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Abstract Fault diagnostic and prognostic methods are the extensive topics of
condition-based maintenance system. These publications include a wide range of
statistical approaches for model-based approaches. Uncertainty in prediction cannot
be avoided; therefore, algorithms are working to help manage these uncertainties.
Remaining useful lives (RUL) are regularly updated through adaptive degradation
models identified by using the concept of sampling importance resampling (SIR) fil-
ter. TheSIRfilter algorithmhas becomeapopular choice formodel-based progressive
system. As a matter of study, we consider a hydraulic system and develop a detailed
physics-basedmodel anduse extensive simulations to describe our prehistoric science
approach and to evaluate its effectiveness and strength.
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1 Introduction

Energy crisis and destabilization of fuel prices have accelerated the research on
the fuel-efficient system. Model-based diagnostics approach is required for precise
and infallible models of actual physical systems which incorporate several domains
(such as mechanical, electrical and hydraulic). Behavior can be non-ambiguous, and
it may be challenging to capture the connection between individual components and
between the system and their environment.

Apart from this, different systems used in the real world are multi-models,
i.e., operations are carried out in various configurations. An important challenge
is modeling the system’s mobility in a serious and effective way. In practice, the
major challenge is balancing the details amalgamated into the model to ensure
diagnosability, while keeping the complication in the model within controllable
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limits. Wu et al. [1] have discussed various types of energy saving techniques. The
overall system efficiency depends upon the robustness of the system, which is only
achievable with proper fault detection of the system. This is also related to the
energy regeneration purpose [2]. Detecting faults (when something goes wrong),
fault isolation (determining the fault location), identification of fault (determining
fault mode) and prognostics (depending on the expected nature of continuous use,
the occurrence of failure is predicted) are the sequential steps of complete fault
diagnosis. Determination of fault detection and isolation (FDI) with a quantitative
approach necessitates the generation of a mathematical model of the system. Use of
the different constraints and different compatibility conditions has been presented in
terms of known variables using the residual relations which are termed as analytical
redundancy relations (ARRs) [3].According to the normal operation of themodel, the
constraints are valid. The adaptive thresholds have been generated from the residual
relations with small deviations of the constraints that are taken into account for the
observation of the normal mode of operation. The number of sensors is proportional
to the structured residuals. This is used for the fault detection and isolation purpose.
Unstructured residual allows estimating the time-dependent behavior of the process
parameters, which can be used for fault detection by comparison with the nominal
values. Using the ARRs, the fault signature matrix (FSM) can be formed which is
responsible for the identificationof the faulty components. Theunexpecteddeviations
in the parameters of the system are termed as faults. Then, as faults transpire and
stimulate the deviation of measurements, the observed deviations in measurements
are compared to predicted values for the given particular faults, and any fault causing
inconsistency when compared to the observed measurement deviations is removed
from consideration [4]. The prediction for the end of the system’s life is made by
using a predictor on the basis of a mistake progress model integrated with nominal
models for each hypothesized fault candidate. Many diagnostics and prognosis are
used on the simulation model of the hydraulic system and the results are presented.

Fault detection Prognostics Diagnostics

Machine learning Clustering Neural network Decision trees

Physics-based System theory Damage propagation
models

Conventional numerical Linear regression Kalman filters Logistic regression

AI-model-based Expert systems Finite-state machines

The paper structure is as follows. Section 2 accommodates the details of the
behavioral and diagnosticmodel of the system. Section 3 explains in detail themethod
of diagnosis and prognosis used in this work. Section 4 includes experimental results
and Sect. 5 provides a reasonable conclusion for the paper.



Model-Based Adaptive Prognosis of a Hydraulic System 377

2 Modeling of the Hydraulic System

2.1 Model-Based Approaches

For the implementation of a model-based progressive approach, the components
require a detailed physics-basedmodel.Nominal behavior, aswell as defective behav-
ior of the component, should be described by themodel. Apart from this, the progress
of fault should be defined over time. It is with these models that can be predicted.
Developing a nominal model based on the physical understanding of the system is
the initial step in the way of developing models that meet the previously described
requirements.

2.2 Physical Description of the System

The schematic representation of the setup being studied is shown in Fig. 1. Table 1
gives the names of the different components of the setup corresponding to the tags
given in Fig. 1. The setup has a double-acting variable displacement pump (tag 2),
driven by a 7.5 kW electric motor (tag 1), furnishing pressurized fluid to a bent
axis hydromotor (tag 6). Before reaching the hydromotor, the fluid passes through
a proportional flow control valve (tag 4), which is operated using a solenoid, which
modulates the flow supplied to the hydromotor corresponding to the voltage imparted
to the flow control valve. The hydromotor is used to drive a single-acting fixed
displacement loading pump (tag 7) which in turn supplies fluid to the reservoir (tag
12.1–12.4) through a pressure relief valve (PRV) (tag 9). The load torque of the
motor is regulated by varying the pressure setting of the PRV. The experiments are

Fig. 1 Schematic
representation of the setup
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Table 1 The different
components in the schematic
diagram

Tag No. Name of equipment

1 Electrical drive motor

2 Variable displacement pump

3 Spring-loaded check valve

4 Proportional flow control valve

5 Flow sensor

6 Motor

7 Loading pump (fixed displacement)

8 Speed sensor

9 Pressure relief valve

10 Filter

11 Oil cooler

12.1–12.4 Hydraulic reservoir

13.1–13.4 Pressure sensor

14 Flow control valve

15 Flow restrictor valve

conducted on the setup under well-aerated conditions. To obtain fluid with constant
viscosity at different parts of the setup, suitable oil cooler and filter are used. The
oil cooler maintains the temperature of the fluid in the range of 55–62 °C. The
experimental setup has four pressure sensors (tag 13.1–13.4) and a speed sensor
(tag 8) to measure the pressure at different sections of the system and the speed of
the driven hydromotor which is recorded in the data acquisition system (DAQ). To
ensure the accuracy of the setup, multiple test runs are conducted before collecting
the data.

2.3 Mathematical Modeling of the System

The assumptions made for the mathematical modeling of the system are as follows:

• The fluid used in the system is a Newtonian fluid.
• The rate of flow through the flow control valve has a nonlinear relationship with
the pressure difference across it.

• Details of valve dynamics assimilating spool inertia and friction effects are not
taken into consideration.

• Compression of the fluid during flow through pipes is not considered.
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2.3.1 Variable Displacement Pump

The volume flow rate lost due to compression in the pump can be mathematically
given as

Qp = Dpωp − Ps
L p

−
(
CDA

√
2(|Ps − Pd |)

ρ
Sgn(Ps − Pd)

)
(1)

where

Qp = Volume flow rate provided by the pump
Dp = Variable pump displacement
L p = Resistance to leakage in variable displacement pump
Ds = Main pump pressure or system pressure
CD = Coefficient of discharge
A = Orifice area of the proportional valve
Pd = Proportional relief valve pressure or delivery pressure = kbulk

∫
Qmdt

Ps = kbulk
∫
Qpdt, kbulk = bulk modulus.

2.3.2 Hydraulic Motor

The volume flow rate lost due to compression in the hydraulic motor can be
mathematically given as

Qm =
(
CDA

√
2(|Ps − Pd |)

ρ
Sgn(Ps − Pd)

)
− Dmωm − Pd

Lm
(2)

where

Qm = Volume flow rate lost due to compression in the hydraulic motor
Dm = Volumetric displacement of hydraulic motor
Lm = Resistance to leakage in hydraulic motor
ωm = Angular velocity of hydraulic motor.

Now, torque lost in the motor to overcome rotational inertia is

Tm = Dm(Pd − Pch) − f ωm − Dlp Pld (3)

where

Pch = Check valve pressure at loading circuit
f = Viscous friction coefficient
Dlp = Loading pump displacement
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Pld = Discharge pressure of the loading pump.

ωm =
∫
Tmdt

Motor Inertia =
∫
Tmdt
J

Now, flow to the tank from the motor can be described as

Qm1 = Dmωm−
(
Cd Ach

√
2(|Pch − Patm|)

ρ
sgn(Pch − Patm)

)

+
(
Cd Al

√
2(|Pld − Pch|)

ρ
sgn(Pld − Pch)

)
(4)

And corresponding effort = Pch = kbulk
∫
Qm1dt

where

Ach = Orifice area of the check valve at load circuit
Patm = Atmospheric pressure.

2.3.3 Loading Pump

Loading pump which is coupled with the hydraulic motor also experiences some
hydraulic losses during fluid flowing through the pump. Now, the flow from the
pump is given as,

Qlp = Dlpωm −
(
Cd Al

√
2(|Pld − Pch|)

ρ
sgn(Pld − Pch)

)
(5)

where the pressure at the inlet to the loading pump = Pld = kbulk
∫
Qlpdt

Al = Orifice area of the load valve.

2.3.4 Residuals

In this application, five sensors are used, and therefore, the number of residuals will
be five.

From Eq. (1), the first residual can be described as below:

Rd1 = Dpωp − Ṗs
kbulk

−
(
Ps
L p

)
−

(
CDA

√
2(|Ps − Pd |)

ρ
Sgn(Ps − Pd)

)
(6)
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and

ε1 =
∣∣Ṗs∣∣
δkblk

+ (
δDp

∣∣ωp

∣∣) + [δ(CDA)]

√
2|Ps − Pd |

ρ
+ |Ps |

δL p

where δ is the uncertainty for the associated parameter and its value is considered as
0.1 (i.e., 10%).

Upper threshold value = Rd1 + ε1
Lower threshold value = Rd1 − ε1

The second residual corresponding to the second equation is

Rd2 =
(
CDA

√
2(|Ps − Pd |)

ρ
Sgn(Ps − Pd)

)
− Dmωm − Ṗd

kbulk
− Pd

Lm
(7)

and

ε2 =
∣∣Ṗd ∣∣
δkblk

+ (δDm |ωm |) + [δ(CDA)]

√
2|Ps − Pd |

ρ
+ |Pd |

Lm

Upper threshold value = Rd2 + ε2
Lower threshold value = Rd2 − ε2

According to Eq. (3), the third residual is as follows:

Rd3 = Dm(Pd − Pch) − f ωm − DlpPld − J ω̇m (8)

and

ε3 = δDm |Pd − Pch| + (δ f |ωm |) + (
δDlp|Pld|

) + (δ J |ω̇m |)

Upper threshold value = Rd3 + ε3
Lower threshold value = Rd3 − ε3

From Eq. (5), the fourth residual can be described as below:

Rd4 = Ṗld
kblk

− Dlpωm + CDAl

√
2|Pld − Pch|

ρ
sgn(Pld − Pch) (9)

and

ε4 =
∣∣Ṗld∣∣
δkblk

+ (
δDlp|ωm |) + [δ(CDAl)]

√
2|Pld − Pch|

ρ



382 S. Kumar et al.

Upper threshold value = Rd4 + ε4
Lower threshold value = Rd4 − ε4

From Eq. (4), the fifth residual can be described as

Rd5 = Dmωm −
(
Cd Ach

√
2(|Pch − Patm|)

ρ
sgn(Pch − Patm)

)

+
(
Cd Al

√
2(|Pld − Pch|)

ρ
sgn(Pld − Pch)

)
− Ṗch

kbulk
(10)

and

ε5 = (δDm |ωm |) +
(

δ(Cd Ach)

√
2(|Pch − Patm|)

ρ

)

+
(

δ(Cd Al)

√
2(|Pld − Pch|)

ρ

)
+

∣∣Ṗch∣∣
δkbulk

Upper threshold value = Rd5 + ε5
Lower threshold value = Rd5 − ε5

From the five residual equations from Eqs. (6) to (10), the fault signature matrix
is derived in Table 2, which correlates the components with their fault likelihood.

2.4 Simulink Model of the System

According to the mathematical equations of the above section, a block model is
made in MATLAB/Simulink. The model has been divided into two parts—behav-
ioral model and diagnostic model (Fig. 2). In the behavioral model, the constitutive
relations given in Eqs. (1) through (5) are evaluated, whereas the diagnostic model
is a simple computation of the residuals given in Eqs. (6) through (10).

3 Adaptive Prognosis Approach

3.1 Degradation Model and RUL Prediction

System input, u(k), measurement, t(0: k), and the initial state of the system are taken
as input of small model supervisor, and state transition function, f (k) and observation
function, h(k), state distribution, y(k), and parameter, θ (k) is used to estimate p(y(k),
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Fig. 2 Simulink model of
the system

z(k) | t(0: k).Any suitable filtering scheme, e.g.,Kalmanfilter, extendedKalmanfilter,
unscented Kalman filter, particle filter, SIR filter [5] and others, can be appointed as
the nominal observer. According to the fault signature matrix (FSM), the probable
components can be identified during the breakdown of the machine for a particular
type problem. But there are some faults which cannot be isolated because of its
nature. In the given FSM, if only the first residual (Rd1) deviates, then it is not isolable
between Vp and L p. The reason is that fault signature is same, i.e., coherence vector
Ƈ= [1 0 0 0 0] for Vp and L p.

3.2 Proposed Prognosis Procedure

3.2.1 Damage Estimation

In the model-based paradigm, estimation of the loss reduces joint states-parameter
estimation, i.e., calculation of f ( yk, zk, |z0:k). For linear systems with additive Gaus-
sian noise terms, the particle filter serves as the most appropriate option [6]. For
nonlinear systems with additive Gaussian noise terms, the unscented Kalman filter
or extended Kalman filter also works as suitable alternatives [7]. However, for non-
linear systems with non-Gaussian noise conditions, particle filters are most suitable
and provide accurate (i.e., sub-adoption) solutions to the state calculation problem
for those systems where the optimum solution is unrecoverable or unmanageable.
In particle filters, a set of discrete weighted specimens called particle helps to esti-
mate, almost accurate, state distribution. As the number of particles grows, increasing
accuracy ensures that optimal solution stops. In addition, implementation of particle
filters is relatively straightforward, and increasing or decreasing the number of parti-
cles controls the computational complexity, with respect to the preferred estimation
performance. Furthermore, other filtering algorithms are unable to directly handle
the discrete position sensors. For these reasons, our model-based prognostics frame-
work utilizes sampling importance resampling (SIR) particle filters. With particle
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filters, the particle approximation to the state distribution is given by

{(
yik, z

i
k

)
, ωi

k

}N

i=1

where N denotes the number of particles, and for particle, i.e., yik parameter shows
the estimates, zik denotes the parameter estimates and ωi

k denotes the weight.
The posterior density is estimated by

f ( yk, zk, |z0:k) ≈
N∑
i=1

ωi
kδ(yik ,z

i
k)(dtkdzk)

where δ(yik ,z
i
k)(dtkdzk) denotes the Dirac delta function located at ( yik, z

i
k).

The sample importance reproduction (SIR) employs particle filters, and by using
systematic reproduction, the resampling phase is applied. The pseudo-code for sin-
gle phase of SIR filter is shown as Algorithm 1 [8]. Each particle i is propagated
periodically by sample of new parameter values. Here, the parameter zk is developed
by some unknown random process which is independent of the state yk . To assess
the parameters within a SIR filter structure, however, we need to assign parame-
ters to some type of development. Specific solutions are to use a random walk, i.e.,
for parameter z, zk = zk−1 + ξk−1 where ξk−1 is typically Gaussian noise. After
sampling parameter values from selected distribution, new states are taken sampling
by implementing state equation f to ( yik, z

i
k) with process noise v(t) sampled from

its assumed distribution. The particle weight is assigned using zk . Specifically, the
output equation h is applied to ( yik+1 : zik+1) and the probability of this output is cal-
culated using the probability of sensor noise using the probability density function.
Weight is then normalized, followed by resampling step [9]. Therefore, within the
algorithm, we believe that some sensor noise exists for these sensors.

3.2.2 Prediction

Prediction is started at a certain time tp. Using the current state estimate,
f ( yk, zk, |z0:k) the goal is to compute f (EOLtp , |z0:tp ) and f (RULtp , |z0:tp ). The
particle filter computes

f
(
EOLtp |z0:tp

) ≈
N∑
i=1

ωi
tpδ

(
EOLi

tp

)(dEOLtp

)
.

To calculate EOL,we proliferate each particle ahead of its specific EOL andweigh
the particle on tp compute EOL, for its EOL prediction.
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4 Results and Discussions

In our experiments, to find fault, we use the nominal system simulation model to
produce the behavior of the nominal system. In our experiments and the parameters
of the hydraulic system, fault signatures for defects are given in Table 2, and errors are
used for isolation. For identifying the fault, we use sampling importance resampling
(SIR) as its supervisor. Parameter is updated through the given weight to the EOL
and RUL and gives the appropriate result.

4.1 System Identification and Experimentally Validation

Figure 3a through Fig. 3d compare the measured and simulated pressure at different
points in the circuit for the purpose of fault diagnosis. The parameter values (given
in Table 3) obtained from the product catalogue of the set-up are used for model
simulation. In Fig. 3, experimental pressure is slightly more than the simulation
pressure. The nature of curve is almost similar after adjusting some parameter. The

Fig. 3 a System pressure (Es) versus time. bDelivery pressure (Ed) versus time. c Loading pressure
(Eld) versus time. d Check valve (Ech) pressure versus time
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Fig. 4 Motor speed (ωm)

versus time

peak time is shifted in experimental behavior. The reason is that in the model simu-
lations different nonlinearities caused by flow-force, pump ripples, etc. are not con-
sidered, while experimental analysis involves all such factors. Apart from that errors
due to measurement and process noise are also reflected in the test data.

In Fig. 4, the experimental rotational speed of hydromotor is slightly less than
simulation result. It is due to the viscous friction of the revolving component, which
is not identified in the model.

4.2 Residual Evaluation Using Test Data

Two types of faults are imposed one after another. First one is the reduction of pump
displacement (i.e., Vp reduced) and the next is the reduction of the leakage resistance
across the variable displacement pump (i.e., Lp reduced) at 5 s. Only Rd1 is crossing
the threshold as shown in Figs. 5 and 6, respectively. Only Rd1 is deflected beyond
the range of the threshold. Now, the task is to isolate the faulty component through
parameter estimation.

4.3 Demonstration of the Approach

The behavior received by the model supports the model-based approach in contrast
to simple trending strategies. To demonstrate a general solution, the particle filter is
permitted to estimate all the damage modes of the hydraulic system jointly. Taking
into consideration the large state space, T = 40000 s is implemented. For each fault
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Fig. 5 Upper threshold,
residual and lower threshold
versus time after imposing
the fault in the displacement
of pump
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Fig. 6 Upper threshold,
residual and lower threshold
versus time after imposing
the fault in the leakage of
pump
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Fig. 7 RUL*(true) versus
RUL99%

mode, the proposed algorithm provides the correct wear rate. The identified fault in
this particular study is the external leakage from pump-plenum. Figure 7 captures
the 99% confidence-level predictions, i.e., the value at which 99% of the prediction
distribution is greater than or equal to that value. At this level of confidence, the
predictions always remain below the true RUL and work as conservative estimates,
and decisions can be taken on the basis of these risks. For more complete verification,
a more flexible test is required, such that it may be run to fail the defect and/or the
injection of hydraulic system.

For this, the estimated value of displacement of the pump (Dp) is obtained as
2.839 × 10−6 m3/rad and leakage resistance (Lp) is 1.5 × 1011 N s/m2, whereas
the nominal values for Dp and Lp are 3.14 × 10−6 m3/rad and 1 × 1011 N s/m2,
respectively (refer Tables 2 and 3). But the increase of leakage above the nominal is
not admissible. Hence, the admissible solution is the reduction of pump displacement
to 2.839 × 10−6 m3/rad.

Table 2 Fault signature matrix

Components Rd1 Rd2 Rd3 Rd4 Rd5 I

Dp 1 0 0 0 0 0

Dm 0 1 1 0 1 1

A 1 1 0 0 0 1

Al 0 0 0 1 1 1

Dlp 0 0 1 1 0 1

L p 1 0 0 0 0 0

Lm 0 1 0 0 0 1

f 0 0 1 0 0 1
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Table 3 Parameters of
components used in
Simulation

Parameters Value

Electric motor speed
(
ωp

)
150 rad/s

Fixed pump displacement
(
Dp

)
3.15 × 10−6 m3/rad

Bulk stiffness (kbulk) 5 × 1012 N/m2

Resistance to pump leakage flow path(
L p

) 1 × 1011 N s/m2

Coefficient of discharge (CD) 0.64

Density of the fluid (ρ) 865.7 m3/kg

Proportional leakage area (A) 2 × 10−5 m2

Motor displacement (Dm) 1.91 × 10−6 m3/rad

Inertia of motor (J) 0.01 kg m2

Motor leakage (Lm) 1 × 1012 N s/m2

Loading pump displacement
(
Dlp

)
1.75 × 10−6 m3/rad

Proportional leakage area constant for
loading circuit (Al )

2 × 10−5 m2

Proportional leakage area constant for
motor (Ach)

1 × 10−4 m2

Atmospheric pressure (Patm) 1 × 105 Pa

Viscous friction (f ) 0.1 N s/m2

5 Conclusions

In the course of this work, a model-based prognostics system approach making the
use of SIR filters for updated parameter estimation has been developed. The esti-
mated damage of the hydraulic system predicted EOL and forms EOL and RUL
distributions. Applying this method to a hydraulic system, we develop an exhaus-
tive physics-based model that includes models of damage progression. From the
simulated experiments, it can be established that using only the discrete position
sensors of the hydraulic system, successful prognostics can be achieved, and this
approach is applied to experimental data under the same constraint. The effective-
ness of a model-based approach is demonstrated by the results, and insight into the
parameters considered for the selection of sensors for valve prognostics is given. A
model-based approach is advocated, where the performance depends greatly upon
the accuracy of the model provided. Undoubtedly, a key obstacle is presented in the
development of such a model.
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