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Dedicated to Professor Niranjan Singh

“Not everything that can be counted counts, and not everything that counts can be counted”

—Albert Einstein

Mathematics is a game of logic and there was no one better at deciphering it than
Prof. Niranjan Singh—a pioneer in his field with a heart of an innovator. Always
eager to learn and teach, Prof. Singh taught at Kurukshetra University, Haryana,
India, for 32 years, focusing on areas of analysis and related fields. He was
instrumental in the development of innovative and creative culture in a large
number of academic institutions in and around Kurukshetra, thereby bringing a
significant change in the teaching methodologies of postgraduate courses.

Apart from being an exemplary mathematician, Prof. Singh was a dedicated
social reformist. He was a firm advocate for the use of Hindi language, as a result of
which he taught and wrote in Hindi, inspiring its use. Professor Singh authored
many books on mathematics of which Beej Ganit, written in 1979, was awarded the
gold medal by Sahitya Akademi—a national organization dedicated to the
promotion of literature in the languages of India. Insisting on the fact that money
shouldn’t define the caliber of any student, he firmly promoted the optimal
utilization of resources and cost reduction in higher education. His ideology became
his strength and helped many educationalists understand the relevance of an
unerring education system. His journey led him to be the head of Bhartiya Shikshan
Mandal, through which he traveled around India and influenced society.
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Professor Singh is remembered by his peers for his academic excellence, research,
aptitude, dedication to work, human values, and behavior. His will always be an
inspiration to budding professors and mathematicians as he was the embodiment of
everything mathematics.

“Carve your name on hearts, not tombstones. A legacy is etched into the minds of others and

the stories they share about you.”

—Shannon Alder
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Preface

The international conference on “Recent Advances in Pure and Applied
Mathematics 2018 (ICRAPAM-2018)” was organized by the Department of
Applied Mathematics, Delhi Technological University, Delhi, India, during October
23–25, 2018. This international conference was organized in the memory of our
beloved late Prof. Niranjan Singh who worked at the Department of Mathematics,
Kurukshetra University, Haryana, India. Professor Singh, a well-known mathe-
matician, worked in the area of summability analysis and did commendable work
during the time.

The purpose of the conference was to bring together mathematicians from all
over the world working on recent developments in pure and applied mathematics to
present their research, exchange new ideas, discuss challenging issues, foster future
collaborations, and provide exposure young researchers. The proceedings consist of
two volumes, and the first volume is devoted to the papers on approximation theory
and related areas. It is an outcome of the invited lectures and research papers
presented during the conference. It also includes some articles by the invited
speakers, who could not attend the conference, like Prof. Ioan Rasa, Technical
University of Cluj-Napoca, Romania; Prof. Ali Aral, Kirikkale University, Turkey;
Prof. Harun Karsli, Abant Izzet Baysal University, Bolu, Turkey; Prof.
V. Ravichandran, NIT, Tiruchirappalli, India; and Prof. Tarun Das, University of
Delhi, Delhi, India.

A total of 180 research papers were presented by young researchers in diver-
sified areas. To maintain the quality of the work, each of these papers was reviewed
by two carefully chosen global subject experts. Based on their recommendations,
22 papers were selected for inclusion in Volume I of the proceedings.

Papers in the first volume of the proceedings include areas of approximation
theory which cover the estimation of convergence behavior of generalized
Durrmeyer-type operators, Lupas–Kantorovich operators, certain exponential type
operators due to Ismail–May, a-Bernstein–Kantorovich operator, linear operators
based on PED and IPED, and Bernstein–Chlodowsky operators and other gener-
alizations of known operators. Some papers are devoted to the study on fixed point
theory, holomorphic functions, summability theory, and analytic functions, which
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are extended to the topics on iterative approximation, fuzzy setting, uniqueness,
starlikeness, statistical convergence, advances in distributional chaos theory, etc.
The authors of these papers have carefully described the problem and discussed
appropriate methods to obtain the solution.

These proceedings will be a valuable source for young as well as experienced
researchers in mathematical sciences. The keynote speaker was Prof. Margareta
Heilmann, University of Wuppertal, Germany. The plenary speakers were
Prof. Antonio-Jesús López-Moreno, Universidad de Jaen, Spain; Prof. Wutiphol
Sintunavarat, Thammasat University, Rangsit Center, Thailand; and Prof. Voichita
Radu, Babeș-Bolyai University, Cluj-Napoca, Romania. We are thankful to all the
speakers who very kindly accepted our invitation talks in the conference.

We are thankful to all the funding agencies: Science and Engineering Research
Board (SERB), Government of India, New Delhi; Third phase of Technical
Education Quality Improvement Programme (TEQIP-III), Government of India and
Government of NCT, New Delhi, for the partial financial support to make the
conference successful.

We wish to thank Prof. Yogesh Singh, Vice-Chancellor, DTU, Delhi, India, for
his constant encouragement, motivation, guidance, and support. Thanks are also
due to Prof. Anu Lather and Prof. S. K. Garg, Pro-Vice-Chancellors of DTU, Delhi
for their moral support.

We are grateful to the members of the screening committee, registration committee,
publication committee, academic program committee, finance committee, and the
advisory committee who put in a lot of hard work to make this event a huge success.
Special thanks are due to Dr. Nilam and Dr. Sivaprasad Kumar Shanmugam as
co-convenor.

Subject experts from all over the world contributed to the peer-review process.
We express our heartfelt gratitude to them for spending their precious time in
reviewing the papers.

We will have achieved our goal if the readers find this volume useful and
informative for their research. We are thankful to Springer for publishing the
proceedings of the conference.

Thanks to all the research students of the department of applied mathematics,
DTU, especially to Neha, Ram Pratap, Lipi, Nav Shakti Mishra, and Sandeep
Kumar for their hard work during the conference.

New Delhi, India Naokant Deo
New Delhi, India Vijay Gupta
Sibiu, Romania Ana Maria Acu
Roorkee, India P. N. Agrawal
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Expressions, Localization Results, and
Voronovskaja Formulas for Generalized
Durrmeyer Type Operators

Antonio-Jesús López-Moreno

Abstract We present a generalized sequence of Durrmeyer type operators that
allows to summarize different formulas and results for different particular cases.
We show for this sequence, several localization and Voronovskaja type results.

Keywords Durrmeyer type operators · Voronovskaja formula · Higher order
derivative · Linear positive operators

1 Introduction

In 1967, Durrmeyer presented his now famous sequence of linear positive opera-
tors [12]. It immediately attracted the attention of the researchers due to their close
connection to the classical and essential sequence of the Bernstein operators, their
approximation properties, first studied by Derriennic [10], and their useful represen-
tation in terms of inner products and orthogonal polynomials. Since then, a never-
ending list of modifications appeared in the literature. Different authors, with various
purposes, have made use of all kinds of techniques to enlarge the, at this point, a wide
class of what we could call Durrmeyer type operators. From the initial definition by
Durrmeyer, namely

Dn f (x) = (n + 1)
n∑

i=0

pn,i (x)
∫ 1

0
pn,i (t) f (t)dt, pn,i (x) =

(
n

i

)
xi (1 − x)n−i ,

(1)
for an integrable function f : [0, 1] → R and x ∈ [0, 1], different basis functions
were considered in place of pn,i both inside and outside the integral, weighted inte-

This work is partially supported by Junta de Andalucía Research Project FQM-178, by Research
Projects DGA (E-64), MTM2015-67006-P (Spain) and by FEDER founds.

A.-J. López-Moreno (B)
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2 A.-J. López-Moreno

grals and inner products instead of
∫ 1
0 · dt or part of the terms in the sum substituted

with interpolatory ones. This all, apart from the huge list of operators obtained by
composition or the extensions to the multivariate setting and to more general spaces.
Especially, along the last 20 years, the production in this topic has been particularly
intense and thus we have, a wide repertory of papers available where the approxi-
mation properties of many concrete Durrmeyer type modifications are studied. The
structure of the analysis is usually, in each case, similar and after proposing a new
version of Durrmeyer’s sequence; the basic properties of the moments and some dif-
ferentiation expressions for the modified operators are examined and a Voronovskaja
type formula is established as a basic tool to derive direct or inverse results. We have
to say that many times, the same or very similar arguments are repeated in different
articles for every particular Durrmeyer variation. Although it is a fact that a small
modification could make the computations to be completely different, it is also true
that amore unified treatment is possible for some of the items involved in the analysis
of this sort of operators. The aim of this paper is to show that this assertion is partic-
ularly true for the obtention of Voronovskaja type formulas and also for localization
results of the sequences of Durrmeyer type operators.

For a sequence of operators {Ln}n∈N which is an approximationmethod for certain
space of functions, that is to say, Ln f → f for each f in that space, a Voronovskaja
formula is an expression of the type

lim
n→∞ n (Ln f (x) − f (x)) = a1( f, x). (2)

These types of limits are particular cases (for r = 1) of an asymptotic expansion of
order r ∈ N which is a representation for the convergence of the sequence of the
form

Ln f (x) = f (x) +
r∑

i=1

1

ni
ai ( f, r, x) + o(n−r ),

for every x in the domain of the operators. Asymptotic expressions yield a deeper
understanding of the approximation properties of the sequence and are the starting
point to establish direct and inverse results or monotonicity and shape-preserving
properties (elegant examples of how Voronovskaja formulas determine the direct/
inverse results can be found in [5, 6]). Therefore, they are a necessary piece in the
study of a sequence. Moreover, many of the classical operators present properties of
simultaneous approximation, that is to say, the sequence will converge not only for
the function but also for their derivatives. In that case, we need asymptotic expansions
and Voronovskaja formulas also for those derivatives.

Connected with the asymptotic expansions, the localization properties of a
sequence of operators are also a basic tool to analyze the convergence. It is well-
known that, for a certain subinterval I , f |I = 0 does not imply Ln f |I = 0 but in
general, we have a special behavior for the convergence at the points of I and for
instance, since a1( f, x) usually is a differential operator, as a direct consequence of
(2) we have that, for x ∈ I , at least,



Expressions, Localization Results, and Voronovskaja Formulas for Generalized … 3

Ln f (x) = o(n−1).

This is what we call a localization result. A first simple instance can be found in [11]
for the Bernstein operators but many other examples appear in the literature [24].

In this work, we are going to present a generalized Durrmeyer type sequence
that summarizes many of the examples that we find in different papers. For this
general sequence, we show a collection of formulas; we prove localization results
and Voronovskaja type formulas. Some of them are already known for particular
cases but the aim of this paper is to offer a unified approach for this class of operators
at the same time that we also prove some new results and expressions.

The first section will be devoted to present the generalized Durrmeyer operators
that we are going to study and a collection of basic formulas and theorems. In Sect. 2,
wewill prove localization results for the sequence of operators. In Sect. 3, we employ
the results of Sects. 1 and 2 to derive Voronovskaja type formulas. Finally in the last
section, we suggest several ideas to enlarge the class of operators for which our
results are valid.

Notice that throughout the paper, t denotes the identity map t : [0,∞) � x �→
t (x) = x ∈ [0,∞); meanwhile, x is a general fixed point of [0,∞). Therefore, we
will use t to write functional expressions and x for pointwise formulas. Moreover,
for any operator L : E1 ⊆ R

[0,∞) → E2 ⊆ R
[0,∞) and f ∈ E1, L( f ) or L f stand for

the image function for f and L( f )(x) or L f (x) is the evaluation of such a function at
x . Moreover, we will use the following notation for ascending/descending factorial
and generalized factorial numbers

xn = x(x − 1) · · · (x − n + 1), xn = x(x + 1) · · · (x + n − 1),

xα,n = x(x − α) · · · (x − (n − 1)α), xα,n = x(x + α) · · · (x + (n − 1)α),

for any x,α ∈ R and n ∈ N0 = {0, 1, 2, . . .}. Besides, for a sequence {an}n∈N, we
write

an = o(n−∞) whenever an = o(n−r ), ∀r ∈ N.

Finally for r ∈ N0, Pr will stand for the space of polynomials of degree r and D, Dk

are the differential operators of order 1 and k ∈ N, respectively.

2 Durrmeyer Type Operators

Wecanfind in the literature,manygeneralizations of theDurrmeyer sequence of oper-
ators (1) [2, 4, 8, 13, 16, 18, 20, 23, 29]. We are going to consider here a definition
wide enough to include several of the cases studied in the references about this topic.
For this purpose, we will use the generalized sequence of Baskakov/Mastroianni in
its Durrmeyer variant that we show in the following definition.
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Definition 1 For n,α ∈ R and the parameters a ∈ R, b ∈ Z, consider the functions

φ[α]
n (x) =

{
(1 + αx)− n

α , if α 	= 0,

e−nx , if α = 0
and H [α] =

{
[0,∞), if α ≥ 0,

[0,− 1
α
], if α < 0.

Take also

φ[α]
n,i (x) = (−1)i

i ! xi Diφ[α]
n (x), C [α]

n =
∫

H
φ[α]
n (t)dt = 1

n − α
, N [α] = n + a − 2α.

For α1,α2 ∈ R and a locally integrable function f : H [α2] → R, we define the
Baskakov generalized Durrmeyer operators as

Dn,a,b f (x) = 1

C [α2]
n+a

∞∑

i=max{0,−b}
φ[α1]
n,i (x)

∫

H [α2 ]
φ[α2]
n+a,i+b(t) f (t)dt. (3)

As we see from the definition, we actually have Dn,a,b = Dn,a,b,α1,α2 but we will
suppose α1,α2 to be fixed throughout the paper and for the sake of brevity, we will
use the notationDn,a,b. Notice also that n can be any real number although it is usually
taken as a natural one in the definitions for Durrmeyer type operators that we find
in the literature. Many of the computations below are valid for n ∈ R (or at least for
certain subinterval of R) nevertheless, at some points, we will regard it as a natural
number mainly in connection with the convergence properties that we will study
later on. Moreover, inside the space of locally integrable functions on H [α2], we are
going to consider the subclass of functions for whichDn,a,b,α1,α2 is an approximation
process and we denote it by Wα1,α2 = Wα1,α2,a,b. We will assume some properties
of the space Wα1,α2 derived from the properties of the locally integrable functions
and power series; for instance, the fact that f, | f | ∈ Wα1,α2 implies that g ∈ Wα1,α2

whenever |g| ≤ | f |.
We have to take into account that Dn,a,b,α1,α2 will be a linear positive operator

only on H [α1]. For this reason, it will also be convenient at certain points to use the
notation

H [α1,α2] = H [α1] ∩ H [α2].

It is important to take into account that this definition needs several technical
considerations about the spaces of functions and intervals where it acts but we are
not specially interested in these details and we propose this representation with the
aim of summarizing formulas an expressions valid for several cases and therefore,
at some points, it has to be seen only from a formal point of view. The fact is that by
means of it we can offer some unified formulas that are valid for the particular cases;
in particular, the expressions for the moments, central moments, and differentiation
relations.
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Of course, we could introduce even more parameters and we can find in several
works some other proposals in this sense butwith this definition and themodifications
that we study in the following sections, we include an important part of the versions
that we find along the last years in many papers. Therefore, the sequence that we
have just introduced allows to analyze a wide enough class of operators.

Although in the definition we admit b ∈ Z to be negative, in this section, we will
restrict the study to the case b ∈ N0. We will discuss some details of the case b < 0
in the last section since the properties of the sequence vary notably in that case.
Therefore, throughout this section, we assume b ∈ N0.

Let us study the basic properties of this sequence. As we mentioned in the intro-
duction, the usual path starts with the properties of the central moments and differ-
entiation formulas. We summarize in the following results, the identities typically
used to study this type of operators.

Theorem 2 Let us suppose that b ∈ N0.

(i) For f ∈ Wα1,α2 differentiable of order k on H [α2],

Dk
Dn,a,b f = nα1,k

Nα2,k
Dn+kα1,a−k(α1+α2),b+k(D

k f ).

(ii) For f ∈ Wα1,α2 differentiable enough,

Dn,a,b f =
∞∑

k=0

nα1,k

Nα2,k−1

(∫

H [α2 ]
φ[α2]
n+a−kα2,b+k(t)D

k f (t)dt

)
t k

k! .

(iii) For j ∈ N0,

Dn,a,b(t
j ) = 1

Nα2, j

j∑

k=0

nα1,k

(
j

k

)
(b + j)!
(b + k)! t

k .

Where, from now on, for brevity we denote N = N [α2].

Proof For α ∈ R, some basic identities are

Dφ[α]
n,i (x) = n

(
φ[α]
n+α,i−1(x) − φ[α]

n+α,i (x)
)

, (4)

x(1 + αx)Dφ[α]
n,i (x) = φ[α]

n,i (x) (i − nx) , (5)

∫

H [α]
φ[α]
n,i (t)t

j dt = 1

α j+1

(i + j)!
i !

1
(
n
α

− j − 1
) j+1

. (6)

To obtain (i), it is enough to prove the identity for k = 1 and to then iterate the
formula. If we differentiate (3), bymeans of (4), after properly arranging the resulting
sums and indexes, we obtain
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DDn,a,b f (x) = n

C [α2]
n+a

∞∑

i=max{0,−b}
φ[α1]
n+α1,i

(x)
∫

H [α2 ]

(
φ[α2]
n+a,i+b+1(t) − φ[α2]

n+a,i+b(t)
)

︸ ︷︷ ︸
(∗)

f (t)dt.

Now, inside the integral, we use again (4) to transform (∗) into Dφ[α2]
n+a−α2,i+b+1(t)

and then we apply integration by parts. After adjusting the coefficients, we obtain
the formula for the case k = 1. Some little details about the limits of the sums and
integrals depending on α1,α2 need only a basic analysis that is left to the reader.

(ii) can be obtained from a Taylor series for Dn,a,b f using (i) to compute the
values of Dk

Dn,a,b f (0).
Identity (iii) follows from (ii) and (6). �

Theorem 3 Given x ∈ H [α1], let us denote

Vn,s(x) = Dn,a,b
(
(t − x)s

)
(x).

Then

(i) (N − α2s)Vn,s+1(x) = x(1 + α1x)DVn,s(x)

+ sx(2 + (α1 + α2)x)Vn,s−1(x)

− (−b + ax − (s + 1)(1 + 2α2x)) Vn,s(x),

(ii) Vn,s(x) = O(n−[ s+1
2 ]).

Proof By means of basic properties of the integration, we have that

DVn,s(x) = 1

C [α2]
n+a

∞∑

i=max{0,−b}
Dφ[α1]

n,i (x)
∫

H [α]
φ[α2]
n+a,i+b(t) f (t)dt − sVn,s−1(x).

If we multiply both sides of the identity by x(1 + α1x),

x(1 + α1x)
(
DVn,s,0(x) + sVn,s−1,0(x)

)

= 1

C [α2]
n+a

∞∑

i=max{0,−b}
x(1 + α1x)Dφ[α1]

n,i (x)
∫

H [α2 ]
φ[α2]
n+a,i+b(t) f (t)dt.

Then we apply (6) inside the sum after which the coefficient (i − nx) that appears
can be moved inside the integral and written as

(i + b − (n + a)t)︸ ︷︷ ︸
(∗)

+(n + a)(t − x) + (−b + ax) .

Now, for (∗)we again use (6) andwrite the resulting coefficient as t (1 + α2t) = (1 +
2α2x)(t − x) + α2(t − x)2 + x(1 + α2x) andwefinish properly using the definition
of Vn,i (x), i = s − 1, s, s + 1.
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Finally, (ii) can be proved from (i) by means of an standard induction
argument. �

Here, we could stress one main difference between classical interpolatory and
Durrmeyer type operators. If we considered the generalized Baskakov operators
given, for certain α ∈ R, by

Ln f (x) =
∞∑

i=0

φ[α]
n,i (x) f

(
i

n

)
,

we know that in a similar way, we can obtain also expressions for the moments and
centralmoments. But in the case of Ln , the expressions can bewritten as a polynomial
on n−1 in the form

Ln
(
(t − x)s

)
(x) =

s∑

i=[ s+1
2 ]

Ai (x)
1

ni
.

However, such a finite expression is not possible for Durrmeyer type operators and
we need to consider a different non-polynomial basis to express the moments.

Theorem 4 Consider the sequencesni = { 1
Nα,i }n∈N, i = 1, 2, . . ., andn0 = {1}n∈N0 .

Then, for x ∈ H [α1],

(i) Dn,a,b(t j )(x) ∈ span{n0, . . . ,n j },
(ii) Vn,s(x) ∈ span{n[ s+1

2 ], . . . ,ns}.
Proof From Theorem 2-(iii), we know that Nα2, jDn,a,b(t j )(x) is an element of the
space of polynomial on n of degree j for which {(N − λα2)

α2, j−λ}λ=0,..., j is a base
so that, for certain A0, . . . , A j ∈ R, we can write

Nα2, jDn,a,b(t
j )(x) =

j∑

i=0

Ai (N − iα2)
α2, j−i ⇒ Dn,a,b(t

j )(x)

=
j∑

i=0

Ai
(N − iα2)

α2, j−i

Nα2, j
=

j∑

i=0

Ai
1

Nα2,i

which proves (i). Now, for (ii), we only need to consider Newton’s binomial formula
and Theorem 3-(ii). �

3 Localization Results

Aswe know, theDurrmeyer type operators present good simultaneous approximation
properties and we have convergence for the function and their derivatives. In that
case, we can extend the localization properties presented in the introduction in the
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following sense. It is a simple fact (for instance, we can apply Theorem 2-(i)) that for
f ∈ Pk−1, we have that Dk

Dn,a,b f = 0 but we cannot assure the same conclusion
when f is a polynomial only locally on an open subinterval J ⊆ H [α2] (that is to
say, f |J = p ∈ Pk or equivalently Dk f |J = 0), but in that situation we can prove
the following localization result.

Theorem 5 Consider f ∈ Wα1,α2 , of polynomial growth and differentiable of order
k on H [α2] such that Dk f |J = 0 for an open subinterval J of H [α1,α2]. Then, for any
x ∈ J ,

Dk
Dn,a,b f (x) = o(n−∞).

Proof For any even r ∈ Nbig enough,we canfind Kr > 0 such that
∣∣Dk f

∣∣ ≤ Kr (t −
x)r . Now by means of Theorem 2-(i), we have

∣∣Dk
Dn,a,b f (x)

∣∣ = nα1,k

Nα2,k

∣∣Dn+kα1,a−k(α1+α2),b+k(D
k f )(x)

∣∣

≤ nα1,k

Nα2,k
Kr

∣∣Dn+kα1,a−k(α1+α2),b+k
(
(t − x)r

)
(x)

∣∣ = O(n− r
2 ),

where we have used that Dn+kα,a−2kα,b+k is positive and Theorem 3-(ii). As r is
arbitrarily large, we finish the proof. �

Nevertheless, this localization result is not suitable for many applications where
a pointwise approach is required since it needs global conditions on the function f .
For instance, the assumptions on f for a classical Voronovskaja type formula is to be
twice differentiable at a point x and the global condition of the preceding theorem ( f
has to be differentiable of order two on the whole interval H [α2]) is then to restrictive.

In order to improve Theorem 5, we need the alternative differentiation formula
for the operators Dn,a,b that we obtain in the following result.

Theorem 6
Ds

Dn,a,b = nα1,s�s
1

(
Dn+sα1,a−sα1,•

)
(b),

where �s
1 denotes de forward difference of order s and step 1 given by

�s
1

(
Dn+sα1,a−sα1,•

)
(b) =

s∑

j=0

(
s

j

)
(−1)s− j

Dn+sα1,a−sα1,b+ j .

Proof From (4) and for any function f ∈ Wα1,α2 , we have

DDn,a,b f (x) = 1

C [α2]
n+a

∞∑

i=max{0,−b}
n

(
φ[α1]
n+α1,i−1(x) − φ[α1]

n+α1,i
(x)

) ∫

H [α2 ]
φ[α2]
n+a,i+b(t) f (t)dt,

(7)



Expressions, Localization Results, and Voronovskaja Formulas for Generalized … 9

from which we only need to arrange the sums and parameters to obtain

DDn,a,b = n
(
Dn+α1,a−α1,b+1 − Dn+α1,a−α1,b

)
.

Finally, if we iterate this formula, we arrive at the expression of the theorem. �

We can find similar formulas in [2, Lemma 9] for the case α1 = 1, α2 = 0 or in
the multivariate setting in [1, Lemma 5] for an extension of the original Durrmeyer
operators (α1 = α2 = −1) to the d-dimensional simplex.

By means of the expressions given in the preceding result, it is possible to prove
a pointwise localization result in the sense that we find in [24] where the following
definition for pointwise degree is given.

Definition 7 Given a function f : I ⊆ R → R defined on certain subinterval I ,
differentiable of any order at x ∈ I , we define

degx ( f ) = min{s ∈ N0 : Di f (x) = 0,∀i ≥ s} − 1,

where we assume the convention that min(∅) = ∞.

Theorem 8 Given f ∈ Wα1,α2 of polynomial growth on H [α2] and x ∈ H [α1,α2] such
that degx ( f ) = k − 1, for certain k ∈ N. Then,

Dk
Dn,a,b f (x) = o(n−∞).

Proof Let us first prove the result for k = −1. For this purpose, let us consider
a function f0 in the conditions of the theorem for k = −1. Since f0 is of poly-
nomial growth, for even r ∈ N big enough we have that | f0| ≤ 1 + Ktr . On the
other hand, as degx ( f0) = −1,we know that 0 = f0(x) = Df0(x) = D2 f0(x) = · · ·
and moreover, f0 is differentiable of any order at x and in particular we can find
J = (x − ε, x + ε) ∩ H [α2] such that f0|J is differentiable of order r . With this all at
hand, we can find K1 such that | f0| ≤ K1(t − x)r and hence, by means of Theorems
6 and 3-(ii),

∣∣Dk
Dn,a,b( f0)(x)

∣∣ ≤
k∑

j=0

(
k

j

) ∣∣Dn+sα1,a−sα1,b+ j ( f0)(x)
∣∣

≤
k∑

j=0

(
k

j

)
K1

∣∣Dn+sα1,a−sα1,b+ j
(
(t − x)r

)
(x)

∣∣ = O(n− r
2 ).

Since r is an arbitrary number, we finally deduce that Dk
Dn,a,b( f0)(x) = o(n−∞).

Let us prove now the general case for f with degx ( f ) = k − 1. Now, for an
even number r ∈ N big enough with r > k, we can find J = (x − ε, x + ε) ∩ H [α2]
such that f |J is differentiable of order r . Then we can also take ε1 < ε and f̃
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differentiable of order r on H [α2] such that f̃ |J1 = f |J1 for J1 = (x − ε1, x + ε1) ∩
H [α2] and f̃ |H [α2 ]−J = 0. Then, it is clear that f − f̃ is of polynomial growth with
degx ( f − f̃ ) = −1 so that, by the case k = −1 proved above,

Dk
Dn,a,b( f − f̃ )(x) = o(n−∞). (8)

It is also immediate that Dk f̃ is of polynomial growth (it has compact support)
and besides degx (D

k f̃ ) = −1. Now, as f̃ is differentiable of order k on H [α2], by
Theorem 2-(i) and the already proved case k = −1 of the theorem, we have

Dk
Dn,a,b f̃ (x) = nα1,k

Nα2,k
Dn+kα1,a−k(α1+α2),b+k(D

k f̃ )(x) = o(n−∞),

and now with (8), we conclude the proof since the values for the derivatives of f and
f̃ coincide at x . �

4 Voronovskaja Type Formulas

Sikkema’s theorem [26] is the basic tool to compute the asymptotic expansion for a
sequence of linear positive operators. We show here the version of this theorem that
appears in [26].

Theorem 9 (Sikkema’s Theorem [26]) Let H ⊆ R be a subinterval, r be an even
number and let {Ln : W → C∞(H)}n∈N be a sequence of linear positive operators
defined in the linear subspace W ⊆ R

H such that Pr ⊆ W. Let us suppose that for
certain x ∈ H

Ln
(
(t − x)2s

)
(x) = O(φ(n)−s), s = r

2
,
r

2
+ 1,

where φ is an increasing strictly positive function such that lim
n→∞ φ(n) = +∞.

If f is of polynomial growth of degree r (there exists p ∈ Pr such that | f | ≤ p)
and f is r times differentiable at x, then

Ln f (x) =
r∑

i=0

Di f (x)

i ! Ln
(
(t − x)i

)
(x) + o(φ(n)−

r
2 ).

As a consequence of this result, we obtain the following Voronovskaja type for-
mula for Dn,a,b.

Theorem 10 For f ∈ Wα1,α2 of polynomial growth on H [α2] twice differentiable at
x ∈ H [α1,α2],

lim
n→∞ n

(
Dn,a,b f (x) − f (x)

) = ((2α2 − a)x + b + 1)Df (x) + x

(
1 + α1 + α2

2
x

)
D2 f (x)
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Proof From Theorem 2-(iii), it is simple to compute

lim
n→∞Dn,a,b ((t − x)) (x) = 1 + b + (2α2 − a)x,

lim
n→∞Dn,a,b

(
(t − x)2

)
(x) = x(2 + (α1 + α2)x),

which, since Dn,a,b(1) = 1, together with Theorems 3 and 9 proves the formula. �

In the last proof, although in this case Theorem 9 can be applied for functions
of polynomial growth of degree two, we can remove this restriction by means of
Theorem 8 that allows considering any function of polynomial growth.

The differentiation formulas of Theorem 2 and the localization results of the
preceding section make it possible to extend this Voronovskaja formula for higher
order derivatives.

Theorem 11 For f ∈ Wα1,α2 of polynomial growth on H [α2], k + 2 times differen-
tiable at x ∈ H [α1,α2],

lim
n→∞ n

(
Nα2,k

nα1,k
Dk

Dn,a,b f (x) − Dk f (x)

)
.

= ((2α2 − a + k(α1 + α2))x + b + k + 1)Dk+1 f (x) + x

(
1 + α1 + α2

2
x

)
Dk+2 f (x).

Proof Since f is differentiable of order k + 2 at x , we can find J = (x − ε, x +
ε) ∩ H [α2] and f̃ with compact support, differentiable of order k on H [α2] such that
f |J = f̃ |J . In that case, from Theorem 8, we know that

Dk
Dn,a,b f̃ (x) = Dk

Dn,a,b f (x) + o(n−∞),

and then we can substitute f by f̃ along the rest of the proof. As f̃ is globally
differentiable on H [α2], we can use for it Theorem 2-(i) and then

Dk
Dn,a,b f̃ (x) − Dk f̃ (x) = nα1,k

Nα2,k
Dn+kα1,a−k(α1+α2),b+k(D

k f̃ )(x) − Dk f̃ (x), (9)

from which

Nα2,k

nα1,k
Dk

Dn,a,b f̃ (x) − Dk f̃ (x) = Dn+kα1,a−k(α1+α2),b+k(D
k f̃ )(x) − Dk f̃ (x).

Now we use Theorem 10 to compute the limit

lim
n→∞ n

(
Dn+kα1,a−k(α1+α2),b+k(D

k f̃ )(x) − Dk f̃ (x)
)

to finish the proof. �
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In [9, Theorems3.1 and 4.1], Deo shows several examples of this type of
Voronovskaja formulas for several values of α1 and α2.

We can also rewrite the preceding formula in the following terms.

Theorem 12 For f ∈ Wα1,α2 of polynomial growth on H [α2], k + 2 times differen-
tiable at x ∈ H [α1,α2],

lim
n→∞ n

(
Dk

Dn,a,b f (x) − Dk f (x)
)

= Dk [(b − at + (α2 − α1)t) Df ] (x) + Dk+1

[
t

(
1 + α1 + α2

2
t

)
Df

]
(x).

Proof Following the same arguments of the proof of Theorem 11, we can introduce
the function f̃ for which from (9) we can write

Dk
Dn,a,b f̃ (x) − Dk f̃ (x) = nα1,k

Nα2,k

(
Dn+kα1,a−k(α1+α2),b+k(D

k f̃ )(x) − Dk f̃ (x)

+
(
1 − Nα2,k

nα1,k

)
Dk f̃ (x)

)
.

But

Nα2,k

nα1,k
= 1 + O(n−1),

n

(
1 − Nα2,k

nα1,k

)
= −ka + k(k − 1)

2
α1 + k(k + 3)

2
α2 + O(n−1).

Now, this last identities along with Theorem 10 applied for Dn+kα1,a−k(α1+α2) yield,
once we substitute again the derivatives of f̃ by the ones of f ,

lim
n→∞ n

(
Dk

Dn,a,b f (x) − Dk f (x)
)

=
(

−ka + k(k − 1)

2
α1 + k(k + 3)

2
α2

)
Dk f (x)

+ ((2α2 − a + k(α1 + α2))x + b + k + 1)Dk+1 f (x) + x

(
1 + α1 + α2

2
x

)
Dk+2 f (x).

Finally, if we apply Leibnitz formula, it is simple to check that this identity is equiv-
alent to the one that we want to prove. �

From this result, we conclude that the Voronovskaja formula of the operators
Dn,a,b can be differentiated in the sense that the formula for the kth derivative of the
operators is the kth derivative of the one forDn,a,b (for more general result about this
type of differentiation properties in the case of interpolatory operators see [25]).
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When α1 = α2 = −1 and a = b = 0, this formula reduces to the one that we find
in [22, Theorem 8] for the classical Durrmeyer operators. Later, Abel extended this
expression obtaining the complete asymptotic expansion in [28].

5 Further Remarks

In this section, we include some additional comments an ideas that make it possible
to extend the formulas shown before to some other classes of operators.

5.1 Mixed Summation Integration Operators

One important condition on the parameters a and b for Theorem 2 to hold is b ≥ 0.
As amatter of fact, for b < 0 we can define the sequenceDn,a,b but the differentiation
formula given by Theorem 2-(i) is not true. For instance, if we want a differentiation
formula for b = −1, we need to introduce a remainder term in the definition of
Dn,a,−1 of the type

D̃n,a,−1 f (x) = Dn,a,−1 f (x) + φ[α1]
n,i (x) f (0)

and therefore we have operators of the form

D̃n,a,−1 f (x) = 1

C [α2]
n+a

∞∑

i=1

φ[α1]
n,i (x)

∫

H [α2 ]
φ[α2]
n+a,i+b(t) f (t)dt + φ[α1]

n,i (x) f (0)

that fulfill a differentiation formula like

DD̃n,a,−1 f = Dn,a,0 f (10)

that connects these class of operators with the one presented in this paper.
In this manner, part of the summation–integration operators that we find in the

literature [3, 7, 14, 15, 17, 19, 21, 27] can be seen as members of the family of
operators that we present in this paper and we can derive formulas and results for
them using the same arguments displayed in the preceding sections. In particular,
from Theorem 12, as we indicated before, we know that for the operators Dn,a,b, the
Voronovskaja formula can be differentiated and then the formula for Dk

Dn,a,b can
be written as the kth derivative of

G = [(b − at + (α2 − α1)t) Df ] + D

[
t

(
1 + α1 + α2

2
t

)
Df

]
.
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In this case, from (10), if the Voronovskaja formula for D̃n,a,b is

lim
n→∞ n

(
D̃n,a,−1 f (x) − f (x)

)
= F(x),

we will have
DF = G

and the fórmula, F , for D̃n,a,−1 is an antiderivative of the one for Dn,a,0. We find
similar ideas in [3].

5.2 Multivariate Durrmeyer Operators

It is well-known that the generalized Baskakov operators can be extended to the
multivariate case in several ways. For many of these extensions, part of the formulas
that we presented is also valid. In the immediate case of the tensor product extensions,
this is evident but let us check this for another nontrivial extension. Consider, for
m ∈ N,

φ
[α]
n (x) =

{
(1 + α |x |1)−

n
α , if α 	= 0

e−n|x |1 , if α = 0
and H [α] =

{
x ∈ [0, ∞)m : |x |1 ≤

{
∞, if α ≥ 0,

− 1
α , if α < 0

}
,

where, for a vector x = (x1, x2, . . . , xm), we denote |x |1 = x0 + x1 + · · · + xm and
therefore, in this case, φ[α]

n : H [α] ⊆ R
m → R is an m-variate function. For k ∈ N

m
0 ,

we also denote

φ[α]
n,k(x) = (−1)k

k! xk Dkφ[α]
n (0), Cn =

∫

H [α]
φ[α]
n (t)dt,

and N = N [α] = n + a − (m + 1)α.

Here, we use the usual vectorial notation and for j, k ∈ N
m
0 ,

k! = k1! · · · km !, (x1, . . . , xm)(k1,...,km ) = xk11 · · · xkmm ,

(
j

k

)
= j !

k!( j − k)! ,

Dk = ∂|k|1

∂t k11 · · · ∂t kmm
or, for r ∈ R, rk = r |k|1 .

In terms of these functions, for the parameters a ∈ R, b ∈ Z
m , we can introduce

the following multivariate version of Durrmeyer operators defined, for a locally
integrable function, f : H [α] → R, by
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Dn,a,b f (x) = 1

Cn+a

∑

i=(i1,...,im )∈Nm
0

i1,...,im≥max{−b,0}

φ[α]
n,i (x)

∫

H [α]
φ[α]
n+a,i+b(t) f (t)dt.

Of course, it is possible to consider more general versions introducing also here
two different basis functions inside and outside the integral as we did in the preceding
sections but, to offer some sample formulas, this version of the multivariate operators
is enough. In this way, for the operators that we have just defined, it is possible to
prove the following version of the differentiation formula given in Theorem 2-(i):
for f : H [α] → R differentiable enough, we have

Dk
Dn,a,b f = nα,|k|1

Nα,|k|1 Dn+|k|1α1,a−2|k|1α,b+k(D
k f )

from which we have the Taylor series expansion

Dn,a,b f =
∑

i=(i1,...,im )∈Nm
0

i1,...,im≥max{−b,0}

nα,|k|1

Nα,|k|1−1

(∫

H [α]
φ[α]
n+a−|k|1α,b+k(t)D

k f (t)dt

)
t k

k!

that leads us to the following expression for themoment of exponent j = ( j1, . . . , jm)

∈ N
m
0 of the operator

Dn,a,b(t
j ) = 1

Nα,| j |1
∑

k=(k1,...,km )∈Nm
0

max{−b,0}≤ks≤ js ,
s=1,...,m

nα,|k|1
(
j

k

)
(b + j)!
(b + k)! t

k,

where t = (t1, . . . , tm) : Rm → R
m is the identity map.

As we can see by means of these examples, many of the formulas and results can
be extended to the multivariate case.
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Lupaş–Kantorovich Type Operators
for Functions of Two Variables

P. N. Agrawal and Abhishek Kumar

Abstract Agratini [1] introduced the Lupas–Kantorovich type operators. Manav
and Ispir [18] defined a Durrmeyer variant of the operators proposed by Lupas and
studied someof their approximation properties. Later, they [17] considered the bivari-
ate case of these operators and studied the degree of approximation by means of the
complete and partial moduli of continuity and the order of convergence by using
Peetre’s K-functional. The associated GBS (Generalized Boolean Sum) opera-
tors were also investigated in the same paper. Our goal is to define the bivariate
Chlodowsky Lupas–Kantorovich type operators and study their degree of approx-
imation. We also introduce the associated GBS operators and investigate the rate
of convergence of these operators for Bögel continuous and Bögel differentiable
functions with the aid of mixed modulus of smoothness.

Keywords Peetre’s K-functional · Bögel continuous · Bögel differentiable ·
Mixed modulus of smoothness

1 Introduction

For f ∈ C(S), S := [0,∞), the space of all real-valued continuous functions on S,

Agratini [1] considered the operators

Ln( f ; x) = 2−nx
∞∑

k=0

(nx)k
2k(k!) f

(
k

n

)
, x ≥ 0 (1.1)

proposed by Lupas [16] and having a form similar with the Szász–Mirakyan oper-
ators and investigated the degree of approximation by the operators (1.1) in terms
of the modulus of continuity and also established a Voronovskaja type asymptotic
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theorem for these operators. Erencin and Tasdelen [9] discussed a generalization of
the operators (1.1) defined as

L∗
n( f ; x) = 2−an x

∞∑

k=0

ln,k(x) f

(
k

bn

)
, f or x ∈ S, n ∈ {1, 2, . . .}, (1.2)

where ln,k(x) = (anx)k
2k (k!) and {an}, {bn} are increasing and unbounded sequences of

positive real numbers such that

1

bn
→ 0, as n → ∞ and

an
bn

= 1 + O

(
1

bn

)
, as n → ∞

and studied someapproximationproperties of the operators givenby (1.2) inweighted
approximation. Subsequently, the same authors [9] considered a Kantorovich type
variant of these operators as follows:

Kn( f ; x) = 2−an xbn

∞∑

k=0

ln,k(x)
∫ (k+1)

bn

k
bn

f (t)dt (1.3)

and established some local direct results with the aid of the modulus of continuity
and Peetre’s K-functional.

Ispir and Manav [18] introduced a sequence of Durrmeyer type summation inte-
gral operators based onLupas–Szasz basis functions and studied some approximation
properties. Manav and Ispir [17] defined a bivariate extension of the operators con-
sidered in [18] and investigated the rate of convergence by means of the total and
partial moduli of continuity and the Peetre’s K-functional and also studied the asso-
ciated GBS operators. For some other significant contributions in this direction, we
refer the reader to the papers [11–15].

The goal of the present study is to introduce the bivariate extension of the operators
defined by (1.3) as

K ∗
n,m ( f (t, s); x, y) = 2−an x2−dm ybncm

∞∑

j=0

∞∑

k=0

lk, jn,m (x, y)
∫ (k+1)

bn

k
bn

∫ ( j+1)
cm

j
cm

f (t, s)dt ds, (1.4)

where

lk, jn,m(x, y) = (anx)k
2k(k!) · (dm y) j

2 j ( j !) ,

lim
n→∞

an
bn

= 1, lim
n→∞

1

bn
= 0,

and

lim
n→∞

dm
cm

= 1, lim
n→∞

1

cm
= 0,
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investigate the rate of convergence of the operators defined by (1.4) by means of the
total and partial moduli of continuity and the order of convergence with the aid of
the Peetre’s K-functional.The degree of approximation of functions belonging to a
weighted space is determined in terms of theweightedmodulus of continuity. Further,
we introduce the GBS operators associated with the operators defined by (1.4) and
study the rate of approximation by means of the mixed modulus of smoothness for
Bögel continuous and Bögel differentiable functions.

2 Basic Results

Lemma 2.1 ([9]) For the operators L∗
n defined by (1.2), there hold the following

identities

(i) L∗
n(1; x) = 1;

(ii) L∗
n(t; x) = an

bn
x;

(iii) L∗
n(t

2; x) = a2n
b2n
x2 + 2 an

b2n
x;

(iv) L∗
n(t

3; x) = a3n
b3n
x3 + 6 a2n

b3n
x2 + 6 an

b3n
x;

(v) L∗
n(t

4; x) = a4n
b4n
x4 + 12 a3n

b4n
x3 + 36 a2n

b4n
x2 + 26 an

b4n
x .

Consequently, we have

Lemma 2.2 ([9]) The operators defined by (1.3) verify

(i) Kn(1; x) = 1;
(ii) Kn(t; x) = an

bn
x + 1

2bn
;

(iii) Kn(t2; x) = a2n
b2n
x2 + 3 an

b2n
x + 1

3b2n
.

Further, using Lemma 2.1, by a simple calculation it follows that

(iv) Kn(t3; x) = a3n
b3n
x3 + ( 1215 )

a2n
b3n
x2 + 10 an

b3n
x + 1

4b3n
;

(v) Kn(t4; x) = a4n
b4n
x4 + 14 a3n

b4n
x3 + 50 a2n

b4n
x2 + 43 an

b4n
x + 1

5b4n
.

Let ei, j (t, s) = t i s j , (i, j) ∈ N0 × N0, with i + j ≤ 4 and N0 = N ∪ {0}.
Lemma 2.3 For the operators K ∗

n,m defined by (1.4), there hold the following iden-
tities

(i) K ∗
n,m(e0,0; x, y) = 1;

(ii) K ∗
n,m(e1,0; x, y) = an

bn
x + 1

2bn
;

(iii) K ∗
n,m(e0,1; x, y) = dm

cm
y + 1

2cm
;

(iv) K ∗
n,m(e2,0; x, y) = a2n

b2n
x2 + 3 an

b2n
x + 1

3b2n
;

(v) K ∗
n,m(e0,2; x, y) = d2

m
c2m
y2 + 3 dm

c2m
y + 1

3c2m
;

(vi) K ∗
n,m(e3,0; x, y) = a3n

b3n
x3 + ( 1215 )

a2n
b3n
x2 + 10 an

b3n
x + 1

4b3n
;
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(vii) K ∗
n,m(e0,3; x, y) = d3

m
c3m
y3 + ( 1215 )

d2
m
c3m
y2 + 10 dm

c3m
y + 1

4d3
m
;

(viii) K ∗
n,m(e4,0; x, y) = a4n

b4n
x4 + 14 a3n

b4n
x3 + 50 a2n

b4n
x2 + 43 an

b4n
x + 1

5b4n
;

(ix) K ∗
n,m(e0,4; x, y) = d4

m
c4m
y4 + 14 d3

m
c4m
y3 + 50 d2

m
c4m
y2 + 43 dm

c4m
y + 1

5c4m
.

Lemma 2.4 As a consequence of Lemma 2.3, we obtain

(i) K ∗
n,m(t − x; x, y) =

(
an
bn

− 1

)
x + 1

2bn
;

(ii) K ∗
n,m(s − y; x, y) =

(
dm
cm

− 1

)
y + 1

2cm
;

(iii) K ∗
n,m((t − x)2; x, y) =

(
an
bn

− 1

)2

x2 +
(
3 an
b2n

− 1
bn

)
x + 1

3b2n
;

(iv) K ∗
n,m((s − y)2; x, y) =

(
dm
cm

− 1

)2

y2 +
(
3 dm
c2m

− 1
cm

)
y + 1

3c2m
;

(v) K ∗
n,m((t − x)4; x, y) =

(
a4n
b4n

− a3n
b3n

+ 6 a2n
b2n

− 4 an
bn

+ 1

)
x4 +

(
14 a3n

b4n
− 30 a2n

b3n
+

18 an
b2n

− 2
bn

)
x3 +

(
50 a2n

b4n
− 40 an

b3n
+ 2

b2n

)
x2 +

(
43 an

b4n
− 1

b3n

)
x + 1

5b4n
;

(vi) K ∗
n,m((s − y)4; x, y) =

(
d4
m
c4m

− d3
m
c3m

+ 6 d2
m
c2m

− 4 dm
cm

+ 1

)
y4 +

(
14 d3

m
c4m

− 30 d2
m
c3m

+

18 dm
c2m

− 2
cm

)
y3 +

(
50 d2

m
c4m

− 40 dm
c3m

+ 2
c2m

)
y2 +

(
43 dm

c4m
− 1

c3m

)
y + 1

5c4m
.

Remark 1 For the operators K ∗
n,m, we have

(i) K ∗
n,m((t − x); x, y) = O( 1

bn
)(1 + x), as n → ∞;

(ii) K ∗
n,m((s − y); x, y) = O( 1

cm
)(1 + y), as m → ∞;

(iii) K ∗
n,m((t − x)2; x, y) = O( 1

bn
)(1 + x + x2), as n → ∞;

(iv) K ∗
n,m((s − y)2; x, y) = O( 1

cm
)(1 + y + y2), as m → ∞;

(iv) K ∗
n,m((t − x)4; x, y)) = O( 1

bn
)(1 + x + x2 + x3 + x4), as n → ∞;

(v) K ∗
n,m((s − y)4; x, y)) = O( 1

cm
)(1 + y + y2 + y3 + y4), as m → ∞.

Theorem 1 Let f ∈ C(S2), then

lim
n,m→∞ K ∗

n,m( f ; x, y) = f (x, y)

holds uniformly on each compact subset of S2.

Proof From Lemma 2.4, for every (x, y) ∈ S2, we obtain

lim
n,m→∞ K ∗

n,m(ei, j ; x, y) = ei, j (x, y), i, j ∈ {0, 1, 2, 3, 4}, with i + j ≤ 4.

uniformly on every compact subset of S2. Therefore, by Bohman Korovkin theorem,
the required result is immediate.
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3 Main Results

Rate of Approximation for the Operators K∗
n,m

Let CB(S2) denote the space of all bounded and uniformly continuous functions on
S2 endowed with the norm ‖ f ‖ = sup(x,y)∈S2 | f (x, y)|.

Following [10], the completemodulus of continuity for the bivariate case is defined
as follows:

ω( f ; γ ) = sup{| f (t, s) − f (x, y)| :
√

(t − x)2 + (s − y)2 ≤ γ } (3.1)

for every (t, s), (x, y) ∈ S2. Further, the partial moduli of continuity with respect to
x and y is given by

ω1( f, γ ) = sup{| f (x1, y) − f (x2, y)| : y ∈ S and |x1 − x2| ≤ γ } (3.2)

and

ω2( f, γ ) = sup{| f (x, y1) − f (x, y2)| : x ∈ S and |y1 − y2| ≤ γ }. (3.3)

They satisfy the properties of the usual modulus of continuity.
Now, we discuss the rate of convergence of the sequence of operators K ∗

n,m to the
function f ∈ CB(S2).

Theorem 2 For f ∈ CB(S2), the inequalities

∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣ ≤ 2ω( f ; γn,m(x, y))

and
∣∣∣∣K

∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣ ≤ 2

{
ω1( f ;μn,2(x)) + ω2( f ; νm,2(y))

}
hold,

where

γn,m(x, y) =
{(

an
bn

− 1

)2

x2 +
(
3
an
b2n

− 1

bn

)
x

+ 1

3b2n
+

(
dm
cm

− 1

)2

y2 +
(
3
dm
c2m

− 1

cm

)
y + 1

3c2m

} 1
2

,

μn,2(x) =
{(

an
bn

− 1

)2

x2 +
(
3
an
b2n

− 1

bn

)
x + 1

3b2n

} 1
2

,

and
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νm,2(y) =
{(

dm
cm

− 1

)2

y2 +
(
3
dm
c2m

− 1

cm

)
y + 1

3c2m

} 1
2

.

Proof Using definition (3.1), we get

∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣

≤ K ∗
n,m

(
| f (t, s) − f (x, y)|; x, y

)

≤ K ∗
n,m

(
ω( f ;

√
(t − x)2 + (s − y)2); x, y

)

≤ K ∗
n,m

(
ω( f, γ )

{
1 +

√
(t − x)2 + (s − y)2

γ

}
; x, y

)

≤ ω( f, γ )

[
1 + 1

γ
K ∗

n,m

(√
(t − x)2 + (s − y)2); x, y

)]
.

Now, applying the Cauchy–Schwarz inequality, we have

∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣

≤ ω( f, γ )

[
1 + 1

γ

{
K ∗

n,m

(
(t − x)2 + (s − y)2; x, y

)} 1
2
]

≤ ω( f, γ )

[
1 + 1

γ

{
K ∗

n,m

(
(t − x)2; x

)
+ K ∗

n,m

(
(s − y)2; y

)} 1
2
]

≤ ω( f, γ )

[
1 + 1

γ

{(
an
bn

− 1

)2

x2 +
(
3
an
b2n

− 1

bn

)
x

+ 1

3b2n
+

(
dm
cm

− 1

)2

y2

+
(
3
dm
c2m

− 1

cm

)
y + 1

3c2m

} 1
2
]
.

Choosing γ = γn,m(x, y), we obtain the first assertion of the theorem.
Now, using the properties of the partial moduli of continuity (3.2), (3.3) and

Cauchy–Schwarz inequality, for any δ1, δ2 > 0, we have

∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣

≤ K ∗
n,m

(
| f (t, s) − f (x, y)|; x, y

)
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= K ∗
n,m

(
| f (t, s) − f (t, y) + f (t, y) − f (x, y)|; x, y

)

≤ K ∗
n,m

(
| f (t, y) − f (x, y)|; x, y

)
+ K ∗

n,m

(
| f (t, s) − f (t, y)|; x, y

)

≤ ω1( f, δ1)

{
1 + 1

δ1

(
K ∗
n,m((t − x)2; x, y)

) 1
2
}

+ ω2( f, δ2)

{
1 + 1

δ2

(
K ∗
n,m((s − y)2; x, y)

) 1
2
}

≤ ω1( f, δ1)

{
1 + 1

δ1

((
an
bn

− 1

)2
x2 +

(
3
an

b2n
− 1

bn

)
x + 1

3b2n

) 1
2
}

+ ω2( f, δ2)

{
1 + 1

δ2

((
dm
cm

− 1

)2
y2 +

(
3
dm

c2m
− 1

cm

)
y + 1

3c2m

) 1
2
}
.

Choosing δ1 = μn,2(x) and δ2 = νm,2(y), the second assertion of the theorem is
proved.

Now, we find the order of approximation of the operators K ∗
n,m(g(t, s); x, y) to

g(x, y) ∈ CB(S2) by means of the Peetre’s K -functional.
LetC2

B(S2) be the space of all functions g ∈ CB(S2) such that ∂ i g
∂xi ,

∂ i g
∂yi for i = 1, 2,

belong to CB(S2). The norm on the space C2
B(S2) is defined as

‖g‖C2
B (S2) = ‖g‖ +

2∑

i=1

(∥∥∥∥
∂ i g

∂xi

∥∥∥∥ +
∥∥∥∥
∂ i g

∂yi

∥∥∥∥

)
.

Following [8], the Petree’s K -functional of the function g ∈ CB(S2) is defined as

K (g, γ ) = inf
f ∈C2

B (S2)

{
‖g − f ‖ + γ ‖ f ‖C2

B (S2)

}
, (3.4)

for γ > 0.
It is also known that

K (g, γ ) ≤ C

{
ω2(g,

√
γ ) + min(1, γ )‖g‖

}
(3.5)

holds for all γ > 0.
The constant C in the above inequality is independent of γ and g and ω2(g, γ ) is

the second-order modulus of continuity for the bivariate case.

Theorem 3 For the function f ∈ CB(S2), the following inequality
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∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣

≤ C

{
ω2( f ;

√
Cn,m(x, y)) + min(1,Cn,m(x, y))‖ f ‖

}

+ ω

(
f ;

√(
2x(an − bn) + 1

2bn

)2
+

(
2y(dm − cm) + 1

2cm

)2)
holds,

where C is a constant independent of f and

Cn,m(x, y) = μn,2(x) + μ2
n,1(x) + νm,2(y) + ν2

m,1(y),

μn,1(x) = 2x(an − bn) + 1

2bn
,

νm,1(y) = 2y(dm − cm) + 1

2cm
and μn,2(x),

νm,2(y) are de f ined as in T heorem 2.

Proof We define the auxiliary operators as follows:

K
∗
n,m( f ; x, y) = K ∗

n,m( f ; x, y) + f (x, y) − f

(
2anx + 1

2bn
,
2dm y + 1

2cm

)
. (3.6)

By using Lemmas 2.2 and 2.3, we have K
∗
n,m(1; x, y) = 1 and

K
∗
n,m((t − x); x, y) = 0, K

∗
n,m((s − y); x, y) = 0. (3.7)

Let g ∈ C2
B(S2) and (t, s) ∈ S2. Using the Taylor’s theorem, we get

g(t, s) − g(x, y) = g(t, y) − g(x, y) + g(t, s) − g(t, y)

= (t − x)
∂

∂x
g(x, y) +

∫ t

x
(t − u)

∂2

∂u2
g(u, y)du

+ (s − y)
∂

∂y
g(x, y)

+
∫ s

y
(s − v)

∂2

∂v2
g(x, v)dv. (3.8)

Applying K
∗
n,m on both sides of the equality (3.8) and using (3.7), we have
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K
∗
n,m(g; x, y) − g(x, y) = K ∗

n,m

( ∫ t

x
(t − u)

∂2

∂u2
g(u, y)du; x, y

)

−
∫ 2an x+1

2bn

x

(
2anx + 1

2bn
− u

)
∂2

∂u2
g(u, y)du

+ K ∗
n,m

( ∫ s

y
(s − v)

∂2

∂v2
g(x, v)dv; x, y

)

−
∫ 2dm y+1

2cm

y

(
2dm y + 1

2cm
− v

)
∂2

∂v2
g(x, v)dv.

Hence,

∣∣∣∣K
∗
n,m(g; x, y) − g(x, y)

∣∣∣∣

≤ K ∗
n,m

(∣∣∣∣
∫ t

x
|t − u|

∣∣∣∣
∂2

∂u2
g(u, y)

∣∣∣∣du
∣∣∣∣; x, y

)

+
∣∣∣∣
∫ 2an x+1

2bn

x

∣∣∣∣
2anx + 1

2bn
− u

∣∣∣∣

∣∣∣∣
∂2

∂u2
g(u, y)

∣∣∣∣du
∣∣∣∣

+ K ∗
n,m

(∣∣∣∣
∫ s

y
|s − v|

∣∣∣∣
∂2

∂v2
g(x, v)

∣∣∣∣dv
∣∣∣∣; x, y

)

+
∣∣∣∣
∫ 2dm y+1

2cm

y

∣∣∣∣
2dm y + 1

2cm
− v

∣∣∣∣

∣∣∣∣
∂2

∂v2
g(x, v)

∣∣∣∣dv
∣∣∣∣

≤
{
K ∗

n,m

(
(t − x)2; x, y

)
+

(
2anx + 1

2bn
− x

)2}
‖g‖C2

B (S2)

+
{
K ∗

n,m

(
(s − y)2; x, y

)
+

(
2dm y + 1

2cm
− y

)2}
‖g‖C2

B (S2).

By using the value of μn,2(x) and νm,2(y) as in Theorem 2 and taking μn,1(x) =
2x(an−bn)+1

2bn
and νm,1(y) = 2y(dm−cm )+1

2cm
, we have

|K ∗
n,m(g; x, y) − g(x, y)|
≤

{
μn,2(x) + μ2

n,1(x) + νm,2(y) + ν2
m,1(y)

}
‖g‖C2

B (S2)

= Cn,m(x, y)‖g‖C2
B (S2). (3.9)

For f ∈ CB(S2), we have
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∣∣∣∣K
∗
n,m( f ; x, y)

∣∣∣∣

≤
∣∣∣∣K

∗
n,m( f ; x, y)

∣∣∣∣ + | f (x, y)| + f

(
2anx + 1

2bn
,
2dm y + 1

2cm

)
≤ 3‖ f ‖. (3.10)

Hence, from Eqs. (3.6), (3.9) and (3.10), we have

|K ∗
n,m( f ; x, y) − f (x, y)|
≤ |K ∗

n,m(( f − g); x, y)| + |K ∗
n,m(g; x, y) − g(x, y)|

+ |g(x, y) − f (x, y)|
+

∣∣∣∣ f
(
2anx + 1

2bn
,
2dm y + 1

2cm

)
− f (x, y)

∣∣∣∣

≤ 4‖ f − g‖CB (S2) + Cn,m(x, y)‖g‖C2
B (S2)

+ ω

(
f ;

√(
2anx + 1

2bn
− x

)2

+
(
2dm y + 1

2cm
− y

)2)
.

Taking infimum on the right-hand side over all g ∈ C2
B(S2) and using (3.5), we have

∣∣∣∣K
∗
n,m( f ; x, y) − f (x, y)

∣∣∣∣

≤ 4K ( f,Cn,m(x, y))

+ ω

(
f ;

√(
2anx + 1

2bn
− x

)2

+
(
2dm y + 1

2cm
− y

)2)

≤ C

{
ω2( f ;

√
Cn,m(x, y)) + min(1,Cn,m(x, y))‖ f ‖

}

+ ω

(
f ;

√(
2x(an − bn) + 1

2bn

)2

+
(
2y(dm − cm) + 1

2cm

)2)
.

Hence, the theorem is proved.

Following [2], for 0 < λ1 ≤ 1 and 0 < λ2 ≤ 1, we define the Lipschitz class
LipM(λ1, λ2) for the bivariate case as follows:

| f (t, s) − f (x, y)| ≤ M |t − x |λ1 |s − y|λ2 ,

where (t, s), (x, y) ∈ S2 are arbitrary.

Theorem 4 For f ∈ LipM(λ1, λ2), we have

|K ∗
n,m( f ; x, y) − f (x, y)| ≤ M (μn,2(x))

λ2
2 (νm,2(y))

λ2
2 ,
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where μn,2(x) and νm,2(y) are defined as in Theorem 2.

Proof By our hypothesis, we can write

|K ∗
n,m( f ; x, y) − f (x, y)| ≤ K ∗

n,m(| f (t, s) − f (x, y)|; x, y)
≤ M K ∗

n,m(|t − x |λ1 |s − y|λ2; x, y)
≤ M K ∗

n,m(|t − x |λ1; x, y) K ∗
n,m(|s − y|λ2; x, y).

Now, using Lemma 2.2 and Hölder’s inequality with p1 = 2
λ1

, q1 = 2
2−λ1

and p2 =
2
λ2

, q2 = 2
2−λ2

, we get

|K ∗
n,m( f ; x, y) − f (x, y)| ≤ M

(
K ∗

n,m((t − x)2; x, y)
) λ1

2
(
K ∗

n,m(1; x, y)
) 2−λ1

2

×
(
K ∗

n,m((s − y)2; x, y)
) λ2

2
(
K ∗

n,m(1; x, y)
) 2−λ2

2

≤ M (μn,2(x))
λ1
2 (νm,2(y))

λ2
2 ,

which implies the desired result.

Now, we discuss the weighted estimate of the degree of approximation of a function
defined on a weighted space of functions of two variables, by the linear positive
operator K ∗

n,m . Let

Cρ := { f ∈ C(S2) : | f (x, y)| ≤ M f ρ(x, y),

M f is a posi tive constant depending on f only},

where ρ(x, y) is a weight function.
Following [11], for all f ∈ C0

ρ, the weighted modulus of continuity is defined as

ωρ( f ; γ1, γ2) = sup
(x,y)∈S2

sup
|h1|≤γ1, |h2|≤γ2

(
f (x + h1, y + h2) − f (x, y)

ρ(x, y)ρ(h1, h2)

)
, (3.11)

where C0
ρ is the subspace of all functions f ∈ Cρ such that limx→∞

| f (x,y)|
ρ(x,y) exists finitely.

In our next result, let us assume ρ(x, y) = 1 + x2 + y2.
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Theorem 5 If f ∈ C0
ρ, then the inequality

sup
(x,y)∈S2

|K ∗
n,m( f ; x, y) − f (x, y)|

(1 + x2 + y2)4
≤ K ωρ

(
f ;

(
1

bn

) 1
2

,

(
1

cm

) 1
2
)

,

holds for sufficiently large n and m, where K is a constant independent of n, m.

Proof From [15],

| f (t, s) − f (x, y)|
≤ 8(1 + x2 + y2)ωρ( f ; γn, δm)
(
1 + |t − x |

γn

)(
1 + |s − y|

δm

)
(1 + (t − x)2)(1 + (s − y)2).

Now, applying the operator K ∗
n,m on both sides of the above equation,

|K ∗
n,m( f ; x, y) − f (x, y)|

≤ 8(1 + x2 + y2)ωρ( f ; γn, δm)bn2
−an x

∞∑

k=0

ln,k(x)

∫ (k+1)
bn

k
bn

{
1 + (t − x)2 + |t − x |

γn
+ 1

γn
|t − x |(t − x)2

}
dt

× cm2
−dm y

∞∑

j=0

lm, j (y)

∫ ( j+1)
cm

j
cm

{
1 + (s − y)2 + |s − y|

δm
+ 1

δm
|s − y|(s − y)2

}
ds.

By simple calculations and applying Cauchy–Schwarz inequality, we have

|K ∗
n,m( f ; x, y) − f (x, y)|
≤ 8(1 + x2 + y2)ωρ( f ; γn, δm) ×

[
1 + K ∗

n,m((e1,0 − x)2; x, y)

+ 1

γn

√
K ∗

n,m((e1,0 − x)2; x, y)

+ 1

γn

√
K ∗

n,m((e1,0 − x)2; x, y)K ∗
n,m((e1,0 − x)4; x, y)

]

×
[
1 + K ∗

n,m((e0,1 − y)2; x, y) + 1

δm

√
K ∗

n,m((e0,1 − y)2; x, y)

+ 1

δm

√
K ∗

n,m((e0,1 − y)2; x, y)K ∗
n,m((e0,1 − y)4; x, y)

]
.
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By using Remark 1, we get

|K ∗
n,m( f ; x, y) − f (x, y)|
≤ M(1 + x2 + y2)ωρ( f ; γn, δm)

[
1 + 1

bn
(1 + x + x2)

+ 1

γn

√
1

bn
(1 + x + x2)

+ 1

γn

√
1

bn
(1 + x + x2)

1

bn
(1 + x + x2 + x3 + x4)

]

×
[
1 + 1

cm
(1 + y + y2) + 1

δm

√
1

cm
(1 + y + y2)

+ 1

δm

√
1

cm
(1 + y + y2)

(
1

cm

)
(1 + y + y2 + y3 + y4)

]
,

where M > 0, is some positive constant.
Taking γn = ( 1

bn
)
1
2 and δm = ( 1

cm
)
1
2 , we have

|K ∗
n,m( f ; x, y) − f (x, y)|

≤ M(1 + x2 + y2)ωρ

(
f ;

(
1

bn

) 1
2

,

(
1

cm

) 1
2
)

[
1 + (1 + x + x2) +

√
(1 + x + x2)

+
√

(1 + x + x2)(1 + x + x2 + x3 + x4)

]

×
[
1 + (1 + y + y2) +

√
(1 + y + y2)

+
√

(1 + y + y2)(1 + y + y2 + y3 + y4)

]
.

Hence for the sufficiently large n,m, we obtain

sup
(x,y)∈S2

|K ∗
n,m( f ; x, y) − f (x, y)|

(1 + x2 + y2)4
≤ K ωρ

(
f ;

(
1

bn

) 1
2

,

(
1

cm

) 1
2
)

,

which yields the desired result.

Construction of GBS (Generalized Boolean Sum) Operators
In this section, we shall give a generalization of the operator (1.4) for the B-
continuous functions. For this, we shall introduce a GBS operator associated with
the bivariate operator (1.4) and investigate some of its approximation properties.
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The concepts of B-continuous and B-differentiable function were introduced by
Bögel [6, 7]. In approximation theory, the well-known Korovkin type theorem for
B-continuous functions is developed by Badea et al. in [3, 4] using the Boolean sum
approach.

The approximation properties of the bivariate Bernstein type operators and cor-
responding generalized Boolean sum operators were investigated in [5].

Let X and Y be compact subsets of R. A function f : X × Y → R is called
B-continuous (Bögel continuous) at a point (x, y) ∈ X × Y if

lim
(t,s)→(x,y)

Δ f [(t, s); (x, y)] = 0,

whereΔ f [(t, s); (x, y)] = f (x, y) − f (x, s) − f (t, y) + f (t, s)denotes themixed
difference.

A function f : X × Y → R is called B-bounded on X × Y if there exists M > 0
such that

|Δ f [(t, s); (x, y)]| ≤ M,

for every (x, y), (t, s) ∈ X × Y. Since X × Y is a compact subset of R2, each B-
continuous function is a B-bounded function on X × Y → R.

Let Bb(X × Y ) denote all B-bounded functions on X × Y → R, equipped with
the norm

‖ f ‖B = sup
(x,y), (t,s)∈X×Y

|Δ f [(t, s); (x, y)]|.

We denote by Cb(X × Y ), the space of all B-continuous function on X × Y. Let
B(X × Y ) andC(X × Y ) denote the space of all bounded functions and the space of
all continuous functions on X × Y , respectively, endowed with the sup-norm ‖.‖∞.

It is known that C(X × Y ) ⊂ Cb(X × Y ) [6]. A function f : X × Y → R is called
a B-differentiable (Bögel differentiable) function at (x, y) ∈ X × Y if the limit

lim
(t,s)→(x,y)

Δ f [(t, s); (x, y)]
(t − x)(s − y)

,

exists and is finite.
The limit is said to be the B-differential of f at the point (x, y) and is denoted by

DB( f ; x, y) and the space of all B-differentiable functions is denoted by Db(X × Y ).
The mixed modulus of smoothness of f ∈ Cb(X × Y ) is defined as

ωB( f, γ1, γ2) = sup{|Δ f [(t, s); (x, y)]| : |x − t | < γ1,

|y − s| < γ2},

for all (x, y), (t, s) ∈ X × Y , and for any (γ1, γ2) ∈ (0,∞) × (0,∞) with ωB :
[0,∞) × [0,∞) → R. The basic properties of ωB were obtained by Badea et al. in
[3, 6] which are similar to the properties of the usual modulus of continuity.
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For any f ∈ Cb(Icd), Icd := [0, c] × [0, d], and m, n ∈ N, we define the GBS
operators of the operators K ∗

n,m given by (1.4), as

Gn,m( f (t, s); x, y) = K ∗
n,m( f (t, y) + f (x, s) − f (t, s); x, y), (3.12)

for all (x, y) ∈ Icd .
Hence for any f ∈ Cb(Icd), the GBS operator associated with the operator K ∗

n,m
is defined as follows:

Gn,m( f ; x, y)

= bn2
−anx cm2

−dm y
∞∑

j=0

∞∑

k=0

lk, jn,m(x, y)

∫ (k+1)
bn

k
bn

∫ ( j+1)
cm

j
cm

(
f (t, y) + f (x, s) − f (t, s)

)
dsdt,

where the operator Gn,m is well defined from the space Cb(Icd) into C(Icd). It is
clear that Gn,m is a linear operator.

Theorem 6 For every f ∈ Cb(Icd), at each point (x, y) ∈ Icd , the operator
Gn,m( f ; x, y) verifies the following inequality

|Gn,m( f ; x, y) − f (x, y)| ≤ 4ωB( f ;√
μn,2(x),

√
νm,2(y)),

where μn,2(x) and νm,2(y) are defined as in Theorem 2.

Proof By the property

ωB( f ; λ1δ1, λ2δ2) ≤ (1 + λ1)(1 + λ2)ωB( f ; δ1, δ2); λ1, λ2 > 0,

we can write

|Δ f [(t, s); (x, y)]| ≤ ωB( f ; |t − x |, |s − y|)
≤

(
1 + |t − x |

δ1

)(
1 + |s − y|

δ2

)
ωB( f ; δ1, δ2), (3.13)

for every (t, s) ∈ Icd and any δ1, δ2 > 0. From (3.12) and the definition of the mixed
difference Δ f [(t, s); (x, y)], on applying Lemma 2.3 and the inequality (3.13), we
get
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|Gn,m( f ; x, y) − f (x, y)|
≤ K ∗

n,m(|Δ f [(t, s); (x, y)]|; x, y)
≤

(
K ∗

n,m(1; x, y) + 1√
μn,2(x)

K ∗
n,m(|t − x |; x, y)

+ 1√
μn,2(x)

√
νm,2(y)

K ∗
n,m(|t − x |; x, y) K ∗

n,m(|s − y|; x, y)

+ 1√
νm,2(y)

K ∗
n,m(|s − y|; x, y)

)
ωB

(
f ;√

μn,2(x),
√

νm,2(y)

)
.

Now, applying the Cauchy–Schwarz inequality,

|Gn,m( f ; x, y) − f (x, y)|
≤

(
K ∗

n,m(e0,0; x, y) + 1√
μn,2(x)

√
K ∗

n,m((t − x)2; x, y)

+ 1√
μn,2(x)

√
νm,2(y)

√
K ∗

n,m((t − x)2; x, y)
√
K ∗

n,m((s − y)2; x, y)

+ 1√
νm,2(y)

√
K ∗

n,m((s − y)2; x, y)
)

ωB

(
f ;√

μn,2(x),
√

νm,2(y)

)

= 4 ωB

(
f ;√

μn,2(x),
√

νm,2(y)

)
.

This completes the proof.

Following ([7], p. 382), for f ∈ Cb(Icd), the Lipschitz class Lip∗
M(λ1, λ2) with

λ1, λ2 ∈ (0, 1] is defined as follows: Lip∗
M(λ1, λ2) = { f ∈ Cb(Icd) : |Δ f [(t, s);

(x, y)]| ≤ M |t − x |λ1 |s − y|λ2}, for M > 0 and (t, s), (x, y) ∈ Icd .
In our next result, we determine the degree of approximation for the operators

Gn,m by means of the class LipM(λ1, λ2) class of Bögel continuous functions.

Theorem 7 For f ∈ Lip∗
M(λ1, λ2), we have

|Gn,m( f ; x, y) − f (x, y)| ≤ M (μn,2(x))
λ1
2 (νm,2(y))

λ2
2 ,

for M > 0, λ1, λ2 ∈ (0, 1] and μn,2(x) and νm,2(x) are defined as in Theorem 2.

Proof From the definition of the mixed difference Δ f [(t, s); (x, y)], (3.12) and by
our hypothesis, we may write

|Gn,m( f ; x, y) − f (x, y)| ≤ K ∗
n,m(|Δ f [(t, s); (x, y)]|; x, y)

≤ MK ∗
n,m(|t − x |λ1 |s − y|λ2; x, y)

= MK ∗
n,m(|t − x |λ1; x, y)K ∗

n,m(|s − y|λ2; x, y).
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Now, using the Hölder’s inequality with p1 = 2
λ1

, q1 = 2
2−λ1

and p2 = 2
λ2

, q2 =
2

2−λ2
, we are led to

|Gn,m( f ; x, y) − f (x, y)|
≤ M(K ∗

n,m((t − x)2; x, y)) λ1
2 (K ∗

n,m(e0,0; x, y))
2−λ1
2

× (K ∗
n,m((s − y)2; x, y)) λ2

2 (K ∗
n,m(e0,0; x, y))

2−λ2
2 .

In view of Lemma 2.2, the desired result is immediate.

Theorem 8 For f ∈ Db(Icd) with DB f ∈ B(Icd) and each (x, y) ∈ Icd , we have

|Gn,m( f ; x, y) − f (x, y)|
≤ ‖DB f ‖∞

1√
bn

1√
cm

√
ξ1(c)η1(d)

+
(

1√
bn

1√
cm

√
ξ1(c)η1(d) + 1√

cm

√
ξ2(c)η1(d)

+ 1√
bn

√
ξ1(c)η2(d)

+ 1√
bn

1√
cm

ξ1(c)η1(d)

)
ωB

(
DB f ; 1√

bn
,

1√
cm

)
.

Proof Since f ∈ Db(Icd) and DB f ∈ B(Icd),

DB f (x, y) = lim
(t,s)→(x,y)

Δ f [(t, s); (x, y)]
(t − x)(s − y)

⇒ Δ f [(t, s); (x, y)] = (t − x)(s − y)DB f (α1, α2),

where α1, α2 lie between t and x, s, and y, respectively.
Using the following relation

DB f (α1, α2) = ΔDB f (α1, α2) + DB f (α1, y)

+ DB f (x, α2) − DB f (x, y),

we obtain
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|K ∗
n,m(Δ f [(t, s); (x, y)]; x, y)|
= |K ∗

n,m((t − x)(s − y)DB f (α1, α2); x, y)|
≤ K ∗

n,m(|t − x ||s − y||ΔDB f (α1, α2)|; x, y)
+ K ∗

n,m(|t − x ||s − y|(|DB f (α1, y)|
+ |DB f (x, α2)| + |DB f (x, y)|); x, y)

≤ K ∗
n,m(|t − x ||s − y|ωB(DB f ; |α1 − x |, |α2 − y|); x, y)

+ 3‖DB f ‖∞K ∗
n,m(|t − x ||s − y|; x, y).

Hence taking into account

ωB(DB f ; |α1 − x |, |α2 − y|)
≤ ωB(DB f ; |t − x |, |s − y|)
≤

(
1 + 1

δ1
|t − x |

)(
1 + 1

δ2
|s − y|

)
ωB(DB f ; δ1, δ2),

for any δ1, δ2 > 0 and applying the Cauchy–Schwarz inequality, we obtain

|Gn,m( f ; x, y) − f (x, y)|
= |K ∗

n,m(Δ f [(t, s); (x, y)]; x, y)|
≤ 3‖DB f ‖∞

√
K ∗

n,m((t − x)2(s − y)2; x, y)

+
(√

K ∗
n,m((t − x)2(s − y)2; x, y)

+ 1

δ1

√
K ∗

n,m((t − x)4(s − y)2; x, y)

+ 1

δ2

√
K ∗

n,m((t − x)2(s − y)4; x, y)

+ 1

δ1δ2
K ∗

n,m((t − x)2(s − y)2; x, y)
)

ωB(DB f ; δ1, δ2).

From Lemma 2.4, we observe that for (x, y), (t, s) ∈ Icd , we have K ∗
n ((t − x)2;

x) ≤ ( 1
bn

)ξ1(c), K ∗
m((s − y)2; y) ≤ ( 1

cm
)η1(d), and K ∗

n ((t − x)4; x) ≤ ( 1
bn

)ξ2(c),

K ∗
m((s − y)4; y) ≤ ( 1

cm
)η2(d), where ξi (c) and η j (d), i, j = 1, 2 are some con-

stants depending on c and d, respectively.
Since

K ∗
n,m((t − x)2i (s − y)2 j ; x, y)
= K ∗

n,m((t − x)2i ; x, y)K ∗
n,m((t − x)2 j ; x, y), i, j = 1, 2,

we get
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|Gn,m( f ; x, y) − f (x, y)|

≤ 3‖DB f ‖∞

√(
1

bn

)
ξ1(c)

(
1

cm

)
η1(d)

+
[√(

1

bn

)
ξ1(c)

(
1

cm

)
η1(d) + 1

δ1

√(
1

bn

)
ξ2(c)

(
1

cm

)
η1(d)

+ 1

δ2

√(
1

bn

)
ξ1(c)

(
1

cm

)
η2(d)

+ 1

δ1δ2

(
1

bn

)
ξ1(c)

(
1

cm

)
η1(d)

]
ωB(DB f ; δ1, δ2).

Choosing δ1 =
√

( 1
bn

) and δ2 =
√

( 1
cm

), we get the desired result.

References

1. O. Agratini, On a sequence of linear and positive operators. Facta Univ. (NIŠ) Ser. Math.
Inform. 14, 41–48 (1999)

2. P.N. Agrawal, N. Ispir, Degree of approximation for bivariate Cholodowsky-Szasz-Charlier
type operators. Results Math. 69(3–4), 369–385 (2016)

3. C. Badea, C. Cottin, Korovkin-type theorems for generalizedBoolean sumoperators,Colloquia
Mathematica Societatis Janos Bolyai, Approximation Theory, Kecskemět (Hungary), vol. 58
(1990), pp. 51–67

4. C. Badea, I. Badea, H.H. Gonska, A test function theorem and approximation by pseudo
polynomials. Bull. Aust. Math. Soc. 34, 53–64 (1986)

5. D. Barbosu, GBS operators of Schurer-Stancu type. Ann. Univ. Craiova Math. Comput. Sci.
Ser. 30(2), 34–39 (2003)

6. K. Bögel, Über die mehrdimensionale differentiation. Jahresber. Dtsch. Math.-Ver. 65, 45–71
(1962)

7. K. Bögel, Mehrdimensionale Differentiation von Funktionen mehrerer reeller Vernderlichen.
J. Reine Angew. Math. 170, 197–217 (2009)

8. P. L. Butzer, H. Berens, Semi-groups of Operators and Approximation, Computational Science
and Engineering. Grundlehren der mathematischen Wissenschaften, vol. 145 (Springer, New
York, 1967)
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Bernstein Polynomial Multiwavelets
Operational Matrix for Solution of
Differential Equation

Shweta Pandey, Sandeep Dixit and S. R. Verma

Abstract A new application of the Bernstein polynomials based multiwavelets
approach for the numerical solution of differential equations is given. In the proposed
method, Bernstein polynomial multiwavelets are obtained by using orthonormality
of Bernstein polynomials. We present the operational matrix of integration of Bern-
stein polynomial based multiwavelets basis which diminishes the taken differential
equation into the system of algebraic equations for less demanding calculations.
High accuracy of these results even in the case of a small number of polynomials
is observed. The convergence and exactness are described by comparing the ascer-
tained approximated solution and the known analytical solution. The error estimates
of the approximate solution are given and also some comparative examples with
figures are given to confirm the reliability and accuracy of the proposed method.
Some physical problems that lead to the differential equations are examined by the
proposed method.
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1 Introduction

The mathematical equation that shows a relationship between some function (gen-
erally symbolize physical quantities in case of a physical model) with its derivatives
(correspond to their rates of change) is called a differential equation (DE). The prob-
lems of mathematical physics such as mechanics, elasticity and linearised theory of
water waves, steady-state heat conduction, and radioactive heat transfer problems
can be easily derived using differential equations. In economics and biology, DE is
used to represent the behavior of complex systems. In recent decades, orthogonal
functions and polynomial series have received enormous consideration in dealing
with different problems of dynamic systems. Lepik [1] gave a solution of DE based
on the Haar wavelet. Different operational matrices to get the solution of DE are
known till now [2–4]. In this paper, a wavelet-based numerical method to solve DE
based on Bernstein polynomial multiwavelets is given. We solved an example based
on the LC circuit to show the application of the proposed method. An LC circuit is an
electric circuit comprising of a capacitor (C) and an inductor (L) together as shown
in Fig. 1.

The resonance effect of the LC circuit has major applications in communications
systems and signal processing such as when we tune a radio to a specific radio
channel, the LC circuits are set at resonance for that particular carrier frequency and
also it is used for picking out a signal at a specific frequency from a more complex
signal or generating signals at a specific frequency; these are the key components
in many applications such as Mixers, Oscillators, Filters, and Tuners. A parallel and
series resonant circuit gives current and voltage magnification, respectively. The DE
governing the current flow in a series LC circuit when subject to a sinusoidal applied
voltage v(p) = v0 sin(ωp) is

L
d2i

dp2
+ 1

C
i = ωV0 cosωp; (1)

First, we integrate the givenDE, then remove the integral operators by approximating
the given function with the help of Bernstein polynomial multiwavelets operational
matrix of integration which converts the above DE to a system of algebraic equations
for easier computations.Onemore example is given to better understand the proposed
method.

Fig. 1 LC circuit diagram
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2 Wavelets and Bernstein Polynomial Multiwavelets

Wavelets used to compress the given information in a manner so that the resulting
signal is a better representation of the information than the given signal which was
in the original form. Wavelets has achieved the present growth as a result of vari-
ous numerical investigation [5–10]. The continuous variation of the translation and
dilation parameters u and v gives the following continuous wavelet form [5]

ψu,v (p) = |u|−1/2 ψ

(
p − v

u

)
, u, v ∈ R, u �= 0 (2)

when these two parameters u and v are regulated to u = 2−d , v = n 2−d , then
new discrete wavelets family is obtained from the above equation as ψd,i (p) =
2d/2ψ

(
2d p − i

)
, d, i ∈ Z , and

∫
R ψ(p)dp = 0. Bernstein polynomials of order n

characterized over the interval [0, 1] are given as

Bm, n(p) =
(
n
m

)
pm(1 − p)n−m , ∀ m = 0, 1, 2, . . . , n (3)

Six orthonormal Bernstein polynomials of order 5 which are obtained from Bern-
stein polynomials Bm, n(p) given in Eq.3 by utilizing Gram–Schmidt process are
given below:

b0(p) = √
15 (1 − p)5

b1(p) = 3 (p − 1)4 (−1 + 11p)
b2(p) = −√

7 (p − 1)3
(
1 − 20p + 55 p2

)
b3(p) = √

5 (p − 1)2
(−1 + 27p − 135p2 + 165p3

)
b4 (p) = √

3
(
1 − 33p + 248p2 − 696p3 + 810p4 − 330p5

)
b5 (p) = − 1 + 35p − 280p2 + 840p3 − 1050p4 + 462p5 .

Bernstein polynomials orthonormal multiwaveletsψi, j (p) = ψ(d, i, j, p)where
d is dilation parameter assumes any positive integer, j = 0, 1, 2, . . . , N is Bernstein
polynomial degree, translation parameter i = 0, 1, 2, . . . , 2d − 1, and normalized
time p. They are characterized on the interval [0, 1] as [11]

ψi, j (p) =
{
2d/2b j (2d p − i) i

2d ≤ p < i+1
2d

0 otherwise,
(4)

where b j (p) represents an order j orthonormal Bernstein polynomial. On taking
N = 5 and dilation parameter d = 0 with help of orthonormal Bernstein polynomi-
als, six Bernstein polynomials orthonormal multiwavelets can be obtained as
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ψ0,0(p) =
{
b0(p), 0 ≤ p < 1
0, otherwise

,

ψ0,1(p) =
{
b1(p), 0 ≤ p < 1
0, otherwise

,

...

ψ0,5(p) =
{
b5(p), 0 ≤ p < 1
0, otherwise

.

Similarly, we can get ψi, j (p) of different order j and dilation parameter d.

3 Function Approximation

As f (p) ∈ L2[0, 1], we may expand f (p) as follows

f (p) =
∞∑
i=0

∞∑
j=0

ei j ψi j (p) (5)

where ei j = 〈
f (p), ψi j (p)

〉
and 〈., .〉 denote the inner product on theHilbert space

L2(R). In Eq.5, the infinite series is truncated at levels i = 2d − 1 and j = N , we
obtain an approximate representation for f (p) as

f (p) ≈
2d−1∑
i=1

N∑
j=0

ei j ψi j (p) = ET Ψ (p) (6)

where E and Ψ are 2d(N + 1) × 1 order matrices given by

E = [e00, . . . , e0N ; e10, . . . , e1N ; . . . ; e(2d−1)0, . . . , e(2d−1)N ]T
Ψ (p) = [ψ00(p), . . . , ψ0N (p); ψ10(p), . . . , ψ1N (p); . . . ; ψ(2d−1)0(p), . . . , ψ(2d−1)N (p)

]T
.

4 Bernstein Polynomial Multiwavelets Operational Matrix
of Integration

In this section, the operational matrix of integration P is derived. First, we find the
matrix P. The six basis functions are given by the approach based on transforming
the DE to integral equations by integration, then truncating orthogonal series and
approximating various signals involved in the equation by using the operational
matrix of integration to remove the integral operations. The elements are the basis
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functions, orthogonal on a certain interval [a, b]. Gu and Jiang [11] derived the Haar
wavelets based operational matrix of integration. In this paper, the integration of
Ψ (p) is approximated by Bernstein polynomials orthonormal multiwavelets series
by Bernstein polynomials orthonormal multiwavelets coefficient matrix P

∫ p

0
Ψ (p) dp = P2d (N+1)×2d (N+1)Ψ (p), (7)

where P is 2d(N + 1) order Bernstein polynomials orthonormalmultiwavelets based
operational matrix of integration.

5 Method of Solution

In this section, solution of DE

L
d2i

dp2
+ 1

C
i = ωV0 cosωp

governing the flow of current in a series LC circuit is given subject to an applied
voltage v(p) = v0 sin(ωp) with boundary conditions i(p) = 0 and i ′(p) = 0 whose
exact solution is given byC1cos

p√
LC

+ C2sin
p√
LC

+ C3ωV0
1−ω2LC cosωp. On integrating

Eq.1 with respect to p, we get

L
∫ p

0

d2i

dp2
dp + 1

C

∫ p

0
i dp =

∫ p

0
DT ψ(p)dp. (8)

Taking i(p) = ETψ(p), ωV0 cosωp = DTψ(p)

L
∫ p

0

d2i

dp2
dp + 1

C

∫ p

0
ETψ(p)dp =

∫ p

0
DT ψ(p)dp. (9)

Using Eqs. 7 and 9 with boundary conditions, Eq. 10 becomes

L
di

dp
+ 1

C
× ET P ψ(p) = DT P ψ(p) (10)

integrating the above equation with respect to p

L
∫ p

0

di

dp
dp + 1

C
ET P

∫ p

0
ψ(p) dp = DT P

∫ p

0
ψ(p) dp (11)

Again, using boundary conditions and Eqs. 7 and 9
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L
di

dp
+ C

E

T

P 2 ψ(p) = DT P 2ψ(p) (13)L ET + 1

C
ET P 2 = DT P 2 (12)

XE = Z (13)

where X = L I + 1
C

(
P 2

)T
and Z = (

P 2
)T

D and I is the identity matrix.
Equation15 is a set of algebraic equations which can be solved for E where P
is 2d(N + 1) order square matrix, called Bernstein multiwavelets based operational
matrix. On putting the values of E into Eq.9, we get the desired solution.

6 Illustrative Examples

The subsequent examples are illustrated to show the effectiveness and steadiness
of our algorithm. Note that in first example, the series in Eq.6 is truncated at level
j = 5. The exactness of the proposed method is shown by manipulating the absolute
error, Δξ(pk), which is given by

E(p) =
∣∣∣ξ(pk) − ξ̃ (pk)

∣∣∣ , (14)

where ξ̃ (pk) is the approximate solution calculated at point pk and the exact solution
at the corresponding point is ξ(pk) .

6.1 Example 1

Consider the problem
0.25y

′
(t) + y(t) = u(t) (15)

with y(0) = 0 where u(t) is the unit function. The analytic solution of Eq.15 is
y(t) = 1 − exp(−4t). Gu and Jiang [11] solved this problem by using Haar wavelets
with six and ten basis functions. Razzaghi and Yousefi [12] solved this problem
using Legendre wavelets, with M = 3 and K = 2; here, we solve this by Bernstein
polynomial multiwavelets, with j = 5; d = 0 and j = 5; d = 1. We assume the
unknown function y(t) is given by y(t) = CTψ(t), to get the solution of DE; take
y(t) = CTψ(t), u(t) = DTψ(t). Integrating Eq.15, we get

0.25CTψ(t) = −
∫ t

0
CTψ(t)dt +

∫ t

0
DTψ(t) dt

0.25CTψ(t) = −CT Pψ(t) + DT Pψ(t)
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0.25CT + κCT P = DT P

LC = M (16)

where L = 0.25I + PT and M = PT D and I is the identity matrix. Equation16
is a set of algebraic equations which can be solved for C where P is 2d(N + 1)
order square matrix, called Bernstein multiwavelets based operational matrix. After
getting the value of C , we get the desired solution (Table1 and Fig. 2).

6.2 Example 2

Consider the LC circuit given in Eq.1 with L = 2H, C = 0.5 F , and the source
voltage v(p) = v0 sin(ωp) where V0 = 1V with boundary conditions i(p) = 0 and
i ′(p) = 0 whose exact solution is given by i(p) = 1

3 (cos(t) − cos(2t)) using Bern-

Table 1 Approximate and exact solution of Example 1

p Exact solutions ξ1(p) Approximate solutions
ξ2(p) (For d = 0)

Approximate solutions
ξ2(p) (For d = 1)

0.0 0.000000 0.000006 0.000995

0.2 0.550671 0.550663 0.550898

0.4 0.798103 0.798078 0.797948

0.6 0.909282 0.909288 0.909294

0.8 0.959238 0.959208 0.959326

0.9 0.981684 0.981975 0.982680

0 0.2 0.4 0.6 0.8 1
0

0.5

1

 )( t1

 )( t2

 )( t3

t

Fig. 2 Comparison of solutions: exact solution ξ1(t), approximated solution ξ2(t) (with dilation
parameter d = 0), and approximated solution ξ3(t) (with dilation parameter d = 1)
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0 0.17 0.33 0.5 0.67 0.83
2 10 5

2.84 10 4

5.88 10 4

8.92 10 4

0.0012

0.0015

.5 E1 )(t

E2 )(t

t

Fig. 3 Comparison of absolute errors: E1(t) and E2(t) for dilation parameter d = 0 and d = 1

0 0.2 0.4 0.6 0.8 1
0.1

0

0.1

0.2

0.3

0.4

i1 )( p

i2 )( p

)( pi

p

Fig. 4 Comparison of solutions: exact solution i(p), approximated solution i1(p) (with dilation
parameter d = 0), and i2(p) (with dilation parameter d = 1)

stein polynomial multiwavelets operational matrix of integration we solve the above
LC circuit problem and calculate the approximated solution i1(p) and respectively
i2(p) for d = 0 and d = 1 Bernstein polynomial multiwavelets of order by utilizing
the above algorithm from Eqs. 8 to 1. Figures representing the exact and approximate
solution and absolute errors E1(p) = |i(p) − i1(pk)| and E2(p) = |i(p) − i2(pk)|
are given in (Figs. 3, 4, 5).
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0 0.17 0.33 0.5 0.67 0.83
0

6 10 6

1.2 10 5

1.8 10 5

2.4 10 5

3 10 5

0.01 E1 )(p

E2 )(p

p

Fig. 5 Comparison of absolute errors: E1(p) and E2(p) for dilation parameter d = 0 and d = 1

7 Conclusion

Wehave usedBernstein polynomialmultiwavelets to construct the operationalmatrix
of integration with two dilation parameters d = 0 and d = 1, which diminishes the
given differential equation to the system of algebraic equation for easy computa-
tions. Here, we have used the Bernstein multiwavelets operation matrix of inte-
gration approach to finding the numerical solutions of the differential equations.
Furthermore, our technique demonstrates the comparison between the solution for
two different dilation parameters. The selection of only six orthonormal polynomials
of degree 5 makes the method easy and straight forward to use.

References

1. Ü. Lepik, Numerical solution of differential equations using Haar wavelets. Math. Comput.
Simul. 682, 127–143 (2005)

2. L. Shi, X. Ding, Z. Chen, Q. Ma, A new class of operational matrices method for solving
fractional neutral pantograph differential equations. Adv. Differ. Equ. 1, 94 (2018)

3. Y. Öztürk, Numerical solution of systems of differential equations using operational matrix
method with chebyshev polynomials. J. Taibah Univ. Sci. 122, 155–162 (2018)

4. M.H.T. Alshbool, A.S. Bataineh, I. Hashim, O.R. Isik, Solution of fractional-order differential
equations based on the operational matrices of new fractional Bernstein functions. J. King Saud
Univ.-Sci. 291, 1–18 (2017)

5. J.S. Gu, W.S. Jiang, The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27,
623–628 (1996)

6. J.O. Stromberg, in Proceedings of Harmonic Analysis (University of Chicago, 1981), pp. 475–
494

7. A. Grossmann, J. Morlet, SIAM J. Math. Anal. 15, 723–736 (1984)



46 S. Pandey et al.

8. Y. Meyer, Analysis at Urbana I.: Analysis in Function Spaces (Cambridge University Press,
Cambridge, 1989)

9. S.G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989)
10. I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988)
11. S.A.Yousefi,B-polynomialmultiwavelets approach for the solution ofAbel’s integral equation.

Int. J. Comput. Math. 872, 310–316 (2010)
12. M. Razzaghi, S. Yousefi, The legendre wavelets operational matrix of integration. Int. J. Syst.

Sci. 324, 495–502 (2001)



Convergence Estimates of Certain
Exponential Type Operators

Vijay Gupta

Abstract The present paper dealswith the approximation properties of certain expo-
nential type operators, which is one of the operators proposed by Ismail-May (1978).
We calculate the moments and obtain a direct result and an error estimation.

Keywords Exponential type operators · Lorentz type result · Moment estimates ·
Convergence estimates · Ismail-May operators

1 Introduction

In continuation of the remarkable work by May [15], Ismail-May [13] considered
some more exponential type operators and studied the approximation properties
involving direct results. The exponential type operators satisfy the following partial
differential equation:

∂

∂x
W (n, x, t) = n(t − x)

p(x)
W (n, x, t),

where W (n, x, t) is the kernel of exponential type operators Sn( f, x) = ∫∞
−∞

W (n, x, t) f (t)dt , Ismail and May [13] recovered some known operators and con-
structed some new operators. One of the operators proposed in [13] is defined as

Tn( f, x) = e−n
√
x

{

n
∫ ∞

0
e−nt/

√
x t−1/2 I1(2n

√
t) f (t)dt + f (0)

}

, (1)
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where I1 is modified Bessel’s function of first kind given by

In(z) =
∞∑

k=0

(
z
2

)n+2k

k!Γ (n + k + 1)
.

Also the Lorentz type result for the operators (1) satisfy

2x3/2
∂

∂x
[e−n

√
xe−nt/

√
x ] = n(t − x)[e−n

√
xe−nt/

√
x ]. (2)

In the past several years convergence estimates are an active area of research.
Singh and Sharma in [16] generalized a result of Garrett-Stanojevic [9] concerning
convergence of certain cosine sums. In the case of linear positive operators, many
operators have been constructed in past seven decades and many approximation
results have been established. It is difficult here to refer many papers, some of the
results in real and complex domain are due to Agarwal–Gupta [1], Deo and collab-
orators (see [3, 4]), Gal–Gupta [8], Lorentz [14], Ditzian–Totik [6], Gupta–Tachev
[10] Gupta et al. [11], etc.

As per our knowledge, the operators Tn specifically were not studied indepen-
dently by researchers, although some researchers have considered exponential type
operators. The behavior of these operators is different, the present article deals with
some of the approximation properties of Ismail-May operators Tn , we obtain some
convergence estimates for such operators.

2 Moment Estimation

In the sequel, we calculate here the moment estimates of the operators Tn .

Lemma 1 For the operators defined by (1), if er = tr , r = 0, 1, 2, . . . , thenwe have

Tn(e0, x) = 1, Tn(e1, x) = x, Tn(e2, x) = x2 + 2x3/2

n

Tn(e3, x) = x3 + 6x5/2

n
+ 6x2

n2

Tn(e4, x) = x4 + 12x7/2

n
+ 36x3

n2
+ 24x5/2

n3
.

Proof First by definition of Tn , we have
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Tn(e0, x) = e−n
√
x

{

n
∫ ∞

0
e−nt/

√
x t−1/2

∞∑

k=0

(
n
√
t
)1+2k

k!(k + 1)! dt + 1

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−nt/

√
x tkdt + 1

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−uuk

x (k+1)/2

nk+1
du + 1

}

= e−n
√
x

{ ∞∑

k=0

nk+1

(k + 1)! x
(k+1)/2 + 1

}

= e−n
√
x

{ ∞∑

k=1

nk

k! x
k/2 + 1

}

= e−n
√
x

{ ∞∑

k=0

nk

k! x
k/2

}

= e−n
√
xen

√
x = 1.

Next

Tn(er , x) = e−n
√
x

{

n
∫ ∞

0
e−nt/

√
x t−1/2

∞∑

k=0

(
n
√
t
)1+2k

k!(k + 1)! t
r dt

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−nt/

√
x tk+r dt

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−uuk+r x

(k+r+1)/2

nk+r+1
du

}

= e−n
√
x

{ ∞∑

k=0

nk−r+1

k!(k + 1)!Γ (k + r + 1).x (k+r+1)/2

}

= e−n
√
x

{

x (r+1)/2n−r+1
∞∑

k=0

nk

k! x
k/2 (k + r)!

(k + 1)!

}

.

Substituting r = 1, 2, 3, 4, . . . the moments are given as

Tn(e1, x) = e−n
√
x

{

x (r+1)/2n−r+1
∞∑

k=0

nk

k! x
k/2 (k + r)!

(k + 1)!

}

= e−n
√
x

{

x
∞∑

k=0

nk

k! x
k/2

}

= x .
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Tn(e2, x) = e−n
√
x

{

x (r+1)/2n−r+1
∞∑

k=0

nk

k! x
k/2 (k + r)!

(k + 1)!

}

= e−n
√
x

{
x3/2

n

∞∑

k=0

nk

k! x
k/2(k + 2)

}

= e−n
√
x

{
x3/2

n

∞∑

k=1

nk

(k − 1)! x
k/2 + 2x3/2

n

∞∑

k=0

nk

k! x
k/2

}

= e−n
√
x

{

x2
∞∑

k=0

nk

k! x
k/2 + 2x3/2

n

∞∑

k=0

nk

k! x
k/2

}

= x2 + 2x3/2

n
.

Similarly, we obtain the other two moments, we omit the details.

Lemma 2 If the central moments are defined by μn,m(x) = Tn((t − x)m, x),m =
0, 1, 2, . . . , then we have

μn,0(x) = 1

μn,1(x) = 0

μn,2(x) = 2x3/2

n

μn,3(x) = 6x2

n2

μn,4(x) =
(
24x5/2

n3
+ 12x3

n2

)

.

The proof of above lemma follows using Lemma 1, just we have to apply the linearity
property of the operators.

Remark 1 By definition of Tn , we have

Tn(e
At , x) = e−n

√
x

{

n
∫ ∞

0
e−nt/

√
x t−1/2

∞∑

k=0

(
n
√
t
)1+2k

k!(k + 1)! e
Atdt + 1

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−t (n/

√
x−A)t kdt + 1

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!
∫ ∞

0
e−uuk

x (k+1)/2

(n − A
√
x)k+1

du + 1

}

= e−n
√
x

{ ∞∑

k=0

n2k+2

k!(k + 1)!Γ (k + 1).
x (k+1)/2

(n − A
√
x)k+1

+ 1

}
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= e−n
√
x

⎧
⎪⎨

⎪⎩

∞∑

k=0

(
n2

√
x

n−A
√
x

)k+1

(k + 1)!

⎫
⎪⎬

⎪⎭
= e

nAx
(n−A

√
x) .

3 Convergence Estimates

Suppose CB[0,∞) be the space of all continuous and bounded functions on [0,∞)

endowed with the norm ‖ f ‖ = sup{| f (x)| : x ∈ [0,∞)}. Further let us consider the
following K functional:

K2( f, δ) = inf
g∈C2

B [0,∞)
{‖ f − g‖ + δ‖g′′‖},

where δ > 0 and C2
B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. Following [5],

one has the inequality

K2( f, δ) ≤ Cω2( f,
√

δ), δ > 0. (3)

Theorem 1 Let f ∈ CB[0,∞), then we have

|Tn( f, x) − f (x)| ≤ Cω2

(

f,
x3/4√
n

)

.

Proof Let g ∈ C2
B[0,∞) and x, t ∈ [0,∞), by Taylor’s formula, we have

g(t) = g(x) + (t − x)g′(x) +
∫ t

x
(t − u)g′′(u)du.

Then using Lemma 1, we have

|Tn(g, x) − g(x)| =
∣
∣
∣
∣Tn

(∫ t

x
(t − u)g′′(u)du, x

)∣∣
∣
∣

≤ 1

2
μn,2(x) ‖g′′‖ = x3/2

n
‖g′′‖. (4)

Also, we have

|Tn( f, x)| ≤ ‖ f ‖. (5)

Therefore using (4) and (5), we have
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|Tn( f, x) − f (x)| ≤ |Tn( f − g, x) − ( f − g)(x)| + |Tn(g, x) − g(x)|
≤ 2‖ f − g‖ + x3/2

n
‖g′′‖. (6)

Taking infimum over all g ∈ C2
B[0,∞), and using (3), we get the desired result.

Theorem 2 Let f be bounded and integrable function on the interval [0,∞), pos-
sessing a second derivative of f at a fixed point x ∈ [0,∞), then

lim
n→∞ n (Tn( f, x) − f (x)) = x3/2 f ′′(x).

Proof By the Taylor’s formula, we have

f (t) = f (x) + f ′(x)(t − x) + 1

2
f ′′(x)(t − x)2 + λ(t, x)(t − x)2, (7)

where λ(t, x) is the remainder term and lim
n→∞ λ(t, x) = 0.Applying Tn to the Eq. (7),

we obtain

Tn( f, x) − f (x) = Tn(t − x, x) f ′(x) + Tn
(
(t − x)2 , x

) f ′′(x)
2

+Tn
(
λ (t, x) (t − x)2 , x

)

Next using Cauchy–Schwarz inequality, we have

Tn
(
λ (t, x) (t − x)2 , x

) ≤
√
Tn

(
λ2 (t, x) , x

)√
Tn

(
(t − x)4 , x

)
. (8)

As λ2 (x, x) = 0, we have

lim
n→∞ Tn

(
λ2 (t, x) , x

) = λ2 (x, x) = 0 (9)

uniformly with respect to x ∈ [0, A] . Now from (8), (9) and Lemma 2, we get

lim
n→∞ Tn

(
λ (t, x) (t − x)2 , x

) = 0.

Then using Lemma 2, we obtain

lim
n→∞ (Tn( f, x) − f (x))

= lim
n→∞ f ′(x)μn,1(x) + 1

2
f ′′(x)μn,2(x)

+Tn
(
λ (t, x) (t − x)2 ; x)

= x3/2 f ′′(x).
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Next result provides an estimate in weighted approximation, we give the following
result.

Let us considerC∗[0,∞) the space of all continuous functions satisfying the con-
dition limx→∞ f (x)

1+x3/2 is finite and belonging to the class B[0,∞), where
B[0,∞) = { f : for every x ∈ [0,∞), | f (x)| ≤ C(1 + x3/2),C being certain
constant depending on f }. The norm on C∗[0,∞) is defined by

‖ f ‖ = sup
x∈[0, ∞)

| f (x)|
1 + x3/2

.

Theorem 3 For each f ∈ C∗[0,∞), we have

lim
n→∞ ‖Tn( f ) − f ‖ = 0.

Proof Using Theorem in [7], in order to prove the theorem, it is sufficient to show
that

lim
n→∞ ‖Tn(em, x) − em‖ = 0,m = 0, 1, 2.

Obviously the operators Tn preserve constant and linear function, we only have to
show the validity at m = 2. We can write

∥
∥Tn (e2, x) − x2

∥
∥ ≤ sup

x∈[0, ∞)

2x3/2

n(1 + x3/2)
.

which implies that

lim
n→∞

∥
∥Tn (e2, x) − x2

∥
∥ = 0

This completes the proof of the theorem.

Let C∗[0,∞) denotes the Banach space of all real-valued continuous functions
on [0,∞) with the property that limx→∞ f (x) exists and is finite, endowed with the
uniform norm.

Also, for every δ ≥ 0 the modulus of continuity (see [12]) is given by

ω∗( f, δ) = sup
x,t≥0

|e−x−e−t |≤δ

| f (x) − f (t)|.

Theorem 4 Let f, f ′′ ∈ C∗[0,∞), then, for x ∈ [0,∞), the following inequality
holds:
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∣
∣n [Tn( f, x) − f (x)] − x3/2 f ′′(x)

∣
∣

≤ 2ω∗( f ′′, n−1/2)

[

2x3/2 +
(
24x5/2

n
+ 12x3

)1/2 [
n2Tn

((
e−x − e−t

)4
, x
)]1/2

]

.

Proof By the Taylor’s expansion, we have

f (t) =
2∑

i=0

(t − x)i
f

(i)
(x)

i ! + h (t, x) (t − x)2 ,

where

h (t, x) := f ′′ (ξ) − f ′′ (x)
2

,

with ξ lying between x and t . Applying the operator Tn to above equality, we can
write that

∣
∣Tn ( f, x) − μn,0(x) f (x) − μn,1(x) f ′(x) − 1

2 μn,2(x) f ′′ (x)
∣
∣

= |Tn
(
h (t, x) (t − x)2, x

) |.

Thus, using Lemma 2, we get

∣
∣n [Tn( f, x) − f (x)] − x3/2 f ′′(x)

∣
∣ = ∣

∣n Tn
(
h (t, x) (t − x)2, x

)∣∣ .

Using the methods as given in [2, Th. 2], we can write

|h (t, x)| ≤ 2

(

1 +
(
e−x − e−t

)2

δ2

)

ω∗( f ′′, δ).

Hence, after applying Cauchy–Schwarz inequality we get

n Tn
(
|h (t, x) | (t − x)2, x

)
≤ 2 n ω∗( f ′′, δ) μn,2(x)

+2n

δ2
ω∗( f ′′, δ)

√
Tn

(
(e−x − e−t )4, x

)√
Tn

(
(t − x)4, x

)
.

Considering δ = n−1/2, we obtain

nTn
(
|h (t, x) | (t − x)2, x

)
≤ 2ω∗

(

f ′′, 1√
n

)[

nμn,2(x) +
√
n2Tn

(
(e−x − e−t )4, x

)√
n2μn,4(x)

]

.

Finally using Lemma 2, we get the required result.

Remark 2 The convergence of the Ismail-May operators Tn in the above theorem
takes place for n sufficiently large. Using Remark 1, for A = −1,−2,−3,−4 and
by the mathematical software, we find that
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lim
n→∞ n2 Tn

((
e−x − e−t )4 , x

)

= lim
n→∞ n2

(
Tn(e

−4t , x) − 4e−x Tn(e
−3t , x) + 6e−2x Tn(e

−2t , x) − 4e−3x Tn(e
−t , x) + e−4x

)

= lim
n→∞ n2

[

e
−4nx

(n+4
√
x) − 4e−x e

−3nx
(n+3

√
x) + 6e−2x e

−2nx
(n+2

√
x) − 4e−3x e

−nx
(n+1

√
x) + e−4x

]

= lim
n→∞ n2

[

e
−4nx

(n+4
√
x) − 4e

−3x
√
x−4nx

(n+3
√
x) + 6e

−4x
√
x−4nx

(n+2
√
x) − 4e

−3x
√
x−4nx

(n+√
x) + e−4x

]

= 12e−4x x3.
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A Better Error Estimation on
Generalized Positive Linear Operators
Based on PED and IPED

Neha Bhardwaj

Abstract In this paper, we consider King type modification of generalized positive
linear operators based on Pólya-Eggenberger Distribution (PED) as well as inverse
Pólya-Eggenberger Distribution (IPED). We investigate the rate of convergence of
these operators with the aid of the Peetre’s K2 functional and study the order of
approximation for functions in Lipschitz type space.

Keywords Pólya-Eggenberger distribution · Lipschitz-type space · Modulus of
continuity · Peetre’s K2-functional · Voronovskaya result
2010 AMS Subject Classification 41A10 · 41A25 · 41A30 · 41A63 · 26A15

1 Introduction

The nth Bernstein polynomial of real-valued function f on the closed unit interval
[0, 1] is defined as

Bn( f ) (x) =
n∑

k=0

(
n
k

)
xk(1 − x)n−k f

(
k

n

)
, x ∈ [0, 1] . (1.1)

It is well known that the sequence {Bn( f )}n∈N converges uniformly to f on [0, 1]
and the Bernstein polynomials and their generalization as well as modification have
an important role in approximation theory (see, for instance, [1–5, 8, 10, 12, 13, 15,
17]).

In 1968, Stancu [19] introduced a new class of positive linear operators based on
Pólya-Eggenberger Distribution (PED) and associated with a real-valued function
on [0, 1] as:
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B(α)
n ( f ; x) =

n∑

k=0

(n
k

) x [k,−α](1 − x)[n−k,−α]

1[n,−α]
f

(
k

n

)
(1.2)

where α is a nonnegative parameter which may depend only on the natural number n
and m[n,h] = m (m − h) (m − 2h) · · · (m − n − 1h

)
,m[0,h] = 1 represents the fac-

torial power of m with increment h.
In view of these concernments in 1970, Stancu [20] introduced a generalized form

of Baskakov operators based on inverse Pólya-Eggenberger Distribution (IPED) for
a real-valued function bounded on [0,∞), given by

V (α)
n ( f ; x) =

n∑

k=0

(
n + k − 1

k

)
1[n,−α]x [k,−α]

(1 + x)[n+k,−α] f

(
k

n

)
(1.3)

In 2017, Deo and Dhamija [7] considered new positive linear operators L(α)
n , for

each f , real-valued function bounded on interval [0,∞), as

L(α)
n,λ ( f ; x) =

∑

k

w
(α)
n,k (x) f

(
k

n

)
, x ∈ [0, 1], n = 1, 2, . . . , (1.4)

where α = α (n) → 0 when n → ∞, p and k are nonnegative integers and for λ =
−1, 0, we have

w
(α)
n,k (x) = n + p

n + p + λ + 1k

(
n + p + λ + 1k

k

)
x [k,−α](1 + λx)[n+p+λk,−α]

(
1 + λ + 1x

)[n+p+λ+1k,−α
] ,

using the notation t − rα = (t − r)α. Equation (1.4) is the generalized form of two
operators (1.2) and (1.3) and associated with PED and IPED (Eggenberger and
Pólya).

Deo et al. [9] also studied local approximation theorem, weighted approximation,
and estimation of rate of convergence for absolutely continuous function having
derivatives of boundedvariation for generalized positive linearKantorovich operators
associated to PED as well as IPED.

Let f ∈ CB[0,∞) be the space of all real-valued bounded and uniformly con-
tinuous functions on [0,∞), equipped with the norm ‖ f ‖ = sup

x∈[0,∞)

| f (t)| . The
classical Peetre’s K2-functional and the second modulus of smoothness of a function
f ∈ CB[0,∞) are defined, respectively, by

K2 ( f, δ) = inf
{‖ f − g‖ + δ

∥∥g′′∥∥ : g ∈ W 2
∞
}
, δ > 0

where W 2∞ = {
g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)

}
. From [10], there exists a posi-

tive constant C such that
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K2 ( f, δ) ≤ Cω2

(
f,

√
δ
)

(1.5)

and
ω2( f,

√
δ) = sup

0<h≤δ

sup
x∈[0,∞)

| f (x + 2h) − 2 f (x + h) + f (x)| .

In this paper, we study a King type modification of generalized linear positive
operators (1.4). We establish the rate of convergence of these operators in terms of
second-order modulus of continuity via the approach of Peetre’s K -functional and
also determine the rate of approximation for functions in a Lipschitz-type space.

2 Basic Results

Lemma 2.1 ([7]) For the generalized positive linear operators defined by (1.4),
there hold the identities:

L(α)n,λ (1; x) = 1

L(α)n,λ (t; x) =
(
n + p

n

)
x(

1 − λ + 1α
)

L(α)n,λ

(
t2; x

)
=
(
n + p

n2

)
1

(1 − λα)
(
1 − λ + 1α

)
[
(n + p + λ + 1) x (x + α)

1 − 2λ + 1α
+ x (1 + λx)

]

L(α)n,λ

(
t3; x

)
=
⎡

⎣
(n + p + 2λ + 1)

(
n + p + 22λ + 1

)
(x + α) (x + 2α)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

+ 3 (n + p + 2λ + 1) (x + α)(
1 − 3λ + 2α

) + 1

⎤

⎦

L(α)n,λ

(
t4; x

)
= (n + p) x

n4
(
1 − λ + 1α

)

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

) (
n + p + 32λ + 1

)
(x + α) (x + 2α) (x + 3α)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

) (
1 − 7λ + 4α

)

+
6 (n + p + 2λ + 1)

(
n + p + 22λ + 1

)
(x + α) (x + 2α)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

+ 7 (n + p + 2λ + 1) (x + α)(
1 − 3λ + 2α

) + 1

]

Consequently, we have

Lemma 2.2 ([7]) The generalized linear positive operators (1.4) satisfy:
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Lα
n,λ (t − x; x) =

(
p + nλ + 1α

)
x

n
(
1 − λ + 1α

)

Lα
n,λ

(
(t − x)2; x

)
= n + p

n (1 − λα)
(
1 − λ + 1α

)
[
(1 − λα)

(
1 − λ + 1α

) nx2

n + p

+ (n + p + λ + 1) x (x + α)

n
(
1 − 2λ + 1α

) + x (1 + λx)

n
− 2 (1 − λα) x2

]

Lα
n,λ

(
(t − x)3; x

)
= (n + p) x (x + α)

n2
(
1 − λ + 1α

)

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

)
(x + 2α)

n
(
1 − 3λ + 2α

) (
1 − 5λ + 3α

) + 3 (n + p + 2λ + 1)

n
(
1 − 3λ + 2α

)

− 3 (n + p + λ + 1) x

(1 − λα)
(
1 − 2 (λ + 1)α

)
]

+ (n + p)x

n(1 − λ + 1α)

[
1

n2
− 3x

(
px + λ + 1α

(n + p)

)
− 3

(1 − λα)

x (1 + λx)

n

]

−2x3

⎡

⎣2 − 3 (n + p)

n
(
1 − λ + 1α

)

⎤

⎦

L(α)n,λ((t − x)4; x) = (n + p) x (x + α)

n2
(
1 − λ + 1α

)

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

) (
n + p + 32λ + 1

)
(x + 2α) (x + 3α)

n2
(
1 − 3λ + 2α

) (
1 − 5λ + 3α

) (
1 − 7λ + 4α

)

+
2 (3 − 2nx) (n + p + 2λ + 1)

(
n + p + 22λ + 1

)
(x + 2α)

n2
(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

+ (7 − 12nx) (n + p + 2λ + 1)

n2
(
1 − 3λ + 2α

) + 6 (n + p + 2λ + 1) x2

(1 − λx)
(
1 − 2

(
λ + 1

)
α
)
]

+ (n + p) x

n
(
1 − λ + 1α

)
[
1 − 4nx

n3
+ 8x2

(
px + λ + 1α

(n + p)

)
6x2 (1 + λα)

n (1 − λα)

]

+3x4

⎡

⎣3 − 4 (n + p)

n
(
1 − λ + 1α

)

⎤

⎦

Many researchers have studied King type modification for different sequences of
linear positive operators (see, for instance [6, 11, 14, 16, 18]). Now we consider a
similar type of modification for the operators given by (1.4).

We assume that {un(x)} is a sequence of real-valued continuous functions defined
on [0,∞) with 0 ≤ un(x) < ∞, for x ∈ [0,∞); then we have
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L̂(α)
n,λ ( f ; x) =

∑

k

w
(α)
n,k (un(x)) f

(
k

n

)
, (2.1)

where w(α)
n,k (un(x)) = n+p

n+p+λ+1k

(
n+p+λ+1k

k

)
un(x)

[k,−α](1+λun(x))
[n+p+λk,−α]

(1+λ+1un(x))[
n+p+λ+1k,−α]

and un (x) = n
n+p

(
1 − λ + 1α

)
x , n, p ∈ N.

By a simple computation, we obtain the following result.

Lemma 2.3 For the modified generalized positive linear operators (2.1), there hold
the following equalities:

L̂(α)n,λ(1; x) = 1

L̂(α)n,λ(t; x) = x

L̂(α)n,λ(t
2; x) = 1

n(1 − λα)

[
n

n + p
(1 − λ + 1α)

[
n + p + λ + 1

1 − 2λ + 1

]
x +

(
1 + n + p + λ + 1

1 − 2λ + 1α
α

)]
x

L̂(α)n,λ(t
3; x) = x

n2

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠+ 3 (n + p + 2λ + 1)(
1 − 3λ + 2α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠+ 1

]

L̂(α)n,λ(t
4; x) = x

n3

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

) (
n + p + 32λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

) (
1 − 7λ + 4α

)

⎡

⎣

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 3α

⎞

⎠

⎤

⎦

+
6 (n + p + 2λ + 1)

(
n + p + 22λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠+ 7 (n + p + 2λ + 1)(
1 − 3λ + 2α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠+ 1

]

Lemma 2.4 The modified generalized linear positive operators (2.1) satisfy:

L̂(α)n,λ(t − x; x) = 0

L̂(α)n,λ((t − x)2; x) = x

n(1 − λα)

[
n

n + p

(
1 − λ + 1α

)(n + p + λ + 1

1 − 2λ + 1α
+ α

)
x

+
(
1 + n + p + λ + 1

1 − 2λ + 1α
α

)]
− x2

L̂(α)n,λ((t − x)3; x) = x

n2

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠
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⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠+ 3 (n + p + 2λ + 1)(
1 − 3λ + 2α

)

×
⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠+ 1

]

−x3 − 3x

[
x

n(1 − λα)

[
n

n + p

(
1 − λ + 1α

)( n + p + λ + 1

1 − 2λ + 1α
+ α

)
x

+
(
1 + n + p + λ + 1

1 − 2λ + 1α
α

)]
− x2

]

L̂(α)n,λ((t − x)4; x) = x

n3

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

) (
n + p + 32λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

) (
1 − 7λ + 4α

)

⎡

⎣

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠

×
⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 3α

⎞

⎠

⎤

⎦+
6 (n + p + 2λ + 1)

(
n + p + 22λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

×
⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠+ 7 (n + p + 2λ + 1)(
1 − 3λ + 2α

)

×
⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠+ 1

]

−x4 − 4x2

n2

[ (n + p + 2λ + 1)
(
n + p + 22λ + 1

)

(
1 − 3λ + 2α

) (
1 − 5λ + 3α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ 2α

⎞

⎠+ 3 (n + p + 2λ + 1)(
1 − 3λ + 2α

)

⎛

⎝
n
(
1 − λ + 1α

)
x

n + p
+ α

⎞

⎠+ 1

]

−x3 − 3x

[
x

n(1 − λα)

[
n

n + p

(
1 − λ + 1α

)( n + p + λ + 1

1 − 2λ + 1α
+ α

)
x

+
(
1 + n + p + λ + 1

1 − 2λ + 1α
α

)]
− x2

]
+ 6x3

n(1 − λα)

[
n

n + p

(
1 − λ + 1α

)

×
(
n + p + λ + 1

1 − 2λ + 1α
+ α

)
x +

(
1 + n + p + λ + 1

1 − 2λ + 1α
α

)]
− x2
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3 Voronovskaya Type Results

Theorem 3.1 For f ∈ CB [0,∞), we have

∣∣∣L̂(α)
n,λ ( f ; x) − f (x)

∣∣∣ ≤ Cω2

⎛

⎝ f,

√
μ(α)
n,λ (x)

2

⎞

⎠ , (3.1)

where C is a positive constant and

μ(α)
n,λ (x) = x

n (1 − λα)

⎡

⎣ n

n + p

(
1 − λ + 1α

)
⎛

⎝ (n + p + λ + 1)(
1 − 2λ + 1α

) + α

⎞

⎠ x

⎤

⎦

+
⎛

⎝1 + (n + p + λ + 1)(
1 − 2λ + 1α

) α

⎞

⎠ .

Proof Let g ∈ W 2∞. Using Taylor’s expansion, we get

g(y) = g(x) + g′(x)(y − x) +
∫ y

x
(y − u)g′′(u)du

From Lemma 2.4, we have

(
L̂(α)
n,λg

)
(x) − g(x) =

(
L̂(α)
n,λ

∫ y

x
(y − u)g′′(u)du

)
(x).

We know that ∣∣∣∣
∫ y

x
(y − u)g′′(u)du

∣∣∣∣ ≤ (y − x)2
∥∥g′′∥∥ .

Therefore
∣∣∣
(
L̂(α)
n,λg

)
(x) − g(x)

∣∣∣ ≤
(
L̂(α)
n,λ(y − x)2

)
(x)

∥∥g′′∥∥ = μ(α)
n,λ (x)

∥∥g′′∥∥ .

By Lemma 2.3, we have

∣∣∣
(
L̂(α)
n,λ f

)
(x)

∣∣∣ ≤
∣∣∣∣∣
∑

k

w
(α)
n,k (un(x)) f

(
k

n

)∣∣∣∣∣ ≤ ‖ f ‖ .

Hence
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∣∣∣
(
L̂(α)
n,λ f

)
(x) − f (x)

∣∣∣ ≤
∣∣∣
(
L̂(α)
n,λ( f − g)

)
(x) − ( f − g)(x)

∣∣∣+
∣∣∣
(
L̂(α)
n,λg

)
(x) − g(x)

∣∣∣

≤ 2 ‖ f − g‖ + μ(α)
n,λ (x)

∥∥g′′∥∥

where
μ(α)
n,λ (x) = x

n(1−λα)

[
n

n+p

(
1 − λ + 1α

) (
n+p+λ+1
1−2λ+1α

+ α
)
x +

(
1 + n+p+λ+1

1−2λ+1α
α
)]

− x2

taking the infimum on the right side over all g ∈ W 2∞ and using (1.5), we get the re-
quired result. �

Remark 3.2 ([8]) Under the same conditions of Theorem 3.1, we obtain

∣∣∣L(α)
n,λ( f ; x) − f (x)

∣∣∣ ≤ ω

(
f,

px + nx(λ + 1)α

n (1 − (λ + 1)α)

)
+ Aω2

⎛

⎝ f,

√
ψ(α)
n,λ(x)

2

⎞

⎠

where A is a positive constant and

ψ(α)
n,λ(x) = L(α)

n,λ((t − x)2; x) +
{
px + nx (λ + 1)α

n (1 − (λ + 1)α)

}2

Now, we compute the rate of convergence of these operators by means of Lipschitz
class Lip∗

M (β), 0 < β ≤ 1. Consider the following Lipshitz type space

Lip∗
M (β) :=

{
f ∈ CB[0,∞) : | f (y) − f (x)| ≤ M

|y − x |β
(x + y)

β/2
; x, y ∈ (0,∞)

}

where M is a positive constant.

Theorem 3.3 For all x ∈ [0,∞) and f ∈ Lip∗
M (β) , 0 < β ≤ 1, we get

∣∣∣L̂(α)
n,λ( f ; x) − f (x)

∣∣∣ ≤ M

(
μ(α)
n,λ (x)

x

) β
2

where
μ(α)
n,λ (x) = L̂(α)

n,λ((t − x)2; x)

Proof Assuming β = 1,
Then for f ∈ Lip∗

M (1), we have

∣∣∣L̂(α)
n,λ( f ; x) − f (x)

∣∣∣ ≤
∣∣∣∣∣
∑

k

w
(α)
n,k (un(x)) f

(
k

n

)
− f (x)

∣∣∣∣∣

≤
∞∑

k=0

w
(α)
n,k (un(x))

∣∣∣∣ f
(
k

n

)
− f (x)

∣∣∣∣
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≤ M
∞∑

k=0

w
(α)
n,k (un(x))

∣∣ k
n − x

∣∣
(
k
n + x

)1/2

UsingCauchy–Schwarz inequality and 1

( k
n +x)

1
/2

≤ 1

x
1
/2
and linearity of L̂(α)

n,λ( f ; x),
we have

∣∣∣L̂(α)
n,λ( f ; x) − f (x)

∣∣∣ ≤ M√
x

∞∑

k=0

w
(α)
n,k (un(x))

{(
k

n
− x

)2
}1/2

≤ M√
x

{ ∞∑

k=0

w
(α)
n,k (un(x))

}1/2{ ∞∑

k=0

w
(α)
n,k

(
k

n
− x

)2
}1/2

= M

(
μ(α)
n,λ (x)

x

) 1
2

.

Therefore, the result is true for β = 1.
Now, to prove result for 0 < β < 1, consider f ∈ Lip∗

M (β).

∣∣∣L̂(α)
n,λ ( f ; x) − f (x)

∣∣∣ ≤
∞∑

k=0

w
(α)
n,k (un (x))

∣∣∣∣ f
(
k

n

)
− f (x)

∣∣∣∣

≤ M
∞∑

k=0

w
(α)
n,k (un (x))

∣∣ k
n − x

∣∣β

(
k
n + x

)β/2

Using Hölders inequality for p = 2
β
, q = 2

2−β
and inequality 1√

k
n +x

≤ 1√
x
, we have

∣∣∣L̂(α)n,λ ( f ; x) − f (x)
∣∣∣ ≤ M

xβ/2

∞∑

k=0

w
(α)
n,k (un (x))

{(
k

n
− x

)2}β/2

≤ M

xβ/2

⎧
⎨

⎩

∞∑

k=0

w
(α)
n,k (un (x))

(
k

n
− x

)2
⎫
⎬

⎭

β/2⎧
⎨

⎩

∞∑

k=0

w
(α)
n,k (un (x))

⎫
⎬

⎭

2−β/2

≤ M

⎧
⎨

⎩
L̂(α)n,λ

(
(t − x)2; x

)

x

⎫
⎬

⎭

β/2

= M

⎧
⎨

⎩
μ
(α)
n,λ (x)

x

⎫
⎬

⎭

β/2

�
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Q-Analogue of Generalized
Bernstein–Kantorovich Operators

Ram Pratap and Naokant Deo

Abstract In thepresent article,we consider the q-analogueof generalizedBernstein–
Kantorovich operators. For the proposed operators, we studied some convergence
properties by using first- and second-order modulus of continuity.

Keywords Bernstein operators · Kantorovich operators · Modulus of continuity

2010 Mathematics Subject Classification 41A25 · 41A36

1 Introduction

In the year 1912, Bernstein [5] introduced the Bernstein operators and provided the
constructive proof of Weierstrass theorem. Later, several researchers have general-
ized Bernstein operators using different parameters and studied various convergence
properties. For more (see [6, 7, 16]).

Recently, Chen et al. [7] defined a family of Bernstein operators, for the functions
f ∈ [0, 1], α is fixed and n ∈ N are as follows:

B(α)
n ( f ; x) =

n∑

k=0

fk p
(α)
n,k (x), (1.1)

where fk = f
(
k
n

)
. For n > 2 the α-Bernstein polynomial p(α)n,k (x) of degree n is

defined by
p(α)1,0 (x) = 1 − x, p(α)1,1 (x) = x,
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and

p(α)n,k (x) =
[(

n − 2
k

)
(1 − α) x +

(
n − 2
k − 2

)
(1 − α) (1 − x)

+
(
n
k

)
αx (1 − x)

]
xk−1(1 − x)n−k−1, x ∈ [0, 1] .

For the first time in 1987, Bernstein operators based on q-integers were introduced
by Lupas [12] and they are rational functions. Again in 1997, Phillips [14] introduced
the q-Bernstein polynomials known as Phillips q-Bernstein operators. In past decade,
linear positive operators based on q-integers is an active area of research. For more
(see [4, 8, 11]).

Chai et al. [8] have considered the q-analouge of (1.1) is as follows:

B(α)
n,q ( f ; x) =

n∑

k=0

fk p
(α)
n,q,k(x), (1.2)

where

p(α)n,q,k(x) =
([

n − 2
k

]

q

(1 − α) x +
[
n − 2
k − 2

]

q

(1 − α) qn−k−2
(
1 − qn−k−1x

)

+
[
n
k

]

q

αx
(
1 − qn−k−1x

)
)
xk−1(1 − x)n−k−1

q ,

q ∈ (0, 1] and fk = f
( [k]q

[n]q
)
. For detailed explanation (see [3]).

Dhamija et al. [10] proposed the Kantorovich form of modified Szász–Mirakyan
operators. Several researchers have also studied Kantorovich form of different lin-
ear positive operators and established local and global approximation results. More
details (see [1, 2, 13, 15]).

Mohiuddine et al. [13] proposed the Kantorovich form of the operators (1.1),
which is given as

K (α)
n ( f ; x) = (n + 1)

n∑

k=0

p(α)n,k (x)

(k+1)/(n+1)∫

k/(n+1)

f (t)dt, (1.3)

where p(α)n,k (x) is defined in (1.1).
For α = 1 and q = 1 the operators (1.4) reduces to Bernstein–Kantorovich oper-

ators.
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Motivated from the above statedwork,we consider the q-analogue of the operators
(1.3) as follows:

K (α)
n,q ( f ; x) = [n + 1]q

n∑

k=0

p(α)n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

f (t)dqt, (1.4)

and p(α)n,q,k(x) is given in (1.2).
In this paper, we estimated the moments of the proposed operators and discuss

the rate of convergence using modulus of continuity.

2 Basic Results

In this section, we prove some auxiliary result to prove our main results.

Lemma 2.1 From [8], we have B(α)
n,q (1; x) = 1, B(α)

n,q (t; x) = x and

B(α)
n,q (t

2; x) = x2 + x(1 − x)

[n]q
+ (1 − α)qn−1[2]q x(1 − x)

[n]2q
.

Lemma 2.2 (i) K (α)
n,q (1; x) = 1;

(ii) K (α)
n,q (t; x) = 2q[n]q

[2]q [n+1]q x + 1
[2]q [n+1]q

;

(iii) K (α)
n,q (t

2; x) = 3q2[n]2q
[3]q [n+1]2q x

2 + 3q2

[3]q [n+1]2q
([n]q + (1 − α)qn−1[2]q

)
x(1 − x)

+ 3q[n]q x
[3]q [n+1]2q

+ 1
[3]q [n+1]2q

.

Proof From [15],

[k+1]q
[n+1]q∫
q[k]q
[n+1]q

1dqt = 1
[n+1]q

,

[k+1]q
[n+1]q∫
q[k]q
[n+1]q

tdq t = 2q[k]q
[2]q [n+1]2q

+ 1
[2]q [n+1]2q

and

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

t2dqt = 3q2 [k]2q
[3]q [n + 1]3q

+ 3q[k]q
[3]q [n + 1]3q

+ 1

[3]q [n + 1]3q
.

It is easy to say that K (α)
n,q (1; x) = 1.

For f (t) = t and using Lemma2.1, we have
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K (α)
n,q (t; x) = [n + 1]q

n∑

k=0

p(α)n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

tdq t

= [n + 1]q

n∑

k=0

p(α)n,q,k(x)

(
2q[k]q

[2]q [n + 1]2q
+ 1

[2]q [n + 1]2q

)

= [n]q
[n + 1]q

(
2q

[2]q
n∑

k=0

p(α)n,q,k(x)
[k]q
[n]q + 1

[2]q [n]q
n∑

k=0

p(α)n,q,k(x)

)

= 2q[n]q x + 1

[2]q [n + 1]q .

Similarly, for f (t) = t2, we can estimate. So here we skip. �

Lemma 2.3 The central moments for the operators (1.4) are as follows:

(i) K (α)
n,q (t − x; x) = 2q[n]q

[2]q [n+1]q x + 1
[2]q [n+1]q ;

(ii) K (α)
n,q ((t − x)2; x) =

(
3q2[n]2q

[3]q [n+1]2q − 4q[n]q
[2]q [n+1]q + 1

)
x2

+ 3q2

[3]q [n+1]q
([n]q + [2]q(1 − α)qn−1

)
x(1 − x) +

(
3q[n]q

[3]q [n+1]2q − 2
[3]q [n+1]q

)
x

+ 1
[3]q [n+1]2q .

Proof Using linearity property of the operators (1.4) and Lemma2.2, we get the
required results. �

Lemma 2.4 Let 0 < q < 1 and c ∈ [0, qd], d > 0. Then the inequality

d∫

c

|t − x | dqt ≤
⎛

⎝
d∫

c

(t − x)2dqt

⎞

⎠

1
2
⎛

⎝
d∫

c

dq t

⎞

⎠

1
2

.

Proof For the proof of the Lemma (see [15]). �

3 Main Results

Let C[0, 1] be the space of all continuous functions on [0, 1] with sup-norm ‖ f ‖ :=
supx∈[0,1] | f (x)|. Let f ∈ C [0, 1] and δ > 0. Then themodulus of continuityω ( f, δ)
is given as:

ω ( f, δ) = sup
|v − w| ≤ δ
v,w ∈ [0, 1]

| f (v) − f (w)| .
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It is well-known lim
δ→0

ω( f ; δ) = 0. For f ∈ C[0, 1] and x, t ∈ [0, 1], we have

| f (t) − f (x)| ≤ ω( f ; δ)

(
1 + |t − x |

δ

)
(3.1)

For f ∈ C[0, 1] the Peetre K-functional is given by

K2( f ; δ) = inf
g∈W 2

{| f − g| + δ
∥∥g′′∥∥} ,

where δ > 0 andW 2 = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]}. In [9], there exists an abso-
lute constant λ > 0, such that

K2( f ; δ) ≤ λω2( f ;
√

δ). (3.2)

and the second-order modulus of continuity ω2(.; δ) for f ∈ C[0, 1] as follows:

ω2( f ; δ) = sup
0<h≤δ

sup
x,x+h,x+2h∈[0,1] | f (x + 2h) − 2 f (x + h) + f (x)| .

Theorem 3.1 For 0 < q ≤ 1, q = {qn} be a sequence converging to 1 as n → ∞.
Then, for all f ∈ C[0, 1] and α ∈ [0, 1], it implies K (α)

n,q ( f ; x) converges to f (x)
uniformly on [0, 1] for sufficiently large n.
Proof From Lemma2.2, limn→∞ qn = 1, we have limn→∞ K (α)

n,q (1; x) = 1, limn→∞
K (α)

n,q (t; x) = x and limn→∞ K (α)
n,q (t

2; x) = x2. Then byBohaman–Korovkin theorem
limn→∞ K (α)

n,q ( f (t); x) = f (x) converges uniformly on [0, 1]. �

Theorem 3.2 For f ∈ C[0, 1], q ∈ (0, 1) and α ∈ [0, 1], we have
∣∣K (α)

n,q ( f ; x) − f (x)
∣∣ ≤ λω2

(
f ;
√

μ
q
n,2(x) + μ

q
n,1

2
(x)

)
+ ω

(
f ;ω

q
n,1(x)

)
,

where μ
q
n,2(x) and μ

q
n,1(x) are second- and first-central moments of the operators

(1.4).

Proof We define an auxiliary operators

K̂ (α)
n,q ( f ; x) = K (α)

n,q ( f ; x) − f

(
2q[n + 1]q x + 1

[2]q [n + 1]q
)

+ f (x). (3.3)

For the operators K̂ (α)
n,q (.; x), we get

K̂ (α)
n,q (t − x; x) = 0. (3.4)
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Suppose, g ∈ W 2, x, t ∈ [0, 1]. Then by Tylor’s expansion, we have

g(t) = g(x) + (t − x)g′(x) +
t∫

x

(t − u)g′′(u)du.

Applying K̂ (α)
n,q (.; x) in above equation, we have

K̂ (α)
n,q (g; x) = g(x) + K̂ (α)

n,q

⎛

⎝
t∫

x

(t − u)g
′′
(u)du; x

⎞

⎠ .

Therefore,

∣∣∣K̂ (α)
n,q (g; x) − g(x)

∣∣∣ ≤
∣∣∣∣∣∣
K (α)

n,q

⎛

⎝
t∫

x

(t − u)g′′(u)du; x
⎞

⎠

∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

⎛

⎜⎜⎝

2q[n+1]q x+1
[2]q [n+1]q∫

x

(
2q[n + 1]q x + 1

[2]q [n + 1]q − x

)
g

′′
(u)du; x

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ K (α)
n,q

⎛

⎝
t∫

x

|t − x | g′′
(u)du; x

⎞

⎠

+

∣∣∣∣∣∣∣∣

⎛

⎜⎜⎝

2q[n+1]q x+1
[2]q [n+1]q∫

x

∣∣∣∣
2q[n + 1]q x + 1

[2]q [n + 1]q − u

∣∣∣∣
∣∣g′′(x)

∣∣ du; x

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

≤
[
K (α)

n,q ((t − x)2; x) +
(
2q[n + 1]q x + 1

[2]q [n + 1]q − x

)2
]
∥∥g′′∥∥ .

(3.5)

From (3.3), we have

∣∣K (α)
n,q ( f ; x) ≤ ‖ f ‖∣∣ K (α)

n,q (1; x) + 2 ‖ f ‖ = 3 ‖ f ‖ . (3.6)

From (3.3), (3.5) and (3.6), we have
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∣∣K (α)
n,q ( f ; x) − f (x)

∣∣ ≤ ∣∣K (α)
n,q ( f − g; x)∣∣+ | f − g|

+
∣∣∣∣ f
(
2q[n + 1]q x + 1

[2]q [n + 1]q
)

− f (x)

∣∣∣∣

≤ 4 ‖ f − g‖ +
(
μ
q
n,2(x) + μ

q
n,1

2
(x)
)

+
∣∣∣∣ f
(
2q[n + 1]q x + 1

[2]q [n + 1]q
)

− f (x)

∣∣∣∣

Now taking infimum on the right-hand side of the above inequality over g ∈ W 2, we
get

≤ 4K2

(
f ;μ

q
n,2(x) + μ

q
n,1

2
(x)
)

+ ω
(
f ;μ

q
n,1(x)

)

From (3.2), we get

∣∣K (α)
n,q ( f ; x) − f (x)

∣∣ ≤ λω2

(
f ;
√

μ
q
n,2(x) + μ

q
n,1

2
(x)

)
+ ω

(
f ;ω

q
n,1(x)

)
.

Hence, this is our required result. �

Theorem 3.3 Let qn ∈ (0, 1) be a sequence converging to 1 and α is fixed. Then for
f ∈ C[0, 1], we have

∣∣K (α)
n,q ( f ; x) − f (x)

∣∣ ≤ 2ω( f ; δn(x)),

where δn(x) = (K (α)
n,q ((t − x)2; x)) 1

2 .

Proof For nondecreasing function f ∈ C[0, 1]. Using linearity and monotonicity of
K (α)

n,q , we have

∣∣K (α)
n,q ( f ; x) − f (x)

∣∣ ≤ K (α)
n,q (| f (t) − f (x)| ; x)

≤ ω( f ; δ)

(
1 + 1

δ
K (α)

n,q (|t − x | ; x)
)

Applying Lemma2.4 with c = q[k]q
[n+1]q and d = [k+1]q

[n+1]q , we get

∣∣K (α)
n,q ( f ; x) − f (x)

∣∣ ≤ ω( f ; x)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
1 + [n + 1]q

δ

n∑

k=0

p(α)n,q,k(x)

⎛

⎜⎜⎝

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

(t − x)2dqt

⎞

⎟⎟⎠

1
2
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×

⎛

⎜⎜⎝

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

dq t

⎞

⎟⎟⎠

1
2
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Using Hölder’s inequality for sums, we have

= ω( f ; x)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
1 + 1

δ

⎛

⎜⎜⎝[n + 1]q
n∑

k=0

p(α)n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

(t − x)2dqt

⎞

⎟⎟⎠

1
2

×

⎛

⎜⎜⎝[n + 1]q
n∑

k=0

p(α)n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

dq t

⎞

⎟⎟⎠

1
2
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= ω( f ; x)
{
1 + 1

δ

(
K (α)

n,q ((t − x)2; x)) 1
2

}
.

By choosing δ = δn(x), we get the required result. �
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Approximation by Certain Operators
Linking the α-Bernstein and the Genuine
α-Bernstein–Durrmeyer Operators

Ana Maria Acu and Voichiţa Adriana Radu

Abstract This paper presents a new family of operators which constitute the
link between α-Bernstein operators and genuine α-Bernstein–Durrmeyer operators.
Some approximation results, which include local approximation and error estimation
in terms of the modulus of continuity are given. Finally, a quantitative Voronovskaya
type theorem is established and some Grüss type inequalities are obtained.

Keywords α-Bernstein operators · U ρ
n operators · Modulus of smoothness · Rate

of convergence · Voronovskaya type theorem
2010 MSC 41A10 · 41A25 · 41A36

1 Introduction

In 1912, Bernstein [8] defined the Bernstein polynomials in order to prove Weier-
strass’s fundamental theorem. These operators are the foundation of approximation
theory by positive linear operators. There is a rich literature connecting with these
remarkable operators, given for any n ∈ N and f ∈ C[0, 1] by

Bn( f ; x) =
n∑

k=0

f

(
k

n

)
pn,k(x), (1)

where
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pn,k(x) =
(
n

k

)
xk(1 − x)n−k, x ∈ [0, 1].

These operators appear as a powerful tool in solving differential equations, as
well in the domain of numerical analysis and computer aided geometric design.
They are the prototype of positive linear operators of all kinds used in the theory
of approximation. The generalizations of Bernstein type operators in order to have
better approximation properties were established in the research papers of the present
authors [2, 4, 5, 7, 16, 18, 21, 22].

GenuineBernstein–Durrmeyer operatorswere introduced independently, byChen
[9] andGoodman and Sharma [15] andwere intensively studied by numerous authors
(see for example [3, 5, 12, 13, 19, 20]).

The genuine Bernstein–Durrmeyer operators are given by

Un( f ; x) = (n − 1)
n−1∑

k=1

(∫ 1

0
f (t)pn−2,k−1(t)dt

)
pn,k (x) + (1 − x)n f (0) + xn f (1), f ∈ C[0, 1].

These operators are limits of the Bernstein–Durrmeyer operators with Jacobi
weights, namely,

Un f = lim
α→−1,β→−1

M<α,β>
n f,where

M<α,β>
n : C[0, 1] → �n, M<α,β>

n ( f ; x) =
n∑

k=0

pn,k(x)

∫ 1
0 w(α,β)(t)pn,k(t) f (t)dt
∫ 1
0 w(α,β)(t)pn,k(t)dt

,

w(α,β)(t) = xβ(1 − x)α, x ∈ (0, 1), α,β > −1.

On the other hand, the genuine Bernstein–Durrmeyer operators can be written as
a composition of Bernstein operators and Beta operators:

Un = Bn ◦ Bn,

where the Beta-type operators Bn were introduced by Lupaş [17], as follows

Bn( f ; x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (0), x = 0,

1

B(nx, n − nx)

∫ 1

0
tnx−1(1 − t)n−1−nx f (t)dt, 0 < x < 1,

f (1), x = 1,

with n = 1, 2, 3, . . ., f ∈ C[0, 1] and B(·, ·) is the Euler’s Beta function.
Further, let ρ > 0, n ≥ 1 be fixed and the functionals Fρ

n,k : C[0, 1] → R, k =
0, n defined by
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Fρ
n,0( f ) = f (0),

Fρ
n,n( f ) = f (1),

Fρ
n,k( f ) =

∫ 1

0

t kρ−1(1 − t)(n−k)ρ−1

B(kρ, (n − k)ρ)
f (t)dt, k = 1, n − 1.

The operator U ρ
n : C[0, 1] → �n , where �n is the linear space of all real poly-

nomials of degree at most n, n ∈ N0 is given by

U ρ
n ( f ; x) =

n∑

k=0

Fρ
n,k( f )pn,k(x), f ∈ C[0, 1].

These operators were introduced by Păltănea [20] and represent a link between
Bernstein operators and the genuine Bernstein–Durrmeyer operators. For ρ = 1 and
f ∈ C[0, 1] we obtain Un( f ; x) which is the genuine Bernstein–Durrmeyer opera-
tors, while for ρ → ∞, for each f ∈ C[0, 1] the sequence U ρ

n converges uniformly
to Bn( f ; x).

A new family of generalized Bernstein operators depending on α which is a
nonnegative real parameter was introduced by Chen et al. in [10]. The form of this
operator is

Tn,α( f ; x) =
n∑

i=0

f

(
i

n

)
p(α)
n,i (x), f ∈ C[0, 1]. (2)

Here, for i = 0, n the α-Bernstein polynomial p(α)
n,i (x) of degree n is defined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(α)
1,0 (x) = 1 − x,

p(α)
1,1 (x) = x,

p(α)
n,i (x) =

[(n−2
i
)
(1 − α) x + (n−2

i−2
)
(1 − α) (1 − x) + (n

i
)
αx (1 − x)

]
xi−1 (1 − x)n−i−1 , n ≥ 2,

(3)
where x ∈ [0, 1] and the binomial coefficients are given by

(
n

i

)
=
⎧
⎨

⎩

n!
(n − i)! i ! , if 0 ≤ i ≤ n,

0, else.

We can observe that for α = 1, the α-Bernstein operator reduces to the classical
Bernstein polynomial given in (1). Also, forα ∈ [0, 1] the operators Tn,α are positive
linear operators. In the following we will consider α ∈ [0, 1].

Very recently, Acar et al. [1] introduce genuineα-Bernstein–Durrmeyer operators
as follows

Un,α := Tn,α ◦ Bn.
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Our aim in this paper is to introduce a new class of operators which represent a
link between α-Bernstein operators and genuine α-Bernstein–Durrmeyer operators.
We define the operators

U ρ
n,α( f ; x) :=

n∑

k=0

Fρ
n,k( f )p

(α)
n,i (x),

and in explicit form

Uρ
n,α( f ; x) = f (0) · p(α)

n,0(x) + f (1) · p(α)
n,n(x) +

n−1∑

k=1

(∫ 1

0

tkρ−1(1 − t)(n−k)ρ−1

B(kρ, (n − k)ρ)
f (t)dt

)
· p(α)

n,k (x),

(4)
f ∈ C[0, 1] and x ∈ [0, 1].
For ρ = 1 we obtain Un,α and for ρ → ∞ the sequences U ρ

n,α converges to Tn,α.

2 Approximation Properties of Uρ
n,α Operators

Theapproximationproperties ofU ρ
n,α operators are investigated in the present section.

Also, the rate of convergence is estimated using classical moduli of smoothness.
Throughout this paper, we will use a positive constantC , not necessarily the same

at each occurrence.

Lemma 2.1 The U ρ
n,α operators have the end point interpolation properties

U ρ
n,α( f ; 0) = f (0) and U ρ

n,α( f ; 1) = f (1).

Lemma 2.2 The U ρ
n,α operators verify

(i) U ρ
n,α(e0; x) = 1;

(ii) U ρ
n,α(e1; x) = x;

(iii) U ρ
n,α(e2; x) = x2 + x(1 − x)

nρ + 1
·
(

ρ + 1 + 2(1 − α)ρ

n

)
;

(iv) U ρ
n,α(e3; x) = x3 + x(1 − x)

(nρ + 2)(nρ + 1)n

{
3ρx(ρ + 1)n2 + (4ρ2x + ρ2 + 3ρ+

2x + 2 − 6αρ2x)n + 6ρ(1 − α)(1 + ρ − 2ρx)
}
;

(v) U ρ
n,α(e4; x) = x4 + x(1 − x)

(nρ + 3)(nρ + 2)(nρ + 1)n

{
6ρ2x2(ρ + 1)n3−ρx(12αρ2

x − ρ2x − 7ρ2 −18ρ − 11x − 11)n2+(60αρ3x2−36αρ3x − 54ρ3x2−36αρ2

x + 30ρ3x + ρ3 + 24ρ2x + 6ρ2 + 6x2 +11ρ + 6x + 6)n + 2ρ(1 − α)(36ρ2x2

− 36ρ2x+7ρ2 − 36ρx+18ρ + 11) }.
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Lemma 2.3 The central moments are the following

(i) U ρ
n,α(t − x; x) = 0;

(ii) U ρ
n,α((t − x)2; x) = x(1 − x)

nρ + 1
·
(

ρ + 1 + 2(1 − α)ρ

n

)
.

Denote by

φ(x) := √
x(1 − x) and ϑn,α(x) := φ2(x)

nρ + 1
·
(

ρ + 1 + 2(1 − α)ρ

n

)
.

Lemma 2.4 The U ρ
n,α operators verify

(i) lim
n→∞ nU ρ

n,α (t − x; x) = 0;

(ii) lim
n→∞ nU ρ

n,α

(
(t − x)2; x) = ρ + 1

ρ
· φ2(x);

(iii) lim
n→∞ n2U ρ

n,α

(
(t − x)4; x) = 3(ρ + 1)2

ρ2
· φ4(x).

Lemma 2.5 Let f ∈ C[0, 1], x ∈ [0, 1] and n ∈ N. Then

||U ρ
n,α( f ; ·)|| ≤ || f ||,

where || · || is the uniform norm on [0, 1].

Proof From Lemma 2.2 we have U ρ
n,α(e0; x) = 1 so,

|U ρ
n,α( f ; x)| ≤ U ρ

n,α(e0; x)|| f || = || f ||.

�

Theorem 2.1 If f ∈ C[0, 1], then lim
n→∞U ρ

n,α( f ; x) = f (x) uniformly on [0, 1].

Proof From Lemma 2.2 it is easy to observe that lim
n→∞U ρ

n,α(ek; x) = ek(x)

uniformly on [0, 1], for k ∈ {0, 1, 2} and applying the Bohmann–Korovkin theo-
rem, we get the result. �

Theorem 2.2 If f ∈ C[0, 1], then
∣∣U ρ

n,α( f ; x) − f (x)
∣∣ ≤ 2ω

(
f ;ϑ

1
2
n,α(x)

)
,

where ω is the usual modulus of continuity.
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Proof The inequality is trivially true if x ∈ {0, 1}. Otherwise, using the well known
property of modulus of continuity

| f (t) − f (x)| ≤ ω( f ; δ)

(
(t − x)2

δ2
+ 1

)
,

we obtain

|Uρ
n,α( f ; x) − f (x)| ≤ Uρ

n,α(| f (t) − f (x)|; x) ≤ ω( f ; δ)

(
1 + 1

δ2
Uρ
n,α((t − x)2; x)

)
.

We have the desired result, by choosing δ = ϑ
1
2
n,α(x), x ∈ (0, 1). �

Theorem 2.3 If f ∈ C1[0, 1], then
∣∣U ρ

n,α( f ; x) − f (x)
∣∣ ≤ 2ϑ

1
2
n,α(x)ω

(
f ′,ϑ

1
2
n,α(x)

)
. (5)

Proof For f ∈ C1[0, 1] and any x, t ∈ [0, 1], we have

f (t) − f (x) = f ′(x)(t − x) +
∫ t

x

(
f ′(y) − f ′(x)

)
dy,

and it follows

U ρ
n,α ( f (t) − f (x); x) = f ′(x)U ρ

n,α(t − x; x) +U ρ
n,α

(∫ t

x
( f ′(y) − f ′(x))dy; x

)
.

Using the property of modulus of continuity that

| f (y) − f (x)| ≤ ω( f ; δ)

( |y − x |
δ

+ 1

)
, δ > 0,

we have ∣∣∣∣
∫ t

x
| f ′(y) − f ′(x)|dy

∣∣∣∣ ≤ ω( f ′; δ)

[
(t − x)2

δ
+ |t − x |

]
.

Therefore,

|U ρ
n,α( f ; x) − f (x)| ≤ | f ′(x)| · |U ρ

n,α(t − x; x)|
+ ω( f ′; δ)

{
1

δ
U ρ

n,α

(
(t − x)2; x)+U ρ

n,α(|t − x |; x)
}

.

Using Cauchy–Schwartz inequality we obtain
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|U ρ
n,α( f ; x) − f (x)| ≤ | f ′(x)||U ρ

n,α(t − x; x)|
+ ω( f ′, δ)

{
1

δ

√
U ρ

n,α

(
(t − x)2; x)+ 1

}√
U ρ

n,α

(
(t − x)2; x)

≤ ω( f ′, δ) ·
{
1

δ
ϑ

1
2
n,α(x) + 1

}
ϑ

1
2
n,α(x). (6)

For x ∈ {0, 1}, the inequality (5) is true. Otherwise, for δ = ϑ
1
2
n,α(x), x ∈ (0, 1) in

the relation (6) we get to the desired result. �
We recall the definition of K-functional, in order to give the next result

K2( f, δ) := inf
{‖ f − g‖ + δ

∥∥g′′∥∥ : g ∈ W 2[0, 1]} ,

whereW 2[0, 1] = {
g ∈ C[0, 1] : g′′ ∈ C[0, 1]} , δ ≥ 0 and ‖·‖ is the uniform norm

on C[0, 1].
The second-order modulus of continuity is defined as follows

ω2

(
f,

√
δ
)

= sup
0<h≤√

δ

sup
x,x+2h∈[0,1]

{| f (x + 2h) − 2 f (x + h) + f (x)|} .

It is well known that K-functional K2( f, δ) and the second-order modulus of

continuity ω2

(
f,

√
δ
)
are equivalent:

K2( f, δ) ≤ Cω2

(
f,

√
δ
)

, δ ≥ 0, C > 0. (7)

Theorem 2.4 If f ∈ C[0, 1], then
∣∣U ρ

n,α( f ; x) − f (x)
∣∣ ≤ Cω2

(
f,

1√
2
ϑ

1
2
n,α(x)

)
,

where C is a positive constant.

Proof Using Lemma 2.2 and applying U ρ
n,α to Taylor’s formula, we get

U ρ
n,α(g; x) = g(x) +U ρ

n,α

(∫ t

x
(t − y)g′′(y)dy; x

)
.

This implies that

|U ρ
n,α(g; x) − g(x)| ≤

∣∣∣∣U
ρ
n,α

(∫ t

x
(t − y)g′′(y)dy; x

)∣∣∣∣

≤ U ρ
n,α((t − x)2; x) ∥∥g′′∥∥ ≤ ϑn,α(x)‖g′′‖.

In view of Lemma 2.5 we have
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|U ρ
n,α( f ; x)| ≤ ‖ f ‖ . (8)

For f ∈ C[0, 1] and g ∈ W 2[0, 1] and using (8) we get

|U ρ
n,α( f ; x) − f (x)| ≤ ∣∣U ρ

n,α( f − g; x)∣∣+ ∣∣U ρ
n,α(g; x) − g(x)

∣∣+ |g(x) − f (x)|
≤ 2 ‖ f − g‖ + ϑn,α(x)

∥∥g′′∥∥ .

Taking the infimum on right side over all g ∈ W 2[0, 1], we have

|U ρ
n,α( f ; x) − f (x)| ≤ 2K2

(
f,
1

2
ϑn,α(x)

)
.

Finally, using the equivalence between K-functional and the second-order modulus
of continuity, given by relation (7), the proof is completed. �

3 Voronovskaja Type Theorem

In this section, we prove a Voronovskaja type asymptotic formula for the operator
U ρ

n,α. In order to give the main result we recall the definition of the Ditzian–Totik
first-order modulus of smoothness:

ω
φ
1 ( f ; t) = sup

0<h≤t

{ ∣∣∣∣ f
(
x + hφ(x)

2

)
− f

(
x − hφ(x)

2

)∣∣∣∣ , x ± hφ(x)

2
∈ [0, 1]

}
,

(9)
where φ(x) = √

x(1 − x) and f ∈ C[0, 1].
The corresponding K -functional of the Ditzian–Totik first-order modulus of

smoothness is given by

Kφ( f ; t) = inf
g∈Wφ[0,1]{|| f − g|| + t ||φg′||} (t > 0), (10)

where Wφ[0, 1] = {g : g ∈ ACloc[0, 1], ‖φg′‖ < ∞} and ACloc[0, 1] is the class of
absolutely continuous functions on every interval [a, b] ⊂ [0, 1].

Between K -functional and the Ditzian–Totik first-order modulus of smoothness
there is the following relation

Kφ( f ; t) ≤ Cω
φ
1 ( f ; t), (11)

where C > 0 is a constant.

Theorem 3.1 For any f ∈ C2[0, 1] and sufficiently large n the following inequality
holds
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∣∣∣∣U
ρ
n,α( f ; x) − f (x) − 1

2
ϑn,α(x) f ′′(x)

∣∣∣∣ ≤ 1

n
Cφ2(x)ωφ

1

(
f ′′,

√
ρ + 1

nρ

)
, (12)

where C is a positive constant.

Proof For f ∈ C2[0, 1], t, x ∈ [0, 1], by Taylor’s expansion, we have

f (t) − f (x) = (t − x) f ′(x) +
∫ t

x
(t − y) f ′′(y)dy.

Hence

f (t) − f (x) − (t − x) f ′(x) − 1

2
(t − x)2 f ′′(x) =

∫ t

x
(t − y) f ′′(y)dy −

∫ t

x
(t − y) f ′′(x)dy

=
∫ t

x
(t − y)[ f ′′(y) − f ′′(x)]dy.

Applying U ρ
n,α(·; x) to both sides of the above relation, we obtain

∣∣∣∣U
ρ
n,α( f ; x) − f (x) − 1

2
ϑn,α(x) f ′′(x)

∣∣∣∣ ≤ Uρ
n,α

(∣∣∣∣
∫ t

x
|t − y|| f ′′(y) − f ′′(x)|dy

∣∣∣∣ ; x
)

. (13)

In [11, p. 337], the quantity

∣∣∣∣
∫ t

x

∣∣ f ′′(y) − f ′′(x)
∣∣ |t − y|dy

∣∣∣∣ was estimated as

∣∣∣∣
∫ t

x
| f ′′(y) − f ′′(x)||t − y|dy

∣∣∣∣ ≤ 2‖ f ′′ − g‖(t − x)2 + 2‖φg′‖φ−1(x)|t − x |3, x ∈ (0, 1), g ∈ Wφ[0, 1]. (14)

Note that for x ∈ {0, 1} the inequality (12) is verified.
There exists a constant C > 0 such that for n sufficiently large and using

Lemma2.4 we obtain

U ρ
n,α

(
(t − x)2; x) ≤ C(ρ + 1)

nρ
φ2(x) and U ρ

n,α

(
(t − x)4; x) ≤ C(ρ + 1)2

n2ρ2
φ4(x).

(15)
Applying the Cauchy–Schwarz inequality and from relations (13–15), we get

∣∣∣∣U
ρ
n,α( f ; x) − f (x) − 1

2
ϑn,α(x) f ′′(x)

∣∣∣∣

≤ 2‖ f ′′ − g‖Uρ
n,α

(
(t − x)2; x

)
+ 2‖φg′‖φ−1(x)Uρ

n,α

(
|t − x |3; x

)

≤ C(ρ + 1)

nρ
φ2(x)‖ f ′′ − g‖ + 2‖φg′‖φ−1(x)

{
Uρ
n,α(t − x)2; x

}1/2 {
Uρ
n,α

(
(t − x)4; x

)}1/2

≤ C(ρ + 1)

nρ
φ2(x)‖ f ′′ − g‖ + φ2(x)

C(ρ + 1)
√

ρ + 1

nρ
√
nρ

‖φg′‖

≤ C(ρ + 1)

nρ
φ2(x)

{
‖ f ′′ − g‖ +

√
ρ + 1

nρ
‖φg′‖

}
.
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Taking the infimum on right hand side of the above relations over g ∈ Wφ[0, 1], we
have the proof complete. �
Corollary 3.1 If f ∈ C2[0, 1], then

lim
n→∞ n

{
U ρ

n,α( f ; x) − f (x) − 1

2
ϑn,α(x) f ′′(x)

}
= 0.

Motivated by the Grüss type inequalities for certain positive linear operators stud-
ied in [6, 14], in the following we prove a Grüss–Voronovskaya type theorem ofU ρ

n,α

operators.
Denote by �( f, g; x) := U ρ

n,α( f g; x) −U ρ
n,α( f ; x)U ρ

n,α(g; x).
Theorem 3.2 Let f, g ∈ C2[0, 1] and ρ > 0. Then, for each x ∈ [0, 1],

lim
n→∞ n · �( f, g; x) = ρ + 1

ρ
x(1 − x) f ′(x)g′(x).

Proof Since

( f g)(x) = f (x)g(x), ( f g)′(x) = f ′(x)g(x) + f (x)g′(x)

and
( f g)′′(x) = f ′′(x)g(x) + 2 f ′(x)g′(x) + f (x)g′′(x),

we can write

�( f, g; x) = Uρ
n,α( f g; x) −Uρ

n,α( f ; x)Uρ
n,α(g; x)

=
{
Uρ
n,α( f g; x) − f (x)g(x) − ( f g)′(x)Uρ

n,α(t − x; x) − ( f g)′′(x)
2! Uρ

n,α

(
(t − x)2; x

)}

− g(x)

{
Uρ
n,α( f ; x) − f (x) − f ′(x)Uρ

n,α(t − x; x) − f ′′(x)
2! Uρ

n,α

(
(t − x)2; x

)}

−Uρ
n,α( f ; x)

{
Uρ
n,α(g; x) − g(x) − g′(x)Uρ

n,α(t − x; x) − g′′(x)
2! Uρ

n,α

(
(t − x)2; x

)}

+ 1

2!U
ρ
n,α

(
(t − x)2; x

)
{ f (x)g′′(x) + 2 f ′(x)g′(x) − g′′(x)Uρ

n,α( f ; x)}
+Uρ

n,α(t − x; x) { f (x)g′(x) − g′(x)Uρ
n,α( f ; x)} .

Consequently,

lim
n→∞ n · �( f, g; x) = lim

n→∞ n
{
Uρ
n,α( f g; x) −Uρ

n,α( f ; x)Uρ
n,α(g; x)}

= lim
n→∞ n f ′(x)g′(x) Uρ

n,α

(
(t − x)2; x

)
+ lim

n→∞ n
g′′(x)
2!

{
f (x) −Uρ

n,α( f ; x)}Uρ
n,α

(
(t − x)2; x

)
.

From Theorem 2.1 it follows that for each x ∈ [0, 1], U ρ
n,α( f ; x) converges to the

function f , as n → ∞ and in view of Lemma 2.4, lim
n→∞ n U ρ

n,α

(
(t − x)2; x) is finite.

Hence, the second term in the right hand side of the above relation is zero and
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lim
n→∞ n · �( f, g; x) = ρ + 1

ρ
x(1 − x) f ′(x)g′(x),

which completes the proof. �

Theorem 3.3 Let f, g ∈ C[0, 1], x ∈ [0, 1] and ρ > 0. Then

|�( f, g; x)| ≤ 3

2
·√ξ1( f, x) · ξ1(g, x)

where ξ1( f, x) := ω2
(
f 2;√ϑn,α(x)

)+ 2|| f || · ω2
(
f ;√ϑn,α(x)

)
and ξ1(g, x) is

analogously defined.

Proof In [14, Theorem 1] we consider H = U ρ
n,α. �

Let κ := 1

φ(x)
·
√

ϑn,α(x)

2
≥ 0, x ∈ (0, 1), φ(x) = √

x(1 − x). The following

estimate for �( f, g; x) can be obtained.

Theorem 3.4 Let f, g ∈ C[0, 1], x ∈ [0, 1] and ρ > 0. Then

|�( f, g; x)| ≤ 9

2
·√ξ2( f, x) · ξ2(g, x)

where ξ2( f, x) := ω
φ
2 ( f

2;κ) + 2|| f || · ω
φ
2 ( f ;κ) and

ω
φ
2 ( f ; δ) = sup

0<h≤δ

{∣∣∣∣ f
(
x + hφ(x)

2

)
− 2 f (x) + f

(
x − hφ(x)

2

)∣∣∣∣ ; x ± hφ(x)

2
∈ [0, 1]

}
, δ > 0.

Proof In [14, Theorem 2] we consider H = U ρ
n,α. �
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Note on a Proof for the Representation of
the kth Order Kantorovich Modification
of Linking Baskakov Type Operators

Margareta Heilmann and Ioan Raşa

Abstract The topic of this note is a simplification of proofs for the representation
of kth order Kantorovich modifications of linking Baskakov type operators given in
our previous papers (Heilmann and Raşa in Mathematics and Computing. Springer,
Berlin, pp. 312–320, 2017, [1], Heilmann and Raşa in Results Math. 74:9, 2019, [2]).
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1 Introduction

During the last years the investigation of so-called linking operators came into the
focus of research in approximation theory. Starting with the consideration of a non-
trivial link between genuine Bernstein Durrmeyer operators and classical Bernstein
operators (see [3]) the study was generalized to genuine Baskakov Durrmeyer type
operators and their classical counterparts as well as to kth order Kantorovich modifi-
cations. For a survey of the available literature we refer to [1, 2, 4] and the references
given there.

In [1, 2] the authors of this paper used different methods for the proof of use-
ful representations for the kth order Kantorovich modifications when the linking
parameter ρ is assumed to be a natural number. By observing that the linking basis
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functions μn, j,ρ can be expressed as basis functions of the classical operators we are
now able to simplify the proof significantly.

Let c ∈ R, n ∈ R, n > c for c ≥ 0 and −n/c ∈ N for c < 0. Furthermore let
ρ ∈ R

+, j ∈ N0, x ∈ Ic with Ic = [0,∞) for c ≥ 0 and Ic = [0,−1/c] for c < 0.
By nc, j we denote nc, j = ∏ j−1

l=0 (n + cl), j ∈ N, nc,0 = 1. Then the basis functions
are given by

pn, j (x) =
{

n j

j ! x
j e−nx , c = 0,

nc, j

j ! x
j (1 + cx)−( n

c + j) , c �= 0.
(1)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
n−c

(−c) j+1

B( j+1,− n
c − j+1) x

j (1 + cx)−( n
c + j) , c < 0,

n j

�( j+1) x
j e−nx , c = 0,

1
n−c

c j+1

B( j+1, nc −1) x
j (1 + cx)−( n

c + j) , c > 0.

(2)

We remark that (2) is well defined also for j ∈ R, j ≥ 0 which will be used in (5).
In the following definitions of the operators we omit the parameter c in the nota-

tions in order to reduce the necessary sub and superscripts.
We assume that f : Ic −→ R is given in such a way that the corresponding inte-

grals and series are convergent.

Definition 1 The operators of Baskakov-type are defined by

(Bn f )(x) =
∞∑

j=0

pn, j (x) f

(
j

n

)

,

and the genuine Baskakov–Durrmeyer type operators are denoted by

(Bn,1 f )(x) = f (0)pn,0(x) + f

(

−1

c

)

pn,− n
c
(x) (3)

+
− n

c −1∑

j=1

pn, j (x)(n + c)
∫ − 1

c

0
pn+2c, j−1(t) f (t)dt

for c < 0 and by

(Bn,1 f )(x) = f (0)pn,0(x) +
∞∑

j=1

pn, j (x)(n + c)
∫ ∞

0
pn+2c, j−1(t) f (t)dt

for c ≥ 0.
Depending on a parameter ρ ∈ R

+ the linking operators are given by

(Bn,ρ f )(x) =
∞∑

j=0

Fρ

n, j ( f )pn, j (x) (4)
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where

Fρ

n, j ( f ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (0) , j = 0, c ∈ R,

f

(

−1

c

)

, j = − n
c , c < 0,

∫

Ic

μn, j,ρ(t) f (t)dt , otherwise,

with

μn, j,ρ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−c) jρ

B
(
jρ,− (

n
c + j

)
ρ
) t jρ−1(1 + ct)−( n

c + j)ρ−1 , c < 0,

(nρ) jρ

�( jρ)
t jρ−1e−nρt , c = 0,

c jρ

B
(
jρ, n

cρ + 1
) t jρ−1(1 + ct)−( n

c + j)ρ−1 , c > 0.

The kth order Kantorovich modifications of the operators Bn,ρ are given by

B(k)
n,ρ := Dk ◦ Bn,ρ ◦ Ik

where Dk denotes the kth order ordinary differential operator and Ik the correspond-
ing antiderivative, i.e.,

Ik f = f, if k = 0, and (Ik f )(x) =
∫ x

0

(x − t)k−1

(k − 1)! f (t)dt, if k ∈ N.

For k = 0 we omit the superscript (k) as indicated by the definition above.
By studying again the papers which were published so far, we noticed that it is not

necessary to use a different notation for the functions related to the linking parameter
ρ. By using (2) they can be written also in terms of the basis functions, i.e.,

μn, j,ρ(t) = (nρ + c)pnρ+2c, jρ−1(t). (5)

Therefore,

(Bn,ρ f )(x) = f (0)pn,0(x) + f

(

−1

c

)

pn,− n
c
(x) (6)

+
− n

c −1∑

j=1

pn, j (x)(nρ + c)
∫ − 1

c

0
pnρ+2c, jρ−1(t) f (t)dt

for c < 0 and
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(Bn,ρ f )(x) = f (0)pn,0(x) +
∞∑

j=1

pn, j (x)(nρ + c)
∫ ∞

0
pnρ+2c, jρ−1(t) f (t)dt

for c ≥ 0.
In [1, 2] we proved the following representations for Bn,ρ( f ; x) in case of ρ ∈ N.
Let c = −1, n, k ∈ N, n − k ≥ 1, ρ ∈ N and f ∈ L1[0, 1]. Then

B(k)
n,ρ( f ; x) = n!(nρ − 1)!

(n − k)!(nρ + k − 2)!
n−k∑

j=0

pn−k, j (x)

×
∫ 1

0

ρ−1∑

i1=0

· · ·
ρ−1∑

ik=0

pnρ+k−2, jρ+i1+···+ik+k−1(t) f (t)dt.

Let c ≥ 0, n, k ∈ N, n − k ≥ 1, ρ ∈ N and f ∈ W ρ
n . Here W ρ

n denotes the space
of functions f ∈ L1,loc[0,∞) satisfying certain growth conditions, i.e., there exist
constantsM > 0, 0 ≤ q < nρ + c, such that | f (t)| ≤ Meqt for c = 0, | f (t)| ≤ Mt

q
c

for c > 0 a. e. on [0,∞). Then

B(k)
n,ρ( f ; x) = nc,k

(nρ)c,k−1

∞∑

j=0

pn+kc, j (x)

×
∫ ∞

0

ρ−1∑

i1=0

· · ·
ρ−1∑

ik=0

pnρ−c(k−2), jρ+i1+···+ik+k−1(t) f (t)dt.

For k = 1 the proofs given in [1, 2] can be simplified by using the well-known
formula

p′
m,l(x) = m

[
pm+c,l−1(x) − pm+c,l(x)

]
(7)

with l ∈ N0 and setting pm+c,l−1(x) ≡ 0 for l = 0.
To be more precise, we have for ρ ∈ N, c ≥ 0,

B(1)
n,ρ( f ; x) =

∞∑

j=1

p′
n, j (x)(nρ + c)

∫ ∞

0
pnρ+2c, jρ−1(t)I1( f ; t)dt

= npn+c,0(x)(nρ + c)
∫ ∞

0
pnρ+2c, jρ−1 I1( f ; t)dt

+n
∞∑

j=1

pn+c, j (x)(nρ + c)
∫ ∞

0
[pnρ+2c,( j+1)ρ−1(t) − pnρ+2c, jρ−1(t)]I1( f ; t)dt

= −
∞∑

j=1

pn+c, j (x)n
∫ ∞

0

ρ−1∑

i=0

p′
nρ+c, jρ+i (t)I1( f ; t)dt
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as, with pm,l = 0 if l < 0, for each j ∈ N0

(nρ + c)[pnρ+2c,( j+1)ρ−1(t) − pnρ+2c, jρ−1(t)]

= −
ρ−1∑

i=0

(nρ + c)[pnρ+2c, jρ−1+i (t) − pnρ+2c, jρ+i (t)]

= −
ρ−1∑

i=0

p′
nρ+c, jρ+i (t).

Note that the representationof pnρ+2c,( j+1)ρ−1(t) − pnρ+2c, jρ−1(t) as a telescoping
sum is only possible for ρ ∈ N.

Thus, as I1( f ; 0) = 0 and limt→∞ pnρ+c, jρ+i (t) = 0, jρ + i ∈ N0, integration by
parts leads to

B(1)
n,ρ( f ; x) =

∞∑

j=0

pn+c, j (x)n
∫ ∞

0

ρ−1∑

i=0

pnρ+c, jρ+i (t) f (t)dt.

The case ρ ∈ N, c < 0, can be treated analogously.
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1. M. Heilmann, I. Raşa, A nice representation for a link between Bernstein-Durrmeyer and Kan-
torovich operators, in Proceedings of ICMC 2017, Haldia, India, January 2017, ed. by D. Giri
et.al. Springer Proceedings in Mathematics and Computing (Springer, 2017), pp. 312–320
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Degree of Approximation by Generalized
Boolean Sum of λ-Bernstein Operators
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Abstract The purpose of the present paper is to investigate the degree of approxima-
tion of the λ-Bernstein operators introduced by Cai et al. (J Inequal Appl 61:1–11,
2018 [9]) by means of the Steklov mean, the Ditizian–Totik modulus of smooth-
ness and the approximation of functions with derivatives of bounded variation. We
introduce the bivariate case of the above operators and investigate the rate of conver-
gence with the aid of the total and partial modulus of continuity and the Peetre’s
K-functional. Furthermore, we define the associated GBS (Generalized Boolean
Sum) operator of the bivariate operators and establish the degree of approxima-
tion in terms of the mixed modulus of smoothness for Bögel continuous and Bögel
differentiable functions.

Keywords λ-Bernstein operators · Partial moduli of continuity · Total modulus of
continuity · Bögel continuous · Bögel differentiable · GBS operators · Modulus of
smoothness

Mathematics Subject Classification (2010) 26A15 · 41A25 · 41A36

1 Introduction

In, 1912, for a bounded real valued function on I , I = [0, 1],Bernstein [1] introduced
a sequence of polynomials as

Bn(g; y) =
n∑

k=0

bn,k(y)g

(
k

n

)
, λ ∈ [−1, 1] and y ≥ 0,

R. Chauhan (B) · P. N. Agrawal
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India
e-mail: ruchichauhan753@gmail.com

P. N. Agrawal
e-mail: pnappfma@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
N. Deo et al. (eds.), Mathematical Analysis I: Approximation Theory,
Springer Proceedings in Mathematics & Statistics 306,
https://doi.org/10.1007/978-981-15-1153-0_9

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1153-0_9&domain=pdf
mailto:ruchichauhan753@gmail.com
mailto:pnappfma@gmail.com
https://doi.org/10.1007/978-981-15-1153-0_9


96 R. Chauhan and P. N. Agrawal

where bn,k(y) = (n
k

)
yk(1 − y)n−k , y ∈ I.

Recently, Cai et al. [9] defined a sequence of λ-Bernstein operators as

Bn,λ(g; y) =
n∑

k=0

b̃n,k(λ; y)g
(
k

n

)
, (1.1)

where Bezier basis b̃n,k(λ; y), [13] for λ ∈ [−1, 1] is defined as

b̃n,0(λ; y) = bn,0(y) − λbn+1,1(y)

n + 1
,

b̃n,i (λ, y) = bn,i (y) + λ

(
(n − 2i + 1)bn+1,i (y)

n2 − 1
− (n − 2i − 1)bn+1,i+1(y)

n2 − 1

)
, (1 ≤ i ≤ n − 1)

b̃n,n(λ; y) = bn,n(y) − λbn+1,n(y)

n + 1
.

In the same paper, the authors considered a Kantorovich variant of these operators
and studied some of their approximation properties. Further, Cai et al. [10] defined
the Bezier variant of the Kantorovich type operators and studied the rate of approxi-
mation with the aid of the Ditzian–Totik modulus of smoothness and also determined
the degree of approximation for functions of bounded variation. In this paper, we
investigate the rate of convergence in terms of the modulus of continuity and for
functions having derivatives of bounded variation. Also, we define the bivariate gen-
eralization of the operators (1.1) and study the convergence properties. Lastly, the
associated GBS operator is introduced and the rate of approximation of these oper-
ators is discussed by means of the mixed modulus of smoothness.

2 Preliminaries

Lemma 1 ([9]) For λ-Bernstein operators given by (1.1), the following equalities
hold:

(i) Bn,λ(1; y) = 1;
(ii) Bn,λ(z; y) = y + 1−2y+yn+1−(1−y)n+1

n(n−1) λ;
(iii) Bn;λ(z2; y) = y2 + y(1−y)

n + λ

[
2y−4y2+2yn+1

n(n−1) + yn+1+(1−y)n+1−1
n2(n−1)

]
;

(iv) Bn;λ(z3; y) = y3 + 3y2(1−y)
n + 2y3−3y2+y

n2 + λ

[
−6y3+6yn+1

n2 + 3y2−3yn+1

n(n−1)

+−9y2+9yn+1

n2(n−1) + −4y+4yn+1

n3(n−1) + (1−yn+1−(1−y)n+1(n+3)
n3(n2−1)

]
;
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(v) Bn;λ(z4; y) = y4 + 6(y3−y4)
n + 7y2−18y3+11y4

n2 + y−7y2+12y3−6y4

n3

+λ

[
6y2−2y3−8y4+4yn+1

n2 + −y2−32y3+16y4+17yn+1

n3 + y−yn+1

n4

+ 7y2−7yn+1

n2(n−1) + y−23y2+22yn+1

n3(n−1) + (1−y)n+1+y−1
n4(n−1)

]
.

Lemma 2 ([9]) For y ∈ I and λ ∈ [−1, 1], there hold the following:

(i) limn→∞ nBn,λ(z − y; y) = 0;
(ii) limn→∞ nBn,λ((z − y)2; y) = y(1 − y);
(iii) limn→∞ n2Bn,λ((z − y)4; y) = 3y2 − 6y3 + 3y4 + 6(y2 − y3)λ.

Proof From Lemma1, the proof of this lemma can be given by simple computation,
hence, we skip the details.

Consequently, we have

Bn,λ((z − y)2; y) ≤ C

n

[
y(1 − y) + 1

n

]
= η2(y). (2.1)

3 Main Results

In what follows, let Bn,λ(g; y) − g(y) = K(g), �n = supy∈[0,1] Bn,λ((z − y); y) and
γ2
n = supy∈[0,1] Bn,λ((z − y)2; y). In the following theorem, we estimate the rate of

convergence of the operators defined by (1.1) in terms of the first-order modulus of
continuity.

For any δ > 0, the first-order modulus of continuity of f ∈ C(I ), is given by

ω( f ; δ) = sup
0<|h|<δ

sup
x,x+h∈[0,1]

| f (x + h) − f (x)|.

Theorem 1 For g ∈ C[0, 1], there holds the following inequality:

||K(g)|| ≤ 4ω(g; γn).

Proof Considering the properties of the first-order modulus of continuity, and using
Cauchy–Schwarz inequality, Lemma1,

||K(g)|| ≤ 2ω(g; γ)

(
γn

γ
+ 1

)
.

Now, choosing γ = γn , we obtain the desired result. �
Next, let Cr (I ), r = 1, 2, . . . denote the space of r-times continuously differen-

tiable functions on I . In the next result we determine the degree of approximation of
the operators Bn,λ for the continuously differentiable functions in I .
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Theorem 2 Let g ∈ C1(I ), then we have

||K(g)|| ≤ |�n| ‖ g′ ‖ +2γnω(g′; γn).

Proof The Taylor’s formula for g ∈ C1[0, 1] yields

g(z) − g(y) = g′(y)(z − y) +
∫ z

y
(g′(u) − g′(y))du.

Now applying the operator Bn,λ on both sides of the above equality and the fact that

|g′(u) − g′(y)| ≤ ω(g′; γ)

(
1 + |z − y|

γ

)
,

we are led to

|K(g)| ≤ |g′(y)||�n| + ω(g′; γ)

{
1

γ
Bn,λ((z − y)2; y) + Bn,λ(|z − y|; y)

}
.

Now, using Cauchy–Schwarz inequality and choosing γ = γn , we reach the required
result. �

In the following theorem, we show that by employing a smoothing process, e.g.,
Steklov means we achieve a better estimate of the error in the approximation of a
function in C(I ) by the operators (1.1) in terms of the second-order modulus of
continuity than the estimate is given by Theorem1.

Theorem 3 Let g ∈ C(I ), there holds the following inequality:

||K(g)|| ≤ 5ω(g; γn) + 13

2
ω2(g; γn).

Proof The Steklov mean for g ∈ C(I ) is defined as

gh(y) = 4

h2

∫ h
2

0

∫ h
2

0
(2g(y + u + v) − g(y + 2u + 2v))dudv, h > 0,

which implies that

g(y) − gh(y) = 4

h2

∫ h
2

0

∫ h
2

0
�2

u+vg(y)dudv, h > 0,

hence,

||gh − g|| ≤ ω2(g; h). (3.1)
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Also, it follows that

||g′
h|| ≤ 5

h
ω(g; h); ||g′′

h|| ≤ 9

h2
ω2(g; h). (3.2)

Now, we may write

|K(g)| ≤ |Bn,λ((g − gh)(z); y)| + |gh(y) − g(y)| + |Bn,λ(gh(z) − gh(y); y)|.
(3.3)

By using relation (3.1), we are led to

Bn,λ(|g − gh |; y) ≤ ||g − gh || ≤ ω2(g; h). (3.4)

By the Taylor’s expansion and the Cauchy–Schwarz inequality

|Bn,λ(gh(z) − gh(y); y)| ≤ |Bn,λ(g′
h(y)(z − y); y)| +

∣∣∣∣Bn,λ

( ∫ z

y
(z − u)g′′

h (u)du; y
)∣∣∣∣

= ||g′
h ||

√
Bn;λ((z − y)2; y) + 1

2
||g′′

h ||Bn,λ((z − y)2; y). (3.5)

Now, assuming h = γn, collecting (3.3)–(3.5) and using the inequalities (3.1), (3.2),
we get the desired result. �

Our last result of this section is to obtain the rate of approximation of the operators
Bn,λ for functions with derivatives of bounded variation.

The operators Bn,λ(g; y) can be expressed in an integral form as follows:

Bn,λ(g; y) =
∫ 1

0

∂

∂z
Kn,λ(y, z)g(z)dz, (3.6)

where the kernel Kn,λ is given by Kn,λ(y, u) =
{ ∑

k≤nu

b̃n,k(λ; u), 0 < u ≤ 1

0, u = 0
.

Lemma 3 For a fixed y ∈ (0, 1) and sufficiently large n, we have

(i) ξn,λ(y, t) = ∫ t
0

∂
∂u Kn,λ(y, u)du ≤ η2(y)

(t−y)2 , 0 ≤ t < y,

(ii) 1 − ξn,λ(y, s) = ∫ 1
s

∂
∂u Kn,λ(y, u)du ≤ η2(y)

(y−s)2 , y < s ≤ 1,

where η2(y) is defined in (2.1).

Proof Using Lemma1 and (2.1), the proof of the lemma is straightforward. �

Let DBV [0, 1] be the space of all functions which have a derivative of bounded
variation on [0, 1]. Such a function f ∈ DBV [0, 1] can be represented as
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f (x) =
∫ x

0
g(t)dt + f (0),

where g denotes a function of bounded variation on every finite subinterval of [0,∞).

Theorem 4 Let g ∈ DBV ([0, 1]) then for any y ∈ (0, 1), we have

|Bn,λ(g; y) − g(y)| ≤ 1

2
|g′(y+) + g′(y−)|C1

n
+ 1

2
ηy|g′(y+) − g′(y−)|

+η2(y)

y

√
n∑

k=1

y∨

y− y
k

(g′
y) + η2(y)

(1 − y)

√
n∑

k=1

y+ (1−y)
k∨

y

g′
y + (1 − y)√

n

y+ (1−y)√
n∨

y

g′
y,

where η2(y) is defined in (2.1).

Proof Using Lemma3 and proceeding in a manner similar to the proof of (Theorem
3.10, [8]), the theorem is established. Hence, the details are omitted. �

4 Bivariate Extension of the Operator

For g ∈ C(I 2), I 2 = I × I endowed with the norm ||g|| = sup(y1,y2)∈I 2 |g(y1, y2)|,
the bivariate case of the operators defined in (1.1) is given by

Bm,n,λ1,λ2(g; y1, y2) =
m∑

j=0

n∑

k=0

b̃m,n, j,k(λ1,λ2, y1, y2)g

(
j

m
,
k

n

)
, (4.1)

where b̃m,n, j,k(λ1,λ2, y1, y2) = b̃m, j (λ1; y1)b̃n,k(λ2; y2), λ1,λ2 ∈ [−1, 1].
Lemma 4 For the operator (4.1), the following equalities hold:

(i) Bm,n,λ1,λ2(1; y1, y2) = 1;
(ii) Bm,n,λ1,λ2(z; y1, y2) = y1 + 1−2y1+ym+1

1 −(1−y1)m+1

m(m−1) λ1;
(iii) Bm,n,λ1,λ2(w; y1, y2) = y2 + 1−2y2+yn+1

2 −(1−y2)n+1

n(n−1) λ2;
(iv) Bm,n,λ1,λ2(z

2; y1, y2) = y21 + y1(1−y1)
m + λ1

[
2y1−4y21+2ym+1

1
m(m−1) + ym+1

1 +(1−y1)m+1−1
m2(m−1)

]
;

(v) Bm,n,λ1,λ2(w
2; y1, y2) = y22 + y2(1−y2)

n + λ2

[
2y2−4y22+2yn+1

2
n(n−1) + yn+1

2 +(1−y2)n+1−1
n2(n−1)

]
.

Proof By using Lemma1, the proof of the lemma is straightforward. Hence, we omit
the details. �
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Lemma 5 ([12]) Let J1 and J2 be compact intervals of the real line and ei j = yi1y
j
2 .

Let Lm,n : C(J1 × J2) → C(J1 × J2) be linear positive operators. If
limm,n→∞ Lm,n(ei j ; y1, y2) = yi1y

j
2 , (i, j) ∈ {(0, 0), (1, 0), (0, 1)} and

lim
m,n→∞ Lm,n(e20 + e02; y1, y2) = y21 + y22 ,

uniformly in J1 × J2 then the sequence Lm,n(g) converges to g uniformly on J1 × J2
for any g ∈ C(J1 × J2).

For g ∈ C(I 2)), I 2 = I × I the total modulus of continuity for the bivariate case
is defined as

ω̄(g; γ1, γ2) = sup

{
|g(z, w) − g(y1, y2) : |z − y1| < γ1, |w − y2| < γ2},

where γ1, γ2 > 0. The properties of ω̄(g; γ1, γ2) are given below:

(a) ω̄(g; γ1, γ2) → 0 if γ1 → 0 and γ2 → 0,

(b) |g(z, w) − g(y1, y2)| ≤ ω̄(g; γ1, γ2)

(
1 + |z−y1|

γ1

)(
1 + |w−y2|

γ2

)
.

In what follows, we assume Bn,m,λ1,λ2(g(z, w); y1, y2) − g(y1, y2) = J( f ).

Further, let ηm=
√
supy1∈I Bm,λ1((z−y1)2; y1), ζn=

√
supy2∈I Bn,λ2((w−y2)2; y2),

�m= supy1∈I |Bm,λ1((z − y1); y1)| and φn = supy2∈I |Bn,λ2((w − y2); y2)|.
Theorem 5 Let g ∈ C(I 2), then

||J(g)|| ≤ 4 ω̄(g; ηm, ζn).

Proof By using the linearity and positivity of the operator (4.1) and by the property
(b) of the total modulus of continuity

|J(g)| ≤ ω̄(g; γ1, γ2)

(
1 + 1

γ1
(Bm,n,λ1,λ2(|z − y1|; y1)

+ 1

γ2
Bm,n,λ1,λ2(|w − y2|; y2) + 1

γ1γ2
Bm,n,λ1,λ2(|z − y1||w − y2|; y1, y2)

)

Now, applying Cauchy–Schwarz inequality and choosing γ1 = ηm and γ2 = ζn , we
are led to desired result. �

5 Degree of Approximation

Now, we give an upper bound of the degree of approximation by the operator (1.1)
for the Lipschitz class functions of two variables.
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For 0 < β1 ≤ 1 and 0 < β2 ≤ 1, we define the LipM(β1,β2) for the operator
(1.1) as follows:

| f (z, w) − f (y1, y2)| ≤ M |z − y1|β1 |w − y2|β2 ,

where (t, s), (x, y) ∈ I 2 are arbitrary.

Theorem 6 Let g ∈ LipM(β1,β2), then we have

||J(g)|| ≤ M(ηm)β1(ζn)
β2 .

Proof By our hypothesis, and theHölder’s inequality with p1 = 2
β1
, q1 = 2

2−β1
, p2 =

2
β2

and q2 = 2
2−β2

, the desired result is easily obtained. Hence we omit the details.
�

Let C1(I 2) denote the space of all functions in C(I 2) whose first-order partial
derivative is continuous in I 2.

Theorem 7 For g ∈ C1(I 2), the following inequality holds:

||J(g)|| ≤ ||g′
y1 ||ηm + ||g′

y2 ||ζn.

Proof In view of equality

g(z, w) − g(y1, y2) =
∫ z

y1

g′
u(u, w)du +

∫ w

y2

f ′
v(y1, v)dv,

and taking into account the inequalities,

|
∫ z

y1

g′
u(u, w)du| ≤ ||g′

y1 |||z − y1| and |
∫ w

y2

g′
v(y1, v)dv| ≤ ||g′

y2 |||w − y2|,

on an application of Cauchy–Schwarz inequality, we obtain the required result. �

For g ∈ C(I 2) and γ > 0, the partial moduli of continuity for bivariate case are
defined as

ω1(g; γ) = sup

{
g(y1′ , y2) − g(y1′′ , y2)| : y2 ∈ I and |y1′ − y1′′ | ≤ γ

}

ω2(g; γ) = sup

{
g(y1, y2′) − g(y1, y2′′) : y1 ∈ I and |y2′ − y2′′ | ≤ γ

}
.

Let C2(I 2) denote the space of all functions in C(I 2) whose second-order partial
derivative is continuous in I 2. The norm on the space C2(I 2) is defined as
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‖ f ‖C2(I 2) = ‖ f ‖ +
2∑

i=1

(∥∥∥∥
∂i f

∂xi

∥∥∥∥ +
∥∥∥∥
∂i f

∂yi

∥∥∥∥

)
.

The Peetre’s K-functional of the function g ∈ C(I 2) is defined as

K(g; δ) = inf
f ∈C2(I 2)

{||g − f || + δ|| f ||C2(I 2)}, δ > 0.

Also by [7], it follows that

K(g; δ) ≤ M

{
ω̃2(g;√

δ) + min(1, δ)||g||
}
, (5.1)

holds for all δ > 0.

Theorem 8 Let g ∈ C(I 2), then

||J(g)|| ≤ 2{ω1(g; ηm) + ω2(g; ζn)}.

Proof By the definition of partial moduli of continuity and the Cauchy–Schwarz
inequality, we get

||J(g)|| ≤ ω1(g; γ1)

(
1 + 1

γ1

√
Bm,n,λ1,λ2((z − y1)2; y1, y2)

)

+ ω2(g; γ2)

(
1 + 1

γ2

√
Bm,n,λ1,λ2((w − y2)2; y1, y2)

)

= 2{ω1(g; γ1) + ω2(g; γ2)}.

Now, choosing γ1 = ηm and γ2 = ηn, the proof easily follows. �

Theorem 9 For the function g ∈ C(I 2), the following inequality holds:

||J(g)|| ≤ M

{
ω̃2(g;�m,n) +

min{1,�m,n}||g||
}

+ω

(
g;

√
�2

m + φ2
n

)
,

where �m,n = η2
m + ζ2n + �2

m + φ2
n and the constant M(> 0), is independent of g.
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Proof First, we define the auxiliary operators as

B∗
m,n,λ1,λ2

(g; x, y) = Bm,n,λ1,λ2 (g; x, y) − g(Bm,λ1 (z; y1), Bn,λ2 (w; y2)) + g(y1, y2). (5.2)

From Lemma4, Bm,n,λ1,λ2(1; y1, y2) = 1,
B∗
m,n,λ1,λ2

(z − y1); y1, y2) = 0 and B∗
m,n,λ1,λ2

((w − y2); y1, y2) = 0.
For any f ∈ C2(I 2), by Taylor’s theorem

f (z, w) − f (y1, y2) = f (z, y2) − f (y1, y2) + f (z, w) − f (z, y2)

= ∂ f (y1, y2)

∂y1
(z − y1) +

∫ z

y1

(z − u)
∂2 f (u, y2)

∂u2
du

+∂ f (y1, y2)

∂y2
(w − y2) +

∫ w

y2

(w − v)
∂2 f (y1, v)

∂v2
dv.

Now applying the auxiliary operator on the above equation and using (5.2)

B∗
m,n,λ1,λ2

( f ; y1, y2) − f (y1, y2) = Bm,n,λ1,λ2

(∫ z

y1

(z − u)
∂2 f (u, y2)

∂u2
du, y2

)

−
∫ Bm,λ1 (z;y1)

y1

(Bm,λ1(z; y1) − u)
∂2 f (u, y2)

∂u2
du

+Bn,λ2

(∫ w

y2

(w − v)
∂2 f (y1, v)

∂v2
dv; y1, y2

)

−
∫ Bn,λ2 (w;y2)

y2

(Bn,λ2(w; y2) − v)
∂2 f (y1, v)

∂v2
dv.

Hence,
|B∗

m,n,λ1,λ2
( f ; y1, y2) − f (y1, y2)|

≤
{
Bm,n,λ1,λ2((z − y1)

2; y1, y2) +
(
Bm,λ1(z; y1) − y1

)2

+Bm,n,λ1,λ2((w − y2)
2; y1, y2) +

(
Bn,λ2(w; y2) − y2

)2}
|| f ||C2(I 2)

= (η2
m + ζ2n + �2

m + φ2
n)|| f ||C2(I 2)

= �m,n|| f ||C2(I 2). (5.3)

Now, using (5.2)
|B∗

m,n,λ1,λ2
(g; y1, y2)|

≤ |Bm,n,λ1,λ2(g; y1, y2)| + |g(Bm,λ1(z; y1), Bn,λ2)(w; y2))| + |g(y1, y2)|
≤ 3||g||. (5.4)
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Hence, taking into account (5.2)–(5.4), for g ∈ C(I 2) and any f ∈ C2(I 2)
|Bm,n,λ1,λ2(g; y1, y2) − g(y1, y2)|

≤ 4||g − f || + |B∗
m,n,λ1,λ2

( f ; y1, y2) − f (y1, y2)|
+

∣∣∣∣g(Bm,n,λ1,λ2(z; y1, y2), Bm,n,λ1,λ2(w; y1, y2)) − g(y1, y2)

∣∣∣∣

≤
(
4||g − f || + (η2

m + ζ2n + �2
m + φ2

n)|| f ||C2(I 2)

)

+ω

(
g;

√
�2

m + φ2
n

)
.

Now, taking the infimumon the right side of the above inequality over all f ∈ C2(I 2),
and using the equivalence (5.1) between K-functional and ω̃2, we obtain the desired
result. �

6 GBS of the Operator Bm,n,λ1,λ2

Bögel ([5, 6]) pioneered the study of B-continuous and B-differentiable functions.
Dobrescu and Matei [11] showed that the GBS operator associated to the bivari-
ate Bernstein polynomial converges uniformly to the B-continuous function. Badea
and Cottin [2] established Korovkin-type theorem for GBS operators. Subsequently,
Badea et al. [3] proved the very famous “Test function theorem” to approximate
these kind of functions. A quantitative variant of the Korovkin-type theorem for
these functions was established by Badea and Badea in [4].

A real valued function f defined on I 2 is called B-continuous at (y1, y2) if

lim
(z,w)→(y1,y2)

�(z,w)g(y1, y2) = 0,

where �(z,w)g(y1, y2) = g(z, w) − g(z, y1) − g(y1, w) + g(y1, y2).
Let Cb(I 2) := {g : g is B−continuous on I 2} and Bb(I 2) be the set of all

B-bounded functions on I 2, equippedwith the norm ||g||B = sup(z,w)(y1,y2)∈I 2 |�(z,w)

g(y1, y2)|. Let B(I 2) denote the space of all bounded functions on I 2 endowed with
the norm || f ||∞ = sup(y1,y2)∈I 2 | f (y1, y2)|.

A function g is said to be B-differentiable at (y1, y2) if

lim
(z,w)→(y1,y2)

�(z,w)g(y1, y2)

(z − y1)(w − y2)
= DBg(y1, y2) < ∞.

Here, DBg is called B-derivative of g and the space of all B-differentiable functions is
denoted by Db(I 2). For any g ∈ Cb(I 2), the GBS operator associated with Bm,n,λ1,λ2

is given by
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Cm,n,λ1,λ2
(g; y1, y2) = Bm,n,λ1,λ2

(g(y, w) + g(z, y2) − g(z, w); y1, y2)

=
m∑

j=0

n∑

k=0

b̃m,n, j,k (λ1,λ2; y1, y2)
(

g

(
y1,

k

n

)
+ g

(
j

m
, y2

)
− g

(
j

m
,
k

n

))
. (6.1)

Hence, the operator (6.1) is a linear operator and is well defined from the space
Cb(I 2) into C(I 2). The mixed modulus of smoothness of g ∈ Cb(I 2) is defined as

ωB (g; δ1, δ2) := sup
{∣∣�(z,w)g(y1, y2)

∣∣ : |z − y1| < δ1, |w − y2| < δ2
}
,

for all (y1, y2), (z, w) ∈ I 2 and for any (δ1,δ2)∈(0,∞) × (0,∞)withωB : [0,∞) ×
[0,∞) → R.

Theorem 10 Let {Dm,n}, Dm,n : Cb(J 2) → B(J 2), m, n ∈ N be a sequence of
bivariate linear positive operators, Hm,n be the GBS-operators associated with Dm,n

and the following conditions are satisfied:

(1) Hm,n(1, y1, y2) = 1;
(2) Hm,n(z, y1, y2) = y1 + um,n(y1, y2);
(3) Hm,n(w, y1, y2) = y1 + vm,n(y1, y2);
(4) Hm,n(z2 + w2, y1, y2) = y21 + y22 + wm,n(y1, y2);
for all y1, y2∈J 2. If all the sequences um,n(y1, y2), vm,n,λ1,λ2(y1, y2) andwm,n(y1, y2)
converge to zero uniformly in J 2, then the sequence {Hm,ng} converges to g uniformly
on J 2 for all g ∈ Cb(J 2).

As a consequence of the above theorem and applying Lemma5, we have

Theorem 11 For g ∈ Cb(I 2), the operator Cm,n,λ1,λ2(g; y1, y2) converges to g uni-
formly in I 2.

Now, we determine the degree of approximation in terms of the mixed modulus
of smoothness for the GBS operators Cm,n,λ1,λ2 .

Theorem 12 For g ∈ Cb(I 2), the following inequality holds,

||Cm,n,λ1,λ2(g) − g|| ≤ 4ωB(g; ηm, ζn).

Proof By using the definition of ωB(g, γ1, γ2) and the inequality

ωB(g;μ1γ1,μ2γ2) ≤ (1 + μ1)(1 + μ2) ωB(g, γ1, γ2); μ1,μ2 > 0,

we are led to

|�(z,w)g(y1, y2)| ≤ ωB(g; |z − y1|, |w − y2|)
≤

(
1 + |z − y1|

γ1

)(
1 + |w − y2|

γ2

)
ωB(g; γ1, γ2), (6.2)
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From the definition of �(z,w)g(y1, y2), we get

g(y1, w) + g(z, y2) − g(z, w) = g(y1, y2) − �(z,w)g(y1, y2).

On applying the linear positive operator (4.1) to this equality and using the defi-
nition of operator (6.1), we can write

Cm,n,λ1,λ2 (g; y1, y2) = g(y1, y2) Bm,n,λ1,λ2 (e00; y1, y2) − Bm,n,λ1,λ2 (�(z,w)g(y1, y2); y1, y2).

Since Bm,n,λ1,λ2(1; y1, y2) = 1, considering the inequality (6.2), we obtain,
|Cm,n,λ1,λ2(g; y1, y2) − g(y1, y2)|

≤
(
Bm,n,λ1,λ2(e00; y1, y2) + 1

γ1
Bm,n,λ1,λ2(|z − y1|; y1, y2)

+ 1

γ2
Bm,n,λ1,λ2(|w − y2|; y1, y2) + 1

γ1γ2
Bm,n,λ1,λ2(|z − y1|; y1, y2)

× Bm,n,λ1,λ2(|w − y2|; y1, y2)
)

ωB(g; γ1, γ2).

Now, applying the Cauchy–Schwarz inequality and choosing γ1 = ηm , γ2 = ζn , we
reach the required result. �

Now, let us define the Lipschitz class for B-continuous functions. For g ∈ Cb(I 2),
the Lipschitz class LipM (ξ, η) with ξ, η ∈ (0, 1] is given by

LipM (ξ, η) �
{
g ∈ Cb

(
I 2

) : ∣∣�(z,w)g(y1, y2)
∣∣ ≤ M |z − y1|ξ |w − y2|η , for (z, w) , (y1, y2) ∈ I 2

}
.

Our next theorem gives the degree of approximation for the operators (6.1) by means
of the Lipschitz class of Bögel continuous functions.

Theorem 13 For g ∈ LipM (ξ, η), we have

||Cm,n,λ1,λ2(g) − g|| ≤ M(ηm)ξ(ζn)
η,

for M > 0, ξ, η ∈ (0, 1].
Proof By the definition of the operator (6.1) and the linearity of the operator
Bm,n,λ!,λ2 , we can write

Cm,n,λ1,λ2 (g; y1, y2) = Bm,n,λ1,λ2 (g(y1, w) + g(z, y2) − g(z, w); y1, y2)
= Bm,n,λ1,λ2 (g(y1, y2) − �(z,w)g(y1, y2); y1, y2)
= g(y1, y2)Bm,n,λ1,λ2 (1; y1, y2) − Bm,n,λ1,λ2 (�(z,w)g(y1, y2); y1, y2).

Hence, by our hypothesis



108 R. Chauhan and P. N. Agrawal

∣∣Cm,n,λ1,λ2 (g; y1, y2) − g (y1, y2)
∣∣ ≤ Bm,n,λ1,λ2

(∣∣�(z,w)g(y1, y2)
∣∣ ; y1, y2

)

≤ MBm,n,λ1,λ2

(
|z − y1|ξ |w − y2|η ; y1, y2

)

= MBm,n,λ1,λ2

(
|z − y1|ξ ; y1, y2

)
Bm,n,λ1,λ2

(|w − y2|η ; y1, y2
)
.

Now, applying Hölder’s inequality with p1 = 2/ξ, q1 = 2/ (2 − ξ) and p2 =
2/η, q2 = 2/ (2 − η), the desired result is obtained. �

In the following theorem, we investigate the rate of approximation for Bögel
differentiable functions with a bounded Bögel derivative by the operators Cm,n,λ1,λ2 .

Theorem 14 Let the function g ∈ Db(I 2) with DBg ∈ B(I 2). Then,

||Cm,n,λ1,λ2(g) − g|| ≤ M

m
1
2 n

1
2

(
||DBg||∞ + ωB(DBg;m −1

2 , n
−1
2 )

)
,

for some constant M > 0.

Proof Since g ∈ Db(I 2), we have

�(z,w)g(y1, y2) = (z − y1)(w − y2)DBg(ξ, η), wi th y1 < ξ < z ; y2 < η < w.

Also, we note that

DBg(ξ, η) = �DBg(ξ, η) + DBg(ξ, y2) + DBg(y1, η) − DBg(y1, y2).

Since DBg ∈ B(I 2), we can write

|Bm,n,λ1,λ2
(�(z,w)g(y1, y2); y1, y2)| = |Bm,n,λ1,λ2

((z − y1)(w − y2)DBg(ξ, η); y1, y2)|
≤ Bm,n,λ1,λ2

(|z − y1||w − y2|ωB (DBg; |ξ − y1|, |η − y2|); y1, y2)
+3 ||DBg||∞ Bm,n,λ1,λ2

(|z − y1||w − y2|; y1, y2).

Now, by using the inequality (6.2) and applying the Cauchy–Schwarz inequality we
obtain

|Cm,n,λ1,λ2
(g; y1, y2) − g(y1, y2)| = |Bm,n,λ1,λ2

�(z,w)(y1, y2); y1, y2|
≤ 3||DBg||∞

√
Bm,n,λ1,λ2

((z − y1)2(w − y2)2; y1, y2)

+
(√

Bm,n,λ1,λ2
((z − y1)2(w − y2)2; y1, y2)

+γ−1
1

√
Bm,n,λ1,λ2

((z − y1)4(w − y2)2; y1, y2)

+γ−1
2

√
Bm,n,λ1,λ2

((z − y1)2(w − y2)4; y1, y2)

+γ−1
1 γ−1

2 Bm,n,λ1,λ2
((z − y1)

2(w − y2)
2; y1, y2)

)
ωB (DBg; γ1, γ2).

(6.3)

Considering Lemma2, for (z, w), (y1, y2) ∈ I 2 and i, j ∈ {1, 2},
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Bm,n,λ1,λ2 ((z − y1)
2i (w − y2)

2 j ; y1, y2) = Bm,λ1 ((z − y1)
2i ; y1)Bn,λ2 ((w − y2)

2 j ; y2),
≤ M1

mi

M2

n j
, (6.4)

for some constants M1, M2 > 0.
Let γ1 = m

−1
2 , and γ2 = n

−1
2 .

Then, combining (6.3), (6.4)

|Cm,n,λ1,λ2(g; y1, y2) − g(y1, y2)| = 3||DBg||∞O

(
m

−1
2

)
O

(
n

−1
2

)

+O

(
1

m
1
2

)
O

(
1

n
1
2

)
ωB(DBg;m −1

2 , n
−1
2 ),

uniformly in (y1, y2) ∈ I 2. This completes the proof. �
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Durrmeyer Modification of Lupaş Type
Baskakov Operators Based on IPED

Minakshi Dhamija

Abstract The purpose of this paper is to consider Durrmeyer variant of Lupaş type
Baskakov operators having inverse Pólya–Eggenberger distribution basis function.
We derive some direct results which include uniform convergence, pointwise approx-
imation via modulus of continuity and asymptotic formula.

Keywords Stancu operators · Baskakov operators · Durrmeyer operators · Inverse
Pólya–Eggenberger distribution

2010 Mathematics Subject Classication 41A25 · 41A36

1 Introduction

In 1968, a new sequence of positive linear operators P [α]
n : C [0, 1] → C [0, 1] intro-

duced by Stancu [17]. This sequence was based on Pólya–Eggenberger distribution:

P [α]
n ( f ; x) =

n∑

k=0

p[α]n.k(x) f

(
k

n

)
, (1.1)

where

p[α]n.k(x) =
(
n
k

)
x [k,−α](1 − x)[n−k,−α]

1[n,−α] ,

α ≥ 0 such that it may depend on natural number n ∈ N and t [n,h] = t (t − h)(t −
2h) · · · · · (t − n − 1h), t [0,h] = 1 denotes the factorial power of t with increment h.

For special case α = 0, operators (1.1) reduce to the classical Bernstein operators
[4] and when α = 1

n we get another particular case
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P[
1
n ]

n ( f ; x) =
n∑

k=0

(
n

k

)
x[k,−

1
n ](1 − x)[n−k,− 1

n ]

1[n,− 1
n ]

f

(
k

n

)
, (1.2)

considered by Lupaş and Lupaş [16].
Recently, Gupta and Rassias [13] introduced the Durrmeyer type integral modi-

fication of operators (1.2) and established local and global approximation results.
Stancu [18] also considered inverse Pólya–Eggenberger distribution and gave a

generalization of the Baskakov operators:

V [α]
n ( f ; x) =

∞∑

k=0

v
[α]
n,k(x) f

(
k

n

)
, (1.3)

where

v
[α]
n,k(x) =

(
n + k − 1

k

)
1[n,−α]x [k,−α]

(1 + x)[n+k,−α]

and f ∈ CB [0,∞). The operators (1.3) also have special cases:

(1) For α = 0, we get classical Baskakov operators [3] as:

Vn ( f, x) =
∞∑

k=0

vn,k (x) f

(
k

n

)
, (1.4)

with

vn,k (x) =
(
n + k − 1

k

)
xk

(1 + x)n+k .

(2) For α = 1
n , the operators (1.3) reduces to following Lupaş type Baskakov oper-

ators considered by Dhamija et al. [9]:

V [ 1
n ]

n ( f ; x) =
∞∑

k=0

v
[ 1
n ]

n,k (x) f

(
k

n

)
(1.5)

where

v
[ 1
n ]

n,k (x) =
(
n + k − 1

k

)
1[n,− 1

n ]x [k,− 1
n ]

(1 + x)[n+k,− 1
n ] .

Inspired by Gupta and Rassias [13], we now consider Durrmeyer type modification
of Generalized Baskakov operators (1.5):

D[ 1
n ]

n ( f ; x) = (n − 1)
∞∑

k=0

v
[ 1
n ]

n,k (x)
∫ ∞

0
vn,k (t) f (t) dt (1.6)
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where

vn,k (t) =
(
n + k − 1

k

)
t k

(1 + t)n+k

In recent years, many researchers are working on Durrmeyer type operators and
connecting these operators in the direction of q-calculus (see [1]). The aim of this
paper is to obtain moments of operators (1.6) and then establish direct results includ-
ing pointwise approximation by using classical modulus of continuity, second order
modulus of smoothness and asymptotic formula. These approximation properties
have also been discussed in [5, 7, 11, 12, 14].

For details of Pólya and Inverse Pólya–Eggenberger distribution, see [6, 10].

2 Auxiliary Results

Consider the set of monomials ei = t i , i = 0, 1, 2 known as test functions. Now we
find the moments of these test functions for our operators (1.6) which is necessarily
in order to provide our main results.

Lemma 2.1 For Durremeyer operators (1.6) hold

D[ 1
n ]

n (e0; x) = 1,

D[ 1
n ]

n (e1; x) = n2

(n − 1) (n − 2)
x + 1

n − 2
,

D[ 1
n ]

n (e2; x) = 1

(n − 2) (n − 3)

[
n3 (n + 1)

(n − 1)(n − 2)
x2 + n2 (5n − 7)

(n − 1)(n − 2)
x + 2

]

Proof To obtain these moments, first we prove the following result:

∫ ∞

0
vn,k (t) tr dt = (k + r)! (n − r − 2)!

k! (n − 1)!
By using the above result, we can get desired moments. �

Lemma 2.2 For the operators (1.6),

D[ 1
n ]

n (t − x; x) = 3n − 2

(n − 1)(n − 2)
x + 1

n − 2

D[ 1
n ]

n
(
(t − x)2; x) = 1

(n−1)(n−2)2(n−3) [(3n3 + 11n2 − 28n + 12)x2

+(3n3 + 5n2 − 22n + 12)x + 2(n2 − 3n + 2)]
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Proof Taking into account Lemma 2.1, we can have above central moments. �

Lemma 2.3 Let f be a bounded function defined on [0,∞), with ‖ f ‖ =
sup

x∈[0,∞)

| f (x)|, then
∣∣∣D[ 1

n ]
n ( f ; x)

∣∣∣ ≤ ‖ f ‖.

Proof Using the definition of operators (1.6) and Lemma 2.1, it follows

∣∣∣D[ 1
n ]

n ( f ; x)
∣∣∣ =

∣∣∣∣∣(n − 1)
∞∑

k=0

v
[ 1
n ]

n,k (x)
∫ ∞

0
vn,k (t) f (t) dt

∣∣∣∣∣ ≤ ‖ f ‖ D[ 1
n ]

n (e0; x)

= ‖ f ‖ . �

3 Direct Results

Using the well-known Bohman–Korovkin–Popoviciu theorem (see [15]) we get the
uniform convergence of operators (1.6).

Theorem 3.1 Let f ∈ C[0,∞) ∩ E, then we have

lim
n→∞ D[ 1

n ]
n ( f ; x) = f (x)

uniformly on each compact subset of [0,∞), where C[0,∞) is the space of all
real-valued continuous functions on [0,∞) and

E :=
{
f : x ∈ [0,∞) ,

f (x)

1 + x2
is convergent as x → ∞

}

Proof Taking Lemma 2.1 into the account it is clear that

lim
n→∞ D[ 1

n ]
n (ei ; x) = xi , i = 0, 1, 2

uniformly on each compact subset of [0,∞). Hence, applying the well-known
Korovkin-type theorem [2] regarding the convergence of a sequence of positive
linear operators, we get the desired result. �

Modulus of continuity is the main tool to measure the degree of approximation
of linear positive operators towards the identity operators.

Definition 3.1 Let f ∈ CB[0,∞) be given. The modulus of continuity of the func-
tion f is defined by

ω ( f, δ) := sup{| f (x) − f (y)| : x, y ∈ [0,+∞), |x − y| ≤ δ}, (3.1)
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where δ > 0 and CB[0,∞) is the space of all real-valued functions continuous and
bounded on [0,∞).

Moreover, we have a following useful property:

| f (x) − f (y)| ≤ ω( f, |x − y|) ≤ (
1 + 1

δ
|x − y|) · ω( f, δ). (3.2)

Definition 3.2 For f ∈ C [0,∞) and δ ≥ 0 and

ω2 ( f, δ) : = sup{| f (x + h)−2 f (x) + f (x − h)| : x, x ± h ∈ [0,∞), 0 ≤ h ≤ δ}
(3.3)

are the moduli of smoothness of second order.

Definition 3.3 Let f be a function from the spaceCB[0,∞) endowedwith the norm
‖ f ‖ = sup

x∈[0,∞)

| f (x)| then Peetre’s K -functional is defined as

K2 ( f, δ) = inf
g∈W 2∞

{‖ f − g‖ + δ
∥∥g′′∥∥}

, (3.4)

where δ > 0 and W 2∞ = {
g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)

}
. Also, from ([8], p.

177, Theorem 2.4), we can write

K2 ( f, δ) ≤ Mω2

(
f,

√
δ
)

, (3.5)

M > 0 is an absolute constant.

We start our direct results in terms of moduli of continuity.

Theorem 3.2 If f ∈ CB[0,∞), then for any x ∈ [0,∞) and δ > 0, it follows

∣∣∣D[ 1
n ]

n ( f ; x) − f (x)
∣∣∣ ≤ 2 · ω ( f, δ) , with δ =

(
D

[ 1n ]
n

(
(e1 − x)2; x)

) 1
2

.

Proof By using the property (3.2) and Lemma 2.1, we get

∣∣∣∣∣D
[
1
n

]

n ( f ; x) − f (x)

∣∣∣∣∣ ≤ (n − 1)
∞∑

k=0

v

[
1
n

]

n,k (x)
∫ k+1

n

k
n

vn,k(t)| f (t) − f (x)| dt

≤
(
1 + 1

δ
(n − 1)

∞∑

k=0

v

[
1
n

]

n,k (x)
∫ k+1

n

k
n

vn,k(t)|t − x | dt
)

ω ( f, δ) .

Applying Cauchy–Schwarz inequality for integral, we get
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∣∣∣∣∣D
[
1
n

]

n ( f ; x) − f (x)

∣∣∣∣∣

≤
⎡

⎣1 + 1
δ

(n − 1)
∞∑

k=0

v

[
1
n

]

n,k (x)

(∫ k+1
n

k
n

vn,k(t)dt

)1/2(∫ k+1
n

k
n

vn,k(t)(t − x)2dt

)1/2
⎤

⎦ ω ( f, δ) .

Again, applying Cauchy–Schwarz inequality for sum, it follows

∣∣∣D[ 1
n ]

n ( f ; x) − f (x)
∣∣∣ ≤

⎡

⎣1 + 1
δ

(
(n − 1)

∞∑

k=0

v
[ 1
n ]

n,k (x)
∫ k+1

n

k
n

vn,k(t)dt

)1/2

×
(

(n − 1)
∞∑

k=0

v
[ 1
n ]

n,k (x)
∫ k+1

n

k
n

vn,k(t)(t − x)2dt

)1/2
⎤

⎦ω ( f, δ)

=
[
1 + 1

δ

(
D[ 1

n ]
n (e0; x)

)1/2(
D[ 1

n ]
n ((e1 − x)2; x)

)1/2
]

ω ( f, δ) = 2 · ω ( f, δ) ,

with δ :=
(
D[ 1

n ]
n ((e1 − x)2; x)

)1/2
. �

Next we estimate the degree of approximation by using Peetre’s K-functional.

Theorem 3.3 Let be f ∈ C[0,∞), then for any x ∈ [0,∞) it follows

∣∣∣D[ 1
n ]

n ( f ; x) − f (x)
∣∣∣ ≤ Mω2

(
f, 1

2δn(x)
) + ω( f, δω),

where M is an absolute constant and

δn (x) =
(
D[ 1

n ]
n

(
(e1 − x)2; x) +

(
D

[ 1n ]
n (e1 − x; x)

)2
) 1

2

, δω =
∣∣∣D[ 1n ]

n (e1 − x; x)
∣∣∣.

Proof For x ∈ [0,∞), consider the operators

D̂[ 1
n ]

n ( f ; x) = D[ 1
n ]

n ( f ; x) − f

(
n2x

(n − 1)(n − 2)
+ 1

n − 2

)
+ f (x) . (3.6)

We note that D̂[ 1
n ]

n (e0; x) = 1 and D̂[ 1
n ]

n (e1; x) = x , i.e., the operators D̂[ 1
n ]

n preserve
constants and linear functions. Therefore

D̂[ 1
n ]

n (e1 − x; x) = 0. (3.7)

Let g ∈ W 2∞ and x, t ∈ [0,∞). By Taylor’s expansion, we have

g (t) = g (x) + (t − x) g′ (x) +
∫ t

x
(t − u) g′′ (u) du
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Operating D̂[ 1
n ]

n on both sides of the above equation, we get

D̂

[
1
n

]

n (g; x) − g(x) = g′(x) · D̂[ 1n ]
n (e1 − x; x) + D̂

[
1
n

]

n

(∫ t

x
(t − u) g′′ (u) du; x

)

= D

[
1
n

]

n

(∫ t

x
(t − u) g′′ (u) du; x

)
−

∫ n2x
(n−1)(n−2) + 1

n−2

x

(
n2x

(n − 1)(n − 2)
+ 1

n − 2
− u

)
g′′(u)du.

On the other hand ∣∣∣∣
∫ t

x
(t − u)g′′(u)

∣∣∣∣ ≤ (t − x)2 · ‖g′′‖,

then

∣∣∣D̂[ 1
n ]

n (g; x) − g(x)
∣∣∣ ≤

(
D

[ 1n ]
n ((e1 − x)2; x) +

(
D

[ 1n ]
n (e1 − x; x)

)2
)

· ‖g′′‖.

Making use of definition (3.6) of the operators D̂
[ 1n ]
n and Lemma 2.3, we have

∣∣∣∣∣D
[
1
n

]

n ( f ; x) − f (x)

∣∣∣∣∣ ≤
∣∣∣∣∣D̂

[
1
n

]

n ( f − g; x)
∣∣∣∣∣ +

∣∣∣∣∣D̂
[
1
n

]

n (g; x) − g (x)

∣∣∣∣∣

+ |g (x) − f (x)| +
∣∣∣∣ f

(
n2x

(n − 1)(n − 2)
+ 1

n − 2

)
− f (x)

∣∣∣∣

≤ 4 ‖ f − g‖ + δ2n (x)
∥∥g′′∥∥ + ω ( f, δω) ,

with δ2n(x) = D
[ 1n ]
n

(
(e1 − x)2; x) +

(
D

[ 1n ]
n (e1 − x; x)

)2
and δω =

∣∣∣D[ 1n ]
n (e1 − x; x)

∣∣∣.
Now, taking infimum on the right-hand side over all g ∈ W 2∞ and using the relation
(3.5), we get

∣∣∣D[ 1
n ]

n ( f ; x) − f (x)
∣∣∣ ≤ 4K2

(
f,

δn
2 (x)

4

)
+ ω ( f, δω)

≤ Mω2
(
f, 1

2δn(x)
) + ω ( f, δω) .

Further, we present asymptotic formula for the operators (1.6). �

Theorem 3.4 Let f be a bounded and integrable function on [0,∞) such that there
exists first and second derivative of the function f at a fixed point x ∈ [0,∞), then

lim
n→∞ n

(
D[ 1

n ]
n ( f ; x) − f (x)

)
= (3x + 1) f ′ (x) + 3

2
x(x + 1) f ′′(x).
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Proof Taylor’s expansion of function f gives:

f (t) = f (x) + (t − x) f ′(x) + 1

2! (t − x)2 f ′′(x) + ε(t, x)(t − x)2,

where ε(t, x) → 0 as t → x .

Applying operators D[ 1
n ]

n on both sides of above equation and in view of Lemma
2.2, we get

D[ 1
n ]

n ( f ; x) − f (x) =D[ 1
n ]

n (t − x; x) f ′(x) + 1

2
D[ 1

n ]
n

(
(t − x)2; x) f ′′(x)+

+ D[ 1
n ]

n
(
ε(t, x) · (t − x)2; x) .

Therefore,

lim
n→∞ n

(
D[ 1

n ]
n ( f ; x) − f (x)

)
=(3x + 1) f ′ (x) + 3

2
x (1 + x) f ′′(x),+ (3.8)

+ lim
n→∞ n

(
D[ 1

n ]
n

(
ε(t, x) · (t − x)2; x)

)
,

To obtain the desired result, it is sufficient to prove that

lim
n→∞ n

(
D[ 1

n ]
n

(
ε(t, x) · (t − x)2; x)

)
= 0

Application of Cauchy–Schwarz inequality gives

D[ 1
n ]

n
(
ε(t, x)(t − x)2; x) ≤

√
D[ 1

n ]
n

(
ε2(t, x); x)

√
D[ 1

n ]
n

(
(t − x)4; x) . (3.9)

Since ε2(x, x) = 0 and ε2(·, x) ∈ C[0,∞) ∩ E , thus we can use convergence of

operators D[ 1
n ]

n from Theorem 3.1,

lim
n→∞ D[ 1

n ]
n

(
ε2(t, x); x) = ε2(x, x) = 0. (3.10)

Therefore, from (3.9) and (3.10) yields

lim
n→∞ n

(
D[ 1

n ]
n

(
ε(t, x) · (e1 − x)2; x)

)
= 0

and using (3.8) we obtain required result. �
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1 Introduction

Recall that the classical Bernstein–Chlodowsky operator Cn defined from
C [0,∞) → C [0,∞) is given by

Cn f (x) =
n∑

k=0

f

(
kbn
n

)(
n

k

)(
x

bn

)k (
1 − x

bn

)n−k

, x ∈ [0, bn] (1.1)

where f is a function defined on [0,∞) and bounded on every finite interval [0, bn] ⊂
[0,∞)with a certain rate, and bn is amonotone increasing, positive and real sequence
such that lim

n→∞ bn = ∞ and lim
n→∞

bn
n = 0.

The classical Bernstein–Chlodowsky polynomials were introduced by I.
Chlodovsky in 1937 as a generalization of the Bernstein polynomials. Note that
the case bn = 1, n ∈ N, in Eq.1.1, defines an approximation to the function f on the
interval [0, 1] (or, suitably modified on any fixed finite interval [−b, b] ).

For b > 0, let M (b; f ) := sup
0≤t≤b

| f (t)|. It is shown by Chlodowsky that when

f ∈ C [0,∞) and lim
n→∞ M (b; f ) exp

(
−σn

bn

)
= 0 for each σ > 0, then the classical

Bernstein–Chlodowsky operator converges to f (x) at each point where f is contin-
uous. Chlodovsky also showed that the simultaneous convergence of the derivative
(Cn f )

′
(x) to f

′
(x) at points x, where the derivative of f (x) exists, a result taken up

byButzer [4, 5].Due to these two former results, the classical Bernstein–Chlodowsky
operators and their generalizations have been an increasing interest in the field of
approximation theory.

During the paper, μ > 0 is a fixed real parameter and expμ represents the expo-
nential function defined by expμ (t) = eμt .

Herein, we consider a generalization of Bernstein–Chlodowsky operators of the
form

Cn f (x) =
n∑

k=0

αn,k (x) f

(
kbn
n

)
pn,k (an (x)) , x ∈ [0, bn] (1.2)

αn,k (x) = eμxe− μkbn
n and pn,k (x) =

(
n

k

)(
x

bn

)k (
1 − x

bn

)n−k

with the property that

Cn(expμ; x) = eμx , Cn(exp2μ; x) = e2μx . (1.3)

Then, the operator Cn is more explicitly given by

Cn f (x) = eμx
(
e

μbn
n − 1

)−n n∑

k=0

f

(
kbn
n

)(
n

k

)
e− μkbn

n

(
e

μx
n − 1

)k (
e

μbn
n − e

μx
n

)n−k
,

(1.4)
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with

an (x) = bn
e

μx
n − 1

e
μbn
n − 1

.

Note that the connection of this operator with the classical Bernstein–Chlodowsky
operator can be expressed as

Cn f (x) = f0 (x)Cn ( f/ f0) (an (x)) , f0 (x) = eμx . (1.5)

Namely,

f0 (x)Cn

(
f

f0

)
(an (x)) = eμx

n∑

k=0

(
f

f0

)(
kbn
n

)(
n

k

)(
an (x)

bn

)k (
1 − an (x)

bn

)n−k

= eμx
n∑

k=0

f
( kbn

n

)

f0
( kbn

n

) pn,k (an (x))

= eμx
n∑

k=0

f
( kbn

n

)

eμ kbn
n

pn,k (an (x))

= eμx
n∑

k=0

e−μ kbn
n f

(
kbn
n

)
pn,k (an (x))

=
n∑

k=0

eμxe−μ kbn
n f

(
kbn
n

)
pn,k (an (x))

=
n∑

k=0

αn,k (x) f

(
kbn
n

)
pn,k (an (x))

= Cn f (x) .

Also note that the Bernstein–Chlodovsky operators Cn , based on functions defined
on [0,∞), are bounded on every [0, bn] ⊂ [0,∞) with a certain rate. Thus, they
are a very natural polynomial process in approximating unbounded functions on the
unbounded infinite interval [0,∞); but this approximation process is not so easy to
handle.

We know that the classical Bernstein–Chlodowsky operators have the degree of
exactness one, that is, they preserve the monomials 1 and x . On the other side, the
operator (1.4) does not preserve 1 and x , but it satisfies the exponential moments
(1.3) that play an important role in our calculations.

The aim of the present paper is to investigate the operators Cn , n ∈ N in deeper
to reveal, in addition to elementary properties, their advanced properties. Moreover,
the development of the some theoretical results of the generalized operator is within
the aim of the paper. After Voronovskaya type theorems for the generalized operator
is stated , it is compared to the classical Bernstein–Chlodovsky operators in terms of
effectiveness. For this purpose, the convergence of the derivative (Cn f )′

(x) to f
′
(x)
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is also considered. Finally, in the last section, the variation detracting property of
the operators and variation seminorm property is stated. Moreover, it is proved that
the operators converge to f/ expμ in variation seminorm is valid if and only if the
function is absolutely continuous.

2 Preliminary Results

For the operator Cn , n ∈ N, we give here some of their properties and results. At first,
we calculate all the moments of operator (1.4).

Lemma 1 For each n ∈ N and x ∈ [0, bn], the following identities hold:

Cne0 (x) = eμx−μbn
(
e

μbn
n + 1 − e

μx
n

)n
,

Cn(exp3μ; x) = eμx
(
e

μx
n

(
e

μbn
n + 1

)
− e

μbn
n

)n
,

Cn(exp4μ, x) = eμx
(
e

μbn
n

(
e

μx
n − 1

) (
e

μbn
n + 1

)
+ e

μx
n

)n
.

Using Mathematica, we give two limits, which play an important role in both
the uniform approximation of operator to functions and Voronoskaya type result.

For each x ∈ (0,∞), we shall consider the function expμ,x , defined for t ∈ (0,∞)

by
expμ,x (t) = eμt − eμx .

Using Lemma 1 and (1.3) , one easily finds that

Cn(expμ,x ; x) = Cn(expμ; x) − eμxCne0 (x)

= eμx (1 − Cne0 (x)) (2.1)

and

Cn(exp2μ,x ; x) = Cn(exp2μ; x) − 2eμxCn(expμ; x) + e2μxCne0 (x)

= e2μx (Cne0 (x) − 1) . (2.2)

Lemma 2 For each x ∈ [0,∞) , the following identities hold:

lim
n→∞ Cne0 (x) = lim

n→∞ eμx−μbn
(
e

μbn
n + 1 − e

μx
n

)n = 1, (2.3)

lim
n→∞ n (Cne0 (x) − 1) = lim

n→∞ n
(
eμx−μbn

(
e

μbn
n + 1 − e

μx
n

)n − 1
)

= μ2x, (2.4)
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and
lim
n→∞ n2Cn(exp4μ,x ; x) = 0.

3 Quantitative Results

All concepts mentioned below can be found in [7] more generally. We denote by
Cμ [0,∞) the space of continous functions f ∈ C [0,∞) with the property that
exists M > 0 such that | f (x)| ≤ Meμx , for every x ∈ [0, bn] . This space endowed
with norm

‖ f ‖μ = sup
x∈[0,bn ]

| f (x)|
eμx

.

Also,

Ck
μ [0,∞) :=

{
f : f ∈ Cμ [0,∞) and lim

x→∞
| f (x)|
eμx

= k, k is constant.

}
.

For f ∈ Ck
μ [0,∞) we use the following modulus of continuity:

�μ ( f ; δ) = sup
x,t∈[0,bn ]

|eμt−eμx |≤δ

| f (x) − f (t)|
[|eμt − eμx | + 1] eμx

.

In [7], the authors proved the most general form of the following lemmas.
In the following, we give the main properties of the modulus of continuity.

Lemma 3 ([7]) If f ∈ Cμ [0,∞) and λ > 0, then

�μ ( f ;λδ) ≤ (1 + λ) (1 + δ)�μ ( f ; δ) .

holds for every δ > 0.

Lemma 4 ([7]) For δ > 0, f ∈ Cμ [0,∞) and x, t ∈ [0, bn] , the inequality

| f (t) − f (x)| ≤ 2eμx (1 + δ)2

(
1 +

(
eμx − eμt

)2

δ2

)
�μ ( f ; δ)

holds.

Lemma 5 ([7]) For any f ∈ Ck
μ [0,∞) , we have

lim
δ→0

�μ ( f ; δ) = 0.
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Quantitative approximation theorems for sequences of linear positive operators
play an important role not only in approximating functions, but also in estimating
the error of the approximation. One of the most important convergence results in
approximation theory is the Voronovskaya theorem. Roughly speaking, it is obtained
to describe the rate of pointwise convergence.

Moreover, the other results presented in this paper are a quantitative-Voronovskaya
type and a Grüss–Voronovskaya type theorems for the new operators. For more
details, see [1]. Recently, Gal and Gonska obtained a Voronovskaya type theorem
with the aid of Grüss inequality for Bernstein operators in [8] and called it Grüss–
Voronovskaya type theorem. In this paper, we extend some of these results for our
operators Cn .

First, in the following theorem, we give quantitative type theorem for our operator
Cn:
Theorem 1 For f ∈ Ck

μ [0,∞) and x ∈ [0, bn], we have

|Cn f (x) − f (x)| ≤ 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)

+ f (x) |(Cne0 (x) − 1)| .

Proof Suppose that δ < 1. Using Lemma 3, 4 and (2.2) , we have

|Cn f (x) − f (x)|

≤ 2eμx (1 + δ)2
(
Cne0 (x) + 1

δ2
Cn
(
exp2μ,x ; x

))
�μ ( f ; δ) + f (x) |(Cne0 (x) − 1)|

≤ 8eμx (1 + Cne0 (x))�μ

(
f ;
√
Cn
(
exp2μ,x ; x

))
+ f (x) |(Cne0 (x) − 1)|

≤ 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)
+ f (x) |(Cne0 (x) − 1)| .

�

We have that our operator has a different approach charecteristics

Remark 1 If in the previous theorem, we assume

δ2 = λn (x) := (Cne0 (x) − 1) ,

then the estimate reads as

|Cn f (x) − f (x)| ≤ f (x)λn (x) + 8eμx (1 + Cne0 (x))
(
1 + eμx

)
�μ

(
f ;√(Cne0 (x) − 1)

)
.

Hence, velocity of convergence of Cn f (x) to f (x) is managed by the velocity of
convergence of Cne0 (x) to e0 (x) = 1, or equivalently, the one of λn (x) to 0, and
this is given by the undermentioned limit, that can be easily computed by elementary
calculus.
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lim
n→∞ n (Cne0 (x) − 1) = lim

n→∞ nλn (x)

= lim
n→∞ n

(
eμx−μbn

(
e

μbn
n + 1 − e

μx
n

)n − 1
)

= μ2x .

Now, we state quantitative-Voronovskaya type theorem for Cn:
Theorem 2 If f ∈ Ck

μ [0,∞) and x ∈ (0, bn), then we get

∣∣∣∣Cn f (x) − f (x) − (Cne0 (x) − 1)

(
f (x) − 3

2
μ−1 f

′
(x) + 1

2
μ−2 f

′′
(x)

)∣∣∣∣

≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ .

Proof By Taylor’s theorem, we have

f (t) = (
f ◦ logμ

) (
eμt )

= (
f ◦ logμ

) (
eμx )+ (

f ◦ logμ

)′ (
eμx ) expμ,x (t) + 1

2

(
f ◦ logμ

)′′ (
eμx ) exp2μ,x (t)

+h (x, t) exp2μ,x (t) ,

where

hx (t) := h (x, t) =
(
f ◦ logμ

)′′ (
expμ

)
(ξ) − (

f ◦ logμ

)′′ (
expμ

)
(x)

2

with ξ a number between x and t. Applying the operator Cn to both side of above
inequality, we get

Cn f (x) = Cne0(x) f (x) + (
f ◦ logμ

)′ (
eμx ) Cn

(
expμ,x ; x

)+ 1

2

(
f ◦ logμ

)′′ (
eμx ) Cn

(
exp2μ,x ; x

)

+Cn
(
hx exp

2
μ,x ; x

)
.

Using Lemma 4 and the fact that
∣∣eμξ − eμx

∣∣ ≤ ∣∣eμt − eμx
∣∣ , then we can write

|h (x, t)| ≤ eμx (1 + δ)2

(
1 +

(
eμξ − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)

≤ eμx (1 + δ)2

(
1 +

(
eμt − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Suppose that δ < 1. Thus, we can write
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|h (x, t)| ≤ 4eμx

(
1 +

(
eμt − eμx

)2

δ2

)
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Multiplying this relation with exp2μ,x and applying the operator Cn, we get

Cn
(
hx exp

2
μ,x ; x

)
≤ 4eμx

(
Cn
(
exp2μ,x ; x

)
+ 1

δ2
Cn
(
exp4μ,x ; x

))
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

(3.1)
Using (2.1) and (2.2), we get

Cn f (x) − f (x) = f (x) (Cne0 (x) − 1) + (
f ◦ logμ

)′ (
eμx
)
eμx (1 − Cne0 (x))

+ 1

2

(
f ◦ logμ

)′′ (
eμx
)
e2μx (Cne0 (x) − 1)

+ Cn
(
hx exp

2
μ,x ; x

)
.

We know that, since

(
f ◦ τ−1

)′ = (
f ′ ◦ τ−1

) (
τ−1

)′

and (
τ−1

)′
(τ (t)) = 1

τ ′ (t)
,

we have
(
f ◦ τ−1

)′
(τ (t)) = f ′ (t)

τ ′ (t)
.

Also since

(
f ◦ τ−1

)′′ = (
f ′′ ◦ τ−1

) ((
τ−1

)′)2 + (
f ′ ◦ τ−1

) (
τ−1

)′′

and
d

dt

((
τ−1

)′
(τ (t))

)
= (

τ−1
)′′

(τ (t)) τ ′ (t) = − τ
′′
(t)

(τ ′ (t))2
,

we get
(
f ◦ τ−1

)′′
(τ (t)) = f

′′
(t)

(τ ′ (t))2
− f ′ (t)

τ
′′
(t)

(τ ′ (t))3
.

Therefore, since (
f ◦ logμ

)′ (
eμx
) = e−μxμ−1 f

′
(x)

and (
f ◦ logμ

)′′ (
eμx
) = e−2μx

(
μ−2 f

′′
(x) − μ−1 f

′
(x)
)

,
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we can write
∣∣∣∣Cn f (x) − f (x) − (Cne0 (x) − 1)

(
f (x) − 3

2
μ−1 f

′
(x) + 1

2
μ−2 f

′′
(x)

)∣∣∣∣

≤ 4eμx

(
Cn
(
exp2μ,x ; x

)+ 1

δ2
Cn
(
exp4μ,x ; x

))
�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)

= 4eμxCn
(
exp2μ,x ; x

)
(
1 + 1

δ2
Cn
(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)
)

�μ

((
f ◦ logμ

)′′ (
expμ

) ; δ

)
.

Choosing δ =
√

Cn(exp4μ,x ;x)
Cn(exp2μ,x ;x) , we have desired result. �

Later, we express quantitative-Grüss–Voronovskaya type theorem for Cn:
Theorem 3 If f ,g ∈ Ck

μ [0,∞) , then for all x ∈ [0, bn] and n ∈ N we have

n
∣∣∣Cn( f g)(x) − Cn f (x)Cng(x) − x f

′
(x) g

′
(x) (Cne0 (x) − 1) + μ2x f (x) g (x) (Cne0 (x) − 1)

∣∣∣

≤ Gn (Cn, ( f g) ; x) + ‖ f ‖μ e
μxGn (Cn, g; x) + ‖g‖μ e

μxGn (Cn, f ; x) + nIn ( f ) In (g) ,

where

Gn (Cn, f ; x) := 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

and

In ( f ) :=

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ
eμx

2

{
Cn
(
exp2μ,x ; x

)
+
√
Cn
(
exp4μ,x ; x

)}
+ 2μ−1 f

′
(x) |1 − Cne0 (x)| .

Also, Gn (Cn, g; x), Gn (Cn, ( f g) ; x), and In (g) are the analogous one.

Proof For x ∈ [0,∞) and n ∈ N, it is easily seen that we can write

Cn( f g)(x) − Cn f (x)Cng (x) − x f
′
(x) g

′
(x) (Cne0 (x) − 1) + μ2xg (x) f (x) (Cne0 (x) − 1)

=
[
Cn( f g) (x) − ( f g) (x) − (Cne0 (x) − 1)

(
μ2x ( f g) (x) − 3

2
μx ( f g)

′
(x) + 1

2
x ( f g)

′′
(x)

)]

− f (x)

[
Cng (x) − g (x) − (Cne0 (x) − 1)

(
μ2xg (x) − 3

2
μxg

′
(x) + 1

2
xg

′′
(x)

)]

−g (x)

[
Cn f (x) − f (x) − (Cne0 (x) − 1)

(
μ2x f (x) − 3

2
μx f

′
(x) + 1

2
x f

′′
(x)

)]

+ [g (x) − Cng (x)] [Cn f (x) − f (x)]

= I1 + I2 + I3 + I4.
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So, we get

∣∣∣Cn ( f g) (x) − Cn f (x) Cng (x) − x f
′
(x) g

′
(x) (Cne0 (x) − 1) + μ2xg (x) f (x) (Cne0 (x) − 1)

∣∣∣

≤ |I1| + |I2| + |I3| + |I4| .

By Theorem 2, we have the estimates

|I1| ≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝(( f g) ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ ,

|I2| ≤ ‖ f ‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝(g ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

and

|I3| ≤ ‖g‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠ .

On the other hand, since f ∈ Ck
μ [0,∞) we write

Cn ( f ; x) − f (x) = (
f ◦ logμ

)′ (
eμx ) Cn

(
expμ,x ; x

)+ 1

2
Cn
((

f ◦ logμ

)′′ (
eμξ
)
exp2μ,x ; x

)

and so we get

|Cn ( f ; x) − f (x)| ≤ μ−1 f
′
(x) |1 − Cne0 (x)| + 1

2
Cn
((

f ◦ logμ

)′′ (
eμξ
)
exp2μ,x ; x

)

≤ μ−1 f
′
(x) |1 − Cne0 (x)| +

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ

1

2
Cn
(
eμξ exp2μ,x ; x

)

where ξ is a number between t and x . If t < ξ < x , then eμξ ≤ eμx . In this case, we
have

|Cn ( f ; x) − f (x)| ≤

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ
eμx

2
Cn
(
exp2μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)|

or if x < ξ < t , then eμξ ≤ eμt . In this case, with the help of Hölder’s inequality, we
get
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|Cn ( f ; x) − f (x)| ≤

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ

2
Cn
(
expμ exp2μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)|

≤

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ

2
Cn
(
exp2μ; x

) 1
2 Cn

(
exp4μ,x ; x

) 1
2 + μ−1 f

′
(x) |1 − Cne0 (x)|

=

∥∥∥∥
(
f ◦ logμ

)′′∥∥∥∥
μ
eμx

2

√
Cn
(
exp4μ,x ; x

)
+ μ−1 f

′
(x) |1 − Cne0 (x)| .

Hence, we gain for two cases of ξ that

|Cn ( f ; x) − f (x)| ≤

∥∥∥
(
f ◦ logμ

)′′∥∥∥
μ
eμx

2

{
Cn
(
exp2μ,x ; x

)+
√
Cn
(
exp4μ,x ; x

)}

+2μ−1 f
′
(x) |1 − Cne0 (x)| := In ( f ) .

A similar reasoning yields |Cn (g; x) − g (x)| ≤ In (g). Therefore we get

n
∣∣∣Cn ( f g) (x) − Cn f (x) Cng (x) − x f

′
(x) g

′
(x) (Cne0 (x) − 1)

+μ2xg (x) f (x) (Cne0 (x) − 1)
∣∣

≤ 8eμxCn
(
exp2μ,x ; x

)
�μ

⎛

⎝(( f g) ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+‖ f ‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝(g ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+‖g‖μ 8e
2μxCn

(
exp2μ,x ; x

)
�μ

⎛

⎝( f ◦ logμ

)′′ (
expμ

) ;
√√√√Cn

(
exp4μ,x ; x

)

Cn
(
exp2μ,x ; x

)

⎞

⎠

+nIn ( f ) In (g) ,

as desired. �

Theorem 4 For each n ∈ N and x ∈ [0,∞), we have

lim
n→∞

(
Cn f
expμ

)′
(x) =

(
f

expμ

)′
(x) .

Proof Using (1.5), we obtain
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(
Cn f
expμ

)′
(an (x)) =

(
Cn

(
f

expμ

)
(x)

)′

=
[

n∑

k=0

(
f

expμ

)(
kbn
n

)
pn,k (an (x))

]′

= a′
n (x)

an (x)
(
1 − an(x)

bn

)
n∑

k=0

(
f

expμ

)(
kbn
n

)

×pn,k (an (x))
n

bn

(
kbn
n

− an (x)

)
. (3.2)

First, we take into account the case x = 0.
From (3.2), we have

(
Cn f
expμ

)′
(an (x)) = −

(
f

expμ

)
(0) na′

n (x)

(
1 − an (x)

bn

)n−1

+
(

f

expμ

)(
bn
n

)
na′

n (x)

(
1 − n

an (x)

bn

)(
1 − an (x)

bn

)n−2

n∑

k=2

(
f

expμ

)(
kbn
n

)(
n

k

)
a′
n (x)

(
k − n

an (x)

bn

)(
an (x)

bn

)k−1

×
(
1 − an (x)

bn

)n−k−1

.

For x = 0, because of an (x) = 0, we get

(
Cn f
expμ

)′
(0) = −na′

n (x)

(
f

expμ

)
(0) + na′

n (x)

(
f

expμ

)(
bn
n

)

= a′
n (x)

(
f

expμ

) ( bn
n

)−
(

f
expμ

)
(0)

1
n − 0

.

If the limit of both sides is taken above equality, then we obtain

lim
n→∞

(
Cn f
expμ

)′
(0) =

(
f

expμ

)′
(0) .

Now, let’s x > 0.
We consider the following function:
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λx (t) =
(

f
expμ

◦ logμ

) (
eμt
)−

(
f

expμ
◦ logμ

)
(eμx )

eμt − eμx
−
(

f

expμ

◦ logμ

)′ (
eμx
)
.

In that case, lim
t→x

λx (t) = 0. We get

(
f

expμ

◦ logμ

)
(
eμt ) =

(
f

expμ

◦ logμ

)
(
eμx )+

(
f

expμ

◦ logμ

)′ (
eμx ) (eμt − eμx )

+λx (t)
(
eμt − eμx ) .

If kbn
n is changed instead of t , then we have

(
f

expμ
◦ logμ

)(
eμ

kbn
n

)
=
(

f

expμ
◦ logμ

)
(
eμx

)+
(

f

expμ
◦ logμ

)′ (
eμx

) (
eμ

kbn
n − eμx

)

+λx (t)

(
eμ

kbn
n − eμx

)
.

If this equality is written in (3.2), then we attain

(
Cn f

expμ

)′
(x) = a′

n (x)

an (x)
(
1 − an (x)

bn

)

⎡

⎣
(

f

expμ

)
(x)

n∑

k=0

pn,k (an (x))
n

bn

(
kbn
n

− an (x)

)

+ n

bn

(
f

expμ

)′
(x)

μeμx

n∑

k=0

(
eμ

kbn
n − eμx

)
pn,k (an (x))

(
kbn
n

− an (x)

)

+ n

bn

n∑

k=0

λx (t)

(
eμ

kbn
n − eμx

)
pn,k (an (x))

(
kbn
n

− an (x)

)⎤

⎦

= a′
n (x)

an (x)
(
1 − an (x)

bn

) n

bn

[(
f

expμ

)
(x)Cn (t − an (x) ; an (x))

+
(

f
expμ

)′
(x)

μeμx
Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

)

+Cn
(
λx (t)

(
eμt − eμx

)
(t − an (x)) ; an (x)

)]
.

We know
Cn (t − an (x) ; an (x)) = 0.

We can write

Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

) = Cn
(
teμt − teμx − an (x) eμt + an (x) eμx ; an (x)

)

= Cn
(
teμt ; an (x)

)− eμxCn (t; an (x))

−an (x)Cn
(
eμt ; an (x)

)+ an (x) eμxCn (1; an (x)) .
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Because
Cn
(
teμt ; an (x)

) = an (x) e
μbn+μx(n−1)

n ,

Cn
(
eμt ; an (x)

) = eμx ,

lim
n→∞ an (x) = x

and

lim
n→∞ a′

n (x) = lim
n→∞ bn

μ
n e

μx
n

e
μbn
n − 1

= 1,

we have

lim
n→∞

a′
n (x)

an (x)
(
1 − an(x)

bn

) n

bn

1

μeμx
Cn
((
eμt − eμx

)
(t − an (x)) ; an (x)

) = 1.

Now, we use Hölder inequality:

0 ≤ Cn
(
λx (t)

(
eμt − eμx ) (t − an (x)) ; an (x)

) ≤
(
Cn

(
λ2
x (t) ; an (x)

)) 1
2
(
Cn

((
eμt − eμx )2 ; an (x)

)) 1
2
(
Cn

(
(t − an (x))2 ; an (x)

)) 1
2

.

From Korovkin theorem, we know

lim
n→∞Cn

(
λ2
x (t) ; an (x)

) = λ2
x (x) = 0.

As
lim
n→∞Cn

((
eμt − eμx

)2 ; an (x)
)

= 0

and
lim
n→∞Cn

(
(t − an (x))2 ; an (x)

) = 0,

we obtain desired result. �

4 Variation Detracting Property of Bernstein–Chlodowsky
Operators

Thefirst study about the variationdetractingproperty and the convergence in variation
of a sequence of linear positive operators was come out by Lorentz (1953). He proved
that Bn have
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V[0,1] [Bn f ] ≤ V[0,1] [ f ]

and it is called the variation detracting property.
The main purpose of this section is to confirm the variation detracting property

and convergence in the variation seminorm for the Bernstein–Chlodowsky operators.
We firstly give the definitions related to variation detracting property.

Definition 1 ([11]) The least upper bound of the set of all possible sums V is called
the total variation of the function f (x) on [a, b] and is designated by V[a,b] [ f ].

Definition 2 ([2]) The class of all functions of bounded variation on I is called
BV space and denoted by BV (I ). This space can be endowed both with seminorm
|.|BV (I ) and with a norm, ‖.‖BV (I ), where

| f |BV (I ) := VI [ f ] , ‖ f ‖BV (I ) := VI [ f ] + | f (a)| ,

f ∈ BV (I ), a being any fixed point of I .

Definition 3 ([3]) Let I ⊆ R be a fixed integral, and VI [ f ] the total variation of the

function f : I → R. The class of all bounded functions of bounded variation on I
endowed with the seminorm

‖ f ‖T V (I ) := VI [ f ]

is called T V space and is denoted by T V (I ).

Definition 4 ([11]) Let f (x) be a finite function defined on the closed interval [a, b].
Suppose that for every ε > 0, there exists a δ > 0 such that

∣∣∣∣∣

n∑

k=1

{ f (bk) − f (ak)}
∣∣∣∣∣ < ε

for all numbers a1, b1, . . . , an, bn such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and

n∑

k=1

(bk − ak) < δ.

Then the function f (x) is said to be absolutely continuous. The class of all absolutely
continuous function on [a, b] is denoted by AC [a, b].

Now, we give the variation detracting property of the Bernstein–Chlodowsky
operators:

Theorem 5 If f ∈ T V [0, bn], then V[0,bn ]

[
Cn f
expμ

]
≤ V[0,bn ]

[
f

expμ

]
.
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Proof As Cn f
expμ

polynomials are differentiable and their derivatives are integrable, by
[9, 10], the equality

∥∥∥∥∥
Cn f
expμ

∥∥∥∥∥
T V [0,bn ]

= V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
d

dx

Cn
expμ

( f ; x)
∣∣∣∣∣ dx

is implemented. From (1.5), we can write

V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
d

dx

Cn
expμ

( f ; x)
∣∣∣∣∣ dx

=
bn∫

0

∣∣∣∣∣
d

dx

[
Cn

expμ

( f ; an (x))

]∣∣∣∣∣ dx .

By Theorem 3.13 in [6], we get

V[0,bn ]

[
Cn f
expμ

]
=

bn∫

0

∣∣∣∣∣
n

bn

n−1∑

k=0

pn−1,k (an (x)) � bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣ a
′
n (x) dx

≤ n

bn

n−1∑

k=0

bn∫

0

∣∣∣∣∣pn−1,k (an (x)) � bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣ a
′
n (x) dx

= n

bn

n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

bn∫

0

pn−1,k (an (x)) a
′
n (x) dx .

If an(x)
bn

= y is changed, then we have

V[0,bn ]

[
Cn f
expμ

]
≤ n

n−1∑

k=0

(
n − 1

k

) ∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

1∫

0

yk (1 − y)n−k−1 dy.

Now, let’s consider the integral on the left side of the inequality. From definition of
Beta function, we obtain

V[0,bn ]

[
Cn f
expμ

]
≤ n

n−1∑

k=0

(
n − 1

k

) ∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣
1

n
(n−1

k

)

=
n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣
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≤ sup
n−1∑

k=0

∣∣∣∣∣� bn
n

f

expμ

(
k

n
bn

)∣∣∣∣∣

= sup
n−1∑

k=0

∣∣∣∣∣
f

expμ

(
k + 1

n
bn

)
− f

expμ

(
k

n
bn

)∣∣∣∣∣

= V[0,bn ]

[
f

expμ

]
=
∥∥∥∥∥

f

expμ

∥∥∥∥∥
T V [0,bn ]

.

�

Theorem 6 Let f ∈ T V [0, bn]. There holds

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= 0 ⇐⇒ f

expμ

∈ AC [0, bn] .

Proof Since f
expμ

and Cn f
expμ

∈ AC [0, bn], then
Cn f
expμ

− f
expμ

∈ AC [0, bn]. By Theorem
3.13 and Remark 3.20 in [6], it is written

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= lim
n→∞

∞∫

0

∣∣∣∣∣

(
Cn f
expμ

)′
(x) −

(
f

expμ

)′
(x)

∣∣∣∣∣ dx .

From Theorem 4, it can be seen easily that
(

Cn f
expμ

)′
(x) −→

(
f

expμ

)′
(x) as n → ∞.

Therefore,

lim
n→∞

∥∥∥∥∥
Cn f
expμ

− f

expμ

∥∥∥∥∥
T V [0,∞)

= 0.

Conversely, let lim
n→∞

∥∥∥ Cn f
expμ

− f
expμ

∥∥∥
T V [0,∞)

= 0. This means that Cn f
expμ

−→ f
expμ

in T V

space. Therefore f
expμ

is in AC because of AC is closed. �
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Iterative Approximation of Common
Fixed Points in Kasahara Spaces

Alexandru-Darius Filip and Voichiţa Adriana Radu

Abstract Let (X,→, d) be a Kasahara space and f, g : X → X be two operators.
Let x0 ∈ X and x1 := f (x0), x2 := g(x1), . . ., x2n := g(x2n−1), x2n+1 := f (x2n), . . .

The aim of this paper is to give conditions on the pair ( f, g) such that the sequence
(xn)n∈N converges with respect to → to a common fixed point of f and g.

Keywords Fixed point · Common fixed point · Kasahara space · Generalized
Kasahara space · Matrix convergent to zero

2010 MSC 47H10 · 54H25

1 Introduction

In the mathematical literature, there are various common fixed point theorems, most
of them are given for self-mappings defined on a metric space (X, d) satisfying some
contractive conditions. Some of these theorems can be found in the work of Rus [14],
Rus, Petruşel and Petruşel [17] and the references therein, Aliouche and Popa [1],
Chandok [3], Cho and Bae [4], Pant and Bisht [11], Wang and Guo [20].

There are also some common fixed point results given in a more general setting,
more precisely, in these results the metric space (X, d) is replaced by the L-space
(X,→) endowed with a functional d : X × X → R+ which does not necessarily
satisfy all of the metric axioms. In this sense, see Kasahara [7, 9, 10].

In 2010, Rus introduced in [16] the notion of Kasahara space. Let (X,→, d) be
a Kasahara space and f, g : X → X be two operators. Let x0 ∈ X and x1 := f (x0),
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x2 := g(x1), . . ., x2n := g(x2n−1), x2n+1 := f (x2n), . . . The aim of this paper is to
give conditions on the pair ( f, g) such that the sequence (xn)n∈N converges with
respect to → to a common fixed point of f and g.

2 Basic Notions and Notations

Let X be a nonempty set and f : X → X be an operator. The set of all fixed points
of f is denoted by

Ff := {x ∈ X |x = f (x)}.

If f, g : X → X are two operators on X , then an element x∗ ∈ X is a common fixed
point for f and g if and only if

x∗ ∈ Ff ∩ Fg.

We recall next the notions of L-space, Kasahara space and generalized Kasahara
space.

Definition 2.1 (Fréchet [6], Rus [15]) Let X be a nonempty set. Let

s(X) := {
(xn)n∈N | xn ∈ X, n ∈ N

}
.

Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X) → X be an operator. By
definition, the triple (X, c(X), Lim) is called an L-space if the following conditions
are satisfied:

(i) If xn = x , for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x .
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x , then for all subsequences (xni )i∈N of

(xn)n∈N we have that (xni )i∈N ∈ c(X) and Lim(xni )i∈N = x .

By definition, an element (xn)n∈N of c(X) is a convergent sequence and x =
Lim(xn)n∈N is the limit of this sequence and we shall write

xn → x as n → ∞.

We denote an L-space by (X,→).

Example 2.1 Let (X, d) be a metric space. Let
d→ be the convergence structure

induced by d on X . Then (X,
d→) is an L-space.

In general, an L-space is any set endowed with a structure implying a notion of
convergence for sequences. Other examples of L-spaces are: Hausdorff topological
spaces, generalized metric spaces in Perov’ sense (i.e. d(x, y) ∈ R

m+), generalized
metric spaces in Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪ {+∞}), K -metric spaces
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(i.e. d(x, y) ∈ K , where K is a cone in an ordered Banach space), gauge spaces,
2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces.

Remark 2.1 Let (X,→) be an L-space and f : X → X be a self-operator on X . Let
us consider the following set (also called the graph of f ):

Graph( f ) := {
(x, y) ∈ X × X | f (x) = y

}
.

Then f has closed graph with respect to → if and only if Graph( f ) is closed with
respect to →, i.e. for any sequences (xn)n∈N and (yn)n∈N of X satisfying

(i) xn → x ∈ X as n → ∞;
(ii) yn → y ∈ X as n → ∞;
(iii) f (xn) = yn, for all n ∈ N

we get that f (x) = y.

Definition 2.2 (Rus [16]) Let (X,→) be an L-space and d : X × X → R+ be a
functional. The triple (X,→, d) is a Kasahara space if and only if we have the
following compatibility condition between → and d:

xn ∈ X,
∑

n∈N
d(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→). (1)

Example 2.2 (Kasahara [8]) Let X denote the closed interval [0, 1] and → be the
usual convergence structure on R. Let d : X × X → R+ be defined by

d(x, y) =
{

|x − y|, if x 
= 0 and y 
= 0

1, otherwise .

Then (X,→, d) is a Kasahara space.

Definition 2.3 (Rus [16]) Let (X,→) be an L-space, (G,+,≤,
G→) be an L-space

ordered semigroupwith unity, 0 be the least element in (G,≤) and dG : X × X → G
be an operator. The triple (X,→, dG) is a generalized Kasahara space if and only if
we have the following compatibility condition between → and dG :

xn ∈ X,
∑

n∈N
dG(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→). (2)

Notice that by the inequality with the symbol +∞ in the compatibility condition

(2), we mean that the series
∑

n∈N
dG(xn, xn+1) is convergent in (G,+,

G→).

For the case of generalized Kasahara space, we will consider G := R
m+.

Example 2.3 (Rus [16]) Let ρ : X × X → R
m+ be a generalized complete metric on

a set X . Let x0 ∈ X and λ ∈ R
m+ with λ 
= 0. Let dλ : X × X → R

m+ be defined by
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dλ(x, y) :=
{

ρ(x, y), if x 
= x0 and y 
= x0
λ, if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

We mention that if α,β ∈ R
m+, α = (α1,α2, . . . ,αm), β = (β1,β2, . . . ,βm) and

c ∈ R+, then by α ≤ β (respectively α < β), we mean that αi ≤ βi (respectively
αi < βi ), for all i = 1, m and by α ≤ c we mean that αi ≤ c, for all i = 1, m.

Throughout this paper we denote by Mm,m(R+) the set of all m × m matrices
with positive elements, by � the zero m × m matrix and by Im the identity m × m
matrix. If A ∈ Mm,m(R+), then the symbol Aτ stands for the transpose matrix of A.
Notice also that, for the sake of simplicity, we will make an identification between
row and column vectors in R

m .
A matrix A ∈ Mm,m(R+) is said to be convergent to zero if and only if An → �

as n → ∞ (see [19]). Regarding this class ofmatriceswe have the following classical
result in matrix analysis (see [2] (Lemma 3.3.1, p. 55), [12], [13] (p. 37), [19] (p.
12)). More considerations can be found in [18].

Theorem 2.1 Let A ∈ Mm,m(R+). The following statements are equivalent:

(i) An → �, as n → ∞;
(ii) the eigenvalues of A lies in the open unit disc, i.e. |λ| < 1, for all λ ∈ C with

det (A − λIm) = 0;
(iii) the matrix Im − A is non-singular and

(Im − A)−1 = Im + A + A2 + · · · + An + · · · ;

(iv) the matrix (Im − A) is non-singular and (Im − A)−1 has nonnegative elements;
(v) the matrices Aq and qτ A converges to zero for each q ∈ R

m.

Werecall also a useful tool for proving the uniqueness of afixedpoint in aKasahara
space (see Kasahara [8], Rus [16]).

Lemma 2.1 (Kasahara’s lemma) Let (X,→, dG) be a generalized Kasahara space.
Then:

x, y ∈ X, dG(x, y) = dG(y, x) = 0 =⇒ x = y.

3 Main Results

In this section, we present our main common fixed point results obtained in Kasahara
spaces and then in generalizedKasahara spaces. The uniqueness of the common fixed
point is also discussed.
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Theorem 3.1 Let (X,→, d) be a Kasahara space, where d : X × X → R+ is a
functional and let f, g : X → X be two operators with closed graph with respect to
→. Suppose that there exists α,β ∈ R+ with αβ < 1 such that:

(i) d( f (x), g( f (x))) ≤ αd(x, f (x)), for all x ∈ X;
(ii) d(g(x), f (g(x))) ≤ βd(x, g(x)), for all x ∈ X.

Then

(1) Ff ∩ Fg 
= ∅;
(2) the sequence (xn)n∈N defined by x0 ∈ X, x2n+1 = f (x2n), x2n+2 = g(x2n+1), for

all n ∈ N, converges to a common fixed point of f and g.

Proof Weconsider the sequence (xn)n∈N definedby x0 ∈ X , x2n+1 = f (x2n), x2n+2 =
g(x2n+1), for all n ∈ N and we prove by induction that

d(x2n, x2n+1) ≤ (αβ)nd(x0, x1), for all n ∈ N (3)

d(x2n+1, x2n+2) ≤ α(αβ)nd(x0, x1), for all n ∈ N. (4)

For n = 0 the relations (3) and (4) hold.
We assume that (3) and (4) hold for a fixed n ∈ N and we prove that

d(x2n+2, x2n+3) ≤ (αβ)n+1d(x0, x1) (5)

d(x2n+3, x2n+4) ≤ α(αβ)n+1d(x0, x1). (6)

We have

d(x2n+2, x2n+3) = d(g(x2n+1), f (g(x2n+1)))

≤ βd(x2n+1, g(x2n+1)) = βd( f (x2n), g( f (x2n)))

≤ αβd(x2n, f (x2n)) ≤ αβ(αβ)nd(x0, x1)

and hence (5) is proved.
On the other hand

d(x2n+3, x2n+4) = d(x2(n+1)+1, g(x2(n+1)+1)) = d( f (x2(n+1)), g( f (x2(n+1))))

≤ αd(x2(n+1), f (x2(n+1))) = αd(x2n+2, x2n+3)

≤ α(αβ)n+1d(x0, x1),

so (6) is proved.
Now we have the following estimations:
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∑

n∈N
d(xn, xn+1) =

∑

n∈N
d(x2n, x2n+1) +

∑

n∈N
d(x2n+1, x2n+2)

≤
∑

n∈N
(αβ)nd(x0, x1) +

∑

n∈N
α(αβ)nd(x0, x1)

= 1

1 − αβ
d(x0, x1) + α

1 − αβ
d(x0, x1) = 1 + α

1 − αβ
d(x0, x1).

Since (X,→, d) is a Kasahara space and
∑

n∈N
d(xn, xn+1) < +∞, it follows that

the sequence (xn)n∈N converges in (X,→). So, there exists x∗ ∈ X such that xn → x∗
as n → ∞.

On the other hand, x2n → x∗ and x2n+1 = f (x2n) → x∗ as n → ∞. Since f has
closed graph in (X,→), we get that x∗ ∈ Ff . By a similar way of proof, we have
that x∗ ∈ Fg. So Ff ∩ Fg 
= ∅. �

Remark 3.1 In Theorem3.1, item (2) also holds if only f has closed graph with
respect to → and d(x, y) = 0 ⇔ x = y, for all x, y ∈ X .

Indeed, if f has closed graph then we get the existence of x∗ ∈ Ff as shown in
the proof of Theorem3.1. So x∗ = f (x∗) and we get further that

d(x∗, g(x∗)) = d( f (x∗), g( f (x∗))) ≤ αd(x∗, f (x∗)) = 0

and hence x∗ ∈ Fg .

Remark 3.2 In Theorem3.1, if the functional d satisfies d(x, y) = d(y, x), for all
x, y ∈ X and β < 1, then we have the uniqueness of common fixed point.

Indeed, let x∗ ∈ Ff ∩ Fg and y∗ ∈ Fg such that x∗ 
= y∗. Then

d(y∗, x∗) = d(g(y∗), f (x∗)) = d(g(y∗), f (g(x∗))) ≤ βd(y∗, x∗).

Since β < 1 it follows that d(y∗, x∗) = 0. By Kasahara’s lemma we get x∗ = y∗.
Hence Ff ∩ Fg = {x∗}.

Corollary 3.1 Let (X,→, d) be a Kasahara space, where d : X × X → R+ is a
functional satisfying:

(i) d(x, x) = 0, for all x ∈ X;
(ii) d(x, y) = d(y, x), for all x, y ∈ X.

Let f, g : X → X be two operators having closed graph with respect to →.
If there exists α ∈ [0, 1

2 [ such that

d( f (x), g(y)) ≤ α[d(x, f (x)) + d(y, g(y))], for all x, y ∈ X
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then

(1) F f ∩ Fg = {x∗};
(2) the sequence (xn)n∈N defined by x0 ∈ X, x2n+1 = f (x2n), x2n+2 = g(x2n+1), for

all n ∈ N, converges to x∗ with respect to →.

Proof Let x ∈ X and y = f (x) ∈ X . Then we have

d( f (x), g( f (x))) ≤ α[d(x, f (x)) + d( f (x), g( f (x)))], for all x ∈ X

such as
d( f (x), g( f (x))) ≤ α

1 − α
d(x, f (x)),

for all x ∈ X .
Let δ = α

1 − α
. Thus, there exists δ ∈ [0, 1[ such that d( f (x), g( f (x))) ≤

δd(x, f (x)), for all x ∈ X . Hence, the assumption (i) of Theorem3.1 is satisfied.
On the other hand, we have

d(g(x), f (g(x))) ≤ α[d(x, g(x)) + d(g(x), f (g(x)))], for all x ∈ X

such that
d(g(x), f (g(x))) ≤ α

1 − α
d(x, g(x)),

for all x ∈ X . The assumption (i i) of Theorem3.1 is satisfied for β := α

1 − α
∈

[0, 1[.
Applying Theorem3.1 and taking into account the Remark3.2 the conclusions

follow. �

We give next our common fixed point results in generalized Kasahara spaces.

Theorem 3.2 Let (X,→, d) be a generalized Kasahara space, where d : X × X →
R

m+ is a functional and let f, g : X → X be two operators with closed graph with
respect to →. Suppose that there exist A, B ∈ Mm,m(R+) such that:

(i) d( f (x), g( f (x))) ≤ Ad(x, f (x)), for all x ∈ X;
(ii) d(g(x), f (g(x))) ≤ Bd(x, g(x)), for all x ∈ X.

If the matrix B A is convergent to zero, then

(1) F f ∩ Fg 
= ∅;
(2) the sequence (xn)n∈N defined by x0 ∈ X, x2n+1 = f (x2n), x2n+2 = g(x2n+1), for

all n ∈ N, converges to a common fixed point of f and g.

Proof Let (xn)n∈N be the sequence defined by x0 ∈ X , x2n+1 = f (x2n), x2n+2 =
g(x2n+1), for all n ∈ N and we prove by induction that
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d(x2n, x2n+1) ≤ (B A)nd(x0, x1), for all n ∈ N (7)

d(x2n+1, x2n+2) ≤ A(B A)nd(x0, x1), for all n ∈ N. (8)

For n = 0 the relations (7) and (8) hold. We assume that (7) and (8) hold for a fixed
n ∈ N and we prove that

d(x2n+2, x2n+3) ≤ (B A)n+1d(x0, x1) (9)

d(x2n+3, x2n+4) ≤ A(B A)n+1d(x0, x1). (10)

We have

d(x2n+2, x2n+3) = d(g(x2n+1), f (g(x2n+1)))

≤ Bd(x2n+1, g(x2n+1)) = Bd( f (x2n), g( f (x2n)))

≤ B Ad(x2n, f (x2n)) ≤ B A(B A)nd(x0, x1)

and hence (9) is proved.
On the other hand

d(x2n+3, x2n+4) = d(x2(n+1)+1, g(x2(n+1)+1)) = d( f (x2(n+1)), g( f (x2(n+1))))

≤ Ad(x2(n+1), f (x2(n+1))) = Ad(x2n+2, x2n+3)

≤ A(B A)n+1d(x0, x1),

so (10) is proved.
Now we have the following estimations:

∑

n∈N
d(xn, xn+1) =

∑

n∈N
d(x2n, x2n+1) +

∑

n∈N
d(x2n+1, x2n+2)

≤
∑

n∈N
(B A)nd(x0, x1) +

∑

n∈N
A(B A)nd(x0, x1)

= (Im − B A)−1d(x0, x1) + A(Im − B A)−1d(x0, x1)

= (Im + A)(Im − B A)−1d(x0, x1).

Since (X,→, d) is a generalized Kasahara space and
∑

n∈N
d(xn, xn+1) < +∞, it

follows that the sequence (xn)n∈N converges in (X,→). So, there exists x∗ ∈ X such
that xn → x∗ as n → ∞.

On the other hand, x2n → x∗ and x2n+1 = f (x2n) → x∗ as n → ∞. Since f has
closed graph in (X,→), we get that x∗ ∈ Ff . By a similar way of proof, we have
that x∗ ∈ Fg. So Ff ∩ Fg 
= ∅. �
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Remark 3.3 In Theorem3.2, item (2) also holds if only f has closed graph with
respect to → and d(x, y) = 0 ∈ R

m+ ⇔ x = y, for all x, y ∈ X .

Remark 3.4 In Theorem3.2, if the functional d satisfies d(x, y) = d(y, x), for all
x, y ∈ X and B is a matrix convergent to zero, then we have the uniqueness of the
common fixed point.

Indeed, let x∗ ∈ Ff ∩ Fg and y∗ ∈ Fg such that x∗ 
= y∗. Then

d(y∗, x∗) = d(g(y∗), f (x∗)) = d(g(y∗), f (g(x∗))) ≤ Bd(y∗, x∗)

i.e. (Im − B)d(y∗, x∗) ≤ 0 ∈ R
m+. Since B converges towards zero, the matrix (Im −

B) is non-singular and (Im − B)−1 has positive elements (see Theorem2.1, item
(iv)). It follows that d(y∗, x∗) = 0. By Kasahara’s lemma we get x∗ = y∗. Hence
Ff ∩ Fg = {x∗}.

We give next a similar result to Corollary3.1 in generalized Kasahara spaces. To
achieve our goal, let us consider the following set:

M�
m,m(R+) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q =

⎛

⎜⎜⎜
⎝

q11 q12 . . . q1m

0 q22 . . . q2m
...

...
...

0 0 . . . qmm

⎞

⎟⎟⎟
⎠

∈ Mm,m(R+)

∣∣∣ max
i=1,m

qii <
1

2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Then we have:

Lemma 3.1 (Filip [5]) If Q ∈ M�
m,m(R+) then

(1) the matrix Q is convergent to zero;
(2) the matrix (Im − Q)−1Q is convergent to zero.

Corollary 3.2 Let (X,→, d) be a Kasahara space, where d : X × X → R
m+ is a

functional satisfying:

(i) d(x, x) = 0 ∈ R
m+, for all x ∈ X;

(ii) d(x, y) = d(y, x), for all x, y ∈ X.

Let f, g : X → X be two operators having closed graph with respect to →.
If there exists A ∈ M�

m,m(R+) such that

d( f (x), g(y)) ≤ A[d(x, f (x)) + d(y, g(y))], for all x, y ∈ X

then

(1) Ff ∩ Fg = {x∗};
(2) the sequence (xn)n∈N defined by x0 ∈ X, x2n+1 = f (x2n), x2n+2 = g(x2n+1), for

all n ∈ N, converges to x∗ with respect to →.
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Proof Let x ∈ X and y = f (x) ∈ X . Then we have

d( f (x), g( f (x))) ≤ A[d(x, f (x)) + d( f (x), g( f (x)))], for all x ∈ X

then
d( f (x), g( f (x))) ≤ (Im − A)−1Ad(x, f (x)),

for all x ∈ X .
Let � = (Im − A)−1A. Thus, there exists � ∈ M�

m,m(R+) such that

d( f (x), g( f (x))) ≤ �d(x, f (x)),

for all x ∈ X . Hence, the assumption (i) of Theorem3.2 is satisfied.
On the other hand, we have

d(g(x), f (g(x))) ≤ A[d(x, g(x)) + d(g(x), f (g(x)))], for all x ∈ X

so
d(g(x), f (g(x))) ≤ (Im − A)−1Ad(x, g(x)),

for all x ∈ X . The assumption (i i) of Theorem3.2 is satisfied for the matrix B :=
(Im − A)−1A ∈ M�

m,m(R+).
Since the matrix B� ∈ M�

m,m(R+) we can apply Theorem3.2 and taking into
account the Remark3.4 the conclusions follow. �
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Fixed Point Theorem in Fuzzy Metric
Space Via α-Series Contraction

Vizender Sihag, Dinesh and Vinod

Abstract Starting from the setting of fuzzy metric spaces, in the present article, the
authors utilize new concept of α-series contraction to establish fixed point theorems
for a sequence of mappings. These results unify, extend, and complement some
theorems on fuzzy metric spaces existing in the literature. The established results
are supported by an illustrative example and finally by furnishing an application in
product space.

Keywords Fuzzy metric space · α-series and product spaces
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1 Introduction

In the study of real analysis, the concept of metric space is important and in fixed
point theory, Banach Contraction Principle is one of pivotal results. Until now many
results in fixed point theory are extended by improving the contractive conditions
involved. In the same direction, many efforts have been done by various authors,
one of them is Rhoadas [9], who made a comparison of more than hundred types of
contractive conditions. Following the same tradition Sihag et al. [11] gave new notion
of alpha-series and established fixed point theorem in G-metric space. Utilising this
new concept, the present paper proves common fixed point theorem for a sequence
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of mappings in setting of fuzzy metric space, which generalizes Banach Contraction
Principle in fuzzy metric space by Grabie et al. [2] and further by Vasuki et al. [14].

The notion of fuzzy metric space was introduced by different authors (see [2, 7])
in different ways. Further using these different concepts various authors [1, 3, 7]
proved theorem which assures the existence of fixed point.

2 Preliminaries

Inwhat follows,we collect some relevant definitions, results, examples for our further
use.

Definition 2.1 ([15]) A fuzzy set A in X is a function with domain X and values in
[0, 1].
Definition 2.2 A continuous t-norm (in sense of Schweizer and Sklar [10]) is a
binary operation T on [0, 1] satisfying the following conditions:

(i) T is a commutative and associative;
(ii) T (a, 1) = a for all a ∈ [0, 1];
(iii) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1];
(iv) The mapping T : [0, 1] × [0, 1] → [0, 1] is continuous.
Remark 2.3 The following are classical example of continuous t-norm

(i) TM(a, b) = min{a, b}, minimum t-norm.

(ii) TH (a, b) =
⎧
⎨

⎩

0 if a = b = 0,
ab

a + b + ab
otherwise,

Hamacher product.

(iii) TP(a, b) = ab, product t-norm.

(iv) TN (a, b) =
{
min{a, b} if a + b > 1,

0 otherwise,
Nilpotent minimum.

(v) TL(a, b) = max{a + b − 1, 0}, Lukasiewict t-norm.

(vi) TD(a, b) =

⎧
⎪⎨

⎪⎩

b if a = 1,

a if b = 1,

0 otherwise,

Drastic t-norm.

The minimum t-norm is point wise largest t-norm and the drastic t-norm is point
wise smallest t-norm; that is, TM(a, b) = T (a, b) = TD(a, b) for any t-norm t with
a, b ∈ [0, 1].

Kramosil and Michalek in [13] generalized the concept of probabilistic metric
space given by Menger to the fuzzy framework as follows.

Definition 2.4 A fuzzy metric space (in sense of Kramosil and Michalek [13]) is a
triple (X, M, ∗), where X is a nonempty set, ∗ is a continuous t-norm, and M is a
fuzzy set on X2 × [0,∞) such that the following axioms holds:



Fixed Point Theorem in Fuzzy Metric Space Via α-Series Contraction 153

(FM-1) M(x, y, 0) = 0 (x, y ∈ X);
(FM-2) M(x, y, t) = 1 for all t > 0 iff x = y;
(FM-3) M(x, y, t) = M(y, x, t) (x, y ∈ X, t > 0);
(FM-4) M(x, y, ·) : [0,∞) → [0, 1] is left continuous for all x, y ∈ X ;
(FM-5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all x, y, z ∈ X and s, t > 0.

We will refer to these spaces as KM-fuzzy metric spaces.

Lemma 2.5 ([5]) For every x, y ∈ X, the mapping M(x, y, ·) is nondecreasing on
(0,∞).

In order to introduce a Hausdorff topology on the fuzzymetric spaces, George and
Veeramani in [6] modified in a slight but appealing way the notion of fuzzy metric
spaces of Kramosil and Michalek.

Definition 2.6 A fuzzy metric space (in sense of George and Veeramani [7]) is a
triple (X, M, ∗), where X is a nonempty set, ∗ is a continuous t-norm, and M is a
fuzzy set on X2 × (0,∞) such that the following axioms holds:

(GV-1) M(x, y, t) > 0(x, y ∈ X);
(GV-2) M(x, y, t) = 1 for all t > 0 iff x = y;
(GV-3) M(x, y, t) = M(y, x, t) (x, y ∈ X, t > 0);
(GV-4) M(x, y, ·) : (0,∞) → (0, 1] is continuous for all x, y ∈ X ;
(GV-5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all x, y, z ∈ X and s, t > 0.

Notice that condition (GV-5) is a fuzzy version of triangular inequality. The value
M(x, y, t) can be thought of as degree of nearness between x and y with respect to
t and from axiom (GV-2) we can relate the value 0 and 1 of a fuzzy metric to the
notions of ∞ and 0 of classical metric, respectively.

We will refer to these spaces as GV-fuzzy metric spaces.

Definition 2.7 ([8]) A fuzzy metric M on X is said to be stationary if M does not
depend on t , i.e., the function Mx,y(t) = M(x, y, t) is constant.

Definition 2.8 ([10]) If (X, M, ∗) is a KM-fuzzy metric space and {xn}, {yn} are
sequences in X such that xn → x , yn → y, thenM(xn, yn, t) → M(x, y, t) for every
continuity point t of M(x, y, ·).

We can fuzzify example of metric space into fuzzy metric spaces in a normal way.

Example 2.9 ([8]) Let (X, d) be metric space and g : R+ → R+ is an increasing
continuous function. For m > 0, we define the function M by

M(x, y, t) = g(t)

g(t) + m · d(x, y)
(2.1)

Then for a ∗ b = a · b, (X, M, ∗) is a GV-fuzzy metric space on X .
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As a particular case if we take g(t) = tn where n ∈ N and m = 1. Then (2.1)
becomes

M(x, y, t) = tn

tn + d(x, y)
(2.2)

Then for a ∗ b = TM(a, b), (X, M, ∗) is a GV-fuzzy metric space on X .
If we take n = 1, in (2.2), the well-known fuzzy metric space is obtained.
On the other hand, if we take g as a constant function in (2.1), i.e., g(t) = k > 0

and m = 1, we obtain

M(x, y, t) = k

k + d(x, y)

And so (X, M, ∗) is a stationary GV-fuzzy metric space for a ∗ b = a · b but, in
general, (X, M, TM ) is not.

In what follows, Sihag [11], introduced the following definition ofα-series, which
will be utilized in proving main result.

Definition 2.10 Let {an} be a sequence of nonnegative real numbers. We say that
a series

∑+∞
n=1 an is an α-series, if there exist 0 < α < 1 and nα ∈ N such that

∑k
i=1 ai ≤ αk for each k ≥ nα.

Remark 2.11 Each convergent series of nonnegative real terms is an α-series. How-
ever, there are also divergent series that are α-series. For example,

∑+∞
n=1

1
n is an

α-series.

3 Main Result

Let us start this section with the following theorem:

Theorem 3.1 Let {Tn} be a sequence of self mappings of a complete fuzzy metric
space (X, M, �) such that

M(Ti (x), Tj (y), t) ≥ βi, j [M(x, Ti (x), t) + M(y, Tj (y), t)]
+ γi, j M(x, y, t) (3.1)

for x, y, z ∈ X with x �= y, 0 ≤ βi, j , γi, j < 1, i, j = 1, 2, . . . .

If
∑+∞

i=1

(
βi,i+1+γi,i+1

1−βi,i+1

)
is an α-series, then {Tn} has a unique common fixed point

in X.

Proof For any x0 ∈ X , we can consider the sequence xn = Tn(xn−1), n = 1, 2, . . . .
By (3.1), we have
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M(x1, x2, t) = M(T1(x0), T2(x1), t)

≥ β1,2[M(x0, T1(x0), t) + M(x1, T2(x1), t)]
+ γ1,2M(x0, x1, t)

= β1,2[M(x0, x1, t) + M(x1, x2, t)] + γ1,2M(x0, x1, t).

It follows that

(1 − β1,2)M(x1, x2, t) ≥ (β1,2 + γ1,2)M(x0, x1, t),

or equivalently,

M(x1, x2, t) ≥
(

β1,2 + γ1,2

1 − β1,2

)

M(x0, x1, t).

Also, we get

M(x2, x3, t) = M(T2(x1), T3(x2), t)

≥
(

β2,3 + γ2,3

1 − β2,3

)

M(x1, x2, t)

≥
(

β2,3 + γ2,3

1 − β2,3

) (
β1,2 + γ1,2

1 − β1,2

)

M(x0, x1, t).

Repeating the above reasoning, we obtain

M(xn, xn+1, t) ≥
n∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t). (3.2)

Moreover, for p > 0 and by repeated use of (G5), we have

M(xn, xn+p, t) ≥ M(xn, xn+1, t) + M(xn+1, xn+2, t)

+ · · · + M(xn+p−1, xn+p, t)

≥
n∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t)

+
n+1∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t)

+ · · ·+

+
n+p−1∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t)

=
p−1∑

k=0

n+k∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t)
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=
n+p−1∑

k=n

k∏

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)

M(x0, x1, t).

Let α and nα as in Definition 2.10, then, for n ≥ nα, it follows that

M(xn, xn+p, xt) ≥
n+p−1∑

k=n

[
1

k

k∑

i=1

(
βi,i+1 + γi,i+1

1 − βi,i+1

)]k

M(x0, x1, t)

≥
(
n+p−1∑

k=n

αk

)

M(x0, x1, t)

≤ αn

1 − α
M(x0, x1, t). (3.3)

Now, letting the limit as n → +∞, we deduce that M(xn, xn+p, t) → 0. Thus {xn}
is a Cauchy sequence and, by completeness of X , converges to u (say) in X .

For any positive integer m, we have

M(xn, Tm(u), t) = M(Tn(xn−1), Tm(u), t)

≥ βn,m[M(xn−1, xn, t) + M(u, Tm(u), t)]
+ γn,mM(xn−1, u, t).

Letting n → +∞, we obtain

M(u, Tm(u), t) ≥ βn,m[M(u, u, t) + M(u, Tm(u), t)] + γn,mM(u, u, t)

= βn,mM(u, Tm(u), t),

and so as βn,m < 1, it follows that M(u, Tm(u), t) = 0, that is Tm(u) = u. Then, u
is a common fixed point of {Tm}. Finally, we prove uniqueness of the common fixed
point u. To this aim, let us suppose that v is another common fixed point of {Tm},
i.e., Tm(v) = v. Then, using (3.1), we have

M(u, v, t) = M(Tm(u), Tm(v), t)

≥ βn,m[M(u, Tm(u), t) + M(v, Tm(v), t)] + γn,mM(u, v, T )

= βn,m[G(u, u, t) + M(v, v, t)] + γn,mM(u, v, t).

This implies that M(u, v, t) ≥ γn,mM(u, v, t), which yields that u = v as γn,m < 1.
So, u is the unique common fixed point of {Tm}.

As particular case of Theorem 3.1, we state the following corollary.

Corollary 3.2 Let {Tn} be a sequence of self mappings of a complete fuzzy metric
space (X, M, �) such that
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M(Ti (x), Tj (y), t) ≥ βi, j [M(x, Ti (x), t) + M(y, Tj (y), t)] (3.4)

for x, y, z ∈ X with x �= y, 0 ≤ βi, j < 1, i, j = 1, 2, . . . .

If
∑+∞

i=1

(
βi,i+1

1−βi,i+1

)
is an α-series, then {Tn} has a unique common fixed point in

X.

Example 3.3 Let X = [0, 1] and M(x, y, t) = min
{

t
t+|x−y| ,

t
t+|y−z| ,

t
t+|z−x |

}
.

Clearly, (X, M, �) is a complete fuzzy metric space. Define also βi, j = 1
1+2i for

all i, j = 1, 2, . . . and Ti (x) = x
4i for all x ∈ X and i = 1, 2, . . . .

Assume i < j and x > y ≥ z, so that we have

M(Ti (x), Tj (y), t) = t

t + ∣
∣ x
4i − y

4 j

∣
∣

and
M(x, Ti (x), t) + M(y, Tj (y), t) = t

t + ∣
∣x − x

4i

∣
∣

+ t
∣
∣y − z

4 j

∣
∣
.

Therefore condition (3.4) is satisfied for all x, y, z ∈ X with x �= y. Moreover, the
series +∞∑

i=1

(
βi,i+1

1 − βi,i+1

)

=
+∞∑

i=1

1

2i

is anα-series withα = 1/2. Then, by Corollary 3.2, {Tn} has a unique common fixed
point 0 ∈ X .

Following the same lines of the proof of Theorem 3.1, one can prove the next
theorem.

Theorem 3.4 Let {Tn} be a sequence of self mappings of a complete fuzzy metric
space (X, M, �) such that

M(T p
i (x), T p

j (y), t) ≥ βi, j [M(x, T p
i (x), t) + M(y, T p

j (x), t)

+ γi, j G(x, y, z)]

for x, y, z ∈ X with x �= y, 0 ≤ βi, j , γi, j < 1, i, j = 1, 2, . . . .

If
∑+∞

i=1

(
βi,i+1+γi,i+1

1−βi,i+1

)
is an α-series, then {Tn} has a unique common fixed point

in X.

Further in the next section, finally we establish an application of our result in
product space.
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4 Application

Let {T ′
n} be a sequence of self mappings of a complete fuzzy metric space X × X =

X2 , i.e.,(X2, M, ∗) such that

M{T ′
i (x, y), T

′
j (x

′
, y

′
), t} ≥ βi j {M((x, y), T

′
i (x, y), t) + M((x

′
, y

′
), T

′
i (x

′
, y

′
), t)}

+ γi j M((x, y), (x
′
, y

′
), t)
(4.1)

for all (x, y), (x
′
, y

′
) ∈ X2 with (x, y) �= (x

′
, y

′
), 0 ≤ βi j , γi j < 1 , i, j = 1, 2, . . .

if
∑∞

i=1(
βi,i+1,γi,i+1

1−βi,i+1
) is an α-series then sequence {T ′

n} has a unique fixed point in X .

Proof Fix y = y
′ ∈ X . Let Ti , Tj : X → X be such that

Ti (x) = T
′
i (x, y)

Tj (x
′
) = T

′
j (x

′
, y

′
),∀x, x ′ ∈ X

then condition (4.1) reduces to (3.1).
Then by our main result {T ′

n} has a unique fixed point (z(y), y), that is

Tn(z(y)) = T
′
n(z(y), y) = (z(y), y) = z(y).

5 Future Scope

Some further generalizations are possible, the self-mapping can be replaced by mul-
tivalued, bivariate, trivariate, or n-variate mapping and coupled, tripled or n-tuple
common fixed point theorem can be proved.
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The Unique Common Fixed Point
Theorem for Four Mappings Satisfying
Common Limit in the Range Property
in b-Metric Space

Anushri A. Aserkar and Manjusha P. Gandhi

Abstract In the present paper a unique common fixed point theorem has been estab-
lished in b-metric space for four weakly compatible mappings in pairs, satisfying
common limit range property. We have proved this theorem without using the condi-
tion of completeness of the b-metric space. The result is an extension and generaliza-
tion of many results available in metric space. A suitable example is also discussed
to validate the result.

Keywords b-metric space · CLR property · Weakly compatible

1 Introduction

The most remarkable result in fixed point theory is the Banach contraction principle.
Over the century or so researchers have extended and generalized it in different
directions and spaces [1–11]. Bhaktin [12] in 1989 andCzerwik [13, 14] in 1993 came
up with the concept of b-metric space which is one of the important generalizations
of metric spaces.

Numerous researchers have proved fixed point theorems formultiplemappings. In
some cases commutative property between themaps are required to obtain a common
fixed point. Sessa [15] initiated the term weak commutative mappings. Jungck [16]
generalized the notion of weak commutative condition by introducing the concept
of compatible maps and then in [17] he introduced weakly compatible maps.

In 2002, Aamri and Moutawakil [1] put forward the idea of E.A., which is a
true generalization of non-compatible maps in metric spaces. Many researchers [18–
20] used this theory to establish unique common fixed point theorems. In 2011, the
concept of common limit in the range (CLR) property for a pair of self-mappings in
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Fuzzy metric space was initiated by Sintunavarat and Kumam [21]. This property is
outstanding because it does not require the closed subspaces.

In the present paper a unique common fixed point theorem has been established
in b-metric for four weakly compatible mappings in pairs satisfying common limit
range property. This theorem has been proved without using the condition of com-
pleteness of the b-metric space. The result is an extension and generalization of
[22–25] available in metric space and b-metric spaces. A suitable example is also
discussed to support this result.

2 Preliminary

Some basic definitions are necessary to discuss before we start the main theorems.

2.1 b-Metric Space [12, 13]

LetX be a (nonempty) set and s ≥ 1 be a given real number. A function d : X×X →
[0,∞) is a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y
(ii) d(x, y) = d(y, x) for any x, y ∈ X
(iii) d(x, y) ≤ s{d(x, z) + d(z, y)} for any x, y, z ∈ X

Then the pair (X, d) is called a b-metric space (or metric type space).

2.2 .

Let (X, d) be a b-metric space.

(i) The sequence {xn} converges to x ∈ X if and only if limn→∞ d(xn, x) = 0;
(ii) The sequence {xn} is Cauchy if and only if limm,n→∞ d(xn, xm) = 0;
(iii) The space is complete if and only if every Cauchy sequence in X is convergent.

2.3 Common Limit in the Range Property [21]

Suppose that (X, d) is a metric space. Two mappings F, Q : X → X satisfies the
common limit in the range ofQ property (CLRQ) if limn→∞ Fxn = limn→∞ Qxn =
Qx ∈ QX for some x ∈ X .

Wu et al. [26] extended the property to b-metric space for three mappings.
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Let F, P, Q : X → X be three self-mappings of a b-metric space (X, d). The pair
F, Q satisfies the common limit in the range of P property (CLRP ) if there exists a
sequence {xn} ⊆ X and a point x ∈ X such that limn→∞ Fxn = limn→∞ Qxn =
Px ∈ PX.

Particularly, if Q = P then the pair F, Q satisfies the (CLRQ)-property.

2.4 Altering Distance Function [27]

A function ξ : [0,+∞) → [0,+∞) is called an altering distance function if it
satisfies:

(i) ξ is continuous and non-decreasing.
(ii) ξ(t) = 0 if and only if t = 0.

Let � denote the set of all continuous functions ξ, ψ : [0,+∞) →
[0,+∞) and s ≥ 1 be a given real number such that

(iii) sξ(t) ≤ ξ(t) − η(t) if and only if t = 0.

2.5 Weakly Compatible Map [17]

Let P and Q be two self-maps defined on a set X, then P and Q are said to be weakly
compatible if they commute at coincidence points. That is if Px = Qx for some
x ∈ X , then PQx = QPx .

3 Main Theorem

We have established the following theorem in b-metric space for four weakly
compatible mappings in pair, which satisfy common limit range property.

Theorem 3.1 Let (X, d) be a b-metric space with s ≥ 1 and F,G, P, Q : X → X.
Suppose that ξ, η ∈ � and L ≥ 0 such that

(i) F, Q satisfies CLRp and G, P satisfies CLRQ property.

(ii) sξ(d(Fx,Gy)) ≤ ξ(M(x, y)) − η(M(x, y)) + LN(x, y) (1)

where M(x, y) = max

{
d(Py, Qx), d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,
d(Qx, Fx) ∗ d(Qx,Gy)+ d(Py,Gy) ∗ d(Py, Fx)

d(Qx,Gy)+ d(Py, Fx)

}
and N (x, y) = min{d(Qx, Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)} for all

x, y ∈ X.
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(iii) The pairs (F, Q) and (G, P) are weakly compatible.

Then F,G, P, Q have a unique common fixed point.

Proof As F, Q satisfies CLRp and G, P satisfies CLRQ property, there exists
sequences {xn} and {yn} in X and r, t ∈ X such that

lim
n→∞ Fxn = lim

n→∞ Qxn = Pr ∈ PX and lim
n→∞ Gyn = lim

n→∞ Pyn = Qt ∈ QX

Putting x = xn and y = yn in (1),

sξ(d(Fxn,Gyn)) ≤ ξ(M(xn, yn)) − η(M(xn, yn)) + LN(xn, yn)

where

M(xn, yn) =

max

{
d(Pyn, Qxn),

d(Qxn , Fxn) ∗ d(Pyn ,Gyn)
1+ d(Fxn ,Gyn)

,
(d(Pyn , Fxn))

2 + (d(Qxn ,Gyn))
2

d(Pyn , Fxn)+ d(Qxn ,Gyn)
,

d(Qxn , Fxn) ∗ d(Qxn ,Gyn)+ d(Pyn ,Gyn) ∗ d(Pyn , Fxn)
d(Qxn ,Gyn) + d(Pyn , Fxn)

}

and N (xn, yn) = min{d(Qxn, Fxn), d(Qxn,Gyn), d(Pyn, Fxn), d(Pyn,Gyn)}
Taking limn→∞ to both sides, we get

lim
n→∞ sξ(d(Fxn,Gyn)) ≤ lim

n→∞ ξ(M(xn, yn)) − lim
n→∞ η(M(xn, yn)) + lim

n→∞LN(xn, yn)

where

lim
n→∞ M(xn, yn) =

lim
n→∞max

{
d(Pyn, Qxn),

d(Qxn , Fxn) ∗ d(Pyn ,Gyn)
1+ d(Fxn ,Gyn)

,
(d(Pyn , Fxn))

2 + (d(Qxn ,Gyn))
2

d(Pyn , Fxn) + d(Qxn ,Gyn)
,

d(Qxn , Fxn) ∗ d(Qxn ,Gyn)+ d(Pyn ,Gyn) ∗ d(Pyn , Fxn)
d(Qxn ,Gyn)+ d(Pyn , Fxn)

}

= max

{
d(Qt, Pr), d(Pr, Pr) ∗ d(Qt, Qt)

1+ d(Pr, Qt) , (d(Qt, Pr))2 + (d(Pr, Qt)) 2

d(Qt, Pr) + d(Pr, Qt) ,
d(Pr, Pr) ∗ d(Pr, Qt)+ d(Qt, Qt) ∗ d(Qt, Pr)

d(Pr, Qt)+ d(Qt, Pr)

}
= d(Qt, Pr)

and

lim
n→∞ N (xn, yn) =

lim
n→∞min{d(Qxn, Fxn), d(Qxn,Gyn), d(Pyn, Fxn), d(Pyn,Gyn)}
= min{d(Pr, Pr), d(Pr, Qy), d(Qy, Pr), d(Qy, Qy)} = 0.

∴ sξ(d(Pr, Qt)) ≤ ξ(d(Pr, Qt)) − η(d(Pr, Qt))

∴ d(Pr, Qt) = 0 ⇒ Pr = Qt (2)
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Putting x = xn and y = r in (1),

sξ(d(Fxn,Gr)) ≤ ξ(M(xn, r)) − η(M(xn, r)) + LN(xn, r)

where

M(xn, r) =

max

{
d(Pr, Qxn),

d(Qxn , Fxn) ∗ d(Pr,Gr)
1+ d(Fxn ,Gr) , (d(Pr, Fxn))

2 + (d(Qxn ,Gr))2

d(Pr, Fxn)+ d(Qxn ,Gr) ,
d(Qxn , Fxn) ∗ d(Qxn ,Gr)+ d(Pr,Gr) ∗ d(Pr, Fxn)

d(Qxn ,Gr)+ d(Pr, Fxn)

}

and N (xn, r) = min{d(Qxn, Fxn), d(Qxn,Gr), d(Pr, Fxn), d(Pr,Gr)}
Taking limn→∞ to both sides, we get

lim
n→∞ sξ(d(Fxn,Gr)) ≤ lim

n→∞ ξ(M(xn, r)) − lim
n→∞ η(M(xn, r)) + lim

n→∞LN(xn, r)

where

lim
n→∞ M(xn, r) =

lim
n→∞max

{
d(Pr, Qxn),

d(Qxn , Fxn) ∗ d(Pr,Gr)
1+ d(Fxn ,Gr) , (d(Pr, Fxn))

2 + (d(Qxn ,Gr))2

d(Pr, Fxn)+ d(Qxn ,Gr) ,
d(Qxn , Fxn) ∗ d(Qxn ,Gr)+ d(Pr,Gr) ∗ d(Pr, Fxn)

d(Qxn ,Gr)+ d(Pr, Fxn)

}

= max

⎧⎪⎨
⎪⎩
d(Pr, Pr), d(Pr, Pr) ∗ d(Pr,Gr)

1+ d(Pr,Gr) ,
(d(Pr, Pr))2 + (d(Pr,Gr))2

d(Pr, Pr )+ d(Pr,Gr ) ,
d(Pr, Pr) ∗ d(Pr,Gr )+ d(Pr,Gr ) ∗ d(Pr, Pr)

d(Pr,Gr )+ d(Pr, Pr)

⎫⎪⎬
⎪⎭ = d(Pr, Gr)

and

lim
n→∞ N (xn, r) = lim

n→∞min{d(Qxn, Fxn), d(Qxn,Gr), d(Pr, Fxn), d(Pr,Gr)}
= min{d(Pr, Pr), d(Pr,Gr), d(Pr, Pr), d(Pr,Gr)} = 0

∴ sξ(d(Pr,Gr)) ≤ ξ(d(Pr,Gr)) − η(d(Pr,Gr))

∴ d(Pr,Gr) = 0 ⇒ Pr = Gr (3)

Similarly, it may be proved that

Ft = Qt (4)

∴ from (2), (3) and (4) we get

∴ Ft = Qt = Pr = Gr (5)
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Let Ft = Qt = Pr = Gr = u
∵ F, Q are weakly compatible,

Fu = FQt = QFt = Qu

Putting x = u, y = r in (1), we get

sξ(d(Fu,Gr)) ≤ ξ(M(u, r)) − η(M(u, r)) + LN (u, r)

where

M(u, r) = max

{
d(Pr, Qu), d(Qu, Fu) ∗ d(Pr,Gr)

1+ d(Fu,Gr) , (d(Pr, Fu))2 + (d(Qu,Gr))2

d(Pr, Fu)+ d(Qu,Gr) ,
d(Qu, Fu) ∗ d(Qu,Gr)+ d(Pr,Gr) ∗ d(Pr, Fu)

d(Qu,Gr) + d(Pr, Fu)

}

= max

{
d(u, Fu), d(Fu, Fu) ∗ d(u, u)

1+ d(Fu, u)
, (d(u, Fu))2 + (d(Fu, u))2

d(u, Fu)+ d(Fu, u)
,

d(Fu, Fu) ∗ d(Fu, u)+ d(u, u) ∗ d(u, Fu)

d(Fu, u)+ d(u, Fu)

}
= d(Fu, u)

and

N (u, r) = min{d(Qu, Fu), d(Qu,Gr), d(Ps, Fu), d(Pr,Gr)}
= min{d(Fu, Fu), d(Fu, u), d(u, Fu), d(u, u)} = 0

sξ(d(Fu, u)) ≤ ξ(d(Fu, u)) − η(d(Fu, u))

∴ d(Fu, u) = 0 ⇒ Fu = u

∴ Fu = Qu = u

Similarly we may prove that Gu = Pu = u

∴ Fu = Qu = Pu = Gu = u.

Uniqueness: Let if possible there are two fixed points u, u∗, i.e., Fu = Gu =
Pu = Qu = u and Fu∗ = Gu∗ = Pu∗ = Qu∗ = u∗.

Putting x = u, y = u∗ in (1), we get

sξ
(
d(Fu,Gu∗)

) ≤ ξ
(
M(u, u∗)

) − η
(
M(u, u∗)

) + LN(u, u∗)

where

M(u, u∗) = max

{
d(Pu∗, Qu), d(Qu, Fu)× d(Pu∗,Gu∗)

1+ d(Fu,Gu∗) , (d(Pu∗, Fu))2 + (d(Qu,Gu∗))2
d(Pu∗, Fu)+ d(Qu,Gu∗) ,

d(Qu, Fu)× d(Qu,Gu∗)+ d(Pu∗,Gu∗)× d(Pu∗, Fu)

d(Qu,Gu∗)+ d(Pu∗Fu)

}

= max

{
d(u∗, u), d(u, u)× d(u∗, u∗)

1+ d(u, u∗) , (d(u∗, u))2 + (d(u, u∗))2
d(u∗, u)+ d(u, u∗) ,

d(u, u)× d(u, u∗)+ d(u∗, u∗)× d(r∗, r)
d(u, u∗)+ d(u∗, u)

}
= d(u, u∗)
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and

N (u, u∗) = min
{
d(Qu, Fu), d(Qu,Gu∗), d(Pu∗, Fu), d(Pu∗,Gu∗)

}
= min

{
d(u, u), d(u, u∗), d(u∗, u), d(u∗, u∗)

} = 0

sξ
(
d(Fu,Gu∗)

) ≤ ξ
(
M(u, u∗)

) − η
(
M(u, u∗)

) + LN(u, u∗)
∴ sξ

(
d(u, u∗)

) ≤ ξ
(
d(u, u∗)

) − η
(
d(u, u∗)

)
∴ d(u, u∗) = 0 ⇒ u = u∗

Thus the fixed point is unique.

Corollary 3.1 Let (X, d) be a b-metric space with s ≥ 1 and F,G, P, Q : X → X.
Suppose that ξ, η ∈ Ψ such that

(i) F, Q satisfies CLRp and G, P satisfies CLRQ property.
(ii) sξ(d(Fx,Gy)) ≤ ξ(M(x, y)) − η(M(x, y))

where M(x, y) = max

{
d(Py, Qx), d(Qx,Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py,Fx))2 + (d(Qx,Gy))2

d(Py,Fx) + d(Qx,Gy) ,
d(Qx,Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py,Fx)

d(Qx,Gy) + d(Py,Fx)

}
for all x, y ∈ X.

(iii) The pairs (F, Q) and (G, P) are weakly compatible.

Then F,G, P, Q have a unique common fixed point.

Proof By substituting L = 0 in Theorem 3.1, F,G, P, Q have a unique common
fixed point.

Corollary 3.2 Let (X, d) be a b-metric space with s ≥ 1 and F,G, P, Q : X → X.
Suppose that 0 ≤ k < 1 such that

(i) F, Q satisfies CLRp and G, P satisfies CLRQ property.
(ii) sd(Fx,Gy) ≤ k M(x, y)

where M(x, y) = max

{
d(Py, Qx), d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,
d(Qx, Fx) ∗ d(Qx,Gy)+ d(Py,Gy) ∗ d(Py, Fx)

d(Qx,Gy)+ d(Py, Fx)

}
for all x, y ∈ X.

(iii) The pairs (F, Q) and (G, P) are weakly compatible.

Then F,G, P, Q have a unique common fixed point.

Proof Let ξ(t) = t ,η(t) = (1 − k)t and L = 0. Then by Corollary 3.1, F,G, P, Q
have a unique common fixed point.

Corollary 3.3 Let (X, d) be a b-metric space with s ≥ 1 and F,G, P, Q : X → X.
Suppose that 0 ≤ k < 1

4 and L ≥ 0 such that

(i) F, Q satisfies CLRp and G, P satisfies CLRQ property.
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(ii)

sd(Fx,Gy) ≤

k

{
d(Py, Qx) + d(Qx,Fx) ∗ d(Py,Gy)

1+d(Fx,Gy) + (d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy)

+ d(Qx, Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py, Fx)
d(Qx,Gy)+ d(Py, Fx)

}
+ LN(x, y)

where N (x, y) = min{d(Qx, Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)} for
all x, y ∈ X.

(iii) The pairs (F, Q) and (G, P) are weakly compatible.

Then F,G, P, Q have a unique common fixed point.

Proof Obviously

k

{
d(Py, Qx) + d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) + (d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy)

+ d(Qx, Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py, Fx)
d(Qx,Gy) + d(Py, Fx)

}
+ LN(x, y)

≤ 4kmax

{
d(Py, Qx), d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,
d(Qx, Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py, Fx)

d(Qx,Gy) + d(Py, Fx)

}
+ LN(x, y)

Let ξ(t) = t and η(t) = (1 − 4k)t . Then by Theorem 3.1, F,G, P, Q have a
unique common fixed point.

Corollary 3.4 Let (X, d) be a b-metric space with s ≥ 1 and F,G, P, Q : X → X.
Suppose that η ∈ Ψ and L ≥ 0 such that

(i) F, Q satisfies CLRp and G, P satisfies CLRQ property.

(ii) sd(Fx,Gy) ≤ M(x, y) − η(M(x, y)) + LN(x, y)

where M(x, y) = max

{
d(Py, Qx), d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,
d(Qx, Fx) ∗ d(Qx,Gy)+ d(Py,Gy) ∗ d(Py, Fx)

d(Qx,Gy)+ d(Py, Fx)

}
and N (x, y) = min{d(Qx, Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)} for all

x, y ∈ X.

(iii) The pairs (F, Q) and (G, P) are weakly compatible.

Then F,G, P, Q have a unique common fixed point.

Proof Let ξ(t) = t . Then by Theorem 3.1, F,G, P, Q have a unique common fixed
point.

Example Let X = [1, 6] and d : X × X → [0,∞) be defined by d(x, y) = |x − y|.
We define mappings

Fx =
{
3, x ≤ 3,
4, x > 3.

Gx =
{
4, x < 3,
x + 3
2 , x ≥ 3.

Qx =
{
6 − x, x ≤ 3,
5, x > 3.

and

Px =
{
6, x < 3,
2x + 3

3 , x ≥ 3.
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Obviously, d is a b-metric with s = 2.
Let ξ(t) = t

2 , η(t) = t
10 , L = 10.

To prove that F, Q satisfies CLRp and G, P satisfies CLRQ property, consider
sequences {xn} and {yn} defined by xn = 3 − 1

n and yn=3 + 1
n .

We have limn→∞ Fxn = limn→∞ Qxn = 3 = P3 ∈ PX and limn→∞ Gyn =
limn→∞ Pyn = 3 = Q3 ∈ QX

It is easily proved that F, Q and G, P are weakly compatible.

Case-I If x < 3, y < 3 then we have
Fx = 3, Gx = 4, Px = 6 and Qx = 6 − x

L.H.S. = sξ(d(Fx,Gy)) = 2 × 1

2
|3 − 4| = 1

R.H.S. = ξ(M(x, y)) − η(M(x, y)) + LN(x, y)

where

M(x, y) = max

⎧⎨
⎩ d(Py, Qx), d(Qx, Fx) ∗ d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,

d(Qx, Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py, Fx)
d(Qx,Gy)+ d(Py, Fx)

⎫⎬
⎭

= max

⎧⎪⎪⎨
⎪⎪⎩

|6 − (6 − x)|, |6 − x − 3| × |6 − 4|
1 + |3 − 4| ,

|6 − 3|2 + |(6 − x) − 4|2
|6 − 3| + |(6 − x) − 4| ,

|6 − x − 3| × |(6 − x) − 4| + |6 − 4| × |6 − 3|
|(6 − x) − 4| + |6 − 3|

⎫⎪⎪⎬
⎪⎪⎭ Let y = 2.

= max{2, 1, 3, 3} = 3

N (x, y) = min{d(Qx, Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)}
= min{|6 − x − 3|, |6 − x − 4|, |6 − 3|, |6 − 4|} = min{1, 0, 3, 2} = 0

Therefore we obtain

R.H.S. = ξ(M(x, y)) − η(M(x, y)) + LN(x, y)

= 3

2
− 3

10
+ 10 × 0 = 1.2

∴ L.H.S. ≤ R.H.S.

Case-II Let x = 3, y = 3

Fx = 3, Gx = 3, Px = 3 and Qx = 3

L.H.S. = R.H.S. = 0.

Case-III Let x > 3, y > 3,

Fx = 4 Gx = x + 3

2
Qx = 5 and Px = 2x + 3

3
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L.H.S. = sξ(d(Fx,Gy)) = 2 × 1

2

∣∣∣∣4 −
(
x + 3

2

)∣∣∣∣ = 0.5 (For calculation y = 4)

R.H.S. = ξ(M(x, y)) − η(M(x, y)) + LN(x, y)

where

M(x, y) = max

{
d(Py, Qx), d(Qx, Fx) × d(Py,Gy)

1+ d(Fx,Gy) ,
(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy) ,
d(Qx, Fx) × d(Qx,Gy) + d(Py,Gy)× d(Py, Fx)

d(Qx,Gy) + d(Py, Fx)

}

= max

{∣∣∣∣113 − 5

∣∣∣∣, 1 × 1
6

1 + 1
2

,

∣∣ 11
3 − 4

∣∣2 + ∣∣5 − 7
2

∣∣2∣∣ 11
3 − 4

∣∣ + ∣∣5 − 7
2

∣∣ ,
1 × ∣∣5 − 7

2

∣∣ + 1
6 × ∣∣ 11

3 − 4
∣∣∣∣5 − 7

2

∣∣ + ∣∣ 11
3 − 4

∣∣
}

= max{1.33, 0.111, 1.29, 0.85} = 1.33

and

N (x, y) = min{d(Qx, Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)}
= min{1, 1.5, 0.33, 0.167} = 0.167

R.H.S. = ξ(M(x, y)) − η(M(x, y)) + LN(x, y) = 1.33

2
− 1.33

10
+ 10 × 0.167 = 2.202

∴ L.H.S.≤ R.H.S.

Thus all conditions of Theorem 3.1 are satisfied. In fact, 3 is a unique point in X
such that F(3) = G(3) = P(3) = Q(3) = 3.
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Radius Estimates for Three Leaf
Function and Convex Combination of
Starlike Functions

Shweta Gandhi

Abstract We study radii problems for the class S∗
3L consisting of normalized ana-

lytic functions f in the unit disk with z f ′(z)/ f (z) subordinate to 1 + 4z/5 + z4/5
and the class associatedwith convex combination of linear and exponential functions.

Keywords Starlike functions · Coefficient bounds · Growth · Radius problems

2010 Mathematics Subject Classification 30C45 · 30C50 · 30C80

1 Introduction

LetA denote the class of analytic functions in the unit diskD := {z : |z| < 1}whose
Taylor’s series expansion is given by f (z) = z + ∑

k=2 akz
k . In particular for n = 1

letA := A1. LetS be the subclass ofA consisting of univalent functions. An analytic
function f is said to be subordinate to an analytic function g, denoted by f ≺ g, if
there exists a Schwarz function w defined on D such that f (z) = g(w(z)) for all
z ∈ D. When g is a univalent function, this definition is equivalent to f (0) = g(0)
and f (D) ⊂ g(D). Among the various subclasses ofS, class of starlike functions and
convex functions are prominently studied. In 1992 Ma and Minda integrated various
subclasses of starlike and convex function using the subordination theory.

For a univalent functions ϕ normalized by ϕ(0) = 1 and ϕ′(0) > 0 with
Re(ϕ(z)) > 0 and ϕ(D) is symmetric with respect to real axis and starlike with
respect to 1, Ma and Minda [15] studied distortion and growth properties of the
classes

S∗(ϕ) =
{

f ∈ A : z f
′(z)

f (z)
≺ ϕ(z)

}

and K(ϕ) =
{

f ∈ A : 1 + z f ′′(z)
f ′(z) ≺ ϕ(z)

}

.
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By restricting values of ϕ to lie in some specific regions like half plane,
disks, sectors, parabolas, cardioid, lemniscate of Bernoulli, booth lemniscate in
the right-half plane of C, various interesting subclasses of starlike and convex
functions can be obtained. For example, S∗((1 + Az)/(1 + Bz)) =: S∗[A, B] [13]
andK((1 + Az)/(1 + Bz)) =: K[A, B] (−1 ≤ B < A ≤ 1) are the familiar classes
of Janowski starlike and Janowski convex functions, respectively. For 0 ≤ α <

1, S∗(α) := S∗[1 − 2α,−1] and K(α) := K[1 − 2α,−1] denote the classes of
starlike and convex functions of order α, respectively which were introduced
in [27]. The classes S∗ := S∗(0) and K := K(0) are the well-known classes of
starlike and convex functions, respectively. Similarly, the classes S∗

e := S∗(ez),

S∗
RL := S∗

(√
2 − (

√
2 − 1)

√

(1 − z)/(1 + 2(
√
2 − 1)z)

)

and S∗
L := S∗(

√
1 + z)

were introduced by Mendiratta et al. [19, 20], Sokół and Stankiewicz [35], respec-
tively. Various other results related to above classes can be found in [3–5, 22, 30–
34]. Raina and Sokol [24] introduced the class S∗

q = S∗(z + √
1 + z2), which was

further studied by Gandhi and Ravichandran [10]. We call the function φ3L(z) =
1 + 4z/5 + z4/5 as three leaf function. This function is univalent, starlike with
respect to φ(0) = 1 and its image of the unit disk is symmetric with respect to
real axis. We investigate various geometric and analytical properties of the class
S∗(1 + 4z/5 + z4/5) = S∗

3L. In 1952 and 1953, Rahmanov [23] studied various
properties of convex combination of functions belonging to several well-known
classes of functions. Campbell [6] in his survey article provides various results related
to combination of univalent functions as well as of locally univalent functions.

Cho et al. [7] determined radii of convexity, starlikeness, lemniscate starlike-
ness, and close to convexity for the convex combination of identity map and a
normalized convex function. Recently, Khatter et al. [14] investigated various geo-
metrical properties of the convex combination of constant function f (z) = 1 with
ez and

√
1 + z. Motivated by these results, we have considered the convex com-

bination of two starlike functions, namely, ez and 1 + z. For 0 ≤ k ≤ 1, define
φEL(z) = kez + (1 − k)(1 + z). In this paper,we investigate various geometric prop-
erties of the class S∗

EL := S∗(φEL) consisting of analytical functions satisfying
z f ′(z)/ f (z) ≺ φEL(z), (z ∈ D).

2 S∗
3L-Radii for Several Classes

Let M and M′ be subsets of A then the M-radius in M′ denoted by RM(M′) is
the largest ρ0 ∈ (0, 1) such that for every f ∈ M′, the function F(z) = f (ρz)/ρ ∈
M, whenever 0 < ρ < ρ0. In this section, sharp S∗

3L-radius for certain well-known
classes of functions are obtained. The first two results of this section determines S∗

3L
radius for the class S∗[A, B] for the cases B ≥ 0 and B < 0. For −1 ≤ B < A ≤ 1,
letP[A, B] be the class of analytic functions p of the form p(z) = 1 + a1z + a2z2 +
· · · satisfying p(z) ≺ (1 + Az)/(1 + Bz) for all z ∈ D. LetP[1 − 2α,−1] = P(α)
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(0 ≤ α < 1) andP(0) = P .We require the following results and definitions to prove
our result.

Lemma 2.1 ([26, Lemma 2.1, p. 267], [28]) For p ∈ P(α) and |z| = r , we have

∣
∣
∣
∣
∣
p(z) − 1 + (1 − 2α)r2

1 − r2

∣
∣
∣
∣
∣
≤ 2(1 − α)r

1 − r2
, and

∣
∣
∣
∣
zp′(z)
p(z)

∣
∣
∣
∣ ≤ 2r(1 − α)

(1 − r)(1 + (1 − 2α)r)
.

More generally, for p ∈ P[A, B], we have
∣
∣
∣
∣p(z) − 1 − ABr2

1 − B2r2

∣
∣
∣
∣ ≤ (A − B)r

1 − B2r2
.

We find the largest disk with given center on real axis which is contained inside
φ3L(D). This helps us to find condition for which several well-known classes can be
associated with the class S∗

3L.

Lemma 2.2 For 2/5 < a ≤ 2, let ra be given by

ra =

⎧
⎪⎨

⎪⎩

a − 2/5 if 2/5 < a ≤ 1
√
(a − 7/5)2 + a/5 if 1 ≤ a < 51/35

2 − a if 51/35 ≤ a < 2.

If ϕ(z) = 1 + 4
5 z + 1

5 z
4, then {w : |w − a| < ra} ⊂ ϕ(D).

Proof Let φ3L(z) = 1 + 4z/5 + z4/5. Then parametric form of any point on the
boundary of φ3L(D) is given by w = φ3L(eit ). The symmetry of the curve w =
φ3L(eit ) with respect to real axis permits us to consider interval 0 ≤ t ≤ π. The
parametric equation of w = φ3L(eit ) becomes

w = φ3L(eit ) = 1 + 4

5
cos t + 1

5
cos 4t + i

(
4

5
sin t + 1

5
sin 4t

)

.

Let z(t) denote the square of the distance from any point (a, 0) on real axis to the
points on the curve w = φ3L(eit ). Then we have

z(t) = 1

25

(
42 + 25a2 + (−50 − 40 cos t − 10 cos 4t)a + 40 cos t + 8 cos 3t + 10 cos 4t

)
.

It can be easily seen that

z′(t) = 1

25
((a − 1)40 sin t + (a − 1)40 sin 4t − 24 sin 3t) .

When a = 1, we have z′(t) = −24
25 sin 3t and z′(t) = 0 at 0,π/3 and 2π/3. The min-

imum value turns out to be z(π). When a 
= 1, we have z′(t) = 8
25 sin t

(
cos t − 1

2

)

(cos t − ra1)(cos t − ra2) where ra1 , ra2 are roots of the equation
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40(a − 1)cos2t + (20a − 32) cos t + (−10a + 4) = 0.

For −1 < ra1 , ra2 < 1, we have the conditions and range for a as required. By com-
paring the values of z(t) at critical points of these range we have the desired result.

�

Theorem 2.3 The S∗
3L-radius for the class S∗[A, B] is given by

RS∗
3L(S∗[A, B]) = 3

5A − 2B
0 ≤ B < A ≤ 1.

Proof Let f ∈ S∗[A, B], then we have z f ′(z)/ f (z) ≺ (1 + Az)/(1 + Bz) which
implies z f ′/ f ∈ P[A, B]. By Lemma2.1 we have

∣
∣
∣
∣
z f ′(z)
f (z)

− (1 − ABr2)

(1 − B2r2)

∣
∣
∣
∣ ≤ (A − B)r

1 − B2r2
(|z| = r < 1).

Since B ≥ 0, we have (1 − ABr2)/(1 − B2r2) ≤ 1. In view of Lemma2.2 f ∈ S∗
3L

if ((A − B)r)/(1 − B2r2) ≤ (1 − ABr2)/(1 − B2r2) − 2/5.
On solving this inequality for r , we get r ≤ 3/(5A − 2B). Also the function

f (z) =
{
z(1 + Bz)

A−B
B if B 
= 0

zeAz if B = 0.

belongs to S∗[A, B] and z f ′(z)/ f (z) = (1 + Az)/(1 + Bz) and at the point z =
−3/(5A − 2B), the function z f ′(z)/ f (z) assumes the value 2/5. This shows that
radius obtained is sharp. �

Theorem 2.4 Let −1 ≤ B < A ≤ 1 with B < 0. Let

R1 = min

(

1,
4√

51B2 − 35AB

)

, R2 = min

(

1,
1

A − 2B

)

and

R3 = min

(

1,
3√

25A2 − 65AB + 49B2

)

.

Then S∗
3L radius of S∗[A, B] is given by

RS∗
3L(S∗[A, B]) =

{
R2 if R2 ≤ R1

R3 if R2 > R1.

Proof Let f ∈ S∗[A, B], then by Lemma2.1, we have

∣
∣
∣
∣
z f ′(z)
f (z)

− 1 − ABr2

1 − B2r2

∣
∣
∣
∣ ≤ (A − B)r

1 − B2r2
.
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We determine numbers R1, R2, and R3. We have r ≤ R1 if and only if (1 −
ABr2)/(1 − B2r2) ≤ 51/35. This yields r ≤ 4/

√
51B2 − 35AB.We determine R2

such that r ≤ R2 if and only if

(A − B)r

1 − B2r2
≤

√
(
1 − ABr2

1 − B2r2
− 7

5

)2

+ 1

5

(
1 − ABr2

1 − B2r2

)

.

On computing this inequality we get 3/
√
25A2 − 65AB + 49B2. We determine

R3 such that r ≤ R3 if and only if (A − B)r/(1 − B2r2) ≤ 2 − (1 − ABr2)/(1 −
B2r2). A simple calculation yields r ≤ 1/(A − 2B). A similar argument as in pre-
vious section gives the desired result. �
Theorem 2.5 The S∗

3L radius of the class S∗
L is given by RS∗

3L(S∗
L) = 21

25 .

Proof If f ∈ S∗
L . Then z f

′(z)/ f (z) ≺ √
1 + z. For |z|=r ,weget

∣
∣z f ′(z)/ f (z) − 1

∣
∣≤

|√1 + z − 1| ≤ 1 − √
1 − r . From Lemma2.2, it follows that if 1 − √

1 − r ≤ 3/5
then f ∈ S∗

φ3L . This gives r ≤ 21/25 and this bound is best possible as seen by the
function in this class given by

f (z) = 4z exp(2
√
1 + z − 2)

(1 + √
1 + z)2

.

The above radius is sharp because at the point z = −21/25, we have z f ′(z)/ f (z) =√
1 + z = 2/5. �

Theorem 2.6 The S∗
3L radius of the class S∗

RL is given by RS∗
3L(S∗

RL) = 3
(
1169+444

√
2

6439

)
.

Proof Suppose that f ∈ S∗
RL . Then

z f ′(z)
f (z)

≺ √
2 −

(√
2 − 1

)
√
√
√
√

1 − z

1 + 2
(√

2 − 1
)
z

and it is easy to deduce that

∣
∣
∣
∣
z f ′(z)
f (z)

− 1

∣
∣
∣
∣ ≤ 1 −

⎛

⎜
⎝

√
2 −

(√
2 − 1

)
√
√
√
√

1 + r

1 − 2
(√

2 − 1
)
r

⎞

⎟
⎠

for |z| = r . By applying Lemma2.2, we obtain f ∈ S∗
φ3L provided

1 −
⎛

⎜
⎝

√
2 −

(√
2 − 1

)
√
√
√
√

1 + r

1 − 2
(√

2 − 1
)
r

⎞

⎟
⎠ ≤ 3

5
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which by simple calculation shows that r ≤ 3(1169 + 444
√
2)/6439. The result is

sharp for the function f given by

z f ′(z)
f (z)

= √
2 − (

√
2 − 1)

√
1 − z

1 + 2(
√
2 − 1)z

.
�

There are various studies [5, 17, 18, 20] on classes of functions in the class
A, which are characterized by the ratio of functions f and g belonging to partic-
ular subclasses of A. Recall that W denote the class of functions f ∈ A satisfy-
ing Re ( f (z)/z) > 0 for all z ∈ D. Set of functions f ∈ A such that f (z)/g(z) ∈
P for some g ∈ W is denoted by F1 and the set of functions f ∈ A satisfying the
inequality | f (z)/g(z) − 1| < 1 (z ∈ D) for some g ∈ W is denoted by F2.

Theorem 2.7 The S∗
3L radius of the classW is given by RS∗

3L(W) =
√
34−5
3 .

Proof FromLemma2.1, we get |z f ′(z)/ f (z) − 1| ≤ 2r/(1 − r2).Lemma2.2 shows
that this disk lies inside φ3L(D) provided 2r/(1 − r2) ≤ 3/5. This gives r ≤
(
√
34 − 5)/3. The function f (z) = z(1 + z)/(1 − z) ∈ W and at the point z =

−(
√
34 − 5)/(3), we get z f ′(z)/ f (z) = 2/5 which shows that this bound is the

best possible. �

Theorem 2.8 The S∗
3L radius of the class F1 is given by RS∗

3L(F1) =
√
109−10
3 .

Proof Let f ∈ F1 and the functions p, q : D → C defined by

p(z) = g(z)

z
and q(z) = f (z)

g(z)
.

Then p, q belong to P and in view of Lemma2.1, we get

∣
∣
∣
∣
z f ′(z)
f (z)

− 1

∣
∣
∣
∣ ≤

∣
∣
∣
∣
zp′(z)
p(z)

∣
∣
∣
∣ +

∣
∣
∣
∣
zq ′(z)
q(z)

∣
∣
∣
∣ � 4r

1 − r2
(|z| = r < 1).

By using Lemma2.2, f ∈ S∗
φ3L provided 4r/(1 − r2) ≤ 3/5 which gives r ≤

(
√
109 − 10)/3. For sharpness, consider the function

f0(z) = z(1 + z)2

(1 − z)2
with g0(z) = z(1 + z)

(1 − z)
.

It is easy to see that f0 ∈ F1 and at the point z = (
√
109 − 10)/3, a simple compu-

tation shows that
z f ′

0(z)

f0(z)
= 1 + 4z − z2

1 − z2
= 2

5
.

�

Recall that the classM(β),β > 1 is given byM(β) =
{
f ∈ A : Re z f ′(z)

f (z) < β, z

∈ D} .
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Theorem 2.9 The S∗
3L radius of the classM(β) is given byRS∗

3L(M(β)) = 3
10β−7 .

Proof For f ∈ M(β), then from Lemma2.1 shows that

∣
∣
∣
∣
z f ′(z)
f (z)

− 1 + (1 − 2β)r2

1 − r2

∣
∣
∣
∣ ≤ 2(β − 1)r

1 − r2
(|z| = r). (2.1)

Clearly, the center of disk (2.1) is less than 1. Also, in view of Lemma2.2, f ∈ S∗
φL

if
2(β − 1)r

1 − r2
≤ 1 + (1 − 2β)r2

1 − r2
− 2

5
.

This gives r ≤ 3/(10β − 7). Sharpness can be seen by considering the function

f (z) = z

(1 − z)2(1−β)
∈ M(β).

One can compute that at z = 3/(10β − 7), we get z f ′(z)/ f (z) = 2/5. �

For −∞ < μ < ∞, Ma and Minda [15] proved the growth, covering, rotation,
and distortion theorem for the function f ∈ S∗(ϕ). Authors also obtained the sharp
bounds on the functional |a3 − μa22 | which yields the sharp bounds on second and
third coefficients of the function f ∈ S∗(ϕ). In 2007, Ali et al. [2] determined the
sharp estimate for the Fekete–Szegö functional and sharp bound for the fourth coef-
ficient of the function f ∈ S∗(ϕ). Determination of bounds on the coefficient an for
n ≥ 5 of the function f ∈ S∗(ϕ) is still an open problem. Recently, Ravichandran
and Verma [25] found the sharp bound for the fifth coefficient for the functions in
the class S∗

L and S∗
RL . They proved the following lemma:

Lemma 2.10 Let the real numbersα,β, γ and, a satisfy the inequalities 0 < α < 1,
0 < a < 1 and

8a(1 − a)
(
(αβ − 2γ)2 + (α(a + α) − β)2

) + α(1 − α)(β − 2aα)2

≤ 4α2(1 − α)2a(1 − a).
(2.2)

If p(z) = 1 + ∑∞
k=1 ckz

k ∈ P , then

|γc41 + ac22 + 2αc1c3 − (3/2)βc21c2 − c4| ≤ 2.

As a simple application of the above lemma we have the following result.

Theorem 2.11 If the function f (z) = z + a2z2 + a3z3 + · · · ∈ S∗
ϕ3L , then |a5| ≤

1/5.
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3 S∗
EL Radius Estimates

In this section, we investigate the radius problems associated with the class S∗
EL :=

S∗(φEL) consisting of functions f ∈ A satisfying z f ′(z)/ f (z) ≺ φEL(z). These
sharp radii constants are determined by first finding the largest disk with a given
fixed center that contains the values of z f ′(z)/ f (z) instead of directly estimating
the real part of the expression z f ′(z)/ f (z). This result is contained in the following
lemma.

Lemma 3.1 For 0 ≤ k ≤ 1 and k/e ≤ a ≤ ke + 2(1 − k), let

ra =

⎧
⎪⎪⎨

⎪⎪⎩

k
(
a − 1

e

)
+ (1 − k)(1 − |1 − a|) k

e
≤ a ≤ k

2

(

e + 1

e

)

+ (1 − k)

k(e − a) + (1 − k)(1 − |1 − a|) k

2

(

e + 1

e

)

+ (1 − k) ≤ a ≤ ke + 2(1 − k)

Then {w ∈ C : |w − a| < ra} ⊆ φEL(D).

In this section, we obtain S∗
EL -radius for the class S∗[A, B] by distinguishing the

cases B ≥ 0 and B ≤ 0.

Theorem 3.2 For the class S∗[A, B], S∗
EL-radius is given by

RS∗
EL
(S∗[A, B]) = e − k

Ae − Bk
0 ≤ B < A ≤ 1.

Proof Let f ∈ S∗[A, B], then we have

z f ′(z)
f (z)

≺ 1 + Az

1 + Bz
⇒ z f ′(z)

f (z)
∈ P[A, B]

and Lemma2.1 gives
∣
∣
∣
∣
z f ′(z)
f (z)

− 1 − ABr2

1 − B2r2

∣
∣
∣
∣ ≤ (A − B)r

1 − B2r2
(|z| = r < 1).

Since B ≥ 0, we have(1 − ABr2)/(1 − B2r2) ≤ 1 so that in view of Lemma3.1,
f ∈ S∗

EL if

(A − B)r

1 − B2r2
≤ k

(
1 − ABr2

1 − B2r2
− 1

e

)

+ (1 − k)

(
1 − ABr2

1 − B2r2

)

On solving this inequality for r , we get r ≤ e − k/(Ae − Bk). For sharpness, we
consider the function

f (z) =
{
z(1 + Bz)

A−B
B if B 
= 0

zeAz if B = 0.
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Then
z f ′(z)
f (z)

= 1 + Az

1 + Bz

and hence f ∈ S∗[A, B]. By simple calculations at z = −(e − k)/(Ae − Bk), the
function z f ′(z)/ f (z) assumes the value k/e. This shows that the obtained radius is
sharp. �

Now, we determine S∗
EL -radius for the classes S∗

L , F1, and F2.

Theorem 3.3 For the class S∗
L , the S∗

EL radius is given by

RS∗
EL
(S∗

L) = 1 − k2

e2
.

Proof If f ∈ S∗
L . Then z f ′(z)/ f (z) ≺ √

1 + z. For |z| = r , we get

∣
∣
∣
∣
z f ′(z)
f (z)

− 1

∣
∣
∣
∣ ≤ |√1 + z − 1| ≤ 1 − √

1 − r .

From Lemma3.1, it follows that if

1 − √
1 − r ≤ k

(

1 − 1

e

)

+ (1 − k)

then f ∈ S∗
EL . This gives r ≤ 1 − k2/e2 and this bound is the best possible as seen

by the function in this class given by

f (z) = 4z exp(2
√
1 + z − 2)

(1 + √
1 + z)2

∈ S∗
L .

At the point z = −(1 − k2/e2), we have z f ′(z)/ f (z) = √
1 + z = k/e. �

Theorem 3.4 For the class F1, the S∗
EL radius is given by

RS∗
EL
(F1) =

√
4e2 + (k − e)2 − 2e

e − k
.

Proof Let f ∈ F1 and the functions p, q : D → C defined by

p(z) = g(z)

z
and q(z) = f (z)

g(z)
.

Then p, q belong to P and in view of Lemma2.1, we get

∣
∣
∣
∣
z f ′(z)
f (z)

− 1

∣
∣
∣
∣ ≤

∣
∣
∣
∣
zp′(z)
p(z)

∣
∣
∣
∣ +

∣
∣
∣
∣
zq ′(z)
q(z)

∣
∣
∣
∣ � 4r

1 − r2
(|z| = r < 1).
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ByusingLemma3.1, f ∈ S∗
EL provided 4r/(1 − r2) ≤ k (1 − 1/e) + (1 − k)which

gives r ≤ (
√
4e2 + (e − k)2 − 2e)/(e − k). For sharpness, consider the functions

f0(z) = z(1 + z)2

(1 − z)2
with g0(z) = z(1 + z)

(1 − z)
.

It is easy to see that f0 ∈ F1 and at the point z = (
√
4e2 + (e − k)2 − 2e)/(e − k),

a simple computation shows that

z f ′
0(z)

f0(z)
= 1 − 4z − z2

1 − z2
= k

e
.

�

Theorem 3.5 For the class F2, the S∗
EL radius is given by

RS∗
EL
(F2) =

√
8e2 + (3e − 2k)2 − 3e

2(2e − k)
.

Proof Let f ∈ F2. Define functions u, v : D → C by

u(z) = g(z)

z
and v(z) = g(z)

f (z)
.

Then u ∈ P and since | f (z)/g(z) − 1| < 1 if and only if Re(g(z)/ f (z)) > 1/2,
v ∈ P(1/2). By using Lemma2.1 to the identity

z f ′(z)
f (z)

= 1 + zu′(z)
u(z)

− zv′(z)
v(z)

we obtain ∣
∣
∣
∣
z f ′(z)
f (z)

− 1

∣
∣
∣
∣ ≤ 2r

1 − r2
+ r

1 − r
= 3r + r2

1 − r2
.

By Lemma3.1, f ∈ S∗
EL provided

3r + r2

1 − r2
≤ k

(

1 − 1

e

)

+ (1 − k)

This gives r ≤ (
√
8e2 + (3e − 2k)2 − 3e)/2(2e − k). To show that this bound is the

best possible, consider the function

f0(z) = z(1 + z)2

(1 − z)
with g0(z) = z(1 + z)

(1 − z)
.

At the point z = (
√
8e2 + (3e − 2k)2 − 3e)/(2(2e − k)), we obtain
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z f ′
0(z)

f0(z)
= 1 − 3z − 2z2

1 − z2
= k

e
.

�
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First-Order Differential Subordinations
for Janowski Starlikeness

Swati Anand, Sushil Kumar and V. Ravichandran

Abstract By using admissibility condition technique, certain sufficient conditions
are determined so that an analytic function p definedon the openunit disk andnormal-
ized by p(0) = 1 satisfy the subordination p(z) ≺ (1 + Az)/(1 + Bz)whenever, for
certain choice of ψ, the function ψ(p(z), zp′(z)) is subordinate to a starlike function
associatedwith lune. Further, we obtain certain sufficient conditions for a normalized
analytic function f to be in the class of Janowski starlike functions.

Keywords Differential subordination · Admissibility condition · Univalent
functions · Starlike functions · Janowski starlike function · Lune

1 Introduction

LetA denote the class of analytic functions normalized by the condition f (0) = 0 =
f ′(0) − 1 in the unit disk D := {z ∈ C : |z| < 1}. Let S ⊂ A consists of univalent
functions. For a fixed nonnegative integer n, denoted by H[a, n], the class of func-
tions of the form f (z) = a + anzn + an+1zn+1 + · · · . In particular, H[1, 1] = H1.
For two analytic functions f and g, f is subordinate to g, if there exists an analytic
functionωwithω(0) = 0 and |ω(z)| < 1 for z ∈ D such that f (z) = g(ω(z)), written
as f ≺ g. In particular, if g ∈ S, then f ≺ g if and only if f (0) = g(0) and f (D) ⊆
g(D). Let A, B ∈ [−1, 1] be two arbitrary real numbers. The classP[A, B] consists
of normalized analytic functions of the form p(z) = 1 + c1z + c2z2 + · · · satisfying
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p(z) ≺ (1 + Az)/(1 + Bz), for z ∈ D. Suppose f ∈ A, then f is a Janowski func-
tion if z f ′(z)/ f (z) ∈ P[A, B] for z ∈ D. The class of Janowski functions is denoted
by S∗[A, B] [9]. For particular values of A and B, the class S∗[1 − 2α,−1] = S∗(α)

is the class of starlike functions of order α. For details, see [8, 14]. In 2015, Raina and
Sokół [17] studied a class S∗

q := S∗(ϕq) where ϕq(z) = z + √
1 + z2 and discussed

several other properties of the class S∗
q . It is observed that S∗

q ⊂ A such that

∣
∣
∣
∣

z f ′(z)
f (z)

− 1

∣
∣
∣
∣
< 2

∣
∣
∣
∣

z f ′(z)
f (z)

∣
∣
∣
∣

which is the interior of the lune. In geometry, the lune is a concave–convex plane
area which is bounded by two circular arcs of unequal radii.

In 1989,Nunokawa et al. [16] proved that if a function p satisfies the subordination
1 + zp′(z) ≺ 1 + z, then p(z) ≺ 1 + z. Ali et al. [3] computed a condition for lower
bound on β for p(z) ≺ √

1 + z when 1 + βzp′(z)/p j (z) ≺ √
1 + z ( j = 0, 1, 2). In

[13], the bound on β is obtained such that 1 + βzp′(z)/p j (z) ≺ (1 + Dz)/(1 + Ez);
−1 < E < 1 and |D| ≤ 1 ( j = 0, 1, 2) implies p(z) is subordinate to functions
associated with lemniscate of Bernoulli. Recently, authors [12] obtained sharp lower
boundonβ so that the function p is subordinate to the functions ez and (1 + Az)/(1 +
Bz) whenever 1 + βzp′(z)/p j (z), ( j = 0, 1, 2) is subordinate to functions with
positive real part. Ahuja et al. [1] obtained certain inclusions between the class of
Carathéodory functions and the class of starlike univalent functions associated with
lemniscate of Bernoulli. For related results, see [2, 4–6, 13, 18].

Motivated by the earlier discussed works, using the concept of admissibil-
ity condition, we obtain some conditions on β so that p ∈ P[A, B] whenever
p(z) + βzp′(z)/pk(z) with k = 0, 1 and 1/p(z) + βzp′(z)/pk(z) (k = 1, 2) is sub-
ordinate to ϕq(z). Further, alternate proofs are provided in which the conditions on
β is determined, so that 1 + βzp′(z)/pk(z) ≺ ϕq(z) with k = 0, 1, 2 whenever the
function p is subordinate to (1 + Az)/(1 + Bz). As a consequence of these results,
certain sufficient conditions for a function f ∈ A to be in S∗[A, B] are also given.

2 Subordination Results Associated with Lune

Let p be an analytic function defined onDwith p(0) = 1. Let h ∈ S and the function
ψ(r, s, t; z) be defined in some domain D ⊂ C

3 × D. If the function p satisfies

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z) (2.1)

then p is known as solution of the subordination relation (2.1). The univalent function
q is a dominant of the solutions of the differential subordination if p ≺ q for all p
satisfying (2.1). A dominant q̃ which satisfies q̃ ≺ q for all dominant q of (2.1) is
known as the best dominant of relation (2.1). It is unique up to rotation.
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Denote byQ the class of all analytic and injective functions q onD \ E(q), where

E(q) = {ξ ∈ ∂D : lim
z→ξ

q(z) = ∞}

such that q ′(ξ) �= 0 for ξ ∈ D \ E(q). Let � be a subset of C, q ∈ Q and n be a
positive integer. The admissibility class �n[�, q] consists of admissible functions
ψ : C3 × D → C satisfying the following condition:

ψ(r, s, t; z) /∈ � (2.2)

whenever

r = q(ξ), s = m ξ q ′(ξ) and Re

(
t

s
+ 1

)

≥ m Re

(
ξq ′′(ξ)
q ′(ξ)

+ 1

)

for z ∈ D, ξ ∈ D \ E(q) and m ≥ n ≥ 1. When n = 1, let �1[�, q] = �[�, q].
Theorem 2.1 ([15, Theorem 2.3b, p. 28]) Let the function ψ ∈ �n[�, q] with
q(0) = a. If the function p ∈ H[a, n] satisfies

ψ(p(z), zp′(z), z2 p′′(z); z) ∈ �, (2.3)

then p ≺ q.

For a simply connected domain� �= C, there is a conformal mapping of h : D →
� satisfying h(0) = ψ(a, 0, 0; 0) and �n[�, q] is written as �n[h, q]. Thus relation
(2.2) can be written as

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z). (2.4)

For more details, see [10, 11].
This section deals with certain condition under which p(z) is subordinate to

(1 + Az)/(1 + Bz) for −1 ≤ B < A ≤ 1 whenever ψ(p(z), zp′(z); z) ≺ ϕq(z) =
z + √

1 + z2. First, a condition on β is computed so that the subordination p(z) +
βzp′(z) ≺ ϕq(z) implies p ∈ P[A, B]. Similar results are obtained for expressions
p(z) + βzp′(z)/p(z) and (1/p(z)) + βzp′(z)/pk(z); (k = 1, 2).

Consider the function q given by

q(z) = 1 + Az

1 + Bz
, z ∈ D and − 1 ≤ B < A ≤ 1. (2.5)

Note that q(0) = 1, E(q) ⊆ {1} and q is univalent in D \ E(q). Thus q ∈ Q and the
domain q(D) is

� = q(D) =
{

w ∈ C :
∣
∣
∣
∣

w − 1

A − Bw

∣
∣
∣
∣
< 1

}

.
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We now define the condition of admissibility for the function q. The class of admis-
sible functions is denoted by �n[�; A, B]. It is easy to compute

q(ς) = 1 + Aeiθ

1 + Beiθ
, q ′(ς) = A − B

(1 + Beiθ)2
and q ′′(ς) = 2B(A − B)

−(1 + Beiθ)3

for ς = eiθ and 0 < θ < 2π.
Hence, a simple calculation yields

Re

(
ςq ′′(ς)
q ′(ς)

+ 1

)

= 1 − B2

1 + B2 + 2B cos θ

where 0 < θ < 2π and m ≥ n ≥ 1. Thus the admissibility condition reduces to

ψ(r, s, t; z) /∈ � whenever (r, s, t; z) ∈ domψ

and

r = 1 + Aeiθ

1 + Beiθ
, s = m(A − B)eiθ

(1 + Beiθ)2
and Re

(
t

s
+ 1

)

≥ m(1 − B2)

1 + B2 + 2B cos θ
(2.6)

where 0 < θ < 2π and m ≥ n ≥ 1.
To discuss our problems, we need the following result in the context of first-order

differential subordination due to Theorem 2.1.

Theorem 2.2 Let p ∈ H[1, n] with n ∈ N. Let � be a subset of C and ψ : C2 ×
D → C with domψ satisfy ψ(r, s; z) /∈ � for all z ∈ D, where

r = 1 + Aeiθ

1 + Beiθ
, s = m(A − B)eiθ

(1 + Beiθ)2
. (2.7)

If (p(z), zp′(z); z) ∈ domψ andψ(p(z), zp′(z); z) ∈ � for z ∈ D, then p(z) ≺ (1 +
Az)/(1 + Bz).

Theorem 2.3 Let p be an analytic function defined on D with p(0) = 1 and β �= 0
and −1 ≤ B < A ≤ 1. We assume the following inequality holds:

(|β|(A − B) − (1 + |A|)(1 + |B|))2 ≥ 2
(

(1 + |A|)2(1 + |B|)2 + (1 + |A|)(1 + |B|)3
+ |β|(A − B)(1 + |B|)2) + (1 + |B|)4.

(2.8)

If p(z) + βzp′(z) ≺ ϕq(z) = z + √
1 + z2, then p ∈ P[A, B].

Proof Let� = ϕq(D) = {w ∈ C : |w2 − 1| < 2|w|} be the domain. Define the ana-
lytic function ψ : C2 × D → C as ψ(r, s; z) = r + βs. The required subordination
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is established if ψ ∈ �[�, q]. Thus by Theorem 2.2, it is enough to show that
|(ψ2(r, s; z) − 1)/ψ(r, s; z)| ≥ 2. Using (2.6), we have

ψ(r, s; z) = (1 + Aeiθ)(1 + Beiθ) + βm(A − B)eiθ

(1 + Beiθ)2

so that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1 + Aeiθ)2(1 + Beiθ)2 + β2m2e2iθ(A − B)2

+ 2(1 + Aeiθ)(1 + Beiθ)βmeiθ(A − B) − (1 + Beiθ)4

(1 + Aeiθ)(1 + Beiθ)3 + βmeiθ(A − B)(1 + Beiθ)2

∣
∣
∣
∣
∣
∣
∣
∣

≥
|β2|m2(A − B)2 − (1 + |A|)2(1 + |B|)2

− 2(1 + |A|)(1 + |B|)βm(A − B) − (1 + |B|)4
|(1 + Aeiθ)(1 + Beiθ)3| + |β|m(A − B)|(1 + Beiθ)2|

≥
|β2|m2(A − B)2 − (1 + |A|)2(1 + |B|)2

− 2(1 + |A|)(1 + |B|)βm(A − B) − (1 + |B|)4
(1 + |A|)(1 + |B|)3 + |β|m(A − B)(1 + |B|)2 (usingm ≥ 1)

≥
(|β|m(A − B) − (1 + |A|)(1 + |B|))2

− (1 + |B|)4 − 2(1 + |A|)2(1 + |B|)2
(1 + |A|)(1 + |B|)3 + m|β|(A − B)(1 + |B|)2 .

Since m ≥ 1, it is possible to deduce

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
≥ 2

whenever inequality (2.8) holds. Thus ψ ∈ �[�, q]. Using Theorem 2.2, we get the
desired subordination p(z) ≺ (1 + Az)/(1 + Bz). �

Theorem 2.4 Let p be an analytic function defined on D with p(0) = 1 and −1 ≤
B < A ≤ 1 and β �= 0. Assume that

(|β|(A − B) − (1 + |A|)2)2 ≥ 2
(

(1 + |A|)4 + (1 + |A|)3(1 + |B|) (2.9)

+ |β|(A − B)(1 + |A|)(1 + |B|)) + (1 + |A|)2(1 + |B|)2.

If p(z) + βzp′(z)/p(z) ≺ ϕq(z), then p ∈ P[A, B].
Proof Consider � as in Theorem 2.3. Define the analytic function ψ : C \ {0} ×
C × D → C as ψ(r, s; z) = r + βs/r . The function ψ(r, s; z) is given by

ψ(r, s; z) = (1 + Aeiθ)2 + βm(A − B)eiθ

(1 + Aeiθ)(1 + Beiθ)
.
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A simple calculation yields

ψ2(r, s; z) − 1

ψ(r, s; z) =
(1 + Aeiθ)4 + β2m2(A − B)2e2iθ + 2(1 + Aeiθ)2βm(A − B)eiθ−

(1 + Aeiθ)2(1 + Beiθ)2

(1 + Aeiθ)3(1 + Beiθ) + βm(A − B)eiθ(1 + Aeiθ)(1 + Beiθ)

so that

∣
∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1 + Aeiθ)4 + β2m2(A − B)2e2iθ + 2(1 + Aeiθ)2βm(A − B)eiθ−
(1 + Aeiθ)2(1 + Beiθ)2

(1 + Aeiθ)3(1 + Beiθ) + βm(A − B)eiθ(1 + Aeiθ)(1 + Beiθ)

∣
∣
∣
∣
∣
∣
∣
∣

≥
|β2|m2(A − B)2 − |(1 + Aeiθ)2(1 + Beiθ)2| − 2|(1 + Aeiθ)|2βm(A − B)

− |(1 + Aeiθ)4|
|(1 + Aeiθ)3(1 + Beiθ)| + |β|m(A − B)|1 + Aeiθ ||1 + Beiθ |

≥
|β2|m2(A − B)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |A|)2βm(A − B)

− (1 + |A|)4
(1 + |A|)3(1 + |B|) + |β|m(A − B)(1 + |A|)(1 + |B|)

= (|β|m(A − B) − (1 + |A|)2)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |A|)4
(1 + |A|)3(1 + |B|) + |β|m(A − B)(1 + |A|)(1 + |B|)

≥ (|β|(A − B) − (1 + |A|)2)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |A|)4
(1 + |A|)3(1 + |B|) + |β|m(A − B)(1 + |A|)(1 + |B|) (∵ m ≥ 1).

Sincem ≥ 1, a computation gives
∣
∣(ψ2(r, s; z) − 1)/(ψ(r, s; z))∣∣ ≥ 2 if the inequal-

ity (2.9) holds. By Theorem 2.2 the desired result is proved. �

Theorem 2.5 Let p be an analytic function defined on D with p(0) = 1. Suppose
−1 ≤ B < A ≤ 1 and β �= 0 and the following inequality holds:

(|β|(A − B) − (1 + |B|)2)2 ≥ 2
(

(1 + |B|)4 + (1 + |A|)(1 + |B|)3 (2.10)

+ |β|(A − B)(1 + |A|)(1 + |B|)) + (1 + |A|)2(1 + |B|)2.

If (1/p(z)) + β(zp′(z)/p(z)) ≺ ϕq(z), then p ∈ P[A, B].
Proof Consider the analytic function ψ given as ψ(r, s; z) = (1/r) + β(s/r). We
have

ψ(r, s; z) = 1 + Beiθ

1 + Aeiθ
+ β

meiθ(A − B)(1 + Beiθ)

(1 + Beiθ)2(1 + Aeiθ)

= (1 + Beiθ)2 + βmeiθ(A − B)

(1 + Aeiθ)(1 + Beiθ)

By Theorem 2.2 for ψ ∈ �[�, q], it is enough to show that |(ψ2 − 1)/ψ| ≥ 2. Con-
sider
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∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1 + Beiθ)4 + β2m2e2iθ(A − B)2 + 2(1 + Beiθ)2βmeiθ(A − B)

− (1 + Aeiθ)2(1 + Beiθ)2

(1 + Aeiθ)(1 + Beiθ)3 + βmeiθ(A − B)(1 + Aeiθ)(1 + Beiθ)

∣
∣
∣
∣
∣
∣
∣
∣

≥
|β2|m2(A − B)2 − |(1 + Aeiθ)2(1 + Beiθ)2| − 2|(1 + Beiθ)|2

βm(A − B) − |(1 + Beiθ)4|
|(1 + Aeiθ)(1 + Beiθ)3| + |β|m(A − B)|1 + Aeiθ||1 + Beiθ|

= (|β|m(A − B) − (1 + |B|)2)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |B|)4
|(1 + |A|)(1 + |B|)3| + |β|m(A − B)(1 + |A|)(1 + |B|)

≥ (|β|(A − B) − (1 + |B|)2)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |B|)4
|(1 + |A|)(1 + |B|)3| + |β|m(A − B)(1 + |A|)(1 + |B|)

As analysis done in previous theorem, we conclude that
∣
∣(ψ2(r, s; z) − 1)/

(ψ(r, s; z))| ≥ 2 if the inequality (2.10) holds. �

Theorem 2.6 Let−1 ≤ B < A ≤ 1andβ �= 0.Weassume the following inequality:

(|β|(A − B) − (1 + |A|)(1 + |B|))2 ≥ 2
(

(1 + |A|)2(1 + |B|)2 + (1 + |A|)3(1 + |B|) (2.11)

+ |β|(A − B)(1 + |A|)2) + (1 + |A|)4.

If the function p ∈ P satisfies (1/p(z)) + β(zp′(z)/p2(z)) ≺ ϕq(z), then
p ∈ P[A, B].
Proof Consider � as in Theorem 2.3. Let ψ : C \ {0} × C × D → C be an analytic
function given as

ψ(r, s; z) = 1

r
+ β

s

r2
.

By making use of Theorem 2.2, for ψ ∈ �[�, q] it is enough to show that |(ψ2 −
1)/ψ| ≥ 2. We have

ψ(r, s; z) = (1 + Beiθ)(1 + Aeiθ) + βmeiθ(A − B)

(1 + Aeiθ)2

so that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(

(1 + Beiθ)(1 + Aeiθ) + βmeiθ(A − B)

(1 + Aeiθ)2

)2

− 1

(1 + Beiθ)(1 + Aeiθ) + βmeiθ(A − B)

(1 + Aeiθ)2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

(1 + Aeiθ)2(1 + Beiθ)2 + β2m2e2iθ(A − B)2

+ 2(1 + Aeiθ)(1 + Beiθ)βmeiθ(A − B) − (1 + Aeiθ)4

(1 + Aeiθ)3(1 + Beiθ) + βmeiθ(A − B)(1 + Aeiθ)2

∣
∣
∣
∣
∣
∣
∣
∣
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≥
|β2|m2(A − B)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |A|)

(1 + |B|)βm(A − B) − (1 + |A|)4
|(1 + Aeiθ)3(1 + Beiθ)| + |β|m(A − B)|(1 + Aeiθ)2|

≥
|β2|m2(A − B)2 − (1 + |A|)2(1 + |B|)2 − 2(1 + |A|)

(1 + |B|)βm(A − B) − (1 + |A|)4
(1 + |A|)3(1 + |B|) + |β|m(A − B)(1 + |A|)2

≥ (|β|(A − B) − (1 + |A|)(1 + |B|))2 − (1 + |A|)4 − 2(1 + |A|)2(1 + |B|)2
(1 + |A|)(1 + |B|)3 + |β|m(A − B)(1 + |B|)2

A calculation shows that ∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
≥ 2

whenever inequality (2.11) holds. By Theorem 2.2 the result is evident. �
As an application of Theorems 2.3–2.6, we see that the following subordinations

are sufficient for f ∈ S∗[A, B]:
(1)

z f ′(z)
f (z)

(

1 + β

(

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

))

≺ ϕq(z),

for some β �= 0, −1 ≤ B < A ≤ 1 satisfying the inequality (2.8);
(2)

z f ′(z)
f (z)

(

1 + β

(
z f ′(z)
f (z)

)−1 (

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

))

≺ ϕq(z),

whenever −1 ≤ B < A ≤ 1 and β �= 0 and inequality (2.9) holds;
(3)

f (z)

z f ′(z)
+ β

(

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)

≺ ϕq(z),

where −1 ≤ B < A ≤ 1, β �= 0 and the inequality (2.10) holds;
(4)

(
z f ′(z)
f (z)

)−1 (

1 + β

(

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

))

≺ ϕq(z),

whenever −1 ≤ B < A ≤ 1 and β �= 0 and the inequality (2.11) holds.

3 Further Results

This section dealswith an alternative proof of thefirst-order differential subordination
results by using admissibility condition, as demonstrated by authors [7], in which
certain conditions are determined so that p(z) ≺ (1 + Az)/(1 + Bz) whenever 1 +
βzp′(z)/pk(z) ≺ ϕq(z) (k = 0, 1, 2) hold.
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Theorem 3.1 Let p be an analytic function defined on D with p(0) = 1. For β �= 0
and −1 ≤ B < A ≤ 1, assume that

|β|2(A − B)2 ≥ 2
(

(1 + |B|)4 + 2|β|(A − B)(1 + |B|2)) (3.1)

If 1 + βzp′(z) ≺ ϕq(z), then p ∈ P[A, B].
Proof Let � as in Theorem 2.3. Consider the analytic function ψ(r, s; z) = 1 + βs.
By Theorem 2.2 for ψ ∈ �[�; A, B], we have to show ψ(r, s; z) /∈ �. The function
ψ(r, s; z) is given by

ψ(r, s; z) = 1 + β
m(A − B)eiθ

(1 + Beiθ)2

so that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣
∣
∣

β2m2(A − B)2e2iθ + 2βmeiθ(A − B)(1 + Beiθ)2

(1 + Beiθ)2[(1 + Beiθ)2 + βmeiθ(A − B)]
∣
∣
∣
∣

≥ β2m2(A − B)2 − 2|β|m(A − B)(1 + |B|)2
(1 + |B|)4 + |β|m(A − B)(1 + |B|)2

=
(|β|m(A − B) − (1 + |B|)2)2 − (1 + |B|)4

(1 + |B|)4 + |β|m(A − B)(1 + |B|)2

≥
(|β|(A − B) − (1 + |B|)2)2 − (1 + |B|)4

(1 + |B|)4 + |β|m(A − B)(1 + |B|)2

A simple calculation shows that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
≥ 2

whenever the inequality (3.1) holds. Hence Theorem 2.2 concludes the desired
proof. �

Theorem 3.2 Let p be an analytic function defined on D with p(0) = 1 and β �= 0
and −1 ≤ B < A ≤ 1. We assume that

|β|2(A − B)2 ≥ 2
(

(1 + |B|)2(1 + |A|)2 + 2|β|(A − B)(1 + |A|)(1 + |B|)).
(3.2)

If 1 + βzp′(z)/p(z) ≺ ϕq(z), then p ∈ P[A, B].
Proof Let q and � be as in Theorem 3.1. Consider the analytic function ψ : C \
{0} × C × D → C defined as ψ(r, s, ; z) = 1 + β s

r . The required subordination is
established if ψ ∈ �[�; A, B]. Thus by Theorem 2.2 it is enough to show that
|(ψ2 − 1)/ψ| ≥ 2. We have
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ψ(r, s, ; z) = 1 + β
m(A − B)eiθ

(1 + Beiθ)(1 + Aeiθ)

so that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

β2m2(A − B)2eiθ + 2βm(A − B)(1 + Aeiθ)(1 + Beiθ)

(1 + Aeiθ)2(1 + Beiθ)2 + βmeiθ(1 + Aeiθ)(1 + Beiθ)

∣
∣
∣
∣
∣

≥ |β|2m2(A − B)2 − 2|β|m(A − B)(1 + |A|)(1 + |B|)
(1 + |A|)2(1 + |B|)2 + |β|m(A − B)(1 + |A|)(1 + |B|)

= (|β|m(A − B) − (1 + |A|)(1 + |B|))2 − (1 + |A|)2(1 + |B|)2
(1 + |A|)2(1 + |B|)2 + |β|m(A − B)(1 + |A|)(1 + |B|)

≥ (|β|(A − B) − (1 + |A|)(1 + |B|))2 − (1 + |A|)2(1 + |B|)2
(1 + |A|)2(1 + |B|)2 + |β|m(A − B)(1 + |A|)(1 + |B|) ≥ 2

whenever the inequality (3.2) holds. Thus ψ /∈ � and Theorem 2.2 yields the desired
subordination. �
Theorem 3.3 Let p be an analytic function defined on D with p(0) = 1 and β �= 0
and −1 ≤ B < A ≤ 1. We assume that

|β|2(A − B)2 ≥ 2
(

(1 + |A|)4 + 2|β|(A − B)(1 + |A|2)) (3.3)

If 1 + βzp′(z)/p2(z) ≺ ϕq(z) then p(z) ≺ (1 + Az)/(1 + Bz).

Proof Consider the functionq and the domain� as inTheorem3.1. Letψ : C \ {0} ×
C × D → C be the analytic function given by ψ(r, s; z) = 1 + βs/r2. By making
use of Theorem 2.2, ψ ∈ �[�, q] whenever |(ψ2 − 1)/ψ| ≥ 2. We have

ψ(r, s; z) = 1 + β
m(A − B)eiθ

(1 + Aeiθ)2

so that

∣
∣
∣
∣

ψ2(r, s; z) − 1

ψ(r, s; z)
∣
∣
∣
∣
=

∣
∣2βm(A − B) + (β2m2(A − B)2 + 2βm(A − B)2A)eiθ

+ 2βm(A − B)A2e2iθ
∣
∣

|(1 + Aeiθ)4 + βmeiθ(A − B)(1 + Aeiθ)2|
≥ β2m2(A − B)2 − 2|β|m(A − B)(1 + |A|)2

(1 + |A|)4 + |β|m(A − B)(1 + |A|)2

= (|β|m(A − B) − (1 + |A|)2)2 − (1 + |A|)4
(1 + |A|)4 + |β|m(A − B)(1 + |A|)2

≥ (|β|(A − B) − (1 + |A|)2)2 − (1 + |A|)4
(1 + |A|)4 + |β|m(A − B)(1 + |A|)2

≥ 2

whenever the inequality (3.3) holds. Hence by Theorem 2.2 we get the desired sub-
ordination. �
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As an application of Theorems 3.1–3.3, we see that the following subordinations
are sufficient for f ∈ S∗[A, B]:
(1)

1 + β
z f ′(z)
f (z)

(

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)

≺ ϕq(z)

for some β �= 0 and −1 ≤ B < A ≤ 1 and the inequality (3.1) holds;
(2)

1 + β

(

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)

≺ ϕq(z)

for some β �= 0, if the inequality (3.2) holds;
(3)

1 + β

(
z f ′(z)
f (z)

)−1 (

1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)

≺ ϕq(z)

for some β �= 0, if the inequality (3.3) holds.
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Coefficient Bounds for a Unified Class of
Holomorphic Functions

Mridula Mundalia and Sivaprasad Kumar Shanmugam

Abstract In the present paper, sharp initial coefficient bounds have been estimated
for functions in the newly defined classesSk

γ,δ(�) andSk
γ,δ,h(�), which in fact, unifies

many earlier known classes. Further, sharp bounds of the Fekete–Szegö coefficient
functional for functions in the classes introduced here are obtained and special cases
of our results are also pointed out.

Keywords Univalent functions · Starlike functions · Convex functions ·
Fekete–Szegö coefficient functional · Subordination
2010 Mathematics Subject Classification 30C45 · 30C80

1 Introduction and Preliminaries

Let A be the class all of functions f that are holomorphic in the open unit disk
D = {z ∈ C : |z| < 1}, possessing the series expansion of the form

f (z) = z +
∞∑

n=2

anz
n. (1.1)

Let S be the subclass of A consisting of univalent functions. Let h and g be
holomorphic functions defined in D, h is said to be subordinate to g, denoted by
h ≺ g, if there exists a Schwarz function v : D → Dwith v(0) = 0 such that h(z) =
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g(v(z)). Equivalently, if g is univalent in D, then h(z) ≺ g(z) (z ∈ D) if and only if
h(0) = g(0) and h(D) ⊂ g(D).

In the past, many authors found coefficient bounds for the class of functions
defined through subordination involving z f ′(z)/ f (z) or 1 + z f ′′(z)/ f ′(z) or f (z)/z
or f ′(z) or their ratios or product of powers of these expressions or in terms of
their weighted sum or product (See [6, 8, 11, 13, 16, 18–21, 27–31]). In the present
paper, an attempt has beenmade to unify all these analytic characterizing expressions
into one, which is given below in (1.2) and thereby many well known classes have
been clubbed together, which in fact, allows for various cross combinations of the
abovementioned expressions.

(
z f ′(z) + αz2 f ′′(z)

αz f ′(z) + (1 − α) f (z)

)k (
β f ′(z) + (1 − β)

f (z)

z

)1−k

. (1.2)

For brevity we shall assume Fm(z) := mz f ′(z) + (1 − m) f (z), so that the ex-
pression in (1.2) becomes:

(
zF ′

α(z)/Fα(z)
)k (

Fβ(z)/z
)1−k

. We further choose δ =
αk + β(1 − k), since α and β vanish along with k and 1 − k, when they reduce to
zero, respectively. Throughout the paper we shall assume that � is a holomorphic
univalent function inD such that Re�(z) > 0 (z ∈ D). Also let �(D) be symmetric
with respect to the real axis and starlike with respect to 1 satisfying �(0) = 1 and
�′(0) > 0. We assume that � is of the form

�(z) = 1 +
∞∑

n=1

Bnz
n.

Clearly, �′(0) = B1 > 0.

Definition 1.1 A function f in A is said to be in the class Sk
γ,δ(�), if it satisfies:

1 + 1

γ

((
zF ′

α(z)

Fα(z)

)k (
Fβ(z)

z

)1−k

− 1

)
≺ �(z), (1.3)

where Fm(z) := mz f ′(z) + (1 − m) f (z) with m = α or β and δ = αk + β(1 − k),
with γ ∈ C\{0}, 0 ≤ α,β, k ≤ 1.

The Hadamard product (or convolution) of f and h in A, of the form f (z) =
z + a2z2 + a3z3 + · · · and h(z) = z + h2z2 + h3z3 + · · · , respectively, is defined
by

f ∗ h = z +
∞∑

n=2

anhnz
n.

We assume that the coefficients of h are positive. We define the class Sk
γ,δ,h(�)

consisting of functions f in A satisfying f ∗ h ∈ Sk
γ,δ(�). If h(z) = z(1 − z)−1,
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the class Sk
γ,δ,h(�) reduces to Sk

γ,δ(�). Clearly the class Sk
γ,δ(�) reduces to nu-

merous well known classes for some appropriate choice of parameter. We il-
lustrate some of the important subclasses studied in the past. For k = 1 and
�(z) = (1 + Az)/(1 + Bz), −1 ≤ B < A ≤ 1, we obtain the class S1

γ,α(A, B) =
S1

γ,α((1 + Az)/(1 + Bz)). Additionally, for α = 0, A = 1 and B = −1, the class
S1

γ,0(1,−1) coincides with S∗(γ), the class of starlike functions of complex order γ
(γ ∈ C\{0}), introduced and studied by Nasr and Aouf [21], consisting of functions
f in A satisfying f (z)/z 
= 0 and

Re

(
1 + 1

γ

(
z f ′(z)
f (z)

− 1

))
> 0.

The class of convex functions of complex order γ (γ ∈ C\{0}), introduced by Wia-
trowski [31], consists of functions f in A satisfying the conditions f (z)/z 
= 0 and

Re

(
1 + z f ′′(z)

γ f ′(z)

)
> 0.

This class can be obtained by taking k = α = 1, A = 1 and B = −1, S1
γ,1(1,−1) =

C(γ). When k = 0 and β = 1, we obtain the class S0
γ,1(�) ≡ Rγ(�) consisting

of functions which are closely related to the class of functions with positive real
part. Dixit et al. [5] introduced the classRγ(A, B), −1 ≤ B < A ≤ 1 consisting of
functions f in A satisfying:

∣∣∣∣
f ′(z) − 1

γ(A − B) − B( f ′(z) − 1)

∣∣∣∣ < 1.

Note that S0
γ,1(A, B) = Rγ(A, B), −1 ≤ B < A ≤ 1.

Here below, we discuss some special cases of our class when γ = 1. For �(z) =
(1 + Az)/(1 + Bz), we obtain the following new class

Sk
δ (A, B) =Sk

1,δ((1 + Az)/(1 + Bz))

=
{
f ∈ A :

(
z f ′(z) + αz2 f ′′(z)

αz f ′(z) + (1 − α) f (z)

)k (
β f ′(z) + (1 − β)

f (z)

z

)1−k

≺ 1 + Az

1 + Bz

}
.

Particularly for �(z) = (1 + (1 − 2τ )z)/(1 − z), 0 ≤ τ < 1, the class Sk
γ,δ(�) re-

duces to

Sk
δ (τ ) =Sk

1,δ((1 + (1 − 2τ )z)/(1 − z))

=
{
f ∈ A : Re

((
z f ′(z) + αz2 f ′′(z)

αz f ′(z) + (1 − α) f (z)

)k (
β f ′(z) + (1 − β)

f (z)

z

)1−k
)

> τ

}
.

By taking k = 1 and α = 0, we obtain Ma and Minda class of starlike functions
[16] S∗(�) = S1

1,0(�). Further, if �(z) = (1 + Az)/(1 + Bz), −1 ≤ B < A ≤ 1,
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we obtain the class of Janowski starlike functions [10]. Note that for A = 1 − 2τ
and B = −1, we obtain the class of starlike functions of order τ (0 ≤ τ < 1),
S1
1,0(1 − 2τ ,−1) = S∗(τ ) introduced by Robertson [26]. Further if τ = 0, we ob-

tain S1
1,0(1,−1) = S∗ [6, 8, 23], the class of starlike functions. By taking k=1

and α = 1, we obtain the Ma and Minda class of convex functions S1
1,1(�) =

C(�)[16]. Particularly, if �(z) = (1 + Az)/(1 + Bz), −1 ≤ B < A ≤ 1, we ob-
tain S1

1,1(A, B) = K(A, B), the class of Janowski convex functions [9]. Further, if
A = −B = 1, the class S1

1,1(A, B) reduces to give the well known class of convex
functions S1

1,1(1,−1) = C (See [6, 8, 23]). Observe that in the case when k = 0 and
β = 1, the class S0

1,1(�) coincides with R(�), a subclass of close-to-convex func-
tions. Particularly, for�(z) = (1 + Az)/(1 + Bz), the classS0

1,1(A, B) = R(A, B),
−1 ≤ B < A ≤ 1, studied by Goel and Mehrok [7], consists of functions f ∈ A for
which

∣∣ f ′(z) − 1
∣∣ < |B f ′(z) − A|.MacGregor [17] systematically studied the class

R consisting of functions f inA, whose derivative has a positve real part. Note that
the class S0

1,1(1,−1) coincides with R. With A = 1 and B = 0, the class S0
1,1(1, 0)

coincides with a subclass R(1) of R, studied by MacGregor [17], consisting of
functions f in A satisfying the inequality | f ′(z) − 1| < 1.

The famous Beiberbach’s conjecture, proved by de Branges in 1985, states that
|an| ≤ n for any f ∈ S. This is a sharp bound and koebe function works as the
extremal function for this estimate. Fekete and Szegö established a sharp bound for
the following functional for functions in class S,

|a3 − μa22 | ≤

⎧
⎪⎨

⎪⎩

4μ − 3, μ ≥ 1;
1 + exp

(−2μ
1−μ

)
, 0 ≤ μ ≤ 1;

3 − 4μ, μ ≤ 0.

This functional is commonly known as the Fekete–Szegö functional which was stud-
ied by Fekete and Szegö in 1933. Ma and Minda [16] investigated this problem for
some special classes of convex and starlike functions, C(�) and S∗(�) respectively.
The bounds for the quantity |a3 − μa22 |, for close-to-convex functions was studied
by Kim et al. [14] and Cho et al. [4]. Ali et al. in [2] established a sharp result for
this functional for some subclasses of p-valent functions. Many authors [1, 3, 15,
22, 25] have obtained this bound for many subclasses of S.

Let ϒ be the class of all Schwarz functions v of the form

v(z) =
∞∑

n=1

vnz
n (1.4)

defined in D, satisfying v(0) = 0 and |v(z)| < 1.
Lemmas stated below are required in sequel to derive our main results.

Lemma 1.2 ([2]) If v ∈ ϒ , then
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|v2 − tv2
1 | ≤

⎧
⎨

⎩

−t if t ≤ −1;
1 if − 1 ≤ t ≤ 1;
t if t ≥ 1.

When t < −1 or t > 1, equality holds if and only if v(z) = z or one of its rotations. If
−1 < t < 1, then equality holds if and only if v(z) = z2 or one of its rotations. When
t = −1 then equality holds if and only if v(z) = z(λ + z)/(1 + λz), (0 ≤ λ ≤ 1) or
one of its rotations. For t = 1, equality holds if and only if v(z) = −z(λ + z)/(1 +
λz) (0 ≤ λ ≤ 1) or one of its rotations. Also the sharp upper bound above can be
improved as follows when −1 < t < 1:

|v2 − tv2
1 | + (1 + t)|v1|2 ≤ 1 (−1 < t ≤ 0) (1.5)

and

|v2 − tv2
1 | + (1 − t)|v1|2 ≤ 1 (0 < t < 1). (1.6)

Lemma 1.3 ([12]) Let v ∈ ϒ , then for any t ∈ C,

|v2 − tv2
1 | ≤ max{1; |t |}.

Extremal functions are v(z) = z2 or v(z) = z.

In this paper, sharp bound for the Fekete-Szegö functional |a3 − μa22 |, where
μ ∈ C, is obtained for functions belonging to Sk

γ,δ(�). Apart from that sharp bounds
for initial coefficients a2 and a3 have been found and their extremal functions have
been obtained. A sharp bound for a4 is obtained for γ = 1.

2 Main Results

In the following sections Lemmas1.2 and 1.3 have been used to derive our main
results.

Theorem 2.1 Let f be in the class Skγ,δ(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, for any μ ∈ C, we have

|a3 − μa22 | ≤ |γ|B1

M1
max

{
1;

∣∣∣∣
γB1(2μM1 − M2)

2(1 + δ)2
− B2

B1

∣∣∣∣

}
, (2.1)

where
M1 = 1 + k(1 + 4α) + 2β(1 − k) (2.2)

and
M2 = k((3 − k)(1 + α)2 − (1 − k)(1 + β)(1 + 2α − β)). (2.3)
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Further,

|a2| ≤ |γ|B1

1 + δ
and |a3| ≤ |γ|B1

M1
max

{
1;

∣∣∣∣
B2

B1
+ γB1M2

2(1 + δ)2

∣∣∣∣

}
. (2.4)

These estimates are sharp.

Proof Since f is in Skγ,δ(�), then there exists a holomorphic function v in ϒ such
that

1 + 1

γ

((
zF ′

α(z)

Fα(z)

)k (
Fβ(z)

z

)1−k

− 1

)
= �(v(z)). (2.5)

Upon expanding Fα, Fβ in terms of f and further using power series expansion of
f , we obtain

(
zF ′

α(z)

Fα(z)

)k (
Fβ(z)

z

)1−k

=
(

z f ′(z) + αz2 f ′′(z)
αz f ′(z) + (1 − α) f (z)

)k (
β f ′(z) + (1 − β)

f (z)

z

)1−k

(2.6)

= 1 + (1 + δ)a2z + 1

2

(
a22M2 + 2a3M1

)
z2 + · · · .

Also,
�(v(z)) = 1 + B1v1z + (

B2v
2
1 + B1v2

)
z2 + · · · .

Therefore, using (2.5), we obtain the coefficients a2 and a3 as follows:

a2 = γB1v1

1 + δ
(2.7)

and

a3 = γ

(
B2

M1
+ γB2

1M2

2(1 + δ)2M1

)
v2
1 + γB1

M1
v2. (2.8)

On substituting these values in the Fekete–Szegö coefficient functional, it reduces to

|a3 − μa22 | ≤ |γ|B1

M1

∣∣∣∣v2 −
(

γB1(2μM1 − M2)

2(1 + δ)2
− B2

B1

)
v2
1

∣∣∣∣ . (2.9)

The result now follows by applying Lemma 1.3. Bounds for the first two coefficients
a2 and a3, can be obtained directly from inequality (2.1). Following functions play
the role of extremal functions:



Coefficient Bounds for a Unified Class of Holomorphic Functions 203

f1(z) = z + γB1

(1 + δ)
z2 + γB1

M1

(
B2

B1
+ γM2B1

2(1 + δ)2

)
z3

f2(z) = z + γB1

M1
z3,

where f1(z) is the extremal function for the second coefficient and Fekete–Szegö
functional. Extremal function for the third coefficient is given by

⎧
⎨

⎩

f1(z) when |2(1 + δ)2B2 + γB2
1M2| > 2B1(1 + δ)2,

f2(z) when |2(1 + δ)2B2 + γB2
1M2| ≤ 2B1(1 + δ)2.

By choosing v(z) = z and z2 respectively, in Eq. (2.5) the above extremal functions
can be obtained. �

Remark 2.2 By taking k = 0 and β = 1, in the above theorem, inequality in
(2.1) reduces to an inequality given in [2, Theorem 3 (for p = 1)]. Further, with
�(z) = (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), Theorem 2.1 reduces to [5, The-
orem 4]. Also note that with γ = k = 1 and α = 0, inequality (2.1) reduces to give
the inequality in [2, Theorem 1 (for p = 1)].

It is presumed that, M1 and M2 carry their expressions as stated in Eqs. (2.2) and
(2.3), respectively.

By choosing suitable values ofα,β and k, in Theorem2.1,we obtain the following
corollary:

Corollary 2.3 Let f be in the class Sk
γ,δ(�), then for μ ∈ C,

(i) If k = 1, then

|a3 − μa22 | ≤ |γ|B1

2(1 + 2α)
max

{
1;

∣∣∣∣γB1

(
2μ(1 + 2α)

(1 + α)2
− 1

)
− B2

B1

∣∣∣∣

}
.

(ii) If k = 0, then

|a3 − μa22 | ≤ |γ|B1

(1 + 2β)
max

{
1;

∣∣∣∣
μγB1(1 + 2β)

(1 + β)2
− B2

B1

∣∣∣∣

}
.

For γ = 1 and α = 1 Theorem 2.1 reduces to give the following bound for the
Ma and Minda class of convex functions S1

1,1(�),

|a3 − μa22 | ≤ B1

6
max

{
1;

∣∣∣∣B1

(
3μ

2
− 1

)
− B2

B1

∣∣∣∣

}
.

This result is sharp.
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Remark 2.4 For any real μ, second part of Corollary 2.3 for γ = 1 and α = 1 co-
incides to give a result derived by Ma and Minda in [16, Theorem 3]. Further by
taking �(z) = (1 + z)/(1 − z), a sharp estimate, |a3 − μa22 | ≤ max {1/3, |μ − 1|}
is obtained for any μ ∈ C. This result was obtained by Keogh et al. [12, Corollary
1].

Theorem 2.5 Let f be in the class Skγ,δ(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, we have

|a4| ≤ |γ|B1

J1

(
H(q1, q2) + |γ J2|B1

(1 + δ)M1
max{1; |t |}

)
, (2.10)

where H(q1, q2) is as defined in [24, Lemma 2], with

q1 = 2B2

B1
, q2 = B3

B1
and t = γB1 J3

6J2(1 + δ)2
− B2

B1
,

where

J1 = 1 + k(2 + 9α) + 3β(1 − k),

J2 = k
(
2α2(2k − 5) + α(6β − 6βk + k − 10) + β(2β − 1)(k − 1) − 3

)

and

J3 = − k(α + 1)((α + 1)2(k − 7)(k − 2)M1 + 3(2α + 1)(2k − 5)M2)

+ (k − 1)k(k(−3αβ + 3α(α + 1) + β2 − β + 1) + (β + 1)M1((3α + β + 4)

× (−3α + β − 2)) + 3M2(α(6β + 5) − 2β2 + β + 2)).

Proof Upon using Eq. (2.6), the fourth coefficient is given by

a4 = γB1

J1

((
v3 + 2B2

B1
v1v2 + B3

B1
v3
1

)
− γB1 J2v1

(1 + δ)M1
(v2 − tv2

1)
)
.

Now by applying Lemma 1.3 to the above expression together with [24, Lemma 2],
bound for the fourth coefficient can be established. �

Remark 2.6 For k = 0 and β = 1, inequality in Theorem 2.5 reduces to give the
inequality in [2, Theorem 3 (for p = 1)].

We now derive the following result for functions in the class Sk
1,δ(�) = Sk

δ (�).

Theorem 2.7 Let f be in the class Skδ (�) and�(z) = 1 + B1z + B2z2 + · · · . Then



Coefficient Bounds for a Unified Class of Holomorphic Functions 205

|a3 − μa22 | ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−B1t

M1
whenμ ≤ σ1,

B1

M1
whenσ1 ≤ μ ≤ σ2,

B1t

M1
whenμ ≥ σ2,

(2.11)

where

t = B1(2μM1 − M2)

2(1 + δ)2
− B2

B1
.

Further, if σ1 ≤ μ ≤ σ3, then

|a3 − μa22 | + (1 + δ)2

B1M1

{
1 − B2

B1
+ B1(2μM1 − M2)

2(1 + δ)2

}
|a2|2 ≤ B1

M1
. (2.12)

If σ3 ≤ μ ≤ σ2, then

|a3 − μa22 | + (1 + δ)2

B1M1

{
1 + B2

B1
− B1(2μM1 − M2)

2(1 + δ)2

}
|a2|2 ≤ B1

M1
. (2.13)

where

σ1 = (1 + δ)2

B1M1

(
B2

B1
− 1

)
+ M2

2M1
, σ2 = (1 + δ)2

B1M1

(
B2

B1
+ 1

)
+ M2

2M1
and σ3 = M2

2M1
+ (1 + δ)2B2

B2
1M1

.

(2.14)

Further,

|a2| ≤ B1

1 + δ

and

|a3| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2

M1
+ B2

1M2

2(1 + δ)2M1
when 2(B1 − B2)(1 + δ)2 ≤ B2

1M2,

B1

M1
when 2(B1 − B2)(1 + δ)2 ≥ B2

1M2 or

−2(B1 + B2)(1 + δ)2 ≤ B2
1M2,

− B2

M1
− B2

1M2

2(1 + δ)2M1
when − 2(B1 + B2)(1 + δ)2 ≥ B2

1M2.

These estimates are sharp.
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Proof Proceeding as in Theorem 2.1, the bounds in inequalities (2.11)–(2.13) can
be established by applying Lemma 1.2. For sharpness we define the functions K�n :
D → C (n = 2, 3, . . . ), satisfying:

1 + 1

γ

⎛

⎝
(

zK ′
�n(z) + αz2K ′′

�n(z)

αzK ′
�n(z) + (1 − α)K�n(z)

)k (
βK ′

�n(z) + (1 − β)
K�n(z)

z

)1−k

− 1

⎞

⎠ = �(zn−1),

with K�n(0) = 0, K ′
�n(0) = 1, Hλ andGλ (0 ≤ λ ≤ 1)with Hλ(0) = 0, H ′

λ(0) = 1
and Gλ(0) = 0, G ′

λ(0) = 1,, respectively, satisfying the following:

1 + 1

γ

⎛

⎝
(

zH ′
λ(z) + αz2H ′′

λ (z)

αzH ′
λ(z) + (1 − α)Hλ(z)

)k (
βH ′

λ(z) + (1 − β)
Hλ(z)

z

)1−k

− 1

⎞

⎠ = �

(
z(λ + z)

1 + λz

)

and

1 + 1

γ

⎛

⎝
(

zG′
λ(z) + αz2G′′

λ(z)

αzG′
λ(z) + (1 − α)Gλ(z)

)k (
βG′

λ(z) + (1 − β)
Gλ(z)

z

)1−k
− 1

⎞

⎠ = �

(−z(λ + z)

1 + λz

)
.

Clearly functions K�n, Hλ, Gλ ∈ Sk
δ (�). For μ < σ1 or μ > σ2 extremal function

for inequality (2.11) is K� = K�2 or one of its rotations. Extremal function for
σ1 < μ < σ2 is K�3 or any of its rotations. When μ = σ1, Hλ or any of its rotations
works as the extremal function. For μ = σ2 extremal function is Gλ or any of its
rotations. Bounds for a2 and a3 can be directly obtained from inequality (2.11). �
Theorem 2.8 Let f be in the class Skδ (�)and�(z) = 1 + B1z + B2z2 + · · · .Then,
for any μ ∈ C, we have

|a3 − μa22 | ≤ B1

M1
max

{
1;

∣∣∣∣
B1(2μM1 − M2)

2(1 + δ)2
− B2

B1

∣∣∣∣

}
. (2.15)

This result is sharp.

Proof Inequality (2.15) can be derived by applying Lemma 1.3. �
Remark 2.9 Let μ be a real number. When k = α = 1, Theorem 2.7 reduces to a
result proved in [16,Theorem3].Whenβ = 1andα = 0,Theorem2.7 coincideswith
a known result proved in [13, Theorem 2.11]. For α = β = 1, Theorem 2.7 reduces
to give a result derived in [13, Theorem 2.15]. For α = β = 0, and α = 1, β = 0,
Theorem 2.7 reduces to [13, Theorem 2.19] and [13, Theorem 2.23] respectively.
Further, all the special cases referred therein also become particular cases of our
result.

Theorem 2.10 Let f be in the class Skδ (�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, we have

|a4| ≤ B1

J1
H(q1, q2), (2.16)
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where H(q1, q2) is as defined in [24, Lemma 2], with

q1 = 2B2

B1
− B1 J2

(1 + δ)M1
and q2 = B3

B1
− B2 J2

M1(1 + δ)
+ B2

1 J3
6M1(1 + δ)3

,

where J1, J2 and J3 are as defined in Theorem 2.5. This result is sharp.

Proof Using (2.6) with suitable rearrangement of terms, we obtain the following
expression for the fourth coefficient:

a4 = B1

J1

(
v3 +

(
2B2

B1
− B1 J2

(1 + δ)M1

)
v1v2 +

(
B3

B1
− B2 J2

M1(1 + δ)
+ B2

1 J3
6M1(1 + δ)3

)
v31

)
.

Nowby an application of Lemma2 in [24], we arrive at the bound of fourth coefficient
as stated above. �

Remark 2.11 When k = 1 andα = 0, inequality (2.16) reduces to give the inequality
in [2, Theorem 1 (for p = 1)]. For k = 0 and β = 1, inequality (2.16) of Theorem
2.10 reduces to give the inequality in [2, Theorem 3 (for p = 1 and b = 1)]. If
k = α = 1 in the above theorem, we obtain a sharp bound for a4 for functions in the
class S1

1,1(�), given by:

|a4| ≤ B1

12
H(q1, q2),where q1 = 4B2 + 3B2

1

2B1
, q2 = 2B3 + 3B2B1 + B3

1

2B1
.

Further, if �(z) = (1 + z)/(1 − z), then |a4| ≤ 1 [8], which is a sharp estimate for
the class of convex functions.

Proceeding as in the previous results we now establish the coefficient bounds for
functions in the class Sk

γ,δ,h(�).

Theorem 2.12 Let f be in the class Skγ,δ,h(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, for any μ ∈ C, we have

|a3 − μa22 | ≤ |γ|B1

h3M1
max

{
1;

∣∣∣∣
γB1(2μh3M1 − h22M2)

2h22(1 + δ)2
− B2

B1

∣∣∣∣

}
. (2.17)

Further,

|a2| ≤ |γ|B1

h2(1 + δ)
and |a3| ≤ |γ|B1

h3M1
max

{
1;

∣∣∣∣
B2

B1
+ γh22B1M2

2h22(1 + δ)2

∣∣∣∣

}
. (2.18)

These estimates are sharp.

Theorem 2.13 Let f be in the class Skγ,δ,h(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, we have
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|a4| ≤ |γ|B1

h4 J1

(
H(q1, q2) + |γ J2|B1

M1(1 + δ)
max{1; |t |}

)
, (2.19)

where q1, q2, H(q1, q2), J1 and J2 are as defined in Theorem 2.5.

Theorem 2.14 Let f be in the class Skδ,h(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, we have

|a3 − μa22 | ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−B1t

h3M1
whenμ ≤ σ1,

B1

h3M1
whenσ1 ≤ μ ≤ σ2,

B1t

h3M1
whenμ ≥ σ2,

(2.20)

where

t = B1(2μh3M1 − h22M2)

2h22(1 + δ)2
− B2

B1
.

Further, if σ1 ≤ μ ≤ σ3, then,

|a3 − μa22 | + (1 + δ)2h22
h3B1M1

{
1 − B2

B1
+ B1(2μh3M1 − h22M2)

2h22(1 + δ)2

}
|a2|2 ≤ B1

h3M1
.

(2.21)
If σ3 ≤ μ ≤ σ2, then,

|a3 − μa22 | + (1 + δ)2h22
h3B1M1

{
1 + B2

B1
− B1(2μh3M1 − h22M2)

2h22(1 + δ)2

}
|a2|2 ≤ B1

h3M1
.

(2.22)
where

σ1 = h22(1 + δ)2

h3B1M1

(
B2

B1
− 1

)
+ h22M2

2h3M1
, σ2 = h22(1 + δ)2

h3B1M1

(
B2

B1
+ 1

)
+ h22M2

2h3M1

(2.23)

and σ3 = h22M2

2h3M1
+ h22(1 + δ)2B2

h3B2
1M1

. (2.24)

Further,

|a2| ≤ B1

h2(1 + δ)

and
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|a3| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2
h3M1

+ h22B
2
1M2

2h22h3(1 + δ)2M1
when 2h22(1 + δ)2(B1 − B2) ≤ h22B

2
1M2,

B1
h3M1

when 2h22(1 + δ)2(B1 − B2) ≥ B2
1M2 or

−2h22(B1 + B2)(1 + δ)2 ≤ B2
1M2,

− B2
h3M1

− h22B
2
1M2

2h22h3(1 + δ)2M1
when − 2h22(B1 + B2)(1 + δ)2 ≥ h22B

2
1M2.

These estimates are sharp.

Theorem 2.15 Let f be in the class Skδ,h(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, for any μ ∈ C, we have

|a3 − μa22 | ≤ B1

h3M1
max

{
1;

∣∣∣∣
B1(2μh3M1 − h22M2)

2h22(1 + δ)2
− B2

B1

∣∣∣∣

}
. (2.25)

This result is sharp.

Theorem 2.16 Let f be in the class Skδ,h(�) and �(z) = 1 + B1z + B2z2 + · · · .

Then, we have

|a4| ≤ B1

h4 J1
H(q1, q2), (2.26)

where q1, q2, J1 and H(q1, q2) are as defined in Theorem 2.10. This result is sharp.
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Bohr Radius for Certain Analytic
Functions

Naveen Kumar Jain and Shalu Yadav

Abstract For an analytic self-mapping f (z) = ∑∞
n=0 anz

n of the unit disk D, it is
well-known that

∑∞
n=0 |an| |z|n ≤ 1 for |z| ≤ 1/3 and the number 1/3, known as the

Bohr radius for the class of analytic self-mappings of D, is sharp. We have obtained
the Bohr radius for the class of α-spiral functions of order ρ and the Bohr radius for
the class of analytic functions f defined on the unit disk satisfying the differential
subordination f (z) + βz f ′(z) + γz2 f ′′(z) ≺ h(z).

Keywords Bohr radius · Convex function · Starlike function · Spiral function ·
Convolution
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1 Introduction

Let D := {z ∈ C : |z| < 1} denote the unit disk in C and H be the class of analytic
functions defined inD. Bohr [8] in 1914 proved that if f (z) = ∑∞

n=0 anz
n is analytic

in D and | f (z)| ≤ 1 for all z ∈ D, then
∑∞

n=0 |anzn| ≤ 1 in the disk |z| ≤ k where
k ≥ 1/6. Bohr [8] pointed out in his paper that the exact value of k was determined
by Wiener, Riesz, and Schur independently. He has also reproduced Wiener’s proof
that k = 1/3. The number 1/3 is known as the Bohr radius for the class of analytic
functions f defined on D and satisfying | f (z)| ≤ 1. Other proofs on the Bohr radius
can be found in [15–17, 20, 22]. The Bohr’s theorem received much attention after
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the work by Dixon [9]. He showed a connection between the inequality and charac-
terization of Banach algebras that satisfy von Neumann’s inequality. Many authors
have generalized Bohr’s theorem; Aizenberg, Aytuna and Djakov [2, 5] studied the
Bohr’s property of bases for holomorphic function and Ali, Abdulhadi and Ng [4]
found the Bohr radius for the class of starlike logharmonic mappings. Paulsen and
Singh [15] extended Bohr’s inequality to Banach algebras. The relation between
Banach theory and Bohr’s theorem was explored in [7, 10, 11].

The inequality
∑∞

n=0 |anzn| ≤ 1 is known as the Bohr’s inequality. The Bohr’s
inequality can be written in the distance formulation as

d

( ∞∑

n=0

|anzn|, |a0|
)

=
∞∑

n=1

|anzn| ≤ 1 − |a0| = 1 − | f (0)| = d( f (0), ∂D),

where d is the Euclidean distance, ∂D is the boundary of the unit disc. In this form,
the notion of Bohr’s inequality can be generalized to the class of analytic functions
which maps the unit disk onto a domain � as follows:

d

( ∞∑

n=0

|anzn|, |a0|
)

≤ d( f (0), ∂�). (1.1)

The Bohr radius for a class B of analytic functions f (z) = ∑∞
n=0 anz

n mapping the
unit disk into a domain � is the largest radius r∗ ∈ (0, 1] such that every function
f ∈ B satisfies the inequality (1.1) for all z ∈ Dr := {z ∈ C : |z| < r} for every 0 <

r ≤ r∗.
This paper studies the Bohr radius for thewell-known classes of analytic functions

which includes the familiar classes consisting of starlike, convex, and close-to-convex
functions. Let A denote the subclass of H consisting of functions normalized by
f (0) = 0 = f ′(0) − 1 and let S denotes the subclass of A consisting of univalent
functions. For 0 ≤ α < 1, let ST (α) and CV(α) be the subclasses ofA consisting of
functions starlike and convex of order α, respectively. The classes ST = ST (0) and
CV = CV(0) are, respectively, the classes of starlike and convex functions. In Sect. 2,
we study the Bohr radius for the class SP(α, ρ) of α-spiral-like functions of order ρ
(|α| < π/2, 0 ≤ ρ < 1), introduced by Libera in 1967, and defined by

SP(α, ρ) =
{

f ∈ A : Re
(

eiα
z f ′(z)
f (z)

)

> ρ cosα

}

.

In Sect. 3, the Bohr radius is found for the class R(β, γ, h) defined as

R(β, γ, h) := { f ∈ A : f (z) + βz f ′(z) + γz2 f ′′(z) ≺ h(z), z ∈ D}

where β ≥ γ ≥ 0, and h is an analytic convex (starlike) function of order α (α < 1).
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2 Bohr Radius for the Class of α-Spiral Functions
of Order ρ

For |α| < π
2 , 0 ≤ ρ < 1, let

SP(α, ρ) =
{

f ∈ S : Re
(

eiα
z f ′(z)
f (z)

)

> ρ cosα

}

.

In the present section, we find the Bohr radius for the class SP(α, ρ).

Lemma 2.1 If f ∈ SP(α, ρ), then

d(0, ∂ f (D)) ≥ (4 cos2 α)−(1−ρ) cos2 α exp(−α(1 − ρ) sin 2α).

The result is sharp.

Proof By [12, Theorem 1, p. 3], for |z| ≤ r ,

log

∣
∣
∣
∣
f (z)

z

∣
∣
∣
∣ ≥ φ(r),

where

φ(r) = − (1 − ρ) log(1 + 2r
√
1 − r2 sin2 α cosα + r2 cos 2α) cos2 α

− 2(1 − ρ) arctan

[
r(

√
1 − r2 sin2 α + r cosα) sinα

1 + r(
√
1 − r2 sin2 α) cosα − r2 sin2 α

]

cosα sinα.

It gives ∣
∣
∣
∣
f (z)

z

∣
∣
∣
∣ ≥ exp(φ(r))

so that
lim

|z|→1−
| f (z)| ≥ lim

r→1−
exp(φ(r)) = exp( lim

r→1−
φ(r)). (2.1)

Now

lim
r→1−

φ(r) = − (1 − ρ) log(1 + 2 cos2 α + cos 2α) cos2 α

− 2(1 − ρ) arctan

(
2 sinα cosα

1 + cos2 α − sin2 α

)

cosα sinα

= − (1 − ρ) log(4 cos2 α) cos2 α − 2(1 − ρ) arctan (tanα) cosα sinα

= − (1 − ρ) log(4 cos2 α) cos2 α − 2(1 − ρ)α cosα sinα

= − (1 − ρ) log(4 cos2 α) cos2 α − (1 − ρ)α sin 2α. (2.2)
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Equations (2.1) and (2.2) yield

d(0, ∂ f (D)) ≥ exp(−(1 − ρ) log(4 cos2 α) cos2 α − (1 − ρ)α sin 2α)

=(4 cos2 α)−(1−ρ) cos2 α exp(−α(1 − ρ) sin 2α).

The result is sharp for the function

f (z) = z

(1 − z)2s(1−ρ)
, s = exp(−iα cosα).

�

Theorem 2.2 Let f ∈ SP(α, ρ), 0 ≤ ρ < 1 and f (z) = z + ∑∞
n=2 anz

n then

|z| +
∞∑

n=2

|anzn| ≤ d(0, ∂ f (D))

for |z| < r∗, where r∗ ∈ (0, 1] is given by the root of the equation

r +
∞∑

n=2

(
n−1∏

k=1

((k − 1)2 + 4(1 − ρ)(k − ρ) cos2 α)1/2

k

)

rn =

(4 cos2 α)−(1−ρ) cos2 α exp(−α(1 − ρ) sin 2α).

The result is sharp.

Proof By [13], we have,

|z| +
∞∑

n=2

|anzn| ≤ r +
∞∑

n=2

(
n−1∏

k=1

|k + 2s(1 − ρ) − 1|
k

)

rn, s = exp(−iα cosα)

= r +
∞∑

n=2

(
n−1∏

k=1

((k − 1)2 + 4(1 − ρ)(k − ρ) cos2 α)1/2

k

)

rn.

It follows from Lemma2.1 that

(4 cos2 α)−(1−ρ) cos2 α exp(−α(1 − ρ) sin 2α) ≤ d(0, ∂ f (D)). (2.3)

Thus,

|z| +
∞∑

n=2

|anzn| ≤ d(0, ∂ f (D))
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if

r +
∞∑

n=2

(
n−1∏

k=1

((k − 1)2 + 4(1 − ρ) cos2 α(k − ρ))1/2

k

)

rn

≤(4 cos2 α)−(1−ρ) cos2 α exp(−(1 − ρ)α sin 2α),

which provides the required radius.
To prove the sharpness, consider the function f (z) = z/(1 − z)2s(1−ρ),

s = exp(−iα) cosα. For |z| = r∗,

|z| +
∞∑

n=2

|anzn| = r∗ +
∞∑

n=2

(
n−1∏

k=1

|k + 2s(1 − ρ) − 1|
k

)

(r∗)n

= r∗ +
∞∑

n=2

(
n−1∏

k=1

((k − 1)2 + 4(1 − ρ)(k − ρ) cos2 α)1/2

k

)

(r∗)n

= (4 cos2 α)−(1−ρ) cos2 α exp(−α(1 − ρ) sin 2α)

= d(0, ∂ f (D)).

�

For |α| < π/2, let

SP(α) =
{

f ∈ S : Re
(

exp(iα)
z f ′(z)
f (z)

)

> 0

}

.

It is easy to see that putting ρ = 0 in Theorem2.2, leads the Bohr radius for the
class SP(α).

Corollary 2.3 Let f ∈ SP(α), where f (z) = z + ∑∞
n=2 anz

n. Then

|z| +
∞∑

n=2

|anzn| < d(0, ∂ f (D)), |z| < r∗

if r∗ ∈ (0, 1] is the smallest root of the equation

r +
∞∑

n=2

(
n−1∏

k=1

((k − 1)2 + 4k cos2 α)1/2

k

)

rn = (4 cos2 α)− cos2 α exp−α sin 2α).

The result is sharp.

Remark 2.1 Bhowmik et al. [6, Theorem 3, p. 1093] obtained the Bohr radius for the
class of starlike functions of order α(0 ≤ α ≤ 1/2). Putting α = 0 in Theorem2.2
and replacing ρ by α, we obtain the Bohr radius for the class ST (α)(0 ≤ α < 1).
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Corollary 2.4 Let f ∈ ST (α) and f (z) = z + ∑∞
n=2 anz

n. Then

|z| +
∞∑

n=2

|anzn| ≤ d(0, ∂ f (D)), for |z| ≤ r∗ (2.4)

where r∗ ∈ (0, 1] is the root of the equation

(1 − r)2(1−α) − 22(1−α)r = 0.

The result is sharp.

For α = 0, we obtain the Bohr radius for the class of starlike functions.

Corollary 2.5 Let f ∈ ST and f (z) = z + ∑∞
n=2 anz

n. Then the Bohr radius is
3 − 2

√
2. The result is sharp.

3 Bohr Radius for Second-Order Differential
Subordination

For β ≥ 0, define

R(β, h) := { f ∈ A : f (z) + βz f ′(z) ≺ h(z), z ∈ D}.

Many authors have studied the class for some analytic function h. The results for the
classes can be found in [21, 23].

In this section, we study an extension of the above class. Let

R(β, γ, h) := { f ∈ A : f (z) + βz f ′(z) + γz2 f ′′(z) ≺ h(z), z ∈ D}

where β ≥ γ ≥ 0, and h is an analytic convex (starlike) function of order α, (α ≤
1). Ali et al. [3] have shown that f (z) ≺ h(z) whenever f ∈ R(β, γ, h). Muhanna
et al.[1] found the Bohr radius for the classR(β, γ, h) when h is convex or starlike,
respectively.

For two analytic functions f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n , their
Hadamard product (or convolution) is the function f ∗ g defined by

( f ∗ g)(z) =
∞∑

n=0

anbnz
n.

Define a function

φλ(z) =
∫ 1

0

dt

1 − ztλ
=

∞∑

n=0

zn

1 + λn
.
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Ruscheweyh [19] has shown that φλ is convex in D provided Re λ ≥ 0.
For β ≥ λ ≥ 0, let

ν + μ = β − γ, νμ = γ,

and

q(z) =
∫ 1

0

∫ 1

0
h(ztμsμ)dtds = (φν ∗ φμ) ∗ h(z). (3.1)

Since φλ ∗ φμ is a convex function and h is a convex function of order α, from [14,
Theorem 5, p.167], it follows that q is a convex function of order α. It is easy to see
that q ∈ R(β, γ, h). It was shown by Ali et al. [3] that

f (z) ≺ q(z) ≺ h(z)

for all f ∈ R(β, γ, h). Thus, R(β, γ, h) ⊂ S(h).

Theorem 3.1 Let f (z) = ∑∞
n=0 anz

n ∈ R(β, γ, h), and h be convex of order α.
Then ∞∑

n=1

|anzn| ≤ d(h(0), ∂h(D))

for all |z| ≤ r∗, where r∗ ∈ (0, 1] is the smallest positive root of the equation

r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
n!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn = −lα(−1)

The result is sharp.

Proof Let F ∈ R(β, γ, h). Then

F(z) = f (z) + βz f ′(z) + γz2 f ′′(z) =
∞∑

n=0

[1 + βn + γn(n − 1)]anzn ≺ h(z) (a1 = 1)

and

1

h′(0)

∞∑

n=1

[1 + βn + γn(n − 1)]anzn = F(z) − F(0)

h′(0)
≺ h(z) − h(0)

h′(0)
= H(z).

Thus, by [18], we have

∣
∣
∣
∣
1 + βn + γn(n − 1)

h′(0)

∣
∣
∣
∣ |an| ≤ 1

n!
n∏

k=2

(k − 2α), n ≥ 2,

which yields
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∞∑

n=1

|an|rn ≤ h′(0)r
1 + (μ + ν)n + μνn2

+
∞∑

n=2

|h′(0)| 1n!
∏n

k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn. (3.2)

The function lα : D → C given by

lα(z) =
{

1−(1−z)2α−1

2α−1 , α �= 1
2 ,

− ln(1 − z), α = 1
2

(3.3)

is an extremal function for the class CV(α). Since

H(z) = h(z) − h(0)

h′(0)

is a normalized convex function of order α in D, it follows that the function lα
provides the case of equality in the following growth inequality satisfied by convex
functions of order α:

−lα(−r) ≤ |H(reiθ)| ≤ lα(r).

So that
d(0, ∂H(D)) ≥ −lα(−1),

which yields

d(h(0), ∂h(D)) = inf
ζ∈∂D

|h(ζ) − h(0)| ≥ −|h′(0)|lα(−1). (3.4)

By (2.4) and (3.4), it follows that

∞∑

n=1

|an |rn ≤ − d(h(0), ∂h(D))

lα(−1)

(
r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
n!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn

)

.

Thus, the Bohr radius r∗ is the smallest positive root of the equation given by

r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
n!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn = −lα(−1).

The result is sharp for the function f (z) := q(z) and h(z) := l(z) = lα(z), where
q(z) and lα(z) are, respectively, as defined in (3.1) and (3.3), that is

f (z) = q(z) = (φν ∗ φμ) ∗ h(z) = z

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
n!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
zn .

For |z| = r∗,
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∞∑

n=1

|anzn| = r∗

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
n!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
(r∗)n

= −lα(−1)

= −|h′(0)|lα(−1)

= d(h(0), ∂h(D)). �

For α = 0, Theorem3.1 reduces to the following result.

Corollary 3.2 ([1, Theorem 3.1, p. 129]) Let f (z) = ∑∞
n=0 anz

n ∈ R(β, γ, h), and
h be convex. Then ∞∑

n=1

|anzn| ≤ d(h(0), ∂h(D))

for all |z| ≤ r∗, where r∗ ∈ (0, 1] is the smallest positive root of the equation
∞∑

n=1

rn

1 + (μ + ν)n + μνn2
= 1

2
.

Theorem 3.3 Let f (z) = ∑∞
n=0 anz

n ∈ R(β, γ, h), and h be starlike of order α.
Then ∞∑

n=1

|anzn| ≤ d(h(0), ∂h(D))

for all |z| ≤ r∗, where r∗ ∈ (0, 1] is the smallest positive root of the equation

r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
(n−1)!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn = 1

22(1−α)
.

The result is sharp.

Proof Let F ∈ R(β, γ, h). Then

F(z) = f (z) + βz f ′(z) + γz2 f ′′(z) =
∞∑

n=0

[1 + βn + γn(n − 1)]anzn ≺ h(z), (a1 = 1)

and

1

h′(0)

∞∑

n=1

[1 + βn + γn(n − 1)]anzn = F(z) − F(0)

h′(0)
≺ h(z) − h(0)

h′(0)
= H(z).

Since H(z) is a normalized starlike function of order α in D, by [18], we have
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∣
∣
∣
∣
1 + βn + γn(n − 1)

h′(0)

∣
∣
∣
∣ |an| ≤ 1

(n − 1)!
n∏

k=2

(k − 2α), n ≥ 2,

which yields

∞∑

n=1

|an|rn ≤
∣
∣
∣
∣

h′(0)
1 + (μ + ν)n + μνn2

∣
∣
∣
∣ r +

∞∑

n=2

|h′(0)| 1
(n−1)!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn.

(3.5)
It follows from [18], that

d(0, ∂H(D)) ≥ 1

22(1−α)
,

which yields

d(h(0), ∂h(D)) = inf
ζ∈∂D

|h(ζ) − h(0)| ≥ |h′(0)|
22(1−α)

. (3.6)

By (3.5) and (3.6), it follows that

∞∑

n=1

|an |rn ≤ d(h(0), ∂h(D))22(1−α)

⎛

⎝ r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
(n−1)!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn

⎞

⎠ .

Thus, the Bohr radius r∗ is the smallest positive root of the equation is

r

1 + (μ + ν)n + μνn2
+

∞∑

n=2

1
(n−1)!

∏n
k=2(k − 2α)

1 + (μ + ν)n + μνn2
rn = 1

22(1−α)
.

The result is sharp for the function f (z) := q(z), where q(z) as defined in (3.1), and
h(z) := l(z) = z/(1 − z)2(1−α). Sharpness can be proved as in Theorem3.1.

�
For α = 0, Theorem3.3 reduces to the following result.

Corollary 3.4 ([1, Theorem 3.3, p. 131]) Let f (z) = ∑∞
n=0 anz

n ∈ R(β, γ, h), and
h be starlike. Then ∞∑

n=1

|anzn| ≤ d(h(0), ∂h(D))

for all |z| ≤ r∗, where r∗ ∈ (0, 1] is the smallest positive root of the equation
∞∑

n=1

n

1 + (μ + ν)n + μνn2
rn = 1

4
.

The result is sharp.
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Third Hankel Determinant for Certain
Classes of Analytic Functions

Virendra Kumar, Sushil Kumar and V. Ravichandran

Abstract There exists a rich literature on the Hankel determinants in the field of
geometric function theory. Particularly, it is not easy to find out the sharp bound on the
third Hankel determinant as compared to calculate the sharp bound on the second
Hankel determinant. The present paper is an attempt to improve certain existing
bound on the third Hankel determinant for some classes of analytic functions by
using the concept of subordination.

Keywords Analytic functions · Hankel determinant · Starlike functions w.r.t.
symmetric points

2010 Mathematics Subject Classification 30C45 · 30C80 · 30C50

1 Introduction

The class S consists of univalent analytic functions f defined on the unit disk D :=
{z ∈ C : |z| < 1} normalized by the conditions f (0) = 0 and f ′(0) = 1. The sub-
classes starlike and convex functions ofS are denoted byS∗ andK, respectively.Ana-
lytically, these classes are defined by S∗ := {

f ∈ S : Re(z f ′(z)/ f (z)) > 0, z ∈ D
}

and K := {
f ∈ S : Re(1 + (z f ′′(z)/ f ′(z))) > 0, z ∈ D

}
. Let S∗

s denote the class
of starlike univalent functions with respect to symmetric points, introduced and
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studied by Sakaguchi [18]. Analytically, f ∈ S∗
s if and only if Re

(
2z f ′(z)/( f (z)

− f (−z))) > 0 for all z ∈ D. In similar fashion, Das and Singh [5] introduced and
investigated the class Ks which consists of the convex univalent functions with
respect to symmetric points. Analytically, we say f ∈ Ks if it satisfies the con-
dition Re

(
2(z f ′(z))′/( f (z) − f (−z))′

)
> 0 for all z ∈ D. Using analytic represen-

tation similar to the classes of starlike and convex functions, for some λ (λ > 1),
Nishiwaki andOwa [13] considered and investigated two subclassesM(λ) andN (λ)
of the class S consisting of functions f satisfying, respectively

Re

(
z f ′(z)
f (z)

)
< λ and Re

(
1 + z f ′′(z)

f ′(z)

)
< λ (z ∈ D).

The coefficient bounds yield information regarding the geometric properties of
univalent functions. In 1916, Bieberbach [2] computed an estimate for the second
coefficient of normalized univalent analytic function and this bound provides the
growth, distortion, and covering theorems. Similarly, using the Hankel determinants
(which also deals with the bound on coefficients), Cantor [3] proved that “if ratio of
two bounded analytic functions inD, then the function is rational”. For given natural
numbers n, q and a1 = 1, the Hankel determinant Hq,n( f ) of a function f ∈ A is
defined by means of the following determinant:

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣

.

For some specific values ofq and n, the quantities H2,1( f ) = a3 − a22 and H2,2( f ) :=
a2a4 − a23 are known as Fekete–Szegö functional and second Hankel determinant,
respectively. The third Hankel determinant is defined as

H3, 1( f ) := a3(a2a4 − a23) − a4(a4 − a2a3) + a5(a3 − a22).

Finding the sharp estimate on the second Hankel determinant H2,2( f ) is rather
easier than finding the sharp estimate on the third Hankel determinant. The usual
way of finding estimate on the third Hankel determinant is to calculate sharp bounds
on the initial coefficients, second Hankel determinant and that on the Fekete–
Szegö functional using the triangle inequality. The sharp bound on the second
Hankel determinant for the class of starlike and convex functions were investi-
gated by Janteng et al. [6]. Babalola [1] proved the estimates |H3,1( f )| ≤ 16 and
|H3,1( f )| ≤ (32 + 33

√
3)/72

√
3 ≈ 0.71 for the classes S∗ and K, respectively.

Later, the bound on the third Hankel determinant for the class of starlike and con-
vex functions were proved as |H3,1( f )| ≤ 1 and |H3,1( f )| ≤ 49/540, respectively,
see [24]. In 2018, Kowalczyk et al. [8] proved that the bound |H3, 1( f )| ≤ 4/135 is
sharp for the class of convex functions. However, the best known estimate for star-
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like functions is |H3, 1( f )| ≤ 4/135 due to Kwon et al. [10]. Later, Lecko et al. [11]
proved that the bound |H3, 1( f )| ≤ 1/9 is sharp for starlike function of order 1/2.
In the year 2018, Kowalczyk et al. [7] have found sharp bound of the third kind
for the class T (α) := { f ∈ A : Re( f (z)/z) > α; z ∈ D} when α = 0 and α = 1/2.
Vamshee et al. [21] estimated |H3, 1( f )| ≤ 5/2 and |H3, 1( f )| ≤ 19/135 for starlike
and convex functionswith respect to symmetric points, respectively. In 2017, Prajapat
et al. [16] computed the estimates |H3, 1( f )| ≤ (81 + 16

√
3)/216 ≈ 0.5033 and

|H3, 1( f )| ≤ 139/5760 ≈ 0.0241 for the classesM := M(3/2) andN := N (3/2),
respectively. For recent development of Hankel determinant, see [4, 12, 14, 15, 19,
20, 22–24].

Motivated by these works, in this paper, an attempt has been made to improve the
existing bound on the third Hankel determinant for the classes S∗

s , Ks , M and N .

2 Third Hankel Determinant

The following lemmas will be needed to derive our main results in this section:

Lemma 2.1 ([17, Lemma 2.3, p. 507]) Let p ∈ P . Then for all n,m ∈ N,

|μpn pm − pm+n| ≤
{
2, 0 ≤ μ ≤ 1;
2|2μ − 1|, elsewhere.

If 0 < μ < 1, then the inequality is sharp for the function p(z) = (1 + zm+n)/(1 −
zm+n). In the other cases, the inequality is sharp for the function p̂0(z) = (1 +
z)/(1 − z).

Lemma 2.2 ([9, Lemma 1]) Let p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P. Then,
for any real number μ,

∣∣μp3 − p31
∣∣ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2|μ − 4|
(

μ ≤ 4

3

)

2μ
√

μ

μ − 1

(
4

3
< μ

)
.

The result is sharp. If μ ≤ 4
3 , then equality holds for the function

p0(z) := 1 + z

1 − z

and if μ > 4
3 , then equality holds for the function
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p1(z) := 1 − z2

z2 − 2
√

μ
μ−1 z + 1

.

The following theorem gives an improvement to the existing estimate on the third
Hankel determinant related to the starlike and convex functions with respect to the
symmetric points.

Theorem 2.3 The third Hankel determinant for the functions in the classes S∗
s and

Ks are 5/4 and 91/1728, respectively.

Proof The proof will be accomplished in two parts.
(a) Let f ∈ S∗

s . Then we can associate a function p(z) = 1 + p1z + p2z2 +
p3z3 + · · · ∈ P such that

2z f ′(z)
f (z) − f (−z)

= p(z).

On comparing coefficients on both sides of the above equation, we have

a2 = p1
2
, a3 = p2

2
, a4 = 1

8
(p1 p2 + 2p3) and a5 = 1

8

(
p22 + 2p4

)
.

Using the above we can write

H3,1( f ) = a5
(
a3 − a22

)
+ a3

(
a2a4 − a23

)
− a4(a4 − a2a3)

= 1

64

(
p21

(
p22 − 4p4

)
+ 4p1 p2 p3 − 4

(
p32 − 2p2 p4 + p23

))

Further, by suitably arranging the terms, we have

|64H3,1( f )| = |8p2 p4 − 4p21 p4 + p21 p
2
2 − 4p32 + 4p1 p2 p3 − 4p23|

≤ |4p4(2p2 − p21)| + |p22(p21 − 4p2)| + |4p3(p1 p2 − 4p3)|. (2.1)

By Lemma2.1, we see that

|4p4(2p2 − p21)| ≤ 32, |p22(p21 − 4p2)| ≤ 32 and |4p3(p1 p2 − 4p3)| ≤ 16.
(2.2)

Thus, using (2.2) and (2.1), we have

|H3,1( f )| ≤ 80

64
= 5

4
<

5

2
. (2.3)

This is the desired estimate.
(b)Let f ∈ Ks . Then, we can associate a function p(z) = 1 + p1z + p2z2 +

p3z3 + · · · ∈ P such that
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2(z f ′(z))′

( f (z) − f (−z))′
= p(z).

On comparing coefficients on both sides of the above equation, we have

a2 = p1
4
, a3 = p2

6
, a4 = 1

32
(p1 p2 + 3p3) and a5 = 1

40

(
p22 + 2p4

)
.

Now, a computation using the above gives

H3,1( f ) = 9p21
(
p22 − 48p4

) + 180p1 p2 p3 − 64p33 + 1152p2 p4 − 540p23
138240

.

By suitably arranging terms, we have

138240H3,1( f ) = 1152p4

(
p2 − 432

1152
p21

)
+ 64p22

(
9

64
p21 − p2

)
+ 540p3

(
180

540
p1 p2 − p3

)
.

(2.4)
Now using Lemma2.1 and the fact |pi | ≤ 2, we have

1152

∣∣∣∣p4

(
p2 − 432

1152
p21

)∣∣∣∣ ≤ 4608, (2.5)

64

∣∣∣∣p
2
2

(
9

64
p21 − p2

)∣∣∣∣ ≤ 512, (2.6)

and

540

∣∣∣∣p3

(
180

540
p1 p2 − p3

)∣∣∣∣ ≤ 2160. (2.7)

Now by using Eqs. (2.4), (2.5), (2.6), and (2.7), we get

|H3,1( f )| ≤ 4608 + 512 + 2160

138240
= 91

1728
≈ 0.052662 <

19

135
≈ 0.140741.

(2.8)
This completes the proof. �
Remark 2.4 It is important to note that Krishna et al. [21, Corollary 3.4, p. 43] prove
that

∣∣H3,1( f )
∣∣ ≤ 5/2 for function f ∈ S∗

s . Thus, estimate (2.3) improves the exiting
result derived in [21, Corollary 4.3, p. 43]. Similarly, the estimate in (2.8) provides
an improvement over the estimate

∣∣H3,1( f )
∣∣ ≤ 19/135 for function f ∈ Ks , see [21,

Corollary 3.8, p. 45].

The following theorem yields an improvement to the existing estimate on the third
Hankel determinant related to the classes M and N .

Theorem 2.5 The third Hankel determinant for the functions in the classesM and
N are bounded by (579 + 8

√
3)/1728 and (144431 + 96

√
141)/6497280, respec-

tively.
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Proof The proof will be accomplished in two parts.
(a) Let f ∈ M. Then, we can associate a function p(z) = 1 + p1z + p2z2 +

p3z3 + · · · ∈ P such that
z f ′(z)
f (z)

= 1

2
(3 − p(z)) . (2.9)

On comparing the coefficients on both sides on (2.9), we get

a2 = − p1
2
, a3 = 1

8

(
p21 − 2p2

)
, a4 = 1

48

(−p31 + 6p1 p2 − p3
)

and

a5 = 1

384

(
p41 − 12p21 p2 + 4p1 p3 + 12

(
p22 − 4p4

))
.

Further computation gives

H3,1( f ) = −p61 − 6p41 p2 + 4p31 p3 − 36p21
(
p22 − 4p4

) − 24p1 p2 p3 + 72p32 + 288p2 p4 − 4p23
9216

.

By suitably arranging the terms, we can write

−9216H3,1( f ) = 36p21 p
2
2 − 144p21 p4 + p61 − 4p31 p3 + 24p1 p2 p3 − 288p2 p4

+ 6p41 p2 − 72p32 + 4p23 . (2.10)

The Inequalities (2.11), (2.13), and (2.14) are obtained by using Lemma2.1 and the
fact |pi | ≤ 2, whereas the Inequality (2.12) is a consequence of Lemma2.2

∣∣36p21 p
2
2 − 144p21 p4

∣∣ = 144|p21|
∣∣∣∣
1

4
p22 − p4

∣∣∣∣ ≤ 1152, (2.11)

∣∣p61 − 4p31 p3
∣∣ = |p31|

∣∣p31 − 4p3
∣∣ ≤ 128√

3
, (2.12)

|24p1 p2 p3 − 288p2 p4| = 288|p2|
∣∣∣∣
1

12
p1 p3 − p4

∣∣∣∣ ≤ 1152, (2.13)

and ∣∣6p41 p2 − 72p32 + 4p23
∣∣ ≤ ∣∣6p41 p2

∣∣ + ∣∣72p32
∣∣ + 4

∣∣p23
∣∣ ≤ 784. (2.14)

By using triangle inequality and (2.10), (2.11), (2.12), (2.13), and (2.14), we get

|H3,1( f )| ≤ 579 + 8
√
3

1728
≈ 0.343088 <

81 + 16
√
3

216
≈ 0.5033. (2.15)
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(b)Let f ∈ N . Then, we can associate a function p(z) = 1 + p1z + p2z2 +
p3z3 + · · · ∈ P such that

1 + z f ′′(z)
f ′(z)

= 1

2
(3 − p(z)) . (2.16)

On comparing the coefficients on both sides on (2.16), we get

a2 = − p1
4
, a3 = 1

12

(
p21
2

− p2

)

, a4 = 1

192

(
−p31 + 6p1 p2 − 8p3

)

and

a5 = p41 − 12p21 p2 + 32p1 p3 + 12
(
p22 − 4p4

)

1920
.

Using the above further computation, we get

H3,1( f ) = −p61 − 12p41 p2 + 48p31 p3 + p21
(
288p4 − 84p22

) − 288p1 p2 p3 + 32
(
p32 + 36p2 p4 − 30p23

)

552960
.

After suitable arrangement of terms, we have

−552960H3,1( f ) = 84p21 p
2
2 − 288p21 p4 + p61 − 48p31 p3 + 288p1 p2 p3 − 1152p2 p4

+ 12p41 p2 − 32p32 + 960p23 . (2.17)

Now using Lemma2.1 and the fact |pi | ≤ 2, we have the Inequalities (2.18), (2.20),
and (2.21). Further, an application of Lemma2.2 gives (2.19).

|84p21 p22 − 288p21 p4| = 288|p21|
∣∣∣∣
84

288
p22 − p4

∣∣∣∣ ≤ 2304, (2.18)

|p61 − 48p31 p3| = |p31|
∣∣p31 − 48p3

∣∣ ≤ 384

√
3

47
, (2.19)

|288p1 p2 p3 − 1152p2 p4| = 1152|p2|
∣∣∣∣
288

1152
p1 p3 − p4

∣∣∣∣ ≤ 4608 (2.20)

and

|12p41 p2 − 32p32 + 960p23| ≤ 12|p41 p2| + 32|p32| + 960|p23| ≤ 4480. (2.21)

From (2.17), (2.18), (2.19), (2.20), and (2.21), we have

H3,1( f )| ≤ 144431 + 96
√
141

6497280
≈ 0.0224049 <

139

5760
≈ 0.0241319 (2.22)
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This completes the proof. �

Remark 2.6 Prajapat et al. [16, Theorem 2.4, p. 190] proved that the third Hankel
determinant H3,1( f ) for function f ∈ M is bounded by 185/512. Clearly, the bound
derived in (2.15) for the function f ∈ M is better than that of derived by Prajapat
et al. [16, Theorem 3.4, p. 190]. Furthermore, the estimate (2.22) improves over the
result [16, Theorem 2.8, p. 193] for the function f ∈ N .

Conjecture 2.7 The sharp bound on the third Hankel determinant for the classes of
starlike and convex functions with respect to symmetric point are 1/4 and 4/135,
respectively. Equality, for the class S∗

s , holds in case of the function f0 defined by

2z f ′
0(z)

f0(z) − f0(z)
= 1 + z3

1 − z3
.

Further, for the class Ks , equality holds in case of the function f1 defined by

2(z f ′
1(z))

′

( f1(z) − f1(−z))′
= 1 + z2

1 − z2
.

Conjecture 2.8 The sharp bound on the third Hankel determinant for the classes
M and N are 119/576 and 19/2160, respectively. Equality, for the class M, holds
in case of the function f2 defined by (2.9) with the choice p(z) = (1 + z)/(1 − z)
whereas, for the classN , equality holds in case of the function f4 defined by (2.16)
with the choice of function p(z) = (1 + z2)/(1 − z2).

Acknowledgements The authors would like to express their gratitude to the referees for many
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µ-Statistical Convergence of Sequences
in Probabilistic n-Normed Spaces

Rupam Haloi and Mausumi Sen

Abstract In this article, using the notion of a two-valued measure μ, we pro-
pose the ideas of μ-statistical convergence and μ-density convergence in probabilis-
tic n-normed spaces and study some of their properties in probabilistic n-normed
spaces. Further, a condition for equality of the sets of μ-statistical convergent and
μ-density convergent sequences in the space have been established. The definition of
μ-statistical Cauchy sequence in the space has also been introduced and some results
have been established. Finally, we propose the notion of μ-statistical limit points in
these new settings and studied some properties.
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1 Introduction

As an important generalization of the concept of distance as proposed by Fréchet
[1] in 1906, Menger [2] developed the idea of a statistical metric space, now called
probabilistic metric space. Employing the idea of probabilistic metric and simplify-
ing the concept of ordinary normed linear space, Sherstnev [3] proposed the concept
of probabilistic normed space (in short PN-space) in 1962, in which the norm of
a vector was described by a distribution function rather than by a positive number.
Tripathy and Goswami [4–7], Tripathy et al. [8] and others have introduced different
classes of sequences using the notion of probabilistic norm and have investigated
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their different algebraic and topological properties. The situation where crisp norm
fails to measure the length of a vector precisely, the notion of probabilistic norm
happens to be very much useful. The theory of PN-space is decisive as a conclu-
sion of deterministic results of normed linear spaces and furnish us some decisive
tools relevant to the study of convergence of random variables, continuity properties,
linear operators, geometry of nuclear physics, topological spaces, etc. This space
was further generalized into the theory of probabilistic n-normed spaces (abbrevi-
ated as PnN-spaces) by Rahmat and Noorani [9] and many authors. As an important
generalization to the theory of convergence, Fast [10] initially proposed the idea
of statistical convergence and then studied by many researchers. Karakus [11] has
extended idea of statistical convergence into probabilistic normed space 2007. As
an interesting generalization of statistical convergence, Connor [12, 13] introduced
the idea of statistical convergence with the help of a complete {0,1} valued measure
μ defined on an algebra of subsets of N. Some works in this field can be found in
[14–17]. The notion of statistical limit points was first introduced by Fridy [18]. The
aim of this article is to introduce and study the concepts of μ-statistical convergence
and μ-density convergence in PnN-spaces.

A brief sketch of the article is as follows: IP Sect. 2 contains some basic definitions
that are relevant for subsequent sections. We have introduced the definitions of μ-
statistical convergence andμ-density convergence in PnN-spaces and discussed some
of their properties in Sect. 3. Section4 deals with the concept of μ-statistical limit
points in PnN-space and their properties. Finally, a brief conclusion to the article
follows in Sect. 5.

2 Preliminaries

Throughout the paper,R,N, andR+ denote the sets of real, natural, and nonnegative
real numbers, respectively.

Definition 1 ([19]) A function f : R+ → [0, 1] is called a distribution function if
it is nondecreasing, left-continuous with inf t∈R+ f (t) = 0 and supt∈R+ f (t) = 1.

Throughout D denotes the set of all distribution functions.

Definition 2 ([19]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions, for all a, b, c, d ∈ [0, 1]:
1. a ∗ 1 = a,
2. a ∗ b = b ∗ a,
3. a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d,
4. (a ∗ b) ∗ c = a ∗ (b ∗ c).

Definition 3 ([9]) A triplet (Y, M, ∗) is called a probabilistic n-normed space (in
short a PnN-space) if Y is a real vector space of dimension d ≥ n, M a mapping
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from Y n into D and ∗ is a t-norm satisfying the following conditions for every
y1, y2, . . . , yn ∈ Y and s, t > 0:

1. M((y1, y2, . . . , yn), t) = 1 if and only if y1, y2, . . . , yn are linearly dependent,
2. M((y1, y2, . . . , yn), t) is invariant under any permutations of y1, y2, . . . , yn ,

3. M((y1, y2, . . . ,αyn), t) = M

(
(y1, y2, . . . , yn),

t

|α|
)
for all α ∈ R \ {0},

4. M((y1, y2, . . . , yn + y′
n), s + t) ≥ M((y1, y2, . . . , yn), s) ∗ M((y1, y2, . . . ,

y′
n), t).

Example 4 [9]Let (Y, ||·, . . . , ·||)be an-normed linear space.Leta ∗ b = min{a, b},
for all a, b ∈ [0, 1] and M((y1, y2, . . . , yn), t) = t

t + ||(y1, y2, . . . , yn)|| , t ≥ 0.

Then (Y, M, ∗) is a PnN-space.

Definition 5 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be con-
vergent to y0 ∈ Y in terms of the probabilistic n-norm Mn , if for every ε > 0, λ ∈
(0, 1) and z1, z2, . . . , zn−1 ∈ Y , there exists a positive integer k0 such that

M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ,

whenever k ≥ k0. In this case, we write Mn − lim y = y0.

Definition 6 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be
Cauchy sequence, if for every ε > 0, λ ∈ (0, 1) and z1, z2, . . . , zn−1 ∈ Y , there
exists a positive integer k0 such that

M((z1, z2, . . . , zn−1, yk − ym), ε) > 1 − λ,

for all k,m ≥ k0.

Definition 7 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be
bounded in terms of the probabilistic n-norm Mn , if for every z1, z2, . . . , zn−1 ∈ Y ,
there exists an ε > 0 such that

M((z1, z2, . . . , zn−1, yk), ε) > 1 − λ,

for every λ ∈ (0, 1) and for all k ∈ N.

3 µ-Statistical Convergence and µ-Density Convergence in
PnN-Spaces

Right through the article, by μwe represent a complete {0, 1}-valued finitely additive
measure defined on a field � of all finite subsets of N and suppose that μ(P) = 0, if
|P| < ∞; if P ⊂ Q and μ(Q) = 0, then μ(P) = 0; and μ(N) = 1.
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Definition 8 A sequence y = (yk) is said to be μ-statistically convergent to yo in
terms of the probabilistic n-norm Mn , if for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . ,
zn−1 ∈ Y ,

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0.

It is written as μ − statM(n) − lim y = y0.

In viewof theDefinition3.1 andother properties ofmeasure,we state the following
result without proof.

Theorem 9 Let (Y, M, ∗) be a PnN-space. Then for every λ ∈ (0, 1), ε > 0 and
z1, z2, . . . , zn−1 ∈ Y , the following statements are equivalent:

1. μ − statM(n) − lim y = y0,
2. μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0,
3. μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ}) = 1,
4. μ − stat − lim M((z1, z2, . . . , zn−1, yk − y0), ε) = 1.

The following results are consequences of Theorem9.

Corollary 10 Let (Y, M, ∗) be a PnN-space. If a sequence (yk) is μ-statistically
convergent in terms of the probabilistic n-norm Mn, then μ − statM(n) − lim y is
unique.

Corollary 11 Let (Y, M, ∗) be a PnN-space. If Mn − lim y = y0, then μ −
statM(n) − lim y = y0, but not necessarily conversely.

The converse of the Corollary11 does not hold always, which can be shown from
the following example.

Example 12 Let us consider Y = R
n with usual norm. Let p ∗ q = pq for p, q ∈

[0, 1] and M((z1, z2, . . . , zn−1, y), t) = t

t + ||(z1, z2, . . . , zn−1, y)|| , where (z1,

z2, . . . , zn−1, y) ∈ R
n and t ≥ 0. Then (Rn, M, ∗) is a PnN-space. Let A ⊂ N be

such that μ(A) = 0. We define a sequence y = (yk) as follows:

yk =
{

(k, 0, . . . , 0) ∈ R
n, if k = j2, j ∈ N

(0, 0, . . . , 0) ∈ R
n, otherwise.

Then we can easily verify that the sequence (yk) is μ-statistically convergent in terms
of the probabilistic n-norm Mn , but the sequence (yk) is not convergent in terms of
the probabilistic n-norm Mn , as it is not convergent in the space (R, ‖ · ‖).

We now introduce the concept of μ-statistical Cauchy sequence on probabilistic
n-normed space and provide a characterization.

http://dx.doi.org/10.1007/978-981-15-1153-0_3
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Definition 13 Let (Y, M, ∗) be a PnN-space. We say that a sequence y = (yk) is μ-
statistically Cauchy in terms of the probabilistic n-norm Mn , provided that for every
λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , there exists a positive integer m ∈ N

satisfying

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − ym), ε) ≤ 1 − λ}) = 0.

Theorem 14 Let (Y, M, ∗) be a PnN-space. If a sequence y = (yk) is μ-statistically
convergent in terms of the probabilistic n-norm Mn, then it is μ-statistically Cauchy
in terms of the probabilistic n-norm Mn.

Definition 15 A sequence (yk) is said to be μ-density convergent to y0 ∈ Y in terms
of the probabilistic n-norm Mn , if there exists an A ∈ � with μ(A) = 1 such that
(yk − y0)k∈A is convergent to 0 in terms of the probabilistic n-norm Mn .

By ω(Y, M, ∗), we denote the space of all sequences with elements from the PnN-
space (Y, M, ∗) and by �∞(Y, M, ∗), the space of all bounded sequences with ele-
ments from the probabilistic n-normed space (Y, M, ∗).

Theorem 16 Let y ∈ ω(Y, M, ∗). If y is μ-density convergent to r in terms of the
probabilistic n-norm Mn, then y is μ-statistically convergent to r in terms of the
probabilistic n-norm Mn.

Proof Let y = (yk) ∈ ω(Y, M, ∗). Let A ⊂ N such that (yk − r)k∈A is convergent
to 0 in terms of the probabilistic n-norm Mn and μ(A) = 1. Let ε > 0 be given and
z1, z2, . . . , zn−1 ∈ Y . Then it is observed that

{k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}

contains at most finitely many terms of A ⊂ N. Thus, we have

μ({k ∈ A : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}) = 0.

Now,

C = {k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}
⊆ {k ∈ A : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ} ∪ Ac.

Thus, we have μ(C) = 0, and consequently

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}) = 0,

which shows that y = (yk) is μ-statistically convergent in terms of the probabilistic
n-norm Mn . �

Definition 17 (APO condition[12])Ameasureμ is said to have the additive property
of null sets or the APO condition, if given a collection {Ai }i∈N ⊆ � of mutually



238 R. Haloi and M. Sen

disjoint μ-null sets (i.e., μ(Ai ) = 0, for all i ∈ N) such that Ai ∩ A j = φ, for i �= j ,
then there exists a collection {Bi }i∈N ⊆ � with |Ai � Bi | < ∞, for each i ∈ N and
B = ∪i Bi ∈ � with μ(B) = 0.

Let Y be any set, M be the probabilistic n-norm and y = (yk) be any sequence in
Y . Let us define two sets as follows:

1. Dμ(Y, M, ∗) = {y ∈ �∞(Y, M, ∗) : y is μ-density convergent to 0 in terms of the
probabilistic n-norm Mn},

2. Sμ(Y, M, ∗) = {y ∈ �∞(Y, M, ∗) : y is μ-statistically convergent to 0 in terms of
the probabilistic n-norm Mn}.

Definition 18 Let (Y, M, ∗) be a PnN-space. For ε > 0, the open ball B(y, s, ε)
with center y and radius s ∈ (0, 1) is defined by

B(y, s, ε) = {x ∈ Y : M((z1, z2, . . . , zn−1, x − y), ε) > 1 − s,

∀ z1, z2, . . . , zn−1 ∈ Y } .

Theorem 19 Sμ(Y, M, ∗) is closed in �∞(Y, M, ∗) and Dμ(Y, M, ∗) =
Sμ(Y, M, ∗).

Proof Clearly, Sμ(Y, M, ∗) ⊂ Sμ(Y, M, ∗). Now, we will show that Sμ(Y, M, ∗) ⊂
Sμ(Y, M, ∗). Let x = (xk) ∈ Sμ(Y, M, ∗). Let ε > 0 be given and λ ∈ (0, 1). Since
B(x, r, ε/2) ∩ Sμ(Y, M, ∗) �= φ, there is an y ∈ B(x, r, ε/2) ∩ Sμ(Y, M, ∗).Choose
r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > 1 − λ. Since y ∈ B(x, r, ε/2) ∩ Sμ(Y, M,

∗), so μ − statM(n) − lim y = 0. We define

A = {k ∈ N : M((z1, z2, . . . , zn−1, yk), ε/2) > 1 − r},

for z1, z2, . . . , zn−1 ∈ Y . Then, we have μ(A) = 1. Now for each k ∈ A and z1,
z2, . . . , zn−1 ∈ Y ,

M((z1, z2, . . . , zn−1, xk), ε)

= M((z1, z2, . . . , zn−1, (xk − yk) + yk), ε/2 + ε/2)

≥ M((z1, z2, . . . , zn−1, xk − yk), ε/2)

∗ M((z1, z2, . . . , zn−1, yk), ε/2)

> (1 − r) ∗ (1 − r)

> (1 − λ).

Therefore, x = (xk) ∈ Sμ(Y, M, ∗) and so Sμ(Y, M, ∗) ⊂ Sμ(Y, M, ∗). Thus,
Sμ(Y, M, ∗) is closed in �∞(Y, M, ∗).

Now for the second part, it is clearly seen that Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗)

which implies that Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗). Thus, it is adequate to prove that
Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗).
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Let x = (xk) ∈ Sμ(Y, M, ∗). Then, for λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈
Y , we have

μ(A) = μ({k ∈ N : M((z1, z2, . . . , zn−1, xk), ε) ≤ 1 − λ}) = 0.

We define y = (yk) by

yk =
{
xk, if k ∈ A
0, otherwise.

Then, y ∈ Dμ(Y, M, ∗) since μ(Ac) = 1 and y ∈ B(x,λ, ε). Thus, Sμ(Y, M, ∗) ⊆
Dμ(Y, M, ∗) and hence the proof. �

Theorem 20 Let μ be a measure. Then Sμ(Y, M, ∗) = Dμ(Y, M, ∗) if and only if μ
has the APO condition.

Proof Let μ be a measure with the APO condition. From Theorem16, it is clearly
seen that for anymeasureμ, Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗). Then it is adequate to prove
that Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗). Let y = (yk) ∈ Sμ(Y, M, ∗), then μ − statM(n) −
lim y = 0. So, for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , we have

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − λ}) = 0.

Now, for ε > 0, j ∈ N and z1, z2, . . . , zn−1 ∈ Y , we define

A j =
{
k ∈ N : 1 − 1

j
≤ M((z1, z2, . . . , zn−1, yk), ε) < 1 − 1

j + 1

}
.

Then {A j } j∈N is a countable family of disjoint μ-null sets. Thus by APO con-
dition, there exists a family {Bj } j∈N such that |A j�Bj | < ∞, for all j ∈ N and
B = ⋃

j∈N Bj ∈ � with μ(B) = 0. Let A = N \ B, then μ(A) = 1. We claim that
(yk)k∈A is convergent to 0 in terms of probabilistic n-norm Mn .

Let η ∈ (0, 1) and ε > 0 be given and z1, z2, . . . , zn−1 ∈ Y . We choose a positive

integer N such that
1

N
< η. Then, we observe that

{k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − η}
⊂

{
k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − 1

N

}

⊂
N−1⋃
j=1

A j .

Since A j�Bj is a finite set for each j = 1, 2, . . . , N − 1, so there is an k0 ∈ N such
that
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⎛
⎝N−1⋃

j=1

Bj

⎞
⎠ ∩ {k ∈ N : k ≥ k0}

=
⎛
⎝N−1⋃

j=1

A j

⎞
⎠ ∩ {k ∈ N : k ≥ k0}.

If k ∈ A and k ≥ k0, then k /∈ B, which implies k /∈ ⋃N−1
j=1 Bj and so k /∈ ⋃N−1

j=1 A j .
Hence, for every k ≥ k0, k ∈ A and z1, z2, . . . , zn−1 ∈ Y , we have

M((z1, z2, . . . , zn−1, yk), ε) > 1 − η.

So y = (yk) ∈ Dμ(Y, M, ∗). Thus, Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗).
Conversely, suppose Sμ(Y, M, ∗) = Dμ(Y, M, ∗), for a measure μ. We need

to show that μ has the APO. We choose a monotone sequence x = (xk) of dis-
tinct nonzero elements of Y such that Mn − lim y = 0. Then for every ε > 0 and
z1, z2, . . . , zn−1 ∈ Y , {M((z1, z2, . . . , zn−1, xk), ε)} is an increasing sequence con-
verging to 1. Let {Ai }i∈N be a family such that Ai ∩ A j = φ for i �= j withμ(Ai ) = 0,
for all i ∈ N. We define a sequence (yk) as follows:

yk =
{
xi , if k ∈ Ai

0, otherwise.

Let λ ∈ (0, 1) be given. We choose k ∈ N such that M((z1, z2, . . . , zn−1, xk), ε) >

1 − λ for each nonzero z1, z2, . . . , zn−1 ∈ Y . Then

K (ε,λ) = {k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − λ}
⊆ A1 ∪ A2 ∪ . . . ∪ Ak .

So μ({K (ε,λ)}) = 0 and hence μ − statM(n) − lim y = 0. So, (yk) ∈ Sμ(Y, M, ∗)

which implies that (yk) ∈ Dμ(Y, M, ∗). Therefore, there exists P ⊆ N with μ(P) =
1 such that {yk}k∈P is μ-density convergent to 0 in terms of the probabilistic n-norm

Mn . Let C = N \ P . Then μ(C) = 0. Define Bi = Ai ∩ C . Then
∞⋃
i=1

Bi ⊆ C and so,

μ

( ∞⋃
i=1

Bi

)
= 0, i.e., μ(B) = 0, where B =

∞⋃
i=1

Bi .

Finally, we show that Ai � Bi is finite. Now,

Ai � Bi = Ai ∩ P,

which is finite, otherwise if Ai ∩ P is infinite, then yk = xi , for infinite number of
k ∈ P , which is a contradiction to the fact that (yk) is μ−statistically convergent to
0 with respect to probabilistic n-norm Mn . Hence Ai � Bi is finite, and hence the
proof. �
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Definition 21 A sequence y = (yk)k∈N in a PnN-space (Y, M, ∗) is said to be
Cauchy sequence in μ-density if there is a set C ⊆ N with μ(C) = 1 such that
(yk)k∈C is a usual Cauchy sequence in PnN-space.

Theorem 22 In a PnN-space (Y, M, ∗), if a sequence is a Cauchy sequence in μ-
density, then it is always a μ-statistically Cauchy sequence.

Proof Let y = (yk)k∈N be a Cauchy sequence in μ-density. Then there exists A ⊆ N

with μ(A) = 1, such that (yk)k∈A is a usual Cauchy sequence in the PnN-space
(Y, M, ∗). Then for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y there is a k1 ∈
N such that

M((z1, z2, . . . , zn−1, yk − ym), ε) > 1 − λ,

for all k,m ≥ k1 and k,m ∈ A. Choose m0 ∈ A with m0 ≥ k1. Then clearly

M((z1, z2, . . . , zn−1, yk − ym0), ε) > 1 − λ,

for all k,m0 ≥ k1 and z1, z2, . . . , zn−1 ∈ Y . Hence,

{k ∈ N : M((z1, z2, . . . , zn−1, yk − ym0), ε) ≤ 1 − λ} ⊆ Ac.

Therefore,

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − ym0), ε) ≤ 1 − λ}) = 0

Hence, y is μ-statistically Cauchy. �

4 µ-Statistical Limit Points in PnN-Spaces

Definition 23 Let (Y, M, ∗) be a PnN-space. A number L ∈ Y is called a limit point
of the sequence y = (yk) in terms of the probabilistic n-norm Mn , if there exists a
subsequence of y that converges to L , in terms of the probabilistic n-norm Mn .

Let LM(n)(y) denotes the set of all limit points of the sequence y in terms of the
probabilistic n-norm Mn .

Definition 24 Let (Y, M, ∗) be a PnN-space. Then γ ∈ Y is called a μ-statistical
limit point of sequence y = (yk) in terms of the probabilistic n-norm Mn , if there
exists a setM = {m1 < m2 < · · · } ⊂ N such thatμ(M) �= 0 andMn − lim ymk = γ.

Let�μ
M(n)(y) denotes the set of all μ-statM(n)-limit points of the sequence y in terms

of the probabilistic n-norm Mn .

Theorem 25 Let (Y, M, ∗) be a PnN-space. For a sequence y = (yk), if μ −
statM(n) − lim y = y0, then �

μ
M(n)(y) = y0.
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Proof Let y = (yk) be a sequence such thatμ − statM(n) − lim y = y0. Suppose that
�

μ
M(n)(y) = {y0, z0} such that y0 �= z0. Then there exists two sets

M = {m1 < m2 < · · · } ⊂ N and L = {l1 < l2 < · · · } ⊂ N

such that
μ(M) �= 0, μ(L) �= 0

and
Mn − lim ym j = y0, Mn − lim yli = z0.

Therefore, for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , we have

μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) ≤ 1 − λ}) = 0.

Then, we observe that

{li ∈ L : i ∈ N}
= {li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
∪ {li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) ≤ 1 − λ},

which implies

μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}) �= 0. (1)

Since μ − statM(n) − lim y = y0, so, we have

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0, (2)

for every ε > 0 and z1, z2, . . . , zn−1 ∈ Y . Therefore, we can write

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ}) �= 0.

Now, for every y0 �= z0, we have

{li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
∩ {k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ} = φ.

Thus,

{li ∈L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
⊆ {k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ},

which implies
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μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}) = 0.

This contradicts the Eq. (1) and hence �
μ
M(n)(y) = {y0}. �

5 Conclusion

In the article, we have introduced the concepts of μ-statistical convergence and
μ-density convergence of a sequence in a probabilistic n-normed space and investi-
gated their various characterizations. We have also introduced the notion of Cauchy
sequence in μ-density and μ-statistical limit point of a sequence in a probabilistic
n-normed space and established some results regarding these concepts. Since every
classical norm induces a probabilistic n-norm, so the results established here are the
straightforward generalization of the corresponding results of the ordinary normed
space.
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Lacunary Statistical Convergence of
Order α for Generalized Difference
Sequences and Summability Through
Modulus Function

A. K. Verma and Sudhanshu Kumar

Abstract In this paper, we define the space Sα
θ (�m

v ) of all �m
v -lacunary statis-

tical convergent sequences of order α and the space Nα
θ (�m

v , p) of all strongly
Nθ(�

m
v , p)-summable sequences of order α, where p is a positive real number.

Some inclusion relations between these spaces have been obtained. We have studied
the space ωα

θ (�m
v , f, p) of all strongly ωθ(�

m
v , f, p)-summable sequences of order

α by using modulus function f and bounded sequence (pk) of positive real numbers
with inf

k
pk > 0. The inclusion relations between spaces ωα

θ (�m
v , f, p) and Sα

θ (�m
v )

are also obtained.

Keywords Statistical convergence · Lacunary sequence · Difference sequence
space · Modulus function

1 Introduction

In 1951, Steinhaus [25] and Fast [8] introduced the concept of statistical convergence.
Later on, Schoenberg [20] studied this concept independently in 1959. Further, it was
investigated from the point of view of sequence spaces and related with summability
theory by Connor [3], Fridy [10], Salat [19], Maddox [15], Rath and Tripathy [17],
and many others.

Let w denotes the space of all sequences of complex numbers.
Kizmaz [12] introduced difference operator� for l∞, c and c0, Further, Colak [4]

generalized the notion of difference operator �, by

X (�m) = {
x = (xk) ∈ w : �mx ∈ X

}
for X = l∞, c and c0,
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where m is fixed positive integer, �mx = (�mxk) = (�m−1xk − �m−1xk+1), for
m � 1 and �0x = (xk).

Et and Esi [5] generalized the space X (�m) by taking the sequence v = (vk) of
nonzero complex numbers. They defined the sequence space X (�m

v ) as follows:

X (�m
v ) = {

x = (xk) ∈ w : �m
v x ∈ X

}
for X = l∞, c and c0,

where �0
vxk = (vk xk) and

�m
v xk =

m∑

i=0

(−1)i
(
m

i

)
vk+i xk+i , for m � 1.

A sequence x = (xk) ∈ w is said to be statistical convergent to the number l if for
every ε > 0,

lim
n

1

n
|{k � n : |xk − l| ≥ ε}| = 0,

where |A| denotes the cardinality of set A [10].
Colak[2] introduced the concept of statistical convergence of order α by as

follows:
The sequence x = (xk) is statistically convergent of orderα to a number l if for every
ε > 0,

lim
n

1

nα
|{k � n : |xk − l| ≥ ε}| = 0,

where 0 < α � 1.
Lacunary sequence means an increasing integer sequence θ = (kr ) such that k0 =

0 and hr = (kr − kr−1) → ∞ as r → ∞. In this paper, we denote Ir and qr by an
interval (kr−1, kr ] and the ratio kr

kr−1
, respectively.

In 1978, Freedman et al.[9] introduced space Nθ using lacunary sequence θ as

Nθ =
{
x = (xk) ∈ w : there exists l such that h−1

r

∑

k∈Ir
|xk − l| → 0

}
.

In 1993, Fridy and Orhan[11] introduced the concept of lacunary statistical conver-
gence as follows:

A sequence x is said to be lacunary statistical convergent to l if for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xk − l| � ε}| = 0.

In this case we write Sθ-lim x = l or xk → l(Sθ). The space of all lacunary statistical
convergent sequence is given by Sθ.

In 2005, Tripathy and Et [26] introduced lacunay statistical convergence using
mth-order difference operator. The sequence x = (xk) is�m-lacunary statistical con-
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vergent to l if for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |�mxk − l| � ε}| = 0.

In 2014, Şengül and Et [23] introduced lacunary statistical convergent sequence of
order α. The sequence x = (xk) is said to be Sα

θ -statistically convergent to l if for
every ε > 0,

lim
r

1

hα
r

|{k ∈ Ir : |xk − l| � ε}| = 0,

where hα = (hα
r ) = (hα

1 , h
α
2 , . . . , h

α
r , . . .).

Also, a sequence x is said to be strongly Nα
θ (p)-summable if there exists l such

that

lim
r

1

hα
r

∑

k∈Ir
|xk − l|p = 0, where p is a positive real number.

The idea of modulus function was introduced by Nakano [16]. Later, Ruckle [18]
generalized the idea by constructing a class of FK -spaces. Following Ruckle [18]
and Maddox [14], we recall that a modulus f is a function from [0,∞) to [0,∞)

such that

(i) f (x) = 0 if and only if x = 0,
(ii) f (x + y) � f (x) + f (y),
(iii) f is increasing,
(iv) f is continuous from the right at 0.

Modulus function is frequently used by many authors to construct scalar and vector
valued sequence spaces.

Et and Şengül [6] studied various inclusion relations between space of Sα
θ -

convergent sequences, Nα
θ (p)-summable space and spaceωα

θ ( f, p), which is defined
by

ωα
θ ( f, p) =

{

x = (xk) : lim
r

1

hα
r

∑

k∈Ir
[ f (|xk − l|)]pk = 0, for some l

}

,

where (pk) is bounded sequence of positive real numbers such that inf
k

pk > 0.

In 2015, Altin et al. [1] defined �m
v −statistical convergence of order α and intro-

duced space wα
p(�

m
v , f ) defined as follows:

wα
p(�

m
v , f ) =

{
x = (xk) : lim

n

1

nα

n∑

k=1

[
f (|�m

v xk − l|)
]pk = 0, for some l

}
.

Recently, lacunary statistical convergence of order α has been studied in ([7, 21,
22, 24]) in relation to I -lacunary statistical convergence, lacunary statistical conver-
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gence of order (α,β), Wijsman I -lacunary statistical convergence and f -lacunary
statistical convergence of order α.

In this paper, we have generalized �m
v −statistical convergence of order α by

taking lacunary sequence θ. We also obtained some inclusion relations between the
sequence spaces Sα

θ (�m
v ), Nα

θ (�m
v , p), and ωα

θ (�m
v , f, p). Throughout this paper, let

(vk) be fixed sequence of nonzero complex number, m be a fixed positive integer,
θ = (kr ) be a lacunary sequence, and α be a real number lies in the interval (0, 1].

2 Definitions Related to Our Work

Definition 2.1 Let θ = (kr ) be a lacunary sequence and α ∈ (0, 1]. A sequence
x = (xk) ∈ w is called Sα

θ (�m
v )-statistically convergent to l if for every ε > 0,

lim
r

1

hα
r

| {k ∈ Ir : |�m
v xk − l| � ε

} | = 0.

In this case, we write Sα
θ (�m

v )-lim xk = l. The set of all �m
v -lacunary statistical

convergent sequence of order α is denoted by Sα
θ (�m

v ).
If we take θ = (2r ), then space Sα

θ (�m
v ) becomes Sα(�m

v ), which was studied by
Altin et al. [1]. If α = 1,m = 0, and (vk) = (1, 1, 1, . . .), then Sα

θ (�m
v )-statistically

convergence of order α coincides with classical lacunary statistical convergence,
which is discussed by Fridy and Orhan [11] in 1993. We write S(�m

v ) if θ = (2r )
and α = 1.

Definition 2.2 Let p be a positive real number. A sequence x = (xk) is said to be
strongly Nθ(�

m
v , p)-summable of order α if there is number l such that

lim
r

1

hα
r

(
∑

k∈Ir
|�m

v xk − l|p
)

= 0.

In this case, we write Nα
θ (�m

v , p)-lim xk = l. The set of all strongly Nθ(�
m
v , p)-

summable sequences of order α is denoted by Nα
θ (�m

v , p).

Definition 2.3 Let f be a modulus function and p = (pk) be bounded sequence of
positive real numbers with infk pk > 0. A sequence x = (xk) is said to be strongly
ωθ(�

m
v , p)-summable of order α with respect to modulus function f if there is

number l such that

lim
r

1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk = 0.

In this case, we write ωα
θ (�m

v , f, p)-lim xk = l. The set of all strongly ωθ(�
m
v , f, p)-

summable sequences of order α is denoted by ωα
θ (�m

v , f, p). If f (x) = x and pk =
p, for all k ∈ N, then we have obtained space Nα

θ (�m
v , p).
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3 Main Results on Sα
θ (�m

v ) & Nα
θ (�m

v , p)

In view of Theorem2.2 of Sengul and Et [23], we formulate the following result
without proof.

Theorem 3.1 Let x = (xk) and y = (yk) be any two sequences. Then

(i) If Sα
θ (�m

v )-lim xk = x0 and c ∈ C, then Sα
θ (�m

v )-lim cxk = cx0.
(ii) If Sα

θ (�m
v )-lim xk = x0 and Sα

θ (�m
v )-lim yk = y0, then Sα

θ (�m
v )-lim(xk + yk) =

x0 + y0.

Theorem 3.2 Let α and β be real numbers such that 0 < α � β � 1. Then
Sα

θ (�m
v ) ⊆ Sβ

θ (�m
v ) and the inclusion is strict for some α and β.

Proof Let 0 < α � β � 1. Then for every ε > 0,

1

hβ
r

| {k ∈ Ir : |�m
v xk − l| � ε

} | � 1

hα
r

| {k ∈ Ir : |�m
v xk − l| � ε

} |.

Above inequality gives Sα
θ (�m

v ) ⊆ Sβ
θ (�m

v ).
For strictness of inclusion, letm = 0, (vk) = (1, 1, 1, . . .) and sequence x = (xk)

be defined by

xk =
{

[√hr ], k = 1, 2, 3, . . . , [√hr ],
0, otherwise.

Then, for 1
2 < β � 1,

1

hβ
r

| {k ∈ Ir : |�m
v xk − 0| � ε

} | = [√hr ]
hβ
r

→ 0 as r → ∞.

This means that x ∈ Sβ
θ (�m

v ).

But, for 0 < α � 1
2 ,

[√hr ]
hα
r

� 0 as r → ∞ and hence x /∈ Sα
θ (�m

v ). Thus the inclu-
sion is strict.

Corollary 1 If a sequence is Sα
θ (�m

v )-statistically convergent to l, then it is Sθ(�
m
v )-

statistically convergent to l.

Theorem 3.3 Let α and β be fixed real numbers such that 0 < α � β � 1. Then
Nα

θ (�m
v , p) ⊆ Sβ

θ (�m
v ) and the inclusion is strict for some α and β.

Proof Let x = (xk) ∈ Nα
θ (�m

v , p). Then for a given ε > 0, we have

∑

k∈Ir
|�m

v xk − l|p =
∑

k∈Ir|�m
v xk−l|�ε

|�m
v xk − l|p +

∑

k∈Ir|�m
v xk−l|<ε

|�m
v xk − l|p

�
∑

k∈Ir|�m
v xk−l|�ε

|�m
v xk − l|p

� | {k ∈ Ir : |�m
v xk − l| � ε

} |εp.
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Since hr is an increasing sequence and α � β, so above inequality reduces to

1

hα
r

∑

k∈Ir
|�m

v xk − l|p � 1

hβ
r

| {k ∈ Ir : |�m
v xk − l| � ε

} |εp.

Hence we get the inclusion Nα
θ (�m

v , p) ⊆ Sβ
θ (�m

v ). For strictness of inclusion, let
m = 0, (vk) = (1, 1, . . .), p = 1 and construct sequence (xk) same as Theorem3.2.

Then for 1
2 < β � 1, x ∈ Sβ

θ (�m
v ).

But, for 0 < α < 1,
1

hα
r

∑

k∈Ir
|xk | = [√hr ][√hr ]

hα
r

→ ∞, which means that

x /∈ Nα
θ (�m

v , p).

Corollary 2 If a sequence is strongly Nα
θ (�m

v , p)-summable to l, then it is Sα
θ (�m

v )-
statistically convergent to l.

Theorem 3.4 Let θ = (kr ) be lacunary sequence and 0 < α � 1.

(i) If lim inf
r
qr > 1, then Sα(�m

v ) ⊆ Sα
θ (�m

v ).

(ii) If lim sup
r

qr < ∞, then Sα
θ (�m

v ) ⊆ Sα(�m
v ).

(iii) If lim
r→∞ inf

hα
r

kr
> 0, then S(�m

v ) ⊆ Sα
θ (�m

v ).

Proof The proof of (i) and (ii) are similar to that of Theorems2.9 and 2.10 of Sengul
and Et [23]. So we omit it.
(iii) For any ε > 0, we have

{k � kr : |�m
v xk − l| � ε} ⊇ {k ∈ Ir : |�m

v xk − l| � ε}.

Therefore,

1

kr
|{k � kr : |�m

v xk − l| � ε}| � 1

kr
|{k ∈ Ir : |�m

v xk − l| � ε}|

= hα
r

kr

1

hα
r

|{k ∈ Ir : |�m
v xk − l| � ε}|.

On taking r → ∞ in both sides of above inequality and using lim
r

inf
hα
r

kr
> 0, we

can obtain the required inclusion.

Theorem 3.5 Let α and β be fixed real numbers such that 0 < α � β � 1. Then

(i) Nα
θ (�m

v , p) ⊆ Nβ
θ (�m

v , p) and the inclusion is strict for some α and β.

(ii) Nβ
θ (�m

v , p) ⊆ Nθ(�
m
v , p).
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Proof (i) We have
1

hβ
r

∑

k∈Ir
|�m

v xk − l|p � 1

hα
r

∑

k∈Ir
|�m

v xk − l|p.
From above inequality, we get the required inclusion. For strictness of inclusion, let
m = 0, p = 1, (vk) = (1, 1, 1, . . .), and define x = (xk) by

xk =
{
1, if k is a perfect square number,

0, otherwise.

Now, for 1
2 < β � 1, x ∈ Nβ

θ (�m
v , p), but x /∈ Nα

θ (�m
v , p) for 0 < α � 1

2 .
(ii) Inclusion follows directly if we put α = β and β = 1 in (i).

4 Results on Space ωα
θ (�m

v , f, p)

In this section, we obtain representation of Sα
θ (�m

v )-statistical convergence in terms
of strongly ωθ(�

m
v , f, p)-summability with respect to modulus function f by estab-

lishing some inclusion relations between space Sα
θ (�m

v ) and ωα
θ (�m

v , f, p).

Theorem 4.1 If x = (xk) is strongly ωθ(�
m
v , f, p)-summable of order α, then the

limit l of x is unique.

Proof Suppose ωα
θ (�m

v , f, p) lim-xk = l1 and ωα
θ (�m

v , f, p) − lim xk = l2. Then by
the subadditive property of modulus function,

1

hα
r

∑

k∈Ir
[ f (|l1 − l2|)]pk � 1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l1|) + f (|�m
v xk − l2|)]pk .

Using the inequality |ak + bk |pk � T
{|ak |pk + |bk |pk

}
(one may refer to Maddox

[13]), we get

1

hα
r

∑

k∈Ir
[ f (|l1 − l2|)]pk � T

hα
r

∑

k∈Ir
[ f (|�m

v xk − l1|)]pk + T

hα
r

∑

k∈Ir
[ f (|�m

v xk − l2|)]pk ,

where T = max(1, 2H−1) and H = supk pk .
Taking limit as r → ∞ on both sides of above inequality, we have

lim
r

1

hα
r

∑

k∈Ir
[ f (|l1 − l2|)]pk = 0.

Since (pk) is bounded sequence, so above equality is possible only when l1 − l2 = 0.
Thus, the limit of x is unique.

Theorem 4.2 Let α and β be fixed real numbers such that 0 < α � β � 1. Then
ωα

θ (�m
v , f, p) ⊆ Sβ

θ (�m
v ).



252 A. K. Verma and S. Kumar

Proof Let x ∈ ωα
θ (�m

v , f, p). For any ε > 0, we have

1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk � 1

hβ
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

= 1

hβ
r

[ ∑

k∈Ir|�m
v xk−l|�ε

[ f (|�m
v xk − l|)]pk +

∑

k∈Ir|�m
v xk−l|<ε

[ f (|�m
v xk − l|)]pk

]

� 1

hβ
r

[ ∑

k∈Ir|�m
v xk−l|�ε

[ f (ε)]pk
]

� 1

hβ
r

[ ∑

k∈Ir|�m
v xk−l|�ε

min
(
[ f (ε)]h , [ f (ε)]H

)]
, h = inf

k
pk & H = sup

k
pk

= 1

hβ
r

|{k ∈ Ir : |�m
v xk − l| � ε}|min

(
[ f (ε)]h , [ f (ε)]H

)
.

Above inequality gives, x ∈ Sβ
θ (�m

v ) and hence establishes the required inclusion.

Theorem 4.3 If themodulus function f is bounded and lim
r

hr
hα
r

= 1, then Sα
θ (�m

v ) ⊆
ωα

θ (�m
v , f, p).

Proof Since f is bounded, so there exists a positive integer M such that f (x) � M ,
for all x � 0. Let x ∈ Sα

θ (�m
v ). For any ε > 0, we have

1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk = 1

hα
r

[ ∑

k∈Ir|�m
v xk−l|�ε

[ f (|�m
v xk − l|)]pk +

∑

k∈Ir|�m
v xk−l|<ε

[ f (|�m
v xk − l|)]pk

]

� 1

hα
r

∑

k∈Ir|�m
v xk−l|�ε

Mpk + 1

hα
r

∑

k∈Ir|�m
v xk−l|<ε

[ f (ε)]pk

� 1

hα
r

∑

k∈Ir|�m
v xk−l|�ε

max
(
Mh , MH

)
+ 1

hα
r

∑

k∈Ir|�m
v xk−l|<ε

[ f (ε)]pk

� max
(
Mh , MH ) 1

hα
r

|{k ∈ Ir : |�m
v xk − l| � ε}| + hr

hα
r
max

(
f (ε)h , f (ε)H

)
.

Since f is a continuous function, so taking r → ∞ and using lim
r

hr
hα
r

= 1 in the

above inequality, we can obtained x ∈ ωα
θ (�m

v , f, p).

Theorem 4.4 Let θ1 = (kr ) and θ2 = (sr ) be two lacunary sequence such that Ir ⊆
Jr (Ir = (kr−1, kr ] and lr = (sr−1, sr ]) for all r ∈ N. Suppose α and β be fixed real
numbers such that 0 < α � β � 1.

(i) If lim inf
r

hα
r

lβr
> 0, then ω

β
θ2

(�m
v , f, p) ⊆ ωα

θ1
(�m

v , f, p).
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(ii) If the modulus function f is bounded and lim
r

lr

hβ
r

= 1, then ωα
θ1

(�m
v , f, p) ⊆

ω
β
θ2

(�m
v , f, p).

Proof (i) Let x ∈ ω
β
θ2

(�m
v , f, p). We can write

1

lβr

∑

k∈Jr

[ f (|�m
v xk − l|)]pk = 1

lβr

∑

k∈Jr−Ir

[ f (|�m
v xk − l|)]pk + 1

lβr

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

� 1

lβr

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

� hα
r

lβr

( 1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk
)
.

Since lim inf
r

hα
r

lβr
> 0, so the above inequality gives x ∈ ωα

θ1
(�m

v , f, p).

(ii) Let x ∈ ωα
θ1

(�m
v , f, p). Since f is bounded, so there exists a positive integer K

such that f (x) � K , for all x � 0. Also, Ir ⊆ Jr implies that hr � lr for all r ∈ N.
Now, for any r ∈ N, we have

1

lβr

∑

k∈Jr

[ f (|�m
v xk − l|)]pk = 1

lβr

∑

k∈Jr−Ir

[ f (|�m
v xk − l|)]pk + 1

lβr

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

� 1

lβr

∑

k∈Jr−Ir

[K ]pk + 1

lβr

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

�
( lr − hr

lβr

)
K H + 1

lβr

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

�
( lr − hβ

r

hβ
r

)
K H + 1

hβ
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk

�
( lr

hβ
r

− 1
)
K H + 1

hα
r

∑

k∈Ir
[ f (|�m

v xk − l|)]pk .

Finally, taking limit r → ∞ and using condition lim
r

lr

hβ
r

= 1, we can obtain the

required inclusion.
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Convergence of Three-Step Iterative
Process for Generalized Asymptotically
Quasi-nonexpansive Mappings in CAT(0)
Spaces

Ritika

Abstract We consider a class of generalized asymptotically quasi-nonexpansive
mappings introduced by Imnang and Suantai (Abstr Appl Anal 728510: 1–14, 2009,
[7]) and seen as a generalization of asymptotically quasi-nonexpansive mappings
introduced by Liu (J Math Anal Appl 259:1–7, 2001, [9]). We prove some strong
convergence theorems for approximating fixed points of such mappings under suit-
able conditions in CAT(0) spaces. Our results generalize those of Thakur et al. (Filo-
mat 30(10):2711–2720, 2016, [17]) to the case of this kind of mappings. Our results
generalize the corresponding results of many authors.

Keywords CAT(0) spaces · Generalized asymptotically quasi-nonexpansive
mappings · Strong convergence

AMS (MOS) Subject Classification 54E40 · 54H25 · 47H10

1 Introduction

Let C be a nonempty subset of a CAT(0) space X and T : C → C be a mapping. A
point x ∈ C is called a fixed point of T if T x = x . Denote by F(T ) the set of fixed
points of T , i.e., F(T ) = {x ∈ C : T x = x}.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to
X such that c(0) = x , c(l) = y and d(c(t), c(t ′)) = |t − t ′| for all t, t ′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic
(or metric) segment joining x and y. When it is unique this geodesic segment is
denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic and X is said to be uniquely geodesic if there
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is exactly one geodesic joining x and y for each x, y ∈ X . A subset Y ⊆ X is said
to be convex if Y includes every geodesic segment joining any two of its points. A
geodesic triangle �(x1, x2, x2) in a geodesic metric space (X, d) consists of three
points x1, x2, x3 in X (the vertices of �) and a geodesic segment between each
pair of vertices (the edges of �). A comparison triangle for the geodesic triangle
�(x1, x2, x3) in (X, d) is a triangle �̄(x1, x2, x3) = �(x̄1, x̄2, x̄3) in the Euclidean
plane E2 such that dE2(x̄i , x̄ j ) = (xi , x j ) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom:

Let � be a geodesic triangle in X and let �̄ be a comparison triangle for �. Then
� is said to satisfy the CAT(0) inequality if for all x, y ∈ � and all comparison points
x̄, ȳ ∈ �̄, d(x, y) ≤ dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 + 1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2 (CN)

This is the (CN) inequality of Bruhat and Tits [2]. In fact, a geodesic space is a
CAT(0) space only if it satisfy (CN) inequality.

Definition 1.1 Let C be nonempty subset of a CAT(0) space X and T : C → C be
a mapping. Then T is said to be

1. nonexpansive if d(T x, T y) ≤ d(x, y) for all x, y ∈ C
2. quasi-nonexpansive [4] if d(T x, p) ≤ d(x, p) for all x ∈ C and p ∈ F(T ).
3. asymptotically nonexpansive [6] if there exists a sequence rn ∈ [0,∞) with the

property limn→∞ rn = 0 and such that d(T nx, T n y) ≤ (1 + rn)d(x, y) for all
x, y ∈ C and n = 1, 2, 3, . . ..

4. asymptotically quasi-nonexpansive [5, 8] if there exists a sequence rn ∈ [0,∞)

with the property limn→∞ rn = 0 and such that d(T nx, p) ≤ (1 + rn)d(x, p) for
all x ∈ C , p ∈ F(T ) and n = 1, 2, 3, . . ..

5. generalized asymptotically quasi-nonexpansive [7] if F(T ) 	= φ and there exist
two sequences rn , sn with the property limn→∞ rn = 0 = limn→∞ sn such that
d(T nx, p) ≤ (1 + rn)d(x, p) + sn for all x ∈ C , p ∈ F(T ) and n = 1, 2, 3, . . ..

Definition 1.2 ([12]) Let {xn} be a sequence in X and C be a subset of X . We say
that {xn} is
1. of monotone type (A) with respect to C if for each p ∈ C , there exist two

sequences {an} and {bn} of nonnegative real numbers such that
∑∞

n=1 an < ∞,∑∞
n=1 bn < ∞ and d(xn+1, p) ≤ (1 + an)d(xn, p) + bn .

2. of monotone type (B) with respect to C if there exist two sequences {an} and
{bn} of nonnegative real numbers such that

∑∞
n=1 an < ∞,

∑∞
n=1 bn < ∞ and

d(xn+1,C) ≤ (1 + an)d(xn,C) + bn (See also [18]).
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In 2016, Thakur et al. [17] established a new three-step iterative process in Banach
spaces. Now we modify this iterative process into a CAT(0) space as follows: Let C
be a nonempty closed convex subset of a complete CAT(0) space X and T : C → C
be a mapping. Then we define the sequence {xn} in C iteratively as

xn+1 = (1 − αn)T zn ⊕ αnT yn,

yn = (1 − βn)zn ⊕ βnT zn,

zn = (1 − γn)xn ⊕ γnT xn, for all n ≥ 1, (1.1)

where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are sequences of positive numbers in (0, 1).
Our aim of this paper is to provide convergence results for the above iterative

process (1.1) for the generalized asymptotically quasi-nonexpansive mappings given
by definition 1.1 (v) in CAT(0) space setting. Our results extend and improve many
results in the existing literature due to [1, 9–17] and many others.

2 Main Results

Before going to our main result, we need the following useful lemma.

Lemma 2.1 ([3]) Let X be a CAT(0) space. Then

d((1 − t)x ⊕ t y, z) ≤ (1 − t)d(x, z) + td(y, z)

for all x, y, z ∈ X and t ∈ [0, 1].
Lemma 2.2 ([18]) Suppose that {pn}, {qn} and {rn} are three sequences of non-
negative real numbers satisfying the following conditions: pn+1 ≤ (1 + qn)pn + rn,
n = 1, 2, 3, . . . and

∑∞
n=1 qn < ∞ and

∑∞
n=1 rn < ∞. Then

1. limn→∞ pn exists.
2. In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

Theorem 2.3 Let C be a nonempty closed bounded and convex subset of a com-
plete C AT (0) space X and T : C → C be a generalized asymptotically quasi-
nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that

∑∞
n=1 rn < ∞ and∑∞

n=1 sn < ∞. For a given x1 ∈ C and n = 1, 2, 3, . . ., define the sequence {xn}
by

xn+1 = (1 − αn)T
nzn ⊕ αnT

n yn,

yn = (1 − βn)zn ⊕ βnT
nzn,

zn = (1 − γn)xn ⊕ γnT
nxn. (2.1)

Then, the sequence {xn} is of monotone type (A) and monotone type (B)with respect
to F(T ). Moreover, the sequence {xn} converges strongly to a fixed point p of
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the mapping T if and only if lim infn→∞ d(xn, F(T )) = 0, where d(x, F(T )) =
in f p∈F(T )d(x, p).

Proof The necessary condition is quite obvious and so here we prove only the suf-
ficient condition. Let p ∈ F(T ). Consider

d(zn, p) = d((1 − γn)xn ⊕ γnT
nxn, p)

≤ (1 − γn)d(xn, p) + γnd(T nxn, p)

≤ (1 − γn)d(xn, p) + γn[(1 + rn)d(xn, p) + sn]
= (1 + γnrn)d(xn, p) + γnsn
≤ (1 + rn)d(xn, p) + sn (2.2)

Now,

d(yn, p) = d((1 − βn)zn ⊕ βnT
nzn, p)

≤ (1 − βn)d(zn, p) + βnd(T nzn, p)

≤ (1 − βn)d(zn, p) + βn[(1 + rn)d(zn, p) + sn]
= (1 + βnrn)d(zn, p) + βnsn
≤ (1 + βnrn)[(1 + rn)d(xn, p) + sn] + βnsn
≤ (1 + rn)(1 + rn)d(xn, p) + [1 + βnrn]sn + βnsn

≤ (1 + rn)
2d(xn, p) + [1 + βnrn + βn]sn

≤ (1 + rn)
2d(xn, p) + [1 + (1 + rn)βn]sn

≤ (1 + rn)
2d(xn, p) + (2 + rn)sn (2.3)

Now,

d(xn+1, p) = d((1 − αn)T
nzn ⊕ αnT

n yn, p)

≤ (1 − αn)d(T nzn, p) + αnd(T n yn, p)

≤ (1 − αn)[(1 + rn)d(zn, p) + sn] + αn[(1 + rn)d(yn, p) + sn]
≤ (1 − αn)[(1 + rn)[(1 + rn)d(xn, p) + sn] + sn]
+ αn[(1 + rn)[(1 + rn)

2d(xn, p) + (2 + rn)sn] + sn]
= (1 − αn)(1 + rn)

2d(xn, p) + (1 − αn)sn(2 + rn)

+ αn(1 + rn)
3d(xn, p) + [(1 + rn)(2 + rn) + 1]αnsn

= (1 + rn)
2[(1 − αn) + αn(1 + rn)]d(xn, p)

+ [(1 − αn)(2 + rn) + αn[(1 + rn)(2 + rn) + 1]]sn
≤ (1 + rn)

3d(xn, p)

+ [2 + αn + rn + 2αnrn + αnrn
2]sn

≤ (1 + 3rn + 3rn
2 + rn

3)d(xn, p)+
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+ [3 + rn + rn(2 + rn)]sn
= (1 + Rn)d(xn, p) + Sn, (2.4)

where Rn = 3rn + 3rn2 + rn3 and Sn = [3 + rn + rn(2 + rn)]sn .
Since by hypothesis,

∑∞
n=1 rn < ∞ and

∑∞
n=1 sn < ∞, it follows that

∑∞
n=1 Rn <

∞ and
∑∞

n=1 Sn < ∞.
Now, from (2.4), we get

d(xn+1, p) ≤ (1 + Rn)d(xn, p) + Sn (2.5)

and

d(xn+1, F(T )) ≤ (1 + Rn)d(xn, F(T )) + Sn (2.6)

These inequalities, respectively, prove that {xn} is a sequence of monotone type (A)

and monotone type (B) with respect to F(T ).
Now, we prove that {xn} converges strongly to a fixed point of the mapping T if

and only if lim infn→∞ d(xn, F(T )) = 0.
If {xn} → p ∈ F(T ), then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F(T )) ≤

d(xn, p), we have that lim infn→∞ d(xn, F(T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F(T )) = 0. Applying Lemma 2.2 to

(2.6), we have that limn→∞ d(xn, F(T )) exists. Also from hypothesis lim infn→∞
d(xn, F(T )) = 0, so we conclude that

lim
n→∞ d(xn, F(T )) = 0. (2.7)

Now, we prove that {xn} is a Cauchy sequence.
Since (1 + x) ≤ ex for some x ≥ 0.
Thus

d(xn+m, p) ≤ (1 + Rn+m−1)d(xn+m−1, p) + Sn+m−1

≤ eRn+m−1d(xn+m−1, p) + Sn+m−1

≤ eRn+m−1[eRn+m−2d(xn+m−2, p) + Sn+m−2] + Sn+m−1

≤ eRn+m−1+Rn+m−2d(xn+m−2, p) + eRn+m−1 [Sn+m−2 + Sn+m−1]
≤ · · ·

≤ e
∑n+m−1

k=n Rk d(xn, p) + e
∑n+m−1

k=n+1 Rk

n+m−1∑

k=n

Sk

≤ e
∑n+m−1

k=n Rk d(xn, p) + e
∑n+m−1

k=n Rk

n+m−1∑

k=n

Sk
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Let e
∑n+m−1

k=n Rk = M . Thus, there exists a constant M > 0 such that

d(xn+m, p) ≤ Md(xn, p) + M

{
n+m−1∑

k=n

Sk

}

for all n,m ∈ N and p ∈ F(T ).
Since limn→∞ d(xn, F(T )) = 0, therefore, for each ε > 0, there exists n1 ∈ N

such that d(xn, F(T )) < ε
8M and

∑n+m−1
k=n Sk < ε

4M for all n > n1. Thus there exists
p1 ∈ F(T ) such that d(xn, p1) < ε

4M for all n > n1 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p1) + d(p1, xn)

≤ Md(xn1 , p1) + M(

∞∑

k=n1

Sk) + Md(p1, xn1) + M(

∞∑

k=n1

Sk)

= 2M(d(xn1 , p1) +
∞∑

k=n1

Sk)

≤ 2M(
ε

4M
+ ε

4M
) = ε

for all m, n > n1. This proves that {xn} is a Cauchy sequence in C . Since the set C
is complete, the sequence {xn} must converge to a fixed point in C .

Let limn→∞ xn = y. Since C is closed, therefore y ∈ C .
Next, we show that y ∈ F(T ).
Now, these two inequalities

d(y, p) ≤ d(y, xn) + d(xn, p)

for all p ∈ F(T ), n = 1, 2, 3, . . . and

d(y, xn) ≤ d(y, p) + d(xn, p)

for all p ∈ F(T ), n = 1, 2, 3, . . . give

− d(y, xn) ≤ d(y, F(T )) − d(xn, F(T )) ≤ d(y, xn),

for all n ≥ 1. That is, |d(y, F(T )) − d(xn, F(T ))| ≤ d(y, xn) for n ≥ 1.
As limn→∞ xn = y and limn→∞ d(xn, F(T )) = 0, we conclude that y ∈ F(T ).

This completes the proof. �

Corollary 2.4 Let C be a nonempty closed bounded and convex subset of a com-
plete CAT(0) space X and T : C → C be a generalized asymptotically quasi-
nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that

∑∞
n=1 rn < ∞ and∑∞

n=1 sn < ∞. Suppose that F(T ) is closed. Let {xn} be the iteration sequence
defined by (2.1). Then, the sequence {xn} converges strongly to a fixed point p of the
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mapping T if and only if there exists a subsequence {xn j } of {xn} which converges to
p ∈ F(T ).

Corollary 2.5 Let C be a nonempty closed bounded and convex subset of a complete
CAT(0) space X and T : C → C be an asymptotically quasi-nonexpansive mapping
with {rn} ⊂ [0,∞) such that

∑∞
n=1 rn < ∞. Suppose that F(T ) is closed. Let {xn} be

the iteration sequence defined by (2.1). Then, the sequence {xn} converges strongly
to a fixed point p of the mapping T if and only if lim infn→∞ d(xn, F(T )) = 0.
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