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Abstract In this paper, we introduce, analyze, and obtain some features of a new
type ofBernstein–Chlodowsky operators using a different technique that is utilized as
the classical Chlodowsky operators. These operators preserve the functions exp (μt)
and exp (2μt), μ > 0. As a first result, the rate of convergence of the operator using
an appropriately weighted modulus of continuity is obtained. Later, Quantitative-
Voronovskaya type and Grüss–Voronovskaya type theorems for the new operators
are presented. Then, we prove that the first derivative of the Bernstein–Chlodowsky
operators applied to a function converges to the function itself. Finally, the variation
detracting property of the operators is presented. It is proved that the variation semi-
norm property is preserved. Also, it is shown that the operators converge to f/ expμ

in variation seminorm is valid if and only if the function is absolutely continuous.
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1 Introduction

Recall that the classical Bernstein–Chlodowsky operator Cn defined from
C [0,∞) → C [0,∞) is given by

Cn f (x) =
n∑

k=0

f

(
kbn
n

)(
n

k

)(
x

bn

)k (
1 − x

bn

)n−k

, x ∈ [0, bn] (1.1)

where f is a function defined on [0,∞) and bounded on every finite interval [0, bn] ⊂
[0,∞)with a certain rate, and bn is amonotone increasing, positive and real sequence
such that lim

n→∞ bn = ∞ and lim
n→∞

bn
n = 0.

The classical Bernstein–Chlodowsky polynomials were introduced by I.
Chlodovsky in 1937 as a generalization of the Bernstein polynomials. Note that
the case bn = 1, n ∈ N, in Eq.1.1, defines an approximation to the function f on the
interval [0, 1] (or, suitably modified on any fixed finite interval [−b, b] ).

For b > 0, let M (b; f ) := sup
0≤t≤b

| f (t)|. It is shown by Chlodowsky that when

f ∈ C [0,∞) and lim
n→∞ M (b; f ) exp

(
−σn

bn

)
= 0 for each σ > 0, then the classical

Bernstein–Chlodowsky operator converges to f (x) at each point where f is contin-
uous. Chlodovsky also showed that the simultaneous convergence of the derivative
(Cn f )

′
(x) to f

′
(x) at points x, where the derivative of f (x) exists, a result taken up

byButzer [4, 5].Due to these two former results, the classical Bernstein–Chlodowsky
operators and their generalizations have been an increasing interest in the field of
approximation theory.

During the paper, μ > 0 is a fixed real parameter and expμ represents the expo-
nential function defined by expμ (t) = eμt .

Herein, we consider a generalization of Bernstein–Chlodowsky operators of the
form

Cn f (x) =
n∑

k=0

αn,k (x) f

(
kbn
n

)
pn,k (an (x)) , x ∈ [0, bn] (1.2)

αn,k (x) = eμxe− μkbn
n and pn,k (x) =

(
n

k

)(
x

bn

)k (
1 − x

bn

)n−k

with the property that

Cn(expμ; x) = eμx , Cn(exp2μ; x) = e2μx . (1.3)

Then, the operator Cn is more explicitly given by

Cn f (x) = eμx
(
e

μbn
n − 1

)−n n∑

k=0

f

(
kbn
n

)(
n

k

)
e− μkbn

n

(
e

μx
n − 1

)k (
e

μbn
n − e

μx
n

)n−k
,

(1.4)
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with

an (x) = bn
e

μx
n − 1

e
μbn
n − 1

.

Note that the connection of this operator with the classical Bernstein–Chlodowsky
operator can be expressed as

Cn f (x) = f0 (x)Cn ( f/ f0) (an (x)) , f0 (x) = eμx . (1.5)

Namely,

f0 (x)Cn

(
f

f0

)
(an (x)) = eμx

n∑

k=0

(
f

f0

)(
kbn
n

)(
n

k

)(
an (x)

bn

)k (
1 − an (x)

bn

)n−k

= eμx
n∑

k=0

f
( kbn

n

)

f0
( kbn

n

) pn,k (an (x))

= eμx
n∑

k=0

f
( kbn

n

)

eμ kbn
n

pn,k (an (x))

= eμx
n∑

k=0

e−μ kbn
n f

(
kbn
n

)
pn,k (an (x))

=
n∑

k=0

eμxe−μ kbn
n f

(
kbn
n

)
pn,k (an (x))

=
n∑

k=0

αn,k (x) f

(
kbn
n

)
pn,k (an (x))

= Cn f (x) .

Also note that the Bernstein–Chlodovsky operators Cn , based on functions defined
on [0,∞), are bounded on every [0, bn] ⊂ [0,∞) with a certain rate. Thus, they
are a very natural polynomial process in approximating unbounded functions on the
unbounded infinite interval [0,∞); but this approximation process is not so easy to
handle.

We know that the classical Bernstein–Chlodowsky operators have the degree of
exactness one, that is, they preserve the monomials 1 and x . On the other side, the
operator (1.4) does not preserve 1 and x , but it satisfies the exponential moments
(1.3) that play an important role in our calculations.

The aim of the present paper is to investigate the operators Cn , n ∈ N in deeper
to reveal, in addition to elementary properties, their advanced properties. Moreover,
the development of the some theoretical results of the generalized operator is within
the aim of the paper. After Voronovskaya type theorems for the generalized operator
is stated , it is compared to the classical Bernstein–Chlodovsky operators in terms of
effectiveness. For this purpose, the convergence of the derivative (Cn f )′

(x) to f
′
(x)
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is also considered. Finally, in the last section, the variation detracting property of
the operators and variation seminorm property is stated. Moreover, it is proved that
the operators converge to f/ expμ in variation seminorm is valid if and only if the
function is absolutely continuous.

2 Preliminary Results

For the operator Cn , n ∈ N, we give here some of their properties and results. At first,
we calculate all the moments of operator (1.4).

Lemma 1 For each n ∈ N and x ∈ [0, bn], the following identities hold:

Cne0 (x) = eμx−μbn
(
e

μbn
n + 1 − e

μx
n

)n
,

Cn(exp3μ; x) = eμx
(
e

μx
n

(
e

μbn
n + 1

)
− e

μbn
n

)n
,

Cn(exp4μ, x) = eμx
(
e

μbn
n

(
e

μx
n − 1

) (
e

μbn
n + 1

)
+ e

μx
n

)n
.

Using Mathematica, we give two limits, which play an important role in both
the uniform approximation of operator to functions and Voronoskaya type result.

For each x ∈ (0,∞), we shall consider the function expμ,x , defined for t ∈ (0,∞)

by
expμ,x (t) = eμt − eμx .

Using Lemma 1 and (1.3) , one easily finds that

Cn(expμ,x ; x) = Cn(expμ; x) − eμxCne0 (x)

= eμx (1 − Cne0 (x)) (2.1)

and

Cn(exp2μ,x ; x) = Cn(exp2μ; x) − 2eμxCn(expμ; x) + e2μxCne0 (x)

= e2μx (Cne0 (x) − 1) . (2.2)

Lemma 2 For each x ∈ [0,∞) , the following identities hold:

lim
n→∞ Cne0 (x) = lim

n→∞ eμx−μbn
(
e

μbn
n + 1 − e

μx
n

)n = 1, (2.3)

lim
n→∞ n (Cne0 (x) − 1) = lim

n→∞ n
(
eμx−μbn

(
e

μbn
n + 1 − e

μx
n

)n − 1
)

= μ2x, (2.4)
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and
lim
n→∞ n2Cn(exp4μ,x ; x) = 0.

3 Quantitative Results

All concepts mentioned below can be found in [7] more generally. We denote by
Cμ [0,∞) the space of continous functions f ∈ C [0,∞) with the property that
exists M > 0 such that | f (x)| ≤ Meμx , for every x ∈ [0, bn] . This space endowed
with norm

‖ f ‖μ = sup
x∈[0,bn ]

| f (x)|
eμx

.

Also,

Ck
μ [0,∞) :=

{
f : f ∈ Cμ [0,∞) and lim

x→∞
| f (x)|
eμx

= k, k is constant.

}
.

For f ∈ Ck
μ [0,∞) we use the following modulus of continuity:

�μ ( f ; δ) = sup
x,t∈[0,bn ]

|eμt−eμx |≤δ

| f (x) − f (t)|
[|eμt − eμx | + 1] eμx

.

In [7], the authors proved the most general form of the following lemmas.
In the following, we give the main properties of the modulus of continuity.

Lemma 3 ([7]) If f ∈ Cμ [0,∞) and λ > 0, then

�μ ( f ;λδ) ≤ (1 + λ) (1 + δ)�μ ( f ; δ) .

holds for every δ > 0.

Lemma 4 ([7]) For δ > 0, f ∈ Cμ [0,∞) and x, t ∈ [0, bn] , the inequality

| f (t) − f (x)| ≤ 2eμx (1 + δ)2

(
1 +

(
eμx − eμt

)2

δ2

)
�μ ( f ; δ)

holds.

Lemma 5 ([7]) For any f ∈ Ck
μ [0,∞) , we have

lim
δ→0

�μ ( f ; δ) = 0.
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Quantitative approximation theorems for sequences of linear positive operators
play an important role not only in approximating functions, but also in estimating
the error of the approximation. One of the most important convergence results in
approximation theory is the Voronovskaya theorem. Roughly speaking, it is obtained
to describe the rate of pointwise convergence.

Moreover, the other results presented in this paper are a quantitative-Voronovskaya
type and a Grüss–Voronovskaya type theorems for the new operators. For more
details, see [1]. Recently, Gal and Gonska obtained a Voronovskaya type theorem
with the aid of Grüss inequality for Bernstein operators in [8] and called it Grüss–
Voronovskaya type theorem. In this paper, we extend some of these results for our
operators Cn .

First, in the following theorem, we give quantitative type theorem for our operator
Cn:
Theorem 1 For f ∈ Ck

μ [0,∞) and x ∈ [0, bn], we have

|Cn f (x) − f (x)| ≤ 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)

+ f (x) |(Cne0 (x) − 1)| .

Proof Suppose that δ < 1. Using Lemma 3, 4 and (2.2) , we have

|Cn f (x) − f (x)|

≤ 2eμx (1 + δ)2
(
Cne0 (x) + 1

δ2
Cn
(
exp2μ,x ; x

))
�μ ( f ; δ) + f (x) |(Cne0 (x) − 1)|

≤ 8eμx (1 + Cne0 (x))�μ

(
f ;
√
Cn
(
exp2μ,x ; x

))
+ f (x) |(Cne0 (x) − 1)|

≤ 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)
+ f (x) |(Cne0 (x) − 1)| .

�

We have that our operator has a different approach charecteristics

Remark 1 If in the previous theorem, we assume

δ2 = λn (x) := (Cne0 (x) − 1) ,

then the estimate reads as

|Cn f (x) − f (x)| ≤ f (x)λn (x) + 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)
.

Hence, velocity of convergence of Cn f (x) to f (x) is managed by the velocity of
convergence of Cne0 (x) to e0 (x) = 1, or equivalently, the one of λn (x) to 0, and
this is given by the undermentioned limit, that can be easily computed by elementary
calculus.
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lim
n→∞ n (Cne0 (x) − 1) = lim

n→∞ nλn (x)

= lim
n→∞ n

(
eμx−μbn

(
e

μbn
n + 1 − e

μx
n

)n − 1
)

= μ2x .

Now, we state quantitative-Voronovskaya type theorem for Cn:
Theorem 2 If f ∈ Ck

μ [0,∞) and x ∈ (0, bn), then we get

∣∣∣∣Cn f (x) − f (x) − (Cne0 (x) − 1)

(
f (x) − 3

2
μ−1 f

′
(x) + 1

2
μ−2 f

′′
(x)

)∣∣∣∣

≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ .

Proof By Taylor’s theorem, we have

f (t) = (
f ◦ logμ

) (
eμt )

= (
f ◦ logμ

) (
eμx )+ (

f ◦ logμ

)′ (
eμx ) expμ,x (t) + 1

2

(
f ◦ logμ

)′′ (
eμx ) exp2μ,x (t)

+h (x, t) exp2μ,x (t) ,

where

hx (t) := h (x, t) =
(
f ◦ logμ

)′′ (
expμ

)
(ξ) − (

f ◦ logμ

)′′ (
expμ

)
(x)

2

with ξ a number between x and t. Applying the operator Cn to both side of above
inequality, we get

Cn f (x) = Cne0(x) f (x) + (
f ◦ logμ

)′ (
eμx ) Cn

(
expμ,x ; x

)+ 1

2

(
f ◦ logμ

)′′ (
eμx ) Cn

(
exp2μ,x ; x

)

+Cn
(
hx exp

2
μ,x ; x

)
.

Using Lemma 4 and the fact that
∣∣eμξ − eμx

∣∣ ≤ ∣∣eμt − eμx
∣∣ , then we can write

|h (x, t)| ≤ eμx (1 + δ)2

(
1 +

(
eμξ − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)

≤ eμx (1 + δ)2

(
1 +

(
eμt − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Suppose that δ < 1. Thus, we can write
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|h (x, t)| ≤ 4eμx

(
1 +

(
eμt − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Multiplying this relation with exp2μ,x and applying the operator Cn, we get

Cn
(
hx exp

2
μ,x ; x

)
≤ 4eμx

(
Cn
(
exp2μ,x ; x

)
+ 1

δ2
Cn
(
exp4μ,x ; x

))
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

(3.1)
Using (2.1) and (2.2), we get

Cn f (x) − f (x) = f (x) (Cne0 (x) − 1) + (
f ◦ logμ

)′ (
eμx
)
eμx (1 − Cne0 (x))

+ 1

2

(
f ◦ logμ

)′′ (
eμx
)
e2μx (Cne0 (x) − 1)

+ Cn
(
hx exp

2
μ,x ; x

)
.

We know that, since

(
f ◦ τ−1

)′ = (
f ′ ◦ τ−1

) (
τ−1

)′

and (
τ−1

)′
(τ (t)) = 1

τ ′ (t)
,

we have
(
f ◦ τ−1

)′
(τ (t)) = f ′ (t)

τ ′ (t)
.

Also since

(
f ◦ τ−1

)′′ = (
f ′′ ◦ τ−1

) ((
τ−1

)′)2 + (
f ′ ◦ τ−1

) (
τ−1

)′′

and
d

dt

((
τ−1

)′
(τ (t))

)
= (

τ−1
)′′

(τ (t)) τ ′ (t) = − τ
′′
(t)

(τ ′ (t))2
,

we get
(
f ◦ τ−1

)′′
(τ (t)) = f

′′
(t)

(τ ′ (t))2
− f ′ (t)

τ
′′
(t)

(τ ′ (t))3
.

Therefore, since (
f ◦ logμ

)′ (
eμx
) = e−μxμ−1 f

′
(x)

and (
f ◦ logμ

)′′ (
eμx
) = e−2μx

(
μ−2 f

′′
(x) − μ−1 f

′
(x)
)

,
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we can write
∣∣∣∣Cn f (x) − f (x) − (Cne0 (x) − 1)

(
f (x) − 3

2
μ−1 f

′
(x) + 1

2
μ−2 f

′′
(x)

)∣∣∣∣

≤ 4eμx

(
Cn
(
exp2μ,x ; x

)+ 1

δ2
Cn
(
exp4μ,x ; x

))
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)

= 4eμxCn
(
exp2μ,x ; x

)
(
1 + 1

δ2
Cn
(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)
)

�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Choosing δ =
√

Cn(exp4μ,x ;x)
Cn(exp2μ,x ;x) , we have desired result. �

Later, we express quantitative-Grüss–Voronovskaya type theorem for Cn:
Theorem 3 If f ,g ∈ Ck

μ [0,∞) , then for all x ∈ [0, bn] and n ∈ N we have

n
∣∣∣Cn( f g)(x) − Cn f (x)Cng(x) − x f

′
(x) g

′
(x) (Cne0 (x) − 1) + μ2x f (x) g (x) (Cne0 (x) − 1)

∣∣∣

≤ Gn (Cn, ( f g) ; x) + ‖ f ‖μ e
μxGn (Cn, g; x) + ‖g‖μ e

μxGn (Cn, f ; x) + nIn ( f ) In (g) ,

where

Gn (Cn, f ; x) := 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

and

In ( f ) :=

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ
eμx

2

{
Cn
(
exp2μ,x ; x

)
+
√
Cn
(
exp4μ,x ; x

)}
+ 2μ−1 f

′
(x) |1 − Cne0 (x)| .

Also, Gn (Cn, g; x), Gn (Cn, ( f g) ; x), and In (g) are the analogous one.

Proof For x ∈ [0,∞) and n ∈ N, it is easily seen that we can write

Cn( f g)(x) − Cn f (x)Cng (x) − x f
′
(x) g

′
(x) (Cne0 (x) − 1) + μ2xg (x) f (x) (Cne0 (x) − 1)

=
[
Cn( f g) (x) − ( f g) (x) − (Cne0 (x) − 1)

(
μ2x ( f g) (x) − 3

2
μx ( f g)

′
(x) + 1

2
x ( f g)

′′
(x)

)]

− f (x)

[
Cng (x) − g (x) − (Cne0 (x) − 1)

(
μ2xg (x) − 3

2
μxg

′
(x) + 1

2
xg

′′
(x)

)]

−g (x)

[
Cn f (x) − f (x) − (Cne0 (x) − 1)

(
μ2x f (x) − 3

2
μx f

′
(x) + 1

2
x f

′′
(x)

)]

+ [g (x) − Cng (x)] [Cn f (x) − f (x)]

= I1 + I2 + I3 + I4.
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So, we get

∣∣∣Cn ( f g) (x) − Cn f (x) Cng (x) − x f
′
(x) g

′
(x) (Cne0 (x) − 1) + μ2xg (x) f (x) (Cne0 (x) − 1)

∣∣∣

≤ |I1| + |I2| + |I3| + |I4| .

By Theorem 2, we have the estimates

|I1| ≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝(( f g) ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ ,

|I2| ≤ ‖ f ‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝(g ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

and

|I3| ≤ ‖g‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ .

On the other hand, since f ∈ Ck
μ [0,∞) we write

Cn ( f ; x) − f (x) = (
f ◦ logμ

)′ (
eμx ) Cn

(
expμ,x ; x

)+ 1

2
Cn
((

f ◦ logμ

)′′ (
eμξ
)
exp2μ,x ; x

)

and so we get

|Cn ( f ; x) − f (x)| ≤ μ−1 f
′
(x) |1 − Cne0 (x)| + 1

2
Cn
((

f ◦ logμ

)′′ (
eμξ
)
exp2μ,x ; x

)

≤ μ−1 f
′
(x) |1 − Cne0 (x)| +

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ

1

2
Cn
(
eμξ exp2μ,x ; x

)

where ξ is a number between t and x . If t < ξ < x , then eμξ ≤ eμx . In this case, we
have

|Cn ( f ; x) − f (x)| ≤

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ
eμx

2
Cn
(
exp2μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)|

or if x < ξ < t , then eμξ ≤ eμt . In this case, with the help of Hölder’s inequality, we
get
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|Cn ( f ; x) − f (x)| ≤

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ

2
Cn
(
expμ exp2μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)|

≤

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ

2
Cn
(
exp2μ; x

) 1
2 Cn

(
exp4μ,x ; x

) 1
2 + μ−1 f

′
(x) |1 − Cne0 (x)|

=

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ
eμx

2

√
Cn
(
exp4μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)| .

Hence, we gain for two cases of ξ that

|Cn ( f ; x) − f (x)| ≤

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ
eμx

2

{
Cn
(
exp2μ,x ; x

)+
√
Cn
(
exp4μ,x ; x

)}

+2μ−1 f
′
(x) |1 − Cne0 (x)| := In ( f ) .

A similar reasoning yields |Cn (g; x) − g (x)| ≤ In (g). Therefore we get

n
∣∣∣Cn ( f g) (x) − Cn f (x) Cng (x) − x f

′
(x) g

′
(x) (Cne0 (x) − 1)

+μ2xg (x) f (x) (Cne0 (x) − 1)
∣∣

≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝(( f g) ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+‖ f ‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝(g ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+‖g‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+nIn ( f ) In (g) ,

as desired. �

Theorem 4 For each n ∈ N and x ∈ [0,∞), we have

lim
n→∞

(
Cn f
expμ

)′
(x) =

(
f

expμ

)′
(x) .

Proof Using (1.5), we obtain
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(
Cn f
expμ

)′
(an (x)) =

(
Cn

(
f

expμ

)
(x)

)′

=
[

n∑

k=0

(
f

expμ

)(
kbn
n

)
pn,k (an (x))

]′

= a′
n (x)

an (x)
(
1 − an(x)

bn

)
n∑

k=0

(
f

expμ

)(
kbn
n

)

×pn,k (an (x))
n

bn

(
kbn
n

− an (x)

)
. (3.2)

First, we take into account the case x = 0.
From (3.2), we have

(
Cn f
expμ

)′
(an (x)) = −

(
f

expμ

)
(0) na′

n (x)

(
1 − an (x)

bn

)n−1

+
(

f

expμ

)(
bn
n

)
na′

n (x)

(
1 − n

an (x)

bn

)(
1 − an (x)

bn

)n−2

n∑

k=2

(
f

expμ

)(
kbn
n

)(
n

k

)
a′
n (x)

(
k − n

an (x)

bn

)(
an (x)

bn

)k−1

×
(
1 − an (x)

bn

)n−k−1

.

For x = 0, because of an (x) = 0, we get

(
Cn f
expμ

)′
(0) = −na′

n (x)

(
f

expμ

)
(0) + na′

n (x)

(
f

expμ

)(
bn
n

)

= a′
n (x)

(
f

expμ

) ( bn
n

)−
(

f
expμ

)
(0)

1
n − 0

.

If the limit of both sides is taken above equality, then we obtain

lim
n→∞

(
Cn f
expμ

)′
(0) =

(
f

expμ

)′
(0) .

Now, let’s x > 0.
We consider the following function:
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λx (t) =
(

f
expμ

◦ logμ

) (
eμt
)−

(
f

expμ
◦ logμ

)
(eμx )

eμt − eμx
−
(

f

expμ

◦ logμ

)′ (
eμx
)
.

In that case, lim
t→x

λx (t) = 0. We get

(
f

expμ

◦ logμ

)
(
eμt ) =

(
f

expμ

◦ logμ

)
(
eμx )+

(
f

expμ

◦ logμ

)′ (
eμx ) (eμt − eμx )

+λx (t)
(
eμt − eμx ) .

If kbn
n is changed instead of t , then we have

(
f

expμ
◦ logμ

)(
eμ

kbn
n

)
=
(

f

expμ
◦ logμ

)
(
eμx

)+
(

f

expμ
◦ logμ

)′ (
eμx

) (
eμ

kbn
n − eμx

)

+λx (t)

(
eμ

kbn
n − eμx

)
.

If this equality is written in (3.2), then we attain

(
Cn f

expμ

)′
(x) = a′

n (x)

an (x)
(
1 − an (x)

bn

)

⎡

⎣
(

f

expμ

)
(x)

n∑

k=0

pn,k (an (x))
n

bn

(
kbn
n

− an (x)

)

+ n

bn

(
f

expμ

)′
(x)

μeμx

n∑

k=0

(
eμ

kbn
n − eμx

)
pn,k (an (x))

(
kbn
n

− an (x)

)

+ n

bn

n∑

k=0

λx (t)

(
eμ

kbn
n − eμx

)
pn,k (an (x))

(
kbn
n

− an (x)

)⎤

⎦

= a′
n (x)

an (x)
(
1 − an (x)

bn

) n

bn

[(
f

expμ

)
(x)Cn (t − an (x) ; an (x))

+
(

f
expμ

)′
(x)

μeμx
Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

)

+Cn
(
λx (t)

(
eμt − eμx

)
(t − an (x)) ; an (x)

)]
.

We know
Cn (t − an (x) ; an (x)) = 0.

We can write

Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

) = Cn
(
teμt − teμx − an (x) eμt + an (x) eμx ; an (x)

)

= Cn
(
teμt ; an (x)

)− eμxCn (t; an (x))

−an (x)Cn
(
eμt ; an (x)

)+ an (x) eμxCn (1; an (x)) .
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Because
Cn
(
teμt ; an (x)

) = an (x) e
μbn+μx(n−1)

n ,

Cn
(
eμt ; an (x)

) = eμx ,

lim
n→∞ an (x) = x

and

lim
n→∞ a′

n (x) = lim
n→∞ bn

μ
n e

μx
n

e
μbn
n − 1

= 1,

we have

lim
n→∞

a′
n (x)

an (x)
(
1 − an(x)

bn

) n

bn

1

μeμx
Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

) = 1.

Now, we use Hölder inequality:

0 ≤ Cn
(
λx (t)

(
eμt − eμx ) (t − an (x)) ; an (x)

) ≤
(
Cn

(
λ2
x (t) ; an (x)

)) 1
2
(
Cn

((
eμt − eμx )2 ; an (x)

)) 1
2
(
Cn

(
(t − an (x))2 ; an (x)

)) 1
2

.

From Korovkin theorem, we know

lim
n→∞Cn

(
λ2
x (t) ; an (x)

) = λ2
x (x) = 0.

As
lim
n→∞Cn

((
eμt − eμx

)2 ; an (x)
)

= 0

and
lim
n→∞Cn

(
(t − an (x))2 ; an (x)

) = 0,

we obtain desired result. �

4 Variation Detracting Property of Bernstein–Chlodowsky
Operators

Thefirst study about the variationdetractingproperty and the convergence in variation
of a sequence of linear positive operators was come out by Lorentz (1953). He proved
that Bn have
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V[0,1] [Bn f ] ≤ V[0,1] [ f ]

and it is called the variation detracting property.
The main purpose of this section is to confirm the variation detracting property

and convergence in the variation seminorm for the Bernstein–Chlodowsky operators.
We firstly give the definitions related to variation detracting property.

Definition 1 ([11]) The least upper bound of the set of all possible sums V is called
the total variation of the function f (x) on [a, b] and is designated by V[a,b] [ f ].

Definition 2 ([2]) The class of all functions of bounded variation on I is called
BV space and denoted by BV (I ). This space can be endowed both with seminorm
|.|BV (I ) and with a norm, ‖.‖BV (I ), where

| f |BV (I ) := VI [ f ] , ‖ f ‖BV (I ) := VI [ f ] + | f (a)| ,

f ∈ BV (I ), a being any fixed point of I .

Definition 3 ([3]) Let I ⊆ R be a fixed integral, and VI [ f ] the total variation of the

function f : I → R. The class of all bounded functions of bounded variation on I
endowed with the seminorm

‖ f ‖T V (I ) := VI [ f ]

is called T V space and is denoted by T V (I ).

Definition 4 ([11]) Let f (x) be a finite function defined on the closed interval [a, b].
Suppose that for every ε > 0, there exists a δ > 0 such that

∣∣∣∣∣

n∑

k=1

{ f (bk) − f (ak)}
∣∣∣∣∣ < ε

for all numbers a1, b1, . . . , an, bn such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and

n∑

k=1

(bk − ak) < δ.

Then the function f (x) is said to be absolutely continuous. The class of all absolutely
continuous function on [a, b] is denoted by AC [a, b].

Now, we give the variation detracting property of the Bernstein–Chlodowsky
operators:

Theorem 5 If f ∈ T V [0, bn], then V[0,bn ]

[
Cn f
expμ

]
≤ V[0,bn ]

[
f

expμ

]
.
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Proof As Cn f
expμ

polynomials are differentiable and their derivatives are integrable, by
[9, 10], the equality

∥∥∥∥∥
Cn f
expμ

∥∥∥∥∥
T V [0,bn ]

= V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
d

dx

Cn
expμ

( f ; x)
∣∣∣∣∣ dx

is implemented. From (1.5), we can write

V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
d

dx

Cn
expμ

( f ; x)
∣∣∣∣∣ dx

=
bn∫

0

∣∣∣∣∣
d

dx

[
Cn

expμ

( f ; an (x))

]∣∣∣∣∣ dx .

By Theorem 3.13 in [6], we get

V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
n

bn

n−1∑

k=0

pn−1,k (an (x)) � bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣ a
′
n (x) dx

≤ n

bn

n−1∑

k=0

bn∫

0

∣∣∣∣∣pn−1,k (an (x)) � bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣ a
′
n (x) dx

= n

bn

n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

bn∫

0

pn−1,k (an (x)) a
′
n (x) dx .

If an(x)
bn

= y is changed, then we have

V[0,bn ]

[
Cn f
expμ

]
≤ n

n−1∑

k=0

(
n − 1

k

) ∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

1∫

0

yk (1 − y)n−k−1 dy.

Now, let’s consider the integral on the left side of the inequality. From definition of
Beta function, we obtain

V[0,bn ]

[
Cn f
expμ

]
≤ n

n−1∑

k=0

(
n − 1

k

) ∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣
1

n
(n−1

k

)

=
n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣
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≤ sup
n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

= sup
n−1∑

k=0

∣∣∣∣∣
f

expμ

(
k + 1

n
bn

)
− f

expμ

(
k

n
bn

)∣∣∣∣∣

= V[0,bn ]

[
f

expμ

]
=
∥∥∥∥∥

f

expμ

∥∥∥∥∥
T V [0,bn ]

.

�

Theorem 6 Let f ∈ T V [0, bn]. There holds

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= 0 ⇐⇒ f

expμ

∈ AC [0, bn] .

Proof Since f
expμ

and Cn f
expμ

∈ AC [0, bn], then
Cn f
expμ

− f
expμ

∈ AC [0, bn]. By Theorem
3.13 and Remark 3.20 in [6], it is written

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= lim
n→∞

∞∫

0

∣∣∣∣∣

(
Cn f
expμ

)′
(x) −

(
f

expμ

)′
(x)

∣∣∣∣∣ dx .

From Theorem 4, it can be seen easily that
(

Cn f
expμ

)′
(x) −→

(
f

expμ

)′
(x) as n → ∞.

Therefore,

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= 0.

Conversely, let lim
n→∞

∥∥∥ Cn f
expμ

− f
expμ

∥∥∥
T V [0,∞)

= 0. This means that Cn f
expμ

−→ f
expμ

in T V

space. Therefore f
expμ

is in AC because of AC is closed. �
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