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Abstract

Cullin-5 (Cul-5) was originally identified as an
arginine vasopressin (AVP) receptor due to its
homology to a vasopressin-activated calcium-
mobilizing protein 1 (VACM-1). Cul-5 has
subsequently gained much attention after
being identified as the key component of
CRL-5 (Cullin-RING ligase-5) that mediates
ubiquitylation and degradation of several key
cellular proteins associated with human
cancers and viral infections. Structurally,
Cul-5 interacts with the Elongin B/C complex,
a RING finger protein (RBX2/SAG), and a
SOCS protein to form a CRL-5 E3 ubiquitin
ligase protein complex. CRL-5, by controlling
turnover of a variety of substrates, is
implicated in several biological processes and
human diseases. Activation of CRL-5 requires
Cul-5 neddylation, catalyzed by a neddylation
enzyme cascade, consisting of the E1 NEDDS-
activating enzyme (NAE), the E2 neddylation
conjugating enzyme (UBE2F), and E3
neddylation ligase (RBX2/SAG). RBX2/
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SAG, therefore, serves as both Cul-5
neddylation E3 and CRL-5 ubiquitylation E3.
Here, we review the current knowledge on
CRL-5, its activation by the UBE2F-SAG, its
regulation of various signaling pathways via
substrate degradation, and its implications in
human cancers.

Keywords
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Abbreviations

APOBEC3G Apolipoprotein B editing com-

plex 3G

APS Adapter protein with a pleckstrin
homology and Src homology
2 domain

AVP Arginine vasopressin

CANDI1 Cullin-associated  neddylation-
dissociated 1

CH Cullin homology

CKB Cytosolic creatine kinase

CR Cullin repeats

CRL-5 Cullin RING ligase 5

CRLs Cullin-RING ligases

CSN COP9 signalosome complex

CTD Carboxyl-terminal domain

Cul-5 Cullin-5
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16.1 Introduction

Cul-5 is the least conserved member of the cullin
family, but highly homologous among various
species (Byrd et al. 1997). In kidney cells, Cul-5
localizes to the cell membrane where it binds to
AVP to control body fluid and blood pressure,
thus retaining the homeostasis (Burnatowska-
Hledin et al. 1995). Otherwise, Cul-5, as a scaf-
fold component, complexes with adaptor proteins
Elongin B/C, a RING finger protein RBX2/SAG,
and a substrate receptor SOCS protein to form a
CRL-5 E3 ligase complex. Structurally, Cul-5
possesses a long stalklike amino-terminal domain
(NTD), which contains three cullin repeats (CR1,
CR2, CR3), and a globular carboxyl-terminal
domain (CTD), harboring a highly conserved sig-
nature cullin homology (CH) domain (Sarikas
et al. 2011), along with the lysine residue
(Lys”**) for covalent NEDDS attachment, a pro-
cess known as neddylation for CRL-5 activation
(Fig. 16.1). The amino-terminal helices H2 and
H5 of CR1 are used to anchor the cognate adap-
tor, Elongin B/C. The CTD of Cul-5 binds to
SAG, which recruits the ubiquitin-loaded E2
conjugating enzymes for catalysis  of
ubiquitylation reaction (Petroski and Deshaies
2005). The fourth component of CRL-5 is the
suppressor of cytokine signaling (SOCS) protein,
responsible for the recognition of cellular
substrates, involved in various cellular functions.
Interestingly, some viral proteins, including the
viral infectivity factor (Vif) in human immunode-
ficiency virus-1 (HIV-1), adenovirus proteins
Edorf6 and EI1B55K, and latency-associated
nuclear antigen (LANA) in Kaposi’s sarcoma-
associated herpesvirus (KSHV), can hijack host
CRL-5 complex to trigger the ubiquitylation and
degradation of host defensive proteins (Yu et al.
2003; Querido et al. 2001; Cai et al. 2006). Thus,
CRL-5 is involved in regulation of both cellular
functions and viral infections.



16 Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions

16.2 The Family of Substrate
Receptors and Their Substrates

In mammalian cells, four families of substrate
receptors were identified in CRL-5 E3 ligase,
and every family member contains a C-terminal
SOCS box, consisting of a BC box for Elongin
B/C binding and a Cul-5 box for Cul-5 binding
(Fig. 16.1). CRL-5 ligases target a wide range of
proteins for ubiquitylation and degradation with
substrate specificity determined by substrate
receptors.

16.2.1 Cytokine-Inducible SH2 (Src
Homology 2) Domain-

Containing SOCS Box Proteins

The SH2 domain-containing SOCS box proteins
(SOCS1-7) have a central SH2 domain and a
C-terminally located SOCS box, which consists
of a BC box and a Cul-5 box with an approxi-
mately 40-amino acid motif (Fig. 16.1). The
SOCS box interacts with Cul-5 via its amino
acid sequence LP®P (® represents a hydrophobic
residue) within the Cul5 box (Mahrour et al.
2008; Okumura et al. 2012), and the BC box is
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responsible for binding to Elongin B/C (Endo
et al. 1997) (Fig. 16.1). SOCS1 and SOCS3
have been extensively studied in leukocytes with
the activity to inhibit JAK family tyrosine kinase
signaling, which are mediated by both Cul5-
independent and Cul5-dependent mechanisms
(Mahrour et al. 2008; Kazi et al. 2014; Linossi
and Nicholson 2015). As the substrate-
recognizing subunits, the family of SOCS
proteins is involved in ubiquitylation and
subsequent proteasomal degradation of a variety
of cellular proteins by CRL-5. Specifically,
SOCS1 suppresses the signal transduction via
targeting for degradation of a variety of cellular
proteins, including Vav (De Sepulveda et al.
2000), focal adhesion kinase (FAK) (Liu et al.
2003), the NF-xB family member p65/RelA (Ryo
et al. 2003), myeloid differentiation primary-
response gene 88 adaptor-like protein (MAL)
(Mansell et al. 2006), the Janus kinase 2 (JAK2)
(Ungureanu et al. 2002), the TEL-JAK2 onco-
fusion protein (Kamizono et al. 2001; Frantsve
et al. 2001), Cdh1 (Parrillas et al. 2013), HPV E7
(Kamio et al. 2004), and insulin receptor
substrates IRS1 and IRS2 (Rui et al. 2002).
SOCS3 specifically binds to the phosphorylated
immunoreceptor tyrosine-based inhibitory motif
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Fig. 16.1 Domain structures of Cul-5 and SOCS box
containing proteins. Cullin repeat 1 (CR1) anchors the
cognate adaptor proteins, and the cullin homology
(CH) domain at the carboxyl-terminus is critical for the
binding of the RING finger protein. The N8 site indicates

the position of the neddylation site. The SOCS box
consists of a BC box and a Cul5 box in the order indicated.
SH2 Src homology 2 phosphotyrosine-binding domain,
WD40 WD40 repeats, SPRY SplA/ryanodine receptor
domain, Ank ankyrin repeats
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of CD33, resulting in accelerated CD33 degrada-
tion (Orr et al. 2007). SOCS®6, on the other hand,
is involved in the degradation of Cas and other
unidentified  Src  substrates  to  inhibit
Src-dependent cell transformation (Teckchandani
et al. 2014). SOCS6 also targets p56'* and c-KIT
for degradation (Choi et al. 2010; Lamsoul et al.
2016), whereas SOCS7 degrades Dab1 (Simo and
Cooper 2013), an essential protein for neuron
migration and positioning (Tissir and Goffinet
2003), thus playing an important role in normal
neuron positioning during cerebral development.

16.2.2 Ankyrin Repeat-Containing
SOCS Box (ASB) Family

The ASB family includes 18 members from
ASB1 to ASB18, all of which contain two func-
tional domains, the C-terminal SOCS box domain
and an upstream ankyrin repeat region (Kile et al.
2002). Several members of the ASB family are
able to interact with Cul5-SAG to form ubiquitin
ligase complexes (Kohroki et al. 2005). ASB1 is
expressed widely in a variety of organs, and ASB/
knockout mice show no significantly phenotypes,
but with a diminution of spermatogenesis (Kile
et al. 2001). On the other hand, ASB2 promotes
the polyubiquitylation of the actin-binding pro-
tein filamins A and B for degradation, thereby
modulating actin remodeling and regulating the
cell differentiation (Heuze et al. 2008; Burande
et al. 2009). ASB2 has also been shown to pro-
mote the degradation of mixed-lineage leukemia
(MLL) protein, a factor required for
hematopoietic differentiation, through interaction
with its PHD/bromodomain region (Wang et al.
2012). ASB3 interacts with the C-terminus of the
tumor necrosis factor receptor 2 (TNF-R2) and
triggers its ubiquitylation and subsequent degra-
dation, thereby suppressing TNF-R2-mediated
JNK activation and apoptosis induction (Chung
et al. 2005). ASB4 colocalizes and interacts with
the insulin receptor substrate 4 (IRS4) in neurons
of the hypothalamus to promote IRS4
ubiquitylation and degradation, thus modulating
neuron sensitivity to circulating insulin levels
(Lietal. 2011). ASB4 also binds to and promotes
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ubiquitylation and degradation of inhibitor of
DNA binding 2 (ID2), thus mediating vascular
differentiation in the placenta (Townley-Tilson
et al. 2014). ASB6 is restrictedly expressed in
adipose tissue. In 3T3-L1 adipocytes, ASB6
regulated the insulin signaling pathway by
targeted ubiquitylation and degradation of the
adapter protein with a pleckstrin homology and
Src homology 2 domain (APS) upon activation of
the insulin receptor (Wilcox et al. 2004). ASB7 is
involved in the regulation of cell division by
promoting the degradation of DDA3, a critical
factor that controls chromosome compression
and segregation via modulating the dynamics of
the mitotic spindle (Uematsu et al. 2016). ASB9
is predominantly expressed in the kidney and
testes, where it promotes the ubiquitination and
degradation of brain-type cytosolic creatine
kinase (CKB) (Debrincat et al. 2007) and ubiqui-
tous mitochondrial creatine kinase (uMtCK)
(Kwon et al. 2010). ASB10 is induced by inflam-
mation cytokines and involved in protein degra-
dation pathways in glaucoma (Keller and Wirtz
2017). The observation that ASB10 forms a com-
plex with Cul-5, SAG, and Elongin B/C
(Andresen et al. 2014) suggests a possible role
of CRL-5 in the process. Finally, ASBI11 is an
endoplasmic reticulum (ER)-related ubiquitin
ligase, which promotes ubiquitylation and degra-
dation of ribophorin 1, an integral protein of the
oligosaccharyltransferase (OST) glycosylation
complex (Andresen et al. 2014; Kelleher et al.
1992). Furthermore, ASB11 affects the neural
progenitor compartment of the embryos by spe-
cifically ubiquitylating Delta A for degradation,
thereby regulating the canonical Delta-Notch sig-
naling pathway (Diks et al. 2008).

16.2.3 SPSB (SplA/Ryanodine
Receptor) Domain-Containing
SOCS Box Proteins

The SPSB family is characterized by a central
SPRY (SplA/ryanodine receptor)/domain and a
C-terminal SOCS box with four members
(Perfetto et al. 2013; Hilton et al. 1998). SPSBI1,
SPSB2, and SPSB4 were reported to promote
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ubiquitylation and degradation of inducible nitric
oxide synthase (iNOS/NOS2) (Nishiya et al.
2011; Kuang et al. 2010; Lewis et al. 2011).
Given that iNOS is responsible for sustained pro-
duction of NO upon stimulation by microbes or
cytokines (Lowenstein and Padalko 2004),
SPSB1 and SPSB4, therefore, play important
roles in preventing the overproduction of NO by
triggering iNOS degradation (Lewis et al. 2011;
Matsumoto et al. 2011). At the physiological
aspect, SPSB2 knockout in macrophages results
in excessive production of iNOS and NO to kill
more Leishmania major parasites (Kuang et al.
2010). Furthermore, SPSB1 was reported to neg-
atively regulate the TGF-f signaling pathway
through an interaction with type II TGFf receptor
(TBRII) via its SPRY domain, leading to
enhanced ubiquitylation and degradation of
TPRII (Liu et al. 2015), whereas SPSB3
overexpression significantly inhibits tumor
metastasis by promoting polyubiquitylation and
degradation of SNAIL upon phosphorylation
mediated by GSK-3f (Liu et al. 2018).

16.2.4 WD Repeat-Containing SOCS
Box Protein 1 (WSB1)

WSBI1 is another member of SOCS protein
responsible for ubiquitylation and degradation of
several key regulatory proteins. First, WSBI1
promotes ubiquitylation and degradation of
homeodomain-interacting protein kinase
2 (HIPK2) (Choi et al. 2008), a nuclear protein
kinase that triggers apoptosis in part by activation
of p53 (Puca et al. 2009). Thus, approaches that
block WSB1-mediated HIPK2 degradation, such
as treatment with adriamycin or cisplatin,
enhance the DNA damage-induced apoptosis
(Choi et al. 2008). Second, WSB1 was reported
to promote ubiquitylation and degradation of von
Hippel-Lindau tumor suppressor (pVHL), thus
stabilizing hypoxia-inducible factor-a (HIF-a)
under both normoxic and hypoxic conditions.
The highly level of HIF-a maintained by WSB1
is responsible for enhanced cancer metastasis
(Kim et al. 2015). Third, WSB1 promotes degra-
dation of Rho-binding protein RhoGDI2 under
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tumor hypoxic environment, thereby inducing
Racl activation to stimulate osteosarcoma cell
migration and invasion (Cao et al. 2015). Fourth,
a recent study reported that WSB1 triggers the
ubiquitylation and degradation of ATM to bypass
the oncogene-induced senescence, contributing to
abnormal cell proliferation and cellular transfor-
mation (Kim et al. 2017). Finally, WSB1 was
reported to promote ubiquitylation of yet two
additional proteins, not for degradation, but for
functional modulation. The first protein is the
mutant of leucine-rich repeat kinase 2 protein
(LRRK?2), whose expression in neurons causes
abnormal neurite process and nuclear condensa-
tion, indicating neuronal toxicity, frequently seen
in Parkinson’s disease (Lim et al. 2019). WSB1
promotes ubiquitylation of LRRK2 through the
K27 and K29 linkages, which contributes to the
formation of LRRK?2 aggregation for neuronal
protection (Nucifora et al. 2016). Therefore,
WSBI knockdown exhibits enhanced neuronal
toxicity with decreased protein aggregation in
LRRK2 mutant Drosophila model (Nucifora
et al. 2016). The second protein is thyroid
hormone-activating enzyme type Il iodothyronine
deiodinase (D2). The WD-40 propeller of WSB-1
is capable of interacting with an 18-amino-acid
loop in D2 to cause D2 polyubiquitylation. Such
ubiquitylated D2 subsequently induces parathy-
roid hormone-related peptide (PTHrP) to regulate
chondrocyte differentiation (Dentice et al. 2005).

16.2.5 Other SOCS Box Proteins

Rab40 was reported to interact with Elongin B/C
and Cul-5 at the Golgi apparatus of Xenopus,
forming a ubiquitin ligase complex to regulate
the ubiquitylation and localization of the Rap2
GTPase, thereby playing an essential role in the
non-canonical Wnt pathway (Kamura et al.
2001). MUF1 was shown to have a ubiquitin
ligase activity after complexing with the Cul-5/
Elongin BC complex. However, its specific sub-
strate has not been identified (Kamura et al.
2001). Finally, in response to UV irradiation,
Elongin A was reported to bind with Elongin
B/C to form an Elongin ABC complex and then



266

assembles with the Cul-5 and SAG module to
promote ubiquitylation and degradation of the
large subunit of RNA polymerase II B1 (Rpbl)
(Yasukawa et al. 2008). VHL, a SOCS box-like
protein, but lacking the C-terminal sequence of
the SOCS box, is well-known to interact with
endogenous Elongin B/C, Cul-2, and RBX1 to
form an active E3 ubiquitin ligase for HIF-1la
degradation (Kamura et al. 2004). Our earlier
study showed that VHL is also associated with
SAG/Cul-5, particularly under  hypoxic
conditions, to facilitate HIF-lo degradation to
keep HIF-la levels under control (Tan et al.
2008). A summary of the CRL-5 receptor
components and their corresponding substrates
is listed in Table 16.1.

16.3 Cul-5 Neddylation and CRL-5
Activation

It is well-known that activation of CRL-5 requires
the attachment of NEDDS, a ubiquitin-like pro-
tein onto the Lys’** residue located at the
C-terminus of Cul-5, in a process known as
neddylation (Duda et al. 2008). More specifically,
NEDDS is first activated by NAE E1 and then
transferred from the active site Cys of NAE onto
the active site Cys of UBE2F. NEDDS-loaded
UBEZ2F is then recognized by SAG E3 on the
same surface recognized by NAE, to catalyze
the transfer of the NEDDS8 molecule from
UBE2F onto the Lys’** residue at the winged-
helix B motif of Cul-5. Such modulation of Cul-5
leads to a conformation change of the cullin-
RING interface and results in the catalytically
active CRL state (Rabut and Peter 2008)
(Fig. 16.2). Conversely, inactivation of cullins
occurs through removal of NEDDS8 from cullins
by a process known as deneddylation via the
COP9 signalosome complex (CSN) (Lyapina
et al. 2001). Cullin neddylation activates Cullin-
E3 ligase activity via several mechanisms. First, it
prevents the inhibitory binding of cullin-
associated neddylation-dissociated 1 (CANDI1)
to cullins (Duda et al. 2008); second, it induces
the conformational change at the cullin-RBX
interface, allowing the ubiquitin-loaded E2s to

S.Zhang and Y. Sun

move closer to the acceptor lysine residue of
substrate proteins; third, NEDDS8 is capable of
promoting the formation of higher-order cullin-
RBX complexes to increase the catalytic effi-
ciency of some Cullin-E3 ligases (Soucy et al.
2009). Mammalian cells contain a single
neddylation E1, a heterodimer of catalytic subunit
UBA3/NAE and regulatory subunit APPBP1/
NAEl, two neddylation E2s, UBE2M (also
known as UBC12) and UBE2F, and several
neddylation E3s, mainly consisting of a few
RING domain-containing proteins, such as
RBX1 and SAG (Zhou et al. 2018a).

16.3.1 Neddylation E2: UBE2F

and UBE2M

Two neddylation E2s have distinct features by
structural comparison between UBE2F and
UBE2M. Both E2s bind to ubiquitin-fold domain
and UBA3 hydrophobic groove of El through its
core domain and N-terminal motif, respectively
(Huang et al. 2004). Biochemically, these two
E2s have a certain degree of binding selectivity;
UBE2M couples with RBX1 to neddylate Cull-
Cul4, whereas UBEZ2F is relatively specific for
SAG to promote Cul-5 neddylation (Huang
et al. 2009). In both E2s, the N-terminal methio-
nine is acetylated, which facilitates their respec-
tive binding to the PONY domain pocket of
DCNL, another neddylation E3, thus enhancing
the efficiency of cullin neddylation (Huang et al.
2009; Monda et al. 2013). Biologically, in
NIH3T3 cells with knockdown of UBE2M, but
not of UBE2F, suppress cell growth (Huang et al.
2009). While both E2s are recruited to DNA
damage sites in response to IR or other
DNA-damaging agents, only depletion of
UBE2M, but not UBE2F, sensitizes cells to
DNA damaging agents (Brown et al. 2015;
Cukras et al. 2014).

We recently found that UBE2F is subjected to
negative regulation by its family member,
UBE2M (Zhou et al. 2018b). Specifically,
UBE2M is a stress-inducible protein. Upon tran-
scriptional induction by hypoxia or mitogen,
UBE2M acts as a dual E2 for both neddylation
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Table 16.1 CRL-5 E3 ligase and their substrates

Substrate
receptors

Substrates

Involving pathways

Potential links to diseases

Refs.

SH?2 domain-containing proteins with a SOCS box (SOCS)

SOCS1 p65/RelA Transcription Ryo et al. (2003)
FAK Cell signaling Liu et al. (2003)
IRS1/2 Cell signaling Insulin resistance Rui et al. (2002)
syndromes, diabetes
JAK2 Cell signaling Ungureanu et al. (2002)
MAL Cell signaling Mansell et al. (2006)
TEL-JAK2 Cell signaling Leukemia Kamizono et al. (2001)
Vav Cell signaling De Sepulveda et al. (2000)
Cdhl Cell cycle Parrillas et al. (2013)
HPV E7 Cell signaling Cervical cancer Kamio et al. (2004)
SOCS3 CD33 Cell signaling Orr et al. (2007)
receptor
SOCS6 cKit receptor | Cell signaling Lamsoul et al. (2016)
Cas Epithelial cell Teckchandani et al. (2014)
transformation
pS6lck T cell activation Choi et al. (2010)
SOCS7 Dabl Cell signaling Cerebral development Simo and Cooper (2013)

Ankyrin repeat

-containing proteins with a SOCS box (ASB)

ASB2 Filamin A/B Cell motility, cell Leukemia Heuze et al. (2008), Burande
differentiation et al. (2009)
MLL Epigenetic regulation Wang et al. (2012)
ASB3 TNF-R2 Cell signaling Chung et al. (2005)
ASB4 IRS4 Cell signaling Liet al. (2011)
ID2 Transcription, cell Preeclampsia Townley-Tilson et al. (2014)
differentiation
ASB6 APS Cell signaling Wilcox et al. (2004)
ASB7 DDA3 Cell signaling Uematsu et al. (2016)
ASB9 Creatine Metabolism Debrincat et al. (2007)
kinase B
uMtCK Metabolism Kwon et al. (2010)
ASB11 Dela A Cell signaling Diks et al. (2008)

Ribophorin 1

Cell signaling

Andresen et al. (2014)

SPRY domain-containing proteins with a SOCS box (SPSB)

SPSB1 iNOS Innate host response Chronic infections Lewis et al. (2011)
TGF-beta I1 Cell signaling Liu et al. (2015)
receptor

SPSB2 iNOS Innate host response Chronic infections Kuang et al. (2010)

SPSB3 SNAIL Cell signaling Liu et al. (2018)

SPSB4 iNOS Innate host response Chronic infections Nishiya et al. (2011)

WD repeat-containing proteins with a SOCS box (WSB)

WSB1

HIPK2 Cell signaling Choi et al. (2008)

D2 Metabolism Dentice et al. (2005)
pVHL Ubiquitylation Cancer metastasis Kim et al. (2015)
RhoGDI2 Cell signaling Cancer metastasis Cao et al. (2015)
ATM Senescence Kim et al. (2017)
LRRK2 Protein aggregation Parkinson’s disease Nucifora et al. (2016)

(continued)
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Table 16.1 (continued)
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Potential links to diseases | Refs.

Viral infections
Viral infections

Viral infections

Viral infections
Viral infections

Kamura et al. (2001)
Yasukawa et al. (2008)

Liu et al. (2005)
Sheehy et al. (2003)

Steegenga et al. (1998)
Baker et al. (2007)

Stracker et al. (2002)
Dallaire et al. (2009)
Nayak et al. (2008)
Sato et al. (2009)
Cai et al. (2006)

Substrate
receptors Substrates Involving pathways
Other SOCS box proteins
Rad40 Rap2 Cell signaling
Elongin A Rabl Transcription
Viral proteins with a SOCS box
HIV-1 Vif APOBEC3F Antiviral activity
APOBEC3G | Antiviral activity
E4rf6/E1B55K
p53 Cell cycle, apoptosis
DNA ligase DNA repair
v
Mrell DNA repair
Integrin a3 Cell motility
Rep52 Viral DNA replication
BLZF1 pS3 Cell cycle, apoptosis
LANA pS3 Cell cycle, apoptosis
pVHL Ubiquitylation
MuHV-4 po65/RelA Transcription
ORF73
Substrates of Cul5/E3 with unknown receptors
Unknown DEPTOR Autophagy
Unknown NOXA Apoptosis
Unknown TRAF6 Inflammation
Unknown TRIADI1 Ubiquitylation

and ubiquitylation. It promotes Cul-3 neddylation
to activate CRL3¥*! E3 ligase; it also serves as
E2 for ubiquitylation E3 Parkin/DJ-1, leading to
ubiquitylation and degradation of UBE2F (Zhou
et al. 2018b).

16.3.2 Neddylation and Ubiquitylation
E3: SAG

SAG, also known as RBX2, ROC2, or RNF7,
was first cloned by us as a redox-inducible protein
(Duan et al. 1999), and it was later found to be the
second family member of RBX RING protein
with ligase activity when complexed with other
CRL components (Swaroop et al. 2000). Human
SAG gene consists of four exons and three
introns, which is mapped onto chromosome
3q22-24 with three splicing variants and two
family pseudogenes (Swaroop et al. 2001). Struc-
turally, SAG encodes a protein of 113 amino
acids, with 12 cysteine residues and a zinc-
binding C3H2C3 RING finger domain at the
C-terminus (Duan et al. 1999). This characteristic

Cai et al. (2006)

Viral infections Rodrigues et al. (2009)

Tan et al. (2016)
Zhou et al. (2017)
Zhu et al. (2016)
Kelsall et al. (2013)

Lung cancer

Hematopoiesis

of SAG structure confers its dual functionalities.
First, when acting alone, SAG has a nonenzy-
matic antioxidant activity to scavenge ROS at
the expense of self-oligomerization via formation
of intra- and intermolecule disulfide bonds
(Swaroop et al. 2001). Second, when complex
with other components of CRL, SAG possesses
an intrinsic ubiquitin E3 ligase activity (Tan et al.
2010). Furthermore, when cooperating with
UBE2F, SAG acts as a neddylation E3 to
neddylate Cul-5 and activates CRL-5 (Huang
et al. 2009).

16.3.2.1 Antioxidant Role of SAG

SAG has well-defined antioxidant activity by
generating thiol/disulfide redox buffer and chelat-
ing metals with enriched cysteine residues. SAG
forms oligomers by hydrogen peroxide, revers-
ible by antioxidant dithiothreitol (DTT), or by the
alkylating agent NEM, indicating that SAG olig-
omerization is induced by the formation of inter-
or intramolecular disulfide bonds (Swaroop et al.
2001). SAG also binds to metal ions, such as zinc,
iron, or copper, to inhibit the copper-induced lipid
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peroxidation in vitro (Duan et al. 1999; Swaroop
et al. 2001). Importantly, the antioxidant protec-
tive role of SAG can also be expanded to the
in vivo mouse models. Injection of
SAG-expression adenovirus or purified cell-
penetrable SAG protein (Tat-SAG) attenuates
ischemia/oxidative stress-induced damages in
the mouse brain (Kim et al. 2010; Yang et al.
2001).

16.3.2.2 SAG as a RING Component
of SCF E3 Ubiquitin Ligase

Our earlier study found that purified SAG binds
to Cul-1, and SAG-Cull complex promotes the
formation of high molecular weight smears in a
ligase reaction mixture containing ubiquitin,
El, E2, and ATP, indicative of polyubiquitylation
in the E1- and E2-dependent manner (Swaroop
et al. 2000). The polyubiquitylation activity of
SAG-Cull is dependent on the RING structure
of SAG, since SAG RING mutants completely
abrogate this reaction. Furthermore, like the
RBX1-Cull complex, the SAG-Cull complex
promotes polyubiquitylation of phosphorylated
IxB in an in vitro ubiquitylation assay (Tan et al.
2010). Under overexpressed conditions, both
RBX1 and SAG are capable of binding to six
members of the cullin proteins (Cull-3, Cul-4A-
B, and Cul-5) (Ohta et al. 1999), whereas under
physiological conditions, RBX1 is preferentially
associated with Cullin 1-4, whereas SAG is
selectively to interact with Cul-5 (Kamura et al.
2004; Huang et al. 2009). These two RBX family
members, along with seven cullins, many
adaptors, and substrate receptors, assemble into
numerous ubiquitin ligase complexes (Cardozo
and Pagano 2004; Jia and Sun 2009), which are
responsible for ubiquitylation of 20% cellular
proteins doomed for proteasome degradation
(Soucy et al. 2009).

Most recently, we found that SAG is a dual
ubiquitin E3, capable of promoting substrate
polyubiquitylation via both K48 and KI1
linkages. Specifically, on one hand, SAG binds
to UBCHS5C E2 and couples with Cul-1 to pro-
mote polyubiquitylation of the substrates via the
K48 linkage. On the other hand, SAG binds to
UBE2C/2S E2 and couples with Cul-5 to promote
polyubiquitylation of the substrates via the K11
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linkage (Kuang et al. 2016) (Fig. 16.2), even
though both are for targeted degradation via
proteasome system. In contrast, RBX1, another
SAG family member, is only capable of binding
with various K48-linked E2s, but not K11-linked
UBE2C/2S, for substrate polyubiquitylation via
the K48 linkage (Kuang et al. 2016). This distinct
difference in biochemical feature may explain
why SAG and RBX1 are functionally
non-redundant during mouse development (Tan
et al. 2009, 2011).

16.3.2.3 SAG as a Neddylation E3 Ligase
NEDDS E3 ligases catalyze the process of trans-
ferring the NEDDS from the E2 conjugating
enzyme onto the target substrate. Until now, all
reported NEDDS8 E3 ligases are capable of func-
tioning as ubiquitin E3s (Enchev et al. 2015),
with a majority of belonging to the RING
domain-containing subclass (Deshaies and
Joazeiro 2009). Two well-known NEDDS E3
ligases are RBX1 and SAG. As mentioned before,
RBX1 specifically couples with UBE2M E2 to
promote neddylation of cullins 1-4, while SAG
couples with UBE2F E2 to promote Cul-5
neddylation (Huang et al. 2009). Both the E3
RING domains and the UFD of NAE bind to the
same surface on the NEDD8 E2 enzymes,
resulting in toggling of relative affinities to ensure
the unidirectionality of the neddylation process
(Eletr et al. 2005). The interaction between the
E3 RING domain and E2-bound NEDDS is
required for catalyzing the transfer of the
NEDDS molecule into a Lys residue or the N
terminus of the target substrate. Furthermore,
cullin neddylation by SAG or RBX1 is aided by
E3 DCNLs (Enchev et al. 2015). A summary of
SAG acting as a dual E3 for ubiquitylation and
neddylation is shown in Fig. 16.2.

16.4 Substrates of CRL-5 E3 Ligase
with Unknown Substrate
Receptors

An array of CRL-5 substrates with corresponding
receptor proteins are listed in Table 16.1. Several
CRL-5 substrates with significant biological
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Neddylation

K11 Linkage

Fig. 16.2 Neddylation activation of Cul-5 and SAG-Cul5
E3 ligase activity. CRL-5 activation requires Cul-5
neddylation, which is catalyzed by neddylation E1 NAE,
neddylation E2 UBE2F, and neddylation E3 SAG with
Cul-5 as the substrate (left panel). Upon Cul-5
neddylation, SAG binds to Cul-5 via its N-terminus and
ubiquitylation E2, UBE2C and UBE2S, via its RING
domain, and acts as a ubiquitylation E3 to catalyze the

functions, but unknown corresponding receptors,
are reviewed in the following.

16.4.1 DEPTOR

DEPTOR is a naturally occurring inhibitor of
mTORC1 and mTORC?2 through a direct binding
to mTOR and acts as a tumor suppressor in a
context-dependent manner (Peterson et al.
2009). Our earlier study, along with two other
groups, showed that DEPTOR accumulates in
starvation conditions and contributes to
autophagy induction, whereas upon stimulation

('Ubiquitylation )

|
k4

K48 Linkage

ubiquitin transfer from E2 to a substrate and form
polyubiquitylation chain via the K11 linkage. On the
other hand, SAG complexes with Cul-1 to bind with E2
UBCHSC to catalyze polyubiquitylation of substrate via
the K48 linkage (right panel). Thus, SAG is a dual E3 for
both neddylation and ubiquitylation; and SAG binds to
two types of E2 responsible for polyubiquitylation chains
via the K11 and K48 linkage, respectively

by serum or growth factors, DEPTOR is
phosphorylated and recognized by PTrCP,
followed by ubiquitylation and degradation by
SCF E3 ligase (also known as CRL1) to ensure
mTOR activation (Zhao et al. 2011; Duan et al.
2011; Gao et al. 2011). Our later study showed
that SAG can complex with either Cul-1 or Cul-5
to promote ubiquitylation and degradation of
DEPTOR (Tan et al. 2016). Importantly, negative
regulation of DEPTOR by SAG has biological
consequences. In cell culture model, SAG knock-
down suppresses growth, survival, and migration
of human prostate cancer cells via inactivation of
the PI3K/AKT/mTOR signaling axis through
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DEPTOR accumulation; whereas in a mouse
prostate cancer model, Sag deletion significantly
inhibits prostate tumorigenesis triggered by Pten
loss as a result of suppressed proliferation due to
DEPTOR accumulation (Tan et al. 2016). Fur-
thermore, another group has shown that the
Cul5/Elongin B complex promotes ubiquitylation
and degradation of DEPTOR to negatively regu-
late autophagy under nutrient-rich conditions
(Antonioli et al. 2014).

16.4.2 Heat Shock Protein 90 (Hsp90)
Client Proteins

Hsp90, a molecular chaperone with approxi-
mately 350 client proteins, is responsible for the
correct folding of proteins, which facilitates
proteins to attain their proper stabilization and
activity (Taipale et al. 2012). Two studies showed
that upon treatment of human cancer cells with
the clinical HSP90 inhibitor 17-AAG, Cul5/SAG
E3 are actively involved or required for degrada-
tion of several HSP90 clients, including ErbB2,
HIF-1a, BRAFYSE AKT, and CDK4 (Ehrlich
et al. 2009; Samant et al. 2014). Thus, it appears
that Cul-5 E3 plays a role in regulation of the
cellular response to HSP90 inhibition.

16.4.3 NOXA

NOXA is a pro-apoptotic member of Bcl-2 pro-
tein family, which can form hetero- or
homodimers and act as pro-apoptotic regulator
(Oda et al. 2000). Our recent studies showed
that Cul5/SAG E3 targets NOXA for degradation
to protect cancer cells from apoptosis, ensuring an
apoptosis-escaping mechanism in lung cancer
cells.  Specifically, =~ UBE2F NEDDS-E2
incorporates with SAG E3 to induce Cul-5
neddylation, leading to activation of CRL-5 E3
to promote NOXA polyubiquitylation via K11
linkage for proteasomal degradation (Jia et al.
2010; Zhou et al. 2017). Most recently, we further
found that upon stress stimuli (e.g., hypoxia),
UBE2M was induced and then formed a complex
with  Parkin/DJ-1 to  promote = UBE2F
ubiquitylation and degradation, leading to Cul5/
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E3 inactivation and subsequent NOXA accumu-
lation for apoptosis induction (Zhou et al. 2018b).

16.4.4 TRAF6

A recent study showed that Cul-5 directly binds
to TRAF6 via the C-terminal domain of Cul-5
and the TRAF-C domain of TRAF6 and promotes
TRAF6 polyubiquitylation via the K63 linkage in
response to lipopolysaccharide (LPS) stimulation
(Zhu et al. 2016). While homozygous deletion of
Cul-5 is embryonic lethal, heterozygous Cul-5
deletion improves mouse survival and reduces
proinflammatory cytokine production in response
to LPS challenge due to reduced activation of
NF-xB and MAPK signals (Zhu et al. 2016).
Given that TRAF6 is an intrinsic E3 ligase, capa-
ble of self-poly-ubiquitylation, it remains to be
determined whether TRAF6 is indeed a true
Cul-5 substrate without involving a substrate
receptor protein (Zhu et al. 2016).

Finally, the neddylated Cul5/SAG complex
was shown to interact with and surprisingly
enhances rather than inhibits the E3 ligase activity
of TRIADI (two RING finger and double RING
finger linked) (Kelsall et al. 2013), a distinct class
of E3 ubiquitin ligases implicated in the process
of hematopoiesis, mainly inhibiting myeloid col-
ony formation (Marteijn et al. 2005).

16.5 Virus-Mediated Hijacking
of CRL-5

Several strains of human virus were reported to
hijack CRL-5 to promote ubiquitylation and deg-
radation of a variety of host antiviral proteins. This
unique feature makes CRL-5 E3 as a promising
antivirus target for drug discovery efforts.

16.5.1 Human Immunodeficiency

Virus-1 (HIV-1)

Apolipoprotein B editing complex 3G
(APOBEC3G/A3G) is a potent anti-retroviral
cytidine deaminase with a broad antiviral activity
by inducing C to U mutations in the viral minus
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DNA strand during reverse transcription, which
causes the deleterious G to A mutations in the
coding strand (Suspene et al. 2004). To overcome
host antiviral protective system, the HIV Vif pro-
tein hijacks CRL-5 to promote ubiquitylation and
degradation of A3G (Sheehy et al. 2003). The BC
box and SOCS box of Vif are required for the
interaction with Elongin B/C and Cul-5, respec-
tively. The knockdown of SAG, but not its family
member RBX], impairs Vif-induced A3G degra-
dation (Wang et al. 2015). Moreover, neddylation
of Cul-5 by UBE2F/SAG is required for
Vif-mediated degradation of A3G, since pharma-
cological inhibition of the NEDD8 El with
MLN4924 or knockdown of UBE2F bypasses
the effect of Vif, restoring the restriction potential
of A3G (Stanley et al. 2012). A
non-NEDDS8ylatable mutant Cul-5(m) was also
shown to inhibit Vif-induced ubiquitination and
degradation of A3G (Yu et al. 2003). Notably,
A3G without ubiquitylation is still degraded in a
Vif-dependent manner, suggesting that the
polyubiquitylation of Vif, rather than polyubiqui-
tylation of AG3, serves as a vehicle to transport
A3G into proteasomes for degradation (Dang
et al. 2008). Another antiviral factor,
APOBEC3F/A3F, was also degraded by HIV-1
Vif via hijacking CRL-5 (Liu et al. 2005).

16.5.2 Human Adenoviruses (HAdV)

Edorf6 is 34 kDa product from open reading
frame 6 of human adenovirus early region
4 (E4) with three BC boxes. E4orf6 cooperates
with the viral EIB55K protein product to form an
E3 ubiquitin ligase with Cul-5 to reduce the level
of the p53 via the proteasome pathway (Querido
et al. 2001; Steegenga et al. 1998), by triggering
Cul-5 localization from the cytoplasm to the
nucleus and CRL-5 activation via facilitating
neddylation (Guo et al. 2019). Furthermore, as a
consequence of adenovirus infection, E4orf6/
E1B55K-Cul5 complex was shown to promote
the degradation of DNA ligase IV, an enzyme
that plays a pivotal role in repairing of double-
stranded DNA breaks (DSBs) by performing the
joining step of the nonhomologous end-joining
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DNA repair system (NHEJ) (Baker et al. 2007).
The Ed4orf6/E1IB5SSK-Cul5 E3 ligase also
promotes the degradation of Mrell, a member
of the MRN DNA repair complex (Stracker
et al. 2002). Furthermore, the de novo-expressed,
preassembled capsid proteins and Rep52 are also
degraded by E4orf6/E1B55K-Cul5 E3 (Nayak
et al. 2008), and this degradative activity of
E40rf6 can be overcome by virus-associated
RNA, thereby increasing the capsid proteins and
Rep52 to the levels necessary for efficient virus
production (Nayak and Pintel 2007). Finally, the
E4orf6/E1B55K-Cul5 E3 ligase complex is
involved in the degradation of a3, a component
of integrin a3p1, which plays an important role in
the regulation of cellular adhesion through the
binding with a variety of extracellular matrix
substrates, including bronectin, collagen,
vitronectin, and laminins, thereby playing an
important role in virus spread (Dallaire et al.
2009).

16.5.3 Epstein-Barr Virus (EBV)

EBYV is a human y-herpesvirus that is associated
with several B cell and epithelial cell
malignancies. BZLF1 (known as Zta, EB1, or
ZEBRA) is a transcriptional transactivator that
promotes an EBV lytic cycle cascade by inducing
EBV early gene expression (Chevallier-Greco
et al. 1986). Importantly, BZLF1 couples with
Cul-5 to form an active ubiquitin ligase to pro-
mote ubiquitylation and degradation of p53, a
required process for efficient viral propagation
in the lytic replication stage (Sato et al. 2009).

16.5.4 Kaposi’'s Sarcoma-Associated
Herpesvirus (KSHV)

The KSHV-encoded latency-associated nuclear
antigen (LANA) complex was initially identified
as a DNA binding, nuclear transcription factor
that contributes to KSHV latent replication and
regulates virus latency. LANA contains a putative
SOCS box and can form a complex with Elongin
B/C and Cul-5 for ubiquitination and degradation
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of pVHL and p53 tumor suppressor proteins (Cai
et al. 2000).

16.5.5 Murid Herpesvirus-4 (MuHV-4)

MuHV-4 is a gamma herpesvirus that is geneti-
cally related to the human pathogens EBV and
KSHYV (Simas and Efstathiou 1998). The latency-
associated protein ORF73 encoded by MuHV-4
is able to interact with Elongin C and Cul-5 to
reconstitute an active E3 ubiquitin ligase to target
the NF-xB family member p65/RelA for
polyubiquitylation and subsequent proteasomal
degradation. Such viral inhibition of NF-«xB activ-
ity is critical for the establishment of a propitious
environment for the maintenance of latent infec-
tion and progression of KSHV-associated tumors
(Rodrigues et al. 2009).

16.6 The Physiological Role of Cul-5
in Human Cancers

The role of CRL-5 components in human cancers
has been extensively reviewed. For example, the
SOCS family members are extensively involved
in inflammation and cancer, largely acting in sup-
pression of proliferation (Inagaki-Ohara et al.
2013; Jiang et al. 2017). The RING component
SAG is largely oncogenic (Sun and Li 2013),
required for lung tumorigenesis triggered by
Kras activation (Li et al. 2014) or for prostate
tumorigenesis triggered by Pten loss (Tan et al.
2016), but it is tumor suppressive in skin
tumorigenesis, triggered by Kras activation (Xie
et al. 2015). This book chapter will only focus on
the potential role of Cul-5 in human cancers.
Most studies imply that Cul-5 exerts a tumor
suppressive role, as evidenced mainly by fre-
quently downregulation of Cul-5 in various
human cancers (Kalla et al. 2007; Fay et al.
2003; Xu et al. 2012; Devor et al. 2016; Tapia-
Laliena et al. 2019). Specifically, in a cancer
profiling array study, Cul-5 expression was
approximately 2.2-fold lower in the breast cancer
tissues versus the matched normal tissues (Fay
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et al. 2003). Ectopic Cul-5 overexpression signif-
icantly suppressed the proliferation of breast can-
cer cells (Burnatowska-Hledin et al. 2004), by
inhibiting MAPK phosphorylation to reduce
nuclear localization of estrogen receptor ER,
eventually leading to suppression of growth of
estrogen-dependent cells (Johnson et al. 2007).
Conversely, inhibition of Cul-5 by microRNA-
19a and microRNA-19b significantly promoted
proliferation and invasion of cervical carcinoma
cells and gastric cancer cells (Xu et al. 2012; Zhu
et al. 2019). The siRNA-based Cul-5 knockdown
caused centriole overduplication and mitotic
errors and also induced structural chromosomal
damage in renal cell carcinoma (Tapia-Laliena
et al. 2019). Furthermore, an immunohisto-
chemistry staining study showed that Cul-5
expression is frequently lower in renal cell carci-
noma and a reduced Cul-5 expression or Cul-5
deletion is associated with a significantly worse
overall patient survival by the analysis of The
Cancer Genome Atlas (TCGA) database (https://
tcga-data.nci.nih.gov/tcga) (Tapia-Laliena et al.
2019). In small cell lung cancers (SCLC), genetic
deletion of Cul-5 or SOCS3 by CRISPR/Ccas9
impaired CRL-5-mediated degradation of integrin
B1, leading to stabilization of integrin B1 to acti-
vate the downstream focal adhesion kinase/SRC
(FAK/SRC) signaling, eventually driving growth
and metastasis of SCLC (Zhao et al. 2019). More-
over, low expression of Cul-5 and SOCS3 and
relatively high expression of integrin 1 are sig-
nificantly associated with worse patient survival,
suggesting Cul-5 is a tumor suppressor (Zhao
et al. 2019). However, in non-small lung cancers
(NSCLC), CRL-5 specifically targets NOXA for
polyubiquitylation via the K11 linkage and
proteasomal degradation to inhibit apoptosis and
increase the survival of lung cancer cells (Zhou
et al. 2017). Furthermore, elevated expression of
Cul-5, coupled with low expression of NOXA,
was found to predict poor patient survival in
NSCLC patients, suggesting Cul-5 has oncogenic
activity (Zhou et al. 2017).

To better understand the expression pattern
and prognostic value of Cul-5 in human cancers,
we examined Cul-5 expression in 32 types of
human cancers using the UALCAN, an easy-to-
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Fig. 16.3 Expression of Cul-5 mRNA in human cancer
tissues. The search of the UALCAN database (http://
ualcan.path.uab.edu) revealed that Cul-5 mRNA is
upregulated in four types of human cancers and
downregulated in nine types of human cancers. The
abbreviations are as follows: CHOL cholangiocarcinoma,
COAD colon adenocarcinoma, LIHC liver hepatocellular

use, interactive web portal to perform in-depth
analyses of TCGA gene expression data (http:/
ualcan.path.uab.edu/) (Chandrashekar et al.
2017). Notably, compared to normal tissues,
Cul-5 mRNA is upregulated in four types, but
downregulated in nine types of human cancers

Normal  Primary tumor

carcinoma, LUSC lung squamous cell carcinoma, GBM
glioblastoma multiforme, KIRC kidney renal clear cell
carcinoma, KTRP kidney renal papillary cell carcinoma,
PRAD prostate adenocarcinoma, READ rectum adenocar-
cinoma, TGCT testicular germ cell tumors, THYM
thymoma, THCA thyroid carcinoma, UCEC uterine corpus
endometrial carcinoma

(Fig. 16.3). Kaplan-Meier analysis revealed that
higher levels of Cul-5 mRNA are associated with
a worse patient survival for liver hepatocellular
carcinoma and kidney chromophobe, but a better
patient survival for kidney renal clear cell carci-
noma, prostate adenocarcinoma, and rectum
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Fig. 16.4 Cul-5 mRNA levels in various human cancer
tissues associated with patient survival. The UALCAN
(http://ualcan.path.uab.edu) search also revealed that ele-
vated levels of Cul-5 mRNA are associated with the worse
survival for kidney chromophobe and liver hepatocellular
carcinoma, but the better survival for kidney renal clear

adenocarcinoma (Fig. 16.4). We further analyzed
the significance of Cul-5 protein levels in human
cancers using the database of the Human Protein
Atlas (https://www.proteinatlas.org). Notably,
Cul-5 staining is mainly detected at the moderate
levels in the moderate cytoplasm in most of can-
cer tissues, and in more than 50% cases of
lymphomas, melanomas, and lung, ovarian, and
cervical cancers, the Cul-5 staining is weak or
negative (Fig. 16.5a). At the protein levels, only
one type of human cancer showed a statistically
significant correlation between the expression and

cell carcinoma, prostate adenocarcinoma, and rectum ade-
nocarcinoma. KICH kidney chromophobe, LIHC liver
hepatocellular carcinoma, KIRC kidney renal clear cell
carcinoma, PRAD prostate adenocarcinoma, READ rectum
adenocarcinoma

the patient survival. That is, the higher Cul-5
staining predicts a better prognosis in renal cancer
patients (Fig. 16.5b).

16.7 Future Perspectives

The UBE2F-SAG-Cul-5 axis is exclusively
presented in metazoans by phylogenetic analyses,
whereas the UBE2M-RBX1-Cul1-4 axis appears
in all eukaryotes; the UBE2F-SAG-Cul5 is, there-
fore, regarded as a distinct pathway in regulation
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Fig. 16.5 The Cul-5 protein immunostaining in various
human cancer tissues and their association with patient
survival. The Human Protein Atlas data (https:/www.
proteinatlas.org) search revealed that most cancer tissues
have moderate cytoplasmic immunoreactivity of Cul-5,
whereas most cases of lymphomas, melanomas, and
lung, ovarian, and cervical cancers are stained weakly or
negative (a). High levels of Cul-5 protein are associated
with favorable prognosis for renal cancer (p = 0.000011)

of CRL-5 E3 ligase activity (Huang et al. 2009).
CRL-5 is likely involved in regulation of many
biological processes, given that a variety of
important signal molecules are its substrates
(Table 16.1) for proteasomal degradation. How-
ever, many of reported studies were conducted in
the cell culture setting under overexpressed
conditions; the physiological relevance or signifi-
cance is questionable. Furthermore, total Cul-5
knockout is embryonic lethal (Zhu et al. 2016),
whereas no study on tissue specific Cul-5 knock-
out has been reported. The study of Cul-5 involve-
ment in tumorigenesis under physiological setting
is, therefore, lacking. The future studies focusing
on the activity and functions of CRL-5 E3 ligase
should be directed in the following aspects.

§ 9 10 11 12

(b). COCA colorectal cancer, ENCA endometrial cancer,
HNCA head and neck cancer, TECA testis cancer, THCA
thyroid cancer, URCA urothelial cancer, STCA stomach
cancer, BRCA breast cancer, PRCA prostate cancer, SKCA
skin cancer, PACA pancreatic cancer, CARC carcinoid,
GLIO glioma, RECA renal cancer, MELA melanoma,
LICA liver cancer, OVCA ovarian cancer, CECA cervical
cancer, LUCA lung cancer, LYMP lymphoma

Generation of Conditional
Mouse Models to Study the
Role of Cul-5 in Tumorigenesis

16.7.1

It is urgent to generate and characterize condi-
tional Cul-5 knockout mice model to study its
role in tumorigenesis in various organs triggered
by oncogene activation or tumor suppressor inac-
tivation induced by chemical carcinogens or radi-
ation. Given all the data collected from human
clinical tumor tissues with regard to Cul-5 expres-
sion levels and prognosis correlation only provide
an association with the particular type(s) of can-
cer without elucidation of any cause-consequence
relationship, these mouse studies will provide
under the physiological settings whether Cul-5
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is a cooperative oncogene or tumor suppressor in
a tissue-/context-dependent manner.

16.7.2 Generation of Conditional
Mouse Models to Study the
Roles of Each Receptor Subunit
in Tumorigenesis

Among the substrate receptor families, there are
many members (Fig. 16.1), and each member is
capable of complexing with the rest three
components to constitute a variety of CRL-5
E3s. This large array of E3s must play a variety
of functions under certain physiological or patho-
logical conditions or in response to environmental
stresses, which has not been addressed in many
current studies. One feasible approach is to gen-
erate conditional knockout mouse models for
each receptor family member to fully understand
their functions under the physiological settings or
during tumorigenesis, triggered by either onco-
gene activation or tumor suppressor inactivation
or by environmental insults.

16.7.3 Identification of Additional

Substrates of CRL-5 E3s

Many members of CRL-5 receptors are the
orphan receptor without corresponding substrates
identified and characterized, which limited our
full understanding of CRL-5 functions. Thus,
the use of various current technologies and
methodologies to identify and characterize addi-
tional downstream ubiquitin substrates, especially
under biological significant and physiological rel-
evant settings, is much needed.

16.7.4 Dynamic Regulation of CRL-5 E3
Ligase Activity

The enzymatic activity of each of CRLs can be
regulated at the level of the subunit assembly (see
earlier chapters of this book). The regulation of
CRL assembly and activity is a very dynamic and
precise process. The expression levels of some
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subunits fluctuate at particular cellular or devel-
opmental stages (e.g., at the different phases of
cell cycle), which dictate the assembly of a given
CRL (Bennett et al. 2010). Also the assembly of
CRL is dependent upon CANDI that can act as a
subunit exchange factor (Bennett et al. 2010).
Furthermore, the kinetics of CSN association
with CRLs and the subsequent deneddylation
are also subject to precise regulation. The thor-
ough elucidation of these mechanism regulations,
particularly for CRL-5, would lead to a better
understanding of its biochemical activity and the
consequent biological functions under the physi-
ological or pathological conditions.

16.7.5 CRL-5 as an Attractive Antivirus
Drug Target

Several infectious viruses are capable of hijacking
CRL-5 to degrade host antiviral proteins, eventu-
ally obtaining anti-host property to propagate in
the host cells. Inhibition of CRL-5 by MLLN4924,
a small molecular inhibitor of cullin neddylation,
leading to general inactivation of all CRLs
(Soucy et al. 2009), indeed showed potent
antivirus activity (Stanley et al. 2012; Guo et al.
2019; Becker et al. 2019; Hughes et al. 2015;
Kraus et al. 2017; Le-Trilling et al. 2016). Since
a general inhibition of all CRLs by MLN4924
likely has some cytotoxic effect, the discovery
of selective CRL-5 inhibitors as a novel class of
antivirus therapeutic drugs would be an ideal
approach.
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