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13.1	 �Systems Biology

Systems biology is the research endeavor that offers the basic scientific groundwork 
for synthetic biology. It is grounded on the molecular diversity of living systems [1]. 
It is an integrative system that connects different components in a single biological 
unit and also links different units like cells and tissues using holistic methods to 
characterize their functions through computational methods, quantitative 
approaches, and high-throughput technologies. Cells are made of different constitu-
ents that interact and make a network model, for example, metabolic, regulatory, 
and signaling networks that regulate various cellular functions. Several elaborated 
and dynamic models are available for signaling pathways [2].

The computational approaches deliver a comprehension to understand the 
dynamics and interaction within cells, organs, tissues, and organisms. For complex 
diseases, precision medicine and quantitative methods are influenced by systems 
biology [3]. The best example of system thinking is the Human Genome Project as 
it shows different ways to work on the problems in the field of genetics [4]. Its main 
purpose is to discover the properties of cells, tissues, and organisms working as a 
whole system whose description is possible only by using systems biology which 
involves metabolic networks [5]. Interpretation of the systems biology to obtain and 
investigate complex data sets by interdisciplinary tools and experimental studies 
generally starts with omics including genomics, transcriptomics, and metabolo-
mics. Other subdisciplines include phosphoproteomics, glycoproteomics, and areas 
to identify chemically modified proteins, metabolomics-, organismal-, tissue-, or 
cellular-level measurements of lipids [6].
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13.1.1	 �Dynamic State Characterization

For complex reaction networks, dynamic analysis involves tracing of time-dependent 
concentration changes and reaction fluxes over the time period. The three key points 
of dynamic states are:

•	 Time constant (the rate of change of a variable is considered by time constant)
•	 Aggregate variables (the biochemical and physiological events that are involved 

in unfolding. Basically, we move to the aggregate variables from the original 
concentration variables that eventually terminate in the overall dynamic features 
on slower time scales)

•	 Transitions (intricate networks can transition from one state to another state)

13.1.2	 �Formulation of Dynamic Network Models

Two different approaches (bottom-up and top-down) are used to formulate dynamic 
networks. In bottom-up approach, we identify all the events in the network in complex-
ity with the addition of more information from time to time to make the event com-
plete, whereas in top-down approach, all data and information is collected at the same 
time, and later this data is divided into smaller parts. The bottom-up analysis of any 
dynamic state of a network is based on the kinetic theory and network topology [2].

13.1.3	 �Cancer Systems Biology

It comprehends the application of systems biology methods to study the disease 
with evolving properties at different biological levels. It also helps to analyze how 
the disturbance in the intracellular pathways and networks of normal cells occurs 
during carcinogenesis for the development of effective prognostic models. These 
models can assist scientists in the validations of new treatments and drugs [7]. These 
perturbations are caused by the instability in tumors that changes the functions of 
different molecules. It is further convoluted due to the networks in a single cell and 
by the alterations in the interactions with the environment and whole individual dur-
ing the tumorigenic process itself. Therefore computational and mathematical 
methods are used in cancer systems biology to interpret the complexity [8].

Cancer systems biology combines basic and clinical cancer research, and it pro-
vides applications of systems biology methods to the cancer research, particularly:

	a.	 The need for improved methods to gain understanding from extensive networks
	b.	 The significance of assimilating multiple types of data in construction of further 

accurate models
	c.	 Trials in deciphering insights of tumorigenic mechanisms into therapeutic 

mediations
	d.	 The function of tumor microenvironment at different levels [9]
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13.1.4	 �Analysis of Cells at System Level

The system level provides the information at all the points of cell function. Different 
technologies are present which are supporting huge data quantity. This data needs to 
be handled and managed to make it into meaningful knowledge. Hence, organiza-
tion and scrutinization of all data sets are known as bioinformatics like omics that 
delivers large amount of information from proteins, metabolites, and mRNA. By 
utilizing the sequencing technology, one can find genomic sequence and depict its 
determinants that include single nucleotide polymorphisms (SNPs) and regulatory 
sites that control particular phenotype or its function in an organism [10]. 
Epigenomics describes the epigenetic modifications [11], and proteomics measures 
the proteins and posttranslational modifications [12]. Likewise, transcriptomics 
measures transcriptome [11], and the study of metabolites in the cells and tissues is 
metabolomics [13]. These experimental techniques may result in huge data collec-
tion that may become a basis for designing novel tools and algorithms to interpret 
unknown data sets through knowledge-based information and linking the outcome 
of system-level studies.

13.2	 �Computational Approaches Used in Systems Biology

The data obtained from omics is organized by various tools of bioinformatics. These 
data sets are then used to form networks. Topological features can be constructed 
from these networks of molecular interactions. In these networks, there are network 
motifs [14] and functional modules that can perform functional tasks and represent 
dynamical signal properties. Regulatory pathways that include different motifs, 
feedback loops, and modules could be mined to construct dynamical models [15] 
which are further used for simulations to understand their promising behavior in 
time and space. To study the drug actions, they can be combined with PK/PD mod-
els [16]. Figure 13.1 shows the computational approaches used in systems biology.

13.2.1	 �Systems Medicine

Systems medicine is based on systems biology and systems science. It reflects intri-
cate interactions within the human body with respect to the genome, environment, 
and behavior of the patient [17]. Systems medicine is used in research setups as it 
uncovers the unique and dynamic network of interactions which are crucial for 
influencing the progress of medical conditions. It also assists in determining molec-
ular targets against any condition for its therapeutic and diagnostic measures. The 
relationship between the dry and wet lab is supported by systems medicine as well 
[18]. The basic dissimilarity among systems biology and systems medicine is that 
systems biology assumes the data to be useable and correct, while systems medicine 
ensures to lead with molecular and clinical data sets to produce the pathways that 
might contribute to medicinal development to the adapted healthcare [19, 20]. The 
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basic difference between systems biology and systems medicine is that systems 
biology assumes the data to be useable and correct, while systems medicine ensures 
the validity of molecular and clinical data sets to interpret the pathways that may 
contribute to therapeutic possibilities to the adapted healthcare [19, 20].

13.2.2	 �Systems Medicine for Human Diseases and Novel Drugs 
Research

Systems medicine requires different features to achieve clinical and diagnostic 
goals [19]. One of the important areas in the systems medicine is the progress of the 
computational models that help to explain the disease advancement and effects of 
therapeutic interventions [21]. This is important for the better control of large data 
sets and also to elucidate wet laboratory in order to develop multifaceted interrela-
tionships among molecular targets.

Systems medicine plays a vital role in drug development whereby drugs are 
proven to be effective for one condition or ineffective for a different medical condi-
tion [22]. Jin et al. performed transcriptome expression analysis before and after the 
drug administration to observe the off-target effects of drug for signaling pathways. 
This study recognized a systems-based analytical approach named as Bayesian fac-
tor regression model (BFRM) accompanied by cancer signaling bridges (CSB), 
termed as CSB-BFRM, which is fruitful in the prediction of outcomes of clinical 
responses arising for Food and Drug Administration (FDA)-approved drugs through 
validation using three independent cancer models, thereby assuring the accuracy of 
systems medicine approach [23].

Fig. 13.1  Computational approaches in systems biology. Omics data are arranged using different 
tools of bioinformatics to construct networks. Regulatory pathways can be extracted from these 
networks for the formation of dynamic models. From dynamic models, the behavior of the system 
in time and space can be predicted and combined with PK/PD models for the drug action 
mechanism
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Systems medicine has an impact in recognizing innovative disease networks. 
The foremost exploration focuses on the connections of models that are influenced 
by the pathogenesis and are inactive or active in numerous disease conditions. 
MicroRNA (miRNA) research is one of the typical methodologies to recognize the 
application of systems medicine. As miRNA controls the transcripts, one miRNA 
perhaps deregulates the expression of numerous downstream target genes; there-
fore, it is possible that miRNA can be applied in many clinical conditions probably 
in a simultaneous manner [24]. Outline of systems medicine is shown in Fig. 13.2.

Systems medicine is paving its way for academics, clinicians, and researchers 
dealing with experimental research approaches. The probability to investigate an 
immense data from in silico and experimental approaches offers more understand-
ing into the complex molecular interactions. This assists to the enlightening of 
unusual dynamic interactions that are vital for medical conditions and therefore 
serve as clinically significant key molecules for future therapeutics [18, 24].

13.3	 �Computational Approaches

Extensive measurements of somatic mutations in the tumors are possible through 
high-throughput DNA sequencing technologies. Cancer genomics purposes to find 
out all the genes related to cancer and their involvements in cancer development. 
Cancer-driven mutation and pathways can be detected on the basis of biological 
networks and different computational approaches. They can be classified into (1) 

Fig. 13.2  Outline of the mandatory features for execution of systems medicine methods to mod-
ern medical research
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functional impact-based approach, (2) network- or pathway-based approach, (3) 
data integration-based approach, (4) mutation frequency-based approach, and (5) 
structural genomics-based approach [25]. Here, the approaches and the databases 
used for the identification of cancer genes and pathways will be focused.

13.3.1	 �Data Resources of Cancer-Related Genes, Networks, 
and Pathways

Different databases are present that contain information and function about cancer 
genes. Among them, COSMIC (The Catalogue Of Somatic Mutations In Cancer) 
is one of the largest databases. It includes mutations from the cancer cell lines and 
also the whole genome and exome of patients having cancer and hence provides 
detailed information of somatic mutations [26]. The Cancer Genome Atlas 
(TCGA) characterizes genomic changes in 33 cancer types which has enhanced 
the evaluation of genomic changes in cancer genomics. Single base substitutions 
in TCGA are 2,948,799, among them 1,648,416 are missense variants [27]. The 
International Cancer Genome Consortium (ICGC) aims to describe the epig-
enomic, transcriptomic, and genomic profiles of the cancer genomes of 50 differ-
ent cancer types [28].

cBioportal is a web source of visualizing and investigating cancer genomics 
data [29]. These annotation databases are helpful to decode the consequences 
among mutations and protein 3D structures. To identify driver mutations specifi-
cally in kinase domain, protein’s three-dimensional (3D) structure information is 
used. In context of the 3D structure, another database is Cancer3D to investigate 
missense somatic mutations [30]. dSysMap is a resource for mapping the missense 
mutations through the structurally annotated interactome of human. Recently, for 
studying function of noncoding somatic mutations, different projects have been 
initialized as protein-coding human genome is just <2% [31]. These include 
Encyclopedia of DNA Elements (ENCODE) [32], the functional annotation of the 
mammalian genome 5 (FANTOM5) [33], and NIH Roadmap Epigenomics [34]. 
These databases offer comprehensive resources of functional genomics data to 
describe regulatory role of noncoding mutations. Genotype-Tissue Expression 
(GTEx) project delivers genetic expression and regulation data for many human 
tissues. It helps to study the tissue-specific regulatory pathways that are changed 
by somatic mutations Consortium GT. Human genomics [35]. To study somatic 
cancer mutation, the Database of Curated Mutations (DoCM) is used. It includes 
1276 missense mutations and 1364 variants from 122 cancer subtypes [36]. Another 
community-edited web source named as Clinical Interpretations of Variants in 
Cancer (CIViC) is used for discovering different variants in cancer. It includes 
1767 variants until February 2018 and enables precision medicine for cancer treat-
ment [37]. Table  13.1 [38] shows all the data resources for cancer-driven 
mutations.
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13.3.2	 �Data Resources for Networks and Pathways

Detailed analysis based on gene networks has been applied to interpret somatic 
mutations in the cancer [39]. Protein-protein interaction (PPI) and pathway-related 
databases have been established such as Reactome [40], WikiPathways [41], 
Pathway Interaction Database (PID) [42], and Pathway Commons [43]. These 
databases have been widely used to assess the role of variants and somatic muta-
tions [44].

Some important PPI databases include BioGRID [45], HPRD [46], MINT [47], 
IntAct [48], STRING [49], PINA [50], PhosphoSitePlus [51], Phospho.ELM [52], 
PTMcode [53], Interactome3D [54], Instruct [55], and 3did [56].

PPI databases provide a network resource of complementary molecular interac-
tions to decipher the consequences of somatic variations in various cancers as they 
enlist literature-derived and experimental PPIs, 3D structure PPIs, and kinase-
substrate-specific phosphorylation events (Fig. 13.3).

13.4	 �Computational Approaches and Methods

Computational methods help in the fastest way to characterize the disease. General 
approaches used for the investigation of somatic mutations are shown in Fig. 13.4. 
Through whole genome sequencing, list of mutations leading to cancer can be 
obtained.

Table 13.1  Data resources for the assessment of computational tools for somatic mutation genes 
and driver mutations in cancer

Name Depiction
COSMIC Comprehensive resources of somatic mutations
TCGA Characterize genomic changes in 33 cancer types
ICGC Describe epigenomic, transcriptomic, and genomic profiles of the 

cancer genomes
cBioPortal Visualization and investigation of cancer genomics data
Cancer3D Functional roles of somatic mutations via protein 3D structure
dSysMap For mapping the missense mutation on the structurally annotated 

interactome of human
ENCODE Comprehensive resources of functional genomics data
NIH Roadmap 
Epigenomics

Resources of functional genomics data

FANTOM Regulatory role of noncoding mutations
GTEx A resource for the tissue-specific regulation and gene expression
DoCM For somatic cancer mutations
CIViC For variants in cancer
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13.4.1	 �Mutation Frequency-Based Approaches

Significantly mutated genes (SMGs) in the cancer are defined by categorizing the 
genes that undergo more mutations than those based on the mutation model in a 
certain cancer type [57]. Table 13.2 [38] summarizes the computational approaches 
based on the mutation frequency such as Mutational Significant in Cancer (MuSiC). 
It incorporates the clinical data with sequence-based data to find out the relationship 
among affected genes, mutations, and pathways [58]. Similarly, ContrastRank 
compares alleged defective rate of every gene against normal data [59]. As the 
model with low mutation frequency may lead to false positive results, thus other 
methods were projected. SMGs based on the gain of function mutation can be iden-
tified by OncodriveCLUST [60]. It showed that silent mutations play a vital role in 
cancer. OncodriveCLUST uses silent mutation as the background. Lawrence et al. 

Fig. 13.3  Data resources for prioritizing driver mutations and pathways in cancer
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established MutSigCV that uses the information of replication timing and gene 
expression to develop a patient-specific mutation model [57].

13.4.2	 �Functional Impact-Based Approaches

Computational methods offer a fast and an economical way to evaluate the impact 
of mutations. These methods help the researchers to find the putative mutations that 
can validate their experimental work. Multiple tools have been developed for the 
computational approaches. One of the tools is SIFT (The Sorting Intolerant from 
Tolerant) that finds out the impact of amino acid substitution in protein function. It 
is based on the extent to which an amino acid is conserved in sequence alignment 
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Fig. 13.4  General approaches used in the routine for the analysis of cancer somatic mutation
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Table 13.2  Summary of tools and computational approaches for the identification of driver muta-
tions and SMGs in cancer genome

Mutation frequency-based approaches

MuSiC An approach for determination of the mutational significance in 
cancer

MutSigCV An integrative approach that corrects for variants using patient-
specific mutation frequency and spectrum and gene-specific 
background mutation model derived from gene expression and 
replication timing information

OncodriveCLUST Identifying genes with a significant bias toward mutation clustering 
in specific regions of proteins using silent mutations as a background 
mutation model

ContrastRank A method based on estimating the assumed defective rate of each 
gene in tumor against normal samples from the 1000 Genomes 
Project data

Functional impact-based approaches
MutationTaster A tool including evolutionary conservation and splice-site change 

information for the prediction of functional impacts of DNA 
sequencing modifications

MutationAssessor Based on evolutionary conservation patterns, it can predict the 
functional impacts

SIFT A tool that uses protein sequence homology for the prediction of 
biological effect of missense variations

PolyPhen-2 A tool for the prediction of the functional impacts of protein 
sequence variants by using three structure-based and eight sequence-
based predictive features to build naive Bayes classifiers

CHASM and SNVbox Python programs that use the tumorigenic impact of mutations for 
cancer-related mutations

Condel A consensus deleteriousness score for evaluating the functional 
impact of missense mutations

OncodriveFM An approach based on functional impact bias using three well-known 
methods

CanDrA A tool based on a set of 95 structural and evolutionary features
PROVEAN For the prediction of functional effects of SNV and in-frame 

insertions and deletions
FATHMM A tool based on Hidden Markov model-based tool for functional 

analysis of driver mutations
CRAVAT A web-based toolkit for arranging missense mutations related to 

tumorigenesis
Data integration-based approaches
MAXDRIVER An approach that uses the data from copy number variant regions of 

cancer genomes for the prediction of SMGs
CONEXIC A computational framework that assimilates copy number variants 

and gene expression changes for prioritizing SMGs
CAERUS An approach for the prediction of SMGs using structural information 

of proteins, protein networks, gene expression, and mutation data
Helios For prediction of SMGs by the integration of functional and genomic 

RNAi screening data
OncoIMPACT A framework based on phenotypic impacts for highlighting SMGs

(continued)
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derived from the closely related sequences [61, 62]. SIFT can characterize impact 
of missense mutations. Another software named as Polymorphism Phenotyping v2 
(PolyPhen-2) is used with SIFT for better results. It predicts the impact of the vari-
ants by three structure-based and eight sequence-based features [63]. Another web 
server, MutationAssessor, uses a novel functional impact score for the characteriza-
tion of residual mutation. To define the evolutionary conservation patterns, which 
are taken from aligned families and subfamilies, it uses combinatorial entropy for-
malism [64]. The three methods mentioned above are useful for nonsynonymous 
SNVs only. Multiple methods incorporate domain information to predict the func-
tional impact of SNVs. One of them is OncodriveFM.  It identifies low recurrent 
candidate SMGs by utilizing the features of SIFT, MutationAssessor, and PolyPhen-2 
[65]. For rapid evaluation of DNA sequence, alteration that is involved in causing 
the disease can be assessed from MutationTaster. It uses the information from 
splice-site changes, conservation, and loss of protein features [66]. For somatic mis-
sense prediction, CHASM is used. It uses a Random Faster classifier trained with 49 
predictive features [67]. Another software based on Hidden Markov model, known 

Table 13.2  (continued)

Mutation frequency-based approaches

OncodriverROLE An approach that classifies SMGs into LoF and GoF
DOTS-Finder A tool based on functional and frequency for predicting SMGs in 

cancer
Structural genomics-based approaches
ActiveDriver For prediction of SMGs having driver mutations significantly 

changing phosphorylation sites of proteins
iPAC For the prediction of SMGs by using protein 3D structure
MSEA For the prediction of SMGs based on mutation patterns on domains 

of protein
CanBind For the prediction of SMGs using the information on the binding site 

of protein–ligand
Network or pathway-based approaches
PARADIGM-SHIFT It uses belief-propagation algorithm for ordering downstream 

pathways by a mutation in cancer
PARADIGM By incorporation of patient-specific genetic data, it detects consistent 

pathways in cancers
DriverNet By estimating the effect on mRNA expression networks, it identifies 

driver mutations
Personalized pathway 
enrichment map

From individual genome, it identifies alleged cancer genes and 
pathways

NBS An approach for stratifying tumor mutations
TieDIE An approach for identification of cancer-mutated subnetworks
DawnRank On the basis of PageRank algorithm, it prioritizes SMGs in a single 

patient
HotNet2 For the detection of mutated subnetworks in cancer, an algorithm is 

used to overcome the limitations of existing single-gene and network 
approaches

VarWalker A novel approach for prioritizing SMGs
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as FATHMM, helps in finding the cancer-associated mutations. It differentiates pas-
senger mutations from the amino acid substitutions associated with the cancer. This 
is achieved by integrating homologous sequence alignment and information of con-
served protein domains [68].

CRAVAT toolkit is used to highlight SMGs and mutations using SNVbox and 
CHASM [69]. Machine learning-based tool CanDrA is based on supporting vector 
machine (SVM) that incorporates 95 evolutionary and structural features for rank-
ing SMGs [70].

Despite the existence of multiple strategies, there are some limitations of these 
tools including lack of standard and positive results and selection of nonfunctional 
mutations.

13.4.3	 �Data Integration-Based Approach

Cancer data include transcriptome, somatic mutation, proteomics, methylation, and 
profiles of a tumor and matched normal tissues. It enables the investigators to inves-
tigate SMGs and mutations for precision medicine [71]. Data integration-based 
approaches include Driver Oncogene and Tumor Suppressor (DOTS)-Finder. It cat-
egorizes SMGs in cancer by integrating three features of a mutated gene: (1) muta-
tion pattern, (2) mutation frequency, and (3) effect on the gene product’s function due 
to the mutation [72]. It can also predict SMGs specific to oncogenes or tumor sup-
pressor genes. Another unique pipeline SVMerge detects the breakpoints and struc-
tural variants by local assembly information and structural variant algorithms [73].

In this regard a favorable direction is to develop an approach that uses the struc-
tural variant data like CNVs to rank the SMGs and driver mutations. Driver muta-
tions related to cancer can be identified by CONEXIC. It is done by integrating the 
CNVs and the genetic expression from tumor-normal samples [74]. They have also 
developed an algorithm, called Helios, that identifies SMGs within the amplified 
DNA regions by incorporating cancer genomics data into functional RNA interfer-
ence (RNAi) data [75]. Helios can assess the potential drivers without a previous 
genes list.

MAXDRIVER detects alleged SMGs by optimization strategies to build a het-
erogeneous network by integrating a fused gene functional similarity network with 
an already existing gene-cancer network [76]. A machine-based learning approach 
is the OncodriverROLE that categorizes SMGs into activated (Act) and LoF gene 
[77], although it is a major task for models based on machine learning. A data inte-
gration framework OncoIMPACT is based on the phenotypic impacts of patients 
and forecasts patient-specific SMGs [78].

13.4.4	 �Structural Genomics-Based Approach

With the advancement in technologies like X-ray crystallography and nuclear mag-
netic resonance, 3D structures have been generated that are available in different 
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databases like Protein Data Bank (PDB) [79]. In recent years, multiple tools have 
been developed that require either structure or sequence, because at the structural 
level, mutations are related with the diseases or drug targets. MSEA (mutation set 
enrichment analysis) is used to predict alleged SMGs. It is employed using two 
unique modules (MESA-clust and MESA-domain). MESA-clust is used to screen 
hotspot regions of mutations by scanning the genomic regions, while MESA-
domain is based on the hotspot mutational patterns of protein [80]. Chang et  al. 
developed a network having global kinase-substrate interaction. This network con-
tains 1961 substrates having 36,576 sites for phosphorylation and 7346 pairs con-
necting 379 kinases [81]. Another approach, ActiveDriver [82], is based on the 
hypothesis that the cancer-driven mutations may alter the phosphorylation sites of 
the protein [83]. It analyzes missense point mutations and uses all the phosphoryla-
tion sites given in the literature as a mixture training set. A computational pipeline 
is based on protein pocket to study the functional concerns of somatic mutations in 
the cancer [84]. Those regions where small molecules and drugs binding occur are 
known as protein pockets. The mutations lying at these sites may alter the function 
of protein leading to cancer. SGDriver is based on the relationship among protein 
3D structures and somatic mutations to delineate SMG products [85]. SGDriver 
helps to find out the druggable mutations that can be used in the upcoming field of 
cancer precision medicine. CanBind is a tool to rank the SMGs that contains the 
mutations by altering their peptide binding sites or nucleic acids. Identification of 
Protein Amino acid Clustering iPAC is another algorithm; it prioritizes nonrandom 
somatic mutations present in the proteins using the 3D structure of a protein [86, 
87]. eDriver is another tool to characterize SMGs based on the internal division of 
somatic missense mutations between protein domains [88]. The development of 
new tools and approaches will provide exceptional prospects for the clinical appli-
cations of cancer genomics data.

13.4.5	 �Network- or Pathway-Based Approach

Various molecular structures of the cell form a dynamic network. Any genetic 
change in molecular network frame can cause disturbance in the pathway [89]. 
Large amount of cancer genomics data obtained from the NGS helps to understand 
the network-level studies of tumor initiation and progression. As cancer is an intri-
cate disease having changes at the network level, hence there is a dire need to char-
acterize the SMGs and driver mutations. A unique method called PARADIGM 
detects these pathways by incorporating specific genetic data of the patient. 
PARADIGM-SHIFT includes downstream pathways which are changed due to 
mutations by incorporation of gene expression, somatic mutations, and CNVs using 
a belief-propagation algorithm [90]. It identifies potential functional effects as well 
such as gain of function (GoF) and loss of function (LoF). TieDIE is based on the 
network diffusion approach. It is used for the prediction of gene expression changes 
due to genomic alteration [91]. It identifies a cancer-specific subnetwork by the 
incorporation of transcriptomic and genomics data into networks originated by 

13  Systems Biology and Integrated Computational Methods for Cancer-Associated…



348

PPIs. The downstream transcriptional alterations due to somatic variations are also 
recognized. DriverNet is a computational network to recognize the mutations by 
their effects on mRNA expression network [92]. It identifies rare mutations that 
mediate oncogenic networks. DawnRank is a computational approach to character-
ize SMGs on an individual patient using PageRank algorithms [93]. The first per-
sonalized tool to rank the SMGs by somatic variation is VarWalker. It uses the 
somatic variation information from the genome and then adjusts gene length by 
resampling the mutations. It includes cancer genomics data on a large scale using 
random walk with restart algorithm [94].

Network-based stratification (NBS) is a unique approach based on network. It 
stratifies cancer subtypes on the basis of somatic mutation profiles presented in an 
individual tumor [95]. On the basis of genome-scale interaction network, HotNet 
identifies mutated pathways in cancer [96]. HotNet2 has been developed by the 
same group for the detection of subnetworks having mutation. It is done by the 
insulated heat-diffusing process [96]. They recognized 16 considerably mutated 
subnetworks that include well-known cancer signaling pathways during pan-cancer 
analysis to recognize the genes that are occasionally mutated in pan-cancer data sets 
and in individual cancer data sets. (Pan-cancer analysis revealed that some tumors 
were more likely to be molecularly and genetically the same due to the types of their 
rising cells instead of the origin of tissue site.) These approaches are successful, but 
they have some limitations as well, as the current PPI networks cover only 20–30% 
pairwise PPIs in humans [97]. This shows that current human interactome may be 
incomplete [98]. Many structural variants, gene expression and methylation pat-
terns, and noncoding variants are not supposed in the abovementioned approach. 
Another limitation is that the pathways are sometimes prone to error because they 
are generated on the computational or experimental data, which are always mixed 
on the condition specificity. Thus development of an integrative framework to 
improve human interactome knowledge may offer a complete collection of mutated 
pathways or networks in the cancer.

In Table 13.2 and in Fig. 13.5, all computational approaches used for the muta-
tional analysis and data resources are shown.

As the technology fastens, tool development for the calculations, measurements, 
assessment, and integration of data is becoming important [99]. Table 13.2 enlists 
many online databases that are used for storage of genomic-scale data, regulatory 
sequence [100], and proteomic analysis [101]. These databases provide the data by 
which cancer models can be evaluated. As the challenges remain, development of 
more accurate and biologically powerful in silico tools for representation of human 
cancer is needed. The general resources and databases used in distributing large 
amount of data are shown in Table 13.3.

13.5	 �Precision Medicine

The concept in precision medicine is based on the lifestyle, environment, and genes 
of a person. With the advancement in the genetics, we have gained the opportunity 
to make the personalized care of a patient into reality. Precision medicine for breast 
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cancer is the most tempting area, but still it is facing a lot of challenges. Other mea-
sures may help in early detection of breast cancer like monitoring of circulating 
tumor DNA and ultradeep sequencing.

13.5.1	 �Precision Medicine Tools

Identification of genomic changes in patients having the breast cancer helps to adopt 
the therapy. With the passage of time, different tools are serving for the therapeutic 
approach; for example, immunohistochemistry was lately used to stratify breast 
cancer patients with the presence of biomarkers. Now it is used to determine HER2 
and ER [125]. To find the copy number, fluorescence in situ hybridization (FISH) is 
used. DNA array [126], RT PCR [127], or NanoString Technologies [128] is widely 
used for gene expression quantification. These assays are employed in the early 
stage detection of breast cancers according to their risk of reversion. NGS is also 

Fig. 13.5  A summarize form of computational approaches used in the cancer mutation analysis
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Table 13.3  General resources and databases for in silico analysis of cancer

Resource Database References
Genome sequence data Ensemble Flicek et al. [102]

UCSC genome browser Karolchik et al. 
[103]

Genome annotation data
Genetic elements Entrez gene Maglott et al. [104]

Gene ontology annotation 
database

Camon et al. [105]

Universal protein knowledge base Apweiler et al. 
[106]

Genome reviews Sterk et al. [107]
Biochemical pathways and 
functional associations

Kyoto encyclopedia of genes and 
genomes

Ogata et al. [108]

Gene ontology Ashburner et al. 
[109]

The SEED DeJongh et al. 
[110]

MetaCyc Krieger et al. [111]
BioCyc Karp et al. [112]
TransportDB Ren et al. [113]

Regulatory sequences Eukaryotic promoter database Cavin Périer et al. 
[100]

Transcriptional regulatory element 
database

Zhao et al. [114]

Model, model parameter 
repositories

Kinetic data of biomolecular 
interactions database

Ji et al. [115]

BioModels database Le Novère et al. 
[116]

Database of quantitative cellular 
signaling

Sivakumaran et al. 
[117]

Protein interaction networks Database of interacting proteins Xenarios et al. 
[118]

Molecular INTeraction database Zanzoni et al. 
[119]

Mammalian protein-protein 
interaction database

Pagel et al. [120]

High-throughput genome-scale data
Transcriptomics Gene expression omnibus Edgar et al. [121]

Stanford microarray database Sherlock et al. 
[122]

Proteomics Proteomics identifications 
database

Martens et al. 
[101]

Visualization and data management 
software packages

Cytoscape Shannon et al. 
[123]

The Gaggle Shannon et al. 
[124]
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used for the identification of dominant mutations in multigene panel. For the detec-
tion of minor sub-clonal alterations, ultradeep sequencing can be used. Nucleic acid 
detection as well as protein expression pattern is required for the comprehensive 
molecular profile of the tumors.

13.5.2	 �Limitations of Precision Medicine

Although there are multiple applications and high-throughput technologies, still 
many limitations and several challenges are needed to be addressed. A few of them 
are described below.

13.5.2.1	 �Logistical and Operational Challenges
•	 It is very challenging to complete drug testing trials in genomic segments, 

although these variations are rare and still randomized clinical trials are needed 
for the approval.

•	 Genomic results for a certain amount of patients cannot be delivered as biopsy is 
not achievable for all the patients. Previously known DNA alterations are not 
enough to explain the progression of cancer in large amount of patients.

•	 Development of drug and its access is limited due to lesser amount of patients 
and locations. Genomic tests are very expensive and unaffordable as a private 
company runs those genomic tests.

13.5.2.2	 �Scientific Challenges
•	 Response rates are very low, as multiple pathways are activated resulting in the 

failure to recognize oncogenic driver.
•	 Due to the pressure of treatment, additional genomic changes may occur, causing 

secondary resistance [129].

13.6	 �Genomic Medicine

Genomic medicine uses the genetic information of an individual as part of his care. 
It helps to predict disease risk and plots disease course. Genomic medicine makes 
the plan management according to the need of the patient [130]. The technologies 
such as high-throughput sequencing and analytical tools help to analyze thousands 
of molecules simultaneously. Together with computational biology, we can interpret 
large amount of data sets obtained. The demand for molecular characterization of 
the disease has been increased to identify the markers for prognosis by the introduc-
tion of targeted therapy. This also assists in developing new therapies [131]. Such 
analyses will also help in early cancer detection and better treatment [132].
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13.6.1	 �Genomic Sequencing for Assessment of Disease

In personalized medicine, NGS has provided us with several promising applica-
tions. Genome sequencing may also provide important assistance for reproductive 
health. This includes prescreening of mothers for mutations related to metabolic and 
other disorders [133]. Exome sequencing also offers molecular-based diagnosis as 
it identifies the novel mutation.

The applications of genomic medicine are as follows:

	 1.	 Inspection of difference among healthy individuals
	 2.	 Disease hindrance
	 3.	 Understanding disease risk, susceptibility, and etiology
	 4.	 Diagnosis of challenging cases with indecisive results for clinical parameters
	 5.	 Classification of accurate disease based on molecular signature
	 6.	 Early diagnosis to modify disease course
	 7.	 Identification of new mutations related to disease
	 8.	 Development of new targeted therapies
	 9.	 Personal drug-related profile identification
	10.	 Patients selection for clinical trials
	11.	 Monitoring disease status
	12.	 Evolution of tumor in response to treatment
	13.	 Health management

Furthermore, risk assessment for diseases like diabetes, cancer, and hypertension 
is economically efficient. It will significantly decrease the treatment problems and 
may be followed up for prolonged time period [134]. In Fig. 13.6, multistep process 
is shown.

13.6.2	 �Genomics Databases

Many genome-wide studies have been applied for the analysis of single nucleotide 
polymorphisms (SNPs) to examine the genetic variants in different individuals and 
their effects and its relation with disease risk. In 2005, age-related macular degen-
eration was investigated [135]. Since then, almost 4000 more associations of SNPs 
with the disease have been identified [136]. Several international projects have been 
designed on the oncology frontier to enlist somatic alterations at different levels 
through exome sequence analysis, mRNA and microRNA (miRNA) production, 
DNA copy numbers, and promoter methylation. These projects include the Cancer 
Genome Atlas (http://cancergenome.nih.gov/) [137], the Cancer Genome Project 
[138], and Hudson et al. [28]. Furthermore, NIH has initiated extensive genomic 
variation analyses in different diseases by launching various initiatives. Overall, 
collection of large amount of data at different levels holds a great promise to under-
stand disease management [133]. There are several databases that collect the data to 
gain a meaningful conclusion.
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Examples of such databases are i2b2 (Informatics for Integrating Biology and 
the Bedside; https://www.i2b2.org) [139] and locus-specific mutation databases, 
such as the Human Gene Mutation Database or HGMD (http://www.hgmd.cf.ac.uk/
ac/index.php) [140]. Hence data taken from NGS must be inferred in the perspective 
of environmental conditions and clinical variables for better results.

13.6.3	 �Monitoring the Personal Genome

Integrative personal omics profiling (iPOP) is a new approach for monitoring per-
sonal genome as it combines metabolomics, genomic, proteomic, transcriptomic, 
and autoantibody profiles of the same person to follow genomic and transcriptomic 
composition over long periods. By the connection of genetic information with 
dynamic “omics” activities, it can evaluate disease state and healthy state. These 
profiles associated with different states are integrated in this approach at multiple 
time points. An extensive database may be generated with the profiles from more 
individuals having different kinds of diseases. Such databases might be useful in the 
monitoring, diagnosis, and disease treatment [141].

Fig. 13.6  A multistep process for translating genomics to clinical data
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13.6.4	 �Potential Challenges of Genomic Medicine

Although a lot of development has been made, still there are some challenges in the 
genomic medicine; few of them are given here:

•	 It is difficult to interpret data and extract actionable items.
•	 Rules must be set in implementation of new molecular tests.
•	 Cost-effectiveness. An important apprehension in molecular testing.
•	 Patient heterogeneity that occurs with the same cancer type and ethnic variation 

while interpreting genomics data must be addressed carefully.
•	 “Test accuracy” should improve with time.
•	 There also is a huge risk of incidental findings and false-positive results.
•	 Training and teamwork efforts are also needed [142].

13.7	 �Mathematical Models

Mathematical models allow the researchers and investigators in intricating pro-
cesses that are connected to each other and how their disturbance leads to the dis-
ease development. It also helps to analyze system perturbations systematically and 
to develop hypothesis for the development of new tests for experiments. Ultimately, 
new therapeutic targets can be evaluated. Models that describe biological system are 
very complex to handle manually that is why they are handled numerically. One of 
the biggest advantages of the mathematical model for the biological systems is com-
puter simulations. These simulations have a lot of benefits. Firstly, a comprehensive 
molecular scenario can be seen by looking at the discrepancies between the behav-
ior of system projected by mathematical modeling and its actual behavior calculated 
in experiments. Secondly, with the help of mathematical modeling system, various 
perturbations can be seen, for example, after drug administration and developmental 
signals, etc. Thirdly, mathematical simulations are not bound like wet experiments; 
different experimental conditions can quickly be investigated by computer simula-
tions [143].

13.7.1	 �Mathematical Equations for Biological Systems Behaviors 
Modeling

Understanding the biological system is the first step for modeling as different kinds 
of mathematical frameworks have been developed to model various biological sys-
tems. It is important to understand the biological process for selecting the optimal 
modeling approach because for modeling of different biological systems, diverse 
mathematical frameworks have been developed. For instance, dynamic processes 
govern different cellular systems so that the cell adapts its environmental changes. 
For the description of time-dependent phenomena, it is vital to select mathematical 
equations that can capture the dynamic effects. Modeling of metabolic processes is 
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essential for a living organism. It provides the energy to the cell by delivering build-
ing blocks for the large molecules. Biological research has been dedicated to metab-
olism for many years, and still full pathways are not known. A main factor is 
metabolic flux in any metabolic study, that is, conversion rate of metabolites together 
with a metabolic pathway.

Modeling of signaling and regulatory pathways functions as the central control 
machinery of a cell. It firmly regulates responses of the cell to the stimuli. These 
pathways involve the signal transmission from cell membrane into the nucleus of 
the cell. Pathways are mainly triggered by binding of certain extracellular biomol-
ecules to the receptor as a result; the receptor’s 3D structure may be changed. 
Modeling of comparatively simpler signaling networks revealed that signal trans-
mission from the cell shows unexpected behaviors, such as periodic enhancement 
patterns of the initial signals [144].

13.8	 �Conclusion

NGS have assisted researchers to produce large amount of somatic mutations and 
cancer genomics data in rare and common cancer types. Genetic alterations contain-
ing small insertions or deletions, single nucleotide variants, large chromosomal 
rearrangements; gene fusions are cause of causing cancers. Many computational 
tools have been developed for pinpointing the cancer genes and driver mutations 
from millions of somatic cancer mutations. The chapter focused on computational 
methods for the prediction of mutations based on their structure, analysis of mis-
sense mutations in the 3D protein structure, and its effects on stability and interac-
tions. Albeit cancer genomics is still in its beginning, the exceptional production of 
cancer genomics data assured the better prediction of novel cancer genes. With the 
increase in number of tumor samples, these computational methods and approaches 
helped in interpretation of tumor heterogeneity. It facilitated the identification of 
cancer-driven mutations and delineation of dysregulated pathways which can be 
targeted by drugs through precision and genomic medicine.
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