
Chapter 2
Schrödinger Operators with a Switching
Effect

Pavel Exner

Abstract This paper summarizes the contents of a plenary talk given at the 14th
Biennial Conference of Indian SIAM in Amritsar in February 2018. We discuss here
the effect of an abrupt spectral change for some classes of Schrödinger operators
depending on the value of the coupling constant, from below bounded and partly
or fully discrete, to the continuous one covering the whole real axis. A prototype of
such a behavior can be found in the Smilansky–Solomyak model devised to illustrate
that an irreversible behavior is possible even if the heat bath to which the systems are
coupled has a finite number of degrees of freedom and analyze several modifications
of this model, with regular potentials or a magnetic field, as well as another system
in which x p y p potential is amended by a negative radially symmetric term. Finally,
we also discuss resonance effects in such models.

Keywords Smilansky model · Switching effect · Asymptotic expansions ·
Magnetic field · Resonances

2.1 Introduction

The class of problems we are going to discuss here has a twofold motivation. Let
us start with physics. It is well-known that while the equations of motion governing
quantum dynamics are invariant with respect to time reversal; we often encounter
quantum systems behaving in an irreversible way, for instance, spontaneous decays
of particles and nuclei, inelastic scattering processes in nuclear, atomic or molecular
systems, or the current passing through a microscopic element attached to poles of
a battery. Furthermore, an irreversible process par excellence is, of course, the wave
packet reduction which is the core of Copenhagen description of a measuring pro-
cess performed on a quantum system. The description of such a process is typically
associated with enlarging the state Hilbert space, conventionally referred to as cou-
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pling the system to a heat bath. It is generally accepted that to obtain an irreversible
behavior through such a coupling, the model has to exhibit typical properties, in
particular

• the bath is a system with an infinite number of degrees of freedom,
• the bath Hamiltonian has a continuous spectrum, and
• the presence (or absence) of irreversible modes is determined by the energies
involved rather than the coupling strength.

While this all is without any doubt true in many cases, one of our aims here is to
show that neither of the above need not be true in general. To make this point, Uzy
Smilansky constructed a simple model which will be our starting point here. In a
sense he did a similar thing as Agatha Christie: when some people tried to introduce
in the 1920s mystery rules saying, in particular, that in any such book there must be
a single murderer, she wrote Murder on the Orient Express in which everyone is a
killer, except for Hercule Poirot, of course.

On the other hand, as a mathematician one may ask whether, in contrast to the
usual perturbation theory results [16], small change of the coupling constant can have
a profound influence on the spectrum. Posed like that the answer is trivial: consider
the one-dimensional Schrödinger operator

Hλ = − d2

dx2
+ λx2 ;

it is obvious that for all λ = ω2 > 0, the spectrum of such an operator is purely
discrete, σ(Hλ) = {(2n + 1)ω : n = 0, 1, . . . } while for λ = 0 and λ < 0, we have
σ(Hλ) = [0,∞) and σ(Hλ) = R, respectively. A much more subtle question is
whether similar things could happen if the potential modification concerns a small
part of the configuration space, or even a “set of zero measure”. Smilansky model
and its various modifications we are going to discuss provide an affirmative answer.

Let us describe briefly the contents of the paper. In the next section, we summarize
the known results about the Smilansky–Solomyak model and present a numerical
method to analyze its discrete spectrum. Section2.3 is devoted to discussion of vari-
ous modifications of the model consisting, in particular, of replacing the δ interaction
“channel” by a regular potential one or, on the contrary, by the more singular δ′ inter-
action, or adding a homogeneous magnetic field. In Sect. 2.4, we discuss another
model exhibiting similar behavior, a two-dimensional Schrödinger operator with the
potential consisting of the x p y p part amended by a negative radially symmetric term.
In Sect. 2.5, we return to the original Smilansky–Solomyak model and show that it
also has a rich resonance structure. Finally, in conclusion we will mention several
open questions.
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2.2 Smilansky–Solomyak Model

Let us first describe the model proposed by Uzy Smilansky in [23] which in its
simplest form describes a one-dimensional system interacting with a caricature heat
bath represented by a single harmonic oscillator. Its mathematical properties and
various extensions were subsequently analyzed by Michael Solomyak—let us pay
memory to this great mathematician who left us 2 years ago—and coauthors in [6, 7,
19, 21, 24–26] from the spectral point view, the corresponding time evolution was
discussed in [13, 14].

With this history of the problem in mind, it is appropriate to speak of the
Smilansky–Solomyak model. At the same time, it is useful to note that while mathe-
matically it is the same thing, physically theremay be twoways inwhich the system is
understood. In the original Smilansky treatment, one considers two one-dimensional
systems coupled mutually while Solomyak et al. interpreted it in PDE terms as being
described by a two-dimensional Schrödinger operator,

HSm = − ∂2

∂x2
+ 1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x), (2.1)

on L2(R2); it is easy to see that that one may consider λ ≥ 0 only without loss of
generality. We will stick here to the latter interpretation because it opens the way to
a wider class of possible generalizations.

Let us summarize the known results about spectral properties of the operator (2.1):

• The existence of a spectral transition: if |λ| >
√
2 the particle can escape to infinity

along the singular “channel” in the y direction. In spectral terms, this corresponds
to the switch from a positive spectrum to a below unbounded one at |λ| = √

2. At
the heuristic level, the mechanism of this spectral transition is easy to understand:
we have an effective variable decoupling far from the x-axis and the oscillator
potential competes there with the δ interaction eigenvalue − 1

4λ
2y2.

• The eigenvalue absence: for any λ ≥ 0 there are no eigenvalues ≥ 1
2 . If |λ| >

√
2,

the point spectrum of HSm is empty.
• The existence of eigenvalues: in the subcritical case, 0 < |λ| <

√
2, we have

HSm ≥ 0. The point spectrum is then non-empty and finite, and

N ( 12 , HSm) ∼ 1
4
√
2(μ(λ)−1)

(2.2)

holds as λ → √
2−, where μ(λ) := √

2/λ.
• The absolute continuity: in the supercritical case, |λ| >

√
2, we have σ(HSm) =

σac(HSm) = R.

We are not going to give proofs of these claims referring to the papers quoted
above, instead we will show how the discrete spectrum can be found numerically
following [10] which can provide additional insights. At the time, however, the
method we use, rephrasing the task as a spectral problem for Jacobi matrices, is the
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core of the proofs done by Solomyak et al. providing thus a feeling of what is the
technique involved.

In the halfplanes ±x > 0 the wave functions can be expanded using the “trans-
verse” base spanned by the functions

ψn(y) = 1√
2nn!√π

e−y2/2Hn(y) (2.3)

corresponding to the oscillator eigenvalues n + 1
2 , n = 0, 1, 2, . . . . Furthermore, one

can make use of the mirror symmetry with respect to x = 0 and divide Hλ into the
trivial odd part H (−)

λ and the even part H (+)
λ which is equivalent to the operator on

the halfplane, L2(R × (0,∞)), with the same symbol determined by the boundary
condition

fx (0+, y) = 1

2
αy f (0+, y). (2.4)

We substitute the Ansatz

f (x, y) =
∞∑

n=0

cn e
−κn xψn(y) (2.5)

with κn :=
√

n + 1
2 − ε into (2.4); this yields for the sought solution with the energy

ε the equation
Bλc = 0, (2.6)

where c is the coefficient vector and Bλ is the operator in �2 with the representation

(Bλ)m,n = κnδm,n + 1

2
λ(ψm, yψn). (2.7)

It is obvious that the matrix is in fact tridiagonal because

(ψm, yψn) = 1√
2

(√
n + 1 δm,n+1 + √

n δm,n−1
)
. (2.8)

To solve Eq. (2.6) numerically, one truncates the matrix (2.7). The size depends on λ,
the most difficult is the weakly bound state corresponding to small λ where the trun-
cation size should be of the order of 104 to achieve a numerically stable solution. The
result is plotted in Fig. 2.1. In coincidence with the theoretical result quoted above,
the discrete spectrum is non-empty for nonzero λ. It may seem that it consists of a sin-
gle eigenvalue but a closer look shows that the second one appears at λ ≈ 1.387559;
the next thresholds are 1.405798, 1.410138, 1.41181626, 1.41263669, . . . . To have
a better insight, one can plot the discrete spectrum near the critical coupling in the
semilogarithmic scale as shown in Fig. 2.2. We see that in this regime, many eigen-
values appear which gradually fill the interval (0, 1

2 ) as the critical value λ = √
2 is
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Fig. 2.1 Discrete spectrum
of HSm as a function of the
coupling constant λ
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Fig. 2.2 Discrete spectrum
of HSm near the critical value
of the coupling constant

approached. Figure2.3 shows a comparison of their number indicated by dots with
the asymptotics (2.2); we see a perfect fit. The numerical solution also indicates other
properties. For instance, plotting in Fig. 2.4 the eigenvalue curve for small values of
λ in the logarithmic scale, we see that it behaves as E1(λ) = 1

2 − cλ4 + o(λ4) as
λ → 0, with c ≈ 0.0156. In fact, the coefficient value can be found exactly to be
c = 0.015625. To this aim, we write Eq. (2.6) explicitly in components as

√
μλcλ

0 + λ

2
√
2

cλ
1 = 0,

(2.9)√
kλ

2
√
2

cλ
k−1 + √

k + μλcλ
k +

√
k + 1λ

2
√
2

cλ
k+1 = 0, k ≥ 1 ,

where μλ := 1
2 − E1(λ) and cλ = {cλ

0 , cλ
1 , . . . } is the corresponding normalized

eigenvector of Bλ. Using the above relations and simple estimates, we get from
here ∞∑

k=1

|cλ
k |2 ≤ 3

4
λ2 and cλ

0 = 1 + O(λ2) (2.10)

as λ → 0+, hence we have in particular cλ
1 = λ

2
√
2

+ O(λ2). The first of the above

relations then gives μλ = λ4

64 + O(λ5) as λ → 0+, in other words
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Fig. 2.3 Number of eigenvalues of HSm versus the asymptotics (2.2)

Fig. 2.4 Weak coupling asymptotics of HSm

E1(λ) = 1

2
− λ4

64
+ O(λ5), (2.11)

however, the mentioned coefficient 0.015625 is nothing else than 1
64 . Furthermore

with the knowledge of the solution to (2.6), we can return to (2.5) and compute the
eigenfunctions. In Fig. 2.5, we plot them for a value close to the critical one, namely
λ = √

2 − 0.0086105. As expected, they are stretched along the axis of the oscillator
“channel” and the part of the y-axis where the singular interaction is attractive; the
curves on the left side show the y-cuts of the eigenfunctions. The ground state has
no zeros and the number of the nodal lines of the nth eigenfunction, n = 1, 2, . . . ,
is [ 12n], thus only the first excited state is Courant sharp.

2.3 Variations on the Model

We have mentioned in the introduction that various extensions of the Smilansky–
Solomyak model described above had been worked out, for instance, using a “heat
bath” consisting of more than one oscillator, replacing the line by a loop or a graph,
etc. We will not discuss them, instead, we will analyze several other modifications.
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Fig. 2.5 The eigenfunctions of HSm for λ = 1.4128241

2.3.1 Regular Version of the Model

The first one is motivated by the question of whether one can observe a similar effect
for Schrödinger operators with the δ interaction replaced by a regular potential.
It was asked by Italo Guarneri in [13] with a clear motivation: he employed (a
modification of) the system described above as a model of the measuring process in
quantummechanics inwhich the supercritical behavior is interpreted as awave packet
reduction. This naturally inspires the question of how the corresponding classical
dynamics would look like, and this in turn requires a setting in which the problem
can be analyzed in terms of classical mechanics; the first step in this direction has
been made in the recent paper [14].

We observe first that the coupling cannot be now linear in y and the profile of the
channel has to change with the variable y. We replace the δ by a family of shrinking
potentials, the mean of which matches the δ coupling constant,

∫
U (x, y) dx ∼ y.

This can be achieved, e.g., by choosing U (x, y) = λy2V (xy) for a fixed function V .
This motivates us to investigate the following operator on L2(R2),

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 − λy2V (xy), (2.12)
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where ω, a are positive constants and the potential V is a nonnegative function
with bounded first derivative and supp V ⊂ [−a, a]. By Faris–Lavine theorem H is
essentially self-adjoint (e.s.a. in the following) on C∞

0 (R2)—cf. [20, Thms. X.28
and X.38]—and the same argument can be applied to various generalizations of the
operator (2.12), with more than one “decay” channel, periodicity in the variable x ,
etc.

To state the result we need a one-dimensional comparison operator L = LV ,
namely

L = − d2

dx2
+ ω2 − λV (x) (2.13)

on L2(R) with the domain H 2(R). What matters is the sign of its spectral threshold;
since V ≥ 0, the latter is a monotonous function of λ and there is a λcrit > 0 at which
the sign changes. First of all, we have the following result [2].

Theorem 2.1 Under the stated assumption, the spectrum of the spectrum of H is
bounded from below provided the operator L is positive.

Sketch of the proof. The claim can be proved using Neumann bracketing, imposing
additional boundary conditions at the lines y = ± ln n, n = 2, 3, . . . , and showing
that the components of H in these strips have a uniform lower bound by an operator
unitarily equivalent to L , cf. [2] for details. �

One the other hand, in the supercritical case when the transverse channel principal
eigenvalue dominates over the harmonic oscillator contribution, the spectral behavior
changes [2].

Theorem 2.2 Under our hypotheses, σ(H) = R holds if inf σ(L) < 0.

Sketch of the proof. The argument relies on a choice of an appropriateWeyl sequence:
we have to find {ψk}∞k=1 ⊂ D(H) such that ‖ψk‖ = 1 which contains no convergent
subsequence, and at the same time

‖Hψk − μψk‖ → 0 as k → ∞. (2.14)

Specifically, we choose

ψk(x, y) = h(xy) eiεμ(y)χk

(
y

nk

)
+ f (xy)

y2
eiεμ(y)χk

(
y

nk

)
,

where εμ(y) := ∫ y√|μ|
√

t2 + μ dt , h is the normalized ground-state eigenfunction of

L , furthermore f (t) := − i
2 t2h(t), and finally, χk are suitable, compactly supported

mollifier functions, cf. [2] for details. �
The regular version shares also other properties with the original Smilansky–

Solomyak model, namely [3]
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• in the subcritical case, inf σ(L) > 0, we have σess(H) = [ω,∞) and a non-empty
σdisc(H) ⊂ [0, ω) and

• in the critical case, inf σ(L) = 0, we have σ(H) = σess(H) = [0,∞).

2.3.2 Magnetic Version of the Model

One can also consider another modification of the Smilansky–Solomyak model in
which the system is placed into a homogeneous magnetic field perpendicular to the
plane representing the configuration space, described thus by the Hamiltonian

H = (i∇ + A)2 + ω2y2 + λyδ(x), (2.15)

where A is a suitable vector potential; note that in this case the original Smilansky
interpretation is lost. The spectral properties are similar, in the subcritical casewenow
have σess(H(A)) = [√B2 + ω2,∞) but again a sufficiently small nonzero λ gives
rise to a discrete spectrum which fills the interval [0,√B2 + ω2) as |λ| approaches
the critical coupling 2ω, and above this value the spectrum fills the whole real line.
The effect of the magnetic field on the regular version of the model is similar, cf. [4]
for details.

2.3.3 The δ′ Version of the Model

One can also say that the spectral transition effect is robust. To illustrate this claim,
let us consider the version of the model in which the interaction is replaced by a more
singular one, specifically the one known as δ′ [1]. The Hamiltonian then corresponds
to the differential expression

Hβψ(x, y) = −∂2ψ

∂x2
(x, y) + 1

2

(
−∂2ψ

∂y2
(x, y) + y2ψ(x, y)

)
(2.16)

with the domain consisting of ψ ∈ H 2((0,∞) × R) ⊕ H 2((−∞, 0) × R) such that

ψ(0+, y) − ψ(0−, y) = β

y

∂ψ

∂x
(0+, y) ,

∂ψ

∂x
(0+, y) = ∂ψ

∂x
(0−, y). (2.17)

The problem can be treated by a modification of the methods employed in [6, 7,
19, 21, 24–26] leading to the following results which we present referring to [9] for
the proofs. Let mac be the multiplicity of the absolutely continuous spectrum.

Theorem 2.3 The spectrum of operator H0 is purely ac, σ(H0) = [ 12 ,∞) with the

multiplicity mac(E, H0) = 2n for E ∈ (n − 1
2 , n + 1

2 ), n ∈ N. For β > 2
√
2 the ac
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spectrum of Hβ coincides with σ(H0). For β ≤ 2
√
2 there is a new branch of contin-

uous spectrum added to the spectrum; for β = 2
√
2 we have σ(Hβ) = [0,∞) and

for β < 2
√
2 the spectrum covers the whole real line.

We note in passing that with the standard convention used here, small values of the
parameter β represent a strong coupling.

Theorem 2.4 Assumeβ ∈ (2
√
2,∞), then the discrete spectrum of Hβ isnon-empty

and lies in the interval (0, 1
2 ). The number of eigenvalues is approximately given by

1

4

√
2

(
β

2
√
2

− 1
) as β → 2

√
2 + .

Theorem 2.5 For large enough β there is a single eigenvalue which asymptotically
behaves as

E1(β) = 1

2
− 4

β4
+ O

(
β−5

)
.

2.4 Another Model

The Smilansky–Solomyak model is not the only system in which the effect of an
abrupt spectral transition can be observed. Now we are going to describe another
model in which the transition is evenmore dramatic as a switch from a purely discrete
spectrum in the subcritical case to thewhole real line in the supercritical one.Tobegin,
recall that there are situationswhereWeyl’s law fails and the spectrum is discrete even
if the classically allowed phase-space volume is infinite. A classical example of such
a situation is due to [22] a two-dimensional Schrödinger operator with the potential
V (x, y) = x2y2, or more generally, V (x, y) = |xy|p with p ≥ 1. Similar behavior
can also be observed for Dirichlet Laplacians in regions with hyperbolic cusps—see
[12] for more recent results and a survey; recall also that using the dimensional-
reduction technique of Laptev andWeidl [17], one can prove tight spectral estimates
for such operators.

A common feature of these models is that the particle motion is confined into
channels narrowing toward infinity; the increasing “steepness” of those “walleys”
is responsible for the discreteness of the spectrum. This may remain true even for
Schrödinger operatorswhose potential are unbounded from below inwhich a classical
particle can escape to infinity with an increasing velocity. The situation changes,
however, if the attraction is strong enough; recall that a similar behavior was noted
already in [27]. As an illustration, let us thus analyze the following class of operators
on L2(R2),

L p(λ) : L p(λ)ψ = −Δψ + (|xy|p − λ(x2 + y2)p/(p+2)
)
ψ, p ≥ 1, (2.18)
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Fig. 2.6 γp as a function of
p in the semilogarithmic
scale
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where (x, y) are the standard Cartesian coordinates in R2 and the parameter λ in the
second term of the potential is nonnegative; unless its value is important we write it
simply as L p. Note that

2p
p+2 < 2 so the operator is e.s.a. onC∞

0 (R2) by Faris–Lavine
theorem mentioned above; the symbol L p or L p(λ) will always mean its closure.
Needless to say, the power in the last term is chosen in a way that makes it possible
to play with the balance between the repulsion coming from the narrowing channels
and attraction coming from the negative potential part.

Let us start with the subcritical case which occurs for sufficiently small values of
λ. To characterize the smallness quantitatively, we need an auxiliary operator which
will be an (an)harmonic oscillator Hamiltonian on line,

H̃p : H̃pu = −u′′ + |t |pu (2.19)

on L2(R)with the standard domain. The principal eigenvalue γp = inf σ(Hp) equals
one for p = 2; for p → ∞ it becomes γ∞ = 1

4π
2; it smoothly interpolates between

the two values; a numerical solution gives true minimum γp ≈ 0.998995 attained at
p ≈ 1.788; in the semilogarithmic scale the plot of γp looks as shown in Fig. 2.6

As we have said, the spectrum is bounded from below and discrete if λ = 0; our
first claim [8] is that this remains to be the case provided λ is small enough.

Theorem 2.6 For anyλ ∈ [0, λcrit], whereλcrit := γp, the operator L p(λ) is bounded
from below for any p ≥ 1; if λ < γp its spectrum is purely discrete.

Sketch of the proof. Let λ < γp. By the minimax principle [20, Sect. XIII.1], we need
to estimate L p from below by a self-adjoint operator with a purely discrete spectrum.
To construct it, we employ bracketing imposing additional Neumann conditions at
concentric circles of radii n = 1, 2, . . . . In the estimating operators, the variables
decouple asymptotically and the spectral behavior is determined by their angular
parts; to prove the discreteness one has to check that the lowest eigenvalues in the
annuli tend to infinity as n → ∞. For λ = γp this is no longer true but the sequence
remains bounded from below. �
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A similar argument can be used in the supercritical case with a few differences:

• now we seek an upper bound to L p(λ) by a below unbounded operator, hence we
impose Dirichlet conditions on concentric circles;

• the estimating operators have now nonzero contributions from the radial part,
however, those are bounded by π2 independently of n; and

• the negative λ-dependent term now outweights the anharmonic oscillator part so
that for the annuli operators LD

n,p, we have inf σ(LD
n,p) → −∞ as n → ∞.

This yields the following conclusion [8]:

Proposition 2.1 The spectrum of L p(λ), p ≥ 1 , is unbounded below from if
λ > λcrit.

One can prove a stronger result, however, using a suitable Weyl sequence con-
structed in a way similar to that employed in the proof of Theorem 2.1, it is possible
to make the following conclusion [5].

Theorem 2.7 σ(L p(λ)) = R holds for any λ > γp and p > 1.

In the subcritical case, one can derive various results concerning properties of the
discrete spectrum. Let us first mention an inequality obtained in a variational way

for the proof of which we refer to [8]. We define α := 1
2

(
1 + √

5
)2 ≈ 5.236 > γ −1

p

and denote by {λ j,p}∞j=1 the eigenvalues of L p(λ) arranged in the ascending order,
then we can make the following claim.

Proposition 2.2 To any nonnegative λ < α−1 ≈ 0.19, there exists a positive con-
stant C p depending on p only such that the following estimate is valid,

N∑
j=1

λ j,p ≥ C p(1 − αλ)
N (2p+1)/(p+1)

(lnp N + 1)1/(p+1)
− cλ N , N = 1, 2, . . . , (2.20)

where c = 2
(

α2

4 + 1
) ≈ 15.7.

A similar, and even simpler result can be derived for regions with four hyper-
bolic “horns” such as D = {(x, y) ∈ R

2 : |xy| ≤ 1} which can be formally viewed
as the limit of p → ∞ of our model, and more rigorously they are described by the
Schrödinger operator

HD(λ) : HD(λ)ψ = −Δψ − λ(x2 + y2)ψ (2.21)

with a parameter λ ≥ 0 and Dirichlet condition on the boundary ∂ D. Following [8],
one can make the following claim.

Theorem 2.8 The spectrum of HD(λ) is discrete for any λ ∈ [0, 1) and the spectral
estimate
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N∑
j=1

λ j ≥ C(1 − λ)
N 2

1 + ln N
N = 1, 2, . . . , (2.22)

holds true with a positive constant C.

Sketch of the proof. One can check that for any u ∈ H 1 satisfying the condition
u|∂ D = 0 the inequality

∫
D
(x2 + y2)u2(x, y) dx dy ≤

∫
D

|(∇ u) (x, y)|2 dx dy (2.23)

is valid which in turn implies HD(λ) ≥ −(1 − λ)ΔD where ΔD is the Dirichlet
Laplacian on the region D. The result then follows from the eigenvalue estimates on
ΔD known from [15, 22]. �

Wewill not sketch the proof of Proposition 2.2 because we are able to demonstrate
a substantially stronger result of Lieb–Thirring type [5].

Theorem 2.9 Given λ < γp, let λ1 < λ2 ≤ λ3 ≤ · · · be eigenvalues of L p(λ). Then
for Λ ≥ 0 and σ ≥ 3/2 the following inequality is valid,

tr
(
Λ − L p(λ)

)σ

+ (2.24)

≤ C p,σ

(
Λσ+(p+1)/p

(γp − λ)σ+(p+1)/p
ln

(
Λ

γp − λ

)
+ C2

λ

(
Λ + C2p/(p+2)

λ

)σ+1
)

,

where the constant C p,σ depends on p and σ only and

Cλ := max

{
1

(γp − λ)(p+2)/(p(p+1))
,

1

(γp − λ)(p+2)2/(4p(p+1))

}
. (2.25)

Sketch of the proof. By minimax principle, we can estimate L p(λ) from below by a
self-adjoint operator with a purely discrete negative spectrum and derive a bound to
the momenta of the latter. We split the plane R2 again, now in what one could call a
“lego” fashion, cf. Fig. 2.8, using a monotone sequence {αn}∞n=1 such that αn → ∞
and αn+1 − αn → 0 holds as n → ∞. Estimating the “transverse” variables by their
extremal values, we reduce the problem essentially to assessment of the spectral
threshold of the anharmonic oscillator with Neumann cuts. We derive easily the
following asymptotic result.

Lemma 2.1 Let lk,p = − d2

dx2 + |x |p be the Neumann operator on [−k, k], : k > 0.
Then

inf σ
(
lk,p

) ≥ γp + o
(
k−p/2

)
as k → ∞.

In fact the error is exponentially small, but the above relation is sufficient for our

purposes. Combining it with the “transverse” eigenvalues
{

π2k2

(αn+1−αn)2

}∞
k=0

, using
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Fig. 2.7 Bracketing in the
proof of Theorem 2.9

G1

G2

G3

Q1 Q2 Q3

x = α α α1 2 3 . . .

Lieb–Thirring inequality for this situation [18], and choosing properly the sequence
{αn}∞n=1, cf. [5], we are able to prove the claim. �

Let us finally look at the critical case, L := −Δ + |xy|p − γp(x2 + y2)p/(p+2).
The essential spectrum is as expected [5] as one can check easily using properly
chosen Weyl sequences.

Theorem 2.10 We have σess(L) ⊃ [0,∞).

The question about the negative spectrum is more involved. First of all, we have
the following result [5] which can be proved by the same technique as Theorem 2.9
using another “lego bracketing” estimate.

Theorem 2.11 The negative spectrum of L is discrete.

For the moment, however, we are unable to prove that σdisc(L) is non-empty. We
conjecture that it is the case having a strong numerical evidence for that. For simplicity
consider the case p = 2.We restrict the operator to a circle of radius R with Dirichlet
or Neumann boundary and compute the first two eigenvalues in both cases; they are
plotted inFig. 2.8 as functions of the cut-off radius.By [20, Sect.XIII.15], the possible
negative eigenvalues are squeezed between those curves. We see that the bounds
become very tight for R � 7 and indicate that the critical problem has for p = 2 an
eigenvalue E1 ≈ −0.18365. Furthermore, σdisc(L) consists of a single point because
the second lower (Neumann) estimate is in positive values for R large enough. A
similar numerical analysis also suggests the ground state existence for other values
of p but it becomes unreliable for p � 20. We conjecture that the discrete spectrum
is nonvoid for all p > 1 but empty for hyperbolic regions, p = ∞.
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Fig. 2.8 The
Dirichlet–Neumann estimate
of the spectrum in the critical
case for p = 2

Fig. 2.9 The ground state
eigenfunction in the critical
case for p = 2

We are able to get in a numerical way an idea about the ground state eigenfunction,
again in the case p = 2, as plotted in Fig. 2.9 based on the solution in the circle with
either boundary condition; we note that with the R = 20 cutoff, the Dirichlet and
Neumann ones are practically identical which is not surprising since one expects a
superexponential decay along the axes. The outer level in the plot marks the 10−3

value.

2.5 Resonances in Smilansky–Solomyak Model

The models we consider have other interesting properties. Let us return to the setting
of Sect. 2.2 and show that the system exhibits a rich resonance structure; we refer to
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[10, 11] for a detailed discussion of these phenomena. To begin with, we have to say
which resonances we speak about. There are resolvent resonances associated with
poles in the analytic continuation of the resolvent over the cut(s) corresponding to the
continuous spectrum, scattering resonances identified with complex singularities of
the scattering matrix.

The former are found using the same Jacobi matrix problem as before, of course,
this time with a “complex energy”. Let us look at the latter. Suppose the incident
wave comes in the mth channel from the left. We use the Ansatz

f (x, y) =
⎧⎨
⎩

∑∞
n=0

(
δmne−i pxψn(y) + rmn ei x

√
p2+εm−εn ψn(y)

)
∑∞

n=0tmn e−i x
√

p2+εm−εn ψn(y)
(2.26)

for∓x > 0, respectively, where εn = n + 1
2 and the incident wave energy is assumed

to be p2 + εm =: k2. It is straightforward to compute from here the boundary values
f (0±, y) and f ′(0±, y). The continuity requirement at x = 0 together with the
orthonormality of the basis {ψn} yields

tmn = δmn + rmn. (2.27)

Furthermore, we substitute the boundary values coming from the Ansatz (2.26) into

f ′(0+, y) − f ′(0−, y) − λy f (0, y) = 0 (2.28)

and integrate the obtained expression with
∫
dy ψl(y). This yields

∞∑
n=0

(
2pnδln − iλ(ψl, yψn)

)
rmn = iλ(ψl , yψm), (2.29)

where we have denoted pn = pn(k) := √
k2 − εn . In particular, poles of the scatter-

ing matrix are associated with the kernel of the �2 operator on the left-hand side. In
particular, putting l = m we obtain essentially the same condition we had before,
cf. (2.6) and (2.7), thus we arrive at the following conclusion.

Proposition 2.3 The resolvent and scattering resonances coincide in the Smilansky–
Solomyak model.

Let us add a few comments:

• The on-shell scattering matrix for the initial momentum k is a ν × ν matrix where
ν := [

k2 − 1
2

]
whose elements are the transmission and reflection amplitudes; they

have common singularities.
• The resonance condition may have (and in fact it has) numerous solutions, but
only those “not far from the physical sheet” are of interest.
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Fig. 2.10 Resonance trajectories as the coupling constant λ varies from zero to
√
2

• The Riemann surface of energy has an infinite number of sheets determined by the
choices branches of the square roots. The interesting resonances on the nth sheet
are obtained by flipping sign of the first n − 1 of them.

The weak-coupling analysis follows the route as for the discrete spectrum,
cf. (2.9)–(2.11) above; in fact it includes the eigenvalue case if we stay on the “first”
sheet. It shows that for small λ, a resonance pole splits of each threshold according
to the asymptotic expansion

μn(λ) = −λ4

64

(
2n + 1 + 2in(n + 1)

) + o(λ4). (2.30)

Hence the distance for the corresponding threshold is proportional to λ4 and the
trajectory asymptote is the “steeper” the larger n is. However, one can solve the
condition (2.29) numerically [10]. This allows us to go beyond the weak coupling
regime and the picture becomes more intriguing as shown in Fig. 2.10. The picture
shows clearly the asymptotes of the resonance trajectories for small values λ when
the poles split from the channel threshold given by the oscillator eigenvalues. For
stronger coupling the behavior changes and eventually the poles return to the real
axis as λ approaches the critical value. What is even more interesting, the numerical
solutions reveals other, “non-threshold” resonances at the second and third Riemann
sheet, indicated by dotted lines that appear at λ = 1.287 and λ = 1.19, respectively.

2.6 Concluding Remarks

While we have been able to demonstrate many properties of the models under con-
sideration, various mathematical questions remain open, for instance,
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• in the original Smilansky–Solomyak model and its δ′ modification of Sect. 2.3.3,
we know that the essential spectrum is absolutely continuous. We expect that this
will also be the case for the models with regular potential channels but this remains
to be demonstrated.

• in the regular Smilansky–Solomyak model, the “escape channel” may have more
than one mode provided #σdisc(L) > 1 holds for the operator (2.13). In this situa-
tion, it is natural to ask how the spectral multiplicity changes with λ.

• many questions concern resonances in the Smilansky–Solomyak model. One
would like to know, inter alia, what is their number in a given part of the complex
plane, whether there are resonance-free zones for a fixed λ, or whether all the
poles will eventually return to the real axis as λ increases. Furthermore, we are
interested in the mechanism which produces the “non-threshold” resonances and
the coupling constant values at which they appear. Finally, resonance effects are
also expected to occur in the regular version of the model.

From the physical point of view the most interesting question concerns the classical
motion in the regular model, magnetic and nonmagnetic, as well as in the model
of Sect. 2.4. We have mentioned in the opening of Sect. 2.3.1 that a step in this
direction was made in [14], however, the importance of the question goes beyond
the motivation of that paper dealing with modeling quantum measurements as it
may offer a new and interesting insight into the quantum-classical correspondence
in unusual situations we have discussed here.
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