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12.1	 �Introduction

Breast cancer is one of the most common malignancies and accounts for more than 
30% of cancer diagnosis among women throughout the world [1]. Increased breast 
cancer incidence rate can be evidenced from the findings that every eighth women 
in the United States is at risk of developing this brutal disease. Women not only 
from underdeveloped or developing countries become victim of this disease and 
struggle for survival, but also women from developed countries are also facing the 
same issue [2–5]. Breast cancer has heterogeneous nature in histological, pathologi-
cal, and clinical investigations, and it is always a challenge for surgeons/oncologists 
to identify suitable treatment for every patient [6, 7]. Conventionally, breast tumors 
were categorized by using slide-based techniques and histopathological attributes 
responsible for diagnosing ductal or lobular breast carcinoma and characterizing 
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tumor size, grade, and involvement of lymph nodes [8, 9]. With the advancement in 
molecular biology-related knowledge, different breast cancer molecular subtypes 
have been recognized based on the status of HR and HER2, which differ in chemo-
therapeutic responsiveness and disease prognosis [10]. Epithelial carcinoma is the 
most commonly diagnosed breast cancer type and, therefore, gathers greater atten-
tion in this chapter. Basic intrinsic epithelial breast carcinoma types are “luminal A, 
luminal B, HER2+, and basal-like cancer” [11, 12]. Androgen receptor-based epi-
thelial breast carcinoma types have also been reported [13].

Identifying precise molecular breast carcinoma subtypes could lead to more per-
sonalized method for breast cancer treatment via targeted therapies [14]. 
Furthermore, the clinical advantage experienced with agents targeting HER2/hor-
mone signaling has opened new ways to identify and test more molecular targets 
[15]. Advancement in the molecular profiling-related knowledge has revealed many 
novel genetic and epigenetic alterations/modifications as possible drivers of breast 
carcinoma biology [16]. Some of these genetic alterations that can help in character-
izing currently available breast cancer molecular subtypes are shown in Fig. 12.1.

After BRCA1/BRCA2, many other genetically targeted agents were explored in 
breast cancer and now in progress to become clinically important markers. Most 
important factor in recognizing some molecular marker is its role in treatment and 
patient’s overall survival. To address the potential of various biomarkers, response 
to treatment was evaluated with the help of clinical trials as a best source of confir-
mation and many are still in progress. The current chapter will highlight recent 
advancements in the molecular profiling of breast cancer leading to better disease 
diagnosis and treatment.

12.2	 �Molecular Profiling in Breast Cancer

Breast cancer molecular profiling is capable of monitoring and predicting treatment 
response in different ways [23] and can be determined with different techniques 
including RT-PCR [24, 25], immunohistochemistry [26, 27], fluorescence in situ 
hybridization (FISH) [28], DNA hybridization-based analysis [29], and next-
generation sequencing (NGS) [30].

12.2.1	 �Genomic Tools for Detection of Breast Cancer

Genomics refers to the analysis of sequence and structural variations in DNA. It 
also involves investigation of gene expression and functional element annotation at 
a genomic scale. Genomic tools are used to detect indels, single nucleotide poly-
morphisms, and epigenetic modifications [31]. Genomic analyses lead to the devel-
opment of diagnostic tests which provided patients personalized diagnostic 
information [32]. It also helped for the development of personalized treatment 
plans, consequently preventing resistance, toxicity, and nonresponsiveness. Due to 
lack of knowledge involved in carcinogenesis, we are still targeting one drug, one 
gene, and one organ site model [33].

S. S. Malik et al.



315

Fi
g.

 1
2.

1 
B

re
as

t c
an

ce
r 

tu
m

or
’s

 m
ol

ec
ul

ar
 s

ub
ty

pe
s 

[1
7–

22
]

12  Molecular Profiling of Breast Cancer in Clinical Trials: A Perspective



316

12.2.1.1	 �Oncotype DX
Oncotype DX is RT-PCR-based genomic assay, optimized for FFPE biopsy speci-
mens [34]. The assay was established to predict recurrence score in breast cancer 
patients of stage I and II, lymph node-negative, hormone receptor-positive, and 
metastatic cancer, treated with tamoxifen [35]. It utilizes set of important genes 
customized after data evaluation form 447 patients. During the project, 250 genes 
were studied, and panel of 21 genes was derived for HR+ breast cancer patients, 
likely considered to be the prognostic for breast cancer. In this panel, 16 genes are 
related to cancer and 5 are reference genes as internal control [36]. The cancer-
related gene panel is associated with the genes of known functions involved in basic 
tumorigenesis pathways, i.e., cell proliferation, invasion, hormone response, and 
other oncogenes. Genes specifically related to breast cancer, incorporated on 
Oncotype DX, are shown in Fig. 12.2. It stratifies recurrence score between 0 and 
100 [37]. Score correlates to disease recurrence possibility among patients success-
fully treated with chemotherapy within 10 years of diagnosis. The significance of 
this assay was evaluated and validated by using cohort study from the National 
Surgical Adjuvant Breast and Bowel Project (NSABP) and trials B-14 and B-20 
[38]. Oncotype Dx predicts potential benefit from adjuvant chemotherapy. To date, 
Oncotype DX is the only multigene assay for breast cancer and incorporated in the 
guidelines of National Comprehensive Cancer Network (NCCN), highlighting its 
use and ability to predict the risk of recurrence and benefits from adjuvant chemo-
therapy [39–41]. According to guidelines, once patients treated with tamoxifen have 
been classified to lower risk of recurrence by the Oncotype DX assay, they can be 
spared from adjuvant chemotherapy [42].

Oncotype DX has become the most commonly used clinical assay, but few stud-
ies showed that immunohistochemistry (IHC) score provides similar prognostic 
information which is a less expensive and simpler alternative [36]. Other reports 

Fig. 12.2  Gene profile of Oncotype DX assay [44–46]
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show that Oncotype DX also provides information which can predict benefits from 
adjuvant chemotherapy [43].

12.2.1.2	 �MammaPrint
MammaPrint is a molecular diagnostic assay which involves microarray-based 
approach to predict tumor recurrence in breast cancer patients [44]. It consists of a 
customized panel of 70 genes that has been displayed sovereign prognostic value 
for lymph node-negative breast cancer patients and is associated with tumor devel-
opment and metastasis [47, 48]. These genes are the hallmarks of cancer and play 
roles in regulation of cell cycle, metastasis, invasion, proliferation, extravasation, 
adaptation to microenvironment, survival in circulation, and angiogenesis [36]. 
MammaPrint was initially established from expression arrays of whole genome 
using a cohort of breast cancer patients who had gone through definitive surgery 
only, with known clinical outcomes and with no systemic therapy [49].

In MammaPrint gene expression levels are determined by the probe-specific 
hybridization of complementary DNA [50]. In 2007, US FDA approved MammaPrint 
for freshly frozen tissue samples. During the process, RNA after extraction from 
tissues is amplified, co-hybridized is carried out using a standard reference, and 
70-gene expression profile is obtained [51]. MammaPrint has been shown as prog-
nostic indicator, independent of clinicopathologic features such as size of tumor, 
HER2 status, and hormone receptor status [52, 53]. This method has been reported 
to have significantly higher correlation of prognostic prediction to tumor recurrence 
[42]. In MammaPrint, patients are classified into low-risk and high-risk groups cor-
responding to a 10-year distant metastasis-free survival rate.

MammaPrint is a useful diagnostic tool, but there are many limitations that must 
be considered. The patient recommended for MammaPrint screenings should be of 
stage I or II lymph node-negative invasive breast cancer with tumor size less than 
5 mm3 [50, 54]. Further, MammaPrint is restricted to patients with less than 65 years 
of age, and it also needs large amount of specimen. Collection of tissue samples and 
handling make this assay hard for use in normal clinical practice [55]. Collection is 
very critical for optimum results and requires regions clear of both stromal and 
necrotic tissue with at least 30% of malignant cells, which may be impossible to 
obtain from a biopsy [56]. For these limitations, ASCO required further data and 
recommendations for usage of MammaPrint in clinical settings. To date, only 
Agendia laboratory (Amsterdam) performs this assay [57, 58].

12.2.1.3	 �PAM50 (Prosigna)
PAM50 is also a molecular test for tumor profiling which helps to evaluate chemo-
therapy benefits in addition to hormone therapy for ER-positive and HER2-negative 
breast cancers. It investigates the activity of 50 genes to predict the risk of distant 
recurrence from 5 to 10 years. It is based on qRT-PCR that has been recommended 
for FFPE tissue specimens of ER-positive, HER2-negative, basal, luminal A- and 
luminal B-like breast cancers [36]. It estimates the chances of metastasis for post-
menopausal women with stage I and II lymph node-negative breast cancers. 
However, multivariate analyses have revealed this assay also provides information 
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that is independent of clinicopathologic variables [59]. PAM50 provides the detailed 
quantitative information about luminal gene expression, proliferation, PGR, ESR1, 
and ERBB2 and, consequently, can be used for opting proper treatment decisions 
[36]. Different work is in progress to assess the efficacy of this test and has been 
reported to be superior to IHC and Oncotype DX for predicting the emergence of 
late relapses following adjuvant endocrine therapy. Prosigna is manufactured by 
NanoString Technologies, distributed to different pathology labs and is approved 
for use in the European Union [60].

12.2.1.4	 �Genomic Grade Index (GGI) (Ipsogen)
The GGI is a microarray-based test which includes 97 genes, created by Sotiriou 
et al., with the intention of making tumor grading system more precise. It was devel-
oped from the data of 189 breast cancer cohort and validated in different subtypes 
of 597 tumors [61]. GGI grades tumor into high risk and low risk instead of 1, 2, and 
3 grades of histopathology. GGI provides valuable information for estimation of 
breast cancer prognosis in ER-positive breast cancers and is also shown to help in 
prediction of relapse in endocrine-treated cancers [62] and prognosis in the patients 
with neoadjuvant therapy. The FDA has authorized the marketing of GGI to ipsogen 
JAK2 RGQ PCR Kit, manufactured by QIAGEN GmbH [63].

12.2.1.5	 �Breast Cancer Index (BCI)
Biotheranostics’ Breast Cancer Index (BCI) is a quantitative RT-PCR-based prog-
nostic test. For BCI formalin-fixed and FFPE tissue blocks are used. There are two 
outputs of this assay, based on unique gene signatures, which include BCI predic-
tive and BCI prognostic. BCI prognostic helps for assessment of patient’s individu-
alized risk for distant recurrence, while BCI predictive provides possibility of 
benefit from extended endocrine therapy, possibly more than 5 years. BCI includes 
two independent biomarkers, IL17BR:HOXB13 and five cell cycle-associated gene 
index, which helps to assess tumor grade. The test is limited to patients with ER+ 
and lymph node-negative cancer. So far, BCI has not added value information to 
other available prognostic tests limiting its clinical utility [64].

12.2.1.6	 �Theros H/ISM and MGISM

These are transcriptomic-based biomarkers. In Theros H/ISM clinical output of 
breast cancer individuals is determined who were treated with tamoxifen by evalu-
ating the expression of two genes HOXB13 and IL17BR. If the expression ratio of 
these mentioned genes is high, then it represents no response to tamoxifen and 
tumor aggressiveness [65]. MGISM is also a molecular diagnostic test. This test is 
carried out to check the recurrence risk by using five-gene expression index for 
ER-positive breast cancer individuals [66]. Thus, more data is required for superior-
ity of Theros H/ISM and MGISM compared with other conventional methods.

To date, many genomic tests have been developed to improve the diagnosis and 
therapy of breast cancer. The IMPAKT 2012 group assessed the effectiveness of 
different available tests, i.e., MammaPrint, Oncotype DX, Genomic Grade Index, 
PAM50, and EndoPredict. They reported that MammaPrint and Oncotype DX have 
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considerable validity and significance for both analytical and clinical aspects, in 
ER+ breast cancer patients. Unfortunately, no significant association of other tests 
with prognosis was observed, and further studies are required for their convincing 
clinical validity [64].

12.3	 �Immunohistochemistry in Molecular Profiling of Breast 
Cancer

12.3.1	 �Significance of Immunohistochemistry as a Diagnostic 
Tool

Personalized cancer therapy demands use of several biomarkers during histopatho-
logical diagnosis [67]. Surgical pathology heavily relies on immunohistochemistry 
for diagnosing various malignancies. Protein localization and tumor classification 
can be done by IHC [68], although molecular profiling assists immunohistochemis-
try (IHC) which is currently performed with the conventional markers for breast 
cancer prognosis. However, only ER-positive cancer patients get benefit from this 
information [69]. Immunohistochemistry is used to measure the expression level of 
predictive markers including estrogen receptor/progesterone receptor (ER/PR) and 
human epidermal growth factor receptor 2 (HER2) during clinical assessment of 
tumors [70]. Treatment approaches with antiestrogen or anti-HER2-based therapies 
are followed for subgroups of patients selected based on these predictive markers. 
In addition, this approach also aids in analyzing the recurring risk of cancer in such 
patients [71].

12.3.2	 �Advancements and Limitations of IHC Techniques

There are several limiting factors due to which conventional methods of IHC are not 
well acknowledged recently. These include extra labor, time expenditure, expenses, 
and the large amount of sample tissue required for the procedure. This can be 
explained by example of Oncotype Dx test used for identification and prognosis of 
breast cancer. It demands much time and labor as more than 20 genes need to be 
examined for their role in breast cancer [72, 73]. Although these issues are assumed 
to be resolved by using an automated IHC machine, expenditures of both money 
and time still remain major issues while dealing with a large number of biomarkers 
and tissue sample, respectively. Additionally, limitations like variations in results, 
qualitative evaluation, and subjective decision make this technique a less reputable 
proteomic tool [72].

12.3.2.1	 �Multicolored-Based Immunohistochemistry
In recent investigations, multiplexing method with molecular dyes and quantum 
dots (QDs) is used for multicolored-based IHC assays [74, 75]. Multicolor IHC has 
advantage that it facilitates co-expression of several biomarkers with both direct and 

12  Molecular Profiling of Breast Cancer in Clinical Trials: A Perspective



320

indirect sequential staining. However, several drawbacks are associated with multi-
color staining [76]. These include increased labor and time expenditure, higher 
reagent costs, and sensitive procedure of probe conjugation using less stable pri-
mary antibodies and non-specific binding of secondary probes. These undesired 
factors lessen the effectiveness of multicolored immunohistochemistry [77].

12.3.2.2	 �Microfluidic-Based Multiplexed Immunohistochemistry 
(MMIHC)

Integration of IHC-based assays with an appropriate multiplexing method can prove 
an efficient diagnostic method for cancer patients [78]. Immunohistochemistry has 
been further modified with microfluidic parallel multiplexed design for diagnosing 
breast cancer quantitatively. This methodology provides an enclosed microenviron-
ment in which fluids can be easily and timely manipulated [79]. Development of 
MMIHC platform demonstrates the enhanced IHC performance with accurate diag-
nosis, time, and cost-effectiveness as compared to previous methods which employ 
analysis of whole sections of breast cancer tissues [80]. Usually microfluidic devices 
are designed in such a way that glass slide and microchannel are permanently 
bonded together, and introduction of an interface between a microfluidic device and 
tissue slide has not been commonly reported by previous studies. Thus, it can be 
assumed that use of microfluidic design is not frequently practiced in studies with 
human clinical specimens [80–82].

Structural Design of Microfluidic Devices
Kim et al. had designed a microfluidic device by taking into consideration of solu-
tion number, biomarker count, and adequate reaction channel dimensions. Four bio-
markers were used including estrogen (ER), Ki-67, progesterone (PR), and human 
epidermal growth factor 2 (HER2) receptors. The device contained six and four 
reservoirs for reagents and biomarkers, respectively. In addition, microvalves for 
both reagent and biomarker reservoirs, four reaction channels, and one outlet were 
included in the design. Lastly, to maintain constant pressure and creating a tempo-
rary seal, a weight was put on the top of the device [80, 83].

Preparation and Assembly of MMIHC Assay
The procedure employed for the preparation of MMIHC device involved two-step 
soft lithography, poly(dimethylsiloxane) (PDMS; Sylgard 184; Dow Corning, MA) 
replica molding and aligning processes. To minimize tissue damage, an appropriate 
interface between MMIHC device and tissue slide was prepared. To assemble, bot-
tom plate of device was loaded with tissue slide. Afterward, tissue was treated with 
washing buffer, and four reaction channels containing MMIHC device were placed 
on it. Buffer was filled in microchannels carefully to avoid creation of micro-bubbles. 
Lastly, upper plate of the device was loaded with a weight so any leakage could be 
avoided, and tissues would be pressed with walls of microchannels [84, 85].
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12.3.2.3	 �Analysis of Human Breast Cancer Tissue with MMIHC
After initial testing and trials of MMIHC device, Kim et al. used this platform for 
examination of tumor tissues of patients. This modified technique minimizes need 
of additional externally connected equipment. A major advantage of using MMIHC 
platform is that probability of assay failure is reduced under 1%, which is frequently 
observed in case of clinically rare samples. Immunohistochemical staining can be 
easily repeated in this setup due to an enclosed microenvironment and semi-
automation of the staining process, and antibody consumption is reduced up to 200-
fold along with speedy immunological reaction. Additionally, comparison of 
MMIHC results with those of western blotting revealed that this technique can give 
better results for semiquantitative analysis of cell blocks. Its effectiveness is exhib-
ited by the fact that more accurate results are obtained during relative quantification 
due to single site biomarker staining which enables direct comparison and elimi-
nates undesired variation as observed in multistep conventional IHC [80].

Quantification with image analyses needs further advancements and improve-
ments in algorithms for clear scoring. Although MMIHC was considered more 
advantageous than earlier techniques, reliability of its results was doubted when 
compared to conventional whole tissue analysis [85]. These concerns are primarily 
based on scoring discrepancy probably caused by inborn errors of IHC due to varia-
tion in laboratory conditions or observer’s skills. Other reasons include selection of 
specimens, processing errors, representation methods of MMIHC results, etc. In 
conclusion, after required modifications, a more applicable, fast, and easy to quan-
tify MMIHC platform can improve the patient care conditions by facilitating clini-
cal diagnosis of breast cancer [85, 86].

12.4	 �High-Throughput Sequencing (NGS) Technologies

Human genome consists around 3 billion nucleotides and 22,000 genes comprising 
on 23 chromosomes. Conventional methods took 10–12 weeks for genetic testing of 
known genes involved in breast cancer. This turnaround time, along with cost and 
area of genome studied, improved with the advent of new technologies, i.e., next-
generation sequencing [87]. It has also helped to achieve new treatment avenues and 
make patient’s lives better. Next-generation sequencing (NGS) has played very 
important role for investigations in such a heterogeneous and complex disease like 
breast cancer [88]. Firstly, it helped to characterize genome and exome of cancer 
patients. Along with unraveling the mutational processes, large-scale studies have 
discovered new genes associated with the disease. Advanced tools allow deep inves-
tigations of whole genome data and its correlation with disease stage, prognosis, 
and treatment options [89, 90].
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12.4.1	 �Identification of New Genes

NGS has led to the discovery of new “driver” and “passenger” mutations. It all par-
ticularly was at the highest peak in 2012, with exceptional unraveling of mutational 
landscape. Some of the mutations newly identified in 2012 are shown in Table 12.1.

12.4.2	 �Delineating the Mutational Steps in Cancer

Many studies illustrated the mutational process underlying the cause and propaga-
tion of breast cancer, out of which the study published by Nik-Zainal [95] was the 
most appealing one of that time. According to this most important driver mutation 
in case of breast cancer patients occur in genes like TP53, GATA3, PIK3CA, 
MAP2K4, SMAD4, MLL2, MLL3, etc., duration and strength of each mutation 
determine the mutational process or pathway to the disease.

12.4.3	 �Detecting Minimal Residual Disease (MRD)

Generally, circulating tumor cell in blood and bone marrow has impact in develop-
ment of breast cancer [96]. Nested real-time PCR has been used to detect tumor 
DNA in serum of relapsed breast cancer patients and to detect MRD. Early diagno-
sis can also be made by detecting serum DNA using NGS [97].

12.4.4	 �Drug Response Prediction

Various prognostic markers have been recognized which can not only identify 
patients with better or worse outcome of disease but can also predict response of 
patients to a certain treatment. It can not only reduce cost but save time as well. The 
most important markers studied till today in case of breast cancer are ER and HER2, 
having both prognostic and predictive roles. Oncotype Dx or recurrence score is 
used to estimate the expression level of 21 genes for stratifying ER breast cancer 

Table 12.1  Mutated genes identified through next-generation sequencing (NGS)

S. No Study Mutated genes
1 Stephens et al. 

[91]
AKT2, TBX3, ARID1B, CDKN1B, NCOR1, MAP3K1, MAP3K13, 
SMARCD1, CASP8

2 Banerji et al. 
[92]

RUNX1, CBFB

3 Shah et al. 
[93]

USH2A, COL6A3, MYO3A, NRC31, PRKCE, PRKCQ, PRKG1, 
PRPS2, PRKCZ

4 Cancer 
Genome Atlas 
[94]

AFF2, OR6A2, PIK3R1, PTPRD, NF1, RPGR, SF3B1, CCND3, 
CTCF, TBL1XR1, NCOR1, ZFP36L1, GPS2, CLEC19A, RYR2, 
HIST1H2BC, GPR32, SEPT13, PTPN22, DCAF4L2, OR6A2
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into high- and low-risk groups, using microarray analysis [98]. The use of whole 
genome sequencing techniques has given the insight into intra-tumor heterogeneity. 
Firstly, it showed the different subtypes of tumor with changed rearrangement pat-
terns and mutations; secondly, metastasis is altered in case of primary tumors. 
Thirdly, it has been proven that tumor can progress using distinct pathways.

12.5	 �Biomarkers in Randomized Clinical Trials (RCT)

Biomarkers are naturally occurring molecules, characteristics, or genes used to per-
form a clinical assessment (prediction, identification, and monitoring the health 
states of individuals) and planning new therapeutics. In clinical trials of different 
tumor types, the relationship between drug response to presence, absence, or any 
kind of change in biomarker was tested. This consists of proof-of-concept trials, 
which include integral and integrated biomarkers. In integral biomarkers trials, 
patients with presence or absence of specific biomarkers were included only, while 
in integrated biomarkers trials, biomarkers effect mainly on drug response was 
tested [99]. Main goal of biomarkers incorporation into clinical trials was specific 
selection of patients who were expected to be benefitted from some specific thera-
pies and to give more inclusive sight of how novel therapies function. But, incorpo-
ration of biomarkers into clinical trials is still challenging, because there is a need 
for considering some assays which can act as standards in different countries and 
clinical practices. A study of phase Ib/randomized phase II trial (double-blind clini-
cal trial of tamoxifen plus taselisib or placebo) for HR+ metastatic breast cancer 
patients found that clinical outcomes can be improved by combining PI3K-AKT-
mTOR pathway inhibitors with prior endocrine therapy. Taselisib is PI3K inhibitor 
having higher selectivity for mutant (MUT) PI3Kα isoforms than wild type. 
POSEIDON phase Ib data with tamoxifen (TAM) plus taselisib revealed greater 
performance in metastatic Ca breast individuals with an acceptable toxicity profile. 
Patients were grouped based on histology, menopausal status, no prior chemother-
apy history, and treatment centers [100]. First randomized double-blind controlled 
clinical trial MANTICORE (Multidisciplinary Approach to Novel Therapies in 
Cardiology Oncology Research) was carried out on 100 early breast cancer patients 
at 2 centers. It was carried out in HER2+ early breast cancer (EBC) patients for 
evaluation of heart failure pharmacotherapy in the prevention of adjuvant 
trastuzumab-mediated left ventricular (LV) dysfunction. Adjuvant trastuzumab 
(TRZ) is mostly done for HER2+ overexpressing EBC patients with survival rates 
of 5 years. However, it has fivefold increased clinical heart failure rate. For preven-
tion of such negative sequelae, LV remodeling is recognized as an early indicator of 
heart diseases. One of the methods used for quantifying LV remodeling and func-
tion is cardiac magnetic resonance imaging (CMR). So, MANTICORE trial was 
designed for evaluation of heart failure pharmacotherapy in the prevention of adju-
vant trastuzumab-mediated left ventricular (LV) dysfunction. Patients were ran-
domized to receive perindopril, bisoprolol, or placebo prior to initiating TRZ. So, 
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this study has the potential to implement change in clinical practices with TRZ-
based adjuvant therapy [101].

Programmed cell death-1 receptor and its ligands (PD-L1) are considered as 
therapeutic targets in reactivation of immune responses against cancer. Avelumab, 
an anti-PD-L1 antibody in clinical trials of metastatic breast cancer or locally 
advanced cancer, is being investigated (a phase Ib JAVELIN solid tumor trial). 
Immunohistochemistry was used to assess tumor PD-L1 with various cutoff criteria. 
Total 168 metastatic patients with HER2+, HER2−/ER+ or PR+, triple negative 
(TNBC = HER2−/ER−/PR−), or unknown biomarker were treated with avelumab. 
It showed a significant safety profile and had clinical activity in a subgroup of meta-
static breast cancer patients. In patients with triple negative breast cancer, clinical 
response to avelumab is associated with the presence of PD-L1-expressing immune 
cells within tumor cells [102].

A single-arm clinical trial (phase II) with only one agent platinum was conducted 
on TNB patients along with correlated biomarkers. In case of metastatic TNBC, 
with germline BRCA1/BRCA2 mutations, platinum is used as active chemothera-
peutic agent. Patients can be identified who could benefit from platinum therapy 
based on measurement of tumor DNA repair functions. Well-designed potential 
controlled trials that use diagnostically certified assays and predefined criteria are 
warranted to assess the clinical utility of DNA repair measurement for analyzing 
responsiveness to DNA-damaging agents and platinum [103]. These enrichment 
biomarkers, presently in clinical trials, may become predictive biomarker in the 
future after being clinically proven. Some examples are RAS mutations for both 
MAPK and PI3K pathway inhibitors, IGF mutations with IGF-1R antibodies and 
PTEN loss, and PIK3CA mutations for PI3K-Akt-mTOR pathway inhibitors. 
Various biomarker panels have been developed, like TruSeq Amplicon—Cancer 
Panel (TSACP) to assist identification of significant breast cancer-associated bio-
markers for research and for clinical practices [104] (Table 12.2).

12.6	 �Conclusion

Advancement in molecular profiling of breast tumor types has showed differential 
molecular features that affect responsiveness, prognosis, and resistance to therapy. 
In this new era, importance of molecular profiling for breast cancer diagnosis and 
treatment can be evidenced with the emergence of vast variety of techniques and 
assays in clinical practice. These technologies have proven to solve various diagnos-
tic issues, increased the information available from clinical trials, and paved toward 
personalized medicine overcoming the challenges of traditional techniques. 
Research is still in progress via clinical trials incorporating biomarkers to secure 
maximum benefits for breast cancer patients.
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Table 12.2  Completed and ongoing biomarker-driven clinical trials of breast cancer (mentioned 
in text)

Trial name/ID Agents Phase Patient population Status
NCT02530424 Palbociclib, fulvestrant, 

trastuzumab, and 
pertuzumab expression of 
Ki67

Phase 
II

Triple targeting of ER, 
HER2, and RB1 in 
HER2- and ER-positive 
Ca breast, n = 36 
patients

Ongoing

NCT02032277 Veliparib plus carboplatin 
or carboplatin
PARP inhibitor, 
neoadjuvant chemotherapy

Phase 
III

n = 634 patients 
triple-negative breast 
cancer, clinical stage 
II–III

Ongoing

NCT02162719
LOTUS

Ipatasertib plus paclitaxel 
versus placebo plus 
paclitaxel, PI3K/AKT 
pathway inhibitor

Phase 
II

Metastatic triple-
negative breast cancer, 
n = 166 patients

Ongoing

NSABP B-42
Double-blinded, 
randomized trial

Placebo-controlled trial of 
extended adjuvant 
endocrine therapy (tx) with 
letrozole (L) (aromatase 
inhibitor (AI))

Phase 
II

Stage I–III, 
postmenopausal, and 
hormone receptor (+) 
Ca breast, n = 3966

Completed

Nanoparticle 
albumin-bound 
(nab) paclitaxel

ab-paclitaxel followed by 
FEC (5-FU [fluorouracil], 
epirubicin, and 
cyclophosphamide)

Phase 
II

HER2-negative breast 
cancer
n = 25 with no previous 
chemotherapy

Completed

NCT01889238
MDV3100 open 
label trial

Enzalutamide Phase 
II

Androgen receptor-
positive TNBC

Not 
recruiting 
anymore

NCT01990209 Orteronel Phase 
II

Androgen receptor 
positive with metastatic 
breast cancer; n = 86

Ongoing

NCT01528345 Dovitinib, dovitinib 
placebo and fulvestrant

Phase 
II

Her− and HR+ 
metastatic 
postmenopausal 
individuals having 
progression after 
endocrine therapy, 
n = 97

Completed

NCT01791985 AZD4547 activity with 
either anastrozole or 
letrozole or both

Phase 
I/II

ER+ breast cancer 
patients with disease 
progression by 
letrozole and 
anastrozole, n = 56

Ongoing

NCT02437318
Double-blind 
randomized trial

Placebo controlled study 
of faslodex and alpelisib in 
combination

Phase 
III

HER2−, hormone 
receptor+, 
postmenopausal 
females and men with 
disease progression 
after aromatase 
inhibitor therapy, 
n = 572

Ongoing

(continued)
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