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Chapter 4
Diagnosis of AKI: Clinical Assessment, 
Novel Biomarkers, History, 
and Perspectives

Kiyoshi Mori and Noriko Mori

Abstract Around year 2005, vague definition of acute renal failure was replaced by 
diagnosis of AKI, which aimed to establish an internationally unified criteria detect-
ing kidney damage earlier. During the following decade, novel urinary biomarkers 
such as neutrophil gelatinase-associated lipocalin (NGAL or lipocalin 2), liver-type 
fatty acid-binding protein (L-FABP or FABP1), kidney injury molecule-1 (KIM-1), 
and NephroCheck (product of urinary TIMP-2 and IGFBP7) emerged and were 
intensively investigated, which made it possible to detect kidney damage even ear-
lier than development of AKI. These markers led to concepts of forest fire theory, 
functional/damage biomarkers, and subclinical AKI. By considering the time course 
and mechanism, we propose here that those urinary biomarkers may be divided into 
two categories: tubular dysfunction biomarkers (markers at least partially and 
potentially reflecting super-acute phase proximal tubule reabsorption impairment, 
which are urinary NGAL, L-FABP, and NephroCheck) and tubular regeneration 
biomarkers (early AKI markers but relatively delayed, reflecting proximal tubule 
regeneration, which contain urinary KIM-1). Future perspectives of novel AKI bio-
markers include evaluation of biomarker-based early intervention and biomarker- 
guided AKI therapy using biomarkers to judge effectiveness of on-going treatments.
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4.1  Historical Changes in the Concept of AKI

Correlation of blood creatinine levels with glomerular filtration rate (GFR) or cre-
atinine clearance was first proposed in 1926 and was verified by succeeding works 
[1–4]. Since then till now, serum creatinine has been long the gold standard to define 
renal function or GFR in other words. Acute elevation in serum creatinine or blood 
urea nitrogen levels has been called acute renal failure. It was a vague concept, mak-
ing it impossible to compare the findings of different clinical studies both horizon-
tally and historically. As described above in this book, national consortiums began 
to propose internationally united criteria to define acute renal failure, especially in 
the early phase, and gave a term of acute kidney injury (AKI). Based upon changes 
in serum creatinine levels and urine outputs, RIFLE criteria by the Acute Dialysis 
Quality Initiative (ADQI) were published in 2004 [5] and AKI Network criteria in 
2007 [6], and they were combined as 2012 AKI criteria by the Kidney Disease: 
Improving Global Outcomes (KDIGO) [7]. In KDIGO AKI criteria, the mildest 
stage of AKI (stage 1) was defined as either of the followings: (1) elevation of serum 
creatinine levels by ≥0.3 mg/dL within 48 h, (2) elevation of serum creatinine levels 
by ≥1.5-fold within 7 days, or (3) decrease of urine output to ≤0.5 mL/kg/h for 
more than 6 h [7]. We believe that, for healthy progress of nephrology, international 
definition of AKI should not be changed for at least 10  years. During years 
1998–2013, novel urinary biomarkers representatively listed in Table 4.1 emerged, 
which are increased both in rodent and human AKI.

4.2  Which Were Earlier, Human Studies or Rodent Studies 
of Urinary AKI Biomarkers?

Sequences of urinary biomarker reports, in the settings of rodent and human AKI 
and human CKD, are clearly distinct among biomarkers (Table 4.1). In 2002, NGAL 
appeared in the nephrology literature for the first time, as one of kidney 

Table 4.1 Representative urinary biomarkers for AKI and their first reports in rodent AKI, human 
AKI, and human CKD

Urinary biomarker NGAL L-FABP KIM-1 NephroCheck

First in rodent AKI Mishra et al. 
(2003) [11]

aKamijo et al. 
(2004b) [19]

Ichimura et al. 
(2004) [16]

Peng et al. (2016) 
[22]

First in human AKI Mori et al. 
(2005) [12]
Mishra et al. 
(2005) [13]

Portilla et al. 
(2008) [20]

Han et al. (2002) 
[15]

Kashani et al. 
(2013) [21]

First in human 
CKD

Mori et al. 
(2005) [12]

Kamijo et al. 
(2004a) [18]

Timmeren et al. 
(2007) [17]

Not reported

aIndicates that the report dealt with unique transgenic mice harboring human L-FABP genetic 
locus, whose findings cannot be tested in standard laboratory animals
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differentiation/epithelialization inducers [8, 9]. In 2003, upregulation of renal 
NGAL mRNA expression was reported at 3–24 h after murine renal ischemia-reper-
fusion injury [10]. Increase of NGAL protein in the urine was reported in murine 
renal ischemia- reperfusion injury and cisplatin-induced nephrotoxicity in 2003 
[11]. Elevation of urinary NGAL levels in human AKI [12, 13] and human CKD 
[12] was reported in 2005.

In 1998, induction of renal KIM-1 mRNA expression was reported at 48 h after rat 
renal ischemia-reperfusion injury [14]. Increased excretion of urinary KIM-1 was 
reported in human AKI in 2002 [15], rat AKI in 2004 [16], and human CKD in 2007 [17].

On the other hand, elevation of urinary L-FABP was first reported in human 
CKD in 2004 [18], followed by AKI in genetically modified mice in 2004 [19] and 
human AKI in 2008 [20].

Increase of NephroCheck [product of urinary concentrations of tissue inhibitor of 
metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 
(IGFBP7)] was reported in human AKI in 2013 [21] and in rat AKI in 2016 [22]. 
NephroCheck in human CKD has not been reported. The sources of urinary TIMP-2 
and IGFBP7 in AKI are poorly understood [23]. While IGFBP7 and TIMP-2 are spec-
ulated to be synthesized by injured renal tubules [21], there is no supporting evidence.

NGAL and KIM-1 have been the top two most popular biomarkers reported in 
the annual scientific meetings of the American Society of Nephrology (Fig. 4.1). 
The ratio of total abstract numbers may not necessarily reflect the numbers of large- 
scale clinical studies but might indicate reproducibility of the findings across vari-
ous AKI etiologies in different countries.
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Fig. 4.1 Abstract numbers of five urinary AKI biomarkers in Kidney Week. Online abstracts of the 
American Society of Nephrology Kidney Week in the recent 6 years were searched using each 
biomarker name. To enhance screening, other key words such as lipocalin 2 and LCN2 for NGAL 
and TIMP-2 and IGFBP7 for NephroCheck were also used. The abstract numbers included studies 
in basic science not related to urinary biomarker levels but dealt with, for instance, biological func-
tion of the proteins or phenotypic analysis of knockout and transgenic mice. Of note, publication- 
only abstracts which were not selected for presentation in the meeting were also included
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4.3  Prediction of AKI by Novel Biomarkers

Soon after discovery of those AKI biomarkers, it was recognized that those bio-
markers commonly allow early prediction of AKI development (i.e., significant 
elevation of serum creatinine levels several days later) on the day of kidney insult 
(Fig. 4.2) [13, 20, 24, 25]. With the introduction of these biomarkers other than GFR 
indicators (serum creatinine, serum cystatin C, or creatinine clearance) or urine out-
put, the field of AKI entered a new era.

Forest fire theory in 2007 (Fig. 4.3) proposed that blood, urine, and kidney 
NGAL concentrations are the real-time indicators of active kidney damage 
(resembling red fire in forest fire), distinctly from markers of functional nephron 
numbers such as serum creatinine or GFR (ratio between viable and burnt 
trees) [26].

Red Fire
Activity of Nephron Damage
(NGAL in blood, urine or kidney)

Ratio of Functional Nephrons
(sCr or GFR)

Ratio of Viable Trees

Kidneys Forest

Fig. 4.3 Forest fire theory for worsening renal function. Reproduced from Mori and Nakao (2007) 
[26]. sCr serum creatinine, GFR glomerular filtration rate
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Fig. 4.2 Changes of urinary biomarkers in AKI cases after cardiopulmonary bypass surgery. CPB 
cardiopulmonary bypass, AUC area under the curve for the prediction of AKI. Reproduced from 
Devarajan (2010) [51]
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In 2013–2014, ADQI 10th Workgroup reported a two-dimensional, biomarker- 
based framework for AKI evaluation (Fig. 4.4) [27, 28]. In that framework, serum 
creatinine, serum cystatin C, and urine output are renal function biomarkers, whereas 
urinary KIM-1, NGAL, L-FABP, and IL-18 are examples of kidney damage bio-
markers. The lower left quadrant represents loss of function without damage which 
is often reversible. This scenario has been called dehydration, prerenal AKI, or tran-
sient AKI. The upper right quadrant indicates damage without loss of function, which 
was alternatively named subclinical AKI [29]. In subclinical AKI, loss of function 
may not develop at all or be seen at some time interval after detection of damage 
biomarkers. These patients are at higher risk for renal replacement therapy (RRT) 
requirement and mortality compared to patients without an increase in damage bio-
marker levels [29].

4.4  Clinical Use of Novel AKI Biomarkers

Some of the urinary biomarkers are locally available for clinical use [30, 31]: 
NGAL in Japan (since February 2017) and in Europe, L-FABP in Japan (since 
August 2011), and NephroCheck in the USA (since September 2014). 
Additionally, KIM-1 is approved by the Food and Drug Administration (FDA) 
and European Medicines Evaluation Agency (EMEA) for preclinical drug devel-
opment and clinical trials [32].
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Fig. 4.4 Biomarker-based framework for AKI evaluation. Reproduced from Murray et al. (2014) [28]
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4.5  Novel Classification of AKI Biomarkers: Tubular 
Dysfunction Biomarkers and Tubular 
Regeneration Biomarkers

Cardiac surgery with cardiopulmonary bypass (CPB) is a unique situation with 
high AKI risk, in which the initiation of the renal insult (i.e., renal ischemia) can be 
clearly defined. It is well established that urinary levels of NGAL and L-FABP in 
patients who are going to develop AKI start to increase within a few hours after the 
start of CPB, and they begin to decrease within 6–12 h (Fig. 4.2) [13, 20, 33, 34]. 
Many literatures insist that de novo synthesis of NGAL occurs in response to AKI, 
based upon the findings in renal ischemia-reperfusion injury (RIR) of animal stud-
ies [12, 35]. However, those experimental settings are quite severe, and it seems 
unlikely that urinary NGAL levels start to decrease within 12 h in those animals. In 
rodent RIR, loss of polarity and dislocation of Na-K-ATPase in tubules is the first 
event, followed by cell death and dedifferentiation/regeneration of tubular cells 
[36]. Activity of Na-K-ATPase provides an essential force for endocytic reabsorp-
tion of proteins in the proximal tubule lumen [37]. Megalin expressed along the 
apical surface of proximal tubules is responsible of capturing and endocytosis of 
luminal proteins including NGAL and L-FABP [38, 39]. Transient and reversible 
dysfunction of proximal tubules as to endocytic capacity is a more reasonable 
explanation for rapid changes in urinary biomarkers after cardiac surgery, other 
than de novo mRNA transcription, protein synthesis, secretion from tubular cells, 
and replacement of dead tubular cells. Since molecular weights of TIMP-2 and 
IGFBP7 are similar to those of NGAL and L-FABP [23] and elevation of 
NephroCheck is as early as NGAL in human AKI [21], TIMP-2 and IGFBP7 may 
undergo similar renal metabolism as NGAL. On the other hand, elevation of uri-
nary KIM-1 levels starts 12 h after CPB initiation [24], likely reflecting the dedif-
ferentiation/regeneration phase [14]. Therefore, we propose here that urinary 
albumin, NGAL, L-FABP, and NephroCheck, at least partly and potentially, have 
features of tubular dysfunction biomarkers, while urinary KIM-1 is a tubular regen-
eration biomarker. Consistently, when a systematic review was carried out for AKI 
biomarkers in 2008, urine KIM-1 performed best for the differential diagnosis of 
established AKI, whereas urine NGAL and IL-18 performed best for early diagno-
sis of AKI [40].

4.6  Future Perspective

A recently published meta-analysis showed a clear and statistically significant mor-
tality benefit to early nephrology consultation [41]. Indeed, in a cardiac surgery 
study, early detection of post-surgery kidney injury by increase in NephroCheck 
allowed early intervention by nephrologists and reduced incidence of AKI [42].
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There are continued efforts to evaluate whether monitoring of AKI biomarkers, 
such as urinary NGAL, is useful to judge trend in the kidney injury severity and 
treatment efficacy in the setting of AKI or subacute CKD [43, 44]. In a dog model 
of gentamicin-induced AKI, increase and decrease of urinary NGAL levels were 
earlier than the change of serum creatinine by approximately 4 days [45] (Fig. 4.5a). 
In our case undergoing intermittent hemodialysis after severe post-infectious glo-
merulonephritis, serum creatinine levels were not good indicator of renal function 
due to removal by hemodialysis. Decrease in urinary NGAL levels was steeper than 
that of urinary L-FABP levels, which occurred 2 weeks earlier than dialysis with-
drawal in this case (Fig. 4.5b).

Importantly, theoretical exercises have shown that even a perfect biomarker 
will perform poorly when compared to an imperfect gold standard [46–48]. In 
dehydrated conditions, serum creatinine levels increase and may fulfil criteria of 
AKI, but urinary NGAL is not sensitive to dehydration [49, 50]. In some forms of 
acute tubular necrosis, serum creatinine or GFR may not be altered significantly 
in the early phase, despite increase in urinary AKI biomarkers. Therefore, a race 
to develop and compare biomarkers which have the strongest power (the largest 
area under the curve in receiver operating characteristic curve analysis) for the 
prediction of creatinine and urine output-based AKI may not be very fruitful as 
expected.
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