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Abstract Inthepresentarticle, we consider the g-analogue of generalized Bernstein—
Kantorovich operators. For the proposed operators, we studied some convergence
properties by using first- and second-order modulus of continuity.
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1 Introduction

In the year 1912, Bernstein [5] introduced the Bernstein operators and provided the
constructive proof of Weierstrass theorem. Later, several researchers have general-
ized Bernstein operators using different parameters and studied various convergence
properties. For more (see [6, 7, 16]).

Recently, Chen et al. [7] defined a family of Bernstein operators, for the functions
f €10, 1], ais fixed and n € N are as follows:

BO(fix) =Y fir\) ). (1.1)

k=0

where fi = f (). For n > 2 the a-Bernstein polynomial p.% (x) of degree n is

defined by

P =1—x, pT(x) =x,
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and

PR(x) = [(n;2>(1 —a)x + (Z:;)(l —a)(l—x)

+ (Z) ax (1 — x)i| KA =) xeo,1].

For the first time in 1987, Bernstein operators based on g-integers were introduced
by Lupas [12] and they are rational functions. Again in 1997, Phillips [14] introduced
the g-Bernstein polynomials known as Phillips g-Bernstein operators. In past decade,
linear positive operators based on g-integers is an active area of research. For more
(see [4, 8, 11]).

Chai et al. [8] have considered the g-analouge of (1.1) is as follows:

BENf3x) =) fibya (), (12)
k=0

where

pr(:v;,k(x) :([ﬂ ; 2:| 1—-a)x+ [Z : ;] (1—a) qn,k,z (1 _ qnfk—lx)
1 q

+ [Zi| ax (1 — q”klx)) K — x)ka*l,
q

g € (0,1]and f, = f (%) For detailed explanation (see [3]).
Dhamija et al. [10] proposed the Kantorovich form of modified Szdsz—Mirakyan
operators. Several researchers have also studied Kantorovich form of different lin-
ear positive operators and established local and global approximation results. More
details (see [1, 2, 13, 15]).
Mohiuddine et al. [13] proposed the Kantorovich form of the operators (1.1),
which is given as

; (k+1)/(n+1)
KO0 =0+DY plle / Fydt, (1.3)
k=0 k/(n+1)

where p{) (x) is defined in (1.1).
For a = 1 and ¢ = 1 the operators (1.4) reduces to Bernstein—Kantorovich oper-
ators.
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Motivated from the above stated work, we consider the g-analogue of the operators
(1.3) as follows:

[k+l]q
n [n+1]g
KO(fix) =[n+11, ) py (%) f f(0)dyt, (1.4)
k=0 qlk]
q
[n+1]g

and p{°)  (x) is given in (1.2).

In this paper, we estimated the moments of the proposed operators and discuss
the rate of convergence using modulus of continuity.

2 Basic Results

In this section, we prove some auxiliary result to prove our main results.

Lemma 2.1 From [8), we have B\®)(1; x) = 1, B{*)(t; x) = x and

B2 x) = 2+x(1—x) (I —-a)q" 1[2]‘1)6(1 —x)

e [n], [n;

Lemma 2.2 (i) K\%(1;x) =1;

.. ((y) _ 2qIn], 1 .
(it) K, x) = o1, [n+1],,x + [2]q[n+1]q

a 3q2[n]2 n—
(iii) Ky x) = [3]q[n+1]2x MED [n+1]2 (Inly + (1 = )g"~'121,) x(1 — x)

3qln],x

+ 131, [n+11; + [3]q[n+1]-
[k+11g et
n+1lg | [n+1lg 2qlk]
= T — q
Proof From [15], q[kfh, ld,t = TR q{{q td,t = LT + [2],,[n+1]2 and
T+l T
[k+11g
[n+qu
2 3¢” LK1, 341k, |
t°dyt = ; ' 5
alklg Blyln+11;  Blyln+11; Bl [n+1]
[»x+qu

It is easy to say that K% (1; x) = 1.
For f(t) =t and using Lemma?2.1, we have
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[k+1]g
[n+1lq

K\ (15 x) = n—i—l]qZp(a)k(x) / td,t

qlklq
[n+11q

2q[k] 1
(@) q
Zp"“ ([2]q[n+ 0 2 1],3)

_n]y 29 K ]q 1 —~ (@
I+ 1], ([2],, ,; PraaC g 21, P 0””"( o
_ 2g[n]yx + 1

S [2ln+ 11,

Similarly, for f(t) = t?, we can estimate. So here we skip. ([

Lemma 2.3 The central moments for the operators (1.4) are as follows:

(@) . 2q[nl, 1 :
(i) Kyt =% = g, * ¥ @we,

. (@ ((r _ 2. o _ (3970 4qn], 2
(ii) Kyq((t = x)% %) = ([3Jq[n+f]3 2o, T 1)

3q° n—1 3q[n], 2
+ [3]11[3+1]q (["]q + 21,1 — g )x(l —x)+ <[3|,,[n+1]g - [3|q[n+11‘,) X

__ 1
T B,

Proof Using linearity property of the operators (1.4) and Lemma?2.2, we get the
required results. (]

Lemma 2.4 Let0 < g < landc € [0, qd], d > 0. Then the inequality

1
2 d 2

d d
f |t — x|d,t < f(t —x)2d,t /dqt
Proof For the proof of the Lemma (see [15]). ]

3 Main Results

Let C[0, 1] be the space of all continuous functions on [0, 1] with sup-norm || f|| :=
Sup,cpo.17 | f ()] Let f € C[0, 1]and 6 > 0. Then the modulus of continuity w (£, 9)
is given as:
w(f, )= sup [f(v) — fw)].
lv—w| <0
v,w € [0, 1]



Q-Analogue of Generalized Bernstein—Kantorovich Operators 71

It is well-known %irr(l)w(f; 0) = 0. For f € C[0, 1] and x, ¢ € [0, 1], we have

t —
70 - i =eirin (141550 G.1)
For f € C[0, 1] the Peetre K-functional is given by

Ky(f:0) = inf {If —gl+6|g"|}.
gew?

where § > 0and W2 = {g € C[0,1]: ¢/, ¢" € C[0, 1]}. In [9], there exists an abso-
lute constant A > 0, such that

K>(f30) < dwa(f: V). (3.2)
and the second-order modulus of continuity w;(.; d) for f € C[O0, 1] as follows:

wa(f30) = sup sup

Sup NfG 420 =2f(x +h) + f0)].

x,x+h,x+2hel0,1

Theorem 3.1 For0 < q <1, g = {qg,} be a sequence converging to 1 as n — oo.
Then, for all f € C[0, 1] and o € [0, 1], it implies K,(l‘fq)(f; Xx) converges to f(x)
uniformly on [0, 1] for sufficiently large n.

Proof From Lemma2.2,lim,_ o g, = 1, we have lim,,_, o K,Ef’q)(l; x) = 1,lim,_ o0
K ,E“q) (t; x) = xandlim,_, o K ,S“q) (?; x) = x2. Then by Bohaman—Korovkin theorem
lim,,_s o0 K,gaq) (f(@®); x) = f(x) converges uniformly on [0, 1]. O

Theorem 3.2 For f € C[0, 1], g € (0, 1) and « € [0, 1], we have

|KS(fix) = fFO)] < Awn <f; \/uz,zoc) + uZ,lz(x)> +w(fswl (),

where ,uz,z(x) and qul(x) are second- and first-central moments of the operators
(1.4).

Proof We define an auxiliary operators

2q[n +1];x +1

o (@) ¢ £. — g@r. _
Kn,q (fix) = K'NI (fix) = f ( [2],[n + 1],

) + f(x). (3.3)

For the operators K ,(l“q) (.; x), we get

K —xix)=0. (34
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Suppose, g € W2, x,t € [0, 1]. Then by Tylor’s expansion, we have
t
90 =900+ (=g @) + [ @ =g @
Applying K ,ff“q)(.; x) in above equation, we have

t
K{(g:x) = g(x) + K\ / (t —u)g (wdu; x
X
Therefore,

t
K x)—g(x)\ < |k / (t —u)g" (u)du; x
X

2q[n+1]gx+1
1214 [n+1]q

2g[n +1],x + 1 " ]
[ G ) e

X

t
<K f|r—x|g”<u>du;x
X

2ln+1]gx+l
g n+1g

A/

X

2g[n + 1],x + 1 :
@ (s _ 2. e S "
< [Kn,q«r %) ,x>+< Tt T, x) ] lg"]-

2q[n +1],x + 1
[2]4[n + 1],

_u‘ lg" (x)|du; x

(3.5)
From (3.3), we have
K x) < IFIJ K (L x) + 201 =31£1l- (3.6)

From (3.3), (3.5) and (3.6), we have
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K (fx) = f| < KO =g 0|+ 1f — gl

2q[n+1]qx+1> B
| ( T EST A

<417 =gl + (00 + uf @)

(Zq[n +1],x +1

HANNTRTEST)

) -

73

Now taking infimum on the right-hand side of the above inequality over g € W2, we

get
< 4K (3 @)+ 20) 0 (3 4, ()

From (3.2), we get

|KS(f5x) = F(0)] < dwn (f; \/MZ,Z(x) + uZ,lz(x)> +w(fiwl ().

Hence, this is our required result.

O

Theorem 3.3 Let g, € (0, 1) be a sequence converging to 1 and « is fixed. Then for

f € C[0, 1], we have
|K©(f12) = f(0)] < 2w(f 6, (x)),

where 6,(x) = (K,Eflq)((f —-x)% x))%.

Proof For nondecreasing function f € C[0, 1]. Using linearity and monotonicity of

K%, we have

K (fr0) = )] < K9 (@) = fF@)]50)
1.
<w(f;0) (1 + - K (It — x]; x))

0
. L qlkl, k1)
Applying Lemma2.4 with ¢ = m dd = o +1]Z , we get
[k+11g
[n+1]g

+1l, @
K (f5x) = fF0)] < w(fix) 1+%2p;g,k@) f (t — x)%dt
k=0

<

[Klg
Flg

E]
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[k+1]g 2
[/x+qu

X / dgt

qlkly

ntTlg

Using Holder’s inequality for sums, we have

k+1lg p
n [n+1lg
1 a
=w(f;x){31+ 5 [n+ 1], Zp,(l’;’k(x) / (t — x)qut
k=0 alklg
n+1lg
Ik+1]g 3
n [/x+qu
x | [n+1], prf;’k(x) / dyt
k=0 alklg
n+1ly
L 2 3
=w(f;x){1+ S(Kn’q((t —x)%x)% .
By choosing § = 4, (x), we get the required result. O
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