Chapter 3 M)
Numerical Simulation Method Check or

Tomokazu Murakami

Abstract This chapter presents a description of models used for simulations per-
formed in this book, including the Coastal ocean Current Model with a multi-sigma
coordinate system (CCM) developed by the author and a colleague for computation
of seawater flow, a wave model SWAN developed at Delft University of
Technology, and the Lagrangian particle tracking model.
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3.1 Ocean Model CCM

This section presents a description of the Coastal ocean Current Model with a
multi-sigma coordinate system (CCM) used in this book, developed by the author
and colleagues for seawater flow computations (Murakami et al. 2004).

Seawater flow in inland seas such as Sakiyama Bay and Amitori Bay is closely
involved with the vertical structure of water temperature, salinity, and density.
These quantities are governed strongly by oceanic water entering from the bay
mouth, as well as layering because of insolation and river water, circulation inside
of the bay by wind, and upwelling. For that reason, the numerical computation of
seawater flow in an inland sea requires correct evaluation not only of changes of
geographical features but also the effects of meteorological fields such as insolation
and wind, as well as solving from offshore to the inland sea continuously with
sufficient accuracy.

This chapter is based on work reported by Murakami et al. (2004).
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Seawater inflow from offshore is important for inland seas such as Sakiyama Bay
and Amitori Bay. Accordingly, it is necessary to configure a computational domain
widely including offshore areas. However, the water depth difference is highly
extended between that in an inland sea and offshore in a computational domain that
is so configured. Furthermore, geographical features change suddenly and intri-
cately at the bay mouth. The ¢ coordinates, which implement correct expressions of
complicated submarine topography and easy handling of boundary conditions, are
in heavy use for the computation of seawater flow under such conditions. Ocean
models using this scheme, including POM (Mellor 2004), have been developed.

The o coordinate system is defined as

z—=( z-¢
0_C+h_ T (3.1)
where ( represents the water surface displacement, & denotes the still water depth,
and H stands for the total depth.

The primitive equations are converted into the ¢ coordinate system from the
Cartesian coordinate system with Eq. 3.1. Then, they are discretized and solved
using the finite difference method. The relation between the vertical difference of
physical quantity in the Cartesian coordinate system ¢ and that of physical quantity

in the o coordinate system ¢ is expressed as

ALZ(%H - </>k—1) :%Aio_((z)k-kl - &sk—l)' (3-2)

In the difference equation in the ¢ coordinate system of the right-hand side of
Eq. 3.2, Ao is multiplied by total depth H having a horizontal variation as shown in
relation Ao - H = Az obtained from Eq. 3.1. The difference value is calculated
using Az distorted for every lattice depending on the water depth. For example,
Az offshore with a depth of 100 m and in an inland sea with a depth of 3 m are
10 m and 0.3 m, respectively, in the configuration of 10 layers at a vertical regular
interval in the ¢ coordinate system. The difference equation of Eq. 3.2 is apt to
yield a numerical error at an enlarged Az or when the vertical change of physical
quantities is great. Accordingly, the accuracy of vertical difference deteriorates
extremely offshore with a large water depth compared with an inland sea. When a
physical quantity with a large numerical error is introduced from offshore into an
inland sea as the target of computation, a large numerical error will arise in com-
putation of a physical quantity in the inland sea. This difficulty requires more
careful handling, especially when coupled with a meteorological field, because the
vertical change of physical quantities is enhanced because of momentum transfer by
wind, heat exchange by insolation, and water balance by precipitation and evapo-
ration. Consequently, it is an important problem that the accuracy of vertical dif-
ference is dependent on water depth when solving continuously from offshore to an
inland sea.
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Simplified solutions to this problem include increasing the number of vertical
layers and the concept of unequally spaced layers by making the interlayer spacing
near the sea surface dense. However, a considerable number of vertical layers or
extremely unequal layer spacing is indispensable for the method described above to
reduce the differences of Az between an inland sea and offshore. These measures are
expected to increase the computation time and instability in computation. They are
not conclusive solutions.

The present author and colleagues have newly proposed the multi-sigma coor-
dinate system in which a calculation domain is divided into numerous regions along
the vertical direction, and ¢ coordinates are applied to each region. This
multi-sigma coordinate system is defined as follows, with divided regions desig-
nated sequentially from the sea surface as I, II, III, ...:

o1 = i in region I (=l <z<{) (3.3)
S
oy = % in region Il (—hy <z< — hy) (3.4)
S
om = I;l+z in region I (—Am < z< — hy) (3.5)
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{ hu = Sm — Su ath > Sm

The definition of the ¢ coordinates of representative regions I, II, and III is
described below, but this definition also applies to region IV and deeper regions. Si,
Sy, and Sy, respectively, represent the distance from z = 0 to the interface between
regions I and II, IT and III, and III and IV. Such S is designated as the interface
depth. Figure 3.1 shows the grid points of the so-defined multi-sigma coordinates
and those of the conventional ¢ coordinates. Conventional ¢ coordinates of Fig. 3.1
represent a big difference in Az between the inland sea and offshore, influenced by
water depth change. However, in the multi-sigma coordinate system, the influence
of water depth change can be eliminated from region I by narrowing region I
directly under the sea surface, so that Az in the inland sea and offshore becomes
uniform. Consequently, the water depth dependence of the accuracy of vertical
difference in the top layer can be canceled, which is intrinsically important in
coupled calculation with a meteorological field. Moreover, dividing a domain into
multiple regions can cancel the water depth dependence of the accuracy of vertical
difference, even in regions except near the sea bottom. Furthermore, the



44 T. Murakami

Offshore Inland sea Offshore Inland sea
H

Region 1 ::

Region

Region

RegionlV

(a) Multi-sigma coordinate

(b) Conventional sigma coordinate

Fig. 3.1 Layouts of grid points using the multi-sigma coordinate system and the conventional
sigma coordinate system. Black points signify the grid points

conventional problem of the numerical error of the horizontal pressure gradient
term and horizontal diffusion term is improved because the level difference in a
domain that includes no sea bottom becomes the same as that of the Cartesian
coordinate system, even if geographical features are steep.

An oceanographic model using multi-sigma coordinates has been newly
developed in this study. It is designated as the Coastal ocean Current Model
(CCM). The major characteristics of this multi-sigma coordinate ocean model are
the following.

e Hydrostatic pressure approximation and Boussinesq approximation are applied.
The primitive equations include the equation of continuity, the N—S equation,
the diffusion equation of temperature and salinity, and the equation of state in
terms of density.

e The number of regions in which the ¢ coordinates is applied can be configured
as arbitrary numbers.

e The fifth-order accurate upwind difference scheme is applied to the finite dif-
ference of the advective term. The fourth-order accurate central difference
scheme is used for the finite difference of the diffusion term.

o The Mellor—-Yamada Level 2.5 turbulent closure model (Mellor and Yamada
1982) is adopted as a turbulent model.

To investigate the usefulness of the multi-sigma coordinates, six cases of
Table 3.1 were computed for Ise Bay in Japan in July 10-17, 2001 using an ocean
model with the multi-sigma coordinate system.

Interface depth S was determined so that the number of horizontal grid points in
a calculation domain was divided equally by N of each case. Case 1 is identical to
the conventional ¢ coordinates.

Figure 3.2 shows the mean sea level temperature obtained using the analysis of
data of a summer (July—September 2001) of the NOAA satellite. This figure shows
the relative drop of the sea surface temperature only at the bay mouth. The tem-
perature drop is regarded as taking place at the mouth where vertical mixing
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Table 3.1 Cases for computation (referred from Murakami et al. 2004)

N, Number of regions in which ¢ coordinates | S, Interface depth (m)
are applied
Case 1 |1
Case 2 |2 S$1=3
Case 3 |3 Sy=3,81=22
Case 4 |4 $1=3,81=19, Sy =35
Case 5 |5 Sy =3, Sy = 14, S = 26, Siv = 69
Case 6 |6 St =3, Sy = 10, Sy = 20, Sy = 29,
Sy =55

Fig. 3.2 Mean sea level
temperature distribution in
summer (July—September
2001); contour interval is

0.5 °C and low-temperature
regions of a deviation not
more than —0.5 °C are shaded
(referred from Murakami

et al. 2004)

prevails, although the calculation period of this study differs from the NOAA
satellite analysis period. Accordingly, this phenomenon, which arises in the middle
of an inland sea and offshore, is assumed as a suitable target for confirming the
calculation accuracy of this model. The multi-sigma coordinate effects are exam-
ined from the viewpoint of reproducibility of this phenomenon.

Figure 3.3 shows the mean sea level temperature during the calculation period
for each case. The temperature drop took place not at the mouth but offshore in
Case 1. This is considered to be the result of Az expansion offshore because of the
water depth and the result of accuracy of the vertical difference deterioration.
A slight temperature drop was observed at the mouth in addition to the temperature
drop offshore in Case 2. This is considered to be the result of ¢ coordinates applied
to two regions in Case 2; Az was uniform over the inland sea and offshore near the
sea surface (z = —3 m or above). Otherwise, in a deep region, Az was enlarged
offshore as in Case 1. In contrast to these, the temperature drop in Cases 3—6 was
observed only at the mouth as shown in Fig. 3.2. Consequently, the multi-sigma
coordinates are estimated as improving the calculation accuracy. Especially in
Cases 4-6, in which ¢ coordinates were applied to four or more domains, almost no
difference is indicated from the actual temperature distribution.
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Fig. 3.3 Mean sea level temperature distribution during calculation period. The contour interval is
0.5 °C, with shaded low-temperature regions having deviation of not more than —0.5 °C (referred
from Murakami et al. 2004)

Figure 3.4 compares the calculated density at 10:00 a.m. of each case with the
measured density obtained from observational data of temperature and salinity
acquired once a day (in the morning) at the bay center. Results of July 11, 12, and
16 are shown when typical characteristics were observed. The observed value was
reproduced well with calculation on July 11 in Cases 1-6. In contrast, the layering
was poorly reproduced on July 12 when the calculated values tended to be uniform
along the perpendicular direction compared with the observed value, and on July 16
when a pycnocline appeared in the observed value because of a high river flow rate.
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Fig. 3.4 Comparison of observed and calculated values of density distribution at point A: (left)
density on July 11, (center) density on July 12, and (right) density on July 16 (referred from
Murakami et al. 2004)
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Calculations tended to make the density distribution too uniform along the per-
pendicular direction in any case. However, the density distribution of Cases 5 and 6
was approached. The calculation accuracy improved with all days as the ¢ coor-
dinates were multiplexed more from Case 1 to Case 4.

Figure 3.5 shows the mean density distribution during the calculation period at
cross section B of Fig. 3.1 for each case. This figure shows a difference in the
density of seawater flowing in from offshore in each case (near x = 50 km in the
figure). Thereby it is demonstrated that a difference occurred in the distribution of
high-density water mass existing near the sea bottom of the inland sea. Moreover,
the density contours fluctuated greatly in accordance with geographical features
near the mouth in Cases 1-3. It is unnatural that the time-averaged density field
fluctuates greatly depending on the water depth. It is regarded as a calculation
difficulty. Actually, this difficulty is resolved gradually as the ¢ coordinates are
multiplexed.

Figure 3.6 shows the surface residual current during the calculation period for
each case. The trend of runoff to the west and inflow from the east, the characteristic
of Ise Bay in the summer, is evident in the residual current field of the inland sea in
all cases. However, a difference exists in the flow velocity of inflow from the east.
A large vortex is observed near the open boundary of southwest and northeast in
Cases 1 and 2. These vortices are known to appear on the open boundary even if a
calculation domain is modified. They have been regarded as a calculation-related
problem. These vortices cause an intense southwestward flow offshore. These
vortices shrink in Case 3 and almost disappear in Cases 4-6. The flow offshore
turns northeastward opposite to Cases 1 and 2. Consequently, it is regarded as one
reason why the calculation accuracy of quantities such as temperature, salinity, and
the density in the inland sea was improved that the calculative error near an open
boundary was reduced using multi-sigma coordinates.

Fig. 3.5 Mean density distribution during the calculation period at cross section B. The contour
interval is 1(g,) (referred from Murakami et al. 2004)
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Fig. 3.6 Surface residual current during calculation period (referred from Murakami et al. 2004)

Consequently, results verified that the CCM is a suitable model for computing
seawater flow, water temperature, salinity, and density in inland seas such as
Sakiyama Bay and Amitori Bay, as described above.

3.2 Wave Model SWAN

SWAN (Booij et al. 1996) was used to calculate a wave field. SWAN is a wave
forecasting and hindcasting model for shallow sea areas of the third-generation
developed at Delft University of Technology. This section presents a description of
the SWAN outline (Cycle III ver. 40.31) (Holthuijsen et al. 2004).

Because the directional wave spectrum is not conserved but the wave action
density is conserved in a state with a flow, SWAN uses not the directional wave
spectrum E(s, g) but the wave action density spectrum N(s, g), for which
the independent variables are relative frequency s and wave direction ¢, and
N(s, q) = E(s, q)/s. Actually, SWAN provides users with primitive equations of two
types: a rectangular coordinate system and the spherical coordinate system. The
primitive equation of the rectangular coordinate system is given as the following
equation.
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In that equation, c,, c,, ¢,, and ¢y, respectively, denote the propagation velocities
on the real space and the spectrum space x, y, s, and 0. They are used as components
in the equations shown below using phase velocity of each component wave c,

group velocity c,, steady flow velocity vector U= (U,V), and wave number
vector k = (k).

¢y =cgcos 0+ U (3.7)

Cy =cCgsin0+V (3.8)

cozg(m:/z.ﬁ) (3.9)
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The first term of the left-hand side of Eq. 3.6 expresses the temporal rate of
change of wave action density. The second and third terms express the spatial
propagation of wave action density. ¢, and c,, respectively, represent the propagation
velocity along the x-direction and y-direction. The fourth term denotes the change of
relative frequency according to the temporal change of water depth and a flow
(propagation velocity in s space ¢,). The fifth term expresses wave refraction by
water depth and a flow (propagation velocity in 6 space cy). S on the right-hand side
(= S (s, g)) is an energy source function representing the effects of wave generation,
wave dissipation, and interaction between nonlinear wave components. This func-
tion S will be described later. Equations of propagation velocity (3.7)—(3.10) are
derived using the linear kinematic wave theory (Whitham 1974; Dingemans 1997,
Mei 1983). Equation (3.6), the wave action density equation in the rectangular
coordinate system, is converted to the spherical coordinate system on the Earth as

0 0 d
N+ =c;N + (cos @) '==cp cos pN + —

0 S

0
ceN + — 20
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where c;, ¢,, ¢4, and ¢y are given, respectively, as shown below.

_ Cgsin0+V (3.12)
"~ Rcoso '
0+U
C(p:w (3.13)

R
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Therein, ¢, A, and R, respectively, denote the latitude, longitude, and the Earth’s
radius. Energy source function S on the right-hand side of Egs. 3.6 and 3.11 is
expressed as shown below.

S(a,0) = Sin + Sas + Sor + St + Snt + Sui (3.16)

In that equation, S;, represents an energy transport term from wind to wave, Sy
denotes an energy dissipation term by whitecap breaking wave, Sy, expresses an
energy dissipation term by shallow water breaking wave, Sy stands for an energy
dissipation term by bottom friction, S, signifies an energy transport term by non-
linear interaction between four-wave components, and S; is an energy transport
term by nonlinear interaction between three-wave components. An important
characteristic of SWAN is that it takes Sy, and S; into consideration directly.

Integration of the action balance equation in SWAN is conducted using a finite
difference scheme in all five dimensions (time, real space, and spectrum space). The
computation time is divided using a single time step for the simultaneous inte-
gration of the propagation term and the source term. The real space is also divided
using a rectangle grid with fixed resolution Ax and Ay, respectively, along the x-
direction and y-direction. The spectrum space is divided by a fixed directional
division Af and relative frequency Aa/a (logarithmic distribution). The range of the
frequency spectrum, which can be chosen freely, is divided within a range, with the
low-frequency and high-frequency portions cut off.

3.3 Particle Tracking Model

The three-dimensional particle tracking model used in this book is a numerical
model that tracks each particle in a Lagrangian way. Particle tracking calculations
are conducted based on a seawater flow field acquired from the CCM ocean model
described above. The following conditions are imposed in the case of particle
tracking: (1) Diffusion is not considered, (2) particles do not jump out of the sea
surface, and (3) particles perform total reflection on a boundary with land. This
numerical model can track virtual particles (water particles) having no mass. It is
unaffected by specific gravity. It moves only by seawater flow. Soil particles form
sediment with their own weight with the effects of specific gravity considered.
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