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Foreword

Incidence of cancer in developing countries is rising at much faster pace than 
improvement in health care facilities. To address this surge, one should devise a 
holistic approach and contribute in adequate sensitization of all salient stakeholders 
including clinicians, patients, and researchers. In this book, concise but detailed 
information related to genetics and epigenetic factors influencing cancer are elabo-
rated. Genetic anomalies related to high-risk penetrance genes are thoroughly dis-
cussed in different types of cancers. Effect of DNA repair pathway and key cell 
signaling pathways in initiation, promotion, and progression of tumorigenesis is 
also eloquently elaborated.

Metastasis, responsible for the spread of disease to distant organs and also a lead-
ing cause of cancer-related death, is also highlighted in the book. Metastasis is a 
non-randomized process, happening inside human body beginning with loss of cell 
adhesion from primary site, regulating intravasation, survival in circulation, defy-
ing host immunity, extravasation and localization at suitable niche. All plausible 
genomic and transcriptomic orchestra of cell during these phases is well explained. 
Biostatistical approaches and precision medicine are the need of the time for correct 
diagnosis and treatment of cancer, and Dr. Masood outrightly pointed several ongo-
ing and novel potential drugs explicitly to halt this process.

Towards the end, I would like to congratulate Dr. Masood and her coeditor for 
accomplishing this challenging task of writing scientific book for pathologists, 
health care professionals, and patients. Simplification of difficult terms without 
compromising reader interest is extremely pleasant. I highly value the immense 
efforts of Dr. Masood and Ms Malik to turn this long awaiting book in reality!

COMSATS University Faraz A. Malik
Islamabad, Pakistan
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Preface

This book covers different areas of cancer emphasizing on genomics, proteomics, 
omics and statistical analysis in the context of precision medicine. The first part 
highlights cancer genomics, organization and variations in human genome along 
with various genomic technologies. It sheds light on the importance of genomic 
technologies in cancer prognosis and treatment. Furthermore, it also covers meta-
bolic changes and their characterization in tumour development. Numerous new 
techniques and reagents have been introduced into cancer research in the recent 
past, and these are covered in this book. With overview of basic genomics and pro-
cesses, groundwork for the next parts of the book is laid.

It is a comprehensive book which is divided into seven parts and each part is 
composed of chapters on related topics. The first three parts make a very good text 
for an introductory cancer biology course. It not only covers cancer genomics but 
also highlights role of genomic instability and cancer metastasis particularly focus-
ing on response of different DNA damage repair pathways, role of mechanotrans-
duction and immunomodulation in cancer metastasis and genomic instability. 
Description about synthetic genetic strategies and role of nanomedicine in cancer 
detection and inhibition is an important part of this book. It also highlights the role 
of transcriptomics, translational genomics and precision medicine in different can-
cers. The breadth of these chapters provides the information necessary for any 
researcher to understand how various genomic technologies work for cancer detec-
tion, treatment and prevention.

Molecular biology has changed dramatically over the past two decades. 
Accumulation of data and its interpretation was found to be rate-limiting step in 
research. Therefore, computational biology has emerged in the past decade as a 
new subdiscipline of biology. It is great to discuss cancer-related computational 
approaches and mathematical modelling used to illustrate prognostic and predic-
tive ways towards precision medicine, making this book more unique and 
comprehensive.

Many new challenges have arisen in the area of oncology clinical trials. New 
cancer therapies are often based on cytostatic or targeted agents, which pose new 
challenges in the design and analysis of all phases of trials. Therefore, statistical 
methods have been evolved to analyse such data in order to get meaningful informa-
tion. This part is focused on the design and analysis of oncological clinical trials and 
translational research and is a great edition in this book. Highlighting the 



x

importance of pharmacogenomics and proteomics in cancer has become the unique 
features of this book.

Overall, this book is a single-source collection of up-to-date genomic, proteomic, 
computational, pharmacogenomics and statistical approaches to research in clinical 
oncology and precision medicine.

Rawalpindi, Pakistan Nosheen Masood 
Rawalpindi, Pakistan  Saima Shakil Malik  

Preface
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N. Masood, S. Shakil Malik (eds.), ‘Essentials of Cancer Genomic, 
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https://doi.org/10.1007/978-981-15-1067-0_1

Overview of Cancer Genomics, 
Organization, and Variations 
in the Human Genome

Marriam Yamin, Hadeeqa Gull Raza, and Iffat Fatima

1.1  An Overview of Cancer Genomics

Genomics is an interdisciplinary field covering both structural and functional 
aspects of whole genomes. Therefore, it is categorized into structural and functional 
genomics with former characterization of the DNA sequences of haploid genomes 
while later targeting the entire array of transcripts and encoded proteins from a spe-
cific genome. These analyses require the use of high-throughput technologies and 
complex computational statistics which are continuously updated with recent tech-
nological advancements [1]. Being a disease of the genome, cancer research involves 
an identification of both somatic and germline oncogenic mutations in several tumor 
suppressor genes. Some of these mutated genes have excellent potential for molecu-
lar therapy and disease prognosis [2]. Cancer genomics has evolved with the devel-
opment of technologies for comprehensive profiling of cancer genomes [3].

1.1.1  Genome Projects and Computational Genomics

Cancer research demands a multidisciplinary approach integrating laboratory 
experiments, clinical studies, and predictive computational analysis. Bioinformatics 
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has gained huge significance in this field by providing computational tools for col-
lection, storage, distribution, and analyses of genomic data. In this regard, Human 
Genome Project (HGP) had been logically extended to Cancer Genome Atlas 
(TCGA) project with the aim of providing a detailed atlas of cancer-related genetic 
changes. Repositories like Stanford Microarray Database (SMD) and Gene 
Expression Omnibus (GEO) also exist which mainly facilitate data storage but also 
offer limited options of data analyses like hierarchical clustering. However, micro-
array data analysis tools like “Gene Logic’s BioExpress® System Oncology Suite” 
and BioExpress® Oncology Suite are specifically available for cancer research [4]. 
Recent investigations on different types of cancers including prostate [5], hepatocel-
lular carcinoma [6], and low-grade glioma [7] have demonstrated the association 
between tumor progression and DNA methylation heterogeneity. Moreover, a link 
between novel measures of DNA methylation heterogeneity and clinical variables 
in different types of carcinomas has also been reported recently [8, 9].

1.1.2  Structural Genomics

The term “structural genomics” has been defined in a number of ways which can be 
converged as “genome characterization via assigning loci to specific chromosomes 
and physical mapping by using information related to the structural organization of 
genome provided through both experimental and computational approaches.” 
However, structural genomics is not confined to genome characterization, but it also 
aims to provide three-dimensional structures of proteins on genomic scale. These 
objectives are achieved through advanced technologies of sequencing and genomic 
data analysis.

1.1.3  Characterization of Cancer Genomes

Activation and inactivation of oncogenes and tumor suppressor genes respectively 
are induced due to nucleotide sequence mutations. Analyses of such alterations in 
DNA sequence could be performed due to development of sequencing techniques 
which were first developed in 1975. Initially, somatic mutations in RAS family of 
genes were discovered followed by determination of tumor suppressor genes. 
Later on, improvement of sequencing techniques led to discovery of a number of 
oncogenes which provide potential target for gene therapy [3]. Cancer genomes 
are characterized by extensively altered copy number and structure of chromo-
somes as compared to normal genomes. Somatic copy number alterations (SCNAs) 
in cancer genome which span either a part or full arm of chromosome have been 
successfully determined owing to the development of comparative genomic 
hybridization techniques [10]. Although germline DNAs have also been reported 
from human populations, however, their association with cancer still needs to be 
investigated [3].

M. Yamin et al.
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1.1.4  Functional Genomics

Although identification of mutated oncogenes and cancer suppressor genes through 
sequencing and physical mapping of cancer genomes has abundantly increased 
genomic data, however, it is unable to completely describe the significance of these 
mutations during cancer progression [11]. Moreover, many of the oncogenes are not 
frequently mutated or amplified [12]. Another challenge imposed in cancer research 
is to analyze functions of genes in specific physiological environment during dis-
ease progression. Functional genomics deciphers genes’ functions by providing 
their cellular phenotypes [13].

1.1.5  Challenges in Functional Genomics

Functional genomics can play a significant role in cancer therapeutics by identify-
ing molecular targets of anticancer compounds. It can also be used to screen the 
genes regulating drug resistance and sensitivity [14]. Practical application of 
functional genomics in cancer research is a challenging task due to advantages 
and drawbacks of the technologies used in the process [15]. Therefore, it is neces-
sary to get in-depth knowledge of these techniques or platforms. Measurement of 
complex phenotypes is made possible in two ways, i.e., either using arrayed or 
pooled screens. Arrayed screens have the advantage of measuring complex pheno-
types of a single population of cells, but their use is costly and labour-intensive, 
whereas pooled screens are both cost-effective and easy to perform as neither 
specialized equipment nor many personnel is needed to carry out the analysis. 
However, they can only measure the cell death, proliferation phenotypes, etc. In 
conclusion, an optimal functional genomics screen would be the one approaching 
maximum positive gene hits. To achieve such quality, functional genomics 
reagents have been continuously improved by researchers [16]. In this regard, 
recently modified CRISPR algorithms and genomic libraries provide optimal 
results with higher identification of positive gene hits as compared to previous 
versions [17].

1.1.6  Genomics’ Impact on Cancer Research

Application of genetics and genomics in cancer research was started with the dis-
covery of point mutation in the HRAS gene leading to glycine placement instead of 
valine at codon 12 [18, 19]. Afterward, mutations were identified in other genes of 
RAS family including KRAS and NRAS [20, 21]. Proteins encoded by RAS family 
are involved in signal transduction pathways, thus regulating cell proliferation and 
survival which make the respective mutated genes the potential target for anticancer 
therapeutics [22]. Disease management strategies for colon and lung cancer patients 
are currently focused on testing KRAS mutations before starting epidermal growth 

1 Overview of Cancer Genomics, Organization, and Variations in the Human Genome
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factor receptor (EGFR) targeted treatments. This is due to the fact that these mutated 
genes contribute to resistance against EGFR therapies [23]. Likewise, BRAF muta-
tions are found in malignant melanomas and colorectal, gall bladder, and thyroid 
cancers. BRAF encodes serine threonine kinase which is the central enzyme in 
MAPK signaling pathway [24]. In conclusion, advanced sequencing techniques like 
targeted PCR-based sequencing, etc. have expanded the categories of mutated genes 
in several types of tumors. Once, genomic data regarding cancer drivers is obtained, 
further validation through experimental demonstration is needed to understand the 
mechanism of action and translation of results for clinical practice [3].

1.1.7  Organization of Human Genome

Application of both visual and molecular technologies has enabled the researchers 
to explore the entire human genome in a folded state. It has been revealed that 
genomic material spanning approximately 2 meters of length is folded and placed 
with nucleus having space within micrometer scale. This compactly organized 
genome is comprised of 46 chromosomes numbered from 1 to 22 somatic pairs 
based on their size and another pair which determines the sex of the individual. 
Chromatin is the state in which genomic DNA exists physiologically. Several his-
tone and nonhistone proteins are attached to DNA which is further folded into com-
pact form [25].

1.1.8  Genome in a 3-D Nucleus

Nucleus is a double-membranous organelle which encloses the genome and sepa-
rates the transcription and translation machineries. Various nuclear substructures 
are involved in the organization of genome which include nuclear envelop (NE) and 
nuclear lamina. Several transmembrane proteins populate the inner and outer 
nuclear membranes of nuclear envelope [26]. These proteins promote the produc-
tion of nuclear lamina through interaction with lamin proteins. Chromatin remains 
associated with nuclear lamina through specific domains called lamin-associated 
domains (LADs) [27].

Similarly, another nuclear substructure regulating genome organization is the 
nuclear pore complex (NPC). It regulates the transport of several molecules between 
the nucleus and cytoplasm [28]. These perforations exhibit variation in size, i.e., 
range from approximately 60 million to 100 million Da [25]. Nucleoli are the struc-
tures which play their role in organizing chromatin within nuclear space. These are 
involved in rRNA synthesis and are found in proximity to rRNA genes at different 
chromosomes [29]. In addition to aforementioned structures, there exist several 
other substructures which are associated with chromosome organization within 
nucleus.

M. Yamin et al.
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1.1.9  Genes in the Human Genome

Human Genome Project (HGP) has provided valuable information regarding the 
distribution of genes, sequence homology, and the prevalence of noncoding genes. 
It has been reported that human genome is comprised of approximately 20,000–
25,000 genes [30]. Novel genes have been annotated by using homology analysis 
and gene prediction tools of bioinformatics. The data generated from these methods 
is then made available to researchers through various genome browsers [31, 32] 
This data has revealed that proteome diversity is caused by alternative splicing 
which exhibits frequency range from 35% to 60% per single gene [33]. Despite the 
technological advancements, accuracy in prediction of genes, their structures, and 
alternative splices have not been achieved which inhibits the validation of available 
genomic data. However, this issue can be resolved by verifying this data through 
direct experimentation [34].

In addition, a number of noncoding genes have also been reported which produce 
RNA transcripts with no known function [35]. It is proposed that these noncoding 
RNAs are involved in regulatory mechanisms such as the regulatory role of anti-
sense transcripts which has been reported for several human genes [36]. MicroRNAs 
belong to the class of noncoding RNA which were first discovered in animals [37]. 
More than 800 microRNA genes with unknown function have been found in human 
genome. Recently, research is underway to discover the biological functions of 
these genes.

1.1.10  Genes’ Distribution

Efforts to determine the distribution of genes within DNA have also revealed some 
interesting facts. These include the presence of “deserts,” i.e., regions devoid of 
genes usually spanning up to 3Mb [38]. Presence of these regions have not been 
justified yet, but conserved patterns in the “deserts” have suggested some functions 
such as the role of enhancers [39]. Likewise, the status of gene clustering which was 
previously considered due to evolutionary duplication has now been changed to 
some kind of coordination like same enhancer region or chromatin conformation, 
etc. [40]. It has been found that 45% of human DNA is comprised of repetitive 
sequences separated by non-repetitive sequences. Identification of human genes in 
multiple of four had suggested that whole genome is derived through quadruplicat-
ing of a small ancestral genome. However, complete sequencing of human genome 
has demonstrated the presence of copy number polymorphisms among different 
individuals [41].

1.1.11  Genetic Variation in the Human Genome

The project named as “The Human Haplotype Map” highlights significant contribu-
tions of HGP toward understanding genetics. This project aims at the identification 

1 Overview of Cancer Genomics, Organization, and Variations in the Human Genome
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of single-nucleotide polymorphisms (SNPs) in 270 ethnically diverse individuals 
[42]. These SNPs are categorized as haplotypes which can provide the foundation 
for mapping of phenotypic and genotypic variations. However, capacity of haplo-
types to accurately identify the variations is not found yet [43]. One of the founding 
principles of HapMAp project was to successfully perform analysis of human 
genetic disorders. Further development in this project may eventually introduce the 
novel version of genetic variations in humans. This would ultimately improve the 
quality of both epidemiological and clinical research and translation of their out-
comes into personalized medicine [34].

1.1.12  Genetic Variation and Reference Cancer Genome

Complete profiling of tumor genome is necessary for the respective physician to 
choose an accurate treatment plan for the patient. Reference for all somatic muta-
tions in all types of cancers has become accessible by discoveries of several muta-
tions including BRAF mutations in melanoma [44], PI3KCA mutations [45] in 
breast and colon cancers, IDH1 mutations [46] in glioblastoma (GBM), etc. These 
initial findings have led to the characterization of various types and sub-types of 
cancers. International Cancer Genome Consortium and (ICGC) and Cancer Genome 
Atlas (TCGA) are the major contributors to revolutionize the cancer genomics. 
Although Cancer Genome Atlas is still under development due to certain obstacles 
in acquisition, generation, and analyses of genomic data, however, it is expected that 
all oncogenes along with patterns of somatic mutations for all cancer types will 
soon be compiled [3]. Complete sequencing (high coverage) of cancer genomes 
would lead to discovery of novel mutations, e.g., those found in neuroblastoma 
(ALK mutation) [47], prostate cancer (NSLC gene fusion) [48], etc.

1.1.13  Reasoning and Explaining the Cancer Genome

Genomic data available from aforementioned programs have clearly demonstrated 
that mutations can be functionally categorized into two types which include onco-
genic aberrations known as drivers and nonparticipant mutations which are called 
passengers as they do not exert any oncogenic effect. These two types need to be 
differentiated for a better understanding of a cancer genome. Bioinformatics plays 
significant role in this regard by providing computational tools to analyze complex 
data from cancer genomes. However, to perform such integrated analysis is not an 
easy task because it demands multidisciplinary approach and background knowl-
edge of mathematics, statistics, bioinformatics, and biology which is not usually 
feasible for researchers. Additionally, verification through experimentation is also 
required to distinguish the passengers from driver mutations. Such experiments are 
performed by experimental biologists who make use of genomic data from cancer 
genomes. In conclusion, only availability of complex genomic data is not a major 
accomplishment, but it further needs to be explained so its outcomes could be used 
directly in clinical practice [3].
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1.1.14  Assigning Functions to Genetic Mutations

Experimental proofs are provided in order to verify the significance of a potential 
mutation in onset, maintenance, and progression of cancer. A single functional 
assay either in vivo or in vitro cannot verify the cancer-related activity but needs 
support from multiple functional assay systems which strengthen the claim of the 
respective gene mutation. In vivo assays have the advantage of being more predic-
tive as compared to in vitro counterparts; however these are mostly laborious and 
costly. In contrast, in vitro assays can deal with hundreds to thousands of genes at a 
time within standardized system. However, availability of both reagents and techni-
cal expertise are the main obstacles to investigate the cancer-related activities of a 
candidate gene. Specific model systems are needed to analyze relevance of a muta-
tion with cancer. Such as, EGFRvIII mutations are seen in GBM tumors in the 
absence of p53 mutations. Therefore, the model system for functional validation of 
EGFRvIII should be devoid of p53 mutation [49]. Both genetic context and micro-
environment need to be considered while investigating the therapeutic targets for 
progressing tumors. Regarding this aspect of cancer genomics, it is expected that 
epidemiological and clinical studies for various types of cancer among diverse 
demographic regions would provide insight into both cellular and genetic contexts 
of each mutated gene [3].

1.1.15  Translating Cancer Research into Clinical Practice

Human relevance is an essential requirement to evaluate any mutation for its poten-
tial as a disease biomarker or target for therapeutics. A criterion for a true human 
cancer gene is that any mutation deregulates the proteins encoded by it. There is still 
potential in identifying genes which exhibit alterations in several types of tumors 
from a significant part of a population until the cancer genomes are not fully satu-
rated. The underlying mechanisms for these alterations include inactivation, dele-
tion, or epigenetic changes which result in gene silencing. Furthermore, large 
independent cohorts can be screened for prevalence of DNA and protein deregula-
tion in specific types of tumors. In conclusion, integration of genomic, experimen-
tal, and epidemiological data will not only relate the mutations in oncogenes with 
cancer progression but also provide the clues for therapeutic intervention for clini-
cians [3].

1.2  History of Sequencing

Genome sequencing is, basically, reading an entire genome of an organism or just 
focusing on sequencing some very specific areas of DNA or RNA. Almost four 
decades ago, sequencing was introduced to various areas of biological sciences 
which revolutionized multiple technological advancements, and its applications 
aim to decrease the cost and time for the biological sample sequencing analysis 
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[50]. Frederick Sanger, in 1988, introduced sequencing of insulin as biological 
macromolecule which highlighted the importance of sequencing technique for bet-
ter understanding of molecules, which opened the doors for several opportunities 
in medical and biological sciences [51, 52]. Over the past two decades, RNA 
sequencing brought special consideration to appreciate the genomic state dynam-
ics for both qualitative and quantitative analysis of RNA. Sequencing methods of 
RNA transcriptome include particularly coding and non-coding regions of RNA 
transcriptome especially small RNA (sRNA) species, as well as microRNAs, pro-
moter- and terminator-related RNAs [53].

1.2.1  DNA Sequencing

The first DNA sequencing was conducted in the 1960s by Kenneth Murray; he 
developed a two-dimensional analysis for fractioned oligodeoxyribonucleotides. 
The earlier limitation was to obtain a sequence of large molecules, and DNA being 
a large molecule was difficult to sequence by Sanger’s method. Therefore, the utili-
zation of single-stranded bacteriophage  – фX174  – was the only option for the 
researchers to sequence, as it’s size was 5000 nucleotides, which was also quite 
large for analysis. On the other hand, the absence of degradative enzymes was 
another obstacle [52].

1.2.2  Principal Mechanism of DNA Sequencing

DNA sequencing is a complex topic. However, once the basics of conventional 
DNA sequencing, especially Sanger sequencing, are understood, complex processes 
such as next-generation sequencing can be realized (Fig. 1.1). Molecular biology 
emphasizes greatly on the importance of Sanger sequencing for being economical 
and effortless to carry out, in almost any laboratory setup. The main mechanism of 
sequencing begins with the annealing step in which double-stranded DNA is heated 
till separation and kept unwind. The insertion of short chemically manufactured 
DNA sequence known as “primer” facilitates the beginning of the reaction, the 
sequence of the aforementioned being already known. These primers are corre-
sponding to complementary strand regions, which are attachment sites for DNA 
polymerase enzyme to carry out DNA synthesis using dNTPs (deoxyribonucleotide 
triphosphates). The dNTPs are essentially single DNA bases (A, T, C, G) that the 
polymerase can use for chain elongation by forming a complementary DNA strand. 
Once the ddNTPs (dideoxyribonucleotide triphosphates) are incorporated in the 
mixture, which are usually chemically modified sequences, the reaction stops. After 
the termination of synthesis step, single-strand nucleotide sequence determination 
is carried out using high-resolution electrophoresis gel equipped with capillary 
channels. Four color-separated bands are generated by laser excitation of fluorescent- 
tagged fragments in distinct spectra, which is readable using Sanger’s method. 
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There are various software working to distinguish errors in reading of sequences for 
assigning each base in form of chromatogram peaks [54].

1.2.3  Classification Among DNA Sequencing Technologies

To give more clarity toward global classification of DNA sequencing, it is divided 
into three main types such as second-generation, massively parallel sequencing of 
clones, adding value to increase the speed, and decreasing the costs of routine 
sequencing for the biomedical field [55].

Fig. 1.1 Schematic overview of DNA sequencing (Sanger’s method)
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1.2.3.1  Reversed Termination
This method resembles Sanger’s method in terms of synthesis manner, but here 
especially fluorescent-labeled terminator nucleotides are used for chain termina-
tion, simultaneously, and then the whole reaction is reversed [56].

1.2.3.2  Pyrosequencing
The working principle of pyrosequencing is based on sequencing-by-synthesis 
mechanism; however in this method, we don’t measure the fluorescence of specific 
nucleotides instead the counting is made by incorporation of nucleotides. This tech-
nology was also supported for discrete reaction form (Qiagen) before a massively 
parallelized format was utilized by Roche/454. Nowadays both programs support 
the combination: the sequencer FLX and the GS junior, which carry out low mea-
surements [56].

1.2.3.3  Second-Generation Sequencing
Parallel with the sequencing techniques developments, another methodology was 
introduced for DNA sequencing which, instead of using Fluorescent-tagged oligo-
nucleotide or dNTP sequences, employs luminescence for the measurement of 
pyrophosphate bridge synthesis. The principal mechanism involves two main 
enzymes that carry out this process: first, the ATP sulfurylase which change pyro-
phosphate into ATP, and, later on, it is utilized as a substrate by luciferase enzyme 
to produce luminescence. Thus, the emission of light corresponds to the magnitude 
of multiple pyrophosphates produced, almost >106 reads/array in the reaction 
referred to as “cyclic-array method.” This reaction is advantageous as it proceeds 
using natural dNTPs; the measurements are conducted in real time, making it more 
practical and cost-effective [54, 57].

1.2.4  Applications of Sequencing DNA

DNA sequencing has a wide range of applications, popular over the past few years 
in an application known as “de novo sequencing,” which refers to the complete 
sequencing of any organism from the beginning. After Human Genome Project 
(HGP), genome resequencing is another application in which coexisting sequence 
data is used for comparison of the same species, to determine changes due to envi-
ronmental stimuli by making gene and physical maps especially. Gene expression 
analysis is also an important application which is facilitated by. Noninvasive prena-
tal testing (NIPT) is the most unexpected field of DNA sequencing which has a 
great impact on human life, that even simple counting of DNA fragment released in 
maternal circulation by the fetus can be helpful to detect chromosomal abnormali-
ties in pregnancy [50]. Next-generation sequencing (NGS) has also gained promis-
ing attention in recent years with respect to its application in many fields such as 
forensic investigations like in genetic framework, autosomes, mitochondrial, and 
sex chromosome. Moreover, other applications include construction of DNA data-
base, ancestral studies and phenotypic interpretation, monozygotic twin studies, 
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body fluid and species classification, and forensic animal, plant, and microbiologi-
cal analyses [58].

1.3  Biomarkers

National Cancer Institute has defined; a biomarker as “a biological molecule found 
in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, 
or of a condition or disease.” A biomarker can be used to monitor body’s response 
to treatment against specific illness. Therefore, it is also known as a signature mol-
ecule or maker. The term “biomarker” is a combination of “biological marker,” 
which denotes a large subclass of clinical signs. National Institutes of Health 
Biomarkers also described a biomarker as “a characteristic that is objectively mea-
sured and evaluated as a hallmark of pathogenic techniques, regular organic 
approaches, or pharmacologic responses to a healing intervention” in 1998. Joint 
mission of International Program on Chemical Safety, which was led by World 
Health Organization (WHO) and coordinated by International Labor Organization 
and United Nations, has described a biomarker as “any substance, shape, or process 
that can be measured inside the body or its range and have an impact on or predict 
the incidence of final results or disease.” On the validity of biomarkers in surround-
ings hazard assessment, according to the WHO report the biomarker’s definition 
includes “nearly any size reflecting an interplay between an organic system and a 
potential chance, which may be chemical, physical, or organic. The measured reac-
tion can be useful and physiological, biochemical on the cell stage, or molecular 
interaction.” Biomarkers are incredibly newer in medical studies especially 
laboratory- oriented biomarkers. The bone of contention is to determine the relation-
ship between any given biomarker and applicable medical outcomes [59]. 
Measurements of metabolites in bloodstream, urine, blood cells, expression of indi-
vidual genes, and expression of collections of genes can be encompassed within a 
biomarker. It is from nearly 50 genes out of 5000 genes or greater [60].

1.3.1  Classification

Classification of the biomarkers is based on multiple factors but most importantly 
on their usage in clinical studies or endpoints, for example, as (a) diagnostic bio-
marker, (b) prognostic biomarker, (c) pharmacological biomarker, and (d) surrogate 
biomarker. In this way, the whole class of biomarkers can be divided into four major 
subclasses: detective, diagnostic, prognostic, and predictive biomarkers [61]. 
Another classification of biomarkers is based on their utility which includes disor-
der burden biomarkers and healing efficacy biomarkers. Additionally, they can also 
be categorized according to their application and can be divided into diagnostic 
biomarkers, disease-stage biomarkers, disease-analysis biomarkers, and tracking 
the clinical response to therapy. A comparatively new category of biomarkers is 
their usage or selection at some point of early drug development, e.g., certain 
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pharmacological reaction, and in dose optimization studies, pharmacodynamic bio-
markers are of special interest [62].

1.3.1.1  ROC (Receiver Operating Characteristic) Curve
Relationship between sensitivity and specificity can be represented on a graph, and 
the curve obtained is cast-off to evaluate the efficiency of a disease or a tumor 
marker at the various given endpoints. The graph which gives the maximum area 
under the curve is known as an ideal graph.

1.3.1.2  Screening/Diagnostic Biomarker
Diagnostic markers are used to diagnose or to identify specific disease in a specific 
individual. Screening biomarkers have high sensitivity/specificity to diagnose a dis-
ease, e.g., if Bence Jones protein is present in urine, then it is a diagnostic indicator 
of multiple myeloma.

1.3.1.3  Prognostic Biomarker
After the disease status is established, prognostic biomarkers are used to predict the 
progression of the illness. These biomarkers can also be used to predict the disease’s 
recurrence and optimization of clinical therapy. The level of human chorionic 
gonadotropin and alpha-fetoprotein can be distinguished with survival rates in tes-
ticular teratoma.

1.3.1.4  Predictive/Stratification Biomarker
Before starting the treatment, response to a drug can be predicted by stratification 
marker. It classifies the individuals in responders or nonresponders to a particular 
treatment. Array-type experiments mainly rise such markers, and it can also help to 
predict a clinical outcome by predictive biomarker using molecular characteristics 
of patient’s sickness.

1.3.2  Significance/Specification of Biomarkers

Biomarkers have a significant role in:

 – Demonstrating the dose-response and progressive relationships between bio-
marker changes, onset of disease, sternness of disease, and corresponding pro-
gression of the disease.

 – Identifying the relationship between the extent of biomarker changes and bio-
logical outcome; quantitative changes in biomarkers indicate reversibility of the 
disease.

 – Providing passable tissue specificity and ensuring the biomarker not to reflect 
injury to other organs or stimulation of physiological responses in the target 
organ not related to disease (Table 1.1).

 – Defining biochemical, molecular, genetic, immunological, and physiological 
responses which link the biomarker to the organ or mechanism of toxicity.
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 – Providing experimental evidence to connect the biomarker’s molecular mecha-
nism response with a biological outcome

1.3.3  Development of Biomarker

Biomarker improvement involves a couple of tactics, linking initial discovery in 
fundamental studies, validation, and scientific implementation. The closing goal of 
the procedures is to set up clinically accessible biomarker tests with clinical soft-
ware, informing scientific decision-making to enhance patient outcomes. However, 
there are many hurdles evidenced through the low expected compensation (0.1%) of 
a hit for scientific translation of biomarkers [23].

1.3.4  Identification of Biomarker

Potential biomarkers possibly recognized through more than one procedure. The 
traditional method was about three factors: candidate biomarker, tumor’s biology 
and tumor’s surrounding environment, and metabolism of the pharmaceutical agent. 
In the recent era of information and latest techniques, biomarkers are regularly 
being identified by “discovery” method, which includes different strategies, e.g., the 
high-throughput sequencing, gene expression arrays, and mass spectroscopy, to 
become aware of individual biomarkers that range among cohorts. The use of these 
facts generating techniques approach to particular interest should be paid toward 
layout and statistics evaluation, on the way to limit the risk of figuring out institu-
tions which might be subsequently decided as false positives. The key aspects of 
improvement in biomarkers to be discussed in detail include cautious examination 
layout to avoid bias, complete analysis and validation, and accurate reporting of the 
outcomes [63].

Table 1.1 Specific biomarkers against specific disease condition

Usage Specificity
For estimation of cancer development risk Germline mutation_ BRCA1
Screening of the disease Prostate-specific antigen (PSA)
Diagnosis Immunohistochemistry for determination of 

tissue of origin
Determination of course of illness 1. Recurrence score of 21 genes (breast cancer)
To predict the response of therapy 2. KRAS mutation, anti-EGFR antibody

3. HER2 expression, anti-Her2 therapy
4. Estrogen receptor expression

Monitoring the recurrence of a disease 1. Colorectal cancer (CEA mutation)

2. AFP, LDH, βHCG
Monitoring or progression response in 
metastatic disease

CEA and CA15-3
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1.3.5  Techniques for Biomarker Discovery

Discovery of novel cancer biomarkers is totally renewed with the invention of mass 
spectrometry, proteomics, DNA arrays, and knowledge of the human genome along 
with creation of technology. Additionally, modern technologies also offer different 
approaches to identify new, unpaired cancer biomarkers by using affordable hypoth-
eses and novel analytical techniques. Regardless of intervention of modern tech-
niques, some of the barriers in discovering single, novel cancer biomarkers are still 
there. Those barriers are related to study design biases, collecting and storing of 
artifact samples. There are some pieces of evidence that these new techniques often 
fail to perceive cancer biomarkers and display a bias toward the identification of 
molecules. However, capacity of technological advances can revolutionize cancer 
biomarker discovery [64].

1.3.5.1  Profiling of Gene Expression
In the study of gene expression, the genomic microarrays are extensively used. It 
has witnessed that utility inside gene expression profiling has incredibly increased 
over past decades. And this increase has helped in subclassification of cancer, vision 
of cancer pathogenesis, and discovery of huge range of cancer biomarkers for diag-
nostic purpose.

1.3.5.2  Proteomic Profiling Using Mass Spectrometry
A recent approach which is used to discover cancer biomarkers is proteomic sample 
profiling. Proteomic approach appears much promising in diagnosing tumor or sub-
classification of tumor. Mass-spectrometry techniques based on proteomic evalua-
tion and along with the usage of advanced technology, brings higher mass accuracy, 
detection capability, and shorter biking instances, and allowing extended output and 
greater-dependable facts. Regardless of accuracy of this method, there are still some 
limitations. These limitations consist of artifact-related biases (the scientific pattern 
collection and storage), qualitative nature of mass spectrometers, inability to pick 
out most cautiously mounted cancer biomarkers and identifying molecules present 
in serum. Another obstacle concerns feasible bioinformatic artifacts [59]. No prod-
uct has reached to the medical institution, and also there is no impartial validation 
research posted despite a considerable time-lapse in the first record of the technol-
ogy. Serum proteomic profiling for medical use is no longer recommended by 
experts.

1.3.5.3  Peptidomics
The new focus for discovering the novel cancer biomarkers is peptidomics profiling. 
In this technique, the low molecular weight serum proteome is used to identify the 
biomarker. The peptides are being cleaved in coagulation to plasma, including pro-
tease inhibition, inflammatory response, or immune modulation. Most of the above-
mentioned limitations related to mass spectrometry and protein profiling 
technologies are also the key points to peptidomics [59].
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1.3.6  Biomarker Family

Biomarker family classification is based on “cancer biomarker’s own family”; 
according to this approach, if a member of a protein family is already a biomarker, 
then other participants of that own family may be the desirable biomarkers (i.e., 
cancer). Prostate-specific antigen (PSA) is a member of the human tissue protein 
named kallikrein, and kallikreins are also enzymes which are secreted with trypsin- 
like/chymotrypsin-like serine proteases. This enzyme (prostate-specific antigen) 
includes 15 genes which are clustered in tandem on chromosome 19q13.4. Prostate- 
specific antigens (KLK3, KLK2) are considered clinically critical biomarkers in 
prostate cancer. Human kallikrein own family participants are also considered in 
carcinogenesis and utilized for investigation as a biomarker for analysis, e.g., KLK6 
is considered as a biomarker for ovarian cancer [65].

As secreted proteins have the very best chance to come into the move, so the 
candidate serological marker should be a secreted protein. Also, the examination of 
the tumor-surrounding environment helps in identification of candidate molecules 
in overlapping researches. There are many evidences regarding the malignancy of 
the cancerous cells that is dependent on the tumor cells as well as the microenviron-
ment (stroma, endothelial cells, immune and inflammatory cells) around the tumor. 
The most prominent cancer biomarkers, i.e., CEA, CA125, and HER2, are exten-
sively involved in cancer identification and analysis of membrane-bound proteins in 
nature and can be released in the blood circulation [66]. The secreted proteins pres-
ent in tissues or other biological fluids do not suggest that the proteins might be 
detectable within the sera of most cancers’ patients. Serum-based diagnostic tests 
mostly rely upon the stableness, clearance, and affiliation of targeted protein with 
other sera proteins and the volume of posttranslational modifications [64].

1.3.7  Other Strategies

There is a wide variety of different techniques present to detect cancer biomarkers. 
The most important method is based on protein arrays. A tumor-associated antigen 
is thought as to be a biosensor for developing and progression of cancers because 
these tumors usually elicit specific immune response in the host system. Furthermore, 
most hematological cancers arise from the chromosomal translocations and result-
ing mutations which underlie the solid epithelial tumors. After chromosomal trans-
location, the gene fusions in most cancers (e.g., prostate) can be diagnosed by gene 
expression level/set. Another important technique is based on mass- spectrometry 
imaging of frozen tissue, and it has shown some of its ability to screen candidate 
biomarkers. There are some significant efforts to unlock the serum proteome using 
fractionation in order to decrease and simplify the dynamic range of molecules 
present in sera. Besides proteomic profiling of serum, attempts have been made to 
decipher the serum proteome. Animal models related to human tumor xenograft 
experiments are showing strong evidence for cancer-biomarker discovery.
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1.3.8  Steps Involved in Evaluating and Reporting Biomarkers

 1. The first step involved in the process of evaluation and reporting the biomarkers 
is preclinical research. A hypothesis is generated for scientific test by comparing 
the cancerous and non-cancerous cells or specimens to detect most cancers. 
Different strategies are involved in this process, but most commonly used tech-
niques are gene expression profiling and mass spectrometry. Other approaches 
can be used to evaluate them.

 2. The clinical assay is developed to discriminate the healthy and cancerous speci-
mens to involve in this phase. In this segment, the patients assessed have already 
set up the disease, but this assay is not used to detect the disease at this stage.

 3. The evidences of the biomarker to stumble on preclinical disorder are made and 
proved by collecting and sorting the samples from healthy individuals, but the 
improvement of malignancy is monitored at this stage.

 4. By using the abovementioned assay and diagnostic approaches, the individuals 
are screened in this phase; this can help to gauge the stage, nature, and progres-
sion of the sickness.

 5. A final step of the process and the main objective of this phase is to determine 
whether the screening has reduced the burden of sickness at a given time in a 
given population.

1.3.9  Outlook

Biomarkers not only play an important role in the development of drug but also play 
very critical part in biomedical research enterprise. Understanding the relationship 
between potential biomarker and clinical consequences is important to modify the 
existing remedies but will also help to increase the spectrum of therapies for almost 
all diseases. Biomarkers could best function as authentic replacements for medical 
relevant endpoints if we absolutely understood the normal physiology of an organic 
procedure, pathophysiology of that method within disorder state, and consequences 
of an intervention – pharmacological, tool, or in any other case – on these proce-
dures. Studies that are carried out for evaluation of correlation fulfillment of bio-
markers usually need to have minimum retroactive scientific consequences as 
closing measures. Without continual reassessment of connection between endpoints 
of surrogate and actual scientific, we again have chance to approve complete instruc-
tions regarding medication.

1.4  Microarray Technology

Microarray is a laboratory technique to detect the level of expression of thousands 
of genes at a time by using microscopic spot of DNA being attached on a solid sur-
face. These DNA spots contain a certain amount of specific DNA sequence which 
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acts as probes to detect the expression of certain genes. These probes are expressed 
by group of proteins and also called mRNA (messenger RNA) transcripts. The con-
ventional steps of microarray technique involved (1) hybridization of mRNA with 
DNA template from tissue of origin, (2) multiple samples of DNA assembled for an 
array, and (3) certain quantity of mRNA on each site of array that indicates the 
degree of expression different genes, and the range can be run thousand times addi-
tionally. All of this information is then amassed which help in generating a profile 
for the level of expression of profile in a mobile device [67].

1.4.1  Technique Involved in Microarray

In microarray technique known samples are combined with unknown DNA sam-
ples using base paring policy. This test uses commonplace assay systems which 
include microplates or blotting membranes, and the diameter of the spot of a sam-
ple is even less than 200 μm, and it includes hundreds of spots on the blotting 
membrane or microplates. These samples are also known as probes and have 
known sequences. These samples can be immobilized on a nylon membrane, sili-
con chip, or on a microscope glass slide. These sample spots can be oligonucle-
otides, cDNA, or DNA, and complementary binding of an unknown sequence is 
determined by measuring the level of gene expression or by gene discovery. This 
test provides enormous information about the real-time genes by using unpaired 
DNA chip.

1.4.2  Usage of Microarrays

Usage of microarray depends upon the immobilized pattern used and the kind of 
information drew. The microarray experiments can be divided into three main cat-
egories and those are:

 1. Expression microarray: In this experiment, the cDNA molecule is derived from 
the known gene’s mRNA, and sample is immobilized on an array. Genes present 
in sample are taken from both diseased and healthy tissues. If the gene is overly 
expressed in the diseased tissues, then the high-intensity spots are recorded in 
diseased condition. The expression level of a particular gene in a sample then 
compared to the gene responsible for the specific disease.

 2. Comparative genomic hybridization: This technique is used to identify the 
increase or decrease in chromosomal fragments of sheltering genes involved in a 
specific disease.

 3. Mutation analysis: In this technique, the gDNA is used, but genes may vary from 
each other by single nucleotide polymorphisms (SNPs).
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1.4.3  DNA Microarray

DNA microarray involves the hybridization of cDNA to complementary sequences. 
In this technique, the hybridization of the cDNA is reverse transcribed with a 
designed complementary DNA probe (known sequence). This probe is mounted on 
a slide or on an array. So, the DNA microarray basically consists of a library (syn-
thetic nucleic acid probe); these probes are immobilized on a solid surface or matrix. 
These kinds of microarrays are known as Southern blotting in which the fragments 
of DNA are attached to the stable matrix or a substrate and are probed by known 
sequence of specific gene (Fig. 1.2).

In 1995 the primary DNA microarrays were capable of studying lots of sequences 
constructed by recognizing the known sequences or attaching the synthetic probes 
on a stable substrate at a specific position. These stable substrates were normally a 
glass chip (see Fig. 1.2). There are several other ways to produce array, and, in some 
strategies, a robot is used to print the known-sequenced probes which were mounted 
to the needles along with chemical matrix. Another technique involved the image- 
activated interaction and shield to synthesize probes by producing one nucleotide at 
a time on a surface in multiple hits resulting in multiple probes with unique sequence 
at a unique place [67].

1.4.4  DNA Microarray Protocol

The basic protocol involved in a DNA microarray is:

 1. Isolation and purification of mRNA. As gene expression level is compared in the 
DNA microarray, so experiment sample is compared with the control sample 

Fig. 1.2 DNA microarray technique, before and after hybridization of sample
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(healthy tissues) expression level of a specific gene in a disease condition vs 
healthy condition. The mRNA is isolated and purified from the sample of 
interest.

 2. Reverse transcription and labeling of mRNA. Firstly, the samples are categorized 
to detect the transcript by hybridization. The purified sample of mRNA might be 
in less quantity, so the amplification of the mRNA is recommended. After ampli-
fication, the reverse transcription (RT) and complementary DNA (cDNA) are 
labeled with a fluorescent dye. This dye linked to the DNA nucleotide generates 
the fluorescent cDNA strand. Both diseased and healthy samples are labeled with 
different dyes, and they co-hybridize on microarray, equally. In some protocols, 
the cDNA is not labeled, but in the second step of amplification, the cDNA pro-
duced from reverse transcription serves as template and gives rise to cRNA 
strand.

 3. Hybridization of the labeled target. Fluorescent-labeled cDNA strands are 
mounted on a DNA microarray, and these labeled cDNA strands then hybridize 
with the cDNA probes having known sequence. After hybridization, several 
washes are required to remove the non-specific bindings onto the surface.

 4. Scanning of the microarray to quantify the signal strength. Fluorescent labels 
present on cDNA are excited by using a laser, and a signal is generated from 
labeled sequences. The strength of the signal after binding the sample with the 
probe correlates to the stage of expression of different genes in diseased tissues. 
After detecting the signals, these are quantified to get the virtual picture of DNA 
microarray. Figure 1.3 is showing the schematic explanation of the DNA micro-
array procedure.

1.4.5  Applications of DNA Microarray

1.4.5.1  Gene Expression Analysis
Gene expression analysis is the most common use of DNA microarray; expression 
level of a certain gene can be measured by using this technique. The RNA is 
extracted and purified from the tissues/cells of interest. This purified RNA can be 
labeled directly or can be converted to complementary DNA (cDNA) or T7RNA 
promoter and which transformed into cRNA. There are several methods in place to 
label the cRNA or cDNA such as biotin labeling. After labeling the cRNA or cDNA, 
the technique is selected for the amplification of generated signals. The commonly 
used strategies are incorporation of fluorescently labeled nucleotide or biotin- 
labeled nucleotide at the synthesis step of cRNA or cDNA. Microarray hybridiza-
tion takes place on the labeled cRNA or cDNA. The array is washed with several 
washings, and the signal detection is made by measuring the fluorescence at the 
given spots. If the samples are labeled with biotin, the array is stained by hybridiz-
ing with streptavidin [68]. A laser is used to amplify the fluorescent signals, and the 
strength of signals is measured by using a scanning confocal microscopy technique. 
The strength or depth of a signal obtained gives the measurement of the expression 
stage of a corresponding gene(s).
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1.4.5.2  Transcription Factor Binding Analysis
DNA microarrays can also be used to locate the binding sites of transcription factor/
element along with chromatin immune-precipitation. The transcription factors (TF) 
of the cell of interest are purified by using affinity method after labeling the tran-
scription factors (TF) with an antibody or a peptide which can docile with the affin-
ity chromatography, i.e., FLAG-, HIS-, myc-, or HA-tag. The DNA released from 
the transcription factors (TF) after the purification step is subjected to amplification 
and categorization followed by hybridization to the array. This procedure or method 
is termed as “ChIP-chip” – chromatin immunoprecipitation on a “chip.” The tran-
scription factors (TF) usually bind a bit away from the genes subjected to modify, 
so the array’s layout and the distribution of the length of a fragment are intercon-
nected too [69]. In principle, the array should have the probe which can interrogate 
the area of DNA too to make sure the transcription factors (TF). In microorganism 
like yeast, they have small intergenic regions, so the array of the same length can be 
applied to ChIP-chip. On the other hand, in mammalian system, the intergenic 
regions are fairly large, and transcription factors (TF) generally bind some kilobase 
pair (kbp) away from the gene, so the array should be evenly spaced throughout the 
human or mammalian genome in ChIP-chip [70].

1.4.5.3  Genotyping
In single nucleotide polymorphism (SNP), the microarray is extensively used. There 
are several approaches to decipher SNP, but the most commonly used technique is 
allelic discrimination by hybridizing to the Affymetrix. Restriction enzyme is used 
to fragment the genomic DNA in this technique. After fragmentation, the adaptors 
are ligated for PCR. Under the specific condition of selective amplification <1 kb in 
size, the PCR is accomplished. It helps in reducing the genomic complexity for 
about up to 50×, and the obtained results correspond with the noise of the signal on 

Fig. 1.3 Schematic overview of DNA microarray procedure
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the array. This SNP array is even capable of detecting >1M human single nucleotide 
polymorphism (SNP). Moreover, this technique can also be used to detect the copy 
numbers of a certain gene [59].

1.4.6  Limitations of DNA Microarrays

This technique is very useful in measuring the relative concentrations of DNA or 
RNA sequences present in a sample, but there are some drawbacks too. Firstly, 
DNA microarray provides indirect DNA or RNA concentrations, and the signal 
obtained at a certain point is assumed to be directly proportional to the concentra-
tion of specific single molecule present in a sample solution, but this relationship is 
not always linear. There are very strong chances that the probe may become satu-
rated if the concentration of a specific specie in a solution is high and the equilib-
rium will not support the high concentrations. Secondly, in mammalian genomes, 
the designing of the array with multiple related DNA/RNA sequence for a complex 
mammalian genome is a challenge because the particular sequence may not always 
bind to a similar probe. There are chances that the sequence which is destined to 
detect the gene1 can also detect other related genes, and it will create problem in 
detection of protein family or different splice variants [59].

In addition, the DNA microarray can only detect the sequences which are 
changed by the array. If the sample solution contains more than one species of DNA 
or RNA molecule and there is no complementary sequence on the array, these spe-
cies will not be detected by the array. Additionally, the noncoding RNAs which are 
not expressed cannot be hybridized on array, and in the variable genome including 
bacteria, the array is usually designed using information from the reference or 
model organism. In this way, the array can miss a number of genes present in a 
specific organism of identical species [71].

1.4.7  Future Outlook of DNA Microarrays

The studies of molecular biology were evolved by the improvement of traditional 
technologies. It is not possible to research a wide variety of genes by using tradi-
tional technique, and DNA microarray is the technology that permits researchers to 
analyze as well as deal with those problems that have been marked as untraceable. 
Now expression of many genes can be analyzed in one go speedily and greenway. 
Scientific community has been empowered to recognize basic factors highlighting 
boom, improvement of life and to explore genetic causes of irregularities inside 
functioning of body. DNA microarray has changed unexpectedly the conventional 
style of sequencing, even for every assay which was performed formerly on micro-
arrays. It is very likely that sequencing methods will absolutely change with the 
help of DNA microarray in the coming 5–10 years.

This technology has pushed the practical genomics, the subject which particu-
larly looks into the different roles of a certain gene in cellular processes. It also 
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highlights the genome-wide differential RNA expression levels present in the differ-
ent samples which can help, in particular, in understanding the course of illness, 
progression of a disease, and response to the therapy. The data being produced in 
microarray technique can be used in profiling of gene expression, and stages of 
specific protein expression can also be determined. This technique is equally impor-
tant in detection of up- and downregulated genes in diseased and healthy conditions, 
expression styles of the same protein in different environments, detection of the 
absence and presence of positive stimulus, drug discovery, diagnosing disease, and 
identification of novel gene.

1.5  Tissue Microarrays

Clinical and biomedical research always demands tissue specimens. So, for that 
purpose DNA, RNA, and proteins are the main targets in tissues, enriched with the 
essential information for the improved consideration of disease and its pathological 
stage toward the development of advanced diagnostic biomarkers. However, the tis-
sues of biopsy collection in biobanks are also small and possessing special value 
which normally diminishes with the passage of time. Keeping these limitations in 
mind, with tissue analysis being laborious, expensive, and time-consuming, array- 
based in situ technologies start to develop in 1977 to get high throughput. Tissue 
microarray (TMA) technology comprises the use of hundreds to thousands of tis-
sues arranged systematically and thinly sectioned, which can be analyzed molecu-
larly and functionally on a microscopic slide. The examination of multiple replica 
slides can be done for antibody testing and probing which can facilitate the analysis 
of pathological state of tissues in a single step, thus detecting many biomarkers in 
the repeated segment [72, 73].

1.5.1  Applications of Tissue Microarrays Technology

Tissue microarray (TMA) functions in many fields of biomedical and clinical 
research such as cell line, xenograft tumor, and animal and human tissue-based tis-
sue microarray. It also serves as a diagnostic marker and helps in tumor classifica-
tion. Interpretation of pathological conditions, screening of pathways and molecular 
target-dependent treatment decision-making for drug discovery can also facilitate 
by TMA [74, 75].

1.6  Conclusions

The development of new strategies has always been encouraged for the sake of 
advancement and betterment of patients’ undertreatment. Enhancement in different 
stages of gene sequencing is revolutionized all over in the past few decades by 
economizing experimental animal usage, time, and cost, while more innovations are 
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still required in future [57]. The trials with biomarker studies should be allowed 
with the involvement of the pharmaceuticals industry and governing authorities for 
the improvement of patients’ treatment. On the other hand, the participation of skill-
ful scientists and cooperative work can ease the emergence of biomarker application 
[76]. Being a neutrally conceptual technique, sequencing can determine the differ-
ent nucleic acid in the mixture of DNA and RNA, unless the preparation of solution 
and enzymes are appropriate for the procedure. In contrast with DNA, microarray 
sequencing does not rely on previously added nucleic acid sequences, which are 
also related genes. These are the limitation of DNA microarray by virtue of which 
the reduction in the use of this technique is being observed in comparison with 
sequencing. The cost of sequencing is also decreasing which is also the reason for 
the replacement of DNA microarray to sequencing [67]. It is being considered by 
many researchers that the tissue microarray technique (TMA) is the most tremen-
dous innovation between other histopathology during the past few years. TMA 
analysis technique influentially works as an important key for opening doors among 
lab experiments and hospital settings, becoming a helpful tool for researchers and 
medical students to study diseases. TMA also benefits the study of different proteins 
and gene expression profile for the extensive range of normal, cancerous, and benign 
tissues [77]. Cancer genomics can be analyzed inclusively with the assistance of 
high-throughput implements in the characterization of nucleic acid which would 
well understand the cellular modifications. Moreover, extensive and intense exer-
tions have recognized a novel site to measure translational potential to cancer 
genomics.
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Metabolic Changes and Their 
Characterization

Noor-ul Ain and Hira Gull

2.1  Metabolic Homeostasis

The term homeostasis is described as the sustenance of constant internal environ-
ment in the body, irrespective of any fluctuations in external environmental factors 
or physiological functions. While narrowing down to “metabolic homeostasis,” it 
refers to the maintenance of constant levels of potential energy metabolites mainly 
creatine phosphate (CrP), adenosine triphosphate (ATP), and others, without getting 
affected by changes in workload and associated metabolic flux. As the cellular 
metabolites remain at a steady level, the workload changes will not impact upon 
cellular processes reliant upon those metabolites [1]. The pathway that is primarily 
involved in maintenance of metabolic homeostasis in eukaryotic species is oxidative 
phosphorylation, acting as the controlling element for cellular metabolism and dif-
ferentiation. The level of ATP that is generated via series of electron transfer steps 
remains constant as long as the surrounding conditions are devoid of any unfavor-
able physiological conditions [2]. It must be noted that levels of ATP and ADP are 
directly correlated to each other at any time in the cell. Under stress condition when 
cells are necessitated with increased ATP consumption, there is simultaneous rise in 
the ADP level [3]. This suggests that various mechanisms exist in eukaryotic cells 
to keep the difference in the levels of ATP and ADP to a minimum in order to 
achieve an ongoing steady-state. The rates of ATP synthesis and utilization are bal-
anced by means of feedback regulation mechanisms in vivo.

Various factors including mutated genes or pathological influence can lead to 
disruption of metabolic homeostasis which consequently results in various kinds of 
metabolic disorders, the most notable among which are Type I, Type II, and 
maturity- onset diabetes of the young (MODY) [4]. Researches have introduced 
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number of regulators involved in the maintenance of metabolic homeostasis. Though 
adipocytes have gained negative reputation with rapid increase in obesity since the 
last few decades, these fat cells have been investigated as the critical mediators of 
cell’s metabolism. Besides storing triglycerides, adipocytes are involved in the 
induction of lipolysis by responding to hormonal signals [5]. Immune cells in adi-
pocytes act as the major regulators and maintainers of metabolic homeostasis. 
Hence, any alterations in their composition or functionality can result in metabolic 
dysfunction.

Adipocyte specific hormones, typically termed as adipokines influence various 
body organs and keep metabolism in a steady-state. Multiple adipocyte-secreted 
hormones that have antihyperglycemic effect in the body include leptin, visfatin, 
omentin and adiponectin, retinol-binding protein 4 (RBP4), fibroblast grown factor 
21 (FGF21), and others [6]. Among various adipocyte secretions, three important 
mediators with significant impact upon metabolic homeostasis are believed to be 
leptin, adiponectin, and fatty acids (Fig. 2.1).

Adiponectin usually occur in any of the three structures, i.e., trimer, hexamer, or 
a multimer having 12–18 subunits. Adiponectin has been recognized as a significant 
anti-inflammatory and insulin-sensitizing agent [7]. The decreased level of adipo-
nectin in obese conditions results in subsequent decline in anti-inflammatory sen-
sors, thereby instigating soreness of white adipose tissues (WAT) [8]. Enhancement 
of insulin sensitivity and protection against ectopic lipid accumulation are two of 

Fig. 2.1 Adipocyte secretions serving as important mediators of metabolic homeostasis. Primary 
metabolic functions attributed to prominent adipokines are lipolysis (mediated by leptin), protec-
tion against lipid accumulation and insulin sensitivity (mediated by adiponectin), and stimulation 
of insulin secretion (mediated by NEFA)
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the most notable attributes of adiponectin [9, 10]. Stern and coworkers suggest that 
adiponectin decreases hepatic lipogenesis while increasing beta-oxidation by the 
action of sensory enzyme, AMP protein kinase [11].

Besides adiponectin, another adipokine with profound role in maintaining meta-
bolic homeostasis is leptin whose secretion is modulated by various factors along-
side fat deposit. Leptin exerts its influence upon adipose tissue via peripheral 
nervous system by stimulating sympathetic nerve signals that trigger lipolysis [12] 
and hence does not depend entirely upon autocrine signaling system as observed in 
the case of adiponectin. Meanwhile, adipocyte-secreted fatty acids commonly 
termed as non-esterified fatty acids (NEFA), have long been recognized as a major 
regulator of energy metabolism by performing dual function, i.e., by inducing as 
well as reducing insulin secretion in opposing situations [13]. NEFA was recog-
nized as a stimulator of insulin secretion from beta cells by activating GPR40, i.e., 
G-protein-coupled receptor. This results in increased Ca2+ levels in cytosol, conse-
quently paving way toward insulin exocytosis [14].

Besides these hormonal influences upon metabolic regulation, our body has a 
well-developed and efficient oxygen-sensing mechanism which plays a critical role 
in modulating metabolic homeostasis [15]. Hypoxia (deficiency of oxygen in tis-
sues) that is mediated by hypoxia-inducible factor (HIF) acts as a stimulant for 
enhanced expression of leptin-encoding gene. As a result, produced leptin reaches 
blood-brain barrier, activates its specific receptors in the hypothalamus, and gener-
ates signals to stimulate reduced food intake and increased metabolic rate [16].

It is important to note that unbalanced diet and nutrient overloading can lead to 
irreversible adverse effects upon body’s otherwise properly regulated metabolic 
homeostasis. Metabolic equilibrium is disrupted as a result of excess nutrients in the 
body causing irreversible damages to organelles [17, 18] or downregulation of 
AMP-protein kinase [19]. All of these undesirable changes pave way for metabolic 
disorders. As mitochondria is subjected to excess nutrients, it suffers from a stressed 
condition where mitochondrial potential to generate NAD+ and FAD+ from NADH 
and FADH2 is significantly impaired [20]. Moreover, nutrient overloading can alter 
ATP production rate with altered mitochondrial electrical potential and proton gra-
dient [21]. Besides these, there are several other mitochondrial disruptions which 
lead to reprogramming of bioenergetics pathways thereby inducing metabolic com-
plications [22]. Other than mitochondria, endoplasmic reticulum (ER) has also been 
reported to be affected by increased lipid and glucose levels that gives rise to ER 
stress in pancreatic β-cells and reduces insulin expression in those cells, finally 
resulting in apoptosis [23].

Studies have suggested that metabolic homeostasis is modulated in different 
manner in opposite genders. It has been observed that females exhibit more special-
ized mechanism for glucose homeostasis compared to men, mainly because of the 
involvement of estrogen hormone. Presence of estrogen hormone allows females to 
utilize lipids as an energy source with lesser glucose utilization [24]. Further, two 
most important adipokines involved in metabolic regulation, i.e., adiponectin and 
leptin, have been found in higher concentration in female blood stream compared to 
men [25]. This suggests that in addition to other factors, sex-specific differences 
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need to be considered while analyzing metabolic regulations, functions, and com-
plications in order to introduce better therapeutic options for metabolic dysfunction 
or disruption of metabolic homeostasis [26].

2.2  Glycolysis and Warburg Effect

Mammalian cells acquire energy by means of two metabolic pathways, i.e., anaero-
bic glycolysis and aerobic respiration. Glycolysis or anaerobic fermentation is the 
multistep pathway occurring in cytosol in which glucose is converted into pyruvate 
which is then ultimately reduced to lactate. One glucose molecule yields two ATP 
molecules as a result of glycolysis. Meanwhile, aerobic respiration involves various 
other complicated energy-yielding mechanisms involving Krebs cycle, oxidative 
phosphorylation, and others. Although aerobic respiration yields comparatively 
greater energy, it can occur only in the oxygen-sufficient environment, while lactate 
fermentation is independent of oxygen supply [27]. Thus, the type of energy- 
generating cycle adopted by a cell at a particular time depends upon the level of 
oxygen in the surrounding.

A breakthrough discovery was made in 1922 by Otto Warburg regarding tumor 
cell metabolism where he proposed that cancer cells have a distinct metabolic pat-
tern in which they prefer lactic fermentation over respiration even in the presence of 
oxygen. This phenomenon is termed as aerobic glycolysis or Warburg effect [28]. 
Normal cells generally prefer oxidative phosphorylation in aerobic conditions and 
glycolysis in oxygen-deficient surrounding. Mitochondrial oxidative phosphoryla-
tion results in greater adenosine 5′-triphosphate (ATP) production compared to gly-
colysis due to which former is preferred over the latter in mammals under aerobic 
conditions, commonly known as Pasteur effect. However, malignant cells execute 
glucose fermentation into lactate in the presence of oxygen in order to accompany 
oxidative phosphorylation in meeting energy requirements of uncontrolled cell pro-
liferation [29].

This unique behavior of cancerous cells may arise due to genetic mutations that 
alter receptor-initiated signaling pathways thereby resulting in increased nutrient 
uptake so as to fulfill energy demands of rapid cell growth and proliferation [28]. 
The exact purpose of Warburg effect is debatable as of today because it is believed 
that the energy demands of malignant cells can be sufficiently fulfilled by ATP gen-
erated by oxidative phosphorylation alone, not requiring co-occurrence of glycoly-
sis. Even so, recent studies have concluded that Warburg effect has always been a 
prerequisite for tumor growth [30] and both mitochondrial metabolism and glycoly-
sis need to be targeted in order to control malignant carcinoma [31]. Following 
Warburg’s hypothesis, Herbert Crabtree analyzed the heterogeneity of glycolysis in 
various cancer types. He then suggested that there exists great deal of variations in 
aerobic glycolysis or fermentation undergoing in cancer cells that may be attributed 
to the genetic and environmental factors [32].

One strong proposal regarding the occurrence of Warburg effect and generation 
of tumor is the impairment of mitochondria which results in decreased respiratory 
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rate and enhanced reactive oxygen species (ROS) generation [33]. Oxygen in such 
mutated mitochondria is converted into superoxide O2− (ROS) and hydrogen perox-
ide (H2O2), instead of being reduced to water [34]. These alterations favor aerobic 
glycolysis over normal metabolism. The underlying reason is the induction of intra-
cellular alkalization by superoxide [35] and stimulation of glycolysis-promoting 
enzyme, namely, PFK-1 [36]. Also, hypoxia-inducible factor (HIF-1) seemingly 
plays a crucial role in shifting the trend from oxidative phosphorylation to Warburg 
effect because HIF-1 has been justified both as activator of aerobic glycolysis and 
suppressor of oxidative phosphorylation [37]. HIF-1 plays a significant role in tran-
scribing genes that translate such proteins that promote cancer development, metas-
tasis, resistance to apoptosis, and angiogenesis [38]. Meanwhile, nutrient deprivation 
has also been suggested as an inducer of Warburg effect in order to support cells 
under starvation conditions. Nutrient-limiting conditions encourage cancer cells to 
utilize glycolysis to meet energy demands. This switching toward anaerobic gly-
colysis is facilitated by activation of pyruvate dehydrogenase kinase (PDK) by com-
bined activity of reactive oxygen species (ROS) and AMP-activated protein kinase 
(AMPK) [39].

Researchers have long sought the exact function of Warburg effect; however, 
even after a long period since its proposal, the exact reason as to why tumor cells 
switch from highly efficient mitochondrial metabolism to less efficient anaerobic 
glycolysis is still doubtful. Liberti and Locasale [40] hypothesized several functions 
with regard to Warburg effect. These include rapid ATP generation, promoting flux 
in biosynthetic pathways, establishment of tumor microenvironment, and signal 
transduction via ROS generation and chromatin mediation [40]. Although these 
hypotheses are quite compelling, certain questions arise along with each proposed 
function which reveals that there is still a lot more to go in comprehending the exact 
function of Warburg effect in tumor growth and proliferation.

As Warburg effect is being investigated more deeply, scientists are of the opinion 
that this would lead to major advancements in cancer therapy and treatment by 
focusing more on the metabolic changes in metastatic tissues. In a recent study, 
Faubert and coworkers proposed that AMPK has the potential to act as tumor sup-
pressor by modulating biosynthetic pathways that minimizes the proliferation of 
cancer cells [41]. In normal cells, AMPK works to hinder cell growth in nutrient- 
limiting conditions. Similarly in cancerous cells, the suppression of AMPK during 
carcinogenesis makes tumor cells sensitive to hypoxic and nutrient-deficient envi-
ronment, ultimately pushing them toward apoptosis [42]. Loss of AMPK has been 
observed to increase HIF-1α levels in the absence of hypoxia, that is required for 
increased glycolysis and biosynthesis observed in AMPK-deficient cells. Thus, 
AMPK is designated as the negative regulator of Warburg effect [41].

The distinct features of aerobic glycolysis are being studied with gradual under-
standing of the underlying phenomena. This advancement in knowledge is paving 
way toward finding more effective novel cancer therapies. Bonuccelli et al. identi-
fied a novel prognostic biomarker of human breast cancer. In their study, they identi-
fied the deficiency of stromal caveolin-1 in cancerous fibroblasts. This loss of Cav-1 
favors growth of cancer cells by upregulating the expression of glycolytic enzymes. 
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The phenomenon, referred as “reverse Warburg effect,” enables the utilization of 
glycolytic inhibitors in order to treat breast cancer patients diagnosed on the basis 
of deficient stromal Cav-1 expressions [43]. Moreover, metabolic modulation occur-
ring in cancer cells results in their preference for glycolysis over mitochondrial 
oxidation. Since glucose oxidation is minimized in such cells with exceeding gly-
colysis rate, researchers are of the opinion that any approach used for forced activa-
tion of oxidative phosphorylation would result in decreased lactate production 
thereby suppressing metastasis [44]. Thus, new agents recognized as pro-oxidative 
and anti-aerobic glycolysis features can prove helpful in effective treatment of 
cancer.

2.3  Mechanisms Responsible for Metabolic Changes

As observed in the case of Warburg effect occurring in metastatic cells, it is quite 
obvious that the metabolic pathways and functioning of normal cells and cancer 
cells constitute significant differences. There has been vast research ongoing in 
recent years in order to elucidate the mechanisms that govern such metabolic altera-
tions. Researches are focused largely upon mitochondria, redox regulations, and 
bioenergetics since these are associated with most of the metabolic modifications 
[45]. Mitochondria is the key organelle, changes in which lead to alterations in gene 
expression profiles, subsequently leading toward cancer onset.

Key metabolic substrates that serve as major energy source for cancer cells 
include glucose and glutamine. Cancer cells rearrange their metabolic pathways so 
as to generate excess amount of energy (ATP) to support cancer cells. Conversion of 
glucose to lactate instead of Acetyl-CoA as observed in the case of aerobic glycoly-
sis is one of the principle metabolic changes occurring in metastatic cells. During 
glycolysis, either glucose is metabolized to lactate by the action of lactate dehydro-
genase A (LDHA) or it may be converted into acetyl-CoA by pyruvate dehydroge-
nase (PDH), both of which are responsible for generating required ATP [46]. As the 
tumor onset occurs, hypoxic environment and several oncogenes such as Ras, Src, 
and HER2 act to stabilize hypoxia-inducible transcription factor (HIF-1α), which 
works to upregulate pyruvate dehydrogenase kinase 1 (PDK-1) enzyme. PDK-1 
inactivates PDH and thereby prevents its role in acetyl-CoA synthesis. Meanwhile, 
LDHA is upregulated by HIF-1α and oncogene c-Myc [47], resulting in lactate 
production accompanied with simultaneous generation of NAD+ from 
NADH.  Several other genes upregulated by c-Myc include hexokinase 2 (HK2), 
glucose transporter (GLUT1), phosphofructokinase (PFKM), and enolase 1 [48] 
which collectively contribute to Warburg effect in cancer cells. These metabolic 
transformations ensure that tumor cells are provided with sufficient ATP even when 
mitochondrial oxidative phosphorylation becomes insufficient to meet the cell’s 
increased biosynthetic requirements [49].

Glutamine, as already mentioned, is another critical cancer metabolism- 
regulating substrate [50]. This nonessential amino acid is abundant in blood and acts 
as a rich energy source through anabolism under normal oxygen levels. Glutamine 
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serves to provide ATP by oxidation via tricarboxylic acid cycle (TCA) and also 
provide anabolic building blocks during cell growth by synthesis of amino acid, 
fatty acid, and nucleotide. However, as tumor cells outgrow their blood supply, oxy-
gen tension or hypoxia is induced in the cell. As a result of hypoxic conditions, 
prominent changes take place in glutamine metabolism in cancer cells. As there is 
decreased pyruvate oxidation and mitochondrial respiration rate, tumor cells shift 
their dependence upon other nutrients like glutamine for growth and viability [51]. 
Glutaminolysis, the catabolism of glutamine, serves as one of the indispensable 
processes in cancer proliferation. In TCA cycle, as glutamine is converted to 
α-ketoglutarate, it serves as the major source of oxaloacetate, malate, and NADH. All 
of these are involved in fatty acid synthesis in tumor cells [52]. High dependence of 
tumor cells upon glutamine leads to boosted glutamine catabolism by means of 
reprogrammed mitochondrial metabolism. It has been observed that tumor-related 
changes in glutamine metabolism are mainly regulated by c-Myc expression. With 
overexpression of c-Myc, hypoxic cells are able to oxidize glutamine with simulta-
neous conversion of glucose to lactate. Overexpressed c-Myc can even induce glu-
tamine catabolism in TCA cycle even in the absence of glucose [53]. The underlying 
reason behind the upregulation of glutamine catabolism is the transcriptional repres-
sion of two miRNAs, i.e., miR23a and miR23b, that results in increased expression 
of mitochondrial glutaminase (GLS), their target protein involved in glutamine 
catabolism. This leads to subsequent upregulation of glutamine conversion to gluta-
mate, finally resulting in higher production of glutathione. Glutathione functions as 
an efficient oxygen scavenger by controlling reactive oxygen species in mitochon-
dria and, in this way, protects the cell from apoptosis [54, 55]. Also in case of dys-
functional mitochondria where pyruvate is not oxidized to acetyl-CoA, 
α-ketoglutarate synthesized by glutamine is transformed into citrate via reductive 
carboxylation by the action of isocitrate dehydrogenase-2 (IDH-2) enzyme. This 
reductive carboxylation pathway serves as an alternate path for lipid synthesis [56].

As metastatic cells proliferate uncontrollably, certain regions of the tumor 
become deficient of the required oxygen supply, giving rise to the condition of 
hypoxia. As the tumor becomes aggressive, hypoxic condition results in the genera-
tion of signals [57] which are actually employed by tumor cells as a metabolic 
adaptation to prevent apoptosis [58]. An important transducer of hypoxia cells is the 
hypoxia-inducible transcription factor 1a (HIF1a). This transcription factor drives 
expression of different enzymes [GLUTs, hexokinase 2 (HK2), phosphofructoki-
nase 1 (PFK1) and lactate dehydrogenase A (LDHA)] and also works to inhibit the 
expression of pyruvate dehydrogenase kinase 1 that is involved in minimizing the 
rate of oxidative phosphorylation by reducing pyruvate flux in TCA cycle [46].

In addition to aforementioned modifications, metastatic cells also have altered 
lipid metabolism. Fatty acids are required in abundance in order to provide the rap-
idly growing cancer cells with required building blocks for synthesis of metabolites, 
new membranes, and energy generation via oxidation of fatty acid oxidation. Under 
this context, fatty acid metabolism is believed to play a crucial role in metastasis, as 
observed in recent findings. It has been suggested by Pascual et al. that fatty acids 
in metastasis-initiating cells (MICs) are responsible for their rapid proliferation 
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during metastasis. There is found increased expression of CD36 fatty acid receptor 
in MICs, i.e., in the models of human oral squamous cell carcinoma (OSCC) [59]. 
Although epithelial to mesenchymal transition which gives rise to metastatic trans-
formation of cells is not directly associated with CD36 expression, Nath and 
coworkers observed the occurrence of EMT in liver cells followed by fatty acid 
uptake by CD36 and FA-binding proteins 1 and 4 (FABP1 and FABP4) [60]. A 
strong correlation between dietary lipids and cancer proliferation was observed as 
blockage of enzyme monoacylglycerol lipase (MAGL) that produces free fatty 
acids was found to be directly involved in the impairment of ovarian cancer growth 
and migration capacity [61]. Though the strong correlation between fatty acid 
metabolism and malignant tumors has been established through various studies, 
there is still required in-depth study of the exact mechanism which could further 
elaborate the link between these two occurrences.

2.4  Metabolic Reprogramming of Cancer Cells

2.4.1  Altered Metabolic Enzymes

It has now been well acknowledged that cancer cells possess specific altered meta-
bolic activities which induce their metastatic nature. Cancer-related deaths usually 
occur when the human body is unable to defend itself against the induced changes 
in normal metabolic pathways. Several transitioning programs including various 
altered enzymes and growth factors work collectively toward cancer progression 
(Fig. 2.2) as maximized supply of proteins, lipids, nucleotides, and other cellular 
components is required for rapid doubling of cell biomass so that it could divide into 
two daughter cells in minimum time.

Studies aimed toward investigation of underlying mechanisms in cancer prolif-
eration reveal that isoforms of certain glycolytic enzymes serve as key modulators 
of glucose metabolism in metastatic cells [29]. Hexokinase (HK) is undeniably one 
of the most basic enzymes involved in glycolytic pathway as it catalyzes the conver-
sion of glucose to glucose-6-phosphate (G-6-P) in TCA cycle. This reaction facili-
tates the entrapment of glucose inside the cell for it to be utilized either as an energy 
source or for other biosynthetic reactions. As the fact was validated that increased 
glucose entrapment in the cell is facilitated by hexokinase, researchers concluded 
that hexokinase is particularly involved in boosting up glycolysis in malignant 
tumors [62].

Later on, another interesting discovery revealed that one of the isoforms of 
hexokinase, i.e., HK-2, localized on outer mitochondrial membrane protein, is 
overexpressed in cancer cancers. The strategic positioning of HK-2 allows it to 
gain access to mitochondrial ATP and also protects it against feedback inhibition 
control [63]. Several reasons have been proposed as to why HK-2 is preferentially 
overexpressed by cancer cells instead of other hexokinases. The most convincing 
explanation is that only HK-2 has the ability to bind to mitochondria’s VDAC pro-
tein due to exclusive nature of its N-terminal hydrophobic domain which enhances 
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its ATP-binding affinity [64] and also protects it from its own product (G-6-P) [65]. 
With better substrate affinity, reduced product inhibition, and increased catalytic 
efficiency, HK-2 is thus selectively overexpressed by malignant cells for maximum 
glycolytic efficiency. Other notable enzymes that exist as unique isoforms in can-
cer cells include pyruvate kinase M 2 (PKM2), phosphofructokinase 2 FB3 
(PFKFB3), and glutaminase 1 and 2 (GLS1, GLS2). Besides such enzymes whose 
unique isoforms exist in overexpressed state in malignant tumors and control their 
growth and proliferation, cancer metabolism also appears to be predominantly 
regulated by mutated forms of certain enzymes. Isocitrate dehydrogenase is one 
prominent enzyme which undergoes point mutation in both of its forms IDH1 and 
2. In normal cell, IDH1/2 work to generate α-ketoglutarate (αKG) from isocitrate 
while producing an essential reducing factor that is responsible for defending the 
cell against oxidative damage [66].

Somatic mutation in IDH enzymes leads to the conversion of alpha-ketoglutarate 
to an oncometabolite, D-2-hydroxyglutarate (2-HG), the excess accumulation of 
which favors tumorigenesis [52] The link between IDH mutations and 2-HG is quite 
strong as no tumor with IDH mutants has been found devoid of 2-HG. However, the 
exact mechanism behind IDH mutations and 2-HG accumulation is still under 
investigation. Several studies have reported the identification of IDH as mutation 
hot spot in cancers including myelodysplastic syndromes (MDS), acute myeloid 
leukemia (AML), myeloproliferative neoplasms (MPN), and cholangiocarcinoma 
[67–69]. In 2008, a study undertaken by Parsons and colleagues served as the basis 
for understanding exact mutation that existed in IDH1/2. In an effort to recognize 

Fig. 2.2 General metabolic enzymes associated with glucose metabolism of metastatic cells. 
Isoforms of metabolic enzymes which regulate glycolysis in normal cells are overexpressed in 
tumor cells for maximum glycolytic efficacy. Certain glycolytic enzymes undergo missense muta-
tions that maximizes their ability to favor malignant environment
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the probable treatment for glioblastoma multiforme (GBM), they identified recur-
ring missense mutation at arginine 132  in five out of six secondary GBMs [70]. 
Meanwhile, several other secondary GBMs and grade II/III gliomas were found to 
possess mutation at codon 172 of IDH2 [71, 72].

These mutations arising in amino acid residues of IDH1/2 result in decreased 
binding affinity of enzyme’s active sites for isocitrate while, at the same, increased 
affinity for NADPH that nullifies the oxidative decarboxylation activity possessed 
by normal enzymes [48]. As the mutant IDH1/2 catalyze the conversion of 
2- oxoglutarate (produced initially by oxalosuccinate decarboxylation by native 
IDH1/2) to 2HG, the mutant enzymes lack the catalytic activity to carboxylate 
2OG, thus favoring only its reduction. Given this altered enzymatic activity of 
mutant IDH1/2, 2HG is accumulated in bulk concentration in malignant tumors 
[73]. The overexpression of 2HG has been validated as the inducer of histone and 
DNA hypermethylation by acting as inhibitor of αKG-dependent dioxygenase. 
Consequently, cellular differentiation is hindered, and tumorigenesis is favored 
[74, 75].

Another important mitochondrial enzyme with an established role as tumor 
repressor is succinate dehydrogenase, as observed through various studies involving 
paragangliomas, renal cell carcinoma, and gastrointestinal stromal tumors [76–78]. 
While somatic mutations are responsible for altered IDH1/2 enzymes, germline 
mutations are associated with SDH. SDH comprises of four subunits, viz., SDHA, 
SDHB, SDHC, and SDHD [79]. SDH is the major enzyme that catalyzes the con-
version of succinate to fumarate in TCA cycle. In response to the mutations arising 
in SDH-encoding genes, a “tumor microenvironment” develops in the cell that 
favors the survival of cancer cells. Dysfunctional succinate dehydrogenase (SDH) is 
a prominent inducer of malignancy as it results in the excessive accumulation of 
succinate inside the cell. Succinate acts as an inhibitor of 2-oxoglutarate (2-OG)-
dependent HIF prolyl-hydroxylases [80]. Resultantly, hypoxia-inducible factors 
(HIFs) are stabilized and activated, favoring angiogenesis and ultimately paving 
way toward metastasis.

One noteworthy fact regarding SDH mutations is that different subunit mutations 
give rise to distinct tumors. Mediastinal paragangliomas (PGLs) have been found 
linked with SDHD gene mutation [81] while SDHB and SDHC gene mutations were 
observed to be associated with sporadic head and neck paraganglioma [82]. 
Likewise, SDHB domain alteration showed implication in renal cell carcinoma and 
papillary thyroid cancer [83, 84].

Another enzyme-related germline gene mutation that is found directly correlated 
with oncogenic transformations is that of phosphatidylinositol 3-kinase (PI3- 
kinase). PIK3CA, gene encoding catalytic subunit p110α of PI3-kinase, has been 
found overexpressed in ovarian cancer [85]. Meanwhile, mutations have been 
reported in PIK3CA gene in several types of cancers.

PIK3CA undergoes missense mutations in exons 9 and 20 of coding sequence. 
The two residues E542 and E545 located in exon 9 of p110α are most frequently 
altered, usually testified with lysine substitution [86]. Another residue H1047 posi-
tioned in exon 20 is normally substituted with arginine residue in various cancers. 
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Mutations found in P13 kinase exhibited increased lipid kinase potential in contrast 
to the non-mutated enzyme [87]. The ability of three abovementioned mutations to 
induce malignancy was again validated by Kang et al. by analyzing the potential of 
mutated P13-kinase in transforming cultures of chicken embryo fibroblasts [88]. 
Other than few of the aforementioned examples of altered metabolic enzymes that 
mediate the onset of metastasis, researchers are continuously investigating other 
factors and underlying mechanisms with an aim to find therapeutic solutions for 
various types of cancers.

2.4.2  Cancer Stem Cells

Cancer stem cells have long been a matter of great interest from diagnostic and 
therapeutic view point given their exclusive characteristics. Nguyen et  al. [89] 
defined cancer stem cells (CSCs) as cells which possess malignant clonal popula-
tion that are able to proliferate cancer in a way that their eradication can lead toward 
the cure. This implies that CSCs have a separate distinction which is not found in all 
malignant cells. CSCs have the ability to generate all forms of malignant cells 
including those with and without cell-propagating ability. The type of cell generated 
by CSCs depends upon the intracellular molecular response network that depends 
upon the parent tissue from which CSCs are originated [89].

The concept of cancer stem cells dates back to the nineteenth century AD when 
a link between cancer cells and embryonic tissue was identified for the first time in 
history. As a result “embryonic rest theory” was postulated that was based upon the 
hypothesis that the causative agent of cancer is the type of cells much similar in 
nature to early embryo. Teratocarcinomas were then identified in 1941 as malignant 
structures which constituted many types of differentiated cells. This suggested the 
origin of malignant structures from tumorigenic “stem cells” [90]. Human CSCs 
were first recognized in adult acute myeloid leukemia (AML) as CD34+/CD38− cell 
subpopulation following transplantation into severe combined immunodeficient 
(SCID) mice. Leukemia-initiating cells were found capable of instigating AML 
even though they were not mature enough as colony forming cells [91].

One of the prominent features of CSCs that acts as a hindrance toward anticancer 
therapies is their heterogeneous nature which allows them to acquire distinct gene 
expressions [92], making them more resistant toward treatment strategies. Some of 
the distinguishable features of CSCs which mark their exclusive nature include 
metabolic reprogramming [93], their ability to survive in nutrient-limited environ-
ment [94] and also their capacity of drug efflux via ABC transporters, i.e., ATP- 
binding cassette transporter [95].

CSCs with heterogeneous functional and phenotypic characteristics have been 
identified in various types of tumors including ovarian, breast, and squamous cell 
carcinomas [96–98].

Such heterogeneity that leads to prominent differences among cancerous cells 
can be influenced by various factors such as genetic [99] or epigenetic changes 
[100] as well as differences in tumor located in distinct regions [101]. An interesting 
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phenomenon that has been studied regarding CSCs is that in the case of certain 
tumors, cancerous stem cells have the ability to differentiate into non-cancerous 
cancer cells [102, 103].

According to the CSC theory, tumor growth is initiated by limited numbers of 
tumor stem cells that are located in the niche of cancerous region. This might be the 
probable reason as to why certain tumors recur even after successful implementa-
tion of initial chemotherapy/radiation therapy sessions. Pancreatic CSCs, i.e., 
CD44+/CD24+/ESA+, were also identified by confirming their potential to induce 
tumor formation in orthotopic pancreatic tail injection model [104]. Several other 
researches have been performed for identification of CSCs in commonly occurring 
cancer types [105–107]. Given the chief role of CSCs in cancer sustenance, most of 
the cancer treatment strategies at present are focused upon identification and exter-
mination of CSCs, the actual cell population involved in long-term sustenance of 
cancer [108].

Plasticity is another prominent aspect which allows both CSCs and non-CSCs to 
undergo phenotypic transitions as a result of suitable stimulus. As three types of cell 
subpopulations were retrieved from breast cancer cell lines, it was clearly observed 
that these subpopulations were able to generate two phenotypes that were fully 
functional as stem-cell like cell-population and  inherited the ability to generate 
tumors upon xenotransplantation. Meanwhile, the tumorigenic potential of cells 
was directly influenced by the environmental stimuli such that when three subpopu-
lations were subjected to certain environment fluctuation, all tumor cells acquired 
the ability to generate tumors [109]. This plasticity is another significant feature of 
cancer stem cells that provides resistance against cancer therapeutic treatments.

While studies were conducted in order to distinguish CSCs from non-CSCs pop-
ulation by means of their metabolic preferences, no universal patterns have been 
observed among two cell types. Both types use glycolysis or oxidative phosphoryla-
tion according to their own preferences. Plasticity as a response to environmental 
fluctuations was again found to be prominent in the case of CSCs’ metabolic pat-
terns in existing literature [110]. Glioma CSCs were observed to prefer oxidative 
phosphorylation to meet their energy demands but possess the potential to switch to 
glycolysis in conditions unfavorable for oxidative metabolism [111]. This metabolic 
adaptation of cancer cells mediated by HIF-1α protein is the “Warburg effect” as 
already discussed in the previous section.

In addition to glucose metabolism, there exist certain reports where tumor cells 
acquire energy via fatty acids. This process is mediated by fatty acid receptor 
“CD36” located in a subset of CSC population [112]. Likewise, CD36+ leukemic 
stem cells oxidize fatty acids from gonadal adipose tissue that acts as a niche for 
chemotherapeutic resistance [113]. Hence, specific energy requirements of CSCs 
during cancer growth indicates an opportunity to cure cancer at later stages.

Cell plasticity by means of epithelial-mesenchymal transition (EMT) is also 
found linked to metabolic adaptation of CSCs. Pancreatic tumor cells that were 
deficient of EMT transcription factor ZEB1 were found incapable of EMT; as a 
result of which, they were unable to switch toward glycolytic metabolism even 
when oxidative phosphorylation was inhibited [114]. This concludes that 
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glucose- and oxygen-sufficient environment favors glycolysis, suggesting consider-
able impact of microenvironment upon the CSCs’ preferences.

To date, most of the cancer treatment strategies are solely aimed at reducing and 
localizing malignant tumors, whereas the agents that could target CSCs could prove 
equally or even more beneficial than the existing strategies. Further research in this 
dimension by identification of CSCs can pave way toward improved diagnostic and 
therapeutic procedures. The results by anti-CSC agents would be gradually observ-
able once the tumor growth halts and a benign mass is left behind. The clinical 
evidence for this approach is quite obvious in the case of teratocarcinomic patients 
where CSCs were deleted by chemotherapy such that only mature, differentiated 
cells were left behind. The results revealed that patients with only mature teratomas 
were completely cured after the elimination of CSC population [115]. Thus, 
improved CSC identification techniques are much needed at the moment for further 
progress in this dimension.

2.4.3  Metabolic Related Role of Tumor Suppressor 
and Oncogenes

Tumor suppressor genes, also referred as anti-oncogenes, have been validated as 
critical metabolic regulators which suppress tumor growth and proliferation under 
conditions of limited nutrient availability. Cancer-inducing metabolic reprogram-
ming of cells is considered as the primary task of activated oncogenes and inacti-
vated tumor suppressors, as demonstrated through various researches [116, 117]. In 
other words, we can say that metabolic shift in cancer cells is directly influenced by 
tumor suppressor genes. Some of the highly active tumor suppressors have been 
illustrated in Fig. 2.3.

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that acts as a major metab-
olism regulator in both wild-type and mutated cells by regulating concentration of 
phosphorylated phosphatidylinositol (PIP3) in plasma membrane. In healthy cells, 
activation of PI3K is controlled by way of PIP3 de-phosphorylation which is per-
formed by the action of critical tumor suppressor, i.e., phosphatase and tensin 
homologue or PTEN. In the case of mutated cells, this pathway is deregulated by 
various means such as loss of PTEN [118] or activation of PI3K [119].

The key function associated with PTEN includes modulation of cell proliferation 
and metabolism; thus it acts as a strong tumor inhibitor [120]. As its level decreases 
in the cell or PTEN gene expression is altered by some way or other, the cell 
becomes susceptible to cancer [121]. On the contrary, elevated level of PTEN can 
reverse the metabolic reprogramming of cancer cells, thereby shifting the trend 
from glycolysis to oxidative phosphorylation [122]. Mutated PI3K signaling can 
directly favor tumor induction among humans [123]. If protein translation is deregu-
lated due to certain mutation, it would favor tumorigenesis due to lack of certain 
essential component. mTOR is a member of P13K family that acts as the central 
unit in TOR complex 1 and 2, namely, TORC1 and TORC2. The major role of 
mTOR is to initiate translation by controlling the activity of transcription inhibitors. 
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The activity of TOR complex is kept in check by tumor suppressors, TSC1/TSC2 
and LKB1. These tumor suppressors halt activation of mTOR by inhibition of the 
GTPase Rheb. Mutations among tumor suppressor genes lead to enhanced mTOR 
activity, resulting in hamartomas [124, 125].

Another critical tumor suppressor gene p53, a transcription factor, is involved in 
numerous cellular responses such as apoptosis, metabolic regulation, cellular 
aging, and other physiological functions. P53 controls intracellular metabolism by 
modulating gene expressions while acting as key element of metabolic regulatory 
mechanisms. As suggested in various studies, more than 50% of human cancers 
constitute mutated p53 gene [126, 127], which signifies the role of p53 gene in 
tumor suppression.

p53  in its original state deregulates glycolysis negatively via transcriptional 
repression of two glucose transporters GLUT1 and GLUT4, along with transactiva-
tion of glycolytic inhibitors, namely, RRAD and TIGAR [128–130]. In addition to 
these, p53 also works to inhibit glucose-6-phosphate dehydrogenase, resulting in 
suppression of glucose metabolism [131]. Thus in the case of non-mutated cells, 
p53 regulates the metabolic pathways in a cell. Various mechanisms by which p53 
is regulated to perform its role in tumor suppression include ubiquitination and deg-
radation by E3 ubiquitin ligases like MDM2 [132, 133]. P53 regulates glucose 
metabolism by repressing transcription of glucose transporters (GLUTs), reducing 
glucose uptake [129]. Besides downregulating levels of GLUTs, P53 also prevents 
translocation of GLUTs to plasma membrane by activating transcription of RRAD 

Fig. 2.3 Effect of up- and down regulation of crucial tumor suppressors in cellular metabolism. 
Decreased expressions of tumor suppressor genes favor metabolic reprogramming of tumor cells 
whereas their enhanced expressions contribute to suppression of cancer-associated modifications
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which in turn binds p65 of NF-κB thus inhibiting its activity and suppressing GLUT 
translocation [130]. Downregulation of hexokinase 2 and protein levels and phos-
phoglycerate mutase 1 protein levels is induced by p53 that also result in glycolysis 
suppression [134]. Moreover, p53 transcriptionally prompts TIGAR (TP53-induced 
glycolysis regulatory phosphatase) to lower intracellular levels of fructose-2, 
6-bisphosphate, stimulates glycolysis, and consequently suppresses glycolysis 
[128]. All these glycolysis-suppressing activities performed by p53 work in unison 
in preventing tumor growth and proliferation.

Sirtuin 6 or SIRT6 is another tumor suppressor gene that mediates aerobic gly-
colysis in cancer cells. Deletion of SIRT6 from the cell results in transformation of 
normal cell to tumor cell. SIRT6 is a chromatin-bound factor that was originally 
known as a suppressor of genomic instability by means of stimulating base excision 
DNA repair (BER) [135]. Various studies have established the role of SIRT6 as 
DNA repair factor as it has been found associated with DNA double-strand break 
(DSB) repair by regulating activity of three relevant proteins, i.e., C-terminal- 
binding protein (CtBP), interacting protein (CtIP) [136], and poly-ADP-ribose 
polymerase 1 (PARP1) [137].

SIRT6 is actively involved in defending cells against metastasis by inhibiting 
glycolysis that is the prerequisite for tumor formation. Moreover, SIRT6 has also 
been found to act as regulator of ribosome biosynthesis. Given the two crucial 
roles of SIRT6, it acts as an essential factor in metabolic reprogramming of cancer 
cells [138].

Alongside tumor suppressors, other major regulators of cancer metabolic 
pathways are the oncogenes, most prominent among which are c-Myc, H-ras, 
Src, and Akt [139, 140]. Most importantly, proto-oncogene c-Myc is the chief 
regulator of biosynthetic activities and metabolic pathways essential for cancer 
proliferation [141].

Myc gene favors the production of glutamate by stimulating the transcription of 
glutaminase-1, the first enzyme involved in glutaminolysis [142]. Also, Myc tran-
scribes ribosomal RNA genes and the ribosomal protein genes which resultantly 
boosts protein synthesis rate and cell mass. The transcriptional repression of miR- 
23a and miR-23b (miRNAs targeting glutaminase 1) results in enhanced levels of 
the glutaminase 1 and in turn upregulates glutamine catabolism [143].

Myc usually regulates cancer cell metabolism in two ways. On the one hand, it 
generates exceptionally large amount of ammonia during c-Myc-dependent gluta-
minolysis that paves way toward cell senescence [144], while on the other hand, 
c-Myc-dependent glutaminolysis delivers extended supply of NADPH to cells to 
support anabolic synthesis [70].

Besides Myc, other oncogenes involved in stimulation of glycolysis and glutami-
nolysis include nuclear factor kB (NF-κB), Akt, and tyrosine kinase receptors. 
Increased AKT and mTOR activities lead to higher HIF activity. Both the myc and 
HIF-1 transcription factors increase the rate of transcription of some of the GLUT 
transporters and hexokinase 2, enhancing both glucose uptake and its retention in 
the cell [145].
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Autophagy is one of the most commonly used mechanisms utilized by cells in 
order to suppress tumors. In the similar manner as metabolic transformation, onco-
gene and tumor suppressor pathways influence autophagy in opposing ways. 
Prominent oncogenes such as Akt, mTOR, and Bcl2 act as inhibitors of autophagy 
whereas tumor suppressors like PTEN, LKB1, and HIF1α stimulate autophagy 
[146]. p53 works in a unique manner as it promotes autophagy in stressed condi-
tions by controlling transcription of autophagy regulators, e.g., DRAM [147], while 
on the contrary, p53 deregulates autophagy when located in cytoplasm [148, 149].

2.4.4  Drug Resistance Patterns

The major threat toward the treatment of cancer is the drug resistance acquired by 
tumor cells which are initially susceptible to chemotherapy. This drug resistance is 
basically the outcome of various epigenetic events that influence the heterogeneity 
in gene expression patterns which continuously evolve to provide defense against 
selected drug treatment (Fig. 2.4)

Chemotherapeutic drug resistance of tumor cells is generally divided into two 
types: intrinsic and acquired resistance. Intrinsic resistance refers to the inherent resis-
tance potential of cell before receiving chemotherapy, and such resistance- mediating 
factors normally preexist in tumor cells and make the therapy unsuccessful. On the 

Fig. 2.4 Different mechanisms and elements that impart drug resistance to metastatic cells. 
Epigenetic occurrences like hypermethylation of tumor suppressor genes (anti-oncogenes) and 
hypomethylation of oncogenes confer drug resistance to cancer cells. CSCs possess intrinsic resis-
tance against drugs due to their heterogeneity and plasticity. Certain cellular mechanisms includ-
ing drug inactivation and efflux action of ATP-binding cassette transporters also contribute to drug 
resistance of tumor cells
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other hand, acquired drug resistance develops among the treated tumors which were 
initially sensitive but later develop resistance as a result of genetic mutations or 
through other adaptive responses, e.g., overexpression of the therapeutic target or acti-
vation of substitute compensatory signaling pathways [150].

Epigenetic occurrences such as gene promoter DNA hypermethylation, which 
correlate to the alterations in gene expressions, have been observed as prominent 
causative agents of acquired chemotherapeutic drug resistance by cancer cells 
[130, 151]. The two striking epigenetic events that confer drug resistance to can-
cer cells include DNA methylation and histone acetylation/methylation. In DNA 
methylation, methyl groups are linked to cytosine within regions of CpG islands, 
position at CG-dinucleotide sequences. Meanwhile, histone acetylation and 
deacetylation results in loosening and tightening of chromatin structure, respec-
tively. These are the mechanisms that regulate gene expression in normal cells but 
are deregulated in mutated cancer cells. Hypermethylation-associated silencing of 
tumor suppressor genes along with hypomethylated activation of oncogenes are 
some of the epigenetic events that alter gene expressions conferring drug resis-
tance to cancer cells [152].

DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) plays 
a substantial role in cancer treatment strategies. MGMT is associated with repair of 
DNA lesion O6-methylguanine (generated by the action of alkylating drugs) and 
converts it back to guanine thus protecting the cell from apoptosis. Thus, increased 
levels of MGMT in tumor cells impart resistance to chemotherapeutic treatments, 
and further research to control this drug damage response (DDR) mechanism is 
required to make mutated cells vulnerable to drugs [153].

Recently, insensitivity of cancer cells toward treatment in certain settings has 
been credited to the cancer stem cells which possess intrinsic defense in response to 
various therapeutic approaches [154]. Cancer stem cells (CSCs) are comparatively 
much more resistant to chemotherapy compared to non-CSCs in such a manner that 
they also make non-CSCs insensitive to treatment due to their persisting behavior 
[155]. It has been observed through genetic analysis of hematological tumors that 
subclones that are minute before therapy become dominant after treatment [156, 
157]. This is again attributed to the genetic alterations that become the cause of drug 
resistance.

Another mode of action by means of which cancer cells defend themselves 
against therapeutic drugs is through drug inactivation. This has been observed in the 
case of a nucleoside drug “cytarabine (AraC)” used for the treatment of acute 
myelogenous leukemia. This drug is activated after conversion into to AraC- 
triphosphate following several phosphorylations [158]. As the phosphorylation 
pathway of AraC is deregulated or mutated, AraC fails to activate and, thus, drug 
becomes inactive.

Changes directed toward apoptosis-related proteins like tumor suppressor p53 can 
also impart drug resistance. p53 is normally involved in apoptosis of cancer cells as 
a result of chemotherapy; however if the p53 gene is deleted, mutated, or silenced by 
some means, it fails to carry out its apoptotic role and becomes nonfunctional [159]. 
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Inactivation of P53 regulators like caspase-9 and cofactor “apoptotic protease acti-
vating factor 1 (Apaf-1)” can also result in drug insensitivity [160].

Besides drug inactivation mechanisms, drug resistance is also governed by 
changes in signal transduction processes, regulating drug activation. A monoclonal 
antibody trastuzumab (Herceptin) is used for effective treatment of HER2-positive 
breast cancer tumors. However, drug resistance was observed among patients who 
were initially sensitive to trastuzumab. Resistance mechanisms believed to be asso-
ciated with drug insensitivity are inhibition of cell cycle co-expression of growth 
factor receptors, loss of activity of tumor suppressor PTEN, as well as activation of 
PI3K/Akt pathway [161, 162].

Another mechanism involved in contributing toward drug resistance in cancer 
cells is efflux action of ATP-binding cassette (ABC) transporters. Three main trans-
porters that are usually involved in drug-resistant cancers are multidrug resistance 
protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast 
cancer resistance protein (BCRP). These transporters have wide-ranging substrate 
specificity and possess the potential to efflux numerous xenobiotic compounds, 
namely, epipodophyllotoxins, anthracyclines, kinase inhibitors, vinca alkaloids, and 
taxanes from the cells [163]. Playing their role effectively, these transporters defend 
cancer cells against chemotherapies.

Octamer 4 encoded by Pou5f1 gene is considered an important protein that 
imparts chemoresistance to cancer cells. Studies have demonstrated that drug- 
resistant cells undergo gene demethylation leading toward enhanced expression of 
Oct4. Overexpression of Oct4 favored drug resistance, while deletion of Oct4 
decreased drug resistance of liver cells. As Oct4 is overexpressed, TCL1 expression 
is enhanced correspondingly, followed by Akt activation [164]. Consequently, can-
cer cells become equipped with anti-apoptotic potential.

Furthermore, drug insensitivity of cancer cells may also arise as the result of 
signaling processes of differentiation that are indispensable for epithelial-to- 
mesenchymal transition (EMT). The differentiation process that occurs during 
EMT gives rise to metastatic cancer cells with diversified cellular morphology 
[165]. In EMT, cell adhesion molecules residing on stromal cells and extracellular 
matrix proteins bind to the cell adhesion molecules located on cancer cells. 
Stromal cells and cancer cells also release factors which mediate EMT. As EMT 
favors the formation of increased number of metastatic cancer cells, it also pro-
duces signals for increased cell survival which imparts drug resistance attribute to 
tumor cells [152].

Thus, various genetic alterations either individually or collectively work to pro-
vide cancer cells with defense mechanism against therapeutic drug treatments. 
There is a need for better understanding of resistance mechanisms at molecular 
level through clinical assessment of rational drug combinations among selected 
group of patients so as to generate such therapies which could ward off resilient 
modes of anticancer drugs.
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2.4.5  Therapeutic Approaches Targeting Cancer Cell 
Metabolism

Cancer cells reprogram their anabolic and catabolic metabolism for energy produc-
tion in order to initiate and progress their cellular activities even when the nutrients 
are limited in the environment. Three types of pathways are involved in redirecting 
energy in high-proliferating and malignant cells. These are c-Jun N-terminal kinases 
(JNKs), mitogen-activated protein kinase (MAPKs), and extracellular signal- 
regulated kinase (ERKs) pathways [166]. Metabolic reprogramming is the property 
of cancerous cells in which the cells alter their metabolism in order to support the 
elevated energy demands due to rapid proliferation and continuous growth.

Inhibitory glycolysis is a main therapeutic strategy for cancerous cells that are 
extremely glucose dependent [167]. For those tumorous cells that depend on gluta-
mine for the division and surveillance of cell, inhibition of glutamine in metabolism 
is the most logical strategy. Different agents are used in metabolic treatment of cells 
that can actively bind different metabolic pathways within cells. To target cancer 
metabolism, different therapeutic strategies are used in which active agents are 
employed for treatment. Treatment strategies are mentioned as follows:

 1. Inhibition of glycolysis
 2. Interfering glutamine metabolism
 3. Targeting energy regulators and sensors

2.4.5.1  Inhibition of Glycolytic Pathway (IGP)
It has been seen that level of hexokinase 2 (HKII) is elevated in tumor cells. It is 
the main compound in glycolytic pathway of oncogenic cells that using 2-deoxy-
glucose (non-metabolically active glucose analog) directly inhibits the hexokinase 
activity and suppresses the tumor cells [168]. In human neck and head cancer, 
cytotoxicity of cells is increased by combining cisplatin with 2-deoxyglucose and 
3- bromopyruvate. It is another inhibitor of hexokinase that has the ability to inhibit 
the glycolysis pathway in tumor cells. This leads to the starvation and ultimately 
results in the apoptosis of cancer cells [169]. Moreover, derivative of indazole- 3- 
carboxylic acid, called lonidamine, has the potency to inhibit the growth of cancer 
cell by inhibiting HK, reducing oxygen, depleting ATPs, and reducing lactate pro-
duction in the cell. This compound possesses the ability to treat highly glycolytic 
cancer types (HGC) [170].

Active glycolysis in cancer cells is repressed by inhibiting the activity of glucose 
transporters. In hypoxic conditions, phloretin, an inhibitor of glucose transporter 
can cause apoptosis, and it overcomes the property of drug resistance [171]. In gly-
colysis, one of the regulatory enzyme is phosphofructokinase (PFK), thus making it 
the main target for antitumorous drugs [172]. Small molecule that is inhibitor of 
phosphofructokinase (PFK) is PFKFB3-3(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1- 
one (3PO). In adenocarcinoma and in human malignant hematopoietic cell lines, 
this molecule has shown the capacity to reduce glucose uptake and suppress tumor 
cell formation [173].
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2.4.5.2  Inhibition of Glutamine Metabolism (IGM)
Cancer cells depend on exogenously produced glutamine to maintain their regular 
cellular functions and for survival during starvation situations, and this phenome-
non is referred as glutamine addiction (GA) [174]. For inhibition of glutamine 
metabolism, glutamine analogues show potential as antitumor or anticancerous 
activity. Some examples of glutamine analogues are azaserine, L-DON (6-dizo- 5-
oxo-L-norleucine), and acivicin [175].

Different types of agents are used that play an important role in lowering the 
concentration of glutamine in the blood and directly lead to the inhibition of glucose 
metabolism (IGM). For this purpose, phenylbutyrate and L-asparaginase have 
shown strong potential [176]. In the treatment of PALL (pediatric acute lympho-
blastic leukemia) an enzyme, L-asparaginase, is used. This enzyme produces aspar-
tic acid by hydrolyzing asparaginase. Glutamic acid and ammonia are produced on 
the hydrolysis of glutamate by L-asparaginase, and in this way it reduces the gluta-
mate concentration in the blood stream.

Biphenyl and Ammonaps also named as phenylbutyrate are agents which have 
the potential to treat hyperammonemia. After metabolizing inside the human body, 
these agents are converted into phenyl acetate. After conversion, phenyl acetate 
binds with glutamine to form a compound known as phenylacetylglutamine that is 
excreted out by the kidneys. Glutamine concentration in plasma is depleted by 
phenylbutyrate and inhibits glutamate metabolism [177].

SLC1A7 and SLC1A5 (ASCT2) are transporters of glutamine in cancer cells. By 
inhibiting the activity of these transporters, glutamate uptake by the defected cells 
is directly inhibited [178]. GPNA (IL-γ-glutamyl-p-nitroanilide) is an agent that is 
inhibitor of SLC1A5. It shows the potential to inhibit the mTOR (mammalian target 
of rapamycin) activation that is dependent on glutamine and also inhibit the uptake 
of glutamine by the cells [179]. Such kinds of inhibition become the reason of 
autophagy (self-eating) of cancer cells [180].

For the survival of cancer cells, an energy-metabolizing enzyme also plays an 
important role. This enzyme, known as glutaminase, produces glutamate and 
ammonia by hydrolyzing glutamine [181]. Hence, inhibiting the activity of this 
enzyme will result in the inhibition of glutamate metabolism. Transamination is 
the main pathway or route through which glutamine enters the tricarboxylic acid 
cycle (TCA). Hence the inhibitor of transaminase, AOA (aminooxyacetic acid), 
exhibits the potential as an agent in treatment of cancer cells. This compound 
exerts cytotoxic effect on all cancer cells that are dependent on glutamine for their 
survival [182].

2.4.5.3  Targeting Energy Sensors and Regulators (ESAR)

HDAC Inhibitors and AMPK Activators
Cellular energy homeostasis is maintained by the AMPK enzyme (AMP-activated 
protein kinase) [183]. Under different stress conditions, e.g., glucose deprivation, 
hypoxia, and oxidative stress, this enzyme is activated. Thus when the body is under 
stress, AMPK activates and shows the therapeutic potential in treating cancer. 
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Thiazolidinedione (troglitazone) is a compound that activates AMPK enzyme and 
shows the anticancerous property [184].

HDAC (histone deacetylase inhibitor) is one of the other therapeutic approaches 
for treatment of cancer. Suberoylanilide hydroxamic acid (SYHA) inhibitor has 
potential to induce autophagy, oxidative stress, and apoptosis in chronic myeloge-
nous leukemia (CML) [185].

Inhibition of P13K/AKT/mTOR Axis
In different tumor cells, AKT/P13K and mTOR signaling pathways play a crucial 
role in proliferation of cancer cells as well as maintaining the normal energy level. 
These pathways provide a target for treating cancerous cells. For the treatment of 
prostate cancer, different types of agents have been tested that target the AKT path-
ways, e.g., perifosine, genistein, and celecoxib are potential target agents [186]. 
Wortmannin is a P13K inhibitor and possesses the therapeutic potential for cancer 
treatment [187]. Transcription factor HIF1 is activated by mTOR pathway and 
enhances glycolysis process in tumor cells. Due to this reason, inhibiting mTOR 
pathway by different compounds can inactivate the transcription factor and glycoly-
sis. For instance, rapamycin shows antitumor property, but some inhibitors, e.g., 
temsirolimus (CC1-779) and everolimus (RAD-001), are under clinical trials for 
cancer treatment [188].

Targeting Other Regulators of Cancer Metabolism
Transcription factor c-Myc is encoded by Myc-oncogene that is useful in cellular 
metabolic processes in cancer cells. Myc shows the special ability to regulate other 
genes that are involved in cellular metabolism process, e.g., HK11, GLUT1, LDH- 
A, PFKM, glutaminase, etc. For sensing the changing environment inside the cell 
and promotion of glycolysis process by regulating different enzymes, HIF1 protein 
plays primary role [189]. For treating cancer at different stages, various strategies 
are used that use agents to target such regulatory molecules and transcription factors 
(proteins) [190].

2.5  Metabolic Related Diets

2.5.1  Low-Carbohydrate Diet

American diabetes council defines low-carbohydrate diet (LCD) as “the diet that 
gives less than 130 g/day or 26% of energy from total energy intake (TEI)” [191]. 
LCD was the best method for treating diabetes before the discovery of insulin 
[192]. Dietary carbohydrate (DC) are the main reason for the increase in blood 
glucose level of diabetic patient. It was suggested that reducing the intake of energy 
from carbohydrates will help in control of glycemia and attaining the standard 
glycated hemoglobin (GH) that is HbA1c <7.0% or 53 mmol/mol [193]. Kevin and 
Stephanie elaborated that LCD is very fruitful for weight loss as other diets do 
[194]. This diet is good for the control of hyperinsulinemia and glycemia but 

2 Metabolic Changes and Their Characterization



56

alternatively results in sensitivity for insulin and impairment of insulin secretion 
stimulated by glucose [195].

LCD lowers the appetite and stimulates the increased level of ketone species in 
the circulatory system [196]. It results in the high intake of proteins that leads to the 
feeling of satiety (fullness) and lowers the total energy intake and directly reduces 
the body fat [197].

Drawback of such kind of LCD is that they can increase the HDL (high-density 
lipoprotein) cholesterol and lower the TAG (triacylglycerides) in the blood when 
one is in a state of fasting [198]. Increased level of HDL and decreased level of LDL 
(low-density lipoprotein) is the main cause of coronary heart diseases. Unlike HDL, 
LDL is good for maintaining normal body functions. Dietary fats (protein content) 
are the main reason for increased level of HDL. Risk of cardiovascular diseases 
increases with the increase in level of HDL in blood. Such kinds of diets play an 
important role in proper metabolism of lipids in the body [199].

Generally there are two types of very low-carbohydrate diet. One is semi- 
starvation ketogenic diet (low caloric diet), while the other is eucaloric ketogenic 
diet. It gives more calorie than the first one because use of fat in this case is for 
maintaining normal metabolic functions [200].

2.5.2  Ketogenic Diet (KT)

KT (ketogenic diet) is basically a nutritional diet that consists of low level of carbo-
hydrates that are insufficient to meet metabolic demands, i.e., maximum level of 
proteins and high level of fats [201]. In the case of ketogenic diets, daily carbohy-
drate meal is replaced by fats. Ketone bodies’ synthesis begins with depletion of 
glycogen stores in the liver. Acetoacetate, acetone, and beta-hydroxybutyrate are the 
main ketone bodies. Mitochondria metabolize acetoacetate and beta- hydroxybutyrate 
but not acetone [202, 203].

Earlier, ketogenic diet was used to treat epilepsy, but as the research progresses, 
different studies have shown the potential of KT in treating different metabolic dis-
eases like diabetes, cancer, and epilepsy as well as in weight reduction [204].

By comparing high-carbohydrate low-fat diet (HCLF) mode that includes dough-
nut, rice ball, and spaghetti with the low-carbohydrate high-fat (LCHF) mode diet 
that includes avocado, poultry, and cheese, scientists observed that LCHF provides 
more benefit than HCLF by means of improving appetite and controlling weight and 
directly helps in decreasing appetite-related obesity [205].

KD plays an important role in treatment of cancer. Warburg effect is targeted by 
the KDs in which the oncogenic cells (cancerous cells) instead of utilizing the oxi-
dative pathway for ATP production and consumption are consumed by glycolysis 
pathway [206]. In CT (cancer therapy), the main purpose of providing LCHF to 
patients is that it reduces the level of circulating glucose and induction of ketosis in 
blood. In this way, cancerous cells face starvation because these cells cannot metab-
olize ketone bodies. As a result, fat bodies are produced when glucose is less in the 
body and act as energy source inside the body as cells face energy-less environment. 
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Alternatively normal cells adopt routine metabolic pathway that is necessary for 
survival of cells by breaking down ketone bodies [207].

Ketogenic diet constitutes neuroprotective properties. Neurons are influenced by 
the ketone bodies at three different levels:

 1. Bioenergetic and metabolic level (BEML)
 2. Signaling level (SL)
 3. Epigenetic level (EL)

2.5.2.1  Bioenergetic and Metabolic Level (BEML)
Ketone body (KB) serves as efficient and effective energy substrates as compared to 
glucose. During starvation condition, the brain gets energy from the molecule that 
results from the metabolism of fat bodies [208]. These bodies act as a molecule that 
plays an important role in balancing the synthesis of glutamate and gamma- 
aminobutyric acid (GABA), leading to storage of GABA in the central nervous 
system and protecting the nerves from inhibitory synaptic transmission (IST) [209].

2.5.2.2  Signaling Level (SL)
For G-protein-linked receptor HCA (hydroxycarboxylic acid), ketone bodies 
function as a ligand [210]. Microglial cells are inhibited by ketogenic diets that 
reduce the level of interleukin and promote the neuroprotective phenomenon of 
the brain [211].

2.5.2.3  Epigenetic Level (EL)
Epigenetic changes are the kind of changes that are associated with genome but 
not associated with the change in sequence of nucleotides in DNA. These changes 
may or may not be heritable [212]. Such changes in genome change the level of 
gene expression and prepare the individual for adjustment in the environment. 
Histone modification and DNA methylation are prime changes in DNA. Histone 
acetylase inhibitors are butyrate and beta-hydroxybutyrate. Synthesis of antioxi-
dant enzymes increases with the inhibition of histone acetylase that causes 
changes in folding of histone [213]. Either by blood-brain barrier (BBB) or by 
neural plasma membrane (NPM), ketone bodies are transported to the brain where 
they play effective role in neuroprotection of neurons [214]. Ketogenic diet (KT) 
is different from ketoacidosis (KA) in a sense that KT promotes neuroprotection 
by the help of ketone bodies, whereas KA promotes acidification and thus leads to 
neurotoxicity of nerve cells [215].

2.6  Conclusion

Various metabolic transformations arise as normal cells transform into cancer cells 
by a series of events. Associated with these metabolic changes are various metabolic 
genes and enzymes whose mutated expressions alter the metabolic pathways of 
cancer cells and maximize their growth rates as well as nutritive requirements. A 
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thorough understanding of the underlying mechanisms particularly the “Warburg 
effect” while identifying ways and means that could restrain or reverse aerobic gly-
colysis can significantly contribute toward development of novel treatment strate-
gies which could limit the rapidly increasing number of cancer-related deaths.
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3.1  Targeting of Cancer

Cancer develops as a consequence of perturbation of cell’s integral pathways mainly 
involved in growth, proliferation, differentiation. etc. Deregulation of these path-
ways results in the development of hallmarks such as limitless replicative potential, 
insensitivity to growth signals, evading apoptosis, sustained angiogenesis, self- 
sufficiency in growth signals, tissue invasion, and metastasis [1]. Having deregu-
lated at multiple levels and affecting various processes, cancer becomes a 
multifaceted disease. Therefore, its treatment is done accordingly.

To date, scientists are putting their efforts to develop a cure which can treat mul-
tiple cancers; however, given its nature, such treatment is not possible yet. In the 
past, cancer treatment has primarily been focused by the use of chemotherapy in 
which a chemical agent nonselectively inhibits multiple targets in a cell. With the 
passage of time, efforts were invested to develop more targeted strategies. Although 
this chapter is mainly focused on targeted inhibition at nucleic acid level, we need 
to know about different treatments required for curing cancers. Therefore, we will 
start with the most basic treatments.
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3.2  Types of Treatments

3.2.1  Surgery

For the treatment of early stage or locally resident tumors, this method is successful 
because surgery utilizes the physical removal of tumor by incision of the skin and 
organs with the help of instruments. Theoretically, surgery cures the cancer success-
fully. However, this is not always the case since tumors have a capability to metas-
tasize and spread to other regions of the body. For that, physicians cannot always 
tear off every organ or region of the body to remove tumors [2]. Surgery also has 
another limitation, for instance, if after surgery, a single cancer cell is left in the 
body, it has a capability to give rise to a whole tumor which we call tumor relapse. 
Therefore, to make surgery successful, it is usually done before and after adminis-
tering other forms of treatments, e.g., chemotherapy, etc.

3.2.2  Radiation Therapy

Another treatment strategy is based on using ionizing radiations. Mechanistically, 
these radiations either target DNA or generate high reactivity free radicals in cancer 
cells which interfere with the DNA. This form of treatment is effective because the 
intensity of radiations can be adjusted according to the stage and location of the 
tumor [3]. It has been reported that cancer cells do not have a capacity to treat the 
faults introduced by ionizing radiation, whereas normal cells of the body, which are 
continuously being replaced, can avoid the damage. Despite such benefits, radiation 
therapy has certain drawbacks. For instance, treating cancers of later stages, a very 
high-intensity  radiation is required, such intensity can damage non-specific loca-
tions in the body, which ultimately leads to severe side effects [3]. To kill metasta-
sized cancers, repeated exposure to high intensity radiations is necessary, which is 
very harmful for the body. Moreover, radiation therapy cannot be used for treating 
hematologic malignancies.

3.2.3  Chemotherapy

The use of cytotoxic drugs which can destroy cancer cells is referred to as chemo-
therapy. In this, a drug which has multiple targets is used to cause cytotoxicity in 
the cells. The above mentioned strategy is effective in treating resident cancers; 
however, chemotherapy is effective in killing metastasized tumors because the 
drug spreads throughout the body. Mechanistically, chemotherapeutic drugs either 
have a large number of targeted proteins to inhibit or they damage DNA at exces-
sive sites which results in killing cancer [4]. Since this treatment can spread 
throughout the body, therefore, along with killing cancer, it has an equal probabil-
ity to kill normal cells of the body. A high dosage of chemotherapeutic drug can 
cause excessive toxicity in the body, which, resultantly, can lead to death of an 
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individual. Chemotherapeutic drugs include DNA-damaging agents, multiprotein-
targeting inhibitors, alkylating agents, antimetabolites, corticosteroids, etc. [4].

3.2.4  Targeted Therapy

Targeted therapy was made available some two decades ago when scientists started 
focusing on selectively killing cancer cells, leaving the normal cells unaffected. In 
this kind, the drug acts by targeting the deregulated pathway which eventually kills 
the cancer cell only. Since that pathway is responsible for cancer formation, there-
fore, its selective inhibition is beneficial for normal cells of the body [5]. Targeted 
drugs can either be developed through computational modelling or by screening and 
identifying natural compounds capable of killing cancer. As the name suggests, it 
does not cause excessive toxicity in the body as in the case of chemotherapy. 
Identification of the processes involved in cancer formation is primary to the suc-
cess of this form of therapy. It can be done at levels such as inhibiting enzyme activ-
ity, manipulating specific genes or regulatory sequences, inhibiting specific 
pathways, manipulating the uptake of different macromolecules in the cells, etc. [6].

Despite its benefits in overcoming excessive toxicity in the body, targeted inhibi-
tion still comes with a limitation such as cancer relapse. For instance, for the treat-
ment of FLT3 receptor tyrosine kinase mutated acute myeloid leukemia, a drug 
named tandutinib also known as MLN-518 was developed. Initially MLN-518 
showed very potent inhibition; however, after constant exposure, AML started get-
ting resistant leaving the drug ineffective because the cancer developed a gatekeep-
ing mutation in FLT3 which did not let MLN-518 bind to it [7]. Recently, with the 
advent of next-generation sequencing technologies, selective nucleic acid-based 
inhibition has grabbed the attention of cancer research community because firstly, it 
overcomes the limitations found in the case of chemotherapy and targeted inhibition 
and, secondly, it can be utilized under the idea of personalized medicine.

This chapter is mainly focused on discussing the potential of nucleic acid target-
ing by identifying the targeted regions, techniques required for identification, and 
the role of CRISPR technology as an example of emerging treatments against can-
cer. However, to better understand this, we need to understand the levels at which 
targeted inhibition occurs.

3.3  Levels of Cancer Targeting for Targeted Therapy

Sugar uptake in the cells, pathway inhibition or overexpression, deregulation of 
genes required for controlling growth of cancer cells, posttranslational modifica-
tions, and many others are the processes which are responsible for the growth and 
maintenance of cancer cells. Each process, if targeted, has its importance in terms 
of killing cancer. Therefore, we will look deep into the levels of targeting and even-
tually focus on DNA targeting the most.

3 Unravelling the Genomic Targets of Small Molecules and Application…
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3.3.1  Carbohydrate Targeting

Metabolism at cellular level starts with the process of glycolysis which produces 
energy in the form of adenosine triphosphates (ATP). During physiological condi-
tions, cells respire through aerobic mechanisms in which glycolysis is extended to 
mitochondrial oxidative phosphorylation producing excess energy. However, in 
cancerous conditions, metabolic pathways are adjusted which resultantly produce 
pyruvate converted to lactate after glycolysis through Warburg effect. Such process 
is not efficient in producing energy as compared to oxidative phosphorylation; how-
ever, it is essential in producing metabolites required by cancers to carry out differ-
ent functions [8]. A question arises, if Warburg effect is not efficient in producing 
energy, how does cancer fulfill its energy requirements? Cancer adjusts its meta-
bolic requirements and depends on the increased uptake of glucose which in turn 
produces required energy through the Warburg effect. Such process makes glucose 
an attractive therapeutic target for the treatment of cancer [8].

Since glucose is being used by every cell of the body, therefore, glucose inhibi-
tion has to be specific in tumor microenvironment for killing cancer. Recently, 
nanoelectrical circuits were developed; these circuits are directed toward tumor 
microenvironment where they chelate available glucose and kill cancer cells through 
starvation. On the other hand, glucose-mimicking analogs are also being used to 
inhibit the uptake of glucose in cancer cells. These analogs have structural similari-
ties with glucose due to which a competition is created, and resultantly, glycolysis 
and other metabolic activities are halted [9]. Accumulating evidence suggests that 
certain glucose-mimicking analogs have also been developed which are taken up by 
the cells; however, they do not perform any function which results in cell death.

3.3.2  Protein Targeting

Protein targeting is a major focus of researchers around the world. Although it is the 
DNA which codes for proteins and primarily is mutated in cancer, proteins can 
additionally be modified during posttranslational modifications such as phosphory-
lation and contribute to cancer formation. The process of drug development is paved 
by the identification of protein therapeutic targets. In general, certain proteins are 
associated with a specific type of cancer. For instance, human epidermal growth 
factor receptor 2 (HER2) is deregulated in 20–25% of breast cancers, epidermal 
growth factor receptor in colorectal cancer, while 50% of melanoma have mutated 
BRAF.

Protein drug targeting has shown success for the treatment of cancer because 
proteins have favorable binding pockets. Such pockets are beneficial for a drug to 
bind and inhibit the function. A number of different inhibitors have been developed 
for targeting proteins. On top of the list are the inhibitors against G protein-coupled 
receptors (GPCR) which are mutated in a variety of cancers. Second to the list is 
kinase-targeting inhibitors [10]. Our genome codes for 478 kinases approximately, 
each performing a specific function. These kinases add a gamma phosphate group 
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of ATP to the proteins which resultantly turn on or off them. In the case of receptor 
tyrosine kinases which are attached to the cell surface, autophosphorylation of 
receptor occurs upon ligand binding. However, in cytosol, different kinases have 
different substrates to phosphorylate. To summarize, a kinase domain is required to 
add the gamma phosphate group of ATP either on same or on a different protein 
which eventually turn on or off the cascade in cancer as per requirement. The kinase- 
targeting inhibitors specifically kill cancers by inhibiting the phosphorylation of 
kinases required for cancer progression [10].

To date, a large variety of such inhibitors have been approved by FDA to be used 
in the clinic as given in Table 3.1. The mechanisms of kinase inhibition can be cat-
egorized into different types and are given below [10]:

Type 1: Binds to the ATP-binding pocket of kinases and competes for substrate 
in active conformation of protein.

Type 2: Binds to inactive enzyme conformation.
Type 3: Binds to the enzyme next to ATP-binding pocket. In this way, ATP and 

inhibitor both bind to the enzyme simultaneously.
Type 4: Undergoes a reversible interaction outside ATP-binding pocket.
Type 5: Binds covalently to the protein kinase target.
Despite the success, protein targeting has many limitations. For instance, certain 

types of proteins such as transcription factors like Myc do not have a favorable bind-
ing pocket for a drug to bind. This in turn poses great challenges as these transcrip-
tion factors are frequently deregulated in multiple cancers [23]. Different approaches 
such as targeting upstream regulatory proteins, inhibiting the crosstalk etc., have 
been utilized to inhibit undruggable proteins. However, this approach can disturb 
other pathways of the cell. Another drawback for protein targeting is the develop-
ment of resistance as mentioned in protein targeting section of this chapter. To 

Table 3.1 List FDA-approved kinase inhibitors and their drug targets

Drug targets Drugs
ALK Crizotinib, ceritinib, alectinib, brigatinib [11]
BCR–Abl Bosutinib, dasatinib, imatinib, nilotinib, ponatinib [12]
B-Raf Vemurafenib, dabrafenib [13]
BTK Ibrutinib [14]
CDK 
family

Palbociclib, ribociclib [15]

c-Met Crizotinib, cabozantinib [16]
EGFR 
family

Gefitinib, erlotinib, lapatinib, vandetanib, afatinib, osimertinib [17]

JAK 
family

Ruxolitinib, tofacitinib [18]

MEK1/2 Trametinib [19]
PDGFR 
α/β

Axitinib, gefitinib, imatinib, lenvatinib, nintedanib, pazopanib, regorafenib, 
sorafenib, sunitinib [20]

RET Vandetanib [21]
Src family Bosutinib, dasatinib, ponatinib, vandetanib [22]
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overcome such limitations, nucleic acid targeting-based treatments hold greater 
promise.

3.3.3  Nucleic Acid Targeting

Nucleic acids are constantly exposed to genotoxic insults. The mutations intro-
duced by a certain genotoxic agent are most frequently cleared by the DNA dam-
age repair pathways or immune clearance; however, sometimes an escape from 
available defenses resultantly forms cancer. For decades, DNA targeting by the use 
of chemotherapeutic agents has been a prime focus for the treatment of cancers. 
Such strategy nonselectively targets multiple sites on DNA which resultantly cause 
cytotoxicity in cancer as well as normal cells. Due to excessive DNA damage, the 
undesired mutations in normal cells can cause side effects and eventually the death 
of an individual [4].

Looking at the drawbacks of treating cancers by nonselectively damaging the 
DNA, targeted therapy for targeting deregulated proteins was introduced. Yet, such 
therapy has its own limitations as described above. However, with the advent of 
advanced molecular techniques and high-throughput sequencing technologies, the 
information stored in DNA became available. Such information was analyzed by 
creating its relevance with cancer progression, and resultantly, genome targeting 
showed great promise. The information helps us design new drugs and strategies to 
manipulate or inhibit the genome.

Despite the progress in designing chemically designed inhibitors for specific 
gene targeting, the success is very limited because such process may have multiple 
off-target genes. The reason can be the structure of the inhibitor which may find 
multiple attachment sites on genome and affect the normal cells or pathways 
required for sustenance [24]. For this, two strategies are important, one, targeting 
nucleic acids by nucleic acid-based therapeutic strategies and second, by identify-
ing genomic regions which can help us design specific gene targeting drugs.

3.4  Molecular Happenings While Targeting Genes 
for Cancer Treatment

For killing cancer without effecting normal cells, cancer treatments have to have 
selective gene delivery methods with highly specific gene expression, specific gene 
product activity, and, possibly, specific drug activation. For this, efficient delivery 
systems are available and described later in the chapter. To understand the mecha-
nisms of gene therapy, understanding the molecular basis of cancer is very impor-
tant. At molecular level, cancer develops as a result of deregulation of telomere 
maintenance, tumor suppressors, oncogenes, apoptosis, and DNA damage repair 
pathways [25]. Each process is regulated by the products of certain genes. Switching 
on and off of these genes in a way that contributes to cancer formation is very 
important. Under strict immune surveillance, the mutations in these genes are most 
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often cleared; however, an orderly selection of mutations in genes involved in each 
mentioned process leads to cancer formation [25].

Since the basis of cancer deregulation is genome because mutations are being 
introduced there, hence, targeting identified genes is the best possible option. For 
this, specific genes involved in each mentioned process are therapeutically targeted 
using approaches described below. Alternatively, chromatin- and DNA-binding pro-
teins are also important targets for cancer therapy owing to their role in cancer 
progression. Several drugs which target DNA-binding proteins including histones 
have been designed; however, the exact mechanism of their action still needs to be 
elucidated [24].

A number of factors should be considered while introducing a specific type of 
therapeutic agent in the cells. If the therapy is expression-based, in other words, a 
therapy in which DNA sequences are introduced into the cells which resultantly 
transcribe, then the expression of the sequence being introduced is supposed to be 
regulated very tightly; otherwise, it can cause harms. Using promoters to control the 
expression of genes is the best strategy to restrict the effect of the therapy toward 
tumors only [26].

A number of drug and nucleic acid-based treatments are currently being devel-
oped for targeting nucleic acids in cancer cells. Since the time required to develop 
and commercialize them is too long, therefore it would take some time for nucleic 
acid-targeting therapeutic strategies to get access to the clinic as they are being 
tested at different levels. However, we will look into their progress and the mecha-
nisms through which they affect the growth of cancer cells specifically.

3.4.1  RNAi

Under physiological conditions, double-stranded RNA plays a very crucial role in 
regulating the genes for maintaining cellular function, posttranscriptionally. This 
RNA does so by the process of RNA interference (RNAi). Mechanistically, RNAi 
controls the expression of targeted genes by inhibiting posttranscriptional gene reg-
ulation. Certain genes are present in cells which code for RNAi-related transcripts. 
Such genes do not code for any protein or transcribe antisense strand of RNA. When 
a messenger RNA of a targeted gene to be silenced is present, available antisense 
strand binds to it and allows inhibition [20].

Since there is an altered expression of multiple genes in cancer cells, RNAi can 
be used to inhibit the targeted genes. Following are two different types of RNA, 
which can be used for targeting genes for inhibition, microRNA (miRNA) and small 
interfering RNA (siRNA). siRNA is a 21–22 nucleotides long RNA. It is produced 
by  the cleavage of 200–500 nucleotide long double  stranded RNA molecule  by 
Dicer protein. siRNA interacts with RISC  complex and controls gene silencing, 
viral defense, and transposon control. On the other hand miRNA, a 22 nucleotide 
long RNA molecule, is produced by  the cleavage of imperfect RNA hairpins 
encoded in long primary transcripts by Dicer and Drosha. A number of 
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RNAi-mediated cures are currently being developed and tested in clinical trials 
owing to their affordability and precision as shown in Table 3.2 [20].

3.4.2  Chromatin and DNA Targeting

Chromatin is an important regulator of gene expression in cancers which comes 
under the umbrella of epigenetic regulation. Most cancers turn on or off the expres-
sion of required genes by epigenetic regulation through which they can be used for 
cancer progression. Therefore, targeting chromatin-bound proteins, e.g., histones or 
the proteins which are regulating them such as histone transferases, etc., for the 
treatment of cancer is a favorable approach. Despite the importance of these pro-
teins, the required genomic information to use them for selective gene targeting is 
very limited due to which they affect additional regions in the genome. For instance, 
the protein might also be bound with genes which are not deregulated; therefore, its 
targeting will pose additional threats. Hence, such targeting poses a great challenge 
of target selectivity [24].

Despite the challenges, a number of such drugs are being tested in clinical tri-
als. However, their success is very limited. Advanced drugs are required which 
can selectively target a specific chromatin-related protein or a gene. Using the 
next- generation molecular techniques, identification of the genomic targets where 
a specific drug binds on DNA will reveal the binding mechanisms of available 
drugs which eventually will help us design drugs having more specificity and 
efficacy [24].

3.4.3  Nucleic Acid-Based Therapeutic Strategy for Inhibition 
of DNA-Binding Proteins

The potential of DNA in killing cancer is not restricted to genome targeting only, 
but DNA can also inhibit proteins directly. For instance, a certain transcription fac-
tor such as Myc which does not have any favorable binding pocket for a chemical 

Table 3.2 RNAi-mediated cancer treatments in clinical trials

Drug Target Vehicle Disease Phase
CALAA-01 RRM2 Cyclodextrin nanoparticle, 

TF, and PEG
Solid tumors [27]

Atu027 PKN3 siRNA-lipoplex Advanced solid cancer I
[28]

iPsiRNA LMP2, LMP7, 
MECL1

Transfection Metastatic melanoma I
[20]

EZN-2968 HIF-1, survivin Nacked Advanced solid tumor 
or lymphoma

I
[29]

FANG 
vaccine

Furin and 
GM-CSF

Electroporation Solid tumors I
[30]
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drug to bind can be inhibited through DNA-mediated inhibition in which DNA 
mimetics are used. Instead of chemically designed mimetics, DNA-based sequences 
can also be used. Such mimetics are similar to the binding site of a specific DNA- 
binding protein. When this agent is present in the cell, it does not let the DNA- 
binding protein attach to its targeted sequence through competition [31]. Resultantly, 
the idle protein is inhibited. Accumulating evidence suggests that the inhibition of 
topoisomerase through the use of mimetics resulted in faulty replication during 
S-phase of the cell cycle [32].

For the success of this strategy, extensive bioinformatics analysis in identifying 
the binding site of a certain protein to develop a consensus sequence is required. For 
this, delivery of the designed construct is the rate-limiting step. Following are dif-
ferent delivery mechanisms which can be used for the introduction of a construct or 
therapeutic agent into the cells:

3.5  Mechanisms to Deliver Therapeutic Agent in Cancer 
Cells

3.5.1  Viral-Mediated Gene Therapy

Cancer occurs as a consequence of activation of oncogenes and repression of tumor 
suppressors. Specific genes are associated with specific cancers. Activation and 
repression occur at genomic level which in turn control the pathways required for 
excessive proliferation and cancer progression. Identification of such genes can help 
us gain insights to the cancer treatment. The genes like tumor suppressors, which 
are not beneficial for cancer, can be integrated in the genome at specific sites using 
viral vectors, and they can selectively kill cancer cells. Their use is mainly encour-
aged because of the precision for integration at desired region in the genome. For 
this, viral genome is manipulated in a way that its virulence-related genes are 
deleted and it is only left with the capability to transfer the gene of interest [33]. 
Approximately 70% of gene transfer clinical trials include the transfer using viral 
vectors. Although adenovirus and retrovirus are most commonly used, other viruses 
are also being tested in humans. Every virus has a different advantage. For instance, 
retroviruses have great capacity to infect dividing cells, lentiviruses have increased 
capacity to infect nondividing cells, adenoviruses are safe for transient gene transfer 
because they do not integrate their genome into the host cells, and poxviruses have 
inverted terminal repeats in the terminal regions of their genome which help them 
stably integrate the gene of interest [33].

3.5.2  Non-viral-Mediated Gene Therapy

A lot of concerns lie with viral-mediated gene therapy. On top is the ability of 
viruses to cause harm. Although the sequences which can cause harm are deleted 
from the viral genome before application, a high probability exists for it to become 
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virulent. To overcome such problem, non-viral-mediated gene therapy is very help-
ful. Moreover, they are safe and have easy preparation advantages. The examples 
are expression and delivery vectors. These vectors are important for introduction of 
the construct into the cells [33]. For this, multiple options are available. Generally 
these options are categorized as physical and chemical approaches. Physical 
approaches involve particle bombardment, gene gun, electroporation, hydrodynam-
ics, ultrasonics, etc., whereas chemical approaches include membrane fusion, 
receptor-mediated endocytosis, cationic lipids, cationic polymers, lipofectamine- 
mediated endocytosis, etc.

3.5.3  Nanotechnology-Based Gene Therapy

Another important non-viral-mediated gene transfer approach is by the use of 
nanotechnology- based vectors. They are important in delivering specific drugs and 
nucleic acid-based inhibitors to the cancer specifically. Such approach does not 
spread the drug to various parts of the body which resultantly reduces the toxicity 
[34]. For instance, a PI3 kinase-targeting inhibitor called wortmannin was devel-
oped and aborted in phase II clinical trials due to high toxicity in the body. However, 
subsequent studies by coating wortmannin with silver nanoparticles resulted in 
increased efficiency of the drug with minimum toxicity and side effects [35].

Along with chemically developed inhibitors, nanoparticle-mediated delivery is 
also being used to deliver DNA-based therapeutic sequences for gene therapy. The 
most crucial factor in using nanoparticle-based delivery systems is formulation of 
the nanoparticle because it reaches to the target location through the bloodstream. 
Therefore, the formulation should be designed keeping the effects in mind. Different 
nanoparticle-mediated delivery systems have been developed and shown promise 
during preclinical and clinical trials. For example, liposome, lipoplexes, cyclodex-
trin, chitosan, PLGA, calcium phosphate, carbon nanotubes, gold, quantum dots, 
silicon-based nanoparticles, etc. have proven to be successful in different clinical 
trial applications [34].

3.6  Identification of Genomic Targets

As mentioned above that small-molecule drugs nonselectively target cancer-causing 
genes and DNA-bound proteins; however, their importance in targeting cancer with-
out causing major drawbacks, cannot be denied. The carried limitation by such 
approach can be tackled by identifying genome sequences where a specific drug 
binds. Doing so will reveal the information which in turn can be used to design 
drugs that can specifically target the cancer-causing genes. The importance of target 
identification at genomic level is also integral because sometimes certain noncoding 
genes are involved in cancer formation. Without analyzing the genomic data, such 
targets cannot be identified. Hence, the more we have the genomic information, the 
better we can develop strategies for cancer cure. With the advent of next-generation 
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sequencing and advanced microarray technologies, the genomic information is 
more readily available, and the off-target effects can easily be controlled.

Moreover, identification and validation of genomic data are also very important 
for targeting histones and other DNA-binding proteins. Different DNA sequences 
have different binding efficiencies toward similar histones based on the presence of 
specific nucleotide sequences. When a specific gene is targeted by a certain histone- 
targeting drug, the drug may affect multiple genes where the same histone is bound. 
For this reason, availability of genomic data holds integral importance because it 
can be used to manipulate only the genes which are involved in cancer formation. 
To generate required genetic information, different strategies are used; some of 
these are described as follows:

3.6.1  Chem-Seq

Several genotoxic drugs have been used for decades to treat cancers; the exact 
mechanisms by which they operate are not fully understood. It is established that 
these compounds interfere with the processes of transcription and replication, 
thereby promoting genomic instability and cell death. As yet no genome-wide map 
of the binding of these drugs is available [24]. However, through Chem-seq, we can 
identify targets in the genome. Revealing such information can help us develop an 
understanding of the mechanism of their action. This method is based on chemical 
affinity capture and massively parallel DNA sequencing that allows investigators to 
identify genomic sites where small chemical molecules interact with their targets on 
DNA [24]. For instance, bromodomain family of proteins are deregulated in multi-
ple myeloma and found to be associated with transcriptionally active genes. A bro-
modomain inhibitor called JQ1, when exposed to cells and checked for targets, 
showed binding with similar genes as reported for BRD family of proteins. This 
gave the confirmation that targeting BRD family of proteins with JQ1 can inhibit the 
function of BRD-bound genes which eventually introduces disturbance in the 
genome [36]. Through such information, more specific inhibitors targeting a single 
type of BRD protein can be designed.

Chem-seq can also be used for different classes of drugs. For instance, binding 
of AT7519, an inhibitor of CDK9 which rests at the promoter regions of the genes 
and is associated with transcription apparatus, was investigated. AT7519’s inhibi-
tion affects the elongation process of transcription, thereby leading to faulty mRNA 
production. A biotinylated version of AT7519 was used in multiple myeloma cells 
for the identification of genomic targets. The results showed that AT7519 had simi-
lar genome coverage as of CDK9. However, a number of other target sequences 
were also identified which shows that other than CDK9, AT7519 may also have 
additional targets for inhibition [36].

Similarly, Chem-seq can also be extended to identify the genome targets of drugs 
which directly bind to the DNA. For instance, the targets of psoralen, a mutagen 
which intercalates in the DNA, were identified through Chem-seq. Recently, it has 
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been established that psoralen intercalates to the transcriptionally active genes. 
Genome-wide association studies of psoralen through Chem-seq not only confirmed 
this finding but also showed that psoralen binds to transcription start sites of tran-
scriptionally active genes [36].

Along with psoralen, Chem-seq can be used to identify the genomic targets of a 
vast range of intercalating agents such as ethidium bromide, proflavine, doxorubi-
cin, daunorubicin, dactinomycin, etc. All we need is a biotinylated form of the 
chemical agent which after introduction into the cells can be used to identify the 
drug targets. Moreover, DNA-damaging and DNA-modifying agents such as carbo-
platin, cisplatin, oxaliplatin, cyclophosphamide, dacarbazine, carmustine, etc. can 
also be used. To date, there exists a reluctance in using these compounds for cancer 
treatment due to their off-target effects; however, identifying their genomic targets 
with the help of techniques like Chem-seq can help redesign them with altered, 
more efficient, and specific functions.

Mechanistically, a compound or a ligand of interest whose genomic targets are to 
be identified has to be biotinylated with certain agent such as polyethylene glycol 
spacer with appended biotin feature. This conjugate is introduced into the cells and 
allowed for binding with specific DNA-binding proteins/genes/DNA sequences. 
Resultantly, the whole genome is isolated and fragmented, and biotinylated 
compound- bound DNA fragments are separated. The separated DNA fragments are 
then sequenced to generate data that is aligned on the genome which consequently 
tells the genomic targets of the compound under study [36].

3.6.2  ChIP-Seq

ChIP-seq is also known as chromatin immunoprecipitation following high- 
throughput sequencing. The technique is used to identify the genome-wide localiza-
tion of known proteins. The technique comes with diverse applications. For instance, 
in cancers, it can be used to identify the genetic sequences bound with the protein 
of interest. Although, the information contained in polypeptide sequence of thera-
peutically important proteins is important for their targeting; yet, the information 
about the genomic regions  where these therapeutically important proteins  bind 
would give us better insights about their roles in cancer formation [24].

In combination with Chem-seq, ChIP-seq gives reliable information to identify 
the genomic targets of chemical drugs. For this, ChIP-seq can be used to identify the 
genome-wide localization of proteins. The sequence information of genes deci-
phered through ChIP-seq can be used to compare the sequence information gener-
ated after studying the genome-wide localization of drug through Chem-seq [24]. 
For instance, suppose that apart from knowing that BRD is a DNA-bound protein, 
we do not have any information about it. For this, ChIP-seq can play a vital role to 
decipher its genome localization. It can tell the specific regions where BRD binds. 
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After having the information related to sequences bound with BRD in genome, next 
we want to know the genome-wide localization of JQ1 (BRD inhibitor). For this, we 
can use Chem-seq which will give information of JQ1’s genome coverage. Since 
JQ1 is a BRD-specific inhibitor, therefore comparing ChIP-seq and Chem-seq data 
will confirm the genomic targets of small-molecule inhibitors [24].

Mechanistically, ChIP-seq has a minor difference with Chem-seq; however, this 
minor difference accounts for the different applications of both techniques. In 
Chem-seq, the biotinylated chemical agent, whereas in ChIP-seq, antibodies spe-
cific against the protein of interest are used. In ChIP-seq, the antibody is allowed to 
incubate for binding with the targets in cells. After incubation time, the antibodies 
bound with targeted proteins are separated from the cells. The targeted proteins are 
bound with the DNA sequences which are separated for sequencing which eventu-
ally gives the genomic targets of proteins under study [24].

3.7  CRISPR/Cas9 Technology

Clustered regularly interspaced short palindromic repeats (CRISPR) is the most 
powerful genome editing tool of this century and has revolutionized the idea of 
treating diseases. It has shown unprecedented potential in treating diseases without 
limitations and paved the path of drug discovery. Comparing CRISPR with earlier 
genome editing technologies such as zinc-finger nucleases (ZFNs) and transcription 
activator-like effector nucleases (TALENs), increased efficacy, affordability, and 
ease of use can be seen. CRISPR was discovered as an adaptive immune response 
in bacteria in response to invading viruses [37]. The most commonly used system 
for gene editing is the type II CRISPR/Cas system, which consists of three compo-
nents: an endonuclease (Cas9), a CRISPR RNA (crRNA), and a transactivating 
crRNA (tracrRNA). The crRNA and tracrRNA molecules form a duplex structure 
called the guide RNA (gRNA) that can be replaced by a synthetic fused chimeric 
single gRNA (sgRNA), which simplifies the use of CRISPR/Cas9 in genome engi-
neering. The sgRNA contains a unique 20 base-pair (bp) sequence that is designed 
to be complementary to the target DNA site, and this must be followed by a short 
DNA sequence termed the “protospacer-adjacent motif” (PAM), which is essential 
for compatibility with the Cas9 protein used [37].

CRISPR facilitates genome editing by allowing efficient cleavage of a desired 
DNA segment in the genome. The unique quality of this technique lies in its multi-
plexibility through which a DNA segment of interest in the genome can be manipu-
lated. For this, availability/ways to synthesize different sgRNAs are a prerequisite. 
Another advantage with this technique is its flexibility. It cannot only excise or 
delete the DNA sequence of interest but can also do more improved functions such 
as gene editing, addition, knockdown, suppression, etc.
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3.8  Role in Cancer

3.8.1  For Treatments

It’s been decades that efforts are being invested to develop drugs and find ways to 
treat cancer. However, being an evolving disease, which even develops resistance 
against the treatments being used, cancer poses great challenges. Therefore, the 
introduction of CRISPR technology can help reduce the burden of cancer owing to 
its efficiency and promise in dealing with genome-based applications [38]. It can do 
so by regulating (inhibiting or activation) the altered gene expression thereby inhib-
iting the deregulated pathways. CRISPR-mediated cancer application can also be 
done through epigenetic modification in which the Cas protein, which is recruited 
to the DNA, can be modified by being tethered with histones and DNA-modifying 
enzymes. Moreover, genome-based editing through CRISPR can also be done to 
avoid the production of cancer markers which require extensive cancer-relevant 
genomic data [38].

Oncolytic viruses are important to lyse cancer cells or generate immune responses 
in the cells which eventually leads to cell death. The latter is also important to pro-
duce tumor antigens necessary for directing immune cells toward cancer. Through 
CRISPR-mediated genome editing, viruses can be engineered to allow enhanced 
immune responses in cancer cells. A prime example of such virus is herpes simplex 
virus type 1 variants with strong lytic properties, engineered by deletion of the 
ICP34.5 neurovirulence and ICP6 (UL39) (ribonucleotide reductase) genes. Another 
example of immune-based CRISPR therapies for cancer is the generation of chime-
ric antigen receptor (CAR) T cells. These cells are manipulated to target tumors by 
expressing tumor-targeting receptor [37].

3.8.2  For Research Purpose

Identification of therapeutic targets has always remained the backbone of cancer 
research because availability of such information is a prerequisite to the develop-
ment of novel therapeutic strategies for the treatment of cancer. Such identification 
has been done using genetic screens by introducing specific mutations in the 
genome. Subsequently, novel genetic mechanisms involved in the progression of 
cancer are discovered. However, this process has limited success because it usually 
produces heterozygous mutants carrying unknown mutations. Yet, this limitation 
can be avoided using targeted RNAi. Interestingly, high-throughput RNAi libraries 
give reliable information about the genes and the pathways; however, the efficiency 
of knockdown is compromised, and off-target effects occur a lot. To cater to this 
situation, CRISPR-mediated libraries allow complete inactivation, high reproduc-
ibility, and targeting whole genome [37].
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There are mainly three different types of CRISPR-based libraries:

 (i) CRISPR knockout: gene knockout library based on loss of function, used for 
the identification of new mechanisms including drug resistance and cell sur-
vival mechanisms

 (ii) CRISPRa: gene activation library, used to screen a gain of function
 (iii) CRISPRi: gene inhibition library based on loss of function, used to screen for 

loss of function

CRISPR can be used to identify the genes involved in the development of drug 
resistance. This can be done by exposing drug-resistant cells to CRISPR-based 
genome libraries. Each cell will be exposed to a single but different gRNA from 
CRISPR library as compared to the other cell. Specific resistant cells would become 
sensitive to drug after getting exposed to the targeted gRNA from the library. The 
identified genes can then be used to develop therapeutic strategies to overcome the 
resistance. In a study for the identification of mechanisms involved in drug resis-
tance, a CRISPR library identified that HPRT1 gene knockout results in overcoming 
resistance to 6-thioguanine. In other words, CRISPR library identified that HPRT1 
gene is responsible for generating resistant cells to the said drug [37].

3.9  Mechanism of CRISPR Technology

CRISPR-mediated genome editing has a broad range of treatment applications 
which enables it to tackle the dynamicity in cancers. Owing to the great promise, 
different CRISPR-related treatments are currently being tested in humans for the 
technique to approach the clinic. These clinical trials are discussed at the end of this 
chapter. The exact mechanisms through which the technique is being applied in dif-
ferent cancers are important for understanding and described below.

The pioneering study on the application of CRISPR for cancer treatment was 
focused on replacing cancer-causing genes TMEM135-CCDC67 and MAN2A1- 
FER with cell death-promoting gene in prostate and liver cancers, respectively. The 
deregulation of said genes in cancer results in the formation of fusion gene which is 
important for tumor progression. The study was focused on delivering the gene edit-
ing tools in cancer cells using viral-mediated delivery method. Two different viruses 
were used, the first had CRISPR/Cas9 tool for allowing the break points in the 
fusion gene, while the second virus introduced DNA sequences in the created break 
points to hinder the functioning of fusion gene. The introduced manipulations 
resulted in suicide in the cells [39].

Another study for using CRISPR for the treatment of cancer employed the engi-
neering of immune cells to trigger the immune system. This was achieved by 
expressing chimeric antigen receptor (CAR) on the surface of T cells. CARs are 
highly specific against tumor antigens. When expressed on the surface of T cells, 
they promote efficient killing of specific cancer cells. Under pathological condi-
tions, CARs are either repressed or tumor cell surface antigens escape recognition 
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by them. However, manipulating CARs with CRISPR can make T cells efficient for 
recognition and killing cancer. Patients with B-cell malignancies having CD19, 
CD20, CD22, and CD30 antigenic receptors shown promising results during clini-
cal trials. In fact, the most efficient effect was seen in patients with B-cell-mediated 
acute lymphoblastic leukemia in which CD19 antigen-specific CART cells were 
used. The CRISPR system was used to introduce CD19 target CAR in T cells which 
resultantly showed very potent effects in treating patients. A relapse was observed 
in some patients. This relapse was the result of loss of tumor antigen on the surface 
of cancer cells. However, this limitation can be dealt with by using different types 
of CART cells, simultaneously targeting multiple tumor-specific antigens [39].

Recently, the mechanism to excise HIV1 DNA from HIV1-infected human lym-
phocytes has been developed using CRISPR/Cas9 technique. The success and 
promise of this approach is currently restricted to mouse only and is expected to be 
tested in humans soon. This study is indicative of treating viral-mediated malignan-
cies such as Kaposi sarcoma-associated herpes virus (KSHV or HHV8), human 
T-lymphotropic virus leukemia (HTLV), and Epstein-Barr virus (EBV)-induced 
Burkitt lymphoma because these viruses also integrate their genome in the host 
cell’s DNA for causing cancer [39].

3.10  Clinical Trials of CRISPR for Cancer Treatment

Based on the promising preclinical trials of CRISPR-based genome editing for the 
treatment of cancer, the strategy received a green signal to be tested in humans. 
Currently, 11 clinical trials are undergoing for diverse types of cancers in different 
regions of the world, and majority of them are immunotherapies [40]. It is expected 
that the first CRISPR-mediated treatment of cancer will be available in the clinic 
soon. Following are the examples of clinical trials for CRISPR:

Using CRISPR/Cas9 system, a team of researchers designed a strategy to kill 
cancer by targeting programmed cell death (PD1) protein. This protein is an impor-
tant therapeutic target for negative regulation of immune system. Several inhibitors 
including the clinically approved pembrolizumab have been developed against PD1; 
however, the development of CRISPR/Cas9 mediated knock-out of PD1 revolu-
tionzied the metastatic non-small cell lung cancer treatment. Currently, the clinical 
trials of this study are undergoing in China under the clinical trial identification num-
ber: NCT02793856. Mechanistically, cells were harvested from patients, and using 
CRISPR/Cas9 technique, PD1 knockouts were developed ex-vivo in harvested cells. 
Subsequently, CRISPR-modified cells were injected back into the patients to trigger 
immune responses for killing cancer. Similar PD1 knockout- dependent clinical stud-
ies for the treatment of cancers including EBV associated malignancies, prostate, 
bladder, esophageal, renal, T cell are also being conducted with clinical trials identi-
fication numbers: NCT03044743, NCT02867345, NCT02863913, NCT02867332, 
and NCT03081715 [40].

The ex vivo CRISPR-based genome editing for cancer treatment also included 
the generation of chimeric antigen receptor T cells as described earlier. CART cells 
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are important for targeting tumor cells expressing specific receptor antigens. This 
gain-of-function approach for CRISPR is applied to target multiple cancers such as 
multiple myeloma, synovial sarcoma, and myxoid/round cell liposarcoma under the 
clinical trials’ identification number: NCT03399448. CART cells targeting CD19, 
CD20, and CD22 on tumor cell surface were generated; however, CD19 showed 
most effective results during clinical trials. Unfortunately, some of the patients 
injected with CD19 targeting CART cells showed relapse due to the downregulation 
of CD19 in cancer cells. Thus other clinical trials with dual specificity CART cells 
(which target any two of these three CD19, CD20, CD 22) were introduced under 
the clinical trial identification number: NCT03398967 [40].

Another phase I clinical trial for the treatment of human papillomavirus induced- 
cervical cancer is currently in progress. HPV encodes E7 protein which is important 
to induce the malignant phenotype in cervical cancer. Targeting the production of 
E7 protein with relevant CRISPR/Cas9 plasmids led to the destruction of HPV- 
triggered cervical cancer cells during preclinical trials. This preclinical confirma-
tion paved the way for testing this treatment for safety and efficacy studies in the 
clinic [40].

3.11  Conclusion

In conclusion, genome editing through CRISPR-based cancer therapeutics and 
related DNA-targeting strategies have a potential in treating different forms of 
cancer. Not only at present, such approaches can deal with newly developing can-
cers in the future and keep them from developing resistance. Effective techniques 
such as CRISPR being inexpensive and easily available can revolutionize the can-
cer research regardless of economic conditions. Moreover, its application is not 
only specific to cancers as the success has also been seen for treating other dis-
eases as well.
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4.1  Introduction

Cancer is defined as a set of diseases involved in abnormal development of cells with 
an increased risk of dispersal to other parts of the affected body [1, 2]. Cancerous 
cells are regarded as neoplasms, i.e., cluster of cells with unregulated growth and 
ability to develop a lumpy mass, often dispersed diffusely [3, 4]. Absence of appro-
priate signals for optimized cell division and growth, unlimited cell divisions, escape 
from programmed cell death (PCD), unlimited assemblage of blood circulation ves-
sels, tissue invasion, and metastasis formation are the characteristic features of can-
cerous cells [5]. These cells are considered as different from tumors which do not 
disperse to other body parts [4]. Initial symptoms of cancerous cells include lumpy 
region, unusual bleeding, continued cough, inexplicable loss in body weight, and a 
shift in excrement. Human body is affected by more than 100 types of cancers [6, 7].

Most obvious cause of cancer is smoking tobacco that contributes to cause more 
than 22% of cancers in human body. Approximately 10% of cancer is caused by 
body fatness, inadequate body movement/physical exercise, improper diet, and 
extreme alcohol drinking [7, 8]. Exposure to radiations and chemical pollutants may 
also be the cause of developing cancers. Most of the developing countries are at 
increased risk of suffering from cancers mainly due to infections of hepatitis B and 
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C, Helicobacter pylori, human papilloma virus, human immunodeficiency syn-
drome, and Epstein-Barr virus [9]. These elements of developing cancer may mod-
ify the genes within the cells, thereby triggering the cells for abnormal development. 
Most of these genetic changes are heritable, and the chance of transferring from 
parents to offsprings is 5–10%.

Occurrence of different types of cancers varies in men, women, and children. 
The most frequently occurring cancer types in men are colorectal, lung, prostate, 
and stomach cancer [10]. Breast, cervical, colorectal, and lung cancers are most 
commonly occurring cancer types in women [1], while children are most commonly 
suffering from brain tumors, lymphoblastic leukemia, and non-Hodgkin lymphoma 
[1]. Occurrence of cancer varies with age and lifestyle. Current mortality rate due to 
cancer is 80% in developing countries and 66% in the United States[11].

Cancers are often detected by signs and symptoms, and medical-based screening 
tests are followed by a confirmation with imaging and biopsy [12].

A number of cancers can be prevented to some extent by avoiding tobacco smok-
ing and alcohol; less exposure to sunlight; maintaining an optimized body weight; 
consuming fresh fruits, vegetables, and cereals; proper vaccination against infec-
tious diseases; and avoiding red meat and processed food [13, 14].

Routine treatment of cancer involves a combination of chemotherapy, targeted 
therapy, irradiation, and surgery of the affected body area [15, 16].

4.2  Signs and Symptoms

At the beginning, no obvious signs of cancers can be observed on the body. Symptoms 
appear only when affected region develops an observable mass of cells (depending 
on the type and location of cancer). Only few symptoms are common to all cancer 
types, others being specific and vary in different individuals. Cancer is often diag-
nosed in individuals suffering from other infectious diseases with the symptoms 
commonly observed in cancerous patients; thereby it is called as a “great imitator.” 
For instance, lung cancer can cause blockage of bronchi with the result of having 
cough and pneumonia; difficulty in swallowing food may result from narrowing of 
esophagus due to esophageal cancer; contraction of bowel may result from colorectal 
cancer affecting bowel movement. Bleeding occurs due to ulceration, which may 
lead to bleeding during cough, in bowel, and during urination, through rectum or 
vaginal bleeding. Initially swelling may occur in the affected area which is normally 
painless. Pain may occur at advanced stage of cancer. Sometimes, fluids accumulate 
in abdominal or chest region [17]. General symptoms include constant fever, persis-
tent body weight loss, abrupt changes to skin, and extreme fatigue [18].

Cancer can be metastatic in nature, i.e., it is dispersed to other parts of the body 
away from its origin either by hematogenous spread (dispersal by blood) or lym-
phatic spread (dispersal by lymph to lymph nodes). Metastatic cancer may lead to 
enlarged lymph nodes often felt as hard nodes under the skin. It may also lead to 
inflamed liver or spleen with painful abdomen.
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4.3  Cause

Cancer is caused by either environmental (90–95%) or genetic factors (5–10%). 
Environmental factors may include economical, behavioral, and physical factors 
that are not merely considered to be heritable.

Carcinogens may be the primary cause of developing most of cancers. For 
instance, smoking tobacco causes 25–30% of all the cancers. Tobacco is the leading 
cause of lung cancer (90%) in addition to causing neck, head, larynx, esophagus, 
stomach, kidney, bladder, and pancreatic cancer [19, 20]. As smoke of tobacco con-
tains more than 50 carcinogens with nitrosamines and polycyclic aromatic hydro-
carbons, thereby it is responsible for 1 out of 5 deaths due to cancer worldwide [20, 
21]. Extra body weight is linked to the development of different types of cancers 
leading to death (14–20%) in the United States [22]. In the United Kingdom, nearly 
12,000 cancer cases are reported each year due to increased body mass index which 
may lead to death [22].

Lack of physical exercise, obesity, and poor nutrition are also the cause of cancer 
(30–35%). Lack of bodily movement is associated with health effects on immune 
system as well as on endocrine system [22]. Overeating is also the cause of cancer 
than eating few fresh fruits and vegetables. Some foods have carcinogens that may 
cause a specific type of cancer. For example, oral cancer is caused by chewing betel 
nut, gastric cancer is caused by having highly salted diet, and liver cancer is caused 
by aflatoxin B1 [23].

Infectious diseases are causing approximately 15–20% of all the cancers. 
According to an estimate, 18% of cancer deaths are caused by infectious diseases 
(with a rate of 25% deaths in Africa and 10% in developed world) [21]. Viruses are 
the leading source of cancer throughout the world. Among viruses, Epstein-Barr 
virus, hepatitis B and C virus, human papilloma virus, human T-cell leukemia virus-
 I, and Kaposi’s sarcoma herpesvirus are causing B-cell lymphoproliferative disease, 
hepatocellular carcinoma, cervical cancer, T-cell leukemia, effusion lymphomas, 
and Kaposi sarcoma, respectively. Some bacteria may cause certain types of can-
cers, for example, gastric carcinoma. Some cancers are also caused by parasites 
such as bladder carcinoma and cholangiocarcinoma [24–26].

Irradiation is the major cause of skin cancer (10%). Ultraviolet radiations, sun-
light, radon gases, and rays emitting from medical imaging tools [27] are the lead-
ing causes of developing skin cancer. Combination of radiations with tobacco 
smoke and radon gas becomes a strong cause of cancer affecting almost every part 
of the body [26]. Almost all the cancers are nonheritable, but only a lesser percent-
age (0.3%) of population become carrier to this disease causing nearly 3–10% of all 
the cancers. For example, inherited mutations in particular genes may increase the 
risk of cancers (mutation in BRCA-I and BRCA-II genes may increase the risk of 
breast, ovarian, and non-polyposis colorectal cancer to 75%) [28]. Taller people 
have more tendency of developing cancers as they possess more number of cells as 
compared to short stature individuals [29].

Prolonged exposure to some fibrous physical substances such as asbestos, 
attapulgite, glass wool, rock wool, and wollastonite may also cause cancer. Some 
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nonfibrous materials are powdered nickel, cobalt, cristobalite, quartz, and tridymite. 
Physical materials need to remain inside the body for long for causing cancer [30].

Hormones are the potent accelerators of carcinogenesis. For example, growth fac-
tors involved in insulin production and their associated binding proteins are potential 
source of developing cancer. Sex-linked cancers (breast, bone, endometrium, thyroid, 
testis, and ovarian cancers) are often spread by hormones [31]. Obesity is also an 
indirect cause of cancer due to involvement of certain hormones. Hormone replace-
ment therapy by some individuals may lead to cancer. That’s why, doing exercise may 
minimize the risk of developing cancer due to lesser hormone production [31].

4.4  Genome Editing

A branch of genetic engineering which involves integration, removal, replacement, 
or modification of DNA within genome of an organism is termed as genome engi-
neering or genome editing. Genetic engineering is no longer a new approach. During 
the 1970s, it emerged as a method of introducing a unique DNA sequence into an 
organism’s genome. Genome engineering puts forward a huge number of products 
with designated benefit to mankind. But major drawback of this technology was the 
increased risks of random insertion of transgene which may disturb adjoining genes 
and their expression. Scientists struggled to seek out alternative strategies for target-
ing foreign genes at specific location without disturbing indigenous genes, which 
may not only help in editing DNA sequences precisely but also help in minimizing 
off-target effects of the introduced gene. Site-specific genome engineering will find 
its way for gene therapy to cure numerous genetic disorders by introducing a func-
tional gene and to replace it with diseased one.

Contrary to previous genome-editing strategies which rely on random gene 
insertions/deletions, latest genome engineering tools target insertions/deletions site 
specifically. These genome engineering tools are termed as molecular scissors. 
Since 2015, these engineered nucleases are grouped into four families: meganucle-
ases [32], zinc finger nucleases (ZFNs) [33], transcription activator-like effector 
nucleases (TALENs) [34], and clustered regularly interspaced short palindromic 
repeats (CRISPRs) [35]. Nine editors of living organisms are reported: three DNA 
(TtAgo, het/exo MAGE, and RecA CAGE), two RNA (Cas9 and Group II introns), 
and four proteins (recombinases, meganucleases, ZFN, and TALEs) [35, 36]. By the 
start of 2011, meganucleases, ZFNs, and TALENs were designated as genome- 
editing tools of the year by Nature Methods [37]. A major breakthrough of 2015 was 
CRISPR/Cas9 system, which was considered as the most efficient genome engi-
neering tool of the current era [38].

Integrity of genetic material is extensively vital for its function. As DNA is intrin-
sically unstable in living organisms, it is subjected to sheer due to extensive physical, 
chemical, or mechanical stress (reactive oxygen species produced by respiratory 
pathways or chemotherapeutic drugs) or ionizing radiations which may lead to sin-
gle- or double-strand break (DSB). Such DSBs also occur during meiosis when 
recombination occurs between nonhomologous chromosomes during crossover or 
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chiasma formation that allows exchange of segments between nonhomologous chro-
mosomes. Although there is no report on how persistently a DNA damage can occur 
inherently without exposure to any foreign chemical, it is noticeable that a single 
DNA damage can cause cell death. DSB, if rendered unrepaired, can cause gene 
disruptions and deletion of chromosome or other chromosomal aberrations that may 
ultimately lead to cancer [39]. Such DSBs are repaired inherently by two mecha-
nisms: nonhomologous end-joining (NHEJ)/illegitimate recombination and homol-
ogy directed repairing/homologous recombination (HDR/HR). Apart from these 
repair mechanisms, DSBs can also be repaired by a single-strand annealing (SSA) 
mechanism, which involves removal of DNA sequences flanked between repetitive 
DNA elements [39].

All the DNA damages including DSB are harnessed at check points within cell 
cycle which may halt the cell cycle and prevent the genetic material to enter into 
mitotic (M) or synthetic (S) phase. This process prevents the most common errors 
caused by DNA damage or chromosomal loss. When the DNA damage is repaired 
by repair mechanisms, the cell cycle continues from where it was halted [8]. DSBs 
may lead to cell death/apoptosis, which result from the intolerable damage of DNA 
(tolerance of DNA damage by different cells within an organism varies) [39].

During homologous recombination, DNA double helix unwinds and invades into 
the paired homologous duplex (homologous chromosome, sister chromatid, or a 
homologous viral/vector genome). This DNA DSB repair is done with homologous 
recombination using homologous strand as a template (Fig. 4.1). Thus homologous 
recombination needs wide sections of homologous DNA in other duplex without 
having any loss of genetic material. Numerous genes responsible for homologous 
recombination have been reported, viz., MRE-11, RAD-50, RAD-51, RAD-52, 
RAD-54, RAD-55, RAD-57, and XRS-2. These genes were identified by using 

Fig. 4.1 Double-strand breaks repair
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ionizing radiation-sensitive mutants during yeast genetics studies. Currently these 
genes have been cloned for studies in mammalian cells [39]. The DSB repair path-
way is the preferred route of DNA repair in yeast. The process works by involving 
RAD-52, which is a binding protein for DNA ends, and RAD-51, which is a 
filament- forming protein around unwound strands of DNA.  The process also 
involves DNA polymerase and DNA ligase I (DNA ends ligation). Some other pro-
teins help in unwinding of DNA without any loss of genetic material.

Nonhomologous end joining doesn’t require much homology with other DNA 
duplex for DSB repair (Fig. 4.1). This process joins the broken ends directly and 
requires a Ku protein in mammalian cells which is a DNA ends-binding protein. Ku 
protein forms a complex with DNA-PKcs in mammals. Other genes responsible for 
nonhomologous end joining are MRE-11, NBS-1, and RAD-50 and XRCC4-DNA 
ligase IV complex. There are chances for missing of few base pairs during repair by 
nonhomologous end joining [40].

Often, DSBs aren’t blunt ended, but they carry single-strand overhangs. Such 
type of DSBs needs to be clipped by exo-/endonucleases to make them blunt ended.

4.5  Genome-Editing Tools

The phenomenon of genome editing relies on occurrence of DSBs. Most of the cur-
rently used restriction enzymes were able to cut DNA at multiple locations within 
genome. To address this controversy and to make DSBs repair site specific, new 
classes of endonuclease were introduced for site-specific genome editing. These 
were named as meganucleases, ZFNs, TALENs, and CRISPR/Cas system.

4.6  Meganucleases

Meganucleases were discovered in later half of 1980s. These nucleases belong to 
the family of endonucleases which are able to identify and cut large sequences of 
DNA ranging between 14 and 40 base pairs [40]. Widely characterized meganucle-
ases are from the family of LAGLIDADG nucleases, whose name comes from a 
conserved sequence of amino acids. Meganucleases were first discovered in 
microbes with a characteristic of more than 40 base pairs long DNA recognition 
sequence [41, 42]. But there are no specific meganucleases that can target specific 
sequence of DNA. For addressing the problem of non-specificity, high-throughput 
screening methods were utilized to make them as specific [42, 43]. Alternate strat-
egy was to fuse a meganuclease with another one to create a hybrid enzyme that is 
able to recognize a unique DNA sequence [44, 45]. A substitute method for stating 
the specificity of meganucleases was introduced by adjusting DNA-interacting 
amino acids. This method was named as rationally designed meganucleases by 
Smith et  al. [36]. A programmed model of homing endonucleases was also pro-
posed as an alternate strategy to assign specificity to meganucleases [46]. Moreover 
multiple units can be combined to make chimeric meganucleases. Chimeric enzymes 
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can provide a wide range of applications in agriculture, health, industry, and energy 
sector. An example includes a commercial scale production of meganucleases that 
can cleave XPC gene in humans capable of developing a severe disease Xeroderma 
pigmentosum. This disease may cause skin burns leading to skin cancer by exposure 
to UV irradiation [47].

Meganucleases seem to be less toxic to living cells in terms of less DNA sequence 
specificity as compared to ZFNs and TALENs. But the construction of chimeric or 
sequence-specific nucleases is expensive and time-consuming. Meganucleases are 
also not using combinatorial properties of nuclease and binding domains as ZFNs 
and TALENs are using.

4.7  Zinc Finger Nucleases (ZFNs)

Contrary to meganucleases, ZFNs and TALENs technology relies on the combina-
tion of a non-specific nuclease domain and a very specific DNA-binding domain. 
DNA-binding domain recognizes specific proteins, i.e., zinc fingers or TALEs, and 
the nuclease domain causes DSB at the recognized region. For construction of engi-
neered nucleases, a specific endonuclease is required which has both the domains 
(nuclease and DNA-binding domains) separate from each other. Most of the time, 
the nuclease domain of such enzymes is separated and is connected to DNA- 
recognizing sequences of high specificity (Fig. 4.2) [47].

Most of the transcription factors carry zinc finger motif which is responsible for 
their three-dimensional structure. Zinc finger motif is present at the junction of pro-
teins and DNA which helps in stabilizing the interaction between DNA and protein. 
Each finger has C-terminal region responsible for recognizing specific DNA 
sequence. Each zinc finger is able to recognize short only three-base-pair DNA 
sequence, but combining more than 6–8 zinc fingers makes them a unique nuclease, 
able to recognize more than 20 bp of DNA. This strategy is reported to control the 
phenomenon of angiogenesis in animals [37]. ZFNs can be used in genome engineer-
ing by fusing zinc fingers with catalytic domain of restriction endonuclease for tar-
geted DNA DSB [49]. The actual process involves the association of DNA- binding 
protein carrying most precisely chosen catalytic domain of FokI restriction endonu-
clease. FokI enzyme needs to be dimerized in order to cleave the double- stranded 

Fig. 4.2 Zinc finger nucleases (Source: Aslam et al. [48])
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DNA. Both the enzymes recognize two DNA sequences which separated a few base 
pairs apart. Both the FokI domains come closer on interaction with their respective 
DNA sequences. The specificity of each zinc finger is markedly increased on dimer-
ization and recognition of specific DNA sequence. To give them marked specificity, 
nuclease domain is engineered to function as heterodimer [50].

Multiple approaches are available for designing an engineered ZFN. Modular 
assembly involves the use of a combination of zinc finger units with known DNA 
sequence. Bacteria, yeast, and mammalian cells are optimized to characterize the 
specificity and cell tolerance of ZFNs. Genome-wide characterization of ZFNs has 
not yet been reported. It has been reported that only 1–2 DSBs occur as background 
in samples treated with ZFNs carrying a 24 bp DNA recognition site FokI nuclease 
domain as heterodimer [50]. Heterodimer functioning of ZFNs creates enhanced 
specificity of creating a DSB. Although the nuclease domain of both the TALENs 
and ZFNs possess the same characteristics, the only difference is in their DNA rec-
ognition domain. ZFNs are made up of Cys2-His2 zinc fingers and TALENs are 
made up of TALE proteins. Both the TALENs and ZFNs are constructed to maintain 
their natural properties of DNA recognizing domain combination. A large number 
of DNA interrelating proteins, i.e., transcription factors, possess Cys2-His2 zinc 
fingers in repeats normally three base pairs apart and in varied combinations. All the 
ZFNs are considered entirely independent, but the binding affinity is determined by 
its neighboring ZFN.

Contrary to ZFNs, each TALE is able to recognize a single base pair of the rec-
ognized region. Due to their construction in repeated pattern, varied combinations 
impart a wide variety to the engineering of TALENs and ZFNs [51]. Zinc fingers 
have been engineered to make them site specific using multiple approaches, viz., 
modular assembly, OPEN, and bacterial single hybrid system for screening libraries 
of ZFN. ZFNs are being used in R&D for genome editing in multiple laboratories. 
Sangamo Biosciences, a renowned company in the United States, is utilizing ZFNs 
for therapeutic reasons in genome engineering of stem and immune cells [52, 53]. 
Genetically modified T lymphocytes through ZFNs are in initial clinical trials for 
treatment of glioblastoma, a king of brain cancer. Engineered ZFNs are also being 
used in fighting against AIDS [50].

4.8  TALENs

Transcription activator-like effector nucleases (TALENs) are specific restriction 
enzymes designed to recognize a specific sequence of DNA.  These engineered 
nucleases are constructed by combining DNA-binding domain (TALE) and DNA 
cleavage domain (FokI). Generally they are made up of 30–35 amino acids long 
with each amino acid capable of recognizing a single base pair. These targeted pro-
teins are termed as molecular scissors that are capable of site-specific insertion, 
removal, and translocation of gene within living organisms [54]. DNA-binding 
domain of TALENs is obtained from TAL effectors, a specific DNA-binding protein 
extracted from a plant pathogenic bacterium Xanthomonas. TALE effectors are 
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composed of repeated TALE domains that consist of normally 34 amino acids, with 
each amino acid capable of recognizing a single base pair of the targeted DNA. Like 
ZFN, targeting TALENs creates DSB that can be repaired by indigenous NHEJ 
repair mechanism within the cell. A small integration or removal happens at the 
target site during the course of repair. All repeats within a TALEN are conserved 
except the amino acids positioned at 12th and 13th position. These specific repeats 
are termed as repeat variable di-residues (RVDs) whose specificity determines the 
DNA sequence with which that specific TALEN has to bind. The process of binding 
each TALE with a specific base pair at the target site is pretty straightforward as 
compared to ZFNs. TALEs fuse to catalytic domain of FokI restriction endonucle-
ase to form TALENs. This combination imparts specificity to TALEN to target and 
cleave specific DNA site. Recognition system of TALENs is conveniently predict-
able than ZFNs; this convenience is due to its 30 plus base pairs recognition site. 
TALENs are able to bind within a range of six base pairs of any nucleotide within 
the entire genome of a living organism [55, 56]. TALENS are more efficient as 
compared to ZFNs in terms of higher specificity to bind DNA target site, lesser off- 
target effects, and an easier construction of DNA-binding domain (Fig. 4.3).

4.9  CRISPR/Cas System

Bacteria use a defense system called clustered regularly interspaced short palin-
dromic repeats (CRISPR) to protect themselves against viruses [57]. CRISPR sys-
tem consists of short palindromic repeat sequences originated from viral/phage 
genome and has been integrated into the genome of bacteria during prior viral/

Fig. 4.3 Transcription activator-like effectors nucleases (Source: Aslam et al. [48])
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phage attack. These sequences are used to disintegrate viruses/phages during subse-
quent attacks. These DNA sequences play a significant role in serving as a defense 
system of bacteria and archaea [57]. CRISPR system uses CRISPR-associated pro-
teins (Cas9) as an enzyme to target and cleave the Cas9-recognized complementary 
DNA sequence. CRISPR-associated proteins are involved in processing the DNA 
sequence to match it according to the attacking viral sequence for specific targeting. 
This combination of Cas9 protein and CRISPR DNA sequences makes today’s era 
the most remarkable technology, the CRISPR/Cas9 system [58] (Fig. 4.4).

The CRISPR/Cas9 system is an inherent immune system of bacteria/archaea to 
impart acquired immunity against invading genetic elements (phages/viruses/plas-
mids) [59–61]. Guided RNA (gRNA) having spacer sequences guides Cas9 proteins 
to recognize and cleave invading viral and RNA sequences [62]. CRISPR system 
has been reported in nearly 50% and 90% of bacterial and archaeal sequenced 
genomes, respectively [63].

A significant addition to CRISPR system is the presence of CRISPR-associated 
genes. Minor clusters of Cas genes are present adjacent to CRISPR spacer sequences. 
Cumulatively, 35 families containing 93 CRISPR-associated genes have been 
reported based on sequence homology. Among 35 Cas gene families, 11 families 
form the core structure of CRISPR system comprising Cas1–9 gene families. 
CRISPR/Cas locus must possess at least one Cas core gene for proper recognition 
and cleavage of the targeted sequence [64].

CRISPR/Cas system is categorized into two classes. Class I CRISPR system 
uses a combination of Cas genes to cleave foreign DNA sequence. This class is 
further subdivided into type I, III, and IV CRISPR systems. Contrary to Class I, 
Class II CRISPR system uses a single Cas gene for degrading foreign genetic ele-
ments. Class II is further subdivided into type II, V, and VI [65]. All the 6 CRISPR/

Fig. 4.4 CRISPR/Cas system (Source: Aslam et al. [48])
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Cas systems are divided into 19 subtypes characterized by a specific protein unique 
to that specific type [66].

The mechanism of CRISPR/Cas system starts by invading a virus. As a first step 
in adaptive immunity, the viral sequence is captured and is inserted as spacer 
sequence into the CRISPR locus and cleaving of protospacer. As Cas-I and Cas-II 
genes are involved in spacer sequence acquisition, they are present in all types of 
CRISPR systems [56, 67–71]. The protospacer sequence is bound to direct repeat 
sequences present next to the leader sequences. Single strand extends to repair the 
CRISPR sequence resulting in duplication of direct repeat. The rest of the two 
stages in CRISPR mechanism (CrRNA processing stage and interference stage) act 
differentially in all the three CRISPR systems. Cas9 genes cleave primary CRISPR 
transcript to yield CrRNA. Type I CRISPR system uses Cas6e and Cas6f to cleave 
the direct repeat at the intersection of single-strand (ss) and double-strand (ds) RNA 
by forming a hairpin structure. Type II CRISPR system makes dsRNA by using a 
tracer RNA (trans-activating RNA) cut by Cas9 enzyme and RNase III. Type III 
CRISPR system uses a homolog of Cas6 that doesn’t involve any hairpin structure 
for cleavage. Furthermore, types II and III systems require trimming at 5′ or 3′ posi-
tion to yield fully functional CrRNAs. Interference complexes are made by combi-
nation of CrRNA and Cas proteins. For proper functioning of type I and type II 
CRISPR systems, association between PAM sequences and Cas proteins is required 
for cleaving foreign DNA. But type III system doesn’t require association for PAM 
sites for cleavage as base pairing occurs between mRNA and CrRNA which is indi-
rectly targeted by type IIIB system [56, 67–70].

This system is currently being used for targeting specific DNA sequences of 
eukaryotic genomes in multiple strategies. One strategy is to introduce a CRISPR- 
based plasmid-carrying Cas genes and its associated gRNA and scaffold into 
genome of living organisms to cut the genome at a very specific target site [70]. 
Numerous companies like Cellectis [72] and Editas have emerged to monetize the 
CRISPR/Cas system and are contributing toward gene therapies [73].

Numerous significant innovations regarding CRISPR system have been recently 
reported in terms of bridged nucleic acid integrated CRISPR RNA for highly pre-
cise recognition of DNA [74], highly efficient CAS9 system for homology-directed 
DNA repair [75], HypaCAS9 [76], xCAS9 associated with bordering PAM sites 
[77], and LOAD system (local accumulation of double-strand break repair) [78].

4.10  Could Genome Editing Enhance or Diminish Cancer 
Risk? The Big Picture

According to two independent study reports from University of Helsinki Finland and 
Karolinska Institute, CRISPR/Cas9 system can enhance the cancer risk. Scientists and 
researchers from both institutes reported that p53 protein that serves as the first aid kit 
of cells is activated by CRISPR/Cas system in human cells. On activation, p53 dimin-
ishes the CRISPR/Cas9 system genome-editing efficiency; thereby cells having no or 
lesser p53 are more likely to succeed for genome editing. The cells lacking in p53 are 
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more likely to grow overpoweringly and turn out to be cancerous. Dr. Emma 
Haapaniemi at the Department of Medicine in Karolinska Institute said that the cells 
with successfully repaired damaged gene are more likely to lack functional p53 pro-
teins. And if a foreign gene for a hereditary disease is transplanted into an individual 
in cells lacking p53, there is a high risk of cancer in those cells that can promote the 
biosafety regulations of CRISPR system. Dr. Bernhard from the Department of 
Medical Biochemistry and Biophysics from the same institute added that CRISPR/
Cas system is a powerful tool but has a staggering potential for gene therapy.

Long story short, no doubt CRISPR system is a powerful tool of genome editing, 
but it is something that the patients and doctors must know of. It is further suggested 
that the there is a dire need for the work on the response of p53 CRISPR system- 
based gene therapies [79].

4.11  Conclusion

Genome-editing technologies have revolved out to be obligatory for scientific pro-
gressions. This may be due to their widespread applicability in both fields, i.e., basic 
research in understanding fundamental queries about how basic life form works and 
in the development of biotherapies for multifaceted diseases like cancer. However, 
there are still numerous challenges linked with this technology that need to be 
addressed. For example, the huge size of Cas9 protein makes it problematic to pack-
age the protein in low-immunogenic AAV vectors that can be used both ways, i.e., 
in vivo and in vitro gene delivery. For instance, Cas9 from Staphylococcus aureus 
and Staphylococcus pyogenes has been reported to cause infectious diseases in 
humans. One favorable strategy to resolve this issue is to restructure Cas9 protein or 
use a different protein from bacteria that is able to outflow from the immune 
response of the host. A CRISPR/Cas9 delivery system based on the lipid nanopar-
ticles has been developed by Intellia Therapeutics, which was developed for gene 
editing of rodents and primates (nonhuman). Some ethical issues also developed 
with the progression of genome-editing technologies. With the reported advent of 
“CRISPR babies” in November 2018, scientists and researchers were liable to 
answer the challenges of latest genome-editing technologies potentially entering 
into the era of genetic inequality and its long-term consequences. Although the chal-
lenges and risks prevail, genome-editing technologies embrace vast prospective and 
are a prodigious addition to the genetic engineering toolbox for the development of 
biotherapies that can recover patients in the future permanently.
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5.1  Introduction

Rise in the cancer mortality is indeed mostly accredited to the detection of cancer in 
its advanced stage, which sometimes makes the controlling of the disease inefficient 
with subsequent treatment. In order to potentially reduce cancer-related mortality, a 
device that is efficient and capable of diagnosing cancer at its initial stages in rou-
tine checkups can bring revolution in this debate. The possibility of tracking cancer 
exists well before the symptoms are expressed [1], through the identification of 
cancer biomarkers. According to the National Cancer Institute of the United States, 
biomarkers can indicate abnormalities such as cancer [2] when they are found in 
different tissues and body fluids. They can also indicate the type of cancer and its 
degree of progress by the concentration of the type of protein found in the fluid/tis-
sue. There are specific biomarkers associated with different kinds of cancer [3]. 
Various biomarkers are used in treating patients and the development of new forms 
of diagnosis/prognosis. These biomarkers can be detected through some analytical 
devices of great sensitivity and selectivity [4–6] at early stage disease. Noteworthy 
are the proteins, the specific interaction of antibodies with antigens (AB-AG) and 
nucleic acids (DNA, mRNA). An example is gene p53 that is inactive in various 
types of tumors, e.g., leukemia, lung, gastrointestinal, breast, and adrenocortical 
and skin cancers [7]. This prospect has taken worldwide attention toward a huge 
search for appropriate biomarkers.
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Widely, biosensors have been produced by taking in use the molecular engineer-
ing, where the synergy of the constituent material provides great sensitivity and 
selectivity to the sensors [8, 9]. Many devices are fabricated in a layer-by-layer 
manner, where a bioactive layer is placed over a suitably selected matrix [9–13]. In 
this regard, most methods to detect the biomarkers make use of the strategy of the 
specific interaction that takes place between the immobilized/stranded biomolecules 
on a biosensor and the biomarkers on the cells in the sample [14]. The biosensors in 
this way are referred to as immunosensors as they involve the interaction of antigen 
and antibody [14]. Performance excellence by such biosensing schemes may be 
specifically relevant to the early and efficient detection of cancer, which is a source 
of great motivation behind all the extensive work going on in this field.

Hereof, various different types of immunosensors have been made, each kind 
with a different principle of detection. These detection principles involve surface 
plasmon resonance [15–17], electrochemistry [18–20], piezoelectricity [21, 22], 
chemiluminescence, and impedance spectroscopy [9, 23, 24]. In this chapter, we are 
going to emphasize on the sensing units that are based on the models of adsorption. 
These units are made by incorporating nanostructured films with the aid of methods 
like self-assembling of monolayers (SAMs) [25] and layer-by-layer (LBL) [26, 27]. 
These two methods are suitable methods, as they preserve the activity of the 
adsorbed biomolecules.

In the case of adsorption, after the initial work from Langmuir, adsorption mod-
els have been approved from quite some time [28]. Through the Langmuir model, it 
can be explained and quantified how an adsorbate forms a monolayer on a surface, 
depending on ionic equilibrium among the solid-liquid phases [28, 29]. For instance, 
with a little modification, the Langmuir-Freundlich model is indeed a useful model 
to explain and demonstrate how adsorption takes place on heterogeneous surfaces, 
as it considers the possibility of successful adsorption in multilayers. Despite the 
simplifications that these two models possess, these are capable to be applied to 
explain the adsorption of macromolecules, such as to the semiconducting polymers, 
when they are applied in a layer-by-layer way [30]. Here we describe the working 
of immunosensors based on the principle of adsorption by using Langmuir and 
Langmuir-Freundlich models. Distinct methods have been developed and applied to 
verify the adsorption of biomolecules, e.g., polarization modulation-infrared 
reflection- absorption spectroscopy (PM-IRRAS), nano-gravimetry with a quartz 
crystal microbalance (QCM), and atomic force microscopy (AFM).

5.1.1  Biosensor and Cancer

A biosensor is essentially a device which is useful in the detection of any biological 
molecule/analyte that can be a part of the environment or present in any biological 
species (i.e., within living species), as shown in Fig. 5.1. A biosensor typically con-
sists of three parts which are recognition element, signal transducer, and a signal 
processor that finally processes and shows a result. The recognition element tends 
to recognize the signal from the analyte, where the transducer is incorporated to 
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convert the biological signal into an electrical signal at the output [31]. Information 
like whether an analyte is present in a living being and up to what extent can be 
transduced into an electrical signal which may later be amplified, displayed, and 
analyzed. The analytes may include biological components, any metabolic compo-
nent like glucose, nucleic acid, and proteins (such as antigen, antibodies, and 
enzymes).

Within the area of medicine, such biosensors can be employed to display sugar 
levels in diabetic patients, for detection of pathogens and for the diagnosis and 
monitoring of cancer. In military line, the biosensors are of potential interest to 
diagnose any warfare elements of chemical and biological nature in order to avoid 
any infections due to potential exposure. In the future biosensors would also include 
chip-scale devices that would be installed on the human body to detect any vital 
signals and for the correction of any abnormalities or even for signaling call in case 
of an emergency. Hence, there are unlimited ways in which biosensors can make our 
lives easier.

In the case of cancer, biosensors mainly detect the analyte which is held respon-
sible for the presence of a tumor in a patient. By measuring the extent of the level of 
a certain protein, biosensors can diagnose the presence or absence of tumor and 
whether or not a certain treatment helped in curing cancer cells and so on. Since in 
many cancer types multiple biomarkers are involved, biosensors capable of detect-
ing multiple analytes are effective. This ability of a biosensor to test and recognize 
simultaneously multiple markers not only is helpful in cancer diagnosis but is also 
a time-saving and a financially friendly possibility.

5.1.2  Biomarkers

According to the National Cancer Institute, biomarkers are defined as biological 
molecules that are found in blood or in different body fluids, or in tissues, which 
possess signs for any normal or abnormal condition, process, or disease. This is 
how biomarkers can be utilized to evaluate how a body responds to a specific dis-
ease and to a specific treatment. There can be various molecular origins for the 
biomarkers such as DNA (translocation, amplification, specific mutation, and loss 
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of heterozygosity), RNA, or protein (antibody, tumor suppressor, hormone, or spe-
cific genes). In this regard, cancer biomarkers are potentially one of the valuable 
tools for the cancer detection. Typically, the body fluids where the biomarkers are 
detected are blood serum, cerebral and spinal fluid, urine, or the tumor cells [32]. 
Some of the cancer biomarkers with the cancer types they cause are listed here, for 
example, CA19-9 is potentially held responsible for the pancreatic cancer [33], 
CA15-3 for the breast cancer [34], Her-2/neu for the stage IV breast cancer [35], 
and PSA for the prostate cancer [36]. Most cancer biomarkers, however, have yet 
to show sufficient specificity and sensitivity regarding the monitoring of cancer 
treatments, which is where biosensor technology can prove itself to be of vital 
importance.

5.1.3  Manufacturing of a Biosensor

Fabrication of sensing units mostly possesses some metal electrodes plus nanostruc-
tured matrix and organic films containing biomolecules. The use of nanomaterial 
films in the bioanalytical devices has proven itself critical as it enhances the sensi-
tivity and detection limits of devices for the detection of single molecules [37]. 
Besides, such biosensors are cheaper, faster, and robust alternatives to the bulky 
devices traditionally used for early cancer detection. Furthermore, the use of such 
films brings versatility in biosensors in terms of their synergy, like which nano-film 
to be used and with which combination of films a sensing unit can perform better. 
Unfortunately, there is no general rule discovered so far for this purpose. Systematic 
studies are needed to optimize the synergy issues in biosensing. A variety of nano-
materials are used in the build-out of biosensor immobilization; few examples are 
carbon nanotubes [38], titanium dioxide (TiO2) [39], and graphene [40].

The group [9] used mainly gold electrodes that consist of 50 pairs of interdigi-
tated electrodes with the breadth of each digit as 10 μm and spaced 10 μm away 
from each other. Two methods are mainly employed to put nanostructured organic 
films on such sensing units (the gold electrodes); these are named as (1) layer-by- 
layer and (2) self-assembling of monolayer. Using any of these techniques, multi-
layers are carefully selected and assembled sequentially over one another, on the 
electrodes, where the final layer of deposition is the layer of analyte (cancer anti-
bodies). These antibodies are the biomarkers that correspond to a specific cancer 
type. The techniques applied to put layers on the electrodes are described as 
follows.

5.1.3.1  Layer-by-Layer (LBL) Scheme
Layer-by-layer is the self-assembly scheme by physical adsorption, which lets the 
fabrication of organized ultrathin robust films of bigger size with the film thickness 
and properties that can be precisely controlled in nanometer scale [41]. It is based 
on a relatively simple and inexpensive method, where surface modification is 
obtained by layer-by-layer adsorption of polyelectrolyte of opposite charges in 
aqueous solution. This technique allows to organize individual molecules in 
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alternate layers with thickness control at the molecular level, which enables the 
planning of the final properties of the films. A wide variety of materials can be 
deposited by using the LBL scheme. Some materials to name are polyions, nanopar-
ticles, metals, biological molecules, and ceramics. By using LBL, a combination of 
polyethyleneimine and carbon nanotubes was used to adsorb antibodies like anti-
CA19-9 [38], for detecting CA19-9 antigen.

5.1.3.2  Self-Assembled Monolayers (SAMs)
When the organic molecules are self-assembled in the form of films, by the chemi-
cal adsorption of an active surfactant on a solid surface, it is called as self- assembling 
of monolayers (SAMs). The chemical group (the head group) present in the mole-
cules usually has a strong affinity with the substrate, which helps to anchor the 
molecule to the substrate. The type of the head group is selected, depending on the 
application of the SAM [42]. Typically, with the head group, a molecular chain is 
connected to which the terminal end can be functionalized, which brings variations 
in the wetting and interfacial properties [43]. The most commonly used functional 
groups are thiols, phosphonates, and silanes, which correspond to the polar part of 
the molecule. An appropriate substrate is chosen to react with the head group. 
Substrates can be planes such as metals and silicon or curved surfaces which can be 
obtained by the use of nanoparticles on a surface.

By using self-assembled monolayer (SAM), 11-mercaptoundecanoic acid (11- 
MUA) was anchored onto gold interdigitated electrode which was used to adsorb 
anti-CA19-9 antibodies [44] and anti-p53 antibodies [13], for the detection of 
CA19-9 and p53 antigens, respectively. In another work, a combination of SAM and 
LBL was used to combine films of polysaccharide chitosan and the protein concana-
valin A, for the tracking of CA19-9 antigen [9]. All these studies lead to the forma-
tion of adsorption-based biosensors.

5.1.4  Adsorption and Biosensing

Adsorption processes are particularly important to understand in biosensors which 
are built using the LBL and SAMs, as the thin films are adsorbed on the sensing 
surface. In general, an adsorption isotherm is a curve that describes adsorption phe-
nomena, by describing the mobility of a substance from the aquatic environments to 
a solid phase, having pH and temperature as constant [45, 46]. The ratio between the 
adsorbed amounts with the remaining in the solution is called as an adsorption equi-
librium. It is established when an adsorbate remains in contact with an adsorbent for 
a sufficient amount of time, where the adsorbate concentration of the bulk solution 
remains in dynamic balance with the interface concentration [47, 48].

In terms of three fundamental approaches, some equilibrium isotherm models 
have been expressed. The first of which considers the kinetics of adsorption, where 
the adsorption equilibrium is defined as a state of dynamic equilibrium, with the 
same rates of adsorption and desorption. The second approach is based on the ther-
modynamics and provides a framework for deriving adsorption isotherm models. 
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The third approach (which is mainly utilized in cancer biosensing) exploits the main 
idea of generating characteristic curves, which is an approach mainly used in explor-
ing the adsorption behaviors taking place in immunosensors. However, in modeling 
the isotherm, derivation with more than one approach can prove interesting, as it 
directs to the difference in the physical interpretation of the parameters of the model. 
Soares et al. [44] have performed several studies where they developed cancer bio-
sensors and proved that adsorption was the reason behind biosensing. They found 
that for most of their biosensors, Langmuir and Langmuir-Freundlich adsorption 
models worked well to explain the adsorption behaviors in their biosensors.

5.1.5  PM-IRRAS: A Means of Characterization

The sensing mechanism that arises due to the specific adsorption in immunosensors 
can be verified by the use of polarization modulation-infrared reflection-absorption 
spectroscopy (PM-IRRAS). It is a spectroscopic technique used to characterize thin 
films or monolayers on metal substrates as it possesses certain advantages like high 
surface sensitivity. For such spectroscopy, each layer in the sensor matrix (which is 
the principal building block of such sensors) is characterized. A spectrum is mea-
sured after adsorption of each matrix layer onto the sensor. The spectrum of the 
whole matrix is taken as a reference spectrum for the characterization of thin films 
of antibody-antigen, which gives an understanding of the interaction between both 
the films. Soares et al. [44] observed such spectrum, which shows the interaction 
between antibodies and different concentrations of CA19-9 antigens. They found 
bands assigned to the amide II and amide I groups. These functional groups are 
present in both antigen and antibody analytes and are the main responsible for the 
molecular interactions between the two. For their biosensor, they observed that as 
the analyte concentration elevated, the area under the curve and the intensity of 
these bands increased as well, which evidenced the process of adsorption.

5.1.6  Impedance Spectroscopy as a Method of Detection

Impedance spectroscopy is employed to detect the analyte solutions in adsorption- 
based biosensors. It is preferable as it does not need any reference electrodes and 
hence allows for the miniaturization of the electrodes/sensors. To perform the 
impedance spectroscopy, the sensing unit is subjected to solutions of different anti-
gen concentrations, and the spectroscopy is performed for each analyte concentra-
tion, one by one. For that, different concentrations of antigen solution are prepared 
by diluting it in the PBS solution. The electrode is immersed in each solution and 
then left for a suitable time, so to adsorb maximum antigens on the electrode. The 
electrode is then cleaned with distilled water and carefully dried with a low flux of 
N2 gas. Afterward, impedance behavior is recorded. For the impedance measure-
ments, the capacitance values are recorded over a frequency range of 1–106 Hz. This 
is done using software packages ZView 2 and ZPlot 2. An illustration of the 
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impedance characteristics obtained for a biosensor that is more responsive at low 
frequencies (1–100 Hz) is shown in Fig. 5.2. For illustration purpose capacitance 
curves for different arbitrary antigen concentrations are shown, along with the curve 
of the antibody solution. The antibody curve serves as a reference for all other 
curves to show the interaction of different antigen solutions with the immunosensor. 
It is experimentally observed that the capacitance increases with the analyte concen-
tration, until it gets saturated, which is a typical behavior for the immunosensors 
based on the interaction of the antigen-antibodies, as shown in Fig. 5.2. In the case 
of immunosensors, in addition to the different antigen solutions, the electrode is 
also tested against solutions like ascorbic acid, glucose, etc. These solutions are 
called as the negative control solutions and, therefore, are used to check the specific-
ity of the sensor.

Such impedance measurements give information on which frequencies are more 
responsive to the biosensing properties of a particular sensor. Sensor [49] showed 
more response at low frequency, as a considerable distinction between the different 
curves in such frequency was observed. In other words, at low frequency, the elec-
trical response of that particular sensing device got affected by the interaction with 
the analyte. Similarly, some biosensors can be more responsive in the middle fre-
quencies that are around 1 kHz. Sensitivity at the low frequencies is owed to the 
changes induced by the analyte layer on the electrical double layer that existed 
between solid- and liquid-charged interfaces. There are studies [50, 51] that showed 
that the electrical responses at low frequencies around and below 100 Hz are domi-
nated by the changes in the double layer. In the 1 kHz region, film properties remain 
dominant, and at high frequencies, mostly capacitance changes refer to the change 
in the geometrical capacitance. That’s the reason the intermediate frequencies are 
given more importance and then the low frequencies are given at the second place 
while accessing sensing response of a sensing unit.

Once the best frequencies are obtained for a biosensor, a capacitance versus con-
centration curve can be achieved, also termed as a calibration curve, by considering 
the capacitance values for different analyte concentrations at the ideal frequency. 

Fig. 5.2 Illustration of the 
impedance characteristics 
obtained when a sensing 
unit is exposed to the 
solution of antibody and 
various antigen 
concentrations
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The calibration curve in adsorption-based biosensors is important as this data can be 
fitted with any suitable adsorption model. Mostly Langmuir or Langmuir-Freundlich 
adsorption models give best fittings to such curves, showing the nature of adsorp-
tion that takes place in such immunosensors [44].

5.1.7  Determining the Limit of Detection

In order to check the sensitivity of a cancer biosensor, it is vital to investigate on the 
limit of detection (LD) that refers to the lowest amount of antigen detected by a sen-
sor. LD is determined using the IUPAC method:

 
LD

SD
=

×3
α  

where SD is the standard deviation and α is the slope of the curve, which can be 
measured by taking the initial part of the curve and approximating a straight line 
[38]. In immunosensors, the lowest amount of antigen detected means the highest 
the sensitivity the sensor has [38].

5.1.8  Information Visualization for Biosensing

Statistical methods such as principal component analysis (PCA) [52] are commonly 
used to treat the biosensing data. However, optimization of the biosensing perfor-
mance may be obtained by using information visualization methods that makes pos-
sible to evaluate the data in detail, especially when the examination of a selective 
feature is desired. This is particularly relevant for the sensors that are explored 
through impedance spectroscopy, as the electrical response of the analytes varies 
significantly with the frequency of the applied field, where the sensing event may 
arise at only specific frequency range. Indeed, the low-frequency region (100 Hz or 
less) is the most relevant, particularly when the sensing of a sensor depends on the 
variations in the electrical double layer, which is formed at the interface of the solid 
and liquid, on a charged surface. In such cases, the capacitance spectra are pro-
ceeded using a free software suite named Pex sensors [53], which is an information 
visualization software used to treat the impedance data. The projection technique it 
uses is called an Interactive Document Mapping (IDMAP) [54], which takes into 
account the interactive maps in 2-D(IDMAP) and parallel coordinates (PC) to proj-
ect the capacitance or the impedance data. It considers the Euclidean distances to 
perform mapping of the data points.

Suppose that the impedance versus frequency curves can be represented by 
X = {x1, x2,…., xn}, where the dissimilarity between the two samples (i and j) is 
given by δ (xi, xj) and the distance between the two projected data points (yi and yj) 
is given by d(yi − yj). The data through IDMAP is projected on a 2D space, using 
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an injective function f: X→Y, which minimizes the so-called cost or error function, 
∣ δ (xi, xj) − d(yi − yj) ∀ xi, xj 𝜖 X, defined with the following equation. [54]:

 
SIDMAP

, min

max min

=
( ) −

−
− −( )

δ δ
δ δ
xi xj

d yi yj
 

where δmax and δmin are the maximum and the minimum distances between the data 
instances measured in the original space. In this way, a visual representation of the 
data is generated that reveals the distribution of data and its correlations.

The importance of using such visualization technique owes from the fact that 
when sensing through a biosensor is performed for multiple varieties of samples, it 
is almost impossible to get some useful information by plotting the data in mere x–y 
plots. The conversion of such information with the help of a multidimensional tech-
nique, in a way to check the similarity relationships among the different data 
instances, is indeed very helpful. In this regard, IDMAP is a nonlinear mapping 
which has been proved to be the best strategy that can be adapted to represent the 
biosensor data.

5.1.9  Specificity of the Detection of a Sensor

One of the challenges is to avoid the non-specific adsorption, onto the immunosen-
sors, to obtain them with a highly selective nature. A highly selective nature of a 
biosensor translates that the principles of detection of the sensor only gets affected 
by the interaction of that specific antigen and antibody pair, for which the sensor is 
made. For this purpose, experimental procedures are adopted to guarantee the selec-
tivity of a certain immunosensor. The reactivity of a sensor that is made to respond 
to the reaction of only one specific antigen-antibody pair is tested against various 
other antigens and non-specific analytes which are part of the blood samples taken 
from the patients. As an example, an immunosensor made for the detection of anti- 
p53- BSA [13] was verified against various other antigens and analytes like HCV 
antigen (responsible for hepatitis C), p24 antigen (for the HIV), glucose, uric acid, 
and ascorbic acid, respectively. In this regard, all the analytes and antigen solutions 
tested were made in commercially prepared PBS solutions. It was observed from 
the plot of charge transfer resistance calculated from the impedance data for the film 
(when exposed to each analyte) that the only solution which gave visibly different 
values from the PBS buffer solution was the solution of antigen p53. The rest of all 
other analytes showed Rct values very similar to that of the PBS buffer, with the 
anomaly for the ascorbic acid that showed some effect on the immunosensor, yet it 
was also effortlessly identifiable from the large effect caused by the p53 antigen, for 
whose detection the sensor was made. This testing method is sufficient to evidence 
the selectivity of any biosensor.

Such kind of subsidiary experiments with cell lines and possible interferents is 
always important to interpret the selectivity of an immunosensor so as to avoid false 
positives and false negatives.
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5.1.10  Data Analysis: Use of Pex Sensors

The impedance data can also be visualized by the use of a visualization technique 
that is a multidimensional projection technique described in Sect. 5.1.9. With the 
aid of such technique, it is possible to plot a large set of samples in a small space, 
which aids in easy and simple analysis of a huge number of samples altogether, 
where the dissimilar samples lie far from each other and the samples that show simi-
lar behavior with the immunosensor lie close to each other in space.

For this purpose, different categories of solutions are prepared; here we will 
discuss about three categories: (1) the ones with different concentrations of cell line 
lysates that contain the specific cancer biomarker (referred to as the positive sam-
ples), (2) the ones with different concentrations of cell line lysates that do not con-
tain any cancer biomarker (referred to as negative samples), and (3) the ones which 
are obtained by mixing specific antigen with commercially acquired PBS buffer 
solution (instead of the cell line lysates) to obtain the different concentrations of 
solutions (referred to as the standard samples). The first two categories can also be 
termed as the real samples, as they are diluted in the bovine serum albumin (BSA) 
solution and not in the PBS.  These all three categories of solutions were tested 
against the specific immunosensor, and the impedance responses were observed by 
[13]. Such impedance versus frequency responses were plotted using the technique 
of IDMAP. The IDMAP shows data obtained for each sample as a point in the 2D 
space. It was noted that the standard and the real samples lied near to each other in 
the plot and showed the same tendency with increasing concentration. However, the 
negative samples lied far and lacked to show any specific pattern in terms of concen-
tration, since for such samples the variations recorded in the electrical properties 
were much smaller, which usually instigate from the fluctuations due to sample 
dispersion. In this case, what really matters is the relative distance between the data 
points, and showing axis has no physical meaning, so the axis is usually not men-
tioned in the IDMAP plots. Subsequently, only the samples containing the specific 
biomarker can guarantee a positive response from the immunosensor, which con-
firms the immunosensor is sensitive toward a specific biomarker. For this very rea-
son, the choice of an appropriate data analysis method is crucial in terms of 
enhancing the selectivity and sensitivity of sensors.

Once the tumor is detected, the focus shifts to advanced targeted therapies.

5.2  Advanced Targeted Therapies in Cancer

For cancers, surgery and radiotherapy are considered the most effective treat-
ments. However, they are not efficient when cancer is transmitted throughout a 
human body. For treating metastatic cancer, it is important to have a treatment that 
can reach throughout the body using bloodstream. Therefore, the use of different 
drugs that serve for chemo-, hormonal, and biological therapies is common these 
days [55].
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Chemotherapy deals with the usage of drugs that forbids fast proliferation of 
cancer cells although there are numerous side effects due to inhibition of rapid 
growth of healthy cells like those linked to hair follicles, bone marrow, etc. [55]. For 
many years, chemotherapeutic drugs that led to the indiscriminate destruction of 
cells were the only effective treatment of metastatic cancer even if this was not ideal 
and unspecific.

Discovery of cell signaling networks changed the way cancer was treated. Cell 
signaling constitutes a communication process to run and coordinate basic cell 
activities. This function is the basis of development, repairing damaged tissues and 
the immune system. In mammals, the interaction of cell signaling pathways forms 
networks [56]. The combination of experimental and computational/theoretical 
approaches is required for understanding cell signaling networks [57]. Research in 
the area of cell signaling networks further allowed drugs designing that were spe-
cific in their action toward specific networks, thus opening a new form of cancer 
treatment based on targeted therapy back in the late 1990s [55].

5.2.1  Targeted Therapies

Targeted therapies inhibit specific cellular pathways or protein molecules linked to 
tumor growth and disease progression. For instance, those protein molecules are the 
main targets that are found overexpressed/mutated in comparison to normal tissues. 
Such therapy works by either acting on one or more of the following functions [58]:

 a. By blocking respective signals, to stop malignant cells from growing and divid-
ing uncontrollably

 b. By initiating apoptosis to cause the death of tumor cells
 c. By stimulating the immune system
 d. By chemotherapeutic drugs targeting specifically tumor cells, avoiding the mor-

tality/injury of healthy cells [55, 59]

5.2.2  Types of Targeted Therapies

The kind of therapy that brings changes in cell signaling events is called the direct 
approach of targeted therapy [60], while the indirect approach involves targeting 
molecules expressed exceptionally on the exterior part of tumor cells. The indirect 
approach deals with cytotoxic molecules that are induced and later pair up with 
monoclonal antibodies through a chemical linker or involve nanocarriers that bring 
specificity compared to the conventional chemotherapy [61, 62].

Monoclonal antibodies are designed for connecting with specific proteins in can-
cer cells that are later recognized by the immune system to fight against and as a 
result lead to the death of such cells [58]. They also have the capability of prevent-
ing mitogenic signals by blocking the docking sites of growth factors [63]. In 1997, 
the very first monoclonal antibody was authorized by the FDA. It was named as 
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rituximab and was used in targeted therapy [64]. Signaling pathways linked to 
abnormal cancer cell activities can also be blocked by small-molecule inhibitors 
mostly designed to interrupt tyrosine kinases [60, 65]. Angiogenic proteins produce 
new blood vessels’ network that feeds the tumor. Such unwanted proteins can be 
attacked by monoclonal antibodies as well as small inhibitor molecular species [66]. 
The specificity of monoclonal antibodies coupled with chemotherapeutic drugs 
forms antibody-drug conjugates [58]. In recent years research has proved cytotoxic 
peptide conjugates as better alternatives to antibody-drug conjugates. Cytotoxic 
peptide conjugates can be 100 times smaller and have low cytotoxicity in compari-
son to antibody-drug conjugates [58].

5.2.2.1  Nanocarriers: Indirect Form of Target Therapy
Nanocarriers are used in the indirect form of target therapy. They are as submicron 
(<1 μm)/nanoscale colloidal systems with the ability to transport anticancer agents. 
Such agents can be small molecules of drugs or macromolecules such as proteins. 
Just as antibodies and peptide-drug conjugates act, nanocarriers are selective in tar-
geting just cancer cells and avoiding normal cells, thus, in contrast to the free drugs, 
reducing toxicity for the rest of the body as side effects of therapy [58].

After entering the body, nanocarriers release the drug by swelling, degradation, 
erosion, or simply by diffusion [67].

5.2.3  Technological Advantages of Nanocarriers

The technological advantages of nanocarriers are as follows [67]:

 a. High stability that protects drug degradation.
 b. Renal clearance reduces, while their half-life in the blood flow increases.
 c. Elevate carrier capacity of cytotoxic drugs, and many drug molecules can be car-

ried in a single matrix.
 d. Enable controlled release of the anticancer drugs from the matrix.
 e. Viability of various routes of drug intake, such as oral and inhalation.
 f. Ease of accepting both hydrophilic and hydrophobic substances.

5.2.3.1  Composition of Nanocarriers
Nanocarriers mainly include polymeric therapeutics and particulate drug nanocarri-
ers as explained below:

5.2.3.2  Polymeric Therapeutics
In polymeric therapeutics, the anticancer drug or protein is covalently attached to 
the polymeric structure. They include polymer-protein and polymer-drug conju-
gates. They are aqua-soluble linear macromolecular structures with cleavable bonds. 
These structures are very stable during transportation while, once they arrive at the 
tumor site, the drug is released [68]. However, as the drug is released after the 
breakage of the linker between polymer and drug due to chemical or biological 
enzymatic degradation, it’s also a bit difficult to control the drug release [58].
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In 1994, the FDA approved the first polymer-protein conjugate known as 
pegaspargase for treating acute lymphoblastic leukemia [69, 70]. However, no 
polymer- drug conjugates are yet available commercially although clinical trials 
have increased many folds in the last few years [71]. Currently, around 20 polymer- 
drug conjugates are in clinical trials for cancer treatment [71–73].

5.2.3.3  Particulate Drug Nanocarriers
Such nanocarriers have drugs physically bagged inside the molecular assemblies 
composed of a variety of materials, thus providing physical protection to the anti-
cancer drug from the outside environment and macrophages, for example, poly-
mers, lipids, or organometallic compounds [58]. The following are some details 
about their types:

Liposomes
They are lipid-bilayered colloidal vesicles made up of amphiphilic phospholipids 
that can host encapsulation of both hydrophilic and hydrophobic agents using its 
aqueous or hydrophobic cores/membranes, respectively [74, 75]. They possess long 
circulation time in blood. They are biocompatible and almost inert by not causing 
any kind of reaction in the most number of patients as reported.

They have some limitations such as low drug loading, difficulty in sterilization, 
problems with stability, commercial reproducibility, phospholipid oxidation, and 
drug release kinetics [76–78].

Up to now, the FDA has approved only five liposome-based drugs linked to can-
cer treatment [58]. Recently, some new approaches in liposomal research have been 
evolved, and chemotherapeutic drugs coupled with stimuli-responsive release strat-
egies have been part of clinical research [79, 80].

Carbon Nanotubes
They are tubelike hydrophobic networks. They are composed of carbon atoms. 
Their diameter is in the range of 1–4 nm (based on graphene layers), and length is 
1–100 μm. They have unique chemical and physical properties [81, 82]. Although 
insoluble in all solvents, when chemical modifications are applied to them, they 
undergo structural transformation which makes them water-soluble carriers. This 
transformation helps in increasing the biocompatibility and decreasing their toxicity 
in living systems [83–85].

They have the capacity to include different anticancer drugs on their surface [86] 
or in their inner cavity [87, 88]. On the account of their vast surface area, they can 
accommodate high payload on their surface. They can easily enter the cancerous 
cells by passing through the plasma membrane by penetrating just like a thin needle 
or by the process of endocytosis [89, 90].

Although in vitro and in vivo passive targeting preclinical results are satisfactory 
in cancer treatment demonstrating that carbon nanotubes are promising nanocarri-
ers, FDA has not yet approved any of the carbon nanotubes, neither are there any 
clinical trials in the process [58, 86, 88, 91].
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Polymeric Nanocarriers
They are polymer-based nanocarriers of anticancer agents with a variety of struc-
tures. Liposomes have numerous advantages proven by their clinical validation; 
however, they have many problems with their stability and also limited control over 
the kinetics of the drug once they enter the system. For overcoming these liposomal 
limitations, polymeric nanocarriers present more stable in vivo studies. They proved 
high circulation times, increased loadings, and are capable of better controlled and 
targeted anticancer drug release control within in vivo literature studies [92, 93]. 
One of their examples is in the form of capsules/particles called polymeric 
nanoparticles.

5.3  Polymeric Nanoparticles in Targeted Therapy

Using biodegradable and biocompatible polymers (either natural or synthetic) 
allows controlled release of active agents from polymer nanoparticles by mecha-
nisms of diffusion, erosion, or degradation [94, 95]. Such sustained long-term drug 
release is more effective compared to the pulse supply of agents in high concentra-
tion by chemotherapy [96].

In 1976, first-time polymeric systems were indicated for cancer treatment based 
on controlled release system [97]. Couvreur and colleagues in 1979 used polymeric 
nanoparticles for in vitro and in vivo studies. Polyalkylcyanoacrylate was the poly-
meric nanoparticles that were used for releasing doxorubicin [98].

Later, researchers continued to explore diverse options such as by advancements 
in polymer sciences; they developed biodegradable polymeric nanoparticles that are 
effective carriers for chemotherapy [58]. The last 10 years are very important in the 
advancement of scientific research in this area of polymeric nanoparticles. Few 
most promising preclinical studies in this area linked to active and passive cancer 
treatment are discussed in detail below:

5.3.1  Passive Targeting Polymeric Nanoparticles (NPs)

Due to enhanced permeability of the cancer cells, NPs accumulate in them due to 
the angiogenic process. As mentioned earlier, the tumor contains highly permeable 
blood vessels that allow nanoparticle accumulation, and thus the cytotoxic drug is 
released in the vicinity of tumor cells. The following are few examples of formula-
tions of polymeric NPs that use passive targeting for cancer treatment.

5.3.1.1  Polymeric NPs Loaded with Cisplatin
Literature studies show that cisplatin when loaded upon gelatin-poly(acrylic acid) 
NPs (100 nm), drug release pattern was slow and controlled. This high-loaded drug 
showed stability and in vivo activity was enhanced in tumor cells. High drug accu-
mulation was also found in the vicinity of liver cancer tumor when applied to the 
model of infected mice [99].
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5.3.1.2  Polymeric NPs Loaded with Doxorubicin
Literature studies show that antitumor activity was increased in rat glioblastoma 
model when the doxorubicin-based lecithin containing poly(D,L-lactide-co- 
glycolic) acid/human serum albumin (PLGA/HAS) also covered with poloxamer 
188 was used [100].

5.3.1.3  Polymeric NPs with Paclitaxel
Taxol is the commercial formulation of paclitaxel used in chemotherapy. 
Encapsulated paclitaxel into PEGylated (polyethylene glycol) PCL (polycaprolac-
tone), PLGA nanoparticles, has shown an increase in the in vitro and in vivo cyto-
toxic effect [101]. Studies linked to human cervix carcinoma cells (HeLa) also 
proved greater anticancer activity when compared to Taxol. The in  vivo studies 
linked to TLT (transplantable liver tumors) revealed that when the paclitaxel-loaded 
nanoparticles were used, tumor growth was inhibited in mice. For eradicating 
hypoxic tumor cells as well, paclitaxel encapsulation to poly(D,L-lactide-co- 
glycolic) acid (PLGA) nanoparticles is a promising formulation [58].

5.3.1.4  Polymeric NPs Loaded with Curcumin
Curcumin-loaded nanoparticles are around 80.9 nm in size and are biodegradable. 
Compared to sole curcumin, the in vivo effects such as anti-invasive, antitumor, and 
antiangiogenic activities are enhanced by encapsulating curcumin. Encapsulation 
helped to suppress proliferation in various forms of cancer cell lines [58].

5.3.1.5  Polymeric NPs That Incorporate Macromolecules
Macromolecules such as genes or proteins can also be incorporated in polymeric 
nanoparticles. For instance, during the angiogenic process, the main integrin that is 
involved is alfaV-beta3. When the RGD peptide was encapsulated by Kim et  al. 
[102] that targets the alfaV-beta3 integrin, antitumor efficacy of the peptide was 
enhanced. In this study, self-assembled GCN (glycol chitosan nanoparticles) with 
230 nm size were used that increased half-life of RGD involved in the in vivo stud-
ies. This led to a considerable increase in antitumoral and antiangiogenic effect. 
Therefore, free peptide activity was enhanced by encapsulation, and its intratumoral 
administration improved growth inhibition in cancer cells [58].

5.3.2  Active Targeting Polymeric Nanoparticles (NPs)

Active targeting involves functionalization of polymer NP surface. It refines the 
therapeutic efficacy of antitumor medicines and shows active targeting characteris-
tics. It also helps in overcoming MDR (multidrug resistance) [103, 104]. Active 
targeting NPs involve specific ligands connected to the basic structure of NPs. They 
are capable of recognizing different overexpressed antigens or other receptors pres-
ent on the exterior area of the cancer cell. The selectivity factor that comes with 
such recognition ability increases the anticancer effect in cancer cells while reduc-
ing many counter-effects due to other nonselective drugs [105].
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5.3.2.1  Albumin-Based Targeting
Besides accumulating in the cancer site by enhanced permeability and retention 
(EPR) effect, albumin-based NPs stick with glycoprotein 60 receptor. This combi-
nation helps in endothelial transcytosis. The albumin nanoparticles are capable of 
binding to the BM-40 (SPARC, osteonectin) that is the albumin-binding protein 
overexpressed in the cancer cell and thus easily taken inside the tumor by endocy-
tosis [106, 107].

5.3.2.2  Hyaluronic Acid-Based Targeting
The hyaluronic acid (HA) is biodegradable and biocompatible. It is capable of tar-
geting cells where the glycoprotein CD44 receptor is overexpressed [108]. 
Amphiphilic HA nanoparticles are known to bind CD44 receptor in cancer cells 
[109]. Investigations by Cho et al. [110] show that hyaluronic acid ceramide conju-
gate and Pluronic P85 are nontoxic and can be used for transporting docetaxel. The 
<150 nm particle size allows the intravenous delivery of docetaxel both by active 
and passive targeting.

5.3.2.3  Biotin-Based Targeting
Biotin or vitamin H is effective against tumors. This vitamin is fast in proliferation 
for cancer cells that’s why higher amounts are required [111]. For the targeted deliv-
ery of methotrexate to tumor cells, Taheri et  al. [112, 113] investigated human 
serum albumin (HSA) nanoparticles. In their experiments, biotin was used as target-
ing ligand. In vitro results from their study proved increased cytotoxicity compared 
to non-functionalized particles.

5.3.2.4  Folate-Based Targeting
Folate or folic acid binds selectivity to the folate receptors present on the exterior 
part of the cell. Folate receptors are overexpressed in case of epithelial cancers, in 
hematologic cancers, as well as in sarcomas [114, 115]. The folate-based NPs once 
target the folate receptors on cancer cells become internalized and release the cyto-
toxic drug into the cytoplasm.

5.3.2.5  Transferrin-Based Targeting
Transferrin helps in transporting iron to growing cells. It is actually a membrane 
glycoprotein [116]. Transferrin receptors (TfRs) are present in high quantity on the 
exterior part of tumor tissues as the demand of iron increases. The formulations 
involving drug agents attached to transferrin that targets the TfRs on the cancer cells 
and, after endocytosis, release the drug inside infected cells [103].

5.3.2.6  Aptamer-Based Targeting
They are nucleic acid-based ligands, short in length. They are effective ligands just 
like folate and transferrin and are specific in targeting [117]. Literature study has 
shown that the prostate-specific membrane antigen (PSMA) aptamer-based NPs are 
80 times more cytotoxic when applied to prostate cancer cells compared to the free 
drug [118].
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5.3.2.7  Peptidic Targeting
Just like antibodies, peptides are utilized as ligands. They are less expensive and a 
bit complex compared to antibodies. As discussed earlier, integrin alfaV-beta3 is 
overexpressed on the exterior area of cancer cells, to easily get targeted by peptide 
ligands [119, 120].

5.4  Coordination Compounds as Anticancer Drugs

With the advent of cisplatin in chemotherapy, a whole new field of metal-based 
chemotherapeutics unfolded, and since then various metal complexes have been 
synthesized aiming at treating cancer [121]. Medicinal inorganic chemistry is exten-
sively devoted to designing therapeutic agents for curing ailments not easily 
accessed by organic molecules [122]. Being positively charged, metal centers are 
capable of binding with the negatively charged biomolecules, whereas the constitu-
ents of biomolecules may serve as ligands for the metal center. Metal complexes 
have variable oxidation states, number and nature of the ligands attached, and flex-
ibility of coordination geometries that allows them to be used as drugs. Their redox 
properties and ligand substitution reactions before reaching the site of action make 
them suitable candidates as “prodrugs.” An important step in developing anticancer 
drugs is to control and manipulate the aforementioned processes/properties using 
thermodynamics and kinetics and devise a suitable mechanism for drug delivery.

Deposition of metal ions may have deleterious effects on the body; due to this 
reason, before using metal complexes as drugs, a vast study of their bio-distribution, 
clearance, and pharmacological specificity is carried out. Before entering clinical 
trials, the physiological effect of the potential drugs is investigated in  vitro and 
in vivo on the related biomolecules.

For use as anticancer drugs, metal complexes are well-known for their effects on 
cellular processes like cell division and gene expression which get altered with can-
cer. In chemotherapy, the main focus is the destruction of cancerous cells, avoiding 
harm to the normal functioning cells.

5.4.1  Platinum Complexes as Anticancer Agents

A huge number of platinum compounds have been synthesized and subjected to 
tests and trials for their anticancer activity. However after the iconic mainstream 
cisplatin, carboplatin, and oxaliplatin, it has not been easy for new platinum-based 
chemotherapeutic agents to enter trials in clinics. Other three drugs, namely, hepta-
platin, nedaplatin, and lobaplatin, have been tested and are in use in some countries 
[123]. The most well-known and extensively studied anticancer platinum compound 
“cisplatin” displays antitumor properties; however, its trans form does not show 
such behavior. Some of its derivatives have been proved to inhibit growth and con-
tain N-H functionality, conferring donor properties which assist in the transport of 
the agent to the target. Anticancer platinum compounds are generally of cis 
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geometry with the formula [PtX2(NHR2)2], where X is the leaving group and R 
is  the alkyl or aromatic group. Many Pt(II) coordination compounds are known 
today that exhibit activity against cancerous cells, including a few examples of the 
trans isomers too. The exact mechanism of action of these compounds is elusive; 
however, it is evident that such compounds with other metals are not necessarily 
working against tumors [124]. The main reasons why platinum is more effective lie 
in the ligand exchange kinetics. The Pt-ligand bonding has less strength than cova-
lent bonds; however, the ligand exchange phenomenon is very slow. This gives the 
compounds an extra kinetic stability, and the ligand exchange is slow to occur, tak-
ing long durations from minutes to days, contrary from other metal complexes that 
take seconds or even fraction of second. Pt(II) has an affinity for bonding to S-donor 
groups, making it harder to reach DNA helix due to the presence of many competing 
S-containing donor ligands in the cytosol. Another important property worth noting 
is the trans effect in Pt complexes [125, 126].

Cisplatin, despite its success story, has strong side effects like renal damage, 
hearing loss, anemia, etc. To counter these adverse effects because of non- selectivity 
of the therapeutic agent, modified or substituted cisplatin was introduced, leading to 
the second and third generations of the drug like oxaliplatin and carboplatin. 
Carboplatin, a second-generation Pt(II) drug with the formula [Pt(C6H6O4)(NH3)2], 
has lesser toxicity and is not highly reactive which allows administration of high 
dosage. Carboplatin is mainly used in ovarian cancer, and oxaliplatin serves best for 
colon cancer therapy [123]. Tumor cells pose a spontaneous drug resistance after 
being treated with these anticancer drugs which is a serious limitation of chemo-
therapy. This challenge has been countered by designing and developing new 
amines containing drugs that lack conventional cis-diamine and two leaving groups 
and hence giving rise to the third-generation Pt(II) drugs. Another approach to deal 
with resistance and side effects is to use a combination of different drugs that has a 
synergistic effect.

Cisplatin, which has the formula cis-[PtCl2(NH3)2], was introduced in the mid- 
1840s; however, its anticancer activity was not known till 1964. Its therapeutic 
properties have played wonders in solid tumors, especially ovarian, bladder, cere-
bral, and testicular tumors. The drug is given intravenously due to solubility issues, 
which transports by the process of diffusion through the cell membrane to the cyto-
plasm. An equilibrium establishes because the intracellular chloride ions are lesser 
in concentration than across the cell walls. Square planar geometry of the complex 
undergoes associative ligand substitution, where water molecule replaces a chloride 
in the formula, developing a positively charged platinum complex cis-
[Pt(NH3)2Cl(H2O)]+. Water substitution of the chloride ions is suppressed in the 
bloodstream because of the greater quantity of Cl- ions, but substitution is favored 
in the cytoplasm where Cl− is in low concentration. The cation is easily trapped by 
the cell and is easily enticed to DNA in the nucleus where water molecule is replaced 
by DNA base [127–129]. Extensive research during the past decades has suggested 
DNA to be the functional target of these drugs; however, there is enough evidence 
to support other interactions with proteins and RNA as modes of action as well. The 
N7 sites on deoxyguanosine residues in DNA are highly vulnerable and most 
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nucleophilic positions to be platinated. 195PtNMR spectroscopic monitoring evi-
denced the formation of single covalent bond to DNA initially, followed by a distant 
reaction showing the loss of another chloride ion and substitution with guanine of 
the DNA [130]. This forms a cross-link between bases on the same or nearby 
strands. Similar cross-links arise when other drugs are administered; however, the 
proportion of intrastrand and interstrand cross-links differ. These cross-links cause 
severe distortion in DNA, leading to unwinding and disruption of the helical struc-
ture. These damaged cells then try to repair themselves during the cell cycle at 
G2/M transition. The cisplatin-bound parts are removed through the repair mecha-
nism; enhanced repairing process leads the cells to develop resistance against plati-
num drugs. The high-mobility group box proteins found in the nucleus have a high 
affinity for intrastrand cross-links, which upon binding to these disrupted DNA 
lesions provide shielding against the cellular repair; this makes certain cancerous 
cells more susceptible to cisplatin. If the cells fail to repair themselves, transcription 
is inhibited across the lesion which prompts proapoptotic proteins, triggering apop-
tosis which is programmed cell death [131].

Researchers have put tremendous efforts in designing and investigating new 
anticancer agents with immense changes in the typical molecular skeleton, with an 
aim at unraveling different modes of actions that are efficacious versus a vast spec-
trum of cancers. Such efforts to design a drug which works as “magic bullet” that 
pursue the target cells on its own aim at attacking the receptors on cell surface, 
targeting the tumorous tissues as a whole by seeking characteristic proteins and 
allowing action in acidic media specific to cancer cells [132]. Enhanced uptake of 
sugar by the cancerous cells can also be exploited for targeting. A class of targeted 
drugs uses steroid units incorporated in the non-leaving groups which direct the 
drug to the tissues with steroid receptors. For example, for administering drugs to 
breast cancer cells, estrogen receptor which is overly expressed in this particular 
case is targeted. Similarly, drugs conjugated to bile acids in an effort to target liver 
cells are used [133].

Some trans complexes and their analogs like diamminedichloroplatinum(II) 
have dissipated the common notion that only cis Pt complexes are anticancer. These 
trans compounds may contain heteroaromatic, iminoether, or asymmetric aliphatic 
ligands giving rise to three separate sub-types. Substitution of ammines of the trans 
complex diamminedichloroplatinum(II) by the aforementioned ligands alters their 
cytotoxic properties, and their mode of action significantly differs from the other 
common drugs [134, 135].

Besides the Pt(II) complexes, Pt(IV) compounds are potential cytotoxic agents; 
however, their physicochemical characteristics differ from the Pt(II) complexes. They, 
usually, adopt octahedral geometries and do not allow substitution with ease contrary 
to the Pt(II) complexes, which helps in avoiding side reactions before binding to 
DNA. The extra two ligands in this geometry assist in attaining certain properties like 
lipophilicity, stability, and target specificity. Examples of platinum(IV) complexes 
include cis, trans, cis-dichlororidodihydroxidobis(isopropylamine)platinum(IV) 
which is commonly known as iproplatin [136] and trans,cis,cis- bis(acetato)amminec
yclohexylaminedichloroplatinum(IV), also known as satraplatin [124].
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5.4.2  Gold Complexes as Anticancer Agents

Au(III) being isoelectronic with Pt(II) which is d8 with a square planar geometry of 
its complexes should, in principle, have antitumor activity. Despite many similarities, 
a very limited data is present in literature that shows the anticancer activity of Au(III) 
complexes. From direct analogy with Pt(II) complexes and some previous data, a 
similar course of action is hypothesized which involves binding with DNA [137, 
138]. Gold(I) complexes known for their applications in treating rheumatoid arthritis 
also exhibit anticancer behavior. A number of these compounds such as auranofin 
analogues have been analyzed for their cytotoxicity contra P388 leukemia and B16 
melanoma cells [139]. The drugs were also tested for in vivo activity against leuke-
mia in rats. Gold(I) thiosugar compounds with phosphine were found to be efficient 
antitumor in both in vivo and in vitro. Gold(I) compounds of tetrahedral geometry 
having 1,2-bis(diphenylphosphino)ethane (DPPE) and 1,2-bis(dipyridylphosphino)
ethane were observed to be active in vivo, particularly in cisplatin-resistant tumors. 
Contrary to that of cisplatin, the course of action does not involve DNA targeting in 
these complexes, but their cytotoxicity proceeds with hindrance in cellular function 
like that of mitochondria and inhibition of protein synthesis. Gold(I)-phosphine com-
plexes with aromatic cations were studied, and direct dependence of cellular uptake 
on the lipophilicity of drugs was found [140]. Since therapeutic agent uptake 
increased with its lipophilicity, efforts were put in optimizing lipophilicity, and the 
mode of action in vitro was studied. The drug was found to be concentrated in mito-
chondria of the cells which induced apoptosis. The study of a complex 
[(AuCl)2(DPPE)] revealed loss of the chloride ions on reaction with DPPE and clo-
sure of the ring to form a tetrahedral cation [Au(DPPE)2]+ with different counterions 
which showed great stability in solution [141]. The extracted cation with chloride as 
counterion was found to improve the life expectancy of rats having leukemia cells up 
to ~85% at optimum dose of 2–3 μmol/kg/day for a period of 5 days. Similarly, a 
60% improvement in life span was observed for mice infected with i.p. M5076 retic-
ulum cell sarcoma. Tumorous tissues with cisplatin-resistant subline were found to 
be cross-resistant to the gold(I) complex; a combination of cisplatin and gold(I) com-
plex proved to be advantageous. The compound has cytotoxic activity in tumor cell 
lines which is slightly inhibited by serum and works by cross-linking DNA. The 
cross-linking inhibits replication of DNA and also affects protein synthesis. The 
compound was found to be stable in serum by 31PNMR spectroscopic studies.

Ligand DPPE, complex [(AuCl)2DPPE], and bis[trichlorogold(III)] 
[DPPE(AuCl3)2] exhibit in vivo activity as well. To investigate the effects of metal 
bonding with DPPE in situ, the activity of DPPE, DPPE(AuCl)2, and [DPPE(AuCl3)2], 
as well as mixtures of the ligand and metal salts, was analyzed. The cytotoxicity 
improved tenfold both in vitro and in vivo than the DPPE alone. P338/DPPE cells 
can be used to monitor and evaluate the efficiency of drugs that follow the mito-
chondrial pathway to apoptosis. An Au(I) compound of monophosphine, diphos-
phine, and chloride ligand has proven to show a good cytotoxicity level against a 
number of tumor cells. Another complex tetrakis-((tris(hydroxymethyl))phosphine)
gold(I) also displayed considerable cytotoxicity by restricting cell growth through 
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G1 phase elongation. Chlorotriethylphosphine gold(I) was discovered to exhibit 
cytotoxicity by inducing decomposition of lipids in cellular membranes in rat hepa-
tocytes. Electron microscopy of the hepatocytes showed dense precipitates in mito-
chondria preceding apoptosis [142].

Gold(III) coordination compounds with metal center to be isoelectronic with 
Pt(II) and very likely to be cytotoxic have been investigated. The Au(III) com-
pounds usually show good cytotoxicity, but they are not highly stable in physiolog-
ical conditions. Some new gold(III) drugs have been designed for this purpose with 
considerable physiological stability in  vitro and cytotoxicity in  vitro against 
tumors, offering lesser resistance as opposed to platinum complexes. Initial studies 
suggested the interactions between Au(III) and DNA to be weaker. Some com-
plexes with ligands ethylenediamine and N-benzyl-N,N-dimethylamine were tested 
too [143]. Bipyridine complexes with Au(III), for example, [Au(bipy)(OH)2]PF6, 
were effective against various tumor cell lines, with DNA as their primary target 
[137]. Complexes of Au(III) with N-methylimidazole, 2-methylbenzoxazole, and 
5-dimethylbenzoxazole have been tested and found effective against leukemia 
cells and ovarian carcinoma [144]. In general, significant success has been achieved 
with gold complexes in fighting cancerous cells resistant to cisplatin; however, a 
better understanding in attaining physiological stability is required to develop effi-
cient drugs.

5.4.3  Copper Complexes as Anticancer Agents

Copper-free ions, being harmful, have a regulated concentration in the human body; 
many pathological conditions like Alzheimer’s disease, Parkinson’s disease, and 
various cancer tissues (breast, prostate, etc.) involve an elevated level of these ions. 
In case of breast cancer, copper levels in serum rise to 1.67 μg/ml which is unrea-
sonably elevated than the normal levels (0.99 μg/ml) found in healthy beings [145, 
146]. Detailed investigation of how the increase in copper ion level occurs is not 
carried out yet; however, some researchers attribute it to the role copper plays in 
angiogenesis, invasion, and metastasis [147]. Coordination complexes of copper(I) 
and copper(II) are more common, whereas Cu(III) complexes are relatively lesser in 
number. Copper(I) coordinates to ligands with soft donors like C, P, thioether S, 
aromatic amines, etc. and is tetrahedral, whereas for Cu(II), square planar, trigonal 
bipyramidal, and octahedral geometries are possible. Different kinds of S-donor 
systems mainly thiosemicarbazones (TSCs) [148], thiosemicarbazides, dithiocarba-
mates (DTCs), thioureas [149], and dithiolates [150] coordinate to copper imparting 
different characteristics. Copper-TSC with a number of subclasses has been investi-
gated to be active against viral, fungal, and bacterial infections, as well as cancerous 
cells. Complexes with thiosemicarbazides and substituted thiosemicarbazides con-
taining donor atoms like O, S, and N are usually formed by loss of hydrazinic 
hydrogen atom. Recently efforts have been invested in designing a drug with glyco-
syl saccharide derivative which confers stability as well as binding environment. 
This approach aims at providing freedom to the pendant moiety to communicate 
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with carbohydrate transport mechanism and metabolic ways of the cells and hinder 
the normal functioning. Thioureas are known to form complexes with Cu(I) that 
shows the cytotoxic activity of the same moderate level as cisplatin. Some com-
plexes with O-donor ligands and κ2O,O-donor systems have been synthesized and 
shown to have antiproliferative activity. Complexes with N,O-donor systems and 
N-donor systems such as imidazoles, triazoles, etc. have been widely investigated in 
the literature. Copper complexes with Schiff base systems, polydentate and/or mac-
rocyclic systems, P-donor phosphines, N-N diamines, and C-donor N-heterocyclic 
carbenes have also been widely studied, and detailed discussion would be out of the 
scope of this chapter.

In general, copper complexes exhibit a wide range of activity and low toxicity 
than cisplatin. Also, some of these complexes break the resistance offered to cispla-
tin treatment. They display distinct and unique mode of action compared to corre-
sponding Pt complexes; however, scarce knowledge is available in this regard. 
Copper complexes form non-covalent interactions with DNA, instead of coordi-
nated adducts. New approaches other than interaction with DNA have been investi-
gated, such as targeting cellular constituents like those of proteasome multiprotein 
complex. Other modes of actions include groove binding, oxidative cleavage, 
hydrolytic cleavage, topoisomerase inhibition, and proteasome inhibition.

5.4.4  Cobalt Complexes as Anticancer Agents

Cobalt is a trace element with crucial functions in biological systems, predomi-
nantly found in vitamin B12 or cobalamin which is essential to RBC formation, 
DNA synthesis, and functioning of the central nervous system. Cobalamin has an 
important function in the metabolism of biomolecules like fatty acids and amino 
acids [151]. Usually, cobalt is found in +1 oxidation state, with an ability to further 
oxidize to +2 and +3 states, and is relatively less toxic when compared with Pt and 
hence less toxic complexes than those of Pt. Cobalt complex with bis(acetylacetone)
ethylenediamine (acacen), generally known as Doxovir, has toxic activity against 
herpes virus, and the accurate mode of action is unexplored yet. However, research-
ers believe that its activity is based on covalent interaction with histidine residues 
found in the enzymes of the herpes virus, which blocks the active site crucial to the 
replication of the virus [152]. Hurtado et al. investigated that histidine residues in 
proteins can be used as a target for inhibition of cancer cell growth. This was 
achieved by attaching specific nucleotides and peptides to Doxovir core. Hence, a 
number of Co(III) Schiff bases and their conjugates were synthesized in an attempt 
to find an anticancer agent with less toxicity to the normal cells. In this regard, 
Co(II) and Co(III) Schiff bases exhibit antitumor properties. Co(II) complex with 
4-(4-aminophenyl) morpholine did not show considerable activity against liver car-
cinoma cells, whereas Co(II) complex with 2,6-bis(2,6-diethylphenyliminomethyl)
pyridine displayed activity against colorectal and cervix adenocarcinoma cells 
[153]. Against breast cancer cells, another Co(III) complex of a tridentate Schiff 
base was found effective. Co(III) with [2-(2-hydroxybenzylideneamino) phenol] 
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also inhibited colorectal adenocarcinoma cells [154]. A coordination polymer of 
Co(II) with 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (isonicotinic) hydrazine 
exhibited cytotoxicity to a set of cancerous cell lines of the liver and rectum; inter-
estingly, healthy cells were not affected which proved lower toxicity against normal 
cells in mouse embryonic tissues [155]. Cobalt complexes with typical ligands like 
bipyridine and phenanthroline were anticancer when tested. Compounds showing 
surfactant-like properties induce cell death through DNA cross-bonding. Dicobalt(0) 
hexacarbonyl complexes coordinated to ethinylestradiol are employed to surveil 
steroid interaction with estrogen receptors. An α-cation forms near dicobalt(0) 
hexacarbonyl moiety which assists covalent bonding to the active sites in estrogen 
receptors. Such an approach to damage cancerous cell DNA motivated researchers 
to study cytotoxicity of [Co2(CO)6]-acetylene compounds [156]. Studies showed 
that aspirin derivative with alkyne substitution was a highly efficient cytotoxic 
agent. These aspirin-containing drugs [157] induce apoptosis and angiogenesis by 
blocking cyclooxygenase enzymes. Cobalt(II) complexes attached to naproxen, 
mefenamic acid, and tolfenamic acid via carboxylate oxygen and pyridine/other 
pyridyl ligands were found to interact with biological components of the cells. 
These conjugations exhibit strong affinity for DNA and hence high cytotoxicity. 
Hypoxic cancerous tissues are immune to chemotherapy; hence, prodrugs are used 
which get activated by certain stimuli. Cobalt(III) prodrugs with octahedral geom-
etry have been synthesized that get activated in hypoxic regions in tumors, by 
undergoing intracellular reduction to Co(II). Co(III) complexes are inert, whereas 
Co(II) complexes being high spin (d7) are reactive because of lability due to suscep-
tibility to substitution. Typical hypoxia-activated substances are oxidized back to 
their inert states in healthy cells which protects them from their harmful effects. 
Normal cells can have hypoxic conditions too; therefore, to avoid harm to the 
healthy cells, the activation threshold for these prodrugs should be set high. For this 
purpose, different ligands can be used to fine-tune reduction potentials of the Co(III) 
prodrugs ranging from 0 mV to −1400 mV [158].

5.4.5  Ruthenium Complexes as Anticancer Agents

Many ruthenium complexes have been prepared with varying properties and great 
deal of applications; interrelationships have been developed among properties and 
characteristics of the binding groups attached to the central metal ion. Ruthenium 
sulfoxide is known to have catalytic as well as chemotherapeutic properties. 
Ruthenium(II) complexes with polypyridyl and other aromatic ligands [159] have 
garnered much attention due to their fascinating spectroscopic and electrochemical 
properties that find their applications in various molecular electronic devices, solar 
cells, and DNA-disrupting agents.

Ruthenium complexes have been found to display low cytotoxicity, and also less 
toxic than cisplatin, hence requiring a higher dose to function. Despite low cytotox-
icity, it has been evidenced that they increase life expectancy in cancer patients. 
Ruthenium(III) complexes convert to Ru(II) compounds in low pH and oxygen 
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levels, conditions characteristic of cancer cells. This explains the selective toxicity 
of Ru(III) complexes. To activate “in vivo,” a reduction potential is required which 
can be fine-tuned using different ligands. Another approach to explain the cytotoxic 
activity of ruthenium compounds is the fact that they interact readily with transfer-
rin receptors. Hence, this interaction/binding can be manipulated for targeting trans-
ferrin receptors located on cancer cells. Cancer cells have high levels of iron and 
hence more transferrin receptors. Both ruthenium(II) and ruthenium(III) coordina-
tion compounds have been found to exhibit antitumor properties in vitro. It has been 
observed that ruthenium complexes show better interaction with cancerous cells as 
compared to healthy cells. Some ruthenium complexes have been tested in different 
sets of cancerous cells, including those resistant to cisplatin, and it was discovered 
that Ru(III) compounds showed better results. Ru(III) complexes even showed 
activity against autochthonous colorectal carcinoma of rats which is quite interest-
ing because there is no satisfactory drug for rectal cancers of humans that lead to 
high mortality. Solubility can be a serious issue as was observed for a class of 
Ru(III) complexes with monocyclic or multicyclic basic heterocycles [160]. They 
were tested on leukemia, melanoma, and autochthonous carcinoma of colon cells 
and had satisfactory performance. They could be employed for treatment of pros-
tate, ovarian, stomach, and breast cancer and many others but difficult to dissolve in 
water which hindered their use as they could not be lyophilized. Conjugation of 
ruthenium anticancer therapeutic agents with serum proteins is crucial because it 
ensures drug delivery and distribution in the body and also affects cytotoxicity. 
Experiments in mice showed HInd trans-[RuCl4(ind)2] (ind = indazole) to be less 
toxic with higher antitumor activity as compared to HIm trans-[RuCl4(im)2] (where 
Im is imidazole) because of better binding with protein [161]. Another pathway is 
through interaction with cytochrome c, oligonucleotides, and polynucleotides. 
Certain intertwining of DNA occurs during replication and transcription which can 
be corrected by topoisomerases. These enzymes are crucial to the survival of cells 
and can be poisoned when targeted with anticancer ruthenium drugs.

Many palladium and zinc complexes have also been investigated for anticancer 
activity. For example, Pd(II) complex with sugar-conjugated triazoles was synthe-
sized by Yano et al. [162]. Zinc(II) with Schiff base complexes containing 4-(4-ami-
nophenyl) morpholine derivatives was prepared and studied for antimicrobial and 
antitumor activity [153].

5.5  Conclusion

It can be concluded that the progress of such biosensors relies on parameters like 
harmlessness, sensitivity, specificity, identification of tiny molecules, and cost- 
friendliness. Ideally, the most outstanding feature that a commercial biosensor can 
possess aside from its cheap and portable nature is its efficiency in detection. 
Through surface engineering, using nanomaterials, it’s possible to enhance and 
achieve highly efficient biosensors. A better combination of bioelectronic principles 
will guarantee the successful development of powerful biosensors for the modern 
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era. Various advanced targeted therapies have been employed that use functionaliza-
tion of nanocarriers and polymeric nanoparticles with specific ligands to recognize 
and interact with target cells. This approach improves the anticancer effects of drugs 
and has been in vogue from the last three decades. As for therapeutic agents or 
drugs, coordination metal complexes have provided a flexible scaffold to tweak and 
adjust their characteristic properties by changing or substituting ligands or metal 
itself. A huge amount of quality research literature has been developed in a struggle 
to find an anticancer drug with minimum harm to the normal cells and high cytotox-
icity to the cancer cells. A number of coordination complexes of Pt(II), Pt(IV), 
Au(I), Au(III), Cu(I), Co(II), Co(III), Ru(II), Ru(III), Pd(II), and Zn(II) have been 
found to show cytotoxicity to cancerous cells. Some complexes and their activity 
have been discussed in this chapter to introduce the readers to a general idea of the 
use of metal complexes as anticancer agents and the course of their action.
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6.1  Introduction

DNA play a vital role in maintenance of healthy body in a sense that genes encode 
products after transcription and translation in the form of either proteins or enzymes 
that regulate normal body functions. But there are many agents (genotoxic) that can 
damage our DNA to certain extent. These toxic agents can be present inside cells 
(intracellular) or in environment [1]. ROS (reactive oxygen species) are the by- 
product of those metabolic processes that take place in our body, and these are 
produced intracellular, whereas ionizing radiations, UV light, etc. are produced in 
the environment. These radiations and ROS are the DNA-damaging toxic agents. 
These agents can cause gene mutations, that is, the change in the sequence of DNA 
bases inside cell. These mutations are collectively called GIN (genome instability).

In normal cells, DNA repair pathways including BER (base excision repair) and 
NER (nucleotide excision repair) and cell cycle checkpoints act as a cell caretaker 
that strictly regulates the genome maintenance, minimizes the GIN, and ensures the 
integrity and survival of genome. Defects in these caretakers may lead toward the 
initiation of many severe human diseases, e.g., cancer development, NGC (neurode-
generative conditions) and NPT (neoplastic transformations), etc. [2].

6.2  Genomic Instability in Cancer

Cancer is one of the prevalent and lethal genetic diseases. It is caused by mutations 
ranging from single nucleotide change to severe alterations in chromosomes. These 
mutations promote GIN by boosting cell division and inhibiting cell death and 
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hence become the reason of disturbing cellular machinery [3]. On the basis of type 
and degree of genetic changes, GIN can be divided into three groups [2]:

 1. MSI or MIN (microsatellite instability)
 2. NIN (nucleotide instability)
 3. CIN (chromosomal instability)

6.2.1  MSI or MIN (Microsatellite Instability)

Those bases or nucleotides that are accidently mismatched or impaired either by 
alkylating agents or by DNA polymerase are repaired by MMR (mismatch repair) 
pathway [1]. Two to six basepair tandem repeats of short DNA that is present widely 
in genome is called MSI (microsatellites). Instability in microsatellite DNA occurs 
due to disruption in DNA mismatch repair system. MMR first identifies the mis-
match bases and then binds with it, and then it excises the mismatch nucleotide and 
repairs the DNA damage caused by the mismatch [4]. This type of MSI is respon-
sible for variety of cancers like ovarian, colorectal (CRC), lung, and gastric cancers 
[2].

6.2.2  NIN (Nucleotide Instability)

Insertion, deletion, and substitution of bases in the sequence of DNA are termed as 
NIN [5]. Dysfunctions in DNA repair machinery, e.g., BER or NER, and errors dur-
ing replication of DNA result in these types of alterations. mtDNA (mitochondrial 
DNA) also show NIN instability [5]. In 80% of pancreatic tumor, missense mutation 
was seen in K-ras gene [6]. In lung, CRC, and gastric cancers, mtDNA instability is 
common [7].

6.2.3  CIN (Chromosomal Instability)

Changes in part of or in entire chromosome in terms of number or structure includ-
ing inversion, deletion, translocation, insertion, amplification, homozygous dele-
tions, and LOH (loss of heterozygosity) are termed as CIN. These alterations may 
result in the conditions called aneuploidy, polyploidy, and formation of chimeric 
chromosome [5]. CIN alters the genomic expression in tumor cells [8]. CIN is seen 
in 90% of tumors and is the most prevalent one among others like NIN and MIN [9]. 
PTEN is the tumor suppressor gene and is inactivated in glioblastomas due to the 
loss of tenth chromosome [10].
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6.3  Repair Pathways for Suppression of Tumor and Fidelity 
of Genome

Cross-linking, oxidation, dimerization, strand breaks in DNA, and alkylation are the 
main processes that contribute in damaging DNA. So in order to protect the body 
from diseases, there is DNA repair mechanism that enables to maintain the integrity 
of whole genome. DNA repair pathways that are responsible for tumor suppression 
and genetic fidelity are divided into two categories [11]:

 1. Excision repair pathways
 2. DSB (double-strand break repair)

6.3.1  Excision Repair Pathways (ERP)

ERP is divided into three types in order to repair SSDNA (single-stranded DNA) 
damage [11]:

 (a) NER (nucleotide excision repair)
 (b) BER (base excision repair)
 (c) DNA MMR (mismatch repair)

6.3.1.1  NER (Nucleotide Excision Repair)
DNA damage like helix-distorting lesions, bulky structures that are induced by oxi-
dizing or alkylating agents, ultraviolet radiations, and chemotherapeutic drugs, is 
repaired by NER pathway [12]. TCNER (transcriptionally coupled NER) and 
GGNER (global genome NER) are two sub-pathways in nucleotide excision repair 
pathway [13]. Transcriptionally active genes are repaired, and TCNER and GGNER 
repair both DNA strands regardless of whether genes are transcribed actively or not 
[14]. To identify the deformation in double helix, GGNER uses XPC-RAD23 
homolog B HR23B (xeroderma pigmentosum complementation group C) and 
DDB1-DDB2/XPE protein (DNA damage-binding protein 1), whereas TCNER is 
stalled on the location where DNA polymerase is present. Severe skin cancer called 
xeroderma pigmentosum is associated with the polymorphism in gene products of 
NER [15].

6.3.1.2  BER (Base Excision Repair)
Damaged bases of DNA are fixed by BER pathway. Glycosidic bond that is formed 
between the damage bases of DNA and sugar molecule of DNA backbone is cleaved 
by enzyme named DNA glycosylase. First identification and then removal of lesions 
are being done by BER pathway. Mutations in these enzymes may lead toward the 
onset of diseases like diabetes and cancer [16].
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6.3.1.3  DNA MMR (Mismatch Repair)
Machinery of MMR and replication enzyme DNA polymerase did proofreading 
activity in series. Either large deletion or insertion loops or base-to-base mispair is 
the prime target for DNA MMR machinery [17]. G2/M cycle checkpoints in cell 
cycle are activated by MMR machinery after identification of damaged DNA [11].

6.3.1.4  DSB (Double-Strand Break Repair)
Double-strand break repair is the most life-threatening form of DNA damage [18]. 
As it is involve in variety of genomic changes, e.g., deletion, translocation, and 
amplification, these changes result in heritable cellular GIN that can lead to malig-
nancy of tumor cells [19]. NHEJ and HR are two types of repair pathways. In G2 
phase of cell cycle, HR repair pathway is present, and on the other hand, NHEJ is 
present throughout the cell cycle. HR is error-free repair because it joins broken 
DNA by identifying DNA sequence homology [20]. NHEJ is considered as error- 
prone repair because without identifying DNA sequence homology, it joins the bro-
ken ends of DNA [21]. BRCA1 and BRCA2 are genes that are involved in 
maintaining the stability of DNA and in suppression of cancer cells. These genes are 
the players of HR repair pathway [22].

6.4  EPGIN (Epigenomic Instability) in Cancer

An inherited change that modifies the expression of genes without affecting the 
basic sequence of DNA, e.g., remodeling of chromatin and methylation of DNA, is 
termed as EPG (Epigenetics). The most commonly known EPG processes are his-
tone modification and DNA methylation. It is clear that the main feature in the case 
of cancer is EPGIN, but it is not still certain that these inherited alterations are either 
the cause or consequences of cancer formation [2].

6.4.1  DNAmet (Methylation) in Cancer

Process in which methyl group is added to cytosine nucleotide at the position 5 of 
carbon through the group of DNMT (DNA methyltransferase) enzyme is termed as 
DNA methylation. DNAmet results in silencing of genes and situated in heterochro-
matin at CpG island [23]. These methylation patterns are specific for every indi-
vidual cell and thus play an important role in establishment of tissue-specific 
expression of genes. In cancer two epimutations, site-specific hyper- and global 
DNA hypomethylations, occur. Site-specific hypermethylation promotes cancer 
development by silencing the transcription of tumor suppressor genes, e.g., p16, Rb, 
and BRCA1 [24]. On the other hand, global DNA hypomethylation causes the over-
expression of oncogenes, e.g., S-100  in colon and R-Ras in gastric cancers [25]. 
Thus, it is directly related to malignancy in many cancers such as brain, cervix, and 
breast [26].
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6.4.2  Histone Modification (HM) in Cancer

Modification of four histones such as (H2A, H2B, H3, and H4) at the chromatin 
level is responsible for the regulation of expression of genes. Phosphorylation, acet-
ylation, methylation, deacetylation, and ubiquitination are all modifications of his-
tones. Gene transcription and formation of euchromatin are promoted by acetylation 
of H4 and H3, while transcription repression and formation of heterochromatin are 
promoted by H3K9 (H3 lysine9), H3K27, H4K20, and R2 methylation (H3 arginine 
2) [27].

A change in modification of histones is used as markers (prognostic), but loss of 
function of H4K16ac and H4K20me3 is responsible for all types of human cancers 
[28]. Histone deacetylases, lysine methyltransferases, and acetyltransferases are all 
modifying enzymes (histones) that can catalyze these epigenetic markers [27]. 
Dysfunction of DNA is caused by changes in modification of histones that is the 
result of abnormal expression of these enzymes. Chromatin structure changes with 
the change in the patterns of histone modification and directly increases the level of 
chromosome breakage and random transposons translocation [2].

6.4.3  NR (Nucleosome Remodeling) in Cancer

Regulatory sequences of transcription factors and the structure of chromatin are 
determined by the specific shape and particular design of nucleosomes as they are 
the primary and significant units of DNA folding or packaging. An alternation in the 
content of histone proteins within nucleosomes and the repositioning of nucleosome 
is termed as NR (nucleosome remodeling). Genetic expression and accessibility to 
chromatin are determined by incorporation of new and removal of old nucleosomes 
in cancer epigenome [29].

6.5  Mechanisms for GS and EPGS (Genome and Epigenome 
Stability)

In normal body cells, genome is duplicated accurately, and the genetic material is 
distributed between two daughter cells. While duplication mechanisms play an 
important role in order to maintain integrity of genome. During S phase duplication 
of DNA occurs at high fidelity. Proper and accurate separation of chromosomes dur-
ing mitosis is important. DNA repair during whole cell cycle is monitored, and 
checkpoints that control progression of cell cycle are also controlled [2].

6.5.1  Replication of DNA (Error-Free)

RI (replication licensing) is the process that regulates the replication of DNA and 
control the copy number during S phase of cell cycle. CDK (cyclin-dependent 
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kinases) regulates RI [30]. To ensure the completion of replication, replication fork, 
during extension phase, often pauses and restarts. Failure in restart of these forks 
will result in single-stranded, double-stranded DNA breaks, and this all is solved by 
DNA damage repair pathway before entering to mitotic phase [31]. Figure  6.1 
explains the mechanism of cell cycle to prevent genome instability.

6.6  CCCPTS (Cell Cycle Checkpoints)

Cell cycle checkpoints play an important role in maintaining normal genome and in 
preventing damage of DNA. Abnormal structures of chromosome and lesions of 
DNA are recognized by G1/S and G2/M checkpoints. Interaction between spindle 
fibers and chromosomes is monitored by spindle assembly checkpoints [2]. Multiple 
functions of cell cycle checkpoints are described in Fig. 6.2.

If G1/S phase recognizes the mutation or damaged DNA, then it will halt the 
replication of DNA. This postmitotic checkpoint is dependent on p53 and is mutated 
in cancerous genes [32].

A G2/M checkpoint identifies the damage DNA and promotes repair by stopping 
its mitotic entry. Mitosis-promoting complex cyclin B1/cdc2 kinase is inhibited by 
these checkpoints. If problem arises in these checkpoints, then the damaged DNA 
or chromosome will enter in mitosis phase and result in chromosomal rearrange-
ments [33].

SACP (spindle assembly checkpoints) play an important role in taking the pre-
ventive measures against GIN. Cohesion complex keeps two sister chromatids close 

Fig. 6.1 Mechanism to prevent GIN throughout cell cycle
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to each other during mitosis [34]. This complex is broken down by cyclosomes 
(anaphase-promoting complex). Tension is generated across the sister chromatids 
due to the accurate bipolar attachment of chromosomes [35]. Wait signal is gener-
ated by the SACP in order to check the incorrect attachments, e.g., (monotelic) situ-
ation when only one chromatid is attached and (syntelic) when on same pole both 
sister chromatids are attached [36]. On activation of assembly checkpoints, cyclo-
some (anaphase-promoting complex) is inhibited, and it allows the cell to correct 
the miss-attachment of chromosome [34].

Cascade of signaling pathways is generated by SACP just to check the miss- 
attachments, correct attachment errors, and segregation of chromosomes [37], e.g., 
Aurora kinase A do not detect miss-attachments, but it overrides the checkpoints 
and enters in anaphase phase [38]; on the other hand, Aurora kinase B stops the cell 
cycle once it detects miss-attachment of chromosomes [39].

6.7  Prognosis, Detection, and Prevention of GIN (Genome 
Instability)

Risk of cancer development can be reduced by preventing GIN and DNA damage. 
In order to limit the risk of cancer and to reduce the exposure to non-inherited 
sources, measures on vast scale are taken, but there is no way to prevent genomic 
damage [2].

Fig. 6.2 Multiple functions of DNA damage repair and response genes
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6.7.1  NIS (Non-inherited Sources)

On daily basis people are exposed to solar radiations and the most common one is 
UV light (ultraviolet light). UV-A and UV-B are considered as the main cause that 
damages DNA either indirectly or directly. Skin cancer is caused by UV-induced 
DNA damage. UV-A damages DNA indirectly by producing ROS species and free 
radical, while UV-B damages DNA directly by forming the pyrimidine dimmers. 
Use of sunscreen or sunblock reduces the risk of skin damage by UV-A and UV-B 
radiations [40].

In our environment, there are many carcinogens that are chemical in nature, and 
they are responsible for several human diseases. Air pollution and cigarette smoke 
can cause GIN [41]. In blood cancer or in leukemia, a prevalent carcinogen, ben-
zene, is recognized that is responsible for DNA damage, alteration in chromosome 
structure and number, and thus GIN [42].

Diet is also linked to GIN and DNA damage. Due to the deficiency of dietary 
folate, rather than thymidine, uracil is incorporated into genome [43]. It induces 
damage in excision repair pathway and breaks in chromosomal strands. Risk of 
cancer development becomes more with the increase in deficiency of vitamin B6, 
whereas deficiency of folic acid is directly related to DNA hypomethylation, micro-
nuclei formation, and chromosomal breaks [44]. Increased GIN is associated with 
low dietary intake of vitamin E, folic acid, calcium, retinol, and B carotene, and 
increased intake of riboflavin and biotin is linked with GIN. Maximum intake of B 
carotene helps in reducing the risk of CC (colon cancer) [45].

6.7.2  Diagnosis of GIN in Cancer

Genome instability is quantified by the gene expression, genome sequence, and the 
chromosome structure [20]. We can diagnose large-scale and small-scale alterna-
tions by using different techniques. Array CGH, FISH (fluorescence in situ hybrid-
ization), flow cytometry, and karyotype are techniques that are used in determining 
large alternations in sequence of DNA. AP-PCR (arbitrarily primed), ISSR-PCR 
(inter-simple sequence repeats), genome sequencing, and SNP (single nucleotide 
polymorphism) array are used for detecting small alternations that lead toward GIN 
[46].

6.7.3  GIN and CP (Genetic Instability and Cancer Prognosis)

Poor prognosis is directly related to GIN. Better prognosis is seen in CRC patients 
having microsatellite instable cancers [47]. Negative impact of GIN is seen in bio-
logical fitness.
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6.8  Conclusion

All mutations that become the reason for change in the sequence of DNA come 
under the umbrella of genome instability. Different factors like diet, ROS species, 
air pollution, and cigarette smoke and endogenous and exogenous factors are con-
sidered as the prime cause of genetic instability. These factors act like toxic agents 
that damaged our DNA. Nucleotides, chromosomes, and microsatellite DNA are 
damaged by these genotoxic agents. But, in spite of environmental and intracellular 
agents, there are some inherited specific patterns that, if become unstable, play an 
important role in promoting different diseases and specifically tumorigenesis. So in 
order to protect the body from toxic effects of these agents and to ensure the survival 
and integrity of DNA, there are cell cycle checkpoints, repair pathways, and damage- 
responding genes. The cell cycle checkpoints strictly regulate the replication of 
DNA in S phase and try to maintain equal number of chromosomes distributed 
between two sister chromatids during mitosis. Damage-recognizing genes recog-
nize the damage in DNA, and then they trigger the repairing pathways NER, BER, 
double-streak break repair to ensure the stability of genome. But the mutation in 
these checkpoints or in repairing genes can lead toward the prevalent and lethal 
disease cancer. Therapeutic opportunities provide us the mean to determine the 
prognosis and to diagnose small-scale and large-scale aberrations in cells, DNA, 
and chromosome of individual. FISH, AP-PCR, ISSR-PCR, array CGH, etc. are the 
diagnosis techniques that help us in diagnosing and thus become a mean to control 
and save the life of individuals from cancer metastasis.
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7DNA Damage Response Pathways 
in Cancer Predisposition and Metastasis

Saima Shakil Malik and Iqra

7.1 Introduction

DNA is perpetually damaged by various genotoxic agents produced either in the 
cell-like reactive oxygen species (ROS) or in the environment such as ionizing radi-
ations and UV light [1]. In normal cells, genome integrity is safeguarded by a very 
systematic and robust DNA damage response (DDR) [2] including different DNA 
repair pathways and specialized cell cycle checkpoints [3], whereas cancer cells are 
formed as a result of several genetic alterations leading to survival compensations 
and growth [4].

Impairment of DNA repair features either gain or loss can enhance genomic 
instability and DNA errors promoting immune deficiencies [5, 6], ageing [7], neu-
rodegenerative disorders [8] and predominantly cancer [9]. Epigenetic silencing and 
somatic mutations in DDR genes without any inherent genetic link are commonly 
observed among different cancers [10], whereas germline mutations of DNA repair 
or cell cycle checkpoint genes can cause predisposition to hereditary cancers [11]. 
DNA repair genes intricated in mismatch repair (MMR) [12], nucleotide excision 
repair (NER) [13], homologous recombination (HR) and non-homologous end join-
ing (NHEJ) [14] can persuade several types of cancer.

DNA repair gene’s dysregulation affects the normal and cancerous cells’ response 
towards DNA-damaging anticancer treatment [15]. Upregulated repair pathways 
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result in resistance to chemotherapeutic and radiotherapeutic treatment; therefore, 
inhibitors of these DNA repair pathways can possibly sensitize cancer cells against 
these agents [16]. On the other hand, cancer cells that do not have proper repair mech-
anism and are merely dependent on some alternative repair mechanism become sus-
ceptible to functional pathway targeting by synthetic lethality, whereas normal healthy 
cells with two functional repair mechanisms would establish resistance [17, 18].

Recently, with the advanced technology, increasing evidence has been observed 
about the additional cellular roles of DDR genes other than repairing DNA damage 
and controlling cell cycle checkpoints, for example, chromatin remodelling, tran-
scriptional regulation and programmed cell death [19]. Acceptable balance between 
mutations avoidance by DNA repair and various other cellular responses to DNA 
damage which affects the formation and obstinacy of genetic alterations and stabil-
ity as shown in Fig. 7.1. Current chapter highlights the role of DNA damage response 
genes in not only cancer initiation but progression and metastasis as well.

7.2  Cancer Initiation and DNA Repair Genes

Most of the human malignancies are the consequence of genomic instability and 
thought as cancer cells hallmark [20]. Downregulation of DDR pathways, for 
instance, those regulated by ataxia telangiectasia mutated (ATM) and ataxia 

Fig. 7.1 Acceptable balance between mutation avoidance by DNA repair and various other cel-
lular responses to DNA damage
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telangiectasia Rad3-related protein (ATR) kinases and p53, can lead to genomic 
instability [21]. Alternatively, tumours with altered genome can ascend from dam-
ages in any one of the repair pathways, base excision repair (BER), NER, MMR, 
HR and NHEJ [19]. The link between tumorigenesis and DNA repair damages is 
emphasized by the fact that inherently damaged DNA repair mechanisms that cause 
enhanced ageing syndromes, like Nijmegen, Bloom, Werner and Rothmund–
Thomson, along with ataxia telangiectasia, trichothiodystrophy and xeroderma pig-
mentosum also have increased cancer risk [22].

Besides DDR gene alterations, either somatic or inherited, epigenetic gene 
silencing might also promote carcinogenesis. Epigenetic inactivation of DNA repair 
genes has been reported in different cancers and found to be linked with various 
DNA repair pathways [23]. Epigenetic silencing of a gene such as BRCA1 or 
FANCF via methylation of the promoter region is the most commonly observed 
mechanism among sporadic cancers [24]. Epigenetic silencing of certain DNA 
repair genes, for example, MLH1, BRCA1, BRCA1, FANCF and WRN, can pro-
mote genomic instability and enhance mutation rates in cancerous cells [25]. The 
current chapter briefly describes the relationship between definite aberrant altera-
tions in DNA repair pathways and malignancies.

7.2.1  Direct Repair

Direct repair or reversal of any lesion is the easiest form of DNA repair [26] and can 
be achieved with the help of MGMT (O6-methylguanine-DNA methyltransferase). 
It is also meant to be involved in cancer treatment by conferring resistance to DNA- 
alkylating agents [27] and repairs O6-alkylated guanine residues. O6-Methylguanine 
gets paired with thymine and results in G to A transition if left unrepaired in DNA 
replication [28]. Epigenetic silencing of MGMT is reported in different tumour 
including lung cancer [29], glioblastoma [30], head and neck cancer [31], colorectal 
cancer [32], breast cancer [33] and gastric cancer [34].

7.2.2  Nucleotide Excision Repair (NER)

The NER pathway is a fundamental DNA repair process involved in protecting and 
maintaining the genome integrity by repairing several DNA modifications, specifi-
cally bulky helix-distorting damage [35]. However, recently researchers have 
reported that some of the NER proteins possess diverse roles other than DNA repair 
such as histone ubiquitylation, nucleosome remodelling and gene’s transcriptional 
activation which are responsible for stem cell reprogramming, nuclear receptor sig-
nalling and post-natal mammalian growth [36]. Tumours with damaged NER path-
way developed an innate resistance to radio- and chemotherapy and paved to 
continued tumour growth and metastasis even after treatment [37, 38].

NER encompasses 30 unlike genes with diverse functions. Among these 30, 7 
were xeroderma pigmentosum (XP) complementation groups executing several 
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critical roles in NER pathway [39–41]. XPC is responsible for initiating the recog-
nition of DNA damage followed by DNA unwinding with various enzymes [42]. 
Afterwards XPG incise the damaged DNA leading to the removal of roughly 25–30 
nucleotides followed by the gap filling and joining of ends by DNA polymerase and 
DNA ligase, respectively [40, 43].

Researchers have revealed that less reductions in NER at polymorphic frequen-
cies among general population may be attributed to the risk of lung and breast can-
cers. Many researchers emphasize on assessing the role of single nucleotide 
polymorphisms of these genes and cancer risk [43–47]. It is thought that tobacco 
serves as an “internal sun” especially in cancer cases, engendering lesions that 
require to be repaired by NER pathway. It was a well-known fact that XP follows an 
autosomal recessive mode of inheritance, whereas heterozygous carriers were 
thought to be phenotypically normal [48].

Loss of XPA gene was reported in testicular germ cell tumours [49]. XPC another 
important global genome NER component is meant to be regulated by promoter 
methylation in bladder carcinoma [50]. ERCC1 was also reported to be inactivated 
in glioma cancers via promoter methylation [23]. Furthermore, mutations of XPA–
XPG have been reported in different cancers like testicular [51], skin [52], breast 
[35] and lung cancer [44].

7.2.3  Mismatch Repair

Mismatch repair (MMR) pathway performs essential role in identifying insertion/
deletion loop (IDL) and repairing newly synthesized DNA with inaccurate genetic 
material, produced during replication. MMR protect cells from various spontane-
ous mutations, like microsatellite instability (MSI) [53]. MMR pathway functions 
with the help of three heterodimers: “MutSα (MSH2 and MSH6), MutSβ (MSH2 
and MSH3) and MutLα (MLH1 and PMS2)”. Two of the heterodimers, MutSα or 
MutSβ, were involved in recognizing IDLs in DNA strand formed due to poly-
merase slippage in replication [54, 55]. HEK36me3 (epigenetic histone marker) 
was found to assist MutSα recruitment to chromatin by interrelating with MSH6 
PWWP (DNA-binding domain). It is plentifully available in S and G1 phases and 
guaranteed MutSα enhancement on chromatin prior mismatch introduction in rep-
lication. Lack of H3K36 trimethyltransferase SETD2 leads to spontaneous muta-
tions and MSI, basic hallmarks of MMR deficiency. This phenomenon highlighted 
the potential relationship of MMR deficiency and various cancers owning MS1 
[56, 57].

MutSα/MutSβ distinguishes mismatch and recruits MutLα heterodimer in an 
ATP-dependent reaction [58]. It also repairs accidentally introduced nucleotides 
after administrating chemotherapeutic drugs such as alkylating agents [59]. MSI 
high tumours ascend from an epigenetic defect in sporadic cancers. MLH1 pro-
moter region methylation was found to be associated with decreased activity in 
sporadic colon and lung cancer [60–63]. Moreover, aberrant methylation also con-
trols MLH1 functioning in sporadic endometrial [64] and gastric carcinoma [65].
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7.2.4  Base Excision Repair

The BER pathway is responsible for protecting the genome from devastating effects 
of reactive oxygen species exposure. BER not only eradicates damaged basis from 
the DNA but also is meant to repair single-strand breaks in DNA [26]. This repair 
pathway comprises of variant of enzymes such as endonucleases {flap structure- 
specific endonuclease 1 (FEN1), apurinic/apyrimidinic endonuclease 1 (APE1)} 
[66], DNA glycosylases {human homolog of the E. coli mutY gene (MUTYH), 
8-oxoguanine DNA glycosylase (OGG1)}, DNA ligase III, DNA polymerase b 
(Polb), PARP-1 and XRCC1 (X-ray repair complementing defective repair 1) [67]. 
Inherited mutations are rarely observed in BER genes. However, literature has con-
firmed the genetic linkage of APE1, XRCC1 and OGG1 gene polymorphisms with 
different cancers [68] such as breast [69, 70], lung [71, 72], head and neck [73, 74], 
bladder [75, 76], gastric [77], oral [78] and colorectal carcinoma [79–81]. Biallelic 
germline mutations of MUTYH were the first ever reported alterations in the BER 
pathway. These mutations were found in individuals with predisposition to numer-
ous colorectal carcinomas and adenomas [82, 37, 83]. OGG1 is responsible for 
repairing oxidatively damaged guanine (G) bases of DNA and found to be involved 
in carcinogenesis as well [84, 85]. TDG gene is a thymine DNA glycosylase, and its 
expression levels decrease in various multiple myeloma cells by promoter methyla-
tion in tissue culture experiments when compared with normal plasma cells [86]. 
APE1 work by following the DNA glycosylases in BER pathway, and their increased 
production has been observed in germ cell tumours [87], whereas APE1 greater 
protein levels have demonstrated association with higher resistance to radiation 
exposure and drugs [88]. Overexpression of Polb, which fills the gap with nucleo-
tides formed by APE1, was reported in breast, prostate and colon cancer cells [89–
91]. Furthermore, elevated Polb levels can cause genomic instability via 
accumulating DNA single- and double-strand breaks [92, 93].

7.2.5  Homologous Recombination

DNA double-strand breaks cause most damaging threat among all the genotoxic 
attacks to cell survival and are meant to be repaired by either HR or NHEJ [94]. HR 
was found to be disrupted among ovarian and breast carcinomas [95]. Researchers 
have illustrated genetic alterations of two key HR genes BRCA1 and BRCA2 in 
early onset of breast cancer [96], ovarian cancer [97, 98], pancreatic carcinoma [99, 
100] and prostatic carcinoma [101].

Loss of BRCA1 expression was also observed in nonhereditary ovarian and 
breast carcinoma by promoter hypermethylation [102, 103]. Furthermore, gene 
responsible for encoding NBSI and constituting a heterotrimeric complex of RAD50 
and MRE11 meant for sensing DNA double-strand breaks was found to be fre-
quently altered in lymphomas [104]. Expressional loss of NBS1 gene was also dem-
onstrated in prostatic carcinoma [105]. Moreover, RAD50 frameshift mutations 
also lead to a truncated protein resulting in gastrointestinal cancers [106].
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7.2.6  Non-homologous End Joining

NHEJ is predominantly responsible for repairing DNA double-strand breaks [107]. 
Gene meant to encode DNA ligase IV is the key mediator of NHEJ and responsible 
for leukaemia [108], whereas Artemis is altered in lymphoma also known as Omenn 
syndrome [109]. Researchers have also reported the expressional loss of Ku70 in 
colorectal, cervical and breast carcinomas [110–113], whereas decreased Ku86 
expression is found in rectal carcinoma [114].

7.3  Role of DNA Repair Machinery in Cancer Metastasis

Metastasis is major cause of cancer-related deaths as 90 percent of them are due to 
lack of local control. Tumour metastasis comprises a list of complex steps that must 
be accomplished in order to give rise to detectable tumours at positions far away 
from organs where primary tumours initiate [115, 116]. A wide range of studies 
showed abnormal expression patterns of various genes responsible for different 
kinds of cancer- and tumour-related functions like kinase activation, angiogenesis, 
etc. [117]. Anyhow evidences confirmed that DNA repair genes are directly involved 
in tumorigenesis and their deficiencies are considered to be involved in inherent 
disposition to cancer [118, 119]. However, there is still a need to explore direct rela-
tion of DNA repair in the aetiology of metastasis. Presently, DNA repair role in 
aetiology of metastasis has been estimated by two different ways. First is DNA gene 
expression microarray analysis and the other is in vitro assays that are considered as 
an alternative for in vivo metastasis phenotypes [120]. Certain number of genes are 
overexpressed with the advancement of tumour, while some others are downregu-
lated with tumour stage and metastasis progression. There is still a need to explore 
how these genes control the process of metastasis either by their part in cell cycle 
control, DNA repair and regulation of genomic stability or by some other novel 
functions like involvement in transcriptional regulation, acting as transcription fac-
tors, etc. [19, 121, 122].

Oncomine analysis revealed that various cancers, like pancreas, brain, head 
and neck, kidney and cervix, exhibited overexpressed DNA repair proteins [123]. 
Additionally, elevated levels of DNA repair proteins were observed in metastatic 
than in primary tumours among melanoma cases [124]. However, only HR and 
NER but not BER genes were found to be upregulated in melanomas determined 
by immunohistochemical and gene expression microarray analysis [125–127]. 
Genomic stability gives rise to distant metastasis from a melanoma cell [128, 
129]. Therefore, most of the neoplastic cells (present in melanoma cells) have 
tendency to metastasize, as they have upregulated genes for effective repair pro-
ducing genetically stable cells that have ability to metastasize [130, 131]. On the 
basis of these findings, it was hypothesized that genomic instability is useful in 
the initial stages of tumour development. However, metastatic and late-stage 
tumours upregulate series of DNA repair genes to certify lowest of genomic sta-
bility [132]. This activation and deactivation mode of DNA repair genes helps in 
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estimating sensitivity or resistance of chemotherapy. Experiments have revealed 
that DNA repair pathway might not work properly in early carcinogenesis result-
ing in genetic instability; however, respective secondary variations confer a 
selective benefit to tumour [133–135]. Consequently, reactivation of repair path-
way occurs [136].

Many genes that play a role in DNA damage-induced checkpoints and DNA 
repair by different means like upregulation (PARP1, RAD9), downregulation or 
mutation (BRCA1, TP53) have been found to be linked with metastasis checked 
by immunohistochemistry and various in  vitro assays [37, 137–139]. Various 
genes among them along with their probable association with metastasis are dis-
cussed here. For example, RAD9 is a multiplex protein that helps in various cell 
functions along with cell cycle checkpoint activation. Some of these functions 
are dNTP biosynthesis, transcriptional regulation of genes, DNA repair, apopto-
sis and telomere maintenance [140]. It plays role in every DNA repair pathway 
except non- homologous end joining [141]. Telomere instability is also related 
with faulty DNA repair and RAD9 effects [142]. In addition, chromosome end-
to-end association is also associated with genomic instability and resulting car-
cinogenesis [3, 143, 144]. An increase in chromosome end-to-end association 
and frequency in telomere loss can be seen when RAD9 is not in its active form 
[145]. Along with all these mentioned roles, RAD9 also helps in apoptosis. 
RAD9 sometimes neutralizes anti- apoptotic BclXL and Bcl-2 activity and 
induces pro-apoptotic Bax activity [146, 147]. One of the most important and 
less studied RAD9 activities is its potential to act as transcription factor and 
regulate various downstream target genes. It has also been identified as coregula-
tor in prostate cancer cell lines that can suppress androgen- androgen receptor 
transactivation [142] (Table 7.1).

7.4  Conclusion

Recently, it has become evident that several genes play vital role in DNA repair 
and are responsible for tumorigenesis along with cancer metastasis. However, 
underlying molecular mechanisms are not fully explored yet. Genome profiling 
of primary in comparison with metastatic tumours and immunohistochemical 
analysis of tumour samples have confirmed the involvement of DNA repair 
genes. Moreover, results from in vitro experimentation evidenced the potential 
linkage of DNA repair genes with increased tumour invasion, migration, anchor-
age-independent growth and anoikis resistance. DNA repair proteins are multi-
functional performing biochemical, cellular and gene regulatory roles. 
Nevertheless, which of the manifold roles of DNA repair proteins is required for 
metastases regulation is not completely known. However, from a practical per-
ception, exploration of the molecular mechanisms involved is pivotal in facilitat-
ing the design of DNA-targeted therapies via proteins as innovative anticancer 
agents.
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8Adapting the Foreign Soil: Factors 
Promoting Tumor Metastasis

Ramish Riaz, Shah Rukh Abbas, and Maria Shabbir

Around 90% of the deaths among cancer patients occur due to metastasis. Treatment 
of metastasis remains a challenge for oncologists. Metastasis can appear even 
decades after the removal of primary tumor. Tumors can remain dormant for years 
and develop metastasis when conditions become suitable. This period of latency is 
referred to as tumor dormancy. Disease is usually detected when tumor is already in 
advance stage. Detection of disseminated cancer cells and controlling the mecha-
nisms contributing in development of overt metastasis might decrease the mortality 
associated with it [1].

Metastasis occurs via multistep process. Cancer cells first undergo epithelial to 
mesenchymal transition (EMT) which allows them to disseminate from primary 
tumor. Attainment of mesenchymal traits helps the cancer cells to gain motile prop-
erties. Physiologically, EMT occurs during embryogenesis and wound healing in 
response to signals received from neighboring cells. In carcinogenic process, EMT 
starts in response to signals originated from tumor microenvironment. Most com-
mon signaling pathways involved include TGF β, Notch, and WNT signaling 
pathways. Many growth factors including epidermal growth factor (EGF), 
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hepatocyte growth factor (HGF), fibroblast growth factor (FGF), insulin growth fac-
tor (IGF), and platelet-derived growth factor (PDGF) play an important role in 
induction of EMT [2]. Hypoxia promoting HIF1α activation and release of proin-
flammatory cytokines like IL-1β, TNF-α, NF-κβ also promotes EMT. Induction of 
EMT helps cancer cells to lose cell-to-cell connection and invade the extracellular 
matrix (ECM). However, once inside blood vessels, factors inducing EMT are no 
longer present. Here platelet-derived multiple growth factors play an important role 
in maintaining mesenchymal state. Upon reaching the foreign soil, disseminated 
cells maintain their mesenchymal state by the support of premetastatic niches. 
These niches are rich in myeloid cells, hematopoietic progenitor cells, and a variety 
of factors including VEGF-1, MMP2, MMP9, COX2, as well as WNT5A which 
promote the maintenance of mesenchymal state [3].

Next step for disseminated cells is to invade the neighboring tissue by degrading 
ECM.  ECM degradation is necessary for invasion and intravasation. It is tightly 
regulated by tissue inhibitors of matrix metalloproteases (TIMPs) and metalloprote-
ases (MMPs). MMPs are activated in response to inflammatory cytokines like IL-1, 
IL-6, and TNF-α, growth factors like EGF, PDGF, and TGF in addition to proteases 
like elastases, chymosin, and plasmin. Most notable MMPs that play an important 
role in invasion are MMP1, MMP2, MMP8, and MMP9. By degrading basement 
membrane, MMPs not only support intravasation but also promote migration of 
endothelial cells, thereby supporting the process of angiogenesis. MMP9 and 
MMP2 also secrete vascular endothelial growth factor (VEGF) which is a mitogen 
factor for endothelial cells and an important promoter of angiogenesis [4].

Disseminated tumor cells (DTCs) metastasize to distant sites via vascular or lym-
phatic route. By degrading basement membrane, cells enter the circulation. Here 
they survive via escaping the immune responses and reach the distant sites [5]. Upon 
extravasation in foreign tissue, tumors have to adapt the microenvironment and evade 
immune surveillance to establish macro-metastasis. They remain there in dormant 
stage till they alter themselves sufficiently to develop overt metastasis. Mechanisms 
involving the tumor dormancy and overt growth are poorly understood and are still 
under research [6]. Current chapter reviews the mechanisms involving tumor dor-
mancy, microenvironmental control, immunomodulation, mechano- transduction, 
and exit of dormancy and their possible role in establishing cancer metastasis.

8.1  Metastatic Tumor Dormancy

In response to stress or harmful stimuli, cells enter a dormant or nondividing stage. 
This helps the cell or microorganism to survive the hostile environment. Cellular 
dormancy is an evolutionary conserved phenomenon observed in cells and microor-
ganism to help them in adapting stress [5, 7]. Different microorganisms like viruses 
(HIV, HBV) and bacteria (Mycobacterium tuberculosis) survive in host by entering 
into latent, dormant state [8]. Similarly mammalian stem cells as well as immune 
cells also remain in quiescent state until they receive proliferative signals [9]. Tumor 
dormancy refers to existence of cancerous cells without manifestation of disease. 
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This was identified on random autopsy of prostate tissues of population without any 
cancer. Postmortem reports have revealed up to 27% of the autopsies having carci-
noma in prostate specimen. Similarly 39% of the histologic breast tissues upon 
postmortem studies have revealed carcinoma in situ [10]. This tumor dormancy 
occurs before the onset of primary tumor. Hadfield defined tumor dormancy as 
mitotic arrest at G0-G1 phase, i.e., establishment of equilibrium state between cel-
lular division and apoptosis [11].

Metastasis has been long thought as late event resulting as a result of stepwise 
sequence of primary tumor spread to regional lymph nodes as well as distant organs. 
However, occurrence of metastasis without evidence of primary tumor changed the 
classical understanding of metastasis. Recent studies have revealed that tumors as 
small as <5 mm can develop distant metastasis. In most of the cases, metastasis 
appears after the onset of primary tumor, but sometimes it is detectable even before 
the manifestation of primary tumor. Metastasis can appear years even after the 
resection of primary tumor. This latent stage is usually referred to as metastatic 
tumor dormancy in which DTCs stay in dormant stage for years [12]. These DTCs 
show lack of both proliferative (Ki67) and apoptotic markers. Most common site 
homing DTCs is the bone marrow. Another subgroup of DTCs is circulating tumor 
cells (CTCs) which circulate in the blood. Detection of CTCs in peripheral blood is 
considered to be hallmark of advanced disease. However due to very low amount of 
CTCs in blood, their detection requires ultrasensitive bio-sensing devices. During 
latent period DTCs and CTCs alter them or equip them with necessary functions 
required for development of tumor at secondary site [13].

8.1.1  Mechanism of Metastatic Dormancy

Metastatic dormancy could occur as single cell or solitary dormancy or tumor mass 
dormancy. Several mechanisms are thought to promote metastatic dormancy includ-
ing intracellular signaling mechanisms, extracellular factors, and immunological 
and angiogenic processes [14].

8.1.1.1  Intracellular Signaling Mechanisms
Crosstalk between mitogen-activated signals and stress-induced signals controls cel-
lular dormancy. Among intracellular signals, mitogen-activated protein kinase 
(MAPK) signaling cascade is the most important signaling pathway regulating dor-
mancy in addition to proliferation. P38α MAPK negatively regulates cellular prolif-
eration and promotes DTCs dormancy, whereas extracellular signal-regulated kinase 
(ERK1/2) is a promoter of proliferation. ERK1/2 to MAPK38 ratio is an important 
indicator of dormancy and proliferation. Upregulation of urokinase plasminogen 
activator receptor (uPAR) and MAPK 38 results in activation of unfolded protein 
response which promotes transcription of ATF6 resulting in growth arrest [15].

ATF6 promotes the survival of dormant cells by activating RheB and mTOR inde-
pendent of AKT [16]. MAPK38 pathway also promotes the activity of p53 and p16 
and decreases the activity of cyclin D thereby promoting cellular dormancy [17]. 
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Reduction in PI3K-AKT signaling also promotes autophagy and quiescence under 
deprived nutritional conditions. PI3K-AKT inhibits FOXO, increasing MDM2 
resulting in inhibition of cell cycle arrest. Inhibition of AKT relieves FOXO and 
MDM2-mediated p53 inhibition resulting in quiescence and cell cycle arrest [18].

Autophagy also plays an important role in dormancy. Factors promoting autoph-
agy promotes dormant state. Aplasia ras homolog member1 (ARH1) induces dor-
mancy in ovarian cancer by promoting autophagy via inhibition of PI3K/AKT/
mTOR signaling pathway. ARH1 interacts with BECN1 α to form autophagosome. 
It is reported that ARH1 promotes dormancy in  vivo and cell death in  vitro. 
Autophagy is also promoted under conditions of cellular stress. Accumulation of 
misfolded proteins results in unfolded protein response via protein kinase R-like 
endoplasmic reticulum kinase-eIF2α-activating transcription factor 4-alpha (PERK- 
eIF2α- ATF4) signaling axis. The axis has been found to promote dormancy in head 
and neck cancer [19].

8.1.1.2  Extracellular Signaling Mechanisms
Among extracellular signals transforming growth factor β (TGF β) family plays an 
important role in regulating dormancy. TGF β is one of the largest families of cyto-
kines which regulate a variety of functions including angiogenesis, cellular prolif-
eration, epithelial to mesenchymal transition, and quiescence. TGF β1 act as an 
inhibitor of proliferation in precancerous state and as promoter in advanced stages. 
TGF β3 also act as promoter of proliferation; however TGF β2 act as inhibitor of 
proliferation by inducing metastatic suppressor DEC (differentially expressed in 
chondrocyte). DEC suppresses CDK and induces p27 thereby promoting tumor dor-
mancy [13]. TGF β promotes dormancy by both canonical, i.e., via activation of 
SMAD4 and noncanonical pathways independent of SMAD4. In canonical path-
way, oligomerization of receptor leads to phosphorylation of SMAD2/3 which 
interacts with SMAD4 to directly promote transcription of dormancy associated 
genes. However, in noncanonical pathway, TGF β promotes dormancy by promot-
ing MAPK38 activity [20].

Bone morphogenic proteins (BMPs) and growth arrest-specific 6 (GAS6) genes 
are other important extracellular signals promoting tumor dormancy. They have 
dual role in dormancy; some members like BMP4 and BMP7 promote dormancy, 
while BMP2 supports proliferation. BMP7 activates NGDR1 present downstream 
of N-myc which results in activation of MAPK 38 and p21 resulting in cell cycle 
arrest [21]. BMP4 promotes dormancy via SMAD1/5 signaling [20].

Cytoskeletal organization also has an impact on dormancy status. Stress fiber 
formation promotes exiting dormancy and entering proliferative stage. β1 integrin 
causes phosphorylation of myosin light chain by activating myosin light chain 
kinase MLCK. Inhibition of β1 integrin is also reported to promote dormancy in 
breast cancer cell lines by inhibiting myosin light chain kinase (MLCK) [16].

8.1.1.3  Immunological Mechanisms
Immune system plays an important role in preventing tumorigenesis and its pro-
gression. Tumor cells are surrounded by a variety of immune cells including 
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lymphocytes, macrophages, natural killer cells, fibroblasts, and neutrophils which 
interact via a variety of signaling pathways mediated by cytokines, lymphokines, 
and cellular adhesion molecules which suppress its proliferation. For a cell to pro-
liferate, it has to bypass all these signaling pathways or escape this immune sur-
veillance. Immune system confines metastatic spread of tumor by establishing 
dormancy in tumor cells [22]. Natural killer cells and cytotoxic T cells play an 
important role in controlling overt metastasis. CD8+ T cells promote cell cycle 
inhibition via IFN-γ- and TNF-mediated signaling. To circumvent immune target-
ing, the metastatic cells have to undergo necessary alterations during dormancy 
[23, 24].

During dormancy, cells avoid CTL-mediated death by overexpressing B1 and 
B7-H1. Via paracrine signaling and secreting cytokines like IL-13, they avoid apop-
tosis. Also they activate JAK/STAT pathway by inhibiting SOCS1, a negative regula-
tor of JAK/STAT pathway [25]. Inflammatory response or other perturbations in this 
equilibrium cause cancer cells to exit dormancy and develop overt metastasis [22].

Interleukins IL-12 and IL-23 are important interleukins secreted by dendritic 
cells and antigen-presenting cells. In tumor microenvironment, ratio of IL-12 and 
IL-23 can shape the environment to become tumor supportive or tumor repressive. 
IL-12 is found to activate IFN-γ and has tumor repressive function. It also promotes 
T-cell activity, while IL-23 is protumorigenic and causes upregulation of MMP9 
and VEGF thereby promoting angiogenesis and metastasis [26].

8.1.1.4  Angiogenic Mechanisms
Tumor cells are unable to grow beyond 2 mm without new vessel formation. To get 
nutrients, they initiate program of angiogenesis by secreting angiogenic factors like 
vascular endothelial growth factor (VEGF) which recruits endothelial cells [14]. 
Angiogenesis is regulated by angiogenic promoters like VEGF and inhibitors like 
angiostatin and thrombospondin-1 (TSP1). Lack of proangiogenic factors and upreg-
ulation of antiangiogenic factors result in tumor dormancy. Upregulation of throm-
bospondin-1, an angiogenic inhibitor induces tumor dormancy in DTCs in 
osteosarcoma, glioblastoma, liposarcoma, and breast cancer [27]. Thrombospondin-1 
is also produced by CD8 and CD4 T cells resulting in inhibition of angiogenesis. It 
promotes EMT as well as survival of dormant resistant cells. It also promotes activa-
tion of TGF β which both favor dormancy in addition to tumorigenesis by upregulat-
ing VEGF and hence play an important role in oncogenesis. Shift toward angiogenesis 
by VEGF helps in exiting dormancy and developing overt metastasis [28].

Downregulation of HSP27 is also found to induce tumor dormancy in breast 
cancer. HSP27 promotes angiogenesis by inducing angiogenic promoters. Its 
upregulation is linked with exit from dormancy and tumor spread [29]. Similarly 
VEGF, periostin, and TGF β promote neovasculature sprouting in return promot-
ing micrometastatic outgrowth [30].

8.1.1.5  Hypoxia
Hypoxia occurs in majority of the solid malignancies and is associated with inva-
siveness and poor survival. Hypoxia causes activation of hypoxia-associated 
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transcription factors including hypoxia-inducible factor HIF1α, stress-related 
proteins, mTOR1 complex, and stabilization of VEGF. Hypoxia is both promoter 
of dormancy and also helps the cells in exiting dormancy. Its role in tumor dor-
mancy is still ambiguous. Dormancy due to hypoxia is usually attributed to its role 
in inducing autophagy which causes tumor cells to remain in quiescent stage for 
longer period and stay unresponsive to radiotherapy as well as chemotherapy [13]. 
Severe hypoxia also leads to the activation of PP2A which promotes growth inhi-
bition and tumor dormancy [13, 31]. Dormancy markers like NR2F1, DEC, and 
p27 are upregulated in hypoxia [27]. Hypoxic factors that promote proliferation 
include HIFα and LOXL2. LOXL2 is involved in epithelial to mesenchymal tran-
sition and drives these cells to express cancer stem cell-like properties, thereby 
promoting invasion and metastasis [32]. Also for survival of cell during hypoxic 
state, cell must have to save its energy resources. Consumption of oxygen, glu-
cose, and ATP is decreased during the state of dormancy; therefore it supports 
cancer cell survival during nutrient deprivation and hypoxic conditions. However, 
hypoxia also induces transcription of HIF1α which upregulates VEGF thereby 
promoting angiogenesis. Switch of cells toward angiogenic state helps in exiting 
from dormant stage [33].

8.1.1.6  Cancer Stem Cells
Cancer stem cells are the stem cells of the tumor which have full capability to initiate 
and support tumor at any site. Like other progenitor cells, these cells mostly remain 
in quiescent state and are largely resistant to therapies which mostly target rapidly 
dividing cells. After removal of stress or treatment, the stem cells start dividing, exit 
dormancy, and develop metastatic growth [34]. It has been reported that noncancer 
stem cells can also convert to cancer stem cells following survival mechanism [35].

Autophagy is an evolutionary conserved mechanism in stem cells. CSCs can 
initiate autophagy by activating LKB1-AMPK. Autophagy establishes long latency 
program in DTCs. However, this dormancy program is usually transient, whenever 
conditions become suitable; CSCs promotes epithelial to mesenchymal transition 
and metastasis [36].

Tumor microenvironment also helps CSCs in maintaining dormancy. 
Mesenchymal stem cells (MSCs) present in metastatic niches interact with dis-
seminated CSCs to promote quiescent state. Interaction between MSCs and 
CSCs occur via secretion of mRNA exosomes. Presence of gap junctions allows 
sharing of miRNAs between MSCs and CSCs. In breast cancer stem cells, miR-
NAs 127,129, 222, and 223 are reported to induce quiescence by decreasing 
CXCL12. Bone is one of the common sites of metastasis. Bone microenviron-
ment promotes dormancy by secreting soluble factors like TGF β and is rich in 
MSCs. As CSCs prefer hypoxic environment for their survival in dormant state, 
they also secrete stress signals. These stress proteins like clausterin bind with 
IGF and inhibit PI3K-AKT pathway thereby promoting dormancy [37] 
(Table 8.1).
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8.2  Tumor Microenvironment

In 1889, Stephen Paget gave his famous “seed and soil” hypothesis, according to 
which malignant cells need receptive environment to implant its cells in distant 
organ. In 1930, James Ewing opposed his theory by proposing that pattern meta-
static dissemination is dependent upon hematogenous flow. Isaiah Josh Fidler dem-
onstrated that although tumor cells utilize blood flow to reach distant organ, their 
implantation is organ specific. His finding revived Paget’s theory of need of recep-
tive soil for successful engraftment. Research focused on pathophysiology of recep-
tive microenvironment or niches have given the detail account of molecular 
mechanism that contributes in making soil receptive for metastasis [38].

8.2.1  Premetastatic Niche

Niche refers to a place or status where person is most satisfied. Similarly, in cancer 
biology premetastatic niche refers to microenvironment which supports the implan-
tation and proliferation of disseminated cancer cells. Premetastatic niche in com-
parison to metastatic niche is devoid of cancer cell; it is site of future implantation. 
It evolves as a result of secretion of soluble factors and extracellular vesicles which 
signal the tumor-associated cells to cluster at premetastatic site to create an environ-
ment that is receptive for tumor invasion. Other factors which contribute to its evo-
lution include pathophysiological conditions like inflammation and aging which 
make microenvironment conductive to colonization [39].

8.2.1.1  Initiators of Premetastatic Niche
Hematopoietic cells of myeloid origin expressing VEGF receptor 1 are considered 
to be key component of premetastatic niche. They arrive and cluster at the site even 
before the arrival of disseminated cells. These receptors also upregulate the expres-
sion of VLA-4 and fibronectin. Colonized myeloid cells and stromal fibronectin act 
as attractive implantation site for disseminated tumor cells. Growth factors like 
PIGF, inflammatory chemokines, and angiogenic factors (VEGF) secreted by tumor 
cells are considered to be recruiters of hematopoietic cells at premetastatic niche 
[40, 41].

Table 8.1 Factors playing role in dormancy

Mechanisms Promoters of dormancy Inhibitors of dormancy
Intracellular MAPK, ATF6, ARH1, PERK-eIF2α-ATF4 ERK1/2, PI3K-AKT

Extracellular TGF β2, BMP4, BMP7,GAS-6 TGF β3, BMP2, MLCK
Immunological CD8 T cells, JAK/STAT, IL-12, IFN IL-1, IL-10,IL-13,IL-23, 

TAM, Treg
Angiogenic Thrombospondin-1, angiostatin VEGF, HSP27
Stem cell 
based

LKB-1-AMPK; miRNAs 127,129, 222, and 
223; clausterin

SDF-1, OPN, LOX, MMPs
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Liver is a common site of metastasis in many malignancies. Premetastatic niche 
in liver is promoted by secretion of exosomes expressing macrophage migration 
inhibitory factors by primary tumor from Kupffer cells. TGF β promotes ECM 
remodeling and recruits bone marrow-derived macrophages [42]. Bone is another 
common site of metastasis. Depending upon the type of primary tumor and secre-
tory factors, lesions could be osteoblastic or osteolytic. In case of osteoblastic 
lesions, primary tumors or circulating tumor cell secretes vascular endothelial 
growth factor VEGF1, bone morphogenic proteins BMPs, prostate-specific antigen 
PSA, insulin growth factor IGF, and endothelin-1 which together promote osteo-
blastic activity. Endothelin-1 suppresses DKK which act as negative regulator of 
WNT which is usually high in prostate cancer. However, in case of osteolytic lesion 
(e.g., breast cancer), extracellular matrix-modifying enzymes like lysyl oxidase are 
secreted. Other factors released include parathyroid hormone, matrix metalloprote-
ases, and interleukins IL-11 and IL1, which are usually osteoblastic but by promot-
ing RANK with concomitant decrease of OPG activates osteoclast precursors. 
Parathyroid hormone is the most important secretory factor expressed in 90% of the 
bone metastasis which reacts with parathyroid hormone receptor to promote 
(RANK). TGF β is another important inducer of bone resorption [43].

8.2.1.2  Establishment of Premetastatic Niche and Promotion 
of Engraftment

Release of secretory factors from primary tumor leads to stepwise progression of 
premetastatic niche establishment and tumor engraftment. Major steps in this pro-
gression are as follows.

Hyper-permeability of Vasculature
Tumor secretory factors via various mechanisms increase the vascular permeability 
at the site of premetastatic niche. This is manifested as increased permeability, 
altered morphology of endothelium, and increased basement membrane breakdown. 
Increased permeability is caused by release of secretory factors like EGF, MMP1, 
MMP2, and COX1 which promote circulating tumor cells (CTCs) extravasation. 
Downregulation of these factors in breast cancer cell lines had shown impaired abil-
ity of metastasis. Angiopoietin 2, MMP3, MMP9, and MMP10 are found to be 
associated with increased permeability in premetastatic niche of the lung in patients 
with breast cancer. Myeloid suppressor cells at premetastatic niche are thought to be 
inducer of MMP 9 which is involved in extracellular remodeling, immunosuppres-
sion, and inflammation thereby promoting an environment inductive for metastasis. 
Genetic ablation of MMP9 is found to be associated with decreased lung metastasis 
[44]. Altered endothelium causes increase in expression of VEGF-A which induces 
endothelial focal adhesion kinase resulting in upregulation of E-selectin. Increased 
expression of E-selectin promotes CTCs engraftment and proliferation [45]. 
VEGF-A secretion is also promoted by CCL-2 secretion from tumor cells and 
monocytes expressing CCR-2 in the stroma in breast cancer models. Decrease in 
monocytes will decrease metastasis [46].
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Premetastatic niches are also associated with formation of clots. Thromboembolism 
is one of the reasons of death among cancer patients. Mechanism of clot formation is 
still ambiguous; however tissue factor playing a role in niche formation can result in 
clot formation. In early metastatic niches, platelets are required for MMP9 as well as 
CD11. Platelets play an important role in cancer-associated coagulopathies [47].

Activation of Stromal Components
Secretory factors from primary tumor causes activation of tissue stroma at site of 
premetastatic niche. Fibroblasts play an important role in ECM remodeling and 
promoting invasion. Exosomal vesicles increase the expression of S100 family 
members of pulmonary fibroblasts in premetastatic niche of the lung [48]. S100A4 
member of this family promotes secretion of proinflammatory molecules thereby 
promoting metastasis. S100A4 also causes upregulation of SAA3 and SAA1 which 
increases tumor adhesion to fibronectin [49]. Other stromal components activated in 
niche formation are tissue-resident macrophages. Exosomes from pancreatic cell 
lines rich in macrophage-initiating factors stimulate liver Kupffer cells to increase 
fibronectin production from hepatic stellate cells which leads to fibrotic environ-
ment. This environment promotes BMDC recruitment and premetastatic niche for-
mation [50]. In the lungs, alveolar macrophages inhibit TH1 response thereby 
promoting inflammatory environment supporting metastasis [51].

ECM Remodeling
Remodeling of extracellular matrix is necessary for CTCs or DTCs engraftment and 
proliferation. Degradation of existing ECM and deposition of new ECM occur at the 
site of premetastatic niche in response to systemic factors released from primary 
tumor. MMPs are upregulated at niches to promote degradation of ECM supporting 
tumor infiltration and releasing growth factors thereby recruiting progenitor and 
tumor cells [39].

In mouse melanoma and pancreatic models, fibronectin deposition mediated by 
stromal fibroblasts has been reported. This promotes adhesion of BMDCs [40]. 
Secretion of TGF β from primary tumor causes release of periostin from stromal 
fibroblast which in turn increases the expression of vimentin and actin. Secretion of 
periostin is important as it plays a key role in establishment of niche. Periostin 
increases WNT signaling thereby promoting infiltration [52, 53]. It also interacts 
with NOTCH, BMPs, and Type I collagens to engage integrins, i.e., αvβ3 and αvβ5, 
to promote cellular motility. It also promotes immunosuppressive functions of 
MDSCs making environment conducive for metastasis [54]. CD11 myeloid cell- 
derived veriscan is ECM preoteoglycan which promotes inflammation at premeta-
static niche [55].

Lysyl oxidases (LOX) are enzymes whose expression is upregulated at premeta-
static niches by hypoxic tumor cells. LOX family plays role in cross-linking colla-
gen which provide platform for myeloid cell adhesion. Increased HIF-1 expression 
is associated with increased expression of LOX. Apart from hypoxic tumor cells, it 
is also secreted from activated fibroblasts [56, 57].
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Change in mechanical properties of ECM, i.e., matrix stiffness and tissue elastic-
ity, has direct impact on proliferation. ECM remodeling that results in change in 
mechanical properties such as collagen cross-linking leads to increased stiffness 
which supports tumor engraftment and metastatic outgrowth [58].

Formation of Immunosuppressive Environment
Metastasis is an inefficient process as new soil for disseminated cell could be deadly. 
These DTCs are vulnerable to immune surveillance. To make environment receptive 
for arriving DTCs, BMDCs and HPCs alter the microenvironment of premetastatic 
niche making it proinflammatory and immunosuppressive [39].

MDSCs promote immunosuppression by suppressing interferon-mediated 
immune responses and disrupting major immune responses, i.e., antigen presenta-
tion via dendritic cells, macrophage polarization, and inhibition of NK cytotoxicity 
and T-cell activation. It also makes environment inflammatory by secreting proin-
flammatory cytokines, interleukins, and SDF [59]. SDF recruits more BMDCs 
which further increases immunosuppression and inflammation. SDF also promotes 
neutrophils to premetastatic niche [60]. However in absence of interferon γ, they 
have diminished cytotoxicity [61]. Neutrophils secrete leukotrienes which make 
environment more inflammatory and supportive for metastasis. Increase in CD11b+ 
cells at premetastatic niche also reduces NK cell-induced cytotoxicity in turn pro-
moting survival of metastatic cells [62].

In the brain, astrocytes secrete plasminogen activator (PA) which converts inac-
tive plasminogen to plasmin. Plasminogen activates FasL cytokine which binds to 
incoming DTCs and induces apoptosis. Brain metastatic cells from lung adenocar-
cinomas and breast produce neuroserpin and serpin B2 which are plasminogen 
inhibitors, thereby avoiding apoptotic death [63].

8.2.2  Perivascular Niche

Perivascular niches support cancer cells which extravasate and spread near capillary 
basement cell membrane. The CTCs remain near the endothelium and receives 
paracrine signaling [64]. Perivascular niches are rich in hematopoietic stem as well 
as progenitor cells (HSPCs). Other cells in perivascular niches include mesenchy-
mal stromal cells which secrete stem cell factor (SCF) and CXCL playing an impor-
tant role in maintaining niche [65].

Endothelial cells maintain the proliferation of hematopoietic cells by secreting 
CFU-S8. SCF from endothelial cells is required for hematopoietic progenitor cells. 
Knockout of SCF resulted in decrease of hematopoietic stem cells [66]. Cancer cells 
need angiogenesis and lymphangiogenesis for their growth and survival. 
Environment with leaky vasculature and inflammatory cytokines is receptive for 
cancer stem cells. Paracrine factors like VEGF and EGF increase permeability in 
perivascular niches [67]. It has been noted in case of glioblastoma multiforme which 
is highly vascular tumor. In GBM, vascular endothelial cells maintain brain tumor 
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cells in continuous stemlike state thereby increasing invasiveness. These stem cells 
in positive feedback form secrete VEGF promoting vasculogenesis [68, 69].

Perivascular cells like pericytes when cultured for longer time have shown to 
differentiate into mesenchymal cells. This could be one of the reasons of high 
expression of mesenchymal cell markers in perivascular niche. Analysis of pericytes 
in in vitro cultures and in vivo has shown its ability to differentiate into mineralized 
nodules and adipocytes. MSCs also secrete TGF β, hedgehog signal, and CXCL2 
which promote hematopoietic stem cell maintenance [69].

8.2.3  Metastatic and Cancer Stem Cell Niche

When DTCs or CTCs got engrafted in premetastatic or perivascular niches, they are 
called as metastatic niches [38]. Cancer stem cell niche is specifically referred to a 
niche that supports cancer stem cell proliferation. Cancer stem cells are the self- 
renewing cells having tumor initiating and long-term repopulation potential. CSC 
niche is rich in factor promoting angiogenesis, recruiting CSC, immunomodulation, 
and factors to promote metastasis. CSCs release multiple factors which activate 
MSCs for secreting cytokine supportive for CSCs, release HIF1α to promote vascu-
logenesis, as well as secrete TGF β to convert fibroblasts into cancer-associated 
fibroblasts to promote stemness and thereby metastasis [70].

When DTCs land in different soil, they are faced with challenging environment 
where immune cells are in search of foreign cells to destroy them. To adapt to this 
environment and develop overt metastasis, cancer cells have to escape this immune 
response and make environment friendly to them. Both metastatic niche and DTCs 
play a role in modulating the immune microenvironment. DTCs remain in dormant 
stage till the environment become supportive in establishing overt metastasis. 
During dormancy MSCs support dormancy of CSCs by secreting various miRNAs 
[37]. Niches are rich in MDSCs and HSCs, which play essential role in modulating 
the immune environment. Once the environment becomes immunosuppressive and 
angiogenic, CSCs exit dormancy and develop overt metastasis [14].

8.3  Immunomodulation

8.3.1  Cancer Cell-Based Responses

8.3.1.1  Escaping the Immune Response
Tumor cells escape the immune response both by camouflaging themselves, i.e., hid-
ing the foreign antigens, and by showing normal antigens, i.e., disguising the immune 
cells. For CTL response to occur, antigen presentation via MHC-1 class molecules is 
necessary. Fetal cells in mother also survive the immune responses of mother by 
similar mechanisms. They show lower expression of MHC-1 molecules. Cancer cells 
also show an altered expression of MHC-1 which helps them camouflage the immune 
surveillance. The altered expression is usually due to defects in antigen processing 
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pathway. Also cancer cells produce certain immunosuppressive molecules which 
lower the MHC-1 expression thereby evading the CTL responses [71].

Even with low expression of MHC-1, a cell can get killed by natural killer cells 
via binding to polymorphic determinants of MHC-1 through binding with KIRs 
(Killer cell Inhibitory Receptors). MHC-1 interacts with KIRs and inhibits them. 
Upon downregulation of MHC-1, they are free to kill the tumor cells. In order to 
escape killing by NK cells, tumor cells have adapted a mechanism, i.e., adapted in 
maternal-fetal immune interaction. Tumor cells start expressing HLA-G molecule 
which is a nonclassical MHC-1 molecule and have immune-inhibitory effects via 
interacting with three KIRS. HLA-G expression has been found in a variety of can-
cers including melanomas, glioblastomas, ovarian cancer, and lung cancer [72].

8.3.1.2  Immunomodulatory Effects
Apart from immune escape mechanisms, cancer cells alter the immune response to 
survive in hostile environment. During activation and recruitment to the site, 
immune cells interact with each other. The process of migration is tightly controlled 
in which immune cells adhere and detach via release of different adhesion mole-
cules and proteases. ICAM-1 (intercellular cell adhesion molecule) is one of the 
adhesion molecules which is expressed on the surface and plays significant role in 
interaction between NK cells and cancer cells. Cancer cells disrupt this cell-to-cell 
interaction by producing MMP9 which causes ICAM-1 shedding thereby prevent-
ing NK cell-mediated killing [73].

Another mechanism adapted by cancer cells to escape T-cell response is by 
inducing apoptosis of activated T and B cells. B7H1 induces apoptosis of T cells by 
binding to PD-1, a negative regulatory receptor of T cells [74]. Another member of 
this family B7H4 inhibits T-cell proliferation and cell cycle progression in addition 
to cytokine production. B7H4 expression is not found in normal tissues; however 
85% of the ovarian tumors and 31% of the lung tumors express it [75].

For activation of T cells, full maturation of dendritic cells (DCs) is required. For 
this all three signals, i.e., 1, 2, and 3, are needed to elicit Th1-based response. If 
signal 1 is delivered in absence of signal 2 and 3 or in presence of immunosuppres-
sive cytokines, Th2 response will be initiated [76]. Th1-based responses are immu-
nosuppressive, while Th2 responses are tumor supportive. CD40 is one of the 
costimulatory molecule which causes dendritic cell maturation via interacting with 
CD40L (ligand). Loss of CD40L with continued expression of CD40 has been 
found to be associated with immune evasion and tumorigenesis in oral squamous 
cell carcinoma [77].

Also tumor cells combined with metastatic niche release molecules or recruit 
cell which secrete cytokines which promotes Th2 type of response. Key players of 
TH-2 response are MDSCs (myeloid-derived suppressor cell) and TAMs (tumor- 
associated macrophages). MDSCs inhibit T-cell function both directly and indi-
rectly by recruiting T-regulatory cells (Treg cells). Treg cells are CD4 type of T cells 
which secrete TGF β resulting in inhibition of T-cell proliferation. Also these cells 
secrete immunosuppressive cytokines like IL-1, IL-10, IL-4, and IL-5 which inhibit 
CTL responses [78].
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8.3.1.3  Promotion of Chronic Inflammatory State
Ralph Virchow in 1863 proposed that cancer develops as a result of unresolved 
inflammation. It has now been accepted that 25% of the tumors develop as a result 
of chronic inflammation. Chronic inflammation promotes epithelial to mesenchy-
mal transition and alters the immune environment leading to carcinogenesis [79].

Neutrophils are the first to get recruited toward the damaged site and are first line 
of defense in innate immune system and are recruited by chemokines like CXCL8 
and cognate receptors like CXCR1 and CXCR2. Neutrophils secrete multiple dif-
ferent chemokines and cytokine which promote development of chronic inflamma-
tory state. They also secrete multiple soluble factors like HGF, VEGF, TGFα, and 
FGF and cytokines like IL1, CXCL1, CXCL 8, CXCL9, CXCL 10, CCL3, and 
CCL4  in addition to enzymes like MMPs which promote chronic inflammation, 
ECM remodeling, and angiogenesis consequently metastasis [80].

Initiation of Th2 response results in development of chronic inflammatory stage. 
TAMS are crucial drivers of chronic inflammation. They also promote lymphangio-
genesis, angiogenesis, and immunosuppression [78]. TAMs also secrete multiple 
factors including interleukin-1 that has been found to be raised in variety of tumors 
such as melanomas, lung, head and neck, colon, and breast cancer. IL-1 also acti-
vates signal transduction pathways such as NF-κβ, JNK, p38MAPK, and AP1. 
NF-κβ provide a link between inflammation and carcinogenesis. It is a major regu-
lator of apoptosis, angiogenesis, and invasion. IL-1 also activates NALP inflamma-
some which promote sustained inflammation. IL-1-mediated inflammation has been 
found to be associated with development and progression of melanoma [81].

Tumor microenvironment is a rich source of growth factors which can activate 
RAS by binding to RTKs like EGFR and activate downstream PI3K-AKT-mTOR 
and RAF-MAPK-ERK pathway. PI3K-AKT pathway promotes inflammatory state 
by activating NF-κβ pathway [82]. NF-κβ in turn promotes transcription of more 
than 60 genes involved in inflammatory responses. Apart from increasing produc-
tion of proinflammatory cytokines like IL1, IL2, IL6, IL8, IL12, and TNFα, it also 
promotes production of chemokines like MCP-1, MIP2, IL-18, CXCL10, and 
CXCL11, thereby promoting angiogenesis. It promotes production of adhesion 
molecules like ICAM, VCAM, MMPs, and selectin which support antiapoptotic 
and invasive properties. It encourages cell survival by increasing cyclins, BCL-2 
members, and survivin. Therefore, activation of NF-κβ pathway is considered to be 
a hallmark of invasion and metastasis [83].

8.3.2  Tumor Microenvironment in Immunomodulation

Tumor microenvironment at site of metastasis or metastatic niches undergoes 
dynamic changes during the process of metastasis to support cancer cells engraft-
ment, progression, and development of overt metastasis. It not only provides the 
DTCs with necessary factors for growth but also prevents them from harsh immune 
environment. It alters the immune responses by secreting a variety of cytokines in 
addition to other factors promoting DTCs survival [84].
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8.3.2.1  Role of MSCs in Immunomodulation
Mesenchymal stem cells are the stromal cells recruited in large amount in cancer 
stem cell and metastatic niches where they promote immunosuppressive environ-
ment to support exit from dormancy and development of overt metastasis. MSCs 
are recruited to stem cell niches via different signaling axes including SDF-1, 
chemokines signal (CXCR3, CXCL10), and TGF β. Once at site they secrete dif-
ferent cytokines, chemokines, and ECM components which promote immune 
alteration, act as chemoattractant, promote angiogenesis, and support metastatic 
development [85].

Naïve MSCs usually have both immune-protective and immune-suppressive 
function. Type of function depends upon its polarization via different stimuli. LPS 
through TLR4 stimulation promote MSC1 phenotype which promotes T-cell activa-
tion and has repressive effect on tumorigenesis. This is the reason; they are being 
employed in stem cell therapeutic approaches. In tumor microenvironment, mostly 
MSCs via poly i:c through TLR3 induction promote MSCs type two which are 
immunosuppressive and causes upregulation of CCL5, TGF β, and IL-10 which 
promote carcinogenesis [85].

MSCs in presence of IL-1, TNF, IFN-γ, and hypoxia release immunosuppressive 
factors including platelet-derived growth factor (PDGF), epidermal growth factor 
(EGF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), 
IL-6, and IL8. MSCs cause shift in polarization of TNFα secreting M1 to IL-10 
phenotype. In pancreatic neoplasms MSCs have shown to induce M2 macrophages 
which are immunosuppressive in nature [86].

MSCs have inhibitory action on NK cells function via different mechanisms. In 
the adipose tissue, umbilical cord, and bone marrow, they inhibit activation of CD56 
subset of natural killer cells. By increasing the expression of cytokine signaling 
three axes, they inhibit the proliferation of natural killer cells. Also MSCs isolated 
from leukemic patients had shown that decrease in amount of IL-6 and IL-8 
decreases functioning of NK cells [87].

By secreting IL-10, MSCs are found to suppress dendritic cells (DCs). Also they 
decrease functioning of DCs by activating signal transduction and activator of tran-
scription (STAT). Within TME, MSCs decrease cysteine production via STAT; this 
results in decrease in activation of DC mediated T-cell actions [88].

MSCs isolated from patients suffering from chronic myelogenous leukemia have 
shown increased recruitment of Treg population which have potent immunosup-
pressive functions [89]. By ligating PD-1/PD-1, MSCs inhibit B-cell activity, pro-
liferation, and differentiation. They inhibit CD8 T cells by inducing nitric oxide 
production in proinflammatory environment [85].

8.3.2.2  Role of NO in Immunomodulation
Nitric oxide is synthesized physiologically by a variety of tissues via catabolism of 
L-arginine to L-citrulline. The reaction is catalyzed by nitric oxide synthase (NOS) 
expressed in low levels by neuronal and endothelial cells regulated by intracellular 
calcium levels. Another form of NOS is called as inducible nitric oxide synthase 
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(iNOS) which is independent of calcium levels but induced by proinflammatory 
cytokines, hypoxia, endotoxins, and oxidative stress [90].

High levels of NO are implicated in pathophysiology of many malignant dis-
eases. In most of the solid and hematological malignancies, iNOS expression has 
found to be substantially higher [91]. While in brain malignancies, increased 
expression of neuronal NOS is considered to be the reason behind high levels of 
nitric oxide [92].

In TME, NO is produced by a variety of cells including epithelial cells, keratino-
cytes, fibroblasts, chondrocytes, and some immune cells where it exerts both auto-
crine and paracrine effects. iNos is highly expressed by M1 macrophages where it 
works in autocrine manner and acts as negative regulator of M1 differentiation. 
High levels of NO produced by macrophages inhibit T-cell infiltration as well as 
endothelial cell activation; however at lower concentrations effect is opposite [93].

NO also supports evasion of T-cell-mediated immune response by nitrosylating 
CCL2, a chemoattractant chemokine, thereby eliminating its ability to attract CD8 
T cells to cancer cells [94]. In squamous cell carcinomas, MDSCs are found to 
produce NO resulting in downregulation of E-selectin, thereby restricting T-cell 
recruitment [95]. In melanomas, iNOS expression by IL-12 is found to be associ-
ated with recruitment of MDSCs and Treg cell making environment immunosup-
pressive [96]. NO also plays role in metabolic reprogramming and increased 
immunosuppression [97].

8.3.2.3  Metabolic Reprogramming and Immunomodulation
Tumor microenvironment is characterized by hypoxia, low perfusion, fatty acid 
metabolism, and lactic acidosis. Cancer cells prefer glycolysis over oxidative 
phosphorylation even in presence of oxygen, phenomenon referred to as Warburg 
effect. Acidic environment on one side restricts T-cell and NK cytotoxic response 
and on other side recruits MDSCs and Tregs which further suppress the immune 
response [98].

Lactic acidosis impairs MCT-1 resulting in impaired CD8 T-cell function, 
increased apoptosis, and reduced IFN and IL-2 production. In vitro experimenta-
tion on melanoma cell lines showed pH of 6.5 resulted in decreased expression of 
T-cell receptor components like ζ chain and CD23 expression along with decreased 
IFN, TNFα, and IL-2 secretion [99]. Loss of NK cell activity has been noted in 
leukemia and colorectal cancer [100, 101]. Low pH also affects dendritic cell 
functioning as immature dendritic cells require OXPHOS for maturation [102].

The most potent immunosuppressive response by TME is exerted via recruit-
ment of MDSCs. How TME attracts MDSCs is poorly understood. It is reported that 
upregulation of selectins play a central role in attracting MDSCs [103]. Low pH is 
also associated with release of proinflammatory cytokines and iNOS which in turn 
recruits MDSCs [104]. Increased expression of chemokines like CCL-28, CCL-17, 
and SDF are associated with recruitment of Treg cells [105, 106].

All these events help DTCs to escape immune response and make environment 
friendly for their proliferation and developing overt metastasis.
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8.4  Mechano-transduction and Metastasis

Tumor has long been diagnosed as palpable mass due to its stiffer nature than nor-
mal tissue. However, it was not until the last decade, studies focused on inside 
mechanisms of tissue rigidity, tumor mechanics, and its effect on invasion and 
metastasis. Studies have shown association between increased stiffness and metas-
tasis as well as poor survival. Diagnostic approaches like ultrasound and MR elas-
tography help in differentiating benign versus malignant diseases of breast, liver, 
and kidney via measuring lesion rigidity. Matrix stiffness regulates various cellular 
pathways. Increase in stiffness leads to activation of various biochemical pathways 
which lead to cell-cycle progression, cellular proliferation, epithelial to mesenchy-
mal transition, and cell motility. The section is focused on describing how matrix 
stiffness occurs and how mechano-transduction derives metastasis [107].

8.4.1  Matrix Stiffness

Remodeling of ECM stimulated by tumor microenvironment as well as tumor cells 
themselves leads to stiffened matrices which in turn support cancer cells. Tumor 
cells that have undergone EMT play vital role in changing mechanical properties of 
matrix. EMT causes increased fibrillin expression and deposition which is one of 
the major components of microfibrils [107].

Cancer cells with high metastatic potential have higher expression of lysyl oxi-
dase (LOX) and fibronectin in addition to other ECM remodeling proteins. LOS is 
involved in promoting actin-myosin contractibility. LOX is also secreted by cancer- 
associated fibroblasts (CAFs) present in metastatic niche. Here it promotes increased 
cross-linking of collagen thereby promoting matrix stiffness. Hypoxia also encour-
ages collagen deposition by upregulating LOX [108].

TWIST protein plays an important role in stabilization of myosin II and develop-
ment of supracellular actin-myosin meshwork generating tissue-wide tension. It 
also causes activation of stress fiber formation and provides integrity to tissue [109]. 
High expression of TWIST is found in many tumors including breast cancer and is 
associated with metastasis and poor survival. It plays an important role in EMT. Its 
expression induces Rac-1-mediated increased cellular tension and rigidity. CAFs 
also promote matrix stiffening via caveolin-1. Caveolin-1 plays a role in organiza-
tion of stromal architecture and promotes directional migration of cells. Its upregu-
lation is linked with increased invasion and metastasis [107].

YAP and TAZ are transcriptional factors associated with increased invasion and 
metastasis. They act in a positive feedback way by supporting matrix stiffness which 
in turn upregulates its expression. YAP/TAZ regulate actin-myosin cytoskeleton by 
controlling different genes involved in ECM remodeling. YAP also regulates main-
tenance of CAFs which play an important role in tumor stiffness [110].

Another important regulator of cytoskeleton tension is Rho family of GTPases. 
Most of the functions are mediated by Rho kinases (ROCK). Rho regulates myosin 
phosphorylation and controls cytoskeletal contractility. Tumors with increased Rho 
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expression are associated with increased stiffness. ROCK also promotes loss of 
adherens junctions (AJ), loss of polarity, and remodeling of ECM thereby promot-
ing invasion and metastasis [111, 112].

8.4.2  Mechano-sensing and Transduction Mechanisms

Mechano-transduction refers to sensing mechanical cues and translating them into 
biochemical or cellular pathways leading to change in characteristic of tissues and 
cells. Change in mechanical stress leads to change in geometry of tissue, and this 
leads to change in cellular behavior [113].

There are many mechano-sensing and transduction mechanisms. Focal adhesion 
complexes are the most important system that sense the change in biomechanical 
properties. Focal adhesion complex consists of many proteins including integrins 
and multiple adapter in addition to signaling proteins like vinculin and talin. These 
proteins undergo conformational change upon application of physical force result-
ing in either stabilization of protein-protein interaction as in case of integrin and 
fibronectin or can reveal the binding site of molecules like talin. Vinculin binding to 
talin leads to clustering of integrins resulting in activation of signaling molecules at 
intracellular face of adhesion [114].

Different cell surface receptors also respond to mechanical cues including integ-
rins, cadherins, and ephrin. Ephrin receptor 2A binds to ligand Ephrin1 and regu-
lates cellular migration, growth, and proliferation. EGFR signaling is also found to 
be associated with mechanical cues. Receptor organization is determined by actin 
organization. Therefore change in actin organization will also effect receptor orga-
nization [115].

Mechano-sensing usually works in a positive feedback way. Change in cell sur-
face receptors by stiffened matrices leads to stabilization of integrins, allowing focal 
adhesion to mature. Integrins control cell motility and spread by binding to actin- 
binding protein filamin A [116, 117]. This links intracellular actin cytoskeletal sig-
naling to outside integrin signaling. In addition to integrin, discoid domain receptors 
(DDR) also play a role in mechano-sensing. DDR1 and DDR2 are expressed by 
epithelial and mesenchymal cells and are regulated by EMT. They facilitate metas-
tasis by increasing the expression of SNAIL2. DDR2 expression has been found in 
many ductal breast carcinomas [118].

8.4.3  Mechano-transduction and Dissemination of Cancer Cells

For cancer cells to disseminate, first step is epithelial to mesenchymal transition 
(EMT). During EMT, cell loses its epithelial properties, i.e., adherens junctions and 
apical basal polarity, and gains mesenchymal properties, i.e., ability to migrate. 
EMT is defined as loss of E-cadherin and upregulation of mesenchymal markers, 
i.e., vimentin, fibronectin, and N-cadherin. Matrix stiffness has been found to be 
potent driver of EMT [119, 120]. Increased stiffness leads to nuclear translocation 
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of EMT transcription factor TWIST. TWIST along with TGF β drives EMT [121]. 
Cadherins act as mechano-sensors. Switch of E-cadherin to N-cadherin leads to loss 
of adherens junction, i.e., cell-to-cell contact. Tissue tension leads to loss of adher-
ent junction and drives β-catenin pathway promoting EMT [122, 123]. Increase in 
cytoskeleton tension has also been reported to induce epithelial to mesenchymal 
transition by promoting nuclear translocation of MRTF-A [124]. Tissue specimen 
from breast cancer patients showed increased stiffened matrices with weak adherens 
junctions, while normal mammary epithelium is characterized by intact adherens 
junctions and compliant matrix [125].

Matrix stiffness is largely characterized by deposition and modification of extra-
cellular matrix proteins. Dense clusters of collagen fibrils and fibroblasts are usually 
present in stiffened matrices. Fibrotic tissues are linked with 50-fold more rigidity 
than normal parenchyma. Presence of fibrosis is associated with increased metasta-
sis and poor progression in breast cancer [126]. Also fibrotic tissues are more prone 
to development of cancer. Approximately 80% of the hepatocellular cancers develop 
as a result of liver fibrosis [127].

8.4.4  Mechano-transduction and CSCs

CSCs are regulated by both intrinsic and extrinsic stimuli. Among extrinsic stimuli, 
mechanical cues from ECM or CSCs niche play chief role in regulating cell growth, 
behavior, and fate. CXCR1 causes downregulation of FAK/PI3k/AKT resulting in 
depletion of stem cells. Mechano-transduction by stiffened matrices can upregulate 
CSCs. Mechano-transduction is initiated by integrins followed by actin-myosin 
cytoskeleton, focal adhesion complexes, and myosin motors. Increased tension in 
cytoskeleton leads to activation of FAK/PI3k/AKT which promotes CSC [128].

EMT also supports of CSCs traits. Studies have shown that EMT is required for 
early seeding of tumor. However, for metastasis outgrowth, reverse process, i.e., 
mesenchymal to epithelial transition (MET), is necessary. To explain this, bipotent 
model was proposed. According to this model, hybrid state is present in small frac-
tion of tumor cells to promote CSCs population [129].

8.5  Exiting the Dormancy: Development of Overt 
Metastasis

Cancer cells could remain in dormant stage for years till conditions become suitable 
for their survival. Both metastatic niches or TME and soluble factors released from 
tumors help in modulating the environment for establishment of overt metastasis. 
Changes within the microenvironment, i.e., immunomodulation, increased matrix 
stiffness, and genetic instability, support survival of cancer stem cells. Hence, play 
an important role in exiting dormancy and developing overt metastasis [24].

Remodeling of ECM, i.e., increased expression of MMPs, also helps in exiting 
dormancy and promotion of metastasis. Release of other tumor-supporting factors 
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like SDF-1, OPN, LOX, activation PI3-AKT, Src, TGF β, and VEGF promotes 
development of metastasis. Factors supporting chronic inflammation including 
interleukins, NF-κβ, JNK, p38MAPK, TAM, and Treg cells also help in escaping 
the immune response resulting in development of metastasis [130].

Among mechano-transduction mechanisms, cancer cells engaging with FAK, 
integrins, and SRC pathway are successful in establishing metastasis. Study on 
mammary cells showed inability of cancer cells to engage with FAK, integrins, and 
SRC pathway resulted in quiescent state [131].

Similarly, all the mechanisms which contribute to EMT and survival of CSCs 
promote development of overt metastasis. As tumors cannot survive beyond 2–3 mm 
without blood supply, proangiogenic factors like VEGF also promotes exiting from 
dormancy. Metabolic reprogramming supporting immunomodulation and genesis 
also have supporting effect on metastasis [1].

Metastatic cells as a result of this immune modulated, rich in inflammatory cyto-
kines and stiffened matrix are usually resistant to conventional treatments. Strategies 
to control these molecular mechanisms promoting metastasis are currently under 
study, and few drugs have been developed. Drugs controlling development of metas-
tasis or targeting them in dormant stage in the future might be helpful in decreasing 
the morbidity and mortality associated with metastasis [27].

Figure 8.1 depicts the summary of all the events leading to development of overt 
metastasis.
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9.1  Introduction

MicroRNAs (miRNAs/miRs) are small, intrinsic, non-coding RNAs, which are 
18–24 nucleotides (nts) long stretches, that possess a vital role in modulating gene 
expression at the post-transcriptional phase. The miRNAs fundamentally function 
by the activity of Dicer, an RNase that acts on pre-miRNAs which are hairpin- 
structured precursors which further mature into miRNAs [1]. miRNAs possess the 
property of post-transcriptionally repressing the gene expression by distinguishing 
complementary target sites at the 3′untranslated region (UTR) of the particular tar-
get mRNAs [2]. Ambros and colleagues found the first miRNA called the lin-4 in 
Caenorhabditis elegans species (C. elegans). The miRNA was recognized as a 
small non-coding stretch of RNA that influences the development by controlling the 
expression of lin-14 protein. Another miRNA let-7 has also been reported in C. 
elegans that negatively regulates the lin-41 gene in a sequence-explicit RNA-RNA 
interaction pattern at the 3′-UTR of the mRNA [3]. Later in 2001 different indepen-
dent teams found that miRNAs were abundantly present in both vertebrates and 
invertebrates. Additionally it was observed that certain miRNAs were immensely 
conserved, suggesting that miRNA-modulated post-transcriptional regulation is a 
specific regulatory function found in different species [4]. Moreover, the past two 
decades has shed intense light on the crucial functions of miRNAs in the control of 
various cellular events, such as cell proliferation, differentiation, invasion, migra-
tion, stress response, apoptosis as well as metabolism [5]. However, it has been seen 
that miRNAs have been associated as important modulators in the advancement of 
various diseases [6, 7], such as cancer. At present, a total of 1872 elucidated human 
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miRNA precursor genes are transformed into ~ 2578 mature miRNA arrays (http://
www.mirbase.org); however, the role of certain miRNAs is not yet known [2, 8].

Moreover, in humans, it has been observed that nearly one third of miRNAs are 
orderly structured in cluster patterns. Further, it is thought that a particular cluster 
might be a unique transcriptional complex indicating a synchronized control of 
miRNAs in these clusters. Additionally, computational analysis uncovered that a 
fraction of the clusters contain two or more than two miRNAs with identical 
sequences [9]. However, a rare event that has been observed is that miRNAs with 
similar mature sequence are rarely replicated in a cluster. The indicated genomic 
assembly leads to concurrent expression of analogous miRNAs, probably inducing 
conjugation distinction along with synergism of the biological functions. 
Nonetheless, miRNAs are regulated post-transcriptionally owing to the fact that 
similar and/or equal expression levels are not observed from all miRNAs belong-
ing to a single transcriptional cluster. In addition, a notable finding is that a con-
vincing proportion of miRNAs are either protein-coding or non-coding transcription 
entities located in the intronic region [10]; however, a small population of miRNAs 
are also mapped onto repeated sequences such as LINEs (long interspersed nuclear 
elements) [8, 11].

Studies have reported that >50% of miRNA genes are situated in tumour- 
affiliated genomic regions and were the fundamental nodal points in tumour for-
mation and progression cascades [12], indicating that miRNAs may be associated 
with the pathogenesis of varied tumours. The imbalance of miRNAs may have an 
indispensable role in the commencement, dissemination, invasion and progres-
sion of a number of tumours. Calin et al. principally confirmed this hypothesis in 
chronic lymphocytic leukaemia (CLL) and validated that there was a preponder-
ance of deletion or loss of miR-15a and miR-16-1  in approximately 90% of 
patients with CLL [13].

The present challenge is to uncover the complex role of miRNAs that participate 
in the pathogenesis of various tumours. Earlier studies depicted that miRNAs par-
ticipate in regulating various molecular as well as signalling pathways in tumours 
by targeting different oncogenes and tumour suppressors for tumours maintenance, 
aggressiveness, disease progression, angiogenesis, drug resistance, epithelial- 
mesenchymal (EMT) transition as well as tumour metastasis. miRNAs are widely 
spread over the entire genome and are known to regulate nearly >50% of the human 
genes [14]. Studies have reported that an alteration in certain cancer-associated 
miRNA expression might change the plausible oncogenic or anti-oncogenic protein 
expression indicating that miRNAs may function as therapeutic tools for tumour 
treatment [15, 16].

Thus this section encompasses the functions of miRNAs and its biogenesis and 
regulation in humans. Furthermore, the review elucidates the processes through 
which miRNA expression is impaired in different tumours. Also how miRNAs are 
directly linked to the cancer hallmarks, acting either as oncogenes or tumour sup-
pressors, and their role in the underlying mechanisms of various cancers have been 
illustrated. Lastly, we have highlighted the miRNA potentiality as predictive 
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markers for diagnosis, prognosis as well as treatment of tumours and also the threats 
involved in miRNA research and applications.

9.1.1  Biogenesis, Regulation and Mechanism of miRNA Action

The miRNA biogenesis process commences with the amalgamation of a pri-miRNA 
that is 3′ poly-adenylated and 5′ capped structure (Fig. 9.1). The pri-miRNAs pre-
serve features similar to mRNA such as 3′ poly(A) tail and 5′ cap structure and are 
transcribed by RNA polymerase II. However, other pathways govern the transcrip-
tion of genomic repeats in certain minor sets of miRNAs. For example, it is observed 
that RNA polymerase III governs the miRNA transcription in Alu repeats [17].

Inside the nucleus, Drosha (an RNase III enzyme) along with its collaborating 
partner DGCR8 directs the formation of pre-miRNA from pri-miRNA [17–19]. 
DGCR8 identifies the stem region and the flanking single-stranded RNA (ssRNA). 
It further acts as an important internal component for Drosha to nick the stem 
nearly 11 nucleotides (nts) from the stem-ssRNA region causing liberation of the 
pre- miRNA [17]. Under other circumstances a subset of miRNAs (miRtrons) 
undertake an alternative pathway apart from the Drosha requirement, leading to the 
derivation of pre-miRNAs as a by-product of the splicing action [18, 19]. The 
exportin-5/Ran/GTP complex later exports pre-miRNA to the cytoplasm and con-
verts it to a mature duplex miRNA by the support of an RNase III enzyme—Dicer 
[8, 19]. As the duplex uncoils, the mature miRNA assimilates and forms a protein 
complex known as RNA-induced silencing complex (RISC) which further directs 
RISC to target the mRNA [10]. The entire biogenesis process is tightly regulated at 
various steps, including transcription of miRNAs, processing by Dicer and Drosha, 
RISC binding, miRNA transportation and miRNA degeneration. For instance, 
SMAD protein and DEAD-box RNA helicases are known to participate in miRNA 
maturation governed by Drosha [20]. Moreover, another factor, called the KH-type 
splicing regulatory protein (KHSP), acts as an integral element of Drosha and 
Dicer networks causing the regulation of biogenesis pathway of a subpopulation of 
miRNAs in mammalian cells [21]. Recently, another molecule called the methyl-
transferase-like 3 is also identified as a miRNA biogenesis regulator as it methyl-
ates pri-miRNAs and exhibits the identification and processing by DGCR8 for 
generation of a mature miRNA [22].

Fig. 9.1 Diagrammatic representation of microRNA biogenesis and regulation pathway
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In addition, miRNA post-transcriptionally suppresses the target mRNA expres-
sion by predominantly leading to the interaction of mRNA with the 3′UTR region 
as depicted in Fig. 9.1. Nonetheless, the explicit functioning of miRNAs on their 
mRNA targets is still not known. Also it has been observed that there are bulges and 
mismatches in major sites of miRNA target unlike the perfect sequence comple-
mentarity that is seen among siRNA and mRNA. Earlier studies have revealed that 
a comparison between siRNA and miRNA indicates that mRNA destabilization 
occurs through siRNA, whereas mRNA translation inhibition is owing to miRNA 
but without affecting the levels of the messenger RNA. Therefore, an important fac-
tor that separates the two processes is the extent of complementarity among the 
short RNA and its target [8].

Despite the translational repression functioning for certain miRNAs is still true, 
it has been observed in several studies that the amount of mRNA target may be 
decreased even though their might be constrained sequence complementarity among 
the miRNA and mRNA [23]. The degradation of an mRNA by a miRNA might be 
elucidated by RNA processing bodies called P-bodies, which are the locus for RNA 
degeneration [24]. Probably, the target mRNA translation is inhibited by miRNAs 
which are further segregated to P-bodies ultimately leading to degradation. However, 
another mechanism through which miRNAs cause the degeneration of the target 
mRNAs is independent of requisition to P-bodies [25, 26]. During explicit events 
miRNA inhibits the mRNA translation, but levels are maintained, and thus seques-
tration of mRNAs to P-bodies may prove to be ineffective. However, it should be 
considered that there are varied possibilities that numerous mechanisms apply 
depending on the independent miRNA-mRNA interactions [8].

9.2  Mechanism of miRNA in Cancer

Dr. Croce and his group discovered the first documentation of miRNA association in 
human during the identification of tumour suppressors at chromosome 13q14 region 
in B-cell chronic lymphocytic leukaemia [13]. Moreover, it was observed that this 
particular region was often deleted in CLL, and later two genes, miR-15a and miR-16-
1, were found in that particular region. Both these genes were either deleted or lost in 
majority of CLL cases. Additionally, another study demonstrated that miR-15 and 
miR-16-1 promote programmed cell death by supressing Bcl-2 that is generally 
upregulated in non-dividing tumour B cells as well as other solid malignancies [6, 27].

However, in mice the deletion/removal of miR-15 and miR-16-1 cluster causes 
phenotypic changes similar to CLL that were seen in humans demonstrating a cru-
cial tumour suppression function of these miRNAs [7]. Later, miRNA sequencing 
and profiling showed plausible documentation that expression of miRNAs is 
impaired in tumours and hence might be useful for tumour classification, differen-
tiation, tumour diagnosis and early prognosis [8]. The tumour suppressor gene 
expression is known to be lower in tumour cells, whereas the tumour suppressor 
miRNAs negatively suppress the oncogenes that regulate cell differentiation and/or 
apoptosis, consequently preventing tumour formation, aggressiveness and invasion. 
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For example, miRNA let-7 is known as tumour suppressor gene, and its expression 
is decreased in different types of tumours that is further associated with poor overall 
survival in cancer patients [28]. Moreover, the overexpression of let-7 has been cor-
related with decreased lung cancer cell growth in vitro [29]. Conversely in lung 
cancer cells, it has been observed that the decreased let-7 expression enhances RAS 
expression—a pro-oncogene [29–31]. Moreover, in prostate cancer the loss of miR- 
34a expression, another tumour suppressor, is linked with tumour progression, 
recurrence and metastasis, whereas its re-expression is linked to tumour cell clono-
genicity, tumour invasion, migration, apoptosis, cellular stimulation of chemother-
apy as well as radiation therapy in pancreatic tumours. Various other studies 
confirmed that the miR-34 family is responsible for the mutation and expression of 
p53, whereas particularly miR-34b and miR-34c target the proto-oncogene MYC 
[32–34]. A loss in expression of miR-34 family members mitigated p38-mitogen- 
activated protein kinase-dependent and p53-dependent response to DNA damage 
causing carcinogenesis [35].

Moreover, it was previously considered that ‘oncomirs’—those miRNAs that 
were overexpressed in tumours—had a role in promoting tumour formation by neg-
atively controlling genes especially those regulating cell differentiation, prolifera-
tion, apoptosis as well as tumour suppressor genes. There are different oncomirs in 
the tumour genome, out of which only a small fraction has been characterized, such 
as miR-21 [36] and the miR-17-92 cluster [37]. miR-21 is known to be overex-
pressed in a number of tumours such as leukaemia; lymphoma; lung, pancreatic, 
breast and colorectal cancer; glioblastoma; and neuroblastoma. It alters prolifera-
tion, differentiation, invasion, migration and apoptosis of tumour cells in vitro and 
has also been linked with in vivo overall survival of patients by targeting a tumour 
suppressor gene [36]. Likewise, the miR-17-92 cluster is a polycistronic transcript 
located at chromosome 13q31 and comprises of miRNAs 17, 18a, 19a, 19b-1, 20a 
and 92a-1 that are drastically upregulated in tumours such as lymphomas and lung 
cancer [38]. However, c-Myc stimulates and controls the miR-17-92 cluster to fur-
ther regulate the E2F1 expression and inhibits c-Myc-mediated apoptosis via p53 
signalling cascade [36, 38]. In addition, miR-17-92 hinders genes such as phospha-
tase and tensin homolog and RB2 [39] by stimulating protein kinase B signalling 
network that promotes tumour-cell survival. In human testicular germ cell tumour, 
miR-372 and miR-373 promote cell proliferation and carcinogenesis by targeting 
the large tumour suppressor kinase 2 [16, 40] and thus nullifying p53-modulated 
cyclin-dependent kinase inhibition.

9.3  Mechanisms Leading to MicroRNA Dysregulation 
in Cancer

In the previous decade, researchers have proved that expression of miRNAs is 
impaired in human carcinomas. The basic processes encompass genomic altera-
tions, transcriptional regulatory developments, epigenetic variations and deformi-
ties in the miRNA biogenesis and processing system.
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9.3.1  Deletion or Amplification of miRNA Genes/Genomic 
Alterations/Abnormalities

Carcinogenesis is frequently complemented by chromosomal impairments including 
deletion, amplification, translocation, point mutations, etc. Bioinformatic analyses 
have demonstrated that an important subset of miRNAs is linked with cancer-associ-
ated fragile sites or genomic regions in human as well as mice [41]. In several com-
parative studies comprising of array CGH (comparative genomic hybridization) and 
miRNA expression data, the miRNA levels have been compared with differences in 
copy number at the genomic loci [42, 43]. In lung cancer, downregulation of both 
miR-143 and miR-145 is due to the deletion of the 5q33 region that harbours both 
miRNAs [44]. Conversely, miR-17-92 gene cluster amplification is reported in B-cell 
lymphomas along with lung tumours, and the translocation of this cluster has been 
recorded in T-cell acute lymphoblastic leukaemia (ALL) causing upregulation of 
miRNAs in different cancers [42]. The elevated percentage of numerous genomic 
variations in miRNA loci was substantiated by techniques such as high-resolution 
array-based comparative genomic hybridization in approximately 227 samples from 
different human tumours like the ovarian and breast and melanoma [45]. Additionally, 
genome-wide analysis demonstrated that various miRNA genes are known to be 
located in the cancer-associated genomic domains. Moreover, these domains could 
encompass an essential region of loss of heterozygosity, which could harbour tumour 
suppressor genes; a marginal region of amplification, which may consist of various 
oncogenes; or numerous fragile sites/common breakpoint regions [46]. Overall, 
these findings prompt towards the idea that atypical miRNA expression in tumour 
cells could result owing to the amplification or deletion of explicit genomic regions 
comprising of miRNA genes.

9.3.2  Transcriptional Regulation of miRNA

Transcription factors might play a vital role in inducing miRNAs by triggering the 
pri-miRNA transcription. They activate tissue-specific miRNAs throughout the pro-
cess of differentiation, and this mechanism has been observed in various malignan-
cies. However, a wide range of effect of transcription factors is seen in principal 
cellular processes like proliferation, differentiation, etc. It has recently become clear 
that several tumour suppressor and/or oncogenes act as transcription factors such as 
p53, c-Myc, E2F, etc. [2]. Later it was found that c-Myc is repeatedly overexpressed 
in various tumours leading to control of tumour cell proliferation, apoptosis and 
transcriptional stimulation of the oncogenic miR-17-92 cluster by binding with 
E-box elements in the miR-17-92 promoter region [47]. Moreover, another impor-
tant finding was that c-Myc inhibits the transcriptional stimulation of tumour- 
suppressive miRNAs including mir-15a, miR-26, miR-29 and mir-30 along with 
let-7 family which is consistent with its oncogenic function [48]. Ghoshal et  al. 
discovered the complementary control of c-Myc and miR-122  in primary liver 
tumours where c-Myc inhibits miR-122 expression by linking to its promoter and in 
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turn miR-122 indirectly supresses c-Myc transcription by targeting E2f1 and Tfdp2 
factors. Thus, for hepatocellular carcinoma development, it is of utmost importance 
that there is an alteration in the feedback loop consisting of miR-122 and c-Myc 
[49]. In addition, c-Myc binds and suppresses the expression of the miR-148a-5p/
miR-363-3p gene promoters, encouraging hepatocellular carcinoma by promoting 
progression of G1 to S phase. Consecutively, miR-148a-5p hinders the gene expres-
sion of c-Myc, while miR-363-3p destabilizes c-Myc by unequivocally targeting 
ubiquitin-specific proteases 28 [50]. Another example of transcriptional factors that 
regulate and mediate tumour-suppressive function is of the p53-miR-34 regulatory 
axis [51]. p53, a tumour suppressor, is the most frequently mutated gene in human 
tumours and is encoded by the TP53 gene. p53 forms a complex network and con-
trols various gene expressions, including miRNA genes, and consecutively regu-
lates cell cycle progression and apoptosis. Similarly, miR-34 family encompassing 
miR-34a/b/c stimulates cell cycle arrest, cell senescence and programmed cell death 
in different malignancies [52], implying the fact that p53 and miR-34 are connected 
and are in the same regulatory network. This speculation was further substantiated, 
and it was revealed that p53 can influence the expression of miR-34a that triggers 
apoptosis by binding directly to the mir-34a gene promoter. Sequentially, miR-34a 
induces p53 expression by deacetylation of SIRT1, which is a negative regulator of 
p53 [53]. Further other studies have indicated that p53 regulates the expression of a 
range of miRNAs, including miR-605, miR-1246 and miR-107 [54–56]. In addition 
to c-Myc and p53, several transcriptional factors are reported to regulate the miRNA 
expression. Another miRNA, miR-223, is differently expressed in the haematopoi-
etic network with vital role in myeloid lineage developmental progression, and its 
expression is repressed in multiple tumours including hepatocellular carcinoma 
(HCC) and acute myeloid leukaemia (AML) [57–60]. It has been observed that the 
expression of miR-223 gene is directed by the myeloid transcription factors PU.1 
and C/EBPs [61]. Moreover, Fazi et al. discovered that miR-223 and transcription 
factors NFI-A and C/EBPα form a mini network that controls human granulocytic 
differentiation [62]. These two transcription factors compete for binding to the miR- 
223 promoter through a mechanism such as NFI-A maintains miR-223 at low lev-
els, whereas the retinoic acid-induced C/EBPα replaces NFI-A to upregulate 
miR-223 expression. Thus, miRNA expression is finely modified by multiple fac-
tors to maintain normal transcription, and its dysregulation leads to carcinogenesis 
and aggressiveness [8].

9.3.3  Changes in Epigenetic Factors

The changes in epigenetic regulators are established trait in cancer, which include 
global abnormal DNA hyper-methylation of CpG islands in promoter regions and 
genomic DNA hypo-methylation, along with separation of histone modification 
arrangements. It is understood that analogous to protein-coding genes, miRNAs are 
quite receptive to epigenetic modulations [63, 64].
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Moreover, gene silencing owing to DNA methylation is a close event associated 
with histone modification. Computational analysis has demonstrated that CpG 
islands are present adjacent to various miRNAs [65]. The overexpression of many 
miRNAs is caused due to the exposure of different cells to 5-aza-2′-deoxycytidine (a 
demethylating agent), mutations in DNMTs (DNA methyltransferases) and/or 
HDAC (histone deacetylase) inhibitor treatment [65–67]. In comparison to normal 
tissues, it has been further identified certain miRNAs are inhibited by CpG hyper- 
methylation in various tumours. For instance, miR-9-1  in breast tumour [65] and 
miR-124a in CRC (colorectal cancer) have been reported [66]. Moreover, miR-124a 
hyper-methylation is thought to be tumour-specific, as there have been no reported 
evidences of methylation in neuroblastoma. The epigenetic suppression of a miRNA 
is also believed to be associated with specific tissue type. For illustration, miR-124a 
is generally vastly expressed in neuronal tissues but is commonly repressed epige-
netically in colorectal carcinoma. Evidences state that CpG methylation is frequently 
halted as a result of various miRNA expressions. For instance, miR-29 targets vari-
ous DNA methyltransferases such as Dnmt3A and -3B. In association to this, hetero-
trophic miR-29 expression caused an overall repression in DNA methylation, 
consequently leading to expression of certain tumour suppressor genes that had 
undergone silencing owing to promoter methylation in tumour cells [68]. Fazi et al. 
also found that epigenetic modification in a common AML-associated fusion protein 
AML1/ETO leads to miR-223 silencing through CpG methylation [69]. However, it 
was reported that 17 out of 313 human miRNAs were nearly threefold or more over-
expressed in T24 bladder tumour cells post combinatorial therapy comprising of his-
tone acetylation and DNA methylation inhibitors [70]. Furthermore, miR-127 
expression that is present in a CpG island and is lost in tumour cells had appreciably 
increased expression posttreatment, along with downregulation in BCL6—a proto-
oncogene. Conclusively these findings indicate that histone deacetylase inhibition 
and DNA demethylation can cause stimulation of miRNAs expression that might act 
as tumour suppressors. On the basis of previous findings, Lujambio et al. observed 
that miR-148a and miR-34b/c cluster causes distinct hyper-methylation-attributed 
silencing in tumour cells [71]. Besides, re-expression of miRNAs in tumour cells 
restricted their movement, decreased tumour progression and constrained metastasis 
development in vivo. Correspondingly, low expression of miR-124a, miR-9-1 and 
miR-145-5p can be associated with DNA hyper-methylation in lung, breast and 
colon carcinomas, respectively [65, 72, 73]. Thus, these studies highlight the func-
tion of epigenetic governance in miRNA expression during carcinogenesis, indicat-
ing that abnormal DNA methylation and histone acetylation of miRNAs might serve 
as beneficial markers for tumour diagnosis and prognostication.

9.3.4  Dysregulation of MicroRNA Biogenesis and Regulation 
Mechanism

As stated previously, the biogenesis process is a complexly governed event that 
involves numerous enzymes and regulatory proteins, including Dicer, Drosha, 
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DGCR8, Argonaute proteins and exprotin 5, allowing accurate maturation of miR-
NAs from their primary precursors. Hence, alteration, dysregulation and/or abnor-
mal expression of different factors involved in the miRNA biogenesis event might 
cause an aberrant miRNA expression. However, two key RNase III endonucleases, 
Drosha and Dicer, are involved in miRNA maturation and are accountable for con-
summating the pre-miRNA and miRNA duplex. It has been observed that both 
Drosha and Dicer are dysregulated in certain tumours. Moreover, it has been discov-
ered that an enormous section of miRNAs is governed at the Drosha-processing 
phase, and this plays a crucial role in the expression of miRNA during embryogen-
esis as well as carcinogenesis [74]. DGCR8 and Drosha are known to have either 
single-nucleotide substitution or deletion in approximately 15–20% of Wilms’ 
tumours, causing significant reduced expression of mature let-7a and miR-200 fam-
ily [75]. However, it has been observed that in regard to Dicer dysregulation, Dicer1 
deterioration in colorectal tumour cells stimulates the attainment of a higher effi-
ciency for tumour growth and progression and ultimately leads to cancer metastasis 
[76]. In ovarian cancer, elevated Dicer and Drosha mRNA levels are attributed to 
greater median survival, and conversely, lower Dicer expression has been seen to 
correlate with poor patient survival [77–80]. Karube et al. discovered an effective 
interrelationship among reduced Dicer mRNA levels and decreased let-7 expression 
with lower postoperative survival in patients having lung carcinomas. Argonaute 
proteins are known to possess a critical role in RNA-silencing processes and are 
essential catalytic components of RISC [78]. Like Dicer and Drosha, deregulation 
of Argonaute proteins has been reported in different tumours. In Wilms’ tumour of 
the kidney, human EIF2C1/hAgo1 gene has been often reported to have an aberrant 
expression [81]. Moreover, human Argonaute proteins (AGO) expression is con-
trolled in a cell-dependent approach. For example, the expression levels of AGO2 
are lower in melanoma compared to their primary melanocyte, whereas in gastric 
cancer and their lymph node metastases the expression is remarkably elevated as 
compared to healthy controls [82, 83]. It has been observed that exportin 5 (XPO5), 
a double-stranded RNA-binding protein, arbitrates nuclear export of pre-miRNA 
directly in the cytoplasm. Further it was reported that XPO5 possesses certain inac-
tivating mutations with microsatellite instability in a subset of human tumours. 
Moreover, in colorectal carcinoma cell lines like HCT-15 and DLD-1, it has been 
seen that an insertion of an ‘A’ in exon 32 produces a premature termination codon, 
causing a frameshift mutation leading to an assembly of a truncated protein. The 
truncated XPO5 fails to export pre-miRNAs that further is captured in the nucleus, 
subsequently culminating in decreased miRNA processing. The restoration of 
XPO5 properties reverses the damaged export of pre-miRNAs and also possesses 
the tumour suppressor features [84]. Further it was reported that XPO5’s failure to 
transport pre-miRNAs from nucleus to cytoplasm was triggered by ERK kinase in 
hepatocellular carcinoma to phosphorylate XPO5 [8]. Along with the transcription 
rate of pri-miRNA, the stable level of mature miRNA is known by the processing 
productivity of its precursors and their stability. It is frequently seen that miRNAs 
demonstrate a discrepancy in expression between the mature form and its precursor 
[85, 86]. Although it is a known fact that miRNAs in a genomic cluster have a 
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common origin from a pri-miRNA, but the expression levels of individual miRNAs 
in the cluster may not be inevitably comparable [87]. For instance, after the induc-
tion of pri-miR-21  in a time-course experiment, it was revealed that there was a 
delayed kinetics in aggregation of mature miR-21 [88]. Together, these results 
prompt towards the fact that miRNA processing and stability are crucial factors that 
regulate miRNA expression levels. A comprehensive analysis of expression data has 
highlighted this mechanism in different tumours [74]. In instances where a miRNA 
exists within a gene, the host genes can be considered as the pri-miRNA. A com-
parative study of the microarray data of mRNA and miRNA illustrated that decrease 
in miRNA expression in tumours is inadequately associated with reduced target 
gene expression. Abnormal expression of miRNAs during carcinogenesis can be 
linked to variations at the post-transcriptional level. The expression levels of Dicer 
or Drosha are reported to be altered in different malignancies [78, 89, 90]. Drosha 
upregulation occurs owing to the gain in copy number at chr5p which is observed in 
majority of cervical SCC (squamous cell carcinoma) cases [90]. Further, hierarchal 
clustering of miRNA expression data led to classification of cervical SCC cases into 
two different cohorts based on overexpression of Drosha. It was a significant obser-
vation that certain miRNAs were impaired due to overexpression of Drosha, dem-
onstrating that diverse miRNAs react differently to an increase in the miRNA 
processing mechanism. Remarkably, Drosha has been observed to interact with a 
tumour-associated fusion protein as a result of chromosomal translocation in certain 
types of blood cancers [91]. Further, this communication affects pri-miRNA assort-
ment of Drosha resulting in an impaired miRNA expression pattern [2].

9.4  MicroRNA-Associated Regulation of Important Cancer- 
Related Signalling Pathways

Studies have reported that miRNAs control different functions of cellular senes-
cence and cell cycle along with DNA damage response, and they possess great 
influence of these on various signalling cascades in different tumours. A detailed list 
of miRNAs along with its various targets in different tumours have been reported in 
Table 9.1, and the miRNA-miRNA interaction has been given in Fig. 9.2.

9.4.1  Regulation of Cell Cycle Mechanism and Proliferation

Previous reports have observed the role of miRNAs in cell cycle and proliferation 
and their contribution to cancer progression by disturbing the crucial cell cycle 
modulatory signalling pathways. Fundamental to cell cycle control event, the 
retinoblastoma (pRb) signalling cascade is frequently impaired in various types 
of tumours [137, 138]. The pRb gene is a significant repressor of the transcrip-
tion regulators of the E2F family, which control the transcription of genes essen-
tial for the advancement and maintenance of cell cycle [139]. This suppression is 
facilitated by pRb phosphorylation via cyclin-dependent kinases (CDKs), 
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Table 9.1 List of microRNAs and target genes involved in various malignancies

Malignancy MicroRNAs
Differential gene 
expression Target genes Reference

Breast cancer let-7 Downregulated E2F2, c-Myc, KRAS [30]
miR-27a Upregulated FOXO1 [92]
miR-31 Downregulated RhoA [93]
miR-96 Upregulated FOXO1 [92]
miR-98 Downregulated E2F2, c-Myc [94]
miR-182 Upregulated FOXO1, FOXO3 [92]
miR-205 Downregulated HER3 [95]
miR-9-3 Downregulated p53 [96]
miR-375 Upregulated SHOX2 [97]

Lung cancer miR-21, 
miR-155

Upregulated SOCS1, SOCS6, 
PTEN

[98]

miR-205 Upregulated SMAD4 [99]
miR-16 Upregulated Bcl-2, HGF [27, 100]
miR-17 Downregulated Bcl-2 [101]
miR-126-3p Downregulated PLXNB2, TSC1 [102]
let-7a Downregulated Cyclin D1 [103]

Colon cancer miR-21 Downregulated SPRY2 [104]
miR-23a Downregulated MTSS1 [105]
miR-31 Upregulated SATB2, β-catenin, 

TCF-LEF
[106]

miR-135b Upregulated APC, PTEN/PI3K, 
SRC

[107]

miR-193a Downregulated KRAS, BRAF [108]
mir-338-5p Downregulated PIK3C3 [109]

Gastric cancer miR-25 Upregulated p57 [110]
miR-106b Upregulated p21, p73 [111]
miR-93, 
miR-221

Upregulated p21, p27, p57 [112, 
113]

miR-512 Downregulated Mcl-1 [114]
miR-10b Upregulated RhoC [115]

Glioma miR-221 Downregulated PTEN/AKT [116]
miR-324-5 Downregulated GLI1 [117]

Pancreatic cancer miR-21 Upregulated MMP2, MPP9, PI3K, 
AKT

[118]

miR-192-5p Upregulated SERPINE1 [119]
miR-200c Downregulated E-cadherin (CDH1) [120]

Hepatocellular 
carcinoma

miR-195 Downregulated Cyclin D1, E2F3 [121]
miR-16 Downregulated Bcl-2 [122]
miR-18a Upregulated ERα, ESR1 [123]

miR-26a Downregulated Cyclin D2, cyclin E2 [124]
miR-101 Downregulated Mcl-1 [125]
miR-145 Downregulated EGFR, IGF-1R [126]

(continued)
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permitting E2Fs to stimulate gene transcription, such as cyclins and CDKs, 
which are essential for cell cycle advancement [138]. Explicit cyclin and kinase 
allies form active CDK complexes, for instance, cyclin D with CDK4/6 where 
this CDK activity successively activates cell cycle advancement through progres-
sive phases [140].

Table 9.1 (continued)

Malignancy MicroRNAs
Differential gene 
expression Target genes Reference

Prostate cancer miR-331 Downregulated HER2/neu [127]
miR-200, 
miR-200b

Downregulated ZEB1, ZEB2 [128]

Oral cancer miR-21 Upregulated EGFR, APC [129]
miR-31 Upregulated ACOX1, PGE2 [129, 

130]
miR-29b Upregulated PTEN [131]
miR-144 Upregulated PTEN [132]
miR-187 Upregulated BARX2 [133]
miR-143 Downregulated BCL2, AKT1, 

MDM2, HRAS, 
KRAS

[134, 
135]

let-7a Downregulated NRAS, HMGA2, 
KRAS, HRAS, MYC

[136]

Fig. 9.2 miRNA—Gene interaction network related to different tumours. The microRNA-target 
gene network was constructed using the predicted interactions and the gene expression data in the 
miRNET software. The mRNA summary was obtained from earlier published literature. miRNA- 
mRNA components obtained via population-based probabilistic method was used to establish the 
different network interactions. In the figure the circles signify genes, and squares signify miRNAs; 
their interaction is characterized by one edge. The degree is denoted by the centre of the network 
(i.e. the interaction of one miRNA with the target genes throughout and vice versa)
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In addition, cyclins and cyclin-dependent kinases (CDKs) are fundamental 
growth-suppressing miRNA targets. They control the growth-governing cascades 
like mitogenic pathways including the MAPK/RAS/RAF axis as well as the p53 
pathway which is a growth-inhibiting pathway [140, 141]. Initial reports suggested 
that the miR-15a-16-1 cluster is absent in various tumours and thus motivated addi-
tional exploration in finding the gene targets associated with this miRNA family 
[13]. The vital positive modulators of the cell cycle, like CDK1/2/6 and cyclins D1/
D3/E1, are some of the known targets that assist G1 arrest through these miRNAs 
[142]. However among these other promoters such as the cyclins [143] and the cell 
division cycle phosphatases like CDC25A [144] are also the targets of different 
miRNAs that are downregulated in tumours and aid in inhibiting the cell cycle event 
[143, 145]. Similar to the miR-17-92 cluster, miR-20a and miR-125b, the E2F tran-
scription factors have been themselves designated as miRNAs targets with tumour 
suppressor roles [146].

To the contrary, the expression of different negative modulators of the cell 
cycle are suppressed by various miRNAs. pRb along with p130 and p107 are 
essential miRNA targets, known to be overexpressed in different tumours [147]. 
The negative modulators of CDKs signify an essential class of cell cycle inhibi-
tors, which necessitate extensive miRNA-mediated control. For example, Cip1 
(p21), a recognized gene target of p53 and an effective activator of G1 arrest, is 
directed by miR-106b and miR-17-92 clusters, illustrating increased level in sev-
eral malignancies [144]. Remarkably, although several genes are frequently pre-
dicted to be targeted by various miRNAs using in silico analysis, limited 
genes-miRNA interactions are also validated experimentally in vitro [148]. For 
instance, in p21 it was confirmed by luciferase reporter assay that among 28 dif-
ferent miRNAs, some are overexpressed in tumours and can possibly target the 
3′UTR region of p21 mRNA [16].

Also, the expression of Kip1 (p27) is mainly governed by various post- 
transcriptional mechanisms [149] and is known to be a target for various miRNAs, 
one of which is the miR221/222 cluster [150]. This holds significance in glioblas-
tomas and prostate tumours where Kip1 expression levels demonstrate an inverse 
correlation with miR221 and miR-222 [149, 151]. Additionally, growth-promot-
ing signalling networks have also caused decrease in expression of anti-prolifera-
tive miRNAs. The phosphorylation of TRBP reported to be linked with the Dicer 
complex [152] is also to be influenced by mitogen-activated protein kinase 
(MAPK) ERK. Levels of the miRNA family of the let-7 tumour suppressor were 
repressed as a result of repression by ERK following the TRBP phosphorylation, 
while those of growth-promoting miRNAs including miR-17, miR-20a and miR-
92a were stimulated [153].

9.4.2  MicroRNA-Associated Control of Cell Senescence

Senescence is an inevitable withdrawal of the cells from the cell cycle event and 
grouped into two major subdivisions, namely, premature/stress-induced senescence 
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and replicative senescence. Replicative senescence results when cells achieve a piv-
otal ‘age’ as a consequence of telomere shortening, whereas stress-induced senes-
cence may result due to oncogene expression, oxidative stress and stimulation of the 
DNA damage pathway [154]. However, an important fact is that senescence acts as 
a blockage for cancer progression.

Furthermore, miRNAs are known to control the different signalling cascades 
involved in the senescence event (Fig. 9.3). However, several miRNAs negatively 
regulate cell cycle advancement but possess crucial roles in the stimulation of cell 
senescence. p16 is an important repressor of CDK4/6 and is inhibited by miR-24, 
which gets further decreased throughout the replicative senescence event [155, 
156]. Also, the p53 gene that is controlled by mainly miR-34a is implicated as a 
vital senescence regulator through inhibition of multiple targets [53]. The main tar-
get of miR-34a—silent information regulator 1 (SIRT1)—is a deacetylase and prin-
cipal senescence regulator [53, 157]. Expression of miR-34a and SIRT1 inhibition 
leads to a complex feedback mechanism where SIRT1 deacetylates p53 and further 
inhibits its activity along with miR-34a transcription [53, 158]. Significantly, miR- 
34a can also be regulated by one of the members of the ETS family of transcription 
factors, called ELK1 independently of p53, throughout the oncogene-activated 
senescence [159].

Moreover, miRNA cluster consisting of hsa-let-7i, hsa-let-7a-d, mir-15b-16-2 
and mir-106b-25 is further activated throughout the G1-S shift by E2F1, and E2F3 
factor consequently retracts primary fibroblast from quiescence state. These miR-
NAs essentially hinder the E2F-dependent entry in S-phase by directing numerous 
target genes and induce cell cycle advancement [160]. Therefore, E2F-induced 
miRNAs restrain the cellular effects of E2F stimulation leading to prevention of 
replicative stress. Furthermore, because the expression of these miRNAs are not 
essentially modified by successive DNA damage, they are more likely to stimulate 
senescence.

9.4.3  MicroRNAs and DNA Damage Response

Any recognition of an impaired DNA lesion and/or alterations in the chromatin 
structure causes the initiation of the DNA damage response and further directs the 
impaired signals to regulatory measures like the DNA-repair mechanism as well as 
checkpoints of the cell cycle. The damage sensor kinases called ATM, ATR and also 
CHK1 and CHK2 are triggered, further phosphorylating several protein targets such 
as the p53 subsequently initiating cellular reactions. Various DNA repair mecha-
nisms prevail as numerous types of DNA lesions may occur. The cells counteract to 
DNA damage either by stopping the cell cycle advancement or through enduring 
apoptosis along with repairing DNA adducts or breaks critically connecting DNA 
damage and cell cycle regulation [141]. In addition, one of the significant roles of 
miRNA is to regulate the DNA damage and further the transcription and processing 
of these miRNAs during the damage by distinct components (Fig. 9.4). Thus, the 
miRNAs inhibit their targets and modulate the DNA damage response mechanism.
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9.4.3.1  Transcriptional Control of miRNA Expression 
Throughout DNA Damage Event

miRNAs are transcriptionally controlled by transcription factors analogous to that 
of the protein-coding genes throughout the DNA damage response pathway. 
Initially, it was identified that p53 was the direct transcriptional target of the miR-
34 family [51]. Moreover, various targets of the miR-34 family comprised of the 
negative modulators of cell cycle progression and apoptosis governing anti-prolif-
erative functions [161]. Nowadays, numerous research studies have reported the 
miR-34 family to be an important class of tumour suppressors along with its varied 
functions [52].

MDM2 protein, the crucial negative regulator of p53, is often reported to be 
amplified in different malignancies. p53 stimulates MDM2 expression that ulti-
mately targets p53 for degradation, thereby contributing to the negative feedback 
loop. During cellular stress events, the capacity of MDM2 to regulate p53 negatively 
is decreased, mainly because of MDM2 phosphorylation by the DNA damage 
kinases, facilitating aggregation of p53 protein and activating its anti-proliferative 
property [162]. Numerous miRNAs, such as miR-192, miR-194, miR-215, miR- 605, 
miR-143 and miR-145, are transcriptionally stimulated by p53 and participate in 
controlling p53-MDM2 feedback loop by directly targeting MDM2 [54]. miR- 192, 
miR-194 and miR-215 expression assists in stimulating p53 target gene such as p21 
leading to cell cycle arrest, through repression of MDM2. Repression of other cell 
cycle activating targets additionally leads to the growth inhibitory role of different 
miRNAs [163]. Also, the same were reported to have downregulated expression in 
multiple myeloma specimens, whereas inhibition of miRs-143/145 has been reported 
in the development of epithelial cancers. Additionally, activation of miR-145 by p53 
has an important function in p53-mediated inhibition of MYC [164].

Fig. 9.4 Transcriptional and post-transcriptional control of microRNAs on DNA damage and cell 
cycle progression
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Intriguingly, transcriptional suppression of pro-oncogene-associated miRNAs 
owing to the miR-17-92 polycistronic cluster has been demonstrated to be transcrip-
tionally repressed by p53, and further binding of p53 to the promoter region 
obstructs binding of the TATA-binding protein [165, 166].

9.4.3.2  Post-transcriptional Control of miRNAs Throughout DNA 
Damage

Studies have reported that post-transcriptional regulation of miRNA in response to 
DNA damage arose to be of corresponding significance in comparison to the tran-
scriptional control of miRNA expression level regulation. It is observed that DNA 
damage causes increase in certain pre-miRNAs along with mature miRNAs but 
shows no substantial variation in primary miRNA transcript expression. This implies 
an association among miRNA processing, maturation mechanism and DNA damage 
response suggesting that the post-transcriptional machineries are possibly causing 
the initiation of specific miRNAs throughout the DNA damage stress-response pro-
cess [167]. A study has reported that post-transcriptional miRNA processing also 
impacts the cellular reaction to UV-stimulated DNA damage causing the cells to 
become hypersensitive to this UV damage as a result of Ago2 or Dicer silencing. 
Furthermore, this UV-induced damage-initiated Ago2 re-localization in the stress 
granules (intracellular RNA—protein aggregates that are formed in stress condi-
tions) is solely a cell cycle-dependent process along with alterations in the miRNA 
expression levels. However, it is still a matter of debate if involvement of stress 
granules directly linked to miRNA processing and mRNA suppression or not. 
Interestingly, it has been observed that alteration in Ago2 and re-localization of 
CDK and not ATM/ATR activity has known to be of significance. However, for the 
initiation of DNA damage-inducible miRNA expression, ATM/ATR activity has 
been reported to be of utmost importance. An important observation was that the 
modifications in miRNA expression level and stress-granule development occur 
very promptly, within the initial hours after damage treatment, indicating that 
miRNA control of the DNA damage response appears initially compared to other 
transcriptional responses [168]. Therefore, miRNAs play a crucial function in 
directing the earlier phases of the cellular response to DNA damage.

Following the DNA damage, p53 along with p68 augments the post- transcriptional 
maturation of numerous miRNAs including miR-145, miR-16-1 and miR-143 that 
possess the growth-suppressive function. Furthermore, transcriptionally altered p53 
mutants restrict the arrangement of Drosha complex and p68, decreasing the rate of 
miRNA processing machinery [169]. The mutations in p53 gene seen in different 
malignancies affect both domains essential for DNA binding and control of miRNA 
processing, making it challenging to segregate. The plausible underlying mechanism 
may be associated with loss of p53-mediated miRNA functioning that might be 
directly related with the loss of transcriptional activity facilitating tumour progres-
sion. Besides, important proteins encompassed in miRNA biogenesis and regulation 
consists of binding elements for p53, p63 and p73 proteins, indicating the transcrip-
tional control by the members of this tumour suppressor family. Moreover, the 
p53-modulated miRNAs target the miRNA biogenesis factors further facilitating a 
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feedback outcome in strongly regulating the expressions of damage- responsive miR-
NAs [170]. Lately, it has been depicted that following DNA damage, nearly 25% 
miRNAs are activated through an ATM-dependent pathway [167]. This outcome 
may be facilitated partly through KH-type splicing regulatory protein (KSRP), an 
element of Drosha and Dicer miRNA processing units [171]. However, ATM was 
observed to phosphorylate KSRP, causing an enrichment in the interface between 
KSRP and pri-miRNAs along with elevated KSRP action in miRNA processing 
resulting in an overexpression of particular cohort of miRNAs [167]. Furthermore, 
downstream molecules of ATM/ATR—CHK1 and CHK2 in the DNA damage path-
way are activated leading to regulation of miRNA processing mechanism.

9.4.3.3  miRNAs Target Genes that Participate in DNA Damage 
Control

Several reports have demonstrated that specific miRNAs control vital genes that are 
important for the DNA damage response event. However, it was observed that the 
damage sensor kinase ATM is a critical target of miR-421. Moreover, in patients 
suffering from ataxia-telangiectasia (A-T), disorder caused by impaired ATM lev-
els, it was observed that miR-421 was overexpressed leading to binding blockage of 
miR-421 to ATM [172]. ATM phosphorylates an enormous number of target genes, 
such as the histone variant H2AX (vital function in response to DNA double-strand 
breaks (DDSBs)) [173, 174]. It is a major target of miR-24, causing tumour cells to 
become hypersensitive to reprivatized drugs and ionizing radiation. In general, 
miR-24 is overexpressed in differentiated cells, showing a decreased ability to 
repair the DDSBs [175]. However, in tumours decreased knockdown of miR-24 
might impart resistance to different genomic changes. Undeniably, it has been 
observed that miR-24 expression is repressed by MYC [48]. The other targets for 
miR-24 are MYC, E2F1 and CDK4/6 that negatively impact the cell cycle progres-
sion and contribute to its anti-carcinogenic consequences [176].

In human neuroblastoma and lung fibroblasts, miR-125b mediates the downreg-
ulation of the p53 causing inhibition in apoptosis [177]. It has also been observed 
that miR-504 inhibits p53-modulated programmed cell death and cell cycle arrest 
via targeting p53 mRNA leading to in vivo carcinogenesis [178]. Additionally, in 
neuroblastomas miR-380-5p is upregulated owing to amplification of MYCN that 
has been related with poor patient survival, causing reduction in p53 levels [179]. 
However, it has been demonstrated that miR-30 family members and miR-25 nega-
tively regulate p53 in certain cancer cell lines [180].

Proficient miRNAs competent of targeting negative controllers of p53 are able to 
cause an increase in p53-dependent anti-proliferative outcomes demonstrated by 
miRNAs targeting MDM2. Additionally, miR-29 family members have been reported 
to target p85-alpha, the controlling subunit of phosphatidylinositol-3 kinase (PI3K) 
and CDC42, completely influencing the p53-modulated programmed cell death 
[181]. Moreover, miR-29 shows tumour suppressor property by targeting different 
DNA methyltransferases [68]. Besides, miR-29b is downregulated in malignant cells 
and regulates Mcl-1—an anti-apoptotic protein that is simultaneously overexpressed 
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[86]. Also, miR-122 has been observed to possess an important function in p53 acti-
vation by diverse other mechanisms [182].

9.4.4  MicroRNAs Triggering Tumour Progression, Invasion, 
Migration and Metastasis

Metastasis is a multistep, intricate biological cascade that is characterized by differ-
ent stages. Epithelial-mesenchymal transition (EMT) is a known important event in 
the metastatic process, illustrated via loss of cell adhesion by suppression of 
E-cadherin and stimulation of genes related to invasion and migration. EMT is 
known to be controlled by different biological signalling cascades with transform-
ing growth factor (TGF)-β having a predominant role on the ZEB, SNAIL and 
TWIST transcription factors [183]. Cutting-edge facts report that miRNAs have a 
crucial function in the pathogenesis EMT and tumour metastasis as demonstrated in 
Fig. 9.5. TGF-β-controlled miRNAs stimulate EMT and facilitate tumour progres-
sion, aggressiveness and metastasis. MiR-155 is upregulated in different tumours 

Fig. 9.5 Diagrammatic representation of regulatory effect of microRNAs on tumour progression, 
epithelial mesenchymal transitions and tumour metastasis
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and is activated transcriptionally by TGF-β/SMAD4 signalling network. Recent 
research depicted that miR-155 stimulates EMT process by targeting RhoA GTPase, 
a crucial factor of tight junction formation, stability and cellular polarity. Moreover, 
the silencing of miR-155 represses TGF-β-mediated EMT and tight junction termi-
nation, along with cell progression, migration and invasion [184]. Contradictorily, 
TGF-β suppresses miR-200 and miR-203. However, the miR-200 family is known 
to influence EMT via hindering the expression of ZEB1 and ZEB2—the E-cadherin 
associated transcriptional suppressors [185]. As a result, ZEB1 and ZEB2 further 
suppress the miRNA-200 primary transcript that creates a double negative feedback 
loop between miR-200 family and the transcription factors. Additionally, the loop 
was propositioned to elucidate a hypothesis in decoding the underlying mechanism 
of the metastatic cascade: invasive breast tumour cells having elevated metastatic 
potential which carry a mesenchymal phenotype have considerably reduced miR- 
200 expression. Consequently, administered overexpression of miR-200c in the 
mesenchymal cells escalates E-cadherin leading to an epithelial phenotype by pro-
voking MET [186–188]. Additionally, miR-192 and miR-200 are imperative modu-
lators of p53-regulated EMT, and these miRNAs are trans-activated by p53 that 
further modulates EMT event through supressing ZEB1/2 expression [185]. Other 
significant transcription factors are TWIST and SNAIL that stimulate epithelial cell 
motility, tumour invasiveness migration capacity and metastasis by controlling cer-
tain miRNA expressions. In metastatic breast tumour cells, upregulation of miR- 
10b positively modulates cell invasion and migration that is stimulated by 
uninterrupted binding of TWIST to miR-10b promoter region. Besides, in primary 
human breast cancer cell lines—SUM149 and SUM159—an abnormal expression 
of miR-10b is capable of inducing assertive penetration and micro-metastasis devel-
opment in (SCID) severe combined immunodeficiency mouse models, stipulating 
evidence stating that upregulation of discrete miRNAs may be contributing to 
in vivo metastasis development [189]. Additionally, miRNAs that regulate the gene 
expression levels of these EMT factors are vital for metastasis development. For 
example, in aggressive metastatic breast tumour, miR-203 is considerably down-
regulated owing to hyper-methylation of its promoter. The reestablishment of miR- 
203 expression in breast tumour cells suppresses in vitro cancer cell invasion and 
colonization of lung metastatic cells in vivo by inhibiting SNAI2, indicating that the 
miR-203 and the SNAI2 regulatory circuit is central for EMT and tumour metasta-
sis formation [190, 191].

miR-9 and miR-212 are additional critical miRNAs that contribute in controlling 
cancer metastasis. C-Myc and n-Myc activate miR-9 expression by directly binding 
to the miR-9-3 locus. In neuroblastoma tumours, the miR-9 expression level dili-
gently associates with amplification of MYCN, tumour stage, differentiation and 
metastasis status. miR-9 expression in metastatic breast tumours is much elevated 
than in primary breast cancer, implying that miR-9 is an impending metastatic cas-
cade regulator. Moreover, it has been identified in breast tumour cells that miR-9 
reduces the E-cadherin expression by directly binding to its 3′-untranslated region 
[189]. This E-cadherin downregulation by miR-9 triggers the β-catenin signalling 
which further stimulates the downstream oncogenic molecules, leading to elevated 
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cell migration, invasiveness and tumour progression. Moreover, the repression of 
miR-9 through a miRNA ‘sponge’ decreases the metastasis development in vivo, 
suggesting that miR-9 silencing might open newer therapeutic avenues in advanced 
breast tumours for preventing the development of cancer metastasis [192, 193]. 
Furthermore, another microRNA, miR-212, is remarkably underexpressed in human 
colorectal carcinoma owing to promoter hyper-methylation and loss of heterozy-
gosity. The upregulation of miR-212 supresses in vitro CRC cell motility and inva-
sion and in vivo formation of pulmonary metastasis by targeting MnSOD, essential 
for downregulation of epithelial markers and upregulation of mesenchymal markers 
in these colorectal carcinoma cells. Hence, miR-212 can be a prognostic marker for 
CRC patients to predict their overall survival, and both miR-212 and MnSOD can 
also be explored as therapeutic tools for metastasis therapy [194].

9.4.5  MicroRNAs Modulating Angiogenesis

The process of angiogenesis is an extremely coordinated event that develops new 
blood vessels from pre-established vessels to provide nutrients and oxygen for 
tumour growth and cancer metastasis [195]. However, tumour tissues have signifi-
cantly lower oxygen levels as compared to their proximate normal tissues; thus 
hypoxia has an essential function in the tumour microenvironment leading to tumour 
formation and tumour cell maintenance. Hypoxia-inducible factor (HIF) is an 
important transcription regulator of hypoxia and impacts various miRNA expres-
sions along with its targets. In addition, vascular endothelial growth factor (VEGF) 
is a focal angiogenic factor that directs the endothelial cells in building new blood 
vessels on binding to its receptors [196]. This indicates that miRNAs that target HIF 
or VEGF signalling paths significantly influence the angiogenesis process. 
Moreover, miR-210 is the most reliable and considerably stimulated miRNA 
reported throughout the hypoxia process [197]. Different studies have depicted that 
miR-210 upregulation in human normoxic umbilical vein endothelial cells activates 
the development of capillary-like structures and VEGF-dependent cellular motility; 
however, contradictory to this miR-210 blockade alienates these processes [198]. 
Additionally, miR-210 positively influences angiogenesis by enhancing VEGF and 
VEGF receptor-2 (VEGFR2) expression as well as by targeting an antiangiogenic 
factor receptor tyrosine kinase ligand ephrin-A3 [199].

Moreover, miR-424 is another microRNA that is activated during hypoxic condi-
tions in endothelial cells and promotes angiogenesis in vivo and in vitro through 
directing a scaffolding protein to ubiquitin ligase called cullin 2. This reaction 
causes the stabilization of HIF1α and permits transcriptional activation of VEGF 
gene expression [200]. Furthermore, miR-21, another miRNA that stimulates angio-
genesis and targets PTEN to trigger Akt/ERK signalling pathway, causes increased 
HIF1α and VEGF expression levels. Contradictorily, miR-20b and miR-519c target 
VEGF and/or HIF1α and negatively regulate angiogenesis [201]. miR-107 inhibits 
the expression of HIF1β besides regulating HIF1α, and so decreased expression of 
miR-107 causes tumour angiogenesis formation under hypoxic states [55].
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Recently, various reports have indicated that exosomal miRNA from tumour 
cells aids in the development of pre-metastatic niche and modulates the tumour 
microenvironment. Furthermore, it has been demonstrated that miR-135b, upregu-
lated in exosomes, acquired from hypoxia-resistant multiple myeloma cells, 
reduces the expression of the factor-inhibiting HIF1 (FIH-1) in endothelial cells 
and thus influences the development of endothelial tubes through the HIF-FIH 
signalling cascade. Thus, miR-135b exosomal expression might act as a target for 
regulating angiogenesis in multiple myeloma and curbing tumour invasiveness and 
progression [202].

9.5  Clinical Applications of MicroRNAs: From Diagnostics 
to Therapeutics

9.5.1  MicroRNAs as Diagnostic Markers

The past decade has reported numerous studies on tumour profiling for identifica-
tion of probable miRNAs and their target genes that are govern by the underlying 
mechanism involved in carcinogenesis. Different miRNA signatures have been rec-
ognized, which may prove to be helpful for differentiating tumours in different 
organs by further screening resected tumours, biopsy or blood specimens [203]. 
Moreover, a 4-miRNA signature in leukaemia has been identified that is capable of 
differentiating acute lymphoblastic leukaemia (ALL) from acute myeloid leukae-
mia (AML) having a 100% sensitivity as well as specificity [204]. Furthermore, a 
97-gene expression panel in breast tumours is capable of classifying the tumour 
based on the histological grade as compared with lymph-node status, tumour stage 
and/or size [205]. In pancreatic ductal adenocarcinomas, a panel comprising of 
seven differentially expressed miRNAs might contribute in more accurate diagnosis 
as compared to the conventional cytology assessments [206].

9.5.2  MicroRNAs as Prognostic Indicators

Numerous studies have stated that miRNA expression patterns can predict the out-
come and prognosis in various tumours. In breast tumours, 31 miRNAs were pre-
dominantly attributed to clinical features, whereas the upregulation of 17 different 
miRNAs was linked with ER-positive stage I/II breast tumours, which showed 
noticeable clinical outcome [207]. Likewise, the upregulation of miR-210 is related 
to an elevated recurrence risk and a decreased possibility of relapse-free survival in 
cancer patients [208]. Moreover, miR-155 overexpression is reported to be linked 
with poor postoperative survival in B-cell lymphoma and lung cancer patients 
[209, 210]. Also, miR-96, miR-182 and miR-183 expression have been found to 
associate with the development of non-small-cell lung carcinoma [211]. Similarly, 
the expression of miR-200c is associated with overall survival following surgery in 
CRC patients, and 13 other miRNAs have been revealed to illustrate alterable 
expression in CLL [212].
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9.5.3  MicroRNAs in Cancer Treatment

miRNAs have the property to target numerous genes concurrently. They possess a 
significant role in carcinogenesis as vital regulators of different cellular pathways 
by modulating the target gene expression by either mRNA degradation and/or trans-
lation repression. Therefore, these miRNAs are interesting candidates that can be 
used as prognostic indicators as well as therapeutic targets in different malignan-
cies. The characterization of various miRNAs along with its target genes is crucial 
for treating tumour progression, invasion and metastasis, consequently providing 
novel therapeutic prospects. There are several methods that can be incorporated for 
miRNA targeting that include the AMOs (anti-miRNA oligonucleotides) which are 
single-stranded molecules and cause direct complementarity, therefore inhibiting 
particular miRNAs. AMOs have been extensively used in vitro and in vivo for tar-
geting mRNAs and assessing their gene functions [213, 214]. Further, the chemical 
alteration of the AMOs might aid in improving the hybridization affinity of mRNA 
target in vitro [215] making it defiant to nuclease degradation along with activating 
RNase or additional proteins and target genes [216]. For in vivo transport, modify-
ing the protein-binding functions of AMOs is crucial to intrusion of plasma clear-
ance and stimulates proper uptake in the cells and tissues [217]. Antago-miRs are 
single-stranded molecules that are capable of forming complementarity to miRNAs; 
however, for maintaining the stability along with minimizing degradation, and 
might additionally be altered with a cholesterol conjugated 20-O-methyl [218]. 
Locked nucleic acids (LNAs) possess a methylene bridge to functionally lock ribose 
conformation, which ultimately causes increased binding affinity and stability 
[219]. The function of miRNA sponges is to use multiple additional 3′UTR mRNA 
sites for a specific miRNA and to bind competitively to miRNA, thus interfering 
with the normal direction of a single miRNA by targeting it with an antisense oligo-
nucleotide [220]. Additionally, the formation of stable sponges may contribute in 
reiterating the effects of downregulation of aberrantly expressed miRNAs and struc-
tured nanoparticles, the formulations of which may primarily be used for in vitro 
transfer of miRNAs [221, 222]. Lately, certain research studies have used this 
miRNA delivery technology into the host cell and/or tissue [223]. The outcomes of 
earlier studies indicated that by using liposome polycation-hyaluronic acid particles 
as miRNA carrier for modifications with a tumour targeting monoclonal antibody 
known as the golgin candidate 4 single-chain variable fragment, they were success-
ful in targeting lung metastasis in a mouse model developed for metastatic mela-
noma [16, 224–226].

9.6  Concluding Notes

Uninterrupted research into the field of miRNAs lead to the initial discovery of a 
vital cluster of modulators in all multicellular organisms to a later phase where 
miRNA-based events are promptly entering the clinics as significant diagnostic/
prognostic as well as promising therapeutic tools. Although certain mechanisms 
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such as the post-transcriptional gene expression and its modulation in different cell 
types are not clearly understood, tremendous research studies associate uncon-
trolled miRNA expression to the different tumour aetiologies. Evolving research 
suggests that miRNAs are important participants in the carcinogenesis event as they 
have crucial roles in governing gene expression and uplifting cellular differentiation 
processes, are involved in cell fate decisions and cellular maintenance and stabilize 
the plasticity and de-differentiation processes. Besides, they intensely govern the 
central nodes in cell cycle regulation, apoptosis, genome integrity, stress responses, 
tumour development, aggressiveness and metastasis. Additionally, genetic repre-
sentations have substantiated that different miRNAs pose as oncogenes and that 
cancers may become predisposed to oncogenic miRNA upregulation, which might 
have a potential for the use of miRNA inhibitors in therapeutics. However, there is 
still much scope of identifying important miRNAs that might have clinical signifi-
cance in different tumours, but the rapid development in this field is plausibly aiding 
in the advancement of many preclinical endeavours for the near future. A prospec-
tive stipulation is that because the presently used drug varieties have broad out-
comes and may affect several signalling cascades, miRNAs are fundamentally 
associated with regulating groups of targets frequently resulting in pleiotropic out-
comes. Moreover, only a few in vitro studies have shed light on understanding the 
role of miRNAs, and thus there is a clear need to discover their dependency on cel-
lular framework and study their interaction in different tumour lesions.
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10.1  Terpenoids

Isoprenoids (terpenoids or terpenes) are the largest class of secondary metabolites 
produced by almost all living organisms that are comprised of over 55,000 known 
compounds [1]. Several traditional systems utilize terpenoid-rich extracts for fra-
grance, flavor, and medicinal purpose. This is due to the tremendous diversity in the 
structure and functions of terpenoids [2, 3]. Despite their function as secondary 
metabolites, members of terpenoid family also perform fundamental functions in 
plants and animals, e.g., as components of electron transport system (quinines, ubi-
quinone, and plastoquinone), as pigments (carotenoids and side chains of chloro-
phyll), as hormones (gibberellins, ecdysteroids, dafachronic acids, abscisic acid, 
etc.), and as sterols (ergosterol, cholesterol, brassinosteroids, etc.) [4]. This is their 
diverse nature that provides these remarkable biomolecules several other biological 
activities including protective effects against tumor proliferation [5, 6] and several 
cancers [7, 8].
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10.2  Terpenoid Biosynthesis

All the members of terpenoid family are produced from two universal precursors, 
namely, dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate 
(IPP). There are two pathways responsible for the synthesis of these common precur-
sors in living organisms. The mevalonate (MVA) pathway is the first identified path-
way [9, 10] and present in almost all eukaryotic cells and in few prokaryotic cells. 
For decades, MVA pathway has been thought to be responsible for the production of 
terpenoids in living organisms. In late 1990s and early 2000s, with the advancement 
of molecular biology tools and extensive genomic work on prokaryotes, scientists 
have discovered a MVA-independent pathway in prokaryotes. This pathway utilizes 
glyceraldehyde-3-phosphate (G3P) and pyruvate to produce IPP and DMAPP [11, 
12] and is recognized as 1-deoxy-d-xylulose-5-phosphate (DXP) pathway. It exists 
in several eubacteria and plant organelles including chloroplast. Together the MVA 
and DXP pathways are responsible for the synthesis of the largest class of secondary 
metabolites, i.e., terpenoids.

10.2.1  The MVA Pathway

The MVA pathway takes six enzymatic steps to synthesize IPP and DMAPP from 
acetyl-CoA [13]. The first three steps are dedicated toward the synthesis of MVA by 
consuming three molecules of acetyl-CoA. The first enzyme, acetoacetyl-CoA thio-
lase, catalyzes the condensation of two acetyl-CoA to synthesize acetoacetyl- 
CoA.  HMG-CoA synthase (HMGS) then converts acetoacetyl-CoA into 
hydroxymethylglutaryl-CoA (HMG-CoA) [14], which is further converted to MVA 
via reaction catalyzed by HMG-CoA reductase (HMGR) [15]. In the later three 
steps, MVA is converted to IPP. First, mevalonate kinase (MK) phosphorylates MVA 
to mevalonate-5-phosphate (MVAP) [16], which is then re-phosphorylated by phos-
phomevalonate kinase (PMK) to form mevalonate-5-diphosphate (MVAPP) [17]. 
Lastly, in an ATP-dependent decarboxylation step, phosphomevalonate decarboxyl-
ase (PMD) converts MVAPP to IPP [18], and IPP isomerase (IDI) catalyzes the con-
version of IPP into DMAPP [19] (Fig. 10.1).

10.2.2  The DXP Pathway

The DXP pathway takes seven enzymatic steps to synthesize IPP and DMAPP in a 
ratio 5:1 [20, 21]. It starts with the synthesis of DXP via condensation of G3P and 
pyruvate by DXP synthase (DXS) enzyme [22]. In the later step, DXP is reduced to 
2C-methyl-d-erythritol-4-phosphate (MEP) by DXP reductoisomerase (DXR or 
IspC) [23]. MEP-cytidyltransferase (IspD) then catalyzes MEP to 4- diphosphocytid
yl- 2C-methyl-d-erythritol (CDP-ME) [24] which is further converted to 4- diphosph
ocytidyl- 2C-methyl-d-erythritol-2-phosphate (CDP-MEP) by the action of CDP-ME 
kinase (IspE) [25]. MEcP synthase (IspF) subsequently converts CDP- MEP to 
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Fig. 10.1 Terpenoid 
biosynthesis pathways. 
HMG-CoA 3-hydroxy-3-
methylglutaryl-CoA, 
HMGS 3-hydroxy-3-
methylglutaryl-
CoAsynthase, HMGR 
3-hydroxy-3-
methylglutaryl-
CoAreductase, MVA 
mevalonate, MK 
mevalonate kinase, MVAP 
mevalonate-5-phosphate, 
PMK phosphomevalonate 
kinase, MVAPP 
mevalonate-5-
pyrophosphate, PMD 
phosphomevalonate 
decarboxylase, G3P 
glyceraldehyde-3-
phosphate, DXP 
deoxyxylulose-5-
phosphate, DXS DXP 
synthase, DXR DXP 
reductase, MEP 
2C-methyl-d-erythritol-4-
phosphate, MEPC MEP 
cytidyltransferase, 
CDP-ME 
diphosphocytidyl-2C-
methyl-d-erythritol, 
CDP-MEK CDP-ME 
kinase, MEcP 2-C-methyl-
d-erythritol-2,4-
cyclopyrophosphate, 
MECPS MECP synthase, 
HMBPP 1-hydroxy-2-
methyl-2-(E)-butenyl-4-
diphosphate, HMBPPS 
HMBPP synthase, 
HMBPPR HMBPP 
reductase, IPP isopentenyl 
pyrophosphate, DMAPP 
dimethylallyl 
pyrophosphate, IDI 
isopentenyl pyrophosphate 
isomerase
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Fig. 10.2 Metabolic routes for the isoprenoids biosynthesis and their precursor supply. PPP pen-
tose phosphate pathway, EDP Entner–Doudoroff pathway, G3P glyceraldehyde-3-phosphate, DXP 
deoxyxylulose-5-phosphate, MEP 2C-methyl-d-erythritol-4-phosphate, HMBPP 1-hydroxy- 2-
methyl-2-(E)-butenyl-4-diphosphate, HMG-CoA 3-hydroxy-3-methylglutaryl-CoA, MVA meval-
onate, IPP isopentenyl pyrophosphate, DMAPP dimethylallyl pyrophosphate, GPP geranyl 
pyrophosphate, GPPS GPP synthase, FPP farnesyl pyrophosphate, FPPS FPP synthase, GGPP 
geranylgeranyl pyrophosphate, GGPPS GGPP synthase. The PPP and EDP along with glycolysis 
supply precursors (G3P and pyruvate) to DXP pathway for the biosynthesis of isoprenoids, 
whereas fatty acid metabolism provides precursors (acetyl-CoA and HMG) for MVA pathway

2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcP) [26], which is then con-
verted to prenyl precursors by the action of 1-hydroxy-2-methyl-2-(E)-butenyl-4-di-
phosphate synthase (HMBPP synthase or IspG) and HMBPP reductase (IspH) 
through two successive reduction and elimination steps [21] (Fig. 10.1).

The IPP and DMAPP are utilized by several downstream enzymes such as gera-
nyl pyrophosphate synthase (GPPS), fernesyl pyrophosphate synthase (FPPS or 
IspA), and geranylgeranyl pyrophosphate synthase (GGPPS) to synthesize the pre-
cursors (such as GPP, FPP, GGPP, etc.) for higher terpenoids molecules includ-
ing  Taxol, bisabolene, pinene, and limonene. The wide range of terpenoid 
compounds, viz., hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), 
diterpenes (C20), triterpenes (C30), and carotenoids (C40), is conventionally classified 
as per the number of encoded carbon atoms (Fig. 10.2).

10.3  Anticancer Terpenoids

Various forms of terpenoids differently act against the cancer cells, viz., through 
necrosis or induction of apoptosis, inhibition of angiogenesis, production of oxi-
dative stress on cancer cells, activation of apoptosis via caspases, or inactivation 
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of PI3K/Akt/NF-κB pathway, or they may act in synergistic way with other che-
motherapeutic options available [27]. Various anticancer compounds falling in 
different terpenoid subclasses are hereby summarized.

10.3.1  Monoterpenoids

 1. Limonene: It is a chief constituent of many citrus fruits, usually deployed for the 
industrial manufacturing of cleaning products and flavoring additives. The 
monocyclic monoterpene and D-limonene are well-known for their chemopre-
ventive property. It is known to enhance the levels of hepatic enzymes, thereby 
preventing liver cancer. It is also thought that it averts mammary cancer induced 
by carcinogen at the initiation as well as progression phases [28]. The compound 
has shown promise in animal models whereby it represses the growth of colon, 
pancreas, stomach, liver and skin cancers. Antiangiogenesis, antioxidant, and 
pro-apoptotic properties are responsible for the inhibition of tumor growth and 
metastasis. The compound is known to hamper with the enzyme 3-hydroxy- 3-
methylglutanyl coenzyme A (HMGCoA) reductase [29] which in turn suppresses 
small G proteins like p21 and its membrane localization by protein isoprenyl-
ation [30]. Besides inducing the expression of cytochrome C and leading to the 
cleavage of caspase 3 and 9, it also up-regulates the expression of Bax protein to 
subsequently induce apoptosis [31].

 2. Cantharidin: Being a non-plant origin terpenoid, it has been traditionally used as a 
Chinese medicine for many years. Almost 1500 species of blister beetles produce 
the natural defensive toxin which is used against hepatoma and esophageal carci-
noma [7, 32]. It also exhibit anticancer effects against colorectal carcinoma, leuke-
mia, breast cancer, and bladder carcinoma [33–35]. However, owing to its extreme 
side effects and toxicity, the clinical employment of cantharidin is limited. 
Mechanistically, the molecular targets are serine/threonine protein phosphatase 1 
(PP1) and 2A (PP2A), which function to sway apoptosis, cell cycle, and cell-fate 
determination. The PP2A inhibition is responsible for IKKa/IkBa/p65 NF-κB 
pathway-dependent cancer cell apoptosis which subsequently activates extrinsic 
apoptotic signaling molecules such as TRAILR1, TRAILR2, and TNF-a [36]. 
Additionally, the mitogen-activated protein kinases  (MAPKs)/ERK/JNK/p38 sig-
naling is reported in cantharidin-activated apoptosis in cancer cells [37].

10.3.2  Sesquiterpenoid

 1. Artemisinin and its derivatives: Artemisia annua L. is the origin of artemisinin, 
a bioactive molecule typically used as a Chinese medicine since many years 
against malaria. Artemisinin and its derivatives are known to inhibit breast can-
cer leukemia, ovarian cancer, colon cancer, prostate cancer, gastric cancer, hepa-
toma, melanoma, and lung cancer [7]. The in vivo anticancer potency has also 
been proven using xenograft animal models. The application of artemisinin and 
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its derivatives in combination with gemcitabine or carboplatin is also promising 
in xenograft tumor models [38, 39]. These molecules lead to G1 cell cycle arrest 
through cyclin D, cyclin E, CDK2, CDK4, p21, p27, NF-κB, etc. [7] and activate 
apoptosis in many cancer cell types by triggering p38 MAPK, increasing Fas 
expression, and inducing caspases [7]. They also suppress angiogenesis, metas-
tasis, and invasion by regulating the amount of matrix metalloproteinases MMP2, 
MMP7, and MMP9, avb3 integrins, urokinase plasminogen activator (u-PA), and 
vascular endothelial growth factor (VEGF) [40, 41].

10.3.3  Diterpenoids

 1. Tanshinone IIA: Salvia miltiorrhiza Bunge, the source of tanshinones, is rou-
tinely used in China to treat cardiovascular ailments [42]. Tanshinone IIA is 
reported to demonstrate in vitro and in vivo anticancer effects against breast can-
cer, leukemia, hepatocellular carcinoma, and colon cancer [7]. Apart from that, 
it also demonstrates combinatorial activity with cisplatin and doxorubicin [43–
45]. It binds to the minor groove of DNA, thereby damaging the DNA structure 
to further prevent RNAPII binding. The obstruction within transcription in turn 
results in ROS generation, downregulation of erythroblastosis oncogene B, 
upregulation of TNF-a, activation of calcium-dependent signaling pathway, inhi-
bition of the PI3K/AKT pathway, and increase of Bax/Bcl-2 protein ratio which 
further accounts for the anticancer characteristics of tanshinone IIA [7].

 2. Triptolide: It is a triepoxide derived from Tripterygium wilfordii Hook.f, and its 
anti-inflammatory, immunosuppressive, and anti-proliferatory activities are 
well-known. The xenograft animal models in multiple clinical studies confirm its 
in vivo activity. The compound majorly attacks the transcriptional apparatus of 
the cell. It modulates the activity of several transcriptional factors, such as p53, 
NF-κB, HSF-1, and NF-AT [7]. It inhibits RNAPI and RNAPII to prevent de 
novo RNA synthesis. Additionally, the induction of proteasome-dependent deg-
radation of the largest subunit of RNAPII (Rpb1) in cancer cells leads to global 
transcription inhibition. Specific targets include calcium channel polycystin-2 
[46], an unknown 90-kDa nuclear protein [47], and a subunit of the transcription 
factor TFIIH called as the human XPB [48]. The XPB ATPase inhibition accounts 
for the cellular and physiological effects of the compound. Moreover, factors like 
impaired nucleotide excision and hypoxia-inducible factor-1a (HIF-1a) accumu-
lation are also responsible for anticancer properties of triptolide.

 3. Pseudolaric acid B: It is derived from the extracts of the root bark of Pseudolarix 
kaempferi, a plant found in eastern China. Pseudolaric acids A and B (PAA and 
PAB) are the major constituents accounting for antifungal and anti-angiogenic 
properties [7, 47]. PAB is known to inhibit colon, lung, breast, brain, and renal 
origin cancers [49] by targeting and destabilizing microtubules leading to the 
tumor cytostatic and anti-angiogenic outcome [47, 50]. It also antagonizes 
VEGF-stimulated cellular events and inhibits endothelial cell growth and thereby 
demonstrates a dual anti-angiogenic effect. Apart from microtubule blockage, it 
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also induces apoptosis through JNK and ERK pathways along with autophagy 
via Bcl-2 proteins [7].

 4. Andrographolide: It is the chief pharmacologically active ingredient of 
Andrographis paniculata, a Chinese medicinal plant widely applied for colds, 
fever, laryngitis, and diarrhea [7, 51]. It also displays anti-inflammatory and anti-
cancer activities [51]. The primary target for its therapeutic effect is NF-κB sig-
naling. The compound binds to p50, a transcription factor of NF-κB, and thereby 
inhibits the signaling to decrease the amount of chemokines, cytokines, nitric 
oxide, adhesion molecules, and lipid mediators via suppression of the NF-κB 
signaling pathway [51]. Apart from NF-κB signaling, it also inhibits the cancer 
cell proliferation, survival, metastasis, and angiogenesis by affecting the other 
pathways such as JAK-STAT and PI3K, repression of cyclins, HSP90, cyclin-
dependent kinases, metalloproteinases, growth factors, and activation of tumor 
suppressor proteins p53 and p2 [52].

 5. Oridonin: It is extracted from Rabdosia rubescens, a Chinese herb known to 
inhibit many solid tumors, such as osteoma, liver cancer, colorectal cancer, and 
skin carcinoma along with acute lymphoblastic leukemia, primary adult T-cell 
leukemia, non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, and mul-
tiple myeloma cells as well [7, 53]. The in vivo activity has also been established 
using a colorectal cancer colostomy implantation model [54]. The cancer cells 
treated with oridonin die from apoptosis caused by the suppression of NF-κB 
DNA binding. Apoptosis is also induced due to the expression of forkhead box 
class O (FOXO) transcription factor and glycogen synthase kinase 3 (GSK3) and 
downregulation of PI3K/Akt signaling. Moreover, the tumor growth is inhibited 
by downregulation activator protein 1, NF-κB, and p38 pathways [7].

 6. Paclitaxel: Paclitaxel is a taxane class therapeutic molecule extracted from the 
bark of Taxus brevifolia, the Pacific yew tree which is well-known to possess 
broad-spectrum anticancer potential [55]. It is reported to be active against breast 
cancer, endometrial cancer, non-small cell lung cancer, bladder cancer, and cer-
vical carcinoma [56]. Its application as radio sensitizer against head and neck 
carcinoma is also reported [57]. Combinatorial therapy with doxorubicin and 
with anthracycline against breast cancer and with carboplatin and cisplatin for 
lung cancer has been useful [55, 58]. It acts on rapidly dividing cells by 
 suppressing the microtubule spindle dynamics which leads to obstruction to 
metaphase- anaphase transitions and an eventual repression of mitosis followed 
by apoptosis [59]. Paclitaxel prevents tubulin disassembly by associating with 
polymeric tubulin molecules to stabilize microtubules, and, therefore, its treat-
ment results in G2/M phase-arrested cancer cells [55].

10.3.4  Triterpenoids

 1. Celastrol: It is isolated from Tripterygium wilfordii Hook.f known for its antican-
cer, anti-inflammatory properties and antioxidant characteristics [60]. The com-
pound hampers many signaling pathways and suppresses IKKA and β-kinases, 
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inhibits proteasomes, and inactivates co-chaperones of HSP90 such as Cdc37 
and p23 proteins. In addition, it activates HSF1 to trigger the heat shock response 
and represses AKT/mTOR/P70S6K signaling to inhibit the growth of tumor [7].

 2. Cucurbitacins: The oxidized cucurbitane-type tetracyclic triterpenoid, extensively 
found in plants, exhibits potent anticancer, hepatoprotective, and anti- inflammatory 
effects [7, 44, 45, 61]. These compounds are known to induce cell cycle arrest, 
majorly at G2/M and differentiation in several tumor cell lines. They also inhibit 
tumor cell invasion and migration, both in vivo and in vitro [7]. Cucurbitacins 
have also shown synergistic effects in combination with cisplatin, doxorubicin, 
5-flouroracil, paclitaxel [62], gemcitabine [63, 64], and docetaxel [65] in both 
in vitro and in vivo models.

 3. Pachymic acid: It is isolated from Poriacocos and is reported to possess anti- 
inflammatory and anticancer properties. It demonstrates activity against human 
prostate cancer DU145 cells, human lung cancer A549 cells, and colon carci-
noma HT29 cells and is known to induce apoptosis in LNCaP prostate cancer 
cells, DU145 and A549 cells [7, 66, 67]. At molecular level, it triggers PARP, 
caspase 3 and caspase 9. Apart for inhibiting DNA topoisomerase I and II, it 
represses MDA-MB-231 and MCF-7 breast carcinoma cells invasion and also 
decreases the PMA-induced transcriptional activity of NF-κB [68].

10.4  Strategies and Concerns for the Production 
of Anticancer Terpenoids

As discussed, paclitaxel (Taxol) is a commercially important anticancer diterpenoid 
present in Taxux sp. (Yew) plants. It is widely used as a chemotherapeutic agent for 
the treatment of variety of cancers [69]. The leaves and bark of Yew tree are the 
major natural source of paclitaxel or similar chemicals, where it is found in very 
small quantities ranging from 0.01% to 0.05% [70]. In addition, Taxus species grow 
at very slow growth rates, and the efficiency of traditional extraction methods of 
Taxol from its sources is very less. It has been found that ~10 tons of bark or 300 
trees are required to extract 1 kg of Taxol, which can be utilized to treat just few 
hundred patients [70]. Due to the medicinal and commercial importance of Taxol, 
the yew species are being heavily exploited for the extraction of Taxol and become 
endangered. The International Union for Conservation of Nature (IUCN) has also 
reported an alarming decline (90%) in the population of Taxus wallichiana 
(Himalayan yew) across the Indo-Nepal Himalayan region [71]. Thus, the tradi-
tional extraction process of Taxol is environmentally and economically costly.

Due to the environmental concerns and limitations associated with the extraction of 
Taxol from Yew plants, researchers throughout the globe are now exploring other ways 
to produce commercially important terpenoid from chemical and/or from microbial 
route. Taxol is having structural complexities like other counterparts that impart limita-
tions on its production through synthetic routes. Moreover, multiple steps are required 
for the production of Taxol by chemical route, and at every step, there is a subsequent 
loss in yield [72], which complicates its economic production. The current process of 
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Taxol production relies on plant-based semisynthetic routes [73]. Although semisyn-
thetic route has gained some success in the commercial production of Taxol, reliance 
of this process on plants exerts some limitation on the scale of production and cost [73]. 
Another limitation that restrains production of such compounds through chemical 
routes is use of hazardous solvents [74, 75]. Together, the environmental and health 
concerns associated with the current production methods of terpenoids have led 
researchers to explore sustainable routes for the production of terpene-based anticancer 
compounds. Cell cultures of Yew have shown some hope in this regard. This approach 
has contributed notably to manage the Taxol supply; however, some drawbacks such as 
the lengthy culture duration, sensitivity of culture to shear stress, poor yield, and high 
production and extraction cost limit the application of cell culture [76]. To date, several 
microbial hosts have also been explored for the nonnatural production of terpene-based 
pharmaceuticals [69, 75] through computer-aided enzyme-design strategies [77].

10.5  Microbial Advances for the Production of Anticancer 
Terpenoids

Microbes have shown several advantages over plants that include (1) ease in culture 
and handling in lesser space, (2) higher growth rates, (3) lesser growth medium 
requirements, and (4) genetic traceability and tractability [78, 79]. Despite these 
advantages, microbes have also shown great success rates in genetic modifications. 
Utilization of modern high-throughput synthetic biology tools makes introduction 
or silencing of an entire pathway in microbial hosts easier than ever [80]. Recent 
years have seen nonnatural production of terpenoids from microbes either by fine- 
tuning host’s pathways or by introducing foreign pathways/genes or by both [3, 75, 
81]. Genetically tractable hosts such as E. coli and S. cerevisiae are the most widely 
utilized microbes for the heterologous production of complex terpenoids such as 
taxadiene and taxadiene-5α-ol [69, 82].

There are several challenges that arise while manipulating a host’s genetic code. 
These include competition for substrate between the foreign and host enzymes, 
feedback inhibition by pathway intermediates or by end-product itself, and agglom-
eration of unwanted or toxic byproducts [74]. However, there are always opportuni-
ties to prevail over such constraints while working with microbial system rather 
than plant system. Therefore, past decades have seen several breakthroughs in the 
field of microbial terpenoid production by utilizing computational, rational, and 
combinatorial approaches [3, 75]. Alternate endogenous pathways have also been 
tuned in microbial host for enhancing precursor or cofactor supply for complex 
terpenoids [83, 84]. To surpass feedback regulation of pathway enzymes by inter-
mediates, protein fusion products have been used [85, 86].

Among vast range of anticancer terpenes, Taxol, a complex diterpene-based nat-
ural antineoplastic drug, has gained a considerable interest due to its high efficiency, 
less toxicity, and broad spectrum. It has been used effectively to treat several types 
of cancers, such as breast, uterine, colon, ovarian, and other cancers [70, 72]. It is 
having one of the fast paced and rapidly growing (~9% average growth rate) 
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international markets with a global revenue of US$90 million and is expected to 
reach US$140 million by 2024 (https://www.reportsweb.com/reports/global-pacli-
taxel-market-growth-2019-2024). The research for microbial Taxol production is 
focused on either exploring endophytic fungi capable of Taxol production [72, 76] 
or genetic modulation of microbes like E. coli or S. cerevisiae [69, 82].

Taxol-producing endophytic fungi can easily be isolated from explants as roots, 
stems, leaves, and fruits [70] and can be easily cultured in standard laboratory con-
ditions. The first step in the Taxol production from endophytic fungi is screening of 
endophytic fungi having natively higher Taxol yield. The functional improvement 
of the isolated strains is subsequently done by mutagenesis and/or modern biotech-
nological tools. Finally, production is achieved via advanced fermentation methods 
[70]. In fungi, production of primeval metabolites can be improved by modulating 
their mycelium structure via mutations. Both the chemical [ethyl methyl sulfomar 
(EMS), nitrosoguanidine (NTG), etc.] and physical (ultraviolet, χ-ray, γ-rays, fast 
neutron, laser, microwave, etc.) mutagens have been used to induce genetic varia-
tion in endophytic fungi. It has been found that mutation is able to improve Taxol 
production over 2.5-folds in the proficient endophytic fungi from Taxus cuspidate 
[87]. It is also observed that treatments, such as UV, NTG, and UV + NTG, could 
increase bioactive production in the endophytic fungi. Mutation induction via treat-
ment of UV + NTG to a Taxol-producing endophytic fungi has shown ~1.4-fold 
increase in Taxol yield in mutant strain over the wild type [70].

Taxol biosynthesis is a complex process and has not been determine fully. It is a 
19-step process that deploys 8 cytochrome P450-mediated oxygenations [88]. 
Huang et  al. [89] have laid the foundation of microbial Taxol production and 
achieved taxadiene, a key intermediate of Taxol biosynthesis, from an engineered E. 
coli by the overexpression of downstream terpenoid pathways genes such as IDI, 
GGPPS, and taxadiene synthase (TS). Later, precursors of Taxol and associated 
taxoids have been obtained from the recombinant S. cerevisiae by the expression of 
eight taxoid biosynthetic genes [90]. Biosynthetic pathway of Taxol precursors, 
taxadiene, and taxadiene-5α-ol is shown in Fig. 10.3.

There are three main aspects on which current research is focused for the micro-
bial Taxol production: (1) to enhance GGPP supply, (2) to overexpress TS to convert 
GGPP into taxadiene [82], and (3) to engineer cytochrome P450-mediated oxygen-
ations for the production of taxadien-5α-ol from taxadiene [69]. To produce taxadi-
ene from recombinant S. cerevisiae, a GGPP synthase from Sulfolobus acidocaldarius 
has been overexpressed along with a codon-optimized taxadiene synthase from 
Taxus chinensis [82]. A truncated version of HMG-CoA reductase (tHmg1) has been 
overexpressed to surpass the steroid-based negative feedback. Further, to facilitate 
steroid uptake under aerobic environment, mutant upc2-1 gene of the transcriptional 
sterol regulator is expressed, and the engineered strain is found to produce ~8.7 mg/L 
taxadiene after 48 h incubation [82] (Table 10.1). Later, Ajikumar et al. [69] have 
improved taxadiene titers through the engineered E. coli by using the “multivariate-
modular pathway engineering (MMPE)” approach. The overall DXP pathway is par-
titioned into smaller modules, “upper module,” and “lower module,” and the 
components of each module are separately fine-tuned to investigate a correct balance 
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between the upper and lower DXP pathway modules. Identifying the best combina-
tion, an engineered E. coli is expressed to build a yield of 1.0 g/L taxadiene [69] 
(Table 10.1). To convert taxadiene into Taxol, a chimeric fusion protein product of 
CYP450, taxadiene-5α-hydroxylase from Taxus cuspidate with its CYP450 reduc-
tase (CPR) counterpart, could be expressed in taxadiene-producing strains. A 
~58 mg/L taxadiene-5α-ol titer is obtained from resultant strain [69], which is ~2400-
fold higher than the previously reported titers in S. cerevisiae [90] (Table 10.1). Later, 
Boghigian et al. [91] have applied a computational approach to increase taxadiene 

Fig. 10.3 Taxadiene and taxadiene-5α-ol biosynthesis

Table 10.1 Summary of titer, engineered microbe, and production time of Taxol production from 
engineered microbes

Isoprenoid Engineered microbes Titer Time References
Taxadiene E. coli 1.3 mg/L N.A. [89]

1 g/L 120 h [69]
26.77 mg/L 120 h [91]

S. cerevisiae 1 mg/L 65 h [90]
8.7 mg/L N.A. [82]

Taxadiene-5α-ol E. coli 58 mg/L 100 h [69]
S. cerevisiae ~25 μg/L 65 h [90]
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production in E. coli [91] by utilizing a variation of minimization of metabolic 
adjustment (MoMA) algorithm. Though the study has been unable to surpass the 
taxadiene levels beyond the previously achieved titers [69]; it has identified four 
targets (outside of the native DXP pathway), which could be utilized together with 
MMPE for improved cofactor supply for an improved taxadiene accumulation.

10.5.1  B. subtilis: A Potential Host for Terpenoid-Based 
Anticancer Pharmaceuticals

Although, E. coli is the most suitable host to achieve higher titers of isoprenoid- 
based metabolites due to advanced genetic tools available for fine-tuning multiple 
gene expression, its non-GRAS (generally regarded as safe) status is a major barrier 
for the commercial production of isoprenoid-based flavors, pharmaceuticals, and 
their precursors. The rapid expansion of genomics tools provides opportunities to 
exploit GRAS status microorganisms for the production of desired metabolites [92]. 
Several alternate microbes such as B. subtilis, Corynebacterium glutamicum, and S. 
cerevisiae have been explored for the nonnatural production of isoprenoid-based 
metabolites (such as amorphadiene, pinene, and bisabolene) [92, 93]. This enables 
researchers to grasp advantages of their desirable properties with simultaneous over-
expression of isoprenoid- based metabolites [92, 94–96]. Among the infinite treasure 
of microbes, nature has gifted a few with the capability of decomposing complex 
sugars into simple ones, while some others have been endowed with the ability to 
convert sugars into desired metabolites. The plenteous genetic modifications not only 
improve product titers but also extend the variety of isoprenoid-based metabolites 
from alternate microbial hosts [92, 96–99]. Extracting the data regarding the terpe-
noid biosynthesis pathways of microorganisms in Pubmed, Bacillales is found to 
encode more number of genes and proteins related to terpenoid biosynthesis [97]. 
However, studies devoted to isoprenoid-based metabolites production from Bacillales 
are a few [99–101].

B. subtilis is a spore-forming gram-positive bacterium and is the member of 
Bacillales. It could be a potential alternate for the isopentenol production due to its 
GRAS status and rapid growth rate. In addition, it has an innate ability to produce 
desired metabolites by utilizing a vast array of substrate ranging from glucose to 
economical carbon feed stocks [100]. Besides these, it has competence to withstand 
the harsh pH and temperature stress conditions of fermentation process. Most 
importantly, it yields ~18-fold higher isoprene than E. coli and is reported as one 
among the highest isoprene-producing bacteria [102, 103]. Recently, we have engi-
neered B. subtilis strain for the production of hemiterpene alcohols, isopentenol 
(isoprenol and prenol) by overexpressing endogenous DXS and nudF genes [104]. 
Production of higher-carbon number isoprenoid has also been limitedly studied in 
B. subtilis [99, 101]. Yoshida’s group has reported the production of C30 carot-
enoids by incorporating carotenoid synthetic genes crtM and crtN of S. aureus into 
B. subtilis [101]. Production of C30 carotenoids has been further improved by sys-
tematic overexpression of DXP pathway genes [99].
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10.5.2  IspA: A Key Enzyme for Precursor Supply

As discussed earlier, enzyme engineering of the host’s pathway has improved pro-
duction of a wide range of terpenoids from microbes. It has also been shown that 
DXP pathway is stoichiometrically more competent than the MVA pathway [105]; 
however, the titers achieved to date by optimizing DXP pathway [83, 92] do not 
surpass the level that has been achieved by the expression of heterologous MVA 
pathway [85, 106]. To produce terpenoid for pharmaceutical application, a GRAS 
status microbe such as B. subtilis is required, and as it is a poor host for heterolo-
gous gene expressions, there is always a need to fine-tune the endogenous terpenoid 
pathway. It is discussed earlier that the primary focuses for Taxol production is to 
enhance the supply of GGPP. Since microbes do not possess GGPPS, the enzyme 
needs to be incorporated from other organisms. The GGPPS enzyme catalyzes the 
condensation reaction between IPP and FPP to form GGPP (Fig. 10.4). Microbes 
synthesize FPP directly from IPP and DMAPP by an enzyme known as IspA, which 
is also responsible for GPP synthesis in prokaryotes and simultaneously uptake of 
GPP to form FPP [107]. Engineering upstream terpenoid pathways in microbial 
host improves IPP and DMAPP supply for downstream enzymes. In this way, IspA 
becomes a key enzyme for the supply of FPP to heterologous GPPS.

To increase precursor flux toward higher terpenoid production, IspA enzyme has 
been overexpressed in microbial hosts [86, 108, 109]. Overexpression of endoge-
nous IspA could utilize the excess IPP and DMAPP to increase FPP flux. There can 
be two possible stereospecific configurations (E and Z) in an elongating chain of 
terpenoid. Thus, FPPS can catalyze the formation FPP in four different potential 
configurations (E,E, E,Z, Z,E, and Z,Z) [110]. It has been found that the endogenous 
IspA catalyzes the formation of all E configurations of FPP [107], which can be 
utilized by endogenous enzymes to form other essential terpenoids. However, the 
Z,E-isoform of FPP cannot be metabolized by microbial host for the synthesis of its 
essential isoprenoids [111]. Utilization of such isomers of FPP could reduce precur-
sors’ flux toward unwanted terpenoid products and minimize metabolic wastes dur-
ing the desired terpenoid production. To synthesize Z,E-FPP, a heterologous 
Z,E-FPP synthase (Rv1086) from Mycobacterium tuberculosis have been intro-
duced in engineered E. coli. Expression of Rv1086 has produced Z,E-isoform of the 
final product (farnesol); but the production is found to be lower than the E,E-isoform 
that has been achieved from overexpression of endogenous IspA enzyme. Although 
the coexpression of Rv1086 with endogenous IspA is found to improve the total 

Fig. 10.4 Reaction catalyzed by GGPP synthase

10 Metabolic and Enzyme Engineering for the Microbial Production of Anticancer…



250

FPP flux in the engineered strain, it reduces Z,E-isoform of the product and it might 
be due to the consumption of GPP by IspA. Fusion protein expression of Rv1086 
with endogenous IspA has been shown to improve the Z,E-FPP flux by increasing 
GPP availability to Rv1068 [111]. IspA is thus found to be an important enzyme 
toward the precursor supply for higher terpenoid production in microbial hosts. 
Fusion protein product of IspA with other terpenoid-specific enzymes such as farne-
sene synthase has resulted in an improved yield of the final product [86]. Fusion 
protein expression of IspA with heterologous GGPPS could also be an attractive 
target to improve GGPP flux toward Taxol/taxadiene production. Even when the 
experimental structures of these vital proteins are unavailable, the protein structure 
prediction methodologies should be appropriately deployed to construct their bio-
logically correct model for their detailed functional excavation [112, 113].

10.5.3  In Silico Functional Analysis of IspA

As discussed, FPPS or IspA, catalyzing the formation of farnesyl diphosphate 
(FPP), is used as precursor for many essential metabolites. As Bacillus subtilis is the 
majorly deployed microbial host industrially. Therefore, in this section in silico 
functional analysis of B. Subtilis IspA protein (NP_390308.2; 296-residues) is con-
sidered from the subspecies str. 168. For excavating the detailed structural and func-
tional roles of this protein, the sequence is firstly screened against the conserved 
signatures of the protein families by InterProScan5 [114]. On basis of homology, 
the sequence is found to be the member of isoprenoid synthase domain superfamily 
(IPR008949), and 7-276 residue segment is found to encode the terpenoid synthase 
domain. Moreover, the PFAM search [115] shows that the 32-268 segment is found 
to be the member of polyprenyl synthetase (PF00348).

The important physicochemical properties, viz., atomic and residue composi-
tion, molecular weight, estimated half-life, extinction coefficient, aliphatic index, 
theoretical isoelectric point (pI), and instability index, are important properties of 
every protein to allow its easy experimental discrimination. These properties are 
estimated by ProtParam from the ExPASY server [116]. The results show that 
molecular weight of this protein is 32.503 kDa. Theoretical isoelectric point (pI) is 
found to be 5.28, which indicates that this protein should be a bit acidic in nature. It 
refers to the pH where the overall net charge of the FPPS protein becomes 0, and 
hence the pI of 5.28 depicts a bit acidic nature. Within this 296-residue protein, the 
negatively and positively charged residues are orderly found to be 49 and 37, and 
logically impart an overall negative charge for the protein. The extinction coeffi-
cient value is estimated to be 9190 which refers to the quantity of light that might be 
possibly absorbed by the FPPS at 280 nm. The instability index value is found to be 
37.23, and it shows that the protein is quite stable to indicate that it is a great choice 
for the enhanced production of the anticancer compound.

For the lack of FPPS structure in the protein data bank, it is predicted through 
the template-based modeling strategy. Deploying its HMM-based sequence profile 
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by the HHpred algorithm [117], the best functionally similar template 5AYP_B 
(Length: 297) is considered on basis of the template-ranking strategy [118]. This 
farnesyl diphosphate synthase (E.C.2.5.1.10) from Geobacillus stearothermophi-
lus shows an E-value cutoff of 3.4E−46, and it is found to show a coverage span and 
sequence identity of 100% and 57.24%, respectively. The homology model of the 
complete FPPS protein is constructed using MODELLER9.19 [119] through its 
HMM-profile alignment. To remove the nonphysical localized atomic clashes, the 
predicted model is iteratively sampled by effectively sampling its energetic land-
scape [120]. The predicted model and not simply its domain topology is subse-
quently assessed through ERRAT (http://servicesn.mbi.ucla.edu/ERRAT/) and 
MolProbity [121], and it orderly shows the scores of 94.0559 and 2.67. While the 
ERRAT analyzes the statistics of non-bonded interactions among different atom 
types through the error value computed for the 9-residue sliding window, the 
MolProbity score assesses atomic clashes, non-favored Ramachandran map, and 
bad side-chain rotamers with a log-weighted measure and indicates the estimated 
crystallographic resolution for obtaining such scores. As these protein structures 
have been found to be functionally active as homodimers, the functional active 
state of the constructed protein model is also constructed on basis of the 5AYP 
structure along with a subsequent refinement. The monomeric and dimeric states 
are shown in Fig. 10.5. Further, the Ramachandran map of this protein is evaluated 
by RAMPAGE server [122], and 97.9% of residues are found to be within the 
most- favored and allowed regions, and it also indicates a substantial stability of 
this protein.

10.6  Evolutionary Conservation Analysis

As the functionally important residues are usually conserved throughout evolution, 
the evolutionary conservation of the FPPS protein is estimated on basis of the con-
structed structure of the FPPS protein. ConSurf server [123] is deployed through the 

Fig. 10.5 Predicted near-native conformation of the (a) monomeric (b) dimeric FPPS protein
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following set of parameters. For finding the functionally most relevant sites, 
HMMER is deployed to construct the HMM profile on basis of three iterative rounds 
and E-value cutoff of 0.0001, and the UniRef90 sequence dataset is screened to find 
the most reliable sequence homologues. The top 100 evolutionarily closest 
sequences, mutually sharing a sequence identity of 35–95%, are subsequently 
aligned through MAFFT-L-INS-I. Bayesian method is used to calculate the conser-
vation scores by considering the best model as the evolutionary substitution model.

Through ConSurf, the evolutionary conservation of FPPS protein is analyzed 
through their resultant conservation score computed on basis of statistical inference 
methods and machine learning. Conservation scores are mapped onto the protein’s 
surface with a coloring scheme (Fig. 10.6). While the average conservation is marked 
white, the most conserved and variable loci are respectively marked as maroon and 
turquoise.

Analyzing the conservation scores across the constructed MSA profile, it is 
found that the average pairwise distance among the sequence is 1.50966, with the 
lower and upper bound being 0.209714 and 2.62774, respectively. It defines the 
average number of residue replacements among any two sequences in the align-
ment, and thus 0.01 distance indicates that 1 substitution is expected for every 100 
positions on an average. Moreover, it is found that the residues D85, D86, D91, 
R96, K182, and D224 are completely conserved in this class, and the loci L27, 
D132, E153, and S248 are least conserved. These residue sets are orderly marked 
blue and red in Fig. 10.7 to show their structural positions.

To date, several microorganisms, including B. subtilis, have been modified for 
the nonnatural production of therapeutic terpenoids, and significant improve-
ments in terms of titers have also been achieved from them. Nonetheless, there is 
far to go for their commercialization, as the current modern industrial policies are 
volume dependent. To achieve successful commercialization of terpenoid-
based  therapeutic, various modern approaches including MMPE, MoME, and 
saturation mutagenesis can be explored in coordination with fluxomics, metabo-
lomics, and bioprocess techniques.

a b c

1 2 3 4 5 6 7 8 9

Variable Average Conserved

Fig. 10.6 The evolutionary conservation profile of (a) FPPS protein (b) space-filling model are 
represented as per the conservation score on basis of (c) coloring scheme shown as color-coding 
bar
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11.1  Cancer Biomarker Identification and Risk Assessment

11.1.1  Introduction

During the last decades, there has been a tremendous increase in knowledge and 
molecular technologies to study cancer biomarkers. Understanding and developing 
biomarkers are important for patients’ usage, which can be accepted in routine med-
ical practice. Biomarker is defined by the National Cancer Institute (NCI) as “a 
biological molecule found in blood, other bodily fluids, or tissues that is a sign of a 
normal or abnormal process, or of a condition or diseases” (https://www.cancer.gov/
publications/dictionaries/cancer-terms/def/biomarker?redirect=true) in the case of 
cancer. This definition has been expanded and involved the characteristics of bio-
logical molecules that can be accurately measured and evaluated as an indicator of 
normal and pathological mechanisms, molecular interactions, or pharmacological 
responses to a therapeutic intervention [1]. There are two main classifications of 
biomarkers: biomarkers of exposure (applied in risk prediction) and biomarkers of 
disease such as screening, monitoring, and diagnosis of disease [2]. Biomarkers 
present an important tool for detecting and monitoring disease state from normal 
state. During the progression of disease, biomarkers act as the hallmark of the phys-
ical state of cell at a given time [3]. They can be found in circulation (blood plasma), 
excretion/secretions (stool, saliva, nipple discharge, or urine) and are noninvasive or 
minimally invasive compared to biopsy or screening evaluation of cancer.
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There is a diverse range of available biomarkers, including proteins (enzymes), 
nucleic acids (microRNA), DNA sequence (germline or somatic), miRNA antibod-
ies, peptides, or metabolic products [4, 5]. High-throughput proteomic technolo-
gies, for example, mass spectrometry and microarrays, have been applied with other 
techniques to identify candidate markers in cancer biology, tumor microenviron-
ment, or molecular pathway. With these techniques, a lot of data is generated which 
highlights the need to monitor study design and analyses, in order to reduce the 
false-positive results [5]. However, there are some limitations such as insensitivity 
toward low-quantity biomarkers, and therefore, the reduced biological heterogene-
ity found in cancer is important to achieve the best outcome of cancer proteome 
mining [6]. These issues may often be hindered by the use of the ultraviolet laser 
microscope system with pressure catapulting for cell populations, or flow cytome-
try, which is another powerful technique employed for cell sorting, counting, and 
biomarker detection [7, 8]. Methods for sample processing are helpful to analyze 
proteins and are essential to capture critical biomarker information for detection and 
risk assessment [9].

Biomarkers are also beneficial in risk assessment, monitoring, or detecting can-
cer. Hereditary and environmental exposures (i.e., infectious agents or carcinogens) 
play an important role to modulate cancer risk over a period of time. Various tumor- 
suppressor genes, oncogenes, and microRNA genes in malignant cells either 
develop or alter during cancer progressions [10]. Hence, it is important to know the 
risk biomarkers or non-cancer biomarkers for early detection and risk assessment of 
cancer [11]. In high risk early breast cancer patient, the serum samples from 81 
patients indicated 83% of patients for metastatic relapse and might be an important 
prognostic factor in high risk early breast cancer [12]. It can be concluded that pro-
teomic technologies identify new cancer biomarkers not only for risk assessment 
but also for therapeutic interventions and early detection. In advance epithelial 
malignancies, there is an accumulation of a large number of genomic abnormalities 
that is not present in normal cells, such as mutations, loss of heterozygosity, and 
aneuploidy [13–15]. This provides significant insights for understanding the evolu-
tion of cell changes from normal to cancerous state, and therefore the suitable bio-
markers are necessary for cancer risk predictions and early cancer diagnosis.

11.1.2  Cancer Heterogeneity and Diagnosis at Early Stage

It is well-known that cancer is not developed from only one type of cell; rather dif-
ferent types of cancer cells are developed and usually consist of multiple distinct 
subtypes. Cell-to-cell variability has introduced a different progression level of can-
cers, such as drug resistance, early-stage diagnosis, and evolution of the disease. Yet 
it is difficult to access and detect cancer heterogeneity [16].

Some scientists of the field consider cancer heterogeneity as one of the crucial 
points in understanding the disease process and designing the treatment especially 
the personalized medicine approach for patients’ treatment. Proteomic techniques 
revealed that most of the biomarkers do not show heterogeneity, but it mostly 
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depends upon the cell type [17]. It is suggested that combining techniques such as 
MALDI with imaging mass spectroscopy (MALDI-IMS) allow both cancer- and 
patient-specific information for specific tissue classification in terms of heterogene-
ity, cell morphology, and biomarker discovery [18, 19]. These techniques also allow 
creating peptide reference datasets that can help in identifying the specific cancer 
types linked with peptides, yet the limitation of this technique is low signal-to-noise 
ratio and mass accuracy [19]. A biopsy-related simulation procedure was discov-
ered by Shipitsin and his coworkers for identifying cancer cell aggregates through 
biomarker identification irrespective of different types of cancer [20].

Cancer survival rate depends on its early diagnosis, i.e., if the cancer is diag-
nosed between Stage 0 to Stage I, the survival rate reaches to 90%, whereas it 
decreases about 10% at Stage IV diagnosis. The high mortality rate of the disease is 
due to the absence of major symptoms especially at an early stage [21]. These find-
ings clearly indicate the importance of biomarker research in the field whether it is 
of biomarkers associated at different stages of cancers as diagnostic biomarker, 
assessing clinical prognosis and disease recurrence as prognostic biomarkers, dis-
ease monitoring and treatment response as surveillance biomarkers, or relative to 
treatment and patient response to treatment as predictive biomarkers [22]. Clear 
understanding of cancer heterogeneity and its effect on the disease progression may 
serve as a way forward for early-stage diagnosis and development of drug system in 
cancer treatment in the future.

11.1.3  Determining Factors of Tumor Spread and Risk 
Assessment

Cancer is the leading cause of death with 18.1 million new cases and 9.6 million 
cancer-associated deaths reported in 2018 [23]. Overall, 90% of human malignan-
cies are derived from epithelial cells. In addition, due to the heterogeneity associ-
ated with the biological and clinical aspects of most tumors, an increased 
understanding about their development and progression may improve diagnostic 
and therapeutic strategies [24]. In general, cancer cells escape the normal regulatory 
mechanisms that control cell division. This multistep process of tumorigenesis 
involves in the mutations and other genetic changes that result in the expression of 
dominantly acting proto-oncogenes or a downregulation of tumor suppressor genes 
[25]. Moreover, an accumulation of mutations leads to the deregulation of cell cycle, 
inhibition of apoptosis, and an enhanced ability of cells to invade in surrounding 
tissues and metastasize to distant sites [26]. The oncogenes are amended form of 
normal genes known as proto-oncogenes, which regulate the normal growth and 
differentiation of cells. Proton products of proto-oncogenes are in many cases 
involved in signaling processes in the cell. Among the products of the proto- 
oncogenes are growth factors and their receptors (s-sis, cerbB, c-Met), small 
G-proteins (c-Ras), nuclear transcription factors (c-Fos, c-Jun), and protein kinases 
(c-Raf) [27]. Alterations in proto-oncogenes such as deletions, translocations, muta-
tions, and amplifications lead to an uncontrolled cellular signaling. The tumor 
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suppressor genes, such as p53, are frequently involved in the inhibition of cellular 
proliferation in various types of human cancers [28]. Proteomic technologies are 
recently used for the identification and quantification of protein biomarkers to meet 
the challenges in cancer biology. Cancer cells like normal cells are complex and 
have a wide range of protein abundance, due to an altered regulation at both tran-
scriptional and posttranslational levels, which are the main factors behind their 
increased growth and motility [29]. Cancer biomarkers function as the main players 
in the disease risk assessment in tissue for diagnosis and/or in blood, saliva, and 
urine to evaluate healthy individuals [30].

Besides this, cancer risk assessment models collect information about the family 
history including genetic mutations that may be associated with cancer [31, 32]. The 
genetic risk assessment is critical to identify the individual’s higher disease suscep-
tibility that helps the detection at an early stage in order to develop preventive strate-
gies. In this way, the individuals with a genetic disorder may be subjected to genetic 
testing and counseling in order to help them understand the complications associ-
ated with predisposition to cancer. Moreover, newer risk assessment models are also 
considering the environmental and behavioral factors (smoke, alcohol consumption, 
lifestyle, exposure to radiation, chemicals, etc.) which are potentially modifiable 
and contribute in the development of around 90–95% of all cancers [33]. These risk 
assessment tools include the US NCI colorectal cancer risk detection tool [34]; the 
NCI breast cancer risk detection tool, which uses the breast cancer risk prediction 
[35]; and MelaPRO for detecting risk of melanoma [36]. However, due to the lim-
ited effectiveness of these tools in cancer screening, the involvement of clinical and 
the healthcare bodies with appropriate screening procedures must be assured to 
increase the assessment reliability.

11.1.4  Proteomic Analyses in Different Cancer Types

During the past two decades, there has been enormous development in molecular 
biology that led us to a better understanding of the molecular, cellular, and genetic 
bases of various diseases including cancer. The alterations in gene expression can be 
studied using functional genomics [37]. However, there are some limitations using 
the genomic analysis, such as the inability to identify the proteins’ role at cellular 
levels [38, 39]. Other limiting factors, including the posttranslational modification 
events, can add different functional groups to proteins (i.e., sugars) and result in 
changed protein products. There is variation in the rate of protein synthesis and 
functions which gives rise to inconsistencies in their correlation [38]. Hence, pro-
teomic techniques have advantages over genomic assays, as it involves direct analy-
sis of cell physiology such as posttranslational modification and hence plays an 
important role to study cancer pathogenesis.

There is a huge amount of proteins present in a living organism, and it appears 
that proteomics contributes greatly in understanding various biological mechanisms 
such as genetic codes, RNA processing (alternative splicing), and many others. For 
example, neurexins that belong to cell surface protein family are specific for the 
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brain and have more than 1000 isoforms, which are formed due to alternative splic-
ing [40]. To understand the levels of proteins using proteomics is very important, 
i.e., some messenger RNAs are non-coding, and as a result there is no formation of 
protein products; sequence data are limited to give information about pseudogenes, 
protein modifications, protein stability, and degradation rate [38, 39, 41]. The early 
progress in DNA microarray technology has encouraged the development of a wide 
range of arrays, which contributes greatly to the detailed study of protein fields of 
modern proteomic analysis [42]. Though the two-dimensional gel electrophoresis 
(2DE) technique with MS has provided valuable information about various pro-
teins, the clinical benefits of this technique in proteomic studies are limited. The 
technical challenges associated with this technique include difficulties in the repro-
ducibility of 2D gels and in identifying the lower abundance of target proteins [43].

Modern proteomic technologies such as MS-based profiling of serum pattern 
and protein microarray have proved to be useful in revealing new molecular mark-
ers and therapeutic targets in various types of human cancers [44]. Additionally, 
the analysis of serum proteomic pattern has suggested important diagnostic signa-
tures for various cancers including ovarian [45], breast [46], prostate [47], and 
liver cancer [48].

11.1.4.1  Lung Cancer
Lung cancer holds a high mortality rate (27% of all cancer deaths per year) due to 
late stage diagnosis and lack of effective treatments [49]. The advances in proteomic 
techniques have played a key role in understanding the molecular biology of lung 
cancer, especially in the identification of biomarkers, since the DNA-based bio-
markers show lack of sensitivity, specificity, and repeated sampling [50]. Therefore, 
it is very crucial to identify better biomarkers for lung cancer diagnosis, and prog-
nosis was reviewed in detail [51]. A proteomic approach (2D-PAGE with Western 
blot analysis) has led to the discovery of the circulating autoantibodies against 
annexins I and/or II in sera from lung cancer patients, which were associated with 
high circulating levels of an inflammatory cytokine, IL-6 [52]. This study has 
described an approach for the development of serum-based assay and to diagnose 
lung cancer.

In lung cancer, noninvasive biomarkers, including blood, sputum, exhaled breath 
condensate, and urine, have been utilized [53]. To identify a marker which can be 
measured in pre-diagnostic sera is an important objective, as it carries the potential 
for screening strategies or blood-based early detection of lung cancer, besides the 
potential usage for monitoring of cancer [54]. Further, identification and circulation 
of plasma-based biomarkers such as EGFR, SFTPB, and WFDC2 were significantly 
altered in different cases of lung cancer compared to control [54]. In addition, serum 
proteins (including alpha-1 antitrypsin, carcinoembryonic antigen, retinol-binding 
protein, and squamous cell carcinoma antigen) can also be useful for diagnosis of 
lung cancer [55]. This approach has utility of developing serum-based assays for 
cancer diagnosis. Current technologies contributing in proteomics and imaging 
tools are being used as stated in the previous section, with favorable results, thus 
increasing our understanding of lung cancer pathogenesis at the molecular levels 
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[56]. Cancer cells shed various forms of secreted proteins in blood, serum, and tis-
sues, and their levels may rise in early stages of cancer and hence correlate with 
proliferation of cancer cells [57, 58]. Therefore, secreted proteins can be employed 
as promising serum biomarkers of cancer, for example, secreted proteins in non- 
small cell lung cancer cell line (A549) have been identified using MS and database 
search by Huang and his colleagues [59]. They identified 14 proteins, and dihydro-
diol dehydrogenase was selected as a novel serological marker of NSCLC [59]. The 
identification of secreted protein is an effective and practical approach for discover-
ing the potential cancer biomarkers in serum.

Another form of noninvasive biomarker is exhaled breath condensate (EBC), 
which is a simple and new technique involving fluid from lower respiratory tract for 
sampling. EBC has been a wide interest due to presence of biomarkers for lung 
cancer detection and progression [60]. In this section, the identification of new 
potential diagnostic and prognostic biomarkers for lung cancer, using proteomics 
methodologies, has been discussed here.

11.1.4.2  Breast Cancer
There has been a promising progress in both therapeutic and diagnostic applications of 
breast cancer, the most common type of invasive cancer and the major cause of cancer-
related deaths in females [23]. FDA has approved the biomarker named as CA15.3 
(sensitivity 58.2% and specificity 96.0%, respectively) to detect breast cancer, but its 
specificity and sensitivity are not high enough for early cancer detection [61].

Development of high-throughput proteomic approaches (as stated in Sect. 11.2.4) 
has been applied in studying and discovering the biomarkers that are involved in the 
molecular mechanisms of breast cancer and yield a promising role in therapeutic 
and diagnostic applications [62]. A combination of in vitro and in vivo technology 
in a two-step approach has been applied to culture cells that were taken from tumors 
of defined breast cancer stages. Human breast cancer tissues were also taken and 
validated by MS and immunohistochemistry on tissue microarrays [63]. In trans-
formed cells, the proteomic signatures showed loss of tissue architecture and meta-
bolic changes, suggesting that proteomic analysis gives information related to tumor 
progression and protein changes in breast cancer [63]. In this study, they identified 
8750 proteins, from which the higher levels of IDH2 and CRABP2 and low levels 
of SEC14L2 could be used as prognostic markers for breast cancer, suggesting that 
proteomic analysis gives information related to protein changes specifically for 
tumor progression [63].

Tissue samples and biological fluids (such as saliva, plasma, nipple aspirate, 
and cerebrospinal fluid) have been used in proteome research to identify diagnostic 
and predictive biomarkers [51]. Fascinatingly, the plasma proteome in breast can-
cer also shows the proteins derived from the microenvironment involved in various 
physiological processes such as wound repair, tissue modeling, metabolic homeo-
stasis, and immune response [64]. Moreover, proteome technology was used to 
identify a serum protein, named nuclear matrix protein (designated NMP66; 
28.3 kD) which can differentiate the malignant disease state from benign and nor-
mal control conditions [65]. This potential biomarker is now being evaluated in 
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large-scale clinical trials for early detection of breast cancer as it is involved in 
malignant transformation [65].

11.1.4.3  Colorectal Cancer
Colorectal cancer (CRC) is one of the most leading causes of cancer deaths. 
Although early-stage detection is an effective tool for cancer treatment and genomic 
studies provided information related to cancer prognosis, mutations, and treatment 
system, it has given the static picture of the model. To add more in the molecular 
studies, proteomics was introduced in the field of cancer research [66]. Research 
related to biomarkers has shown a great impact on the risk assessment analysis, 
early-stage diagnosis and prognosis, cancer therapeutics, and concept of personal-
ized medicine. Mass spectrometry is one of basic applications to identify the poten-
tial biomarkers in colorectal cancer. Then LC-MS/MS-based shotgun proteomic 
assays can identify various subtypes of colorectal cancer through clustering method 
[67]. It is reported that five subtypes of colorectal cancer have identified genes, 
clinical signatures, biomarkers, and proteins as a targeted site for cancer treatments 
using this proteomic approach [68]. This study has also identified the importance of 
an integrated field of genomic and proteomic for colorectal cancer. Another study 
has reported 95 samples of colorectal cancer using these techniques and has devel-
oped a panel for colorectal cancer highlighting considerable heterogeneity of CRC 
subtypes [69].

Targeted therapies also become non-responders to specific therapeutic agent due 
to mutations, e.g., in patients with advanced colorectal cancer, specific mutation in 
12 and 13 codon of KARS gene changes targeted therapies to cetuximab and pani-
tumumab [70, 71] by enhancing proliferative effect of cancer cell treatment. 
Similarly, a mutation in gene UGT1A1 changes the drug irinotecan effect on cancer 
cell, making the drug ineffective [72].

However, studying proteome and its modification for understanding biomarkers 
is crucially important to identify signature biomarkers for clinical practice and to 
promote personalized medicine [73]. Proteomic approach can be used while study-
ing CRC and can be administered to shotgun proteomics, which is a promising 
technique for screening effect of cancer biomarkers and then analyzing the CRC 
samples through mass spectrometry [74]. Protein quantification can be performed 
as label-free quantification (LFQ), stable isotope labeling by amino acid in cell 
cultures (SILAC), tandem mass tag (TMT), isobaric tags for relative and absolute 
quantification (iTRAQ), etc. These techniques may be helpful for the multiplexing 
of samples and analyzing these samples in many conditions through LC-MS/MS 
[75]. These techniques strengthen the validation step clinically.

11.1.4.4  Prostate Cancer
Prostate cancer is the second common cause of cancer deaths in male. There is a 
need for screening the malignancy at an early stage and detection of prostate cancer 
antigen (PSA) [76]. The first proteomic study was done in 2000 by analyzing pros-
tate cancer through laser capture microdissection (LCM) followed by 2D-PAGE 
[77]. This study has also provided the comparative analysis of normal and 
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malignant cell progression in prostate cancer cell lines [78]. Commonly used treat-
ment for prostate cancer is androgen-dependent therapy, to which most of the 
patients do respond, yet some patients show differential expression of PSA and 
some other proteins. Such expression pattern may lead to the identification of new 
biomarkers [79]. Diagnosis using serum proteins may be useful in deciding patient 
biopsy with an elevated PSA level. It is also shown that mass spectral analysis of 
benign hyperplasia and prostate malignancy leads to identification of novel bio-
markers [80]. In vitro analyses have shown increased expression of HMGCL, 
BDH1, OXCT1, and ACAT1 proteins and are useful biomarkers for early detection 
of prostate cancer.

11.1.4.5  Gastric Cancer
Gastric cancers are considered the fifth most common type of cancer that develops 
very fast and are fetal, if remained uncured. It has a survival rate of less than 20% 
due to late diagnosis, and the most common type of this cancer is adenocarcinoma 
[81]. These cancers are usually diffusing and undifferentiated, while intestinal can-
cers are very well differentiated. Other types are neuroendocrine tumors, gastroin-
testinal tumors, and gastric lymphomas [82]. Helicobacter pylori is one of the best 
carcinogens for adenocarcinomas. It is mentioned in previous studies that gastrok-
ine family has an explicit role in gastric cancer. Among this family gastrokine 3 and 
1 are considered the most putative biomarkers. Their expression decreases at the 
onset of disease [83]. Pepsinogen C is also considered one of the vital biomarkers 
and plays a role in cancer prognosis. Its expression diminishes in gastritis and com-
pletely lost in gastric ulcers [84].

High-throughput molecular proteomic determination methods characterize the 
differential expression of proteins well and are associated with thermal resistance 
in human cell lines [85]. To check the expression levels of proteins Cathepsin B, 
HSP 27 (heat shock protein), protein isomerase A3, NSP3, and transgelin and 
prohibitin expression were found higher in gastric cancer using proteomic 
approaches (2D-PAGE and mass spectrometry) and associated with lesser sur-
vival rate [86]. Using histo-proteomic analysis, keratin, calcyclin, lipoprotein A1 
precursor, 14-3-3 zeta, IPO-38, nucleoside-diphosphate kinase, nicotinamide 
N-methyltransferase, pyridoxal kinase, and pepsinogen C were identified as 
potential biomarkers in gastric cancers. Techniques used for identification were 
chip array and SELDI-TOF MS [87, 88].

11.1.4.6  Liver Cancer
Liver cancer, particularly hepatocellular carcinoma (HCC), is a major cause of can-
cer mortality and morbidity with continuously increasing incidence. Earlier and 
accurate diagnosis through biomarkers can provide an effective therapy to the 
patients. α-Fetoprotein (AFP) and des-γ-carboxy prothrombin are widely used bio-
markers for histopathological diagnosis [89, 90], whereas glypican-3, heat shock 
protein 70, and glutamine synthetase help in the diagnosis through immunohisto-
chemistry. Still for accurate diagnosis, there is a need to identify novel biomarkers 
in liver cancer [91]. Proteomics has also provided a versatile platform for these 
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studies as they not only provide data related to biomarker discovery but also are 
helpful in understanding cancer progression, metastasis, and reoccurrence.

In proteomic analysis, experiments are designed with sample isolation either 
from the patient or through cell lines and animal models. Usually top-down and 
bottom-up approaches are used for the analysis. In the top-down approach, protein 
is separated through 2D-DIGE and then analyzed using mass spectrometry [92]. In 
the bottom-up strategy, proteins are digested into peptides and then analyzed 
through liquid chromatography and tandem mass spectrometry (LC-MS/MS). Then 
finally, proteins are identified via protein databases or de novo sequencing [93]. For 
proteomic studies, biomarkers need to be highly specific and sensitive for excellent 
diagnosis and should be validated across a broad range of populations.

Cell culture models are helpful in designing these studies, as they are homoge-
nous irrespective of cancer cells that are heterogeneous. Yokoo et al. have analyzed 
9 AFP-positive cell lines and 7 AFP-negative cell lines through 2D-DIGE, and 
MALDI-TOF MS have identified 11 proteins out of 2000 proteins that are involved 
in metabolism, apoptosis, and posttranslational modification [94]. Cell lines also 
help in monitoring chemical (exogenous and endogenous) effects in protein expres-
sion and metabolic pathways and provide informative data about variable enzyme 
expression in cells. LC-MS/MS analysis of human hepatocyte cells, HepG2, and 
Hep3B has identified an overlap in expressing proteins and demonstrated these 
proteins as HCC-specific biomarkers [95, 96]. Other than a cell culture, animals, 
body fluids, and specific tissues are also used as a model for proteomic analysis. 
Animal models are characterized well and provide an in vivo analysis, implement-
ing appropriate diagnosis and therapeutics. However, limitation includes faster 
development of liver cancer in animals as compared to humans leading to incom-
plete understanding of metastasis [97]. Among body fluids, serum proteins may 
reflect the pathological state of the cell for tissue leakage and aberrant secretions 
and can serve as the dynamic range for developing potential biomarker panels.

11.1.4.7  Leukemia
Numerous proteomic technologies have been applied to characterize potential bio-
markers associated with prognosis, diagnosis, and targeted therapy in leukemia 
patients. Nowadays, leukemia is subclassified by proteomic application since the 
cytogenetic analysis is laborious and expensive [98]. Novel protein biomarkers in 
acute lymphoblastic leukemia (ALL) (APOA4, CLUS, GELS, CERU, APOE, 
APOA1, AMBP, S10A9, CATA, ACTB, and AFAM) were identified using 2DE and 
MALDI-TOF-MS for protein identification, playing a significant role in the diagno-
sis and prognosis of leukemia [99]. Current developments in proteomic technolo-
gies are expected to improve efficacy and diminish the toxicity of current treatment 
of leukemia.

Acute myeloid leukemia (AML) is the most common in adults and has a low 
survival rate despite huge development in therapeutic strategies [100]. Proteomic 
techniques such as protein analysis play a promising role, not only in the diagnosis 
of myeloid leukemia at a molecular level but also in monitoring the therapy response 
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[101]. The subclassification of AML using 2DE and MALDI-TOF PMF analysis 
identified protein biomarkers (alpha-enolase, annexin A10, RhoGD12, and cata-
lase), which are known to play an important role in glycolysis, apoptosis, tumor 
suppression, and metastasis. These biomarkers can be used to monitor the progno-
sis, hence proving new potential therapeutic targets for AML [102]. In a pilot study, 
2D electrophoresis was used to compare the protein expression patterns in human 
B-cell chronic lymphocytic leukemia. In this study, protein expression profiles of 24 
patients were correlated with their chromosomal features or clinical data such as 
survival time. The shorter survival time in patients was, in turn, associated with a 
changed pattern of different proteins and enzymes, providing better insight to 
understand the molecular aspects of leukemia [103].

The clinical trial results strongly compelled minimal residual disease (MRD) as 
a potential biomarker for treating and prognosis of patients with ALL and 
AML. Jongen-Lavrencic and his colleagues found that MRD is highly correlated 
with relapse and overall survival for AML patients [104]. In this study, they used 
bone marrow samples from 482 patients and detected mutations using multiparam-
eter flow cytometry and targeted next-generation sequencing (NGS). Nearly 54 
mutations in genes were detected that can be used as a potential marker of MRD 
[104]. Furthermore, five serum peptides named as glutathione S-transferase P1, iso-
form 1 of fibrinogen alpha chain precursor, fibrinogen alpha chain, platelet factor 4, 
and connective tissue active peptide III were identified in adult ALL for MRD moni-
toring and assessing therapeutic response in clinical practice [105].

11.1.4.8  Brain Tumors
These tumors are classified based on the cell morphology and stage of cancers. 
Primary tumors arise from glial cells and are called gliomas. Their subtypes are 
astrocytoma, oligodendroglioma, and ependymoma. Proteomic studies reveal that 
cellular response to the surrounding environment is important to understand the 
process of disease spread [106]. For better understanding of protein expression by 
genome and their successors is very important to investigate the disease progression 
as expression level of a particular protein, structural modifications, mutations, 
understanding of analytical methods may lead to discovery of novel biomarkers 
[107]. 2D analysis in proteomics is considered almost accurate for protein quantifi-
cation. HSP27, brain-specific transglutaminase, major vault protein, G-proteins, 
and cystatin B are involved in glioma malignancies [108]. Moreover, Peroxiredoxins 
transcription factor BTF3 and α-B-crystallin were also found with increased level of 
expression in astrocytomas. In vivo analysis of expression levels is still a challenge 
due to structural and functional complexities. LC-MS/MS can detect and compare 
the protein expression range to confirm the predicted amino acid [109]. After the 
data collection, the identified proteins are matched using software (SEQUEST and 
Mascot, etc.) and by isotope labeling approaches such as ICAT and iTRAQ [110]. 
Still, we need to design proper study method and statistical analysis of protein 
aberrations.
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11.1.4.9  Ovarian Cancer
Ovarian cancer is the fifth most common cause of cancer-related death in women 
worldwide. The 5-year survival rate of the disease would significantly increase in 
the early detection of Stage I [111]. Disastrously, the diagnosis of the disease is 
possible once it has spread to Stage III or beyond Stage IV in about 80% of 
women [112]. Moreover, women with Stage III or IV ovarian cancer show a 
5-year survival rate of 15–20%, while ovarian cancer patients at Stage I show a 
5-year survival rate of about 95% with surgical intervention [113]. The MS cou-
pled with a computer algorithm developed a system for the profiling of low 
molecular weight serum proteins and identified a specific protein pattern associ-
ated with asymptomatic women with a high risk of developing ovarian cancer 
[42]. Proteomic analysis in ovarian cancer diagnosis consists of proteomic pattern 
diagnostic or serum proteome profiling, which includes the complex mass spec-
trometric differences between proteomic patterns of normal vs cancer samples, 
determined through bioinformatic tools [114]. The discovery of new biomarkers 
in proteomic patterns diagnostic by MS as well as the pattern of several biomark-
ers could hold a prominent level of discriminatory information than a single bio-
marker alone across the patient population with variable characteristics [115]. 
Numerous studies showed that proteomic pattern analysis on ovarian cancer 
appears to be a novel and highly sensitive diagnostic tool for an early stage assess-
ment [116]. However, despite the auspicious results in terms of sensitivity and 
specificity for the detection of ovarian cancer, few concerns have been raised with 
respect to standard operating procedures, reproducibility, quality control, sample 
collection, shipping, and handling [117].

11.1.4.10  Skin Cancer
Skin cancer has varying degrees of malignancies depending upon skin layer pen-
etration. Basal cell carcinoma was found one of the most common types of skin 
cancer [118]. It is mentioned in previous investigations that mutations in skin 
cancer alter the specific gene that also affect regulators of cell proliferation and 
viability through NF-B and ARF/p53 pathways [119]. Since 2000 proteomic tech-
niques have provided a wide variety of biomarkers of the skin, comprehensive 
profiling is yet to complete [120]. Transplantation antigen of HSP90 family spe-
cific to skin tumors was identified that further determine six chaperones: HSP27, 
60, 70, and 84, ER 60, and GRP 78. This study has compared epidermal stem cell 
with their differentiated transit amplifying cells [121]. Arbutin was found a potent 
biomarker using A37 cell line. MALDI-Q-TOF MS and MS/MS have identified 7 
upregulated and 19 downregulated proteins that have anticancer effect [122]. It 
was also found that 14 differentially expressed proteins of p53 tumor suppressor 
regulate cell apoptosis and have a significant role in the suppression of cancer 
proliferation [123].
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11.2  Proteomic Approaches for Cancer Treatments

11.2.1  Introduction

Proteomics is globally used to determine the gene expression at protein level, 
which provides the quantitative analysis of cell’s response to the surrounding envi-
ronments [124]. Proteomic deals with the different protein-based techniques, 
including posttranslational modifications, isotope-coded affinity, and protein 
arrays [113]. Proteome in cell undergoes modifications, such as posttranslational, 
regulatory, and degradative processes which have impact on the structure, location, 
and function of the gene products [114]. Therefore, proteomics-based analysis pro-
vides platform to better understand the biology of cancer via identification of pro-
tein expression that causes structural changes and protein-protein interaction in 
cell or fluid. Proteomic technologies are critical for the identification of biomarkers 
related to cancer diagnosis, progression, and investigation of therapeutic targets 
[125]. The physiological state of cancer cells is usually determined by ELISA, 
Western blot, and immunohistochemistry- based tools for the identification and 
quantification of specific proteins. However, these methodologies are difficult, 
costly and none of them characterizes the absolute abundance of the biomarkers in 
biological samples [126]. Thus, adoption of proteomic approaches plays an impor-
tant role in the processes of cancer. Cancer proteomics includes the identification 
and quantitative analysis of protein expression from preneoplasia to neoplasia at 
various stages of disease [127]. The identification of these changes occurs during 
transformation of healthy cells into neoplastic cells with altered protein expression 
and protein modification, thereby affecting cellular functions that lie under the 
theme of cancer proteomics [128].

Moreover, two-dimensional gel electrophoresis (2DE) analysis was carried out 
in the early detection of tumor progression and metastasis of mammary adenocarci-
noma in rat model [129]. 2DE-based identification of ubiquinol-cytochrome c 
reductase is potential biomarker in renal cell carcinoma [130]. Furthermore, 2DE 
method was used in the identification of protein expression for molecular diagnosis 
of ovarian and breast cancer [131, 132]. In addition, mass spectrometry (MS)-based 
analysis in human glioblastoma showed increased protein expression as compared 
to control (healthy tissue). Moreover, tandem MS (MS/MS) and liquid chromatog-
raphy- MS (LC-MS) were used to identify thymosin beta-4 protein in tumor tissues 
[133]. Besides, matrix-assisted laser desorption/ionization (MALDI)-MS system 
showed increased expression of redox, nuclear metric, and cytoskeletal proteins in 
breast carcinoma, elevated retinoic acid-binding protein and carbohydrate-binding 
proteins in ovarian carcinomas, and increased cathepsin D protein in lung adenocar-
cinoma [134]. Next, surface-enhanced laser desorption-ionization (SELDI)-MS is 
used to identify the down- or upregulation of potential markers in prostate cancer 
cells and body fluids [135]. The SELDI protein profiles of lung, ovarian, and pros-
tate cancer may provide insights into the protein expression changes from normal to 
benign and from premalignant to malignant lesions [136]. For the functional pro-
teomics, protein arrays generate large set of well-characterized antibodies and 
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expression profiles for cancer monitoring. Protein arrays containing immobilized 
proteins of microdissected cells have been used to identify the cancer progression. 
In this review, we have focused on the proteomic technologies that reveal the advan-
tages, limitations, and perspectives of cancer treatments.

11.2.2  Mechanisms of Proteomic Alterations in Cancer

Cancer is a multifaceted disease associated with the alteration in genetic and epi-
genetic mechanisms, including mutations and chromosomal abnormalities at the 
cellular or tissue levels, leading to the human malignancies development [137]. 
Globally, the rate of cancer incidence and mortality is rapidly increasing, and hence 
it becomes the main focus of biomedical scientists to prevent the spread of this 
disease.

“Onco-proteomics” involves studying proteins and protein-protein interactions 
in cancer cells using proteomic applications, which can be applied to diagnose can-
cer. There has been increasing development of proteomics in cancer research with 
the widespread involvement of mass spectrometry [138]. As we know, current can-
cer screening tests lack sensitivity and specificity, posing a huge clinical challenge 
to identify malignant cancer [41]. During the last decades, there have been huge rise 
and fall in the development and understanding of cancer biology using proteomics 
and have shed light on the underlying mechanism of factors causing cancer forma-
tion. Hence, there is a strong interest in using proteomics to ameliorate understand-
ing of cancer pathogenesis, which could lead to the identification of new cancer 
biomarkers for cancer early detection and therapeutic efficiency [138].

Onco-proteomics involves the identification of various overexpressed proteins in 
cancer relative to healthy tissues, as proteomic technologies have been broadly 
applied to identify cancer diagnostic biomarkers, monitoring disease progression 
and discovering therapeutic interventions [9]. Nearly 200 proteins that are post-
translationally modified affect various cellular mechanisms including protein- 
protein interaction, half-life, degradation, stability, targeting, etc., since one gene 
may result in a huge amount of protein products [9]. However, the exact mechanism 
causing different types of cancers is still undefined. But one possible reason for the 
proteomic variation in cancer is the dysregulations of posttranslational modifica-
tions (includes protein acetylation, glycosylation, and phosphorylation), which have 
been shown to be associated in a wide spectrum of human diseases. Hence, under-
standing which pathway triggers the tumor cascade is important for therapeutic 
strategies [139].

The improvements in mass spectrometry technique have led to an increased sen-
sitivity, accuracy, and rapidity of analyses to identify several thousand proteins per 
experiments, especially in the event of large-scale analysis of posttranslational 
modifications (i.e., phosphorylation and ubiquitination conducted by functional 
proteomics) [140]. Proteomics has shown vast applications in the identification of 
different protein markers involved in cancer signaling pathway.
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A study performed by Mellinghoff in 2005 on glioblastoma showed that epider-
mal growth factor receptor (EGFR) and phosphatase and tensin homologue deleted 
on chromosome 10 tumor-suppressor protein (PTEN) co-expression were associ-
ated with an increased response to tyrosine kinase inhibitors (i.e., erlotinib), whereas 
the cells expressing EGFR but not PTEN did not respond to the drug therapy [141]. 
Posttranslational modifications are most studied using proteomic approaches as it 
regulates many biological mechanisms, including signal transduction [142]. But it 
still remains a challenge as the sensitivity and selectivity of purification methods 
still need to be defined [143].

Another possible mechanism is the alteration in protein structure and functions, 
and the main cause involves the mutations affecting cancer-related genes, resulting 
in the formation of defective protein structure, and altering protein interactions and 
degradation [62, 144]. Hence, the structural description of proteins, their complex-
ity, and interactions have become the center of attention while using proteomic tech-
niques [145]. Henceforth, the onco-proteomics holds promise as a biological 
indicator of discovering novel biomarkers for monitoring cancer progression, early 
diagnosis, and drug efficacy of therapeutic agents [138]. Consequently, cellular 
pathways that are involved in cell functions, proliferation, and survival are potential 
therapeutic targets of cancer [41, 146].

11.2.3  Need for Proteomic Approaches in Cancer

Current goals of proteomics aim at the development and establishment of new meth-
odologies for analyzing protein expression and function in various physiological 
and pathological conditions [147]. Proteomics gives an insight of cell response to 
changes, and hence, scientists take the advantages of current high-throughput tech-
niques to understand the protein profiles in various diseases including cancer. For 
example, prostate cancer has been studied using different proteomic techniques 
(including difference gel electrophoresis (DIGE), MS profiling, 2D-PAGE, shotgun 
proteomics with label-based (ICAT, iTRAQ) and label-free (SWATH) quantifica-
tion, MudPIT) to search for the diagnostic biomarkers and their clinical applications 
[148]. A synergistic combination of powerful technologies (stated in Sect. 11.2.4) 
will provide further knowledge to identify novel drug targets and biomarkers for 
human cancers.

Over the years, proteomic tools have been progressively used to study the cancer 
biomarkers [149]. Initially, the proteome analysis in cancer was based on 2DE in 
which selected spots for proteins were identified by matrix-assisted laser desorption- 
ionization MS. Overall, 11 proteins were identified in human melanoma cell lysates 
(A375) [150]. Notably, gel-based proteomics has contributed significantly in cancer 
research, particularly on colorectal [151], breast [152], and pancreatic cancer [153]. 
Due to some advantages, gel-based proteomic experiments have been moderately 
substituted by MS-based proteomic techniques. Nonetheless, 2DE-based perspec-
tives are still widely used due to some specific advantages in cancer research [154]. 
New strategies are required for designing the process, labeling, fractionation, and 
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analysis via bioinformatic tools, which will increase the sensitivity and develop-
ment of next-generation MS proteomic fields of study [155]. These techniques sig-
nificantly boost the quantification, identification, and monitoring of huge data 
related to the expression of protein biomarkers, modifications at posttranslational 
level, and other regulatory as well as molecular aspects of cancer that may be impor-
tant from clinical perspectives. These kinds of studies have been found to be the 
most beneficial for the development of novel diagnostic and therapeutic strategies 
while also allowing a better understanding of the mechanisms involved during can-
cer progression [149].

11.2.4  Molecular Diagnostic Tools for Cancer

Cancer is a heterogeneous disease which involves multiple pathways resulting from 
a combination of tumorigenesis and metastasis. Diagnosis of cancer, especially at 
an early stage, is highly significant for improving the patient’s outcome. For a long 
time, proteins in cancer cells are mainly identified using Western blotting, ELISA, 
and immunohistochemistry. But these methodologies are costly and laborious [149]. 
Proteomic tools have significantly developed from 2D to MALDI-MS and have 
played a momentous role in pancreatic and breast cancers [153, 156]. The designing 
of new experimental strategies for sample labeling, processing, fractionation, and 
bioinformatic analyses combined with proteomic technologies enables us to iden-
tify, monitor, and quantify the data related to biomarkers, posttranslational modifi-
cations, and other molecular mechanisms [149]. These outcomes are important for 
the development of novel diagnostic and therapeutic tools, leading to a better under-
standing of the mechanism involved in cancer.

Research on the protein alteration in cancer studies have been carried out more 
than 70 years ago [157]. However, recent proteomic technologies are utilized in 
deciphering the differential expression of proteins in human cancers. Numerous 
metabolic diseases and genetic abnormalities are associated with the cellular tran-
scription and translation status by creating variations in the proteome [158]. The 
proteomic approaches for the discovery and assessment of proteins have been devel-
oped during the last 12 years. Identification and validation of biomarkers are accom-
plished by various proteomics-based methods, such as protein profiling/activity 
profiling, protein linkage maps, protein microarrays, phosphorylation analysis, 
2DE, DIGE, MS, shotgun/bottom-up proteomics, selected reaction monitoring pro-
tein arrays, and bioinformatic analysis (Fig. 11.1).

11.2.4.1  Two-Dimensional Gel Electrophoresis
Two-dimensional gel electrophoresis (2DE) was first introduced in 1975 and 
became a method of choice for protein separation and expression analysis [159]. 
2DE is one of the most important tools in the field of proteomics that can identify 
hundreds or thousands of proteins in a single gel sample and the possibility to 
directly detect the posttranslational modifications of proteome [160]. Proteins are 
separated on the basis of charge (isoelectric focusing) and mass on the 
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polyacrylamide gel. Approximately 3000 proteins can be visualized on a single gel 
using silver staining and by PDQuestTM software [134]. The information obtained 
on the mass-to-charge ratio identifies the protein, whereas the protein database also 
determines the type and location of protein modifications. Several studies have 
reported that 2DE proteomic analysis can detect the protein spots between normal 
and cancer samples [161]. The proteomic analysis by 2DE methodology of bladder 
tumors exhibited downregulation of cytokeratins, galectin 7, psoriasin, and statifin 
in tumor with low degree of differentiation, and psoriasin in urine was observed in 
squamous cell carcinoma patients [162]. The changes in calgranulin B protein 
expression in dysplastic polyps from colon carcinoma and ulcerative colitis patients 
were analyzed by 2DE [163]. Furthermore, 2DE combined with MS technology 
leads to the identification of discriminating protein spots for discovery of proteins 
associated with disease [164]. Though 2DE is widely used for the protein detection, 
this technique has some restrictions, including reduced dynamic range and visual-
ization of proteins in proteomic methods. Moreover, 2DE demonstrates hydropho-
bic relevance in regulatory or signaling proteins, which causes difficulty in the 
detection of very basic proteins.

11.2.4.2  Difference Gel Electrophoresis (DIGE)
DIGE was first discovered by Unlu in 1997 [165]; this technique is used to over-
come the limitation of 2DE by recognizing the correct quantitation, reproducibility, 
and separation of proteins [166]. The main advantage of DIGE analysis includes the 
independent labeling of two or more protein samples with cyanine-based 
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fluorescent dyes (Cy3 and Cy5), followed by the separation and visualization on a 
single gel and measurement of the relative ratio of separated protein fluorescence 
detected by ImageMaster 2D Platinum (GE Healthcare, Uppsala, Sweden) [167]. 
Thus, the reproducibility and reliability of protein expression analysis for normal 
and cancer tissues have been improved by DIGE method. The overexpression of 
receptor tyrosine kinase 2 (ErbB-2) in breast cancer cells [168] and the analysis of 
different bacterial growth conditions have been detected by DIGE analysis [169]. 
The main limitation of DIGE analysis is the hydrophobic nature of cyanine dyes, 
which causes reduction in the solubility of labeled proteins that may lead to protein 
precipitation before gel electrophoresis [170].

11.2.4.3  Mass Spectrometry
Proteomic studies were based on 2DE and sequential mass spectrometry approach 
which facilitates the identification of peptide sequences in proteins that were pres-
ent in differential abundance on gel [171]. MS techniques identify and measure the 
molecules on the basis of mass-to-charge ratio by high-energy laser detector. It 
mainly consists of three basic components, such as ion source, mass analyzer, and 
detector [172]. MS has played important role in cancer research and other disease 
models through discovery of protein biomarkers. MS-based bioinformatic analysis 
enabled researchers and clinicians to distinguish between cancer and healthy 
patients through mass spectra and pattern identification. This technique is highly 
sensitive (picomole to femtomole) for the detection of cancer biomarkers, such as 
small polar molecules, oligonucleotides, phosphoproteins, and glycoproteins [173]. 
Recently, MS technique has been improved and modified to analyze biomolecules, 
proteins, and peptides. Two MS-based approaches, developed for the investigation 
of new biomarker discovery in proteomic, are matrix-assisted laser desorption- 
ionization time-of-flight (MALDI-TOF) and surface-enhanced laser desorption- 
ionization time-of-flight (SELDI-TOF). MALDI-TOF-MS analysis can detect 
nanomolar to picomolar protein and separates the proteins based on mass, whereas 
SELDI-TOF-MS separation is dependent on charge, where the hydrophobic pro-
teins are characterized by protein chips, chromatography, and MS-based detection 
[166]. Moreover, liquid chromatography coupled with mass spectrometry (LC-MS) 
is used to identify and separate thousands of proteins in biological samples, such as 
serum, plasma, tissue, cells, etc. [174]. However, MS analysis has limitations for the 
detection of high molecular weight and heavily glycosylated proteins.

11.2.4.4  Protein Microarrays
Protein microarray technique has the ability to analyze the modifications in protein 
phosphorylation at high-throughput level of proteins. This technique is based on the 
antigen-antibody interaction of cell population for profiling the proteome [175]. 
There are two major types of protein microarrays, i.e., forward-phase arrays (FPAs) 
and reverse-phase arrays (RPAs). In FPAs, antibodies are arrayed and probed with 
cell lysates, while in RPAs, the cell lysates are arrayed and then probed with the 
specific antibodies. RPAs provide labeling-free cellular protein lysates, which rep-
resent high-throughput platform for investigation of therapeutics and screening of 
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biomarkers in the pathophysiological studies [176]. During the clinical trials, RPAs 
have the exclusive ability to analyze signaling pathways of small number of cells or 
cells isolated from the human tissues by laser capture microdissection [177]. Studies 
have revealed the use of RPAs for the identification and discovery of therapeutic 
targets in cancer. However, the main restriction of RPAs includes the need for spe-
cific antibodies to conduct proteomic profile [178]. Protein arrays are essential tool 
in tumor research for the identification and characterization of biomarkers in differ-
ent biological samples, including tumor biopsies and tissue culture lysates and 
serum [179]. Therefore, proteomics-based protein microarray approach is widely 
used for the discovery of novel antigens for cancer diagnosis [180].

11.2.4.5  Selected Reaction Monitoring Protein Arrays
Selected reaction monitoring (SRM) is an ideal tool for the accurate quantification 
of the proteins, which is very helpful in biomarker development with excellent spec-
ificity and sensitivity. SRM has its extension called multiple reaction monitoring 
(MRM), which has the capacity to quantify small molecules [181]. They can also 
perform protein/peptide analysis and can monitor the intensity of the parent/daugh-
ter ion (m/z ions) with great specificity. This quantification can be achieved by iso-
baric labeling (iTRAQ) of the target proteins or by spiking isotopic peptides into 
sample proteins and controls [182, 183]. Limitation of these techniques includes 
high costs, and sometimes isotopic labeling remains incomplete during large-scale 
validation of data.

11.2.4.6  Shotgun/Bottom-Up Proteomics
Shotgun proteomics or bottom-up protein analysis was introduced in 1998 by Yates 
[184]. Shotgun protein analysis refers to proteolytic digestion of proteins into short 
peptides that can be resolved by different fractionation strategies; normally, frac-
tionated peptide mixtures are subjected to LC-MS analysis [185]. Shotgun pro-
teomic analysis has achieved a relatively high-throughput analysis of proteome and 
provides a snapshot of the major protein constituents [186]. The applications of 
shotgun analysis include protein-protein interaction, protein quantification, pro-
teome profiling, and protein modification [187]. Shotgun proteomics has been used 
for the advanced biological discoveries, and it is divided into two types, i.e., label- 
free MS-based proteomic and label-based technologies (isotopic or isobaric tags). 
The main advantage of shotgun method is its efficiency in terms of sorting out 
thousands of proteins involved in biological conditions [188]. Shotgun proteomic 
analysis can identify thousands of proteins with high accuracy and resolution in a 
single experiment. However, digested and fragmented peptides usually occur in 
abundance in each protein sample and are more likely to overlook less abundant 
proteins which is the main limitation of shotgun analysis in proteomics [127].

11.2.4.7  Protein Profiling/Activity Profiling and Protein Linkage 
Maps

Protein profiling is a diagnostic tool that is more sensitive and specific than bio-
marker detection. Surface-enhanced laser desorption-ionization time-of-flight mass 
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spectrometry (SELDI-TOF MS) is the major tool in protein profiling or activity 
profiling. However, the standardization and reproducibility present the major limita-
tion of this tool [45]. A protein chip system of this technique is the fastest and more 
reliable to discover and identify the biomarkers. To avoid errors in sample collection 
method, material type and time for the ionization need to be very accurate and stan-
dardized. In SELDI-TOF MS, calibration step is important for calculating the exact 
mass of sample protein. This step is also necessary for desorption and ionization of 
the sample in the chip reader [189]. Proteomic profiling of platelet extracts using 
SELDI-TOF MS method to analyze protein mixtures displays the increased amounts 
of angiogenesis regulatory proteins (i.e., VEGF) [98]. This selective process detects 
tiny size of platelets in cancer, which is not possible with the available methods. 
SELDI-TOF MS and protein chip have also been used for detection of new bio-
markers and building diagnostic models of breast cancer, suggesting that SELDI is 
relatively highly sensitive and specific tool for screening and discovering novel can-
cer biomarkers [190].

For activity profiling, usually specific probes with fluorescent, radioactive com-
pounds and affinity tags are used [191] to identify markers and enzymatic inhibitors 
by comparative analysis of protein expression levels in healthy and diseased tissues 
[192]. Other known applications of these techniques include the development of 
therapeutic agents and interaction proteins for better understanding of regulatory 
proteins [193]. This technique may also provide quantitative analysis of binding 
proteins and can facilitate the therapeutic response of a patient to the particular 
therapeutic agent. It may also provide the opportunity of developing noninvasive 
imaging technologies for diagnosis. Nanoelectrospray (nanoES) is also used in 
addition to this technique if the full-length sequence is not available. It can also 
generate a partial sequence as a peptide sequence tag to complete the mass informa-
tion [194].

Protein linkage mapping provides the quantitative study and highlights any 
mutational changes in protein expression whether in a cell or tissue. It can deter-
mine proteins in abundance and detect posttranslational modification that can char-
acterize protein of interest. These protein maps also enable the comparative analysis 
of protein expression and modifications [195].

11.2.4.8  Phosphorylation Analysis
Protein phosphorylation is a critical posttranslational modification and key regula-
tory factor of the tumor growth and progression. It is well-known that initiation of 
cellular signaling through tyrosine receptors promotes protein-protein interaction 
and phosphorylation by involving signaling proteins like MAP kinases [196]. 
Moreover, protein phosphorylation can induce changes in gene expression and pro-
tein synthesis modifications that affect the cell proliferation, cell migration, and 
molecular mechanisms of cancer cell progression and inhibition. In this regard, 
EGFR is one of the best examples in different kinds of cancers [197]. To better 
understand the signaling mechanisms of cancer development, various techniques 
are applied for the detection of phosphopeptides. Immunoaffinity-based strategy 
has been developed to characterize and identify tyrosine phosphorylation by 
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phosphoproteome [198]. Moreover, phosphotyrosine-specific antibodies are 
extracted from protease-digested cancer cells by MS/MS analysis. Similarly, phos-
photyrosine immunoprecipitation with immobilized metal affinity chromatography- 
tandem MS, SILAC, and tandem MS is used for the study of phosphoproteome in 
cancer cells [199]. The identification and characterization of phosphorylation sites 
in posttranslational modifications reveal potential signaling mechanisms in cancer 
biology.

11.2.4.9  Bioinformatic Analysis
For any disease, bioinformatics can play a vital role in identifying disease- associated 
genetic variants in which single nucleotide polymorphisms (SNPs) and copy num-
ber variations (CNVs) can be identified. These two also play crucial roles in devel-
oping personalized medicine. Bioinformatic and biological approaches can identify 
or discover functional variants using the system-level approach, gene expression 
data, epigenetic data, and regulatory and pathway data [200]. The analysis is usually 
based on the most susceptible loci besides evaluating disease risk. Bioinformatics 
also provides knowledge of computational methodologies, developing algorithms to 
process genomic data with accuracy. It also provides the systematical methods to 
eliminate noises from collected data and to normalize the data type. They can also 
help in maintaining electronic health record in case of developing personalized 
medicine data; this field has to face the challenge of heterogeneous data obtained 
from different patients [201]. Yet bioinformatic infrastructure can store, manage, 
and analyze data according to disease environment, mutations in genes, and some-
times individual’s living style. Bioinformatic tools need speed for analyzing the 
progression of disease and taking clinical decisions as cancer, and some of the acute 
diseases have faster progression [202]. Some examples of standard tools are DAVID, 
BINGO, GoMiner and Cytoscape that provide flexibility in analysis.

11.2.5  Importance of Cancer Diagnostics

Early detection of cancer is the main challenge in treating cancer. Even though there 
is a wide range of current techniques that can be used to identify cancer, i.e., mam-
mography for breast cancer in addition to the prostate serum antigen for prostate 
cancer, their reliability for early cancer detection is uncertain due to the lack of 
specificity and sensitivity [203]. For that reason, cancer detection, especially at the 
early stage, is very important and is possible through proteomic technique, which 
encompasses analysis of differentially expressed proteins in molecular pathway of 
cancer [9]. Proteomic approaches have appeared as an addition to genomics and 
antibody-based techniques to identify tumor biomarkers, to study protein patterns, 
and to identify therapeutic targets of cancer [98]. It is important that these tumor 
markers can be validated and identify tumor. The molecular changes in cancer are 
responsible for altering protein expression, posttranslational modifications, as well 
as cellular signaling pathway which can be studied using proteomic approaches 
[203]. This leads to a better understanding of the pathological and molecular basis 
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of cancer, but the exact cause is still not clearly defined. In the past decades, a huge 
development in high-throughput technologies, such as DNA microarrays, has 
resulted in their wide implications in classifying cancers at molecular level.

In proteome analysis, serum or other body fluids can be used for the identifica-
tions of biomarkers that may lead to the cancer diagnosis at an early stage. 
Biomarkers have gained so much interest, as the tumor-derived secretary products 
can be identified in serum or other fluids [204]. In addition, it may also be used to 
detect different protein levels in the serum of cancer patients. These changes in the 
serum proteome caused by cancer-specific metabolic or cancer-associated path-
ways, somewhat independent of mass or tumor size, assist in the early detection of 
cancer [204]. A practical technique for serum protein profiling was developed by 
Miller et al. (2003), in which they used antibody microarrays to identify promising 
biomarkers in prostate cancer sera. They compared protein abundance of prostate 
cancer and control serum samples using two-color fluorescence assay. They recog-
nized five proteins (villin, von Willebrand factor, immunoglobulin G, alpha1-anti-
chymotrypsin, and immunoglobulin M) using a set of reliable microarray 
measurements that differ in prostate cancer samples compared to the control sam-
ples. These advances allow the direct use of protein microarrays and high-density 
antibody in biomarker discovery studies [205].

11.2.6  Study Design Guidelines for Biomarker Development

A biomarker can indicate and quantify a health or disease state of the body and can 
indicate the body response to therapeutic treatment [206]. More specifically, a bio-
marker shows clinical applications by evaluating the risk assessment, disease pro-
gression, and potential therapeutic responses, thereby being useful in clinical 
decision-making. Biomarker development is a complicated process that involves 
multiple steps with the objective to attain useful clinical outcomes [68, 207] 

Fig. 11.2 Guidelines for biomarker development
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(Fig. 11.2). The process is typically based upon a clear and concise research hypoth-
esis in order to identify the promising biomarkers that are relevant, highly specific, 
sensitive, and important to monitor a clinical condition.

11.2.6.1  Pre-analytical Considerations (Sample Collection 
and Handling)

This step takes into considerations the important criteria for sample selection. It is 
also important for a biomarker to be easily detectable in samples taken in a nonin-
vasive or minimally invasive manner, such as the liquid biopsies (urine, saliva, or 
blood). The details about the sample’s nature, size, collection, and storage proce-
dures should be clearly mentioned [5]. As in cancer research, the sample collection 
is a critical step due to the heterogeneity of samples, and therefore, the sample size 
and the selection of a representative sample acquire much importance [208]. 
Furthermore, the characteristics of the samples obtained from a study design (sub-
jects’ age, gender, health status, etc.) should be well-defined, because of their 
importance in guiding the clinical applications and implementations of the candi-
date biomarkers for a target population (Fig. 11.2).

11.2.6.2  Analytical Validation (Assay Reliability and Accuracy)
This step mainly focuses on the accuracy and reliability of the analytical procedures 
employed to detect a biomarker. It is important to validate the robustness, sensitiv-
ity, specificity, and reproducibility of an assay with quality control measures in 
order to avoid the detection of false positives due to experimental errors [209, 210]. 
The precision and calibrations of the instruments used to perform these assays must 
also be given equal importance [62] (Fig. 11.2).

11.2.6.3  Clinical Validation and Utility
Clinical validity refers to the ability of a biomarker to precisely identify the subjects 
more or less likely to suffer a clinical condition [68]. Clinical utility corresponds to 
the effectiveness of a biomarker in improving the clinical outcome of patients and 
defining benefit-to-harm ratio, thus providing useful information to avoid the inap-
propriate clinical decisions [5, 68, 70]. Finally, the diagnostic assay based on in vitro 
diagnostic needs an approval from the regulatory bodies; however, if the assay is 
based on a laboratory-developed test, only analytical validation is required for com-
mercialization. In this way, the regulatory bodies play a crucial role in making 
healthcare decisions about the effectiveness of a diagnostic tool and its therapeutic 
applications [70, 73] (Fig. 11.2).

11.2.6.4  Study Design and Other Issues Related to Biomarker 
Development

Indeed, there is an increasing gap between the biomarker discovery and their clini-
cal utility due to several limitations and challenges in biomarker development [62]. 
The bias can arise at each phase of biomarker research and development, including 
sample collection and handling procedures, study design, validity and verification 
of analytical assays, data analysis, interpretation, and reproducibility in an 
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independent group of individuals [211, 212]. Nevertheless, the study design pres-
ents the main source of bias in biomarker research and development, partly due to 
the sample acquisition. The sample collection should be based on well-designed 
prospective clinical trials with specified inclusion and exclusion criteria in order to 
minimize the potential biases [212]. The characteristics of the target population and 
the information related to patients’ follow-up are crucial factors in defining the 
molecular traits that evolve with time. Most often, the subject selection is based on 
incidentally available specimens, rather than a pre-defined study protocol for bio-
marker discovery. This retrospective study design raises huge bias due to the con-
founding factors that could lead to false-positive discoveries and thus shows limited 
clinical validity and utility. While the prospective setting for sample collection and 
follow-up is considered an ideal option, the biomarker detection is costly and 
lengthy method, which presents a big hurdle in their deployment [213]. In order to 
ameliorate the study design of a clinical trial and to overcome biases in biomarker 
research, a “prospective-retrospective” strategy was proposed, which utilizes the 
samples obtained from previously conducted prospective trials [214, 215].

Moreover, adequate funding along with the development of good-quality and 
large integrated biobanks with optimal sample handling would also contribute greatly 
toward biomarker discovery research [216, 217]. In addition, the implementation of 
biomarkers and their use in clinical practice requires regulatory and legislative pro-
cedures, which further hampers the pace of biomarker development [73, 211].

Although, with advancements in omics technology, a wide array of biomarkers 
has been discovered, only few novel biomarkers have shown clinical implementa-
tions due to the contradictory results obtained from trials with methodological limi-
tations [218]. For instance, despite the discovery of several tumor biomarkers 
reported in literature, only few of them have been approved by FDA [211]. Different 
signature-based assays have been designed to measure the gene expression profiles 
in breast cancer prediction. These include MammaPrint which measures 70 genes 
[219] and Oncotype Dx Breast Cancer Assay which measures 21-gene prognostic 
profile [220]. Similar assays have also been developed to measure gene expression 
profiles in prostate and colon cancer tissues [221, 222]. In the future, biomarker 
discovery research needs more rigorous study designs and protocols to avoid biases. 
Careful consideration of clinical applications and implementations together with 
accompanying biomarker performance characteristics in study designs will lead to 
meaningful translational outcomes.

11.2.7  Importance of Biomarkers in Therapy Designs

In recent years, biomarkers have gained substantial importance in defining the lay-
outs of a therapy design, due to their wide range of applications in risk assessment, 
disease diagnosis, drug discovery, and patient stratification according to drug 
response [223–225]. Biomarkers make major contribution by providing insight into 
the disease evolution and therapy responses, as prognostic (disease evolution, risk 
assessment), diagnostic (recurrence risk detection), predictive (responsiveness to a 
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particular therapy), or pharmacodynamic biomarkers (optimization of pharmaco-
logical doses) as well as surrogate endpoints (measurement of the clinical outcome 
of a treatment, as a substitute for a clinical endpoint) [68, 226–229] (Fig. 11.3).

In cancer research, the main challenge is to deal with the heterogeneity among 
different cancers that presents a main hurdle in the identification and development 
of candidate biomarkers. However, the precise evaluation, monitoring, and manage-
ment of cancer largely depend upon the use of biomarkers at different stages of the 
disease. The most widely used established biomarkers include PSA, for screening 
and monitoring of prostate cancer [230]; HE4 and CA-125 in diagnosis and therapy 
monitoring of ovarian cancer [231, 232]; and CEA to detect the recurrence of 
patients diagnosed with colorectal cancer [233, 234].

The efficacy of various anticancer therapies has been found to be reduced due to 
the absence of predictive biomarkers, which show the ability to identify the molecu-
lar mechanisms of action or resistance of a particular drug. Hence, it is recom-
mended that all drugs should ideally have such biomarkers. The identification of 
these biomarkers will be greatly helpful in understanding the mechanisms of drug 
resistance and to devise strategies to manage these issues. As in the case of mela-
noma, a combination therapy of MEK and BRAF inhibitors is employed to get effec-
tive outcomes [235], whereas a new generation of EGFR inhibitors has been 
designed for non-small cell lung cancer [236]. Nevertheless, a careful consideration 
is required for the selection of biomarkers used in various cancer types, the stan-
dardization of study designs, as well as the validation strategies. Together, this 
reveals that appropriate approaches should be necessarily implemented in order to 
develop better therapy designs and identify important biomarkers in different types 
of tumors.

Fig. 11.3 Role of biomarker in cancer therapy design
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11.3  Concept of Personalized Medicine Based on Proteomics

11.3.1  Introduction

A great body of evidence over the last few decades has revealed that a significant 
number of variations in drug response are associated with an individual’s genetic 
profile as well as some interrelated factors including age, diet, environment, health 
status, and therapeutic interventions. Moreover, in order to achieve an effective drug 
response, the variations among the individuals due to their geographic locations and 
ethnical differences should also be taken into consideration.

11.3.1.1  Historical Background
Various events in the early 1950s have highlighted the importance of evaluating the 
genetic basis underlying the variations in drug response in different clinical condi-
tions. Adverse events, such as the hemolytic anemia, were reported with the use of 
antimalarial drugs (e.g., primaquine) in patients with glucose-6-phosphate dehydro-
genase deficiency [237]. Furthermore, a respiratory arrest was observed upon the 
administration of a muscle relaxant, succinylcholine, due to a genetic defect in suc-
cinylcholine esterase enzyme that converts succinylcholine into an inactive form 
[238]. Similarly, peripheral neuropathy was reported in individuals who received 
isoniazid for tuberculosis treatment, due to the inherited defect in N-acetyl transfer-
ase enzyme [239]. In addition, during the 1970s, the adverse response to an antihy-
pertensive drug, debrisoquine, was reported in individuals with a polymorphism of 
CYP2D6, a drug-metabolizing enzyme [240, 241].

All these findings of individualized drug responses gave rise to the field of 
pharmacogenetics [242], which falsified the paradigm of “one size fits all.” 
Pharmacogenetics aims to identify DNA sequence variations to characterize the 
molecular mechanisms underlying an individual’s drug response. In 1990s, the 
advent of the human genome sequencing and genotyping facilities evolved the 
field of pharmacogenetics into pharmacogenomics, which seeks to explore the 
differential gene expression profiles in relation to drug response at individual or 
population level [243]. The increasing technological developments and advance-
ments in the field of genomics and molecular diagnostics have allowed a vast 
understanding of translational aspects, a personalized approach to clinical care.

11.3.1.2  Perception of Personalized Medicine Approach
Personalized medicine refers to the prediction of disease susceptibility, prevention, 
diagnosis, and treatment response based on inter-individual variations in genetic 
and lifestyle factors [244]. The emerging field of personalized medicine aims at 
ensuring an early risk assessment and improved patient healthcare while consider-
ing that an individual’s genetic profile determines the individual’s particular 
response to a pharmacological intervention as well as dietary and lifestyle modifica-
tions [245]. Therefore, the main concept of personalized medicine is perceived as 
“the right treatment for the right person at the right time” [246]. Inter-individual 
variations may arise due to the differences in their genetic profiles that may render 
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a drug less efficient or allow it to stay in the plasma for a longer time than normal, 
causing toxicity. Personalized medicine approach focuses on identifying and report-
ing all these genetic variations associated with a drug response for patient’s stratifi-
cations [247]. Personalized medicine relies on developing the therapies that are 
aimed to target the groups of patients that are unable to respond to a specific treat-
ment and thereby are deprived of appropriate healthcare. Personalized medicine, 
therefore, promises to improve the healthcare system with lowering costs, by pro-
viding each individual with the opportunity for earlier diagnosis, risk predictions, 
and well-suited treatments (Fig. 11.4).

11.3.1.3  Omics Technologies in Personalized Medicine
The improvement in omics technologies has contributed a great deal to facilitate the 
stratification of individuals by enabling omics profiling including whole genomics, 
epigenomics, glycomics, lipidomics, transcriptomics, proteomics, metabolomics, 
and pharmacogenomics [248]. These high-throughput analyses performed on dif-
ferent biomolecules can detect the variation in an individual’s genetic and metabolic 
profiles related to certain disorders, thus affecting their response to a specific ther-
apy. These omics facilities have wide applications throughout the life span in the 
prediction of disease risk factor, diagnosis, and progression as well as the targeted 
therapeutic approaches [249]. This also provides a better understanding of molecu-
lar and cellular mechanisms involved in human health and disease. The integrated 
omics approach in clinical practice as well as the availability of different biomarkers 
has greatly facilitated the stratification of patient based on their responses to specific 
treatment, in order to decide the best-suitable therapeutic regimens [250, 251].

Fig. 11.4 Concept of personalized medicine
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11.3.1.4  Ethical Aspects of Personalized Medicine
Providing a personalized care within a clinical setting is a complex process that 
requires related issues of social legal and ethical aspects to be addressed properly 
while designing a study [252]. Apart from these elements, there are many major 
obstacles for the development in the field of personalized medicine [245, 253, 254]. 
Maintenance of privacy with individual patient’s dignity is very important so that 
the sensitive data may not become the cause of embarrassment for patients. Taking 
informed consent of individual patient or in specific cases with the guardian protects 
the patient and physician relationship and helps in avoiding discrimination. 
However, efforts should be made including the improved comprehension and clarity 
in acquiring patient’s informed consent, protection from violating confidentiality of 
information as well as keeping a balance between individual/social benefits and 
scientific progress and development. Together, this may be helpful in solving ethical 
challenges associated with personalized medicine.

11.3.2  Driving Factors in Personalized Medicine

Personalized medicine can be regarded as a continuously evolving approach to 
define treatments based on an individual’s genetic profile and physiological param-
eters [255]. During the past few years, however, increasing technological develop-
ments and the availability of a vast scientific knowledge have diversified the field of 
personalized medicine with an overall improvement in personalized healthcare. The 
promising advances in the fields of pharmacogenetics and pharmacogenomics are 
considered as crucial driving factors for personalized medicine [256]. Recent 
advances in high-throughput approaches for genetic analyses (genotyping, next- 
generation sequencing, etc.) combined with the emergence of computational and 
bioinformatics tools have revolutionized the area of molecular medicine with the 
objective to attain precise understanding of various complex diseases [250]. This 
has also resulted in the identification of novel genetic variants and germline muta-
tions involved in various genetic disorders. In the field of cancer, these technologies 
have facilitated the detection of genetic polymorphisms which predict the patient’s 
response to therapy [257, 258]. Today, the decreased cost of human genome 
sequencing, accompanying with the availability of genome-wide association studies 
(GWAS) and the 1000 Genomes Project, has facilitated the identification of genetic 
variants in different populations [259]. This leads to a better understanding and 
management of various disorders and contributes to the development of novel diag-
nostic and therapeutic strategies.

The rapid development of individualized targeted therapies provides investment 
opportunities as well as diversification of the pharmaceutical industries, which are 
emerging as another driving factor for personalized medicine. The investment in the 
development of targeted treatments with regard to personalized medicine allows the 
pharmaceutical companies to manage the issues including patent expiry or generic 
competition [260, 261]. This also renders pharmaceutical companies to contribute 
significantly in the accessibility of personalized treatments to the patients. In short, 
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it suggests that the effective coordination among scientific and regulatory frames as 
well as pharmaceutical companies will play a key role in driving the progress and 
evolution in the field of personalized medicine and thus strengthening the integrated 
healthcare system.

11.3.3  Challenges in Designing the Personalized Medicine

With the passage of time and advancement in knowledge, there is a gradual shift 
from traditional treatment methods. The most common practice in drug designing 
and developmental research was to target and study the effect of drug on almost 
complete population. However, individual patients have inherent different genetic 
makeup, and thus they respond differently to the same treatment, and thus desirable 
results were not obtained [262]. With these observations idea of tailoring the treat-
ment to the unique genetic makeup of individual patient was evolved, that is, the 
idea of tailoring the personalized medicine. Yet it is also obvious that attaining this 
goal was not an easy task and has many challenges.

Acquiring the individual data for designing the personalized medicine, analysis 
and maintaining of big omics data, library establishment for biological samples, and 
obtaining informed consent keeping all involved medical ethics alive especially for 
major usage in the future for research purposes are some of the challenges that are 
being faced in this field [263]. Another huge challenge is finding unknown genetic 
or molecular domains of human genome for personalized medicine development 
[264]. Basically, the term precision medicine involves multiple omics profile of 
individual patients including genomics, proteomics, metabolomics, transcriptomics, 
metagenomics, epigenomics, and pharmacogenomics along with family history and 
patient lifestyle for designing tailored treatment strategy (as also described in Sect. 
11.3.1.3). Complex disease (cancer, diabetes, etc.) also involves patient exposure to 
the environment and standard of living to assess more individual approach for 
designing precision medicine especially for most vulnerable patients [265]. It also 
highlights the shortcomings of healthcare system for diagnostics and therapeutics of 
more neglected diseases and their pathologies along with their epidemic and 
endemic.

The most challenging element in designing personalized therapy is related to 
ethical issues. These include the concerns about the establishment of new biobanks, 
confidentiality, and handling of data stored in these biobanks [266, 267]. Patient’s 
authorization for genetic testing (informed consent) [268], the appropriate use and 
interpretation of genetic data [269], genetic discrimination on subject selection 
based on race or ethnicity [270, 271].

Genomic studies have provided a lot of information about cancer susceptibility 
gene identification of potential targets for cancer therapeutics and molecular expres-
sion profile of the disease and have open many ways for designing drug delivery 
systems. Still the overview provided through these studies is insufficient for design-
ing personalized medicine therapy and correlating gene transcript with protein 
expression level in the living system [272]. Moreover, genomic studies may not 
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provide any insight for posttranslational modification such as glycosylation, phos-
phorylation, lipidation, cleavage, and protein-protein interactions that is important 
in understanding the disease etiology [145]. Signaling proteins have much more 
importance in cancer diagnostics and therapeutics as posttranslational modification 
forms the complex, interrelated signaling cascade that may cause delays in cell 
apoptosis, cell migration, and division patterns and thus leading to cancer.

In addition, identification of individual gene responsible, related expressed pro-
teins with clinical signatures, biomarkers use as therapeutic or diagnostic candidate 
for each expressed proteins or its subtype, all these challanges implies for validation 
and implication of personalized medicine treatment. Another limitation is that there 
are many potential biomarkers that are identified in published literature, but still 
research work is required for its proper validation [273]. Their identification in lit-
erature does not suffice the criteria for their clinical applications for any treatment 
and diagnosis or even for categorization according to individual patient treatment 
for personalized medicine. This has limited the critical element of translational 
research in the field of cancer. With all these mentioned challenges, still the field of 
precision or personalized medicine has some initial achievements that can revolu-
tionize general traditional medical practices for patient treatment. Still, it requires 
the extensive collaboration with a lot of time and money investment. This field is 
remarkable and can open many pathways to design and provide idealized treatment 
for patients, but still there is a long way to go.

11.3.4  Proteomic Research Findings and Their Application 
in Translational Oncology

Proteomics is one of the most important fields in order to understand the actual 
working of the cell and disease process in this post-genomic era. Cancer proteome 
involves the study of protein expression of cancer cells and their effects on signaling 
pathways and other related activities including tumor progression and spread mech-
anism. Advancement in this field not only provides the information of the protein 
pathway network, generation of protein repertoire, specific protein interactions and 
binding, posttranslational modifications, structure, function, characterization, and 
quantification but also provides the most relevant data for drug development that 
also helps in the clinical applications of the drug [274]. Every cell has different 
types of proteome that is unique according to the cell type, but it can be altered 
according to the tissue microenvironment where it resides. Data based on pro-
teomics are much helpful in cell classification and understanding of protein modifi-
cation along with cellular mechanism involving the spread of disease [275].

Proteomic research findings are very important to provide the important biologi-
cal information that is beneficial in designing personalized medicine and early diag-
nosis especially in the form of biomarkers. This aspect could serve as a major tool 
in personalized medicine application in translational oncology as it is based on the 
molecular diagnosis for each patient irrespective of morphological assessment of 
patients. Type and quality of data that is generated play a vital role in developing 
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genomic and proteomic signatures and biomarker discoveries into anticancer agents 
for translational oncology [276]. Along with these, monitoring of disease progres-
sion and chances of recurrence and therapeutic response of individual patients also 
play key role in the application of translational oncology. The high accuracy and 
sensitivity of present-day genomic techniques can characterize more targeted and 
effective treatments for cancer patients, but current reimbursement and management 
strategies need to be revised for addition in policies for the introduction of personal-
ized medicine treatment strategies in the routine medical systems. It is also reported 
previously by Wilhelm et al. through MS-based draft that human proteome expres-
sion has high levels of functional proteins of specific cancer [277]. For example, 
EGFR was found in a very confined expressive manner at high levels in breast 
cancer [278], and beta-catenin of Wnt signaling pathway was found in colon cancer 
development [277].

Proteomic research findings on various cancers have shown promising results for 
detection of novel biomarkers that can be quite useful for cancer diagnosis at initial 
stage and in designing therapeutics even for individualized patient. Researchers can 
also design projects that aim to discover novel anticancer agents. This may in turn 
open many gateways for drug discoveries. Clinical proteomics that is a new sub- 
discipline of this field deals with molecular technologies for cancer marker discov-
eries. This discipline can do wonders with more and more research in cancer 
diagnostics, especially in early stage, and can help not only in saving lives but also 
reducing the national economic burden.

11.3.5  Personalized Medicine Implications in Healthcare System: 
Perspective in Oncology

Cancer can be considered as the best study model for the understanding of disease, 
its functions, and therapeutics, as it can provide the vast research platform for its 
applications at the bedside. Cancer proteomics covers both basic and clinical ele-
ments of proteomics that ultimately lead to cover the translational oncology [41]. 
Discovery of biomarkers leads to find out the new promising target sites for the 
treatment and to design patient-specific therapy. The detailed study of cancer pro-
teomics opens new pathways to understand the role of effector protein molecules, 
their phenotype, and signaling pathways that ultimately leads to the understanding 
of molecular basis needed to design personalized medicine.

11.3.5.1  Why Personalized Medicine?
At present, personalized medicine approach is higher in demand as it can cover the 
variability among the individuals resulting in designing of targated therapies. 
Proteomics plays major role in precision medicine implication as it has an open 
window for improved therapeutic outcomes [279]. However, for complete treatment 
understanding and outcomes, the field still requires a lot of advancement.
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To date, most of the cancer diagnosis relies on physical examination, imaging, 
pathological evaluations, and biopsies. However, very limited insight is available 
in terms of molecular qualities of individual patient profile or morphological 
assessment of specific tumor tissues/cells that has become the driving factors for 
developing personalized medicine. The transition of traditional diagnostic and 
therapeutic methods to personalized real-time molecular approach would be a 
major drift in cancer treatment. It may also enable high-throughput molecular pro-
filing of individual patient in the future that will be more beneficial than the pres-
ent-day molecular analysis through PCR for clonal population, in situ hybridization, 
immunohistochemistry, and chromosomal analysis. Personalized medicine is a 
hand-in-hand tool for targeted therapies based on the individual patient molecular 
profile [279].

11.3.5.2  Translational Elements from Bench to Bedside
Translational oncology is the field where the implementation of personalized medi-
cine has enabled scientist to increase their understanding of control of metastasis 
and some contribution to the improved healthcare system as it provides a better 
therapeutic approach that is beneficial for the patient as well [280]. While designing 
a unique treatment plan for an individual patient, the scientist and clinicians closely 
monitor factors contributing the disease interaction, posttranslational modifications, 
and their epigenetics and genetics in the diverse presentation of cancer.

Mostly the bench research relies on the molecular assessment of cancer based on 
cell culture and animal studies. Usually these studies provide an insight of molecu-
lar mechanism of disease, signaling pathways, extra- and intracellular matrix, bio-
marker expression analysis, etc., but it is still difficult to translate these research 
outcomes for patients’ benefit directly due to lack of available knowledge for 
molecular determinants of specific cancer type and individual patient [281]. 
Microarray analysis has also confirmed divergence among different cancerous cells 
and even among same cancer type in different patients [282]. Another limitation of 
this field is that extracted cell lines are not subject to provide a complete three-
dimensional picture of molecular stimuli and tumor microenvironment of complete 
tissue. Secondly, there are evidences of finding differences between proteomic con-
tents of primary and metastatic tumors [283].

11.4  Biomedical Applications, Challenges, and Future 
Prospective in Onco-proteomics

Understanding of onco-proteomics is very important for early diagnosis along with 
cancer management and development of personalized medicine. Knowledge of the 
pathobiology of cancer leads to the novel diagnostic strategies and improved phar-
macological approaches [284]. Discovery of biomarker prognostics, diagnostic and 
therapeutic site identification, and development of proteomic sequence with the sig-
nature posttranslational modification may lead to the properly designed 

11 Translational Research in Oncology



292

individualized medicine. Still the major components of characterizing the individu-
alized therapy with its complete infrastructure are not discovered yet [274].

11.4.1  Understanding Cancer Pathogenicity

The etiology of diseases is a multifaceted mechanism; several cases of protein mal-
functions cause pathogenesis of disease; thus understanding of applied proteomics 
is a must for understanding the disease [285]. Similarly, cancer pathogenesis is a 
key factor in order to understand and develop test technologies for personalized 
medicine design and molecular profiling of individual patients. Furthermore, new 
tissue collection system for patient specimen must be introduced as generally prac-
ticed formalin-based fixation method, which is good enough for morphological/
structural assessment and molecular profiling. However, it is insufficient for patient 
proteomic profiling and related posttranslational modifications, so one requirement 
is to preserve the morphology of tissue with stabilize RNA and proteins for com-
plete proteomic profiling [140].

Some diseases are also caused by mutation resulting in cystic fibrosis (single-
gene mutation) or environmental factors. Furthermore, cancer alters the genome of 
cells affecting the DNA-repair mechanism and hence modifying the DNA. Biomedical 
research is very important, especially using the proteomic technologies for shed-
ding light on diseases’ pathology, diagnosis, treatment, and prognosis, since it is 
done using different levels of omics (genomics, transcriptomics, proteomics, and 
metabolomics) [285]. For example, in order to understand the metastasis, genes 
need to be analyzed at genomic, proteomic and transcriptomic levels. Biomarker 
discovery is still a huge challenge posing multiple hurdles in its clinical applications 
[140]. Existing biomarkers or novel potential biomarkers struggle with proper iden-
tification, validation, and reliability along with limited specificity and sensitivity 
[286].

11.4.2  Onco-proteomic Innovations and Integration with Other 
Proteomic Tools

Conjunct technologies in proteomics have a larger application in facilitating diagnos-
tics and therapeutics. One of the promising fields is nano-proteomics that can help in 
the understanding of application of nano-biotechnology for the improvement of 
nano-oncology [287]. This field has shown a promising potential in healthcare sys-
tem, and in developing personalized medicine approach, yet there is a lot that needs 
to be worked out along with overcoming technical obstacles for the proper utilization 
and implication of this emerging field in the healthcare system and translation of 
cancer research from bench to bedside. Antibody microarray is another advancement 
in proteomics that relies on automation and high-throughput multiplexed analysis of 
proteins. They can measure even a single sample of different proteins of cancer 
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network, yet one limitation is amplification of sample as done in PCR [288]. 
Therefore, highly sensitive arrays are required to detect and quantify biomarkers. 
Aptamer-based molecular probes are useful to make ligand with high specificity and 
affinity due to their 3D structures. These can identify protein signatures of cells, as 
they have tended to highlight short DNA folding [289]. This technology can also be 
used with biochips and mass spectrometry for protein monitoring. Cancer immu-
nomics can identify autoantibody signatures formed in response of cancer, particu-
larly breast or colorectal cancer [290]. This can also be performed with 
immunoblotting, immunoaffinity, 2DE, and chromatography to identify isolated 
antigens. Tissue microarray is also used to analyze biomarkers and development of 
diagnostic tests. It can combine with laser capture microdissection to identify embed-
ded tissue samples [291].

Various technologies have already been developed for protein quantification, 
functional analysis, posttranslational modification, and biomarker identification. 
Data generated using these technologies are useful in understanding biological sys-
tem and cancer. However, the current focus in proteomics understands the nature of 
proteins with complete analytical capabilities of expression level and mutational 
changes.

11.4.3  Challenges

Although proteomics is a promising field in cancer studies, it faces many challenges 
technically in protein separation analysis, genetic mutations, capillary electrophore-
sis, and cancer repositories, while designing personalized medicine for cancer 
 therapy. Development of biomarker panel and validation of identifying cancer 
 biomarkers are another challenge of the field. Bioinformatics plays a key role in 
providing initial information and is a powerful tool for analyzing data. Mishandling 
in this field may result in total shift of obtained results. Careful interpretation of the 
data may reveal the underlying mechanism of disease spread. Cancer heterogeneity 
is another challenge that can be minimized by proper study design and developing 
robust validation assays. Cancer is a complex disease, and in vitro analysis may dif-
fer from in vivo analysis in the tumor microenvironment. Studies designed in ani-
mal models may differ in humans, as the rate of cancer spread is different. Overall 
proteomics and related technologies do enable molecular results in clinical valida-
tion, but there is still a long way to go.

11.4.4  Future Prospects

Interdisciplinary collaboration among basic scientists, medical professionals like 
pathologist, radiologist, and oncologist and then bioinformatician, epidemiologists, 
and bioethicists is necessary for translating bench research to clinical side, 

11 Translational Research in Oncology



294

developing multicenter clinical trials, managements of big omics data, and a panel 
of biomarkers to adapt to the personalized medicine paradigm.

To accommodate this fast growing era of personalized medicine, training and 
education programs for physicians, nurses, residents, and students in the field are a 
requirement. Disease-related biomarkers need to be evaluated even for low molecu-
lar weight serum proteins for the early-stage diagnosis. Cancer diagnosis at early 
stage is a healthy sign for complete and proper treatment of patients. Other than the 
abovementioned perspectives, there is need to address some regulatory challenges 
and policies to be designed by the authorities to cope up with these challenges for 
the development of the new discipline of personalized medicine, which may provide 
promising treatment of diseases through the field in the healthcare system.

11.5  Conclusion

Proteomics play an integral role in the different approaches of cancer prognosis, 
diagnosis, understanding melagnancies, patient monitoring and response to particu-
lar therapies and risk assessments. Proteomics data serves as a large-scale analyzer 
of understanding oncogenes and onco-proteins. It is a promising tool that can enable 
scientist and clinicians in the field to evaluate and understand cancer at the molecu-
lar level and in designing personalized therapies. Furthermore, this field also aids in 
understanding protein interactions, biomarker role, signaling pathways, tumor het-
erogeneity, proliferation and spread of disease, mutational changes, and disease 
pathological and pathophysiological conditions. Still, with such dynamic applica-
tions, it also has some pitfalls and there are chances of errors. Therefore, the 
researchers need to carefully design the study that is also beneficial statistically 
according to the study question. To fulfill all the aspect of research, a strong and 
intense collaboration among different cancer field specialists is required to produce 
quality results that are robust and reliable as well. Discovery along with validation 
study is a need of the hour to understand the complex and mechanistic changes of 
cancer. However, it is very hard to lead a uniform impact of cancer research after 
these highlighted points and recommendations due to diverse and variable 
challenges.
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12.1  Introduction

Breast cancer is one of the most common malignancies and accounts for more than 
30% of cancer diagnosis among women throughout the world [1]. Increased breast 
cancer incidence rate can be evidenced from the findings that every eighth women 
in the United States is at risk of developing this brutal disease. Women not only 
from underdeveloped or developing countries become victim of this disease and 
struggle for survival, but also women from developed countries are also facing the 
same issue [2–5]. Breast cancer has heterogeneous nature in histological, pathologi-
cal, and clinical investigations, and it is always a challenge for surgeons/oncologists 
to identify suitable treatment for every patient [6, 7]. Conventionally, breast tumors 
were categorized by using slide-based techniques and histopathological attributes 
responsible for diagnosing ductal or lobular breast carcinoma and characterizing 
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tumor size, grade, and involvement of lymph nodes [8, 9]. With the advancement in 
molecular biology-related knowledge, different breast cancer molecular subtypes 
have been recognized based on the status of HR and HER2, which differ in chemo-
therapeutic responsiveness and disease prognosis [10]. Epithelial carcinoma is the 
most commonly diagnosed breast cancer type and, therefore, gathers greater atten-
tion in this chapter. Basic intrinsic epithelial breast carcinoma types are “luminal A, 
luminal B, HER2+, and basal-like cancer” [11, 12]. Androgen receptor-based epi-
thelial breast carcinoma types have also been reported [13].

Identifying precise molecular breast carcinoma subtypes could lead to more per-
sonalized method for breast cancer treatment via targeted therapies [14]. 
Furthermore, the clinical advantage experienced with agents targeting HER2/hor-
mone signaling has opened new ways to identify and test more molecular targets 
[15]. Advancement in the molecular profiling-related knowledge has revealed many 
novel genetic and epigenetic alterations/modifications as possible drivers of breast 
carcinoma biology [16]. Some of these genetic alterations that can help in character-
izing currently available breast cancer molecular subtypes are shown in Fig. 12.1.

After BRCA1/BRCA2, many other genetically targeted agents were explored in 
breast cancer and now in progress to become clinically important markers. Most 
important factor in recognizing some molecular marker is its role in treatment and 
patient’s overall survival. To address the potential of various biomarkers, response 
to treatment was evaluated with the help of clinical trials as a best source of confir-
mation and many are still in progress. The current chapter will highlight recent 
advancements in the molecular profiling of breast cancer leading to better disease 
diagnosis and treatment.

12.2  Molecular Profiling in Breast Cancer

Breast cancer molecular profiling is capable of monitoring and predicting treatment 
response in different ways [23] and can be determined with different techniques 
including RT-PCR [24, 25], immunohistochemistry [26, 27], fluorescence in situ 
hybridization (FISH) [28], DNA hybridization-based analysis [29], and next- 
generation sequencing (NGS) [30].

12.2.1  Genomic Tools for Detection of Breast Cancer

Genomics refers to the analysis of sequence and structural variations in DNA. It 
also involves investigation of gene expression and functional element annotation at 
a genomic scale. Genomic tools are used to detect indels, single nucleotide poly-
morphisms, and epigenetic modifications [31]. Genomic analyses lead to the devel-
opment of diagnostic tests which provided patients personalized diagnostic 
information [32]. It also helped for the development of personalized treatment 
plans, consequently preventing resistance, toxicity, and nonresponsiveness. Due to 
lack of knowledge involved in carcinogenesis, we are still targeting one drug, one 
gene, and one organ site model [33].

S. S. Malik et al.



315

Fi
g.

 1
2.

1 
B

re
as

t c
an

ce
r 

tu
m

or
’s

 m
ol

ec
ul

ar
 s

ub
ty

pe
s 

[1
7–

22
]

12 Molecular Profiling of Breast Cancer in Clinical Trials: A Perspective



316

12.2.1.1  Oncotype DX
Oncotype DX is RT-PCR-based genomic assay, optimized for FFPE biopsy speci-
mens [34]. The assay was established to predict recurrence score in breast cancer 
patients of stage I and II, lymph node-negative, hormone receptor-positive, and 
metastatic cancer, treated with tamoxifen [35]. It utilizes set of important genes 
customized after data evaluation form 447 patients. During the project, 250 genes 
were studied, and panel of 21 genes was derived for HR+ breast cancer patients, 
likely considered to be the prognostic for breast cancer. In this panel, 16 genes are 
related to cancer and 5 are reference genes as internal control [36]. The cancer-
related gene panel is associated with the genes of known functions involved in basic 
tumorigenesis pathways, i.e., cell proliferation, invasion, hormone response, and 
other oncogenes. Genes specifically related to breast cancer, incorporated on 
Oncotype DX, are shown in Fig. 12.2. It stratifies recurrence score between 0 and 
100 [37]. Score correlates to disease recurrence possibility among patients success-
fully treated with chemotherapy within 10 years of diagnosis. The significance of 
this assay was evaluated and validated by using cohort study from the National 
Surgical Adjuvant Breast and Bowel Project (NSABP) and trials B-14 and B-20 
[38]. Oncotype Dx predicts potential benefit from adjuvant chemotherapy. To date, 
Oncotype DX is the only multigene assay for breast cancer and incorporated in the 
guidelines of National Comprehensive Cancer Network (NCCN), highlighting its 
use and ability to predict the risk of recurrence and benefits from adjuvant chemo-
therapy [39–41]. According to guidelines, once patients treated with tamoxifen have 
been classified to lower risk of recurrence by the Oncotype DX assay, they can be 
spared from adjuvant chemotherapy [42].

Oncotype DX has become the most commonly used clinical assay, but few stud-
ies showed that immunohistochemistry (IHC) score provides similar prognostic 
information which is a less expensive and simpler alternative [36]. Other reports 

Fig. 12.2 Gene profile of Oncotype DX assay [44–46]
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show that Oncotype DX also provides information which can predict benefits from 
adjuvant chemotherapy [43].

12.2.1.2  MammaPrint
MammaPrint is a molecular diagnostic assay which involves microarray-based 
approach to predict tumor recurrence in breast cancer patients [44]. It consists of a 
customized panel of 70 genes that has been displayed sovereign prognostic value 
for lymph node-negative breast cancer patients and is associated with tumor devel-
opment and metastasis [47, 48]. These genes are the hallmarks of cancer and play 
roles in regulation of cell cycle, metastasis, invasion, proliferation, extravasation, 
adaptation to microenvironment, survival in circulation, and angiogenesis [36]. 
MammaPrint was initially established from expression arrays of whole genome 
using a cohort of breast cancer patients who had gone through definitive surgery 
only, with known clinical outcomes and with no systemic therapy [49].

In MammaPrint gene expression levels are determined by the probe-specific 
hybridization of complementary DNA [50]. In 2007, US FDA approved MammaPrint 
for freshly frozen tissue samples. During the process, RNA after extraction from 
tissues is amplified, co-hybridized is carried out using a standard reference, and 
70-gene expression profile is obtained [51]. MammaPrint has been shown as prog-
nostic indicator, independent of clinicopathologic features such as size of tumor, 
HER2 status, and hormone receptor status [52, 53]. This method has been reported 
to have significantly higher correlation of prognostic prediction to tumor recurrence 
[42]. In MammaPrint, patients are classified into low-risk and high-risk groups cor-
responding to a 10-year distant metastasis-free survival rate.

MammaPrint is a useful diagnostic tool, but there are many limitations that must 
be considered. The patient recommended for MammaPrint screenings should be of 
stage I or II lymph node-negative invasive breast cancer with tumor size less than 
5 mm3 [50, 54]. Further, MammaPrint is restricted to patients with less than 65 years 
of age, and it also needs large amount of specimen. Collection of tissue samples and 
handling make this assay hard for use in normal clinical practice [55]. Collection is 
very critical for optimum results and requires regions clear of both stromal and 
necrotic tissue with at least 30% of malignant cells, which may be impossible to 
obtain from a biopsy [56]. For these limitations, ASCO required further data and 
recommendations for usage of MammaPrint in clinical settings. To date, only 
Agendia laboratory (Amsterdam) performs this assay [57, 58].

12.2.1.3  PAM50 (Prosigna)
PAM50 is also a molecular test for tumor profiling which helps to evaluate chemo-
therapy benefits in addition to hormone therapy for ER-positive and HER2-negative 
breast cancers. It investigates the activity of 50 genes to predict the risk of distant 
recurrence from 5 to 10 years. It is based on qRT-PCR that has been recommended 
for FFPE tissue specimens of ER-positive, HER2-negative, basal, luminal A- and 
luminal B-like breast cancers [36]. It estimates the chances of metastasis for post-
menopausal women with stage I and II lymph node-negative breast cancers. 
However, multivariate analyses have revealed this assay also provides information 
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that is independent of clinicopathologic variables [59]. PAM50 provides the detailed 
quantitative information about luminal gene expression, proliferation, PGR, ESR1, 
and ERBB2 and, consequently, can be used for opting proper treatment decisions 
[36]. Different work is in progress to assess the efficacy of this test and has been 
reported to be superior to IHC and Oncotype DX for predicting the emergence of 
late relapses following adjuvant endocrine therapy. Prosigna is manufactured by 
NanoString Technologies, distributed to different pathology labs and is approved 
for use in the European Union [60].

12.2.1.4  Genomic Grade Index (GGI) (Ipsogen)
The GGI is a microarray-based test which includes 97 genes, created by Sotiriou 
et al., with the intention of making tumor grading system more precise. It was devel-
oped from the data of 189 breast cancer cohort and validated in different subtypes 
of 597 tumors [61]. GGI grades tumor into high risk and low risk instead of 1, 2, and 
3 grades of histopathology. GGI provides valuable information for estimation of 
breast cancer prognosis in ER-positive breast cancers and is also shown to help in 
prediction of relapse in endocrine-treated cancers [62] and prognosis in the patients 
with neoadjuvant therapy. The FDA has authorized the marketing of GGI to ipsogen 
JAK2 RGQ PCR Kit, manufactured by QIAGEN GmbH [63].

12.2.1.5  Breast Cancer Index (BCI)
Biotheranostics’ Breast Cancer Index (BCI) is a quantitative RT-PCR-based prog-
nostic test. For BCI formalin-fixed and FFPE tissue blocks are used. There are two 
outputs of this assay, based on unique gene signatures, which include BCI predic-
tive and BCI prognostic. BCI prognostic helps for assessment of patient’s individu-
alized risk for distant recurrence, while BCI predictive provides possibility of 
benefit from extended endocrine therapy, possibly more than 5 years. BCI includes 
two independent biomarkers, IL17BR:HOXB13 and five cell cycle-associated gene 
index, which helps to assess tumor grade. The test is limited to patients with ER+ 
and lymph node-negative cancer. So far, BCI has not added value information to 
other available prognostic tests limiting its clinical utility [64].

12.2.1.6  Theros H/ISM and MGISM

These are transcriptomic-based biomarkers. In Theros H/ISM clinical output of 
breast cancer individuals is determined who were treated with tamoxifen by evalu-
ating the expression of two genes HOXB13 and IL17BR. If the expression ratio of 
these mentioned genes is high, then it represents no response to tamoxifen and 
tumor aggressiveness [65]. MGISM is also a molecular diagnostic test. This test is 
carried out to check the recurrence risk by using five-gene expression index for 
ER-positive breast cancer individuals [66]. Thus, more data is required for superior-
ity of Theros H/ISM and MGISM compared with other conventional methods.

To date, many genomic tests have been developed to improve the diagnosis and 
therapy of breast cancer. The IMPAKT 2012 group assessed the effectiveness of 
different available tests, i.e., MammaPrint, Oncotype DX, Genomic Grade Index, 
PAM50, and EndoPredict. They reported that MammaPrint and Oncotype DX have 
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considerable validity and significance for both analytical and clinical aspects, in 
ER+ breast cancer patients. Unfortunately, no significant association of other tests 
with prognosis was observed, and further studies are required for their convincing 
clinical validity [64].

12.3  Immunohistochemistry in Molecular Profiling of Breast 
Cancer

12.3.1  Significance of Immunohistochemistry as a Diagnostic 
Tool

Personalized cancer therapy demands use of several biomarkers during histopatho-
logical diagnosis [67]. Surgical pathology heavily relies on immunohistochemistry 
for diagnosing various malignancies. Protein localization and tumor classification 
can be done by IHC [68], although molecular profiling assists immunohistochemis-
try (IHC) which is currently performed with the conventional markers for breast 
cancer prognosis. However, only ER-positive cancer patients get benefit from this 
information [69]. Immunohistochemistry is used to measure the expression level of 
predictive markers including estrogen receptor/progesterone receptor (ER/PR) and 
human epidermal growth factor receptor 2 (HER2) during clinical assessment of 
tumors [70]. Treatment approaches with antiestrogen or anti-HER2-based therapies 
are followed for subgroups of patients selected based on these predictive markers. 
In addition, this approach also aids in analyzing the recurring risk of cancer in such 
patients [71].

12.3.2  Advancements and Limitations of IHC Techniques

There are several limiting factors due to which conventional methods of IHC are not 
well acknowledged recently. These include extra labor, time expenditure, expenses, 
and the large amount of sample tissue required for the procedure. This can be 
explained by example of Oncotype Dx test used for identification and prognosis of 
breast cancer. It demands much time and labor as more than 20 genes need to be 
examined for their role in breast cancer [72, 73]. Although these issues are assumed 
to be resolved by using an automated IHC machine, expenditures of both money 
and time still remain major issues while dealing with a large number of biomarkers 
and tissue sample, respectively. Additionally, limitations like variations in results, 
qualitative evaluation, and subjective decision make this technique a less reputable 
proteomic tool [72].

12.3.2.1  Multicolored-Based Immunohistochemistry
In recent investigations, multiplexing method with molecular dyes and quantum 
dots (QDs) is used for multicolored-based IHC assays [74, 75]. Multicolor IHC has 
advantage that it facilitates co-expression of several biomarkers with both direct and 
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indirect sequential staining. However, several drawbacks are associated with multi-
color staining [76]. These include increased labor and time expenditure, higher 
reagent costs, and sensitive procedure of probe conjugation using less stable pri-
mary antibodies and non-specific binding of secondary probes. These undesired 
factors lessen the effectiveness of multicolored immunohistochemistry [77].

12.3.2.2  Microfluidic-Based Multiplexed Immunohistochemistry 
(MMIHC)

Integration of IHC-based assays with an appropriate multiplexing method can prove 
an efficient diagnostic method for cancer patients [78]. Immunohistochemistry has 
been further modified with microfluidic parallel multiplexed design for diagnosing 
breast cancer quantitatively. This methodology provides an enclosed microenviron-
ment in which fluids can be easily and timely manipulated [79]. Development of 
MMIHC platform demonstrates the enhanced IHC performance with accurate diag-
nosis, time, and cost-effectiveness as compared to previous methods which employ 
analysis of whole sections of breast cancer tissues [80]. Usually microfluidic devices 
are designed in such a way that glass slide and microchannel are permanently 
bonded together, and introduction of an interface between a microfluidic device and 
tissue slide has not been commonly reported by previous studies. Thus, it can be 
assumed that use of microfluidic design is not frequently practiced in studies with 
human clinical specimens [80–82].

Structural Design of Microfluidic Devices
Kim et al. had designed a microfluidic device by taking into consideration of solu-
tion number, biomarker count, and adequate reaction channel dimensions. Four bio-
markers were used including estrogen (ER), Ki-67, progesterone (PR), and human 
epidermal growth factor 2 (HER2) receptors. The device contained six and four 
reservoirs for reagents and biomarkers, respectively. In addition, microvalves for 
both reagent and biomarker reservoirs, four reaction channels, and one outlet were 
included in the design. Lastly, to maintain constant pressure and creating a tempo-
rary seal, a weight was put on the top of the device [80, 83].

Preparation and Assembly of MMIHC Assay
The procedure employed for the preparation of MMIHC device involved two-step 
soft lithography, poly(dimethylsiloxane) (PDMS; Sylgard 184; Dow Corning, MA) 
replica molding and aligning processes. To minimize tissue damage, an appropriate 
interface between MMIHC device and tissue slide was prepared. To assemble, bot-
tom plate of device was loaded with tissue slide. Afterward, tissue was treated with 
washing buffer, and four reaction channels containing MMIHC device were placed 
on it. Buffer was filled in microchannels carefully to avoid creation of micro- bubbles. 
Lastly, upper plate of the device was loaded with a weight so any leakage could be 
avoided, and tissues would be pressed with walls of microchannels [84, 85].
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12.3.2.3  Analysis of Human Breast Cancer Tissue with MMIHC
After initial testing and trials of MMIHC device, Kim et al. used this platform for 
examination of tumor tissues of patients. This modified technique minimizes need 
of additional externally connected equipment. A major advantage of using MMIHC 
platform is that probability of assay failure is reduced under 1%, which is frequently 
observed in case of clinically rare samples. Immunohistochemical staining can be 
easily repeated in this setup due to an enclosed microenvironment and semi- 
automation of the staining process, and antibody consumption is reduced up to 200- 
fold along with speedy immunological reaction. Additionally, comparison of 
MMIHC results with those of western blotting revealed that this technique can give 
better results for semiquantitative analysis of cell blocks. Its effectiveness is exhib-
ited by the fact that more accurate results are obtained during relative quantification 
due to single site biomarker staining which enables direct comparison and elimi-
nates undesired variation as observed in multistep conventional IHC [80].

Quantification with image analyses needs further advancements and improve-
ments in algorithms for clear scoring. Although MMIHC was considered more 
advantageous than earlier techniques, reliability of its results was doubted when 
compared to conventional whole tissue analysis [85]. These concerns are primarily 
based on scoring discrepancy probably caused by inborn errors of IHC due to varia-
tion in laboratory conditions or observer’s skills. Other reasons include selection of 
specimens, processing errors, representation methods of MMIHC results, etc. In 
conclusion, after required modifications, a more applicable, fast, and easy to quan-
tify MMIHC platform can improve the patient care conditions by facilitating clini-
cal diagnosis of breast cancer [85, 86].

12.4  High-Throughput Sequencing (NGS) Technologies

Human genome consists around 3 billion nucleotides and 22,000 genes comprising 
on 23 chromosomes. Conventional methods took 10–12 weeks for genetic testing of 
known genes involved in breast cancer. This turnaround time, along with cost and 
area of genome studied, improved with the advent of new technologies, i.e., next- 
generation sequencing [87]. It has also helped to achieve new treatment avenues and 
make patient’s lives better. Next-generation sequencing (NGS) has played very 
important role for investigations in such a heterogeneous and complex disease like 
breast cancer [88]. Firstly, it helped to characterize genome and exome of cancer 
patients. Along with unraveling the mutational processes, large-scale studies have 
discovered new genes associated with the disease. Advanced tools allow deep inves-
tigations of whole genome data and its correlation with disease stage, prognosis, 
and treatment options [89, 90].
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12.4.1  Identification of New Genes

NGS has led to the discovery of new “driver” and “passenger” mutations. It all par-
ticularly was at the highest peak in 2012, with exceptional unraveling of mutational 
landscape. Some of the mutations newly identified in 2012 are shown in Table 12.1.

12.4.2  Delineating the Mutational Steps in Cancer

Many studies illustrated the mutational process underlying the cause and propaga-
tion of breast cancer, out of which the study published by Nik-Zainal [95] was the 
most appealing one of that time. According to this most important driver mutation 
in case of breast cancer patients occur in genes like TP53, GATA3, PIK3CA, 
MAP2K4, SMAD4, MLL2, MLL3, etc., duration and strength of each mutation 
determine the mutational process or pathway to the disease.

12.4.3  Detecting Minimal Residual Disease (MRD)

Generally, circulating tumor cell in blood and bone marrow has impact in develop-
ment of breast cancer [96]. Nested real-time PCR has been used to detect tumor 
DNA in serum of relapsed breast cancer patients and to detect MRD. Early diagno-
sis can also be made by detecting serum DNA using NGS [97].

12.4.4  Drug Response Prediction

Various prognostic markers have been recognized which can not only identify 
patients with better or worse outcome of disease but can also predict response of 
patients to a certain treatment. It can not only reduce cost but save time as well. The 
most important markers studied till today in case of breast cancer are ER and HER2, 
having both prognostic and predictive roles. Oncotype Dx or recurrence score is 
used to estimate the expression level of 21 genes for stratifying ER breast cancer 

Table 12.1 Mutated genes identified through next-generation sequencing (NGS)

S. No Study Mutated genes
1 Stephens et al. 

[91]
AKT2, TBX3, ARID1B, CDKN1B, NCOR1, MAP3K1, MAP3K13, 
SMARCD1, CASP8

2 Banerji et al. 
[92]

RUNX1, CBFB

3 Shah et al. 
[93]

USH2A, COL6A3, MYO3A, NRC31, PRKCE, PRKCQ, PRKG1, 
PRPS2, PRKCZ

4 Cancer 
Genome Atlas 
[94]

AFF2, OR6A2, PIK3R1, PTPRD, NF1, RPGR, SF3B1, CCND3, 
CTCF, TBL1XR1, NCOR1, ZFP36L1, GPS2, CLEC19A, RYR2, 
HIST1H2BC, GPR32, SEPT13, PTPN22, DCAF4L2, OR6A2
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into high- and low-risk groups, using microarray analysis [98]. The use of whole 
genome sequencing techniques has given the insight into intra-tumor heterogeneity. 
Firstly, it showed the different subtypes of tumor with changed rearrangement pat-
terns and mutations; secondly, metastasis is altered in case of primary tumors. 
Thirdly, it has been proven that tumor can progress using distinct pathways.

12.5  Biomarkers in Randomized Clinical Trials (RCT)

Biomarkers are naturally occurring molecules, characteristics, or genes used to per-
form a clinical assessment (prediction, identification, and monitoring the health 
states of individuals) and planning new therapeutics. In clinical trials of different 
tumor types, the relationship between drug response to presence, absence, or any 
kind of change in biomarker was tested. This consists of proof-of-concept trials, 
which include integral and integrated biomarkers. In integral biomarkers trials, 
patients with presence or absence of specific biomarkers were included only, while 
in integrated biomarkers trials, biomarkers effect mainly on drug response was 
tested [99]. Main goal of biomarkers incorporation into clinical trials was specific 
selection of patients who were expected to be benefitted from some specific thera-
pies and to give more inclusive sight of how novel therapies function. But, incorpo-
ration of biomarkers into clinical trials is still challenging, because there is a need 
for considering some assays which can act as standards in different countries and 
clinical practices. A study of phase Ib/randomized phase II trial (double-blind clini-
cal trial of tamoxifen plus taselisib or placebo) for HR+ metastatic breast cancer 
patients found that clinical outcomes can be improved by combining PI3K-AKT- 
mTOR pathway inhibitors with prior endocrine therapy. Taselisib is PI3K inhibitor 
having higher selectivity for mutant (MUT) PI3Kα isoforms than wild type. 
POSEIDON phase Ib data with tamoxifen (TAM) plus taselisib revealed greater 
performance in metastatic Ca breast individuals with an acceptable toxicity profile. 
Patients were grouped based on histology, menopausal status, no prior chemother-
apy history, and treatment centers [100]. First randomized double-blind controlled 
clinical trial MANTICORE (Multidisciplinary Approach to Novel Therapies in 
Cardiology Oncology Research) was carried out on 100 early breast cancer patients 
at 2 centers. It was carried out in HER2+ early breast cancer (EBC) patients for 
evaluation of heart failure pharmacotherapy in the prevention of adjuvant 
trastuzumab- mediated left ventricular (LV) dysfunction. Adjuvant trastuzumab 
(TRZ) is mostly done for HER2+ overexpressing EBC patients with survival rates 
of 5 years. However, it has fivefold increased clinical heart failure rate. For preven-
tion of such negative sequelae, LV remodeling is recognized as an early indicator of 
heart diseases. One of the methods used for quantifying LV remodeling and func-
tion is cardiac magnetic resonance imaging (CMR). So, MANTICORE trial was 
designed for evaluation of heart failure pharmacotherapy in the prevention of adju-
vant trastuzumab-mediated left ventricular (LV) dysfunction. Patients were ran-
domized to receive perindopril, bisoprolol, or placebo prior to initiating TRZ. So, 
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this study has the potential to implement change in clinical practices with TRZ- 
based adjuvant therapy [101].

Programmed cell death-1 receptor and its ligands (PD-L1) are considered as 
therapeutic targets in reactivation of immune responses against cancer. Avelumab, 
an anti-PD-L1 antibody in clinical trials of metastatic breast cancer or locally 
advanced cancer, is being investigated (a phase Ib JAVELIN solid tumor trial). 
Immunohistochemistry was used to assess tumor PD-L1 with various cutoff criteria. 
Total 168 metastatic patients with HER2+, HER2−/ER+ or PR+, triple negative 
(TNBC = HER2−/ER−/PR−), or unknown biomarker were treated with avelumab. 
It showed a significant safety profile and had clinical activity in a subgroup of meta-
static breast cancer patients. In patients with triple negative breast cancer, clinical 
response to avelumab is associated with the presence of PD-L1-expressing immune 
cells within tumor cells [102].

A single-arm clinical trial (phase II) with only one agent platinum was conducted 
on TNB patients along with correlated biomarkers. In case of metastatic TNBC, 
with germline BRCA1/BRCA2 mutations, platinum is used as active chemothera-
peutic agent. Patients can be identified who could benefit from platinum therapy 
based on measurement of tumor DNA repair functions. Well-designed potential 
controlled trials that use diagnostically certified assays and predefined criteria are 
warranted to assess the clinical utility of DNA repair measurement for analyzing 
responsiveness to DNA-damaging agents and platinum [103]. These enrichment 
biomarkers, presently in clinical trials, may become predictive biomarker in the 
future after being clinically proven. Some examples are RAS mutations for both 
MAPK and PI3K pathway inhibitors, IGF mutations with IGF-1R antibodies and 
PTEN loss, and PIK3CA mutations for PI3K-Akt-mTOR pathway inhibitors. 
Various biomarker panels have been developed, like TruSeq Amplicon—Cancer 
Panel (TSACP) to assist identification of significant breast cancer-associated bio-
markers for research and for clinical practices [104] (Table 12.2).

12.6  Conclusion

Advancement in molecular profiling of breast tumor types has showed differential 
molecular features that affect responsiveness, prognosis, and resistance to therapy. 
In this new era, importance of molecular profiling for breast cancer diagnosis and 
treatment can be evidenced with the emergence of vast variety of techniques and 
assays in clinical practice. These technologies have proven to solve various diagnos-
tic issues, increased the information available from clinical trials, and paved toward 
personalized medicine overcoming the challenges of traditional techniques. 
Research is still in progress via clinical trials incorporating biomarkers to secure 
maximum benefits for breast cancer patients.
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Table 12.2 Completed and ongoing biomarker-driven clinical trials of breast cancer (mentioned 
in text)

Trial name/ID Agents Phase Patient population Status
NCT02530424 Palbociclib, fulvestrant, 

trastuzumab, and 
pertuzumab expression of 
Ki67

Phase 
II

Triple targeting of ER, 
HER2, and RB1 in 
HER2- and ER-positive 
Ca breast, n = 36 
patients

Ongoing

NCT02032277 Veliparib plus carboplatin 
or carboplatin
PARP inhibitor, 
neoadjuvant chemotherapy

Phase 
III

n = 634 patients 
triple-negative breast 
cancer, clinical stage 
II–III

Ongoing

NCT02162719
LOTUS

Ipatasertib plus paclitaxel 
versus placebo plus 
paclitaxel, PI3K/AKT 
pathway inhibitor

Phase 
II

Metastatic triple- 
negative breast cancer, 
n = 166 patients

Ongoing

NSABP B-42
Double-blinded, 
randomized trial

Placebo-controlled trial of 
extended adjuvant 
endocrine therapy (tx) with 
letrozole (L) (aromatase 
inhibitor (AI))

Phase 
II

Stage I–III, 
postmenopausal, and 
hormone receptor (+) 
Ca breast, n = 3966

Completed

Nanoparticle 
albumin-bound 
(nab) paclitaxel

ab-paclitaxel followed by 
FEC (5-FU [fluorouracil], 
epirubicin, and 
cyclophosphamide)

Phase 
II

HER2-negative breast 
cancer
n = 25 with no previous 
chemotherapy

Completed

NCT01889238
MDV3100 open 
label trial

Enzalutamide Phase 
II

Androgen receptor- 
positive TNBC

Not 
recruiting 
anymore

NCT01990209 Orteronel Phase 
II

Androgen receptor 
positive with metastatic 
breast cancer; n = 86

Ongoing

NCT01528345 Dovitinib, dovitinib 
placebo and fulvestrant

Phase 
II

Her− and HR+ 
metastatic 
postmenopausal 
individuals having 
progression after 
endocrine therapy, 
n = 97

Completed

NCT01791985 AZD4547 activity with 
either anastrozole or 
letrozole or both

Phase 
I/II

ER+ breast cancer 
patients with disease 
progression by 
letrozole and 
anastrozole, n = 56

Ongoing

NCT02437318
Double-blind 
randomized trial

Placebo controlled study 
of faslodex and alpelisib in 
combination

Phase 
III

HER2−, hormone 
receptor+, 
postmenopausal 
females and men with 
disease progression 
after aromatase 
inhibitor therapy, 
n = 572

Ongoing

(continued)
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Table 12.2 (continued)

Trial name/ID Agents Phase Patient population Status
NCT00773695
Multicenter 
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13.1  Systems Biology

Systems biology is the research endeavor that offers the basic scientific groundwork 
for synthetic biology. It is grounded on the molecular diversity of living systems [1]. 
It is an integrative system that connects different components in a single biological 
unit and also links different units like cells and tissues using holistic methods to 
characterize their functions through computational methods, quantitative 
approaches, and high-throughput technologies. Cells are made of different constitu-
ents that interact and make a network model, for example, metabolic, regulatory, 
and signaling networks that regulate various cellular functions. Several elaborated 
and dynamic models are available for signaling pathways [2].

The computational approaches deliver a comprehension to understand the 
dynamics and interaction within cells, organs, tissues, and organisms. For complex 
diseases, precision medicine and quantitative methods are influenced by systems 
biology [3]. The best example of system thinking is the Human Genome Project as 
it shows different ways to work on the problems in the field of genetics [4]. Its main 
purpose is to discover the properties of cells, tissues, and organisms working as a 
whole system whose description is possible only by using systems biology which 
involves metabolic networks [5]. Interpretation of the systems biology to obtain and 
investigate complex data sets by interdisciplinary tools and experimental studies 
generally starts with omics including genomics, transcriptomics, and metabolo-
mics. Other subdisciplines include phosphoproteomics, glycoproteomics, and areas 
to identify chemically modified proteins, metabolomics-, organismal-, tissue-, or 
cellular-level measurements of lipids [6].
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13.1.1  Dynamic State Characterization

For complex reaction networks, dynamic analysis involves tracing of time- dependent 
concentration changes and reaction fluxes over the time period. The three key points 
of dynamic states are:

• Time constant (the rate of change of a variable is considered by time constant)
• Aggregate variables (the biochemical and physiological events that are involved 

in unfolding. Basically, we move to the aggregate variables from the original 
concentration variables that eventually terminate in the overall dynamic features 
on slower time scales)

• Transitions (intricate networks can transition from one state to another state)

13.1.2  Formulation of Dynamic Network Models

Two different approaches (bottom-up and top-down) are used to formulate dynamic 
networks. In bottom-up approach, we identify all the events in the network in complex-
ity with the addition of more information from time to time to make the event com-
plete, whereas in top-down approach, all data and information is collected at the same 
time, and later this data is divided into smaller parts. The bottom-up analysis of any 
dynamic state of a network is based on the kinetic theory and network topology [2].

13.1.3  Cancer Systems Biology

It comprehends the application of systems biology methods to study the disease 
with evolving properties at different biological levels. It also helps to analyze how 
the disturbance in the intracellular pathways and networks of normal cells occurs 
during carcinogenesis for the development of effective prognostic models. These 
models can assist scientists in the validations of new treatments and drugs [7]. These 
perturbations are caused by the instability in tumors that changes the functions of 
different molecules. It is further convoluted due to the networks in a single cell and 
by the alterations in the interactions with the environment and whole individual dur-
ing the tumorigenic process itself. Therefore computational and mathematical 
methods are used in cancer systems biology to interpret the complexity [8].

Cancer systems biology combines basic and clinical cancer research, and it pro-
vides applications of systems biology methods to the cancer research, particularly:

 a. The need for improved methods to gain understanding from extensive networks
 b. The significance of assimilating multiple types of data in construction of further 

accurate models
 c. Trials in deciphering insights of tumorigenic mechanisms into therapeutic 

mediations
 d. The function of tumor microenvironment at different levels [9]
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13.1.4  Analysis of Cells at System Level

The system level provides the information at all the points of cell function. Different 
technologies are present which are supporting huge data quantity. This data needs to 
be handled and managed to make it into meaningful knowledge. Hence, organiza-
tion and scrutinization of all data sets are known as bioinformatics like omics that 
delivers large amount of information from proteins, metabolites, and mRNA. By 
utilizing the sequencing technology, one can find genomic sequence and depict its 
determinants that include single nucleotide polymorphisms (SNPs) and regulatory 
sites that control particular phenotype or its function in an organism [10]. 
Epigenomics describes the epigenetic modifications [11], and proteomics measures 
the proteins and posttranslational modifications [12]. Likewise, transcriptomics 
measures transcriptome [11], and the study of metabolites in the cells and tissues is 
metabolomics [13]. These experimental techniques may result in huge data collec-
tion that may become a basis for designing novel tools and algorithms to interpret 
unknown data sets through knowledge-based information and linking the outcome 
of system-level studies.

13.2  Computational Approaches Used in Systems Biology

The data obtained from omics is organized by various tools of bioinformatics. These 
data sets are then used to form networks. Topological features can be constructed 
from these networks of molecular interactions. In these networks, there are network 
motifs [14] and functional modules that can perform functional tasks and represent 
dynamical signal properties. Regulatory pathways that include different motifs, 
feedback loops, and modules could be mined to construct dynamical models [15] 
which are further used for simulations to understand their promising behavior in 
time and space. To study the drug actions, they can be combined with PK/PD mod-
els [16]. Figure 13.1 shows the computational approaches used in systems biology.

13.2.1  Systems Medicine

Systems medicine is based on systems biology and systems science. It reflects intri-
cate interactions within the human body with respect to the genome, environment, 
and behavior of the patient [17]. Systems medicine is used in research setups as it 
uncovers the unique and dynamic network of interactions which are crucial for 
influencing the progress of medical conditions. It also assists in determining molec-
ular targets against any condition for its therapeutic and diagnostic measures. The 
relationship between the dry and wet lab is supported by systems medicine as well 
[18]. The basic dissimilarity among systems biology and systems medicine is that 
systems biology assumes the data to be useable and correct, while systems medicine 
ensures to lead with molecular and clinical data sets to produce the pathways that 
might contribute to medicinal development to the adapted healthcare [19, 20]. The 
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basic difference between systems biology and systems medicine is that systems 
biology assumes the data to be useable and correct, while systems medicine ensures 
the validity of molecular and clinical data sets to interpret the pathways that may 
contribute to therapeutic possibilities to the adapted healthcare [19, 20].

13.2.2  Systems Medicine for Human Diseases and Novel Drugs 
Research

Systems medicine requires different features to achieve clinical and diagnostic 
goals [19]. One of the important areas in the systems medicine is the progress of the 
computational models that help to explain the disease advancement and effects of 
therapeutic interventions [21]. This is important for the better control of large data 
sets and also to elucidate wet laboratory in order to develop multifaceted interrela-
tionships among molecular targets.

Systems medicine plays a vital role in drug development whereby drugs are 
proven to be effective for one condition or ineffective for a different medical condi-
tion [22]. Jin et al. performed transcriptome expression analysis before and after the 
drug administration to observe the off-target effects of drug for signaling pathways. 
This study recognized a systems-based analytical approach named as Bayesian fac-
tor regression model (BFRM) accompanied by cancer signaling bridges (CSB), 
termed as CSB-BFRM, which is fruitful in the prediction of outcomes of clinical 
responses arising for Food and Drug Administration (FDA)-approved drugs through 
validation using three independent cancer models, thereby assuring the accuracy of 
systems medicine approach [23].

Fig. 13.1 Computational approaches in systems biology. Omics data are arranged using different 
tools of bioinformatics to construct networks. Regulatory pathways can be extracted from these 
networks for the formation of dynamic models. From dynamic models, the behavior of the system 
in time and space can be predicted and combined with PK/PD models for the drug action 
mechanism
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Systems medicine has an impact in recognizing innovative disease networks. 
The foremost exploration focuses on the connections of models that are influenced 
by the pathogenesis and are inactive or active in numerous disease conditions. 
MicroRNA (miRNA) research is one of the typical methodologies to recognize the 
application of systems medicine. As miRNA controls the transcripts, one miRNA 
perhaps deregulates the expression of numerous downstream target genes; there-
fore, it is possible that miRNA can be applied in many clinical conditions probably 
in a simultaneous manner [24]. Outline of systems medicine is shown in Fig. 13.2.

Systems medicine is paving its way for academics, clinicians, and researchers 
dealing with experimental research approaches. The probability to investigate an 
immense data from in silico and experimental approaches offers more understand-
ing into the complex molecular interactions. This assists to the enlightening of 
unusual dynamic interactions that are vital for medical conditions and therefore 
serve as clinically significant key molecules for future therapeutics [18, 24].

13.3  Computational Approaches

Extensive measurements of somatic mutations in the tumors are possible through 
high-throughput DNA sequencing technologies. Cancer genomics purposes to find 
out all the genes related to cancer and their involvements in cancer development. 
Cancer-driven mutation and pathways can be detected on the basis of biological 
networks and different computational approaches. They can be classified into (1) 

Fig. 13.2 Outline of the mandatory features for execution of systems medicine methods to mod-
ern medical research
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functional impact-based approach, (2) network- or pathway-based approach, (3) 
data integration-based approach, (4) mutation frequency-based approach, and (5) 
structural genomics-based approach [25]. Here, the approaches and the databases 
used for the identification of cancer genes and pathways will be focused.

13.3.1  Data Resources of Cancer-Related Genes, Networks, 
and Pathways

Different databases are present that contain information and function about cancer 
genes. Among them, COSMIC (The Catalogue Of Somatic Mutations In Cancer) 
is one of the largest databases. It includes mutations from the cancer cell lines and 
also the whole genome and exome of patients having cancer and hence provides 
detailed information of somatic mutations [26]. The Cancer Genome Atlas 
(TCGA) characterizes genomic changes in 33 cancer types which has enhanced 
the evaluation of genomic changes in cancer genomics. Single base substitutions 
in TCGA are 2,948,799, among them 1,648,416 are missense variants [27]. The 
International Cancer Genome Consortium (ICGC) aims to describe the epig-
enomic, transcriptomic, and genomic profiles of the cancer genomes of 50 differ-
ent cancer types [28].

cBioportal is a web source of visualizing and investigating cancer genomics 
data [29]. These annotation databases are helpful to decode the consequences 
among mutations and protein 3D structures. To identify driver mutations specifi-
cally in kinase domain, protein’s three-dimensional (3D) structure information is 
used. In context of the 3D structure, another database is Cancer3D to investigate 
missense somatic mutations [30]. dSysMap is a resource for mapping the missense 
mutations through the structurally annotated interactome of human. Recently, for 
studying function of noncoding somatic mutations, different projects have been 
initialized as protein-coding human genome is just <2% [31]. These include 
Encyclopedia of DNA Elements (ENCODE) [32], the functional annotation of the 
mammalian genome 5 (FANTOM5) [33], and NIH Roadmap Epigenomics [34]. 
These databases offer comprehensive resources of functional genomics data to 
describe regulatory role of noncoding mutations. Genotype-Tissue Expression 
(GTEx) project delivers genetic expression and regulation data for many human 
tissues. It helps to study the tissue-specific regulatory pathways that are changed 
by somatic mutations Consortium GT. Human genomics [35]. To study somatic 
cancer mutation, the Database of Curated Mutations (DoCM) is used. It includes 
1276 missense mutations and 1364 variants from 122 cancer subtypes [36]. Another 
community-edited web source named as Clinical Interpretations of Variants in 
Cancer (CIViC) is used for discovering different variants in cancer. It includes 
1767 variants until February 2018 and enables precision medicine for cancer treat-
ment [37]. Table  13.1 [38] shows all the data resources for cancer-driven 
mutations.
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13.3.2  Data Resources for Networks and Pathways

Detailed analysis based on gene networks has been applied to interpret somatic 
mutations in the cancer [39]. Protein-protein interaction (PPI) and pathway-related 
databases have been established such as Reactome [40], WikiPathways [41], 
Pathway Interaction Database (PID) [42], and Pathway Commons [43]. These 
databases have been widely used to assess the role of variants and somatic muta-
tions [44].

Some important PPI databases include BioGRID [45], HPRD [46], MINT [47], 
IntAct [48], STRING [49], PINA [50], PhosphoSitePlus [51], Phospho.ELM [52], 
PTMcode [53], Interactome3D [54], Instruct [55], and 3did [56].

PPI databases provide a network resource of complementary molecular interac-
tions to decipher the consequences of somatic variations in various cancers as they 
enlist literature-derived and experimental PPIs, 3D structure PPIs, and kinase- 
substrate- specific phosphorylation events (Fig. 13.3).

13.4  Computational Approaches and Methods

Computational methods help in the fastest way to characterize the disease. General 
approaches used for the investigation of somatic mutations are shown in Fig. 13.4. 
Through whole genome sequencing, list of mutations leading to cancer can be 
obtained.

Table 13.1 Data resources for the assessment of computational tools for somatic mutation genes 
and driver mutations in cancer

Name Depiction
COSMIC Comprehensive resources of somatic mutations
TCGA Characterize genomic changes in 33 cancer types
ICGC Describe epigenomic, transcriptomic, and genomic profiles of the 

cancer genomes
cBioPortal Visualization and investigation of cancer genomics data
Cancer3D Functional roles of somatic mutations via protein 3D structure
dSysMap For mapping the missense mutation on the structurally annotated 

interactome of human
ENCODE Comprehensive resources of functional genomics data
NIH Roadmap 
Epigenomics

Resources of functional genomics data

FANTOM Regulatory role of noncoding mutations
GTEx A resource for the tissue-specific regulation and gene expression
DoCM For somatic cancer mutations
CIViC For variants in cancer
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13.4.1  Mutation Frequency-Based Approaches

Significantly mutated genes (SMGs) in the cancer are defined by categorizing the 
genes that undergo more mutations than those based on the mutation model in a 
certain cancer type [57]. Table 13.2 [38] summarizes the computational approaches 
based on the mutation frequency such as Mutational Significant in Cancer (MuSiC). 
It incorporates the clinical data with sequence-based data to find out the relationship 
among affected genes, mutations, and pathways [58]. Similarly, ContrastRank 
 compares alleged defective rate of every gene against normal data [59]. As the 
model with low mutation frequency may lead to false positive results, thus other 
methods were projected. SMGs based on the gain of function mutation can be iden-
tified by OncodriveCLUST [60]. It showed that silent mutations play a vital role in 
cancer. OncodriveCLUST uses silent mutation as the background. Lawrence et al. 

Fig. 13.3 Data resources for prioritizing driver mutations and pathways in cancer
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established MutSigCV that uses the information of replication timing and gene 
expression to develop a patient-specific mutation model [57].

13.4.2  Functional Impact-Based Approaches

Computational methods offer a fast and an economical way to evaluate the impact 
of mutations. These methods help the researchers to find the putative mutations that 
can validate their experimental work. Multiple tools have been developed for the 
computational approaches. One of the tools is SIFT (The Sorting Intolerant from 
Tolerant) that finds out the impact of amino acid substitution in protein function. It 
is based on the extent to which an amino acid is conserved in sequence alignment 
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Fig. 13.4 General approaches used in the routine for the analysis of cancer somatic mutation
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Table 13.2 Summary of tools and computational approaches for the identification of driver muta-
tions and SMGs in cancer genome

Mutation frequency-based approaches

MuSiC An approach for determination of the mutational significance in 
cancer

MutSigCV An integrative approach that corrects for variants using patient- 
specific mutation frequency and spectrum and gene-specific 
background mutation model derived from gene expression and 
replication timing information

OncodriveCLUST Identifying genes with a significant bias toward mutation clustering 
in specific regions of proteins using silent mutations as a background 
mutation model

ContrastRank A method based on estimating the assumed defective rate of each 
gene in tumor against normal samples from the 1000 Genomes 
Project data

Functional impact-based approaches
MutationTaster A tool including evolutionary conservation and splice-site change 

information for the prediction of functional impacts of DNA 
sequencing modifications

MutationAssessor Based on evolutionary conservation patterns, it can predict the 
functional impacts

SIFT A tool that uses protein sequence homology for the prediction of 
biological effect of missense variations

PolyPhen-2 A tool for the prediction of the functional impacts of protein 
sequence variants by using three structure-based and eight sequence- 
based predictive features to build naive Bayes classifiers

CHASM and SNVbox Python programs that use the tumorigenic impact of mutations for 
cancer-related mutations

Condel A consensus deleteriousness score for evaluating the functional 
impact of missense mutations

OncodriveFM An approach based on functional impact bias using three well-known 
methods

CanDrA A tool based on a set of 95 structural and evolutionary features
PROVEAN For the prediction of functional effects of SNV and in-frame 

insertions and deletions
FATHMM A tool based on Hidden Markov model-based tool for functional 

analysis of driver mutations
CRAVAT A web-based toolkit for arranging missense mutations related to 

tumorigenesis
Data integration-based approaches
MAXDRIVER An approach that uses the data from copy number variant regions of 

cancer genomes for the prediction of SMGs
CONEXIC A computational framework that assimilates copy number variants 

and gene expression changes for prioritizing SMGs
CAERUS An approach for the prediction of SMGs using structural information 

of proteins, protein networks, gene expression, and mutation data
Helios For prediction of SMGs by the integration of functional and genomic 

RNAi screening data
OncoIMPACT A framework based on phenotypic impacts for highlighting SMGs

(continued)
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derived from the closely related sequences [61, 62]. SIFT can characterize impact 
of missense mutations. Another software named as Polymorphism Phenotyping v2 
(PolyPhen-2) is used with SIFT for better results. It predicts the impact of the vari-
ants by three structure-based and eight sequence-based features [63]. Another web 
server, MutationAssessor, uses a novel functional impact score for the characteriza-
tion of residual mutation. To define the evolutionary conservation patterns, which 
are taken from aligned families and subfamilies, it uses combinatorial entropy for-
malism [64]. The three methods mentioned above are useful for nonsynonymous 
SNVs only. Multiple methods incorporate domain information to predict the func-
tional impact of SNVs. One of them is OncodriveFM.  It identifies low recurrent 
candidate SMGs by utilizing the features of SIFT, MutationAssessor, and PolyPhen-2 
[65]. For rapid evaluation of DNA sequence, alteration that is involved in causing 
the disease can be assessed from MutationTaster. It uses the information from 
splice-site changes, conservation, and loss of protein features [66]. For somatic mis-
sense prediction, CHASM is used. It uses a Random Faster classifier trained with 49 
predictive features [67]. Another software based on Hidden Markov model, known 

Table 13.2 (continued)

Mutation frequency-based approaches

OncodriverROLE An approach that classifies SMGs into LoF and GoF
DOTS-Finder A tool based on functional and frequency for predicting SMGs in 

cancer
Structural genomics-based approaches
ActiveDriver For prediction of SMGs having driver mutations significantly 

changing phosphorylation sites of proteins
iPAC For the prediction of SMGs by using protein 3D structure
MSEA For the prediction of SMGs based on mutation patterns on domains 

of protein
CanBind For the prediction of SMGs using the information on the binding site 

of protein–ligand
Network or pathway-based approaches
PARADIGM-SHIFT It uses belief-propagation algorithm for ordering downstream 

pathways by a mutation in cancer
PARADIGM By incorporation of patient-specific genetic data, it detects consistent 

pathways in cancers
DriverNet By estimating the effect on mRNA expression networks, it identifies 

driver mutations
Personalized pathway 
enrichment map

From individual genome, it identifies alleged cancer genes and 
pathways

NBS An approach for stratifying tumor mutations
TieDIE An approach for identification of cancer-mutated subnetworks
DawnRank On the basis of PageRank algorithm, it prioritizes SMGs in a single 

patient
HotNet2 For the detection of mutated subnetworks in cancer, an algorithm is 

used to overcome the limitations of existing single-gene and network 
approaches

VarWalker A novel approach for prioritizing SMGs
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as FATHMM, helps in finding the cancer-associated mutations. It differentiates pas-
senger mutations from the amino acid substitutions associated with the cancer. This 
is achieved by integrating homologous sequence alignment and information of con-
served protein domains [68].

CRAVAT toolkit is used to highlight SMGs and mutations using SNVbox and 
CHASM [69]. Machine learning-based tool CanDrA is based on supporting vector 
machine (SVM) that incorporates 95 evolutionary and structural features for rank-
ing SMGs [70].

Despite the existence of multiple strategies, there are some limitations of these 
tools including lack of standard and positive results and selection of nonfunctional 
mutations.

13.4.3  Data Integration-Based Approach

Cancer data include transcriptome, somatic mutation, proteomics, methylation, and 
profiles of a tumor and matched normal tissues. It enables the investigators to inves-
tigate SMGs and mutations for precision medicine [71]. Data integration-based 
approaches include Driver Oncogene and Tumor Suppressor (DOTS)-Finder. It cat-
egorizes SMGs in cancer by integrating three features of a mutated gene: (1) muta-
tion pattern, (2) mutation frequency, and (3) effect on the gene product’s function due 
to the mutation [72]. It can also predict SMGs specific to oncogenes or tumor sup-
pressor genes. Another unique pipeline SVMerge detects the breakpoints and struc-
tural variants by local assembly information and structural variant algorithms [73].

In this regard a favorable direction is to develop an approach that uses the struc-
tural variant data like CNVs to rank the SMGs and driver mutations. Driver muta-
tions related to cancer can be identified by CONEXIC. It is done by integrating the 
CNVs and the genetic expression from tumor-normal samples [74]. They have also 
developed an algorithm, called Helios, that identifies SMGs within the amplified 
DNA regions by incorporating cancer genomics data into functional RNA interfer-
ence (RNAi) data [75]. Helios can assess the potential drivers without a previous 
genes list.

MAXDRIVER detects alleged SMGs by optimization strategies to build a het-
erogeneous network by integrating a fused gene functional similarity network with 
an already existing gene-cancer network [76]. A machine-based learning approach 
is the OncodriverROLE that categorizes SMGs into activated (Act) and LoF gene 
[77], although it is a major task for models based on machine learning. A data inte-
gration framework OncoIMPACT is based on the phenotypic impacts of patients 
and forecasts patient-specific SMGs [78].

13.4.4  Structural Genomics-Based Approach

With the advancement in technologies like X-ray crystallography and nuclear mag-
netic resonance, 3D structures have been generated that are available in different 
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databases like Protein Data Bank (PDB) [79]. In recent years, multiple tools have 
been developed that require either structure or sequence, because at the structural 
level, mutations are related with the diseases or drug targets. MSEA (mutation set 
enrichment analysis) is used to predict alleged SMGs. It is employed using two 
unique modules (MESA-clust and MESA-domain). MESA-clust is used to screen 
hotspot regions of mutations by scanning the genomic regions, while MESA- 
domain is based on the hotspot mutational patterns of protein [80]. Chang et  al. 
developed a network having global kinase-substrate interaction. This network con-
tains 1961 substrates having 36,576 sites for phosphorylation and 7346 pairs con-
necting 379 kinases [81]. Another approach, ActiveDriver [82], is based on the 
hypothesis that the cancer-driven mutations may alter the phosphorylation sites of 
the protein [83]. It analyzes missense point mutations and uses all the phosphoryla-
tion sites given in the literature as a mixture training set. A computational pipeline 
is based on protein pocket to study the functional concerns of somatic mutations in 
the cancer [84]. Those regions where small molecules and drugs binding occur are 
known as protein pockets. The mutations lying at these sites may alter the function 
of protein leading to cancer. SGDriver is based on the relationship among protein 
3D structures and somatic mutations to delineate SMG products [85]. SGDriver 
helps to find out the druggable mutations that can be used in the upcoming field of 
cancer precision medicine. CanBind is a tool to rank the SMGs that contains the 
mutations by altering their peptide binding sites or nucleic acids. Identification of 
Protein Amino acid Clustering iPAC is another algorithm; it prioritizes nonrandom 
somatic mutations present in the proteins using the 3D structure of a protein [86, 
87]. eDriver is another tool to characterize SMGs based on the internal division of 
somatic missense mutations between protein domains [88]. The development of 
new tools and approaches will provide exceptional prospects for the clinical appli-
cations of cancer genomics data.

13.4.5  Network- or Pathway-Based Approach

Various molecular structures of the cell form a dynamic network. Any genetic 
change in molecular network frame can cause disturbance in the pathway [89]. 
Large amount of cancer genomics data obtained from the NGS helps to understand 
the network-level studies of tumor initiation and progression. As cancer is an intri-
cate disease having changes at the network level, hence there is a dire need to char-
acterize the SMGs and driver mutations. A unique method called PARADIGM 
detects these pathways by incorporating specific genetic data of the patient. 
PARADIGM-SHIFT includes downstream pathways which are changed due to 
mutations by incorporation of gene expression, somatic mutations, and CNVs using 
a belief-propagation algorithm [90]. It identifies potential functional effects as well 
such as gain of function (GoF) and loss of function (LoF). TieDIE is based on the 
network diffusion approach. It is used for the prediction of gene expression changes 
due to genomic alteration [91]. It identifies a cancer-specific subnetwork by the 
incorporation of transcriptomic and genomics data into networks originated by 
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PPIs. The downstream transcriptional alterations due to somatic variations are also 
recognized. DriverNet is a computational network to recognize the mutations by 
their effects on mRNA expression network [92]. It identifies rare mutations that 
mediate oncogenic networks. DawnRank is a computational approach to character-
ize SMGs on an individual patient using PageRank algorithms [93]. The first per-
sonalized tool to rank the SMGs by somatic variation is VarWalker. It uses the 
somatic variation information from the genome and then adjusts gene length by 
resampling the mutations. It includes cancer genomics data on a large scale using 
random walk with restart algorithm [94].

Network-based stratification (NBS) is a unique approach based on network. It 
stratifies cancer subtypes on the basis of somatic mutation profiles presented in an 
individual tumor [95]. On the basis of genome-scale interaction network, HotNet 
identifies mutated pathways in cancer [96]. HotNet2 has been developed by the 
same group for the detection of subnetworks having mutation. It is done by the 
insulated heat-diffusing process [96]. They recognized 16 considerably mutated 
subnetworks that include well-known cancer signaling pathways during pan-cancer 
analysis to recognize the genes that are occasionally mutated in pan-cancer data sets 
and in individual cancer data sets. (Pan-cancer analysis revealed that some tumors 
were more likely to be molecularly and genetically the same due to the types of their 
rising cells instead of the origin of tissue site.) These approaches are successful, but 
they have some limitations as well, as the current PPI networks cover only 20–30% 
pairwise PPIs in humans [97]. This shows that current human interactome may be 
incomplete [98]. Many structural variants, gene expression and methylation pat-
terns, and noncoding variants are not supposed in the abovementioned approach. 
Another limitation is that the pathways are sometimes prone to error because they 
are generated on the computational or experimental data, which are always mixed 
on the condition specificity. Thus development of an integrative framework to 
improve human interactome knowledge may offer a complete collection of mutated 
pathways or networks in the cancer.

In Table 13.2 and in Fig. 13.5, all computational approaches used for the muta-
tional analysis and data resources are shown.

As the technology fastens, tool development for the calculations, measurements, 
assessment, and integration of data is becoming important [99]. Table 13.2 enlists 
many online databases that are used for storage of genomic-scale data, regulatory 
sequence [100], and proteomic analysis [101]. These databases provide the data by 
which cancer models can be evaluated. As the challenges remain, development of 
more accurate and biologically powerful in silico tools for representation of human 
cancer is needed. The general resources and databases used in distributing large 
amount of data are shown in Table 13.3.

13.5  Precision Medicine

The concept in precision medicine is based on the lifestyle, environment, and genes 
of a person. With the advancement in the genetics, we have gained the opportunity 
to make the personalized care of a patient into reality. Precision medicine for breast 
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cancer is the most tempting area, but still it is facing a lot of challenges. Other mea-
sures may help in early detection of breast cancer like monitoring of circulating 
tumor DNA and ultradeep sequencing.

13.5.1  Precision Medicine Tools

Identification of genomic changes in patients having the breast cancer helps to adopt 
the therapy. With the passage of time, different tools are serving for the therapeutic 
approach; for example, immunohistochemistry was lately used to stratify breast 
cancer patients with the presence of biomarkers. Now it is used to determine HER2 
and ER [125]. To find the copy number, fluorescence in situ hybridization (FISH) is 
used. DNA array [126], RT PCR [127], or NanoString Technologies [128] is widely 
used for gene expression quantification. These assays are employed in the early 
stage detection of breast cancers according to their risk of reversion. NGS is also 

Fig. 13.5 A summarize form of computational approaches used in the cancer mutation analysis

13 Systems Biology and Integrated Computational Methods for Cancer-Associated…



350

Table 13.3 General resources and databases for in silico analysis of cancer

Resource Database References
Genome sequence data Ensemble Flicek et al. [102]

UCSC genome browser Karolchik et al. 
[103]

Genome annotation data
Genetic elements Entrez gene Maglott et al. [104]

Gene ontology annotation 
database

Camon et al. [105]

Universal protein knowledge base Apweiler et al. 
[106]

Genome reviews Sterk et al. [107]
Biochemical pathways and 
functional associations

Kyoto encyclopedia of genes and 
genomes

Ogata et al. [108]

Gene ontology Ashburner et al. 
[109]

The SEED DeJongh et al. 
[110]

MetaCyc Krieger et al. [111]
BioCyc Karp et al. [112]
TransportDB Ren et al. [113]

Regulatory sequences Eukaryotic promoter database Cavin Périer et al. 
[100]

Transcriptional regulatory element 
database

Zhao et al. [114]

Model, model parameter 
repositories

Kinetic data of biomolecular 
interactions database

Ji et al. [115]

BioModels database Le Novère et al. 
[116]

Database of quantitative cellular 
signaling

Sivakumaran et al. 
[117]

Protein interaction networks Database of interacting proteins Xenarios et al. 
[118]

Molecular INTeraction database Zanzoni et al. 
[119]

Mammalian protein-protein 
interaction database

Pagel et al. [120]

High-throughput genome-scale data
Transcriptomics Gene expression omnibus Edgar et al. [121]

Stanford microarray database Sherlock et al. 
[122]

Proteomics Proteomics identifications 
database

Martens et al. 
[101]

Visualization and data management 
software packages

Cytoscape Shannon et al. 
[123]

The Gaggle Shannon et al. 
[124]

A. Zia and S. Rashid



351

used for the identification of dominant mutations in multigene panel. For the detec-
tion of minor sub-clonal alterations, ultradeep sequencing can be used. Nucleic acid 
detection as well as protein expression pattern is required for the comprehensive 
molecular profile of the tumors.

13.5.2  Limitations of Precision Medicine

Although there are multiple applications and high-throughput technologies, still 
many limitations and several challenges are needed to be addressed. A few of them 
are described below.

13.5.2.1  Logistical and Operational Challenges
• It is very challenging to complete drug testing trials in genomic segments, 

although these variations are rare and still randomized clinical trials are needed 
for the approval.

• Genomic results for a certain amount of patients cannot be delivered as biopsy is 
not achievable for all the patients. Previously known DNA alterations are not 
enough to explain the progression of cancer in large amount of patients.

• Development of drug and its access is limited due to lesser amount of patients 
and locations. Genomic tests are very expensive and unaffordable as a private 
company runs those genomic tests.

13.5.2.2  Scientific Challenges
• Response rates are very low, as multiple pathways are activated resulting in the 

failure to recognize oncogenic driver.
• Due to the pressure of treatment, additional genomic changes may occur, causing 

secondary resistance [129].

13.6  Genomic Medicine

Genomic medicine uses the genetic information of an individual as part of his care. 
It helps to predict disease risk and plots disease course. Genomic medicine makes 
the plan management according to the need of the patient [130]. The technologies 
such as high-throughput sequencing and analytical tools help to analyze thousands 
of molecules simultaneously. Together with computational biology, we can interpret 
large amount of data sets obtained. The demand for molecular characterization of 
the disease has been increased to identify the markers for prognosis by the introduc-
tion of targeted therapy. This also assists in developing new therapies [131]. Such 
analyses will also help in early cancer detection and better treatment [132].
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13.6.1  Genomic Sequencing for Assessment of Disease

In personalized medicine, NGS has provided us with several promising applica-
tions. Genome sequencing may also provide important assistance for reproductive 
health. This includes prescreening of mothers for mutations related to metabolic and 
other disorders [133]. Exome sequencing also offers molecular-based diagnosis as 
it identifies the novel mutation.

The applications of genomic medicine are as follows:

 1. Inspection of difference among healthy individuals
 2. Disease hindrance
 3. Understanding disease risk, susceptibility, and etiology
 4. Diagnosis of challenging cases with indecisive results for clinical parameters
 5. Classification of accurate disease based on molecular signature
 6. Early diagnosis to modify disease course
 7. Identification of new mutations related to disease
 8. Development of new targeted therapies
 9. Personal drug-related profile identification
 10. Patients selection for clinical trials
 11. Monitoring disease status
 12. Evolution of tumor in response to treatment
 13. Health management

Furthermore, risk assessment for diseases like diabetes, cancer, and hypertension 
is economically efficient. It will significantly decrease the treatment problems and 
may be followed up for prolonged time period [134]. In Fig. 13.6, multistep process 
is shown.

13.6.2  Genomics Databases

Many genome-wide studies have been applied for the analysis of single nucleotide 
polymorphisms (SNPs) to examine the genetic variants in different individuals and 
their effects and its relation with disease risk. In 2005, age-related macular degen-
eration was investigated [135]. Since then, almost 4000 more associations of SNPs 
with the disease have been identified [136]. Several international projects have been 
designed on the oncology frontier to enlist somatic alterations at different levels 
through exome sequence analysis, mRNA and microRNA (miRNA) production, 
DNA copy numbers, and promoter methylation. These projects include the Cancer 
Genome Atlas (http://cancergenome.nih.gov/) [137], the Cancer Genome Project 
[138], and Hudson et al. [28]. Furthermore, NIH has initiated extensive genomic 
variation analyses in different diseases by launching various initiatives. Overall, 
collection of large amount of data at different levels holds a great promise to under-
stand disease management [133]. There are several databases that collect the data to 
gain a meaningful conclusion.
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Examples of such databases are i2b2 (Informatics for Integrating Biology and 
the Bedside; https://www.i2b2.org) [139] and locus-specific mutation databases, 
such as the Human Gene Mutation Database or HGMD (http://www.hgmd.cf.ac.uk/
ac/index.php) [140]. Hence data taken from NGS must be inferred in the perspective 
of environmental conditions and clinical variables for better results.

13.6.3  Monitoring the Personal Genome

Integrative personal omics profiling (iPOP) is a new approach for monitoring per-
sonal genome as it combines metabolomics, genomic, proteomic, transcriptomic, 
and autoantibody profiles of the same person to follow genomic and transcriptomic 
composition over long periods. By the connection of genetic information with 
dynamic “omics” activities, it can evaluate disease state and healthy state. These 
profiles associated with different states are integrated in this approach at multiple 
time points. An extensive database may be generated with the profiles from more 
individuals having different kinds of diseases. Such databases might be useful in the 
monitoring, diagnosis, and disease treatment [141].

Fig. 13.6 A multistep process for translating genomics to clinical data
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13.6.4  Potential Challenges of Genomic Medicine

Although a lot of development has been made, still there are some challenges in the 
genomic medicine; few of them are given here:

• It is difficult to interpret data and extract actionable items.
• Rules must be set in implementation of new molecular tests.
• Cost-effectiveness. An important apprehension in molecular testing.
• Patient heterogeneity that occurs with the same cancer type and ethnic variation 

while interpreting genomics data must be addressed carefully.
• “Test accuracy” should improve with time.
• There also is a huge risk of incidental findings and false-positive results.
• Training and teamwork efforts are also needed [142].

13.7  Mathematical Models

Mathematical models allow the researchers and investigators in intricating pro-
cesses that are connected to each other and how their disturbance leads to the dis-
ease development. It also helps to analyze system perturbations systematically and 
to develop hypothesis for the development of new tests for experiments. Ultimately, 
new therapeutic targets can be evaluated. Models that describe biological system are 
very complex to handle manually that is why they are handled numerically. One of 
the biggest advantages of the mathematical model for the biological systems is com-
puter simulations. These simulations have a lot of benefits. Firstly, a comprehensive 
molecular scenario can be seen by looking at the discrepancies between the behav-
ior of system projected by mathematical modeling and its actual behavior calculated 
in experiments. Secondly, with the help of mathematical modeling system, various 
perturbations can be seen, for example, after drug administration and developmental 
signals, etc. Thirdly, mathematical simulations are not bound like wet experiments; 
different experimental conditions can quickly be investigated by computer simula-
tions [143].

13.7.1  Mathematical Equations for Biological Systems Behaviors 
Modeling

Understanding the biological system is the first step for modeling as different kinds 
of mathematical frameworks have been developed to model various biological sys-
tems. It is important to understand the biological process for selecting the optimal 
modeling approach because for modeling of different biological systems, diverse 
mathematical frameworks have been developed. For instance, dynamic processes 
govern different cellular systems so that the cell adapts its environmental changes. 
For the description of time-dependent phenomena, it is vital to select mathematical 
equations that can capture the dynamic effects. Modeling of metabolic processes is 
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essential for a living organism. It provides the energy to the cell by delivering build-
ing blocks for the large molecules. Biological research has been dedicated to metab-
olism for many years, and still full pathways are not known. A main factor is 
metabolic flux in any metabolic study, that is, conversion rate of metabolites together 
with a metabolic pathway.

Modeling of signaling and regulatory pathways functions as the central control 
machinery of a cell. It firmly regulates responses of the cell to the stimuli. These 
pathways involve the signal transmission from cell membrane into the nucleus of 
the cell. Pathways are mainly triggered by binding of certain extracellular biomol-
ecules to the receptor as a result; the receptor’s 3D structure may be changed. 
Modeling of comparatively simpler signaling networks revealed that signal trans-
mission from the cell shows unexpected behaviors, such as periodic enhancement 
patterns of the initial signals [144].

13.8  Conclusion

NGS have assisted researchers to produce large amount of somatic mutations and 
cancer genomics data in rare and common cancer types. Genetic alterations contain-
ing small insertions or deletions, single nucleotide variants, large chromosomal 
rearrangements; gene fusions are cause of causing cancers. Many computational 
tools have been developed for pinpointing the cancer genes and driver mutations 
from millions of somatic cancer mutations. The chapter focused on computational 
methods for the prediction of mutations based on their structure, analysis of mis-
sense mutations in the 3D protein structure, and its effects on stability and interac-
tions. Albeit cancer genomics is still in its beginning, the exceptional production of 
cancer genomics data assured the better prediction of novel cancer genes. With the 
increase in number of tumor samples, these computational methods and approaches 
helped in interpretation of tumor heterogeneity. It facilitated the identification of 
cancer-driven mutations and delineation of dysregulated pathways which can be 
targeted by drugs through precision and genomic medicine.

References

 1. Breitling R (2010) What is systems biology? Front Physiol 1:9. https://doi.org/10.3389/
fphys.2010.00009

 2. Palsson BO, Abrams M (2011) Systems biology: simulation of dynamic network states. 
Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511736179

 3. Tavassoly I, Goldfarb J, Iyengar R (2018) Systems biology primer: the basic methods and 
approaches. Essays Biochem 62:487–500. https://doi.org/10.1042/EBC20180003

 4. Chergui M (2009) Physical biology from atoms to medicine edited by Ahmed Zewail. Angew 
Chem Int Ed 48:3014–3016. https://doi.org/10.1002/anie.200900611

 5. Longo G, Montévil M (2014) Perspectives on organisms. Springer, Berlin. https://doi.
org/10.1007/978-3-642-35938-5

13 Systems Biology and Integrated Computational Methods for Cancer-Associated…

https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.1017/CBO9780511736179
https://doi.org/10.1042/EBC20180003
https://doi.org/10.1002/anie.200900611
https://doi.org/10.1007/978-3-642-35938-5
https://doi.org/10.1007/978-3-642-35938-5


356

 6. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable 
predictive and preventative medicine. Science 306:640–643. https://doi.org/10.1126/
science.1104635

 7. Barillot E (2012) Computational systems biology of cancer. CRC Press, Boca Raton. https://
doi.org/10.1201/b12677

 8. Werner HMJ, Mills GB, Ram PT (2014) Cancer systems biology: a peek into the future of 
patient care? Nat Rev Clin Oncol 11:167–176. https://doi.org/10.1038/nrclinonc.2014.6

 9. Gentles AJ, Gallahan D (2011) Systems biology: confronting the complexity of cancer. 
Cancer Res 71:5961–5964. https://doi.org/10.1158/0008-5472.CAN-11-1569

 10. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in 
functional genomics. Genomics 92:255–264. https://doi.org/10.1016/j.ygeno.2008.07.001

 11. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. 
Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

 12. Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human 
protein-protein interaction network. Nature 437:1173–1178. https://doi.org/10.1038/
nature04209

 13. German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century 
of biochemistry to guide human health. Metabolomics 1:3–9. https://doi.org/10.1007/
s11306-005-1102-8

 14. Tyson JJ, Novák B (2010) Functional motifs in biochemical reaction networks. Annu Rev 
Phys Chem 61:219–240. https://doi.org/10.1146/annurev.physchem.012809.103457

 15. Kafri R, Levy J, Ginzberg MB et  al (2013) Dynamics extracted from fixed cells reveal 
feedback linking cell growth to cell cycle. Nature 494:480–483. https://doi.org/10.1038/
nature11897

 16. Iyengar R, Zhao S, Chung S-W et al (2012) Merging systems biology with pharmacodynam-
ics. Sci Transl Med 4:126ps7. https://doi.org/10.1126/scitranslmed.3003563

 17. Federoff HJ, Gostin LO (2009) Evolving from reductionism to holism: is there a future for 
systems medicine? JAMA 302:994–996. https://doi.org/10.1001/jama.2009.1264

 18. Ayers D, Day PJ (2015) Systems medicine: the application of systems biology approaches 
for modern medical research and drug development. Mol Biol Int 2015:698169. https://doi.
org/10.1155/2015/698169

 19. Cardinal-Fernández P, Nin N, Ruíz-Cabello J, Lorente JA (2014) Systems medicine: a new 
approach to clinical practice. Arch Bronconeumol 50:444–451. https://doi.org/10.1016/j.
arbr.2014.09.001

 20. Tillmann T, Gibson AR, Scott G et  al (2015) Systems medicine 2.0: potential benefits of 
combining electronic health care records with systems science models. J Med Internet Res 
17:e64. https://doi.org/10.2196/jmir.3082

 21. Costa J (2008) Systems medicine in oncology. Nat Rev Clin Oncol 5:117–117. https://doi.
org/10.1038/ncponc1070

 22. Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrat-
ing existing methods into efficient pipelines. Drug Discov Today 19:637–644. https://doi.
org/10.1016/j.drudis.2013.11.005

 23. Jin G, Fu C, Zhao H et  al (2012) A novel method of transcriptional response analy-
sis to facilitate drug repositioning for cancer therapy. Cancer Res 72:33–44. https://doi.
org/10.1158/0008-5472.CAN-11-2333

 24. Mestdagh P, Lefever S, Pattyn F et al (2011) The microRNA body map: dissecting microRNA 
function through integrative genomics. Nucleic Acids Res 39:e136. https://doi.org/10.1093/
nar/gkr646

 25. Dimitrakopoulos CM, Beerenwinkel N (2017) Computational approaches for the identifica-
tion of cancer genes and pathways. Wiley Interdiscip Rev Syst Biol Med 9:e1364. https://doi.
org/10.1002/wsbm.1364

 26. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in 
the catalogue of somatic mutations in cancer. Nucleic Acids Res 39:D945–D950. https://doi.
org/10.1093/nar/gkq929

A. Zia and S. Rashid

https://doi.org/10.1126/science.1104635
https://doi.org/10.1126/science.1104635
https://doi.org/10.1201/b12677
https://doi.org/10.1201/b12677
https://doi.org/10.1038/nrclinonc.2014.6
https://doi.org/10.1158/0008-5472.CAN-11-1569
https://doi.org/10.1016/j.ygeno.2008.07.001
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nature04209
https://doi.org/10.1038/nature04209
https://doi.org/10.1007/s11306-005-1102-8
https://doi.org/10.1007/s11306-005-1102-8
https://doi.org/10.1146/annurev.physchem.012809.103457
https://doi.org/10.1038/nature11897
https://doi.org/10.1038/nature11897
https://doi.org/10.1126/scitranslmed.3003563
https://doi.org/10.1001/jama.2009.1264
https://doi.org/10.1155/2015/698169
https://doi.org/10.1155/2015/698169
https://doi.org/10.1016/j.arbr.2014.09.001
https://doi.org/10.1016/j.arbr.2014.09.001
https://doi.org/10.2196/jmir.3082
https://doi.org/10.1038/ncponc1070
https://doi.org/10.1038/ncponc1070
https://doi.org/10.1016/j.drudis.2013.11.005
https://doi.org/10.1016/j.drudis.2013.11.005
https://doi.org/10.1158/0008-5472.CAN-11-2333
https://doi.org/10.1158/0008-5472.CAN-11-2333
https://doi.org/10.1093/nar/gkr646
https://doi.org/10.1093/nar/gkr646
https://doi.org/10.1002/wsbm.1364
https://doi.org/10.1002/wsbm.1364
https://doi.org/10.1093/nar/gkq929
https://doi.org/10.1093/nar/gkq929


357

 27. Weinstein JN, Collisson EA, Cancer Genome Atlas Research Network et  al (2013) The 
Cancer Genome Atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.
org/10.1038/ng.2764

 28. Hudson TJ, Anderson W, International Cancer Genome Consortium et al (2010) International 
network of cancer genome projects. Nature 464:993–998. https://doi.org/10.1038/
nature08987

 29. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genom-
ics and clinical profiles using the cBioPortal. Sci Signal 6:11. https://doi.org/10.1126/
scisignal.2004088

 30. Porta-Pardo E, Hrabe T, Godzik A (2015) Cancer3D: understanding cancer mutations through 
protein structures. Nucleic Acids Res 43:D968–D973. https://doi.org/10.1093/nar/gku1140

 31. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 
291:1304–1351. https://doi.org/10.1126/science.1058040

 32. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the 
human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

 33. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across 
human cell types and tissues. Nature 507:455–461. https://doi.org/10.1038/nature12787

 34. Kundaje A, Meuleman W, Roadmap Epigenomics Consortium et al (2015) Integrative anal-
ysis of 111 reference human epigenomes. Nature 518:317–330. https://doi.org/10.1038/
nature14248

 35. GTEx C (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 
regulation in humans. Science 348:648–660

 36. Ainscough BJ, Griffith M, Coffman AC et al (2016) DoCM: a database of curated mutations 
in cancer. Nat Methods 13:806–807. https://doi.org/10.1038/nmeth.4000

 37. Griffith M, Spies NC, Krysiak K et  al (2017) CIViC is a community knowledgebase for 
expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49:170–174. 
https://doi.org/10.1038/ng.3774

 38. Cheng F, Zhao J, Zhao Z (2016) Advances in computational approaches for prioritizing driver 
mutations and significantly mutated genes in cancer genomes. Brief Bioinform 17:642–656. 
https://doi.org/10.1093/bib/bbv068

 39. Cheng F, Jia P, Wang Q et al (2014) Studying tumorigenesis through network evolution and 
somatic mutational perturbations in the cancer interactome. Mol Biol Evol 31:2156–2169. 
https://doi.org/10.1093/molbev/msu167

 40. Croft D, Mundo AF, Haw R et  al (2014) The reactome pathway knowledgebase. Nucleic 
Acids Res 42:D472–D477. https://doi.org/10.1093/nar/gkt1102

 41. Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communi-
ties on biological pathways. Nucleic Acids Res 40:D1301–D1307. https://doi.org/10.1093/
nar/gkr1074

 42. Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic 
Acids Res 37:D674–D679. https://doi.org/10.1093/nar/gkn653

 43. Cerami EG, Gross BE, Demir E et al (2011) Pathway Commons, a web resource for biologi-
cal pathway data. Nucleic Acids Res 39:D685–D690. https://doi.org/10.1093/nar/gkq1039

 44. Leiserson MDM, Vandin F, Wu H-T et  al (2015) Pan-cancer network analysis identifies 
combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 
47:106–114. https://doi.org/10.1038/ng.3168

 45. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction data-
base: 2013 update. Nucleic Acids Res 41:D816–D823. https://doi.org/10.1093/nar/gks1158

 46. Keshava Prasad TS, Goel R, Kandasamy K et  al (2009) Human protein reference data-
base--2009 update. Nucleic Acids Res 37:D767–D772. https://doi.org/10.1093/nar/gkn892

 47. Ceol A, Chatr Aryamontri A, Licata L et al (2010) MINT, the molecular interaction database: 
2009 update. Nucleic Acids Res 38:D532–D539. https://doi.org/10.1093/nar/gkp983

 48. Kerrien S, Aranda B, Breuza L et  al (2012) The IntAct molecular interaction database in 
2012. Nucleic Acids Res 40:D841–D846. https://doi.org/10.1093/nar/gkr1088

13 Systems Biology and Integrated Computational Methods for Cancer-Associated…

https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/nature08987
https://doi.org/10.1038/nature08987
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1093/nar/gku1140
https://doi.org/10.1126/science.1058040
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature12787
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/nmeth.4000
https://doi.org/10.1038/ng.3774
https://doi.org/10.1093/bib/bbv068
https://doi.org/10.1093/molbev/msu167
https://doi.org/10.1093/nar/gkt1102
https://doi.org/10.1093/nar/gkr1074
https://doi.org/10.1093/nar/gkr1074
https://doi.org/10.1093/nar/gkn653
https://doi.org/10.1093/nar/gkq1039
https://doi.org/10.1038/ng.3168
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1093/nar/gkp983
https://doi.org/10.1093/nar/gkr1088


358

 49. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interac-
tion networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. 
https://doi.org/10.1093/nar/gks1094

 50. Cowley MJ, Pinese M, Kassahn KS et al (2012) PINA v2.0: mining interactome modules. 
Nucleic Acids Res 40:D862–D865. https://doi.org/10.1093/nar/gkr967

 51. Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive 
resource for investigating the structure and function of experimentally determined post- 
translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. https://
doi.org/10.1093/nar/gkr1122

 52. Diella F, Cameron S, Gemünd C et  al (2004) Phospho.ELM: a database of experimen-
tally verified phosphorylation sites in eukaryotic proteins. BMC Bioinf 5:79. https://doi.
org/10.1186/1471-2105-5-79

 53. Minguez P, Letunic I, Parca L, Bork P (2013) PTMcode: a database of known and predicted 
functional associations between post-translational modifications in proteins. Nucleic Acids 
Res 41:D306–D311. https://doi.org/10.1093/nar/gks1230

 54. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein net-
works. Nat Methods 10:47–53. https://doi.org/10.1038/nmeth.2289

 55. Meyer MJ, Das J, Wang X, Yu H (2013) INstruct: a database of high-quality 3D structur-
ally resolved protein interactome networks. Bioinformatics 29:1577–1579. https://doi.
org/10.1093/bioinformatics/btt181

 56. Mosca R, Céol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known 
three-dimensional structure. Nucleic Acids Res 42:D374–D379. https://doi.org/10.1093/nar/
gkt887

 57. Lawrence MS, Stojanov P, Polak P et  al (2013) Mutational heterogeneity in cancer and 
the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/
nature12213

 58. Dees ND, Zhang Q, Kandoth C et al (2012) MuSiC: identifying mutational significance in 
cancer genomes. Genome Res 22:1589–1598. https://doi.org/10.1101/gr.134635.111

 59. Tian R, Basu MK, Capriotti E (2014) ContrastRank: a new method for ranking putative can-
cer driver genes and classification of tumor samples. Bioinformatics 30:i572–i578. https://
doi.org/10.1093/bioinformatics/btu466

 60. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013) OncodriveCLUST: exploiting the 
positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29:2238–
2244. https://doi.org/10.1093/bioinformatics/btt395

 61. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous vari-
ants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. https://doi.
org/10.1038/nprot.2009.86

 62. Sim N-L, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substi-
tutions on proteins. Nucleic Acids Res 40:W452–W457. https://doi.org/10.1093/nar/gks539

 63. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damag-
ing missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

 64. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: 
application to cancer genomics. Nucleic Acids Res 39:e118. https://doi.org/10.1093/nar/
gkr407

 65. Gonzalez-Perez A, Lopez-Bigas N (2012) Functional impact bias reveals cancer drivers. 
Nucleic Acids Res 40:e169. https://doi.org/10.1093/nar/gks743

 66. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates 
disease-causing potential of sequence alterations. Nat Methods 7:575–576. https://doi.
org/10.1038/nmeth0810-575

 67. Wong WC, Kim D, Carter H et al (2011) CHASM and SNVBox: toolkit for detecting biologi-
cally important single nucleotide mutations in cancer. Bioinformatics 27:2147–2148. https://
doi.org/10.1093/bioinformatics/btr357

A. Zia and S. Rashid

https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1093/nar/gkr967
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1186/1471-2105-5-79
https://doi.org/10.1186/1471-2105-5-79
https://doi.org/10.1093/nar/gks1230
https://doi.org/10.1038/nmeth.2289
https://doi.org/10.1093/bioinformatics/btt181
https://doi.org/10.1093/bioinformatics/btt181
https://doi.org/10.1093/nar/gkt887
https://doi.org/10.1093/nar/gkt887
https://doi.org/10.1038/nature12213
https://doi.org/10.1038/nature12213
https://doi.org/10.1101/gr.134635.111
https://doi.org/10.1093/bioinformatics/btu466
https://doi.org/10.1093/bioinformatics/btu466
https://doi.org/10.1093/bioinformatics/btt395
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1093/nar/gks539
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1093/nar/gks743
https://doi.org/10.1038/nmeth0810-575
https://doi.org/10.1038/nmeth0810-575
https://doi.org/10.1093/bioinformatics/btr357
https://doi.org/10.1093/bioinformatics/btr357


359

 68. Shihab HA, Gough J, Cooper DN et  al (2013) Predicting the functional consequences of 
cancer-associated amino acid substitutions. Bioinformatics 29:1504–1510. https://doi.
org/10.1093/bioinformatics/btt182

 69. Douville C, Carter H, Kim R et al (2013) CRAVAT: cancer-related analysis of variants tool-
kit. Bioinformatics 29:647–648. https://doi.org/10.1093/bioinformatics/btt017

 70. Mao Y, Chen H, Liang H et  al (2013) CanDrA: cancer-specific driver missense mutation 
annotation with optimized features. PLoS One 8:e77945. https://doi.org/10.1371/journal.
pone.0077945

 71. Brunak S, De La Vega FM, Rätsch G, Stuart JM (2013) Cancer panomics: computational 
methods and infrastructure for integrative analysis of cancer high-throughput “omics” data- 
session introduction. In: Biocomputing 2014. World Scientific, Singapore, pp 1–2

 72. Melloni GE, Ogier AG, de Pretis S et  al (2014) DOTS-Finder: a comprehensive tool for 
assessing driver genes in cancer genomes. Genome Med 6:44. https://doi.org/10.1186/gm563

 73. Wong K, Keane TM, Stalker J, Adams DJ (2010) Enhanced structural variant and breakpoint 
detection using SVMerge by integration of multiple detection methods and local assembly. 
Genome Biol 11:R128. https://doi.org/10.1186/gb-2010-11-12-r128

 74. Akavia UD, Litvin O, Kim J et al (2010) An integrated approach to uncover drivers of cancer. 
Cell 143:1005–1017. https://doi.org/10.1016/j.cell.2010.11.013

 75. Sanchez-Garcia F, Villagrasa P, Matsui J et al (2014) Integration of genomic data enables 
selective discovery of breast cancer drivers. Cell 159:1461–1475. https://doi.org/10.1016/j.
cell.2014.10.048

 76. Chen Y, Hao J, Jiang W et al (2013) Identifying potential cancer driver genes by genomic 
data integration. Sci Rep 3:3538. https://doi.org/10.1038/srep03538

 77. Schroeder MP, Rubio-Perez C, Tamborero D et al (2014) OncodriveROLE classifies cancer 
driver genes in loss of function and activating mode of action. Bioinformatics 30:i549–i555. 
https://doi.org/10.1093/bioinformatics/btu467

 78. Bertrand D, Chng KR, Sherbaf FG et al (2015) Patient-specific driver gene prediction and 
risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids 
Res 43:e44. https://doi.org/10.1093/nar/gku1393

 79. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 
28:235–242. https://doi.org/10.1093/nar/28.1.235

 80. Jia P, Wang Q, Chen Q et al (2014) MSEA: detection and quantification of mutation hotspots 
through mutation set enrichment analysis. Genome Biol 15:489. https://doi.org/10.1186/
s13059-014-0489-9

 81. Cheng F, Jia P, Wang Q, Zhao Z (2014) Quantitative network mapping of the human kinome 
interactome reveals new clues for rational kinase inhibitor discovery and individualized can-
cer therapy. Oncotarget 5:3697–3710. https://doi.org/10.18632/oncotarget.1984

 82. Reimand J, Bader GD (2013) Systematic analysis of somatic mutations in phosphoryla-
tion signaling predicts novel cancer drivers. Mol Syst Biol 9:637. https://doi.org/10.1038/
msb.2012.68

 83. Wang Y, Cheng H, Pan Z et al (2015) Reconfiguring phosphorylation signaling by genetic 
polymorphisms affects cancer susceptibility. J Mol Cell Biol 7:187–202. https://doi.
org/10.1093/jmcb/mjv013

 84. Vuong H, Cheng F, Lin C-C, Zhao Z (2014) Functional consequences of somatic mutations 
in cancer using protein pocket-based prioritization approach. Genome Med 6:81. https://doi.
org/10.1186/s13073-014-0081-7

 85. Zhao J, Cheng F, Wang Y et al (2016) Systematic prioritization of druggable mutations in 
∼5000 genomes across 16 cancer types using a structural genomics-based approach. Mol 
Cell Proteomics 15:642–656. https://doi.org/10.1074/mcp.M115.053199

 86. Ghersi D, Singh M (2014) Interaction-based discovery of functionally important genes in 
cancers. Nucleic Acids Res 42:e18. https://doi.org/10.1093/nar/gkt1305

 87. Ryslik GA, Cheng Y, Cheung K-H et al (2013) Utilizing protein structure to identify non- 
random somatic mutations. BMC Bioinf 14:190. https://doi.org/10.1186/1471-2105-14-190

13 Systems Biology and Integrated Computational Methods for Cancer-Associated…

https://doi.org/10.1093/bioinformatics/btt182
https://doi.org/10.1093/bioinformatics/btt182
https://doi.org/10.1093/bioinformatics/btt017
https://doi.org/10.1371/journal.pone.0077945
https://doi.org/10.1371/journal.pone.0077945
https://doi.org/10.1186/gm563
https://doi.org/10.1186/gb-2010-11-12-r128
https://doi.org/10.1016/j.cell.2010.11.013
https://doi.org/10.1016/j.cell.2014.10.048
https://doi.org/10.1016/j.cell.2014.10.048
https://doi.org/10.1038/srep03538
https://doi.org/10.1093/bioinformatics/btu467
https://doi.org/10.1093/nar/gku1393
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1186/s13059-014-0489-9
https://doi.org/10.1186/s13059-014-0489-9
https://doi.org/10.18632/oncotarget.1984
https://doi.org/10.1038/msb.2012.68
https://doi.org/10.1038/msb.2012.68
https://doi.org/10.1093/jmcb/mjv013
https://doi.org/10.1093/jmcb/mjv013
https://doi.org/10.1186/s13073-014-0081-7
https://doi.org/10.1186/s13073-014-0081-7
https://doi.org/10.1074/mcp.M115.053199
https://doi.org/10.1093/nar/gkt1305
https://doi.org/10.1186/1471-2105-14-190


360

 88. Porta-Pardo E, Godzik A (2014) e-Driver: a novel method to identify protein regions driving 
cancer. Bioinformatics 30:3109–3114. https://doi.org/10.1093/bioinformatics/btu499

 89. Pe’er D, Hacohen N (2011) Principles and strategies for developing network models in can-
cer. Cell 144:864–873. https://doi.org/10.1016/j.cell.2011.03.001

 90. Ng S, Collisson EA, Sokolov A et al (2012) Paradigm-shift predicts the function of mutations 
in multiple cancers using pathway impact analysis. Bioinformatics 28:i640–i646. https://doi.
org/10.1093/bioinformatics/bts402

 91. Paull EO, Carlin DE, Niepel M et al (2013) Discovering causal pathways linking genomic 
events to transcriptional states using tied diffusion through interacting events (TieDIE). 
Bioinformatics 29:2757–2764. https://doi.org/10.1093/bioinformatics/btt471

 92. Bashashati A, Haffari G, Ding J et al (2012) DriverNet: uncovering the impact of somatic 
driver mutations on transcriptional networks in cancer. Genome Biol 13:R124. https://doi.
org/10.1186/gb-2012-13-12-r124

 93. Hou JP, Ma J (2014) DawnRank: discovering personalized driver genes in cancer. Genome 
Med 6:56. https://doi.org/10.1186/s13073-014-0056-8

 94. Jia P, Zhao Z (2014) VarWalker: personalized mutation network analysis of putative cancer 
genes from next-generation sequencing data. PLoS Comput Biol 10:e1003460. https://doi.
org/10.1371/journal.pcbi.1003460

 95. Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. 
Nat Methods 10:1108–1115. https://doi.org/10.1038/nmeth.2651

 96. Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated path-
ways in cancer. J Comput Biol 18:507–522. https://doi.org/10.1089/cmb.2010.0265

 97. Stumpf MPH, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. 
Proc Natl Acad Sci U S A 105:6959–6964. https://doi.org/10.1073/pnas.0708078105

 98. Menche J, Sharma A, Kitsak M et al (2015) Disease networks. Uncovering disease- disease 
relationships through the incomplete interactome. Science 347:1257601. https://doi.
org/10.1126/science.1257601

 99. Perco P, Rapberger R, Siehs C et  al (2006) Transforming omics data into context: bioin-
formatics on genomics and proteomics raw data. Electrophoresis 27:2659–2675. https://doi.
org/10.1002/elps.200600064

 100. Cavin Périer R, Junier T, Bucher P (1998) The eukaryotic promoter database EPD. Nucleic 
Acids Res 26:353–357. https://doi.org/10.1093/nar/26.1.353

 101. Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications data-
base. Proteomics 5:3537–3545. https://doi.org/10.1002/pmic.200401303

 102. Flicek P, Aken BL, Beal K et al (2008) Ensemble 2008. Nucleic Acids Res 36:D707–D714. 
https://doi.org/10.1093/nar/gkm988

 103. Karolchik D, Kuhn RM, Baertsch R et al (2008) The UCSC genome browser database: 2008 
update. Nucleic Acids Res 36:D773–D779. https://doi.org/10.1093/nar/gkm966

 104. Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez gene: gene-centered information at 
NCBI. Nucleic Acids Res 33:D54–D58. https://doi.org/10.1093/nar/gki031

 105. Camon E, Magrane M, Barrell D et al (2004) The Gene Ontology Annotation (GOA) data-
base: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32:D262–D266. 
https://doi.org/10.1093/nar/gkh021

 106. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. 
Nucleic Acids Res 32:D115–D119. https://doi.org/10.1093/nar/gkh131

 107. Sterk P, Kersey PJ, Apweiler R (2006) Genome reviews: standardizing content and represen-
tation of information about complete genomes. OMICS 10:114–118. https://doi.org/10.1089/
omi.2006.10.114

 108. Ogata H, Goto S, Sato K et al (1999) KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res 27:29–34. https://doi.org/10.1093/nar/28.1.27

 109. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biol-
ogy. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

A. Zia and S. Rashid

https://doi.org/10.1093/bioinformatics/btu499
https://doi.org/10.1016/j.cell.2011.03.001
https://doi.org/10.1093/bioinformatics/bts402
https://doi.org/10.1093/bioinformatics/bts402
https://doi.org/10.1093/bioinformatics/btt471
https://doi.org/10.1186/gb-2012-13-12-r124
https://doi.org/10.1186/gb-2012-13-12-r124
https://doi.org/10.1186/s13073-014-0056-8
https://doi.org/10.1371/journal.pcbi.1003460
https://doi.org/10.1371/journal.pcbi.1003460
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1089/cmb.2010.0265
https://doi.org/10.1073/pnas.0708078105
https://doi.org/10.1126/science.1257601
https://doi.org/10.1126/science.1257601
https://doi.org/10.1002/elps.200600064
https://doi.org/10.1002/elps.200600064
https://doi.org/10.1093/nar/26.1.353
https://doi.org/10.1002/pmic.200401303
https://doi.org/10.1093/nar/gkm988
https://doi.org/10.1093/nar/gkm966
https://doi.org/10.1093/nar/gki031
https://doi.org/10.1093/nar/gkh021
https://doi.org/10.1093/nar/gkh131
https://doi.org/10.1089/omi.2006.10.114
https://doi.org/10.1089/omi.2006.10.114
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/75556


361

 110. DeJongh M, Formsma K, Boillot P et  al (2007) Toward the automated generation 
of genome-scale metabolic networks in the SEED.  BMC Bioinf 8:139. https://doi.
org/10.1186/1471-2105-8-139

 111. Krieger CJ, Zhang P, Mueller LA et al (2004) MetaCyc: a multiorganism database of meta-
bolic pathways and enzymes. Nucleic Acids Res 32:D438–D442. https://doi.org/10.1093/
nar/gkh100

 112. Karp PD, Ouzounis CA, Moore-Kochlacs C et al (2005) Expansion of the BioCyc collection 
of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089. https://doi.
org/10.1093/nar/gki892

 113. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for 
cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 
35:D274–D279. https://doi.org/10.1093/nar/gkl925

 114. Zhao F, Xuan Z, Liu L, Zhang MQ (2005) TRED: a transcriptional regulatory element data-
base and a platform for in silico gene regulation studies. Nucleic Acids Res 33:D103–D107. 
https://doi.org/10.1093/nar/gki004

 115. Ji ZL, Chen X, Zhen CJ et al (2003) KDBI: kinetic data of bio-molecular interactions data-
base. Nucleic Acids Res 31:255–257

 116. Le Novère N, Bornstein B, Broicher A et al (2006) BioModels Database: a free, centralized 
database of curated, published, quantitative kinetic models of biochemical and cellular sys-
tems. Nucleic Acids Res 34:D689–D691. https://doi.org/10.1093/nar/gkj092

 117. Sivakumaran S, Hariharaputran S, Mishra J, Bhalla US (2003) The database of quantitative 
cellular signaling: management and analysis of chemical kinetic models of signaling net-
works. Bioinformatics 19:408–415. https://doi.org/10.1093/bioinformatics/btf860

 118. Xenarios I, Salwínski L, Duan XJ et  al (2002) DIP, the database of interacting proteins: 
a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 
30:303–305

 119. Zanzoni A, Montecchi-Palazzi L, Quondam M et al (2002) MINT: a molecular interaction 
database. FEBS Lett 513:135–140

 120. Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interac-
tion database. Bioinformatics 21:832–834. https://doi.org/10.1093/bioinformatics/bti115

 121. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expres-
sion and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.
org/10.1093/nar/30.1.207

 122. Sherlock G, Hernandez-Boussard T, Kasarskis A et al (2001) The stanford microarray data-
base. Nucleic Acids Res 29:152–155

 123. Shannon P, Markiel A, Ozier O et  al (2003) Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.
org/10.1101/gr.1239303

 124. Shannon PT, Reiss DJ, Bonneau R, Baliga NS (2006) The Gaggle: an open-source software 
system for integrating bioinformatics software and data sources. BMC Bioinf 7:176. https://
doi.org/10.1186/1471-2105-7-176

 125. Wolff AC, Hammond MEH, Hicks DG et al (2013) Recommendations for human epidermal 
growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/
College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–
4013. https://doi.org/10.1200/JCO.2013.50.9984

 126. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a pre-
dictor of survival in breast cancer. N Engl J Med 347:1999–2009. https://doi.org/10.1056/
NEJMoa021967

 127. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen- 
treated, node-negative breast cancer. N Engl J Med 351:2817–2826. https://doi.org/10.1056/
NEJMoa041588

 128. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes 
in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423. https://
doi.org/10.1073/pnas.0932692100

13 Systems Biology and Integrated Computational Methods for Cancer-Associated…

https://doi.org/10.1186/1471-2105-8-139
https://doi.org/10.1186/1471-2105-8-139
https://doi.org/10.1093/nar/gkh100
https://doi.org/10.1093/nar/gkh100
https://doi.org/10.1093/nar/gki892
https://doi.org/10.1093/nar/gki892
https://doi.org/10.1093/nar/gkl925
https://doi.org/10.1093/nar/gki004
https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1093/bioinformatics/btf860
https://doi.org/10.1093/bioinformatics/bti115
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1471-2105-7-176
https://doi.org/10.1186/1471-2105-7-176
https://doi.org/10.1200/JCO.2013.50.9984
https://doi.org/10.1056/NEJMoa021967
https://doi.org/10.1056/NEJMoa021967
https://doi.org/10.1056/NEJMoa041588
https://doi.org/10.1056/NEJMoa041588
https://doi.org/10.1073/pnas.0932692100
https://doi.org/10.1073/pnas.0932692100


362

 129. Arnedos M, Vicier C, Loi S et  al (2015) Precision medicine for metastatic breast cancer-
-limitations and solutions. Nat Rev Clin Oncol 12:693–704. https://doi.org/10.1038/
nrclinonc.2015.123

 130. Ligthart S, Vaez A, Võsa U et al (2018) Genome analyses of >200,000 individuals identify 
58 loci for chronic inflammation and highlight pathways that link inflammation and complex 
disorders. Am J Hum Genet 103:691–706. https://doi.org/10.1016/j.ajhg.2018.09.009

 131. Abrahams E (2008) Right drug-right patient-right time: personalized medicine coalition. Clin 
Transl Sci 1:11–12. https://doi.org/10.1111/j.1752-8062.2008.00003.x

 132. Metias SM, Lianidou E, Yousef GM (2009) MicroRNAs in clinical oncology: at the cross-
roads between promises and problems. J Clin Pathol 62:771–776. https://doi.org/10.1136/
jcp.2009.064717

 133. Ashley EA, Butte AJ, Wheeler MT et al (2010) Clinical assessment incorporating a personal 
genome. Lancet 375:1525–1535. https://doi.org/10.1016/S0140-6736(10)60452-7

 134. Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in 
healthy individuals. Nature 559:400–404. https://doi.org/10.1038/s41586-018-0317-6

 135. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related 
macular degeneration. Science 308:385–389. https://doi.org/10.1126/science.1109557

 136. Johnson AD, O’Donnell CJ (2009) An open access database of genome-wide association 
results. BMC Med Genet 10:6. https://doi.org/10.1186/1471-2350-10-6

 137. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human 
colon and rectal cancer. Nature 487:330–337. https://doi.org/10.1038/nature11252

 138. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational 
processes in breast cancer. Nature 486:400–404. https://doi.org/10.1038/nature11017

 139. Natter MD, Quan J, Ortiz DM et  al (2013) An i2b2-based, generalizable, open source, 
self-scaling chronic disease registry. J Am Med Inform Assoc 20:172–179. https://doi.
org/10.1136/amiajnl-2012-001042

 140. Stenson PD, Ball EV, Howells K et al (2009) The human gene mutation database: providing a 
comprehensive central mutation database for molecular diagnostics and personalised genom-
ics. Hum Genomics 4:69. https://doi.org/10.1186/1479-7364-4-2-69

 141. Chen R, Mias GI, Li-Pook-Than J et  al (2012) Personal omics profiling reveals dynamic 
molecular and medical phenotypes. Cell 148:1293–1307. https://doi.org/10.1016/j.
cell.2012.02.009

 142. Pasic MD, Samaan S, Yousef GM (2013) Genomic medicine: new frontiers and new chal-
lenges. Clin Chem 59:158–167. https://doi.org/10.1373/clinchem.2012.184622

 143. Fischer HP (2008) Mathematical modeling of complex biological systems: from parts lists to 
understanding systems behavior. Alcohol Res Health 31:49–59

 144. Vera J, Wolkenhauer O (2008) A system biology approach to understand functional activity 
of cell communication systems. Methods Cell Biol 90:399–415

A. Zia and S. Rashid

https://doi.org/10.1038/nrclinonc.2015.123
https://doi.org/10.1038/nrclinonc.2015.123
https://doi.org/10.1016/j.ajhg.2018.09.009
https://doi.org/10.1111/j.1752-8062.2008.00003.x
https://doi.org/10.1136/jcp.2009.064717
https://doi.org/10.1136/jcp.2009.064717
https://doi.org/10.1016/S0140-6736(10)60452-7
https://doi.org/10.1038/s41586-018-0317-6
https://doi.org/10.1126/science.1109557
https://doi.org/10.1186/1471-2350-10-6
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature11017
https://doi.org/10.1136/amiajnl-2012-001042
https://doi.org/10.1136/amiajnl-2012-001042
https://doi.org/10.1186/1479-7364-4-2-69
https://doi.org/10.1016/j.cell.2012.02.009
https://doi.org/10.1016/j.cell.2012.02.009
https://doi.org/10.1373/clinchem.2012.184622


Part V



365© Springer Nature Singapore Pte Ltd. 2020
N. Masood, S. Shakil Malik (eds.), ‘Essentials of Cancer Genomic, 
Computational Approaches and Precision Medicine, 
https://doi.org/10.1007/978-981-15-1067-0_14

G. Roy (*) 
Molecular Genetics Laboratory, Institute of Medical Genetics and Genomics, Sir Ganga Ram 
Hospital, New Delhi, India 

A. Bhattacharjee 
Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre & Homi 
Bhaba National Institute, Mumbai, India 

I. Khan 
Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University,  
Old Presidency, Pakistan

14Biostatistics in Clinical Oncology

Gaurav Roy, Atanu Bhattacharjee, and Iqra Khan

14.1  Introduction

In oncology, precision plays a crucial role. The scientific attributes of biostatistics in 
clinical oncology encompass a broad spectrum of medical applications ranging 
from inclusion of patients in clinical trials to the diligent identification of a better 
treatment regimen as against existing ones to the reasoned selection of the most 
effective drug dosages to finding genes that cause cancer.

Oncology is the most dynamic research domain towards better treatment out-
come. The treatment outcomes can only be compared through proper scientific 
structured design and analysis. It helps to produce robust scientific outcomes. The 
scientifically robust outcome can only be obtained through bridging the statistics in 
oncology research.

Oncology research becomes complex due to the involvement of human over 
there. There are multidimensional variations. The variation may be due to genetics 
and social causes. Magnitudes of these factors are indiscernible and thus may have 
unpredictable interactions with each other, causing massive heterogeneity in data. 
The unobserved measurement or error due to measurement is defined as an error. It 
is possible to use error to define the variation in patient outcomes due to unobserved 
factors. Further, an error can be split into random and bias.
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The challenge is to reduce random error vis-a-vis controlling the systematic bias. 
Merging of clinical research with statistics is currently the need of the hour.

Oncology research is gradually progressing on an increased understanding of 
biological functions. Therefore, identification and assessment of disease-related 
biomarkers and exploration of novel methodologies shall open up newer vistas in 
cancer management. It is much applicable to precision medicine. Precision medi-
cine is standing with exploring the gene expression risk factor for specific cancer. It 
is also useful for the molecular establishment for enrichment analysis. Studies 
involved with data exploration shows the relation between explanatory factors and 
therapeutic outcomes.

The advantage of observational study is that the investigator cannot modify any 
prognostic factor. However, observation commonly generated from the field or 
hospital.

Owing to the large number of discovery-based nature of clinical studies, investi-
gators may be overwhelmed by several combinations of potential analyses possible 
for a data set or may be distracted by false positives. Herein lay the rationale for a 
clinically and statistically sound study design. A typically robust and in-depth study 
design formulated with several points like (1) formulated with a specific objective, 
(2) optimum sample size calculation involved, and (3) formulated to obtain clinical 
and statistical outcomes. (4) It is easy to control the confounding factors and bias 
outcome.

Finally, a statistical analysis plan becomes important in creating an executable 
study. It is useful to calculate the amount of bias in results. Alternatively defining a 
statistical analysis plan is important towards executable study. It helps to explore 
and refine the study design. It is important for patient selection criteria as well.

In this chapter, we highlight several critical aspects concerning the application of 
biostatistics in the realm of clinical oncology and how such representations define 
the work-flow of a scientifically designed oncology research study.

14.2  Variables and Their Distribution

14.2.1  Common Types of Variables

A variable may be defined as a measured value or characteristic which can vary 
from one individual to another. Here several common and less common variables 
are listed out for at a glance understanding. These are:

Categorical Variable: Variables put into categories.
Confounding Variable: Confounding variable describes the association between 

the dependent (outcome) and independent (predictor) variables in a way that it 
affects their relationship. Both predictor and outcome variables are associated with 
confounding variable.

Continuous Variable: It is infinite number and measured only by numerical scale, 
such as time or weight. These are not countable.
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Control Variable: An experimental element which does not change in the whole 
experiment. It remains constant throughout experiment.

Dependent Variable: It is outcome of an experiment which is tested in experiment. 
It allows investigators to decide about the success or failure of their experiment.

Discrete Variable: These variables are described in finite number of values as 
these are countable.

Independent Variable: It is unchanged or unaffected during the experiment by 
anything that researcher does.

Lurking Variable: It is hidden variable and affects the relationship of predictor 
and outcome variables.

Measurement Variables: These are also called as numeric or quantitative vari-
ables. Such variables are measurable with numerical values, for example, 5 cm.

Nominal Variables: These are actually categorical variables with no numerical 
values like occupation.

Ordinal Variables: These are also categorical variables, but their values can be 
set into an order.

Qualitative Variables: These variables have no numerical value that’s why they 
are expressed in frequencies or proportions, and these can be ordinal or categorical.

Quantitative Variables: These variables can be counted that’s why they had 
numerical value and include ratio and discrete variables.

Random Variables: Their values are outcomes of random phenomenon.
Ranked Variables: These are actually ordinal variables in which each data point 

is set into order. We may not know the exact value but can say which point comes 
first and which later.

Ratio Variable: It is an interval variable having significant ratio between its any 
two values.

14.2.2  Less Common Variables

Active Variable: It can be controlled by investigator in the experiment, as it is 
manipulated by researcher himself.

Antecedent Variable: It cannot explain any apparent association between cause 
and effect variables and usually comes before independent or dependent variables.

Attribute Variables: It cannot be manipulated or controlled in design of experi-
ment and is also called passive variable.

Binary Variable: This kind of variable has only two values or states usually in 
form of binary data 0 or 1, male or female, etc.

Collider Variable: It is a variable in statistics and casual graphs represented by 
node and are influenced by usually two or more than two variables.

Covariate Variable: A covariate may be of direct interest (independent variable) 
or confounding variable (not variable of interest). It can increase accuracy of results 
and affects outcome of study.

Criterion Variable: It is dependent variable being predicted in regression 
analysis.
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Dichotomous Variable: It is just like binary variable possessing only two values.
Dummy Variables: These are variables having value one or zero to show pres-

ence or absence of categorical variables that were considered to alter outcome of 
experiment.

Endogenous Variables: These are like dependent variables in statistical model 
and are determined by other functional variables within model.

Exogenous Variable: Variable which is not affected by any variable in the system 
but affects other variables in the system is called exogenous variable.

Explanatory Variable: It is manipulated by investigator in study and is type of 
independent variable used to explain response variable.

Extraneous Variables: These are undesirable variables which are not intention-
ally studied in system, but they might influence outcome of experiment.

Grouping Variables: Summarize data into groups and discrete values and are a 
categorical variable. These are also called as coding variables.

Identifier Variables: The singular categorical variables having only one individ-
ual per category. No data analysis can be performed on them as they are single, 
that’s why they are used to identify results only.

Indicator Variable: Also known as dummy variable.
Interval Variable: Is a type of continuous variable, and difference between the 

values of two intervals is measureable and equal.
Intervening Variable: Is a hypothetical variable which cannot be measured in 

experiment but it describes association between variables.
Latent Variable: Is a hidden variable that is inferred from other variables which 

can be observed directly in model and is not measured even observed directly.
Manifest Variable: Is a variable which is necessary for latent variable to check 

whether it is present or not. It can be measured and observed directly.
Manipulated Variable: Is an independent variable that can be changed.
Moderating Variables: Affect or change the strength of relationship between two 

variables usually dependent and independent and is also called moderator.
Nuisance Variable: Is undesirable variable that elevates variability overall.
Observed Variable: Manifests variable and opposite of latent variable, or we can 

say measureable variable.
Outcome Variable: Is a dependent variable which is being investigated in experi-

ment by changing independent variables.
Polychotomous Variables: Can be ordered because they possess more than two 

values.
Predictor Variable: Independent variable.
Responding Variable: Manipulated or independent variable.
Scale Variable: Has numeric value and is measurement variable.
Study Variable: Any variable that is studied during research and has effect on 

cause and result of study. It is also known as research variable.
Test Variable: Is a dependent variable which is investigated during the course of 

study.
Treatment Variable: Independent variable manipulated by researcher in study.
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14.3  Sample Size Calculations

Sample size calculation evaluates minimum number of subjects that should be 
included in a study to assess clinically relevant treatment effect. Therefore sample 
size computation is vital in quantitative research studies. Because of the some con-
straints of time, cost, and ethics, the number of individuals in a study is usually 
limited. For example, it is difficult to detect crucial existing effects if sample size is 
too small. However, too many participants may render resources to be redundant. 
The optimum sample size calculation is critical. So, interpretation of the expected 
outcome of study computation of the sample size plays a vital role. Generally, larger 
sample size is prerequisite for assessing the integrity of an observed effect with 
greater variability in the outcome variable. Contrarily, tested treatment is more 
effective with smaller sample size for detection of any effect. Four basic attributes 
of sample size calculation for clinical trials are discussed here.

 1. Type I error (alpha): In clinical oncology, probability of type I error is stated as 
alpha and is also known as false-positive error. In hypothesis-testing process, 
type I and type II errors are present. In type I, null hypothesis (H0) is rejected by 
fault, and false-positive result is picked up. Simply we can say that false-positive 
type I is incorrect rejection of null hypothesis (H0). So, SSC is a prerequisite for 
defining exact quantity of samples for significant conclusion. Mostly alpha is set 
at 0.05 allowing only <5% false-positive conclusion. The p value higher than 
0.05 is considered clinically insignificant. However, p value less than this speci-
fied alpha might not necessarily be clinically significant.

 2. Power: Researchers may erroneously accept false positives such as accepting H0. 
The null hypothesis must never be accepted. This type of error is referred as type 
II error or beta. Usually beta is fixed at 0.20 which means that investigator have 
<20% of chance for false-negative interpretation. One should know power of 
study for sample size calculation. Power refers to capability of picking up an 
effect which must exist in that population by applying a sample-based test on 
that population (true positive). It is also referred as complement of beta, that is, 
power will be 80% if beta is 0.20 which reflects the probability of rejecting null 
hypothesis correctly or evading false-negative interpretation.

 3. Smallest effect of interest: It is also known as minimal clinically relevant differ-
ence, abbreviated as (MCRD). When the researcher wants to detect minimal 
difference between two studied categories and believes this would be clinically 
relevant is referred as smallest effect of interest. The MCRD has always a numer-
ical value difference for continuous outcome variables. Minor change in pre-
dicted difference in treatment cause huge effect on estimated sample size. This 
happens because of indirect relation of sample size to square of difference.

 4. Variability: The last attribute for sample size calculation is centered on popula-
tion variance of specified outcome variable. When considering continuous out-
come, it is estimated from standard deviation. Variance is not a known entity, 
that’s why researchers generally use information from precedent study or pilot 
study. Sometimes, the MCRD and variability are united together and expressed 
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as standardized difference (multiple of standard deviation of observations), also 
known as effect size. The formula for standardized difference calculation is,

 

Standardized difference
difference between themeans in the two tr

=
eeatment groups

populationstandarddeviation  

The calculation of sample size with full precision is very difficult due to lack of 
good estimates of the vital parameters that researchers should have. Unluckily sam-
ple size must fulfill criterion with respective parameters. Most of the time, alpha 
with 0.05 and power of 0.80 is sufficient. Anyhow, while considering the area of 
study, some other assumptions can also be taken into consideration. Sample size 
will be directly influenced by changing the assumption of power or alpha like larger 
sample size will be required for lower alpha and higher power leading to higher 
costs. One should know the impact of any kind of change in these parameters. This 
can be done by performing sensitivity analysis in which sample size calculation can 
be done by various values of parameter. Largest sample size should be selected in 
any kind of uncertainty. The estimate of sample size calculation is one of the signifi-
cant steps in randomized clinical trials (RCT) design. Generally target difference 
between treatments of primary outcome is specified before calculation of required 
sample size. SSC plays an important role in RCT conduct and interpretation. Sample 
sizes certify about trial high probability and needed statistical power of identifying 
target difference between treatment strategies that must present. For randomized 
clinical trials, the DELTA (Difference ELicitation in TriAls) guidance assists in 
justification of sample size and target difference. Target difference is attaining much 
attention nowadays regardless their statistical significance. So, target difference 
specifications along with sample size calculations need to be investigated more and 
in improved way.

Moreover, various software programs are now also available for assisting in 
sample size calculations. Advisor, nQuery, PASS, and “Power and Precision” are 
some authentic and user-friendly programs that can be used for sample size calcu-
lation of different data types and study designs. All these programs limitation are 
paid license requirement. While one can also calculate sample size by some other 
websites without any license. But the problem is their authenticity and is not some-
times reliable. One of the authentic and freely available websites for sample size 
calculation is http://www.stat.uiowa.edu/∼rlenth/Power/index.html. A multicen-
tric clinicopathological study conducted by Malik et  al. calculated sample size 
calculation of their study with G power software while taking consideration of 
80% power and 5% margin of error. Scientific community usually accepts statisti-
cal power of 80–90% of any study as it is directly dependent on sample size. 
Scientific community usually less considers the research studies that lack sample 
size and power analysis. Sample size formula usage verifies minimum sample size 
along with pre-specified statistical power.

G. Roy et al.
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14.4  Meta-analysis

14.4.1  Overview

The term meta-analysis has been defined as an objective, quantitative mode of sum-
marizing research findings that enable the identification of scientific associations. 
This statistical methodology integrates results of independent but related studies to 
synthesize summaries [1]. In conditions where individual studies are too small to 
offer validated outcomes, meta-analysis increases power, reduces error risk, and 
promotes exploratory analyses that facilitate the development of future research 
hypotheses [2].

14.4.2  Methodology

A typical meta-analysis commands a robust and in-depth study design. The strong 
foundation of a well-structured meta-analysis is built on diligent and a strategic 
study selection. This is followed by a reasoned inclusion and exclusion criteria, data 
extraction, pooling of study results, evaluation of publication bias and confounding 
factors, and a final interpretation of the data that would represent a new paradigm in 
the already existing knowledge of clinical cancer research. An example of an ideal 
methodology that ought to be followed while establishing a meta-analysis may be 
summarized as follows:

Step 1: Literature should be searched in PubMed, Embase, CBM (Chinese 
Biomedical Literature database), and the Cochrane Database of Systematic Reviews 
(CDSR).

Step 2: Manuscripts that are eligible should be recouped and their references 
probed for relevant studies. No inhibition on time period, sample size, population, 
language, or type of report must be imposed.

Step 3: Justified and well-reasoned inclusion and exclusion criteria are crucial 
for any meta-analyses. When multiple reports are available for a single unique study 
population only, the most recent or largest report should be included. Additionally, 
it is equally important to exclude interim analyses and comparisons of laboratory 
methods.

Step 4: In order to ascertain accuracy of data extraction and study design, two 
researchers must unearth information independently, and the difference in interpre-
tation and opinion must be normalized by a unanimous agreement between the 
investigators. The subgroup analyses ought to be performed by ethnicity and area 
and ethnic groups should be defined as Caucasian, Asian, and African, while the 
area must be defined as high-rate, medium-rate, or low-rate areas according to 
incidence.

Step 5: The significance of the pooled odds ratio (OR) should be determined by 
Z testing, and a probability level of p < 0.05 should be considered to be statistically 
significant.
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Step 6: Next, the random effects and the fixed effects models should be con-
ducted for dichotomous outcomes. The random effects model may be evaluated 
using the DerSimonian and Laird’s method [3], while the fixed effects model might 
be evaluated through the Mantel-Haenszel method [4].

Step 7: For an accurate assessment of the between-study heterogeneity, both the 
chi-square-based Cochran’s Q statistic [5] and the I2 statistic tests [6] should be 
deployed for calculation.

Step 8: In order to identify outliers as probable sources of heterogeneity, the 
Galbraith plot may be a good option [7]. Furthermore, for an improved investigation 
of the possible sources of between-study heterogeneity, a meta-regression analysis 
gives us very good results.

Step 9: In order to validate the credibility of outcomes in a meta-analysis, a sen-
sitivity analysis must be computed by sequential omission of individual studies or 
by omitting studies plotted by the Galbraith plot method as the possible major 
source of heterogeneity.

Step 10: Finally, publication bias should be investigated by the funnel plot. In 
context, the funnel plot asymmetry should be assessed by the Egger’s linear regres-
sion test [8]. In order to ensure reliability and accuracy of results, two investigators 
should independently enter data into the same statistical software program and 
should obtain the same output.

14.4.3  Importance of Meta-analysis in Clinical Oncology

The assessment of heterogeneity is probably the most crucial aspect in meta- analysis, 
and the Cochrane Collaboration is perhaps the most rigorous and innovative leader 
which has stood the test of time in developing protocols in this regard [9]. These include 
the development of protocols that provide a structure for literature search and newer 
and extended analytic and diagnostic methods for evaluation of the output. The judi-
cious use of methods outlined in the handbook should provide a consistent approach to 
the conduct of meta-analysis. Additionally, the PRISMA (Preferred Reporting Items 
for Systematic reviews and Meta-Analyses) statement that replaced the QUOROM 
(Quality of Reporting of Meta-analyses) statement is an extremely useful tool for the 
improved reporting of systematic reviews and meta- analyses [10–12].

Systematic reviews encompass meta-analyses. A systematic review collates 
empirical evidence that fits prefixed eligibility criteria in order to address a specific 
research question. The key characteristics of a systematic review are:

 (a) A defined set of objectives with predefined eligibility criteria
 (b) A methodology that is explicit and reproducible
 (c) Systematic search strategy that attempts to identify all studies qualifying the 

eligibility criteria
 (d) Evaluation of the validity of the findings of the included studies
 (e) Last, but not in the least, a systematic presentation and synthesis of the attri-

butes from the studies utilized
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Systematic methods, as against traditional review methods, minimize bias and 
provide reliable results that facilitate the scientific establishment of inferences and 
decisions [13, 14]. The validity of meta-analytical approaches in observational stud-
ies was considerably controversial in the fact that these studies were likely to be 
subject to unidentified sources of confounding and risk modification [15]. In addi-
tion, studies displayed that in meta-analyses, nonrandomized studies showed larger 
treatment effects than the randomized ones [16].

Meta-analyses are conducted with a view to address the strength of evidence 
present on a disease and treatment and to obtain a single summary estimate of the 
effect. The results of a meta-analysis can improve precision of estimates of effect, 
answer questions not posed by the individual studies, settle controversies arising 
from apparently conflicting studies, and generate new hypotheses. The examination 
of heterogeneity is vital to the development of new hypotheses [17].

Meta-analysis on individual patient data (IPD) is the gold standard [18]. This 
allows standardized analytical techniques across studies, testing of interaction 
effects with covariates at patient level, and the use of consistent analyses for time- 
to- event outcomes [19, 20]. In context, in a recent study, a flexible data harmoniza-
tion platform (DHP) was created to harmonize IPD from multiple studies [21]. The 
study illustrated the development and use of a flexible DHP that was initially devel-
oped for the Predicting OptimaL cAncer RehabIlitation and Supportive care 
(POLARIS) study [22–24].

14.4.4  Meta-analysis in Cancer Genetics: The Future Is Now

High-throughput genotyping consequentially has produced a large epidemiological 
data on gene-disease associations. Genetic polymorphisms play a crucial role in 
susceptibility to cancer through a plethora of functional mechanisms such as DNA 
repair and cell cycling [25]. Meta-analyses have been computed for key polymor-
phisms in genes involved in these mechanisms [26, 27]. Results of these endeavors 
might facilitate the increase of statistical power that is adequate enough for patient 
counseling on the risk of cancer development. Data on predisposition to cancer may 
help to induce lifestyle-related changes on the population such as cessation of 
smoking, reduction of alcohol intake, adherence to healthy diet, and regular exercise 
in addition to avoidance of occupational exposures [28].

In spite of the low association (OR = 1.1–1.5) of polymorphism and cancer, it is 
a crucial genetic marker in relation to public health [29]. In this context, reports 
indicate that a small mathematical change in the association between polymor-
phisms and cancer may have deleterious consequences on cancer incidence in the 
general population [30]. Studies have suggested that meta-analyses might facilitate 
the critical transfer of knowledge from bench to bedside, allowing for re-evaluation 
and identification of high-risk subjects in accordance with their genetic constitution. 
Additionally, such studies enable the analyses of crucial patient subgroups and iden-
tify high-risk individuals for cancer [31].
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Overall, a meta-analysis is a cheaper alternative to the primary study. However, 
on a higher scale involving larger patient cohorts, meta-analysis is expensive and 
logistically confusing. A rigorous meta-analysis substantiates the required count of 
subjects and is detected with improved confidence and statistical precision. Over the 
years, there has been an accumulating evidence of published data on gene-disease 
associations [32]. In order to decipher disease-specific risk factors for cancer, it is 
imperative to logically select out the relevant data. The traditional review article, 
used to evaluate groups of studies, rarely conjures up the same standards of scien-
tific objectivity as evidenced in original epidemiologic studies. A review article has 
been crudely visualized as a coarse representation of meta-analysis that does not 
follow a rigorous pattern in selecting or combining results. On the other hand, how-
ever, following a dynamic and in-depth protocol, a meta-analysis succeeds in reduc-
ing the potential bias present in review articles. Although a meta-analysis is able to 
estimate a relative risk with far more precision than the individual studies it con-
tains, it is rarely a validation. A critical challenge for investigators performing meta- 
analysis is to consider differences in study design and study quality.

A meta-analysis ought to consider the strengths and weaknesses of published 
data before applying an explicit, objective, and quantitative methodology. Such an 
exercise of combining studies minimizes biases and provides a scientific output. 
Conclusively, efforts must be zeroed in on evidences that rigorously minimize bias 
while diligently and scientifically using all available data [33].

14.5  Statistical Models and Challenges Faced 
During Analyzing Data on Quality of Life in Cancer 
Patients

According to the World Health Organization (WHO), quality of life (QoL) has been 
illustrated as an individual perception of life, values, objectives, standards, and 
interests in the realm of culture. QoL is being widely used as a primary measure in 
studies in order to assess treatment effectiveness [34–37]. Patients, instead of mea-
suring lipoprotein levels, glucose, blood pressure, and cardiac functions, take deci-
sions about their health by virtue of the QoL that elucidates the effects on outcomes 
essential for themselves [38]. A hallmark of oncology nowadays is to evaluate QoL 
in cancer [39]. QoL associated with cancer is related to all disease stages [40, 41]. 
Several studies show that the involvement of any cancer patients, general QoL mea-
surement may be useful for assessing the therapeutic effect of treatment and overall 
health status. However, data display that cancer-specific instruments specifically 
assess the impact of specific cancer on QoL [39]. In certain malignancies such as 
glioma, QoL is important and considered the main outcome in a study. In oncology 
frequently observed measurement is QoL as primary objective [42].

Accumulating lines of evidence have shown to elucidate the impact of cancer dis-
ease burden on social and psychological variables. Recent studies have proposed a 
framework to integrate the biological attributes of cancers and its clinical applications 
with the behavioral and social influences on patient subjects using a quantitative 
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approach [43]. Data display the assessment of QoL among survivors with breast can-
cer using nonparametric statistical tools such as Wilcoxon rank sum test, the Fisher’s 
exact test, and Spearman correlation coefficients [44]. In this study, in spite of a good 
QoL, women subjects were shown to present with significant anxiety, depression, 
mental anguish, hopelessness, and apprehension about their disease. Studies have also 
evaluated the psychological impact of cancer survivors with QoL [45]. In this regard, 
hierarchical linear regression models have been used to analyze the independent 
effects of cancer perception on distress and QoL. However, there is a paucity of data 
on the integration of inference-based intelligence tools with multivariate statistical 
approaches in solving the impact of diseases towards patients.

Health-related quality of life (HRQOL) is another emerging area of cancer 
research that comprehensively evaluates patients’ perception of the impact of ther-
apy and their health status on QoL [46]. The American Society of Clinical Oncology 
has acknowledged HRQOL as a key treatment outcome [47]. Subsequently, this has 
been utilized as a primary or secondary end point across all cancer clinical trials 
[48]. Intent to treat (ITT) enables comparison between studies and therefore is the 
preferred method to prevent bias. In the AURELIA (Avastin Use in Platinum- 
Resistant Epithelial Ovarian Cancer) trial, the ITT population had HRQOL data 
available at baseline for individual patients [49, 50]. The ITT population was also 
known as patient-reported outcome population. Sensitivity analyses also integrate 
all ITT patients after multiple imputations.

14.6  Conclusion

Mathematical distributions are the mainstay of statistical computations. Unearthing 
such distributions may open up newer vistas on easier visualization of data which in 
turn may expedite statistical model building. However, such experiments are never 
a substitute to manual data extraction and distribution. Distributions represent the 
actual percentage of data within a certain range. Reports reveal the same data to 
elicit different responses if interposed on different distributions. Therefore, for a 
correct interpretation of statistical analysis, data must be entered onto the correct 
distribution [51].

The future of research in clinical oncology is exciting. Recent advances in 
molecular methods and the immune landscape of tumors are bringing complexity to 
a whole new level. With the advent of next-generation sequencing and its massive 
output of genomic, transcriptomic, proteomic, and other molecular data in addition 
to demographic and clinicopathological variables, data obtained from multicentric 
studies and those data that are accessible for free are a real defiance to the under-
standing of big data. Such humongous data is merging into a new fascinating fron-
tier in oncology which is known as the molecular-targeted therapy. This when 
collaborated with newer immunological discoveries caters to a more personal and 
precise treatment regimen for patients. Newer vistas in bioinformatics have emerged 
categorically in order to facilitate the quest for improved approaches that will expe-
dite and improve the accuracy of diagnostic and therapeutic interventions. However, 
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present methodologies in vogue cannot entirely answer questions prompted by the 
myriad of information obtained. Nevertheless, the recent astonishing advances in 
communication, computation, and artificial intelligence have been both fascinating 
and intriguing. New approaches in methodology are warranted and should be the 
way for the future [52].
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History of Drug Reaction in Children 
Suffering from Cancer
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15.1  History of Drug Reaction in Children

People with similar sickness will show inverse respond frequently with identical 
medication. Some people will have the best response to medication, though some 
experience slight or no results. Few patients will have contrary drug reactions, while 
others don’t have. Some patients need a high or low dosage related to normal dose 
demarcated in medical tribunals to get optimal results from the drug. 
Pharmacogenomics finds the connection between genetic differences and drug 
responses. Single nucleotide polymorphisms can lead to fluctuation in function and 
quantity of proteins and so in drug response.

Maximum pharmacogenomic investigations have been done on adults. It is sig-
nificant to understand that results in the mature population can’t be produced in the 
pediatric population. Processes or systems are under progress in children. Drugs 
might perform an inverse function in children as compared to adults. Though genetic 
differences persist, the influence of handling heterogeneity might be diverse at a 
young age. Pharmacogenomic studies in pediatric cancer focused on forecasting 
which patients will agonize from adverse ADRs [1].

About 20% of malignant growth in pediatric patients doesn’t react to usual treat-
ment [2], and 22% of emergency clinic confirmations in common people are because 
of antagonistic drug responses [3]. The helpful healing mediators utilized in malig-
nant growth chemotherapy are frequently managed at legal high dosages [4]; this is 
due to between patient inconstancy and tight remedial extent which ends up in a 
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range of results from extreme toxicities to underexposure. Some portion of this 
fluctuation can be credited to innate hereditary varieties influencing the medication 
pharmacodynamics and pharmacokinetics. The investigation of the connection 
between hereditary qualities and medication work is most normally known as phar-
macogenetics or pharmacogenomics. Pharmacogenomics is a valid, recognized, and 
personalized approach of treatment and has the potential to build up drug safety 
levels and efficiency [5, 6]. Most of the patients react diversely to a drug because of 
their constitutive genetic shuffling, yet also because of transformations or epigene-
tic marks gained among the procedure of neogenesis or treatment. This survey 
expects to concentrate on germ line varieties that may influence treatment adequacy 
and toxic quality [7, 8]. By October 2015, in Budapest (Hungary), during 3rd con-
gress under (ESPT) European Society of Pharmaco-genomics and Personalized 
Therapy, a preface conference was held with an aim of establishing individualized 
pediatric treatment involved therapy in Hematology and Oncology sections and 
testing on children’s would be the goal. The fundamental reason for existing was to 
encourage the exchange and coordination of pharmacogenetic analysis from inves-
tigational study into applied clinics, to unite essential and translational research, and 
to teach well-being experts all through Europe as this information is essential to 
achieve the future goals in pharmacogenomics.

15.2  Ontogeny Role in Pharmacogenomics

Pharmacogenomics in youngsters, in contrast to adults, must be seen concerning 
body improvement apart from the physiological changes because of the disorder. 
When an infant becomes an adult, variations happen in physique structure. For exam-
ple, an untimely newborn of about 1.5 kg has only 3% of physique fat, which prompts 
12% with the aid of the 40th week development and farther 25% by the 4th month 
[9]. Correspondingly, the protein will increase from 25% at the beginning to 50% in 
a fully grown individual. These progressions need to be observed while examining 
the distinctions in pharmacokinetic information in connection to the genotypes. An 
additional issue of significance for the scientific efficacy of pharmacogenetic tests in 
youngsters is ontogeny of drug-metabolizing enzymes (DMEs), target proteins. One 
of the best examples is an expansion of drug metabolism capacity linked with expres-
sion of cytochrome P450 (CYP) [10]. These enzymes of the CYP3A family can 
make a change in their activity from fetus to adulthood which includes four types of 
members in humans that are 3A4, 3A5, 3A7, and 3A43, respectively. CYP3A4 is 
richly expressed CYP in a small digestive system and liver recovering 35–45% of 
CYP proteins. CYP3A4 has a very stumpy action during childbirth, coming to 
around 35–45% of grown-up movement by the principal month and adult action by 
the 6th month of an adult, surpassing grown-up action of an adult (120%) somewhere 
in the range of 1 and 4 years old, and diminishing to grown-up levels after adoles-
cence [11]. CYP3A5 and CYP3A4 both are homologous about 83% and represent 
themselves in kidneys and the liver but at very low levels, whereas CYP3A5 and 
CYP2B6 are among two CYPs alongside with the phase II of enzyme 
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N-acetyltransferase showing no change in appearance and the functioning of genetic 
variants in developmental stages from childhood to adulthood. In contrast, CYPs of 
family CYP3A7 and CYP3A4 which are mostly expressed in newborns, fetal, and in 
the embryonic liver, are 90% homologous [12]. Comparable inconstancy in articula-
tion amid improvement is noted for CYP2D6. It was shown that embryos under 
30  weeks old express under 5% of the CYP2D6 movement in contrast with the 
grown-ups. Once after birth, movement bit by bit increases, between days 8 and 28 
the action is 30%, and between about a month and 5 years, the action is 70% in 
adults. Also, CYP articulation and movement can be influenced by basic medical 
issues, for example, nonalcoholic greasy liver ailment and neonatal diabetes.

Like DMEs, the ontogeny of medication targets is likewise significant in the 
assessment and performance of pharmacogenetics. For example, multi-drug resis-
tant protein 1 and ATPs binding cassette, whereas G2 is articulated earlier in child-
hood, though different transporters like Organic anion transporter or multi-drug safe 
protein 2 (MRP-2) display delayed the development and decreased articulation lev-
els with the main long stretches of adolescence contrasted with the adults [13].

The above-described cases are only a couple of instances of ontogeny commitment 
to quality control variances. A current publication demonstrates that up to 689 types 
of genes are otherwise articulated in developmental stages advancement just in lym-
phoblastic cells. Utilizing genetic articulation profiling of lymphoblast cells, scientists 
had the option to recognize three specific gatherings: prepubertal which is under 7, 
pubertal that is from 7 years to 17 years, and early adulthood gathering which is more 
than 17 [5] proposing a lot of formative genes which may express in a freeway.

The effects of drugs and their responses to children or adults may reveal the 
importance of ontogeny. More exposure to ototoxicity with cisplatin and its treat-
ment [14, 15], consequences for neurological advancement connected to methotrex-
ate [16], more consent of the tacrolimus or lethargy to codeine in newborn children 
are nevertheless a couple of cases [17]. Finally, few of related cancer diseases 
include acute lymphoblastic leukemia (ALL), osteosarcoma (OS), and neuroblas-
toma (NB) and may appear primarily in younger ones than adults so that’s why it is 
linked to ontogeny giving extra help that pediatric pharmacogenomics ought to be 
considered as an unmistakable field. The shortage of data and agreement on ontog-
eny is as yet one of the significant constraints for an unmistakable comprehension 
of the utility of hereditary variations [18].

The primary step to evaluating gene-drug associations is to highlight individual 
drugs widely used across European clinics to treat pediatric cancer patients for con-
ditions like brain tumors, leukemia, lymphomas, and solid tumors [19]. Primary 
drugs were included only to simplify the search, whereas any auxiliary treatments 
such as prophylactics or co-medications were ruled out. Secondly, it was important 
to check whether these drugs had gene-drug associations that were enlisted in the 
Pharmacogenomics Knowledgebase and were integrated into clinical guidelines of 
the Clinical Pharmacogenetics. PharmGKB is an accessible complete resource that 
checks and integrates facts on the effect of the genetic differences in drug reactions 
for clinical application or research. It is programmed to systematically extract gene- 
drug associations from scientific databases and evaluate evidence. Since CPIC is 
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responsible for the preparation of medical strategies for the gene or drug associa-
tions that mollify the utmost criteria of confirmation with special emphasis on clini-
cal importance, PharmGKB beautifully collaborates with it to give stunning 
gene-drug pairs and evidence for clinicians and researchers worldwide.

The method used to extract data on pediatric oncology pharmacogenomics starts 
with identifying and defining of drugs used in Europe. CPIC and PharmGKB col-
lectively function to search out drug-gene pairs and the strongest evidence for their 
application. In terms of strength of evidence, genes are grouped accordingly into 
four classes. Finally, the research found in the pediatric section in CPIC is reviewed 
and evaluated.

As previously mentioned, PharmGKB rates gene-drug associations into four 
comprehensive groups founded on power (with “1” being the resilient and “4” being 
the feeblest) of indication for the association. The first level contains a gene or drug 
relations that indicate important p values in more than one cohort and rather with a 
larger magnitude of consequence. The second level consists of suggestions that 
were reproducible with studies besides them that do not show worth with the asso-
ciation showing the smaller magnitude of the effect. The third level is built on soli-
tary studies presenting substantial association with the indication not reproduced. 
The fourth level is centered on individualized reports and in vitro, molecular, or 
functional assays [20]. The PharmGKB approach was tailored for this review with 
a few amendments in group 3rd and 4th level and both groups were merged in a solo 
group of a gene-drug linkage having a fairly little possibility of the entering medical 
trial in a period whereas group 1 and 2 were kept segregated.

15.3  Drugs with Pharmacogenetic Evidence

By the early screening, we were capable to classify the following drug-gene pairs 
with pharmacogenetic evidence like thiopurines/thiopurine S-methyltransferases 
(TPMT) pair, and cisplatin, carboplatin, irinotecan, and vincristine have moderate 
pharmacogenetic evidence.

15.3.1  Thiopurines/Thiopurine S-Methyltransferases (TPMT) Pair

Pharmacogenomic pair of thiopurines with TPMT is perhaps the peak extensively 
deliberate drug-gene interface in medicine of pediatrics. Thiopurines are functional 
as prodrugs that transformed into thioguanine nucleotides by hypoxanthine-guanine 
phosphoribosyltransferase. TGNs are very cytotoxic mixtures that function by inte-
grating into DNA or RNA producing damage to nucleic acids, finally leading to the 
expiry of cancerous cells. On the downside, TGNs can generate apoptosis in resis-
tant cells producing ADRs mostly neutropenia, thrombocytopenia, as well as hepa-
totoxicity, commonly manifesting as a veno-occlusive disease [21]. TGNs inactivate 
through S-methylation by the cytosolic TPMT. TPMT action is affected by poly-
morphisms occurring in the gene [22, 23]. In medical determinations, the 
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individuals are dispersed into three main groups: ordinary, intermediary, and 
reduced metabolizers created on the existence of one or two damages of functional 
alleles. Alleles 2, 3A, 3B, and 3C are by remote the most widely found irregular 
alleles and are expected to forecast up to 90% of the TPMT function [24]. Apart 
from the aforementioned, a total of 34 TPMT alleles have been discovered and 
termed in multiple inhabitants but with minor regularities [25] (Fig. 15.1).

This drug-gene link takes significant medical effects because treatment conse-
quences of childhood ALL with 6MP are very closely linked to maximum tolerable 
drug dose. The notion is supported by observations of concentration of TGNs and 
TPMT genotype, which collectively work in an inversely linked relationship to the 
capability of patients to tolerate full doses of 6MP. Subjects showing poor metabo-
lism of TMPT were able to tolerate not more than 7% of 6MP dose in the children, 
with those with intermediate and normal metabolism ranging from 65% to 84% 
tolerance of the treatment in the treatment regime. TPMT metabolizers lost 2% of 
entire treatment weeks, the indifference of 16–76% of missed weeks for TPMT 
transitional and TPMT deprived metabolizers, respectively [27]. The normal 
metabolism of TMPT allowed lag of 2% in total handling weeks, whereas patients 
with intermediate and poor metabolism demonstrated a lack of response in 16% 
and 76% of total weeks, respectively. CPIC has developed guidelines that state 
dosage for patients with normal metabolism traits. A 30–70% decrease is optional 

Fig. 15.1 Metabolism of TPMT thiopurine S-methyltransferase [26]
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for 6MP and 30–50% reduction for 6TG for the intermediate metabolizer class. 
Poor metabolism traits demanded to get 6MP or 6TG with a 90% decrease in dos-
age direction decreased to three times per week to avoid ADRs. Proactive patient 
testing has been actively called to reduce the chances of contrary drug responses in 
the situation of cancerous disease or to diminish time wanted for mounting titration 
of drug dose [28].

Identifying the significance of ontogeny, the indication on thiopurines and TPMT 
association assembled in pediatric cohorts. Childhood leukemia is flourishing child-
hood neoplastic disease, and a bulk amount of studies has been directed in the popu-
lace of pediatric in this regard [29].

15.3.2  Vincristine

Vincristine is extensively used as a mixture chemotherapeutic negotiator for han-
dling brain tumors, leukemias, lymphomas, neuroblastoma, retinoblastoma, and 
rhabdomyosarcoma in pediatrics. Vincristine prevents microtubule formation by its 
toxic properties by ultimately leading to mitotic arrest and apoptosis. Twenty-five 
percent of both pediatric and adult patients grow medically important vincristine- 
induced peripheral neuropathy, influencing indirect activities that embrace reduc-
tion in dose or termination of cure [30]. CYP3A5 has mostly tangled vincristine 
metabolism and is articulated only in about 10–20% Caucasians and 80% of 
Americans [31]. Some contradictory rumors with most of the cases of lesser vincris-
tine clearance in the patients holding deprived CYP3A5 metabolism are more sus-
ceptible to the development of VIPN [32]. Also, some populace transformations 
were detected for this association [33].

Fresh genome extensive suggestion research recognized an irregularity in the 
centrosomal protein 72 gene link with the VIPN throughout the extension phase of 
ALL handling with a large number of vincristine dosages [34]. Authors revealed in 
a similar study that a minor expression of CEP72 produced and enhanced the sensi-
tivity to vincristine. These conclusions elevated confidence for safe vincristine dos-
age expectancy in ALL usage procedures. However, another reviewing study 
through the beginning stage of ALL conduct in children of Spanish could not sup-
port this link, due to alterations in the study project, populace, and phase of handling 
protocol [35].

15.4  Conclusion

The baseline recommendations for adults put forward by pediatric pharmacoge-
nomics for thiopurines/TPMT association have shown consistency in results across 
multiple studies and depicted a profound effect on patients, and the study needs 
more attention. Thiopurines are one of the few drugs that were supported by strong 
evidence with its association with TPMT, but further research into the drug-gene 
relationship is needed before it can be put to practice in hospitals. Sensible 
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indication gene-drug connections were typically formed for pharmacogenetics. 
Research turns up as either scarce or too complex to allow comparison due to vari-
ance created diagonally handling procedures, diseases, populaces, and assessable 
consequences. On the contrary, vincristine has been found sufficiently quoted in 
Dutch and French guidelines, suggesting a reduction of the drug dose in some cases 
of patients exhibiting low metabolism. CYP3A5 is a possible alternative to use 
lower doses while also implementing a protracted treatment regime. Lack of data 
available for this gene-drug pair in pediatric pharmacogenetics opens new doors to 
research on this gene. Pharmacogenetic gene-drug association studies, thereby urg-
ing vast study designs to produce reasonable results.

15.5  Future Directions

Before any extra gene-drug interaction-based trials can be initiated in hospitals, 
rigorous and in-depth analysis yielding strong evidence of gene-drug associations 
must be performed. PharmGKB provides a valuable platform for clinicians and sci-
entists to analyze and interpret data from pharmacogenomics. Though it facilitates 
the end user, caution must be taken while interpreting lower-level gene-drug asso-
ciations as statistics may vary in terms of gene-drug associations. A lacking element 
in pediatric pharmacogenomics deals with an ontology that requires proper compre-
hension of the impact of genetic variants. Multiple combinations of drugs used in 
the treatment of cancer also present a hurdle, which makes it difficult to identify the 
effect of a single drug component. Future research can be enhanced by creating a 
standardized treatment regimen spread over different institutions and pinpoint the 
exact genetic association with the overall treatment cycle.
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16.1  Introduction

Cisplatin belongs to the effective group of chemotherapeutics and has a wide range of 
action to treat the different types of cancers. In children it can be used to treat different 
tumors such as hepatoblastoma, neuroblastoma, germ cell tumors, relapsed lym-
phoma, refractory lymphoma, and osteosarcoma. In adults it has its applications in 
treating the tumors that include cervical, testicular, ovarian, neck, bladder, head, and 
lung cancers. Cisplatin has a cure rate of about 85% and is regarded as one of the most 
effective chemotherapeutic agents. It is an alkylating agent that is used to treat differ-
ent sorts of cancers. Cisplatin has a platinum atom that has two ammonia groups and 
two chloride groups attached at the cis position. Cisplatin is activated when two water 
molecules are replaced with two chloride ligands that is a replacement reaction; 
because of which, platinum cation is formed. The cation then reacts with DNA by 
covalently binding the purines forming inter- and intrastrand cross-links.

16.2  Discovery

In the 1960s cisplatin for the first time was found to have an anticancer activity, and its 
clinical success developed the interest of using metal compounds to treat cancers [1].

Barnett Rosenberg at the University of Michigan performed an experiment to 
study the role of electrical current in cellular division. He grew Escherichia coli in 
NH4Cl buffer and applied current using inert platinum electrodes 9. After some time, 
E. coli cells were found to be larger than usual [2]. This was found to be due to reason 
that cell division was inhibited. Later, it was found that this effect was not caused by 
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the current; instead the product formed by the hydrolysis of platinum was the reason 
of inhibition of division [3]. Then different metal compounds of the group 10 transi-
tion metals were used in different experiments and resulted in enlargement of E. coli 
cells. It was also discovered that only cis form of platinum (IV) complex resulted in 
enlargement or inhibition of division and trans form did have no effect [4].

With these results it was thought that these complexes may prove valuable for 
having anticancer activity. Mice with sarcoma tumors were subjected to the plati-
num complexes. Large tumors in mice were reduced in size and they survived. After 
24 weeks all the signs of cancer disappeared in the treated mice [5, 6]. The results 
lead to clinical trials of cisplatin, which now has become one of the most effective 
anticancer therapeutic agents.

16.3  Synthesis

Michel Peyrone in 1845 was the first to synthesize cisplatin that later was subjected 
to convicting discussion for its structure [7, 8]. About a half century later, Alfred 
Werner proposed square planar structure of this molecule, while it helped him in 
establishing his theory of coordination chemistry. Cis- and trans-isomers, i.e., cis-
platin and transplatin, were also differentiated [8–10], and Werner was awarded 
Nobel Prize in Chemistry for his work in 1913 [9].

There have been brought many improvements in process of synthesizing cisplatin. 
Old methods did not tend to be trustworthy as they included some by-products as 
impurities. So alternative methods with the goal of improved quality of cisplatin and 
increased yield of reaction were adopted. In 1970 Dhara reported about “A rapid 
method for synthesis of cis-[PtCl2(NH3)2]” on which most modern methods of pro-
ducing cisplatin are based. This procedure included the conversion of the raw mate-
rial, K2[PtCl4], to the tetra-iodo analogue, K2[PtI4], and a concentrated solution of KI 
is added. NH3 is also added that results in formation of yellowish compound, cis-
[PtI2(NH3)2], and then an aqueous solution of AgNO3 is also added to purify cis-
[PtI2(NH3)2] that results in the formation of precipitates of insoluble AgI. The whole 
solution is filtered and AgI is eliminated. The filtrate that contains cis-[Pt(OH2)2(NH3)2]2+ 
forms final product in the form of precipitates by treating with KCl. The final product 
is cis-[PtCl2(NH3)2] (cisplatin), in the form of yellow powder [11].

16.4  Mode of Action

Cisplatin acts as an anticancer drug when it interacts with DNA and induces apop-
tosis, i.e., programmed cell death (Fig. 16.1) [1, 12]. The bloodstream contains a 
high concentration of chloride ions in the plasma of blood, so cisplatin must face 
this higher concentration, and replacing the chloride ions by water molecules is 
limited (aquation process is inhibited) [13, 14]. Nevertheless, some proteins present 
in the plasma find it easier to attack cisplatin [15, 16]. These proteins include espe-
cially those having thiol group, which are albumin of human serum and cysteine 
[17, 18]. It has been found that about 90% cisplatin is found bound by proteins in 
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plasma after 24 h when the drug has been administered [19–21]. It is believed that 
cisplatin is deactivated by these proteins [22–26] and results in severe side effects 
[19, 27–31].

The unreacted cisplatin diffuses through the plasma membrane of the cancer 
cells and gains entry [32]. It has been also found that cisplatin can also enter tumor 
cells by active transport across cell membrane by use of Cu-transporting proteins 
[33]. The concentration of chloride ions is low in intracellular space as compared to 
blood plasma, and it is easier for cisplatin to be attacked by water molecules and 
replace one chloride ligand that produces a positive species that is ready to undergo 
reaction and doesn’t diffuse out of the cell. This mono-aquated compound has been 
found to be responsible for about 98% platinum that binds the DNA in the nucleus 
of tumor cells by in vitro methods [34].

A monofunctional DNA adduct is formed when reaction occurs between this 
mono-aquated platinum compound and a base of DNA, mostly guanine [35–37]. 
The potential sites for binding with platinum with each of DNA bases are nucleo-
philic nitrogen atoms present in nitrogenous bases. A bifunctional adduct may be 
formed by the ring closure [38, 39]. Either monofunctional DNA adduct may 
directly undergo ring closure to form bifunctional adduct, or the second chloride 
ligand may be aquated after the ring closure. Adenine-guanine and guanine-guanine 
are included in bifunctional adducts [40]. These bifunctional products distort the 
DNA significantly. This distorted DNA is recognized by DNA binding proteins. The 
DNA-binding proteins either start the process of damage repair of DNA or result in 
signaling the induction of apoptosis. The damage of tumors is caused by induction 

Fig. 16.1 Cisplatin’s cytotoxic pathway
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of apoptosis when different signal transduction pathways are activated to mediate 
apoptosis [22, 38, 39, 41].

Cisplatin may interact with any of the following [23] leading to activation of 
transduction pathways:

 1. Reactive oxygen species (ROS)
 2. DNA
 3. Tumor necrosis factors
 4. Mitochondria
 5. p53
 6. Caspases
 7. Calcium signaling
 8. Multidrug-resistant proteins

16.5  Pharmacogenomics of Cisplatin-Induced Ototoxicity

Cisplatin causes hearing loss in various cancer patients to a great degree in a varied 
way. Genetic difference can give an illustration of the variations in the disposed 
patients.

16.5.1  Mechanism of Cisplatin-Induced Ototoxicity

DNA damage and production of acute and chronic reactive oxygen species (ROS) 
are among the inspections for ototoxicity due to cisplatin. All of the three parts of 
cochlea, spiral ganglionic cells, lateral wall, and the organ of Corti, have been 
inspected with elevated production of ROS.  The antioxidant enzyme system of 
cochlea that includes superoxide dismutase, catalase, glutathione peroxidase, gluta-
thione reductase, glutathione S-transferase (GST), etc. is depleted by generation of 
excess of ROS. This enzyme system scavenges and neutralizes super oxides that are 
procreated [24]. Consequently, hearing loss results from any polymorphism in these 
enzymes. An inflammatory cytokine and a superoxide form in the cochlea increas-
ingly by formation of ingrained ROS due to cisplatin. Proapoptotic pathways are 
activated when ROS are produced unchecked [25].

16.5.2  Megalin, Hearing, and Ototoxicity

Megalin, a multiligand receptor, has multiple functions and seems to be important 
for hearing. Stria vascularis of the cochlea produces megalin abundantly in its mar-
ginal cells. Possibly, cisplatin is ligated by megalin as it has been found to ligate 
aminoglycoside antibiotics [26, 42]. The association of megalin SNPs with cisplatin- 
induced ototoxicity was studied. Half of the subjects included in the study lost hear-
ing, while the other half were not affected by cisplatin. An equivalent dose of 
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cisplatin was given to all the subjects. Megalin SNPs were divided into two groups. 
The group that lost hearing had the SNP rs2075252 of A allele with more frequency. 
A total of 2 SNPs out of 757 were studied as these were not the same and they were 
rs2075252 and rs4668123 [43]. Lysine was changed to glutamic acid in rs2075252 
SNP as mRNA of megalin at position 12,384 G nucleotide changed to A. Alanine 
was changed with threonine amino acid in rs4668123 SNP as mRNA of megalin at 
position 8718 has a transition of A to G nucleotide.

The occurrence of rs2075252 was higher in the subjects with normal hearing 
impairment, but it was not so in all patients who were affected with cisplatin- 
induced ototoxicity. In a recent study of a large group of children in Canada, there 
was no identification that cisplatin ototoxicity is associated with rs2075252 [44]. 
These findings can neither be refuted nor accepted as more studies of larger samples 
of cisplatin-induced hearing loss affected patients are required.

16.5.3  Cisplatin-Induced Ototoxicity and GST Polymorphisms

Inner ear expresses two proteins, namely, GSTM and GSTP [45–47]. These two 
proteins and GSTT1 gene are involved in the induction of cisplatin-induced ototox-
icity. GSTP1, GSTT1, and GSTM1 genes control most of GST polymorphisms that 
are linked with cisplatin ototoxicity. The enzymatic activity of GST is either low-
ered or lost due to these genes.

Cisplatin ototoxicity-related GST polymorphisms were first studied by Peters et al. 
[48]. They found that the patients with normal hearing had GSTM∗3B allele often-
times as compared to those with hearing loss. Thus, the first evidence that the GST 
polymorphisms are associated with hearing loss due to cisplatin in children was found. 
Later, Oldenburg et  al. communicated the link between the GSTM1 and GSTP1 
alleles and protection from hearing loss due to cisplatin [49]. On the other hand, Ross 
et al. studied about 2000 SNPs to find out variations in 220 genes. He found no link 
between cisplatin-induced ototoxicity and the alleles GSTP1 or GSTM1.

16.5.4  Thiopurine S-Methyltransferase and Catechol-O- 
methyltransferase and Ototoxicity

Studies have shown variants of catechol-O-methyltransferase (COMT) and thiopurine 
S-methyltransferase (TPMT) linked to ototoxicity caused by cisplatin; these variants 
are rs12201199 and rs9332377 for TPMT and COMT, respectively. About 90% of 
patients were diagnosed with COMT risk allele, rs9332377. TPMT is involved in 
metabolism of exogenous purine compounds, for example, azathioprine metabolites. 
It is responsible for inactivation of such metabolites. Possibly cisplatin- bound purine 
inactivity is decreased as the TPMT enzyme synthesis is reduced. So, it results in the 
formation of greater DNA cross-links with cisplatin, and toxicity is increased. 
S-adenosylmethionine (SAM) is a methyl donor and required by TPMT and COMT 
in methionine pathway as they are methyltransferases [44]. Decreased activity of 
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TPMT and COMT enzymes may result in elevated levels of S-adenosylmethionine 
that can be the reason of ototoxicity. But studies have shown no proof of SAM ototox-
icity. In a study of an enzyme that resembles COMT about 60%, it is revealed that 
COMT is important for normal hearing in both humans and mice. So, it is suggested 
that cisplatin-treated patients may loss hearing as COMT level is lowered [50].

16.5.5  Other Genes Related to Cisplatin-Induced Ototoxicity

Mitochondrial DNA was studied for mutations of haplotype by Peters et al. [51]. It 
was found that more than half of patients administered with cisplatin were character-
ized with hearing loss. They found that mitochondrial mutations 7472insC, A7445G, 
and A1555G were not the reason of toxicity but the clustering of haplotype J as they 
were present in the patients with cisplatin-induced ototoxicity oftentimes.

Eight SNPs were studied by Caronia et al. in patients who were treated with cispla-
tin [52]. Cisplatin ototoxicity was found to be related to rs2228001 SNP. This SNP in 
gene XPC had genotypes CC and AA with carrying mutation for hearing loss.

16.6  Cisplatin-Induced Nephrotoxicity

Among different side effects of cisplatin, nephrotoxicity is common and found in 
the patients with renal cancer who are treated with the drug. Pharmacogenomics of 
nephrotoxicity has been studied to find out prevention and vulnerability to this 
adverse drug reaction. Cisplatin nephrotoxicity was found to be due to polymor-
phisms total eight in number. Out of all these, cisplatin nephrotoxicity was found to 
be related to only SNP rs316019 of SLCC2A2 gene, OCT2 transporter gene. This 
SNP resulted in change of serum creatinine (SCr). Transporter function is changed 
by SNP rs316019 within SLCC2A2 an 808G>T transversion results.

DNA repair mechanism is altered in renal cells and is a notable reason of neph-
rotoxicity. Nucleotide excision repair genes (ERCC) eliminate lesions due to which 
helical structure of DNA may be disturbed. If ERCC is varied, proteins for repair 
are altered and repair function is also altered. ERCC1 is not associated to any SNPs, 
but ERCC2 is found to have SNP rs13181 where glycine is substituted instead of 
lysine. DNA repair mechanism is much likely to be affected by SNP rs13181 of 
ERCC2 [53].

16.7  Limiting Factors

The pharmacogenomics of cisplatin-induced nephrotoxicity has not yet been stud-
ied comprehensively due to different limiting factors that include:

 1. Different types of cancers
 2. Ethnicity
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 3. Small samples
 4. Adjuvant chemotherapies, etc.

16.8  Conclusion

Cisplatin causes toxicity among children in different ways including cisplatin- 
induced hearing loss or ototoxicity and nephrotoxicity. It reacts with DNA and 
results in polymorphisms that produce proteins (enzymes and receptors) with 
altered functions than those vital for body leading to adverse side effects. Despite 
cisplatin’s high cure rate, the adverse side effects of drug cannot be omitted, and it 
is needed to use some safer chemotherapeutics. Several genetic polymorphisms 
related to cisplatin-induced toxicity have been reported with conflict in importance 
of different genes and their variants related to toxicity. Different reports have used 
several criteria and statistical methods to analyze cisplatin’s role in inducing toxic-
ity among children. Naturally different patients having different cancers or tumor 
types are administrated with varying cumulative dose, so they give varied results. 
There is a need to carry pharmacogenomic research on larger scale to get robust and 
relying results for assessing risk related to cisplatin toxicity. As toxicology of cis-
platin toxicity is complex, limited works are not much reliable as there may be far 
more polymorphisms for a single type of toxicity such as ototoxicity. Further there 
is a need to carry more specific research without adjuvant chemotherapies.
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17.1  Introduction to Methotrexate

Methotrexate (MTX) is an immune system suppressant and a chemotherapy drug. It 
is also known as amethopterin, methotrexate, mexate, or methyl aminopterin [1]. It 
is a competitive inhibitor of the enzyme DHFR that helps in the formation of 
RNA. It also inhibits another enzyme TS used in DNA synthesis [2–4]. It is used in 
the treatment of various forms of cancer like leukemia, osteosarcoma, lymphoma, 
and breast cancer [5–9]. Moreover, it is also used in treating other medical condi-
tions such as abortions, ectopic pregnancy, autoimmune diseases like rheumatoid 
arthritis, psoriasis, and Crohn’s disease [10, 11]. MTX efficiently treats various dis-
orders linked with rapid cellular growth. But some patients develop resistance and 
others experience different toxic side effects. Patients showed sensitivity to MTX, 
as drug efficacy can be modulated by respective genes that control their activity.

Several studies have reported the potential of MTX as genetically tailored medi-
cine for rheumatoid arthritis and leukemia patients. Methylenetetrahydrofolate 
reductase and TS genes are the most frequently studied genetic variants that are 
assumed to have a good predictive role.
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17.2  Discovery

MTX was made in 1947 and recommended for cancer treatment due to less toxicity 
at that time as compared to other available treatment strategies. In 1947, Sidney 
Farber with his team of researchers showed that a chemical analog of folic acid ami-
nopterin could be used in the treatment of acute lymphoblastic leukemia (ALL) in 
children. It was observed that a diet containing folic acid could produce an increase 
in the effects of disease, whereas the use of folic acid analog worsened leukemia.

In 1950, MTX was proposed as an effectual drug in treating leukemia. In 1951, 
MTX was used in solid tumors and for temporary recovery from breast cancer. In 
1956 some studies showed that MTX had a better therapeutic index than that of 
aminopterin [12]. Later on, the drug was used for choriocarcinoma and chorioade-
noma, metastatic cancer, and mycosis fungoides [13].

17.3  Administration

MTX can be given by mouth or by injection. To limit toxicity the drug is prescribed 
to be taken weekly and not daily. Routine monitoring of the complete blood count 
is recommended. Also, after at least every 2 months, creatinine and liver function 
tests are suggested.

17.4  Structure

MTX has a molecular formula C20H22N8O5 and an average mass of 454.439 Da. 
Chemical structures of MTX are very similar to folic acid. MTX consists of a pteri-
dine ring and p-aminobenzoic acid plus glutamic acid, whereas the folic acid structure 
is different due to substitution of a hydroxyl group (OH) for an amine and on the tenth 
nitrogen of p-aminobenzoic acid by addition of a methyl group in the pteridine ring.

17.5  Mechanism of Action

MTX is an antimetabolite just like other usual cellular materials. They inhibit cer-
tain cellular pathways and cell division by competing with normal cellular material. 
MTX competes with folic acid in cancer cells, which leads to the deficiency of folic 
acid and hence the death of cells. This is referred to as the chemotherapeutic toxicity 
of MTX. However, a drawback of MTX is that it causes different side effects by 
competing with folic acid in other normal cells of the body. These side effects can 
be diarrhea, liver damage, low blood cell counts, kidney damage, hair loss, nerve 
damage, and mouth sores.

MTX inhibits the enzymes DHFR and TS, thus limiting DNA and RNA synthe-
sis [2, 3, 14]. It enters cells using an active transport system of folic acid. MTX then 
undergoes polyglumatation. MTXGlu inhibits the enzymes more effectively. The 
reduced level of folic acid is maintained by the enzyme DHFR by reducing 
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dihydrofolic acid. DHFR reduces folic acid to an essential cofactor in the purine 
synthesis, i.e., tetrahydrofolate.

The normal process occurring in a cell is that folic acid (vitamin B9) is converted into 
dihydrofolate (DHF) by the enzyme DHFR. The same enzyme catalyzes the conversion 
of dihydrofolate into tetrahydrofolate (THF). Then this THF compound is converted 
into N5,N10-methylenetetrahydrofolate. N5,N10- methylenetetrahydrofolate helps in 
the conversion of deoxyuridine monophosphate into thymidine monophosphate by the 
enzyme TS. In this way, it helps in DNA synthesis, RNA synthesis, and synthesis of 
purine nucleotides.

MTX inhibits the production of DHFR, so no tetrahydrofolate is produced, and 
ultimately no N5,N10-methylenetetrahydrofolate is produced. As N5,N10- 
methylenetetrahydrofolate was required for the action of TS, its absence will affect 
the cell normal activity mainly cell replication, protein synthesis, DNA and RNA 
synthesis, and ultimately cell division.

In cancer, it is helpful because it stops the growth and division of cancerous cells, 
but it also affects the division of non-cancerous or normal body cells.

Cancerous cells and normal cells are different in their cell division. In the case of 
normal cells contact inhibition, a mechanism is present, i.e., when they encounter 
similar cells, they will stop dividing. Cancer cells do not possess any inhibition 
mechanism. Cancer cells divide rapidly and continuously. This uncontrolled prolif-
eration of cancer cells results in the formation of a tumor.

The tumor will shrink if the cancer cells cannot divide. It is achieved through 
chemotherapy in which the RNA or DNA of cancer cells, that control cell division, 
is targeted and damaged. Chemotherapy drugs are effective both to dividing cells/
cell-cycle specific and to cells that are at rest/cell-cycle non-specific. Type of cancer 
cells and the rate of their proliferation determine the schedule of chemotherapy.

Chemotherapy drugs cannot differentiate between the cancer cells and the nor-
mal cells, so the use of MTX leads to certain side effects like nausea, mouth sores, 
diarrhea, or hair loss. The normal cells that are usually affected by chemotherapy 
are cells of hair follicles, mouth, stomach, and blood cells.

Usually, the use of MTX could result in side effects like fever, nausea, increased 
risk of infection, feeling tired, soreness of mouth and tongue, and low white blood 
cell counts. Some side effects may be in the form of liver disease, lymphoma, lung 
disease, and severe form of skin rashes. Patients who are on long-term treatment 
should be checked regularly for the presence of any side effects. If anyone has kid-
ney problems, lower doses of MTX may be needed. It is also not safe to use this 
during breastfeeding.

17.6  Introduction to Pharmacogenomics

Pharmacogenetics refers to how variation caused in a single gene will influence the 
response to a single drug, whereas pharmacogenomics involves the use of genetic 
information to help the doctor to choose the drug wisely and its dose on an indi-
vidual basis. So, we can say that pharmacogenomics further includes 
pharmacogenetics.
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17.7  The Foundation of Pharmacogenomics

Certain factors cause a change in the gene, and as a result, every individual responds 
differently to the drug. This change may be due to mutation or polymorphism. 
Mutation is due to the difference in the DNA code that occurs in less than 1% of the 
population. Genetic polymorphism is a difference in DNA sequence among indi-
viduals of a population. It occurs in at least 1% of the population but makes up about 
90% of all human genetic variation. Polymorphism can result in different stop 
codons or amino acids. It may also change in the functioning of the protein. By use 
of pharmacogenomics, we can give patients personalized medicines in which the 
treatment for a particular disease is chosen based on characteristics of the individual 
patient rather than the average patient.

17.8  Pharmacogenomics of Methotrexate

MTX is an efficient drug in treating various disorders in which there is rapid cellular 
growth. But some of the patients develop resistance toward this and others observe 
toxic side effects [15]. MTX functions by the inhibition of folate-dependent 
enzymes. The patient show sensitivity to MTX as drug efficacy can be modulated by 
the genes that control their activity. Several studies that are being conducted mostly 
in rheumatoid arthritis and leukemia patients have brought into light the potential 
for tailoring MTX therapy based on the genetics of the patient. MTHFR and TS 
genes are the most frequently studied genetic variants that are assumed to have a 
good predictive role.

17.9  Toxicity

We know MTX is a chemotherapeutic agent, and it works by inhibiting the folic 
acid cycle and an enzyme TS. It is used for the treatment of many diseases like neck 
cancer, osteosarcoma, ALL, lymphoma, neck and lung cancer, trophoblastic neo-
plasms, and bladder cancer [16–18]. But sometimes MTX-based chemotherapy can 
result in many severe toxicities. In such cases, the dose is reduced, or treatment is 
completely stopped. MTX toxicity can be caused because the patient becomes more 
sensitive to infections during the treatment. It may also be caused by excessive 
intrathecal, parenteral administration or intentional oral overdoses of 
MTX. Therapeutic errors by patients might cause toxicity in some cases, for exam-
ple, if a patient takes MTX orally daily instead of weekly or in case of self- 
administration of MTX to induce abortion. This toxicity can cause vomiting, nausea, 
diarrhea, stomatitis, mucositis, esophagitis, renal failure, an elevated level of hepatic 
enzymes, acute lung injury, rash, hypotension, tachycardia, stroke-like symptoms 
neurologic dysfunction like headache, depression, seizures, encephalopathy, and 
even coma. Toxic effects of MTX might be caused for several hours to days to 
weeks after normal or excessive use of MTX. Due to variations in pharmacokinetics 
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and pharmacodynamics, from patient to patient, the possible risk for MTX-induced 
toxicity is not possible at the current time.

It is hypothesized that MTX-induced toxicity is due to mutations in the gene for 
an enzyme MTHFR that aids in folate metabolism. One of the main assumed factors 
for causing polymorphism is C to T transition at nucleotide 677 (C677T, rs1801133) 
as it is involved in increasing homocysteine level and change in folate supply by 
decreasing the activity of the enzyme [19]. Another factor that affects the activity of 
enzyme though to less extent is A to C 1298 polymorphism (A1298C, rs1801131).

When the direct investigation for effect of MTX-induced toxicity and the poten-
tial for personalized medicine was done on A1298C and MTHFR C677T, the result 
varied greatly [20]. There is very contradictory evidence about the link between 
germline variation and MTX-induced toxicity [21]. Also, there is inconsistent evi-
dence about the link between toxicity and MTHFR C677T polymorphisms, whereas 
it is assumed that both increase and decrease in risk of toxicity are somehow linked 
with MTHFR A1298C polymorphism.

The risk for carrying a variant allele for different toxicities like hepatic toxicity, 
gastrointestinal toxicity, oral mucositis, myelosuppression, and hematological tox-
icity is different [20, 22]. Also, it depends on the type of cancer that MTX is used 
for because different MTX regimens are used in different types of cancer and 
patients also respond to these drugs differently.

17.10  Pharmacogenomics of Methotrexate-Induced Toxicity 
in Children

The genetic determinants of MTX toxicity are discovered by various pharmacoge-
netic studies. The action of MTX on folate metabolism involves a complex structure 
that encompasses numerous metabolizing enzymes and several transporters whose 
expression and/or function have been suggested to be changed by genetic 
polymorphisms.

Many studies were conducted that showed how chemotherapy toxicity of MTX 
could have resulted from genetic polymorphisms. According to a study by Moscow 
in 1995, it was deduced that MTX enters into the cells by the reduced folate carrier 
1, whereas it is removed from the cell with the help of numerous ATP-binding cas-
sette (ABC) efflux transporters [23, 24]. According to a study in 1985 by Chabner, 
it was assumed that in the cell, MTX is metabolized to active polyglutamates, which 
cause a disturbance in folate metabolic pathway by inhibition of the enzymes 
required for DNA synthesis [14]. These enzymes are TS and DHFR [2, 3]. In addi-
tion to this, MTHFR is also one of the enzymes that aid in the production of 
5-methyl-tetrahydrofolate (THF) from 5,10-methylenetetrahydrofolate, an interme-
diary that is itself synthesized by serine hydroxymethyltransferase (SHMT1) [25]. 
Also, the production of 5-methyl-tetrahydrofolate is crucial for the biotransforma-
tion of homocysteine to methionine. Methionine synthase reductase (MTRR) and 
methionine synthase (MS) are two of the main enzymes that are included in this 
conversion.
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17.11  Methotrexate and ABC Efflux Transporters

ABC efflux transporters are also associated with MTX-induced toxicity. 
Polymorphism in ABC efflux transporter leads to neurotoxicity and accumulation of 
the drug in the brain as they are located in the blood-brain barrier. For example, the 
presence of the C421A (rs2231142, Gln141Lys) SNP in the ABCG2 gene that codes 
protein BCRP and the C3435T transition in ABCB1 that codes for the P-glycoprotein 
are assumed to be involved in causing encephalopathy in children with ALL that is 
treated with MTX [26]. Also, polymorphism of G-80A, which predicts the intracel-
lular levels of MTX, in the RFC1influx transporter cause toxicity in patients of ALL 
[27–29].

17.12  Methotrexate Toxicity and 677T Allele

It is assumed that neurotoxicity is caused by 677T allele in young patients of acute 
lymphocytic leukemia ALL [30–33]. However, this is only seen in clinical case 
reports. For example, a study was conducted on 53 children suffering from ALL. They 
were treated with a high-dose of MTX. MTX did not clearly depict the role of 677T 
allele causing neurotoxicity because only nine of the patients developed it [34]. To 
overcome this problem, it might be preferable to genotype huge populations of 
patients who had suffered MTX-induced neurotoxicity. So, we can conclude that 
some major problems faced in conducting such studies are the low level of people 
affected, and it also because different SNPs can be associated at a time.

17.13  Methotrexate Toxicity and SLC19A1

ALL and non-Hodgkin malignant lymphoma (NHML) pediatric patients have been 
studied for mutations in SLC19A1 having MTX-induced adverse drug reactions 
[35]. In some cases, rs1051266 AA genotype was found to be protected, while in 
others it showed either no role at all or was associated with an elevated risk of 
adverse drug reaction due to MTX. Many studies were carried on SNP rs1051266 in 
SLC19A1 gene and other SNPs. Another SNP rs2832958 with TT genotype was 
associated with the development of mucositis. Another SNP rs2838951 occurred 
frequently in patients who did not develop any kind of toxicity due to MTX. About 
384 SNPs were investigated by Lopez-Lopez that also included SLC19A1 gene 
[36]. These SNPs were studied for association with MTX-induced toxicity. The 
plasma level was not found related to SLC19A1 gene [36]. MTX toxicity was asso-
ciated with rs11045879 SNP of SLCO1B1 gene [37]. SNPs rs3740065 in ABCC2 
and rs9516519  in ABCC4 were related to MTX-induced adverse drug reactions. 
Another study suggested the ways in which rs1051266 is one of the reasons why 
MTX toxicity is caused [38]. The SNP rs1051266 along with SNP rs1131956 had a 
protective role, and rs2838956 had a role in the protection of adverse drug reactions 
to the skin. The SNPs rs7499, rs2838956, rs3788200, and rs1051266 were also 
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involved in methotrexate-induced gastrointestinal toxicity and rheumatoid 
arthritis.

17.14  Methotrexate Toxicity and MTHFR

In studying factors related to ALL, MTHFR is studied most. The two most common 
factors that enhance toxicity caused by MTX are A1298C (rs1801131) and C677T 
(rs1801133) [39, 40]. But according to the latest and deeper studies of currently 
available literature, it is assumed that the only important single nucleotide polymor-
phism (SNP) is caused by C677T, even though some antipodal studies also exist 
[28, 41, 42].

MTX toxicity has been studied in childhood osteosarcoma patients. Earlier stud-
ies suggested the association of MTHFR 677TT gene with methotrexate-induced 
toxicity such as hepatotoxicity and MTX plasma level, etc. No relation between 
MTX toxicity and MTHFR 677TT polymorphisms was suggested by Park et  al. 
Alpenc et  al. studied ALL patients and did not find a relation between MTHFR 
677TT polymorphism and methotrexate-induced toxicity. A study on ALL and 
osteosarcoma patients showed that MTHFR allele T resulted in hepatotoxicity more 
as compared to MTHFR C allele. Similarly, hematological toxicity has also been 
reported to be associated with MTHFR 677TT gene.

17.15  Toxic Effects Caused in Children Using MTX 
for Treatment of Juvenile Idiopathic Arthritis

Methotrexate (MTX) is the foremost option for the disease-modifying antirheu-
matic drug (DMARD) for treating juvenile idiopathic arthritis (JIA) [16, 43, 44]. 
This drug not only reduces arthritis in these children but also has a positive role in 
both psychosocial and physical quality of life [45]. Despite these advantages, 
there are some disadvantages of using this drug too. The major drawback is that 
some children face trouble in taking MTX. The most frequently occurring side 
effects include vomiting and nausea, and in 10–20% of patients, it causes some 
abnormalities in liver test [46, 47]. However, folinic acid and folic acid aid in the 
minimization of the side effects that are resulted from MTX [48, 49]. Sometimes 
reluctance to MTX and anticipatory nausea may develop if a child kept on expe-
riencing vomiting or nausea after intake of MTX. In some children, it also causes 
fear of injections or blood monitoring tests that may further give rise to different 
problems.

The main aim of Sport Aiding Medical Research for Kids (SPARKS) Childhood 
Arthritis Response to Medication Study (CHARMS) is to study various factors that 
result in different responses of children with juvenile idiopathic arthritis to MTX 
[50, 51]. Another study was done to collect data from mothers of children who were 
suffering from juvenile idiopathic arthritis to know about the factors and extent of 
methotrexate-related adverse events. One hundred seventy-one mothers took part in 
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the study. The majority of children had vomiting or nausea after taking MTX. Among 
these, some suffered from anticipatory nausea because they were afraid of injec-
tions or giving blood tests. This study concluded that problems in using MTX for 
treatment of JIA is dominant in an only a notable proportion of children. It also 
might cause a negative effect on health-related quality of life. We should develop 
different ways of minimizing these problems [51].

17.16  Folate Metabolic Pathway SNPs as a Pharmacogenetic 
Marker of Methotrexate

In a study, the pharmacogenetic effect of genetic polymorphisms in folate meta-
bolic pathway genes in Indian rheumatoid arthritis patients taking MTX was eval-
uated. Twelve polymorphisms in 9 folate pathway genes were studied for the 
response caused by MTX in 322 patients of Indian rheumatoid arthritis and MTX 
pharmacokinetics in 94 patients of Indian rheumatoid arthritis. The following 
results were obtained. Methotrexate-related adverse events were due to polymor-
phisms in GGH, SHMT1, GGH, and TS, whereas MTX efficacy was associated 
with SNPs in RFC1/SLC19A1 and MTHFR. The study concluded that polymor-
phisms in the genes of folate-methotrexate pathway play a significant role in 
response to MTX [52].

17.17  Current Status and Future Outlook 
of Pharmacogenomics of Methotrexate

MTX is a folate analog that has a very high therapeutic efficiency in treating cancers 
and other autoimmune disorders. However, the toxicity and effectiveness of MTX 
might be changed due to genetic polymorphisms in different genes that are involved 
in MTX metabolic pathway. To provide a productive, accost effective, and appropri-
ate treatment for patients, we should focus on personalized pharmacotherapy that is 
based on gene polymorphisms [53].

The effect of SNPs in the genes that are involved in MTX pathway is contradic-
tory. Most of the pharmacogenetic associations are race-specific and disease- 
specific. The current studies are just limited to a few important diseases and ethnic 
groups. So, the data from such studies are not helpful enough in clinical practice for 
the pharmacogenetic application of MTX. In the future, we need to study this on a 
bigger level and at multiple centers. MTX-PG inhibits folic acid metabolism in 
three different ways. These three rate-limiting enzymes are TS, MTX hydrofolate 
reductase, and 5-aminoimidazole-4-carboxamide ribonucleotide. These SNPs have 
a one-sided function in these genes. Therefore, we need to conduct studies that 
focus more on the analysis of polymorphism in methotrexate transporters [53].
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17.18  Conclusion

Methotrexate (MTX) is an immune system suppressant and a chemotherapy drug 
that disrupts the folate cycle in the cell by inhibiting the enzymes like DHFR and 
TS.  Proper functioning of these enzymes is important in DNA synthesis, RNA 
synthesis, protein synthesis, and overall normal cell division. When the activity of 
these enzymes is inhibited, all these processes are disturbed, and cell division is 
ceased. This helps limit the growth and proliferation of cancerous cells. However, 
growth and division of normal cells are also affected which causes various types of 
toxicities. This part of the study was focused on methotrexate-induced toxicity in 
children and the variations occurring at the genome level by studying pharmacoge-
nomics of MTX.

The main genes involved in showing important polymorphism are DHFR, 
MTX-PG, TS, SLC19A1, ATP-binding cassette C1 and two transporters (ABCC1, 
ABCC2), BCRP, MTHFR, and many others too. A number of studies have demon-
strated the relation between MTX and related genes but MTX induced toxicity is 
not fully understood due to variation in genetic makeup from one individual to 
another and low level of people affected by the toxic effect of MTX drug.
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18.1  Introduction

Thiopurines are immunosuppressants, suppress the normal activity of body’s immune 
system [1], and act as purine antimetabolites [2]. Most commonly used thiopurine 
drugs include azathioprine (AZA), mercaptopurine (6-MP), and thioguanine (6-TG) 
[3]. Different diseases, like acute lymphoblastic leukemia (ALL) and inflammatory 
bowel disease (IBD), can be cured by using thiopurine drugs. In the 1950s, Hitchings 
and Elion synthesize thiopurine drugs including 6-MP and 6-TG that play an important 
role in ALL (acute lymphoblastic leukemia) treatment [4]. 6-Mercaptopurine (6-MP) is 
used along with methotrexate (MTX) in ALL therapy. 6-MP and 6-TG act synergisti-
cally in inhibiting the synthesis of purine, one of the nucleotides of DNA [5]. These 
drugs also increase the insertion of thioguanine nucleotide (6-TGN) in nucleic acids 
(DNA and RNA), thus ultimately inhibiting DNA synthesis [5]. Two-thirds of children 
suffering from ALL can be cured by using 6-MP. By understanding the pharmacoge-
netics of thiopurine drugs, we can improve the chances of recovery from disease [2].

18.2  Clinical Use

The following diseases can be treated by using thiopurine drugs:

• Acute lymphoblastic leukemia (ALL) [6]
• Inflammatory bowel disease (IBD) [7]
• Autoimmune disorders (i.e., Crohn’s disease, rheumatoid arthritis) [8]
• Organ transplant recipients [8]

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1067-0_18&domain=pdf
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mailto:Junaid997981@gmail.com
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18.3  Mode of Action

Thiopurine drugs are basically immunosuppressive drug, inhibiting the production 
of cells involved in immune response. It is done by blocking various pathways of 
nucleic acid synthesis, ultimately inhibiting proliferation of cells of immune system 
[9]. Because of this typical property of these drugs, they are used in cancer treat-
ment, i.e., cancer cells proliferate rapidly and, thus, synthesize their nucleic acid at 
an extensive rate. Thiopurine drugs inhibit division of cancer cells by blocking syn-
thesis of nucleic acid. Incorporation of 6-TGN (thioguanine nucleotides) into DNA 
is responsible for anticancer activity of thiopurine drugs [10].

18.4  Metabolism of Thiopurine Drugs

We use thiopurine drugs in their inactive form, and to become active it is necessary 
to convert them into their metabolites (i.e., 6-MP). First of all, AZA (azathioprine) 
is converted into 6-MP (6-mercaptopurine) and other imidazole group in a nonenzy-
matic reaction (Fig. 18.1) [11]. 6-MP and 6-TG (6-thioguanine) undergo a series of 
metabolic changes to convert into active form and to exhibit their cytotoxic proper-
ties. 6-MP and 6-TG inhibit synthesis of purine [3, 12, 13] and replication of DNA 
(due to incorporation of 6-TGN). 6-TGN, thioguanine nucleotides, is responsible 
for DNA damage by breakage of single strand or cross linking [14–19].

Fig. 18.1 Metabolism of thiopurine drugs
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Conversion of 6-MP and 6-TG into 6-TGN is regulated by an enzyme HPRT 
(hypoxanthine-guanine phosphoribosyltransferase) (Fig. 18.1) [20]. There are many 
other enzymes like xanthine oxidase (XO), aldehyde oxidase (AO), and thiopurine 
S-methyltransferase (TPMT) that are used to inactivate thiopurine drugs by convert-
ing it into oxidized or methylated metabolites, as shown in Fig. 18.1, thus prevent-
ing side effects and accumulation of drug in the body [5, 21]. Metabolites produced 
by XO and AO pathway have very little cytotoxic effect. That’s why mainly TPMT 
pathway is used for deactivation of thiopurine. TPMT indirectly regulate production 
of 6-TGN and determine antileukemic effect of thiopurine drugs [22].

18.5  Adverse Drug Reaction (ADR) of Thiopurine

Bone marrow suppression is the most serious side effect of using thiopurine drugs, 
which is characterized by severe decrease in blood cells (leukocytes, erythrocytes, 
and platelets), resulting in reduced oxygen carrying capacity and decreased immu-
nity [22]. Other ADR of thiopurine drugs include liver abnormalities, pancreatitis, 
allergy, increased heart rate, lesions on the lips and in the mouth, and unusual bleed-
ing (from the nose, mouth, or vagina) [23]. Percentage of different adverse drug 
reactions of thiopurine is shown in Fig. 18.2.

18.6  TPMT Allozymes

TPMT enzyme (thiopurine S-methyltransferase) plays an important role in main-
taining thiopurine drug concentration in the body. It inactivates thiopurine drugs by 
catalyzing S-methylation of heterocyclic aromatic sulfhydryl compounds [24]. 
TPMT consists of 245 amino acids and its molecular weight is 28.18 kDa. TPMT 
enzyme is present in nearly all human tissues, but its natural substrate is still 
unknown [25, 26].

TPMT protein can exist in different protein variants with altered activity. 
Studies on red blood cells suggest that TPMT activity is trimodal in its distribu-
tion. High TPMT activity was observed in 90% of individuals, and they are 
referred to as high methylators; 10% of individuals show intermediate TPMT 
activity, and individuals that show low TPMT activity (low methylators) are only 
0.3%. Polymorphism of TPMT gene is the reason behind existence of different 
types of TPMT allozymes [5].

18.7  TPMT Gene

TPMT gene contains coding sequence for TPMT enzyme synthesis. TPMT enzyme 
is responsible for S-methylation of aromatic or heterocyclic sulfhydryl compounds. 
This chemical reaction is important for successful regulation of thiopurine drug 
concentration in our body. TPMT gene inactivates thiopurine drug by metabolizing 
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it into nontoxic compounds. The location of TPMT gene is p (short) arm of chromo-
some number 6 (6p22.3) [26, 27].

18.8  TPMT Genotype

TPMT enzyme exhibits a trimodal distribution pattern. Almost 90% of individuals 
exhibit wild-type genotype for TPMT and normally metabolize the thiopurine 
drugs. Three to fourteen percent of individuals have intermediate TPMT activity. In 
that case, heterozygous mutant genetic variant of TPMT is present (i.e., one of the 
two alleles of TPMT enzyme contains genetic mutation). In 0.3% of individuals, 
low TPMT activity (homozygous mutant genetic variant of TPMT) is observed [5] 
(Table 18.1).

18.9  Clinical Information Related to TPMT

Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine 
drugs. In human thiopurine drugs are metabolized into 6-thioguanine nucleotides 
(6-TGN) to exhibit their cytotoxic properties [29]; 6-TGN concentration is negatively 

Fig. 18.2 Different ADR percentage of thiopurine drugs
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correlated with RBC TPMT activity [30]. Under normal conditions, TPMT regulate 
concentration of 6-TGN in blood. Elevated concentration of 6-TGN is because of low 
activity of TPMT enzyme and results in the development of leukopenia in patients of 
lymphoblastic leukemia [31]. Risk for development of thiopurine drug toxicity can be 
predicted by determining TPMT activity level [32–35].

18.10  TPMT Deficiency

Thiopurine methyltransferase deficiency is a condition in which there is significant 
reduction of enzyme that is responsible for normal metabolism of azathioprine, 
6-TG, and 6-MP (thiopurine drugs). Patients with TPMT deficiency may develop 
life-threatening myelosuppression or severe hematopoietic toxicity if treated with 
standard doses of thiopurine drugs. TPMT deficiency is an autosomal recessive con-
dition because of mutations in TPMT gene [36].

Therapeutic activity of thiopurine drugs depends upon metabolic conversion of 
azathioprine, 6-thioguanine, and 6-mercaptopurine to 6-thioguanine nucleotides 
and the incorporation of these nucleotides (6-TGN) into DNA. TPMT enzyme pro-
vides an alternative route to thiopurine drugs and inactivate them by thiomethyl-
ation, thus regulating the concentration of 6-TGN in blood, preventing any kind of 
adverse drug reactions (like myelosuppression and hematopoietic toxicity) [25].

Chances of bone marrow suppression increase in patients with TPMT deficiency. 
It results in decreased production of erythrocytes, leukocytes, and platelets. 
Consequently, patients using thiopurine drugs undergo various complications like 
myelosuppression, anemia, thrombocytopenia, leukopenia, and other life- threatening 
infections [22].

18.11  TPMT Gene Variants (Haplotype)

Metabolism of thiopurine drugs in our body depends upon the genetic variant of 
TPMT gene we possess. The number of genetic variants we have along with their 
special combination (haplotypes) at TPMT gene determines our body’s response to 
thiopurine drugs. There can be many different haplotypes for one gene. Numbering 
system is used to differentiate among different haplotypes. For instance, one haplo-
type in the TPMT gene may be called as ∗3B, while another combination is known 
as ∗1. A variety of TPMT allozymes are present because of polymorphism in TPMT 

Table 18.1 Trimodal distribution pattern of TPMT enzyme

Genotype Prevalence Effect Reference
“Wild type” (TPMTH/TPMTH) ~90% Normal metabolism of thiopurine [5]
“Heterozygous mutant” 
(TPMTH/TPMTL)

3–14% Reduction in thiopurine metabolism [28]

“Homozygous mutant” 
(TPMTL/TPMTL)

0.3% Drastically reduced or absent 
thiopurine metabolism

[2, 5, 28]
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gene. More than 20 genetic variations are identified in TPMT gene (ranging from 
TPMT∗1 to TPMT∗ 28). Altered TPMT alleles usually consist of one or more sin-
gle nucleotide polymorphism [37].

Most common TPMT variants include TPMT∗2, TPMT∗3A, TPMT∗3B, and 
TPMT∗4. TPMT∗2 contain a single nucleotide polymorphism of c.238 G>C, poly-
morphisms of TPMT∗3A include c.719 A>G and c.460 G>A substitution, 
TPMT∗3B contain a single c.460 G>A polymorphism, and TPMT∗4 contain a sin-
gle nucleotide G>A substitution at the 3’end of intron 9. Mostly these SNPs are 
located within coding sequence of TPMT gene and result in the formation of pro-
teins with altered amino acid sequence [36, 38–40] (Table 18.2).

Despite changes in amino acid sequence, there are haplotypes that result in vari-
able TPMT gene expression by altering transcription and mRNA splicing mecha-
nism. Presence of variable number of tandem repeats in TPMT gene promoter 
modifies activity level of TPMT because of change in promoter cis-regulatory ele-
ment [41].

18.12  Clinical Applicability of TPMT Genetic Variants

Patients with reduced TPMT activity can’t tolerate standard doses of 
6- mercaptopurine. Such cases are also reported in patients of skin diseases and in 
those suffering from autoimmune disorders [46]. ALL patients with mutant TPMT 
genotype are unable to metabolize thiopurine drugs properly. Consequently, they 
accumulate 6-TGN in their body to toxic level resulting in myelosuppression, 
hematologic toxicity, and hypoplasia of the bone marrow [47–50]. Excessive 

Table 18.2 Some genetic variant in TPMT gene

TPMT 
variant

Genetic 
variant Molecular alterations

Position 
in TPMT 
gene

Enzyme 
activity Reference

TPMT∗1 Wt (wild 
type)

TPMT∗2 c.238G>C p.Ala80Pro Exon 5 Low [36]
TPMT∗3A c.460G>A 

and 
c.719A>G

p.Ala154Thr and 
p.Tyr240Cys

Exon 7, 
exon 10

Low [42]

TPMT∗3B c.460G>A p.Ala154Thr Exon 7 Low [27, 38]
TPMT∗4 IVS9–1G>A Exon 10 shortened 

because of use of 
cryptic splice site 
created by G>A 
substitution

Intron 9/
exon 10

Low [40]

TPMT∗5 c.146T>C p.Leu49Ser Exon 4 Low [43]
TPMT∗6 c.539A>T p.Tyr180Phe Exon 8 Low [43]
TPMT∗7 c.681T>G p.His227Glu Exon 10 Low [44]
TPMT∗8 c.644G>A p.Arg215His Exon 10 Intermediate [45]
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hematological toxicity can prove fatal, so drug therapy is stopped until the recov-
ery of the bone marrow. But this results in delay of scheduled treatment, resistance 
against drug, and recurrence of disease. In addition to myelosuppression and 
hematologic toxicity, ALL patients also become vulnerable to various infections 
and sepsis [5].

About 2–5% of patients, with reduced TPMT activity level, suffer from mild 
leukopenia. Cases of severe leukopenia are rare (about 3%). But it can develop sud-
denly and unpredictably [32]. 6-MP also results in the development of leukopenia 
in about 2% of patients of IBD. AZA contributes in the induction of myelosuppres-
sion and hematologic toxicity in 5% of patients [46].

It is observed that 1–2% of patients experience thiopurine treatment resistance 
and often don’t respond to therapy, even to an elevated level of thiopurine drugs (up 
to 50%) than standard prescription. These patients develop hepatotoxicity because 
of elevated level of 6-MP concentration in the therapy. They are referred to as ultra-
high methylators [51].

18.13  TPMT Genetic Variants and Thiopurine Drug Intake

TPMT enzyme exhibits a trimodal distribution pattern [5]. Almost 90% of individu-
als exhibit high activity of TPMT enzyme, and standard dose of thiopurine drugs is 
used for their treatment [31]. In individuals with low TPMT activity (0.3%), initial 
dose of thiopurine drugs is reduced by 90%, or an alternate therapy is considered 
[31, 52]. Three to fourteen percent of individuals possess intermediate TPMT activ-
ity. In that case dosage of thiopurine drugs is reduced from 30 to 70% depending 
upon metabolic activity of TPMT enzyme [52, 53] (Table 18.3).

In addition to genetic variants of TPMT, many nongenetic factors also influence 
the thiopurine drug metabolism. Only 25% of adverse drug reactions (ADR) are 
caused by low activity level of TPMT enzyme. Many nongenetic factors like inter-
action of thiopurine drugs with other drugs, your health conditions, and your life-
style also contribute in determining the response of your body to thiopurine drugs 
or any other medication [54–56].

18.14  Conclusion

It is significant to analyze the pharmacogenomics of a drug before its usage on prac-
tical basis. Metabolism of thiopurine drugs in our body depends upon the genetic 
variant of TPMT gene we possess. Because of trimodal distribution pattern of 
TPMT enzyme, TPMT activity level of the patients, treated with thiopurine drugs, 
is measured before initiation of therapy. It is necessary to determine TPMT status so 
that thiopurine drugs dose can be adjusted according to TPMT activity level of the 
patient. Most common method to determine TPMT status is TPMT genotyping. If 
TPMT gene is present in homozygous or heterozygous mutant form, then standard 
dose of thiopurine drugs cannot be used. Because of low activity of TPMT enzyme, 
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standard doses of thiopurine drug can result in adverse drug reactions like myelo-
suppression, hematologic toxicity, and hypoplasia of the bone marrow. In that case 
usually a reduced dose of thiopurine drugs is prescribed, or an alternative treatment 
is considered to avoid adverse drug reactions.
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19Pharmacogenetics in Cancer Treatment: 
Challenges and Recent Trends

Riffat Batool, Wasim Akhtar, and Ejaz Aziz

19.1  Introduction

Cancer is a genetic disorder of the genome caused by different types of genetic 
mutations that change the behavior of cells. The research of genomic and post- 
genomic analysis has provided insight into the molecular level of cancer progres-
sion. The sequencing technologies have improved the analysis of cancer genomes in 
first-time determination. Genome sequence of thousands of patients showed the 
discrete sets of potential gene alterations among patients with the same cancer tis-
sue type. The single-cell sequencing disclosed the heterogeneity within the sub-
clones of single tumors during evolution. Identification and characterization of 
these mutations and their assorted variety are crucial for treatments. Next-generation 
sequencing (NGS) has also been used for study of epigenomes and transcriptomes 
of cancer providing a comprehensive understanding of cancer pathology. This 
method gives an inclusive bench-to-bedside overview of cancer genomics, benefi-
cial to researchers and clinicians alike. Available researches show that cancer 
genomics has improved the cancer prognosis leading toward the potential future 
therapeutic.
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19.2  Cancer and Genomics

Methodological achievements have revolutionized transcriptome profiling during 
recent decades. The RNA-sequencing (RNA-seq) made it possible to sequence and 
quantify the transcriptional profiles of cells. These transcriptomes show a linkage 
between cellular phenotypes and their molecular groundworks, the mutations. In the 
context of tumor, this link shows a prospect to reveal the complexity and heteroge-
neity of cancers and also expose the implications of new diagnostic biomarkers or 
therapeutic procedures [1].

Tissue morphology and risk assessment through clinical data standards help in 
the classification and identification of brain tumors. Modernization in genomics and 
epigenomics recently accompanied an epoch of describing cancers relying on 
molecular basis. These techniques have developed accuracy for recognizing 
oncogenic- driving events which eventually increased accuracy in clinical result. 
Brain cancer spreads through situation of inherited tendency syndromes like 
Li-Fraumeni or Gorlin syndrome. However, it commonly arises from attainment of 
somatic mutations and chromosomal variations in tumor cells. From the study of 
various cancer pathways, certain refrains arise and serve like drivers of cancer. 
These include DNA harm reparation, genomic variability, mechanical target of 
rapamycin path, sonic hedgehog way, hypoxia, and epigenetic dysfunction. 
Consideration of these pathways is vital in developing targeted therapies and recog-
nizing the correct patients with right therapies [2].

The TC-induced macrophages tempted IL-32 translation in TC cells within 
which TAM- derivative TNFα was the driver of IL-32β expression in TC cells. The 
overproduction of IL-32β and IL-32γ cannot induce TC cell immigration but ampli-
fied the cell death. Higher expression of IL-32β promotes more transcription of the 
pro-survival cytokine IL-8. TAM-derived TNFα induced IL-32β in TC cells. 
However, IL-32β is not responsible for TC cell movement, alternate merging of 
IL-32 to the IL-32β isoform responsible for TC cell existence by inducing pro- 
survival cytokine IL-8 [2].

Quantitative next-generation sequencing shows increasing buildup of microsat-
ellite variability between paired endometrial and atypical hyperplasia/endometrial 
intraepithelial neoplasia. Tumor mutations were much greater in endometrial carci-
noma than in paired atypical hyperplasia/endometrial intraepithelial neoplasia spec-
imens. This tumor mutational burden was significantly related to percent unstable 
microsatellite loci. Endometrial carcinoma and paired atypical hyperplasia/endo-
metrial intraepithelial neoplasia specimens showed a progressive accumulation of 
unstable microsatellite loci after loss of mismatch repair protein expression. 
Comprehensive next-generation sequencing-based testing of endometrial carcino-
mas offers new insights into endometrial carcinogenesis and opportunities for 
improved tumor surveillance, diagnosis, and management [3].

Prominin (PROM1) and PROM2 expression differentially modifies clinical 
prognosis of cancer. The relationship between mutations and copy number varia-
tions in prominin genes and several types of cancers has been reported earlier. The 
genes that correlated PROM1 and PROM2 in certain cancers were based on their 
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expression levels. Gene ontology and pathway analyses have been utilized to assess 
the effect of these correlated genes on various cancers. It was found that PROM1 
was often overexpressed in esophageal, liver, and ovarian cancers which is nega-
tively associated with prognosis, while PROM2 overexpression was related with 
poor total survival in lung and ovarian cancers. Owing to characteristics of promi-
nins, it can be concluded that PROM1 and PROM2 expression differentially modu-
lates the clinical outcomes of cancers [4].

19.3  Drug Resistance and Cancer

Cancer possesses the ability to attain resistance against traditional treatments. The 
growing occurrence of drug-resilient tumor requires more research and therapies. 
The mechanisms that prompt the drug resistance, namely, drug deactivation, drug 
target modification, drug efflux, reparation of damaged DNA, reverse of cell death, 
and epithelial-mesenchymal transition as well as how inherent tumor cell heteroge-
neity, also promote drug resistance. The epigenetic modifications cause drug resis-
tance that promote the development of cancer progenitor cells which cannot be 
killed by conventional cancer therapies. The most probable treatment for current 
drug resistance in cancer is to stop the development of cancer progenitor cells [5].

Anticancer drug resistance is an intricate phenomenon developed by altering 
drug goals. Developments in DNA microarray, proteomics, and targeted treatments 
offer novel plans to avoid the drug resistance. The resistance of cancer cell toward 
anticancerous agents could be made by several aspects like personal individual’s 
genetic variances particularly in cancer somatic cells. Such resistance might be 
acquired by different processes such as cell death inhibition, multidrug resistance, 
difference in the drug digestion, epigenetic and drug goals, increasing maintenance 
of DNA, and gene multiplication [6].

The anticancer agents were involved significantly in the development of sterile 
existence and excellence of life in tumor patients. But, in several cases, after prom-
ising initial response to treatment, cancer reappearance happens. This acquired 
resistance to therapy is a problem for the efficiency of cancer therapy. It is a type of 
inherent resistance in which proteins of membrane-linking transports are involved 
in fundamental drug fight by varying drug carriage and its propelling out from can-
cer cells. Further, the steady attainment of specific genetic and epigenetic mutations 
in tumor cells can enhance the acquired drug resistance. The clinical data shows that 
the problematic nature of anti-drug property appears with an undesirable effect on 
molecularly targeted anticancer drugs. The medical experts suggest the recognition 
of such resistance mechanisms and designing the new drugs which can remove this 
complicacy [7].

Several features and limits must be considered as real tumor treatment using 
antineoplastic drugs. The way of drug management and the greatest tolerated dose 
can finish cancer cells while minimizing it can result in adverse effects [8, 9]. The 
“maximum tolerable dose” or “maximum tolerated dose” (MTD) is good known as 
the maximum sole dose of an agent or therapy that does not cause significant or 
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intolerable/opposing effects. For several drugs, the optimum dose does not essen-
tially overlap with the MTD revealing a potency of the optimal dose stances a great 
challenge [10].

19.4  Cancer Genomics and Personalized Medicines

Personalized medicine practices traditional and is developing ideas of the hereditary 
and external foundation of ailment to modify anticipation, analysis, and action. 
Adapted genomics has a dynamic part without limitation, in up-to-date model of 
personalized medicine. The differences between genomics and genetic medicine are 
extra quantitative than qualitative. Ideologies developed by genomics and genetics 
features of medicine comprise the practice of variations as indicators for diagnosis, 
forecast, anticipation, targets for treatment, and clinically authenticated alternatives 
which are not functionally categorized. The separation of these alternatives in 
Mendelian and non-Mendelian factors, epigenitic charcters and the dependency on 
sign for medical helpfulness have serious impacts on social science. In this present 
change from examination to exercise, customers should be saved from problems of 
early version investigation outputs and encourage the advanced and profitable appli-
cation of these genomic findings that raise the adapted medicinal repair [11].

High-throughput, data-intensive biomedical research assays and technologies 
have created a need for researchers to develop strategies for analyzing, integrating, 
and interpreting the massive amounts of data they generate. Although a variety of 
statistical methods have been designed to accommodate “big data,” experiences 
with the use of artificial intelligence (AI) techniques suggest that they might be 
particularly appropriate. In addition, the results of the application of these assays 
reveal a great heterogeneity in the pathophysiologic factors and processes that con-
tribute to disease, suggesting that there is a need to tailor, or “personalize,” medi-
cines to the nuanced and often unique features possessed by each patient. Given 
how important data-intensive assays are to show proper intervention targets and 
strategies for treating an individual with a disease, AI can show a significant role for 
personalized medicines development. We describe many areas where AI can play 
such a role and argue that AI’s ability to advance personalized medicine will depend 
critically not only on the refinement of relevant assays but also on ways of storing, 
aggregating, accessing, and ultimately integrating the data they produce. We also 
point out the limitations of many AI techniques in developing personalized medi-
cines as well as consider areas for further research [12].

Variable quantity of drug can be generated by 3D printing skill with instant 
release tablets, pulsatile release pills, and transdermal dose types. The 3D printing 
skill would be discovered positively to make modified medicines that can show a 
dynamic part for deadly illnesses treatment. The 3D printing-based personalized 
drug delivery scheme can also be examined in chemotherapy of cancer patients with 
value of the reduction in side effects [13].

A single human physique is a place of above 1 trillion microorganisms with a 
diversity of commensal microbes which carry out vital roles for health. These 
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microorganisms exist in various places including oral cavity, skin, gut, etc. These 
microbes vary in types and abundance in different organs; also these can vary among 
people. The genetic makeup of these microbes and their bionetwork establish a 
microbiome. Different features such as diet, environment, host genetics, etc. deter-
mine this wide microbial biodiversity. Experiments on human microbiome revealed 
a diverse microbiota between fit and unhealthy ones. This change in microbiome is 
due to the increased expression of genes that bring about composite ailments like 
cancer. Changes in microbiome may be caused by probiotics or synbiotics, diet or 
prebiotics. Modern sequence of genome and analysis of metagenomic deliver us the 
wider understanding of these probiotics with their distinctive features of microbi-
ome in healthy and disease conditions. Molecular pathological epidemiology is 
helpful in providing understandings of pathological phenomena of ailment arousal 
and movement by defining the specific etiological features. Novel strategies target 
the microbial genome for therapeutic drives by which adapted medicines can be 
generated for curing numerous types of cancers. Screening programs can support in 
identifying patients about to gain cancer and in delivering appropriate approaches 
according to individual risk modes so that disease could be ceased [14].

19.5  Future of Pharmacogenomics in Cancer

The present pharmacogenetic methodologies face many hindrances. Candidate 
gene-based methodologies don’t give a solid analysis of typical tissue danger and 
effects of drugs on tumor due to incomplete understanding of each risk factor 
involved in carcinogenesis. Genome-wide association study gives a progressively 
vigorous stage to pharmacogenetic examination as has been reported by Watters 
et al. [15]. These practices have different issues in clinical settings, for example, 
quality control which is expected due to phenotypic heterogeneity; lengthy duration 
involved in validation of pharmacogenetic markers; choice of the most suitable 
board of SNPs; investigation of the connection between genotypes, enzyme action, 
and gene expression; criteria for hazard appraisal and limits; and thought of ethnic 
varieties as the circulation and recurrence of SNPs change among various ethnic 
groups which makes it hard to extrapolate the discoveries of one group on another 
[16]. More up-to-date targeted treatments are likewise picking up fame. Trastuzumab 
(Herceptin), a refined recombinant monoclonal immunizer (IgG), targets HER2 
(human epidermal growth factor receptor 2); Avastin (bevacizumab) represses the 
tyrosine kinase activity of the epidermal growth factor receptor, the expansion of 
which to standard chemotherapy regimens has demonstrated improved survival 
rates and response reaction in the treatment of metastatic colorectal malignant 
growth [17]. In similar manner, Erbitux (cetuximab), a monoclonal antibody, focus-
ing on EGFR has likewise indicated promising outcomes in neck and head cancers 
and colorectal malignancy.

Future advancements in some key territories will assume a basic job in choosing 
the general impact of pharmacogenetic information on therapeutic decisions. More 
research is required in genome-based technologies, such as high-throughput 
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innovations and improvement of gene expression arrays and genome-wide outputs 
which could distinguish already unidentified SNPs and SNP chips and functionally 
significant candidate genes. Mouse models could be used for genome-wide scans in 
progeny from phenotypically particular mice from vulnerable and resistant strains. 
Transgenic and knockout approaches could likewise be utilized for setting up the 
key components that helps in drug response.

Candidate gene methods could be improved by consolidating a metabolic path-
way approach and by information picked up from genome-wide procedures. The 
expense of genomic innovation (SNP) should be less expensive. For incorporation 
of a genetic test into clinical practice, it must give dependable, prescient, and sig-
nificant data that would have generally been obscure [18]. Prior to clinical usage, 
solid proof from randomized controlled clinical trials is required.

During shifting toward clinical practice, validation and replication of pharma-
cogenomic characteristics raise difficulties. It is often hard to portray, consistently 
treat, and efficiently assess patients to impartially measure the medication reaction 
phenotype. The standard of consideration ought to be to get genomic DNA from all 
patients went into clinical medication preliminaries, alongside proper consent to 
allow pharmacogenetic studies. This is currently practiced in most huge preliminar-
ies being led by pharmaceutical organizations and is normal for a portion of the NCI 
clinical trials gatherings [19–21], yet has not turned out to be standard for founda-
tion supported or academic trials.

The main challenge for future application is the proper use of new data and the 
need to guarantee that following up on a pharmacogenomic marker is to the greatest 
advantage of the patient. The dependence on forthcoming, randomized, controlled 
trials as the best way to legitimize clinical implementation isn’t useful and ensures 
that new data will have a 5- to 10-year lag, while studies are developed, led, and 
translated. There is likewise a separation between the funding bodies and the priori-
tization of this kind of study, regarding budgetary duty, clinical trial framework, and 
capacity to quickly sanction new techniques. There have been a few endeavors to 
create approaches to pick up trust in early appropriation of pharmacogenomic infor-
mation, based on agreement working among establishments around the use of 
genetic data to medicate treatment. One such exertion is the Clinical Pharmacogenetics 
Implementation Consortium (CPIC), which incorporates members from >80 insti-
tutions crosswise over 4 continents [22]. There is a need to devise a structure 
whereby any source of variation in a clinically credentialed pathway can be advanced 
toward clinical execution.

The time has come to be increasingly practical as we move ahead. Although 
significant advancement has been made in recognizing and describing pharma-
cogenomic phenomena, interpretation of this information into viable clinical appli-
cation remains moderate. A variety of components add to this issue, including an 
absence of clearness on the measure of information expected to demonstrate clini-
cal utility, the scarcity of interventional pharmacogenetic ponders, and uncertain 
practical consideration, for example, how to build up and execute clear rules in 
departments that oversee malignancy. There are additionally societal components 
having an effect on everything, including acknowledgment of across-the-board 
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genetic testing just as suggestions for protection inclusion and risk. These issues 
should be investigated and tended to before the promise of genetically tweaked 
medication can turn into a reality.

Meanwhile we risk that crucial inventions of anticancer pharmacogenomic 
might not arise from growing the sample size of medical pharmacogenomic data. 
This is based upon insight information and revolutions of other disciplines such as 
medicine discoveries or designing of novel anticancerous drugs and guidelines of 
drug mixtures [23, 24]. Response of cancer patients follows a very heterogeneous 
pattern. Inherited differences of interindividual drug deposition and their effects 
can determine the goal of choosing the optimal drug for each patient. Cancer thera-
pies are very significant in terms of pharmacogenetics as it shows severe toxicity 
and efficiency. Genetic polymorphism of genes accounts for metabolic enzymes 
and cellular targets for cancer chemotherapeutic agents from which the conse-
quence chemotherapy is not possible. This particular genetic determination of drug 
response can transform the utility of medications. Determination of severe toxicity 
can help treatment leading to individualized cancer therapy for cancer patients. 
Guessing the cancer treatment outcome from gene polymorphism is now possible 
for many types of chemotherapy agents. But further research is needed from larger 
cancer populations along with validated pharmacogenetic markers prior to applica-
tion in diagnostics [25].

19.6  Conclusion

Cancer is a heterogeneous ailment with distinctive phenotypic and genomic features 
that differ between individual patients and even among individual tumor regions. It 
is concluded that for efficient cancer therapies, characterization and identification of 
genomic mutations and their diversity are vital. So, linking cancer genomics with 
pharmacological factors is the only way to develop potent cancer therapies. For this 
modern technologies including next-generation sequencing, candidate gene-based 
analysis, etc. can play an important role  in cancer therapeutics. Novel strategies 
target the microbial genome for therapeutic drives by which adapted medicines can 
be generated for curing numerous types of cancers. Future advancements in some 
key territories will assume a basic job in choosing the general impact of pharmaco-
genetic information on therapeutic decisions. The main challenge for future appli-
cation is proper utilization of new data and the need to guarantee that there is strong 
information supporting that following up on a pharmacogenomic marker is to the 
greatest advantage of the patient.
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20.1  Nutraceuticals, Apoptosis, and Disease Prevention

The way of life has improved with financial advancement of the general population. 
But with this advancement, lifestyle diseases have increased due to poor living hab-
its. An increase in the consumption pattern of junk food has been observed in recent 
era which also has triggered several health related issues especially prevalence of 
lack of important essential nutritional constituents in diet. For the healthy and active 
lifestyle, deficiency of important constituent of diet can be fulfilled by the use of 
nutraceuticals. There are tremendous nutritional improvements that help to prevent 
or treat disease generated using crude herbals. Nutraceuticals are already in use 
since ages in the form of traditional  herbs and plants and their health benefits are 
also well acclaimed. Modifications in our eating habits and patterns can reduce the 
risk of several diseases by including important nutracdeuticals as the part of our 
daily diet [1].

20.2  Nutraceuticals and Apoptosis

Plants like garlic, ginger, soybean, and tea can be a good source of nutraceuticals 
which are basically phytochemicals. They have preventive activity against malig-
nant growth occurrence which is likely identified with apoptosis [2].
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20.3  Apoptosis

Apoptosis which is a programmed cell death includes morphological changes like 
chromatin condensation, fragmentation of the nucleus, and cell shrinkage. Apoptosis 
includes complex molecular processes with more than 100 separate enzymes par-
ticipating efficiently in signal transduction, zymogen-type course, precise imple-
mentation of important cytoskeletal structures, and signalized DNA within the 
selected cell. These opportunities contribute to discontinuity of DNA, blebbing, 
growth of apoptotic bodies, and ultimately destruction of cells. In addition, phago-
cytes overwhelm the withering of cells due to phosphatidylserine introduction and 
changes in surface sugars. This mechanism of apoptosis can without much of a 
stretch be actuated by nutraceuticals. Apoptosis by nutraceuticals can be a tremen-
dous approach for disease prevention especially cancer [2].

20.4  Disease Prevention

The term “nutraceutical” derived from the terms “food” and “pharmaceutical” was 
established in 1989 to describe substances that can be used as a source of nutrition 
that can improve health [3].

By utilizing nutraceuticals, it might be conceivable to diminish or dispose the 
requirement for traditional prescriptions, lessening the odds of any unfriendly 
impact. Nutraceuticals frequently have interesting synthetic activities that are inac-
cessible in pharmaceuticals. The whole world is battling maladies normal for the 
cutting-edge age, for example, stoutness, osteoporosis, diabetes, hypersensitivities, 
and dental issues. Supplements, herbals, and nutritional intensifications are major 
components of nutraceuticals that make them innovative in well-being, acting 
against various diseases and thus advancing individual satisfaction. It is prestigious 
to use sustenance products to promote well-being and treat illness [4].

20.5  Nutraceutical Prevention of Disease Through Apoptosis

The following are the structural classes of nutraceuticals: carotenoids, flavonoids, 
stilbenes, sulfur- containing compounds, or other phenolic compounds [2].

20.6  Carotenoids

Various epidemiological studies have shown that tomato consumption is associated 
with lower risk of malignant tumor growth and cardiovascular disorders. Tomatoes 
are a rich source of many types of carotenoids. In tomatoes lycopene is a precursor 
of beta-carotene that resembles the lycopene cyclase gene and linked with regula-
tion of gene associated with aging. Lycopene and β-carotene have the ability to initi-
ate the process of apoptosis in prostate’s mutated cells and dangerous lymphoblast 
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cells at a 3–30 μM concentration and time duration of 24 h. Apoptosis that is initi-
ated by carotenoids includes the disruption of DNA, cleavage of poly-ADP-ribose 
polymerase (PARP), and caspase-3 enactment [2].

20.7  Flavonoids

Flavonoids comprise of more than 4000 polyphenolic compounds that are present 
normally in food that are obtained from plants. These plant components have a typi-
cal structure of phenyl benzopyrone (C6–C3C6) and are ordered by the level of 
immersion and opening of the focal pyran ring, mainly in flavones, flavonols, isofla-
vones, flavanone, and flavanonols. Compounds present in tea like polyphenols, 
quercetin, and genistein have a therapeutic role and chemopreventive potential. The 
link between the consumption of tea and reduced chances of having a malignant 
tumor is not clearly demonstrated. According to animal trials, there is no visible 
effect of concentrations of tea or its polyphenols on cancer treatments. In other stud-
ies, it has an effect on prevention of malignant tumor growth, and it can fight inflam-
mations, infections, and cardiovascular diseases. In some studies, epigallocatechin 
gallate (EGCG) and catechin effects on human lymphoid leukemic cells and human 
carcinoma cells have been investigated. It is capable of decreasing the likelihood of 
pulmonary tumor cell lines, colon malignant cells, breast cancer cells and virally 
altered human fibroblasts, prostate malignant cells, stomach cancer cells, cerebral 
tumor cells, head and neck squamous carcinoma, and cervical malignant growth 
cells. The apoptotic ability of EGCG is in the scope of 20–100 μM in mutated cells, 
and the time duration ranges between 10 and 30 h [2].

20.8  Stilbenes

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin with natural sources 
such as grapes, peanuts and pines, has cancer prevention effects against inflamma-
tion and helps in quick fixing of Leguminosae that hinders cell association with 
tumor inception. Resveratrol can trigger cell death in laboratory studies and stop the 
development of various human tumor cells, particularly oral squamous carcinoma, 
human breast malignant growth cells, prostate cancer cells, esophageal carcinoma 
cells, pancreatic malignant cells, and monocytic leukemia cells. The concentration 
of resveratrol consumed in different investigations has changed somewhere in the 
range of 10 and 300 μM, with apoptosis showing up somewhere in the range of 24 
and 96 h. Acceptance of p53 at the mRNA and protein levels is the most normally 
observed impact of resveratrol and is viewed as the significant reason for cancer cell 
death. Resveratrol does not express any significant inhibitory impact toward changed 
human fibroblasts. Strangely, a resveratrol simple, 3,4,5,4′-tetrahydroxystilbene, is 
stronger than resveratrol in enhances death of changed cells, however has no impact 
on ordinary partners at increased concentrations [2].
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20.9  Sulfur-Containing Compounds

The consumption of garlic in diet as a cancer-preventing agent has been studied. 
The compound allyl sulfur present in garlic has a positive effect in the prevention of 
further spread of malignant tumors in humans. Diallyl sulfide and diallyl disulfide 
can initiate programmed cell death in diseased lung cells, in prostate malignant cell 
growth, and in malignant cancers of the breast. Z-ajonene, an active ingredient in 
garlic, can also cause cell death of HL-60 cells. Treatment of cancer with these 
active compounds has shown changes in ratio of Bax gene to Bcl-2. Brassica plants 
(e.g., broccoli and cauliflower) have an active compound named glucosinolates, 
which further changed into isothiocyanates, for example, sulforaphane. According 
to various studies, isothiocyanates can prevent malignancy and have chemopreven-
tive properties. In various studies, sulforaphane can enhance the chances of pro-
grammed cell death in colon disease cells, prostate malignant growth cells, and 
leukemia cells. These studies revealed the expansion of Bax in the treated cells is 
due to the positive effect of sulforaphane on programmed cell death [2].

20.10  Other Phenolic Compounds

Caffeic corrosive phenethyl ester, a functioning phenolic segment removed from 
bumble bee propolis, can prevent tumor formation in two steps in animals with 
malignant growth in the skin that showed significant effect with 
12-O-tetradecanoylphorbol-13-acetic acid derivation. Caffeic acid phenethyl ester 
increased the programmed cell death in HL-60 leukemic cells and epidermal JB6 Cl 
41 cells. Various other studies can also clearly depict the activity of caffeic acid 
phenethyl ester in mechanism of anticancer activity in various frameworks. 
Curcumin, which is a diferuloylmethane, sustain the strong flavor of turmeric and 
contains polyphenols, is a major biologically active ingredient which can prevent 
the fabrication of cancer causing agent in skin of mice. Use of curcumin on surface 
can suppress the artificially initiated skin cancer formation. Curcumin can cause 
programmed cell death in colon carcinoma cells, leukemic cells, prostate malig-
nancy cells, melanoma cells, and breast cancer cells. By initiation of a p53-subordi-
nate pathway, curcumin also initiates programmed cell death [2].

20.11  Prevention of Various Diseases by Nutraceuticals

20.11.1  Obesity-Related Colorectal and Liver Carcinogenesis

Obesity and its related complications are insulin-resistant and changes in the insu-
lin-like development factor-1 (IGF-1)/IGF-1 receptor (IGF-1R) and its aggravation 
conditions can increase chances of having colorectal disease (CRC) and hepatocel-
lular carcinoma (HCC). These findings additionaly demonstrate that metabolic 
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issues of stoutness may be compelling factors to counteract the improvement of 
colorectal cancer and hepatocellular carcinoma in large people. Green tea catechins 
(GTCs) have cancer-preventive and chemopreventive properties against malignancy 
in different organs, including the colorectum and liver. GTCs have also a leading 
role in managing obesity, diabetes management and palliative impacts, which 
revealed that the GTCs interfere with the weightrelated colorectal and liver cancer 
formation. Branched-chain amino acids (BCAA) can improve the protein status of 
individuals and also prevent liver failure in patients with already prevailing hepatic 
illness; furthermore their supplementation can prevent the chances of having hepa-
tocellular carcinoma in patients who are obese and have cirrhosis. Branched-chain 
amino acids revealed these health-promoting properties since their role in the 
improvement of insulin resistance. These properties make a link between the meta-
bolic issues and improvement in colorectal cancers and hepatocellular carcinoma. 
Additionally treatment of colorectal cancer and hepatocellular carcinoma with the 
utilization of GTC and BCAA according to clinically proven research has the ability 
to correct metabolic irregularities and by different pathways can improve colorectal 
cancer and hepatocellular carcinoma in obese individuals [5].

20.11.2  Lung Cancer

Tea, obtained from the plant Camellia sinensis, has worldwide importance because 
of its refreshing properties. Different studies have revealed that tea has a therapeutic 
potential and consumption of tea is linked with reduced chances of developing can-
cer. An important part in anticancer properties of green tea is the presence of epigal-
locatechin gallate (EGCG), which is a bioactive compound. The pathways by which 
it can regulate the cancer causing elements is by the use of various chemicals and 
receptors, cell cycle capture and programmed cell death, cell flagging pathways bal-
ance and hiding the initiation factors and inhibits the further proliferation of malig-
nant tumor. These are the anticancer and restorative properties of green tea and its 
bioactive ingredients particularly EGCG [6].

20.11.3  Bladder Cancer

Epithelial-mesenchymal transition (EMT) is an important step in the proliferation 
of malignant cells. Butein is an active polyphenolic compound which can prevent 
the proliferation of malignant tumor cells. Butein can stop the relocation and attack 
through the ERK1/2 and NF-kappa B flagging pathways in human bladder malig-
nant growth cells and inversion of EMT which is an inhibitory impact. These out-
comes were asserted by RNAi-interceded concealment of NF-kappa B, which 
incompletely turns around EMT and represses cell obtrusive capacity in vitro. These 
results have shown that butein has a tendency to inhibit bladder malignant cell 
growth [6].
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20.11.4  Miscellaneous

Curcumin can prevent leukemia, lymphomas, multiple myeloma, brain cancer, mel-
anoma, and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic, 
and colorectal epithelial cancers (Mimeault & Batra, 2011). Dietary monoterpenes 
can prevent skin, liver, lung, and stomach cancers. These compounds have nonnutri-
tive components, and essential oils of citrus are its natural source (Crowell, 1999). 
Skin, prostate, lung, and liver cancers can be prevented by consuming foods rich in 
genistein, resveratrol, lycopene, ellagitannins e.g., pomegranate and lupeol [7].

20.11.5  Future of Nutraceuticals

The modern nutraceutical market focuses on products which have additional dietary 
advantages and provide nourishments as well as target the preventable properties. 
The comprehensive approaches can propel the development of nutraceuticals. Many 
researchers described that many natural ingredients can increase the demands in 
nutraceuticals. “Catalysts have been underemployed. They will be a hot region later 
on.” Utilization of microorganism and the process of fermentation to make innova-
tive products also have therapeutic potential. This is the multidisciplinary approaches 
that are needed in the production of innovative products. It includes the interlink of 
science, innovative products promotion, and customers feedbacks that cannot be 
neglected. Some nutraceuticals have medical advantages because of good bioavail-
ability, and it can be provided through oral or transdermal pathways. With the 
advancement of “Smart Nutraceuticals,” a Futuristic Doctor’s Desk Reference 
would contain data on individual hereditary profiles to be coordinated with explicit 
nourishing intercessions also. This would be an immense improvement over current 
dietary proposals which being too summed up are accounted for to profit just 60% 
of the population [8].

20.12  Novel Nutraceuticals in Cancer Prevention

20.12.1  Carotenoids and Cancer Prevention

Carotenoids naturally occur as orange, red, and yellow pigments that are widely 
distributed. These lipid-soluble pigments are present in different fruits, vegetables, 
and flowers and some kinds of animals and fungi. Carotenoids are present in human 
as well as animal cells such as zeaxanthin and lutein in the eyes, and astaxanthin is 
present in salmon which is obtained from diet [9].

During metabolism and respiration, reactive oxygen species (ROS), singlet oxy-
gen, and free radicals are produced naturally in the human body. Other free radicals 
from the exogenous sources such as smoking, air pollution, and pesticides lead to 
the exceeding levels of ROS in the body. The higher level of ROS causes the 
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development of oxidative stress. Carotenoids have natural antioxidant potential 
which protects the cells from damage and deterioration. ROS would react with lip-
ids of plasma membranes, proteins, enzymes, and endothelial cell that result in cel-
lular damage, deterioration, mutation, and inflammation, which are related to aging 
and incidence of chronic, degenerative disorders and cancer. Carotenoid-rich diet 
consumption has been stated to reduce the risks of different disorders caused by 
oxidative damage. The antioxidant action of carotenoids depends upon their physi-
cal scavenging activity [10].

Various studies demonstrated the relationship between the carotenoid intake and 
cancer risks. Lycopene is found in tomatoes and tomato-based food products. More 
intake of lycopene-rich food sources such as tomatoes exhibited significant 
decreased cancer risk in subjects afflected with cancer of the gastrointestinal tract 
[11].

It has been hypothesized that carotenoid intake reduces head and neck cancer 
risk due to its antioxidant properties. A systematic review and meta-analysis of the 
epidemiological studies determined the association between consumption of spe-
cific dietary carotenoid and combined carotenoids, with the risk of head and neck 
cancer. From literature, a review of 15 case-control studies and one prospective 
cohort study showed significant reduction in cancer risk associated with consump-
tion of β-carotene equivalent intakes that were 45% for oral cavity cancer and 56% 
for laryngeal cancer. β-Cryptoxanthin and lycopene also minimized the risk for 
laryngeal cancer. β-Cryptoxanthin, lycopene, and α-carotene showed association 
with at least 25% reduction in the oral and pharyngeal cancer rate. Systematic 
review and meta-analysis on dietary carotenoid consumption and head and neck 
cancer showed that carotenoids have protective role against HNC, in comparison to 
most of single-nutrient intakes [12].

Another meta-analysis of epidemiological studies, including 6 cohort and 11 
case-control studies, exhibited that the consumption of tomatoes and tomato- 
containing foods and gastric cancer risk is inversely related. A comparison between 
groups with highest and lowest intake of tomato-based foods showed 28% reduction 
in the risk of gastric cancer (lycopene caused 11% reduction in cancer risk, while 
the decrease was not significant statistically) [12].

Another case-control study showed similar results. Over the course of 20 years, 
plasma levels of carotenoids have been determined in 18,744 women. Women with 
high carotenoid levels in plasma demonstrated significant reduction of 18–27% in 
breast cancer risk. Furthermore, carotenoid concentrations and recurrence of breast 
cancer showed strong inverse relationship. Beta-carotene reduced the risk of breast 
cancer recurrence by 67% when the highest and lowest level quantiles were com-
pared [13].

Consumption of carotenoids such as lycopene, alpha and beta-carotene, lead to 
reduction in the risk of prostate tumor and breast cancer. Beta-carotene also reduces 
the risk of breast cancer recurrence [14].
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20.12.2  Polyphenols and Cancer Prevention

Polyphenols are plants’ secondary metabolites which show protective effects against 
various disorders. Polyphenols are classified into five distinct groups such as flavo-
noids, phenolic acids, curcuminoids, stilbenes, and lignans. Depending upon their 
structure and functions, flavonoids are further classified into different groups such 
as flavanols, flavonols, flavones, isoflavones, and anthocyanins.

Polyphenols in pinecone are bioactive dietary components that exhibit antioxi-
dant and immunoregulatory properties and play important role in health promotion, 
cancer prevention, and treatment. A study was conducted to examine the antioxi-
dant, antitumor, and immunoregulatory actions of the 40% ethanol eluent of poly-
phenols from pinecone on rat models. The results demonstrated that pinecone 
polyphenols exhibit antitumor activity by stimulating the mitochondrial apoptotic 
pathway and by its immunoregulatory and antioxidant properties [15].

Plant polyphenols have anti-oxidative, anti-inflammatory, anti-angiogenic, and 
pro-apoptotic properties. They can modify the roles of some important functional 
proteins and receptors, such as IGF, IGF-1R, and IGBPs proteins in insulin-like 
growth factor system. The IGF system plays an important role in carcinogenesis, 
cell proliferation, differentiation and apoptosis. They modulate different signal 
transduction pathways and perform a significant role in cancer prevention. Different 
mechanisms of action show that polyphenols also have potential in the prevention 
and inhibition of tumors and cancers.

In old age, the leading cause of death is cancer. Consumption of fruits and veg-
etables decreases the risk of cancer incidence and mortality. Because of their che-
mopreventive and chemotherapeutic capacity, a number of fruits rich in polyphenols 
are researched. Pomegranate helps boost anticancer activity because its high poly-
phenol content. Pomegranate has antiproliferative and antimetastatic effect that 
induces apoptosis through modulation, upregulation, and downregulation processes. 
Pomegranate helps to block the activation of inflammatory pathways including the 
NF-κB pathway. Before suggesting the use of pomegranate or its polyphenols for 
cancer-related therapeutic purposes, certain parameters like an accurate risk or 
safety assessment should be made [16].

Studies investigating the relationship between the consumption of dietary poly-
phenol and the risk of cancer have shown diverse outcomes. The inconsistency of 
results is because of the difficulty in the assessment of polyphenol intake and poly-
phenol diversity. However various studies have shown that intake of natural poly-
phenols, such as anthocyanins, curcumin, epigallocatechin-3-gallate (EGCG), and 
resveratrol, exhibit anticancer activities. The mechanisms of action chiefly involve 
modulation of different molecular events and cell signaling pathways linked with its 
survival, propagation, differentiation, migration, angiogenesis, detoxification 
enzymes, and immunity. In addition, the effects of polyphenol against cancer vary 
according to the type of cancer and dose of polyphenols. It must be noted that genis-
tein and daidzein are polyphenols that have antagonistic effects on hormone-related 
cancer. Therefore, these polyphenols should be utilized with caution in any type of 
cancer. Moreover, there are less clinical trials about the anticancer activity of 
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polyphenols. To assess the impact of dietary polyphenols on cancer risks, further 
epidemiological studies are needed. Further studies are required for the assessment 
and comparison of mechanisms of action of different polyphenols. Larger random-
ized clinical trials should be carried out to provide more clear evidence about safety 
and bioavailability of polyphenols [16].

Multiple studies after the discovery of noncoding RNAs (ncRNAs) have investi-
gated that polyphenols, such as EGCG, resveratrol, and curcumin, can regulate dif-
ferent tumor suppressor and oncogenic ncRNAs which regulate progression of 
different cancer types [17].

Polyphenols are present in green tea in the form of epigallocatechin-3-gallate 
(EGCG) and have a role in inhibition of tumors. There is need to investigate antitu-
mor action of EGCG. A study was conducted for EGCG antitumor effect on the 
human esophageal squamous cell carcinoma cell lines, in vivo and in vitro. The 
results demonstrated that EGCG induced apoptosis and inhibited proliferation 
through production of ROS, caspase-3 activation, and a decrease in VEGF expres-
sion in  vitro and in  vivo. In the future EGCG may have clinical applications to 
prevent or treat cancer of the esophagus [18].

20.12.3  Phytosterols and Cancer

Plant sterols that are present in plants cell membrane are called phytosterols. They 
play their role in plants as cholesterol performs its functions in the human body.

It has been reported that plant sterols and stanols have various other functions 
except their role in cardiovascular diseases. Current studies showed that phytoster-
ols have inhibitory actions in different types of cancers such as stomach, lung, 
breast, and ovarian cancers. Different mechanisms of actions are involved including 
inhibition of carcinogens synthesis, growth of cancerous cell, angiogenesis, metas-
tasis and apoptosis. Phytosterol intake may help in the reduction of oxidative stress 
by increasing the antioxidant activity. Phytosterols are thought to encourage apop-
tosis by reducing blood cholesterol levels. Studies revealed that daily consumption 
of 2 g phytosterols does not pose any health issues [19].

Phytochemicals show preventative effects against chronic disorders such as obe-
sity, CVD, diabetes, and cancer. It was estimated that diets rich in phytochemicals 
can decrease the risk of disease as much as 20%. Phytosterols are structurally simi-
lar to cholesterol but are present solely in plants. It is revealed by epidemiological 
studies that phytosterol content in the diet helps to reduce common cancers includ-
ing colon, breast, and prostate cancers.

Phytosterols enable vigorous anticancer response in host system by boosting 
immune function for the recognition of cancerous cells and by influencing hormonal- 
dependent propagation of endocrine tumors. It directly slows down the tumor 
growth by altering cell cycle, inducting apoptosis, and inhibiting metastasis of 
tumors [20].

A case-control study for investigating phytosterols’ role in cancer prevention 
included 1363 control and colorectal cancer patients, and they were given five 
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subclasses of phytosterols (stigmasterol, campesterol, B-sitosterol, campestanol, 
and B-sitostanol) over a period of 5 years. Results revealed that consumption of dif-
ferent subclasses of phytosterols showed inverse relationship with risk of colorectal 
cancer. However, stigmasterol showed nonsignificant association with colorectal 
cancer [20].

A side effect linked with phytosterols’ intake is that they reduce carotenoid levels 
in blood. However, it has been proposed that this impact can be compensated by 
increasing consumption of carotenoid-containing foods and through supplementa-
tion of carotenoids [21].

Phytosterols have shown decreased development in multiple cancer cells in the 
liver, lungs and breast, although exact mechanisms involved in inhibition of cancer-
ous cell growth are not well explained. Different mechanisms involved are angio-
genesis reduction, invasion of cancerous cell, and ROS production. Phytosterols 
have acquired more insight for their protective impact against numerous types of 
cancer; however, additional information is needed to fully comprehend their func-
tions and processes as less data is available on human subjects [22].

20.13  Mechanism of Antioxidant Action

20.13.1  Oxidative Stress

Oxygen exhibits both positive and potentially harmful effects for living systems. 
Due to its reactive properties, it helps in high-energy electron transfer reactions and 
production of ATP via oxidative phosphorylation. It therefore enables the growth of 
complicated multicellular organisms but also assumes responsibility for attacking 
any biological molecule, be it a protein, lipid, or DNA. As a consequence, reactive 
oxygen species (ROS) are constantly attacking our body. This attack by reactive 
oxygen species (ROS) is maintained in equilibrium by an advanced complicated 
antioxidant defense mechanism. This equilibrium can sometimes be unsettled, 
resulting in oxidative stress. Oxidative stress plays a major part in the pathophysiol-
ogy of many distinct illnesses including problems during pregnancy [22].

This subject focuses on studies in the clinical and fundamental sciences. When 
the inherent antioxidant defenses are submerged by the manufacturing of reactive 
oxygen organisms, then oxidative stress occurs. Reactive oxygen species play a 
main position in cell retention with their adjacent setting in homeostasis situation. 
Reactive oxygen species generate undiscriminating harm to biological molecules at 
an intense rate, resulting in cell failure to operate correctly and cell death eventually. 
In this section, we will come to understand critically how oxygen reactive species 
are produced, how they are detoxified in human placenta, and their function in 
homeostatic levels [23].
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20.13.2  Action of Nutraceuticals Against Oxidative Stress

Because of their chemical reactivity in combination with hunting and decreasing of 
free radicals produced during cell metabolism, plant nutraceuticals have been noted 
to have a distinctive immediate antioxidant activity. The quenching or diminishing 
of free radicals relates to the reduction of electrophilic species, such as radicals of 
peroxyl and hydroperoxide, while the scavenging or hunting exercise depicts the 
development of a more stable phenoxyl radical item by the response of phenol loop 
hydroxyl group (OH) with a reactive oxygen species. This demonstrates that the 
bioactivity of nutraceuticals relies on a direct and undeviating response with oxi-
dized species and also on their location, adsorption, dispersal, absorption, and 
excretion. These nutraceuticals can meet with organisms at cellular and molecular 
levels by regulating gene expression, protein and DNA repair, and epigenetic con-
trols. Several trials have evaluated the cellular and molecular function of nutraceu-
ticals in livestock, taking benefit of high-throughput screening. Nutraceuticals can 
modify gene expression and signaling processes. Nutrigenomic studies have 
revealed that nutraceuticals can also be useful in the processes of cell apoptosis, 
drug metabolism, immune modulation and metabolism.

20.13.3  Precision Nutrition

Precision Nutrition is a medical model that suggests nutritional customization with 
nutritional choices, items, or processes available to the individual. Analytical testing 
is often used in this model to select appropriate and optimal biomarker-based dietary 
elements, including the inheritances of the individual, or the results of other cellular 
or molecular tests.

Examples are:

• Precise selection of omega-3 fatty acids for individuals with low omega-3 indexes 
(von Schacky, 2014)

• Accurate selection of immune-stimulating supplements [24]
• Suitable recommendations for zinc or phytochemicals to avoid molecular degen-

eration based on heritable information

Precision Nutrition study thus provides a number of easy to implement measures 
to avoid disease and compress disease:

• Many dietary interventions are tested over time, and positive results are sup-
ported by observational trials.

• Different dietary interventions are affordable and easy to use [25].
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20.13.4  Precision Nutraceutical Approaches

Nutraceuticals are food or portion of food that provides medical advantages includ-
ing disease prevention and treatment. Adding nutraceuticals to diet in adequate 
quantities may prevent the occurrence of chronic diseases such as hypertension, 
cancer, coronary heart disease, and obesity. Nutraceuticals captured the attention 
and fantasy of customers seeking the convenience of food that contains nutraceuti-
cals which are beneficial for health. Nutraceutical-added foods can substitute dietary 
supplements [26].

It is possible to add nutraceuticals in different foods in liquid, semiliquid, pow-
der, or semisolid form. Scientists consider various distinct factors while developing 
the product containing nutraceuticals. These factors affect the physical, chemical, 
and natural properties of nutraceuticals which result in change in taste, strength, and 
sustainability of the product. Furthermore, enriched and fortified foods with nutra-
ceuticals include enriched dairy products, fortified cereal and grain products, func-
tional drinks, high-energy beverages, snack bars, candy parlors, etc.

20.13.5  Nutraceutical Incorporation Approaches

Nutraceuticals can be incorporated in the food for appropriate health benefits, opti-
mal medical benefit and due to visual attraction [27].

20.13.5.1  Encapsulation
Encapsulation is a process in which an active ingredient (nutraceutical) is captured 
in another material (matrix or encapsulant). Encapsulated active substance is 
shielded from external conditions for a certain time period until it is transported in 
the field. The design of an encapsulated element with the anticipated features and 
composition must be done carefully.

• Natural physicochemical characteristics of matrix and active components
• Active ingredient and matrix stability in various media
• Mutual interactions of matrix and active ingredient
• The technology used to prepare the encapsulated ingredient

The encapsulation generally involves the reinforcement of the binding compo-
nent, consideration of the conditions under which the encapsulated component is 
available and it requires protection from external harsh conditions. When the encap-
sulation is in the constituent state, during food processing, food storage, or food 
consumption, there is a trigger such as the activity of the enzyme or the pH that 
releases it into the digestive tract until it hits the required body location [26] 
(Table 20.1).

A. Asghar et al.



443

20.13.6  Product Trends and Emerging Nutraceuticals

Nutraceuticals are generally directed to diverse demographic and market require-
ments. Food can be delivered on the basis of health advantages, age groups, and 
religious or cultural nutritional needs. In the future older people will make signifi-
cant use of the development of functional and nutraceutical food products. Sensory 
preferences of old consumers (e.g., taste, texture) are very different from those of 
young consumers. Therefore, in manufacturing functional foods for old consumers, 
it is important to remodel existing products with different tastes and textures.

It is well recognized that the nutritional requirements of individuals differ 
depending on their age and medical condition, and the nutraceutical and functional 
food industry can deliver products developed for specific age group. The main prod-
ucts of concern to elderly clients are functional foods that influence lung health 
(omega-3 fatty acids), cardiovascular health (probiotics), aging (resveratrol and 
antioxidants), and GIT health (probiotics). Likewise, for healthy eyes (lutein, zea-
xanthin) and for healthy bone and skeleton (calcium, vitamin D3) are important. 
Products that encourage brain development (such as omega-3 fatty acids) and 
immunological health (such as probiotics, oligosaccharides) are of biggest concern 
to infants and young kids.

The exclusive functional foods and drink products are the most fast-growing 
functional foods in the globe after recipes for neonates, energy drinks and probiotic 
yogurts. Nondairy options were identified as the fastest-growing functional bever-
age classification, for example, rice, oats, hemp, and walnut milk, given increased 
weight of food intolerance and welfare concerns associated with milk and 
soybeans.

Table 20.1 Different types of encapsulated nutraceuticals

Class Examples
Proteins Milk proteins (e.g., whey protein isolates, caseinates, individual 

caseins, micellar casein, bovine serum albumin, plant proteins (e.g., 
soy protein isolate, wheat protein, oat protein, zein)

Gelatins (e.g., fish 
gelatin, collagen)

Carbohydrates, sugars (e.g., glucose, sucrose, lactose, trehalose, 
glucose syrups, honey, oligosaccharides)

Starch and starch 
derivatives

For example, native starches, modified starches, resistant starches, 
maltodextrins
Nonstarch polysaccharides (e.g., alginate, pectin, carrageenan, 
chitosan, plant fibers, gum acacia, gum Arabic

Lipids and waxes Vegetable fats and oils (e.g., canola oil, palm oil, sunflower oil, and 
fractions of these)
Milk fat and milk fat fractions (e.g., olein and stearin)

Surfactants Natural surfactants (e.g., milk phospholipids)
Synthetic surfactants (e.g., tweens, spans, polyglycerol polyricinoleate, 
sucrose esters), ω − 3 fatty acids, and probiotics

Phenolic compounds, 
phytochemicals

Vitamins and minerals, bioactive peptide, carotenoids, and tocopherols
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Foods carrying a combination of nutraceutical components are increasing quickly 
in the market due to their probable synergistic health effects. This contributes an 
extra amount of difficulty to the encapsulation systems technological growth in 
potential functional foods. Advances and efficiency in nutrigenomics will provide a 
better knowledge of collaboration and a driving force to gradually increase the 
effect of diet and lifestyle on well-being and prosperity. The distribution of nutra-
ceuticals offers a variety of products to assist customers to satisfy their health and 
wellness needs for more useful dietary choices.

Research based on evidence will assist customers achieve trust in acquiring func-
tional food products along with nutraceuticals and improving nutraceuticals and 
functional food laws. These laws are the contradictions between countries, and they 
must be considered when producing functional foods for global markets. In food 
industry generally, encapsulation is used to add nutraceutical component in food. It 
is used to overcome the challenges of adding nutraceuticals in an effective dose 
without affecting the sensory properties and storage strength of the food.

There are various encapsulation methods, and the selection of method relies on 
the nutraceutical element characteristics and the target application. When using 
food as a means of delivering nutraceuticals, new formulated strategies and food 
structures are also created.

Regardless of the strategy implemented, it is necessary to understand the interac-
tion during processing between the nutraceuticals and the different components of 
the food matrix. These relationships can influence the added nutraceutical content’s 
bioavailability and bioactivity. Additional studies are needed to understand the rela-
tionship between nutraceuticals and complex dietary matrices, to demonstrate the 
health advantages of nutraceuticals added to foods, and to understand the composi-
tion of the intestinal tract and how the encapsulant may impact this process.

20.13.7  Role of Precision Nutraceuticals in Preventive 
and Curative Approaches Against Cancer Novel Trends

Sensitive foods contribute to the protection and promotion of health as plant foods. 
It has been found to be useful in the control of diseases such as cancer and diabetes. 
Some research has shown that daily consumption of 21–31% of multivitamins as a 
public benefit for plant nutrients serves to prevent and cancer. Studies have shown 
that some selected plants have nutraceuticals that can manage cancer cell growth. 
Plants with nutraceutical nutrients have proven to be a low-cost nutritional supple-
ment. Partially, medicinal plants must be washed thoroughly from the microbial 
load and heavy metals to obtain a properly reinforced product [28].

As indicated by epidemiological studies and animal models, nutraceuticals can 
have chemopreventive actions, primarily phytochemicals obtained from medicinal 
plants such as tea, ginger, garlic, soy, tea, honey, propolis, and others. Various stud-
ies found that their ability to reduce the occurrence of disease is linked to apoptosis. 
Use of nutraceuticals as potential chemo-protective reagents has led to an increase 
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in in vitro studies on cultured human cells. Chemoprevention involves the use of 
small molecules that contain dietary or herbal chemicals to prevent cancer, unlike 
chemotherapeutics where mostly synthetic chemicals are used to relieve or alleviate 
signs of cancer. While the notion of chemoprevention has been common in the East 
for thousands of years, lately in the West, it attained scientific acceptance.

Large-scale clinical trials have shown that tamoxifen, raloxifene, estrogen recep-
tor antagonists, and synthetic retinoids such as fenretinide are effective in protecting 
women against breast diseases. The American Cancer Research Association’s 
Chemoprevention Working Group study was a watershed suggesting that chemopre-
vention was considered a feasible option for cancer therapy. It is therefore important 
to investigate the possibility of using phytochemicals or other nutritional substances 
as an inhibitor of cancer agents. In addition, examining the biological effects of 
these phytochemicals at the cellular level provides the molecular basis for antitumor 
functions and helps to develop a platform for producing stronger chemopreventive 
agents and chemotherapy agents.

Apoptosis performs a role in multiple normal physiological mechanisms such as 
immunity, homeostasis, development of tissues, or any other process that may 
increase or decrease the balance between organism’s life and death. Therefore, in 
some functional deficit and degenerative disorders such as Alzheimer’s, Parkinson’s, 
and Huntington’s disease, multiple sclerosis, myocardial infarction, and arterioscle-
rosis, the loss of essential cells from postmitotic tissues due to increased cell death 
may play a significant part. Garlic utilization as an antitumor process has been due 
to compounds extracted from garlic such as allyl sulfur compounds which has an 
important anticarcinogenic property against human cancers. Our increased research 
and understanding of the biology and chemistry of nutraceuticals have brought us to 
chemopreventive area. The following preventive activities should be taken into con-
sideration during the use of nutraceuticals in the future:

 1. Synergistic effect: Each nutraceutical molecular understanding elaborates that 
testing of synergistic effect can be done by using two or more nutraceuticals or 
their derivatives on the chemoprevention.

 2. Defining molecular objectives: The molecular objectives of nutraceuticals have 
been identified; it is now feasible to create finer and target-specific nutraceuticals 
that select shared locations usually.

 3. Synthesis of analogues: Efficacy of nutraceuticals has been increasing; this could 
be used as chemical template for combinational synthesis [29].

One nutraceutical that has been linked to soy, named as genistein, is gaining 
much popularity to fight tumors. Epidemiological evidence indicates that there are 
positive relationships between the main cause of genistein, chemoprevention, and 
soy consumption. Soy can inhibit tumor angiogenesis in mice and the growth of 
transplantable human carcinomas.

Apples are widely consumed in the human diet, which is the main supplier of 
phytochemicals. Apples are rich source of dihydrochalcones, flavonols, anthocya-
nins, hydroxycinnamic acids, flavam-3-procyanidins, chlorogenic acids, catechins, 
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quercetin 3-glycosides (Q3G), phlorizin, and cyanidin-3-glycosides; these are the 
major phenolics. Consumption of apples can lower the risk of cancer, asthma, pul-
monary disorders, and type 2 diabetes.

Tea belongs to Theaceae family and Camellia sinensis species. Tea is the most 
ancient, after water; it is the most largely consumed hot drink worldwide. Tea is 
high in polyphenols that have strong anticancer, anti-inflammatory, antioxidant, and 
antimutagenic properties. Tea polyphenols also inhibit proliferation and increase 
apoptosis in carcinogenic cells. Black tea, green tea, and soy essence have expres-
sively reduced the tumor rate, growth, and proliferation, serum androgen level, and 
prostate tumor in mice in single or more diets.

Pomegranate is highly consumed as fresh and in the form of beverage juice or 
wines. The peel and juice of pomegranate have high content of polyphenols, anti-
oxidants, tannins, anthocyanins, and ellagitannins. These compounds show chemo-
preventive, anti-inflammatory, and chemotherapeutic effects.

Organosulfur component of garlic demonstrates chemopreventive property for 
human cancers, just like colon and lung cancers. Combination therapy treatments 
for skin cancer are more helpful than individual treatments [30].

20.13.8  Constraints

Functional foods provide energy and basic nutrition to health that have advantages 
beyond basic nutrition. Nutraceuticals are the compounds that could be in the form 
of food or any food element that offer health advantages such as disease prevention 
and treatment. The expansion of nutraceutical elements to food in adequate values 
may suppress the beginning of enduring sicknesses, for example, coronary illness, 
tumor, hypertension, and heftiness. There are in any event two noteworthy classes 
of useful sustenance and nutraceuticals. First incorporates food that are normally 
rich in nutraceutical, and the other incorporates sustenance detailed with added 
nutraceutical fixings in adequate amounts, regularly with a medical advantage or 
ailment counteractive action focus at the top of the priority list.

The second group of functional foods that are added to nutraceuticals and gained 
the attention of consumers are those which are concerned about eating the supple-
mented diets for the betterment of health. This has been a motivation for the food 
industry in the presence of functional foods. There is an alternative to the dietary 
supplements which are available in tablet and capsule forms. The alternative is func-
tional foods with the addition of nutraceuticals.

The normal diet parts including beverages and foods are food source of nutra-
ceuticals. Consumers are increasingly demanding for healthier food and their 
derived products. Food manufacturing and processing industries produce food that 
is cost- effective, safe, and consumer-friendly. Many marketing, technological, and 
regularity encounters still need to address functional foods to be thrived in the 
market places.

A. Asghar et al.



447

20.13.9  Complexities of Nutraceutical Incorporation

The process of incorporating, fortifying, and adding nutraceuticals to food is com-
plicated. Adding and fortifying new components to an existing item impact the 
physicochemical and sensory characteristics and structures of the original food or 
drink. The structure and its flavor, shelf life, and texture are enhanced. The solubil-
ity and format of nutraceutical elements increase the formulation processing of the 
product.

With the help of added nutraceuticals, anticipated characteristics are attained. 
The direct addition of nutraceuticals is not possible.

This impacts the food characteristics in which nutraceuticals are added. Direct 
inclusion of nutraceuticals in products is often not feasible because many nutraceu-
ticals are prone to degradation and can interfere with other elements in the food, 
leading to the loss of nutraceutical element’s bioactivity and a decrease in nutri-
tional quality of the food item. Therefore, the effective introduction of nutraceuti-
cals into products needs to be secured by a well-designed delivery system specifically 
developed for the delivery of specific products [31].

20.13.10  Challenges for Incorporation of Nutraceuticals 
in Foods

The need to manage an efficient dose of nutraceutical agent for a specific health 
advantage is a significant task as it impacts the finished product’s flavor and after-
taste. Some difficulties are the following:

• Race prevents the unwanted effects of nutraceuticals from interacting with the 
other components of food and environment.

• Balance the nutraceutical components of food during the shelf life of the finished 
product.

• Make sure that foods containing nutraceuticals provide the expected health ben-
efit after consumption.

Nutraceuticals are less stable after being isolated from many sources of bioactive 
and natural foods. In addition, encapsulation of nutraceutical is necessary so it 
might not interact with food component making it bio-unavailable.

Finish the application of food and the desired health result. Sensitive nutrition is 
difficult for several reasons. There are still no systematic intervention studies, and 
some of the few studies that are currently being carried out are uncertain.

• The effects of nutrition on health biomarkers tend to be small, which requires 
further studies to confirm the significant findings.

• The final visualization of long-term positive results requires long follow-up peri-
ods, and research on the interaction of nutritional interventions based on bio-
markers (synergistic) is at an early stage [32].
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20.14  Conclusion

However, sensible nutrition should be part of the concepts of medical therapy, pro-
tection, and normal health and concepts of healthy aging. More than 400 million 
people worldwide suffer from diabetes, with a high impact on metabolic diseases. It 
is estimated that more than 600 million people in 2040 will have diabetes. Sensitive 
nutrition can have a sustainable effect to reduce this growing number.

Providers of hospitals that offer sensitive medicine must also offer sensitive 
nutrition as part of the concepts of sustainable medical treatment oriented to results. 
Subsequently, sensible nutrition should be part of normal daily life to prevent and 
reduce the morbidity that we normally observe in metabolic diseases.

There will be an emerging trend of complete value chain of medicine-sensitive 
prevention-sensitive nutrition, that will incorporate new food logistics services, 
combining the concepts of new direct food delivery services for patients to the sur-
rounding restaurants and cooking courses precisely all integrating into the food sup-
ply chain.

• The first sensitive nutrition success stories are introduced.
• The first well-approved health biomarkers (biological age) are available.
• Now we should carry out systematic studies of precision of nutrition on a large 

scale.
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21.1  Introduction

The completion of the Human Genome Project (HGP) in 2001 led to a better under-
standing of human biology, its particularities, and variabilities. Since then, consid-
erable time and effort have been dedicated to decoding the patterns of human and 
cancer genomes. In 2015, the President of the United States, Barack Obama, 
launched the Precision Medicine Initiative (PMI), a new effort to revolutionize med-
icine and improve health and disease treatment, as opposed to a “one-size-fits-all” 
medicine approach [1]. Precision medicine aims to deliver the right treatment to the 
right patient, at the right dose, and at the right time. In this context, precision medi-
cine offered new strategies and opportunities for surveying cancer genomes. Many 
molecular genetic tests have been developed and used for several different purposes 
in cancer research (e.g., differential diagnosis, prognosis, pharmacogenomics, treat-
ment, disease monitoring, and risk assessment (Fig. 21.1).

DNA sequencing has become the main molecular tool for cancer research [2, 3]. 
Sequencing has been possible since 1977 when Frederick Sanger developed the 
“chain-termination” method which became the most commonly used (first- 
generation) DNA sequencing method [4]. However, the arrival of next-generation 
sequencing (NGS) in 2005 changed the landscape of precision medicine. NGS has 
overtaken Sanger sequencing due to its high throughput, parallel operation, and 
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lower cost per base pair. The analysis of multiple genomic fragments simultane-
ously has allowed the identification of the full catalogue of germline and somatic 
mutations, epigenetic alterations, the characterization of cancer cell transcriptomes, 
and the discovery of new biomarkers [3, 5].

A variety of molecular diagnostic tests use NGS (e.g., single- and multigene 
sequencing panels, whole-exome sequencing (WES), whole-genome sequencing 
(WGS)) and other polymerase chain reaction (PCR)-based approaches (e.g., quan-
titative PCR (qPCR) and digital PCR (dPCR)). Therefore, understanding the appli-
cation and limitations of these different approaches is of utmost importance in 
clinical practice. The following topics will detail current applications and chal-
lenges on genomic research, clinical case studies on the role of precision oncology, 
and future perspectives of cancer genomics.

21.2  Applications and Challenges on Cancer Genomics

A diagnostic test encompasses three main different phases: pre-analytical (i.e., test 
design and specimen handling issues), analytical (i.e., sample analysis), and post- 
analytical (i.e., results interpretation and report). This section aims to provide fur-
ther contributions for the applications, challenges, and solutions found in all phases 
of genetic testing in oncology.

Fig. 21.1 Clinical uses of molecular diagnostics test in precision oncology
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21.2.1  Pre-analytical Phase

The pre-analytical phase comprises the first stages involved in a diagnostic assay, 
from test design to patient sample collection and processing. This is one of the most 
important steps during genetic test development because it ensures reliable delivery 
and quality results and is now increasingly being appreciated not only by laboratory 
researchers but also by doctors and patients [6]. Several factors that influence the 
pre-analytical phase have already been described and include (1) correct indication 
for the test, (2) correct preparation for sampling, (3) sample type, (4) sampling time, 
(5) sample handling, (6) patient preparation, (7) standardized and validated collec-
tion, (8) analyte transport, and (9) pretest laboratory steps, among others [7].

Currently, the definition of what tests and treatments should be used does not 
occur only from the physician’s decision. Doctor-patient communication plays a 
central role in building a doctor-patient test/therapeutic relationship. This is impor-
tant in providing excellent healthcare, which is the objective of precision medicine. 
Good communication can ensure the sharing of pertinent information for proper 
diagnosis of patient health issues, adherence to guidelines, and prescribed treatment 
[8]. A very relevant point in this communication is the physician’s role in explaining 
all the peculiarities of an exam and the possible results. Clinical labs and research 
centers should provide manuals with clear and objective information to healthcare 
professionals (doctors, nurses, and others) on all requirements necessary for the pre- 
analytical phase. This care is fundamental, since most diagnostic errors occur dur-
ing this phase [9]. These errors are usually related to a lack of standardized protocols, 
from test design to sampling acquisition. This is also the case in precision medicine. 
Therefore, careful design of a test and its execution must be well-planned in order 
to have reliable results. This section will review some pre-analytical challenges in 
precision oncology and discuss approaches for overcoming them.

21.2.1.1  Test Design
Designing a good assay is the first task when a test is being developed. There are 
many experimental options available, and understanding each step and the possible 
limitations is essential but challenging [10]. The design depends on intrinsic (e.g., 
sample type, disease’s characteristics, number of targets, sequencing platform) and 
extrinsic (e.g., samples availability, cost, time, transport conditions) factors.

When choosing a genetic test, there are doubts regarding which mutations to 
assess. Should the entire gene-coding sequence be analyzed? Or only point muta-
tions? One gene, or several genes? Single-nucleotide variants (SNVs; point muta-
tions), for example, are the most frequent mutation type in solid tumors and 
hematological malignant diseases [11]. In somatic oncology, attention should be 
directed to mutations or variants that have clinical importance, having an impact on 
treatment choice, or acting as agnostic/prognostic markers. For non-small-cell lung 
cancer (NSCLC), for example, mutations in the EGFR gene that confer sensitivity 
or resistance to tyrosine kinase inhibitors (TKIs) are well-described [12]. The three 
most relevant are deletion at exon 19 (Del19) and L858R, both making tumors sen-
sitive to EGFR TKIs, and T790M, which confers resistance to first- and 
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second-generation TKIs but is sensitive to third-generation TKIs [12]. Given the 
importance of these mutations to NSCLC treatment, molecular tests for patients 
affected by this cancer type should cover, at least, the codons affected by such 
mutations.

A major issue involving cancer genomics is the types of gene panels. Certain 
types of cancer have landmark-mutated genes, whereas other cancer types do not 
possess signature mutated genes. In any of the cases, the number of genes, which 
genes, and the mutation types that should be tested are questions with answers that 
are not so simple. Germline or sporadic cancer applications, as somatic testing for 
solid tumors or hematological malignancies, may require the use of different genes/
panels. Commercially available NGS panels (e.g., Illumina’s TruSight™ Oncology 
500, Thermo Fisher’s Oncomine™ Focus Assay, or Agilent’s ClearSeq 
Comprehensive Cancer Panel) may be attractive for multiple indications. However, 
custom gene panels should be necessary for cost saving. Designing a custom panel 
became relatively straightforward due to sophisticated and easy-to-use bioinformat-
ics tools. The Association for Molecular Pathology (AMP) and College of American 
Pathologists (CAP) recommend understanding the panel’s intended use prior to 
making a panel choice (e.g., search for therapeutic targets or diagnosis and patient 
prognostication) and to include solely genes that have sufficient scientific grounds 
for the disease diagnosis, prognostication, or treatment [11].

Once the genes or mutations to be tested are defined, another question emerges: 
should the assay be qualitative or quantitative? Most qualitative tests are for diag-
nostic purposes, while quantitative tests are for disease follow-up or response moni-
toring. A renowned case is BCR-ABL fusion (Philadelphia chromosome (Ph)) in 
chronic myeloid leukemia (CML) [13]. The National Comprehensive Cancer 
Network (NCCN) and LeukemiaNet guidelines strongly suggest that qualitative 
search of Ph, by molecular methods or by cytogenetics, should be employed for 
diagnostic testing, whereas Ph quantitative search is indicated for monitoring drug 
response and minimal residual disease (MRD) [14, 15]. For allele ratio (in the case 
of rare alleles search), quantification can be used for prognostic risk stratification, 
as for FLT3 in acute myeloid leukemia (AML), where FLT3-ITD (internal tandem 
duplication) mutation allele ratio is considered for stratifying patients [16]. Tumor 
mutational burden (TMB) is a different case, where the total amount of mutations 
present within a tumor is quantified to help direct immunotherapy and patient strati-
fication [17].

Choosing the best methodology involves careful analysis of specificity, sensibil-
ity, costs, and benefits of each technique available. For example, quantification of 
rare alleles can be assessed by qPCR, dPCR or sequencing (Sanger or NGS) [18–
20]. With qPCR, probes are preferred instead of intercalating dyes, such as SYBR 
Green, because even though probes are more expensive than intercalating dyes, they 
are more specific for a gene region. However, when compared to dPCR, qPCR is 
less sensitive and also demands a standard curve, as it is not an absolute quantifica-
tion method. Sequencing, especially NGS, could be the most sensitive method for 
rare allele quantification [18], but its costs, when analyzing a small number of muta-
tions, could be prohibitive for some laboratories and patients.
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Beyond the aforementioned points, test design should consider logistical aspects 
(transport and sample conservation time), technical and analytical team (properly 
trained for sample acquisition, sample processing, results analysis), and assay cost 
(Fig. 21.2). Taken together, complications regarding lack of design standardization 
could be reduced.

21.2.1.2  Sampling
Establishing the sample type is also an important step. Several primary materials 
may be used, depending on the type of nucleic acid modification to be evaluated and 
the assay methodology to be employed (e.g., whole blood, saliva, bone marrow, 
liquor, formalin-fixed paraffin-embedded (FFPE) tissues, etc.). Liquid biopsies, as 
it is indicated by its name, use nonsolid biological tissue samples, with whole blood 
being the most extensively used. There are many studies involving other body fluids 
([21]; for more information, see, Sect. 21.2.2.5). Leukemia tests are based on whole 
blood and bone marrow samples, as this area comprises liquid tumors originated in 
blood cells [14, 15]. Solid tumors are usually molecularly studied by nucleic acid 
extracted from slides derived from FFPE [22]. Furthermore, DNA and/or RNA can 
be used. For example, for MRD in chromosome fusions in oncohematology, the 
nucleic acid studied is RNA, since most fusions occur at intronic regions [23].

Sample collection tubes are a major concern. Most molecular assays are inhib-
ited by the presence of heparin, which makes ethylenediaminetetraacetic acid 
(EDTA) the main choice anticoagulant on molecular genetics [24]. There are some 
patented tubes available, such as Qiagen’s PAXgene® and Streck’s BCT® tubes, 
which contain special preservative products that stabilize cells and/or nucleic acids 
for longer than normal tubes [25]. This brings more quality for the assays and 
enables safer transport between distant locations. For liquid biopsies, it is well- 
described that blood storage and processing methods have a strong influence on 
ctDNA (circulating tumor DNA) concentration [26].

Fig. 21.2 Points that should be considered when designing a test for molecular precision oncol-
ogy. This scheme summarizes some of the aspects that must be evaluated during the test design 
phase: number of genes analyzed, target(s) definition, methodology (including qualitative or quan-
titative methods), sample type, logistics, qualified working team, and costs, among others
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Sample volume is also thought to interfere with an assay final result [27]. In the 
case of liquid specimens, like samples for RNA-based MRD evaluation in oncohe-
matology and plasma for liquid biopsy, where the targeted mutation/variant may be 
present in extremely low quantities, initial sample volumes are directly involved in 
the test quality and sensibility [27, 28]. Regarding FFPE samples, small-sized 
tumors (e.g., alveolar lung cancers) and small tumoral areas provide reduced 
amounts of material for nucleic acid extraction, which can be very challenging for 
later applications [27].

When RNA is used, it is important to remember that it is less stable than DNA, 
so sample conservation times are reduced and extraction conditions must be care-
fully controlled [29]. Malentacchi et al. [30] have also described that tubes contain-
ing cellular RNA stabilizers (e.g., PAXgene® Blood RNA Tube) significantly affect 
the transcript levels of FOS, IL8, FOSB, and TNFRSF10c genes, maintaining these 
transcript levels close to the ones observed at time zero (T0). RNA should be 
extracted from samples as soon as possible, 48–72 h is the maximum time allowed 
for RNA extraction from fresh blood samples, which can be challenging for long 
distance transportation. These samples must be kept refrigerated until RNA is 
extracted. New technologies that permit dry storage at room temperature are prom-
ising. Dried RNA has been shown to have comparable results to cryopreserved RNA 
in downstream applications, even after 1 year of storage [31]. RNA can be degraded 
by naturally occurring enzymes (RNases), which makes ambient RNase removal 
important when handling this type of nucleic acid. After extraction, samples need to 
be kept at −80 °C, and repeated freeze-thaw cycles may decrease RNA quality, so 
the use of multiple aliquots is recommended [32].

FFPE samples have particular issues regarding their preparation and analysis. At 
the pre-analytical phase, sample quality can be affected by fixative solution pH, 
duration of tissue fixation, storage conditions and age of tissue blocks, and extrac-
tion method [33]. Small tissue samples can provide smaller nucleic acid yields, as 
previously described. Different tissue types may need additional treatments due to 
their specific characteristics. For example, melanin binds to Taq DNA polymerase, 
interfering with PCR reactions, so melanin-enriched tissues must be treated with 
bovine serum albumin [34] and bone tissues must be decalcified using EDTA [35], 
among others. The period of time between tissue removal from the body and its fixa-
tion may interfere with methods used for nucleic acid analysis [35]. Tissue fixation 
should be made using neutral buffered formalin (4% formaldehyde), diluted no lon-
ger than 24 h before use [33]. Fixing time and temperature can affect DNA/RNA 
integrity, so it is recommended that this step takes no longer than 72 h and should 
occur at room temperature [35]. When extracting DNA from FFPE samples, other 
treatments may be necessary: (1) incubation with uracil-DNA glycosylase (UDG) 
to remove uracil (derived from deamination of cytosines) present in DNA and (2) 
prolonging incubation with proteinase K and thermal treatment at 90 °C, to remove 
possible cross-links (protein-protein, DNA-protein, formaldehyde-DNA, or even 
DNA interstrand cross-links) caused by the formaldehyde present in formalin [36]. 
The age of the blocks could interfere with the quality of DNA that is degraded over 
the years. Storage time is also a limiting factor to DNA quality in FFPE tissues, 

M. A. Pereira et al.



459

irrespectively of the extraction method [37]. Slides derived from FFPE samples 
should be accurately manufactured, so they represent the genuine tumoral milieu. 
Good quality paraffin blocks and tissue slides are essential for an effective patho-
logical review, in which the pathologist identifies tumor-rich and necrotic-rich 
areas, in order to enhance analytic sensitivity [36].

As it is invasive and, in some cases, difficult to make a tissue biopsy every time 
a new exam is needed, the characterization of several genetic biomarkers in plasma 
samples by liquid biopsy is an emerging approach in precision medicine. Levels of 
these biomarkers are increased in certain types of malignant cancer, such as lung, 
colorectal, and breast tumors, and in late-stage cancers [38]. Prior cancer treatments 
can also change the quantity of ctDNA in patient plasma [39]. Thus, the analysis of 
liquid biopsy results must consider these variables.

Tumor heterogeneity is another challenge for genetic analysis. This phenomenon 
is generated due to genomic instability and, in certain types of cancer, polyclonality 
of cancer cells. The patient with intratumoral heterogeneity could have a poor prog-
nosis because therapeutic selection pressure may promote an expansion of a resis-
tant subclonal population, promoting the evolution of drug-resistant cells, which 
changes the profile of possible target-directed therapies against the tumor. 
Multiregional tissue sampling, single-cell sequencing, and research autopsies are all 
methodological approaches that have the capacity to enable high-resolution identi-
fication of complex clonal changes [40]. Liquid biopsies are also recommended, as 
they may be able to detect ctDNA from all tumor clones, reflecting the tumor 
genome heterogeneity [41].

Regarding nucleic acid extraction, there are good automated and manual 
(solution- based or column-based) methods available [42]. Automated extraction 
can decrease variability and reduce hands-on time for the execution of a test, 
whereas manual extraction can generate higher nucleic acid yields and is usually 
less expensive [43, 44]. For RNA, despite the demanding hands-on time, phenol- 
chloroform manual extraction is still the main choice for liquid samples, as it is less 
expensive than automated methods and very effective [45, 46]. For FFPE, semiau-
tomated methods are the main choice [47]. Care must be taken concerning magnetic 
bead extraction when using droplet digital PCR (ddPCR), once these beads impair 
droplet generation, and deparaffinization of tissue blocks need to be efficient, 
because formalin and paraffin may cause cross-links between nucleic acids and pro-
teins, jeopardizing downstream sample applications. Table  21.1 summarizes the 
points related to sampling.

21.2.2  Analytical and Post-analytical Phases

21.2.2.1  Sanger Sequencing
To date, Sanger sequencing is the gold standard in diagnostic tests. Although NGS 
has a much higher processing capacity, confirmation of genetic findings is still made 
by the Sanger method in many clinical laboratories [48]. Sanger sequencing work-
flow has very easy-to-use and familiar protocols. However, it is important to 
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highlight some challenges and limitations including (1) primer design, (2) inability 
to perform parallel investigation of multiple targets, (3) lower scalability due to 
increasing sample input requirements, (4) less cost-effective for high numbers of 
targets, (5) worse sequence quality in the first 15–40 bases and after 600–1000 
bases, (6) lower mutation resolution (size of the mutation identified), and (7) lower 
sensitivity (limit of detection ~15–20%). Although Sanger sequencing and PCR are 
routinely used to identify clinically relevant mutations, these techniques are insensi-
tive to changes occurring at an allele frequency lower than 20%, apart from qPCR, 
dPCR and NGS techniques, which could reach higher sensitivity [49–51]. Therefore, 
somatic cancer mutations can be difficult to detect with the Sanger method espe-
cially without performing microdissections since tumors are heterogeneous and 
often mixed with normal tissue [52]. Another challenge in Sanger sequencing analy-
sis is the difficulty in dealing with normal/polymorphic genomic variations in the 
patient sample that may interfere with variant detection. A variant present at the 
primer annealing site can generate sequencing of only one of the DNA strands, 
generating misleading results. Other challenges include primer design, primer self- 
looping, and primer dimers. These problems are also present in NGS amplicon- 
based assays, which will be covered later in this section.

While Sanger sequencing has a lower sample throughput, NGS sequences mil-
lions of fragments simultaneously per run, offering greater discovery power to 
detect novel or rare variants with deep sequencing [53–55]. Sanger sequencing can 
be a good choice when (1) sequencing specific mutations, (2) sequencing amplicon 
targets up to 1 Kb, (3) identifying microbes, and (4) analyzing fragments and ana-
lyzing short tandem repeats (STRs). Otherwise, NGS is preferred because it allows 
for (1) simultaneous sequencing of many genes, (2) expansion of the number of 
targets for finding novel variants, (3) samples with low input amounts of starting 
material, and (4) somatic mutations at low allele frequency (above 20%) [56].

21.2.2.2  Pyrosequencing
The era of parallel massive sequencing became known as the second generation of 
DNA sequencing. Pyrosequencing developed by Nyrén et al. in 1996 [57] was the 
first method of this generation and the first alternative to the conventional Sanger 

Table 21.1 Main attention points for sampling in precision oncology

Sample type or 
methodology Attention points
FFPE Tumor size, additional treatments for particular cancer types, time 

between biopsy and fixation, fixative solution pH, duration of tissue 
fixation, cross-links removal, age and storage conditions of tissue blocks, 
determination of tumor-rich and necrotic-rich areas, tumor heterogeneity, 
nucleic acid extraction method

Liquid biopsy Sample volume, cancer type, available biomarkers, sampling time (cancer 
stage and previous treatments), special conservative tubes, nucleic acid 
extraction method

Oncohematology EDTA as anticoagulant for sample collection, sample volume, RNA 
stability and conservation time, nucleic acid extraction method
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method [58–60]. In this method, 454 pyrophosphate-based sequencing (thus the 
name pyrosequencing) builds on a sequencing by synthesis (SBS) approach and can 
be defined as a method capable of defining the DNA sequence by capturing visible 
light through a series of enzymatic reactions from the release of a pyrophosphate 
during the synthesis [54, 57, 61].

The pyrosequencing technique is recommended for sequencing up to 100 bases 
and is generally used for analysis of single nucleotide polymorphisms (SNPs) and 
for identification of short DNA sequences [62–65]. Pyrosequencing technology per-
formance proved to also be applicable in several types of analysis including muta-
tion detection, DNA methylation, tag sequencing of a selected cDNA library, clone 
checking, etc. [66–71]. This method is simple, robust, fast, sensitive, and cost- 
effective [72]. There are a number of studies that have applied the pyrosequencing 
technique in somatic cancer analysis  – especially for KRAS, NRAS, BRAF, and 
EGFR genes – allowing detection of genetic variants in an allele frequency around 
12.5%, using low amounts of DNA, with robust and fast results in an extremely 
simple protocol [73].

The major challenge of this technology is to enhance read lengths while main-
taining reliability and accuracy. There are important reasons that inhibit the system 
from performing longer reads accurately, like uncertainties in homopolymeric 
regions and loss of synchronism. In long homopolymeric regions, it is difficult to 
interpret the light signal when many identical nucleotides are incorporated into a 
single cycle [63]. Other challenges include an inability to detect complex mutations, 
primer design, enzyme and nucleotide dispensation, primer self-looping, primer 
dimers, cross-hybridizations, and de novo sequencing of polymorphic regions in 
heterozygous DNA material [58].

21.2.2.3  NGS Sequencing
Currently the NGS technique has been used for a wide variety of clinical and 
research applications due to the proven cost reduction of reagents, equipment, 
related products, and improved data analysis solutions [74]. Defining the library 
method and sequencing platform is an important choice to consider when choosing 
NGS technology for clinical and research applications [75]. There are two main 
forms of library methods, hybridization-based and amplicon-based methods, that 
differ in the way they amplify and sequence target regions as well as detect genetic 
variants. For sequencing platforms, there are two major chemistry choices: SBS and 
semiconductor technology [75]. For each chemistry choice, there is a balance of 
advantages and disadvantages [76].

SBS platforms usually generate higher throughput per run and utilize single base 
extension and competitive nucleotide addition, resulting in highly accurate sequenc-
ing [76], but sequencing by synthesis technology has well-known base substitution 
errors [77, 78]. Semiconductor technologies run shorter reads, and the most relevant 
limitation is the error rate in homopolymer regions (repetitive regions), which 
requires robust bioinformatics pipeline and analytical expertise to reduce error rate 
[79]. However, it delivers the fastest throughput and shortest run time [76, 80].
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When comparing different platforms, simplified workflows, runtime, time pro-
cessing, and analysis are taken into account when defining which option is the best 
to work with [76]. Hybridization and amplicon approaches have different flows that 
should be evaluated, being amplicon method the simplified workflow, for example 
[75]. Additionally, amplicon-based methods have short preparation time compared 
to other methods [80] and also offer an advantage in being able to work with smaller 
quantities of DNA than hybridization assays [76]. On the other hand, amplicon 
assays, although ideal for small numbers of well-defined regions, are challenging to 
multiplex. Another important challenge of amplicon assays, as well as in Sanger 
sequencing, is the presence of variants at the primer annealing site, resulting in 
erroneous results. Hybridization capture method, in turn, performed better in com-
plex regions and also in uniformity quality measures than amplicon-based methods 
[75], is less restricted by variant position, and can still enrich all strands and alleles 
equally, even in the presence of multiple novel variants. It has been demonstrated, 
however, that regions with high or low GC content may affect probe hybridization 
and PCR bias [81, 82].

Finally, cost is always an important factor. Sequencing cost is generally compa-
rable but may also be affected by the target region size, on-target rate, and depth 
coverage [75]. The hybridization method is the most economical for large target 
regions. On the other hand, for smaller panels, the amplicon method turns out to be 
the most cost-effective. The final cost should be calculated taking into account the 
desired quality parameters as well as any additional experiments that may be 
required [76].

NGS assay is composed of three main distinct and interdependent parts: library 
construction, sequencing, and data analysis [74]. Regardless of the method chosen 
(hybridization or amplicon-based), the massive number of sequence data produced 
by NGS is computationally intensive, reinforcing the need of robust pipelines [54, 
83, 84].

A bioinformatics pipeline involves numerous file transformations interacting 
with information from different databases, software components, and operational 
environments (i.e., the environment in which users run application software). They 
are typically specific to each sequencing platform and can be customized [85]. A 
bioinformatics pipeline consists of the following major steps: (1) a first analysis, 
where the sequence is generated by base calling and quality score generation; (2) a 
second analysis, where alignment occurs to the reference sequence; and (3) a ter-
tiary analysis, where the variant is called, annotated, filtered, and interpreted as to 
its clinical relevance [85, 86].

Although bioinformatics tools continue to improve, important challenges still 
remain concerning variant-calling process. There are somatic and germline genetic 
variants, depending on their origin. Germinal variants are inherited or occur at a 
very early time during embryogenesis [87]. Somatic genetic variants are acquired as 
a result of internal or external events. Cumulative somatic mutations are an intrinsic 
characteristic of cancer and tumors throughout its development shows new changes 
from small point changes to large genomic rearrangements [88]. Germline and 
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somatic NGS data differ at several points that need to be considered during analysis 
[89], including the following:

 1. Expected allele frequency: as stated earlier, somatic variants may have very-low- 
frequency values (NGS sensitivity ~5%), and germline variant frequency remains 
50% (heterozygous) or 100% (homozygous).

 2. Mean coverage depth: must be greater in somatic (~1500x) than in germline 
(~200x).

 3. Sample quantity and quality: tumor is usually scarce and of poor quality, being 
variable according to pre-analytical care and biological factors (e.g., the exten-
sive tissue necrosis found in many cancers).

SNV and small indels are the most frequent variations in genome; however, large 
DNA rearrangements are a fundamental part of the development of many diseases 
and particularly in cancer. Copy number variation (CNV) was earlier described as 
DNA regions with at least 1 kb in size, involving gains or losses of base pairs in 
genomic DNA that presented different copy number in comparison with a reference 
genome [90, 91]. However, we know that CNVs can range considerably in size, and 
smaller sizes (e.g., 50 bp) may also be considered as CNVs. As the detection tech-
nologies and the knowledge about CNVs advanced, the increased available data 
could provide accurate information on CNVs related to cancer diagnosis and man-
agement. CNV detection is usually performed by multiplex ligation-dependent 
probe amplification (MLPA), array-based comparative genomic hybridization 
(aCGH), fluorescence in situ hybridization (FISH), and qPCR. Most of these tech-
niques are low-throughput assays (with the exception of aCGH, which is a genome- 
wide array), but it is possible to make CNV analysis by high-throughput techniques 
(e.g., NGS). The hybridization-based method presents a better coverage and unifor-
mity than the amplicon-based method allowing large genetic rearrangement compu-
tational analysis [75]. There are many software available to identify and call CNVs 
[92], but all quality parameters should be verified and validated to call CNVs cor-
rectly, reducing false-positive (FP) or false-negative (FN) results. The most critical 
point is the sequencing depth; when it does not reach the minimum established for 
the test, CNV cannot be detected. This is a real challenge to CNV analysis on NGS 
platforms. It has been shown that CNV can be found in a gene or gene region when 
it is overgrown by at least five amplicons in well-validated protocols [93]. 
Sequencing systematic noise and array data still stands as significant challenge to 
CNV determination in cancer genome analysis, but there are some initiatives trying 
to reduce this kind of issue [94, 95].

Both germline (CNV) and somatic copy number alterations (SCNAs) are present 
in cancer and can affect oncogenes or tumor suppressor genes. The identification of 
these alterations allows better cancer categorization and a better characterization of 
cancer pathways. Comparison of CNV and SCNA signatures showed that SCNAs 
are larger than the germline CNVs, due to high rates of somatic events [96].

Concerning NGS variant annotation, bioinformatics tools collect data from sev-
eral databases to characterize and provide auxiliary data for each called variant, 
such as variant location (chromosome, gene, exon/intron), predicted cDNA and 
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amino acid sequence changes (c. and p., respectively), allele frequencies, and in 
silico prediction of pathogenicity (e.g., SIFT, PolyPhen, Human Splicing Finder 
(HSF)) [85]. Databases include ClinVar, Single-Nucleotide Polymorphism Database 
(dbSNP), Online Mendelian Inheritance in Man (OMIM), the Genome Aggregation 
Database (gnomAD), Catalogue of Somatic Mutations in Cancer (COSMIC), and 
The Cancer Genome Atlas (TCGA), among others. All this data is used to further 
filter, classify, and interpret variants.

Sequence variant nomenclature needs to be precise, unequivocal, stable, but flex-
ible enough for all known sequence variation classes (substitution, deletion, dupli-
cation, insertion, conversion, inversion, deletion-insertion, and repeated sequence) 
[97]. The Human Genome Variation Society (HGVS) nomenclature is the standard 
recommendation for the description of DNA, RNA, or protein sequence variants in 
molecular diagnostics [98], and different algorithms can be used to check HGVS 
nomenclature, as Mutalyzer [99]. Indels and complex variants represent one of the 
main challenges of an accurate sequence variant nomenclature, and NGS analysis 

Fig. 21.3 Complex EGFR variant detection (deletion followed by four base substitutions). This 
alteration could be interpreted as three different mutational events (LRG_304t1:c.2236_2244del(;
)2247_2248delinsGC(;)2254_2255delinsAG), two different mutational events (LRG_304t1:c.223
8_2248delinsGC(;)2254_2255delinsAG) or as a unique event (LRG_304t1:c.2238_2255delinsGC
CAACAAG). It is the consensus of the scientific community to consider all mutations in the same 
event
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sometimes may be limited to provide the correct nomenclature. Figure 21.3 illus-
trates the detection of a complex variant (one deletion followed by four base substi-
tutions) in the EGFR gene. There are distinct ways to interpret this alteration: one, 
two, or three mutational events. In evolutionary terms, three different mutational 
events are unlikely to occur at once. Furthermore, it is the consensus of the scientific 
community to consider all mutations in the same event, being this variant descrip-
tion as LRG_304t1:c.2238_2255delinsGCCAACAAG.

A key step is to achieve robust and reliable results by defining well-validated 
bioinformatics pipeline quality parameters. A team of experienced professionals 
should validate analytical parameters that deal with various challenges in NGS anal-
ysis. It is important, for example, to exclude FP artifacts through analysis of map-
ping quality, base-calling quality, and strand bias [85]. One example is the 
comparison of libraries from fresh frozen tissue and from FFPE libraries, with the 
former having significantly lower quality, thereby increasing the number of artifacts 
in the final data [100]. In this context, the use of orthogonal assays (e.g., Sanger 
sequencing) to confirm pathogenic variants detected by NGS is a standard practice 
in many clinical laboratories.

Orthogonal methods should be also used in various complex occasions like 
homologous pseudogenes sequences, homopolymer regions, GC-rich regions, or 
regions with low coverage [101]. However, the adoption of different applications is 
necessary to overcome the limitations presented. Three kinds of multigene panel 
tests are useful for this purpose: (A) >99% of the interest region is covered, and all 
the gaps are filled with Sanger sequencing; (B) regions sequenced are reported and 
some specific gaps (only in important genes) are filled with Sanger; and (C) no 
additional Sanger sequencing is performed [102]. It is recommended to define the 
horizontal coverage report as well as the limitations of each test [103].

Other techniques might be useful to confirm variants when technical bias (e.g., 
directional artifacts) is detected. Figure 21.4 illustrates the different detection of the 
EGFR Del19 variant on the positive (forward) and on the negative (reverse) strands. 
According to Barnell et al. [104], artifacts in sequencing may be affected by DNA 
polymerase acting more in one direction than in the other (complement strand) and 
can also be caused during alignment or during post-sequencing base/read process-
ing, when a small molecule is preferentially amplified and is not removed through 
analysis programs. Another problem could be the occurrence of polymorphisms at 
prime annealing sites in one of the strands for amplicon-based methods. When such 
an event is detected, it is recommended to perform a second test in order to confirm 
the real presence of the variant, such as qPCR (e.g., cobas® EGFR Mutation Test v2) 
and/or MLPA. It is of utmost importance to understand the limitations of all molec-
ular techniques for defining the best option to confirm NGS findings (e.g., cobas® 
kit uses specific mutation probes, which limits the identification of variants, such as 
the complex EGFR Del19 variants, which are not detected by this assay). For the 
case described in Fig.  21.4, it would be interesting to apply another orthogonal 
technique on samples (b) and (c) to understand the real reason for the limitation of 
the EGFR Del19 variants to negative strands.

Another interesting case is the occurrence of two different start and end positions at 
EGFR Del19: LRG_304t1(EGFR):c.2236_2250del; p.(Glu746_Ala750del) and 
LRG_304t1(EGFR):c.2238_2252del; p.(Glu746_Ala751del) in lung cancer (Fig. 21.5). 
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Fig. 21.4 EGFR Del19 variants detection limited to negative strands. (a) 
LRG_304t1(EGFR):c.2253_2276del. (b) LRG_304t1(EGFR):c.2252_2276delinsG. (c) LRG_304
t1(EGFR):c.2248_2272delinsC. Samples were also tested by cobas® EGFR Mutation Test v2 (data 
not shown), but only variant (a) was confirmed. These EGFR Del19 had uncommon start and end 
positions, which could not be detected by cobas® assay
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Variants were detected in both directions (no strand bias), and the result was confirmed 
by a second NGS experiment using a new DNA extraction. To our knowledge, this is the 
first case showing this phenomenon for EGFR Del19 that may be explained by tumor 
heterogeneity. Melanoma and lung cancers are tumor types that harbor a relevant muta-
tional burden, because of the high possibility of involvement of exogenous mutagens 
(e.g., ultraviolet light and tobacco carcinogens) [105]. According to Barnell et al. [106], 
it is recommended to perform an orthogonal confirmation of the variant. Unlike the case 
mentioned previously, cobas® is not recommended for this case, since both mutations 
will not be differentiated by this assay.

International guidelines for NGS validation do not present a consensus recommen-
dation regarding the necessity of NGS confirmation [98]. It is commonly accepted 
that quality thresholds for high-confidence calls and orthogonal confirmation for low-
quality variants should ensure the highest sensitivity and sensibility of the assay [48, 
98]. However, some studies suggest that confirmation may not always be necessary 
[107, 108] or has limited utility [109]. Some criteria need to be established in order to 
identify which NGS-derived variants do not require validation [110].

Difficult-to-call variants may be interpreted as a FP result when the reviewer is 
not confident about variants called features and corresponding reads. As mentioned 
previously, homopolymer regions represent a big challenge for amplicon-based 
NGS sequencing. Figure 21.6 illustrates an error affecting the homopolymer region. 
The pathogenic variant LRG_293t1(BRCA2):c.956dupA (Fig.  21.6a) is a com-
monly detected technical artifact for amplicon-based NGS sequencing. Sanger 
sequencing orthogonal confirmation for two patients showed the variant as TP for 
Patient 1 (Fig. 21.6b) and FP for Patient 2 (Fig. 21.6c). This example reinforces the 
importance of secondary confirmation as this relevant clinical variant would easily 
pass automatic high-quality control filters and could be considered as a technical 
artifact for all samples.

NGS sequencing are also contributing to reveal somatic mosaicism. Somatic 
mosaicism refers to the co-existence of two or more genetically distinct cell lines in 
the same individual as a result of a genetic event after zygote formation [111]. 
Mutant cells may appear with different mosaic ratio in patient’s tissues, usually in 
an allele frequency below 30%, being the majority below 20% [112], and NGS 
provides opportunities to assess medium- and low-grade mosaicism through read-
ing depth information [113, 114]. Figure 21.7 illustrates a genetic testing for heredi-
tary cancer screening that identified a TP53 mutation at an unexpected heterozygous/
homozygous ratio for a germline variant. A pathogenic LRG_321t1(TP53):c.659A>G 
variant was detected in an 80-year-old woman (Fig.  21.7a). Two other variants 
(LRG_293t1(BRCA2):c.280C>T LRG_321t1(TP53):c.1010G>A) were also 
detected, at ~50% frequency (data not shown). NGS analysis showed the presence 
of LRG_321t1(TP53):c.659A>G at a medium variant allele frequency (VAF = 18%). 
A careful examination of Sanger sequencing electropherograms revealed a weak 
signal corresponding to the mutant peak in this DNA position (Fig. 21.7b). This 
case could be a mosaicism event; however, other tissue testing is necessary to con-
firm this. It is important to highlight that low-grade mosaicism is often missed by 
Sanger sequencing as the mutant peak may not be distinguished from the 
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background noise [115]. In conclusion, VAF verification is important for an accu-
rate zygosity and germline/somatic variant assessment.

Similar cases can be found, e.g., TP53 [116–121], NF1 [122], and PTEN [123] 
genes. Studies demonstrated that aberrant cell expansions were a common phenom-
enon on NGS multipaneled tests caused by clonal hematopoiesis, and somatic vari-
ants guiding to clonal outgrowth of hematopoietic cells were frequent in persons 
above the age of 70 years old [116]. These factors produce important clinical impli-
cations because of the application of unjustified clinical interventions. Another 
point of observation that comes from mosaicism reports is that they may indicate an 
adverse clinical outcome, a hematologic neoplasia, or an increased non- hematologic 
mortality. The challenge is to analyze and report these variants, as there are cur-
rently no guidelines for NGS standard quality control measures. A good practice for 

Fig. 21.7 (a) NGS and (b) Sanger sequencing of the germline mutation LRG_321t1(TP53):c.659A>G 
at an unexpected heterozygous/homozygous ratios. This could be a mosaicism event; however, 
other tissue testing is necessary to confirm this
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laboratories is to be transparent about their policies regarding the detection, report-
ing, and follow-up of cases with germline variants at lower VAF [121].

21.2.2.4  Variant Classification Challenge
Once NGS become routinely used in research and clinical practice, the number of 
genetic variants identified has increased significantly. Added to this, deciphering 
which of the observed variants are pathogenic is challenging since the majority of 
human variants is part of normal human variation [124]. Clinical diagnostic labora-
tories need to be able to classify variants accurately, since the promise of personal-
ized medicine relies on consistent variant interpretation, which can define diagnosis, 
treatment, prognosis, and genetic counseling [125]. Therefore, the interpretation of 
NGS data requires qualified professionals with in-depth knowledge in molecular 
genetics and sequence technologies, especially NGS [85].

The process of variant classification, which aims to determine whether a DNA 
variant causes a disease, is complex and requires checking a set of evidence mainly 
based on patient and disease characteristics and literature reports. These include 
verifying the disease mechanism, which type of variant (e.g., frameshift, nonsense, 
missense, silent, splice site), and its effect on DNA, RNA, or protein, whether the 
variant has been previously described in a patient with similar clinical features and 
also has not been reported in controls individuals, etc. Even after all the analysis, a 
considerable amount of variants can still remain unclassified due to conflict or lack 
of evidence. These cases are reported as variants of uncertain significance (VUS) 
[126].

An example that highlights the complexities of variant interpretation was a law-
suit filed in 2016, in the United States [127]. A mother of a child with epilepsy 
alleges that a genetic laboratory failed to accurately classify her son’s SCN1A vari-
ant as a VUS. In 2007, the child’s blood sample was sent to a laboratory to gauge if 
it had mutations in the SCN1A gene, which causes Dravet syndrome, a rare inherited 
form of epileptic encephalopathy. The genetic test detected a VUS variant, meaning 
that there was not sufficient evidence at that moment to link the mutation to epilepsy 
or to determine it as benign. The child continued to receive contraindicated treat-
ment, his condition worsened, and he died following a severe seizure. Based on the 
child’s medical records, the opinions of experts and the scientific literature, the 
complaint is convinced that there was enough evidence at the time to assert the vari-
ant as disease-causing. The lawsuit cites two papers published [128, 129] that men-
tion the same specific mutation in another patient with epileptic encephalopathy. 
The case is complex, and a legal resolution is likely to take some time.

To improve the standardization of variant interpretation by clinical testing labo-
ratories, the American College of Medical Genetics and Genomics (ACMG) and 
AMP issued the standards and guidelines for variant interpretation for Mendelian 
disorders which established six categories of variant classification: benign, likely 
benign, VUS, likely pathogenic, and pathogenic [98]. Later, the Clinical Genome 
Resource (ClinGen) established the SVI working group to support the refinement 
and evolution of the ACMG/AMP criteria, increasing the uniformity and consis-
tency of sequence variant interpretation [104, 130–138]. In addition, AMP/CAP 

21 Cancer Genomics in Precision Oncology: Applications, Challenges, and Prospects



472

developed a guideline for interpreting somatic cancer variants which categorize 
them into four categories based on their clinical impact (tier I, variants with strong 
clinical significance; tier II, variants with potential clinical significance; tier III, 
variants with unknown clinical significance; and tier IV, variants that are benign or 
likely benign) [139].

These guidelines define different evidence codes capturing different types of 
information for or against variant pathogenicity/actionability; they aid in reducing 
the subjectivity of classification and increase the consistency in results in laborato-
ries [125, 140]. Standardization, however, has its limitations. Even when the same 
classification program is used on identical datasets, different groups may come up 
with different interpretations due to the use of professional judgment and non- 
standardized criteria [140]. Currently, a considerable number of studies have identi-
fied discrepancies in variant classification between and within laboratories, between 
disease-specific databases, and even within individual databases [141–143]. These 
classification approaches are usually more stringent than laboratories have applied 
in their routine, resulting in a larger proportion of VUS.

There are many intriguing findings in NGS analysis concerning variant classifi-
cation. The co-occurrence of relevant variants could be challenging for genetic 
counselors and patients. Patient A was found to carry two variants: a pathogenic 
LRG_321t1(TP53):c.1010G>A and a VUS LRG_292t1(BRCA1):c.4410A>T. Wh
en two heterozygous variants are identified in a patient for a dominant disease and 
one variant is known to be pathogenic, finding the variants in trans provide evidence 
for a benign impact [98]. In this case, VUS variant could be reclassified through cis/
trans testing and variant segregation analysis with the disease [98, 144, 145]. Patient 
B was found to carry three variants: LRG_292t1(BRCA1):c.3331_3334del(;)
c.3454G>A NM_016081.3(PALLD):c.1273A>T, a pathogenic, and two VUS, 
respectively. As mentioned before, VUS reclassification should be performed as co- 
occurrence in trans with a pathogenic variant decreases the clinical relevance of 
these variant. Patient C was found to carry two pathogenic variants in BRCA1 and 
TP53 genes: LRG_292t1(BRCA1):c.1961del LRG_321t1(TP53):c.537T>G, and 
Patient D was found to carry two likely pathogenic variants in TP53 gene: 
LRG_321t1(TP53):c.641A>G(;)c.713G>A. For genetic counseling, it is of utmost 
importance to test proband parents or other family members with cancer from both 
sides (i.e., maternal and paternal) [144, 145]. Without knowing phase information 
and which side of the family each variant is being inherited, misdiagnosis can occur, 
leading to late detection of the disease.

Reclassification of VUS to (likely) pathogenic, (likely) benign, or actionability 
(in the case of somatic variants) is strongly recommended as more scientific infor-
mation becomes available [98, 140, 146]. However, several policy and ethical ques-
tions should be highlighted, such as the duty to recontact patients, informed consent 
process, data sharing, and further research to improve VUS interpretation [147]. 
Challenges involving variants of unknown significance also include possible 
misperceptions of VUS as deleterious variants by patients or health professionals, 
due to lack of formal training in genetics [148, 149]. Moreover, VUS carriers are 
sometimes counseled to undergo prophylactic risk reduction surgeries [150]. 
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Besides that, VUS carriers cannot take the same benefit of therapeutic measures and 
genetic counseling that is available to carriers of known pathogenic variants [147, 
151].

The variant reclassification process requires good public database practices. It is 
essential to promote the curation of scientific data available in databases as well as 
to keep them up-to-date [152]. In addition, for a reclassification it is important to 
have critical judgment and expertise knowledge of the available scientific evidence. 
Large research centers and clinical laboratories hold a huge volume of data that 
needs to be shared with the scientific community in a responsible and ethical man-
ner to ensure the responsible dissemination of knowledge [141, 142, 153].

Even for popular genes (e.g., BRCA1/2), new VUS continue to occur [147], often 
causing patient frustration due to an unclear and ambiguous clinical meaning of the 
result [154]. In the United States, for example, VUS results are reported in about 5% 
of BRCA1/2 tests [155]. In an effort to reclassify all VUS variants in BRCA1 and 
BRCA2 genes detected by Instituto Hermes Pardini (Brazil) between June 2014 and 
July 2017, our group reviewed 294 variants in 2018, following the criteria of the 
ACMG/AMP guideline [98] (unpublished work). As previous findings for variant 
reclassification on hereditary cancer syndromes [145, 156–158], the majority 
(28.3%) of VUS were downgraded to (likely) benign, with a substantially smaller 
fraction (1.7%) being upgraded to (likely) pathogenic (Fig. 21.8).

VUS will continue to challenge both patients and healthcare providers with an 
uncertain measure of disease risk, thereby complicating decisions regarding cancer 
surveillance and prevention. In women with an increased risk of breast and/or ovar-
ian cancer, for example, identifying a VUS in BRCA1 or BRCA2 increases the com-
plexity of genetic counseling and medical decision-making. As mentioned before, 
this is a critical task as the risk of misunderstanding is high among uneducated 
genetic counselors [159]. Irreversible treatment decisions may be made without 
knowing whether or when the VUS will be reclassified. Certainly, several other 

Fig. 21.8 VUS reclassification in BRCA1/2 genes following the criteria of the ACMG/AMP 
guideline [98]. Thirty percent for VUS received new classification, being 1.7% (likely) pathogenic 
and 28.3% (likely) benign
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factors may impact a patient’s clinical decision-making process [159–161]. Personal 
and family experience of cancer is likely to influence surgical decisions [162, 163]. 
Also, the variant available data (e.g., characteristics of the genetic variant, results of 
functional assays, or observed co-segregation of VUS with disease) may give clues 
about the direction the variant may be reclassified (pathogenic or benign), what may 
influence patient’s perception of a VUS.  With this, a multidisciplinary work is 
essential: genetic counselors, physicians, patients, laboratories, and all the scientific 
community must become engaged in international initiatives to develop VUS- 
related guidelines for standard classification, disclosure, management, and 
follow-up.

In conclusion, it is clear that the interpretation of genetic variation represents one 
of the most complex and challenging fields of clinical genetics [141], but this can be 
easier through standardization, transparent documentation, and knowledge sharing. 
It is expected that this process will have an effective impact on both consistency and 
accuracy of variant classification and will decrease the number of variants being 
reported as VUS or disease-causing without having enough evidence for that clas-
sification [140].

21.2.2.5  Liquid Biopsy
The cancer genome sequencing projects allowed us to know the variety of genetic 
alterations that are present in different types of cancer and that can be applied for 
detection, monitoring, and determining the appropriate treatment protocols for 
patients. However, biopsies of primary tumors and metastases are typically not 
practical because the tissue is often inaccessible or reachable only by invasive pro-
cedures. Due to these limitations, new ways to observe tumor genetics and dynam-
ics have evolved [164, 165].

Liquid biopsy refers to noninvasive techniques that detect fragments of DNA or 
cells. Blood samples are often used as the source for tumor DNA detection. However, 
other research groups have detected tumor DNA in non-blood body fluids [166], 
including urine [167–170], saliva [171, 172], sputum [173–175], stool [176–178], 
cerebrospinal [179–181], ovarian cysts [182], and gastric washes [183]. Apart from 
the invasiveness of conventional biopsy, liquid biopsy also offers several advantages 
compared to tissue biopsy. The amount of tissue sampled is one limitation of tradi-
tional biopsy. Moreover, sample may not reflect the tumor molecular profile due to 
intratumoral heterogeneity. On the other hand, liquid biopsy can provide a real and 
representative genetic profile of cancerous cells, since any parts of the tumor can 
shed molecules into body fluids [164, 184, 185].

The first evidence of tumor cells in the bloodstream was provided by the patholo-
gist Thomas Ashworth 50 years ago, through microscopic observation of circulating 
tumor cells (CTCs) of a man with metastatic cancer [186]. In 1948, Mandel and 
Metais [187] reported the presence of cell-free DNA in human plasma of healthy 
and sick individuals. Over time it became clear that, in addition to normal cells, 
tumors also shed DNA fragments into the circulation and that these fragments mir-
ror the genetic landscape of the tumor [188].
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A range of analytes can be isolated from the blood samples including CTCs, cell- 
free DNA (cfDNA, especially ctDNA), and eventually other tumor-derived material 
(e.g., exosomes) [165, 189]. Molecular analysis of these different components can 
provide distinct and complementary information.

Primary and metastatic lesions release CTCs in the bloodstream from all cancer 
types studied so far. Also, the more aggressive the disease, the more CTCs are 
found. However, they are highly diluted, no matter how advanced is the metastatic 
disease (on average 1 CTCs per 1x109 normal blood cells) [190, 191]. CTCs are 
isolated from total blood cells by size-based selection methods (they are usually 
larger than normal blood cells) or using markers (cocktails of antibodies) commonly 
expressed on the surface of these cells [21, 165]. In terms of output, CTCs allow the 
analysis of SNV, genetic rearrangements, loss of heterozygosity (LOF), changes in 
gene and protein expression, alternative splicing, and drug sensitivity [191].

In contrast, ctDNA is released via tumor cells apoptosis, necrosis, phagocytosis, 
and active cellular secretion [192, 193], representing a small portion of cfDNA lev-
els in the blood plasma (<0.1–10%) [165, 193]. The quantity of ctDNA may vary 
substantially depending on tumor type and even among patients with the same 
tumor. This variation is a consequence of, e.g., TMB, inflammation levels, and cel-
lular turnover [165, 191]. It is possible to capture cfDNA from plasma as a mixture 
of DNA fragments released from nonmalignant cells and from ctDNA by several 
centrifugation and filtration steps [165]. A typical output for ctDNA analysis is the 
assessment of SNV, CNV, and rearrangements in well-established cancer-associated 
genes [191, 194].

Liquid biopsy specimens are challenging analytes because they are present in a 
relatively small fraction in a complex background of germline DNA that originates 
from normal cells. Additionally, circulating material is highly fragmented, which 
further reduces the concentration of intact target sequence [21, 188]. As such, tech-
nologies with high analytical sensitivity and specificity have been developed, since 
traditional DNA analyses (e.g., Sanger sequencing) are insufficient for the detection 
of somatic mutations in plasma. In general, methods can be separated into two 
broad approaches depending on the genomic coverage and analytical sensitivity: 
single-gene platform or panel-based platform (Fig. 21.9 and Table 21.2).

Fig. 21.9 Comparison of methods for analysis in liquid biopsy, according to the genomic cover-
age and analytical sensitivity. Droplet digital PCR (ddPCR), quantitative PCR (qPCR), whole- 
exome sequencing (WES), and whole-genome sequencing (WGS)
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With the current interest and advances of cancer targeting therapy, the major 
techniques applied in molecular laboratories target only critical gene mutations 
(e.g., driver mutations or actionable mutations) [185]. Such technologies can reach 
a high resolution besides being mostly PCR-based (e.g., dPCR, qPCR, and amplifi-
cation refractory mutation system (ARMS)) [164, 188]. In contrast, the panel-based 
platform can be used for the discovery of new actionable targets in cancer patients, 
since such techniques allow the analysis of multiple variants/genes without prior 
knowledge of tumor profile [21, 195]. Moreover, NGS-based approaches can detect 
not only SNV, indels, or rearrangements but also CNV and gene fusions [196, 197]. 
However, these methods usually require a larger tumor fraction to achieve informa-
tive results [188].

Overall, the liquid biopsy is an important tool for the precision medicine 
approach, as it provides personalized information about the genomic tumor profile 
and the patient’s eligibility for targeted therapy or clinical trials. Furthermore, the 
ability to detect a disease prior to the appearance of symptoms and starting treat-
ment at an early stage can reduce or slow patients’ potential damages and improve 
life quality.

21.2.2.6  Regulation of Genetic Tests
Genetic tests are becoming part of routine clinical care, and so far, only a few tests 
have received regulatory approvals (for some examples, see Sect. 21.4). In general, 
the government develops regulations to define quality and safety standards for com-
mercialization of genetic testing [198–200]. In the United States, two federal agen-
cies are in charge of regulating genetic tests: the Centers for Medicare and Medicaid 
Services (CMS) which regulates clinical laboratories through its Clinical Laboratory 
Improvement Amendments (CLIA) program and the Food and Drug Administration 
(FDA) which regulates most medical and biological products.

It is of utmost importance to verify the validity and clinical utility of a genetic 
test. Therefore, regulation involves a three-step evaluation process: (1) analytical 
validity (i.e., test’s ability to predict the presence/absence of genetic variant(s)), (2) 

Table 21.2 Main detection platforms applied in liquid biopsy

Approach Method
LoD 
(%) Advantages Disadvantages

Single- 
gene 
platform

Digital 
PCR

0.001–
0.01

– Rapid
– High sensitivity
– Low running cost
– Streamlined workflow on 
validated platform

– Only detect limited 
targets per assay

qPCR 0.05–
0.1

Panel- 
based 
platform

Targeted 0.01–
>2

– Does not require any prior 
knowledge of the molecular 
alteration
– Cost-effective. Screen of 
mutations in a panel of genes 
in a single assay

– Long turnaround time due 
to complex procedure
– Bioinformatics expertise 
required
– High running cost

WES 1–3
WGS 0.001

LoD limit of detection, qPCR quantitative PCR, WES whole-exome sequencing, WGS whole- 
genome sequencing
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clinical validity (i.e., test’s ability to predict the presence/absence/risk of a specific 
disorder), and (3) clinical utility (i.e., test’s ability to provide helpful information 
about diagnosis, management, treatment, or prevention of a specific disorder, evalu-
ating its risks and benefits). Analytical validity includes technical test performance 
(e.g., analytic sensitivity and specificity, within- and between-laboratory precision, 
assay robustness). Clinical validity includes two different and independent aspects: 
establishment of gene-disease association and clinical test performance measure-
ment (e.g., sensitivity, specificity, positive and negative predictive values (PPV and 
NPV, respectively)). On the other hand, clinical utility includes test purpose (legiti-
macy, efficacy, effectiveness, appropriateness) and feasibility (acceptability, effi-
ciency, optimality, equity) of test delivery [198, 200–204]. A review of the different 
methods proposed for genetic methods evaluation can be found at National 
Academies of Sciences, Engineering, and Medicine et  al. [201]. An expanded 
framework proposed by the United Kingdom Genetic Testing Network (UKGTN) 
and the PHG Foundation can be found at PHG Foundation [203].

The CMS regulates analytical validity by controlling the quality of laboratory 
practices, while the FDA regulates diagnostic test kits. Since not all genetic tests are 
marketed as in vitro diagnostic (IVD) tests, laboratory developed tests (LDTs) are 
generally not regulated by the FDA. Due to the advancements in the field of NGS 
and the progressive use of genetic testing, in 2018, the FDA finished a guidance 
providing recommendations for using NGS-based tests for clinical diagnostic [205]. 
Neither agency regulates the clinical utility of a genetic test; instead, consumers, 
healthcare providers, and healthcare insurance companies are usually responsible 
for determining this [198, 199, 202]. However, disagreements are common due to 
different expectations and evidence about genetic test purpose [203]. Time and 
experience are essential for regulators to define the clinical utility of genetic 
testing.

21.2.2.7  Genomic Education
The rapid advances in genomic technologies are transforming healthcare by enabling 
targeted screening, diagnosis, and treatment for disease management. There are 
now several emerging challenges for genomic knowledge application in patient care 
and management [206]. This new medicine is fundamentally dependent on a team 
approach. The use of the right genetic test, the correct interpretation of complex 
results, the delivery of confidential results, and proper patient follow-up require 
highly specialized and multidisciplinary professionals (e.g., bioinformaticians, 
computational biologists, IT technicians, statisticians, molecular biologists, geneti-
cists, genetic counselors, and clinicians) [85]. Due to the constant updates of genetic 
test approaches, an ongoing and continuing education of this multidisciplinary team 
regarding emerging technologies, software, databases, and data analysis pipelines 
that reflect current practice is necessary. Genomic education also needs to be incor-
porated into medical school curriculums [207, 208].

In the near future, genomic testing will be integrated into a wide range of medi-
cal and other healthcare specialties. Genetic counseling is required to apply the 
benefits from this type of testing, which requires a team of well-trained and well- 
oriented healthcare professionals that allows the genetic information generated to 
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be appropriately relayed and to provide information and support to individuals and 
families attempting to comprehend and adjust to a genetic condition [209].

Other relevant issue regarding genomic education concerns ethical, legal, and 
psychosocial implications related to cancer genetic screening, including the compe-
tency of the laboratories and medical professionals performing the testing, the 
debate of individual rights versus collective rights, discrimination, and stigma. If all 
these issues are addressed in the implementation of cancer genetic screening in 
populations, everyone could benefit from cancer prevention and treatment in the era 
of precision oncology [210].

21.3  Precision Oncology Clinical Case Studies

As precision oncology grows, genetic tests are routinely ordered by healthcare pro-
viders. Genetic screening of mutations for breast cancer genes (e.g., BRCA1/2, 
BRIP1, CDH1, CHEK2, PALB2, PTEN, STK11, TP53), mismatch repair (MMR) 
genes (e.g., MLH1, MSH2, MSH3, MSH6, PMS1, PMS2) in colon cancers, and 
EGFR in lung cancers are, nowadays, widely used in clinical practice to determine 
the susceptibility and the correct treatment for these common types of cancers 
[211–213]. Clinical case presentations offer new insights into cancer diagnosis, sus-
ceptibility, and treatment methods. This section presents two clinical case studies 
where the multidisciplinary application and deep understanding of precision medi-
cine knowledge were fundamental in patient management.

21.3.1  An Immunotherapy Case Report

A 58-year-old male, white, former smoker, presented with a right hemiparesia in 
November 2016. After clinical evaluation, a brain magnetic resonance imaging scan 
was performed and showed a cerebral nodule of 0.9 cm in the right frontoparietal 
transition, surrounded by edema. Because metastasis was suspected to have 
occurred, computed tomography of the thorax and abdomen was recommended and 
demonstrated a large, upper left lobe, parahilar lung mass encasing bronchovascular 
structures. In addition, several metastatic lung nodules were described, as well as 
enlarged mediastinal lymph nodes. A transthoracic lung biopsy was conducted and 
confirmed the diagnosis of poorly differentiated lung adenocarcinoma. 
Immunohistochemistry analysis was positive for TTF1, CK7, p63, and napsin and 
negative for CK5/6 and calretinin. NGS detected a KRAS G13D (LRG_344t1(KRAS) 
:c.38G>A) mutation and wild-type EGFR, NRAS, and BRAF. The patient was ini-
tially treated with brain radiosurgery to single brain lesion and was screened for an 
immunotherapy clinical trial. However, the biopsy tissue was not sufficient for fur-
ther testing to screen in the protocol. In 2016, immunotherapy was not a standard in 
the first-line therapy of lung cancer, and PD-L1 was a biomarker to enrich for clini-
cal response in clinical trials. After a long discussion with the patient, the possibility 
of starting standard treatment with chemotherapy was explained, while he could 
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Fig. 21.10 (a) Axial and sagittal magnetic resonance sequences with contrast. A small nodule of 
about 1  cm in the convexity of the right parietal lobe of the brain with significant contrast  
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also decide to pursue a new biopsy to assess PD-L1 on the trial. The patient decided 
to go through a new lung biopsy, which confirmed a strong staining for PD-L1 
(SP142 antibody; +3) and absence of ALK staining. He was randomized to the 
immunotherapy arm to receive an anti-PD-L1 antibody (atezolizumab 1200  mg, 
intravenous, every 3 weeks). After only 6 weeks, new computed tomography scans 
(CTs) confirmed an exceptional response, with shrinkage of the primary mass and 
all lung nodules (Fig. 21.10). After roughly 3 years of immunotherapy, this patient 
presents with almost complete response, asymptomatic, with a great quality of life 
and absence of adverse events. This case highlights the relevance of pursuing a 
complete biomarker assessment in the era of precision oncology. Thanks to patient’s 
confidence and understanding, a rebiopsy to run full biomarker analysis led to the 
use of a highly effective treatment in this case.

21.3.2  A Target Therapy Case Report

A 65-year-old female was diagnosed with a locally advanced, stage III, lung adeno-
carcinoma in 2013, which manifested with a lung mass and mediastinal lymph node 
enlargement. She was initially treated with combined chemoradiation until 
September 2013. In November 2015, she started feeling a back pain again, and dis-
ease progression was observed in the bones and pleura. Hypofractionated radiation 
therapy was applied to the thoracic spine, and biomarker analysis was conducted. 
EGFR sequencing confirmed an exon 19 deletion, while ALK staining was nega-
tive. She was started on a first-generation EGFR inhibitor (erlotinib 150 mg daily, 
orally), which resulted in pain improvement and partial response on the imaging 
scans. After roughly a year on therapy, a disease progression was detected in the 
lungs and pleuropericardial space. Treatment was changed to chemotherapy 
(carboplatin- pemetrexed) in June 2016 and then to immunotherapy (nivolumab, an 
anti-PD1 antibody) in December 2016. In April 2017, disease progression was 
noted in the bones, liver, and pleural effusion. At this time, a third-generation inhibi-
tor was available through expanded access program in cases that developed an 
EGFR resistance mutation (T790M). This patient tested positive for T790M in the 
blood with dPCR (liquid biopsy) and was started on the novel therapy (osimertinib 
80 mg daily, orally) with excellent response and symptom improvement (Fig. 21.11). 
She remained on therapy for over a year, with great quality of life.

Fig. 21.10 (continued) enhancement and marked perilesional edema apparently without midline 
deviations (white arrow). (b) Thorax tomography with lung window in the axial plane. Left 
images: multiple, tumoral lung nodules spread in both lungs (red arrows). Right images: regres-
sion of lung nodules after commencement of anti-PD-L1 antibody
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Fig. 21.11 Computed tomography (CT) of the chest and abdomen with mediastinal window. Left 
side: significant irregular pleural thickening with intense, neoplastic enhancement, associated with 
a moderate pleural effusion on the same side, leading to parenchymal atelectasis in the left lower 
lobe. Below a large liver metastasis shown as subcapsular mass in the right lobe of the liver. Right 
side: complete regression of neoplastic pleural thickening and pleural effusion and significant vol-
ume reduction of the liver metastatic mass after osimertinib (bottom image)
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21.4  Future Perspectives

As precision oncology expands, the utilization of targeted therapies continues to 
increase. FDA-approved treatments (e.g., EGFR TKIs for EGFR sensitizing muta-
tions; larotrectinib for NTRK gene fusions; erdafitinib for FGFR3 mutations; gilteri-
tinib for FLT3 mutation; alpelisib for PIK3CA mutations; ivosidenib for IDH1 
mutation; enasidenib for IDH2 mutation) also expand the use of genomic approaches 
and reinforce their importance in precision oncology. The FDA has already approved 
some NGS tests (Oncomine™ Dx Target Test, MSK-IMPACT™, FoundationOne® 
CDx, Praxis Extended RAS Panel, clonoSEQ®) as companion diagnostics, and 
other companies are seeking FDA marketing authorization. On January 2019, the 
FDA granted Breakthrough Device Designation for Illumina’s pan-cancer assay 
(TruSight™ Oncology Comprehensive), and on May 2019, Resolution HRD™ 
Liquid Biopsy Assay also received Breakthrough Device Designation. If approved, 
Resolution HRD™ could be the first company to detect gene deletions from cell- 
free DNA (cfDNA) and differentiate between single copy and biallelic (homozy-
gous) gene deletions through a simple blood draw.

Although it is still a nascent field, liquid biopsy holds great promise for cancer 
understanding and management in a minimally invasive way. Many companies are 
developing new methods for analyzing biomarkers in fluid samples (e.g., Resolution 
HRD™ Liquid Biopsy Assay; Guardant Health’s LUNAR; CancerSEEK [214]; 
Predicine’s Gene RADAR; Singlera’s PanSeer and ColonES assays). Meanwhile, 
Roche’s Cobas® EGFR Mutation Test v2 is currently the only FDA-approved liquid 
biopsy in patients with metastatic NSCLC. Foundation Medicine is also racing to 
get FDA approval for the first liquid biopsy test (FoundationOne® Liquid) that 
includes multiple companion diagnostics and genomic biomarkers, such as TMB.

As mentioned before (see Sect. 21.2.2.5), liquid biopsy can also be performed 
through isolation of CTCs and extracellular vesicles (EVs). Capturing and studying 
CTCs could help clarifying cancer metastasis process and personalizing therapy 
[215]. CTCs are frequently associated with the epithelial mesenchymal transition 
(EMT) phenomenon, and EMT is directly related to a metastatic phenotype [216]. 
However, isolation of highly pure CTCs is still challenging. Limitations include (1) 
low sensitivity, (2) the inefficacy in capturing all types of CTCs, (3) the inability to 
capture CTCs clusters, (4) contamination of captured CTCs by white blood cells, 
(5) difficulty in recovering captured cells from the devices, and (6) high production 
costs [215]. The only FDA-approved platform for CTC capture is the CELLSEARCH® 
based on immunomagnetic enrichment; however, its sensitivity remains poor. A 
new method for CTC capture based on microarrays of carbon nanotube (CNT) sur-
faces was developed by Loeian et  al. [215]. The nanotube-CTC-chip technology 
presented better performance than other reported CTC technologies and has none of 
the limitations presented by these other technologies [215]. Clinical trials and also 
point-of-care testing (POCT) diagnostic devices using nanotube-CTC-chip are 
starting to be globally performed.

Regarding EVs, emerging evidence suggests that they have crucial roles in can-
cer development, being potential blood or urine biomarkers for cancer diagnosis, 
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prognostication, and management. EVs are membrane-encapsulated particles (exo-
somes and microvesicles) produced by cancer cells that contain regulatory mole-
cules (functional proteins and nucleic acids) necessary for cell-cell communication 
within the tumor microenvironment. Due to their biocompatibility, low toxicity, and 
low immunogenicity, EVs hold great promise as potential vehicles for the delivery 
of therapeutic agents. A review of EV-associated drug delivery vehicles and exo-
somal miRNAs can be found at Xu et al. [217] and Rahbarghazi et al. [218]. Since 
the knowledge of EVs in biological samples is still limited, clinical application of 
EV technologies remains a challenge [217–219]. On June 2019, the FDA granted 
Breakthrough Device Designation for Bio-techne’s ExoDx® Prostate(IntelliScore) 
(EPI), the first exosome-based liquid biopsy test. EPI is a noninvasive urine exo-
some gene expression assay that analyzes three exosomal RNA biomarkers (PCA3, 
prostate cancer antigen 3; ERG, V-ets erythroblastosis virus E26 oncogene homo-
logs; SPDEF, SAM pointed domain-containing Ets transcription factor). The test 
stratifies men for risk of aggressive prostate cancer, assisting physicians in deter-
mining whether a prostate biopsy is necessary in patients with an ambiguous PSA 
test result [220] (clinical trial information: NCT03031418 and NCT03235687).

Another genomic potential biomarker is TMB, which has been identified as an 
important quantitative biomarker for predicting the response for cancer immuno-
therapy. TMB is defined as the number of somatic mutations normalized by a cod-
ing area in a cancer genome (Mut/Mb). Tumors harbor mutations that can change 
amino acids and generate neoantigens, which can be recognized as nonself by the 
major histocompatibility complex (MHC) system, leading to an antitumor immune 
response. The first evidence of TMB as a biomarker was in 2014  in melanoma 
[221], and a large effort has been made to characterize TMB across tumor types 
over the last years [222–224]. TMB and mutation types vary widely within and 
across cancer types, and evidence suggests that high TMB is associated with 
increased neoantigens and better response to immune checkpoint inhibitors in mul-
tiple cancers [223, 225, 226]. TMB is not an approved biomarker and requires stan-
dardization for clinical use; however, its implementation into clinical routine is still 
a challenge given the variety of approaches available and several pre-analytical, 
analytical, and post-analytical caveats. Challenges include standardization, cancer 
type, intratumoral heterogeneity, sample preparation (e.g., fixation methodology), 
TMB panel size, library preparation (e.g., amplicon- or capture-based), depth of 
sequencing, bioinformatics algorithms (e.g., variant calling, filters used, cutoffs), 
and TMB definition and reporting [223, 225]. It is important to highlight that not all 
neoantigens presented on the cell surface are immunogenic and other factors also 
influence the ability of the immune system to recognize the tumor, or may contrib-
ute to neoantigenic load [223], such as HLA genotype [227], inactivating mutations 
in immunologically genes (e.g., JAK1, JAK2, B2M [228]), some immune evasion 
mechanisms (e.g., TGF-β signaling [229], indoleamine 2,3-dioxygenase (IDO) 
activity [230]), fusion proteins, and posttranslational modifications of non-mutated 
proteins [223]. Table 21.3 summarizes different NGS gene panels in development or 
currently available for TMB measurement.
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Precision immuno-oncology has also expanded opportunities for personalized 
cancer vaccines (PCV). The objective of PCV is to induce an immune response 
specific to each individual patient’s tumor by exposing the organism to tumor- 
associated antigens (TAAs) [231, 232]. These neoantigens have been deployed as 
messenger RNA (mRNA) vaccine targets in humans, most of these vaccines being 
therapeutic, rather than prophylactic [231]. The mRNA PCV technology involves 
the identification and selection of unique mutations on the patient’s cancer cells by 
NGS sequencing. A vaccine that encodes for each of these patient-specific epitopes 
is created and loaded onto a single mRNA molecule. Once injected into the patient, 
the mRNA directs cells to produce and express neoantigens (i.e., TAAs), helping the 
patient’s immune system fight cancer. Diverse preclinical and clinical studies have 
demonstrated the viability of PCV to combat cancer (reviewed in [231, 233]). In 

Table 21.3 NGS gene panels in development or currently available for TMB measurement

Sample 
type Test Name Manufacturer Size (genes, Mb)
FFPE CANCERPLEX KEW 435 genes, 

2.8 Mb
FFPE FoundationOne CDx FoundationOne 324 genes, 

1.8 Mb
FFPE IBM Watson Genomics Quest Diagnostic 50 genes, 

unspecified
FFPE MI Tumor Seek Caris Life Sciences 592 genes, 

1.4 Mb
FFPE MSK-IMPACT Memorial Sloan Kettering 

Cancer Center
468 genes, 
1.5 Mb

FFPE NEOplus v2 RUO NEO New Oncology >340 genes, 
>1.1 Mb

FFPE NeoTYPE Discovery Profile NeoGenomics 326 genes, 
unspecified

FFPE Oncomine Tumor Mutation 
Load Assay

Thermo Fisher 409 genes, 
1.7 Mb

FFPE PGDx Elio tissue complete PGDx 507 genes, 
1.3 Mb

FFPE Tempus xT Tempus 596 genes, 
unspecified

FFPE TruSight Oncology 500 Illumina 523 genes, 
1.94 Mb

FFPE TruSight Tumor 170 Illumina 170 genes, 
0.5 Mb

FFPE/
blood

QIAseq TMB panel QIAGEN 486 genes, 
1.3 Mb

Blood Guardant OMNI Guardant Health 500 genes, 
2.1 Mb

Blood FoundationOne Liquid FoundationOne 394 genes, 
1.14 Mb

Blood PredicineATLAS Predicine 600 genes, 
2.2 Mb
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2016, for example, Moderna, a biotechnology company pioneering mRNA thera-
peutics and vaccines, formed a strategic alliance with Merck to develop mRNA- 
4157  in combination with Merck’s anti-PD-1 therapy, KEYTRUDA 
(pembrolizumab), for the treatment of multiple types of cancer. In June 2019, a 
phase I dose escalation study showed that mRNA-4157 is safe and well tolerated at 
all dose levels tested, supporting the advancement to phase 2 [234] (clinical trial 
information: NCT03313778). The National Cancer Institute (NCI) also showed 
safety, tolerability, and immunogenicity data from its phase 1 study of PCV NCI- 
4650 as monotherapy for patients with advanced metastatic cancers [235] (clinical 
trial information: NCT03480152). The NCI program uses Moderna’s mRNA tech-
nology but uses a different neoantigen selection process and study design.

In addition to mRNA-based immunotherapy, RNA interference (RNAi) and 
RNA-based genome editing technologies holds great potential as a tool for cancer 
therapy. Noncoding RNA (ncRNA) can inhibit therapeutically relevant genes 
through at transcriptional or posttranscriptional gene silencing (e.g., mRNA degra-
dation) [236]. Major considerations include (1) toxicity (e.g., off-target effects, 
immunological effects, or toxic effects due to delivery method), (2) efficacy (e.g., 
poor annealing of guide strand to target mRNA), and (3) delivery (immune system 
activation by delivery agents) (reviewed in [237]). Four RNAi classes commonly 
used in clinical trials are microRNA (miRNA) mimics, short-interfering RNAs 
(siRNAs), short hairpin RNAs (shRNAs), and Dicer substrate RNAs (dsiRNAs) 
[237]. Gradalis, another biotechnology company focused on cancer therapeutics, is 
developing Vigil for the treatment of different types of cancer (e.g., Ewing’s sar-
coma (clinical trial information: NCT03495921 and NCT02511132), advanced 
melanoma (clinical trial information: NCT02574533), ovarian cancer (clinical trial 
information: NCT02346747), and advanced women’s cancers (clinical trial infor-
mation: NCT03073525 and NCT02725489)). The Vigil vaccine is a shRNA-based 
cancer immunotherapy approach. It expresses granulocyte-macrophage colony- 
stimulating factor (GMCSF) and two shRNAs targeted to furin mRNA, designed to 
decrease immunosuppression and to promote tumor antigen presentation, increas-
ing immune system response against cancer cells. Information about other RNAi- 
based cancer therapy can be found at Bobbin and Rossi [237], Sullenger and Nair 
[236], and Xin et al. [238].

Gene editing is another promising mRNA-based therapeutic approach. Genome- 
engineering tools based on programmable nucleases (e.g., zinc-finger nucleases 
(ZFNs), transcription activator-like effector nucleases (TALENs), RNA-guided 
engineered nucleases (RGENs), or clustered regularly interspaced short palindromic 
repeat (CRISPR)-Cas) has the potential to directly correct deleterious mutation or 
to introduce protective mutations [239, 240]. Comparison of the different program-
mable nuclease platforms can be found at Cox, Platt, and Zhang [239]. Clinical 
development of gene-editing technology faces major challenges regarding treat-
ment safety and efficacy, such as specificity of genome editing tools, efficiency of 
gene correction, and delivery approaches (ex vivo and in vivo) to target cell types 
[239, 241]. Current therapeutic strategies are primarily focused on ex vivo applica-
tions [233, 242, 243]. To date, the CRISPR-Cas9 system is the most robust and 
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commonly used genome editing technique [233, 239, 243, 244]. It has recently 
emerged as a powerful tool for cancer research and therapy by providing an efficient 
technology to discover novel targets for drug development and to provide insight 
about tumorigenesis mechanisms [243, 244]. Applications of CRISPR-Cas9  in 
oncology include generation of cancer models, synergistic gene interactions studies, 
functional gene screening, drug target validation, and sensitive gene identification 
[244]. For example, CRISPR-Cas9 has been used for breast cancer (1) diagnosis by 
validation of putative cancer drivers in vivo, (2) treatment by inhibition of breast 
cancer cell proliferation, and (3) drug resistance research by removal of damaging 
germline BRCA1 variants [242].

Growing evidence show that human microbiota – the collection of microorgan-
isms that populate the human bodies – has great influence on human health and 
disease processes [245–248]. For precision oncology it is known that microbiota 
can affect disease prevention, diagnosis, and, especially, treatment. Microbes pres-
ent at tumor microenvironment and intratumoral microbes can affect tumor growth 
and metastasis by three main mechanisms: (1) modifying host cell death and prolif-
eration homeostasis, (2) shaping host immune system responses, and (3) altering 
host metabolism concerning molecule production, food digestion, and drug metabo-
lization [246]. As there is a connection between microorganisms and host immune 
system, it is conceivable that these organisms can impact on how the host is going 
to respond to immunotherapy. A study developed by Iida et al. [249] showed that 
mice carrying subcutaneous tumors when treated with antibiotics had reduced 
responsiveness to CpG oligonucleotide immunotherapy. After this study, many 
research groups started to analyze microbiota influence on human immunotherapy 
effectiveness, most on inhibitors of immune checkpoints (negative regulators of 
immune response; [250]). Gopalakrishnan et al. [251] produced one of these works. 
It was observed that melanoma patients that responded to anti-PD1 therapy had an 
increased diversity of their intestinal microbiome, when compared to non-responder 
patients. Moreover, there was a predominance of certain bacteria types in respond-
ers and other bacteria types in non-responders. This suggests that intestinal micro-
biota can modulate antitumor immunity. To overcome possible adverse effects of 
microbiome on immunotherapy, it has been suggested that patient stool samples 
should be sequenced, to trace the microorganisms present in the samples, and, in 
some cases, fecal microbial transplantation could be used, with non-responders 
receiving material from responder patients [252]. Microbiome could also be tar-
geted for drug usage, to increase immunotherapy effectiveness. Other usual cancer 
therapies, as chemotherapy and radiotherapy, can be affected by microbiota, as 
reviewed by Roy and Trinchieri [253].

21.5  Conclusions

Precision medicine is an emerging approach in clinical oncology practice, and its 
applications in the near future are exciting. With the rapid advancement in molecu-
lar knowledge and techniques, a personalized understanding of each patient’s 
behavior will enable new targets for therapies and genetic counseling with 

M. A. Pereira et al.



487

maximum efficiency. The success of this proposal depends on conscious application 
by medical and scientific community based on pre-analytical, analytical, and post- 
analytical validations, aggregation of data in reliable databases, and robust clinical 
trials. The multidisciplinary team involved in patient support must understand the 
limitations and potential benefits of these new technologies in order to help patients 
make better informed decisions [254].

Despite the great advances, personalized medicine for cancer treatment is not yet 
part of routine care for most patients. The high therapy costs make it inaccessible to 
a large part of the population and can become a major challenge for the sustainabil-
ity of health services, especially for underdeveloped countries [255]. Thus, preci-
sion oncology needs to overcome a long list of problems, such as few assays 
approved by regulatory agencies, scarcity of trained professionals and financial 
resources, and the complexities of health systems to have an equal implementation 
for all. Finally, the major questions are if and when will precision medicine be a 
reality for everyone, once no health innovation comes true without cooperation 
between all hierarchical levels and education, transparency, leadership, and political 
will.
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