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Chapter 5
Peroxisomal Disorders

Nobuyuki Shimozawa

Abstract  Peroxisomal disorders (PD) are genetic disorders caused by peroxisome 
dysfunction and are classified into two groups: genetic defects in peroxisome-
localized proteins and genetic defects in peroxisomal biogenesis. The dawn of PD 
research came with the detailed analysis of the Zellweger syndrome, the prototype 
of PD. Even recently, new PD are still being identified by whole-exome sequencing 
analysis, which means that the concept of PD has been expanding. Furthermore, the 
role of peroxisome in cancer and age-related diseases has also been studied. In con-
trast, PD pathophysiology and treatment are not clarified yet completely and even in 
adrenoleukodystrophy, which is the most common PD, the prognosis of phenotype 
and disease in pre-symptomatic patients is a difficult task.

In this chapter, various types of PD based on patient clinical data will be 
described, which will be useful to researchers and clinicians. I hope that this chapter 
will be a valuable aid to many researchers and clinicians in a conjoint effort to over-
come this intractable disease.

Keywords  Peroxisome · β-oxidation · VLCFA · Plasmalogens · Phytanic acid · 
Zellweger syndrome · Adrenoleukodystrophy · Whole-exome sequencing

5.1  �Introduction

Peroxisomes are single-membrane lined organelles present in all eukaryotic cells. 
They have many metabolic functions in humans, such as β-oxidation of saturated 
very long-chain fatty acids (VLCFA), unsaturated fatty acids, and bile acids; 
α-oxidation of phytanic acid; plasmalogen synthesis; hydrogen peroxide degrada-
tion; and glyoxylic acid detoxification (see Chap. 4).
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Peroxisomal disorders (PD) are a group of inherited metabolic diseases with 
genetically defective peroxisomal functions. Zellweger syndrome (ZS), a prototype 
of PD with generally impaired peroxisomal function, has greatly contributed to the 
discovery of other PD as well as to the understanding of their pathophysiology.

ZS was first reported as a ‘familial syndrome of multiple congenital defects’ 
(Bowen et al. 1964). A peroxisomal defect in the liver of ZS patients was reported 
(Goldfischer et al. 1973) however, at that time, the peroxisomal function had not 
been clarified, so not much attention was given to this finding. Later, the β-oxidation 
system was found not only in the mitochondria but also in the peroxisomes (Lazarow 
and De Duve 1976), and since then, research on the peroxisomal metabolic function 
in humans and in the pathology of ZS was accelerated. For some time, the genetic 
etiology of ZS was unknown, however, we succeeded in identifying the first gene 
responsible for ZS, the peroxisome assembly factor 1 (PAF1, called PEX2 later) 
(Shimozawa et al. 1992). Since then, 12 PEX genes responsible for ZS have been 
identified to date (Shimozawa et  al. 2004). There are more than 30 kinds of PD 
caused by genes involved in faulty peroxisomal biogenesis and metabolic pathways. 
Furthermore, the concept of PD is still expanding by advances in basic research 
regarding peroxisomal function, progress of mass spectrometry for peroxisomal 
metabolite measurements in the patients, and emergence of the next generation 
sequencer (NGS).

PD are caused by mutations in genes that can be classified into two major groups 
(Table 5.1); including: (a) genes involved in the import of peroxisomal membrane 
and matrix proteins, as well as in peroxisomal proliferation and fission (Peroxisome 
biogenesis disorders: PBD) and (b) genes encoding enzymes that are located in the 
peroxisomes, where they exert their function (Single enzyme deficiencies: SED).

In this chapter, PBD, SED, and adrenoleukodystrophy (ALD)-the most frequent 
PD, and finally the role of peroxisomes in cancer and age-related diseases are 
described.

5.2  �Peroxisome Biogenesis Disorders (PBD)

Peroxisomal matrix proteins can be imported into peroxisomes by the various PEX 
proteins via the peroxisome-targeting sequences, PTS1 and PTS2, after their syn-
thesis on free ribosomes. PTS1 proteins bind to their receptor, a short isoform of 
PEX5 (PEX5S) in the cytosol, and PTS2 proteins bind to their receptors, PEX7 and 
the long isoform of PEX5 (PEX5L); these complexes are transferred to the peroxi-
some and are docked on PEX13 and 14, and only matrix proteins are imported into 
peroxisomes by PEX2, 10, and 12. On the other hand, the receptors are recycled in 
the cytosol by PEX1, 6 and 26, and recently the involvement of also TRIM37 in the 
recycle has been reported (see Sect. 5.2.3.2). In addition, the peroxisomal mem-
brane proteins are recognized by PEX19  in the cytosol followed by docking on 
PEX3 whereas PEX16 is required for peroxisome membrane biogenesis and could 
play a role in the early stages of peroxisome assembly (Fig. 5.1) (Shimozawa 2011).
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Table 5.1  Classification of Peroxisomal diseases (PD) (Disease-causable genes)

A. Peroxisome biogenesis disorders (PBD)
 � Zellweger spectrum disorders (ZSD) (PEX 1,2,3,5,6,10,12,13,14,16,19,26)
 �   Zellweger syndrome (ZS)
 �   Neonatal adrenoleukodystrophy (NALD)
 �   Infantile Refsum disease (IRD)
 � Rhizomelic chondrodysplasia punctata (RCDP) type 1 (PEX 7)
 �                                       type 5 (PEX 5-long isoform)
 � Broad phenotypes of PEX gene defects (PEX1,2,3,6,7,10,12,16)
 � Mulibrey nanism (TRIM37)
 � PEX11β deficiency (PEX11β)
 � Encephalopathy due to defective mitochondrial and peroxisomal fission 1 (EMPF1) (DNM1L)
 � Charcot-Marie-Tooth disease Type 4A (GDAP1)
B. Single enzyme deficiencies (SED)
 � Impaired β-oxidation of fatty acids
 �   Adrenoleukodystrophy (ALD) (ABCD1)
 �   Acyl-CoA oxidase 1 (ACOX1) deficiency (ACOX1)
 �   d-bifunctional protein (DBP) deficiency (HSD17B4)
 �   Sterol carrier protein X (SCPX) deficiency (SCP2)
 �   2-Methylacyl-CoA racemase (AMACR) deficiency (AMACR)
 �   Acyl-CoA-binding domain-containing protein 5 (ACBD5) deficiency (ACBD5)
 � Impaired bile acids synthesis
 �   Acyl-CoA oxidase 2 (ACOX2) deficiency (ACOX2)
 �   Peroxisomal membrane protein, 70KD (PMP70) deficiency (ABCD3)
 �   Bile acid-CoA: amino acid N-acyltransferase (BAAT) deficiency (BAAT)
 � Impaired α-oxidation of fatty acids
 �   Refsum disease (phytanoyl-CoA hydroxylase deficiency) (PHYH)
 � Impaired ether-phospholipid biosynthesis
 �   RCDP type 2 (dihydroxyacetone phosphate acyltransferase deficiency) (GNPAT)
 �   RCDP type 3 (alkyl-dihydroxyacetone phosphate synthase deficiency) (AGPS)
 �   RCDP type 4 (fatty acyl-CoA reductase 1 deficiency) (FAR1)
 � Impaired hydrogen peroxide metabolism
 �   Acatalasemia, Hypocatalasemia (catalase deficiency) (CAT)
 � Impaired glyoxylate metabolism
 �   Hyperoxaluria type 1 (alanine: glyoxylate aminotransferase deficiency) (AGXT)
 �   Glycolate oxidase 1 (GOX1) deficiency (HAO1)

As generalized peroxisomal metabolic abnormalities occur similarly in patients 
with PEX gene defects, patients with different PEX gene defects tend to show 
common clinical phenotypes. Indeed, most patients with mutations in PEX1, 2, 5, 6, 
10, 12, 13, 14, or 26 involved in both PTS1 and PTS2 protein import tend to mani-
fest common clinical features of Zellweger spectrum disorders (ZSD) including ZS, 
neonatal adrenoleukodystrophy (NALD) and infantile Refsum diseases (IRD), and 
their severity depend on the mutational severity and residual function of these PEX 

5  Peroxisomal Disorders



110

proteins. Most patients with defected PEX3, 16, and 19 involved in peroxisomal 
membrane protein import or synthesis tend to manifest phenotypes similar to the 
most severe ZS. On the other hand, most patients with mutated PEX7 and PEX5L, 
which are involved only in PTS2 protein import, manifest a clinical type of rhizo-
melic chondrodysplasia punctate (RCDP).

With the recent expansion of whole-exome sequencing (WES), the abnormalities 
of these PEX genes have been identified in undiagnosed atypical patients, especially 
those with inherited neurological disorders, leading to the establishment of broad 
clinical phenotypes derived from PEX gene defects.

5.2.1  �Zellweger Spectrum Disorders

ZSD are divided into different phenotypes according to clinical severity, ZS is the 
most severe phenotype, and NALD and IRD are milder variants, however, there is 
no clear distinction among these three phenotypes.

ZS is characterized by facial dysmorphism such as enlarged anterior fonta-
nelles, high forehead, hypertelorism, broad nasal bridge, epicanthal folds, micro-
gnathia, and malformed ears (Fig.  5.2a). Furthermore, severe hypotonia at birth 
(Fig. 5.2b, c), absent or weak sucking, hepatomegaly (Fig. 5.2c) with prolonged 
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jaundice and liver dysfunctions, renal cortical microcysts, ventricular enlargement 
in the brain (Fig. 5.2d), abnormal calcific stippling of multiple joints (Fig. 5.2e), 
cataracts and pigmentary retinopathy in the ophthalmic finding also appear. ZS 
patients typically show no developmental progress and die in early infancy.

In contrast, NALD patients have a less severe clinical phenotype than ZS, usually 
survive until the late infantile period, and exhibit mild facial dysmorphism (Fig. 5.3a) 
and no chondrodysplasia. Developmental regression and intractable seizures occur 
during the clinical course of NALD, and demyelination and progressive cortical 
atrophy in the brain become remarkable with age (Fig. 5.3b) as the survival time of 
patients is longer than that of ZS patients.

IRD, the mildest phenotype among the various ZSD, is very different from 
ZS. IRD patients manifest minimum facial dysmorphism, hearing impairment, reti-
nal degeneration, and psychomotor retardation. Many patients with IRD develop up 
to walking alone (Fig. 5.4a) and acquiring meaningful words, therefore, IRD diag-
nosis in early childhood is difficult. In brain MRI findings, white matter degenera-
tion appears first (Fig. 5.4b), and cerebral and spinocerebellar atrophies gradually 
become evident with increasing age (Fig. 5.4c, d); therefore, early diagnosis and 

A B

C

D E

Fig. 5.2  Clinical features of Zellweger syndrome at neonatal age. (a) Facial features. Enlarged 
anterior fontanelles, high forehead, broad nasal bridge, and low-set ears. (b) Traction response. 
Severe hypotonia was seen. (c) Supine position. Severe hypotonia and hepatomegaly. (d) Brain 
CT.  Enlarged lateral ventricles are seen. (e) X-ray photo of knee joints. Abnormal calcific 
stippling
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Fig. 5.3  Clinical features of neonatal adrenoleukodystrophy. (a) Facial features at neonatal. Mild 
or subtle facial dysmorphism. (b) Brain CT at the age of 20 months (upper row) and 30 months 
(lower row). Progressive cortical atrophy
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Fig. 5.4  Clinical features of infantile Refsum disease. (a) Standing alone at the age of 3 years. (b) 
Fluid-attenuated inversion recovery (FLAIR) image of brain MRI at the age of 3 years. High signal 
regions slightly in white matter of around the lateral ventricles (Matsunami et al. 2016). (c, d) 
Brain T2 weighted MRI at the age of 32 years. Severe atrophy of cerebellum and brain stem (c) and 
cortical atrophy and severe enlarged lateral ventricles (d) (Matsui et al. 2013)
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subsequent treatment are important for a better prognosis. Many patients survive 
beyond the second decade of their life.

ZSD patients show generalized peroxisomal metabolic disturbances, such as 
accumulation of VLCFA, phytanic and pristanic acids, and intermediate metabolites 
of bile acids of di-/trihydroxycholestanoic acid (D/THCA) in the blood, as well as 
decreased levels of plasmalogens and docosahexaenoic acid (DHA), however, it 
should be noted that some biochemical parameters do not appear abnormal, espe-
cially in the mild phenotypes (see Table 7.1).

In ZSD therapy, although curative treatment is difficult, early liver transplanta-
tion may improve prognosis of patients with a mild ZSD phenotype. We performed 
a liver transplantation from a heterozygous parent to a 3-year-old patient diagnosed 
with IRD at 1 year of age, and observed that the increased VLCFA and phytanic acid 
concentrations in the patient’s serum were improved (Matsunami et al. 2016), and 
no obvious symptoms worsening was noticed during the first 3 years after transplan-
tation. Furthermore, Demaret et al. also speculated that liver transplantation per-
formed before the onset of severe sensorineural defects in mild ZSD enables partial 
metabolic remission and improves long-term clinical outcome (Demaret et  al. 
2018). Dietary treatment with decreased phytanic acid intake may be effective for 
mild ZSD patients with elevated phytanic acid levels (Sá et al. 2016). Further treat-
ment options for ZSD refer to the overview by Braverman et al. (2016). Recently, 
the Food and Drug Administration (FDA) in the U.S. has approved cholic acid for 
adjunctive treatment of ZSD patients with symptoms of liver disease, steatorrhea, or 
complications from decreased absorption of fat-soluble vitamins (https://www.fda.
gov/Drugs/InformationOnDrugs/ucm446282.htm).

5.2.2  �Rhizomelic Chondrodysplasia Punctate Type 1 and 5

Patients with rhizomelic chondrodysplasia punctate (RCDP) type 1 and type 5 
caused by PEX7 and PEX5L defects respectively, exhibit limited peroxisomal met-
abolic abnormalities, including a deficiency in plasmalogen synthesis and 

A B

Fig. 5.5  Clinical features of rhizomelic chondrodysplasia punctata type 1 at neonatal. (a) X-ray 
photograph of knee joints. Abnormal calcific stippling. (b) Whole picture. The proximal extremity 
truncated short stature
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α-oxidation of phytanic acid. Defective PEX7 and PEX5L are involved only in 
PTS2 protein import (Fig.  5.1) and result in the common clinical phenotype of 
RCDP. RCDP type 1 has been classified as a skeletal dysplasia characterized by the 
presence of calcific stippling in multiple joints (Fig.  5.5a); the patients show a 
disproportionally short stature with symmetric shortening of the proximal extremi-
ties, typical craniofacial dysmorphism resembling that of ZS (Fig. 5.5b), ichthyosis, 
cataract, failure to thrive, and severe mental retardation. Patients with RCDP type 1 
show biochemical alterations, such as accumulation of phytanic acid and decrease 
in plasmalogens, whereas their pristanic acid and VLCFA levels are normal (see 
Table 7.1). Patients with a defect in PEX7 display various clinical phenotypes, 
including severe typical RCDP and milder bone lesions with moderately decreased 
plasmalogen levels. Many patients die in the first 2 years of life, but some survive 
beyond the second decade of life. Furthermore, there are patients with a PEX7 
defect manifesting similar phenotypes to those with Refsum disease, who do not 
display bone lesions and their plasmalogen levels remain normal (see Sect. 5.2.3.1).

RCDP type 5 caused by a mutation in PEX5L was recently identified by WES 
and biochemical verification (Barøy et al. 2015). PEX5 encodes two distinct iso-
forms, PEX5L and PEX5S, and previous patients with a PEX5 defect manifested 
ZSD only, mainly owing to deficient import of PTS1 and PTS2 proteins. However, 
patients with PEX5 mutations located in PEX5L specific exon 9, loose only PEX5L, 
a co-receptor of PTS2-proteins with PEX7, resulted in intact PEX5S, a receptor of 
PTS1-proteins (Fig. 5.1). The clinical and biochemical features of RCDP type 5 
patients have similar manifestations to mild PEX7 defect patients who manifest less 
pronounced skeletal abnormalities, milder growth delay and intellectual disability, 
and fewer biochemical disturbances.

5.2.3  �Broad Phenotypes of Known PEX Gene Defects 
and Newly Identified Disease-Causing Genes

5.2.3.1  �Broad Phenotypes of PEX Gene Defects

The phenotypic spectrum of PEX7 mutations appears broad, including not only the 
severe phenotype of RCDP, but also relatively mild phenotypes. Some patients with 
the mild phenotypes display clinical symptoms similar to those of patients with 
Refsum disease, which are characterized by increased phytanic acid caused by a 
single enzyme deficiency [Phytanoyl-CoA hydroxylase (PHYH) deficiency (see 
Sect. 5.3.3)]. The biochemical abnormalities in Refsum patients due to PEX7 defect 
show only increase in phytanic acid whereas the plasmalogen levels remain normal 
(Braverman et al. 2002; van den Brink et al. 2003).

There have been also reported extensive phenotypic heterogeneity among patients 
with mutation of several PEX genes which cause the ZSD. Indeed, there was a report 
in 2002 on patients with compound heterozygous mutations of PEX6 manifesting as 
Usher syndrome characterized by sensory hearing loss and retinitis pigmentosa 
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(Raas-Rothschild et al. 2002). Furthermore, since 2010, gene mutations in PEX10 
(Régal et al. 2010), PEX16 (Ebberink et al. 2010), PEX2 (Sevin et al. 2011), and 
PEX6 (Tran et al. 2014) have been detected in undiagnosed patients with cerebellar 
ataxia and progressive leukodystrophy by combined biochemical analysis and 
Sanger sequencing, following detection of mild peroxisomal metabolite abnormali-
ties in the patients. Among these cases, there was a 51-year-old man who presented 
with childhood onset and slowly progressive disease, caused by a mutated PEX2, 
with symptoms of ataxia, areflexia, nystagmus and strabismus (Mignarri et al. 2012).

After NGS became widely available, further disease-causing PEX mutations 
have been reported, mainly in patients with neurodegenerative diseases who had 
mutations in genes, such as PEX1 (Ventura et al. 2016), PEX3 (Bjørgo et al. 2017), 
PEX10 (Renaud et al. 2016; Blomqvist et al. 2017; Yamashita et al. 2017), PEX12 
(Schabhüttl et al. 2014), and PEX16 (Ohba et al. 2013; Bacino et al. 2015; Kumar 
et al. 2016), and in patients with Heimler syndrome who had mutations in PEX1 and 
PEX6 (Ratbi et al. 2015; Smith et al. 2016) (in detail, see Sect. 7.3).

Interestingly, it was reported that the allelic expression imbalance (AEI) induces 
mutant PEX6 allele to cause ZSD, and the AEI of PEX6 was correlated with hetero-
zygosity of a frequent variant in the 3′ untranslated region (UTR) of the mutant 
allele (Falkenberg et al. 2017). The patients that carry this mutation presented mul-
tiple symptoms similar to the symptoms of patients with a mild phenotype of ZSD, 
characterized by neurological abnormalities, such as profound hypotonia, gait 
abnormalities, developmental delay, neuropathy, visual impairment, sensorineural 
hearing loss, and white matter abnormalities detected through brain MRI. The bio-
chemical findings showed elevated VLCFA levels in the serum of patients and 
impaired peroxisomal biogenesis in their fibroblasts.

5.2.3.2  �Mulibrey Nanism (TRIM37 Deficiency)

TRIM37, which was identified as a disease-causing gene of muscle–liver–brain–
eye (Mulibrey) nanism, encodes a peroxisomal RING-B-box-coiled-coil protein; 
therefore, Mulibrey nanism is characterized by severe growth retardation of 
prenatal-onset, characteristic dysmorphic features, pericardial constriction, and 
hepatomegaly and was classified as a PD. TRIM37 was localized in the peroxi-
somes; however, peroxisomes of fibroblasts from the patients appeared normal by 
immunocytochemical methods, using both the peroxisomal matrix and membrane 
protein markers, suggesting normal peroxisomal biogenesis (Kallijärvi et al. 2002). 
Subsequent studies have revealed that TRIM37-mediated ubiquitination stabilizes 
PEX5 and promotes peroxisomal matrix protein import, which means that inactiva-
tion of TRIM37 leads to reduced PEX5 accumulation by inducing proteasomal 
degradation and compromising PEX5 functions in cargo binding and PTS protein 
import (Fig.  5.1); thereby Mulibrey nanism has been classified as a new PBD 
(Wang et al. 2017).
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5.2.4  �Dysfunction of Peroxisomal Proliferation and Fission

5.2.4.1  �PEX11β Deficiency

A homozygous nonsense mutation of PEX11β involved in peroxisomal growth and 
division, was found in a 26-year-old male patient with congenital cataract, mild 
intellectual disability, progressive hearing loss, sensory nerve involvement, gastro-
intestinal problems, recurrent migraine-like episodes, and Chiari I malformation on 
MRI. Biochemical parameters of peroxisomal metabolites were normal, including 
VLCFA, phytanic and pristanic acids, bile acid intermediates and plasmalogens, 
whereas patient’s fibroblasts did not contain PEX11β protein and exhibited a low 
number of enlarged and elongated peroxisomes (Ebberink et  al. 2012) (see 
Table 7.1).

5.2.4.2  �Encephalopathy Due to Defective Mitochondrial and Peroxisomal 
Fission 1 (EMPF1) (DNM1L Deficiency)

Waterham et  al. reported a case of a newborn girl with microcephaly, abnormal 
brain development, optic atrophy and hypoplasia caused by heterozygous dominant 
negative mutations in dynamin 1-like (DNM1L) gene involved in the fission of both 
mitochondria and peroxisomes. The patient’s biochemical profile showed persistent 
lactic acidemia and mildly elevated VLCFA. Peroxisomes in patient’s fibroblasts 
were less in number, varied in size and were regularly arranged in rows (Waterham 
et al. 2007) (see Table 7.1). These patients developed epileptic encephalopathy with 
intractable seizures, followed by neurologic decline and died during childhood. 
Additionally, in several families with autosomal dominant optic-atrophy 5, hetero-
zygous mutations in DNM1L have been identified (Gerber et al. 2017). Furthermore, 
Yoon et al. reported that in patients with autosomal recessive encephalopathy due to 
defective mitochondrial and peroxisomal fission resulting in early infantile death, 
complex heterozygous truncating mutations in DNM1L were identified (Yoon 
et al. 2016).

5.2.4.3  �Charcot-Marie-Tooth Disease Type 4A (GDAP1 Deficiency)

Distinct mutations in the ganglioside-induced differentiation-associated protein 1 
(GDAP1) gene, expressing a tail-anchored mitochondrial protein that induces mito-
chondrial fragmentation, were found in patients with Charcot-Marie-Tooth disease 
type 4A (Cuesta et al. 2002). The patients showed demyelinating peripheral neu-
ropathy characterized by distal motor and sensory impairment resulting in gait dif-
ficulties and foot deformities. It was reported that GDAP1 was imported to 
peroxisomes by the import receptor Pex19, and regulated peroxisomal fission 
(Huber et al. 2013).
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5.3  �Single Enzyme Deficiencies (SED)

Single enzyme deficiencies (SED) exhibit clinical phenotypes caused by individual 
metabolic disturbances. Here, we describe the metabolic dysfunction in each PD, 
including β-oxidation of fatty acids, bile acids synthesis, α-oxidation of fatty acids, 
plasmalogen biosynthesis, hydrogen peroxide metabolism and glyoxylate metabo-
lism (Table 5.1). Broad phenotypes and newly identified PD have also been reported 
in SED through WES.

5.3.1  �Impaired β-Oxidation of Fatty Acids

5.3.1.1  �Adrenoleukodystrophy (ALD)

ABCD1 was identified as the gene responsible for adrenoleukodystrophy (ALD) 
and encoding a peroxisomal membrane protein that may transport VLCFA-CoA 
through the peroxisomal membrane. Defect in this protein results in accumulation 
of VLCFA, however, various phenotypes of ALD are not correlated to genotypes 
and VLCFA values. The mechanism underlying the onset of cerebral ALD remains 
unknown. ALD is described in more detail later (see Sect. 5.4).

5.3.1.2  �Acyl-CoA Oxidase 1 (ACOX1) Deficiency

ACOX1 catalyzes the initial step in peroxisomal fatty acid β-oxidation. Patients 
with ACOX1 deficiency have decreased muscle tone since the neonatal period, con-
vulsions since infancy, hearing and vision disturbances, but absence of prominent 
facial dysmorphism (Fig. 5.6a). These symptoms gradually regress, whereas patients 
survive until childhood. The clinical findings resemble those of the mild ZSD phe-
notypes. In brain MRI, abnormal findings in cerebellar and cerebral white matter 
progress with age (Fig. 5.6b, c). As this enzyme oxidizes only the saturated fatty 
acids, VLCFA accumulation is the only biochemical abnormality that occurs. 
Peroxisomes appear larger than usual in the immunocytochemical analysis (Funato 
et al. 2006). Furthermore, adult patients with ACOX1 deficiency characterized by 
cerebellum and brain stem atrophy have been reported (Ferdinandusse et al. 2010). 
In therapy, although there is no curative treatment, a sibling comparison study on 
the effects of hematopoietic stem cell transplantation (HSCT) has been reported 
(Wang et al. 2014).
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5.3.1.3  �d-Bifunctional Protein (DBP) Deficiency

HSD17B4 encodes DBP which catalyzes the second and third steps of peroxisomal 
fatty acid β-oxidation. In addition to straight-chain fatty acids, bile acids and 
branched fatty acids are oxidized by this enzyme, therefore, the biochemical find-
ings show accumulation of VLCFA, D/THCA, phytanic, and pristanic acids. Patients 
with DBP deficiency are in a more severe condition than those with ACOX1 defi-
ciency and are characterized by facial dysmorphism (Fig. 5.6d), hypotonia from the 
neonatal period (Fig. 5.6e), poor feeding, hepatomegaly, convulsions since the neo-
natal period, and die within 2 years of life. These clinical findings seem to resemble 
those of the severe phenotypes of ZS patients (Fig. 5.2a, b). Peroxisomes in DBP 
deficient patients also present a larger shape than usual, similar to that of peroxi-
somes in ACOX1 deficient patients (Funato et al. 2006). In DBP deficiency, as well, 
broad phenotypes, including the Perrault syndrome, which is characterized by ovar-
ian malformation, hearing loss, and cerebellar ataxia (Pierce et al. 2010), and senso-
rineural hearing loss, progressive cerebellar  ataxia and  subclinical retinitis 
pigmentosa (McMillan et al. 2012) have been reported.

A

D E

B C

5y 3y 9y

Fig. 5.6  Clinical features of acyl-CoA oxidase 1 (ACOX1) and d-bifunctional protein (DBP) 
deficiencies. (a) Facial feature of ACOX1 deficiency at the age of 5 years. (b) Brain T2 weighted 
MRI of ACOX1 deficiency at the age of 3 years. High signal regions in cerebellar white matter, 
peduncle and pons. (c) Brain T2 weighted MRI of ACOX1 deficiency at the age of 9 years. High 
signal regions in white matter around the occipital horn of lateral ventricles, subcortical white mat-
ter, and splenium of corpus callosum. (d) Facial features of patient with DBP deficiency. High 
forehead and broad nasal bridge. (e) Traction response of patient with DBP deficiency at neonatal. 
Severe hypotonia was seen
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5.3.1.4  �Sterol Carrier Protein X (SCPx) Deficiency

The SCPx enzyme encoded by SCP2 exerts thiolase activity in the last step of per-
oxisomal β-oxidation and oxidizes branched-chain fatty acids. Patients with SCPx 
deficiency have elevated levels of pristanic and phytanic acids, and D/THCA 
whereas normal VLCFA levels, and clinical manifestations of leukoencephalopathy 
with dystonia and motor neuropathy (Ferdinandusse et al. 2006).

5.3.1.5  �2-Methylacyl-CoA Racemase (AMACR) Deficiency

AMACR is a peroxisomal enzyme that catalyzes the conversion of 2R-pristanoyl-
CoA and 25R-D/THCA to their (S)-stereoisomers. Consequently, the enzymatic 
defect causes accumulation of plasma pristanic acid and D/THCA in patients with 
various clinical symptoms, such as adult-onset sensorimotor neuropathy 
(Ferdinandusse et al. 2000). Furthermore, a homozygous mutation in the AMACR 
was identified in an infant with defect in bile acid synthesis and increased levels of 
THCA (Setchell et al. 2003).

5.3.1.6  �Acyl-CoA-Binding Domain-Containing Protein 5 (ACBD5) 
Deficiency

ACBD5 is a peroxisomal membrane protein with a cytosolic acyl-CoA binding 
domain. A variant of ACBD5 in three siblings characterized by cone-rod dystrophy, 
developmental delay, spastic paraparesis, and white matter disease was identified by 
autozygome analysis followed by exome sequencing (Abu-Safieh et al. 2013). Next, 
Ferdinandusse et al. identified another patient with a homozygous deleterious indel 
mutation in ACBD5 presenting progressive leukodystrophy, syndromic cleft palate, 
ataxia, retinal dystrophy, and accumulation of VLCFA due to impaired peroxisomal 
β-oxidation (Ferdinandusse et al. 2017).

5.3.2  �Impaired Bile Acids Synthesis

5.3.2.1  �Acyl-CoA Oxidase 2 (ACOX2) Deficiency

ACOX2 is a peroxisomal branched-chain acyl-CoA oxidase participating in bile 
acid synthesis. A patient with ACOX2 deficiency identified by WES presented inter-
mittently elevated transaminase levels, liver fibrosis, mild ataxia, and cognitive 
impairment (Vilarinho et al. 2016). The patient showed increased D/THCA levels in 
plasma and urine, whereas no increase in branched-chain fatty acids, phytanic acid, 
and pristanic acid was noticed.
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5.3.2.2  �Peroxisomal Membrane Protein, 70KD (PMP70) (ABCD3) 
Deficiency

ABCD3 encodes a PMP70 involved in the transport of branched-chain fatty acids 
and C27 bile acids into the peroxisomes. A patient with a homozygous 1758-bp 
deletion in ABCD3 had accumulation of D/THCA, and increased C26/C22 and 
C24/C22 ratios owing to low levels of C22:0 whereas normal phytanic and pristanic 
acids in the plasma levels (see Table 7.1). On the contrary, measurement of peroxi-
somal beta-oxidation activities in fibroblasts from the patient revealed decreased 
beta-oxidation of pristanic acid, whereas that of C26:0 was normal. Peroxisomes in 
PMP70 deficient patients present a larger shape than usual and fewer in number. 
The patient manifested hepatosplenomegaly with severe liver dysfunction, but nor-
mal developmental milestones (Ferdinandusse et al. 2015).

5.3.2.3  �Bile Acid-CoA: Amino Acid N-Acyltransferase (BAAT) Deficiency

BAAT transfers bile acid moiety from the acyl-CoA thioester to either glycine or 
taurine. Hence, bile acids conjugated glycine or taurine are decreased in the body 
fluids of patients deficient in BAAT. Patients’ phenotype shows familial hyperchol-
anemia characterized by elevated bile acid serum concentrations, itching, and fat 
malabsorption (Carlton et al. 2003).

5.3.3  �Impaired α-Oxidation of Fatty Acids

5.3.3.1  �Phytanoyl-CoA Hydroxylase (PHYH) Deficiency (Refsum 
Disease)

Refsum disease is characterized by an increase in phytanic acid due to deficiency of 
PHYH, localized in the peroxisomes. Phytanic acid is converted to pristanic acid by 
α-oxidation and then is subjected to β oxidation; therefore, pristanic acid levels in 
the patients are not increased. Many patients with Refsum disease have been 
reported in UK and Northern Europe and develop symptoms, such as retinitis pig-
mentosa, polyneuropathy (atrophy of lower limb muscles, muscle weakness, sen-
sory paralysis), and cerebellar ataxia at the age of 1–50 years. Treatment is based on 
a diet that severely restricts dairy products rich in phytanic acid, and also meat and 
fats derived from cows, sheep, goats, etc.
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5.3.4  �Impaired Plasmalogen Biosynthesis

	(a)	 Dihydroxyacetone phosphate acyltransferase (GNPAT) deficiency (RCDP type 
2)

	(b)	 Alkyl-dihydroxyacetone phosphate synthase (AGPS) deficiency (RCDP type 3)

The first and second steps of plasmalogen biosynthesis are performed in peroxi-
somes by GNPAT (PTS1 protein) and AGPS (PTS2 protein), respectively. Clinical 
findings in both deficiencies revealed an RCDP phenotype, including rhizomelic 
shortening of upper extremities, typical facial appearance, cataract, dwarfism, and 
severe mental retardation. Biochemically, both types of patients only show decreased 
levels of plasmalogens, whereas plasma phytanic acid levels are normal.

	(c)	 Fatty acyl-CoA reductase 1 (FAR1) deficiency (RCDP type 4)

Mutations of FAR1 involved in plasmalogen biosynthesis in peroxisomes were 
identified by WES in two families affected by severe intellectual disability, early-
onset epilepsy, microcephaly, congenital cataracts, growth retardation and spasticity 
(Buchert et al. 2014). This disease was later named as RCDP type 4, although show-
ing no typical RCDP phenotype.

5.3.5  �Impaired Hydrogen Peroxide Metabolism

5.3.5.1  �Catalase Deficiency (Acatalasemia, Hypocatalasemia)

Acatalasemia (Takahara disease) a metabolic disorder characterized by a total or 
near total loss of catalase activity in erythrocytes was first discovered by Takahara 
in patients with progressive oral gangrene (Takahara and Miyamoto 1948). Patients 
with hypocatalasemia have heterozygous mutations of the catalase gene and mani-
fest half-normal levels of catalase activity and no obvious clinical symptoms, how-
ever, studies on Hungarian patients with hypocatalasemia showed increased 
occurrence of type 2 diabetes (see Sect. 5.5.2).

5.3.6  �Impaired Glyoxylate Metabolism

5.3.6.1  �Hyperoxaluria Type 1 (Alanine: Glyoxylate Aminotransferase 
Deficiency)

Primary hyperoxaluria type 1 (PH1) is a glyoxylate metabolism disorder caused by 
a deficiency of alanine: glyoxylate aminotransferase (AGT) present in liver peroxi-
somes. Glyoxylic acid is a precursor of oxalic acid, and due to the deficiency in 
AGT, an enzyme converting glyoxylate to glycine, a large amount of oxalic acid is 
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produced, and insoluble calcium oxalate is deposited on the whole body organs, 
including the kidney. After successive renal colic and hematuria, typical symptoms 
of urinary calculus, the disease progressed to nephrocalcinosis and renal failure, and 
most of the cases resulted in end-stage renal failure. In mild cases, administration of 
vitamin B6, a coenzyme of AGT, can be effective. Early liver transplantation for 
replacement of the AGT enzyme is considered an effective curative treatment. 
Kidney transplantation may be necessary in cases of renal failure, when recovery is 
not expected.

5.3.6.2  �Glycolate Oxidase 1 (GOX1) Deficiency

The hydroxy-acid oxidase 1 (HAO1) gene encodes glycolate oxidase 1 (GOX1), 
which catalyzes the oxidation of glycolate to glyoxylate in the peroxisomes of hepa-
tocytes. Frishberg et al. reported a patient with a homozygous splicing site mutation 
in HAO1 who manifested a persistent and markedly increased urinary glycolate 
excretion; normal excretion of oxalate, citrate and glycerate; and no obvious renal 
symptoms. This observation suggested that substrate reduction might be targeted 
for the development of novel approaches for the treatment of PH1 (Frishberg 
et al. 2014).

5.4  �Adrenoleukodystrophy (ALD)

Adrenoleukodystrophy (ALD) is the most common PD characterized by demyelin-
ation of the cerebral white matter and adrenal dysfunction. ALD is an X-linked 
inherited disease attributed to mutations in the ABCD1 gene, and its product, ALDP/
ABCD1, a peroxisomal membrane protein. ALDP possesses an ATP-binding cas-
sette region at the C-terminus involved in the import of saturated VLCFA into the 
peroxisomes, leading to β-oxidation of the saturated VLCFA. Therefore, a dysfunc-
tion of ALDP/ABCD1 results in the accumulation of saturated VLCFA in the tissues 
and plasma. Various clinical phenotypes exist in ALD, such as the childhood cere-
bral ALD (CCALD), adolescent cerebral ALD (AdolCALD), adult cerebral ALD 
(ACALD), adrenomyeloneuropathy (AMN), olivo-ponto-cerebellar type of ALD 
(OPCALD) and Addison only with no genotype-phenotype correlation. Even female 
carriers of the mutated gene present occasionally mild spinal symptoms with age. 
The prognosis of cerebral ALD is generally very poor and many patients risk 
becoming bedridden within a few years if they remain without effective treatment. 
Hematopoietic stem cell transplantation (HSCT) is currently the only curative 
approach, which can prevent the progression of brain deterioration; however, HSCT 
is only effective for patients in the early stages of cerebral ALD (Peters et al. 2004). 
Therefore, not only is early diagnosis just after disease onset critical, but pre-
symptomatic diagnosis is also essential in order to prevent the progression of cere-
bral ALD.
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5.4.1  �Epidemiology and Phenotypes

In the United States, one ALD patient in 21,000 newborn boys and one ALD carrier 
in 14,000 newborn girls have been reported (Bezman et al. 2001). Furthermore, in 
New York, over 700,000 newborns were screened; 45 babies (22 boys and 23 girls) 
were identified as having ALD, suggesting that the birth-incidence of ALD could be 
1:15,000 (https://adrenoleukodystrophy.info/clinical-diagnosis/newborn-screen-
ing). At least 4.1% of individuals with ALD have de novo mutations (Wang et al. 
2011); therefore, the mothers of male probands may not be carriers. There are vari-
ous phenotypes, shown below, which do not correlate with genotypes; however, the 
incidence of each phenotype varies from country to country, probably due to differ-
ent genetic backgrounds.

5.4.1.1  �Childhood Cerebral ALD (CCALD)

CCALD is the most common phenotype and is characterized by the progressive 
deterioration of the intellectual, psychic, visual, and gait characteristics at the age of 
onset between 3 and 10 years. The prognosis of CCALD is generally very poor and 
many patients become bedridden within a few years.

5.4.1.2  �Adolescent Cerebral ALD (AdolCALD)

AdolCALD has symptoms similar to CCALD at the age of onset between 11 and 
21 years but tends to progress more slowly.

5.4.1.3  �Adrenomyeloneuropathy (AMN)

AMN is a noninflammatory distal axonopathy which develops after puberty with 
gait disturbance, rectal bladder dysfunction, and impotence. AMN progresses 
slowly, however, it may develop to cerebral ALD.

5.4.1.4  �Adult Cerebral ALD (ACALD)

ACALD develops after adulthood and presents personality changes, intellectual 
deterioration and psychiatric symptoms, therefore, sometimes is misdiagnosed as 
psychosis or dementia. Clinical progression varies and can lead to bedridden 
patients after a few years.

5  Peroxisomal Disorders

https://adrenoleukodystrophy.info/clinical-diagnosis/newborn-screening
https://adrenoleukodystrophy.info/clinical-diagnosis/newborn-screening


124

5.4.1.5  �Olivo-Ponto-Cerebellar Type of ALD (OPCALD)

Cerebellar ataxia is the main symptom of patients with OPCALD, with most of 
them being diagnosed in Japan. Some patients with OPCALD may develop cere-
bral ALD.

5.4.1.6  �Addison Only

Addison disease develops between the age of 2 years and adulthood with symptoms 
of adrenal insufficiency, such as unexplained vomiting, weight loss, and pigmenta-
tion. The youngest patient showing abnormal adrenal function was reported to be 
7  months old. There was no significant difference in the VLCFA values of the 
plasma among patients with adrenal insufficiency (Huffnagel et al. 2019). It should 
be noted that most patients with an “Addison only” phenotype may progress to 
AMN and/or cerebral ALD and most male patients with ALD have adrenal insuffi-
ciency regardless of their phenotype.

5.4.1.7  �Symptomatic Female

Some female carriers have symptoms like those of AMN patients including gait 
disorder, sensory disturbance, and fecal incontinence. Symptoms rarely appear 
before the age of 20, and the incidence increases with age. In details, 18% of women 
under 40 and 88% of women over 60 years of age present light neurological signs 
(Engelen et al. 2014). In female carriers, the adrenal dysfunction is rare and cerebral 
ALD is even rarer.

5.4.2  �Diagnostic Methods

	(a)	 Very long chain fatty acids (VLCFA)
Male patients show increased saturated VLCFA plasma levels such as C26:0, 
C25:0, C24:0. There is no correlation between the rate of accumulation of 
VLCFA and clinical severity. Fifteen percent to 20% of female carriers have 
normal VLCFA levels, although increased VLCFA levels are observed in the 
majority (Kemp et al. 2001). Therefore, ABCD1 mutation analysis should be 
performed in all suspected female carriers even with normal VLCFA levels.

	(b)	 Brain MRI
In cerebral ALD, CT and T2 weighted MRI imaging show a low density and a 
high signal region, respectively, coinciding with the site of demyelination in the 
cerebral white matter (Fig. 5.7a). The distribution of demyelination is common 
in the white matter of the occipital lobe, around the lateral ventricle in the white 
matter of the parietal lobe, and in the splenium of the corpus callosum; however, 
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in some cases, it initiates from the white matter of the frontal lobe. At sites with 
active neuroinflammation, the contrast effect is recognized by gadolinium (Gd) 
enhancement (Fig. 5.7b). In AMN and OPCALD, abnormal T2 weighted MRI 
findings are mainly observed in the pyramidal tract, cerebellum, and spinocer-
ebellar tract.

	(c)	 Adrenal function test
The lifetime risk of adrenal insufficiency in male patients with ALD is nearly 
80% (Huffnagel et  al. 2019). Even without adrenal insufficiency symptoms, 
elevated plasma ACTH levels or low response to rapid ACTH loading test are 
observed. Adrenal insufficiency affects the prognosis of ALD patients, and a 
recent study on the natural history of adrenal insufficiency in ALD recommends 
adrenal testing every 4–6 months for patients aged ≤10 years, annual testing for 
those aged 11–40  years, and testing on demand for those aged >40  years 
(Huffnagel et al. 2019).

	(d)	 ABCD1 mutation analysis
The mutations in the ABCD1 are diverse, as more than 750 different mutations 
have been identified (https://adrenoleukodystrophy.info/mutations-and-vari-
ants-in-abcd1). There is no genotype-phenotype correlation, even in female car-
riers. As 15–20% of female carriers display normal VLCFA levels (Kemp et al. 
2001), ABCD1 mutation analysis is recommended for female carrier detection.

	(e)	 Pathological findings
In autopsy of patients with cerebral ALD, demyelination of the white matter, 
gliosis, and infiltration of the inflammatory cells around the blood vessel are 
recognized in the cerebral lesion.

	(f)	 Neurophysiological and psychological findings (see Chap. 12)

A B

Fig. 5.7  Brain MRI of adolescent cerebral ALD at the age of 13 years. (a) FLAIR image of brain 
MRI. High signal regions in white matter of occipital lobe with subcortical region. (b) Gadolinium 
enhancement. Contrast effect is recognized at the sites with active phase of neuroinflammation
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5.4.3  �Differential Diagnosis

5.4.3.1  �Diseases to Be Differentiated in ALD of Boys

Attention deficit hyperactivity disorder (ADHD), learning disability, psychosomatic 
disorder, strabismus, blurred vision, hearing loss, Addison’s disease, brain tumor, 
subacute sclerosing panencephalitis (SSPE), and other leukodystrophies.

5.4.3.2  �Diseases to Be Differentiated in ALD of Adults

Familial spastic paraplegia, multiple sclerosis, psychosis, dementia, spinocerebellar 
degeneration, Addison’s disease, brain tumor, malignant lymphoma, and other 
leukodystrophies.

5.4.4  �Treatment

	(a)	 Steroid replacement therapy
Adrenal insufficiency significantly affects prognosis; therefore, it is necessary 
to evaluate the adrenal function of all male patients, including asymptomatic 
and post HSCT patients. Corticosteroid replacement therapy should be initiated 
when necessary, however it should not affect the cerebral and spinal cord 
lesions.

	(b)	 Lorenzo’s oil
Lorenzo’s oil, a blend of 4:1 mixture of glycerol trioleate and glycerol trierucate 
reduces VLCFA in plasma, whereas it does not affect the natural course of the 
disease after the onset of cerebral symptoms. It has also been tried in the treatment 
of presymptomatic or AMN patients; however, its efficiency was not defined.

	(c)	 HSCT
HSCT is the only curative approach, that when performed early can prevent 

the progression of brain involvement in CCALD and AdolCALD.  Raymond 
et  al. recently reported that prognosis of early HSCT was clearly improved 
when survival was assessed without the major functional disabilities considered 
as a relevant treatment goal, rather than solely assessing overall survival as an 
indicator of treatment success (Raymond et  al. 2018). Because of that, it is 
essential to suspect ALD as soon as possible and to obtain a prompt diagnosis. 
Kato et al. reported that allogeneic HSCT with reduced intensity conditioning 
for ALD patients was safely performed without major transplant-related com-
plications even in symptomatic patients (Kato et  al. 2018). Furthermore, the 
effectiveness of transplantation has been reported even in ACALD, through a 
retrospective analysis of the feasibility, toxicity, and long-term neurological 
outcome of 14 adult males treated with allogeneic HSCT in four European cen-
ters (Kühl et al. 2017).
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There was a report that 3 out of 5 cases developed myelopathy in a long-term 
follow-up study of patients transplanted at an early stage. It is suggested that 
although the inhibitory effect on the progression of inflammation in the cerebral 
type is recognized in HSCT, the effect of inhibiting the onset of AMN may not 
be recognized (van Geel et al. 2015).

	(d)	 AMN and symptomatic female
For myelopathy in AMN and symptomatic females, there has been no effective 
therapy available yet, therefore, physical therapy and antispasmodic drugs are 
the main treatments. Studies using Abcd1 knockout mice have revealed that 
oxidative stress may be involved in axonal degeneration of AMN, hence, the 
examinations on antioxidant drugs are ongoing (López-Erauskin et al. 2011).

	(e)	 HSC gene therapy
ALD patients at the early stages of the cerebral-type of disease were adminis-
tered Lenti-D gene therapy, where autologous CD34+ cells transduced with 
Lenti-D lentiviral vector were injected in patients as a phase II-III safety and 
efficacy study (Eichler et al. 2017). Based on results, the FDA in the US has 
granted the Breakthrough Therapy designation to Lenti-D™ for treating patients 
with the cerebral type of ALD on May 23, 2018.

	(f)	 Further therapeutic strategies for ALD (see Chap. 8)

5.4.5  �Presymptomatic Diagnosis and Newborn Screening

5.4.5.1  �Presymptomatic Diagnosis

Patients after cerebral ALD onset have limitations in HSCT effect; hence, in order 
to improve prognosis, it is important to identify patients before the onset of disease, 
by familial analysis of the probands. This is also important for improving the prog-
nosis of adrenal insufficiency. Furthermore, as the onset of symptoms cannot be 
predicted, it is necessary to present a system of long-term follow-up (Engelen et al. 
2012) (in detail, see Sect. 7.4.2 and Fig. 7.3).

5.4.5.2  �Newborn Screening (NBS)

In New York, neonatal screening for ALD was initiated on December 30, 2013. 
During the first 3 years, over 700,000 newborns were screened in New York and 45 
babies with ALD, including 22 boys and 23 girls, were identified (https://adrenoleu-
kodystrophy.info/clinical-diagnosis/newborn-screening). Later, testing was con-
ducted in many states in the United States. In an effort to arrive to a steady effect on 
overcoming ALD, it is essential to establish a precise diagnostic system even for 
female ALD patients and other PD, a genetic counseling system and a long-term 
follow up system for patients found by NBS.
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5.4.6  �Pathophysiology

5.4.6.1  �Elucidated Facts and Unresolved Issues

Dysfunction of ALDP/ABCD1 due to mutated ABCD1 in ALD patients, which is a 
peroxisomal membrane transporter causes impaired β-oxidation of saturated 
VLCFA resulting in the accumulation of VLCFA in the tissues and plasma. 
Therefore, diagnosis of ALD can be confirmed by elevated saturated VLCFA in 
plasma and detection of ABCD1 mutations, however there is no correlation between 
genotypes and various phenotypes. Cerebral ALD is an inflammatory demyelinat-
ing disease, whereas AMN is a non-inflammatory distal axonopathy, and some 
AMN patients can develop cerebral ALD. We cannot predict phenotypes and prog-
nosis in presymptomatic patients, therefore, it is now difficult to perform HSCT 
before cerebral ALD onset. Abcd1 knockout mice exhibited only minor neurologic 
symptoms without inflammatory demyelination (Pujol et al. 2002), whereas there 
was a recent report that chimpanzee naturally developed cerebral ALD (Curiel et al. 
2017). Furthermore, the function of ALDP/ABCD1 as a transporter in the peroxi-
somal membrane and the pathophysiology caused by accumulated VLCFA are not 
completely understood.

5.4.6.2  �Task to Be Solved

The most important task should be the development of a phenotype prediction diag-
nosis method for medical intervention before the onset of the disease. For that pur-
pose, the search for modifier factors causing cerebral ALD onset is essential and can 
lead to the development of a cerebral-type onset in a mice model. This model can 
help to elucidate the mechanism of onset of inflammatory demyelination as well as 
the therapeutic mechanism of HSCT, leading to new treatments and optimal trans-
plantation methods for patients with cerebral ALD. It is also important to clarify the 
underlying biochemical and molecular pathology of ALDP/ABCD1, including syn-
thesis and β-oxidation of VLCFA, for the discovery of new approaches for success-
ful preventive treatment.

5.4.7  �Current and Future Prospective

Currently, early diagnosis is the most important factor in conquering ALD; hence, it 
is important to spread information regarding the first symptoms of ALD widely and 
provide a prompt diagnostic system to detect VLCFA levels and ABCD1 mutations. 
We have developed a prompt ALD diagnostic system that provides results on 
VLCFA values and ABCD1 mutations within a few days (see Sect. 7.4.1). In addi-
tion, presymptomatic diagnosis and neonatal screening combined with genetic 
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counseling and a long-term follow-up system may have to be adopted as a national 
strategy. Furthermore, in an effort to improve the prognosis of patients diagnosed 
before disease onset, it is important to develop a phenotype prediction method, as 
well as further therapeutic approaches.

5.5  �Role of Peroxisome in Cancer and Age-Related Diseases

Research on the pathology of patients with PD, including the prototype of ZS, has 
greatly contributed to the elucidation of the physiological functions of peroxisomes 
in humans. Furthermore, the spread of WES in recent years has led to the discovery 
of further variants of known genetic diseases and also newly identified PD (see Sect. 
7.3); hence, the concept of PD has been expanding.

On the other hand, in age-related diseases, such as diabetes, cancer and neurode-
generative disorders, the association with peroxisomal function has been suggested 
long ago, through disease models and genetic, epidemiological, and biochemical 
research. For example, there have been reports on the induction of liver cancer in 
rodents by peroxisome proliferators, increased occurrence of type 2 diabetes in 
Hungarian patients with hypocatalasemia, reduced plasmalogen levels in postmor-
tem brain tissues of patients with Alzheimer’s disease etc. Furthermore, recent 
studies suggest that peroxisomal function may be altered with aging and could con-
tribute to these age-related diseases (Cipolla and Lodhi 2017).

It is well known that mitochondrial dysfunction may be involved in the onset and 
progression of age-related diseases via reactive oxygen species (ROS). Peroxisomes 
produce ROS during the process of fatty acid oxidation, and also contain catalase, 
an enzyme that reduces ROS (see Sect. 4.5). Peroxisomal functions are performed 
in cooperation with the function of other organelles, including mitochondria (see 
Sect. 4.6), thus it can be difficult to evaluate the exact role of peroxisomes 
independently.

In a report of age-related changes in peroxisomes of human cells, aging compro-
mised PTS1 protein import, affecting the critical anti-oxidant enzyme catalase, 
which led to an increased load of ROS, further reduction of peroxisomal protein 
import, and exacerbation of aging effects (Legakis et al. 2002). Furthermore, the 
analysis of peroxisome dynamics in mammalian cells also suggested heterogeneity 
in peroxisomal import ability with age (Huybrechts et al. 2009). In this section, we 
pay particular attention to the relationship between age-related diseases and PD.

5.5.1  �Role of Peroxisomes in Neurodegenerative Diseases

PD patients themselves exhibit neurologic symptoms, such as white matter degen-
eration, cerebellar ataxia, and developmental regression, as described above (see 
Sects. 5.2–5.4). Peroxisomes are involved in the biosynthesis of plasmalogens that 
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are rich in myelin sheaths (Wanders and Poll-The 2017); therefore, patients with 
ZSD and RCDP manifest decreased levels of plasmalogens in plasma and tissues 
(see Table 7.1), which may be related to myelination deficits in these patients 
(Bams-Mengerink et  al. 2006). Moreover, a mouse model of RCDP type 2 
(Gnpat−/−), which completely lacked plasmalogens, showed defects in myelination 
in the cerebellum (Teigler et al. 2009). On the other hand, although no impaired 
plasmalogen synthesis was seen in ALD (see Sect. 5.4), not only increased VLCFA 
levels, but also reduced plasmalogen levels and increased ROS levels were observed 
in the white matter of the brains of cerebral ALD patients (Khan et al. 2008).

In Alzheimer’s disease (AD), Han et al. reported a dramatic decrease in plas-
malogen contents in white matter at a very early stage, which indicated that plas-
malogen defects may play an important role in AD pathogenesis and suggested that 
altered plasmalogen contents may contribute to neurodegeneration, synapse loss, 
and synaptic dysfunction in AD (Han et al. 2001). Recently, it was reported that oral 
administration of scallop-derived purified plasmalogens may improve cognitive 
functions of mild AD (Fujino et al. 2017).

In Parkinson’s disease, reduced levels of plasmalogen were reported in lipid rafts 
isolated from the cortical gray matter of patients (Fabelo et al. 2011). Furthermore, 
Zellweger model mice (Pex2−/−, Pex5−/− and Pex13−/−) exhibited increased 
α-synuclein phosphorylation, oligomerization, and inclusion body formation 
(Yakunin et  al. 2010). These findings are seen in the pathology of patients with 
Parkinson’s disease. Later, Wang et al., using a pex3 yeast mutant, reported that a 
defect in peroxisomal biogenesis prevents the binding of alpha-synuclein to lipid 
droplets in lipid-loaded yeast (Wang et al. 2013). These PEX are disease-causing 
gene for PBD (see Fig. 5.1).

5.5.2  �Role of Peroxisomes in Diabetes

In a study on Hungarian patients with acatalasemia, the frequency of occurrence of 
type 2 diabetes is high in patients with hypocatalasemia who are heterozygous for a 
mutation in the catalase gene, which detoxifies cells from hydrogen peroxide (Nagy 
et al. 2015). Increased levels of ROS are a key factor involved in the pathogenesis 
of type 2 diabetes, and oxidative stress is thought to promote pancreatic β-cell dys-
function and contribute to type 2 diabetes. On the contrary, recent studies have 
shown that β-cells have the capacity to detoxify hydrogen peroxide through a thio-
redoxin reductase-dependent mechanism and are not as sensitive to oxidative dam-
age as was previously thought (Stancill et al. 2019).
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5.5.3  �Role of Peroxisomes in Cancer

There are many reports on peroxisomal function in cancer. Some of them show 
decreased peroxisomal function in many tumors, whereas others show the require-
ment of peroxisomal function for efficient tumor growth. These contradictory find-
ings might be a result of tumor heterogeneity (Islinger et al. 2018). Recent studies 
revealed that the overexpression of a tumor suppressor, phospholipase A/acyltrans-
ferase (PLA/AT)-3, inhibited the binding of PEX19 to peroxisomal membrane pro-
teins, resulting in the specific disappearance of peroxisomes and decrease in levels 
of plasmalogen. PLA/AT-3 inhibited the binding of PEX19 to various peroxisomal 
membrane proteins, such as PEX3 and PEX11β (see Fig. 5.1), which suggested that 
PLA/AT-3 may be involved in a novel regulatory mechanism of peroxisomal bio-
genesis (Uyama et al. 2015). Moreover, Asare et  al. found that the imbalance in 
epidermal differentiation resulting from PEX11β deficiency and peroxisome mislo-
calization in mitosis was caused by the inability of basal stem cells to orient their 
spindle perpendicularly to the underlying basement membrane (Asare et al. 2017). 
Further studies on the metabolic function, proliferation, and division of peroxi-
somes in cells might elucidate their role in cancer development and proliferation by 
clarifying the dynamics of organelles in cell growth and differentiation.
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