (©Coherent, Inc.). It
included a single line projection head with 30° fan angle. It had two anti-reflector
(MgF2)-coated plano-convex cylindrical N-BK7 glass lenses of 25mmdiameterwith
50mmfocal length (©EdmundOptics). Itwas equippedwith an amplified, switchable
gain, silicon PINphotodetector (©Thorlabs) having 1.5MHzbandwidth at 4.25MS/s
sampling rate, and 0.2 mV noise, and 100 MHz. A 4-channel oscilloscope with 1.25
GS/s sampling rate (©Tektronix, Inc.) was included in this setup. It is to be noted
that the same oscilloscope is used in SHPB system. The incident pulse (sensed
at the incident bar strain-gauges) triggered the photodetector. The diode-laser unit
generated 635 nm laser beam collimated (converted from a divergent beam to a
parallel beam over an extended range of projection distance) with an elliptical cross
section of 3.8 mm × 0.9 mm. It consisted of a single line projection head with 30°
fan angle (the angular spread of the laser beam). The projection head consisted of
Powell® glass lenswhich spreads the collimated laser beam and converts the elliptical
projection into a 0.9 mm thick non-Gaussian line projection with almost uniform
relative intensity along the fan angle. Line thickness was reduced to about 55 µm
by the pre-focusing collimated laser beam at the target position on the specimen.
The maximum power output was 5 mW. Black anodized aluminum housing held
the entire laser unit. The plano-convex cylindrical lens used in this setup was made
from a coated N-BK7 glass substrate. It developed a parallel laser sheet of 25 mm
(~1 in.) width. The coating was of MgF2 anti-reflectant (<1.75% per surface area in
the wavelength within 400–700 nm). The light was detected through another similar
plano-convex cylindrical lens arranged in a symmetrically opposite orientation. It
converged the parallel sheet of light into a 9.8 mm diameter aperture of a photodiode
light detector placed near the focal point of the laser sheet. The photodiode detector
output was pre-amplified with a bandwidth of 1.5 MHz, and the output-voltage was
proportional to the total amount of laser light entered into the photodetector including
less than 1 mV noise level.

2.5 Stress Measurement—Tension

The incident pulse propagated along the incident bar, pulled the sample, reflected
back a part of the incident pulse into the incident bar and the rest was transmitted
to the transmission bar. In this test, the steel hollow cylindrical striker bar impacted
the aluminum collar mounted at the end of the aluminum incident bar. Due to the
striker collar impedance mismatch, the incident pulse exhibited extended restitution
with gradually reducing amplitudes similar as described in [30]. Hence, the initial
maximum amplitude portion of the incident pulse was used for SHPB analysis. The
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candidatematerials having low-impedance and low-dynamic tensile strength allowed
only an insignificant part of the incident pulse propagated into the transmission bar.
Since, the transmitted pulse was too weak to estimate stress, an alternative one-
dimensional wave propagation analysis [31] was considered for estimating direct
tensile stress (σ dt) as shown in the following equation—

σdt = 2AsρsCs

AiρiCi + AsρsCs
.
Ai

As
. Eiεi (2)

where E is the elastic modulus; ε denotes the strain; A, is the cross-sectional area, ρ
is the density, and C is the wave velocity for the incident bar (with a suffix, i) and
the specimen (with a suffix, s).

2.6 Strain Measurement—Tension

The laser sheet, projected horizontally above the tensile test-specimen, was partially
occluded by the ends of the specimen fixtures mounted on incident and transmission
bars. In our experimental setup, the gap between the specimen holding fixture ends
was almost equivalent to the specimen gage length. Hence, the tensile strain response
was counted from the ratio (�V /V ) of the incremental change of potential along with
specimen elongation to the initial potential within the grip ends holding the pristine
test coupon.

A comparative study of the LOEG response was performed. A batch of strain
gauges was installed on the dog bone-shaped coupon. The tensile strain history was
obtained using LOEG and on-specimen strain gauges. A batch of two strain gauges
was installed on opposite sides of the coupon and connected in a quarter-bridge
circuit. The dynamic strain–time history responsewas plotted on an oscilloscope. The
LOEG setup acquired a comparable strain data transferred to the same oscilloscope.
It validated the applicability of the LOEG setup in tensile strain measurements.

2.7 Dynamic Compressive Test Setup

A traditional compression SHPB setup with aluminum bars was applied for obtain-
ing the high rate compressive characteristics of the participant materials. The disk
specimen geometry was considered for compression tests and loaded axially on
the opposite faces. The compressive 1-D wave propagating through the specimen
thickness was considered for computing the dynamic compressive stress and strain
histories.
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3 Experimental Results

The typical failure of an optimized dog bone specimen under a high rate of tension
in SHPB apparatus has been studied. It showed multiple fractured surfaces on the
post-test specimen. It indicates that the dynamic stress equilibrium was achieved
before the fracture occurred. The instantaneous drop of stress indicated the onset of
a crack within the specimen. The corresponding time of the visible first stress peak
(representing the dynamic tensile strength) had been recorded as the time of crack
initiation. The energy absorbability per unit specimen volume was obtained from the
area-integral under the stress-versus-strain curve [32] until specimen failed.

3.1 Dynamic Tensile Response

Figure 3 summarizes the tensile response of vinyl ester composites containing xGnP
and CTBN subjected at about 1000 s−1 strain-rate. All nano-reinforced specimens
including the pristine vinyl ester showed brittle failure under a high rate of tension

Fig. 3 Dynamic direct tensile response a typical constitutive response, b strength comparison, and
c energy absorbability comparison for the composite system; (i) with graphite platelet, and (ii) with
additional CTBN
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(Fig. 3a). The tensile strength of pristine vinyl ester was decreased marginally with
xGnP (Fig. 3b(i)). The inclusion of CTBN along with xGnP into the composite
systems did not show significant improvement (Fig. 3b(ii)). The energy absorbability
of pristine vinyl ester maintained almost similar response with xGnP (Fig. 3c(i));
however, this was minimally enhanced by further addition of CTBN to the xGnP in
the composite systems (Fig. 3c(ii)).

3.2 Dynamic Compressive Response

Figure 4 shows dynamic compressive response of the candidate materials tested at
similar strain rate of about 1000 s−1. Figure 4b shows that compressive flow stress of
pristine vinyl ester was decreased gradually by the inclusion of xGnP (Fig. 4b(i)), and
evenwithCTBN(Fig. 4b(ii)). The energy absorbability (Fig. 4c)was decremented for
xGnP (Fig. 4c(i)). The inclusion of CTBNcould not enhance the energy absorbability

Fig. 4 Dynamic compressive response a typical constitutive response, b strength comparison, and
c energy absorbability comparison for the composite system; (i) with graphite platelet, and (ii) with
additional CTBN
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(Fig. 4c(ii)) of pristine vinyl ester, nevertheless, a minimal increment (Fig. 4c(ii))
was observed (Fig. 4c(i)) upon comparing with that of the only xGnP added (without
CTBN) composite systems.

3.3 Comparative Study of Dynamic Tensile and Compressive
Responses

The constitutive materials within the composite system play an important role of
transferring mechanical load. The anisotropic nature of load transfer is significant
in composites due to the inherent differences of the bonding efficiency among con-
stituents with the matrix along the loading directions. Tensile and compressive loads
act mutually in opposite directions. Hence, the composite system responds differ-
ently for these counteracting loading systems. Comparative observation of Fig. 3with
Fig. 4 shows that the stress–strain characteristic of these candidate materials under
high-rate tension varied considerably from its high-rate compression. The compres-
sive strength (Fig. 4b) of the candidatematerialswas observed to be about 300%more
than the tensile strength under high-rate of loading (Fig. 3b). The energy absorbabil-
ity was also significantly higher (about 2000%) under dynamic compressive loading
(Fig. 4c) than under dynamic tensile loading (Fig. 3c). It is evident that the vinyl ester-
based nanocomposites are brittle at high strain rates. The nano-reinforcement and
additional toughening are detrimental to the properties under dynamic compression.
Still, the contribution of the inclusions showed minimal improvement in dynamic
tension.

4 Conclusion

The significant features of the proposed techniques of the modified direct tensile test
method described in this article—

• The SHPB reverse impact technique is implemented for the mechanical charac-
terization of the candidate materials under a high rate of uniaxial tension.

• Due to the very low transmitted pulse signal, an alternative approach (using inci-
dent pulse and quasi-static properties of the candidate materials) is adopted for
estimating stress–time history. The transmission bar may also be modified with
a low impedance material and/or smaller cross-sectional area for obtaining true
dynamic tensile stress.
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The critical observations in this investigation regarding the effect of xGnP and
CTBN on the axial response of vinyl ester composite system are—

• The pristine vinyl ester maintains almost the similar tensile strength with addition
of xGnP and even with CTBN under quasi-static to high-strain rate tension.

• The energy absorbability of pristine vinyl ester is enhanced due to the presence of
xGnP under dynamic tension.

• The high-rate of tensile response of the candidate materials varies significantly
from the high-rate of compressive response.

• Reinforcing vinyl ester with xGnP and toughening with CTBN is found to be detri-
mental to the properties of candidate nanocomposites under dynamic compres-
sion, although a minimal improvement of these properties is observed in dynamic
tension.
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State Estimation Using Filtering Methods
Applied for Aircraft Landing Maneuver

P. S. Suresh, Niranjan K. Sura and K. Shankar

Abstract State estimationmethods are the popularmeans of validating aerodynamic
characteristics on maneuvering Aircraft. This work deals with adaptation of familiar
filtering methods for Aircraft landing maneuvers, to estimate the aircraft touchdown
states. The mathematical model for two-point landings (main wheel in contact with
the ground and nose wheel airborne) consists of nonlinear flight mechanics equations
representing Aircraft longitudinal dynamics. A nonlinear 6 DOF pilot in loop sim-
ulation model is used for the measurement of data generation that was mixed with
process and measurement noises. These values are used for posterior state correction
in the implementation of Kalman filter. With the state values just before the initia-
tion of flare as initial conditions, filters such as Upper Diagonal factorized form of
Adaptive Extended Kalman Filter (UDAEKF) and Unscented Kalman Filter (UKF)
is implemented in Matlab environment. The estimated states and measured data are
compared using performance metrics for vertical acceleration (Nz) which brings out
the possibility of over quantification (3.5%) and under quantification (11.3%) at onset
of touchdown having an impact on landing loads. As observed, the performance of
UKF is two and half times faster than UDAEKF through superior state propagation.
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1 Introduction

The vital phase of flight happens during landing, wherein “Abnormal Runway Con-
tact” is cited as the primary reason for hard landing event [1]. During initial phase of
design, specifications such as Military Specification (MIL), Joint Service Specifica-
tion Guide (JSSG) are used for prediction of the landing loads on high performance
aircraft [2, 3]. The landing gear and near attachment structures are sized according
to the predicted loads for several ground maneuvering and landing cases.

The symmetric two-point (Main Landing Gears (MLG) touchdown and Nose
Landing Gear (NLG) airborne) and three-point (Two MLG’s and NLG touchdown)
landings consists of states such asmass (m), vertical descent speed (h), pitch angle (θ ),
pitch rate (q), pitch acceleration (q̇), true vertical (az) and longitudinal acceleration
(ax ) that governs the impact loads on Aircraft [4]. The inertial measurement sensors
measure the accelerations (ax& az) at the touchdown state, being prone usually with
measurement issues such as noise, sensor bias and drift, location of sensor with
respect to Aircraft Center of Gravity (CG), missing data, and so on. The rotary
acceleration (q̇) is a derived response from the rotational velocity which is prone to
divergence due to integration time steps.

Aerodynamic parameter identification using state and parameter estimation
method is the most common application followed by flight mechanics engineers,
working on system identification domain [5, 6]. Several versions ofKalman filters are
tried out against position, velocity tracking problem of size (2× 2) observation equa-
tion [7]. This work explores the adaptation of popular nonlinear filtering algorithms
on landing maneuver problems to determine the Aircraft touchdown states.

On the basis of first-order approximation of nonlinear dynamics, a well-known
recursive state and parameter estimation called Extended Kalman Filter (EKF) is
implemented in this work [8]. For landing dynamics, the filter is adapted with Upper
diagonal (UD) form and adaptive tuning process using a fuzzy logic interface for
state error covariance and process noise covariance matrices. These implementations
will prevent state error covariance matrix to diverge and support the filter tuning
process.Yet another algorithm implemented usingMatlab, is onUKFwhich basically
propagates finite set of points, called “sigma points”, through nonlinear dynamics
and by approximating the distribution (mean and covariance) through weighted sum
and outer product of propagated sigma points [9].

A nonlinear 6 DOF flight mechanics module is coupled with the pilot in loop
interface. This interface provides the pilot stick input during landing phase of Air-
craft. Three sets of simulated landing cases were performed for measurement data
generation with different flare techniques leading to low, nominal, and high sink rate
velocity landing cases. Initially, the aircraft states during touchdown phase such as
horizontal velocity (u), vertical velocity (w), pitch (θ ), pitch rate (q), and altitude
(h) are estimated and were compared with noisy simulated measurement data. The
validity of the estimates is assessed by plotting the state error with bounds and com-
paring standard deviations. Then, the states such as vertical acceleration (az), pitch
acceleration (q̇), horizontal acceleration (ax ), and sink rate (ḣ) which has direct
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Fig. 1 Typical high
performance aircraft

impact on landing loads, are obtained. The Aircraft state vector is augmented with
aerodynamic parameters which were also estimated. These estimates can become
an initial input for performing a multi-body dynamic simulation that can be used to
predict landing impact loads.

The paper is ordered as follows: Sect. 2 describes the configuration of Aircraft and
the equation of motion, Sect. 3 provides the implementation of nonlinear filters on
landingmaneuver, Sect. 4 provides the state estimation results for simulated landings,
followed by discussion and conclusion.

2 Aircraft Dynamics: Longitudinal

2.1 Aircraft Configuration

A typical high performance Aircraft with four Elevons (Inboard and Outboard) and
single vertical tail with Rudder is considered for the study as shown in Fig. 1. The
Aircraft Elevons are at trailing edge for lateral (Roll) and longitudinal (Pitch) control,
with a Rudder hinged to single vertical tail for directional (Yaw) control. The aircraft
has a tricycle landing gear arrangement with Main landing gears (Starboard and Port
side) symmetrically placed and positioned close to aircraft CG. The Nose landing
gear is located forward of Main landing gear positioned at the front fuselage.

2.2 Flight Mechanics Equations

Three sets of first-order nonlinear differential equations such as translational veloc-
ities, angular velocities, and altitude angles are used for representation of Aircraft
dynamics [10]. The aircraft is considered to be rigid body with XZ as plane of mir-
ror symmetry. Greater emphasize for symmetrical landing events such as two point
and three point landings are provided that are used to arrive the fatigue spectrum of
aircraft. Equations for longitudinal dynamics of Aircraft states consist of variables
as longitudinal velocity (u), vertical velocity (w), Altitude (h), pitch rate (q), and
pitch angle (θ ) pertinent to the body axis of aircraft as presented from Eqs. 1 to 5,
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respectively.

u̇ =
(
q̄s

M

)
Cx − qw − gsinθ +

(
T

M

)
cosε (1)

ẇ =
(
q̄s

M

)
Cz + qu + gcosθ +

(
T

M

)
sinε (2)

q̇ =
(
q̄sc̄

Iyy

)
Cmy (3)

θ̇ = q (4)

ḣ = usinθ − wcosθ (5)

where

Cx = Cx0 + Cxuc + Cxge + Cxαα + Cxδδ

Cz = Cz0 + Czuc + Czge + Czαα + Czδδ + Cz( qc
2V )

( qc

2V

)

Cmy = Cmy0 + Cmyuc + Cmyge + Cmyαα + Cmyδδ + Cmy( qc
2V )

( qc

2V

)

With the state variables as x = [u,w, q, θ, h], q̄ dynamic pressure, “s” wing surface
area, “M” mass of the aircraft,

[
Cx ,Cz&Cmy

]
total drag, lift and moment coeffi-

cients, “g” acceleration due to gravity, “T ” thrust characteristics, “ε” is the angle of
inclination of engine to Fuselage Reference Line (FRL), “Iyy” is the pitch moment of
inertia of aircraft. Aerodynamic parameters as augmented additional state variables:

xa =
[
u,w, q, θ, h,Cx0,Cxα,Cxδ,Cz0,Czα,Czδ,Cz( qc

2v ),
Cmy0,Cmyα,Cmyδ,Cmy( qc

2v )

]

[
0, α, δ,

qc
2v , ge, uc

]
are the aerodynamic effects due to body, angle of attack,

Elevon deflection, and nondimensional pitch rate. Two more effects such as ground
and undercarriage extension are added to emulate the landing dynamics problem.

The observation equations consist of

um = u (6)

wm = w (7)

qm = q (8)
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θm = θ (9)

hm = h (10)

axm =
(
q̄s

M

)
Cx (11)

azm =
(
q̄s

M

)
Cz (12)

q̇m =
(
q̄s

Iyy

)
Cmy (13)

ḣm = usinθ − wcosθ (14)

which were estimated using the nonlinear filtering methods.
The subscript “m” on the left-hand side of observation equations denotes the mea-

sured quantities obtained from simulated/measured data. The motion before touch-
down simulated using pilot in loop input wherein the vertical sink rate is reduced
and horizontal range is increased to have a smooth landing.

3 Nonlinear Filtering Methods for Landing Maneuver

3.1 Upper Diagonal Adaptive Form of Extended Kalman
Filter

The Aircraft dynamic system is represented as continuous state-space form with
discrete measurement equations as

ẋ(t) = f [x(t), u(t),�] + Fw(t), x(t0) = x0 (15)

y(t) = g[x(t), u(t),�] (16)

z(k) = y(k) + Gv(k) (17)

where, k = 1 . . . N

where f and h are in general nonlinear functions and � is the vector of unknown
parameters; x(t) is n∗1 state vector; u(t) is p∗1 control input; z ism∗1measurement
vector sampled at N discrete time steps with fixed sampling interval as �t and k is
the discrete-time index; F&G are the additive state andmeasurement noise matrices,
which are considered to be time-invariant. The noise associated with mathematical
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idealization of system, called process noise w is accounted as white Gaussian noise
with zeromean and covariancematrixQ. The noise associatedwith themeasurements
such as calibration error and bias is represented as measurement noise v in Eq. 17
which is again a white Gaussian noise of zero mean and covariance matrix R.

The extended system consists of unknown parameter (�) as additional states in
the form of the augmented (xa) state vector [11].

xTa = [
xT�T] (18)

ẋa = fa[xa(t), u(t)] + Fawa(t) (19)

y(t) = ga[xa(t), u(t)] (20)

z(k) = y(k) + Gv(k) (21)

where k = 1 . . . , N .
For the augmented system, the EKF consist of prediction and an update step, with

the usage of “tilde” (∼) symbol and “hat” (∧) denote the predicted and corrected
variables, respectively.

Aa(k) = ∂ fa
∂xa

|xa=x̂a(k−1) (22)

∅a = exp[Aa�t] (23)

where�t = tk−1 − tk

Ha(k) = ∂ga
∂xa

|xa=x̂a(k) (24)

where φa denotes discrete-time transition matrix, Aa(k) denotes the linearized state
matrix and Ha(k) denotes the linearized measurement matrix.

The UDAEKF consists of two important steps namely (i) Time propagation: a
priori states (represented by ~ tilde symbol) and state error covariance matrix pre-
dicted using a nonlinear mathematical model (ii) Measurement update: wherein
with the available measurement data, the posteriori states (represented by ˆ hat sym-
bol), and state error covariance matrix are updated using Kalman gain. The Upper
diagonal (UD) form [12] and an adaptive tuning process using fuzzy logic interface
[13] are detailed in the author’s previous work [14] along with few flight data com-
parison. Although EKF is a widely used filtering strategy, the difficulty experienced
while tuning the fuzzy-based covariance matrix for different sizes of observation
equations and the well-known limitation of EKF that linearize all nonlinear model
to enable linear filtering, had arisen the need for an alternative.
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3.2 Unscented Kalman Filter (UKF)

The UKF classified under “sigma point filters” preserves the standard Kalman filter
form which involves propagation of finite set of points, called sigma points, through
the nonlinear dynamics and by approximating the distribution (mean and covariance)
through a weighted sum and outer (cross) product [15].

In contrast to the first-order approximation used on EKF for covariance propa-
gation, in the UKF, nonlinear dynamics are used without approximation, leading to
better performance without the effort of computing Jacobian or Hessian matrix. It
has been shown that UKF is equivalent to second-order EKF and for linear systems
the behavior of Kalman filter, UKF, and EKF are identical [11]. Initially, (2na + 1)
sigma points are defined, where na , is the total number of states to be estimated,
which include the basic system state, the aerodynamic parameters. Each sigma point
consists of a vector, one of the sigma vectors is the expected value of the augmented
state vector and the remaining 2na points are obtained from the columns of the
matrix square root

(±γ Pa
k

)
for k = 1, 2, . . . na where P is the covariance matrix

of the augmented state vector (xa). Starting from setting of parameters as described
below under UKF Parameters for weights of expected value and rest all sigma points
are assigned using scale factors chosen appropriately pertinent to the problem. The
next step is to initialize the state and covariance matrix and iterate through loop for
apriori and posterior corrections.

UKF Parameters

sigmapoints : 2na + 1

where, na = nx + nq; nx = no., of states, nq = no., of parameters

γ = α2(na + k) − na

λ = √
na + γ

Wm
o = λ

(na + λ)

Wc
o = λ

(na + λ)
+ (

1 − α2 + β
)

Wm
i = Wc

i = 1

2(na + λ)
, i = 1, 2, . . . 2na

α determines the spread of sigma points around xa (Range 0.001–1.000); κ sec-
ondary scaling parameter (κ = 3− na); β factor for prior knowledge of distribution
of xa (Optimum β = 2); Wm

0 is the weight for mean of expected value; Wc
0 is the
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weight for covariance of expected value; Wm
i is the weight of mean of sigma points;

Wc
0 weight for covariance of sigma points.
Initialize state and covariance matrix as:

xao = E
[
xao

] = E
[
xTo �T

O

]
(25)

pao = E
[(
xao − x̂ ao

)(
xao − x̂ ao

)T ]
=

(
pox o
o poΘ

)
(26)

UKF Algorithm with apriori estimates, measurement update and posterior
corrections steps is explained below as a flowchart along with equations
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4 Results of Landing State Estimation Using UDAEKF
and UKF

4.1 Aircraft States at the Instant of Touchdown

The initiation of flare maneuver at a height of ~50 ft above the ground level is taken
as initial values for the augmented state (xa) and considered to have a bias of 10%
from the actual values. The measurement data obtained from the simulation is mixed
with random process noise of σ = 0.001 on states to represent the uncertainty inmath
model and measurement noise of SN R = 10 is added to represent the uncertainty
in measurement. These noise parameters are indicative of real measurement data
obtained from several sensors on aircraft. The regular implementation of EKF suffers
from the sensitivity to the initial values of the augmented state. The presence of
adaptive tuning process (Fuzzy logic interface) in UDAEKF eases out the need for
specifying a near about exact initial values. For the UKF, (2×Number of states+ 1)
sigma points were created and appropriate scaling and tuning parameters were set.

Figure 2 presents the estimated states such as (u,w, θ, q, h) of the Aircraft during
landing for case III of flared landing. The state estimates obtained fromUDAEKF and
UKF filtering methods are compared against the noisy measurement data obtained
through 6 DOF simulation. The dot-dash line in time versus h subplot indicates
the touchdown instance of Main Landing Gear (MLG). Inset in Fig. 2 shows the
performance of the filters as state error bounds near touchdown time steps. The
necessary and sufficient condition is satisfied by having the state errors within the

Fig. 2 Estimated Aircraft states and residues (inset) for case III of landing using UDAEKF and
UKF algorithms for case III of flared landing
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Table 1 Estimated states standard deviation at touchdown timestamp

Aircraft States Case I of landing Case II of landing Case III of landing

UDAEKF UKF UDAEKF UKF UDAEKF UKF

u (m/s) 0.3303 0.3200 0.2621 0.2362 0.2835 0.2763

w (m/s) 0.0643 0.0580 0.0523 0.05119 0.0553 0.0510

q (rad/s) 0.0005 0.0004 0.0014 0.0012 0.0014 0.00138

θ (rad) 0.00045 0.00047 0.0009 0.0008 0.000648 0.000523

h (m) 3.740 3.6530 2.965 2.632 3.185 3.132

bounds of ±2
√
Pk , where Pk is the state covariance matrix. Both these filters were

able to predict the true states of the Aircraft near touchdown; with residues being
minimal for UKF method as compared with UDAEKF. This is primarily due to
the linear approximation of state equations and fuzzy adaptation of process noise
covariancematrix for every time step inUDAEKFas against fair propagationof sigma
points in UKF. Table 1 shows standard deviation for the states such as (u,w, θ, q, h)

that are consistent and values being on the lower side for UKF. The computational
time for UKF is two and half times faster as compared with UDAEKF that involves
a fuzzy logic step.

4.2 Aircraft States that Dictate Landing Impact Loads

Three landing cases even though initiated at the same Point In The Sky (PITS), differ
by execution of flare. For case I of flared landing, gentle flare leads to lower vertical
acceleration az among all the three landing cases due to the incremental change of ḣ
and q̇. For Case II of flared landing, the aircraft is flared at terminal phase. This has
resulted in increased acceleration levels of az&ḣ and q̇ at the time of touchdown.

RootMean Square Error (RMSE) = 1

N

√√√√ t∑
k=1

(
xek − xp

)2
ny

where N is the number of time steps (t), xe&xp are the estimated aerodynamic
parameters at each time step and actual aerodynamic parameters at the landing phase
ny is the number of aerodynamic parameters.

For the Case III of flared landing, an initial overshoot occurs due to the pitch
stick input which was corrected by an abrupt flare just before touchdown, thereby
leading to higher value of az&q̇ , out of all the three landing cases. Figure 3 shows
the acceleration levels at aircraft CG from the time of flare initiation to touchdown
that dictates landing impact loads for higher sink rate observed in case III of landing.
Figure 4 presents the aerodynamic parameter estimates using UDAEKF and UKF
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Fig. 3 Aircraft states estimates at touch down for case III of flared landing

Fig. 4 Aerodynamic parameter estimates using UDAEKF and UKF

in the form of Root Mean Square Error (RMSE). The RMSE error is consistent in
using these estimation methods.
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Table 2 Aircraft states as PRSSE (%) at touch down time stamp for several flared landing cases

Aircraft
states

Case I of landing Case II of landing Case III of landing

UDAEKF:
PRSSE
(%)

UKF:
PRSSE
(%)

UDAEKF:
PRSSE (%)

UKF:
PRSSE
(%)

UDAEKF:
PRSSE (%)

UKF:
PRSSE
(%)

Longitudinal
acceleration
(ax )

(+) 1.8 (+) 0.9 (+) 7.0 (+) 3.9 (−) 8.3 (−) 6.4

Vertical
acceleration
(az)

(−) 14.1 (−) 11.3 (+) 3.3 (+) 3.2 (+) 4.3 (+) 3.5

Pitch
acceleration
(q̇)

(−) 4.0 (−) 4.0 (+) 7.0 (+) 7.7 (+) 1.2 (+) 3.0

Vertical sink
rate (ḣ)

(−) 2.8 (−) 3.4 (+) 4.1 (+) 3.6 (+) 5.7 (+) 6.2

PRSSE (%) =
√∑ (xm−xe)∧2

x2m
∗ 100 ; Where xm is the noisy input data and xe is the estimated

states from filtering methods. (+) indicates over quantified and (−) indicates under quantified
measurements

4.3 Discussion

Table 2 presents the Aircraft state which governs the landing impact loads such as
ax , az, q̇, ḣ for all flared landing cases obtained using filtering methods. To quantify
the error, a comparative metrics called Percentage Root Sum Square Error (PRSSE)
is used. Greater emphasis is given to the estimates using UKF method as compared
to UDAEKF since the residue and standard deviation are on the lower side. In Table 2
the (+) sign indicates that the measurement is over quantified and (−) sign indicates
under quantified data.

The emphasis for aircraft true state estimation at touchdown is noticeable from
the comparative data presented in Table 2. The results of vertical acceleration (az)
are discussed in detail. The Case II and Case III of flared landing indicate that the
measurement data of az are higher than the estimated by a maximum of 4.3% for
UDAEKF and 3.5% for UKF. For Case I of flared landing, measurement data for az
is lower than estimated by 14.1% for UDAEKF and 11.3% for UKF. The over quan-
tification of vertical acceleration measurement data, during the event such as “hard
landing”, can lead to inevitable downtime of aircraft for thorough inspection [16].
On the other hand, the under quantification of measurement data leads to ignorance,
causing higher nominal stresses that can lead to accumulation of cumulative fatigue
damage.
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5 Conclusion

An application of state estimation methods for landing maneuver problem is pre-
sented in this work, by using Upper Diagonal Adaptive Extended Kalman Filter
(UDAEKF) and Unscented Kalman Filter (UKF) methods. Three sets of measure-
ment data with different flare techniques were generated using a pilot in loop non-
linear 6 DOF simulation. The estimated aircraft states are found to be within the
error bounds, which were compared against the noisy measurement data. Estimated
aerodynamic parameters as augmented states are presented as Root Mean Square
Error (RMSE) which is observed to be lower using UKF method. For the states that
dictate the landing impact loads, a performance metric called ‘Percentage Root Sum
Square Error (PRSSE)’ is used as an indicator to bring out the variation in measure-
ment and estimated data. For Case II and Case III of flared landings, the vertical
acceleration (az) measurement data is observed to be higher than the estimated by
maximum PRSSE of 3.5%. For higher vertical descent rate landing, the inaccuracy
in noisy measurement data, translate to inevitable downtime of Aircraft for thorough
inspection. For Case I of landing, the measurement vertical acceleration (az) data is
lower than the estimate with maximum PRSSE of 11.3%, which if ignored, results
in higher nominal stresses leading to accelerated cumulative damage for the landing
gear and its interface components. It is observed that the UDAEKF and UKF meth-
ods applied on landing maneuver problems are capable to determine the true aircraft
states. Among these two methods, UKF performance is two and half times faster and
observed to have better adaptation on aircraft states due to fair propagation of sigma
points.
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Numerical Solution of Steady
Incompressible Flow in a Lid-Driven
Cavity Using Alternating Direction
Implicit Method

Banamali Dalai and Manas Kumar Laha

Abstract The study of viscous flow in a lid-driven cavity is carried out using alter-
nating direction implicit method. The conservation form of incompressible Navier–
Stokes equation in stream function–vorticity form is solved using second-order accu-
rate central difference scheme in a uniformfinite-difference gridmesh. The numerical
solution is obtained up to highest Reynolds number 32,500 from the lowest 0.00001
using the grid sizes 129 × 129, 257 × 257 and 513 × 513. Good agreement of the
result is found with Erturk et al. (Int J Numer Methods Fluids 48:747–774, 2005)
[1]. The study of flow properties in the form of velocity profiles, stream function and
vorticity contour plots and location of primary and secondary eddies are carried out.
The novelty of this study is that the magnitude of the vorticity value does not cross
the theoretical limit −1.8859 (Burggraf 24:113–151, 1966 [2]).

Keywords Stream function–vorticity · Conservation · Incompressible · Reynolds
number · ADI method

1 Introduction

The lid-driven cavity is a square cavity inwhich the verticalwalls and lower horizontal
wall are stationary. The top wall is allowed to move horizontally, and it is called the
lid of the cavity. The non-dimensional length of the cavity is unity. Initially, the
cavity is filled with fluid which is at rest. When the lid moves towards right with
non-dimensional velocity unity, the fluid flow in the cavity sets up. The velocity of
flow in the cavity becomes higher or lower depending upon the Reynolds number of

B. Dalai (B)
Faculty, Centre for Advanced Post-Graduate Studies, Biju
Pattnaik University of Technology Odisha, Rourkela, India
e-mail: banamali.2000@gmail.com

M. K. Laha
Faculty, Aerospace Engineering, Indian Institute
of Technology Kharagpur, Kharagpur, West Bengal, India

© Springer Nature Singapore Pte Ltd. 2020
B. N. Singh et al. (eds.), Recent Advances in Theoretical, Applied, Computational
and Experimental Mechanics, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-1189-9_28

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1189-9_28&domain=pdf
mailto:banamali.2000@gmail.com
https://doi.org/10.1007/978-981-15-1189-9_28


354 B. Dalai and M. K. Laha

the lid. The conserved incompressible Navier–Stokes equation in stream function–
vorticity form is used for the solution of the flow patterns in the cavity. The general
use of lid-driven cavity is in the manufacturing industry where one or more than one
wall is allowed to move to produce different thicknesses and shapes of the steel or
ceramic sheets. Some of the literatures regarding the lid-driven cavity flow at higher
Reynolds numbers are presented below.

In the year 1966, Burggraf [2] started the study of flow in the lid-driven cavity
using SOR techniques and became successful up to Reynolds number 400 using
grid sizes 41 × 41 and 51 × 61. His attempts to solve for Reynolds number 1000
remain unsuccessful in the grids sizes 61 × 61. Later in the year 1982, Ghia et al.
[3] studied the lid-driven cavity flow up to Reynolds number 10,000 using FAS-MG
multigrid method in the grid sizes 129× 129 and 257× 257. Again in the year 2005,
Erturk et al. [1] obtained the solution in the lid-driven cavity up to Reynolds number
20,000 using TDMA method in the grid sizes 401 × 401, 501 × 501 and 601 ×
601. Erturk [4] solved the lid-driven cavity flow up to Reynolds number 21000 in
the maximum grid size 1025 × 1025 in the year 2008. All the solutions obtained
up to this point were second-order accurate. In the year 2009, Erturk and Gockol
[5] obtained fourth-order accurate solution in the lid-driven cavity from the stream
function–vorticity form of the Navier–Stokes equation using TDMA method up to
maximum Reynolds number 21,000 in the grid sizes 401 × 401, 501 × 501 and 601
× 601.

From the literature, it is also observed that as the Reynolds number increases the
vorticity strength at the centre of the primary eddy should not cross the theoretical
limit−1.8859 as proposed by Burggraf [2] but this value is crossed by Ghia et al. [3]
and Erturk et al. [1] within Reynolds number 10000. Here, it is observed that Ghia
et al. [3] and Erturk et al.’s [1] solution was second-order accurate in space. In case
of Erturk [4] even though the solution is second-order accurate in space the grid sizes
were 1025 × 1025. That is the reason why the vorticity value at the centre of the
primary eddy did not cross the limit −1.8859. In case of Erturk and Gockol [5], the
solutions were fourth-order accurate in space resulting in the vorticity value at the
centre of the primary eddy did not cross the theoretical limit. The main motivation is
that since the alternating direction implicit method is second-order accurate in space
and time; if the lid-driven cavity result is obtained using this method, it will be a point
of observation whether the vorticity value at the centre of the primary eddy crosses
the theoretical limit or not. So, the objective of this work is to find out the maximum
possible Reynolds number solution in the lid-driven cavity flow using ADI two-step
method and to test whether the vorticity strength at the centre of the primary eddy
crosses the theoretical limit −1.8859 or not.
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2 Formulation

The conservation form of incompressible Navier–Stokes equation is expressed as

∂ω

∂t
+ ∂(uω)

∂x
+ ∂(vω)

∂y
= 1

Re

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
(1)

where u and v are the velocities in x- and y-directions, respectively; ω is the vorticity
and Re is the Reynolds number of the flow. The Reynolds number for the flow is
defined by Re = uL

ν
. Here L is the length of the lid and ν is the kinematic viscosity

of the fluid. The stream function (ψ) is coupled with vorticity by the equation as

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −ω (2)

The boundary conditions for Eqs. (1) and (2) are

At x = 0, 1 and 0 ≤ y ≤ 1; ψ = ∂ψ

∂x
= ∂ψ

∂y
= 0; At y = 0 and 0 ≤ x ≤ 1; ψ = ∂ψ

∂x
= ∂ψ

∂y
= 0;

At y = 1 and 0 ≤ x ≤ 1; ψ = ∂ψ

∂x
= 0 and

∂ψ

∂y
= 1 (3)

Equation (1) is discretized using alternating direction implicit method which
is second-order accurate in time and second-order accurate in space. The space
derivative terms are discretized using central difference scheme in a finite-difference
mesh.

After arrangement of the discretized equation at n + 1/2 time step:

(
cxu

n+ 1
2

i j+1 − dx
)
ω
n+ 1

2
i j+1 + (1 + 2dx )ω

n+ 1
2

i j −
(
cxu

n+ 1
2

i j−1 + dx
)
ω
n+ 1

2
i j−1

= ωn
i j + dy

(
ωn
i+1 j − 2ωn

i j + ωn
i−1 j

) − cy
(
(vω)ni+1 j − (vω)ni−1 j

)
(4)

where cx = �t
4�x , cy = �t

4�y , dx = �t
2Re(�x)2

, dy = �t
2Re(�y)2

, (vω)ni+1 j = vni+1 jω
n
i+1 j

and �t, �x and �y are the time step, grid widths in x- and y-directions, respectively.
Similarly, after arrangement of the discretized equation at n + 1 time step:

(
cyv
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(
cyv
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2
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(
(uω)
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2
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n+ 1

2
i j−1

)
(5)

Equation (2) is discretised using second-order accurate central difference scheme.
Along the boundaries, the stream function values are obtained from Eq. (3) and the
vorticity values are obtained from Eqs. (2) and (3) with application in the Taylor
series formulation. Truncation error of the Taylor series formulation is third-order
accurate. The solution to the discretized equations (Eqs. (4) and (5)) is obtained using
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tridiagonal matrix algorithm at each time step. The convergence of the solution is
obtained when the residues (LHS–RHS) of Eqs. (1) and (2) equals to 10−10. The
numerical solutions are obtained using the grid sizes 129 × 129, 257 × 257, 513 ×
513 and 1025 × 1025.

The results obtained in the grid size 513 × 513 are validated with Erturk et al.’s
[1] (grid size 601 × 601) result in the form of u- and v-velocity profiles along y- and
x-directions, respectively, passing through the centre of the cavity as shown in Fig. 1.
Good agreement of the result is obtained.

3 Results and Discussion

The solution of the discretized equation is obtained up tomaximumReynolds number
32,500 in the grid sizes 513 × 513, whereas using the grid sizes 1025 × 1025, the
solution is obtained up toReynolds number 22,500. The stream function contour plots
(in Fig. 2) show that with increase of Reynolds number, the primary eddy grows in
size and becomes circular in nature. The number of secondary eddies increases at the
corners with increase of Reynolds number which can be seen from Fig. 2 and Table 3.
In this study, maximum fifth level of secondary eddy is obtained at the right corner
of the cavity at Reynolds number 32,500. The level of eddies can be distinguished
from the sense of rotation. The sense of rotation of secondary eddies at consecutive
levels is opposite to each other. The secondary eddy at the top position of the left
vertical wall is observed between Reynolds number 1000 and 2500 which is denoted
as TL1 in Table 3. Its size increases with increase of Reynolds number. The second
level of secondary eddy (TL2) at that position is observed between Reynolds number
10,000 and 12,500 which are shown in Fig. 2. Henceforth with increase of Reynolds
number, there is no development of more level of secondary eddies at that position
which can be seen from Fig. 2 but the size of these eddies increases. In Table 3, BL1
represents the first level of secondary eddy at bottom left corner of the cavity and
next level of eddies are denoted as BL2, BL3, BL4, etc. Similarly, BR1 represents
the first level of secondary eddy at bottom right corner of the cavity and next level
of eddies is represented by BR2, BR3, BR4, etc.

The vorticity contour plots in Fig. 3 show that with increase of Reynolds number,
the central region of the primary eddy becomes constant vorticity region. The central
portion of the cavity in Fig. 3 shows without any contours; those regions are repre-
sented by constant vorticity value. That constant vorticity region behaves like a solid
core. Its radius increases with increase of Reynolds number as shown in Fig. 3. The
increase in radius of constant vorticity core is confirmed from the velocity profiles
(Fig. 1) in which the central profiles show linear in nature than the other regions.
As the Reynolds number increases, the linear profile region becomes longer in the
velocity profiles.

The vorticity value is represented by

ω = ∇ × �V (6)
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Fig. 1 Validation of u- and v-velocity profiles along y- and x-directions, respectively
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Fig. 2 Stream function contour plots at different Reynolds numbers

where �V = uî+v ĵ is the velocity of flow in the cavity. Expansion of Eq. (6) produces
constant value at the central region of the cavity because the velocity gradients ∂v

/
∂x

and ∂u
/

∂y are linear at the centre of the cavity. The vorticity values near the walls
show large variation in comparison to the central region. This variation is due to the
presence of more viscous flow region near the wall than that of central region. The
viscous flow near the wall signifies the presence of boundary layer near the walls.

The location and strength of primary eddies at different Reynolds numbers are
compared with Erturk et al. [1] in Table 1. It is observed that both results are found
to match very well.
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Fig. 3 Vorticity contour plots at different Reynolds numbers

Table 2 represents the magnitude of stream function and vorticity values at the
centre of the primary eddy at different Reynolds numbers and various grid sizes. It is
observed that the values are accurate up to two digits after decimal place in all grid
sizes. This table shows that the values are independent of grid sizes.

Figure 4 shows the variation of vorticity value at the centre of the primary vortex at
different Reynolds numbers. The magnitude of the vorticity value is also compared
with the results published in the literature. Among the compared results, Erturk
et al.’s [1] second-order accurate in the grid size 601 × 601, Erturk’s [4] second-
order accurate in the grid size 1025× 1025 and Erturk and Gockol’s [5] fourth-order
accurate in the grid size 601 × 601 are compared with the present results in the grid
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Table 2 The grid independence test at different Reynolds numbers

Re/Grid
size

129 × 129 257 × 257 513 × 513 1025 × 1025

ψ ω ψ ω ψ ω ψ ω

1000 −0.1175 −2.0458 −0.1186 −2.0622 −0.1188 −2.0664 −0.1189 −2.0674

5000 −0.1151 −1.8333 −0.1202 −1.9100 −0.1217 −1.9325 −0.12209 −1.9386

10,000 −0.1089 −1.7208 −0.1183 −1.8584 −0.1212 −1.9023 −0.12209 −1.9148

15,000 −0.1133 −1.6299 −0.1162 −1.8211 −0.1205 −1.8845 −0.1218 −1.9033

20,000 – – −0.1142 −1.7888 −0.1198 −1.8706 −0.1216 −1.8984

Fig. 4 Plot between the vorticity values at the centre of the primary eddy at different Reynolds
numbers

sizes 513× 513 and 1025× 1025. The results in the present computation are possible
up to Reynolds number 22,500 and 32,500 in the grid sizes 513 × 513 and 1025 ×
1025, respectively. The present computed results up to Reynolds number 32,500 in
the grid size 513 × 513 show better than the Erturk et al.’s [1] result in the grid size
601 × 601. The results up to Reynolds number 22,500 in the grid size 1025 × 1025
of present computation shows better than Erturk’s [4] second-order accurate result in
the grid size 1025 × 1025 because the vorticity values remain within the theoretical
limit −1.8859 which was computed by the Burggraf [2] as shown in Fig. 4.

The study has been conducted up to maximum Reynolds number 32500 in the
grid size 513 × 513 (Table 3). The flow at higher Reynolds number should achieve
three-dimensional effect. Since the study is limited within two-dimensional effect,
it is very difficult to predict three-dimensionality effect in this cavity study.
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4 Conclusion

The solution for the lid-driven cavitywas obtained using alternating direction implicit
method from Reynolds number 0.00001–32,500 in the grid sizes 513 × 513. The
solution is obtained up to Reynolds number 22,500 in the grid size 1025× 1025. The
results obtained here are found to match very well with the literature. The vorticity
value obtained in the grid size 1025 × 1025 remains within the theoretical limit of
−1.8859 [5]. A remarkable result of appearance of fifth level of eddy is observed at
the Reynolds number 32,500 in the grid size 513 × 513.
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Stagnation and Static Property
Correlations for Equilibrium Flows

Shubham Maurya and Aravind Vaidyanathan

Abstract This paper presents an algorithm to determine the relationship between
stagnation and static property for equilibrium flows. Results are presented for
the combustion equilibrium of two different oxidizer–fuel combinations, namely,
LOX/LH2 and MMH/N2O4. It is found that the ratio of stagnation to static proper-
ties depends on Mach number as well as initial mixture ratio and chamber pressure
(stagnation pressure) of the reactants.

Keywords Combustion · Equilibrium flows · Gibbs free energy minimization ·
Element potential method

1 Introduction

The stagnation and static property relations for calorically perfect gases can be
derived analytically [1]. Similarly, for thermally perfect gases where specific heat
varies with temperature, the analytical derivation of relationship between stagnation
and static properties has been worked out by Zebbiche [2]. Most of the previous stud-
ies considered a single non-dissociating gas. The aim of this work is the numerical
development of stagnation–static property correlations for gaseous phase equilibrium
flows where both specific heats and compositions vary with temperature.

Equilibrium flows are often encountered in rocket engines, where combustion
products remain in equilibrium as they undergo expansion. The practical application
of the study is hence linked to rocket engines and in particular liquid engines, which
use a liquid fuel along with a liquid oxidizer.

S. Maurya · A. Vaidyanathan (B)
Department of Aerospace Engineering, Indian Institute of Space Science and Technology,
Thiruvananthapuram 695547, Kerala, India
e-mail: aravind7@iist.ac.in

S. Maurya
e-mail: shubham.maurya3@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
B. N. Singh et al. (eds.), Recent Advances in Theoretical, Applied, Computational
and Experimental Mechanics, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-1189-9_29

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1189-9_29&domain=pdf
mailto:aravind7@iist.ac.in
mailto:shubham.maurya3@gmail.com
https://doi.org/10.1007/978-981-15-1189-9_29


366 S. Maurya and A. Vaidyanathan

The method of analysis is based on the concept of Gibbs energy minimization
which forms the basis for many equilibrium calculation algorithms as outlined in
Refs. [3–5]. The number of simultaneous equations needed to be solved using Gibbs
energy minimization technique is quite large which can be reduced further by incor-
porating the concept of Element potential method [6–8]. However, a comprehensive
and systematic way of utilizing the results of equilibrium calculations for obtain-
ing the ratio of stagnation to static properties does not exist in literature. Hence, in
this study, we have developed a computational algorithm for establishing stagna-
tion–static correlations for any oxidizer–fuel combination. The results for two cases,
viz., LOX/LH2 and MMH/N2O4 fuel–oxidizer combinations, have been worked out
and the effect of varying mixture ratio and chamber (stagnation) pressure has been
studied.

2 Mathematical Formulation

For an isolated chemically reacting system consisting of “NS” species, the Gibbs
energy is defined as [9]

G =
NS∑

j=1

(
Ĝ0

j + RT ln
(
x j

) + RT ln

(
p

pref

))
n j (1)

where Ĝ0
j is the standard molar Gibbs function of species “j”; n j is the number of

moles of species “j”; R is the universal gas constant equal to 8.314 J/mol K; x j is the
mole fraction of species “j”; “p” is the pressure; and pref is the reference pressure
of 1 bar. The index “j” varies as 1, 2, …, NS. Application of mass balance for each
element in the reacting system results in the following equation:

NS∑

j=1

ai j n j − bi = 0 (2)

where the index “i” varies as 1, 2, …, E (E being the total number of elements
involved in the chemical reaction); ai j denotes the number of atoms of element “i” in
one molecule of the species “j”; and bi denotes the total number of moles of element
“i” in the mixture.

The equilibrium problem is basically related to the minimization of Gibbs energy
subject to the constraint ofmass conservation.Usingmethod of Lagrangemultipliers,
a new function L is defined as
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L(n1, . . . , nNS, λ1, . . . , λE ) =
NS∑

j=1

(
Ĝ0

j + RT ln
(
x j

) + RT ln

(
p

pref

))
n j

−
E∑

i=1

λi

⎛

⎝
NS∑

j=1

ai j n j − bi

⎞

⎠ (3)

where λi are Lagrange multipliers. At equilibrium, ∇L = 0, leading to

∂L

∂n j
= Ĝ0

j + RT ln
(
x j

) + RT ln

(
p

pref

)
−

E∑

i=1

λi ai j = 0 (4)

and

∂L

∂λi
=

NS∑

j=1

ai j n j − bi = 0 (5)

Also, the following equation is valid at equilibrium:

NS∑

j=1

n j − Ng = 0 (6)

where Ng is the total number of moles of species at equilibrium.
Equations (4)–(6) constitute a system of simultaneous nonlinear equations with

n1, n2, . . . , nNS, λ1, λ2, . . . , λE and Ng as unknown variables. The number of
unknowns is NS + E + 1 which can only be found by solving NS + E + 1 simulta-
neous nonlinear equations. The system of equations can be decoupled by invoking
element potential method which involves algebraic manipulations as outlined in
Ref. [8]. Equation (4) can be rewritten as

x j ≡ n j

Ng
= pref

p
e

−Ĝ0
j+

∑E
i=1 λi ai j

RT (7)

Because summation of mole fraction is unity, combining Eqs. (6) and (7) gives

NS∑

j=1

pref
p

e
−Ĝ0

j+
∑E

i=1 λi ai j
RT − 1 = 0 (8)

Substituting Eq. (7) in Eq. (5) yields
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NS∑

j=1

ai j Ng
pref
p

e
−Ĝ0

j+
∑E

i=1 λi ai j
RT − bi = 0 (9)

Both Eqs. (8) and (9) represent the final decoupled set of simultaneous nonlin-
ear equations with unknowns λ1, λ2, . . . , λE and Ng . The number of simultaneous
nonlinear equations to be solved is now reduced from NS + E + 1 to just E + 1. In
order to determine mole fraction (or no. of moles) of each species, Eq. (7) is back
substituted with λ1, λ2, . . . , λE and Ng .

In problems where equilibrium temperature is known, solution of Eqs. (8) and (9)
yields the equilibrium composition. However, in most of the practical applications,
equilibrium temperature needs to be determined and hence additional equations are
required. This is achieved by following either of the two approaches, viz., (1) enthalpy
balance or (2) entropy balance.

2.1 Enthalpy Balance

The enthalpy of reactants before combustion is equal to the summation of enthalpy
of individual species present at equilibrium. Mathematically, this can be expressed
as

NS∑

j=1

n j H
∧

j − Hreactant = 0 (10)

where H
∧

j is the molar enthalpy of j th species at temperature “T” and Hreactant is the
enthalpy of oxidizer–fuel mixture before combustion.

2.2 Entropy Balance

The entropy of reactants is equal to the summation of entropy of individual species
present at equilibrium. Mathematically, this condition is expressed as

NS∑

j=1

n j Ŝ j − Sreactant = 0 (11)

where Ŝ j is the molar entropy of j th species at temperature “T” and Sreactant is the
entropy of oxidizer–fuel mixture before combustion.

Ŝ j is evaluated as given in Ref. [5],
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Ŝ j =
(
Ŝ0j − Rln

(
x j

) − Rln

(
p

p0

))
(12)

where Ŝ0j is the standard molar entropy of j th species.

3 Methodology

The combustion equilibrium in liquid rocket engines is usuallymodeled by specifying
the chamber/stagnation pressure (p0) and enthalpy of reactants (H react.) undergoing
combustion in the thrust chamber. The fuel–oxidizer mixture is assumed to attain
chemical equilibrium at constant pressure and under adiabatic conditions. The equi-
librium temperature (T 0), compositions, entropy (S0), etc., evaluated in the thrust
chamber are termed as stagnation properties.

In the nozzle, combustion is modeled by assuming adiabatic and isentropic expan-
sion of the products formed in thrust chamber. The equilibrium problem in the nozzle
is solved by specifying equilibrium pressure “p” (0 < p < p0) and entropy of mix-
ture “S” (S = S0). The equilibrium temperature (T ), compositions, etc., obtained as
solution, are labeled as static properties.

The speed of equilibriummixture in the nozzle is then evaluated by energy balance
as the expansion process is assumed to be adiabatic. This in turn is used to compute
Mach number.

The algorithm flowchart is illustrated in Fig. 1. Each sequence of operation is
separately explained as follows:

Fig. 1 Algorithm for determination of stagnation and static property correlations for equilibrium
flows
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3.1 Input Parameters

The input parameters such as chamber pressure, i.e., stagnationpressure (p0),mixture
ratio (MR), and enthalpy of reactants (Hreact.), are specified by the user and fed into
the next subroutine.

3.2 Evaluation of Stagnation Properties

This subroutine solves the equilibrium problem based on the stagnation condi-
tions. Equations (8), (9), and (10) are solved to obtain the Lagrange multipliers
(λ1, λ2, . . . , λE ), equilibrium temperature (T ), and the total number ofmoles at equi-
librium

(
Ng

)
. The equilibrium composition (x1, x2, . . . , xNS) is determined using

Eq. (7). The entropy of the combustion products (S0) is evaluated using Eq. (11) and
its value is passed into next step.

3.3 Evaluation of Static Properties

Equations (8), (9), and (11) are solved for each value of pressure, and the corre-
sponding equilibrium compositions are obtained from Eq. (7). The entropy remains
fixed at S0 throughout the run. The pressure at this step can be varied in the interval
(0, p0) and corresponding to each value of pressure, a unique equilibrium solution
is obtained. The equilibrium results for the chosen pressure value are input to next
subroutines (see Fig. 1).

3.4 Calculation of Speed of Mixture

The enthalpies of the equilibriummixture obtained in first and third steps (see Fig. 1)
are used to compute the speed of equilibrium mixture. Noting that H0 (also, H0 =
H react.) denotes the stagnation enthalpy at chamber pressure (p0), the enthalpy (H)

of the equilibrium mixture at pressure “p” (where p < p0) would be lesser than the
stagnation enthalpy (H0) in accordance with the principle of conservation of energy.
The speed “v” of the equilibrium mixture is then expressed as

ν =
√

2 × 1000 ×
(

H0

MW0.Ng,0
− H

MW.Ng

)
(13)
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where “MW” is themolecular weight (in g/mol) of equilibriummixture, the subscript
“0” denotes the stagnation condition and “1000” is the multiplication factor required
for consistency of units. The speed is input to the next subroutine for computing the
Mach number.

3.5 Calculation of Speed of Sound

The method of evaluation of speed of sound, “a”, in a chemically reacting system at
equilibrium is detailed in Ref. [5].

3.6 Computation of Mach Number

The Mach number (M = v/a) is calculated and stored for each value of pressure.

3.7 Computation of Stagnation to Static Properties’ Ratios

The ratios of stagnation to static properties (i.e., p0/p and T0/T ) are computed for a
particular value of pressure. The pressure “p” is varied in the interval (0, p0) and the
steps 3–7 are repeated. As a result, a mapping between pressure “p” and parameters[
p0/p , T0/T, M

]
is obtained.

4 Results and Discussion

The ratios of stagnation to static properties along with Mach numbers are computed
at different chamber pressures and mixture ratios for LOX/LH2 and MMH/N2O4

fuel–oxidizer combinations. The results are presented separately for each case.

4.1 LOX/LH2

The LOX/LH2 combustion equilibrium is modeled with eight species, namely, H,
H2, H2O, H2O2, HO2, O, O2, and OH. The ratio of stagnation to static properties
versus Mach number is plotted in Fig. 2, such that the chamber (stagnation) pressure
remains fixed at 10 MPa and mixture ratio (MR) takes discrete values of 2, 4, 6, 8,
and 10.
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Fig. 2 Ratio of stagnation to static a pressure; b temperature versusMach number at fixed chamber
(stagnation) pressure of 10MPa and varying mixture ratio for LOX/LH2 fuel–oxidizer combination

It is observed that both the stagnation to static ratios for pressure and temperature
increase monotonically with Mach number—the same holds true for thermally and

calorically perfect gases (where T0/T∝M2 and p0/p ∝ M
(

2γ
γ−1

)

). Also, the effect
of varying mixture ratio on the stagnation to static ratios is clearly evident from the
figures. In Fig. 2b, as mixture ratio increases, the T0/T curve shifts down until the
mixture ratio gets equal to 8, at which it approaches minimum (shown in black) and
moves up thereafter. Since the value of stoichiometric mixture ratio for LOX/LH2
fuel combination is also 8 and it is known that equilibrium temperature attains maxi-
mum at stoichiometric mixture ratio, the ratio T0/T attains minimum because of the
denominator “T” attaining maximum.

The effect of varying chamber pressure at fixedmixture ratio is illustrated in Fig. 3.
The mixture ratio is kept at 5, and chamber pressure varies from 1 to 10 MPa. The
ratio T0/T increases with increase in chamber (stagnation) pressure because with
increase in chamber pressure, equilibrium temperature also increases but the extent
by which T0 increases outweighs the increase in T .

4.2 MMH/N2O4

The MMH/N2O4 combustion equilibrium is modeled with 11 species, namely, CO2,
N2, H2O, NO, O2, CO, OH, H2, O, H, and N. The ratios of stagnation to static
pressure and temperature vs. Mach number are plotted in Figs. 4 and 5, respectively.
The chamber pressure remains fixed at 1MPa, andmixture ratio takes discrete values
of 1, 2, 4, and 8.

The trends observed in Figs. 4 and 5 are similar to that for LOX/LH2 case. The
effect of varying chamber pressure at a fixed mixture ratio is shown in Fig. 6. The
mixture ratio is chosen as 2, and chamber pressure varies from 1 to 10 MPa. Again,
similar trend as in LOX/LH2 case is being observed.



Stagnation and Static Property Correlations for Equilibrium Flows 373

Fig. 3 Ratio of stagnation to static temperature versus Mach number at fixed mixture ratio (MR =
5) and varying chamber (stagnation) pressure for LOX/LH2 fuel–oxidizer combination

5 Conclusions

Amethod for determining stagnation and static property correlations for equilibrium
flows is developed. Results are presented for combustion equilibrium of two oxi-
dizer–fuel combinations, viz., LOX/LH2 and MMH/N2O4. The effect of variation in
chamber pressure and mixture ratio upon stagnation to static property ratio is also
studied. Unlike single non-dissociating calorically perfect gases where T 0/T and p0/p
depend on Mach number and specific heats ratio, in equilibrium flows, they depend
on chamber pressure (stagnation conditions), mixture ratio, and Mach number. The
intrinsic nature of equilibrium flows involves variation of specific heats and compo-
sitions with respect to temperature which in the present formulation are accounted
by adjusting both chamber pressure and mixture ratio.

There are two limitations to the current study: first, the effect of number of species
present at equilibrium upon the ratio of stagnation to static properties has not been
studied; second, while formulating the methodology, the expansion process of equi-
librium flow is assumed to be adiabatic and isentropic leading to an extra assumption
of “isentropic flow” in the current definition of stagnation to static temperature,
whereas the usual convention of defining stagnation temperature only assumes an
adiabatic flow.
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Fig. 4 Ratio of stagnation to static pressure versus Mach number at fixed chamber (stagnation)
pressure of 1 MPa and varying mixture ratio for MMH/N2O4 fuel–oxidizer combination

Fig. 5 Ratio of stagnation to static temperature versusMach number at a fixed chamber (stagnation)
pressure of 1 MPa and varying mixture ratio for MMH/N2O4 fuel–oxidizer combination
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Fig. 6 Ratio of stagnation to static temperature versus Mach number at fixed mixture ratio (MR =
2) and varying chamber (stagnation) pressure for MMH/N2O4 fuel–oxidizer combination

Appendix: Worked Out Example

The stagnation and static properties for LOX/LH2 equilibrium mixture consisting
of eight species, viz., H, H2, H2O, H2O2, HO2, O, O2, and OH are evaluated by
following the steps aforementioned in Sect. 3. The detailed step-by-step procedure
is given below:

Step-1: Input parameters

p0 = 10 bar; MR = 2; H react. = −10,647 J.
Note that number of species, NS = 8 and number of elements in the mixture,

E = 2; Molecular weight of H2
(
MWH2

) = 2 g/mol; Molecular weight of O2(
MWO2

) = 32 g/mol

Step-2: Evaluation of stagnation properties

Equation (8) results in

e
−G
∧0

H+λH
RT0 + e

−G
∧0

H2
+2λH

RT0 + e
−G
∧0

H2O
+2λH+λO

RT0 + e
−G
∧0

H2O2
+2λH+2λO

RT0 + e
−G
∧0

HO2
+λH+2λO

RT0

+ e
−G
∧0

O+λO
RT0 + e

−G
∧0

O2
+2λO

RT0 + e
−G
∧0

OH+λH+λO
RT0 − p0 = 0 (14)
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Equation (9) results in

e
−G
∧0

H+λH
RT0 + 2e

−G
∧0

H2
+2λH

RT0 + 2e
−G
∧0

H2O
+2λH+λO

RT0 + 2e
−G
∧0

H2O2
+2λH+2λO

RT0 + e
−G
∧0

HO2
+λH+2λO

RT0

+ e
−G
∧0

OH+λH+λO
RT0 − 2

p0
Ng,0

= 0 (15)

and

e
−G
∧0

H2O
+2λH+λO

RT0 + 2e
−G
∧0

H2O2
+2λH+2λO

RT0 + 2e
−G
∧0

HO2
+λH+2λO

RT0 + e
−G
∧0

O+λO
RT0 + 2e

−G
∧0

O2
+2λO

RT0

+ e
−G
∧0

OH+λH+λO
RT0 − 2

p0
Ng,0

MR
MWH2

MWO2

= 0 (16)

Equation (10) results in

H
∧

He
−G
∧0

H+λH
RT0 + H

∧

H2e
−G
∧0

H2
+2λH

RT0 + H
∧

H2Oe
−G
∧0

H2O
+2λH+λO

RT0 + H
∧

H2O2e
−G
∧0

H2O2
+2λH+2λO

RT0

+ H
∧

HO2e
−G
∧0

HO2
+λH+2λO

RT0 + H
∧

Oe
−G
∧0

O+λO
RT0 + H

∧

O2e
−G
∧0

O2
+2λO

RT0 + H
∧

OHe
−G
∧0

OH+λH+λO
RT0

− p0
Ng,0

Hreact. = 0 (17)

Equations (14)–(17) are simultaneous nonlinear equations which can be solved
iteratively byNewton’smethod as detailed in Ref. [5]. For each iteration, the standard
molar Gibbs energy and molar enthalpy of respective species are evaluated at the
value of temperature as existing in the particular iteration step by utilizing NASA
Glenn thermodynamic database [10].

The solution of Eqs. (14)–(17) yields T0 = 1814.7 K, λH = −1.29× 105 J/mol,
λO = −3.77× 105 J/mol, and Ng,0 = 1.0018mol. These values are substituted into
Eq. (7) to get the mole fraction of each species, viz., xH = 0.0001, xH2 = 0.7451,
xH2O = 0.2549, xH2O2 = 0, xHO2 = 0, xO = 0, xO2 = 0, and xOH = 0.

The entropy of mixture (S0) is calculated by using Eq. (11) where Sreactant is
replaced with S0.

S0 = nH ŜH + nH2 ŜH2 + nH2O ŜH2O + nH2O2 ŜH2O2 + nHO2 ŜHO2 + nO ŜO + nO2 ŜO2 + nOH ŜOH

ŜH, ŜH2 , ŜH2O, ŜH2O2 , ŜHO2 , ŜO, ŜO2 , and ŜOH are evaluated from Eq. (12) by
extracting values of Ŝ0H, Ŝ0H2

, Ŝ0H2O, Ŝ0H2O2
, Ŝ0HO2

, Ŝ0O, Ŝ
0
O2

, and Ŝ0OH at temperature “T 0”
from thermodynamic database [10].

S0 is then used in step-3.
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Step-3: Evaluation of static properties

A particular value of pressure “p” such that 0 < p < p0 is chosen and the following
equations are solved in a similar manner as in step-2.

Equation (8) results in

e
−G
∧0

H+λH
RT + e

−G
∧0

H2
+2λH

RT + e
−G
∧0

H2O
+2λH+λO

RT + e
−G
∧0

H2O2
+2λH+2λO

RT + e
−G
∧0

HO2
+λH+2λO

RT

+ e
−G
∧0

O+λO
RT + e

−G
∧0

O2
+2λO

RT + e
−G
∧0

OH+λH+λO
RT − p = 0 (18)

Equation (9) results in

e
−G
∧0

H+λH
RT + 2e

−G
∧0

H2
+2λH

RT + 2e
−G
∧0

H2O
+2λH+λO

RT + 2e
−G
∧0

H2O2
+2λH+2λO

RT

+ e
−G
∧0

HO2
+λH+2λO

RT + e
−G
∧0

OH+λH+λO
RT − 2

p

Ng
= 0 (19)

and

e
−G
∧0

H2O
+2λH+λO

RT + 2e
−G
∧0

H2O2
+2λH+2λO

RT + 2e
−G
∧0

HO2
+λH+2λO

RT + e
−G
∧0

O+λO
RT

+ 2e
−G
∧0

O2
+2λO

RT + e
−G
∧0

OH+λH+λO
RT − 2

p

Ng
MR

MWH2

MWO2

= 0 (20)

Equation (11) results in

e
−G
∧0

H+λH
RT

(
Ŝ0H − −G

∧0

H + λH

T

)
+ e

−G
∧0

H2
+2λH

RT

⎛

⎝Ŝ0H2
− −G

∧0

H2
+ 2λH

T

⎞

⎠

+ e
−G
∧0

H2O
+2λH+λO

RT (Ŝ0H2O

−G
∧0

H2O + 2λH + λO

T
) + e

−G
∧0

H2O2
+2λH+2λO

RT

(Ŝ0H2O2
− −G

∧0

H2O2
+ 2λH + 2λO

T
) + e

−G
∧0

HO2
+λH+2λO

RT (Ŝ0HO2
− −G

∧0

HO2
+ λH + 2λO

T
)

+ e
−G
∧0

O+λO
RT (Ŝ0O − −G

∧0

O + λO

T
) + e

−G
∧0

O2
+2λO

RT

⎛

⎝Ŝ0O2
− −G

∧0

O2
+ 2λO

T

⎞

⎠

+ e
−G
∧0

OH+λH+λO
RT .

(
Ŝ0OH − −G

∧0

OH + λH + λO

T

)
− p

Ng
S0 = 0 (21)



378 S. Maurya and A. Vaidyanathan

For p = 0.1 bar, the solution of Eqs. (18)–(21) yields T = 592.8 K, λH = −4.68 ×
104 J/mol, λO = −2.82 × 105 J/mol, and Ng = 1mol.

The enthalpy of mixture (H) is calculated as

H = nHH
∧

H + nH2H
∧

H2 + nH2OH
∧

H2O + nH2O2H
∧

H2O2 + nHO2H
∧

HO2

+ nOH
∧

O + nO2H
∧

O2 + nOHH
∧

OH

where H
∧

H, H
∧

H2 , H
∧

H2O, H
∧

H2O2 , H
∧

HO2 , H
∧

O, H
∧

O2 , and H
∧

OH are evaluated at temper-
ature “T” from thermodynamic database [10].

“H” is then used in Step-4.

Step-4 Calculation of speed of mixture

Values of H0 (H0 = H react.) and H are extracted from previous steps, and Eq. (13) is
used to compute the speed of equilibrium mixture which is equal to 3704 m/s.

Step-5 Calculation of speed of sound

The results of Step-3 are utilized for obtaining speed of sound using the method
detailed in Ref. [5]. The value of speed of sound (a) is calculated to be 1056.3 m/s.

Step-6 Computation of Mach number

Mach number is evaluated using M = v
a and found to be M = 3.5064.

Step-7 Computation of stagnation to static property ratio

From step-2, stagnation properties are p0 = 10 bar and T 0 = 1814.7 K.
From step-3, static properties are p = 0.1 bar and T = 592.8 K.
p0/p = 100 and T 0/T = 3.0612 are the desired stagnation to static pressure and

temperature ratios, respectively, at Mach 3.5064.
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CFD Simulation of Hypersonic Shock
Tunnel Nozzle

Jigarkumar Sura

Abstract The design of a hypersonic nozzle for shock tunnel is of much importance
as it plays a vital role in generating the required flowfield. The computational simula-
tion can help to understand theMach number distribution inside the test section. This
can help to design the mounting assembly for the model and to limit the dimension
of the model. The flow field for an axisymmetric test section has been analysed using
commercial software. The results revealed the variation of Mach number inside the
test section and exit plane of the nozzle.

Keywords Shock tunnel · Nozzle flow · Hypersonics

1 Introduction

The hypersonic vehicles are considered as future means of fast transportation. The
phenomena such as thick boundary layer, thin shock layer, viscous interaction, shock
wave–boundary layer interaction and shock–shock interaction are present in hyper-
sonic flow and cannot be ignored [1]. The hypersonic wind tunnel and hypersonic
shock tunnel aremajor experimental facilities to studyflowfield inside and around the
hypersonic vehicles. The hypersonic shock tunnel can simulate required surround-
ings for the vehicle with test duration of the order of millisecond. The high-speed
flow is generated through reflection of the incident shock wave in the driven section
of shock tube by sudden rupture of a diaphragm separating the driver and the driven
section [2]. The axialMach number distribution for ideal conditions can be estimated
with one-dimensional isentropic flow equations [3]. But actual velocity direction is
not parallel to axis at all radial locations due to three-dimensional effects [4]. Because
of this, it is required to identify the useful region of the test section where velocity
remains parallel to the axial direction.
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Fig. 1 Schematic of a hypersonic nozzle

Here, in this paper, an attempt has been made to identify the useful core region of
a hypersonic shock tunnel test section using commercial simulation software Ansys.
The inviscid simulation has been carried out. The diameter and length of the inlet
(before throat) are 50 mm and 50 mm, respectively. The throat diameter is 22 mm,
while exit diameter is 300 mm. The nozzle semi-cone angle is 10° and is designed
for Mach 8 (Fig. 1). The stagnation pressure is 561 kPa, and stagnation temperature
is 813 K [5].

2 Simulation Methodology

Computational fluid dynamics plays an important role to understand the internal
and external flow field of the vehicle. Ansys is very useful commercial simulation
software for this purpose. With the application of appropriate grid size and boundary
conditions, one can obtain results which can be used for design and development of
the hypersonic vehicle. The 2D geometry was created with SI units. As the nozzle
is a simple axisymmetric geometry, the structured grid could be easily generated
using Ansys workbench grid generator. The grid independence test is required to
be carried out before accepting the results of the simulation. In current work, the
number of grid points was varied along axial and radial directions. When the results
were independent of the grid points, further analysis was carried out. Figure 2 shows
theMach number variation along axial direction of the shock tunnel nozzle. It can be
seen that there is no significant variation in Mach number for the current grid points.
Similarly, the grid points were also varied in radial direction.

Appropriate boundary conditions were applied to the simulation. The velocity
inlet (subsonic—1 m/s) and pressure outlet (0 Pa) were inlet and outlet boundary
conditions, respectively. The surfaces of the nozzle and test section were classified
as wall boundary condition. The analysis was carried out for steady state only.

The simulation results are required to be independent of the mesh/grid size to be
acceptable for any analysis. Therefore, the grid independence tests were carried out.
Different x (axial)- and y (radial)-direction cell sizes were chosen, and the results
were superimposed. Figure 3 shows the grid independency test for axial direction
grid size. The number of cells in each section was kept at 130, and the results were
found to be independent of size. Similarly, 50 cells were able to provide acceptable
grid-independent results for radial direction. Default discretization scheme was used
for solution in which the flow equations are solved using the second-order scheme.
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Fig. 2 Grid independency test for axial direction

Fig. 3 Mach number contour plot

The convergence criteria for various parameters were set to 1E−6 and the solution
converged to that limit. The implicit Advection Upstream Splitting Method (AUSM)
was used for simulations, which was good for capturing shocks in fluid flow. After
the simulation was completed, the mass flux imbalance was checked. It was found
that there was no significant mass accumulation inside the computational domain.
Hence, the converged solution could be used for further analysis.
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3 Results and Discussion

The simulation results provided insight into the flow field of hypersonic shock tun-
nel nozzle. The inviscid flow field has been analysed using commercially available
simulation software Ansys. The grid independency tests have been carried out.

The contour plot provides information about the variation of properties such as
pressure, temperature and Mach number. Figure 3 shows the contour plot for Mach
number. It can be seen that the flow field inside the test section is not uniform.
There is a variation of Mach number in both axial and radial directions. The oblique
shock wave beginning from exit of the nozzle extending into test section is also
visible. This can be attributed to the flow turning into itself because of beginning
of the constant diameter test section. The strength of this shock wave depends on
the nozzle divergence angle. This shock wave defines the dimensions of the models
that can be put inside the test section. If the shock wave hits any of the surfaces of
the model, then the flow field downstream from the impingement location will be
affected. Also, the shock boundary layer interaction will alter the flow field and the
experimental data will be erroneous.

The results show the notable variation of Mach number in radial direction at the
exit of the nozzle. For comparison, the plots for radial distribution of Mach number
in test section at five equally spaced locations (0 mm, 112.5 mm, 225 mm, 337.5 mm
and 450 mm from test section inlet) including test section entry and exit have been
given in Fig. 4. The x-axis shows the Mach number, while y-axis shows the distance
from centreline. It can be seen that at the entrance of the test section (first from the
left in Fig. 4), the flow Mach number is 8 which is the design Mach number.

The Mach number reduces when one goes away from the axis of the nozzle. This
is because of three-dimensional effects due to nozzle divergence angle. It can also
be seen that the change in Mach number is gradual, and available core region is only
up to 0.1 m from centreline above which the Mach number variation is significant.

The second plot from left in Fig. 4 also shows that there is sudden change inMach
number at 0.13 m radial location. And that change is visible in remaining figures
(third, fourth and fifth from left) also but distance from axis is reducing. This is
attributed to shock wave generated at the beginning of the test section. It can also be
seen in Fig. 4 that the axial Mach number increases in flow direction inside the test
section.

The test section of the hypersonic shock tunnel is kept at almost zero pressure. This
helps to start the nozzle flowwithout any back pressure effect. Also, the volume of the
dump tank is kept very large so that throughout the tunnel operation, the back pressure
effect does not affect the nozzle performance. This leads to the underexpanded nozzle
as the expansion is not complete till nozzle exit plane. Therefore, the flow further
expands into the test section. This is the reason why the axial Mach number increases
inside the test section. For a given area ratio, theMach number at the exit of the nozzle
is fixed. So, usually the experiments are carried out at designMach number only. But
looking at the underexpansion of the flow, it is thought that the change in mounting
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Fig. 4 Mach number variation in test section

location for the model can help to carry out experiments at different higher Mach
numbers.

The oblique shock wave from the test section entrance plane limits the useful core
available for experiments. Not only the model cross section should be sufficiently
smaller than the core area (160mmdiameter in current case), but also the length of the
model should not be in the downstream of the oblique shock. This limits the length
of the model for experiments. Based onMach number distribution, the available core
region can be identified. This core region will have most uniform free streamflow.

4 Conclusion

The flow-through hypersonic nozzle of the simple shock tunnel has been analysed.
The results from the simulation provided the information about the core area tomount
model without any external disturbances. Also, the fixed Mach number nozzle can
be used for higher Mach number with appropriate changes in model dimension.
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A DNS Study of Bulk Flow
Characteristics of a Transient Diabatic
Plume that Simulates Cloud Flow

Samrat Rao, G. R. Vybhav, P. Prasanth, S. M. Deshpande and R. Narasimha

1 Introduction

Clouds are complex systems, and interaction among a wide range of scales makes the
cloud parameterization problem “deadlocked” [1]. The Intergovernmental Panel on
Climate Change (IPCC) has identified clouds as one of the most urgent and difficult
problems needing attention, as the absence of a sufficiently successful model to
capture the actual dynamics of the cloud leads to significant biases (depending on the
model chosen) in climate predictions [2]. For the Indian monsoons, on which about a
half of the country’s agriculture is dependent, a significantly better parameterization
of clouds could help in improving rainfall predictions [3].

The major problem in modeling a cloud lies in the lack of our understanding of
how a cumulus cloud interacts with the surroundings. Earlier cloud fluid-dynamical
models based on steady-state plumes, thermals, and bubbles [4, 5] turned out to be
unsuccessful as the experiments did not incorporate an adequate model for describ-
ing the effects of latent heat release on condensation of water vapor into liquid
water. Also, the transient nature of cumulus clouds has to be taken into account.
Narasimha [6] and Diwan et al. [7] incorporated these two parameters and demon-
strated that a transient diabatic plume (TDP) provides an appropriate fluid-dynamical
model for cumulus cloud flow.Meanwhile, large-eddy simulations (LES) of cumulus
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convection [8] are gaining more attention in the recent past for their use in super-
parameterization schemes. In contrast to LES, our approach to model the cloud
flow as a TDP and solve it by employing a high-resolution direct numerical simula-
tion (DNS) technique has an emphasis on improving the fundamental understanding
of entrainment/detrainment and mixing mechanisms in free turbulent shear flows
including clouds.

2 Governing Equation and Computational Details

The numerical technique involves the simulation of the TDP by solving the 3D
Boussinesq approximations of the Navier–Stokes equations of mass, momentum,
and energy balance [9]. The equations solved are

Continuity : ∇ · u = 0 (1)

Momentum : ∂u

∂t
+ (u · ∇)u = −1

ρ0
∇P + υ∇2u + β�Tg (2)

Energy : ∂(�T )

∂t
+ (u · ∇)�T = κ∇2(�T ) + J (t)

ρ0CP
H(x, t) (3)

Vorticity : ∂ω

∂t
+ (u · ∇ω) − (ω · ∇)u − υ∇2ω = βg × ∇T (4)

where u is the velocity vector, �T = T (x, t) − T0 is the temperature differential of
the plume fluid to the ambient T0, P is the pressure, ρ0 is the ambient density, υ is
the kinematic viscosity, κ is the thermal diffusivity, β is the coefficient of thermal
expansion of the cloudfluid, g is the acceleration due to gravity (g = −gẑ, ẑ is the unit
vector along the vertical axis), J (t) is the heat added per unit volume per unit time,
and H(x, t) is the distribution function which determines the special region in which
heat is released at time t. The density of the TDP fluid is ρ(x, t) = ρ0(1 − β�T ). ω
is the vorticity vector. βg × ∇T is the baroclinic torque.

Except for a hot circular patch at the bottomwall at z = 0 (Fig. 1), the temperature
boundary conditions are Neumann. Pressure boundary conditions are also Neumann
at all walls. Velocity boundary conditions at the wall demand no-slip and impene-
trability at the surface. The normal derivatives of all the variables are set to zero at
the top. Equations 1–3 are non-dimensionalized using the bottom hot patch diameter
d0, velocity w0 = √

gβd0�T0, and the temperature differential �T0 at z = 0. Three
nondimensional numbers relevant to the problem are

Reynolds number,Re = w0d0
υ

Prandtl number,Pr = υ

κ
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Fig. 1 a Flow schematic. b Nonuniform mesh grid. c Coordinate system convention

Heat release number,G = J

ρCP

d0
w0�T0

The third parameter G plays a key role in the flow development as discussed by
Bhat and Narasimha [10]. The numerical technique employed is discussed by Pras-
anth [11]. A finite-volume technique with staggered grid arrangement has been used.
In the first sub-step, the momentum equation is solved for the velocity components
without taking the pressure term into account. This velocity field is non-divergent.
In the subsequent sub-step, the pressure Poisson equation is obtained by taking the
divergence of what ought to have been a non-divergent velocity field. The pressure
so obtained (using the HYPRE library, [12]) is used to get the final non-divergent
velocity field. This corrected velocity field is then used as the initial condition for the
next time step. This two-step procedure is continued till the simulation is completed.

The 360 TF supercomputer (Ananta) at CSIR-4PI, Bangalore, has been used for
the simulations. The total number of grids in the computational domain is ≈1.6
billion. The number of processors used is 3375, which required a total wall time of
≈16 days. The grid shown in Fig. 1b is a nonuniform Cartesian grid with higher
spatial resolution in the region where the TDP evolves. The time span of the flow is
90 flow units where each flow unit (FU) is defined as d0/w0.
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3 Results and Discussion

3.1 Transient Diabatic Plume (TDP) Flow Configuration

The flow schematic along with the coordinate system used in the simulation is shown
in Fig. 1, and Table 1 gives the details of the simulation.

In a TDP, the off-source heat addition which mimics the latent heat release due to
condensation of water vapor to liquid water in a cloud is simulated by dynamically
matching the nondimensional heat release number G (defined in Sect. 2). For the
present simulation, off-source heat is added over 10 ≤ z ≤ 15 and we call this the
heat injection zone (HIZ hereafter). The HIZ is equally divided into five subzones,
and varying amounts of heat are injected into each subzone (see Fig. 2). The amount
of heat injected into the HIZ may be specified by the heat release number G (x, t),
where G can be a function of space or time or both space and time (Fig. 2). In shallow
cumulus clouds, G is ~0.1–0.5 [13], where in the present simulation G varies in the
range of 0.04 to a maximum value of 0.35. The heating profile chosen to get a cloud
with a tall tower and cauliflower head is shown in Fig. 2.

3.2 Bulk Parameters of the Flow

As this is for the first time that the results on a fully resolved DNS study on a TDP are
being presented, it is not possible to compare it with any other study. Our objective
here is to demonstrate the effect of off-source heat addition on bulk parameters like
axial velocity (w), temperature (�T ), equivalent diameter (d||eq), and mass flux

Table 1 Simulation details, where Pr is Prandtl number and Re is Reynolds number (see Sect. 2)

Simulation Domain size (x, y, z) Grid size Time step Pr Re

TDP-1 (50, 50, 40) (1007, 1007, 1577) 0.003 t ≤ 63 FU 1 2000

0.001 t > 63 FU

Fig. 2 History of the heating profile used in the present simulation. Time is nondimensionalized
using w0 and d0. Heating starts at 43 FU and ends at 63 FU
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(Q) (the latter two to be defined below). Ensemble averaging is required to obtain
the average quantities in a transient flow. This demands that the simulations in the
present study be repeated several times with different initial perturbations. However,
results are available only from a single realization, but azimuthal averaging helps in
obtaining approximate mean values of flow parameters.

3.3 Evolution of TDP

The characteristic feature of a turbulent shear flow is the stochastic nature of the
vorticity field. Hence, the total vorticity modulus |ω|, defined in Fig. 3, is an appro-
priate variable for visualizing the evolution of TDP, and for determining boundaries
between turbulent flow and nonturbulent flow. The evolution of |ω| in the TDP
through t = 63, 68, and 72 FU is shown in Fig. 3a–c. From the figures, it can be seen
that the flow has an advancing cap or flattened thermal (cauliflower head) followed
by a trailing plume (stem). The figures also show the flow width ceases to grow in
any significant way with height, except in the plume head which is contrasting with a
starting plume where the flow width increases with height [14]. Comparing Fig. 3a,
c shows that even though maximum heat is injected between t = 60–63 FU, it takes
at least a few FUs for the |ω| to feel the effect of off-source heat addition [7]. For
analyzing the bulk parameters mentioned in Sect. 3.2, TDP flow at t = 72, which

(a) (b) (c)

(d)

Fig. 3 a–c Evolution of |ω| (≡
∣
∣
∣
∣

(

ω2
x + ω2

y + ω2
z

) 1
2

∣
∣
∣
∣
, the total vorticity modulus) in the TDP at

different instants of time in the axial section (x-z plane, y = 0). The red strip in 10 ≤ z ≤ 15
represents the heat injection zone. |ω| is nondimensionalized by w0 and d0. Figure 3d shows the
variation of |ω| at t = 72FU with radial distance for selected heights z
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has developed to a tall tower (stem) with a cauliflower head (cap), is chosen as an
appropriate candidate for further analysis.

Figure 3d is plotted to demonstrate the effect of heating on vorticity distribution
for four selected values for z. It can be seen by comparing z = 9.018 and z = 21.026
that |ω| goes up by an order of magnitude in the latter case. The reason for such a
dramatic increase in |ω| may be attributed to the baroclinic torque βg × ∇T [9],
which is a source for vorticity generation.

3.4 Axial (Vertical) Velocity (w)

Instantaneous axial velocity distribution across the diametral sections (x-y plane) of
the TDP at t = 72 FU is shown in Fig. 4 on the same scale as that shown in Fig. 4d.
Addition of off-source heating increases the axial velocity by ~2–4 times: this can be
seen by comparing the plume before (Fig. 4a) and plume after (Fig. 4c, d) heating.
Another striking feature of the velocity field in Figs. 4c, d (more pronounced in the
latter) is the presence of sinking velocities within and beyond the edges of plume
head.

Radial distributions of azimuthally averaged axial velocity (w) are plotted in
Fig. 5a. It is seen that w increases with height indicating that flow is accelerating. It
shows that centerline velocity increases continually, in contrast to the decay observed
in the classical plume (wc ∼ z−1/3).

3.5 Temperature (T )

Radial distributions of azimuthally averaged temperature are plotted in Fig. 5b. It can
be seen fromFig. 5b that due to off-source heat addition, T decay in TDP above z > 10
is much less than in the classical plume (T c ∼ z−5/3). Buoyancy flux is a conserved
variable in classical plume. However, in a TDP buoyancy flux increases (not shown
here) due to the increase in∇T andw. The dramatic increase in the vorticity (Fig. 4d)
is the result of the increase in ∇T and the accompanying baroclinic torque (Eq. 4),
as found in the temporal simulations of a cloud flow in a periodic box by Basu and
Narasimha [9].

3.6 Equivalent Diameter (deq)

It is the average diameter of the plume at a given height. It is defined as the diameter
of the circular area of same magnitude as covered by the |ω|thr edge or boundary of
the TDP at that height,
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Fig. 4 Contour plot showing diametral section (x-y plane) of instantaneous vertical velocity, w at
different heights at t = 72 FU. w is nondimensionalized using exit velocity at hot patch w0 =√
gβd0�T0. Superimposed pink (|ω| = 0.25) and black (|ω| = 0.5) curves represent themagnitude

of total vorticity |ω| on the boundary. The inner boundary (black curve) separates turbulent flow
from nonturbulent flow (T\NT interface), based on the data shown in Fig. 3d. Outer boundary
(pink curve) separates rotational and irrotational flow. |ω| is nondimensionalized usingw0/d0. a the
w distribution below HIZ, b middle of HIZ, c above the HIZ in the cylindrical stem, and d above
the HIZ in the plume head part

deq = 2√
π

√
√
√
√
√

|ω|i, j≥|ω|thr
∑

i, j=1,1

�xi, j�yi, j , (3.2)

where Δxi, j ,Δyi, j represent grid size in x- and y-directions, respectively.
Figure 6b shows the equivalent diameter deq of TDP at t = 72 FU.
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Fig. 5 a Azimuthally averaged distributions of vertical velocity w (a) and azimuthal averaged
temperature T (b). Curves are plotted for different heights at t = 72 FU. Velocity is nondimension-
alized by w0 = √

gβd0�T0, temperature by �T0 and r by d0. Black, yellow, blue, and orange lines
represent the w distribution, respectively, below HIZ, inside HIZ, inside the cylindrical stem above
HIZ, and plume head part above HIZ

Regime -I
Regime -II

Regime -III

Regime -IV Regime -IV

Regime -III

Regime -I

Regime -II

(a) (b)

Fig. 6 Axial variation of a turbulent mass flux (Q) and b equivalent (turbulent) diameter (deq )
both at t = 72 FU. Q and deq are nondimensionalized by w0 and d0, respectively. |ω| = 0.5 is used
as the threshold to define the T\NT interface

3.7 Mass Flux (Q)

The quantity central to understanding the growth of TDP is entrainment. Entrain-
ment/detrainment is a process by which the TDP fluid and ambient fluid mix with
each other. Entrainment is the inflow of ambient fluid to TDP, while detrainment
is the flow of TDP fluid out to the ambient. Entrainment is quantified through the



A DNS Study of Bulk Flow Characteristics of a Transient … 395

rate of change of mass flux with height. The axial variation of the mass flux is often
obtained from an arbitrary choice of radial location on the mean velocity distribution
but is here defined as

Q =
|ω|i, j≥|ω|thr

∑

i, j=1,1

wi, j�xi, j�yi, j ,where |ω|thr = 0.5.

It must be noted that this mass flux is obtained by integrating the axial velocity
in the horizontal plane (x-y) from plume axis (r = 0) to r = |ω|thr at the relevant
azimuthal angle (Fig. 4). A more detailed justification of such thresholds based on
|ω| will be found in Prasanth et al. [15]. The Q value so reported here adds up
to the true turbulent mass flux. While computing Q no assumption is made on the
axial velocity profile or on azimuthal symmetry. Figure 6a shows the variation of
Q with axial distance and is broadly consistent with the results of Diwan et al. [7].
In regime-I, the flow is still a classical plume and Q increases linearly with height.
Regime-II is in the HIZ where the increase in velocity over that in regime-II is only
slightly higher than in regime-I (yellow curve in Fig. 5a), however, the flow width
is nearly constant, and hence the Q hardly increases. Q goes up by a decade in
regime-III and rapidly falls to zero in regime-IV. The reason for the former is that the
flow begins to experience the effect of heat, as a result w goes up, resulting in more
entrainment. In the later stages, even though w goes up there are sinking velocities
near the edges which contribute to negative mass flux (Figs. 4d, 5a), resulting in
appreciable detrainment. This behavior is in striking contrast to that in a classical
self-preserving plume, where the mass flux increases with height at a constant rate.

4 Conclusions

This paper describes a fully resolved study of a transient diabatic plume (TDP).
We have simulated a first-order minimalistic model of a cumulus cloud flow by
incorporating a dynamically matched off-source heat addition. The results show that
the addition of off-source heating makes the evolution of a transient diabatic plume
strikingly different from that of a classical plume. It causes the flow to accelerate
and enhances fluctuating vorticity above HIZ by an order of magnitude through the
action of the baroclinic torque. We have presented here the true turbulent mass flux
in TDP at one time instant. The results on the bulk parameters discussed above are
broadly consistent with the previous studies on diabatic jets and plumes [7, 11].

A more detailed analysis of DNS results for the TDP and comparison with the
results of experiments on TDP andLES results on cloudsmight help in understanding
some of the more important factors that govern entrainment/detrainment and mixing
in clouds.



396 S. Rao et al.

References

1. Randall DA (2013) Beyond deadlock. Geophys Res Lett 40:5970–5976
2. Shaw RA (2003) Particle-turbulence interactions in atmospheric clouds. Annu Rev FluidMech

35:183–227
3. Kumar B, Bera S, Prabha TV, Grabowski WW (2017) Cloud-edge mixing: direct numerical

simulation and observations in Indian Monsoon clouds. J Adv Model Earth Syst 9:332–353
4. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained

and instantaneous sources. Proc Roy Soc Lond Ser A Math Phys Sci, 234
5. Scorer R (1957) Experiments on convection of isolated masses of buoyant fluid. J Fluid Mech

2(6):583–594
6. Narasimha R (2012) cumulus clouds and convective boundary layers: a tropical perspective on

two turbulent shear flows. J Turbul 13:1–25
7. Diwan SS, Prasanth P, Sreenivas KR, Deshpande SM, Narasimha R (2014) Cumulus-type

flows in the laboratory and on the computer: simulating cloud form, evolution and large-scale
structures. Bull Amer Meteor Soc 94(10):1541–1548

8. Grabowski WW (2016) Towards global large eddy simulation: super-parameterization revis-
ited. J Meteorol Soc Jpn 94(4):327–344

9. Basu A, Narasimha R (1999) Direct numerical simulation of turbulent flows with cloud-like
off-source heating. J Fluid Mech 385:199–228. https://doi.org/10.1017/S0022112099004280

10. BhatGS,NarasimhaR (1996)Avolumetrically heated jet: large-eddy structure and entrainment
characteristics. J Fluid Mech 325:303–330

11. Prasanth P (2013) Direct numerical simulations of a transient diabatic plume. MSc thesis,
JNCASR, Bangalore

12. Falgout RD, Yang UM (2002) Hypre: a library of high-performance preconditioners, pp 632–
641. Springer Berlin Heidelberg

13. Venkatakrishnan L, Bhat GS, Narasimha R (1999) Experiments on a plume with off-source
heating: implications for cloud fluid dynamics. J Geophy Res 104:14271–14281

14. Turner JS (1962) The ‘starting plume’ in neutral surroundings. J Fluid Mech 13(3):356–368
15. Prasanth P, Sachin YS, Narasimha R (2019) A DNS study of entrainment in an axisymmetric

turbulent jet as an episodic process (Submitted)

https://doi.org/10.1017/S0022112099004280


Transverse-Only Vibrations of a Rigid
Square Cylinder

Subhankar Sen

Abstract Undamped transverse-only Vortex-Induced Vibration (VIV) of a rigid
square cylinder is investigated numerically at a Reynolds number of 250. A stabi-
lized space-time finite-element formulation is employed to discretize the governing
equations of fluid motion in two dimensions. The reduced speed is varied from 3.5 to
9.5. For the entire range of reduced speed, synchronization between cylinder oscilla-
tions and vortex shedding is 1:1. The response consists of initial and lower branches.
Two kinks are present in the response curve; the first one appears at a reduced speed
of 4.7 and indicates the onset of lock-in.

Keywords Free transverse vibrations · Square cylinder · Surface pressure ·
Asymmetric wake mode · Kink

1 Introduction

The free or vortex-induced vibration of a rigid obstacle immersed in amoving viscous
fluid is one in which the motions of fluid and solid are coupled, i.e., they influence
each other. In other words, feedback between the fluid and solid is two-sided. In
contrast, for controlled or forced vibrations, the motion of the rigid body governs the
fluid motion in the neighborhood of the body, but the fluid, in turn, cannot deliver
any influence on the motion of its solid counterpart. Thus, feedback between the two
media is one-sided.

In the last two decades, study of the vibration characteristics of isolated
square/rectangular section cylinders has received much attention just next to those of
the circular cylinders. Some studies [1] explored the effects of rotation of the upstream
square cylinder on flow in a two-cylinder system. Sen and Mittal [2–4] reported sev-
eral aspects of free vibrations of a square cylinder in the Reynolds number, Re
range of 50–250. They investigated the existence of various resonance branches,
their dependence on oscillator mass ratio, types of wake modes, and also proposed
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an empirical formula yielding the lowest value of Re or reduced speed for galloping
to occur. Sen and Mittal [4] also listed the total number of kinks (in characteristic
curves) or transition regimes and provided possible explanations for the absence of
asymmetric wake modes. Jaiman et al. [5] showed that galloping does not occur in
a freely vibrating square cylinder once the sharp corners are smoothed out. He et al.
[6] numerically explored the single and two-degrees-of-freedom VIV of a square
cylinder and also studied the effects of mass ratio in brief.

In the earlier studies by us [2–5], the Reynolds number was coupled to the reduced
speed, U* (defined in Sect. 2) by an empirical formula. This imposed dependency
resulted in reduction in the number of controlling parameters by one. In the current
set of computations, the reduced speed is varied independent of Re. A fundamental
study concerning free vibrations of a rigid square cylinder at low Reynolds number
is still unavailable in the literature. This forms the motivation of the current work.
Direct numerical simulations of the governing differential equations are performed
at Re = 250 assuming the flow to remain two-dimensional since vibrations delay all
the transitions [7].

2 Methodology

The governing differential equations for the coupled fluid-rigid body system include
the continuity equation as well as those ofmotion of fluid and cylinder. The equations
of motion are derived from Newton’s second law; these are the Navier–Stokes equa-
tions for fluidmedium and a second-order ODE for the solidmedium, respectively. In
strong form, the governing momentum and continuity equations for incompressible
fluid flow are expressed as

ρ(
∂u

∂t
+ u.∇u − f ) = ∇.σ (1)

∇.u = 0. (2)

In vector Eqs. 1 and 2, t, ρ, u (= u, v), f, and σ , respectively, stand for the time,
density of the fluid, velocity vector for flow, body force vector per unit volume, and
stress tensor. The contribution from body force is not considered in the present work.
In context of the present problem, the flow domain in which the oscillator resides is
of rectangular shape. Free-stream inlet (u=U, v = 0), stress-free exit and slip lateral
boundaries define the boundary conditions for the rectangular domain. At the fluid–
solid interface, no-slip on velocity is considered. A solenoidal or divergence-free
velocity field is used as initial condition for the above system of PDEs.
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For undamped translations of the square oscillator across the flow, Newton’s
second law of motion reduces to

d2Y

dt2
+ (2πFN)2Y = Cl/2m

∗ (3)

where Y is the displacement of the oscillator measured from its initial (0, 0) location.
Here, FN = (f nD)/U is the reduced or normalized natural frequency of the oscillator,
Cl is the instantaneous lift force, andm* denotes themass ratio of the oscillator.Mass
ratio or relative density of the oscillator signifies the ratio of the mass of the oscillator
and mass of the displaced fluid per unit length. The dimensional natural frequency
is denoted by the symbol f n. The reciprocal of reduced natural frequency is known
as the reduced speed. For the ODE corresponding to Eq. 3, the initial condition is
Y = 0 and dY

dt = 0 at t = 0. However, this initial condition is used only for the lowest
value of reduced speed, i.e., U* = 3.5. For other U*, the solutions for Y and its first
derivative at the nearest U* are considered as the initial conditions.

A stabilized space-time finite-element formulation [8, 9] accommodating equal
order bilinear interpolation for velocity and pressure is used for discretization of the
conservation equations of mass and linear momentum in two dimensions. A rigid
square cylinder of edge lengthD resides in a rectangular computational domain. In the
absence of viscous damping, the cylinder executes free transverse-only vibrations.
The mass ratio of the cylinder is 10. A blockage of 5% is used for all the calculations.
For a Reynolds number of 250 based on the edge length of the cylinder, the reduced
speed is varied from 3.5 to 9.5. Motion of the cylinder is depicted relative to a fixed
or inertial frame of reference, the origin (0, 0) of which coincides with the center of
the cylinder when it is stationary.

A multi-block, non-uniform, and structured finite-element mesh containing
24,149 nodes and 23,780 bilinear quadrilateral elements has been used for the com-
putations. Themesh is composed of five component blocks—a central block and four
rectangular blocks surrounding the central block. The central block accommodates
the cylinder. The mesh is reconstructed at each time step. During the reconstruction,
the central block remains undeformed (but it moves), while the other blocks deform
due to movement of the central block along with the cylinder. A detailed discussion
of the finite-element mesh is available in Sen and Mittal [2].

Table 1 establishes mesh insensitivity of the computed results. The free transverse
vibrations of a square cylinder of m* = 10 at zero incidence are computed on two

Table 1 Flow past a freely vibrating (transverse-only) rigid square cylinder m* = 10 at Re = 250
and U* = 15: details of meshes M1 and M2

Mesh Nodes Elements Ymax/D Mean Cd Clrms

M1 24,149 23,780 0.6772 2.0686 0.8627

M2 47,800 47,280 0.6697 2.0703 0.8645

Also listed are the values of maximum response and fluid forces obtained from these meshes
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Table 2 Flow past a freely vibrating rigid square cylinder of m* = 3 at Re = 100 and U* = 5:
comparison of the predicted maximum transverse response with those reported by Zhao et al. [1]

Studies Ymax/D

Zhao et al. [1] 0.3500

Present 0.3231

For both cases, the blockage equals 0.025 and the cylinder executes simultaneous in-line and
transverse translations

meshes M1 and M2 at Re = 250 and a much higher U* of 15. At such high U*,
the cylinder executes galloping motion (not discussed in this paper). As apparent
from this table, the resolution of mesh M2 is about two times the resolution of
M1. Columns four through six of Table 1 ascertain that the characteristic vibration
(maximum cross-stream displacement, Ymax) and flow quantities (mean drag and
r.m.s. lift) do not exhibit any noteworthy deviation when obtained from meshes M1
and M2. Mesh M1, therefore, is considered for all computations in this work.

For two-degrees-of-freedom translations of an m* = 3 square cylinder at Re =
100 and U* = 5, Table 2 compares the predicted maximum transverse response
with the one obtained by Zhao et al. [1] via finite-element computations. For both
cases, a blockage of 0.025 is considered. The closeness of the peak response values
establishes the accuracy of the predicted results.

3 Results and Discussion

The variation of Ymax, pressure recovery at cylinder base, and drag on the cylinder
are presented as a function of reduced speed. Some flow features are also discussed
for a representative U* of 4.6 belonging to the initial branch of response. For a pair
of fixed square cylinders at incidence and in tandem arrangement, [10] studied the
flow topology.

3.1 Cylinder Response

Figure 1 illustrates the transverse response–reduced speed relationship over the U*
range of 3.5–9.5. In this range, the cylinder executes pure vortex-induced vibration
(VIV) and an 1:1 synchronization between vortex shedding and cylinder oscillation
is observed. AsU* is progressively increased, two kinks are identified in the response
curve. The first kink appears at U* = 4.7 and the second one at U* = 5.1. The first
kink marks the onset of lock-in, while the second one is characteristic to transition
from initial to lower resonance branch and a phase shift between lift and response by
about 180°. A contrasting and new observation associated with the response curve
is that a fall as opposed to a rise (as observed earlier in [2–5]) in Y is seen at the U*
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Fig. 1 Undamped free transverse vibrations of a rigid square cylinder m* = 10 at Re = 250:
variation of the normalized maximum transverse displacement with reduced speed

marking the transition from initial to lower branch of response. The response attains
the maximum value of 0.12D at U* = 5 in the initial branch.

3.2 Recovery of Surface Pressure

The relationship between pressure recovery at cylinder base and reduced speed is
shown in Fig. 2. Pressure recovery is the difference between the time-mean forward
stagnation pressure, Cp0, and time-mean base pressure, Cpb. A lower value of (Cp0-
Cpb) indicates higher recovery of pressure and vice versa. A higher recovery implies
delayed separation of boundary layer, narrow wake, and low drag. The minimum
pressure recovery occurs at U* = 5.1 marking the onset of lock-in.

3.3 Variation of Drag

The drag, Cd, of a cylinder is closely linked to the degree of pressure recovery at
the base of the cylinder. The drag curve shown in Fig. 3 bears close resemblance
with the pressure recovery curve. It can be seen that drag is low in the initial branch
when recovery is more and the largest value of drag is obtained at the onset of lower
branch, i.e., at U* = 5.1 where pressure recovery is also minimum.
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Fig. 2 Undamped free transverse vibrations of a rigid square cylinder m* = 10 at Re = 250:
variation of pressure recovery, Cp0-Cpb with reduced speed

Fig. 3 Undamped free transverse vibrations of a rigid square cylinder m* = 10 at Re = 250:
variation of mean drag with U*

3.4 Flow Features for U* = 4.6

Figure 4 plots the drag-lift Lissajous diagram at U* = 4.6. The presence of multiple
curves of similar profiles ensures that the flow is quasi-periodic at this reduced speed.
The phase plot is asymmetric about the zero-lift line. This implies that mean lift is
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Fig. 4 Undamped free transverse vibrations of a rigid square cylinder m* = 10 at Re = 250:
drag-lift phase diagram at U* = 4.6

nonzero. From this, it can be concluded that time-averaged pressure distribution
between the stagnation points along the upper and lower halves of the cylinder must
not be identical. Only under this circumstance, an unbalanced lift can be generated
per lift/shedding cycle. The obvious outcome is that the vortex shedding must be
biased or asymmetric. Thus, even though the synchronization is 1:1, the wake vortex
mode cannot be 2S and it must be an asymmetric mode.

For U* = 4.6, the mean surface pressure, Cp, on the square is shown in Fig. 5.
The maximum pressure is attained at the forward stagnation point B and pressure
is minimum at locations very close to the corners A and C. The pressure is mostly
negative; it is positive over a very narrow region surrounding the forward stagnation
point B. Following the discussion in the previous paragraph, the mean pressure along
lower halfBCDEdiffers frommeanpressure along upper half EFAB.This asymmetry
is the origin of the asymmetric vortex shedding and nonzero mean lift at U* = 4.6.

For viscous fluid flow at low Re, the value of forward stagnation pressure coef-
ficient (pressure at point B in Fig. 5) exceeds the value of unity obtained from the
potential flow theory. In potential flow past a circular cylinder, the effects due to
fluid viscosity or Reynolds number are absent and unique solutions for Cp exist at
the forward stagnation point or elsewhere on the cylinder surface. When viscous
effects are strong, i.e., Re is low or diffusion mode of transport is more powerful
than the convection mode, the flow velocity is low in the vicinity of the cylinder.
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Fig. 5 Undamped free transverse vibrations of a rigid square cylinder m* = 10 at Re = 250:
time-averaged surface pressure on the cylinder at U* = 4.6

This explains the value of higher Cp at low Re at point B. As Re increases, convec-
tion turns stronger, flow velocity increases, and Cp drops and approaches the value
predicted by the potential flow theory.

In terms of instantaneous vorticity, Fig. 6 depicts the wake structures at U* =
4.6. By a detailed analysis of vortex shedding in a complete oscillation cycle, it
is found that vortex shedding for the quasi-periodic U* = 4.6 case is one-sided.
The wake structures repeat in every two oscillation cycles. In the first cycle, two
weak vortices of same sign (CCW) are shed from the lower portion of the cylinder.
In the next cycle, the asymmetric P + S shedding pattern is observed. To the best
of the author’s knowledge, wake modes involving successive shedding of like sign
vortices are not discussed in the literature. Also, the identification of P + S mode
for a freely vibrating square cylinder is being reported perhaps for the first time.
The newly identified one-sided mode is introduced by the symbol S1S2. This symbol
suggests shedding of two like-signed (here, positive) vortices S1 and S2 (marked in
Fig. 6) instead of two opposite-signed vortices seen in an oscillation/shedding cycle
of antisymmetric or Karman shedding.
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Fig. 6 Instantaneous vorticity field at U* = 4.6 showing the one-sided S1 and S2 vortices. The
cross symbol (x) marks the origin of the inertial (fixed) frame of reference

4 Conclusions

The free transverse vibration of a rigid square cylinder ofmass ratio 10 is investigated
numerically at Re = 250. The motion is purely VIV and devoid of galloping for the
U* range of 3.5–9.5. For the first time, existence of asymmetric wake modes is noted
for a square cylinder executing 1:1 VIV. A new wake mode corresponding to one-
sided shedding is identified. This newly identified mode is denoted by the symbol
S1S2 where two vortices of same sign are shed from each oscillation cycle.
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Steady Flow Past Two Square Cylinders
in Tandem

Deepak Kumar, Kumar Sourav and Subhankar Sen

Abstract In the present work, two-dimensional, incompressible steady flow around
a pair of identical square cylinders in tandem arrangement is studied numerically
using stabilized finite-element formulation. Reynolds number (Re), based on free
stream speed and cross-flow width of the cylinder, is fixed at 40. The spacing ratio
(S/D) is the ratio of distance between the center of cylinders to the cross-flow dimen-
sion of the cylinder which is varied from 2 to 10. Three distinct flow patterns are iden-
tified for the given range of S/D.With increase in S/D, the wake interaction between
both the cylinders weakens and both cylinders form separate closed wakes for S/D
≥ 6. Interestingly, a weak recirculation zone other than the closed wake structure of
both the cylinders is found near the forward stagnation point of downstream cylinder
in the gap region. This recirculation zone disappears with a marginal change in the
spacing ratio. As S/D is increased further, both upstream and downstream cylinders
behave as an isolated cylinder.

Keywords Tandem square cylinders · Steady flow · Flow regimes · Recirculation
zone

1 Introduction

Despite being simple in geometry, due to its vast applicability and abundance of
flow physics, flow over a circular cylinder has been the most explored problem
in the field of bluff body flow. A detailed review for the same can be found in
Zadravkovich [1], Sumner [2], and many more. The knowledge of aerodynamic
forces on the structure and subsequent changes in flow field is very important before
designing any structure experiencing fluid–structure interaction. These structures
may include from tube bundles of heat exchangers, wires in the transmission line,
floating platforms in oversea, pipelines near seabed, chimney stacks skyscrapers, and
manymore. Presence of another bluff structure in the vicinitymakes the analysis even

D. Kumar (B) · K. Sourav · S. Sen
IIT (ISM), Dhanbad 826004, Jharkhand, India
e-mail: deepakkmr799@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
B. N. Singh et al. (eds.), Recent Advances in Theoretical, Applied, Computational
and Experimental Mechanics, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-1189-9_33

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1189-9_33&domain=pdf
mailto:deepakkmr799@gmail.com
https://doi.org/10.1007/978-981-15-1189-9_33


408 D. Kumar et al.

more challenging. Two or more than two cylinders can be arranged in three possible
arrangements, namely, tandem, side-by-side, and staggered [1]. Depending upon the
closeness of two circular cylinders and interaction of vortices of one cylinder with
the other, Zadravkovich [3] defined three different regimes of flow. (i) The proximity
interference regime (cylinders are adjacent to each other), (ii) wake interference
regime (rear cylinder is in the wake of the front cylinder), and (iii) no-interference
regime (cylinders are far from each other and are not affected by the presence of
the other). Patil et al. [4] conducted numerical experiments on two circular cylinders
placed in tandem arrangement. They studied the effect of varying shear parameter,
spacing ratio, and Reynolds number on flow separation and aerodynamic forces.
Singha and Sinhamahapatra [5] reported steady and unsteady flow past two circular
cylinders for varying Re and S/D. They found the flow to be fully steady irrespective
of the spacing ratio for Re= 40. However, as the Re is increased to a value of 70, the
flow progressively switches from steady to unsteady as the spacing ratio advances
from 0.2 to 4.

As compared to circular cylinder, the square counterpart is relatively less explored.
Flow past a pair of identical square cylinders at low Re has been studied numerically
by Sohankar [6]. He investigated the effect of spacing ratio for selected values of Re
and found a critical spacing ratio beyond which the fluid forces increased consider-
ably. He also presented the effect of Reynolds number for a fixed spacing of S/D= 4.
Based on the study, Sohankar [6] found three major regimes, namely, single-slender
body regime, reattach regime, and co-shedding regime. Later, Shyam and Chhabra
[7] conducted numerical experiments to depict the effect of Prandtl number on in-
line cylinders of square cross section and immersed in power-law fluid for Re range
1–40. S/D is varied from 2 to 6. Ehsan et al. [8] investigated steady and unsteady
flow over a pair of square cylinders in in-line arrangements for Re range 1–200 and
for shear parameter varying from 0.5 to 1.8. They found that the onset of separation
from the leading edge occurs early for shear-thinning fluid and is delayed for shear
thickening fluid. Most of the numerical and experimental studies on flow around
pair of square cylinders are confined to high Re flow. The flow regimes in all the
reported literature are defined for unsteady flow based on the patterns of shedding
of vortices from the upstream and downstream cylinders. Therefore, the obvious
questions which come to the mind are: Can we identify different regimes of flow
in the absence of vortex shedding from the cylinders, i.e., when the flow is steady?
What will be the criterion for defining the regimes? The lack of literature for low Re
flow past two square cylinders in tandem arrangement in steady flow regime and the
above-unanswered questions motivated us to explore the problem further. Therefore,
in the present investigation, our objective is to identify the flow structure formed by
varying S/D of two identical square cylinders at a Re= 40. An attempt to understand
the effect of spacing on the streamlines variation, in-line velocity distribution on the
wake centerline in the gap region and the corresponding effect on wake structure
is also made. Structure of the remaining paper is as follows: Governing equations
are discussed in Sect. 2. Section 3 describes the problem setup and mesh informa-
tion. Validation study and grid independence test are discussed in Sect. 4. Results
are presented in Sect. 5. The first Sect. 5.1 in Sect. 5 describe overall flow. Critical
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flow region is separately discussed in 5.2 followed by discussions on wake length
reattachment point.

2 Governing Equations

The motion of incompressible fluid in steady flow is governed by Eqs. 1 and 2 listed
below:

ρ(u.∇u − f ) − ∇σ = 0 (1)

∇u = 0 (2)

Here, u vector is the velocity of the fluid, f is body force, and σ represents the
Cauchy stress tensor. Since the flow is advection dominated, therefore the contribu-
tion of body force is not considered in the computations. The stress tensor consists
of isotropic and deviatoric parts:

σ = −pI + T, T = 2με(u), ε(u) = 1/2
(
(∇u) + (∇u)T

)
(3)

Here, p is the pressure, I is the identity matrix, μ is the dynamic viscosity of the
medium, and ε is the strain rate.

3 Problem Description and Finite-Element Mesh

Figure 1 shows the schematic of the problem. The rectangular box represents the flow
domain. Two identical square cylinderswhose centers are separated by a spacing S are
fixed in the domain. The inlet and exit of the domain are providedwith free stream and
stress-free boundary conditions, respectively. Cylinder surfaces are no-slip surfaces.
The sidewalls are free-slip walls. A collocated, multi-block, structured, nonuniform
finite-element mesh consisting of 94,391 nodes and 93,440 elements for S/D = 2 is
shown in Fig. 2a. The mesh consists of total ten blocks. This arrangement allows to
control the resolution of the mesh locally. The cylinders are placed in two central
mesh blocks. The enlarged view of central block consisting of upstream cylinder is
shown in Fig. 2b. The other blocks adjacent to the central blocks are stitched with the
central blocks. The origin of Cartesian coordinate system is located at the geometric
center of upstream cylinder. The distance of inlet and exit walls from the origin of
the coordinate system is 30D and 95D, respectively. Both the upper and lower walls
are placed at a distance of 25D from the origin, thus offering a blockage (B, ratio of
cross-stream dimension of the cylinder to the total cross-streamwidth of the domain)
of 2%.
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Fig. 1 Sketch of the problem statement and associated boundary conditions for steady flow past a
pair of identical square cylinder in tandem arrangement

Fig. 2 a The finite-element mesh consisting of two identical square cylinders for S/D = 2.
b Enlarged view of the central mesh block consisting the upstream cylinder. The two orthogonal
arrows represent the coordinate system

4 Validation of the Numerical Model and Grid
Independence Test

The results reported by Sharman et al. [9] for a pair of circular cylinders and Bao
et al. [10] for two square cylinders in tandem are compared with the results of present
computation to establish the accuracy of the numerical model used (see Table 1).
Unsteady computations are carried out at Re = 100 and for a spacing ratio of S/D =
4 and 5 two identical circular and square cylinders, respectively. Table 2 lists the grid
independence test for the present computations. Two grids M1 and M2 have been
tested and based on the results obtained, mesh M1 is chosen for all the computations
in the present work.
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Table 1 Unsteady flow past a pair of identical circular and square cylinder at Re = 100. The
comparison of aerodynamic coefficients as reported by Sharman et al. [9] and Bao et al. [10] with
the present computations

Geometry Study S/D Blockage Upstream cylinder Downstream
cylinder

CD AVG CL RMS CD AVG CL RMS

Circle Sharman et al.
[9]

4 0.02 1.2756 0.3028 0.7033 0.9869

Circle Present 4 0.02 1.2602 0.3019 0.7007 0.9700

Square Bao et al. [10] 5 0.02 1.4260 0.2890 1.0990 1.2110

Square Present 5 0.02 1.3910 0.2901 1.0956 1.2060

Table 2 Steady flow past a pair of identical square cylinder at Re = 40 and for B = 0.02. Grid
independence test for S/D = 6

Mesh Nodes Elements Upstream cylinder Downstream cylinder

CDp CDv CDp CDv

M1 98,577 97,600 1.32156 0.27975 0.22733 0.17848

M2 200,063 198,620 1.33518 0.26598 0.23106 0.17575

5 Results

The results of steady flow around two bluff obstacles of square cross section are pre-
sented for a fixed Re value of 40 and for S/D ranging between 2 and 10. The equations
governing the flow are discretized using stabilized finite-element formation.

5.1 The Flow

Flow patterns in terms of streamline contours for spacing ratio range considered are
shown in Fig. 3. As apparent from Fig. 2a, b, for low S/D (= 2 and 4), wake of
the upstream cylinder reattaches on the downstream cylinder. Initially, the classical

Fig. 3 Flow past a pair of square cylinders in tandem at Re = 40: streamline plots for S/D = a 2,
b 4, c 6, and d 8
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closed wake structure is observed only behind downstream cylinder up to S/D =
4. S/D = 6 (Fig. 2c) is found to be a critical spacing ratio where the reattachment
of separated shear layers on the rear cylinder ceases and the classical close wake
appears for the first time behind both the cylinders. Here, it is interesting to note
that a pair of weak antisymmetric rotating eddies is also generated near the forward
stagnation point of the downstream cylinder. With further increase of spacing ratio,
both cylinders behave like two distinct isolated (negligible effect of the presence of
other bluff object) cylinder. Thus, three distinct flow regimes are identified, namely,
precritical (S/D < 6), critical (S/D = 6), and postcritical (S/D > 6).

5.2 Flow Characteristic in the Critical Regime

To understand the changes in the flow structure near the critical regime (i.e., when a
closed wake is observed for upstream cylinder in the gap region), computations are
carried out at intermediate spacing ratio values between S/D = 4 and S/D = 6. The
variation is shown with respect to streamline contours in Fig. 4. As apparent from
Fig. 4a, at S/D= 5.5, the wake of upstream cylinder shows a tendency to detach from
downstream cylinder, thereby making a very narrow structure near the frontal edge
of downstream cylinder. As the spacing ration approaches six (i.e., the critical value),
a completely closed wake structure of the upstream cylinder is observed in the gap
region for the first time. Interestingly, another weak yet observable counterrotating
recirculation zone above and below the wake centerline also appears adjacent to the
wake of upstream cylinder and frontal edge of downstream cylinder. This is caused
by the flow reversal in this zone. To understand the flow direction in the gap region,
the variation of in-line component of the velocity is plotted with in-line spacing for
S/D = 6. Figure 5 clearly depicts the reversal of flow as the in-line component of
flow velocity changes its sign from positive to negative near the frontal edge. The
first negative u-velocity region represents the wake of upstream cylinder.

The effect of spacing ratio on the flow structure is presented via variation of wake
length in Fig. 6a. While the upstream cylinder shows a monotonic decrease in the
wake length after its evolution at S/D= 6, thewake length of the downstream cylinder
initially decreases up to S/D = 6 and then increases gradually. Figure 6b presents
the distribution of surface vorticity on the downstream cylinder. The intersection of
vorticity curve with zero line represents either the separation or reattachment points.

Fig. 4 Streamline plots for S/D = a 5.5, b 6, and c enlarged view of downstream cylinder. A weak
recirculation zone near can be clearly observed near the frontal edge of downstream cylinder
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Fig. 5 Steady flow past two identical square cylinders at Re = 40 and S/D = 6. Variation of in-line
velocity component (u) in the gap region. The inset shows enlarged view of the variation of u-x
near the frontal edge of downstream cylinder

Fig. 6 The variation of a length of thewake of both the cylinders and b surface vorticity distribution
around the downstream cylinder as a function of S/D. The angular position 0° and 180° represents
the forward stagnation point and base points (moving in counterclockwise direction) of the square
cylinder, respectively

It is worth noting that for S/D= 2 through 6, when the wake of the upstream cylinder
has interaction with its downstream counterpart, the reattachment point is not fixed
and it gradually move toward forward stagnation point (on the leading edge).
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6 Conclusions

Flow past a pair of square cylinder in tandem arrangement is investigated numerically
for a fixed Re of 40 and S/D ranging between 2 and 10. Based on the flow patterns
observed, three distinct flow regimes are identified, namely, precritical, critical, and
postcritical regimes. In precritical regime (S/D = 2–4), the separated shear layer
from first cylinder reattaches on the rear cylinder. A closed steady wake behind the
downstream cylinder is observed for all condition considered. At a critical spacing
ratio (S/D = 6), reattachment ceases and a classical closed wake appears for the
first time behind the upstream cylinder. In the critical regime, a recirculation zone
near the forward stagnation point is also created. As S/D increases from 2 to 6, the
reattachment point on the downstream cylinder shifts (from the corners on the leading
edge) toward the forward stagnation point. In the postcritical regime, the interaction
between the cylinders weakens and they tend to behave as isolated cylinders. While
thewake length (measured from the base to thewake stagnation point) of the upstream
cylinder decreases monotonically, the wake length of the rear cylinder decreases first
up to critical S/D and then again starts increasing slowly.
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A Robust and Accurate
Convective-Pressure-Split Approximate
Riemann Solver for Computation of
Compressible High Speed Flows

Sangeeth Simon and J. C. Mandal

Abstract The Harten-Lax-van Leer (HLL) based Convective-Pressure-Split (CPS)
approximate Riemann solver (HLL-CPS) is a popular upwind scheme designed to
discretize the Euler system of equations that governs compressible high speed flows.
However, the HLL-CPS scheme is known to possess two major drawbacks: high
numerical dissipation on shear waves and susceptibility to numerical shock insta-
bility. In this paper, we demonstrate that the accuracy of the shear waves can be
recovered by directly employing an HLLC-type anti-diffusive term in the discretized
pressure system of the HLL-CPS scheme.We show that the resulting scheme, termed
HLLC-CPS, can be made shock stable by selectively controlling this anti-diffusive
term in the vicinity of a numerical shock front using a pressure-ratio based control
parameter. Numerical results show the efficacy of the proposed scheme.

Keywords Euler equations · Convective-pressure split · Numerical shock
instability · Riemann solvers · Contact and shear preserving

1 Introduction

Computation of high-speed compressible flows, governed by the Euler system of
equations, continues to be a major challenge in the field of Computational Fluid
Dynamics. Complexities arise inaccurately and robustly resolving the genuinely
nonlinear waves like the shock wave and expansion fans, the linearly degenerate
waves like the contact wave and shear wave and the mutual interactions between
these wavefields. Over the past several decades, various upwind schemes have been
developed to address this challenge. The two major categories of these schemes are
the Flux Vector Splitting (FVS) schemes and the Flux Difference Splitting (FDS)
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schemes.While the FVS schemes work by decomposing the total Euler flux vector at
an interface into an upwind and downwind contribution based on local wavespeeds,
the FDS schemes seek the solution of a Riemann problem to estimate the numerical
flux at an interface. Themost cost-effective implementation of the FDS schemes is the
approximate Riemann solvers and the most popular of them include the Roe scheme
[1], the HLL scheme [2], the HLLC scheme [3] etc. Although the superior accuracy
has rendered these schemes more popular than the FVS schemes over the years, they
still lack the inherent robustness of the FVS schemes against the phenomenon of
numerical shock instability [4].

A particular scheme that represents a combination of the philosophy of the FVS
and the FDS schemes, yet remains distinct from each of them, is the AUSM scheme
of Liou et al. [5]. The AUSM scheme is notable for pioneering the philosophy of
Convective-Pressure Splitting (CPS) by arguing that since the Euler equations com-
prise of separable convective and pressure systems with distinct physics of prop-
agation, it is meaningful to decompose it accordingly and discretize these compo-
nents independently. The AUSM scheme rivaled most of the approximate Riemann
solvers in its accuracy while closely retaining the robustness of the FVS schemes in
shock-capturing. The philosophy of CPS that was put forward by this scheme had
subsequently inspired several other schemes [6–8]. Most of these schemes used a
one-sided differencing for the convective component and aMach number or velocity-
based polynomial approximations for the pressure component.

Recently, Mandal et al. [9] proposed an interesting CPS based approximate
Riemann solver called the HLL-CPS scheme. In this scheme, the Euler flux is first
decomposed into its respective convective and pressure systems based on either
AUSM-type or Zha-Bilgen-type [6] splitting. The resulting convective system was
governed by a single linear wave and the pressure system was governed by two non-
linear waves and a stationary contact wave.While the convective system is upwinded
based on locally averaged fluid velocity, the pressure system is subjected toHLL-type
discretization inspired by the AUFS scheme of Sun et al. [10]. The contact ability
was introduced explicitly by replacing the density jumps appearing in the numerical
dissipation of the pressure system to pressure jumps using an isentropic condition.
The individually discretized convective and pressure systems are then coupled to
each other using the slowest and fastest wavespeeds that occur as the solution of
the local Riemann problem. The HLL-CPS scheme was shown to be as accurate
as the HLLC scheme at least on several inviscid problems. It also inherited several
appealing features like positivity, entropy satisfaction without explicit entropy fixes
and flux differentiability from the HLL scheme. Further, all versions of the scheme
were shown to avoid numerical shock instability on selected problems. The HLL-
CPS formulation has been shown to work effectively even on the Toro-Vazquez-type
flux splitting [11] and has been easily extended to its genuinely multidimensional
version [12], which clearly demonstrates the versatility of the method. However,
recent studies reveal that the HLL-CPS scheme has two major drawbacks. Firstly,
the numerical dissipation tuning employed to resolve stationary contacts adversely
affected the capability of the scheme to resolve shear waves [13]. Secondly, our
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experience shows that the HLL-CPS may succumb to numerical shock instability on
certain problems.

To alleviate these shortcomings, in this work, we propose a new low diffusion
approximate Riemann solver based on the CPS philosophy. Although we reuse the
framework made available by the HLL-CPS scheme, the proposed scheme differs
from it specifically in the discretization of the pressure system. In particular, we
show that full accuracy on the linearly degenerate wavefields can be recovered by
simply introducing an HLLC-type anti-diffusive term into the formulation. Further,
we demonstrate that the proposed scheme could be made robust against numerical
shock instability by simply controlling this anti-diffusive term in the vicinity of a
numerical shock front.

2 Formulation

The governing equations for x-directional-split inviscid compressible flow can be
expressed in their conservative form as,

∂U
∂t

+ ∂F(U)

∂x
= 0 (1)

where U and F(U) are the vector of local conserved variables and grid normal
fluxes at any interfaces given respectively as U = [ρ, ρu, ρv, ρE]T and F(U) =[
ρu, ρu2 + p, ρuv, (ρE + p)u

]T
. In these expressions, ρ, u, v, p and E stands,

respectively, for density, normal velocity, tangential velocity, pressure, and specific
total energy. The system of equations are closed through the equation of state. In the
above expression the grid tangent fluxes are neglected in a finite volume discretiza-
tion because they do not contribute to the flux across an interface. A semi discretized
form of Eq. (1) that uses a conventional Finite Volume based two-state approximate
Riemann solver on a two-dimensional quadrilateral mesh with a cell element i of
area |Ωi| can be written as,

dUi

dt
= − 1

|Ω|i
4∑

k=1

[FRiemann(UL,UR)]�sk (2)

whereUL,UR indicates the initial conditions of a local Riemann problem across kth
interface of cell i and FRiemann is the Riemann flux operator at any interface with face
length�sk . In this work we use the Zha-Bilgen type flux splitting strategy [6] to split
the total Euler flux vector into its convective (FC) and pressure (FP) systems as,

F = FC + FP
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where,

FC = u

⎛

⎜
⎜
⎝

ρ

ρu
ρv
E

⎞

⎟
⎟
⎠ FP =

⎛

⎜
⎜
⎝

0
p
0
pu

⎞

⎟
⎟
⎠ (3)

For the proposed scheme, the convective part is discretized using a simple local
average velocity based upwinding similar to [9].

FC = Mk

⎛

⎜
⎜
⎝

ρ

ρu
ρv
E

⎞

⎟
⎟
⎠

k

ak (4)

k =
{
L if ū ≥ 0
R if ū < 0

(5)

where the local average velocity ū = uL + uR
2

Mk =

⎧
⎪⎨

⎪⎩

ū

ū − SL
if ū ≥ 0

ū

ū − SR
if ū < 0

(6)

and

ak =
{
uL − SL if ū ≥ 0
uR − SR if ū < 0

(7)

The SL = min(0, uL − aL, ũ − ã) and SR = max(0, uR + aR, ũ + ã) are the
wavespeeds. The pressure part can be discretized using the two-wave HLL Riemann
solver as in [9],

FP = SRFP
L − SLFP

R + SRSL(UR − UL)

SR − SL
(8)

Now, instead of tuning the term (UR − UL) to recover accuracy on linearly degenerate
waves like contact waves and shear waves as advocated in the HLL-CPS scheme, we
simply add an HLLC-type anti-diffusive term to the pressure discretization. Hence,
we write,

FP = SRFP
L − SLFP

R + SRSL(UR − UL)

SR − SL
+ ωAHLLC (9)
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(a) Stencil forω i, j+1/2 (b) Stencil forω i+1/2, j

Fig. 1 Stencils for evaluation of the anti-diffusion control parameter ω. a On horizontal interfaces.
b On vertical interfaces

where the anti-diffusion term AHLLC can be written as,

AHLLC =
{
SL(U∗LHLLC − UHLL∗ ), if SL ≤ 0 ≤ SM
SR(U∗RHLLC − UHLL∗ ), if SM ≤ 0 ≤ SR

(10)

where, SM is the estimated speed of the contact and shear wave and can be obtained
as suggested in [14]. Since this anti-diffusive term is responsible for triggering shock
instability [15], a pressure-ratio based control parameter ω is introduced in order to
control this term in the vicinity of strong normal shocks. The control parameter ω is
given as,

ωi,j+1/2 = mink(fk), k = 1...4 (11)

The term fk denotes a pressure-ratio based function that uses a predefined stencil
around a particular interface as shown in Fig. 1a. At any interface k, fk is defined as,

fk = min

(
pR
pL

,
pL
pR

)5

k

(12)

We term the resulting scheme as HLLC-CPS-Z (Zha-Bilgen split). We note that an
HLLC-CPS-A and an HLLC-CPS-T can also be constructed in similar fashion by
starting, respectively, with the AUSM-type or the Toro-Vazquez-type flux splittings
although we choose not to discuss them presently. In the next section, we test the
HLLC-CPS-Z scheme for its accuracy on linearly degenerate waves and robustness
against numerical shock instability.
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3 Results and Discussions

3.1 Subsonic Laminar Flow Over a Flat Plate

A M = 0.1 laminar flow over a flat plate is used as a test case to demonstrate the
capability of the proposed HLLC-CPS-Z scheme to satisfactorily resolve a shear
dominated viscous flow. The domain is divided into 31 × 33 Cartesian cells with
fifteen cells retained in the boundary layer.Viscous fluxes are discretized using simple
averaging. The CFL number is taken to be 0.7. In Fig. 2, we plot the normalized
longitudinal velocity profiles ( u

u∞ ) against the Blasius parameter η = y
√
u∞/μL. It

can be clearly seen that HLLC-CPS-Z scheme has a marked improvement over the
HLL-CPS-Z scheme in capturing the boundary layer.

3.2 Two-Dimensional Supersonic Shear Flow

This problem investigates the inviscid contact capturing ability of a given scheme by
simulating a fluid system consisting of two different density fluids sliding over each
other at different speeds [16]. The top fluid is chosen to have conditions (ρ, p,M )top
= (1, 1, 2) while the bottom fluid is chosen to have conditions (ρ, p,M )bottom = (10,
1, 1.1). The domain of 1.0 × 1.0 is coarsely discretized using 10 × 10 cells. The
simulation is run for 1000 iterations using a CFL number of 1.0. All simulations
are plain first-order accurate. Figure3 shows a comparison of the density variation
along y-location at the center of the domain. The plot clearly shows that while the
HLL-CPS-Z scheme diffuses the interface to an unacceptable level, the proposed
HLLC-CPS-Z scheme is able to retain it exactly.

Fig. 2 Comparison of
velocity profiles computed
by the HLL-CPS-Z scheme
and the proposed
HLLC-CPS-Z scheme for a
M = 0.1 laminar flow over a
flat plate
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Fig. 3 Variation of density along the y-direction at the center of the domain in the two-dimensional
supersonic shear flow

(a) HLL-CPS-Z (b) HLLC-CPS-Z

Fig. 4 Results for M = 7 standing shock instability problem

3.3 Standing Shock Instability

This simple test case evaluates the ability of a numerical scheme to compute an
isolated normal shock front without allowing random perturbations to grow and dis-
tort the initial shock structure or produce contaminated post-shock values [17]. A
normal shock of strength M = 7 is located in the middle of an unit-dimensional
domain divided into 26 × 26 Cartesian cells. The CFL number is 0.5. First-order
solution is sought. Figure4 shows thirty density contour lines equally spanning val-
ues from 1.0 to 7.4 for this experiment at t = 50 units. From the figure, it is evi-
dent that HLL-CPS-Z scheme produces this variant of shock instability while the
HLLC-CPS-Z scheme is completely free of this.
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Fig. 5 Results for M = 20
supersonic flow over a blunt
body problem
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(b) HLLC-CPS-Z

3.4 Supersonic Flow Over Bluntbody

This problem investigates the susceptibility of the numerical scheme to produce
the dreaded “Carbuncle” phenomenon. A unit-dimensional cylinder is placed in a
M = 20 inviscid flowwith free streamconditions chosen as (ρ, u, v, p) = (1.4, 20.0,
0.0, 1.0). The computationalmesh consists of 320× 40body-fitted structured quadri-
lateral cells in circumferential and radial directions, respectively. To trigger the insta-
bility, the centerline grid is perturbed to the order of 10−3. The CFL number for the
computation is taken to be 0.5 and First-order simulation is run for 20,000 iterations.
The results showing twenty density contours equally spanning value from 1.4 to
8.5 are shown in Fig. 5. The contours clearly show the presence of instability in the
HLL-CPS-Z scheme while the HLLC-CPS-Z scheme is completely free of it.

4 Conclusions

In this paper we propose a novel approximate Riemann solver called the
HLLC-CPS-Z scheme for robust and accurate computation of high speed flows. The
proposed scheme is primarily based on the Convective-Pressure split (CPS) strat-
egy wherein the total Euler flux is split into a convective and pressure systems. The
resulting convective and pressure systems are discretized similar to the HLL-CPS
scheme [9]. However, for resolving contact and shear waves accurately, we introduce
an HLLC-type anti-diffusive term to the pressure system in contrast to the numeri-
cal dissipation tuning employed by the HLL-CPS scheme. This anti-diffusive term
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is also selectively controlled near strong shocks using a pressure-ratio-based con-
trol parameter to prevent the occurrence of numerical shock instability. Numerical
results demonstrate that the HLLC-CPS-Z scheme possesses superior accuracy on
linearly degenerate waves while displaying high robustness against numerical shock
instability.
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Numerical Investigation of Flow Through
a Rotating, Annular, Variable-Area Duct

Palak Saini, Sagar Saroha, Shrish Shukla and Sawan S. Sinha

Abstract We perform computational fluid dynamic simulations of a compressible
fluid through a rotating annular variable-area duct. The objective of this study is to
understand the influence of rotation on flow separation and development of vortical
structures inside the duct. We solve steady Navier–Stokes equations over the domain
with respect to a frame attached to the rotating duct itself. In this frame, influence
of rotation on the flow field is captured by adding a rotation-dependent body force
(centrifugal force). An approximately defined Froude number (ratio of inertial to
body forces) is used as a simulation parameter to identify and understand the role of
rotation on flow dynamics. As body force increases, the Froude number decreases.
The findings of this study are employed to explain the low-load behavior of steam
in power plant turbines.

Keywords Separated flow · Nozzle flow · Rotating duct

1 Introduction

With the increasing use of renewable sources of energy and their time-varying energy
output, grid demand for steam-power plants is becoming increasingly more variable
[1]. This poses a severe constraint on conventional power plants to operate frequently
and over prolonged duration at small fractions of the design output power (the so-
called low-load operation).

Stator and rotor blades of a steam turbine are designed to work under favorable
pressure gradient fields. Low-load operation of turbine involves a low throughput
mass flow rate. However, angular velocity of the rotor has to be maintained constant
to match the grid frequency. Under such conditions, the flow field inside a turbine
rotor is found to be associated with a complex vortical structure around the rotor
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blades. Vigorous action of viscous heating within these vortical zones leads to high
temperature which can be detrimental for blade material and can cause severe dam-
age to the turbine. Thus, for safe and economically viable operations of modern
steam turbines at low-load conditions, it is imperative to investigate and understand
the origin and the behavior of the vortical structures that develop under low-load
conditions inside a turbine rotor.

Probably the work of Ref. [2] is the first published report in open literature on
low-load behavior of steam turbines. Subsequently, several other experimental stud-
ies have been reported on the subject. Reference [3] performed a series of experiments
on single- as well as multi-stage steam turbines and demonstrated the occurrence of
vortices under low-load conditions. Reference [4] performed detailed measurements
of the flow field inside low-pressure steam turbine. Reference [5] conducted mea-
surements on a four-stage model air turbine and confirmed the presence of vortices
and associated recirculation zones. Recently Ref. [6] has conducted measurements
of the flow field in a 7-stage model high-pressure (HP) steam turbine blading in order
to develop better understanding of part and low-load operation of HP steam turbines.

In recent years, several researchers have also attempted to numerically simulate
low-load behavior of steam turbines. References [7, 8] employed a finite element
(FE) procedure to numerically simulate the steam flow in the meridional plane of
a turbine cylinder. They further simulated several cases with mass flow rate as low
as 20% of the design value and demonstrated good agreement of their results with
the corresponding experimental measurements. Reference [9] proposed a through-
flow code based on the primary variable method and reached up to 6.1% of design
mass flow rate. Reference [10] presented a full three-dimensional computational
fluid dynamic (CFD) analysis of a two-stage low-pressure steam turbine. Reference
[11] performed simulations of a four-stage model air turbine during low-load oper-
ation. Reference [1] performed an extensive three-dimensional CFD study employ-
ing Reynolds-Averaged Navier–Stokes (RANS) equations in conjugation with sev-
eral turbulence models, and specifically studied temperature field under low-load
conditions.

Indeed, these studies have provided convincing evidence of the existence of com-
plex vortical structures and associated pressure and temperature fields around turbine
rotor blades under low-load conditions. However, the studies have been restricted to
some specific turbine designs, and not much attention has been paid to the reasons
behind the origin of these vortices. The focus of these studies has been primarily on
identifying and visualizing the vortical patterns. Since it is further desirable (i) to
have a more clear understanding of the origin of these vortices and (ii) to predict the
flow behavior in response to more generalized changes in the geometry of flow pas-
sage and the boundary conditions, further research efforts in the form of fundamental
studies can prove to be quite useful. Such is the objective of this work.

From a computational point of view, a full three-dimensional CFD simulation
which accounts for all details of the rotor blade geometry would be the ideal platform
to study and understand the vortical structures in a turbine operating at low-load
conditions. However, setting up such simulations is extremely expensive and time
consuming. To avoid huge demands in terms of time and resource, and yet make a
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useful computational attempt to understand the behavior of steam under low-load
conditions, we employ a simplified computational domain.Admittedly, this approach
lacks the description of finer details but can be expected to account for the most
important and fundamental aspects that characterize the low-loadflow inside a turbine
rotor.

We model the flow domain inside a turbine rotor as a variable-area annular duct.
Flow behavior is studied with respect to a frame attached to the rotor itself. With
respect to this frame, fluid particles experience a radially outward centrifugal force,
which in our computational setup is represented by a body-force function. This
simplified computational domain is conducive for performing simple parametric
investigations with parameters such as body-force magnitude, diverging angle of the
duct, inlet-to-exit area ratio, mass flow rate, etc. In this paper, we focus specifically
on how themagnitude of body force (which characterizes low-load behavior of steam
turbines, more on this in next section) affects the generation of vortical structures in
the flow field.

Several CFD studies have been previously performed across variable-area duct
of various shapes and boundary conditions. Reference [12] conducted a numerical
investigation on one over-expanded condition. Reference [13] conducted a numerical
study to capture the effect of throat contouring on nonaxisymmetric 2D convergent–
divergent nozzles.Hamedet al. performedextensive numerical investigations to study
the flowfield in over expanded two-dimensional converging–diverging (CD) nozzles.
Reference [14] conducted studieswith different over-expanded pressure ratios. Later,
Ref. [15] compared the thrust predictions with different turbulence models. Refer-
ence [16] also conducted a numerical investigation to predict flowfields in vented and
unvented supersonic exhaust nozzles for different operating conditions. Reference
[17] used a CFD-based optimization system tomaximize performance of bell-shaped
rocket nozzles. Reference [18] altered the geometry in the post contraction region
of a nozzle to investigate how the exit flow characteristics change. Reference [19]
investigated gas flows in micro-nozzles under both slip and no-slip boundary con-
ditions. Reference [20] performed numerical simulations on under-expanded sonic
jets issuing from nozzles having different inlet geometries.

Numerous computational investigations have been performed on the effect of
divergence angle on the flow field in two-dimensional axisymmetric models as well
[21, 22]. Reference [23] investigated the effect of nozzle pressure ratio. Reference
[24] studied the influence of inlet Mach number, whereas Ref. [25] investigated
the influence of the geometry of nozzle. While all these studies have contributed
significantly to our understanding of compressible flow through nozzle, one aspect
of nozzle flow that has not been addressed adequately is the influence of rotor body
force on the nozzle. Thus, the presented work not only has the potential to help us
understand the behavior of flow in a practical problem of interest (turbines under
low-load conditions) discussed earlier, it also contributes directly to the otherwise
continuing pursuit of better understanding of flow through a variable-area duct in the
presence of body force. To the best of authors’ knowledge, influence of a radially
varying body force on an annular variable-area nozzle has not been studied. The
presented work attempts to address this subject.



428 P. Saini et al.

This paper is organized into five sections. In Sect. 2 we describe the flow domain
considered in this work and justify how despite its simplicity, the domain still retains
the fundamental aspects of the actual flow through a steam turbine rotor under low-
load conditions. In Sect. 3 we present the governing equations. This is followed by
Sect. 4 which contains the results and discussions.

Section 5 presents major conclusions of the study.

2 Computational Domain

Figure 1 shows a schematic diagram of our computational domain. It is an 8 m long
annular duct. As one moves downstream, the radius of inner wall first increases for
0.5 m, and then remains constant throughout the length of the duct. The radius of
the outer wall in the first part of the duct decreases making it a converging passage.
Downstream of the minimum cross-sectional area, radius of the outer wall increases
for 2 m. Subsequently in the third part, the cross-sectional area remains constant. A
two-dimensional axisymmetric geometry of fluid domain is created using Geometry
Workbench of ANSYS R. The axis boundary condition is used at the centerline of
the flow domain to reduce the computational time. All boundaries of the annulus are
defined as adiabatic no-slip walls. The inlet boundary condition is set as mass flow
inlet. A pressure-outlet boundary condition is assigned to the outlet boundary.

The computational grid is generated using the ANSYS R Meshing module. In
this work we perform simulations using several grids. These grids differ in terms of
number of elements. Computational domain is meshed using quadrilateral elements
with map scheme. Table 1 summarizes the details of the simulations performed in
this study. The optimal refinement of the computational grids is examined to ensure
that the solution is independent of themesh element count. Uniform node count in the
cross stream direction led to denser grid in the region near the throat. For simulations
1–4, a grid with 2.3 * 104 elements was employed. For simulation 5, grid with

Fig. 1 Geometry of the computational domain and the related boundary conditions
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Table 1 Details of simulations

Simulation 1 2 3 4 5

Froude number (F) ∞ 0.47 0.21 0.16 ∞

9.4 * 104 elements was employed. Results of simulations 1 and 5 are studied for
performing a grid convergence study. Grids 2–4 are used to perform study on the
influence of body force on nozzle flow.

3 Equations

The governing equations of the flow field under consideration are the continuity,
radial, and axial momentum equations along with the energy and state equations of
a perfect gas. These equations are written with radial (r) and axial (x) coordinates as
the independent variables:
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The symbols p, ρ, T represent pressure, density, and temperature of the fluid,
respectively. vx and vr are the axial and radial components of velocity, respectively.
Fluid is taken to be an ideal gas with a specific heat ratio of 1.4 and gas constant R
as 287 J/kg-K. The last term in the radial momentum Eq. (3) is the body force per
unit volume. The body force is taken to be proportional to the radius with C being
a constant for a simulation. This form of the radial force accurately captures the
variation of centrifugal acceleration experienced by fluid particles passing through
a turbine. Since the governing equations are written with respect to the rotor frame,
the body force appears as a pseudo force.
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The outward radial direction of the force represents the rotating effect of the annu-
lar duct on the flow. In continuum mechanics, the Froude number is a dimensionless
number defined as the ratio of the flow inertia to the external field. Froude number
will play a significant role whenever there is a significant body force. In this case
the Froude number appears because of the centripetal force. In accordance with the
computational setup of this work, Froude number (F) of the flow can be defined
using various geometric and boundary parameters in the following manner:

F = ṁ

A
√

ρLC
√
A

(6)

where ṁ is the mass flow rate through the duct, L is the inlet radius, A is the inlet
area, ρ is the density at the inlet, and C is the coefficient of body force per unit
volume. The quantity C actually represents the magnitude of angular velocity of
the rotor. With Froude number being inversely proportional to the coefficient C, an
increase in the value of C results into a decrease in Froude number and equivalently
an increase in the influence of body force on flow dynamics. The limiting case of
C being zero (no body force) implies an infinite value of Froude number. Similarly,
relevant geometrical and boundary parameters can be used to define a representative
Reynolds number as well:

Re = ṁL

Aμ
(7)

Low-load operation of steam turbines involves mass flow rates which are small
fractions of the design mass flow rate while the rotation rate of the rotor remains the
same as that at designed condition.With the derived expression for theFroude number
(6), it is clear that the low-load flow through a steam turbine can be characterized
by low values of Froude number itself. Thus to systematically understand low-load
behavior of flow through turbines, in this work, we perform several simulations with
varying Froude number. A summary of these simulations is presented in Table 1.

The commercial software ANSYS R FLUENT is used to obtain the numerical
solution to the two-dimensional compressible Navier–Stokes equations, in general,
curvilinear coordinates (x, r). Rest of the flowmodeling details have been taken from
a previous study done at IIT Delhi [26, 27]. Three convergence criteria were used to
ensure that the results were accurate. First, the convergence criteria for all residuals
were set to 10−6. In addition to this, the net mass flux was monitored to ensure that
there was no imbalance. Finally, primary variables (velocity, density and pressure)
were monitored through the iterations at inlet and exit to ensure that they reached a
steady value.
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4 Results and Discussion

Our study is based on several simulations performed with Froude number as param-
eter. Description of these simulations is provided in Table 1. All these simulations
are performed with identical mass flow rates (25 kg/s) specified at the inlet of the
nozzle. Reynolds number in each simulation is 1.7 × 105.

Before employing our results to understand the underlying physics, we have sub-
jected all our results to extensive grid convergence studies. Here, we present compar-
isons for zero-force case (Simulation 1 and 5) only. Case 1 and Case 5 are identical
in all aspects except the grid. Case 5 simulation is performed with a grid element
size that is smaller than that of Case 1. In Figs. 2 and 3 we present streamlines and
pressure contours from Case 1 and 5 simulations. Close agreement is seen between
results of the two simulations. Based on our convergence studies, we deem the mesh
size with 2.3 × 105 elements adequate for our study. All the remaining results in
this paper have been obtained with this finer mesh. In the following sections, we
first study the general flow characteristics with zero body force. Subsequently, the
influence of varying Froude number on the flow is studied.

(a) Simulation 1 (b) Simulation 6

Fig. 2 Streamlines colored by normalized velocity magnitude

(a) Simulation 1 (b) Simulation 6

Fig. 3 Pressure contours
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4.1 General Flow Characteristics with Zero Body Force

In simulation case 1 which represents our baseline case without any body force,
the flow accelerates in the converging portion, remains subsonic at the throat and
subsequently decelerates in the diverging portion. Further, in the diverging section
of the nozzle, the primary flow separates from the outer nozzle wall and forms a
recirculation zone. However, the primary flow remains attached to the inner wall
throughout the flow domain and maintains a predominantly axial direction.

Significant variations in pressure are only shown by the primary flow in the
variable-area part of the duct. In the constant area duct pressure is almost the same
as that in the ambience. At the outlet boundary of the flow domain, backflow occurs.
A recirculation zone with very low velocities is formed here. The recirculating flow
enters at farther radial locations (near the exit wall) and joins the primary flow stream
at smaller radial locations. With this simulation as our base case study, in the next
section we discuss how this flow is influenced by varying Froude number.

4.2 Influence of Varying Body Force

In Fig. 4a, c, e, we present streamlines from simulations 2, 3, and 4. We observe that
as the Froude number increases the streamlines patterns in the diverging and constant
area sections of the domain become increasingly different as compared to simulation
1 (Figs. 2 and 3). The most prominent difference between simulation 1 on one hand
and simulations 2, 3, and 4 on the other hand is the detachment of flow from the inner
wall. Further, these detached streamlines undergo a steep turn in radially outward
direction. The detachment and the subsequent radial turn are associated with the
formation of a large recirculation zone in the constant area duct. In this recirculation
zone, the flow enters the nozzle from ambience near the inner wall and tends to exit
back into the ambience near the outer walls of the nozzle.

Increasing the body force further (Simulations 3 and 4) detachment at the inner
wall happens at an earlier upstream location, and the size of the recirculation bubble
existing downstream becomes larger. Note that the backflow direction in simulation
cases 2, 3, and 4 has completely reversed as compared to Case 1. The backflow enters
the outlet at smaller radial locations and exits to ambience at farther radial locations.

In Fig. 4b, d, f, we present pressure contour plots from simulations 2, 3, and
4. On application of body force, we see that the pressure decreases slightly in the
converging part and then increases while passing through the divergent section. As
the magnitude of body force is increased, the pressure change associated with the
flow through the variable area part of the duct looks insignificant, when compared
with the large pressure variations seen as one moves radially outward in the constant
area duct. The pressure variations propagate to farther radial locations. Unlike our
base case, the pressure does not stay constant in the constant area duct. It shows lower
values near the annulus and increases as onemoves farther away from the axis. Due to
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(c) Simulation 3 (d) Simulation 3

(e) Simulation 4 (f) Simulation 4

(a) Simulation 2 (b) Simulation 2

Fig. 4 Streamlines colored by normalized velocity magnitude (a, c, e) and pressure contours (b,
d, f) for simulations 2, 3, and 4

the deflection induced by larger body force, the fluid tends to move radially outward.
The acceleration of the flow in a direction away from the axis causes the pressure
to drop in the vicinity of the annulus. The obstruction offered by the wall stagnates
the flow, thus explaining the reason for the higher pressures observed near the outer
walls.

In summary, our results clearly show that the Froude number has profound effects
on theflowpattern inside an annular nozzle.As theFroude number decreases, the flow
characteristics start following a trend. In successive simulations, as the magnitude
of body force increases (i) the primary flow shows a clear tendency to separate from
the inner annulus wall, (ii) the separation point at the inner wall moves upstream,
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Fig. 5 Zoomed in view of
streamlines near the outlet
boundary

(iii) the tendency of the primary flow to turn radially outward becomes stronger, (iv)
magnitude of velocity in the recirculation zone becomes larger and (iv) pressure near
the outer annulus wall becomes larger.

These observed changes in the flow field can be explained as follows. As the
Froude number decreases, a fluid particle is subjected to more intense radial accel-
eration, which in turn leads to the development of substantial radial velocity in the
diverging/constant area section of the nozzle. This substantial radial velocity makes
the flow detach from the inner nozzle wall creating a recirculation zone near the inner
wall wherein flow enters the nozzle from outlet ambiance. As the primary flow in
the diverging and constant area section of the nozzle is forced to become radial over
the bulk of the nozzle cross section, it can now exit the nozzle axially only through a
thin annular area adjacent to the outer wall of the nozzle (see Fig. 5). This behavior
of the primary flow is akin to what has been observed in full three-dimensional CFD
simulations and experiments performed on steam turbines (Fig. 11 of Ref. [1]). Thus
the study presented in this paper seems to provide a plausible explanation of the
steam behavior in turbines under severe low-load conditions.

5 Conclusions

We perform a computational fluid dynamics-based study to investigate the influence
of a radial body force on the flow through an annular duct with a converging, diverg-
ing, and constant area parts. The body force is taken to be proportional to radial
location so that it correctly represents the centrifugal acceleration experienced by
a fluid particle when the flow is observed with respect to a reference frame fixed
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to the rotor. The motivation behind choosing such a canonical domain is to isolate,
identify, and understand the influence of a radially-dependent body force on the flow
pattern through a variable-area duct. This study in turn is expected to aid in explain-
ing the flow behavior in steam turbines working under severe low-load conditions,
which is indeed characterized as a low-Froude number flow. Our simulations show
that as the magnitude of body force increases, the pattern of streamlines gets sub-
stantially modified in the diverging and the constant area parts of the nozzle. The
presence of a radially outward body force induces severe separation tendency near
the inner nozzle wall. This behavior is in stark contrast to the separation induced
by high-divergence angle, which happens at the outer wall of ducts. We find that in
our simulations streamlines turn radially outward leading to the formation of a large
recirculation zone near the exit of the constant area section. As the strength of body
force increases, the separation from the inner walls occurs further upstream and the
size of the recirculation zone increases. This behavior is akin to the flow pattern
observed in experiments on steam turbine rotors and also in full three-dimensional
CFD simulations of the flow over the exact rotor geometry. Thus, despite having
employed a relatively simple flow domain, the study seems to successfully isolate
and identify the essential body force influenceswhich are responsible for the develop-
ment of flow separation and a massive recirculation zone near the rotor exit of steam
turbines operating under low-load conditions. The authors believe that the results of
this study make a strong case for the viability of further employing the presented
flow domain to perform detailed studies of the influence of other parameters like duct
divergence angle, viscosity, etc. on rotating annular flows. These parameters will be
the subjects of our future work.
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Development of M–DSMC Numerical
Algorithm for Hypersonic Flows

G. Malaikannan and Rakesh Kumar

Abstract This paper demonstrates the newly developedparticlemethod in theDirect
Simulation Monte Carlo (DSMC) framework, and we refer to it as the Maxwellian–
DSMC (M–DSMC) method. The M–DSMC solver is utilized for various fluid flow
problems with different length scales varied from continuum to transitional regime.
The hypersonic flow of argon over a cylinder simulation is carried out using M–
DSMCand the same simulation results are comparedwith the regularDSMCmethod.
The present work shows that the M–DSMC results are quite a good match with the
DSMC results. The computational cost is significantly reduced by using M–DSMC
method and the same is compared with regular DSMC method.

1 Introduction

In the present work, computational models and associated numerical methods are
developed to focus onminimization of the computational cost by instigating effective
and robust algorithm. The same aspect has motivated us to develop a simplified
DSMC method, which works more efficiently than the regular DSMC method, and
is within acceptable limits of accuracy. To this end, there have been some earlier
works, which attempted to extend the DSMC method to continuum regime. In these
works, researchers had either restricted the number of collisions, or relaxed cell size,
time step restrictions, which are typically followed in the regular DSMC method.
Breuer et al. [1] utilized the CFL [2, 3] number and artificial viscosity [1] in their
work to extend the DSMC method into continuum regime. Lengrand et al. [4] used
approximate method to the regular DSMC method, which employs limited number
of collisions in a cell for expanding plume flows.
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Similar to Lengrand et al. [4], Bartel et al. [5] also used an approximate scheme for
the DSMCmethod to simulate high-density flows through nozzle. Lengrand et al. [4]
and Bartel et al. [5] used the collision limiter technique to extend the DSMCmethod
in the continuum regime for expanding flows through nozzle. There have been some
works focusing on extending the applicability range of the DSMC method to higher
density flows. Pullin [6] developed Equilibrium Particle SimulationMethod (EPSM)
for compressible inviscid ideal gas flows. Recently, Titov and Levin [7] used the
eDSMCmethod to simulate high-pressure flows, which is also based on the collision
limiter scheme.

In order to extend the range of applicability of DSMC approach to higher density
near-equilibrium flows, in the present work, we have developed a new approximate
method in the DSMC framework, and we refer to it as the Maxwellian–DSMC (M–
DSMC) method, which is analogous to the EPSM method [6]. M–DSMC is capable
of solving flows ranging from continuum to rarefied regime.

2 Maxwellian–DSMC Approach

The M–DSMC is similar to the regular DSMC [8, 9] method, except the collision
modeling part. In contrast to the binary collision modeling of dilute gas flows in the
conventional DSMC setup, the collisional modeling is completely done away with
in the M–DSMC framework. Instead, the simulated particles are assigned properties
sampled from the Maxwellian distribution at the local temperature. It is expected
that the simplified calculation procedure for collisions would result in huge savings
in the computational cost. The calculation procedure of the M–DSMC method is
discussed below.

Particle velocities are averaged over each cell at each time step. The instantaneous
particle velocity data in each cell is first averaged out to calculate bulk velocity using
Eq. 1.

ux = Cx

Nc

uy = Cy

Nc

uz = Cz

Nc
(1)

whereCx,Cy, andCz are the components of particle velocity in x-, y-, and z-directions
at a given time; ux, uy, and uz are the components of bulk velocity; and Nc is the total
number of particles in a particular cell at each time step.

On the other hand, the translation kinetic temperature is computed by referring to
the equipartition theorem, given as follows:
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3

2
kBTtrans = 1

2
m

[
c2x + c2y + c2z

]
(2)

where Ttrans is the translational temperature, ci is the random translational velocity
component in the ith direction, and kB is the Boltzmann constant. Equation 2 can
now be rephrased as follows:

Ttrans = m

(
C2

x − u2x
)

+
(
C2

y − u2y
)

+
(
C2

z − u2z
)

3kB
(3)

Thermal velocities are sampled from the Maxwellian distribution at translational
temperature, calculated usingmost probable speed ofmolecules and randomnumbers
as follows:

cx = cos(2πR1)
√− ln(R2) · cmps

cy = sin(2πR1)
√− ln(R2) · cmps

cz = cos(2πR3)
√− ln(R4) · cmps (4)

where, cx, cy, and cz are the thermal velocity components in the x-, y-, and z-directions,
R1, R2, R3, and R4 are random numbers, cmps is the most probable speed. Later,
particle velocities are obtained by using corresponding thermal velocities and the
bulk velocity. The local cell-based most probable speed, cmps, is calculated from the
known translational temperature and is given by the following equation:

cmps =
√
2kBTtrans

m
(5)

The particle velocity components are then obtained as follows:

Cx = cx + ux

Cy = cy + uy

Cz = cz + uz (6)

3 Results and Discussion

Tovalidate theM–DSMCnumerical algorithm,wehave simulated oneof the classical
fluid flow problems. Hypersonic flow of argon over a cylinder is simulated at two
different freestream conditions, and the results are compared with the regular DSMC
method. The diagrammatic view of the problem is illustrated in Fig. 1. The freestream
parameters for both cases are given in Table 1. Noteworthy is the fact that the two
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Fig. 1 Schematic diagram of flow of argon at Mach 10 over a cylinder

Table 1 Freestream
parameters for hypersonic
flow over a cylinder

Freestream
parameters

Freestream values
(Case-I)

Freestream values
(Case-II)

Gas Argon Argon

Temperature 200 K 200 K

Number density 4.247E+21 m−3 4.247E+20 m−3

Knudsen number 0.001 0.01

Mach number 10 10

Velocity of gas 2634.5542 m/s 2634.5542 m/s

cases differ only in terms of number density or Knudsen number (based on cylinder
diameter). The time step, cell size, and other numerical parameters are set as per
the DSMC procedures, and they remain the same for both M–DSMC and DSMC
approaches. In both cases, simulation for first 25,000 time steps was done till the
system reached steady state, beyond which sampling was done for another 40,000
time steps to give a similar level of statistical error (<3%). The detailed investigation
is carried out for both flow and surface properties of the cylinder.
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3.1 Flow Properties Variation

Flow properties are obtained for hypersonic flow over a cylinder using M–DSMC
at two different global Knudsen numbers (based on the cylinder diameter), and are
compared with the in-house DSMC solver. Contour plot of x-component of velocity
and temperature are given in Fig. 2, whereas Fig. 3 shows the same properties at a
Knudsen number of 0.01, based on cylinder diameter. M–DSMC method is found
to clearly capture the strong detached shock and the wake region. The variation of
x-component of velocity and temperature across the domain compares well between

Fig. 2 Comparison of
x-component of velocity and
temperature contour of
DSMC and M–DSMC for
flow over a cylinder at a
Knudsen number of 0.001

(a) x- component of velocity (m/s)

(b) Temperature (K)
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Fig. 3 Comparison of
x-component of velocity and
temperature contour of
DSMC and M–DSMC for
flow over a cylinder at a
Knudsen number of 0.01

(a) x- component of velocity (m/s)

(b) Temperature (K)

DSMC and M–DSMC methods for both cases. Small deviations can be seen in the
wake region, particularly for a Knudsen number of 0.01. This is understandable as
the local degree of rarefaction in the wake region is quite large as compared to that
shown by the global Knudsen numbers for these cases. Linear plot of x-component
of velocity and temperature along the stagnation streamline are given in Fig. 4 for
the first test case with a Knudsen number of 0.001. On the other hand, Fig. 5 shows
the same properties along the stagnation streamline for the second test case with a
Knudsen number of 0.01. From Figs. 4 and 5, it is distinctly visible that M–DSMC
results are quite good match with the regular DSMC method. Small deviations can
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Fig. 4 Comparison of
x-component of velocity and
temperature along the
stagnation streamline for
flow over a cylinder at a
Knudsen number of 0.001

(a) x-componet of velocity (m/s)

(b) Temperature (K)  

be noticed in the wake region, which is the zone of large rarefaction, however, shock
is found to be well captured.

3.2 Surface Properties Variation

Similar to flow properties, the surface properties such as heat flux and pressure
coefficient are obtained using the M–DSMC approach and the results are compared
with regular DSMC method for the two case studies.
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Fig. 5 Comparison of
x-component of velocity and
temperature along the
stagnation streamline for
flow over cylinder at a
Knudsen number of 0.01

(a) x-componet of velocity (m/s)

(b) Temperature  (K)

CH = q
1
2ρ∞U 3∞

(7)

Heat flux along the surface of the cylinder is normalized and is given as follows,
where q is the convective heat flux and ρ∞ and U∞ are the freestream density and
velocity, respectively.

Figure 6 shows the variation of surface heat flux along the length of the cylinder
for the two cases. From Fig. 6a, it is distinctly visible that normalized heat flux
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Fig. 6 Normalized surface
properties along the surface
of the cylinder for two case
studies

(a) Normalized heat flux

(b) Pressure coefficient

variation along the surface of the cylinder obtained fromM–DSMC approach shows
same trend as that obtained from DSMC. There is a maximum deviation of ~15%
from the DSMC results at a Knudsen number of 0.01 (based on cylinder diameter),
whereas the deviation for a Knudsen number of 0.001 is less than 10%. Noteworthy
is the fact that actual local degree of rarefaction is much more than as shown by the
global Knudsen numbers. Thus, it can be said that the M–DSMC approach works
quite well for near-continuum to semi-rarefied flow regime.

Similarly, differential pressure is normalized to the dynamic pressure and given as
the pressure coefficient, CP. The normalized pressure coefficient is given as follows:
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Table 2 Comparison of
computational cost of each
method for hypersonic flow
over a cylinder for Knudsen
number of 0.001

Parameter DSMC M–DSMC

CPU time (hours) 203 103

Number of cells 640,000 640,000

Number of particles 2,797,968 2,798,111

Table 3 Comparison of
computational cost of each
method for hypersonic flow
over a cylinder for Knudsen
number of 0.01

Parameter DSMC M–DSMC

CPU time (hours) 224 126

Number of cells 640,000 640,000

Number of particles 3,042,676 3,056,466

CP = P − P∞
1
2ρ∞U 2∞

(7)

where P is the static pressure and P∞ is the freestream pressure.
Pressure coefficient is shown in Fig. 6b. From Fig. 6b, the classical trend is

observed along the surface of the cylinder. The pressure coefficient varies from 0
to −1.8, and agrees very well with the DSMC results for both cases.

3.3 Numerical Expenditures for Both M–DSMC and DSMC
Method

In this section computational cost is estimated individually byM–DSMC andDSMC
method. All the simulations are carried out using Intel Xeon E5-2670 v2 processors.
The computational cost for each method and corresponding parameters are tabulated
in Table 2 for simulation of flow over a cylinder at a Knudsen number of 0.001. Simi-
larly, Table 3 gives the computational cost for the two methods at a Knudsen number
of 0.01. The M–DSMC scheme shows almost 50% computationally cost-effective
than the regular DSMC method. From this work, it could be demonstrated that M–
DSMC solver is computationally much more prominent than the regular DSMC
method and the results are almost parallel to the DSMC method for monatomic gas
flows in semi-rarefied to rarefied flow regime.

4 Conclusions

We developed a simplified DSMC scheme, referred to as the M–DSMC method, in
which the collision modeling is simplified such that all particles in a cell are assigned
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velocities sampled fromMaxwellian at local instantaneous cell temperature. TheM–
DSMC numerical schemewas tried for rarefied flow of argon over a cylinder atMach
10 at two different Knudsen numbers. M–DSMC results were found to be in good
agreement with the DSMC solver. Small deviations were found in the wake region
of the cylinder for the temperature profile. Pressure coefficient was found to have a
very good agreement with regular DSMC method. The heat flux coefficient showed
~15% deviation from the regular DSMCmethod for higher Knudsen number case. In
general, the M–DSMC method was found to be more accurate and efficient at lower
Knudsen number or in the near-continuum regime. M–DSMC solver was found to
be computationally much more efficient than the regular DSMC method, which can
be used to get quick results for near-continuum to semi-rarefied flow problems, and
used in preliminary design procedures of a system.
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Fluid–Structure Interaction Dynamics
of a Flexible Foil in Low Reynolds
Number Flows

Chandan Bose, Sunetra Sarkar and Sayan Gupta

Abstract The present paper numerically investigates the aerodynamic characteris-
tics of a chord-wise flexible filament-like structure subjected to a fluctuating inflow
in terms of the wake of a rigid cylinder situated upstream in the low Reynolds num-
ber regime (RED = 500, where D is the diameter of the cylinder). The numerical
simulations are performedwith a strongly coupled partitioned fluid–structure interac-
tion (FSI) solver based on finite volume approach. An incompressible Navier–Stokes
solver is used to capture the unsteady viscous flow features and the flexible structural
model is considered to be nonlinear and elastic. The foil is fixed at its leading edge,
and the structural properties (mass ratio (µ), flexural rigidity (EI), etc.) are chosen
appropriately to have a comparable fluid and structural inertia with dominant FSI
effects to significantly augment the aerodynamic loads. It can be seen that the chord-
wise flexibility of the wing manifests a passive pitching achieving greater propulsive
efficiency. The deflection envelope reflects the fundamental bending modes of the
structure. The interactions between the wake of the rigid cylinder and the flexible
structure are investigated with the help of vorticity contours as well as Lagrangian
coherent structures to have a clear understanding of the vortex-induced FSI dynam-
ics. Moreover, the aerodynamic forces generated by the flexible foil are compared
with that of a rigid stationary foil of same length and subjected to similar upstream
flow fluctuations. It is observed that the chord-wise flexibility enhances the lift and
thrust generation remarkably compared to the rigid foil.

Keywords Fluid–structure interaction · Chord-wise flexibility · Passive pitching ·
Strongly coupled FSI solver · Low Reynolds number flows
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1 Introduction

Research into design and development of bio-inspired futuristic devices like Micro
Aerial Vehicles (MAVs) or Autonomous Underwater Vehicles (AUVs) has recently
gained an impetus due to the necessity for futuristic surveillance tools. A crucial
feature in investigating the behavior of these systems is to gain clear understanding
of the underlying fluid mechanics behind flapping-wing/fin propulsion [1–3]. The
inspiration for the design of MAVs/AUVs comes from the natural bio-propulsion
systems like insect flight or swimming of fishes. Both insect wings and fish fins are
very flexible structures that undergo significant deformation due to the interactions
with the surrounding fluid flow during their locomotion. Furthermore, the fluid vis-
cosity and the flexibility of the structure play a key role in generation of propulsive
and maneuvering forces as the body inertia is comparable to the fluid inertia. Hence,
the intricacy of the fluid–body interactions of flexible foils/filaments in the surround-
ing flow has become a central problem over the past two decades. A comprehensive
survey of existing literature in this regard can be found in the review paper by Shelley
and Zhang [4].

On the other hand, passive flexibility of wings/fins is seen to play a pivotal role
in boosting their aerodynamic and hydrodynamic performance. The role of passive
flexibility in propulsion has been studied experimentally in the literature in terms
of the dynamics of a flag or a filament. Taneda [5] was the first to explore the
flappingdynamics of aflag throughwind tunnel experiments. Zhang et al. [6] revisited
the problem by performing soap film experiments. A variety of flapping modes
(“stretched straight” (SS), coherent flapping)with different flapping frequencieswere
reported by them. The “SS”mode was accompanied by a vonKármánwake, whereas
the coherent flapping mode showed an undulating vortex street having mostly same-
sense fine-scale vortices which can be attributed to the Kelvin–Helmholtz instability
of the shear layer vortex street. They also reported bistability and hysteresis behavior
between different flapping modes. Moreover, a transition to irregular flapping was
observedwith the increase in the length scale or the flowvelocity. The other important
experimental works include Shelley et al. [7] and Elloy et al. [8].

However, the experimental studies are limited in the parametric space. Therefore,
we have to rely on numerical simulations to get better insights into the essential
features of the FSI dynamics with respect to the key parameters such as mass ratio,
bending rigidity, and Reynolds number. Due to prohibitive computational cost of
full-fidelity FSI simulations, some of the numerical studies have considered the sur-
rounding fluid to be inviscid while modeling the structure as an elastic continuum [9,
10]. Alben et al. [10]modeled a fin as an elastic continuum, and the flowwasmodeled
by the inviscid potential theory with some empirical modification to incorporate the
effects of viscous drag. However, the applicability of the model was limited espe-
cially at lowReynolds numbers. On the other hand, someworks relied on lower order
structural models such as flexibly mounted rigid components coupled with fluid [11,
12]. Notably, the FSI behavior of such systems is much different from that of a fully
elastic continuum. With the increase in the computational resources in recent days,
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viscous simulation of a flexible filament has been carried out in a few studies [13–
16]. Some of the very recent numerical simulations of self-propelled flapping system
[17–19] showed that the flexibility can enhance the propulsive performance which
is also in accord with the experimental observations [20, 21]. However, most of the
abovementioned studies have been performed in uniform flow condition. The effect
of flow fluctuations onto the FSI dynamics of a flexible filament has not received
much attention except in a few recent studies [22–24].

Therefore, the primary focus of this study is to unravel the physics associated
with the FSI behavior of such systems subjected to a fluctuating flow field in the
low Reynolds number regime, relevant for natural locomotion. The corresponding
coupled systems are phenomenologically rich in dynamics due to complex FSI. This
paper aims to numerically investigate the FSI behavior of these systems by consid-
ering complexities that include the flexibility of the structure and the viscous flows
in the low Reynolds number regime. The flow topology over the flexible structure
is investigated along with its different vibrating modes during the passive flapping
motion. The remainder of the paper consists of the following sections: Sect. 2 dis-
cusses the computational methodology. The deflection envelope of the flexible fila-
ment, the vortex interactions as well as the generation of aerodynamic forces have
been discussed in Sect. 3. The salient outcomes of this study are summarized in
Sect. 4.

2 Computational Framework

Dynamics of a flexible filament subjected to a fluctuating inflow is investigated
using a strongly coupled FSI framework [25, 26] consisting of an incompress-
ible Navier–Stokes solver coupled with a nonlinear elastic structural model. The
flow governing equation (incompressible N-S equation) can be cast into Arbitrary
Lagrangian–Eulerian (ALE) form [27] as

∇ · u = 0,

∂u

∂t
+ [(

u − um
) · ∇]

u = −∇ p

ρ f
+ ν∇2u.

Here, u is the flow velocity, um is the grid point velocity, p is the pressure, ρ f

is the fluid density, ν is the kinematic viscosity, and ∇ is the gradient operator. The
details of the flow solver can be found in [25, 26]. The flexible filament is modeled
as a solid continuum. The equation for conservation of linear momentum is given by

∂

∂t

∫
ρsvdV =

∮
n · σd� +

∫
ρsbdV,
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where V is the volume of the foil, bounded by the surface � with unit normal n, v
is the velocity vector, σ is the Cauchy stress tensor, ρs is the density of the material
of the structure, and b is the body force per unit mass. Assuming large strain, the
material behavior of the filament can be modeled using Kirchhoff–St. Venant hyper-
elasticity theory. The linear momentum equation can therefore be written in terms
of Piola–Kirchhoff stress tensor S as

σ = 1

J
F · S · FT ,

where F = I +∇w is the deformation gradient, I is the second-order identity tensor,
and w is the deformation vector. A large strain elastic stress analysis solver based on
Lagrangian displacement formulation [28] is used to solve the structural governing
equations. A strong coupling methodology [28], illustrated through the flowchart
shown in Fig. 1, is adopted in this study using a quasi-Newton coupling algorithm
with an approximation for the inverse of the residual’s Jacobian matrix from a least-
square model (abbreviated as IQN-ILS). The present FSI solver is well validated
with the existing literature [29]. A rectangular computational domain (see Fig. 2a)

Fig. 1 Strong coupling algorithm

Fig. 2 a Computational domain, b structured mesh
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Fig. 3 Validation study of
the FSI solver

has been discretized using structured grids. The mesh (Fig. 2b), having 89,052 grid
points, has been chosen after a grid convergence study. Standard boundary conditions
are applied: a zero pressure gradient and a constant free stream at the inlet; a zero
velocity gradient and atmospheric pressure condition at the outlet; no-slip and zero-
normal pressure gradient condition on the horizontal walls and traction boundary
condition on the flexible flapper.

The FSI solver has been quantitatively validated in the present study with the
benchmark case of a flexible splitter plate attached with a rigid cylinder given by
Turek and Hron [30]. The parameters corresponding to “FSI2” case presented in [30]
have been considered for the benchmark validation. It can be clearly seen from Fig. 3
that vertical tip displacement time history of the flexible plate shows an excellent
matchwith the results presented byTurek andHron [30] in the self-sustained periodic
oscillatory state.

The present computations are performed in the following parametric space:
Reynolds number (RED) = 500, mass ratio

(
μ = ρs/ρ f

) = 1, nondimensional
Young’smodulus

(
Ē = E/ρ f u2∞

) = 5600, and nondimensional length (l̄ = l/D) =
2.5. Here, ρs and ρ f are the solid and fluid density, respectively, E is the dimensional
Young’s modulus of the structure, l and D are the length of the filament and diameter
of the cylinder, respectively, and u∞ is the uniform velocity at the inlet.

3 Results and Discussions

The present work focuses on the role of chord-wise flexibility of a filament in enhanc-
ing the aerodynamic loads in comparison to a rigid foil subjected to a flow fluctuation
in terms of the wake of a rigid stationary cylinder. Figure 4 presents the vorticity
contour past the rigid foil at t = 10 s. It is observed that the interaction of shear
layers separated from the rigid cylinder is delayed due to the presence of the rigid
foil; the immediate formation of the von Kármán vortex street is inhibited which
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Fig. 4 Vorticity contour behind a rigid filament in the wake of a rigid cylinder

Fig. 5 a Lift coefficient and b drag coefficient time histories

eventually occurs in longer time. Figures 5a and 5b show the time history of the lift
coefficient (CL) and drag coefficient (CD), respectively. Since the rigid foil is placed
symmetrically at zero angle of attack in the fluctuating flow field, CL has a zero mean
and CD has a very small mean value in the order of 10−5.

Thereafter, the FSI dynamics of a flexible filament with same length and similar
inflow condition has been simulated. The filament is kept fixed at its leading edge. In
this low Reynolds number regime, the filament exhibits a passive pitching in terms
of its different natural bending modes. The deflection envelope and the time history
of the tip displacement have been plotted in Figs. 6a and 6b, respectively. At RED

= 500, the shear layers past a rigid cylinder roll up and consequently vortex cores
are formed evolving with time, thus gaining more strength. Subsequently, the vortex
cores convect over the structure, acting as a periodic forcing and subsequently shed in
the downstream forming a vortex street of alternate shedding vortices. It is observed
that the first mode shape is initially triggered when the vortex cores start convecting
over it. However, it attains a mixed-mode vibration between the first and second
mode shapes once the vortices impinge on it and start shedding from the trailing
edge. Figures 6c and 6d present the CL and CD time histories for the flexible filament.
It can be evidently seen that the aerodynamic loads have been significantly increased
in this case with a high maximum CL value along with a high mean CD (negative)
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Fig. 6 FSI dynamics of a chord-wise flexible filament: a deflection envelope, b tip deflection time
history, c lift coefficient, and b drag coefficient time histories

value. It can be noted that the fluid–body interaction results in a symmetric wake
that results in zero-mean lift. Besides, it produces significant thrust on the structure
desirable for efficient propulsion.

The impingement of the vortex core on the flexible filament causes it to bend
in different modes depending on the location of impingement and the Strouhal fre-
quency of the fluctuating flow. The vortex–filament interactions and evolution of
the trailing edge flow topology have been investigated by the vorticity contours at
different time instances as shown in Fig. 7a. To get more insight into the vortex inter-
action, the Lagrangian coherent structures (LCS) are presented in the near field along
with the vorticity contours (Fig. 7b). LCSs are obtained by plotting the backward
finite-time Lyapunov exponents (FTLE) of the velocity field which clearly show how
the impingement of the vortex cores cause the filament to bend in different modes
augmenting the propulsive efficiency.

To understand the fluid–body interactions in more detail, the flow physics is
analyzed through a sequence of vortex contour snapshots at different time instances,
see Fig. 8. At t = 2.68 s, a large clockwise vortex core “4” (generated as the primary
wake vortex of the cylinder in the previous cycle) is seen to be convecting over
the elastic structure along with a small weak counterclockwise vortex “3” at the
leading edge. Besides, two opposite sense vortices “1” and “2” are seen to be formed
through rolling up of the separated shear layers from the cylinder. Clockwise vortex
“4” gradually moves forward and impinges on the structure at the tip bending it
downward.At the same time, the counter clockwise vortex “2” impinges in themiddle
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t = 0.2 sec

t = 1.0 sec

t = 2.0 sec

t = 4.0 sec

t = 6.0 sec

(a) (b)

Fig. 7 a The instantaneous vorticity field and b the corresponding LCS (bFTLE ridges)
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Fig. 8 Change of mode shapes due to vortex impingement on the flexible filament

of the structure making it bend in its second mode shape; see Fig. 8c. Thereafter,
the vortex “4” sheds downstream and becomes a part of the vortex street, while the
vortex “2” convects over the structure and reaches to the tip. On the other hand,
newly formed clockwise vortex “1” deforms the weaker counterclockwise vortex
“3” and comes near the leading edge of the structure. As a result, the flapper again
bends upward in the first mode shape at t = 2:86 s (see Fig. 8d); thus, a mixed-mode
oscillation is observed. These interactions take place periodically in the subsequent
cycles.

In case of a shorter flapper (l̄ = 1), it appears to oscillate predominantly in
its first natural mode shape; see Fig. 9a. This can be attributed to the fact that the
wake vortices impinge at the tip of the structure, thus making it bend in the upward
and downward directions periodically in its first natural mode. However, it attains
a mixed-mode vibration for l̄ = 2.5 as the length of the flapper becomes greater
than the formation length of the wake vortices; see Fig. 9b. As a result, the vortices
impinge in themiddle of the longer elastic structure leading to a periodicmixed-mode
oscillation.
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Fig. 9 a First mode oscillation (l̄ = 1); b mixed-mode oscillation (l̄ = 2.5)

4 Concluding Remarks

The flow-induced dynamics of a chord-wise flexible filament, fixed at its leading
edge, in a viscous fluctuating inflow has been simulated using a strongly coupled
FSI solver at a lowReynolds number. The periodically fluctuating inflow is generated
as the wake of a rigid stationary cylinder situated upstream of the filament. Initially,
the filament starts to exhibit oscillations with small deformation and subsequently
asymptotes to a steady periodic oscillation having higher deformation. The periodic
impingement of the wake vortices into the flexible filament causes it to bend in
differentmodes resulting in a passive pitchingmechanism. The filament starts to bend
in its first fundamental mode and transitions into mixed-mode oscillations involving
first and second mode shapes at longer times. The aerodynamic load generation
due to the FSI dynamics of the passively flapping filament is found to be enhanced
significantly as compared to the rigid filament. The effect of various bending modes
of the structure on the propulsive efficiency is considered a possible future work.
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