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Preface

The edited volume is based on 12 invited talks, presidential address, and selected
nine peer-reviewed papers during an international conference at GNDU, Amritsar,
India, in February 2018. The volume covers a variety of themes of industrial and
applied mathematics. The main attraction of the conference was two symposiums,
one organized by Prof. Guenter Leugering, Vice President, FAU, Erlangen–
Nuremberg, Germany, and the other organized by Prof. GDV Gowda, Dean, TIFR
Center of Applicable Mathematics, Bangalore, in which speakers were from reputed
institutions of Germany and India. All talks were devoted to the role of partial
differential equations in understanding the real-world problems. Leugering and his
group focused on the system of hyperbolic equations on networks such as nonlinear
elastic strings and beams, potentially being coupled via masses and viscoelastic
springs, or networks of pipes conveying fluids or gas. Chapter 1 contains a resume
of work of Prof. A. H. Siddiqi and his co-workers. Professor Pavel Exner, Current
President of European Mathematical Society, has discussed the effect of an abrupt
spectral change for some classes of Schrodinger operators depending on the value
of the coupling constant, from below bounded and partly or fully discrete, to the
continuous one covering the whole real axis in Chap. 2. In Chap. 3, Prof. Hans G.
Feichtinger and Mads S. Jakobsen have presented an interesting account of dis-
tribution theory by Riemann integrals. In this chapter, they have outlined a syllabus
for a course that can be given to engineers looking for an understandable mathe-
matical description of the foundation of distribution theory and the necessary
functional analytic methods. Guenter Leugering has presented in Chap. 4 the study
of partial differential equations on metric graphs: a survey of results on optimiza-
tion, control and stabilizability with special focus on shape and topological sensi-
tivity problems. His research collaborators Martin Gugat and Michael Herty have
presented a new model for transient flow in gas transportation networks in Chap. 6.
In Chap. 5, D. Provitolo, R Lozi and E. Tric have presented their study regarding a
new model of weighted human behavior in the context of urban terrorist attacks.
It may be remarked that in the context of disasters, and in order to better protect the
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population, one of the major challenges today is to better understand and anticipate
both individual and collective human behavior, and the dynamics of the displace-
ments associated with these behaviors. In Chap. 7, Falk M. Hante has presented his
research on “Mixed-Integer Optimal Control for PDES: Relaxation via Differential
Inclusions and Applications to Gas Network Optimization.” In Chap. 8,
Prof. Mukhayo Rasulova has presented her studies “Application of Solution of the
Quantum Kinetic Equations for Information Technology and Renewable Energy
Problem.” Professor Taufiquar Rahman Khan, Clemson University, USA, has
introduced the general idea of inverse problems particularly with applications to
imaging in Chap. 9. Professor K. Sreenadh, IIT Delhi, and T. Mukherjee, TIFR
Bangalore, have written a survey on critical growth elliptic problems with
Choquard-type nonlinearity in Chap. 10. Professor Ratish Kumar, IIT Kanpur,
along with his research collaborator Gopal Priyadashi has presented work on
Wavelet Galerkin Methods for Higher-Order Partial Differential Equations in
Chap. 11. In Chap. 12, Samares Pal and Joydeb Bhattacharyya have studied resi-
lience and dynamics of coral reefs impacted by chemically rich seaweeds and
unsustainable fishing. Interesting mathematical models are discussed. Chapter 13—
Multigrid Methods for the Simulations of Surfactant Spreading on a Thin Liquid
Film—by Satyananda Panda and Aleksander Grm contains a multigrid approach for
the simulations of surfactant spreading on a thin liquid film. Chapter 14 by Eenezer
Bonyah, Fahad Al Basir and Santanu Ray is devoted to Hopf bifurcation in a
mathematical model of tuberculosis with delay. In Chap. 15, Amit Kumar Roy and
Priti Kumar Roy have presented their studies related to Treatment of Psoriasis
by Interleukin-10 through Impulsive Control Strategy. A. Akhilandeeswari,
K. Balachandran and N. Annapoorani have investigated the existence of solution
of the fractional partial differential equations of diffusion type with integral kernel
in Chap. 16. In Chap. 17 Mathematical Study on Human Cells Interaction
Dynamics for HIV-TV Co-infection by Suman Dolai, Amit Kumar Roy and Priti
Kumar Roy is presented. In Chap. 18, P. Suresh Kumar presents his work on
Relative Controllability of Nonlinear Fractional Damped Delay Systems with
Multiple Delays in Control. Chapter 19 by Rohit Khokher and Ram Chandra Singh
is devoted to A Graphical User Interface-Based Fingerprint Recognition. In
Chap. 20, P. Umamaheswari, K. Balachandran and N. Annapoorani have investi-
gated the existence and stability results of stochastic fractional delay differential
equations with Gaussian noise. Chapter 21 by Kausika Chellamuthu deals with
“Asymptotic Stability of Implicit Fractional Volterra Integrodifferential Equations.”
Few invited and contributory talks of the international conference at GNDU by
Prof. Stephane Jaffard, Prof. M. Shah Jahan, Prof. G. Fairweather, Prof. A. K. Pani,
Prof. S. Dharam Raja, Prof. Rashmi Bhardwaj and Prof. T. D. Narang could not be
included in this volume due to unavoidable reasons. We thank all of them for
sparing time to deliver lectures and for encouraging young researchers.

viii Preface



We take this opportunity to thank Ms. Pooja and Ms. Mamta, UGC Research
Fellows at Guru Nanak Dev University, Amritsar, for their contribution toward
compiling the manuscript.

Amritsar, India Pammy Manchanda
Nice, France René Pierre Lozi
Greater Noida, India Abul Hasan Siddiqi

Preface ix



Acknowledgements

Editors and organizers gratefully acknowledge the financial support for the
Department of Science and Technology, New Delhi: ICIAM and Duty Society,
Aligarh Muslim University (AMU). The Organizing Committee and editors also
express their gratitude to the vice-chancellor and other functionaries of Guru Nanak
Dev University, Amritsar, for generous support without which the conference could
not have been organized at this large scale. We also take this opportunity to thank
Mr. Shamim Ahmad of Springer India for his valuable support.

xi



Contents

1 Certain Areas of Industrial and Applied Mathematics . . . . . . . . . . 1
Abul Hasan Siddiqi

2 Schrödinger Operators with a Switching Effect . . . . . . . . . . . . . . . 13
Pavel Exner

3 Distribution Theory by Riemann Integrals . . . . . . . . . . . . . . . . . . . 33
Hans G. Feichtinger and Mads S. Jakobsen

4 Partial Differential Equations on Metric Graphs: A Survey
of Results on Optimization, Control, and Stabilizability
Problems with Special Focus on Shape and Topological
Sensitivity Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Günter Leugering

5 Topological Analysis of a Weighted Human Behaviour Model
Coupled on a Street and Place Network in the Context
of Urban Terrorist Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
D. Provitolo, R. Lozi and E. Tric

6 A New Model for Transient Flow in Gas Transportation
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Martin Gugat and Michael Herty

7 Mixed-Integer Optimal Control for PDEs: Relaxation
via Differential Inclusions and Applications to Gas Network
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Falk M. Hante

8 Application of Solution of the Quantum Kinetic Equations
for Information Technology and Renewable Energy
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Mukhayo Rasulova

xiii



9 Inverse Problems Involving PDEs with Applications
to Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Taufiquar Khan

10 Critical Growth Elliptic Problems with Choquard Type
Nonlinearity: A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
K. Sreenadh and T. Mukherjee

11 Wavelet Galerkin Methods for Higher Order Partial
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
B. V. Rathish Kumar and Gopal Priyadarshi

12 Resilience and Dynamics of Coral Reefs Impacted by Chemically
Rich Seaweeds and Unsustainable Fishing . . . . . . . . . . . . . . . . . . . 255
Samares Pal and Joydeb Bhattacharyya

13 Multigrid Methods for the Simulations of Surfactant Spreading
on a Thin Liquid Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Satyananda Panda and Aleksander Grm

14 Hopf Bifurcation in a Mathematical Model of Tuberculosis
with Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Eenezer Bonyah, Fahad Al Basir and Santanu Ray

15 Treatment of Psoriasis by Interleukin-10 Through Impulsive
Control Strategy: A Mathematical Study . . . . . . . . . . . . . . . . . . . . 313
Amit Kumar Roy and Priti Kumar Roy

16 On Fractional Partial Differential Equations of Diffusion Type
with Integral Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
A. Akilandeeswari, K. Balachandran and N. Annapoorani

17 Mathematical Study on Human Cells Interaction Dynamics
for HIV-TB Co-infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Suman Dolai, Amit Kumar Roy and Priti Kumar Roy

18 Relative Controllability of Nonlinear Fractional Damped Delay
Systems with Multiple Delays in Control . . . . . . . . . . . . . . . . . . . . 367
P. Suresh Kumar

19 A Graphical User Interface-Based Fingerprint Recognition . . . . . . 379
Rohit Khokher and Ram Chandra Singh

20 Existence and Stability Results for Stochastic Fractional Delay
Differential Equations with Gaussian Noise . . . . . . . . . . . . . . . . . . . 399
P. Umamaheswari, K. Balachandran and N. Annapoorani

21 Asymptotic Stability of Implicit Fractional Volterra
Integrodifferential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Kausika Chellamuthu

xiv Contents



About the Editors

Pammy Manchanda is Professor at the Department of Mathematics Guru Nanak
Dev University, Amristar. Professor Manchanda has published more than 50
research papers in several international journals of repute, edited 4 proceedings
volumes for international conferences of the Indian Society of Industrial and
Applied Mathematics (ISIAM) and co-authored 4 books. She has attended, deliv-
ered talks and chaired sessions at reputed academic conferences and workshops
across the world, including International Council of Industrial and Applied
Mathematics (ICIAM) from 1999 to 2019 and the International Congress of
Mathematicians (ICM) since 2002. She is the managing editor of the Indian Journal
of Industrial and Applied Mathematics and a member of the editorial board of the
Springer book series, Industrial and Applied Mathematics. She was invited twice to
the Industrial Mathematics Group of Prof. Helmut Neunzert at Kaiserslautern
University, Germany, and has visited the International Center for Theoretical
Physics (UNESCO institution) at Trieste, Italy, several times to carry out research
activities. She has been joint secretary of ISIAM from 1999–2016, and is currently
secretary of the society. She is ISIAM representative in the International Council of
Industrial and Applied Mathematics (ICIAM). She has been actively engaged in the
organization of international conferences by the ISIAM and was joint convener,
Satellite Conference of ICM, during 15–17 August 2010, New Delhi, India.

René Pierre Lozi is Professor at the Dieudonné Center of Mathematics, University
Côte d’Azur, France. In 1991, he became Full Professor at the University Côte
d’Azur and the Institute for Teacher Trainees (IUFM), France. He served as
Director of IUFM during 2001–2006 and as Vice-Chairman of the French Board of
Directors of IUFM during 2004–2006. He completed his French state thesis on
chaotic dynamical systems under the supervision of Prof. René Thom, a Fields
Medalist, in 1983. Professor Lozi currently serves on the editorial boards of
respected international journals. In 1977, he discovered a particular mapping of the

xv



plane having a strange attractor (now classically known as “Lozi map”). Today, his
research areas include complexity and emergence theory, dynamical systems,
bifurcation, control of chaos, cryptography-based chaos, and memristors (a physical
device for neuro-computing).

Abul Hasan Siddiqi is Professor Emeritus and a distinguished scientist at the
School of Basic Sciences and Research, Sharda University, Greater Noida, India.
Professor Siddiqi has held several important administrative positions, such as
Chairman of the Department of Mathematics, Dean of the Faculty of Science, and
Pro-Vice-Chancellor of Aligarh Muslim University, India. He has been actively
associated with the International Centre for Theoretical Physics, Trieste, Italy
(UNESCO organization), in different capacities for more than 20 years. He served
as Professor of Mathematics at the King Fahd University of Petroleum and Minerals
(KFUPM), Saudi Arabia, for 10 years; and a consultant to Sultan Qaboos
University, Oman; Istanbul Aydin University, Turkey; and the Institute of
Microelectronics, Malaysia. He was awarded the German Academic Exchange
Service (DAAD) Fellowship thrice to pursue mathematical research in Germany.
He has jointly published more than 100 research papers with his research collab-
orators, 5 books, and edited proceedings of 9 international conferences. He is
Founder Secretary of the Indian Society of Industrial and Applied Mathematics
(ISIAM) and Editor-in-Chief of the Indian Journal of Industrial and Applied
Mathematics, published by the ISIAM, and the Springer book series, Industrial and
Applied Mathematics. He has recently been elected as President of ISIAM, which
represents India at the apex forum of industrial and applied mathematics—ICIAM.

xvi About the Editors



Chapter 1
Certain Areas of Industrial and Applied
Mathematics

Abul Hasan Siddiqi

Abstract This chapter is based on Presidential address at the International
Conference and 14thBiennial Conference of Indian Society of Industrial andApplied
Mathematics, GNDU, Amritsar, Feb 2–4, 2018.

Keywords Walsh and Haar systems · 2-dimensional analogues of Banach space ·
Variational inequality · Wavelet theory · Fractals · Shearlets
1.1 Introduction

Here we introduce our contribution in certain areas of industrial and applied math-
ematics such as dyadic harmonic analysis, variational inequalities, wavelet theory,
fractals, financialmathematics. People interested in these areasmaygo throughbooks
authored and edited by myself and colleagues and research papers written jointly by
research scholars and colleagues. See selected research papers, books authored and
edited volumes.

1.2 Areas Pursued By Our Research Group

i. Fourier and Dyadic Harmonic Analysis: I tried to popularize certain areas with
which researchers in our country were not familiar. In the 60s, most of the researchers
in northern India were engaged in Summability theory of sequences and special
functions. I tried to introduce to Indian researchers, new areas such as classes of
Fourier coefficients, approximation by Fourier series, and other orthonormal systems
such as Walsh and Haar Systems. I pursued vigorously Walsh Fourier analysis and
collaborated with Indian engineers (professors of electrical engineers IIT Kanpur)
andHungarianMathematicians like F.Moricz, S. Fridli and F. Schipp.We learnt from
Hungarian Mathematician’s approximation by Walsh functions and Haar–Vilenkin

A. H. Siddiqi (B)
Sharda University, Greater Noida, India

© Springer Nature Singapore Pte Ltd. 2020
P. Manchanda et al. (eds.), Mathematical Modelling, Optimization, Analytic
and Numerical Solutions, Industrial and Applied Mathematics,
https://doi.org/10.1007/978-981-15-0928-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0928-5_1&domain=pdf
https://doi.org/10.1007/978-981-15-0928-5_1


2 A. H. Siddiqi

system. I also benefited from Prof. WilliamWade, USA who is a well-known expert
in this field. References of my joint work withMoricz and Fridli [14, 39] are given at
the end. One can find fairly complete research work up to 1977 in my book of 1978
on Walsh functions, AMU Press. Our book to be published soon by Springer Nature
named “Construction of Wavelets through Walsh Functions” provides very recent
work by Farkov and research group of Manchanda, especially Meenakshi. These are
the relevant Refs. [40, 56, 59, 72].

ii. Two-Dimensional Analogues of Banach Spaces: The concept of two-
dimensional analogues of metric normed and Banach spaces were introduced and
studied by Siegfried Gaehler of the German Academy of Science, Berlin around
1963. I introduced this topic to researchers in India, Iran, and Algeria. I also spent
quite some time with Dr. Gaehler in Berlin. I wrote several research papers on
non-Archimedean (ultra) 2-metric and 2-normed spaces quasi-normed spaces, 2-
semi-inner product spaces, orthogonally in 2-normed spaces, ultra m-metric, and
non-Archimedean m-normed spaces. Some typical results obtained by me and my
collaborators will be given in the next section. However a list of papers on theme is
given in the bibliography, see for example [20, 72].

iii. Non-Archimedean functional analysis: Besides the concept of compact oper-
ators and a fixed point in non-Archimedean functional analysis, we studied the con-
cept of invariantmeans in non-Archimedean functional analysiswhich is published in
Springer lecture notes in Math vol. 399, Springer, Berlin, 1974. Prof. Grande Kimpe
of Belgium, a well-known expert of the field visited AMU, Constantine University,
Algeria and also invited me to interact on research problems in non-Archimedean
functional analysis. Several Ph.D. students of AMU worked under supervision of
Prof. Siddiqi on different topics of this field.

iv. Variational Inequalities: Variational inequalities introduced and studied by
celebrated mathematicians J. L. Lions, G. Stampacchia, and G. Fichera in the early
60s were not known in the Indian subcontinent till the 80s. I tried to popularize the
subject in the Indian subcontinent and guided successfully 10 research scholars in
this field. Some of them are well-known mathematicians of the present time. Four of
these research scholars are full professors in the Aligarh Muslim University (AMU);
eight of their research scholars are attending this conference. I studied applications
of variational inequalities in areas like superconductivity, elasticity (rigid punch
problem), and American option pricing references of our research papers in these
areas which are given at the end, see for example [3–7, 11, 17, 18, 25, 47–49, 52,
61, 62, 69–71, 84–90].

v. Wavelet Theory: You will be surprised to know that wavelet theory was intro-
duced to me by Helmut Neunzert while driving me fromKaiserslautern to Darmstadt
in June 1990. He tried to introduce this subject to his Ph.D. students in the early 90s
and other Indian researchers particularly, Prof. Manchanda. I joined KFUPM, Saudi
Arabia in 1998 and devoted my full time to promote the study of wavelet theory and
its applications. Some of my efforts yielded in publications of two special volumes of
Arabian Journal of Science and Engineering, see references of edited volumes [58].
I published several research papers with my research collaborators and completed
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five research projects related to this theme. See Refs. [2, 31, 94] and edited volumes
[35, 83, 91] and authored books [54, 64, 96] for details. The following are additional
Refs. [12, 13, 15, 28–30, 38, 73, 80–82, 93].

vi. Fractals: I was motivated by a distinguished electrical engineering professor
(Prof. M. N. Faruqi, Former Deputy Director, IIT, Kharagpur and Vice Chancellor,
AMU) in 1993 to take up the study of fractals and their applications in image pro-
cessing. I guided research in this area and one of my Ph.D. students (Mr. Aiman
Mukheimar) worked in this area got a Ph.D. degree and is now HoD of Applied
Sciences in the Prince Sultan University, Riyadh, Saudi Arabia. I have published a
good number of papers given in the bibliography, for example, application of frac-
tal methods in metrological studies some leading scientists have cited this work
[42, 43]. see also Refs. [32, 58].

vii. Industrial and Financial Mathematics: Writings of Prof. H. Neunzert
inspired me to take up the study of Industrial and applied mathematics. I made
serious efforts to initiate teaching and research on industrial mathematics in India.
We established the Indian Society of Industrial and Applied Mathematics (ISIAM)
with the help of senior academicians of our country such as Prof. J. N Kapur, Prof.
H. P. Dixit, Prof. U. P. Singh, Prof. D. Sinha, Prof. V. P. Saxena, Prof. G. C. Sharma,
Prof. N. K. Gupta, Prof. Bhola Ishwar, Prof. Karmeshu, Prof. O. P. Bhutani, and
Prof. Rudraiah. We made serious efforts for organizing Biennial Conferences of the
society and International Conference since 1992. The proceedings of these confer-
ences are published by reputed publishers. The society is publishing its journal named
Indian Journal of Industrial and Applied Mathematics. Researchers from all over the
world are associated with this journal. Famous publisher Springer, now Springer
Nature has started publishing a series called Industrial and Applied Mathematics
Series jointly with the society. Some useful references are [9, 10, 19, 33, 34, 37, 55,
57, 60, 66, 95].

viii. Oil Exploration andWavelets: I worked as a consultant in research projects
of the largest oil companies in theworld namedARMACO. I also completed research
projects on applications of wavelets to meteorological data of the kingdom of Saudi
Arabia. See [42, 43] and edited volumes [53, 58].

ix. Wavelets Inverse Problems and Medical Signals: I have worked on the
following themes with my research scholars in Sharda University, Greater Noida,
for example, Ruchira Aneja, Nagma Irfan, Noor-E- Zahra have already got their
Ph.D. degree in 2016. Other researchers with whom I have collaborated are Vivek
SinghBhadouria, Shafali Pande,AmitaGarg, PadmeshTripathi, andNitenderKumar
Shukla. Themes pursued are scalar tomography, vector value tomography, seismic
tomography ANFIS, SVM and neuro-fuzzy methods, MRI, inverse problems related
to heat equation, etc., see Refs. [35, 96] and research papers [21–24, 26, 27, 44–46,
75, 76, 92, 97].
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1.3 Ruchira Aneja—Variants of Wavelet in Medical
Imaging

This section is based on [46]: Ruchira Aneja and A. H. Siddiqi,AHybrid Shearlet-
based compression coefficients and ROI Detection, Journal of Medical Imaging
and Health Informatics, USA.

Need For Geometric Transformations

The need to understand geometric structures arises since it is essential to efficiently
analyze andprocess the data.Data are highly correlated and it is essential to extract the
relevant information. This relevant information can be extracted and can be grouped
into a certain class if we have an understanding of its dominant features, which are
associated with their geometric properties. For instance, edges in natural images.
One major goal of applied harmonic analysis is constructing classes of analyzing
elements that capture the most relevant information in a certain data class.

Properties of shearlets Shearlets are well localized; they exhibit high directional
sensitivity and satisfy parabolic scaling; they are spatially localized and optimally
sparse.

Shearlet system is a special case of Composite Wavelet systems which provide
optimally sparse representation for a large class of bivariate functions. A Composite
Wavelet system in dimension n = 2 is

Ψ j,k = |det A|i/2Ψ (B j Ai − k) : i, j ∈ Z , K ∈ Z2

where A =
(
2 0
0

√
2

)
and B =

(
1 1
0 1

)

G = (M, t) : M ∈ Da,t ∈ R2

where for each 0 < α < 1, Dα < L2(R) is a set of matrices

Dα − {M − Mαs −
(
a −aαs
0 aα

)
}where a > 0, s ∈ R.

Continuous Shearlet Transform For Ψ ∈ L2(R2), the continuous shearlet sys-
tem SH(Ψ ) is define by

SH(Ψ ) = Ψa,s,t = Tt DAα
DSsΨ : a > 0, s ∈ R, t ∈ R2.

Aa =
(
a 0
0 a1/2

)
.

Shearing operator is DSs , s ∈ R, where the shearingmatrix Ss is given byparabolic
scaling
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Ss =
(
1 s
0 1

)
.

Tt is the translation operator on L2(Rd), defined by

TtΨ (x) = Ψ (x − t), for t ∈ Rd .

Discrete Shearlet Transform Discrete versions of shearlet systems can be con-
structed by appropriate sampling of the continuous parameter set S or Scone. Various
approaches have been suggested, aiming for discrete shearlet systems which prefer-
ably form an orthonormal basis or a tight frame for L2(R2) A (regular) discrete
shearlet system associated with Ψ , denoted by SH(Ψ ), which is defined by

SH(Ψ ) = Ψ j,k,m = 2
3 j
4 Ψ (Sk A2 j − m) : j, k ∈ Z ,m ∈ Z2.
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Shearlet systems are derived from a single or finite set of generators. It also ensures
a unified treatment of the continuum and digital world due to the fact that the shear
matrix preserves the integer lattice.

Shearlet and Curvelet in Image Processing

Digital signal and image processing is the most important technique to analyze,
manipulate, and process real-world data and images. These types of signals and
images may be time series, collection of numbers or measured values. These
include audio signals, video images, real-world data like seismic data, rainfall data,
biomedical data, and images. Edges are prominent features in images and their anal-
ysis and detection are an essential goal in computer vision and image processing.
Indeed, identifying and localizing edges are a low-level task in a variety of appli-
cations such as 3D reconstruction, shape recognition, image compression, enhance-
ment, and restoration.

Shearlet and curvelet are a novel directional multiscale mathematical framework
which is especially adapted for identification and analysis of distributed discontinu-
ities such as edges occurring in natural images.Multiscalemethods based onwavelets
have been successfully applied to the analysis and detection of edges. Despite their
success, wavelets are however known to have a limited capability in dealing with
directional information. The shearlet and curvelet approach is particularly designed
to deal with directional and anisotropic features typically present in natural images,
and has the ability to accurately and efficiently capture the geometric information on
edges. As a result, the shearlet framework provides highly competitive algorithms,
for detecting both the location and orientation of edges, and for extracting and classi-
fying basic edge features such as corners and junctions. The shearlet framework pro-
vides a unique combination of mathematical rigidness and computational efficiency
when addressing edges, optimal efficiency in dealing with edges, and computational
efficiency.

Shearlet in MRI of Brain

Image denoising is a process of recovering the original image from the image cor-
ruptedwith various types of noise such asGaussian, speckle, salt and pepper, impulse,
etc. Shearlets can be used effectively for image denoising by using various shrinkage
rules. The main steps of image denoising are
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Table 1.1 Results cont...

MRI brain image Gaussian noise

Sigma Noisy PSNR PSNR MSE

10 28.11 34.82 21.45

15 24.61 32.98 32.71

20 22.10 31.72 43.75

25 20.21 30.69 55.51

1. Compute shearlet transform of the noisy image.
2. Apply hard/ soft threshold to the obtained shearlet coefficients.
3. The thresholded shearlet coefficients are subjected to reconstruction to recover the
original image (Table1.1).

1.4 Wavelet Cross-Correlation

Two signals are said to be correlated if they are linearly associated, i.e., if their
wavelet spectrum at a certain scale or wavelength is linearly associated.

Broadly speaking, graphs of a vs E(a) for two signals are similar (increase or
decrease together).

Wavelet Spectrum Wavelet spectrum E(a) is defined as

E(a) = 1

Cg

∫ ∞

−∞
W (a, b)2db.

Wavelet spectrum defines the energy of wavelet coefficients for scale ′a′.
Peaks in E(a) highlight the dominant energetic scales within the signal.
For details see edited volume [53]. See also authored books [1, 8, 41, 50, 51, 54,

63, 64, 77, 79, 96] and edited volumes [16, 35, 36, 53, 65, 67, 74, 78, 78, 83, 91]
for more recent developments in areas mentioned above.

1.5 Fractal Dimension and Predictability

D = 2 − H.
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If the fractal dimension D for the time series is 1.5, there is no correlation between
amplitude changes corresponding to two successive time intervals. Therefore, no
trend in amplitude can be discerned from the time series and hence the process is
unpredictable.However, as the fractal dimension decreases, to 1, the process becomes
more and more predictable as it exhibits “persistence”.

Predictably indices (denoted by P IT , P IP , and P IR respectively) for temperature,
pressure, and precipitation are defined as follows.

P IT = 2|DT − 1.5|; P IP = 2|DP − 1.5|, P IR = 2|DR − 1.5|.

Concepts of fractal and multifractal and their relevance to real-world systems were
introduced by Benoit B. Mandeldort, for updated references and interesting intro-
duction of the theme we refer to Benoit B. Mandelbort and Richard L. Hudson,
2004.

In many real-world systems, represented by time series, understanding of the
pattern of singularities that is a graph of points at which time-series changes abruptly
is quite a challenging task. The time series of rainfall data are usually fractal or
multifractal. For details see Refs. [42, 43] .
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Chapter 2
Schrödinger Operators with a Switching
Effect

Pavel Exner

Abstract This paper summarizes the contents of a plenary talk given at the 14th
Biennial Conference of Indian SIAM in Amritsar in February 2018. We discuss here
the effect of an abrupt spectral change for some classes of Schrödinger operators
depending on the value of the coupling constant, from below bounded and partly
or fully discrete, to the continuous one covering the whole real axis. A prototype of
such a behavior can be found in the Smilansky–Solomyak model devised to illustrate
that an irreversible behavior is possible even if the heat bath to which the systems are
coupled has a finite number of degrees of freedom and analyze several modifications
of this model, with regular potentials or a magnetic field, as well as another system
in which x p y p potential is amended by a negative radially symmetric term. Finally,
we also discuss resonance effects in such models.

Keywords Smilansky model · Switching effect · Asymptotic expansions ·
Magnetic field · Resonances

2.1 Introduction

The class of problems we are going to discuss here has a twofold motivation. Let
us start with physics. It is well-known that while the equations of motion governing
quantum dynamics are invariant with respect to time reversal; we often encounter
quantum systems behaving in an irreversible way, for instance, spontaneous decays
of particles and nuclei, inelastic scattering processes in nuclear, atomic or molecular
systems, or the current passing through a microscopic element attached to poles of
a battery. Furthermore, an irreversible process par excellence is, of course, the wave
packet reduction which is the core of Copenhagen description of a measuring pro-
cess performed on a quantum system. The description of such a process is typically
associated with enlarging the state Hilbert space, conventionally referred to as cou-
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pling the system to a heat bath. It is generally accepted that to obtain an irreversible
behavior through such a coupling, the model has to exhibit typical properties, in
particular

• the bath is a system with an infinite number of degrees of freedom,
• the bath Hamiltonian has a continuous spectrum, and
• the presence (or absence) of irreversible modes is determined by the energies
involved rather than the coupling strength.

While this all is without any doubt true in many cases, one of our aims here is to
show that neither of the above need not be true in general. To make this point, Uzy
Smilansky constructed a simple model which will be our starting point here. In a
sense he did a similar thing as Agatha Christie: when some people tried to introduce
in the 1920s mystery rules saying, in particular, that in any such book there must be
a single murderer, she wrote Murder on the Orient Express in which everyone is a
killer, except for Hercule Poirot, of course.

On the other hand, as a mathematician one may ask whether, in contrast to the
usual perturbation theory results [16], small change of the coupling constant can have
a profound influence on the spectrum. Posed like that the answer is trivial: consider
the one-dimensional Schrödinger operator

Hλ = − d2

dx2
+ λx2 ;

it is obvious that for all λ = ω2 > 0, the spectrum of such an operator is purely
discrete, σ(Hλ) = {(2n + 1)ω : n = 0, 1, . . . } while for λ = 0 and λ < 0, we have
σ(Hλ) = [0,∞) and σ(Hλ) = R, respectively. A much more subtle question is
whether similar things could happen if the potential modification concerns a small
part of the configuration space, or even a “set of zero measure”. Smilansky model
and its various modifications we are going to discuss provide an affirmative answer.

Let us describe briefly the contents of the paper. In the next section, we summarize
the known results about the Smilansky–Solomyak model and present a numerical
method to analyze its discrete spectrum. Section2.3 is devoted to discussion of vari-
ous modifications of the model consisting, in particular, of replacing the δ interaction
“channel” by a regular potential one or, on the contrary, by the more singular δ′ inter-
action, or adding a homogeneous magnetic field. In Sect. 2.4, we discuss another
model exhibiting similar behavior, a two-dimensional Schrödinger operator with the
potential consisting of the x p y p part amended by a negative radially symmetric term.
In Sect. 2.5, we return to the original Smilansky–Solomyak model and show that it
also has a rich resonance structure. Finally, in conclusion we will mention several
open questions.



2 Schrödinger Operators with a Switching Effect 15

2.2 Smilansky–Solomyak Model

Let us first describe the model proposed by Uzy Smilansky in [23] which in its
simplest form describes a one-dimensional system interacting with a caricature heat
bath represented by a single harmonic oscillator. Its mathematical properties and
various extensions were subsequently analyzed by Michael Solomyak—let us pay
memory to this great mathematician who left us 2 years ago—and coauthors in [6, 7,
19, 21, 24–26] from the spectral point view, the corresponding time evolution was
discussed in [13, 14].

With this history of the problem in mind, it is appropriate to speak of the
Smilansky–Solomyak model. At the same time, it is useful to note that while mathe-
matically it is the same thing, physically theremay be twoways inwhich the system is
understood. In the original Smilansky treatment, one considers two one-dimensional
systems coupled mutually while Solomyak et al. interpreted it in PDE terms as being
described by a two-dimensional Schrödinger operator,

HSm = − ∂2

∂x2
+ 1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x), (2.1)

on L2(R2); it is easy to see that that one may consider λ ≥ 0 only without loss of
generality. We will stick here to the latter interpretation because it opens the way to
a wider class of possible generalizations.

Let us summarize the known results about spectral properties of the operator (2.1):

• The existence of a spectral transition: if |λ| >
√
2 the particle can escape to infinity

along the singular “channel” in the y direction. In spectral terms, this corresponds
to the switch from a positive spectrum to a below unbounded one at |λ| = √

2. At
the heuristic level, the mechanism of this spectral transition is easy to understand:
we have an effective variable decoupling far from the x-axis and the oscillator
potential competes there with the δ interaction eigenvalue − 1

4λ
2y2.

• The eigenvalue absence: for any λ ≥ 0 there are no eigenvalues ≥ 1
2 . If |λ| >

√
2,

the point spectrum of HSm is empty.
• The existence of eigenvalues: in the subcritical case, 0 < |λ| <

√
2, we have

HSm ≥ 0. The point spectrum is then non-empty and finite, and

N ( 12 , HSm) ∼ 1
4
√
2(μ(λ)−1)

(2.2)

holds as λ → √
2−, where μ(λ) := √

2/λ.
• The absolute continuity: in the supercritical case, |λ| >

√
2, we have σ(HSm) =

σac(HSm) = R.

We are not going to give proofs of these claims referring to the papers quoted
above, instead we will show how the discrete spectrum can be found numerically
following [10] which can provide additional insights. At the time, however, the
method we use, rephrasing the task as a spectral problem for Jacobi matrices, is the
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core of the proofs done by Solomyak et al. providing thus a feeling of what is the
technique involved.

In the halfplanes ±x > 0 the wave functions can be expanded using the “trans-
verse” base spanned by the functions

ψn(y) = 1√
2nn!√π

e−y2/2Hn(y) (2.3)

corresponding to the oscillator eigenvalues n + 1
2 , n = 0, 1, 2, . . . . Furthermore, one

can make use of the mirror symmetry with respect to x = 0 and divide Hλ into the
trivial odd part H (−)

λ and the even part H (+)
λ which is equivalent to the operator on

the halfplane, L2(R × (0,∞)), with the same symbol determined by the boundary
condition

fx (0+, y) = 1

2
αy f (0+, y). (2.4)

We substitute the Ansatz

f (x, y) =
∞∑

n=0

cn e
−κn xψn(y) (2.5)

with κn :=
√

n + 1
2 − ε into (2.4); this yields for the sought solution with the energy

ε the equation
Bλc = 0, (2.6)

where c is the coefficient vector and Bλ is the operator in �2 with the representation

(Bλ)m,n = κnδm,n + 1

2
λ(ψm, yψn). (2.7)

It is obvious that the matrix is in fact tridiagonal because

(ψm, yψn) = 1√
2

(√
n + 1 δm,n+1 + √

n δm,n−1
)
. (2.8)

To solve Eq. (2.6) numerically, one truncates the matrix (2.7). The size depends on λ,
the most difficult is the weakly bound state corresponding to small λ where the trun-
cation size should be of the order of 104 to achieve a numerically stable solution. The
result is plotted in Fig. 2.1. In coincidence with the theoretical result quoted above,
the discrete spectrum is non-empty for nonzero λ. It may seem that it consists of a sin-
gle eigenvalue but a closer look shows that the second one appears at λ ≈ 1.387559;
the next thresholds are 1.405798, 1.410138, 1.41181626, 1.41263669, . . . . To have
a better insight, one can plot the discrete spectrum near the critical coupling in the
semilogarithmic scale as shown in Fig. 2.2. We see that in this regime, many eigen-
values appear which gradually fill the interval (0, 1

2 ) as the critical value λ = √
2 is
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Fig. 2.1 Discrete spectrum
of HSm as a function of the
coupling constant λ

λ
0 0.5 1

E
n

0

0.2

0.4

Fig. 2.2 Discrete spectrum
of HSm near the critical value
of the coupling constant

approached. Figure2.3 shows a comparison of their number indicated by dots with
the asymptotics (2.2); we see a perfect fit. The numerical solution also indicates other
properties. For instance, plotting in Fig. 2.4 the eigenvalue curve for small values of
λ in the logarithmic scale, we see that it behaves as E1(λ) = 1

2 − cλ4 + o(λ4) as
λ → 0, with c ≈ 0.0156. In fact, the coefficient value can be found exactly to be
c = 0.015625. To this aim, we write Eq. (2.6) explicitly in components as

√
μλcλ

0 + λ

2
√
2

cλ
1 = 0,

(2.9)√
kλ

2
√
2

cλ
k−1 + √

k + μλcλ
k +

√
k + 1λ

2
√
2

cλ
k+1 = 0, k ≥ 1 ,

where μλ := 1
2 − E1(λ) and cλ = {cλ

0 , cλ
1 , . . . } is the corresponding normalized

eigenvector of Bλ. Using the above relations and simple estimates, we get from
here ∞∑

k=1

|cλ
k |2 ≤ 3

4
λ2 and cλ

0 = 1 + O(λ2) (2.10)

as λ → 0+, hence we have in particular cλ
1 = λ

2
√
2

+ O(λ2). The first of the above

relations then gives μλ = λ4

64 + O(λ5) as λ → 0+, in other words
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Fig. 2.3 Number of eigenvalues of HSm versus the asymptotics (2.2)

Fig. 2.4 Weak coupling asymptotics of HSm

E1(λ) = 1

2
− λ4

64
+ O(λ5), (2.11)

however, the mentioned coefficient 0.015625 is nothing else than 1
64 . Furthermore

with the knowledge of the solution to (2.6), we can return to (2.5) and compute the
eigenfunctions. In Fig. 2.5, we plot them for a value close to the critical one, namely
λ = √

2 − 0.0086105. As expected, they are stretched along the axis of the oscillator
“channel” and the part of the y-axis where the singular interaction is attractive; the
curves on the left side show the y-cuts of the eigenfunctions. The ground state has
no zeros and the number of the nodal lines of the nth eigenfunction, n = 1, 2, . . . ,
is [ 12n], thus only the first excited state is Courant sharp.

2.3 Variations on the Model

We have mentioned in the introduction that various extensions of the Smilansky–
Solomyak model described above had been worked out, for instance, using a “heat
bath” consisting of more than one oscillator, replacing the line by a loop or a graph,
etc. We will not discuss them, instead, we will analyze several other modifications.
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Fig. 2.5 The eigenfunctions of HSm for λ = 1.4128241

2.3.1 Regular Version of the Model

The first one is motivated by the question of whether one can observe a similar effect
for Schrödinger operators with the δ interaction replaced by a regular potential.
It was asked by Italo Guarneri in [13] with a clear motivation: he employed (a
modification of) the system described above as a model of the measuring process in
quantummechanics inwhich the supercritical behavior is interpreted as awave packet
reduction. This naturally inspires the question of how the corresponding classical
dynamics would look like, and this in turn requires a setting in which the problem
can be analyzed in terms of classical mechanics; the first step in this direction has
been made in the recent paper [14].

We observe first that the coupling cannot be now linear in y and the profile of the
channel has to change with the variable y. We replace the δ by a family of shrinking
potentials, the mean of which matches the δ coupling constant,

∫
U (x, y) dx ∼ y.

This can be achieved, e.g., by choosing U (x, y) = λy2V (xy) for a fixed function V .
This motivates us to investigate the following operator on L2(R2),

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 − λy2V (xy), (2.12)
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where ω, a are positive constants and the potential V is a nonnegative function
with bounded first derivative and supp V ⊂ [−a, a]. By Faris–Lavine theorem H is
essentially self-adjoint (e.s.a. in the following) on C∞

0 (R2)—cf. [20, Thms. X.28
and X.38]—and the same argument can be applied to various generalizations of the
operator (2.12), with more than one “decay” channel, periodicity in the variable x ,
etc.

To state the result we need a one-dimensional comparison operator L = LV ,
namely

L = − d2

dx2
+ ω2 − λV (x) (2.13)

on L2(R) with the domain H 2(R). What matters is the sign of its spectral threshold;
since V ≥ 0, the latter is a monotonous function of λ and there is a λcrit > 0 at which
the sign changes. First of all, we have the following result [2].

Theorem 2.1 Under the stated assumption, the spectrum of the spectrum of H is
bounded from below provided the operator L is positive.

Sketch of the proof. The claim can be proved using Neumann bracketing, imposing
additional boundary conditions at the lines y = ± ln n, n = 2, 3, . . . , and showing
that the components of H in these strips have a uniform lower bound by an operator
unitarily equivalent to L , cf. [2] for details. �

One the other hand, in the supercritical case when the transverse channel principal
eigenvalue dominates over the harmonic oscillator contribution, the spectral behavior
changes [2].

Theorem 2.2 Under our hypotheses, σ(H) = R holds if inf σ(L) < 0.

Sketch of the proof. The argument relies on a choice of an appropriateWeyl sequence:
we have to find {ψk}∞k=1 ⊂ D(H) such that ‖ψk‖ = 1 which contains no convergent
subsequence, and at the same time

‖Hψk − μψk‖ → 0 as k → ∞. (2.14)

Specifically, we choose

ψk(x, y) = h(xy) eiεμ(y)χk

(
y

nk

)
+ f (xy)

y2
eiεμ(y)χk

(
y

nk

)
,

where εμ(y) := ∫ y√|μ|
√

t2 + μ dt , h is the normalized ground-state eigenfunction of

L , furthermore f (t) := − i
2 t2h(t), and finally, χk are suitable, compactly supported

mollifier functions, cf. [2] for details. �
The regular version shares also other properties with the original Smilansky–

Solomyak model, namely [3]
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• in the subcritical case, inf σ(L) > 0, we have σess(H) = [ω,∞) and a non-empty
σdisc(H) ⊂ [0, ω) and

• in the critical case, inf σ(L) = 0, we have σ(H) = σess(H) = [0,∞).

2.3.2 Magnetic Version of the Model

One can also consider another modification of the Smilansky–Solomyak model in
which the system is placed into a homogeneous magnetic field perpendicular to the
plane representing the configuration space, described thus by the Hamiltonian

H = (i∇ + A)2 + ω2y2 + λyδ(x), (2.15)

where A is a suitable vector potential; note that in this case the original Smilansky
interpretation is lost. The spectral properties are similar, in the subcritical casewenow
have σess(H(A)) = [√B2 + ω2,∞) but again a sufficiently small nonzero λ gives
rise to a discrete spectrum which fills the interval [0,√B2 + ω2) as |λ| approaches
the critical coupling 2ω, and above this value the spectrum fills the whole real line.
The effect of the magnetic field on the regular version of the model is similar, cf. [4]
for details.

2.3.3 The δ′ Version of the Model

One can also say that the spectral transition effect is robust. To illustrate this claim,
let us consider the version of the model in which the interaction is replaced by a more
singular one, specifically the one known as δ′ [1]. The Hamiltonian then corresponds
to the differential expression

Hβψ(x, y) = −∂2ψ

∂x2
(x, y) + 1

2

(
−∂2ψ

∂y2
(x, y) + y2ψ(x, y)

)
(2.16)

with the domain consisting of ψ ∈ H 2((0,∞) × R) ⊕ H 2((−∞, 0) × R) such that

ψ(0+, y) − ψ(0−, y) = β

y

∂ψ

∂x
(0+, y) ,

∂ψ

∂x
(0+, y) = ∂ψ

∂x
(0−, y). (2.17)

The problem can be treated by a modification of the methods employed in [6, 7,
19, 21, 24–26] leading to the following results which we present referring to [9] for
the proofs. Let mac be the multiplicity of the absolutely continuous spectrum.

Theorem 2.3 The spectrum of operator H0 is purely ac, σ(H0) = [ 12 ,∞) with the

multiplicity mac(E, H0) = 2n for E ∈ (n − 1
2 , n + 1

2 ), n ∈ N. For β > 2
√
2 the ac
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spectrum of Hβ coincides with σ(H0). For β ≤ 2
√
2 there is a new branch of contin-

uous spectrum added to the spectrum; for β = 2
√
2 we have σ(Hβ) = [0,∞) and

for β < 2
√
2 the spectrum covers the whole real line.

We note in passing that with the standard convention used here, small values of the
parameter β represent a strong coupling.

Theorem 2.4 Assumeβ ∈ (2
√
2,∞), then the discrete spectrum of Hβ isnon-empty

and lies in the interval (0, 1
2 ). The number of eigenvalues is approximately given by

1

4

√
2

(
β

2
√
2

− 1
) as β → 2

√
2 + .

Theorem 2.5 For large enough β there is a single eigenvalue which asymptotically
behaves as

E1(β) = 1

2
− 4

β4
+ O

(
β−5

)
.

2.4 Another Model

The Smilansky–Solomyak model is not the only system in which the effect of an
abrupt spectral transition can be observed. Now we are going to describe another
model in which the transition is evenmore dramatic as a switch from a purely discrete
spectrum in the subcritical case to thewhole real line in the supercritical one.Tobegin,
recall that there are situationswhereWeyl’s law fails and the spectrum is discrete even
if the classically allowed phase-space volume is infinite. A classical example of such
a situation is due to [22] a two-dimensional Schrödinger operator with the potential
V (x, y) = x2y2, or more generally, V (x, y) = |xy|p with p ≥ 1. Similar behavior
can also be observed for Dirichlet Laplacians in regions with hyperbolic cusps—see
[12] for more recent results and a survey; recall also that using the dimensional-
reduction technique of Laptev andWeidl [17], one can prove tight spectral estimates
for such operators.

A common feature of these models is that the particle motion is confined into
channels narrowing toward infinity; the increasing “steepness” of those “walleys”
is responsible for the discreteness of the spectrum. This may remain true even for
Schrödinger operatorswhose potential are unbounded from below inwhich a classical
particle can escape to infinity with an increasing velocity. The situation changes,
however, if the attraction is strong enough; recall that a similar behavior was noted
already in [27]. As an illustration, let us thus analyze the following class of operators
on L2(R2),

L p(λ) : L p(λ)ψ = −Δψ + (|xy|p − λ(x2 + y2)p/(p+2)
)
ψ, p ≥ 1, (2.18)
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Fig. 2.6 γp as a function of
p in the semilogarithmic
scale
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where (x, y) are the standard Cartesian coordinates in R2 and the parameter λ in the
second term of the potential is nonnegative; unless its value is important we write it
simply as L p. Note that

2p
p+2 < 2 so the operator is e.s.a. onC∞

0 (R2) by Faris–Lavine
theorem mentioned above; the symbol L p or L p(λ) will always mean its closure.
Needless to say, the power in the last term is chosen in a way that makes it possible
to play with the balance between the repulsion coming from the narrowing channels
and attraction coming from the negative potential part.

Let us start with the subcritical case which occurs for sufficiently small values of
λ. To characterize the smallness quantitatively, we need an auxiliary operator which
will be an (an)harmonic oscillator Hamiltonian on line,

H̃p : H̃pu = −u′′ + |t |pu (2.19)

on L2(R)with the standard domain. The principal eigenvalue γp = inf σ(Hp) equals
one for p = 2; for p → ∞ it becomes γ∞ = 1

4π
2; it smoothly interpolates between

the two values; a numerical solution gives true minimum γp ≈ 0.998995 attained at
p ≈ 1.788; in the semilogarithmic scale the plot of γp looks as shown in Fig. 2.6

As we have said, the spectrum is bounded from below and discrete if λ = 0; our
first claim [8] is that this remains to be the case provided λ is small enough.

Theorem 2.6 For anyλ ∈ [0, λcrit], whereλcrit := γp, the operator L p(λ) is bounded
from below for any p ≥ 1; if λ < γp its spectrum is purely discrete.

Sketch of the proof. Let λ < γp. By the minimax principle [20, Sect. XIII.1], we need
to estimate L p from below by a self-adjoint operator with a purely discrete spectrum.
To construct it, we employ bracketing imposing additional Neumann conditions at
concentric circles of radii n = 1, 2, . . . . In the estimating operators, the variables
decouple asymptotically and the spectral behavior is determined by their angular
parts; to prove the discreteness one has to check that the lowest eigenvalues in the
annuli tend to infinity as n → ∞. For λ = γp this is no longer true but the sequence
remains bounded from below. �
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A similar argument can be used in the supercritical case with a few differences:

• now we seek an upper bound to L p(λ) by a below unbounded operator, hence we
impose Dirichlet conditions on concentric circles;

• the estimating operators have now nonzero contributions from the radial part,
however, those are bounded by π2 independently of n; and

• the negative λ-dependent term now outweights the anharmonic oscillator part so
that for the annuli operators LD

n,p, we have inf σ(LD
n,p) → −∞ as n → ∞.

This yields the following conclusion [8]:

Proposition 2.1 The spectrum of L p(λ), p ≥ 1 , is unbounded below from if
λ > λcrit.

One can prove a stronger result, however, using a suitable Weyl sequence con-
structed in a way similar to that employed in the proof of Theorem 2.1, it is possible
to make the following conclusion [5].

Theorem 2.7 σ(L p(λ)) = R holds for any λ > γp and p > 1.

In the subcritical case, one can derive various results concerning properties of the
discrete spectrum. Let us first mention an inequality obtained in a variational way

for the proof of which we refer to [8]. We define α := 1
2

(
1 + √

5
)2 ≈ 5.236 > γ −1

p

and denote by {λ j,p}∞j=1 the eigenvalues of L p(λ) arranged in the ascending order,
then we can make the following claim.

Proposition 2.2 To any nonnegative λ < α−1 ≈ 0.19, there exists a positive con-
stant C p depending on p only such that the following estimate is valid,

N∑
j=1

λ j,p ≥ C p(1 − αλ)
N (2p+1)/(p+1)

(lnp N + 1)1/(p+1)
− cλ N , N = 1, 2, . . . , (2.20)

where c = 2
(

α2

4 + 1
) ≈ 15.7.

A similar, and even simpler result can be derived for regions with four hyper-
bolic “horns” such as D = {(x, y) ∈ R

2 : |xy| ≤ 1} which can be formally viewed
as the limit of p → ∞ of our model, and more rigorously they are described by the
Schrödinger operator

HD(λ) : HD(λ)ψ = −Δψ − λ(x2 + y2)ψ (2.21)

with a parameter λ ≥ 0 and Dirichlet condition on the boundary ∂ D. Following [8],
one can make the following claim.

Theorem 2.8 The spectrum of HD(λ) is discrete for any λ ∈ [0, 1) and the spectral
estimate
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N∑
j=1

λ j ≥ C(1 − λ)
N 2

1 + ln N
N = 1, 2, . . . , (2.22)

holds true with a positive constant C.

Sketch of the proof. One can check that for any u ∈ H 1 satisfying the condition
u|∂ D = 0 the inequality

∫
D
(x2 + y2)u2(x, y) dx dy ≤

∫
D

|(∇ u) (x, y)|2 dx dy (2.23)

is valid which in turn implies HD(λ) ≥ −(1 − λ)ΔD where ΔD is the Dirichlet
Laplacian on the region D. The result then follows from the eigenvalue estimates on
ΔD known from [15, 22]. �

Wewill not sketch the proof of Proposition 2.2 because we are able to demonstrate
a substantially stronger result of Lieb–Thirring type [5].

Theorem 2.9 Given λ < γp, let λ1 < λ2 ≤ λ3 ≤ · · · be eigenvalues of L p(λ). Then
for Λ ≥ 0 and σ ≥ 3/2 the following inequality is valid,

tr
(
Λ − L p(λ)

)σ

+ (2.24)

≤ C p,σ

(
Λσ+(p+1)/p

(γp − λ)σ+(p+1)/p
ln

(
Λ

γp − λ

)
+ C2

λ

(
Λ + C2p/(p+2)

λ

)σ+1
)

,

where the constant C p,σ depends on p and σ only and

Cλ := max

{
1

(γp − λ)(p+2)/(p(p+1))
,

1

(γp − λ)(p+2)2/(4p(p+1))

}
. (2.25)

Sketch of the proof. By minimax principle, we can estimate L p(λ) from below by a
self-adjoint operator with a purely discrete negative spectrum and derive a bound to
the momenta of the latter. We split the plane R2 again, now in what one could call a
“lego” fashion, cf. Fig. 2.8, using a monotone sequence {αn}∞n=1 such that αn → ∞
and αn+1 − αn → 0 holds as n → ∞. Estimating the “transverse” variables by their
extremal values, we reduce the problem essentially to assessment of the spectral
threshold of the anharmonic oscillator with Neumann cuts. We derive easily the
following asymptotic result.

Lemma 2.1 Let lk,p = − d2

dx2 + |x |p be the Neumann operator on [−k, k], : k > 0.
Then

inf σ
(
lk,p

) ≥ γp + o
(
k−p/2

)
as k → ∞.

In fact the error is exponentially small, but the above relation is sufficient for our

purposes. Combining it with the “transverse” eigenvalues
{

π2k2

(αn+1−αn)2

}∞
k=0

, using
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Fig. 2.7 Bracketing in the
proof of Theorem 2.9
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Lieb–Thirring inequality for this situation [18], and choosing properly the sequence
{αn}∞n=1, cf. [5], we are able to prove the claim. �

Let us finally look at the critical case, L := −Δ + |xy|p − γp(x2 + y2)p/(p+2).
The essential spectrum is as expected [5] as one can check easily using properly
chosen Weyl sequences.

Theorem 2.10 We have σess(L) ⊃ [0,∞).

The question about the negative spectrum is more involved. First of all, we have
the following result [5] which can be proved by the same technique as Theorem 2.9
using another “lego bracketing” estimate.

Theorem 2.11 The negative spectrum of L is discrete.

For the moment, however, we are unable to prove that σdisc(L) is non-empty. We
conjecture that it is the case having a strong numerical evidence for that. For simplicity
consider the case p = 2.We restrict the operator to a circle of radius R with Dirichlet
or Neumann boundary and compute the first two eigenvalues in both cases; they are
plotted inFig. 2.8 as functions of the cut-off radius.By [20, Sect.XIII.15], the possible
negative eigenvalues are squeezed between those curves. We see that the bounds
become very tight for R � 7 and indicate that the critical problem has for p = 2 an
eigenvalue E1 ≈ −0.18365. Furthermore, σdisc(L) consists of a single point because
the second lower (Neumann) estimate is in positive values for R large enough. A
similar numerical analysis also suggests the ground state existence for other values
of p but it becomes unreliable for p � 20. We conjecture that the discrete spectrum
is nonvoid for all p > 1 but empty for hyperbolic regions, p = ∞.
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Fig. 2.8 The
Dirichlet–Neumann estimate
of the spectrum in the critical
case for p = 2

Fig. 2.9 The ground state
eigenfunction in the critical
case for p = 2

We are able to get in a numerical way an idea about the ground state eigenfunction,
again in the case p = 2, as plotted in Fig. 2.9 based on the solution in the circle with
either boundary condition; we note that with the R = 20 cutoff, the Dirichlet and
Neumann ones are practically identical which is not surprising since one expects a
superexponential decay along the axes. The outer level in the plot marks the 10−3

value.

2.5 Resonances in Smilansky–Solomyak Model

The models we consider have other interesting properties. Let us return to the setting
of Sect. 2.2 and show that the system exhibits a rich resonance structure; we refer to
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[10, 11] for a detailed discussion of these phenomena. To begin with, we have to say
which resonances we speak about. There are resolvent resonances associated with
poles in the analytic continuation of the resolvent over the cut(s) corresponding to the
continuous spectrum, scattering resonances identified with complex singularities of
the scattering matrix.

The former are found using the same Jacobi matrix problem as before, of course,
this time with a “complex energy”. Let us look at the latter. Suppose the incident
wave comes in the mth channel from the left. We use the Ansatz

f (x, y) =
⎧⎨
⎩

∑∞
n=0

(
δmne−i pxψn(y) + rmn ei x

√
p2+εm−εn ψn(y)

)
∑∞

n=0tmn e−i x
√

p2+εm−εn ψn(y)
(2.26)

for∓x > 0, respectively, where εn = n + 1
2 and the incident wave energy is assumed

to be p2 + εm =: k2. It is straightforward to compute from here the boundary values
f (0±, y) and f ′(0±, y). The continuity requirement at x = 0 together with the
orthonormality of the basis {ψn} yields

tmn = δmn + rmn. (2.27)

Furthermore, we substitute the boundary values coming from the Ansatz (2.26) into

f ′(0+, y) − f ′(0−, y) − λy f (0, y) = 0 (2.28)

and integrate the obtained expression with
∫
dy ψl(y). This yields

∞∑
n=0

(
2pnδln − iλ(ψl, yψn)

)
rmn = iλ(ψl , yψm), (2.29)

where we have denoted pn = pn(k) := √
k2 − εn . In particular, poles of the scatter-

ing matrix are associated with the kernel of the �2 operator on the left-hand side. In
particular, putting l = m we obtain essentially the same condition we had before,
cf. (2.6) and (2.7), thus we arrive at the following conclusion.

Proposition 2.3 The resolvent and scattering resonances coincide in the Smilansky–
Solomyak model.

Let us add a few comments:

• The on-shell scattering matrix for the initial momentum k is a ν × ν matrix where
ν := [

k2 − 1
2

]
whose elements are the transmission and reflection amplitudes; they

have common singularities.
• The resonance condition may have (and in fact it has) numerous solutions, but
only those “not far from the physical sheet” are of interest.
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Fig. 2.10 Resonance trajectories as the coupling constant λ varies from zero to
√
2

• The Riemann surface of energy has an infinite number of sheets determined by the
choices branches of the square roots. The interesting resonances on the nth sheet
are obtained by flipping sign of the first n − 1 of them.

The weak-coupling analysis follows the route as for the discrete spectrum,
cf. (2.9)–(2.11) above; in fact it includes the eigenvalue case if we stay on the “first”
sheet. It shows that for small λ, a resonance pole splits of each threshold according
to the asymptotic expansion

μn(λ) = −λ4

64

(
2n + 1 + 2in(n + 1)

) + o(λ4). (2.30)

Hence the distance for the corresponding threshold is proportional to λ4 and the
trajectory asymptote is the “steeper” the larger n is. However, one can solve the
condition (2.29) numerically [10]. This allows us to go beyond the weak coupling
regime and the picture becomes more intriguing as shown in Fig. 2.10. The picture
shows clearly the asymptotes of the resonance trajectories for small values λ when
the poles split from the channel threshold given by the oscillator eigenvalues. For
stronger coupling the behavior changes and eventually the poles return to the real
axis as λ approaches the critical value. What is even more interesting, the numerical
solutions reveals other, “non-threshold” resonances at the second and third Riemann
sheet, indicated by dotted lines that appear at λ = 1.287 and λ = 1.19, respectively.

2.6 Concluding Remarks

While we have been able to demonstrate many properties of the models under con-
sideration, various mathematical questions remain open, for instance,
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• in the original Smilansky–Solomyak model and its δ′ modification of Sect. 2.3.3,
we know that the essential spectrum is absolutely continuous. We expect that this
will also be the case for the models with regular potential channels but this remains
to be demonstrated.

• in the regular Smilansky–Solomyak model, the “escape channel” may have more
than one mode provided #σdisc(L) > 1 holds for the operator (2.13). In this situa-
tion, it is natural to ask how the spectral multiplicity changes with λ.

• many questions concern resonances in the Smilansky–Solomyak model. One
would like to know, inter alia, what is their number in a given part of the complex
plane, whether there are resonance-free zones for a fixed λ, or whether all the
poles will eventually return to the real axis as λ increases. Furthermore, we are
interested in the mechanism which produces the “non-threshold” resonances and
the coupling constant values at which they appear. Finally, resonance effects are
also expected to occur in the regular version of the model.

From the physical point of view the most interesting question concerns the classical
motion in the regular model, magnetic and nonmagnetic, as well as in the model
of Sect. 2.4. We have mentioned in the opening of Sect. 2.3.1 that a step in this
direction was made in [14], however, the importance of the question goes beyond
the motivation of that paper dealing with modeling quantum measurements as it
may offer a new and interesting insight into the quantum-classical correspondence
in unusual situations we have discussed here.
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Chapter 3
Distribution Theory by Riemann
Integrals

Hans G. Feichtinger and Mads S. Jakobsen

Abstract It is the purpose of this article to outline a syllabus for a course that can
be given to engineers looking for an understandable mathematical description of the
foundations of distribution theory and the necessary functional analytic methods.
Arguably, these are needed for a deeper understanding of basic questions in signal
analysis. Objects such as the Dirac delta and the Dirac comb should have a proper
definition, and it should be possible to explain how one can reconstruct a band-
limited function from its samples by means of simple series expansions. It should
also be useful for graduate mathematics students who want to see how functional
analysis can help to understand fairly practical problems, or teachers who want to
offer a course related to the “Mathematical Foundations of Signal Processing” at
their institutions. The course requires only an understanding of the basic terms from
linear functional analysis, namely Banach spaces and their duals, bounded linear
operators, and a simple version of w∗-convergence. As a matter of fact, we use a set
of function spaces which is quite different from the collection of Lebesgue spaces
(L p(Rd), ‖.‖p) used normally. We thus avoid the use of the Lebesgue integration
theory. Furthermore, we avoid topological vector spaces in the form of the Schwartz
space. Although practically all the tools developed and presented can be realized in
the context of LCA (locally compact abelian) groups, i.e., in the most general setting
where a (commutative) Fourier transform makes sense, we restrict our attention
in the current presentation to the Euclidean setting, where we have (generalized)
functions over R

d . This allows us to make use of simple BUPUs (bounded, uniform
partitions of unity), to apply dilation operators and occasionally to make use of
concrete special functions such as the (Fourier invariant) standard Gaussian, given
by g0(t) = exp(−π |t |2). The problems of the overall current situation, with the
separation of theoretical Fourier analysis as carried out by (pure) mathematicians
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and Applied Fourier analysis (as used in engineering applications) are getting bigger
and bigger and therefore courses filling the gap are in strong need. This note provides
an outline and may serve as a guideline. The first author has given similar courses
over the past years at different schools (ETH Zürich, DTU Lyngby, TUMunich, and
currently Charles University Prague) and so one can claim that the outline is not just
another theoretical contribution to the field.

Keywords Distributions · Banach Gelfand Triple · Kernel theorem · Wiener’s
algebra · Feichtinger’s algebra · Distributional convergence · Kohn–Nirenberg
symbol · Spreading function · Impulse response · Transfer function · Digital signal
processing · Fast Fourier transform · Riemann integral

3.1 Overall Motivation

3.1.1 Psychological Aspects

It is not a secret that the way how engineers or physicists are describing “realities”
is quite different from the way mathematicians want to describe the same thing. The
usual agreement is that applied scientists are motivated by the concrete applications
and therefore do not need to be so pedantic in the description, because they have a
“better feeling” about what is true and what is not true. After all, it does not pay to
be too pedantic if one wants to make progress.

On the other hand, mathematicians have a tendency to be too formal, to consider
formal correctness of a statement as more important than the possible usefulness of
a statement, simply because usefulness is not a category in mathematical sciences.
Applicability by itself is not a criterion for importantmathematical resultswhichoften
go for the details of a structure without taking care of its relevance for applications.
Sometimes this “abstract viewpoint” is very helpful, because it reveals important,
underlying structures or allows finding connections between fields which appear to
have very little in common at first sight. However, in the right (abstract) mathematical
model, they appear to be almost identical. Such observations allow to sometimes
transfer information and insight, or computational rules established in one area to
another area, which certainly is not possible if only one single application is in the
focus.

There are different ways to view these discrepancies. What we could call the neg-
ative attitude is to say as a mathematician: You know, engineers and physicists are
extremely sloppy, you never can trust their formulas. They claim to derive mathe-
matical identities by using divergent integrals and so on, so one has to be careful in
taking over what they “prove”. In the same way, the engineer might say: You know,
mathematicians are pedantic people who care only about technical details and not
for the content of a formula. Whenever they claim that our formulas are not correct,
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they find after some while a way to produce more theory in order to then prove that
our formulas have been correct after all.

A more positive and ambitious approach would be to agree from both sides on a
few facts which are on average quite valid:

• Anymathematical statement should, at least at the end, have a propermathematical
justification;

• Formulas developed from applied scientists may, at least at the beginning, come
from intuition or experiments, so they might be valid under particular conditions
or under implicit assumptions (which are often clear from the physical context,
e.g., positivity assumptions, etc.);

• For the progress new formulas might be more important than a refined analysis
of established formulas, but the goal is to have useful formulas whose range of
applications (the relevant assumptions) are well understood; it is important to
know when there is a guarantee that the formula can be applied (because there is
proof), and when one might be at risk of getting a wrong result (even if it is with
low probability);

• This goal requires cooperation between applied scientists and mathematicians;
usually, the first group is better trained in establishing unexplored problems while
the second is expected to provide a theoretical setup which ensures that things are
under control, in terms of correctness of assumptions and conclusions. Obviously,
in an ideal world one group, can and should learn a lot from the other.

So in the cooperation between the two communities, mathematicians should learn
more about the goals and the motivation and, for example, engineers and physicists
might learn that it is also beneficial to cooperate with mathematicians and to have
clear guidelines concerning the correct use of formulas and mathematical identities
and where perhaps caution is in place.

3.1.2 The Search for a Banach Space of Test Functions

The overall goal of this paper is to propose a path that allows us to introduce a family
of generalized functions which is large enough to contain most of those generalized
functions which are relevant in the context of (abstract or applied) Fourier analysis
and for engineering applications. Specifically Dirac measures and Dirac combs. We
will demonstrate that this is possible using modest tools from functional analysis.

Before going to the technical side of the exposition, let us motivate the use of
dual spaces and functional analytic methods, and shed some light on the idea of
distributions. Let us start with some observations:

• First of all, it is clear that generalized functions should form a linear space so that
linear combinations of those objects (sometimes called signals) can be formed,
and under certain conditions, even limits, and hence infinite series;
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• Second, we would like to have “ordinary functions” included in a natural way
within the world of generalized functions, so we need a natural embedding of as
many linear spaces of ordinary functions as possible;

• As a third variant we can think of generalized functions as a kind of “limits” of
ordinary functions, but in a specific sense (and ideally the convergence should also
be allowed to be applied to the generalized functions);

• Finally, there are many operations that can be carried out for (certain) functions,
such as translation, convolution, dilation, Fourier transform, and we will go for a
setting where the approximation properties of the previous item allow extending
these operations to the linear space of generalized functions.

In order to explain our understanding of “distribution theory”, let us first formulate
again some general thoughts. In fact it is not surprising that we have to use functional
analytic methods in this context because after all at least for continuous variables,
signal spaces tend to be not finite dimensional anymore1 and so we have to resort to
methods that allow us to describe the convergence of infinite series. The simplest way
to do this is to assume that one has a linear space and a normed space, (B, ‖ · ‖B). If
one has, in addition, a kind of multiplication (a, b) �→ a • b (with the usual rules),
one speaks of normed algebras, if

‖b1 • b2‖B ≤ ‖b1‖B · ‖b2‖B for all b1, b2 ∈ B.

Among the normed spaces those which are complete, the Banach spaces are the
most important ones, because like R itself with the mapping x �→ |x | one has (by
definition) completeness, meaning that every Cauchy sequence is convergent. This
is known to be equivalent to the fact that every absolutely convergent sequence with∑∞

k=1 ‖bk‖B < ∞, is convergent so that the partial sums
∑n

k=1 bk have a limit (in
(B, ‖ · ‖B)). Therefore the infinite sum is (unconditionally, or independent of the
order) well- defined, and thus the symbol

∑∞
k=1 bk is meaningful in this situation.

The most important tool within the linear functional analysis is the linear func-
tionals, or bounded linear mappings from B into C (or into R for the case of real
vector spaces). Such a functional σ has to satisfy two properties:

1. Linearity: σ(αb1 + βb2) = ασ(b1) + βσ(b2), b1,b2 ∈ B, α, β ∈ C.

2. Boundedness: There exists c > 0 such that |σ(b)| ≤ c‖b‖B, ∀b ∈ B.

For any given normed space (B, ‖ · ‖B), the collection of all such bounded linear
functionals constitutes the dual space, denoted by B ′. It carries a norm, given by

‖σ‖B ′ := sup
‖b‖B≤1

|σ(b)|.

1Commonly the term “infinite dimensional” is used, and we will also use it later on, but this
expression wrongly suggests that instead of a finite basis one just has an infinite basis and this is
not what we should expect or use!
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With this norm, B ′ turns out to be a Banach space.2 One can think of the dual space
as the collection of all coordinate functionals (describing the contribution of a fixed
element in a basis) over all finite dimensional subspaces of B, thus capturing all the
information about the underlying normed space.

In addition to norm convergence on B ′, we will use what is called the w∗-
convergence. It can be described for sequences as convergence in action.

For all practical purposes,3 the following definition is a simple way of describing
what is called w∗-convergence.

Definition 3.1 A sequence of linear functionals (σn)n≥1 converges in action or in
the weak∗-sense to some σ0 ∈ B ′ if we have

lim
n→∞ σn(b) = σ0(b) for all b ∈ B. (3.1)

By the Banach–Steinhaus Theorem, the convergence for all b ∈ B implies bound-
edness, i.e., supn≥1 ‖σ‖B ′ < ∞, and that conversely it is (under this condition!)
enough to claim that the limits on the left-hand side exist for any b ∈ B, thus defining
the functional σ0. In fact, it would be even enough (given the boundedness condition)
to know that one has a limit for all b from a dense subspace of (B, ‖ · ‖B).

Infinite dimensional Banach spaces (B, ‖ · ‖B) do not satisfy the Heine–Borel
property. A bounded sequence may fail to have a (norm) convergent subsequence.
But the Banach–Alaoglu Theorem (see [8]) ensures that any bounded sequence (σk)

in (B ′, ‖ · ‖B ′) has a subsequence (σnk )k≥1 which is w∗-convergent to some σ0 ∈ B ′,
i.e.,

lim
k→∞ σnk (b) = σ0(b) for all b ∈ B.

In a similar way, the set of all bounded and linear operators between two normed
spaces is defined; we denote it by L (B1, B2). It is always a normed space with
respect to the operator norm

|||T ||| := sup
‖b1‖B1≤1

‖T (b1)‖B2

and if (B2, ‖ · ‖(2)) is a Banach space, the space of operators is complete as well. In
particular, for the choice B2 = C the space reduces to the dual space.

For the case B1 = B = B2 these operators form a normed algebra, and in fact a
Banach algebra if (B, ‖ · ‖B) is a Banach space.

Since many sequences of functions which do not have a reasonable pointwise
limit, such as a sequence of compressed box functions which converge to the so-
called Dirac delta, often denoted by δ(t) in the engineering literature, are in fact

2Even if (B, ‖ · ‖B) is just a normed space.
3Technically speaking, for separable Banach spaces (B, ‖ · ‖B) which are those that contain a
countable, dense subset. This will be the case for all the situations where we make use of this
concept.
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limits in this sense, it is at least plausible to work with dual spaces in order to capture
these limits.

Without going too much into the psychological and didactical side of this issue,
let us just state here that indeed, it is meaningful to model generalized functions as
what we will call distributions, namely elements of dual spaces for suitable chosen
Banach spaces (B, ‖ · ‖B) of integrable and bounded, continuous functions.

We admit that of course this terminology is influenced by the existing traditional
way of introducing generalized functions, for example, by using the tempered distri-
butionsdevelopedbyLaurent Schwartz [45] using the (nuclear Frechet) spaceS (Rd)

of rapidly decreasing functions. While differentiability is in the focus of attention
there, we leave this aspect aside and allow ourselves to call an algebra (with respect
to pointwise multiplication and/or convolution) of continuous functions a space of
test functions and the dual space a space of distributions. This will be the setting we
choose for our approach. Thus from now on, we will mostly talk about test functions
and distributions, but we will still have to explain in which sense distributions are
generalized functions in the spirit of the above description.

One can also motivate the use of dual spaces for the description of linear spaces
of signals by the following argument:

A signal is something that can be measured!

Just thinking of an audio signal which we can record using a microphone, we can
compress usingMP3 coding based on the FFT, andwe can transmit it. All this is on the
basis of linear measurementswhich are of course continuous in some sense, meaning
that quite similar signals (whatever they are) will provide similar measurements. But
is the audio signal a pointwise almost everywhere defined function in L2(R) in the
mathematical sense? Of course we can take pictures of a natural scene and enjoy the
quality of a color picture taken by a 16-million pixel camera, but does that device
really sample (in the mathematical sense) a continuous, 2D-function describing the
analog picture which we use in a conversational situation?

The situation is really much more like an abstract probability distribution, say a
normal distribution with some expectation value and some variance. We will never
be able (except through indirect mathematical description) to provide a pointwise
description of such a “distribution” (a different but related use of this word), so
normally one resorts to the use of histograms. Given the bins used for the histogram,
one can describe the height of the bars simply as the value obtained by applying the
(nonnegative)measure (via integration) to the indicator function of the corresponding
interval (bin),making sure that the union of the bins is thewhole real line or at least the
range of the random variable respectively, the support of the corresponding measure.

What we are doing here is essentially replace those (finer and finer) bins by
BUPUs (uniform partitions of unity), with the extra demand for assuming that they
are continuous and not just step functions. The reader should see this as a minor and
just technical modification (which is avoiding the distinction between step functions
and continuous functions, and is also much more convenient for the setting of LCA
groups).
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The (abstract) viewpoint of considering signals as something that can bemeasured
also suggests very naturally a measure of similarity of signals. If for a given (poten-
tially comprehensive) set of measurements only very small deviations are observed,
then we think of those signals as “quite similar”, and a sequence of signals may
converge in this way to a limit signal (e.g., coarse approximations to the continuous
limit). But this kind of convergence is encapsulated mathematically in the concept
of w∗-convergence described above, that will be used intensively in this text.

3.2 Notations and Preliminaries

Although the approach described below can be used to developHarmonicAnalysis in
the context of locally compact abelian (LCA) groups, we restrict our attention to the
setting of Euclidean spaces R

d . This is the framework relevant for most engineering
work and physics.

Let us fix some notation. It all starts with themost simple vector space of functions
on R

d , namely Cc(R
d), the space of continuous, complex-valued and compactly

supported functions on R
d , i.e., with supp(k) ⊂ BR(0) := {x : |x | ≤ R} for some

R > 0. For such a function f ∈ Cc(R
d) the notion of an integral,

∫
Rd

f (t) dt , is well-
defined by Riemann integration, and thus this (infinite dimensional) linear space of
functions can be endowed with many different norms, such as the maximum-norm or
uniform-norm, ‖k‖∞ = supt∈Rd | f (t)| and the p-norms ‖k‖p = (

∫
Rd

|k(t)|p dt)1/p

for 1 ≤ p < ∞. The completion of Cc(R) with respect to the p-norm yields the
Lebesgue spaces, (L p(Rd), ‖.‖p). Most notably are L1(Rd) and L2(Rd). The latter
being a Hilbert space with respect to the inner product 〈 f, g〉 = ∫

Rd
f (t) g(t) dt .

For complex-valued functions f, g on R
d , we define the following operations,

pointwise multiplication, ( f · g)(t) = f (t) · g(t), t ∈ R
d ,

flip operation, f �(t) = f (−t),
complex conjugation, f (t) = f (t),
translation by x ∈ R

d , Tx f (t) = f (t − x),
modulation by ω ∈ R

d , Eω f (t) = e2π iω·t f (t),
dilation by an invertible d × d matrix A, αA f (t) = | det(A)|1/2 f (At),
specifically homogeneous dilations for ρ > 0,
[Stρ f ](t) = ρ−d f (t/ρ), and [Dρh](t) = h(ρt)
with ‖Stρ f ‖1 = ‖ f ‖1 and ‖Dρ f ‖∞ = ‖ f ‖∞.

Let Δ be the tent function given by

Δ(t) =
d∏

j=1

max
(
1 − 2|t ( j)|, 0), t = (t (1), t (2), . . . , t (d)) ∈ R

d .

Observe that suppΔ = [−1/2, 1/2]d . We define the family of functions (ψn)n∈Zd to
be the collection of half-integer translates of Δ so that
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ψn(t) = Δ
(
t − 1

2n
)
, t ∈ R

d , n ∈ Z
d . (3.2)

The crucial properties of the functions (ψn) are for us that they satisfy the general
assumptions of a BUPU (bounded uniform partition of unity), of which we give the
definition below.Throughout thiswork (ψn)will always refer to the functions in (3.2).
However, any other BUPU can also be used, which entails only minor modifications
to our proofs.

For most applications, regular BUPUs will be sufficient (and easier to handle),
which are obtained as translates of one (smooth) functionwith compact support along
some lattice in R

d . In this setting it is natural to use smooth BUPUs with respect to
some lattice Λ = AZ

d , for some non-singular d × d matrix A. For convenience of
notation we use mostly lattices of the form γ Z

d , for some γ > 0.

Definition 3.2 A family Ψ = (ψk)k∈Zd = (Tγ kψ0)k∈Zd in Cc(R) (for some γ > 0)
is called a regular, uniform partition of unity on R

d of size R, (we write |Ψ | ≤ R or
diamΨ ≤ R) if

1. ψ0 is compactly supported in BR(0).4

2.
∑

k∈Zd ψk(x) = ∑
k∈Zd ψ0(x − γ k) ≡ 1 on R

d .

Usually it is assumed that ψ0(x) ≥ 0.

3.3 Continuous Functions That Vanish at Infinity

The uniform or sup norm of functions on R
d is defined by ‖ f ‖∞ = supt∈Rd | f (t)|.

Observe thatCb(R
d), the space of all bounded, continuous, complex-valued func-

tions on R
d is a Banach algebra with respect to this norm and pointwise multipli-

cation. It is easy to show that (Cc(R
d), ‖ · ‖∞) is not complete. Its completion in

(Cb(R
d), ‖ · ‖∞), which is the same as the closure within (Cb(R

d), ‖ · ‖∞), is just
the space of continuous functions that vanish at infinity. We denote this space by
(C0(R

d), ‖ · ‖∞). For f ∈ C0(R
d) and h ∈ Cb(R

d) the pointwise product f · h is
again in C0(R

d). In particular, (C0(R
d), ‖ · ‖∞) is itself a (commutative) Banach

algebra with respect to pointwise multiplication, with

‖ f · h‖∞ ≤ ‖ f ‖∞ ‖h‖∞. (3.3)

We define the space of bounded measures Mb(R
d) to be the continuous (Banach

space) dual of (C0(R
d), ‖ · ‖∞). That is, Mb(R

d) = C ′
0(R

d) consists of all linear
and continuous functionals μ : C0(R

d) → C. We write the action of a functional
μ ∈ Mb(R

d) on a function f ∈ C0(R
d) as μ( f ). Naturally, Mb(R

d) is a Banach
space with respect to the operator norm,

4BR(0) is the ball of radius R > 0 around zero in R
d .
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‖μ‖Mb = sup
f ∈C0(Rd ), ‖ f ‖∞≤1

∣
∣μ( f )

∣
∣. (3.4)

There are two simple and natural examples of bounded measures. First of all the
Dirac measure (or Dirac delta) of the form δx : f �→ f (x), x ∈ R

d .5 Their finite
linear combinations are called finite discrete measures and belong also to Mb(R

d).
Second, any function g ∈ Cc(R) defines a bounded measure μg by

μg : C0(R
d) → C, μg( f ) =

∫

Rd

f (t) g(t) dt, f ∈ C0(R
d). (3.5)

This integral is well-defined as f · g ∈ Cc(R
d).

We mention the following operations that one can do with bounded measures: we
define the product of a bounded measure μ ∈ Mb(R

d) with a function h ∈ Cb(R
d)

to be the bounded measure given by

(
μ · h

)
( f ) := μ(h · f ) for all f ∈ C0(R

d). (3.6)

Observe that ‖μ · h‖Mb ≤ ‖h‖∞ ‖μ‖Mb , and of course associativity.
Furthermore, we define the complex conjugation of a bounded measure, its flip,

translation, modulation, and dilation to be, for any μ ∈ Mb(R
d) and f ∈ C0(R

d),

μ( f ) = μ( f ),

μ�( f ) = μ( f �),
(
Txμ

)
( f ) = μ(T−x f ), x ∈ R

d ,
(
Eωμ

)
( f ) = μ(Eω f ), ω ∈ R

d ,
(
αAμ)( f ) = μ(αA−1 f ), A ∈ GLR(d).

The reader may verify consistency with the corresponding operators defined on
ordinary functions, i.e., that for any g ∈ Cc(R)

μg = μg, (μg)
� = μg� , Txμg = μTx g, Eωμg = μEωg, αAμg = μαA g.

Furthermore, one has the following rather natural rules:

Tyδx = δx+y, δ�
x = δ−x , δx = δx , δx · h = h(x) · δx .

Finally, we define μ ∗ f to be the convolution of a function f ∈ C0(R
d) with a

measure μ ∈ Mb(R
d). It is a new function on R

d given pointwise by

5What we denote by δx is often called the Dirac delta function and denoted by δx (t) or δ(t − x)

(the argument indicating that it is a “function” of, e.g., a time variable t). We do not view the Dirac
delta in this way.
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(
μ ∗ f

)
(x) = μ(Tx [ f �]) = (

T−xμ
)
( f �), x ∈ R

d . (3.7)

Observe that δx ∗ f = Tx f . This correspondence is in fact the reason why the
“moving average” described in (3.7) makes use of the flip operator.

Theorem 3.1 For any μ ∈ Mb(R
d) and any f ∈ C0(R

d), the convolution product
μ ∗ f is a function in C0(R

d). Moreover, Cμ : f �→ μ ∗ f is a bounded operator

‖μ ∗ f ‖∞ ≤ ‖μ‖Mb ‖ f ‖∞, f ∈ C0(R
d),

which commutes with translations, i.e., μ ∗ (Tx f ) = Tx (μ ∗ f ) for all x ∈ R
d . More-

over, the operator norm of Cμ equals the functional norm of μ.

One can, in fact, show that every continuous operator T : C0(R
d) → C0(R

d) that
satisfied the commutation relation T ◦ Tx = Tx ◦ T for all x ∈ R

d is given by an
operator that convolves with some uniquely determined measure μ ∈ Cb(R

d). A
proof of this statement and Theorem 3.1 can be found in the first author’s lecture
notes.6 Such an operator is also called TILS (translation invariant linear system).
For more on this, see Sect. 3.11.

Definition 3.3 Given f ∈ Cb(R
d) and δ > 0, we define the oscillation function

oscδ( f )(x) := max|y|≤δ
| f (x) − f (x + y)|. (3.8)

We also define the local maximal function for any f ∈ Cb(R
d),

f #(x) = max|y|≤1
| f (x + y)|, x ∈ R

d . (3.9)

There are a couple of harmless but useful pointwise estimates.

Lemma 3.1 For any two functions f, f1, f2 ∈ Cb(R
d) one has that

(i) oscδ( f ) ≤ 2 f #;
(ii) oscδ( f1 + f2) ≤ oscδ( f1) + oscδ( f2);

(iii) | f | ≤ |g| ⇒ f # ≤ g#;
(iv) ( f1 + f2)# ≤ f #1 + f #2 ;
(v) oscδ(Tx f ) = Tx oscδ( f );

(vi) (Tx f )# = Tx ( f #).

Proof The proof is left as an exercise to the reader.

Using these relations, the following is a simple observation.

6See the lectures notes on “Harmonic and Functional Analysis” at
https://www.univie.ac.at/nuhag-php/home/skripten.php.

https://www.univie.ac.at/nuhag-php/home/skripten.php
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Lemma 3.2 A function f ∈ Cb(R
d) is uniformly continuous if and only if

‖oscδ( f )‖ → 0 for δ → 0.

For every BUPU Ψ , we define the spline-type quasi- interpolation operator

f �→ SpΨ f : SpΨ f (t) =
∑

n∈Zd

f (tn)ψn(t), t ∈ R
d . (3.10)

Lemma 3.3 For any regular BUPU Ψ , the operator SpΨ maps C0(R
d) and Cb(R

d)

onto itself, respectively, with ‖SpΨ f ‖∞ ≤ ‖ f ‖∞. One has ‖SpΨ f − f ‖∞ → 0 as
diam(Ψ ) → 0 if and only if f is uniformly continuous (e.g., f ∈ C0(R

d)).

Proof The first statement follows easily from the fact that all ψn are continuous and
compactly supported together with the assumed properties of the function f . For the
second statement, note that we only have to do a pointwise estimate between f (t)
and SpΨ f (t) = ∑

n∈Zd ψn(tn) f (t), where I ⊂ Z
d is such that suppψn ∩ Bδ(t) �= ∅

for all n ∈ Z
d . Using the fact that the (ψn) form a partition of unity, we establish that

|SpΨ f (t) − f (t)| ≤
∑

n∈Zd

| f (tn) − f (t)| · ψn(t).

If Ψ is a BUPU such that |t − tn| ≤ δ for all t ∈ supp(ψn), then we find that

|SpΨ f (t) − f (t)| ≤ oscδ( f )(t).

As the support of the functions in the BUPU Ψ is made smaller, we write |Ψ | → 0,
δ goes to zero. By Lemma 3.2 we conclude that ‖SpΨ f − f ‖∞ → 0 as |K | → 0.

One important result that we need for later is the following one. We give a proof
of Theorem 3.2 at the end of this section.

Theorem 3.2 Let Ψ = (ψn)n∈Zd be the BUPU as in (3.2). Every μ ∈ Mb(R
d) can be

represented by the absolutely norm convergent series μ = ∑
n∈Zd μ · ψn. Moreover,

‖μ‖Mb =
∑

n∈Zd

‖μ · ψn‖Mb . (3.11)

Corollary 3.1 For any μ ∈ Mb(R
d) and any ε > 0, there exists a finite subset F0 ⊂

Z
d such that ‖μ − ∑

n∈F μ · ψn‖Mb < ε for any finite subset of Z
d with F ⊇ F0.

One can think of p = ∑
n∈F ψn ∈ Cc(R

d) as a plateau-type function with ‖μ − μ ·
p‖Mb < ε.

Proof of Theorem 3.2. For any given ε > 0, let εn > 0, n ∈ Z
d be such that∑

n∈Zd εn < ε. By the definition of ‖μ · ψn‖Mb , we canfind fn ∈ C0(R
d), ‖ fn‖∞ ≤ 1

such that
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|(μ · ψn
)
( fn)| > ‖μ · ψn‖Mb − εn.

Without loss of generality, we can assume that
(
μ · ψn

)
( fn) is real-valued and non-

negative. For any finite set F ⊂ Z
d , we define f ∈ Cc(R

d) by f = ∑
n∈F fn · ψn .

We now observe that

μ( f ) =
∑

n∈F

μ( fn · ψn) =
∑

n∈F

(
μ · ψn

)
( fn)

>
∑

n∈F

(‖μ · ψn‖Mb − εn
)

>
( ∑

n∈F

‖μ · ψn‖Mb

)
− ε.

By a simple pointwise estimate, we find that ‖ f ‖∞ ≤ 1. Thus that for every ε > 0
and any finite set F ⊂ Z

d , there is a function f ∈ Cc(R
d), ‖ f ‖∞ ≤ 1 such that

∑

n∈F

‖μ · ψn‖Mb ≤ μ( f ) + ε.

This being true for any ε > 0 and any finite set we conclude that

∑

n∈Zd

‖μ · ψn‖Mb ≤ ‖μ‖Mb .

Hence
∑

n∈Zd μ · ψn is absolutely convergent in Mb(R
d). Finally, we show that μ =∑

n∈Zd μ · ψn . For any f ∈ Cc(R
d) we clearly have

( ∑

n∈Zd

μ · ψn

)
( f ) =

∑

n∈F

(
μ · ψn)( f ) = μ

( ∑

n∈F

ψn · f
)

= μ( f ),

where F is some finite subset of Z
d that depends on the support of f . Since this

equality holds for all Cc(R) which is dense in C0(R
d), we get μ = ∑

n∈Zd μ · ψn .
The opposite estimate, namely ‖μ‖Mb ≤ ∑

n∈Zd ‖μ · ψn‖Mb is clear by the triangle
inequality and the completeness of Mb(R

d)N .

3.4 The Wiener Algebra on R
d

At this point, we are in a situation where we can define pointwise multiplication
within the Banach algebra (C0(R

d), ‖ · ‖∞) and we can convolve a measure with
a function C0(R

d). Furthermore, we can multiply any measure with a function in
Cb(R

d), always together with the corresponding norm estimates.
But not every function f ∈ C0(R

d) defines a measure and it is not possible to
define the convolution product of two arbitrary functions f1, f2 ∈ C0(R

d). Hence
it is desirable to reduce the reservoir of “test functions” from (C0(R

d), ‖ · ‖∞) to a
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smaller one. The first step into this direction will be the introduction of “our new
space of test functions”, the Wiener algebra. It is defined as follows.

Definition 3.4 Given the BUPU Ψ = (ψn)n∈Zd in (3.2) the Wiener algebra W (Rd)

consists of all continuous functions f ∈ Cb(R
d) for which the following norm is

finite:
‖ f ‖W :=

∑

n∈Zd

‖ f · ψn‖∞ < ∞. (3.12)

One can show that the definition does not depend on the particular choice of the
BUPU, i.e., different BUPUsΨ 1 orΨ 2 define the same space. Also, (W (Rd), ‖ · ‖W )

is a Banach space. We mention that an equivalent norm on W (Rd) is given by

‖ f ‖W, � =
∑

n∈Zd

‖ f · Tn1[0,1]d ‖∞,

where 1[0,1]d is the characteristic function on the set [0, 1]d . This is the norm still
widely used in the literature, and used in H. Reiter’s book [38] as an example of an
interesting Segal algebra (and even going back to N. Wiener’s work on Tauberian
theorems). Convolution relations for this (andmore generalWiener amalgam spaces)
are given in [6, 16, 29].

Observe that for any f ∈ W (Rd) and x ∈ R
d we have, in general, that ‖Tx f ‖W �=

‖ f ‖W . We will not need a norm that is strictly isometric with respect to translation.
One way to do this is to introduce the continuous description of amalgam norms,
which has been given already in [11].

The Wiener algebra relates to the previously considered function spaces as fol-
lows: all functions in W (Rd) belong to C0(R

d). The space Cc(R
d) is contained in

(W (Rd), ‖ · ‖W ) and W (Rd) is contained in (C0(R
d), ‖ · ‖∞), both as dense sub-

spaces. All the inclusions are in fact continuous embeddings. Furthermore, just as
C0(R

d) and Cb(R
d), the Wiener algebra behaves well with respect to multiplication.

Lemma 3.4 (i) The Wiener algebra W (Rd) is continuously embedded into Cb(R
d)

and C0(R
d). Specifically, one has that

‖ f ‖∞ ≤ ‖ f ‖W for all f ∈ W (Rd).

(ii) The Wiener algebra is an ideal of Cb(R
d) with respect to pointwise multiplica-

tion. In fact, for any h ∈ Cb(R
d) and f ∈ W (Rd) one has that

‖h · f ‖W ≤ ‖h‖∞ ‖ f ‖W .

(iii) The Wiener algebra is a Banach algebra with respect to pointwise multiplica-
tion. For any f, h ∈ W (Rd) we have that ‖h · f ‖W ≤ ‖h‖W ‖ f ‖W .

Proof (i). By assumption we have 1 = ∑
n∈Zd ψn(x) for all x ∈ R

d . Hence
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sup
x∈Rd

| f (x)| = sup
x∈Rd

|
∑

n∈Zd

f (x) ψn(x)| ≤
∑

n∈Zn

‖ f · ψn‖∞ = ‖ f ‖W < ∞, ∀ f ∈ W (Rd ).

(ii). Let h and f be as in the statement. It follows from the easy estimate

∑

n∈Zd

‖h · f · ψn‖∞ ≤ ‖h‖∞
∑

n∈Zd

‖ f · ψn‖∞ = ‖h‖∞ ‖ f ‖W .

(iii). This follows by (i) and (ii).

Lemma 3.5 The translation and the modulation operator are continuous on the
Wiener algebra (W (Rd), ‖ · ‖W ). In fact,

‖Tx f ‖W ≤ 4d ‖ f ‖W and ‖Eω f ‖W = ‖ f ‖W for all x, ω ∈ R
d , f ∈ W (Rd).

Moreover, the dilation by an invertible d × d matrix A, αA f (t) = | det(A)|1/2 f (At)
is a continuous operator on W (Rd) for each such A.

Proof The relation for the modulation operator is trivial. For the translation operator
we have to work a bit harder. First, observe that for any t, x ∈ R

d we have

∧(t + x) = ∧(t + x) · 1 = ∧(t + x) ·
∑

k∈F

∧ (
t − k

2

)
,

where F is a finite subset of Z
d . In fact, it can be taken to have 4d summands. It is

helpful to make a sketch of the situation in the 1D and 2D setting. With this equality,
we achieve the desired result as follows

‖Tx f ‖W =
∑

n∈Zd

‖Tx f · ψn‖∞ =
∑

n∈Zd

sup
t∈Rd

∣
∣ f (t) ∧ (

t + x − n
2

) ∣
∣

=
∑

n∈Zd

sup
t∈Rd

∣
∣ f (t)

∑

k∈F

∧ (
t + x − n

2

) ∧ (
t − n−k

2

) ∣
∣

=
∑

n∈Zd

sup
t∈Rd

∣
∣ f (t)

∑

k∈F

∧ (
t + x − n+k

2

) ∧ (
t − n

2

) ∣
∣

≤ #F ‖ ∧ ‖∞
∑

n∈Zd

sup
t∈Rd

∣
∣ f (t) ∧ (

t − n
2

) ∣
∣ = 4d ‖ f ‖W .

The argument for the continuity of the dilation operator is equivalent to the fact that
different BUPUs define equivalent norms on the Wiener algebra. We omit the proof.

The reader may verify the following statement.

Lemma 3.6 If f is a function in W (Rd) and h ∈ Cb(R
d) is such that |h(t)| ≤ | f (t)|

for all t ∈ R
d , then h ∈ W (Rd) and ‖h‖W ≤ ‖ f ‖W .

From Lemma 3.6, it is easy to prove the following implications: if f belongs to
the Wiener algebra, then so does its absolute value, | f |, its real and imaginary part
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�( f ) and �( f ), and in case f is real valued, also its positive and negative part f +
and f −,

| f | : t �→ | f (t)|, �( f ) : t �→ �( f (t)), �( f ) : t �→ �( f (t)),

f + : t �→ 1
2

(| f (t)| + f (t)
)

and f − : t �→ 1
2

(| f (t)| − f (t)
)
, t ∈ R

d .

Let us turn to the obstacle that we encountered with the function space C0(R
d):

not every f ∈ C0(R
d) can be embedded into Mb(R

d) and we could not define the
convolution between arbitary functions inC0(R

d). The function space W (Rd) can be
completely embedded into Mb(R

d). Essential in this embedding is the key property
of a function in the Wiener algebra to be integrable. The Riemann integral can be
extended from Cc(R) to a linear and continuous functional on W (Rd). That is,

I : W (Rd) → C, I ( f ) =
∫

Rd

f (t) dt, f ∈ W (Rd), (3.13)

is a well-defined linear functional satisfying I ( f ) = I (Tx f ), x ∈ R
d . Actually,

∣
∣
∣

∫

Rd

f (t) dt
∣
∣
∣ = |I ( f )| ≤ I (| f |) ≤ ‖ f ‖W for all f ∈ W (Rd). (3.14)

Proof of (3.14). Indeed, if we use the specific BUPU in (3.2), then we find

∣
∣
∣

∫

Rd

f (t) dt
∣
∣
∣ =

∣
∣
∣

∫

Rd

∑

n∈Zd

f (t) ψn(t) dt
∣
∣
∣ ≤

∑

n∈Zd

∫

Rd

∣
∣ f (t) ψn(t)| dt

=
∑

n∈Zd

∫

n+
[
− 1
2 ,

1
2

]d

∣
∣ f (t) ψn(t)| dt ≤

∑

n∈Zd

‖ f ψn‖∞ = ‖ f ‖W .

For functions in the Wiener algebra, we define the L1-norm to be

‖ f ‖1 : W (Rd) → R
+
0 , ‖ f ‖1 =

∫

Rd

| f (t)| dt.

The Riemann integral allows to embed the Wiener algebra W (Rd) into Mb(R
d):

μk( f ) =
∫

Rd

f (t) k(t) dt, f ∈ C0(R
d), k ∈ W (Rd). (3.15)

It is easy to show that ‖μ‖Mb ≤ ‖k‖W for all k ∈ W (Rd) (combine (3.14) and
Lemma 3.4) and that the mapping k �→ μk from W (Rd) into Mb(R

d) is injective.
With this embedding, we define the convolution of two functions in the Wiener

algebra: if f, k ∈ W (Rd), then their convolution product is defined to be
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(
k ∗ f

)
(t) = (

μk ∗ f
)
(t) =

∫

Rd

f (t − s) k(s) ds, t ∈ R
d . (3.16)

Lemma 3.7 The convolution defined in (3.16) turns (W (Rd), ‖ · ‖W ) into a com-
mutative Banach algebra with respect to convolution. In fact,

‖k ∗ f ‖W ≤ 4d ‖k‖W ‖ f ‖W for all k, f ∈ W (Rd). (3.17)

Proof That the function k ∗ f is continuous follows from the fact that for any f ∈
W (Rd), the mapping t �→ Tt f is continuous from R

d to W (Rd). We can easily
establish that the Wiener algebra norm is finite: for all f, k ∈ W (Rd)

∑

n∈Zd

‖(k ∗ f ) · ψn‖∞ =
∑

n∈Zd

sup
t∈Rd

∣
∣
∣

∫

Rd

f (t − s) k(s) ds ψn(t)
∣
∣
∣

≤
∫

Rd

|k(s)|
∑

n∈Zd

sup
t∈Rd

∣
∣ f (t − s) ψn(t)

∣
∣ ds

=
∫

Rd

|k(s)| ‖Ts f ‖W dt ≤ 4d ‖k‖W ‖g‖W < ∞.

It is an easy application of Fubini’s theorem that establishes the well-known
inequality for the convolution in relation to the L1-norm,

‖k ∗ f ‖1 ≤ ‖k‖1 ‖ f ‖1 for all k, f ∈ W (Rd). (3.18)

Remark 3.1 This observation opens up the possibility to define (L1(Rd), ‖ · ‖1)
within (Mb(R

d), ‖ · ‖Mb) as the closure of (the copy of) Cc(R
d) within (Mb(R

d), ‖ ·
‖Mb), avoiding measure theory and Lebesgue integration completely. Even the
Riemann–Lebesgue Theorem can be derived in this way. We do not pursue this
idea further.

Remark 3.2 As every function in the Wiener algebra is integrable and uniformly
bounded, it follows that W (Rd) ⊂ L1(Rd) and W (Rd) ⊂ Cb(R

d) ⊂ L∞(Rd). This
implies that W (Rd) is a subspace of all the L p(Rd) spaces for p ∈ [1,∞]. Moreover,
‖ f ‖p ≤ ‖ f ‖W for all f ∈ W (Rd) and all p ∈ [1,∞]. Observe that L1(Rd), just as
W (Rd), is a Banach algebra with respect to convolution. Unlike W (Rd) however,
L1(Rd) is not a Banach algebra with respect to pointwise multiplication.

Lemma 3.8 A function f ∈ Cb(R
d) belongs to W (Rd) if and only if f # ∈ W (Rd)

and
‖ f ‖W ≤ ‖ f #‖W ≤ 8d ‖ f ‖W for all f ∈ W (Rd). (3.19)

Proof The upper inequality follows by applying the same method as in the proof of
Lemma 3.5 where we show that the translation operator is bounded on W (Rd). As
| f (t)| ≤ f #(t) for all t ∈ R

d , the lower inequality follows by Lemma 3.6.
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Lemma 3.9 If f ∈ W (Rd), then oscδ( f ) ∈ W (Rd)and limδ→0 ‖oscδ( f )‖W (Rd ) = 0.

Proof By Lemma 3.1 we have the inequality oscδ( f ) ≤ 2 f #. In Lemma 3.8, we
established that f ∈ W (Rd) implies that also f # ∈ W (Rd). It follows from Lemma
3.6 that oscδ( f ) ∈ W (Rd). We leave the second statement as an exercise for the
reader.

W (Rd) ⊂ C0(R
d) implies that existence of the usual convolution, given by

(
μ ∗ f

)
(x) = μ(Tx [ f �]), μ ∈ Mb(R

d), f ∈ W (Rd). (3.20)

Clearly μ ∗ f ∈ C0(R
d). For the claim Mb(R

d) ∗ W (Rd) ⊂ W (Rd), we need a
lemma.

Lemma 3.10 For every compact set K , there exists a constant cK > 0 such that for
every function f ∈ Cc(R

d) with supp( f ) ⊆ K + x, x ∈ R
d one has

‖ f ‖W ≤ cK ‖ f ‖∞. (3.21)

Proof From the definition of a BUPU, it follows that for any given compact set
K there is a uniform bounded finite number of functions such that for all x ∈ R

d

suppψn ∩ K �= ∅. Therefore, for any f ∈ W (Rd) with supp f ⊂ K + x

‖ f ‖W =
∑

n∈Zd

‖ f · ψn‖∞ =
∑

n∈Zd

( sup
t∈K+x

| f (t) · ψn(t)|)

≤
( ∑

n∈Fx

‖ψn‖∞
)

‖ f ‖∞ = cK ‖ f ‖∞,

where cK is this uniform bound in the number of elements in Fx .

Proposition 3.1 We have Mb(R
d) ∗ W (Rd) ⊂ W (Rd) and moreover there is a con-

stant c > 0 such that

‖μ ∗ f ‖W ≤ c ‖μ‖Mb ‖ f ‖W for all μ ∈ Mb(R
d), f ∈ W (Rd). (3.22)

Proof We use the fact that both μ ∈ Mb(R
d) and f ∈ W (Rd) have an absolutely

convergent series representation if one applies a BUPU to each of them, i.e., μ =∑
n∈Zd μ · ψn with ‖μ‖M = ∑

n∈Zd ‖μ · ψn‖M and f = ∑
k∈Zd f · ψk with ‖ f ‖W =∑

k∈Zd ‖ f · ψk‖∞. Observe that for each k, n ∈ Z
d the function

x �→ (
μψn ∗ f ψk

)
(x) = μψn([Tx f ψk]�)

is continuous and compactly supported, hence an element in W (Rd). Furthermore,
due to the uniform size of the support of the BUPU (ψn) the functions, μψn ∗ f ψk ,
k, n ∈ Z

d all have support within K + x , where K is a fixed compact set and x
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depends on k and n. With the BUPU as in (3.2) K = [0, 1]d . By Lemma 3.10 we
have

‖μψn ∗ f ψk‖W ≤ cK ‖μψn ∗ f ψk‖∞ ≤ cK ‖μψn‖M ‖ f ψk‖∞.

Combining these inequalities allows us to deduce the desired estimate:

‖μ ∗ f ‖W =
∥
∥
∥
( ∑

n∈Zd

μ · ψn
) ∗ ( ∑

k∈Zd

f · ψk
)∥∥
∥

W

≤
∑

k,n∈Zd

‖(μ · ψn) ∗ ( f · ψk)‖W

≤ cK

∑

k,n∈Zd

‖μψn‖M ‖ f ψk‖∞

= cK ‖μ‖M ‖ f ‖W < ∞.

For later use, we note the following result.

Lemma 3.11 For any d, m ∈ N such that 0 < m < d, the operator

Rm : W (Rd ) → W (Rm), Rm f (x (1), . . . , x (m)) = f (x (1), . . . , x (m), 0, . . . , 0), x (i) ∈ R

is continuous. In fact, ‖Rm f ‖W (Rm ) ≤ ‖ f ‖W (Rd ) for all f ∈ W (Rd).

Proof The desired inequality is achieved as follows:

‖Rm f ‖W (Rm ) =
∑

n∈Zm

‖Rm f · ψ(m)
n ‖∞

=
∑

n∈Zm

sup
t∈Rm

| f (t, 0) · ψ(m)
n (t)| (0 ∈ R

d−m)

≤
∑

n∈Zd

sup
t∈Rd

| f (t) · ψ(d)
n (t)| = ‖ f ‖W (Rd ).

3.5 The Fourier Transform

As functions in the Wiener algebra are integrable (in the sense of Riemann!), we can
use W (Rd) as the domain of the Fourier transform.

Definition 3.5 For f ∈ W (Rd) we define the Fourier transform,

F f (s) = f̂ (s) =
∫

Rd

f (t) e−2π is·t dt, s ∈ R
d . (3.23)

We mention the following classical result.
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Lemma 3.12 (Riemann–Lebesgue Lemma) The Fourier transform is a non-
expansive and injective linear operator from (W (Rd), ‖ · ‖W ) into (C0(R

d), ‖ · ‖∞),
i.e.,

‖ f̂ ‖∞ ≤ ‖ f ‖1 ≤ ‖ f ‖W for all f ∈ W (Rd). (3.24)

A cornerstone of our approach will be the following formula, which has been called
fundamental identity for the Fourier transform by H. Reiter.

Theorem 3.3
∫

Rd

f (t) ĝ(t) dt =
∫

Rd

f̂ (x) g(x) dx for all f, g ∈ W (Rd). (3.25)

Equally important is the convolution theorem for the Fourier transform

f̂ ∗ g = f̂ · ĝ for all f, g ∈ W (Rd), (3.26)

Proof of (3.25) and (3.26). The Fourier transforms f̂ and ĝ are bounded and contin-
uous. By Lemma 3.4 both integrands are in W (Rd) and thus integrable. The relation
(3.25) follows via Fubini’s theorem (which is easy to prove for Riemann integrals):

∫

Rd

f (t)ĝ(t) dt =
∫

Rd

f (t)

(∫

Rd

e−2π i x ·t g(x) dx

)

dt

=
∫

Rd

g(x)

(∫

Rd

e−2π i x ·t f (t) dt

)

dx

=
∫

Rd

f̂ (x)g(x) dx .

(3.27)

The convolution theorem (3.26) is shown in a similar fashion, making use of the
exponential law via the identity e2π is·t = e2π is·(t−y)e2πx ·y .

The Riemann–Lebesgue lemma tells us that the Fourier transform of a function
in the Wiener algebra is a function in C0(R

d). As such, they are not necessarily
integrable and we have the same issues with it as in Sect. 3.3 (which lead us to
the Wiener algebra). Because we cannot guarantee that the Fourier transform of a
function in the Wiener algebra is integrable, we cannot always apply the inverse
Fourier transform (we also have to show that it is actually a transform which inverts
the forward Fourier transform on the given domain),

F−1 f (t) =
∫

Rd

f (s) e2π is·t dt, t ∈ R
d .

Therefore, we introduce the following Fourier invariant function space:

WF (Rd) = {
f ∈ W (Rd) : f̂ ∈ W (Rd)

}
. (3.28)



52 H. G. Feichtinger and M. S. Jakobsen

This space has been studied by Bürger in [4] (using the symbol B0). It is a Banach
space with respect to the natural norm ‖ f ‖WF = ‖ f ‖W + ‖ f̂ ‖W . It is nontrivial and
in fact dense in (W (Rd), ‖ · ‖W )) because it contains the Gauss function and all its
shifted and modulated versions.

The Banach space WF is well-suited for the formulation of results in Fourier
analysis, such as the Fourier inversion theorem.

Theorem 3.4 (i) For any f ∈ WF (Rd) the Fourier inversion formula holds point-
wise,

f (t) = F−1 f̂ (t) =
∫

Rd

f̂ (s) e2π is·t ds for all t ∈ R
d . (3.29)

(ii) For any pair of functions f, g ∈ WF (Rd) the Parseval identity holds

∫

Rd

f̂ (t) ĝ(t) dt =
∫

Rd

f (t) g(t) dt. (3.30)

(iii) For any f, g ∈ WF (Rd), we have the formula f̂ · h = f̂ ∗ ĝ.
(iv) For any f ∈ WF (Rd), the Poisson formula holds pointwise: given m, d ∈ N0

with 0 ≤ m ≤ d and any non-singular d × d matrix A,

∫

Rm

∑

k∈Zd−m

f (A(x, k)) dx = 1

det(A)

∑

k∈Zd−m

f̂ (A†(0, k)), (3.31)

where A† is the inverse transpose of the matrix A.

Proof We only prove (i), starting from the fundamental identity of Fourier analysis,
(3.25). Denote by g0 theGaussian, with g0(t) = e−π t ·t . It has the remarkable property
of being invariant under the Fourier transform! Consequently, due to properties of
the Fourier transform, we have

F (EωDρg0) = TxStρg0, x ∈ R
d , ρ > 0. (3.32)

In (3.25) we choose g = F (ExDρg0), and find that for any f ∈ WF R
d ,

f (x) = lim
ρ→∞

∫

f (t) [TxStρ g0](t) dt
(3.25)= lim

ρ→∞
∫

f̂ (t) [ExDρ g0](t) dt =
∫

f̂ (t) e2π i t x dt.

(3.33)
The first limit is justified because

∫
Rd

h(x)Stρg0 = h(0) for any h ∈ C0(R
d). If we

apply this to h = T−x f ∈ W (Rd) ⊂ C0(R
d), it results in the equality

f (x) = f (0 + x) = T−x f (0) = lim
ρ→0

∫

Rd

f (t + x)Stρg0(t)dt,

which is equal to the expression in the first limit. For the convergence of the
second argument, we use the fact that f̂ ∈ W (Rd) by the density of Cc(R

d) in
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(W (Rd), ‖ · ‖W ) one can restrict the attention to convergence of Dρg0(t) → 1 for
ρ → 0, uniformly over compact sets. Details are left to the reader. Reading the
left-hand side as a function of x , it is easily reinterpreted as Stρg0 ∗ f (x), which
tends to f (x) uniformly for any f ∈ C0(R

d), but also in the Wiener norm for
f ∈ (W (Rd), ‖ · ‖W ). A detailed proof of the Fourier invariance of the Gauss func-
tion can be found in Example 1.3.3 of [1] or in E. Stein’s book ([46]).

The Poisson formula (3.31) is often “only” formulated as the Poisson summation
formula. In this case we set m = 0 in (3.31) and obtain

∑

k∈Zd

f (Ak) = 1

det(A)

∑

k∈Zd

f̂ (A†k). (3.34)

If we apply (3.34) to the function EωTx f , f ∈ WF (Rd), then we find that

∑

k∈Zd

e2π i Ak·ω f (Ak − x) = e2π i ω·x

det(A)

∑

k∈Zd

e2π i A†k·x f̂ (A†k − ω), (3.35)

for any invertibled × d matrix A, any x, ω ∈ R
d and any f ∈ WF (Rd).As a concrete

example, we apply (3.35) to the Fourier invariant Gauss function f (t) = e−π t ·t ,
t ∈ R

d . This yields the equality

∑

k∈Zd

e−π (Ak·Ak−2 Ak·(x+iω)) = eπ i (x+iω)2

det(A)

∑

k∈Zd

e−π (A†k·A†k−2 A†k·(ω+i x)). (3.36)

In principle we could already start a “simplified distribution theory” on the basis
of the function space WF (Rd), by considering its dual space as the reservoir of gener-
alized functions. Indeed, the dual space of WF (Rd) already contains Dirac measure
(point evaluation functionals) δx0( f ) : f (x0), or integrable as well as bounded or
periodic functions, and even objects like Dirac combs.

However, there is one drawback of this space: we cannot prove a kernel theorem,
which is the “continuous analog” of the matrix representation of a linear mapping
from R

n to R
m by matrix multiplication with a well-defined m × n-matrix A, see

Sect. 3.9. For this we need the tensor factorization property of the underlying Banach
space of test functions. We will consider this property in the subsequent section by
introducing an even smaller space of Banach algebra of test functions, the Segal
algebra (S0(Rd), ‖ · ‖S0),

7 which satisfies all the properties that we are interested in.

7Also called Feichtinger’s algebra in the literature.
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3.6 Tensor Factorization

While the space of functions WF is convenient for Fourier analysis, it is not suitable
enough for our purposes as there is a crucial property we are interested in, namely
the tensor factorization property. We explain it here for the space WF . This notion
can be defined analogously for the other spaces we have considered so far, and also
for the space S0 that we will define in the next section.

Given two functions, f (1), f (2) ∈ WF (Rm) their tensor product is

(
f (1) ⊗ f (2)

)
(x, y) = f (1)(x) · f (2)(y), (x, y) ∈ R

n × R
m . (3.37)

This function belongs to WF (Rn+m), and there is some constant c > 0 such that

‖ f (1) ⊗ f (2)‖WF (Rn+m) ≤ c ‖ f (1)‖WF (Rn) ‖ f (2)‖WF (Rm ), (3.38)

for all f (1) ∈ WF (Rn) and f (2) ∈ WF (Rm).
With the help of tensor products, we can construct a new Banach space, the

projective tensor product of WF (Rn) and WF (Rm),

WF (Rn) ⊗̂ WF (Rm ) =
{

F ∈ WF (Rn+m ) : F =
∞∑

j=1

f (1)
j ⊗ f (2)

j , and where

furthermore
∞∑

j=1

‖ f (1)
j ‖W ‖ f (2)

j ‖W < ∞
}
.

The norm of a function F ∈ WF (Rn) ⊗̂ WF (Rm) is given by

‖F‖WF (Rn) ⊗̂ WF (Rm ) = inf
{ ∞∑

j=1

‖ f (1)
j ‖WF (Rn) ‖ f (2)

j ‖WF (Rm )

}
,

where the infimum is taken over all possible representations of F of the type∑∞
j=1 f (1)

j ⊗ f (2)
j as described above. One can show that

WF (Rn) ⊗̂ WF (Rm) � WF (Rn+m). (3.39)

That is, the Banach space WF does not have the tensor factorization property. If so,
there would be an equal sign in (3.39).

We therefore ask the following: can we find a Banach space of functions that
is well-suited for Fourier analysis (such as WF ) and which does have the tensor
factorization property.
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Fig. 3.1 An overview of some of the properties of the four Banach spaces of functions that we
consider, (C0(R

d ), ‖ · ‖∞), (W (R), ‖ · ‖W ), (WF R
n, ‖ · ‖WF ) and (S0(Rd ), ‖ · ‖S0 )

3.7 The Feichtinger Algebra

In this section, we answer the question we posed in the last section. We define a
Banach space of functions, to be denoted by S0(Rd), that is very well-suited for
Fourier analysis; it has the tensor factorization property and consequently allows for
the formulation of a kernel theorem. It therefore is the Banach space of test functions
that we wish for. Figure3.1 gives an overview of this and the other spaces that we
have considered so far. In relation to the much-used Schwartz space, we mention that
it is a dense subspace of S0. Functions in S0, however, need not be differentiable.

First, we have to introduce the Short-Time Fourier Transform (or STFT) of a
functionwith respect to awindow function g. There are various different assumptions
that ensure the pointwise existence (and continuity) of the STFT as a function over
the time–frequency plane or phase space. We introduce it as follows.

For a function g ∈ W (Rd), the so-called Gabor window, which is typically a
nonnegative, even function concentrated near zero, we define the Short-Time Fourier
transform with respect to g of a function f ∈ Cb(R

d) to be the function

Vg : Cb(R
d) → Cb(R

2d),

Vg f (x, ω) =
∫

Rd

f (t) g(t − x) e−2π iω t dt = F ( f · Tx g)(ω), x, ω ∈ R
d .

It is easy to see that the definition makes sense for g ∈ W (Rd), f ∈ Cb(R
d) (still

using the Riemann integral).8 Fix g0(t) = e−π t ·t , t ∈ R
d to be the Gaussian.

Definition 3.6 The space S0(Rd) consists of all functions f ∈ Cb(R
d) for which

Vg0 f is a function in W (R2d).9 It is endowed with the norm

8It is also a well-defined function in Cb(R
2d ), or for g, f ∈ L2(Rd ) making use of Lebesgue

integration, the usual way of introducing the STFT.
9In the book [40], and since then, the space S0 has been called the Feichtinger algebra.
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‖ · ‖S0 : S0(R
d) → R

+
0 , ‖ f ‖S0 =

∫

R2d

∣
∣
(
Vg0 f

)
(x, ω)

∣
∣ d(x, ω) = ‖Vg0 f ‖1.

Observe that this norm is well-defined, as functions in the Wiener algebra are inte-
grable (see Sect. 3.4).

Our goal is to establish the following key result.

Theorem 3.5 The space (S0(Rd), ‖ · ‖S0) is a Banach space, which is isometrically
invariant under the Fourier transform and time–frequency shifts, and in fact a Banach
algebra under convolution as well as multiplication.

We start by observing that S0(Rd) is a subspace of Wiener’s algebra.

Lemma 3.13 (i) The Feichtinger algebra S0(Rd) is a subspace of and continuously
embedded into the Wiener algebra W (Rd).

(ii) For any f ∈ S0(Rd) it holds that ‖ f ‖1 ≤ ‖ f ‖S0 and ‖ f ‖∞ ≤ ‖ f ‖S0 .
(ii) The mapping S0(Rd) → R

+
0 , f �→ ‖Vg0 f ‖W (R2d ) is an equivalent norm on

S0(Rd).

Proof Observe that for any x, s ∈ R
d we have

| f (x) g0(s)| ≤ ‖ f · Ts−x g0‖∞.

Since f ∈ Cb(R
d), g0 ∈ W (Rd) and because the translation operator is continuous

on W (Rd), it follows from Lemma 3.4 that f · Ts−x g0 ∈ W (Rd) for any x, s ∈ R
d .

Furthermore, by assumption f is such that

(x, ω) �→ Vg0 f (x, ω) =
∫

Rd

f (t) g0(t − x) e−2π i x ·t dt = F ( f · Tx g0)(ω)

is a function in W (R2d). This implies, by Lemma 3.11, that for fixed x ∈ R
d the

function ω �→ F ( f · Tx g0)(ω) belongs to W (Rd) as well. We may therefore apply
the Fourier inversion formula, so that, for any x, s ∈ R

d ,

F−1F ( f · Ts−x g0) = f · Ts−x g0.

By the Riemann–Lebesgue lemma

‖F−1F ( f · Ts−x g0)‖∞ ≤ ‖F ( f · Ts−x g0)‖W =
∑

m∈Zd

‖F ( f · Ts−x g0) · ψm‖∞.

(3.40)
A combination of the observed facts yields the inequality

| f (x) g0(s)| ≤
∑

m∈Zd

‖F ( f · Ts−x g0) · ψm‖∞.

Hence
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sup
x∈Rd

| f (x) g0(s)ψn(x)| ≤
∑

m∈Zd

sup
x,ω∈Rd

|F ( f · Ts−x g0)(ω) · ψm(ω)ψn(x)|.

Summing over n, and using that the translation operator is continuous on W (Rd)

allows us to deduce that

∑

n∈Zd

‖ f · ψn‖∞ |g0(s)| ≤ 4d
∑

n,m∈Zd

∣
∣Vg0 f (x, ω)ψn(x) ψm(ω)

∣
∣ = 4d‖Vg0 f ‖W ,

for any s ∈ R
d and f ∈ S0(Rd). It follows that

‖ f ‖W ≤ 4d ‖g0‖−1
∞ ‖Vg0 f ‖W = 4d ‖Vg0 f ‖W . (3.41)

We now show that there exists a constant c > 0 such that

‖Vg0 f ‖W ≤ c ‖ f ‖S0 for all f ∈ S0(R
d).

We first establish the following equality: for any f ∈ S0(Rd) and x, ω ∈ R
d

∫

R2d

Vg0 f (t, ξ)Vg0 [EωTx g0](t, ξ) d(t, ξ)

=
∫

R2d

F ( f · Tt g0)(ξ)F ([EωTx g0] · Tt g0)(ξ) d(t, ξ)

(3.30)=
∫

R2d

( f · Tt g0)(s) ([EωTx g0] · Tt g0)(s) d(t, s)

=
∫

Rd

f (s) EωTx g0(s)
∫

Rd

g0(s − t) g0(s − t) dt ds = 2−d/2 Vg0 f (x, ω).

(3.42)

The use of (3.30) is justified as both f · Tt g0 and F ( f · Tt g0) are functions in
the Wiener algebra (as already establish earlier in the proof). We now observe the
following:

‖Vg0 f ‖W =
∑

m,n∈Zd

sup
x,ω

∣
∣Vg0 f (x, ω)ψn(x) ψm(x)

∣
∣

(3.42)= 2d/2
∑

m,n∈Zd

sup
x,ω

∣
∣
∣

∫

R2d

Vg0 f (t, ξ)Vg0 [EωTx g0](t, ξ) d(t, ξ) ψn(x) ψm(ω)

∣
∣
∣

≤ 2d/2
∫

R2d

|Vg0 f (t, ξ) ‖Tt,ξVg0g0‖W d(t, ξ)

≤ 29d/2‖Vg0g0‖W

∫

R2d

|Vg0 f (t, ξ)| d(t, ξ) = 29d/2 ‖Vg0g0‖W ‖ f ‖S0 .

The second equality follows by the boundedness of the translation operator on the
Wiener algebra. Combining the just established inequality with (3.41) yields
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‖ f ‖W ≤ 213d/2 ‖Vg0g0‖W ‖ f ‖S0 for all f ∈ S0(R
d).

Furthermore, we have just established that

‖Vg0 f ‖W ≤ 29d/2 ‖Vg0g0‖W ‖ f ‖S0 for all f ∈ S0(R
d).

The inequality ‖ f ‖S0 ≤ ‖Vg0 f ‖W is clear from (3.14). We have thus shown (i) and
(iii). In order to show (ii) we replace (3.40) with the inequality

‖F−1F ( f · Ts−x g0)‖∞ ≤ ‖F ( f · Ts−x g0)‖1,

and make similar steps as before. We then obtain the estimate

| f (x)g0(s)| ≤
∫

Rd

∣
∣Vg0 f (s − x, ω)

∣
∣ dω for all x, s ∈ R

d .

An integration over x ∈ R
d and taking the supremum over s yields

‖ f ‖1 ‖g0‖∞ ≤
∫

R2d

∣
∣Vg0 f (s − x, ω)

∣
∣ d(x, ω) = ‖ f ‖S0 .

Switching the role of x and s implies the inequality ‖ f ‖∞ ≤ ‖ f ‖S0 . This shows (ii).

As every function in S0(Rd) belongs toW (Rd), we can apply the Fourier transform
to the space S0(Rd). It turns out that S0(Rd) is invariant under the Fourier transform.

Proposition 3.2 The Fourier transform is an isometric bijection from S0(Rd) onto
itself, i.e., ‖F f ‖S0 = ‖ f ‖S0 for all f ∈ S0(Rd).

Corollary 3.2 S0(Rd) is continuously embedded into WF (Rd).

That S0(Rd) is a proper subspace of WF (Rd) was shown by Losert [35, Theorem
2]. Observe that the inclusion S0(Rd) ⊂ WF (Rd) implies that all the statements in
relation to the Fourier transform in Sect. 3.5 also hold for all functions in S0(Rd).
Proof of Proposition 3.2. First of all S0(Rd) ⊂ W (Rd) so thatF f is a well-defined
function in C0(R

d). Since g0 ∈ W (Rd) and S0(Rd) ⊂ W (Rd), we can use the fun-
damental identity of Fourier analysis to establish the following:

Vg0 f̂ (x, ω) =
∫

Rd

f̂ (t) g0(t − x)e−2π iωt dt
(3.25)=

∫

Rd

f (t)F
(
EωTx g0

)
(t) dt

= e−2π i x ·ω Vg0 f (−ω, x).

Observe that the phase factor e2π i x ·ω and also the change of variable (x, ω) �→
(−ω, x) are continuous operators on the Wiener algebra so that also Vg0 f̂ belongs
to W (R2d). Moreover, the operations leave the S0-norm invariant. Indeed,
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‖ f̂ ‖S0 =
∫

R2d

|Vg0 f̂ (x, ω)| d(x, ω) =
∫

R2d

|e−2π i x ·ω Vg0 f (−ω, x)| d(x, ω)

=
∫

R2d

|Vg0 f (x, ω)| d(x, ω) = ‖ f ‖S0 .

The same proof shows that also the inverse Fourier transformmaps S0(Rd) into itself.
It is therefore clear that F is a continuous bijection on S0(Rd).

Concerning the continuity properties of the translation and modulation operator,
we easily establish the following.

Lemma 3.14 (i) Translation and modulation operators are isometries on S0(Rd):

‖EωTx f ‖S0 = ‖ f ‖S0 for all x, ω ∈ R
d and f ∈ S0(R

d). (3.43)

(ii) If f belongs to S0(Rd), then so does f and f � and

‖ f ‖S0 = ‖ f �‖S0 = ‖ f ‖S0 for all f ∈ S0(R
d). (3.44)

Proof Observe that

Vg0(EωTx f )(t, s) = e2π i x ·(ω−s) Vg0 f (t − x, s − ω). (3.45)

Since translation and the phase factor leave the Wiener algebra invariant, it follows
that Vg0 EωTx f ∈ W (R2d). Hence EωTx f ∈ S0(Rd) and moreover

‖EωTx f ‖S0 =
∫

R2d

|Vg0(EωTx g0)(t, s)| d(x, ω)

=
∫

R2d

|e2π i x ·(ω−s) Vg0 f (t − x, s − ω)| d(t, s)

=
∫

R2d

|Vg0 f (t, s) d(t, s) = ‖ f ‖S0

for any pair (x, ω) ∈ R
2d . The statement in (ii) is shown in a similar fashion.

Just as the Wiener algebra and WF , also S0 behaves in a nice way with respect to
multiplication and convolution.

Lemma 3.15 The Banach space (S0(Rd), ‖ · ‖S0) is a Banach algebra with respect
to pointwise multiplication and convolution. Indeed, for any f1, f2 ∈ S0(Rd), the
functions f1 · f2 and f1 ∗ f2 also belong to S0(Rd) and

‖ f1 · f2‖S0 ≤ ‖ f1‖S0 ‖ f2‖S0 and ‖ f1 ∗ f2‖S0 ≤ ‖ f1‖S0 ‖ f2‖S0 .

Proof Let us first establish f1 · f2 belongs to S0(Rd).
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‖Vg0 ( f1 · f2)‖W =
∑

m,n∈Zd

sup
x,ω∈Rd

∣
∣F ( f1 · f2 · Tx g0)(ω) ψn(x) ψm(ω)

∣
∣

=
∑

m,n∈Zd

sup
x,ω∈Rd

∣
∣F ( f1) ∗ F ( f2 · Tx g0)(ω) ψn(x) ψm(ω)

∣
∣

=
∑

m,n∈Zd

sup
x,ω∈Rd

∣
∣
∣

∫

Rd

F ( f2 · Tx g0)(ω − t) f̂1(t) dt ψn(x) ψm(ω)

∣
∣
∣

≤
∑

m,n∈Zd

sup
x,ω∈Rd

∫

Rd

|F ( f2 · Tx g0)(ω − t) ψm(ω)| | f̂1(t)| dt ψn(x)

≤
∑

m,n∈Zd

sup
x,ω∈Rd

∫

Rd

sup
ω∈Rd

|F ( f2 · Tx g0)(ω) ψm(ω + t)| | f̂1(t)| dt ψn(x)

≤ 4d
∑

m,n∈Zd

sup
x∈Rd

∫

Rd

sup
ω∈Rd

|F ( f2 · Tx g0)(ω) ψm(ω)| | f̂1(t)| dt ψn(x)

≤ 4d‖ f̂1‖W ‖ f2‖S0 ≤ 16d ‖ f1‖S0 ‖ f2‖S0 < ∞.

In the third inequality, we used the same method as in the proof of Lemma 3.5 to
get rid of the translation by x . The inequality for the convolution follows by the just
established inequality, the equalityF ( f1 · f2) = f̂1 ∗ f̂2, and the fact that the Fourier
transform is a bijection on S0. We have thus established that Vg0( f1 · f2) ∈ W (R2d)

and Vg0( f1 ∗ f2) ∈ W (R2d), i.e., the convolution and pointwise product of f1, f2
belong to S0 again. Concerning the desired estimates, we find that

‖ f1 ∗ f2‖S0 =
∫

Rd

∫

Rd

∣
∣F ([ f1 ∗ f2] · Tx g0)(ω)

∣
∣ dx dω

=
∫

Rd

∫

Rd

∣
∣
(

f1 ∗ f2 ∗ Eωg0
)
(x)

∣
∣ dx dω

≤ ‖ f1‖1
∫

Rd

∫

Rd

|( f2 ∗ Eωg0
)
(x) dx dω

= ‖ f1‖1 ‖ f2‖S0 ≤ ‖ f1‖S0 ‖ f2‖S0 .

The first inequality is an application of (3.18). The second inequality follows by
Lemma 3.13(ii). The inequality for the pointwise product follows by properties of
the Fourier transform as mentioned before.

Among other useful properties of S0(Rd) are the following ones. In particular, S0
has the tensor factorization property.

Theorem 3.6 (i) For any invertible d × d matrix A, the operator

αA : S0(R
d ) → S0(R

d ), αA f (x) = | det(A)|1/2 f (Ax), x ∈ R
d

is a continuous bijection on S0(Rd).
(ii) For any m ∈ N such that 0 < m < d, the operator

Rm : S0(R
d ) → S0(R

m ), Rm f (x(1), . . . , x(m)) = f (x(1), . . . , x(m), 0, . . . , 0), x(i) ∈ R
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is a continuous surjection.
(iii) The sampling of a function on R

d at the integer-lattice points Z
d

RZd : S0(R
d) → �1(Zd), RZd f (k) = f (k), k ∈ Z

d

is a continuous and surjective operator from S0(Rd) onto �1(Zd).
(iv) For any m ∈ N such that 0 < m < d the operator

Pm : S0(R
d) → S0(R

m),

Pm f (x) =
∫

Rn−m

f (x (1), . . . , x (m), x (m+1), . . . , x (n)) dx (m+1) . . . dx (n),

x = (x (1), . . . , x (m)) ∈ R
m

is a continuous surjection.
(v) The periodization of functions on R

d with respect to the integer lattice Z
n

PZn : S0(R
d) → A([0, 1]n), P f (x) =

∑

k∈Zn

f (x + k), x ∈ [0, 1]n

is a continuous and surjective operator from S0(Rd) onto A([0, 1]n), the space
of all Z

n-periodic functions with absolutely summable Fourier coefficients.
(vi) S0(Rn) ⊗̂ S0(Rm) = S0(Rn+m) for any n, m ∈ N.

Proof We are not in the position to give a proof, as this requires more theory and
details about S0 than we are willing to give here. The statements all follow from [14,
Theorem 7].

To highlight the role of S0(Rd) among all Banach spaces of functions within
W (Rd), we give the following characterization. It is a direct consequence of [32,
Theorem 7.6]

Theorem 3.7 For each d ∈ N let (B(Rd), ‖ · ‖B) be a nontrivial Banach space such
that B(Rd) ⊆ W (Rd). If for each d ∈ N the Banach space B(Rd) has the properties
that

(i) there is a constant c > 0 such that ‖ f ‖W (Rd ) ≤ c ‖ f ‖B(Rd ) for all f ∈ B(Rd),
(ii) for all (x, ω) ∈ R

2d , the time–frequency shift operators EωTx is bounded on
B(Rd) with a uniformly bounded operator norm over all (x, ω) ∈ R

2d ,
(iii) for every invertible d × d matrix A, the operator f �→ f ◦ A is bounded on

B(Rd),
(iv) the Fourier transform is a bounded operator from B(Rd) into W (Rd),
(v) and B(Rn) ⊗̂ B(Rm) = B(Rn+m) for all n, m ∈ N,

then (B(Rd), ‖ · ‖B) = (S0(Rd), ‖ · ‖S0) for all d ∈ N.
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3.8 The Shortcut to Distribution Theory

In the previous sections, we described several Banach spaces of continuous functions
on R

d that have useful properties. Figure3.1 gives a brief overview. Based on this,
we recognize S0 as a useful space of test functions. It has all the properties that
we wish for. We will consider its dual space (S′

0(R
d), ‖ · ‖S′

0
) as a suitably large

reservoir of “everything else” that is worth to investigate. We call elements in S′
O for

distributions.
The shortcut to distribution theory here is the fact that we have established a

useful Banach space as our space of test functions. Hence, we do not require themore
technical details that are typically needed to properly understand the Fréchet space
formed by the Schwartz functions. Similarly, the dual space, here the Banach space
S′
0(R

d) is also much more convenient that the space of tempered distributions (the
dual of the Schwartz space). Ergo, with less mathematical effort we can describe and
achieve much of the same types of results that the Schwartz space and the temperate
distributions are typically used for.

One of the most important concepts of the dual space is that it is possible to extend
operators that act on S0 to operators that act on S′

0. In particular, the properties of S0
allow us to define the Fourier transform of elements in S′

0 (this is also possible to do
with WF and W ′

F ). Before we get to this, we need to introduce S′
0 properly.

The dual space S′
0(R

d), consists of bounded, linear functionals σ : S0(Rd) → C.
It is a Banach space with respect to the usual functional norm

‖σ‖S′
0
= sup

f ∈S0(Rd ), ‖ f ‖S0=1
|σ( f )|. (3.46)

This topology is often too strong. Another weaker, yet at least as natural topology
on S′

0 is the topology it inherits from S0: we say that a sequence (σn) in S′
0(R

d)

converges in the weak∗topology toward σ0 ∈ S′
0(R

d) exactly if

lim
n

∣
∣
(
σn − σ0

)
( f )

∣
∣ = 0 for all f ∈ S0(R

d). (3.47)

Now every h ∈ Cb(R
d) (and many more) defines a distribution σh ∈ S′

0(R
d) via

the injective embedding operator

ι : Cb(R
d) → S′

0(R
d), ι(k) = σh = f �→

∫

Rd

f (t) h(t) dt. (3.48)

Also, any μ ∈ Mb(R
d) defines a distribution σμ ∈ S′

0(R
d) by the rule

σμ( f ) = μ( f ) for all f ∈ S0(R
d).

The mapping μ �→ σμ provides a continuous embedding Mb(R
d) into S′

0(R
d).
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Definition 3.7 Assume T is a continuous operator from S0(Rd) into S0(Rd). We say
that the operator T̃ : S′

0(R
d) → S′

0(R
d) is an extension of T if the following holds

(i) T̃ is weak∗-weak∗ continuous and
(ii) T̃ ◦ ι(k) = ι ◦ T (k) (or, equivalently, T̃ σk = σ T k ) for all k ∈ S0(Rd).

Lemma 3.16 The Fourier transform F , translation operator Tx , x ∈ R
d , modu-

lation operator Eω, ω ∈ R
d , and the coordinate transform αA, A ∈ GLd(R) are

extended from operators on S0(Rd) to operators on S′
0(R

d) in the following way: for
any f ∈ S0(Rd) and σ ∈ S′

0(R
d)

F̃ : S′
0(R

d) → S′
0(R

d),
(
F̃σ

)
( f ) = σ(F f ),

T̃x : S′
0(R

d) → S′
0(R

d),
(
T̃xσ

)
( f ) = σ(T−x f ),

Ẽω : S′
0(R

d) → S′
0(R

d),
(
Ẽωσ

)
( f ) = σ(Eω f ),

α̃A : S′
0(R

d) → S′
0(R

d),
(
α̃Aσ

)
( f ) = σ(αA−1 f ).

Proof We only show the result for the Fourier transform. The statements for the
other operators are proven in the same fashion. We have to show that F̃ satisfies
Definition 3.7. In order to show the weak∗-weak∗continuity, let (σn) be a sequence
in S′

0(R
d) that converges in the weak∗-sense toward σ0. We have to show that then

also F̃σn
w∗−→ F̃σ0. This follows easily from the definition of F̃ ,

lim
n

∣
∣
(
F̃σn − F̃σ0

)
( f )

∣
∣ = lim

n

∣
∣
(
F̃ (σn − σ0)

)
( f )

∣
∣

= lim
n

∣
∣
(
σn − σ0

)
(F f )

∣
∣ = 0,

where the last equality follows by assumption. It remains to show that Definition
3.7(ii) is satisfied. We observe that for all f, k ∈ S0(Rd)

(
F̃ ◦ ι(k)

)
( f ) = (

ι(k)
)
(F f ) =

∫

Rd

f̂ (t) k(t) dt

(
ι ◦ F (k)

)
( f ) =

∫

Rd

f (t) k̂(t) dt.

It follows from (3.25) that the latter two integrals are the same so that F̃ ◦ ι(k) =
ι ◦ F (k), as desired.

Consider the Dirac delta,

δx : S0(R
d) → C, δx ( f ) = f (x), x ∈ R

d .

It is easy to show that δ̂x = F̃ δx is the distribution given by

F̃ δx : S0(R
d) → C, F̃ δx ( f ) = f̂ (x) =

∫

Rd

f (t) e−2π i x ·t dt.
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Or, equivalently, F̃ δx = ι(ex ), where ex ∈ Cb(R
d) is given by ex (t) = e−2π i x ·t . This

can be formulated as to say that “the Fourier transform of the Dirac delta distribution
at x , δx , is the function ex (t) = e−2π i t ·x”. Or, equivalently, “the Fourier transform of
the function ex (t) = e2π i t ·x , t ∈ R

d , is the Dirac delta distribution at x , δx”.

Remark 3.3 This is the characteristic property of the Fourier transform: it maps pure
frequencies into Dirac measures and vice versa (see [37], (4.36)).

Consider now the Dirac comb or Shah distribution for a given invertible d × d
matrix A, it is the element of S′

0(R
d) defined by

�� A : S0(R
d) → C, �� A( f ) =

∑

k∈Zd

f (Ak).

By definition of F̃ and a use of the Poisson summation formula (3.34), one gets

F̃ (�� A) = | det(A)|−1 �� A† .

We define multiplication and convolution of a distribution σ ∈ S′
0(R

d) with a test
function g ∈ S0(Rd) to be the distribution σ ∈ S′

0(R
d) defined as follows.

Definition 3.8

(
σ ∗ g

)
( f ) = σ(g�∗ f ) and

(
σ · g

)
( f ) = σ(g · f ) f ∈ S0(R

d).

The definition of the convolution is consistent with the definition

(σ ∗ g)(t) = σ(Tt g
�), t ∈ R

d .

Consequently we have S0(Rd) ∗ S′
0(R

d) ⊂ Cb(R
d), viewed as a subspace of S′

0(R
d).

Observe that �� A ∗ g equals the A-period function in Cb(R
d) given by

(�� A ∗ g
)
(t) =

∑

k∈Zd

g(t + Ak), t ∈ R
d ,

where the convergence of the series is uniform and absolute within (Cb(R
d), ‖ · ‖∞).

Furthermore, one can show that

F̃ (σ ∗ g) = (F̃σ) · (F g), F̃ (σ · g) = F̃σ ∗ F g. (3.49)

We shall use these relations in Sect. 3.10, where we take a look at the Shannon
sampling theorem.

Proof of (3.49). This follows by the definition of the extended Fourier transform and
the convolution theorem: for any σ ∈ S′

0(R
d) and g, f ∈ S0(Rd)
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(
F̃ [σ ∗ g])( f ) = (σ ∗ g)(F f ) = σ(g�∗ F f )

= σ
([FF−1g�]∗ F f

) = σ
(
F [F−1g� · f ])

= F̃σ(F g · f ) = (
F̃σ · F g

)
( f ).

The proof of the other equality is done in the same spirit.

3.9 The Kernel Theorem

The reason why WF (Rd) is not quite good enough to be our Banach space of test
functions is that it does not allow for the formulation of a kernel theorem. For this
we have to turn to S0(Rd).

The kernel theorem is the continuous analog of the matrix representation for
linear mappings from R

n to R
m , showing that they are represented in a unique way

through matrix multiplication. Recalling that such a linear mapping T takes the form
T (x) = A · x for a column vector x ∈ R

n (matrix-vector multiplication), where the
columns (ak)

n
k=1 are just the images of the unit vectors (ek)nk=1 in R

n , we find that
with the usual convention of using indices describing row and column positions of
the entries of a matrix we have a j,k = 〈T (ej), ek〉Rm , with 1 ≤ j ≤ n and 1 ≤ k ≤ m.

Even by replacing the unit vectors by Dirac measures, one cannot hope to get a
“continuous matrix representation”, respectively, a description of any given operator
(say on (L2(Rd), ‖ · ‖2)) as an integral operator, because for example multiplication
operators cannot have nonzero contributions outside the main diagonal. But we can
formulate (in analogy with the Schwartz Kernel Theorem for tempered distributions)
a kernel theorem for S0.

Theorem 3.8 (i) The Banach space of operators L (S0(Rd), S′
0(R

d)) can be iden-
tified with the space S′

0(R
2d). Specifically, to each operator T , there corresponds

a unique distribution K ∈ S′
0(R

2d) such that

(
T f

)
(g) = K ( f ⊗ g) for all f, g ∈ S0(R

d). (3.50)

(ii) The Banach space of operatorsLw∗(S′
0(R

d), S0(Rd)) that map weak∗ convergent
sequences in S′

0(R
d) into norm convergent sequences in S0(Rd) can be identified

with the space S0(R2d). Specifically, to each operator T there corresponds a
unique function K ∈ S0(R2d) such that

(
T σ

)
(x) =

∫

Rd

K (x, y) dy for all σ ∈ S′
0(R

d), x ∈ R
d . (3.51)

Moreover, one has K (x, y) = (T δy)(x) = δx (T (δy)) for all x, y ∈ R
d .

Note that the Hilbert space L2(R2d) satisfies S0(R2d) ↪→ L2(R2d) ↪→ S′
0(R

2d)

and by the classical characterization ofHilbert–Schmidt operators on L2(R)td, this is



66 H. G. Feichtinger and M. S. Jakobsen

an intermediate version of the kernel theorem. Recall that Hilbert–Schmidt operators
are compact operators, and form a Hilbert space with respect to the sesquilinear form

〈S, T 〉H S := trace(S ∗ T ∗)

and the identification is even unitary at this level. For proof of Theorem 8, we refer
to [25].

What we can see from Theorem 3.8(ii), in the case of “regularizing operators”, is
that they behave very much like matrices, just with continuous entries. This is quite
useful for various reasons. It allows assigning (also in the context of S0 and S′

0) to
each operator a Kohn–Nirenberg symbol or (via an additional symplectic Fourier
transform) a so-called spreading symbol. These alternative representations are on
S′
0(R

d × R̂d) or S0(Rd × R̂d) respectively if and only if the corresponding kernels
are in this space. Again those isomorphisms can be seen as extensions, respectively,
restrictions of the Hilbert (Schmidt) case, but we will not have space to discuss this
at length here (see [9]).

But we would like to point at least to the natural composition law for regularizing
operators. Assume that we have two operators T1 and T2 with kernels in S0(R2d),
denoted by K1 and K2. Clearly the composition T2 ◦ T1 of these operators belongs
again to the operator spaceLw∗(S′

0, S0) and therefore has a kernel K ∈ S0(R2d). Not
very surprising one can show (easily) that one has

K (x, z) =
∫

Rd

K2(x, y)K1(y, z)dy, x, z ∈ R
d . (3.52)

Whenwewant to compose two operators withmore general kernels, let us assume
that now T1, T2 are just bounded operators on L2(Rd), so they belong toL (L2, L2) ⊂
L (S0, S′

0), then they might not have a representation by kernels in S0 in general and
the question is how to “compose” the kernels. For such cases formula (3.52) above
cannot be applied directly, but it is possible to combine this with regularization
operators to ensure that the actual composition is performed on “nice kernels”. Of
course one takes limits after the composition and reaches in this way better and better
approximation (in the w∗-sense) to the kernel of the composed mapping.10

When applied to the Fourier transform with the continuous, bounded and smooth
kernel K1(s, y) = e−2π isy and the inverse Fourier transform with kernel K2(s, x) =
e2π i xs , one can see that the resulting operator is the identity operator which can
be described by the distribution δΔ(F) = ∫

Rd F(x, x)dx , for F ∈ S0(R2d), which
should be seen as the continuous analog of the Kronecker delta symbol. Viewed
rowwise (in the continuous sense) the entry is just δx at level x , or in other words
T ( f )(x) = δx ( f ) = f (x), known as the sifting property of the Dirac delta (see for
example [37], or [2]).

10This is comparablewith themultiplication of real numberswhich is defined as the limit of products
of decimal approximations of the involved real numbers, and taking limits afterward!
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Taking the naive approach and computing (3.52) for the Fourier kernels and then
applying the exponential law results in the (mathematically strange, but often used
by engineers) formula ∫ ∞

−∞
e−2π ist ds = δ(t). (3.53)

Such an integral should of course not be viewed as an effective integral, but rather
a rule at the level of symbols which is equivalent to the (independently verifiable
fact) that F−1 ◦ F = I d, e.g., as operators on S0(Rd) (using true integrals) or in
the spirit of Plancherel’s Theorem (by taking limits).

The setting in Theorem 3.8(i) is general enough to be applied to many of the oper-
ators arising elsewhere, e.g., bounded on any of the space (L p(Rd), ‖.‖p) or even
from (L p(Rd), ‖.‖p) to some other (Lq(Rd), ‖.‖q), for 1 ≤ p, q ≤ ∞, because one
has S0(Rd) ⊂ L p(Rd) ⊂ S′

0(R
d) (with continuous embeddings), for p, q ∈ [1,∞].

The book of R. Larsen ([34]) describes such operators as convolution operators by
suitable quasi-measures. These quasi-measures (introduced by G. Gaudry, [30]) are
more general than the elements of S′

0(R
d) and can only be convolved with com-

pactly supported functions in the Fourier algebra, i.e., the elements of the pre-dual.
Moreover, unlike elements of S′

0(R
d) it is not possible to define a Fourier transform,

respectively, a corresponding transfer function in the natural way. Note however
that operators with a kernel in S′

0 do not form an algebra, because the range of the
space may be larger than the domain. On the other hand, for operators mapping a
given space into itself (e.g., L2(Rd), or even (S0(Rd), ‖ · ‖S0), etc.) composition is
possible and then it should be true (and can be verified) that the convolution of the
corresponding kernels “somehow makes sense” (using regularizers) or equivalently,
the pointwise product of the associated transfer functions will be also meaningful
(e.g., via pointwise multiplication in L∞(Rd) almost everywhere).

The kernel theorem is the starting point for many alternative descriptions of linear
operators, more or less by a “change of basis”. One can view the space S′

0(R
2d)

as a (huge) space of operators, which contains a number of interesting operators,
such as the collection of all the TF-shifts π(λ) = Es Tx , x, s ∈ R

d . The so-called
spreading representation of the operators is a kind of “Fourier-like” representation of
operators, where these TF-shifts play the role of the Fourier basis for the continuous
Fourier transform. This representation will be called the spreading representation of
operators. For more on this see, e.g., [10, 26].

3.10 Shannon’s Sampling Theorem

The claim of the classical Whittaker–Kotelnikov–Shannon Sampling Theorem con-
cerns the recovery of any L2(R) function whose a Fourier transformwhose support is
contained in the symmetric interval I = [−1/2, 1/2] around zero (i.e., supp( f̂ ) ⊆ I )
from regular samples of the form ( f (αn))n∈Z as long as α ≤ 1 (Nyquist rate).
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The reconstruction can be achieved using the sinc-function, with sinc(t) =
sin(π t)/π t , the sinus cardinales,11 which can be characterized as the inverse Fourier
transform of the box function 1I , the indicator function of I .

It is convenient to apply the following notation:

B2
I := { f : f ∈ L2(R), supp( f̂ ) ⊆ I }. (3.54)

The Sampling theorem can be deduced as follows: by the usual Fourier series, we
know that the functions (ek)k∈Z = (e2π iks)k∈Z form an complete orthonormal basis in
the Hilbert space L2([0, 1]), respectively, the space of all functions from L2(R) with
supp( f̂ ) ⊆ I . Therefore using the standard inner product 〈·, ·〉 on L2(I ) we obtain

f̂ (s) =
∑

k∈Z
〈 f̂ , ek〉ek(s) =

∑

k∈Z
〈 f̂ , ek〉e2π iks1I (s).

By applying the inverse Fourier transform we obtain

f (t) =
∑

k∈Z
〈 f̂ , ek〉sinc(t + k), (3.55)

with 〈 f̂ , ek〉 =
∫

I
f̂ (s) e−2π iks ds =

∫

R

f̂ (s) e−2π iks ds = f (−k).

Plugging this into (3.55) yields the classical version of the Shannon theorem:

f (t) =
∑

k∈Z
f (k) sinc(t − k) for all t ∈ R and f ∈ B2

I . (3.56)

Thanks to the fact that the sampling values are in l2(Z) the series is pointwise
absolutely convergent, even uniformly, but it is also unconditionally convergent in
(L2(R), ‖ · ‖2). Unfortunately, the partial sums are not well localized due to the poor
decay of the sinc-function (which is in L2(R), but not in L1(R) or S0(R)).

Consequently one prefers to make use of alternative building blocks at the cost of
working at a slight oversampling rate.12 Let us formulate this more practical version
of the Shannon sampling for bandlimited functions in the Wiener algebra.

For any interval I ⊂ Rwe set B1
I := { f ∈ W (R) : supp( f̂ ) ⊂ I }.One can show

that B1
I = { f ∈ S0(R) : supp( f̂ ) ⊂ I } = { f ∈ L1(R) : supp( f̂ ) ⊂ I }. The more

11The word “cardinal” comes into the picture because of the Lagrange type interpolation property
of the function sinc: sinc(k) = δk,0.
12Recall that digital audio recordings are meant to capture all the frequencies up to 20kHz and
work with 44100 samples per second although the abstract Nyquist criterion would only ask for
2 ∗ 20000 = 40000 samples per second (to express theNyquist criterion in a practical form). Clearly
the use of this theorem in a real-time situation requires the reconstruction being well localized in
time, in order to cause only minimal delay of the reconstruction process.
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practical version of Shannon’s Sampling Theorem, now with good localization of
the building blocks (rather than the sinc-function) reads as follows.

Theorem 3.9 Let β > 0 be such that I ⊂ 1
2 (−β, β) and let g ∈ S0(R) be such that

ĝ(s) = 1 for all s ∈ I and supp ĝ ⊂ 1
2 [−β, β] and let α = β−1. Then we have

f (t) = α
∑

k∈Z
f (αk)g(t − αk) for all t ∈ R, ∀ f ∈ B1

I , (3.57)

with absolute convergence in (S0(R), ‖ · ‖S0), (W (R), ‖ · ‖W ), and (C0(R), ‖ · ‖∞).

It is even possible to require that g has decay like the inverse of any given polynomial:
given r ∈ N one can find g such that |g(t)| ≤ C(1 + |t |)−r for a suitable constant
C > 0. The spectrum of g is contained in a small open interval around I .

Proof The assumption about supp( f̂ ) ⊂ I implies that the support of all the shifted
copies of f̂ , are disjoint to I and even to the open interval (−β/2, β/2). Hence for
any (ideally smooth) function g as in the theorem satisfies

(�� β ∗ f̂ ) · ĝ = f̂ . (3.58)

By applying the inverse Fourier transform , we find

f = α · (�� α · f ) ∗ g (3.59)

That is, we reach our goal as follows

f (t) = (
α · (�� α · f ) ∗ g

)
(t) = α · (�� α · f

)
(Tt g

�)

= α · (�� α

)
( f · Tt g

�) = α
∑

k∈Z
( f · Tt g

�)(α k)

= α
∑

k∈Z
f (α k) g(t − αk).

3.11 Systems and Convolution Operators

The theory of TILS (translation invariant linear systems) is an important subject
and most electrical engineering students are exposed to this concept early on in their
studies.Unfortunately onemust say that—due to the lackof appropriatemathematical
descriptions—the way in which the concepts of an impulse response respectively
a transfer function is introduced only in a rather vague (but “intuitive”) fashion.
Furthermore, students who want to dig deeper and understand these concepts in
more detail are left alone, because engineering books explaining the relevance of the
subject do not provide more details or justifications later on. On the other hand, the
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mathematical books who talk about convolution do this with a completely different
motivation but do not connect to those problems arising in the engineering context.

The article [21] takes the first steps toward a reconciliation of these two
approaches13 by modeling translation invariant systems of what is called BIBOS
systems (which means bounded input—bounded output), respectively, as a bounded
linear operator from the Banach space (C0(R

d), ‖ · ‖∞) into itself, commuting with
translations.

By choosing as a domain the space C0(R
d) and not the larger space Cb(R

d) of
all bounded, continuous, complex-valued functions, we avoid indeed the so-called
scandal in system theory as diagnosed by I. Sandberg in a series of paper (see
e.g., [41–44]). Furthermore, we are in fact able to represent every such system as
a convolution operator by some bounded measure. In order to do so it is not at all
required to discuss technical details of measure theory, but one can just call14 the
bounded (respectively, continuous) linear functionals on (C0(R

d), ‖ · ‖∞) bounded
measures (as we also did in Sect. 3.3).

Unfortunately, this setting cannot be used to characterize all the TILS which are
bounded on (L2(Rd), ‖ · ‖2). It is true that every convolution operator of the form
f �→ μ ∗ f, f ∈ L2(Rd)withμ ∈ Mb(R

d) extends to all of L2(Rd) and satisfies the
expected estimate: ‖μ ∗ f ‖2 ≤ ‖μ‖Mb(Rd )‖ f ‖2, or alternatively can be described on
the Fourier transform side as f̂ �→ μ̂ · f̂ , where μ̂ ∈ Cb(R

d), but not every L2-TILS
can be represented in this form.

It is not so difficult to find out (using Plancherel’s Theorem) that the most general
TILS on (L2(Rd), ‖ · ‖2) is a pointwise multiplier with an essentially bounded and
measurable function, respectively, with some h ∈ L∞(Rd). So we can write any
such operator in the form f �→ T ( f ) = F−1(h · f̂ ), with transfer “function” h ∈
L∞(Rd). But then one would expect that we can write T ( f ) = σ ∗ f , where σ =
F−1(h), but normally no inverse Fourier transform for bounded functions (which
are not integrable or at least square integrable) exists. However, this can be made
correct by taking the inverse Fourier transform in the sense of S′

0(R
d) (as defined in

Sect. 3.8).
One possible example is the convolution by a chirp signal, which is a bounded,

highly oscillating function of the form ch(t) = eiπα|t |2 . For simplicity we choose
the value α = 1. The general chirp can be obtained from this one by dilations. This
allows us to derive from this also the FT of general chirp signals.

Recall that the chirp ch(t) = eiπ |t |2 belongs to S′
0(R

d) and therefore has a Fourier
transform in this sense. Moreover, it is in fact Fourier invariant, and consequently
convolution by ch corresponds to pointwise multiplication of f̂ by ch(t), which is a
good operator on (L2(Rd), ‖ · ‖2), because it is continuous and bounded.

On the other hand, onemight expect that one canwrite the convolution for any f ∈
L2(Rd) as an integral, if not as a Riemann integral so at least as a Lebesgue integral,
because this is the most general integral (at least for our purposes). Specifically, we
would like to convolve ch with the sinc-function. But due to the fact that |ch(t)| =

13But still much more has to be done!
14This is well justified by the Riesz representation theorem.
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1,∀t ∈ R and the fact that sinc /∈ L1(R) for no argument, this convolution integral
exists in the literal sense. It is however (and of course) possible to approximate f ∈
L2(R) by functions fn ∈ S0(R), to perform the convolutions ch ∗ fn in a classical
way, and then take the limit for n → ∞ (with convergence in the L2 sense).

There are other scenarios, for example, (at least mathematicians) are interested
in linear operators from (L p(Rd), ‖.‖p) to (Lq(Rd), ‖.‖q) of a similar nature. All of
these cases are covered by the following theorem.

Theorem 3.10 The Banach space HL1(S0, S′
0) of all bounded linear operators from

(S0(Rd), ‖ · ‖S0) into (S′
0(R

d), ‖ · ‖S′
0
) which commute with the action of W (Rd) or

L1(Rd) by convolution,15 i.e., which satisfy

T (g ∗ f ) = g ∗ T ( f ), ∀g ∈ L1(Rd), f ∈ S0(R
d), (3.60)

or equivalently the set of all translation invariant bounded operators

T (Tx f ) = Tx (T ( f )), ∀x ∈ R
d , f ∈ S0(R

d), (3.61)

can be characterized as the set of all convolution operators of the form T : f �→
σ ∗ f (given pointwise [σ ∗ f ](x) = σ(Tx f �)) where σ ∈ S′

0(R
d). In fact, every

such operator maps (S0(Rd), ‖ · ‖S0) into (Cb(R
d), ‖ · ‖∞), and the corresponding

three norms are equivalent, i.e., ‖σ‖S′
0
, or the operator norm of T as operator from

S0(Rd) into (Cb(R
d), ‖ · ‖∞) or into (S′

0(R
d), ‖ · ‖S′

0
), respectively. Moreover, any

such operator can be described on the Fourier transform side as a Fourier multiplier
with the transfer function σ̂ ∈ S′

0(R
d), via

T̂ ( f ) = σ̂ · f̂ , f ∈ S0(R
d). (3.62)

3.12 Further References

These notes are part of a more comprehensive program running under the title
“Conceptual Harmonic Analysis” (see [22]). It aims at providing a more integrative
approach to Fourier analysis and its applications, by emphasizing the connections
between discrete and continuous Fourier transform.The contribution provided by this
article is meant to underline that such a more global approach to Fourier analysis,
which certainly requires the use of generalized functions (like Dirac measures, Dirac
combs, but also almost periodic function and their Fourier transforms, etc.) does not
have to start from the theory of Schwartz functions and Lebesgue integration, or even
from the Schwartz–Bruhat distributions (see [3, 36]) and (Haar)-measure theory in

15In the terminology of Banach modules, we are talking about the fact that both S0(Rd ) and S′
0(R

d )

areBanachmodules over theBanach convolution algebra (L1(Rd ), ‖ · ‖1), and thatwe are interested
in the Banach module homomorphisms.
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the case of LCAgroups. Instead, at least for the Euclidean case, a simplified approach
can be provided on the basis of principles from linear functional analysis and the
Riemann integral for continuous and well decaying functions on R

d . Recall that the
use of functional analytic methods as such appears unavoidable due to the fact that
relevant signal spaces are rarely finite dimensional.

The original paper introducing the Banach space S0 for general locally compact
abelian groups is [15]. At that time it was introduced as a particular Segal alge-
bra in the spirit of H. Reiter [38], in fact the smallest member in the family of all
strongly character invariant (meaning in modern terminology: isometrically mod-
ulation invariant) Segal algebras. This minimality property gives a large number
of properties of these spaces. It is introduced there in the context of general LCA
groups. A comprehensive walkthrough of its important properties (also for general
LCA groups) is [32].

It turned out to be the proper domain for the treatment of the metaplectic group
by H. Reiter in [39] and even for the treatment of generalized stochastic processes
(see [24]). Also, it is essential for the development of a general theory of modula-
tion spaces, which are nowadays a well established discipline, even with interesting
applications in the theory of partial or pseudo-differential operators (see e.g., [18,
19]).

From the point of view of coorbit theory as developed in [23] modulation spaces
are associated with the STFT, which can be seen as practically equivalent with the
matrix coefficients of a pair of vectors f, g in the Hilbert space (L2(Rd), ‖ · ‖2)
under the Schrödinger representation of the reduced Heisenberg group. This makes
modulation spaces very suitable for the discussion of operators arising in time–
frequency analysis and especially in connection with Gabor Analysis.

It is this area where the usefulness of the spaces (S0(Rd), ‖ · ‖S0) and its dual
became apparent again and again. Sometimes these two spaces are viewed together
as a Banach Gelfand Triple denoted by (S0, L2, S′

0)(R
d). It has been the experi-

ences especially in this area where the ideas about “well chosen function spaces”
became clear. In the spirit of [20], the current article describes the Wiener alge-
bra W (C0, l1)(Rd) and the Segal algebra (S0(Rd), ‖ · ‖S0) as the most useful Banach
spaces of continuous and integrable functions. It allows using ordinary Riemann inte-
grals in a very natural fashion and also covers more or less all the classical summa-
bility kernels. On the way to a distribution theoretical description of the Fourier
transform (cf. also the elaborations of J. Fischer in this direction, [27, 28]) the space
WF R

d = W (Rd) ∩ FW (Rd) is a first, intermediate step.
While the concept of modulation spaces was originally to defineWiener amalgam

spaces on the Fourier transform side (in the spirit of the Fourier analytic description
of the classical smoothness spaces like (Bs

p,q(R
d), ‖ · ‖Bs

p,q
, using dyadic, smooth

partitions of unity), also the Wiener algebra is a representative of the equally impor-
tant class of Wiener amalgam spaces. The general theory of Wiener amalgam spaces
is described in [29] (Fournier/Stewart) and [5] for the classical case, where the local
component is L p(G) and the global component is lq(Zd). In [16] much more gen-
eral ingredients were admitted, which work as long as the local component has a
sufficiently rich pointwise multiplier algebra in order to generate BUPUs which are



3 Distribution Theory by Riemann Integrals 73

uniformly bounded in that multiplier algebra. For B = F L p it is enough to have
boundedness in (F L1(Rd), ‖ · ‖F L1).

The general description of Wiener’s algebra (described among others in [38,
40]) is the paper [12]. The minimality of W (C0, l1)(Rd) and then S0(Rd) =
W (F L1, l1)(Rd) is studied in [13, 17]. Since the local behavior ofFW (Rd) equals
that of F L1(Rd) (this is valid for any Segal algebra).

The pair consisting of (S0(Rd), ‖ · ‖S0) and its dual space (S′
0(R

d), ‖ · ‖S′
0
) can also

serve as a basis for the treatment of generalized stochastic processes. This approach
is described in [24], based on the Ph.D. thesis [31] of W. Hörmann.

3.13 The Relation to the Schwartz Theory

It is of course legitimate to ask about the relationship of the presented approach to
the well-established Schwartz Theory of (tempered) distributions (see [45]) which
is widely used for PDE or pseudo-differential operators.

It was first observed by D. Poguntke that S (Rd) is continuously and densely
embedded into (S0(Rd), ‖ · ‖S0) and consequently (S′

0(R
d), ‖ · ‖S′

0
) is continuously

embedded into S ′(Rd). It is also clear that the extended Fourier transform for
S ′(Rdd), when restricted to S′

0(R
d) is just the one defined directly in Lemma 3.16

without the use of tempered distributions. In practice S0(Rd) and S (Rd) respec-
tively, their duals have very similar properties (except for differentiability issues!),
including the existence of a kernel theorem or regularization via smoothing and
pointwise multiplication, using the relations

(
S′
0(R

d) ∗ S0(R
d)

) · S0(R
d) ⊂ S0(R

d) (3.63)

which resembles the well-known relationship

(
S ′(Rd) ∗ S (Rd)

) · S (Rd) ⊂ S (Rd). (3.64)

But there are still various good reasons to consider the approach presented in this
note. First of all, as mentioned several times, it is technically much less challenging,
and so the hope is that it has better chances to be adopted by engineers or physicists. In
particular for courses on signal processing and systems theory, it might be a goodway
to go. For people interested in either numerical approximation of abstract Harmonic
Analysis, the function spaces used should offer good tools for a discussion of the
connection between the continuous and the finite discrete setting. Such questions
usually do not involve any differentiation.

We also point out that the advantage of a smaller room of distributions is the fact
that all the many invariance properties allow showing that one is staying within that
smaller area. In [26] it was crucial for the derivation of the Janssen representation of
the Gabor frame operator for general lattices to show that the distributional kernel
describing the spreading function of that operator is supported by the adjoint lattice,
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i.e., by a discrete set, and that consequently it is a sum of Dirac measures (because
there is nothing like a practical derivative of the Dirac delta in S′

0(R
d)!). We could

also argue that it is enough to know that for any p ∈ [1,∞], all its elements in
L p(Rd) have a Fourier transform inside of S′

0(R
d) and not only within some much

larger space likeS ′(Rd). Theorem 3.10 is a good example in that direction. Unlike
quasi-measures (see [33]) we also find the transfer function inside of the Fourier
invariant space S′

0(R
d), a proper subspace of the space of quasi-distributions.
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Chapter 4
Partial Differential Equations on Metric
Graphs: A Survey of Results on
Optimization, Control, and Stabilizability
Problems with Special Focus on Shape
and Topological Sensitivity Problems

Günter Leugering

Abstract We consider ordinary equations on metric graphs. In particular, we con-
sider novelty and review earlier results in the context of shape and topology opti-
mization for second-order equations on such metric graphs. For the sake of brevity,
we concentrate on simple topologies, such as star graphs, in order to provide a sim-
ple representation of the concepts. In fact, we use the concept of Steklov–Poincaré
operators in order to reduce complex graphs to star graphs. As for the differential
operators, we also confine ourselves with constant coefficients. In that respect, the
current article is the first one, where the results scattered in the literature are put in
a unifying framework.

Keywords Problems on metric graphs · Shape and topology optimization ·
Optimal control

4.1 Introduction

Differential equations on graphs or, more precisely, on metric graphs are ubiqui-
tous. In particular, transportation networks conveying fluids, gas, electrical power
or traffic can be modeled by hyperbolic systems on networks. Also mechanical net-
works involving strings, cables, beams, masses, and springs that are important in
civil engineering can be framed within hyperbolic balance laws on graphs. Heat flow
in technical devices as well as in buildings can be regarded as parabolic equations
on networks. Also flow in crack networks are of importance and lead to uncommon
fluid–structure interaction problems in combination with crack-sensitivity theory.
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The underlying quasi-static model or one that is obtained after suitable time dis-
cretization is that of an elliptic system on networks. In these notes, we concentrate
on such elliptic systems and, as those are edgewise one-dimensional, consequently,
on ordinary differential equations on metric graphs, that, in turn, are constituted as
assemblies of Jordan curves in three-spaces or more simply by straight edges in the
plane. Such metric graphs and elliptic problems “carried” by the graph have been
the subject of many publications. In particular in physics, such graphs together with
Sturm–Liouville problems have come to be known as quantum graphs (see Exner [9,
10] and Kuchment [34–36] for typical references). Articles in this area are typically
concernedwithwell-posedness questions and analytical properties, in particular with
respect to the spectrum. Another branch of literature is concerned with wave equa-
tions and heat equations defined on such metric graphs. Early contributions are, for
example, by von Below [50, 51] on the spectral properties of metric graphs and even
nonlinear parabolic problems thereon. At the same time problems of controllability
and stabilizability of linear wave equations on metric graphs have been investigated.
See Schmidt [15] and Lagnese, Leugering, and Schmidt [37–41]. Later the topic has
become very popular and even today it enjoys a lot of attraction. Indeed, a wealth
of literature is currently available. As regards the control of wave and heat equa-
tions, a fairly recent survey has been given by Dager and Zuazua [5] while nonlinear
problems concerning the control of traffic dynamics and supply chains on networks
have been discussed in the literature by many authors, culminating in the recent
monographs by Garavallo, Hans, and Piccoli [11] and D’Apice, Göttlich, Herty, and
Piccoli [6]. Nonlinear and nonlocal hyperbolic balance laws in this context have
been investigated in, e.g., [13, 21, 31] and most recently in [32, 33]. Yet another
branch of quasilinear problems on metric graphs is given by the transport of gas and
water in pipe networks or canal networks. There is virtually no space for an adequate
acknowledgement of the literature. Suffice it to refer to a survey article provided in
the last proceedings of ISIAM 2016 that was published in [29] and the articles [7, 8,
16–20, 22–24, 27, 28, 44] where the corresponding nonlinear problems of control-
lability and stablizability are addressed. The literature on mixed-integer nonlinear
optimal control of gas flow on networks has been achieved in [12, 25, 26, 45].

Also inverse problems have been studied related to differential equations on
graphs. Here the interest is often more focused on the topology of the graph and
physical parameters. The interest, in a way, has been motivated by the classical ques-
tion raised byKac: Can one hear the shape of a drum? See[30]. The question has been
rephrased as Can one hear the shape of a tree [52]? Indeed, in Avdonin, Leugering,
and Mikhaylov [2, 3], these questions have been answered positively in the context
of planar wave equations on planar graphs. There are other articles in the context of
quantum graphs, where similar inverse problems have been solved. See e.g., [1, 49].
As with controllability and stabilizability questions, if the graph contains cycles, no
such fully satisfactory answer can be given.

Yet another observation is in order here. When dealing with scalar differential
equations on a (metric) graph, only the adjacency structure and the lengths of the
edges matters while the actual geometrical objectives, such as the angles between
two consecutive edges, do not matter in the class of trees. This is different for planar,
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that is to say, in-plane problems on planar graphs or for higher dimensional problems
on graphs in d-space and those problems where cycles occur.

In these notes, therefore, we address the role of the lengths of the edges and
the topology of the graph, thus, we are interested in the shape and the topology
optimization of metric graphs upon which differential equations are defined. To the
best knowledge of the author, only very few articles are present in the literature,
where such problems are addressed. We refer to Leugering and Sokolowski [43, 46]
and the dissertation by Ogiermann [48]. In fact, part of this survey is taken from
these articles. In these articles, the sensitivity of a graph with respect to exchanging
a multiple node by cycle is investigated. This is analogous to what has come to be
known as topological sensitivity. Releasing a node to a series of nodes, inserting an
edge, deleting an edge or contracting a subgraph to single node, these are questions
naturally asked in the context of discrete graphs and integer optimization problems. In
the context of continuous problems on metric graphs, many of analogous questions
are unresolved as of today. In these notes, we dwell on these problems. For the
sake of brevity, we stay with planar graphs. Moreover, in order to keep the material
compact, we dwell on a few special problems in order to provide the scope of different
directions.

4.2 Planar Graphs

Weconsider a simple planar graph (V, E) = G inR2,with verticesV = {vJ |J ∈ J }
and edges E = {ei |i ∈ I }. Let m = |J |, n = ‖I ‖ be the numbers of vertices and
edges, respectively. In general the edge set may be a collection of smooth curves in
R2, parametrized by their arc lengths. The restriction to planar graphs and straight
edges is for the sake of simplicity only. The more general case, which is of course
also interesting in the combination of shape and topology optimization, can also be
handled. However, this is beyond these notes.

We associate to the edge ei the unit vector ei aligned along the edge. e⊥
i denotes

the orthogonal unit vector. Given a node vJ , we define

IJ := {i ∈ I |ei is incident at vJ }

as the incidence set, and dJ = |IJ | as the edge degree of vJ . The set of nodes splits
into simple nodes JS and multiple nodes JM according to dJ = 1 and dJ > 1,
respectively. On G, we consider a vector-valued function y representative of the
displacement of the network (see Fig. 4.1)

y : G → Rnp := Π
pi
i∈I R, pi ≥ 1∀i. (4.1)

The numbers pi represents the degrees of freedom of the physical model used to
describe the behavior of the edgewith number i . For instance, p = 1 is representative
of a heat problem and out-of-the-plane models for elastic strings, whereas p = 2, 3
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Fig. 4.1 Representation of
planar displacement

X

Y

is used in an elasticity context on graphs in 2 or 3 dimensions. The p′
i s may change

in the network in principle. However, for the sake of brevity, in this article we insist
on pi = p = 1, or 2,∀i . See Lagnese, Leugering, and Schmidt [41] and Lagnese
and Leugering [42] for details on the modeling.

Once the function y is understood as being representative of, say, a deformation
of the graph, we may localize it to the edges

yi := y|ei : [αi , βi ] → Rp, i ∈ I , (4.2)

where ei is parametrized by x ∈ [αi , βi ] =: Ii , 0 ≤ αi < βi , �i := βi − αi . See
Fig. 4.1.

We introduce the incidence relation

di J :=
{
1 if ei ends at vJ
−1 if ei starts at vJ

.

Accordingly, we define

xi J :=
{
0 if di J = −1

�i if di J = 1
.

We will use the notation yi (vJ ) instead of yi (xi J ). In order to represent the material
considered on the graph, we introduce stiffness matrices

Ki := hi

[(
1 − 1

si

)
I + 1

si
eie

T
i

]
. (4.3)

Obviously, the longitudinal stiffness is given by hi , whereas the transverse stiffness
is given by hi (1 − 1

si
). This can be related to 1-d analoga of the Lamé parameters.

We introduce Dirichlet and Neumann simple nodes as follows. We define
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J t
D := {J ∈ JS|yi (vJ ) · ei = 0},

J n
D := {J ∈ JS|yi (vJ ) · e⊥

i = 0},

J t
N := {J ∈ JS|di J Ki

d

dx
yi (vJ ) · ei = 0},

J n
N := {J ∈ JS|di J Ki

d

dx
yi (vJ ) · e⊥

i = 0}.

Notice that these sets are not necessarily disjoint. Obviously, the set of completely
clamped vertices can be expressed as

J 0
D := J t

D ∩ J n
D. (4.4)

Similarly, a vertexwith completely homogenousNeumann conditions is expressed as
J n

N ∩ J t
N . At tangential Dirichlet nodes inJ

t
D we may, however, consider normal

Neumann conditions as inJ n
N and so on.

In this article, we restrict ourselves to “rigid” joints in the sense that the angles
between edges in their reference configuration remain fixed. The continuity is
expressed simply as

yi (vJ ) = y j (vJ ), i, j ∈ IJ , J ∈ JM .

We consider the energy of the system

E0 := 1

2

∑
i∈I

�i∫
0

Ki
d

dx
yi · d

dx
yi + ci y

i · yidx, (4.5)

where the primes denote the derivative with respect to the running variable xi , ci
represents an additional spring stiffness term or an elastic support.

In order to analyze the problem, we need to introduce a proper energy space

V := {y : G → R2n|yi ∈ H 1(Ii ) (4.6)

yi (vD) = 0, i ∈ ID, D ∈ J 0
D (4.7)

yi (vJ ) = y j (vJ ), ∀i, j ∈ IJ , J ∈ JM}. (4.8)

V is clearly a Hilbert space in

H := L2(0, �i )
2n. (4.9)

We introduce the bilinear form on V × V
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a(r, φ) :=
∑
i∈I

�i∫
0

[
Ki

d

dx
yi · d

dx
φi + ci y

i · φi

]
dx . (4.10)

Let now distributed and boundary forces, f i , gJ be given along the edge ei and at
the node vJ , respectively, which define a continuous linear functional in V

L(φ) :=
∑
i∈I f

�i∫
0

f i · φi dx +
∑
J∈J g

N

gJ · φ î (vJ ), (4.11)

where î indicates that the simple nodes have just one incident edge, and where
f i ∈ H 1(0, �i )∗. We now consider minimizing the energy over the set of constrained
displacements. The Ritz approach to deriving the problem now can be stated as
follows

min
y∈V

1

2
a(y, y) − L(y). (4.12)

The fact that this convexoptimization problemadmits a unique solution is then proved
by standard arguments. The classical first-order necessary optimality conditions in
their strong formulation then read as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Ki
d2

dx2
yi + ci y

i = f i , ∀i ∈ I

yi (vD) = 0, i ∈ ID, D ∈ JD

diN Ki
d

dx
yi (vN ) = gJ , i ∈ IN , N ∈ JN

yi (vJ ) = y j (vJ ), ∀i, j ∈ IJ , J ∈ JM∑
i∈I J

di J Ki
d

dx
yi (vJ ) = 0, J ∈ JM

, (4.13)

where f i = 0, i ∈ I \ I f , gN = 0, and J ∈ JN \ J g
N . Notice that (4.13) line 6

is an example of the classical Kirchhoff condition known from electrostatics. See
Lagnese, Leugering, and Schmidt [41, 42] f. (4.13) can be seen as an example of a
general second-order planar elliptic problem on a metric graph with mixed boundary
conditions. A general shape and topological sensitivity analysis even in this locally
1-D problem is not available in the literature.

In order to follow this cycle of ideas in a nutshell, we consider very simple such
equations on networks, in fact on star graphs with p = 1.We provide some first-hand
information before we embark on shape optimization problems related to problems
on metric graphs. We consider the following star graph with m edges, m external
nodes at x = �i and one multiple node at x = 0. On this graph we consider the
Laplacean with Dirichlet conditions (Fig. 4.2).
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Fig. 4.2 The three-star

x=0

x = �1

x = �2x = �3

− d2

dx2
yi + ci y

i = f i in (0, �i )

yi (�i ) = ui

yi (0) = y j (0), i �= j = 1, . . . ,m
m∑
i=1

d

dx
yi (0) = 0.

(4.14)

Example 4.2.1 Let f i = 0, ci = 0, i = 1, . . . ,m, then the solution is given by

yi (x) = 1

�i

⎛
⎜⎜⎜⎝ui − 1

m∑
j=1

1
� j

m∑
j=1

1

� j
u j

⎞
⎟⎟⎟⎠ x + 1

m∑
j=1

1
� j

m∑
j=1

1

� j
u j . (4.15)

Example 4.2.2 Let f i = 0, ci > 0, i = 1, . . . ,m. Then the solution is given by

yi (x) = ui

sinh(
√
ci�i )

sinh(
√
ci x) (4.16)

−

⎛
⎜⎜⎜⎝ 1

m∑
j=1

√
c j coth(

√
c j� j )

m∑
j=1

u j√c j
sinh(

√
c j� j )

⎞
⎟⎟⎟⎠ coth(

√
ci�i ) sinh(

√
ci x)

+ 1
m∑
i=1

√
ci coth(

√
ci�i )

m∑
i=1

ui
√
ci

sinh(
√
ci�i )

cosh(
√
ci x), i = 1, . . . ,m.

Example 4.2.3 A Helmholtz-type example is given by f i = 0, ci = −ω2ki < 0,
where ω denotes a frequency. In this case, the solutions have the following form

yi (x) = ai sin(ω
√
ki x) + bi cos(ω

√
ki x), i = 1, . . . ,m. (4.17)

The same procedure as in the previous examples provides
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b = 1
m∑
i=1

ω
√
ki cot(ω

√
ki�i )

m∑
i=1

ui
√
ki

sin(ω
√
ki�i )

(4.18)

ai = 1

sin(ω
√
ki�i )

(
ui

− 1
m∑
j=1

ω
√
k j cot(ω

√
ki� j )

m∑
j=1

u j
√
k j

sin(ω
√
ki� j )

cos(ω
√
ki�i )

⎞
⎟⎟⎟⎠ . (4.19)

We now look at the same problem, however, with different nodal conditions at the
multiple center node.

− d2

dx2
yi + ci y

i = f i in (0, �i )

yi (�i ) = ui

d

dx
yi (0) = d

dx
y j (0), i �= j = 1, . . . ,m

m∑
i=1

yi (0) = 0.

(4.20)

Remark 1 If we introduce the vectors

Y (0) =

⎛
⎜⎜⎜⎝
y1

y2

. . .

ym

⎞
⎟⎟⎟⎠ (0),

d

dx
Y (0) =

⎛
⎜⎜⎜⎝

d
dx y

1

d
dx y

2

. . .
d
dx y

m

⎞
⎟⎟⎟⎠ (0)

and the matrices

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . −1
0 1 0 . . . −1
0 0 1 . . . −1
. . . . . . . . . . . . −1
0 . . . . . . 1 −1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, A1 =

⎛
⎜⎜⎜⎜⎝
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 . . . . . . . . . 0
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ , (4.21)

then we can write down the nodal conditions for (4.14) as follows

A0Y (0) + A1
d

dx
Y (0) = 0.



4 Partial Differential Equations on Metric Graphs: A Survey … 85

Accordingly, for (4.20), we have

A0
d

dx
Y (0) + A1Y (0) = 0.

We can, thus, identify the nodal conditions as vector-valued Robin-type conditions
for the vectorial problem. In particular, if one normalizes the lengths to 1, which can
always be achieved by introducing a diagonal matrix in the equations (see below),
one can rewrite the star-graph problems as two-point boundary value problems for a
vectorial elliptic equation or an elliptic system as follows

AY − d2

dx2
Y = F (4.22)

A0Y (0) + A1
d

dx
Y (0) = 0, Y (1) = U, (4.23)

where A can be regarded as yet another couplingmatrix; this time the coupling occurs
in the domains, rather than on the boundary. In a sense, this system can be taken as
1-D prototype of a two-point boundary value problem for elliptic systems. This
remark can be extended to general Sturm–Liouville type problems on star graphs
and, in fact, on general metric graphs.

Remark 2 If the edges have individual lengths �i , we can use wi (x) = yi (x�i ), x ∈
(0, 1).We define diagonalmatricesL := (�i aik)ik where aik is the adjacencymatrix:
aik = 1 if edge i is connected to edge k (∃ j ∈ J S : di j �= 0, dkj �= 0) and 0 else. In
the same way L 2 := (�2i aik)ik . Then the system (4.22) is replaced with

AY − L −2 d2

dx2
Y = F

A0Y (0) + A1L
−1 d

dx
Y (0) = 0, Y (1) = U.

Thus, a problem with varying lengths can be reinterpreted as a problem with normal-
ized lengths but with varying coefficients. In a more general context, this is precisely
the basis for the method of the transformation on a fixed domain which is the basic
tool in this book.

4.2.1 Steklov–Poincaré Map for Metric Graphs

Steklov–Poincaré maps provide a useful tool in nonoverlapping domain decompo-
sition methods; see e.g., [42]. In the context of metric graphs, they can be computed
rather explicitly. We consider a simple situation in order to show the concept. We
consider again the general star graph.We also assume that the data f i , i = 1, . . . ,m
are constant in a (small) neighborhood of the central node which we assume to be
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located at x = 0. That is to say, f i constant for i = 1, . . . ,m for x ∈ [0, �i ]. We now
take as the firstm edges, the ones emerging from x = 0with individual lengths �i .We
introduce new serial nodal points ni at x = �i for each edge ei , i = 1, . . . ,m. Emerg-
ing from the nodes ni , i = 1, . . . ,m we introduce m new edges ei+m, i = 1, . . . ,m
starting at ni with x = 0. Thus, we have m serial nodes for the newly arranged net-
work. Our aim is to replace the inner star graph by the Steklov–Poincaré map and
find new transmission conditions at the nodes ni , i = 1, ..,m. This is analogous to
what has come to be known as domain decomposition by Steklov–Poincaré maps.
In order to proceed, we first show the explicit solution on the inner star graph. In the
case of constant coefficients and loads, the solution on each edge is clearly quadratic.
In fact, simple calculations show that the solutions yi look as follows

yi (x) = −1

2
x2 f i

+ 1

�i

⎛
⎜⎜⎜⎝ui − 1

m∑
j=1

1
� j

m∑
j=1

(
u j

� j
+ 1

2
� j f

j

)
+ 1

2
�2i f

i

⎞
⎟⎟⎟⎠ x

+ 1
m∑
j=1

1
� j

⎛
⎝ m∑

j=1

(
u j

� j

)
+ 1

2
�i f

i

⎞
⎠ , i = 1, . . . ,m.

The corresponding Steklov–Poincaré map, or Dirichlet–Neumann map is then given
by

Si (u) = d

dx
yi (�i ) (4.24)

= 1

�i
ui − 1

�i

1
m∑
j=1

1
� j

⎛
⎝ m∑

j=1

u j

� j
+ 1

2
�i f

i

⎞
⎠ − 1

2
�i f

i

= 1

�i
ui − 1

�i

1
m∑
j=1

1
� j

m∑
j=1

u j

� j
− 1

�i

1
m∑
j=1

1
� j

m∑
j=1

1

2
� j f

j − 1

2
�i f

i .

As mentioned above, we now assume that the connecting edges ei+m, i = 1, . . . ,m
start at the nodes ni , i = 1, . . . ,m, then the Steklov–Poincaré-based boundary con-
ditions there read as follows

d

dx
yi+m(0) − 1

�i
yi+m(0) + 1

�i

1
m∑
j=1

1
� j

m∑
j=1

y j+m(0)

� j
(4.25)
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= − 1

�i

1
m∑
j=1

1
� j

m∑
j=1

1

2
� j f

j − 1

2
�i f

i , i = 1, . . . ,m.

Remark 3 TheRobin boundary conditions (4.25) are still coupled over the endpoints
of the star graph that has been cut out using the Steklov–Poncaré map (4.24). It is
interesting to note that these coupling conditions are self-adjoint. Indeed, if, for the
sake of simplicity, we put all lengths equal to 1 and neglect the loads f i , i = 1, .., 3
then, upon introducing the vectors

Y (0) =

⎛
⎜⎜⎜⎝
y1

y2

. . .

ym

⎞
⎟⎟⎟⎠ (0),

d

dx
Y (0) =

⎛
⎜⎜⎜⎝

d
dx y

1

d
dx y

2

. . .
d
dx y

m

⎞
⎟⎟⎟⎠ (0)

and the matrices

A0 =

⎛
⎜⎜⎜⎜⎝
1 − 1

m − 1
m − 1

m . . . − 1
m− 1

m 1 − 1
m − 1

m . . . − 1
m− 1

m − 1
m 1 − 1

m . . . − 1
m

. . . . . . . . . . . . − 1
m− 1

m . . . . . . − 1
m 1 − 1

m

⎞
⎟⎟⎟⎟⎠ , A1 =

⎛
⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
0 . . . . . . . . . 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , (4.26)

we can write down the nodal conditions for (4.14) as follows

A0Y (0) + A1
d

dx
Y (0) = 0.

We have A0AT
1 is symmetric and, hence, the boundary conditions are self-adjoint.

For the second transmission condition according to (4.20), we obtain

yi (x) = −1

2
x2 f i + ax + bi , i = 1, . . . ,m (4.27)

a = 1
m∑
j=1

� j

⎛
⎝ m∑

j=1

(
u j + 1

2
�2j f

j

)⎞⎠

bi = ui − 1
m∑
j=1

� j

⎛
⎝ m∑

j=1

(
u j + 1

2
�2j f

j

)⎞⎠ �i + 1

2
�2i f

i , i = 1, . . . ,m. (4.28)
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The corresponding Steklov–Poincaré map is then given by

Si (u) = d

dx
yi (�i ) (4.29)

= 1
m∑
j=1

� j

⎛
⎝ m∑

j=1

u j + 1

2

m∑
j=1

�2j f
j

⎞
⎠ − �i f

i .

If we now assume that the connecting edges ei+m, i = 1, . . . ,m start at the nodes
ni , i = 1, . . . ,m, then the Steklov–Poincaré-based boundary conditions there read
as follows

d

dx
yi+m(0) − 1

m∑
j=1

� j

⎛
⎝ m∑

j=1

y j+m(0)

⎞
⎠ (4.30)

= 1
m∑
j=1

� j

⎛
⎝1

2

m∑
j=1

�2j f
j

⎞
⎠ − �i f

i , i = 1, . . . ,m. (4.31)

Similar calculations can be done for reverse Steklov–Poincaré problem, namely,
where one starts with Neumann data and solves for the Dirichlet data at the same
nodes.

We continue our discussions in the next section, where we resort again to the
general graphs.

4.2.2 Problems on General Metric Graphs

The Steklov–Poincaré or Dirichlet–Neumann maps, together with the corresponding
Neumann–Dirichlet maps, can be used to decompose any given problem on a metric
graph into star graphs. Let us briefly consider this method. We use the standard
notation introduce at the beginning of this section and consider the problem on a
general network.

The complete system of type (4.14) reads as follows

yi − γi
d2

dx2
yi = f i , i ∈ I , x ∈ (0, 1)

yi (n j ) = yk(n j ),∀i, k ∈ I j , j ∈ J M

∑
i∈I j

di jγi
d

dx
yi (n j ) = 0, j ∈ J M (4.32)
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yi (n j ) = u j , i ∈ I j , j ∈ J S
D

d

dx
yi (n j ) = u j , i ∈ I j , j ∈ J S

N ,

whereas the complete elliptic network problem of type (4.20) is written as

yi − γi
d2

dx2
yi = f i , i ∈ I , x ∈ (0, 1)

γi
d

dx
yi (n j ) = γk

d

dx
yk(n j ),∀i, k ∈ I j , j ∈ J M

∑
i∈I j

di j y
i (n j ) = 0, j ∈ J M (4.33)

yi (n j ) = u j , i ∈ I j , j ∈ J S
D

d

dx
yi (n j ) = u j , i ∈ I j , j ∈ J S

N .

The problem of well-posedness (4.33) is considered next. The analysis is similar
for the even more classical system (4.32) which has been analyzed in the literature.
See e.g., [41]. It turns out that, in this case, for any graph G, such that each node is
connected to a Dirichlet node by a simple path, the underlying elliptic operator is
self-adjoint and positive definite, thus, the problem admits a unique solution. Indeed,
the Lagrange identity

〈Ay, φ〉 :=
∑
i∈I

1∫
0

(
yi − γi

d2

dx2
yi − f i

)
φi dx (4.34)

= −
∑
j∈J

∑
i∈I j

di jγi
d

dx
yi (n j )φ

i (n j ) +
∑
i∈I

1∫
0

(
yiφi + γi

d

dx
yi

d

dx
φi − f iφi

)
dx

= −
∑
j∈J

∑
i∈I j

di jγi
d

dx
yi (n j )φ

i (n j ) +
∑
j∈J

∑
i∈I j

di jγi y
i (n j )

d

dx
φi (n j ) + 〈y, Aφ〉

= 〈y, Aφ〉, ∀y, φ ∈ D(A),

where the domain D(A) is given by

D(A) :=
{
y = (yi )|i∈I ∈ Πi∈I H 2(0, 1)|yi (n j ) = 0, i ∈ I j , j ∈ J S

D

d

dx
yi (n j ) = 0, i ∈ I j , j ∈ J S

N (4.35)

γi
d

dx
q(n j ) = γk

d

dx
yk(n j ),∀i, k ∈ I j , j ∈ J M

∑
i∈I j

di j y
i (n j ) = 0, j ∈ J M

}
.
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Thus, we can define the unbounded, self-adjoint operator

Aq :=
(
yi − γi

d2

dx2
yi
)
i∈I

(4.36)

with domain D(A) in the Hilbert space H := Πi∈I L2(0, 1), which is positive
definite. We may also introduce the energy space

V :=
{
y = (yi )|i∈I ∈ Πi∈I H 1(0, 1)|yi (n j ) = 0, i ∈ I j , j ∈ J S

D

d

dx
yi (n j ) = 0, i ∈ I j , j ∈ J S

N (4.37)

∑
i∈I j

di j y
i (n j ) = 0, j ∈ J M

}
.

Theorem 4.2.4 Let a networkG = (V, E) be given such that each node is connected
to a Dirichlet node by a simple path. Moreover, let controls u j , j ∈ J S and right-
hand sides f ∈ H be given. Then there exists a unique solution y ∈ D(A) to Ay = f
(4.33). If f ∈ V ∗, then there is a unique solution y ∈ V .

We continue the discussion for the use of the Dirichlet–Neumann (Steklov–
Poincaré) and Neumann–Dirichlet maps for the purpose of decomposing problems
on a general graphG into star-graph problems. Assume we are given a multiple node
n j , j ∈ J M with edge degree d j . Then d j edges emanate from n j . Denote these
edges i01 , . . . i

0
d j
. If we cut these edges in the middle, then we obtain d j serial nodes

n j1 , . . . , n jd j
, where we apply the canonical transmission conditions and another set

of d j edges with labels i11 , . . . i
1
d j
. Then we impose

yi
0
1 (n j1) = yi

1
1 (n j1), . . . , y

i0d j (n jd j
) = y

i1d j (n jd j
),

and
d

dx
yi

0
1 (n j1) = d

dx
yi

1
1 (n j1), . . . ,

d

dx
y
i0d j (n jd j

) = d

dx
y
i1d j (n jd j

).

Then we use the Dirichlet–Neumann (D2N) or the Neumann–Dirichlet (N2D) map-
pings in order to cut out the star graph with center node n j and the edges with indices
i01 , . . . i

0
d j
as indicated above. Therefore, for a first approach, it is sufficient to consider

star graphs as they contain the problem of multiple nodes. We do not dwell further
on problems on general graphs here and instead refer to [41, 42].
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Fig. 4.3 The deformed
three-star

a1

a2a3

e3 e2

e1

a
a+ tv

4.2.3 Shape Variations for Graph Problems

Weare now interested inmoving the center node of the graph, Fig. 4.3, and to calculate
the sensitivities with respect to that movement. We introduce the following notation.
Let ai, i = 1, . . . ,m and a be vectors in the plane, where the ai , i = 1, . . . ,m denote
the endpoints of the edges labeled 1, . . . ,m and a denotes the center node in the
reference configuration. We are going to move a in the direction v. To this end, we
introduce the normalized edge vectors

ei := ei (0, 0) := a − ai

‖a − ai‖ , ei (t, v) := a + tv − ai

‖a + tv − ai‖ , i = 1, . . . ,m. (4.38)

See Fig. 4.3. The edges have lengths �i := ‖a − ai‖, i = 1, . . . ,m.
There are several ways to introduce a vector field that transports the point a to the

point a + tv, t > 0. One natural choice is

Tt (v) : R2 → R
2

Tt (v)(ai ) = ai , Tt (v)(a) = a + tv
(4.39)

We can realize this field by introducing a velocity V (ai ) = 0, i = 1, . . . ,m and
V (a) = v, hence,

V (x) = ‖x − a1‖‖x − a2‖ . . . ‖x − am‖
‖a − a1‖‖a − a2‖ . . . ‖a − am‖v. (4.40)

Note, however, that V deforms the graph in that the images of the edges Tt (v)(ai +
se1) = ai + sei + tV (a1 + sei ) are no longer straight lines. Alternatively, we can
define m linear fields as follows.

T i
t (v)(ai + sei ) = ai + sei + t

sv
�i

(4.41)

which map the straight edges ai + sei , s ∈ [0, �i ] onto the straight edges ai +(
sei + t v

�i

)
, s ∈ [0, �i ]. Let us introduce the lengths of the edges in the mov-

ing domain �i (t) := ‖a + tv − ai‖, i = 1, . . . ,m. We also denote by �i (â), the
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individual length with a given center multiple node â. In case of â = a + tv − ai
we have �i (â) = �i (t).We can now pose the following optimization problem, where
we look for the optimal position in an ε neighborhood of the given positon of the
multiple node.

min
â∈Bε(a)

1

2

m∑
i=1

�i (a)∫
0

|yi (x) − yd(x)|2dx s.t.

− d2

dx2
yi + ci y

i = f i in (0, �i (â))

yi (�i (â)) = ui

yi (0) =y j (0), i �= j = 1, . . . ,m
m∑
i=1

d

dx
yi (0) = 0.

(4.42)

Example 4.2.5 We let ci = 0, i = 1, . . . ,m and yd(x) = 0, x ∈ [0, �i ], i =
1, . . . ,m. According to Fig. 4.3, we consider the following transformations. See
(4.39).

T i
t (v)(x) := ai + xei + t

v
�i
x, i = 1, . . . ,m. (4.43)

Then, clearly, T i
t (v)(0) = ai , i = 1, . . . ,m and T i

t (v)(�i ) = a + tv. We can refor-
mulate problem (4.42) as follows.

− d2

dx2
yi = 0 in (0, �i (â))

yi (0) = ui

yi (�i (t)) = y j (� j (t)), i �= j = 1, . . . ,m
m∑
i=1

d

dx
yi (�i (t)) = 0.

(4.44)

Let us observe that the unique solution is given by

yit (x) = 1

�i (t)

⎛
⎜⎜⎜⎝ui − 1

m∑
j=1

1
� j (t)

m∑
j=1

u j

� j (t)

⎞
⎟⎟⎟⎠ (�i (t) − x) + 1∑

j=1
m 1

� j (t)

∑
j=1

m
u j

� j (t)
.

(4.45)
On the fixed graph, we have
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(yi )t (x) = yit (Tt (v)(x) (4.46)

= 1

�i (t)

⎛
⎜⎜⎜⎝ui − 1

m∑
j=1

1
� j (t)

m∑
j=1

u j

� j (t)

⎞
⎟⎟⎟⎠
(

�i (t) − �i (t)

�i
x

)

+ 1
m∑
j=1

1
� j (t)

m∑
j=1

u j

� j (t)
.

From this it is possible to derive the material and shape derivative, ẏi , (yi )′, directly.
We obtain for the material derivatives

ẏi (0) = 0, i = 1, . . . ,m, (4.47a)

ẏi (�i ) = 1(
m∑
j=1

1
� j

)2

m∑
j=1

�′
j (0)

�2j

m∑
i=1

u j

� j
− 1

m∑
j=1

1
� j

m∑
j=1

u j�′
j (0)

�2j
(4.47b)

which is independent of i and

m∑
i=1

d

dx
ẏi (�i ) = −

m∑
i=1

�′
i (0)

�i

d

dx
yi (�i ). (4.47c)

For the shape derivatives, we get

d2

dx2
(yi )′ = 0, in (0, �i (â))

(yi )′(0) = 0, i = 1, . . . ,m, (4.48a)

(yi )′(�i ) − (y j )′(� j ) = �′
j (0)

d

dx
y j (� j ) − �′

i (0)
d

dx
yi (�i ) (4.48b)

m∑
i=1

d

dx
(yi )′(�i ) = 0.

These relations can be verified using the system (4.44) directly, without using the
explicit solution (4.45) (Fig. 4.4).

Example 4.2.6 Let f i = ci = 0, i = 1, . . . ,m and yd(x) = 0, x ∈ [0, �(â)]. Then
the solution on the moving graph is given by
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Fig. 4.4 The three-star with
transformed edges

a1

a2
a3

e3 e2

e1

a

a1 + tv1

a2 + tv2

a3 + tv3

yit (x) = 1

�i (t)

⎛
⎜⎜⎜⎝ui − 1

m∑
j=1

1
� j (t)

m∑
j=1

u j

� j (t)

⎞
⎟⎟⎟⎠ x + 1

m∑
j=1

1
� j (t)

m∑
j=1

u j

� j (t)
.

We can equally well keep the center and move the three edges. It turns out, in fact,
that for such scalar problems, the solution does not depend on the angles between
the edges. In scalar problems the variable yi (x) is seen as either a temperature, in
case we are dealing with a heat transport problem on the graph, or it is viewed as
an out-of-the-plane displacement, in case the problem is considered as representing
a network of strings with displacements pointing out of the plane. For problems on
graphs in the plane, where the variables yi (x) ∈ R

2 are vectors in the plane, the
situation is different. This case will be treated later. It is, thus, sufficient to treat the
case, where

T i
t (v)(s) := �i (t)

�i
s, s ∈ [0, �i ], (4.49)

where
�i (t) = ‖ai − a + tvi‖. (4.50)

Clearly,

�′
i (t) = (ai − a + tvi , vi )

‖ai − a + tvi‖ , �′
i (0) = (ai − a, vi )

‖ai − a‖ . (4.51)

We first transform the cost functional onto the fixed graph

m∑
0

�i (t)∫
0

|yit (x)|2dx =
m∑
0

�i (t)

�i

�i∫
0

|yit
(

�i (t)

�i
s

)
|2ds.

We differentiate with respect to t and obtain
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d

dt

m∑
0

�i (t)∫
0

|yit (x)|2dx = d

dt

m∑
0

�i (t)

�i

�i∫
0

∣∣∣∣yit
(

�i (t)

�i
s

)∣∣∣∣
2

ds

=
m∑
i=1

�′
i (t)

�i

�i∫
0

∣∣∣∣yit
(

�i (t)

�i
s

)∣∣∣∣
2

ds+

m∑
0

�i (t)

�i

�i∫
0

2yit

(
�i (t)s

�i

)
∂

∂t
yit

(
�i (t)s

�i

)
�′
i (t)

�i
sds.

(4.52)

We evaluate (4.52) at t = 0 and obtain

d

dt

m∑
0

�i (t)∫
0

|yit (x)|2dx |t=0 =
m∑
i=1

�′
i (0)

�i

�i∫
0

|yi (s)|2ds + 2
m∑
0

�i∫
0

ẏi (s)yi (s)
�′
i (0)

�i
sds,

(4.53)
where now ˙yi (s) is the material derivative of yi (s). We use the relation between the
shape derivative (yi )′ and the material derivative ẏi , namely,

ẏi (x) = (yi )′(x) + d

dx
yi (x)

�′
i (0)

�i
x .

Then (4.53) takes the form

d

dt

m∑
0

�i (t)∫
0

|yit (x)|2dx |t=0 =
m∑
i=1

�′
i (0)

�i

�i∫
0

|yi (s)|2ds

+2
m∑
0

�i∫
0

(yi )′(s) + d

dx
yi (s)

�′
i (0)

�i
syi (s)

�′
i (0)

�i
sds

=
m∑
i=1

�′
i (0)y

i (�i )
2 + 2

m∑
i=1

�i∫
0

(yi )′(x)yi (x)dx

=
m∑
i=1

(ei , vi )yi (�i )2 + 2
m∑
i=1

�i∫
0

(yi )′(x)yi (x)dx .

(4.54)

We consider the problem that the shape derivatives (yi )′(·), i = 1, . . . ,m have to
solve. This problem can be derived by direct differentiation.
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− d2

dx2
(yi )′ = 0 in (0, �i )

(yi )′(�i ) = − d

dx
yi (�i )�

′
i (0)

(yi )′(0) = (y j )′(0), i �= j = 1, . . . ,m
m∑
i=1

d

dx
(yi )′(0) = 0.

(4.55)

Furthermore, we introduce the adjoint problem for the adjoint variable pi (·) as fol-
lows.

− d2

dx2
pi = yi in (0, �i )

pi (�i ) = 0

pi (0) = p j (0), i �= j = 1, . . . ,m
m∑
i=1

d

dx
pi (0) = 0.

(4.56)

We use the adjoint in (4.55) and integrate by parts and use the boundary conditions
for pi in (4.56). We have

−
m∑
i=1

�i∫
0

(yi )′
d2

dx2
pidx = −

m∑
i=1

(yi )′
d

dx
pi |�i0 +

m∑
i=1

d

dx
(yi )′ pi |�i0

=
m∑
i=1

d

dx
yi (�i )

d

dx
pi (�i )�

′
i (0).

This gives the shape derivative of the cost functional as follows.

d J (y, v) =
m∑
i=1

(
1

2
yi (�i )

2 + d

dx
yi (�i )

d

dx
pi (�i )

)
(ei , vi ) (4.57)

=
m∑
i=1

(
1

2
(ui )2 + d

dx
yi (�i )

d

dx
pi (�i )

)
(ei , vi ). (4.58)

We can, for instance, consider the following scenario: let ui=u, �i=� i=1, . . . ,m.
It is clear from (4.49) evaluated at t = 0 that yi0(�i ) = u �= 0, i = 1, . . . ,m and
d
dx y

i (�i ) = 0 i = 1, . . . ,m. Thus,

d J (y, v) = 1

2
(u)2

m∑
i=1

(ei , vi ).
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If we take the velocity vectors equal vi = v, i = 1, . . . ,m, then
m∑
i=1

ei = 0 is a con-

dition which leads to stationarity. This is the configuration where all edges have the
same angle of 2π

m .

4.2.4 Shape Sensitivity for the First Eigenvalue

We consider the following system on the star graph

− d2

dx2
zi = λzi , i ∈ I , x ∈ (0, �i )

zi (0) = zk(0),∀i, k = 1, . . . ,m
m∑
i=1

d

dx
zi (0) = 0, (4.59)

zi (�i ) = 0, i = 1, . . . ,m. (4.60)

We consider the smallest eigenvalue λ. To this end, we define

a(z, φ) :=
m∑
i=1

�i∫
0

d

dx
yi

d

dx
φi dx, (z, φ) :=

m∑
i=1

�i∫
0

yiφi dx (4.61)

V := {y ∈ Πm
i=1H

1(0, �i )|yi (0) = y j (0), i, j = 1, . . . ,m, yi (�i ) = 0}.

We pose the eigenvalue problem in variational form as follows.

a(z, φ) = λ(z, φ), ∀φ ∈ V . (4.62)

The smallest eigenvalue satisfies

λ(G) = min
φ∈V {a(φ, φ)|‖φ‖ = 1}. (4.63)

Clearly, λ(G) > 0. We now consider Gt , where the edges are dependent on t :
[0, �i (t)]. Consequently, we look for the smallest eigenvalue λ(Gt ):

λ(Gt ) = min
φ∈Vt

{at (φ, φ)|‖φ‖ = 1} = min
φ∈Vt\{0}

{
at (φ, φ)

‖φ‖
2}

, (4.64)
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where

Vt := {y ∈ Πm
i=1H

1(0, �i (t))|yi (0) = y j (0), i, j = 1, . . . ,m, yi (�i (t) = 0}.
(4.65)

We introduce

F(t, ψ) := at (ψ,ψ)

‖√γ (t, x)ψ‖2 ,

with γ i (t, x) := ∂x T i
t (x). We obtain

∂

∂t
F(0, ψ) = a′(ψ,ψ)‖ψ‖2 − a(ψ,ψ)‖√γ ′(0)ψ‖2

‖√γ (0)ψ‖4 (4.66)

= a′(ψ,ψ) − λ

m∑
i=1

�i∫
0

|ψ i |2∂x V i (0, x)dx, (4.67)

where we used that ‖ψ‖ = 1, γ (0) = 1. On the other side, by direct computation

− d2

dx2
(zi )′ = λ(zi )′ + λ′zi , i ∈ I , x ∈ (0, �i )

(zi )′(0) = (zk)′(0),∀i, k = 1, . . . ,m
m∑
i=1

d

dx
(zi )′(0) = 0, (4.68)

(zi )′(�i ) = − d

dx
zi V i (0, �i ), i = 1, . . . ,m. (4.69)

We multiply by the eigenelement zi and obtain

−
m∑
i=1

�i∫
0

d2

dx2
(zi )′zidx = λ

m∑
i=1

�i∫
0

(zi )′zidx + λ′. (4.70)

We come back to to the constrained optimization problem and introduce the
Lagrangean:

L (G; z, β) :=
m∑
i=1

�i∫
0

∣∣∣∣ d2

dx2
(zi )

∣∣∣∣
2

dx + β

⎛
⎝ m∑

i=1

�i∫
0

|zi |2dx − 1

⎞
⎠ . (4.71)

Shape variation in the direction of V yields at the optimum
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0 = dL (G; z, β; V ) =
m∑
i=1

�i∫
0

(
2
d

dx
(zi )′

d

dx
zi + d

dx
(

(
d

dx
zi
)2

V i (0, x)

)
dx

+ β

m∑
i=1

�i∫
0

(
2(zi )′zi + d

dx
((zi )2V i (0, x)

)
dx

=
m∑
i=1

�i∫
0

2
d

dx
(zi )′

d

dx
zidx +

m∑
i=1

(
d

dx
zi
)2

(�i )V
i (0, �i ) + 2β

m∑
i=1

�i∫
0

(zi )′zidx .

This implies

m∑
i=1

�i∫
0

d

dx
(zi )′

d

dx
zidx + 1

2

m∑
i=1

(
d

dx
zi
)2

(�i )V
i (0, �i ) = −β

m∑
i=1

�i∫
0

(zi )′zidx .

(4.72)

Together with (4.70), (4.72) implies

λ

m∑
i=1

�i∫
0

(zi )′zidx + λ′ + 1

2

m∑
i=1

(
d

dx
zi
)2

(�i )V
i (0, �i ) = −β

m∑
i=1

�i∫
0

(zi )′zidx .

(4.73)
We conclude β = −λ and

dλ(G; V ) = −1

2

m∑
i=1

(
d

dx
zi
)2

(�i )V
i (0, �i ) = −1

2

m∑
i=1

(
d

dx
zi
)2

(�i )�
′
i (0).

(4.74)
We may now add a volume constraint

m∑
i=1

�i∫
0

1dx = M

together with a new Lagrange multiplier μ and rewrite the Lagrangean form as

L (G; z, μ) := λ(G) + μ

⎛
⎝ m∑

i=1

�i∫
0

1dx − M

⎞
⎠ . (4.75)

The shape derivative finally amounts to
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dλ(G; V ) + μ

m∑
i=1

V i (0, �i ), (4.76)

which gives the first-order optimalitiy condition

m∑
i=1

(
μ − 1

2

(
d

dx
zi
)2

(�i )

)
V i (0, �i ) = 0, ∀V i . (4.77)

This clearly shows, that the boundary conditions for d
dx z

i (�i ) are independent of

i . But, as
√

λ�i �= kπ , we have d
dx z

i (�i ) = −a
√

λ

sin(
√

λ�i )
. But this implies that the

lengths are all equal: �i = M
m . This result is analogous to the 2-D problem, where it

is well-known that the optimal domain for the first eigenvalue is a ball.

4.2.5 Transmission Problem

We again consider the star-graph problem, however, for the sake of simplicity, with
uniform lengths of the edges, i.e., �i = �, i ∈ I . We introduce 0 < r < � and a stiff-
ness parameter δ > 0. We consider uniform distributed forces f i = 1, i ∈ I ,I =
{i = 1, . . . ,m}. Let χδ

(0,r) be the function

χδ
(0,r)(x) :=

{
δ x ∈ [0, r)
1 x ∈ [r, �].

The transmission problem on the star graph then reads as follows.

−χδ
(0,r)

d2

dx2
yi = 1, x ∈ (0, �i ), i ∈ I

yi (r−) = yi (r+), i ∈ I (4.78)

δ
d

dx
yi (r−) = d

dx
yi (r+), i ∈ I

yi (0) = y j (0),
∑
i∈I

d

dx
yi (0) = 0

yi (�) = 0, i ∈ I .

We consider the optimization problem
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minJ (Gδ, y) := 1

2

m∑
i=1

r∫
0

|yi − yid1|2dx + 1

2

m∑
i=1

�∫
r

|yi − yid2|2dx

such that (y, δ) satisfies (4.78). (4.79)

We will specify the target functions yidk, k = 1, 2 in the example following the anal-
ysis. As of now, we assume yid1(r

−) = yid2(r
+), i = 1, . . . ,m. We first consider the

shape derivative (yi )′(x) of yi at x .

− d2

dx2
(yi )′ = 0, x ∈ (0, �i ), i ∈ I

(yi )′(r−) = (yi )′(r+), i ∈ I

δ
d

dx
(yi )′(r−) − d

dx
(yi )′(r+) = (δ − 1)

d

dx
yi (r−)r ′(0), i ∈ I (4.80)

yi (0) = y j (0),
∑
i∈I

d

dx
yi (0) = 0

yi (�) = 0, i ∈ I .

In order to establish the gradient of the cost function, we note

dJ (r, y) =
m∑
i=1

r∫
0

(yi − yid1)(y
i )′dx +

�∫
r

(yi − yid2)(y
i )′dx . (4.81)

In order to establish the shape gradient, we can, of course, either solve (4.80), or,
which is more common and most often more convenient, introduce the adjoint prob-
lem

−χδ
(0,r)

d2

dx2
pi = yi − yid1, x ∈ (0, r), i ∈ I

− d2

dx2
pi = yi − yid2, x ∈ (r, �), i ∈ I (4.82)

δ
d

dx
pi (r−) = d

dx
pi (r+), i ∈ I

pi (0) = p j (0),
∑
i∈I

d

dx
pi (0) = 0

pi (�) = 0, i ∈ I .

After some calculus, we arrive at

dJ (r, y) = (1 − δ)r ′(0)
m∑
i=1

d

dx
pi (r−)

d

dx
yi (r−). (4.83)
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Then, depending of the sign of the sum, r ′(0) needs to be positive or negative in
order to decrease the cost function.

Example 4.2.7 We compute the solutions of (4.78). We obtain

yi (x) =
{

1
2

(
1
δ

− 1
)
r2 + 1

2�
2 − 1

2δ x
2 x ∈ [0, r)

1
2 (�

2 − x2) x ∈ [r, �].

We now specify the target functions. In order to provide simple evidence, we intro-
duce 0 < r0 < r and take

yid1(x) =
{
1
2

(
1
δ − 1

)
r2 + 1

2�2 − 1
2δ x

2 x ∈ [0, r0)
1
2 (�2 − x2) x ∈ [r0, r), yid2 = 1

2 (�2 − x2), x ∈ [r, �].

Clearly, in order to reduce the gradient to zero, r has to tend to r0 and, therefore,
r ′(0) < 0. In order to derive this from (4.83), we calculate the adjoint explicitly. We
obtain

pi (x) = (4.84)

− δ − 1

2δ2

⎧⎪⎨
⎪⎩

1
2 r

2r20 − 1
4r

4
0 − 1

4r
4 + (r2r0 − 1

3r
3
0 − 2

3r
3)� x ∈ [0, r0)

(r2r0 − 1
3r

3
0 − 2

3r
3)(x − �) + 2

3r
3x − 1

2 r
2x2 + 1

12 x
4 − 1

4r
4 x ∈ [r0, r)

(r2r0 − 1
3r

3
0 − 2

3r
3)(x − �) x ∈ [r, �].

(4.85)

This implies

dJ (r, y) = (1 − δ)2

2δ2
mr

(
2

3
r3 + 1

3
r30 − r2r0

)
r ′(0). (4.86)

As the factor in front of r ′(0) is positive, in order to have decent, we have to take
r ′(0) < 0. Clearly, the gradient is zero for y = r0.

4.2.6 Topological Derivative with Respect to Material
Properties

We now consider the sensitivity of states with respect to the inclusions. That is to
say, we introduce a different stiffness parameter close to the origin at the center node
and establish a sensitivity result. This time we consider inhomogeneous Dirichlet
conditions at the simple nodes.
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− d2

dx2
yi = 0, x ∈ (0, 1), i ∈ I

yi (r−) = yi (r+), i ∈ I (4.87)

δ
d

dx
yi (r−) = d

dx
yi (r+), i ∈ I

yi (0) = y j (0),
∑
i∈I

d

dx
yi (0) = 0

yi (1) = gi , i ∈ I .

We compute the following solution:

yi (x) = (4.88)

− 1

δ(r − 1) − r

⎛
⎝gi − 1

m

m∑
j=1

g j

⎞
⎠ x + 1

m

m∑
j=1

g j , x ∈ [0, r)

− 1

δ(r − 1) − r
δ

⎛
⎝gi − 1

m

m∑
j=1

g j

⎞
⎠ x + 1

m

m∑
j=1

g j + gi

+ δ

δ(r − 1) − r

⎛
⎝gi − 1

m

m∑
j=1

g j

⎞
⎠ , x ∈ [r, 1].

With this, it is easy to calculate

1

r

(
yir (x) − yi (x)0

) = 1

δ

1 − 1
δ

1 − r − r
δ

⎛
⎝gi − 1

m

m∑
j=1

g j

⎞
⎠ x (4.89)

and, therefore,

d

dr
yir (x)|r=0 − 1 − δ

δ

⎛
⎝gi − 1

m

m∑
j=1

g j

⎞
⎠ x . (4.90)

4.3 Stars with a Hole

We consider a star graph GJ 0 with m edges and center at the node vJ 0 . In particular,
we may without loss of generality, assume that the edges ei stretch from the center to
the simple boundary nodes, which we will label from 1 tom. By this assumption, we
consider the multiple node at the center as being reached at x = 0 for all outgoing
edges. Thus, the data ui are picked up at the ends x = �i . As a slight conceptual
variation with respect to previous discussions on differential equations on networks,
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we now consider vectorial states on the graph and, therefore, collect the stiffness
information in a symmetric, positive definite constant matrix Ki . By this, the reader
should be able to redo the problems discussed in the previous sections in the context of
vectorial systems that are more relevant in the applications. Indeed, if one considers
elastic strings stretched from node to node in space, the resulting system becomes
more relevant andgives rise to still openquestions, in particular for nonlinear systems.
See [14, 47, 53] and for nonlinear gas transport on networks [24, 27, 44] for further
reading. The systems then reads as follows. The material of the next two sections is
taken in part from [43, 46].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ki
d2

dx2
yi + ci y

i = f i , i ∈ I

yi (�i ) = ui , i = 1, . . . ,m

yi (0) = y j (0), ∀i, j = 1, . . . ,m
m∑
i=1

d

dx
yi (0) = 0.

(4.91)

We are going to cut out the center and connect the corresponding cut nodes via
a circuit as seen in Fig. 4.5. In general, we have numbers ρi ∈ [0, �i ), i = 1, . . . ,m
which are taken to be the lengths of the edges that are cut out. Thus the remaining
edges have lengths �i − ρi . At x = ρi we create a new multiple node vi . We connect
these nodes by edges em+i , i = 1, . . . ,m with lengths σ i (ρi ). After that, these nodes
receive a new edge degree. In this section, we assume that all these nodes have the
same edge degree of di = 3.More complicated cutting procedures can be introduced,
but obscure the ideas of this section on topological derivatives of graph problems.

Fig. 4.5 Cutting a hole into
star-like subgraph
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The problem we have to solve is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ki
d2

dx2
yi + ci y

i = f i , i ∈ I

yi (�i ) = ui , ı = 1, . . . ,m
yi (ρi ) = ym+i (0) = ym+i−1(σ i (ρi )), ∀i = 2, . . . ,m

y1(ρ1) = ym+1(0) = y2m (σ 2m (ρ2m )),

−Ki
d
dx y

i (ρi ) − Km+i
d
dx y

m+i (0) + Km+i−1
d
dx y

m+i−1(σm+i−1(ρm+i−1)) = 0, i = 2, . . . ,m
−K1

d
dx y

1(ρ1) − Km+1
d
dx y

m+1(0) + K2m
d
dx y

2m (σ 2m (ρ2m )) = 0.
(4.92)

4.3.1 Homogeneous Networks

In this subsection, we consider the network under the assumption that all material
and geometrical quantities are the same, and a symmetric hole. In fact, for the sake
of brevity, we directly move to a tripod. See Fig. 4.5. Here we can solve the resulting
system analytically and obtain the coefficients:

aρ

i = 1
sinh(�)

(
ui − 1

3

3∑
j=1

u j

)

+ρ 1
cosh(�)

{(
1 − 1

3σ
)
coth(�)2

(
ui − 1

3

3∑
j=1

u j

)

+ (σ − 1) 13
3∑
j=1

u j

}
+ O(ρ2),

(4.93)

bρ

i = 1
cosh(�)

1
3

3∑
j=1

u j

−ρ sinh(�)
cosh(�)2

{(
(1 − 1

3σ) coth(�)2
) (

ui − 1
3

3∑
j=1

u j

)

+ (σ − 1) 13
3∑

i=1
ui

}
+ O(ρ2),

(4.94)

where i = 1, 2, 3.
It is apparent that (4.93) and (4.94) provide the second-order asymptotic expansion

we were looking for. We consider the following experiment: we apply longitudinal
forces ui = uei with the same magnitude at the simple nodes of the network. The
(outer) edges ei , 1 = 1, 2, 3 or, respectively the edges of the original star, are given
by

e1 = (0, 1), e2 =
(

−
√
3

2
,−1

2

)
, e3 =

(√
3

2
,−1

2

)
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which together with the orthogonal complements

e⊥
1 = (−1, 0), e⊥

2 =
(
1

2
,−

√
3

2

)
, e⊥

3 =
(
1

2
,

√
3

2

)

form the local coordinate systems of the edges. Obviously
3∑

i=1
ei = 0. Thus the solu-

tion to the unperturbed problem is given by

(yi )(x) = 1

sinh(�)
u sinh(x)ei . (4.95)

This is in agreement with the fact that that particular reference configuration is com-
pletely symmetric. Now, the solution (yi )ρ to the perturbed system and ( d

dx (y
i ))ρ(�)

are then given by

(yi )ρ(x) = 1

sinh(�)
sinh(x)uei

+ρ
(
1 − σ

3

) 1

sinh(�)
(coth(�) sinh(x) − cosh(x)) uei + O(ρ2)

(4.96)
d

dx
((yi ))ρ(�) = coth(�)uei + ρ(coth(�)2 − 1)

(
1 − σ

3

)
uei + O(ρ2) .

The energy of the unperturbed system is given by

E0 = 1

2

3∑
i=1

�∫
0

d

dx
(yi ) · d

dx
(yi ) + (yi ) · (yi )dx = 3

2
coth(�)u2, (4.97)

while the energy of the perturbed system is given by

E ρ = 1

2

3∑
i=1

�−ρ∫
0

[
d

dx
(yi ) · d

dx
(yi ) + (yi ) · (yi )

]
dx + 1

2

6∑
i=4

σρ∫
0

[
d

dx
(yi ) · d

dx
(yi ) + (yi ) · (yi )

]
dx

(4.98)

= 1

2
〈Sρu, u〉 = 1

2
〈S0u, u〉 + ρ

1

2

(
1 − σ

3

) {
((coth(�))2 − 1)

}
u2 (4.99)

= 1

2
〈S0u, u〉 + ρ

√
3

2
(
√
3 − 1) sinh(�)−2u2. (4.100)

From these experiments we may draw the conclusion that nodes of edge degree
3 under symmetric load, where the configuration is at 120A0 between the edges
(this amounts to σ = √

3) are not going to be replaced by a hole, which would, in
turn result in three new multiple nodes of edge degree 3. This seems to support the
optimality of such graphs being observed by Buttazzo [4].
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Fig. 4.6 Graph with
“critical” edge degree 6

1

2

3

4

5

6
7

8

910

11

12

Remark 4 The completely analogous formulae are obtained in the scalar case
((yi )(x) ∈ R), relevant, for instance, in problems of heat transfer or electrical cur-
rents in networks.

If the loads are not symmetric and/or if the geometry of the “hole” is not uniform,
the energy may in fact drop. A more detailed analysis can be found in [43]. Suffice it
to say here that nodes with higher edge degree, according to our analysis, are “more
likely” to be released by a hole, as even in the symmetric case the number σ(ρ)

which measures the new edge lengths, will be less than 1.
This is true, for example, for a nodewith edge degree 6 and beyond. Thus, the total

length of the new edges is smaller than the total length of the removed edges. This,
in turn, is intuitive with respect to the fact that in the higher dimensional problem (in
2- or 3-D, no graphs), digging a hole reduces the amount of mass.

We now consider the homogeneous situation for a star with edge degree 6 at the
multiple node. In this case σ = 1 for the symmetric situation. See Fig. 4.6.

We calculate

aρ
1 = 1

sinh(�)

⎛
⎝u1 − 1

6

6∑
j=1

u j

⎞
⎠ (4.101)

+ρ
cosh(�)

cosh2(�) − 1

{
(−u5 − u3 − 4u2 − 4u6 + 10u1)

−7(u1 − 1

6

6∑
j=1

u j )

}
.

Notice that the edges 2 and 6 are the “neighboring” edges of edge 1 in the original
star graph. The other coefficients aρ

i , 1 = 2, . . . , 6 are then obvious. For the sake of
brevity, we only display, for example, aρ

12:
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aρ
12 = 1

12 sinh(�)
[5(u1 − u6) + 3(u2 − u5) + (u3 − u4)]

−ρ
cosh(�)

144(cosh2(�) − 1)
[25(u1 − u6) − 9(u2 − u5) − 7(u3 − u4)]

+O(ρ2). (4.102)

Again, observe that edge 12, in terms of the edges of the original graph, has direct
neighbors 1 and 6, the next level is 2 and 5, and finally we have 3 and 4. One realizes
a consequent scaling. Also note that aρ

i = 0 if ui are all equal. This shows that the
coefficients bρ

i , in that case, are independent of ρ and thus the energy will not change
for this limiting case.

4.4 The Topological Derivative

We are now in the position to define the topological derivative of an elliptic problem
on a graph.

Definition 1 Let G be a graph, and let vJ ∈ JM be a multiple node with edge
degree dJ . Let Gρ be the graph obtained from G by replacing vJ with a cycle of

length
dJ∑
i=1

ciρ with vertices v1J , . . . v
dJ
J of edge degree 3 each, such that the distance

from vJ to viJ is equal to ρ. Thus, the number nρ of edges of Gρ is n + dJ . Let
J : G → R be a functional on the edges of G

J

(
y,

d

dx
y,G

)
:=

n∑
i=1

�i∫
0

F

(
x, yi ,

d

dx
yi
)

(4.103)

and let

J

(
yρ,

d

dx
yρ,Gρ

)
:=

n+dJ∑
i=1

�
ρ

i∫
0

F

(
x, yρi ,

d

dx
yρi

)
(4.104)

be its extension to Gρ. Assume we have an asymptotic expansion as follows

J

(
yρ,

d

dx
yρ,Gρ

)
= J

(
r,

d

dx
y,G

)
+ ρT (vJ ) + O(ρ2), (4.105)

then we define the topological gradient of J (Gρ) with respect to ρ for ρ = 0 at the
vertex vJ as follows.

T (vJ ) = lim
ρ→0

J
(
yρ,

d
dx yρ,Gρ

) − J
(
r, d

dx y,G
)

ρ
. (4.106)
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We consider the energy functional or, equivalently, the compliance which is the
most natural criterion to begin with. There are five such functionals relevant for the
analysis of this section: E0(y) on the entire graph G, Eρ(yρ) on the entire graph
with the hole Gρ , ECS(y) on the graph G \ S J 0 , where the star graph without hole
S J 0 has been cut out along edges ei , i ∈ IJ 0 , E0

S(y; v) on the star graph without
hole, and Eρ

S (y; v) on the star graph with hole. Obviously

E0
S(y; u) = 1

2
〈S0u, u〉, (4.107)

Eρ

S (y; u) = 1

2
〈Sρu, u〉, (4.108)

E0(y) = ECS(y) + E0
S(y, y), Eρ(y0ρ) = ECS(yρ) + Eρ

S (yρ, yρ), (4.109)

where it is understood that in Eρ

S (yρ, ·) and E0
S(y, ·), we insert ui = yρ(�i ) and

ui = y0(�i ), respectively. Thus

Eρ(yρ) − E0(y) = 1

2
〈Sρ(ỹ), ỹ〉 − 1

2
〈S0(ỹ), ỹ〉, (4.110)

where ỹ solves the problem on G \ S J 0 and ui = ỹi (�i ), i ∈ IJ 0 . Thus the asymp-
totic analysis of the last section carries over to the entire graph. As we have done
the complete asymptotic analysis up to order 2 in the homogeneous case only, we
consequently dwell on this case now; the more general case will be subject of a
forthcoming publication.

4.4.1 Homogeneous Graphs

In order to find an expression of the topological gradient in terms of the solutions y
at the node vJ 0 , the one that is cut out, we need to express the solution in terms of
the data ui .

Example 4.4.1 We consider the star graph as above with three edges. Obviously

ui − 1

3

3∑
j=1

u j = sinh(�)
d

dx
yi (0),

1

3

3∑
j=1

u j = cosh(�)yi (0). (4.111)

Thus using the fact that
3∑

i=1
‖ui − 1

3

3∑
j=1

u j‖2 =
3∑

i=1
‖ui‖2 − 1

3 (‖
3∑

i=1
u j‖)2, we can

express the bilinear expression 〈S ρ(u), u〉 in terms of ‖y0(0)‖2 and ‖( d
dx y0(0)‖2
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(where we omit the index 0) as follows

〈S ρ

i (u), u〉 = 〈S 0
i (u), u〉

+ρ

{
(1 − 1

3σ)
3∑

i=1
‖ d
dx y

i (0)‖2 + (σ − 1)
3∑

i=1
‖yi (0)‖2

}
.

(4.112)

This says that for energy function in the homogeneous case, when cutting out a
symmetric hole, e.g., σ i = σ = √

3, i = 1, 2, 3, we have

TE (y, vJ 0) = 1

2

{(
1 − 1

3
σ

) 3∑
i=1

∥∥∥∥ d

dx
yi (0)

∥∥∥∥
2

+ (σ − 1)
3∑

i=1

‖yi (0)‖2
}

. (4.113)

The situation will be different for such vertices having a higher edge degree as 6,
and those having nonsymmetric holes. We expect that such networks are more likely
to be reduced to edge degree 3 by tearing a hole. But this has to be confirmed by
more detailed studies.

4.4.2 Sensitivity with Respect to Edge Inclusion

We now consider a different situation where a node with edge degree dJ = N is
released into a node of edge degree 3 and one of degree N − 1 by introduction of a
new edge eN+1. See Fig. 4.7.

We consider this procedure in an explicit example with edge degree 4.
Let, therefore, vJ be a node with edge degree 4. As visualized in Fig. 4.7, we will

introduce an additional new edge eρ

5 of length ρ > 0 which together with the two
new edges eρ

1 , e
ρ
2 is given by

Fig. 4.7 N-node turns into
3-node plus (N+1)-node
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eρ
1 := �1e1 − ρeN+1

‖�1e1 − ρeN+1‖
eρ
2 := �2e1 − ρeN+1

‖�2e2 − ρeN+1‖ , (4.114)

where in our case study below N = 4.
The new lengths � − σ of the edges eρ

1 , e
ρ
2 (we consider a symmetric situation

where the new additional edge eN+1 equally divides the angle between e1, e2 with an
inclination α toward the corresponding unit vectors) can be computed by elementary
trigonometry. The number σ is then found to be

σ = ρ cosα − ρ2 1

2�

(
1 − 1

�
cos2 α

)
+ O(ρ3). (4.115)

It is interesting to notice that for cosα > 1
2 , the new graph has actually a smaller

total length. This is in contrast to the standard situation where cutting out a hole—
which in fact implies introducing the new edges forming that hole—has the opposite
effect. For the sake of simplicity, we calculate the sensitivities with respect to intro-
ducing the new edge of length ρ for the Laplacian on the graph only. Thus, we do
not consider an extra stiffening part due to the presence of a term cyi .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d2

dx2
yi = 0 in Ii , i = 1, . . . , 5

yi (�) = ui , i = 1, . . . 4,

y1(σ ) = y2(σ ) = y5(ρ),

d

dx
y1(σ ) + d

dx
y2(σ ) − d

dx
y5(ρ) = 0,

y3(0) = y4(0) = y5(0),

d

dx
y3(0) + d

dx
y4(0) + d

dx
y5(0) = 0

(4.116)

We perform a similar analysis as in Sect. 4.3 and therefore omit the details. We
obtain

y1ρ(x) = 1

�

⎛
⎝u1 − 1

4

4∑
i=1

ui

⎞
⎠ x + 1

4

4∑
i=1

ui

− ρ

2�2

⎧⎨
⎩
[
1

2
cosα + 1

]
(u2 − u1) + (2 − cosα)

⎛
⎝u1 − 1

4

4∑
i=1

ui

⎞
⎠
⎫⎬
⎭ (x − �)
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= y10 (x)

− ρ

2�2
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In order to calculate the energy, we use the Steklov–Poincaré mapping and multiply
by yi (�).

As before, the calculations can be done for scalar problems as well as for vectorial
in-plane models. We dispense with the display of the lengthy formulae. Instead, we
give two different scenarios for topological derivatives.

Example 4.4.2 In the scalar case, we may set u1 = u2 and u3 = u4 = 0, i.e., we
apply Dirichlet conditions at the ends of edges 3 and 4 and pull at the end of the
edges 1 and 2 by the same amount. This results in

〈Sρu, u〉 = 〈S0u, u〉 − ρ

2�2
(2 − cosα)u2. (4.117)

Obviously, the introduction of a new edge is enhanced. One obtains a decomposition
into two multiple nodes with edge degree 3.

Example 4.4.3 In the second example, we take the planar model and set u1 =
ue1, u2 = ue2 and again u3 = 0 = u4. Now we obtain

〈Sρu, u〉 = 〈S0u, u〉 − 3ρ

4�2

[
cos(α)

(
cos2 α + 2

3
cosα − 4

3

)]
u2. (4.118)

For small enough angles α (e.g., 0 < α < π/6) the expression with ρ, i.e., the topo-
logical derivative of the energy becomes negative. This shows that in the planar
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Fig. 4.8 Inserting the interconnections, valid example

situation, the opportunity to create an additional edge depends on the angles between
the edges 1 and 2.

Obviously, the examples above can be generalized to more general networks
including distributed loads and obstacles. It is also possible to extend this analysis to
3-D networks. As a final remark, one can extend the technique to networks of Tim-
oshenko beams which is much more reasonable due to the stiffness of the resulting
structure. See the thesis by Ogiermann [48]. We may then introduce “holes” as in
the picture (Fig. 4.8).
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Chapter 5
Topological Analysis of a Weighted
Human Behaviour Model Coupled on a
Street and Place Network in the Context
of Urban Terrorist Attacks

D. Provitolo, R. Lozi and E. Tric

Abstract This article introduces a new model of weighted human behaviour in the
context of urban terrorist attacks. In this context, one of the major challenges is to
improve the protection of the population. In achieving this goal, it is important to
better understand and anticipate both individual and collective human behaviour, and
the dynamics of the displacements associated with these behaviours. Based on the
recently published Panic-Control-Reflex (PCR) model, this new Coupled Weighted
PCR model takes into account the role of spatial configurations on behavioural
dynamics. It incorporates, via a bottleneck effect, the narrowness and the length
of the streets, and thus the pressure and counter pressure of the crowd in danger-
ous and safe places. The numerical evacuation simulations highlight that, depending
on their size, intermediate places or public squares modulate the dynamics and the
speed of flow of the crowd as it evacuates to a safe place. This model features a
user-friendly graphical representation, which allows planners to accurately decide
where to organize host public events in a specific territorial context.
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5.1 Introduction

In the context of disasters, and in order to better protect the population, one of the
major challenges today is to better understand and anticipate both individual and
collective human behaviour, and the dynamics of the displacements associated with
these behaviours.

Indeed, the impact of a dangerous phenomenon is particularly determined by the
behaviour of the affected population. These reactions allow anyone to ensure their
own safety and that of their family.

This is especially true in the case of sudden and unpredictable events, such as
terrorist attacks. These events require immediate reactions for self-protection and
self-evacuation, before the arrival of emergency response services.

In spite of the long history of terrorism, there is currently no uniform definition of
this word, because ‘depending on the political configuration, this one will be terrorist
for some; instead he will be hailed freedom fighters for others’ [1]. However, it is
possible to identify different forms of terrorist acts, such as attacks, kidnappings,
sabotage, bioterrorism, or cyberterrorism. Moreover, terrorist acts can be committed
at different levels by individuals, groups or states.

In this article, we focus specifically on the new forms of terrorism, such as the
attacks perpetrated by sects or groups which are becoming more and more active.
These attacks target places frequented by the public (bus and subway stations, air-
ports, hotels, cafes, etc.), in order to spread panic among the population. The sarin gas
attack on the Tokyo subway committed by the Aum sect (1995), the bomb attacks in
bus and subway stations (Nigeria 2014; Belgium 2016), at airports (Brussels airport
2016; Atatürk airport 2016) or near the finish line of the Boston Marathon (2013)
and acts perpetrated by Islamic organizations (Kashmir 2019), are a few examples
of a very long list of terrorist attacks. All these events triggered mass movements of
flight and collective panic.

Moreover, in order to cause as many casualties as possible and to complicate the
response of the security forces, terrorists have developed a new modus operandi by
conducting simultaneous attacks in urban areas. In this way, for some coordinated
attacks, human losses have been massive, yet constrained in time and space. This
was the case for 11 September 2001, in New York and near Washington D.C., where
a series of four coordinated terrorist attacks claimed by the Al-Qaeda terrorist group
killed nearly 3,000 victims and injured over 6 thousand. India also endured terrifying
terrorist attacks in November 2008 when an Islamic terrorist organization based
abroad carried out a series of 12 coordinated shooting and bombing attacks lasting
4 days across Mumbai.

This modus operandi also makes it possible to prolong the attacks to maximise
media coverage and to increase the feeling of terror and panic, as was seen during
the Paris and Saint-Denis (France) terrorist attacks of November 2015.

In response to tightened police controls to reduce bombing attacks, new types of
ad hoc weapons are now employed, like lorries or cars simply driven directly through
a crowd massed for a cultural event or simply strolling peacefully. These attacks are
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most often led by ‘lone wolves’, who are difficult to detect beforehand and equally
difficult to locate because they are ‘nested’ among civilians. On 14 July 2016, 86
people who attended the Bastille Day fireworks on the ‘Promenade des Anglais’ in
Nice, France, were killed; 458 more were wounded. Since this day the frequency of
such kinds of terrorist attacks have grown rapidly in western countries: in Berlin,
Germany, 19 December 2016; in London, England, 22 March 2017; in Stockholm,
Sweden, 7 April 2017; and in Barcelona, Spain, 16 August 2017. It is not only
cars that have been used in such attacks but also true weapons like military guns
(Las Vegas, USA, 2 October 2017) or simple tools like knives (Marseille, France, 1
October 2017), hammers, etc.

Nowadays, in order to protect inhabitants, authorities have developed diversified
risk reduction strategies. These are complementary, with some acting directly on
the threat, and others targeting the vulnerability of potential victims. In the field
of counter-terrorism, the most widespread strategies aim to fight against the threat.
Thus, in order to avoid new attacks, actions aiming to dismantle terrorist networks
are carried out by the police and intelligence services. Attention is therefore focused
on dangerous groups, but it is difficult to detect and neutralize all terrorist threats,
especially those perpetrated by such ‘lone wolves’.

Thus, prevention policies also focus on reducing the vulnerability of the popula-
tion. It is then a question of hindering the terrorist action itself by deploying security
measures as close as possible to the potential targets (festivals, concerts, college,
train and metro stations, etc.). In many countries, like in India and France, more
law enforcement officers and even the army have been deployed for such measures;
however this can be done only for a limited period of time.

More recently, in France, other actions, such as the distribution of leaflets and
information documents have been deployed, to increase awareness among the popu-
lation about the responses that could save lives, for example, to fleewherever possible,
barricade the entrance, hide behind a solid obstacle and turn off the phone. This effort
of dissemination of the best practices in the face of an attack is already a step forward
but it remains incomplete.

We must also look at the reality of human behaviour (i.e. what people actually
do during a terrorist attack). Their reactions simultaneously depend on their own
emotions, the culture of risk and the environmental context (a closed environment
like an auditorium or theatre, compared to an open geographical environment, such
as a public square, place or networks of streets). When such an attack happens, the
topography of the area is very important. The dynamics of human reactions and the
associated displacements are guided by the space and the alternatives that it offers,
especially in terms of evacuation, flight and accessibility to refuge areas.

Consider, for example, the terrible Jallianwala Bagh massacre, which took place
on 13 April 1919 in Amritsar, Punjab, when a crowd of non-violent protesters were
fired upon by troops of the British Indian Army.

The Jallianwala Bagh is a public garden with an area of 28,000 m2, walled on all
sides with five entrances (Figs. 5.1 and 5.2). The largest entry point was blocked by
a tank and the main exit was locked. The troops fired on the crowd, directing their
bullets largely towards the few open gates through which people were trying to flee
(Fig. 5.3).
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Fig. 5.1 Spatial
configuration of Jallianwala
Bagh (Amritsar, India)
© R. Lozi, Feb. 2018

More recently, two terrorist attacks in Mediterranean cities, in the heart of the
historic town centres of Barcelona (2017; Fig. 5.4) and Nice (2016), have shown that
the population fled through the labyrinth of alleys to find refuge in urban places,
such as public squares, esplanades or parks. Spatial configurations can therefore
either increase or mitigate the vulnerability of populations.

In an urban context, it is also important to study the impact of the width of alleys
and the shelter capacity of public squares or places so that the population can ensure
its own self-evacuation (Fig. 5.4).

Of course, it is difficult to artificially reproduce a disaster, which would otherwise
allow us to observe the diversity of human reactions that could occur, to follow
the spatio-temporal dynamics and to analyse the impact of territorial configurations
on these dynamics. To overcome these limits, it is possible to develop mathematical
models fromwhich evolution scenarios are simulated by varying parameters or initial
conditions. The computer thus becomes the virtual laboratory and the simulation is
understood to be an experiment on a model, a digital experience [2].
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Fig. 5.2 Jallianwala Bagh Memorial (Amritsar, India) © D. Provitolo, Feb. 2018

The Com2SiCa research team1 proposed the Panic-Control-Reflex (PCR) model
[3], which is a model that simulates the possible human behaviour that can occur
during sudden onset and unpredictable disasters, such as a tsunami, earthquake, or
technological disaster. This model is formalized by a system of ordinary differential
equations to describe behavioural dynamics over time [4–6].

In this article, we propose an extension of the PCR model in order to take into
account the influence of spatial configuration in the mathematical modelling of the
dynamics of human reactions in the face of traumatic situations, such as terrorist
attacks. This dynamic and the associated displacements are indeed guided by the
territorial configurations (networks of streets and places) and the alternatives that
they offer in terms of evacuation, flight and accessibility to shelters. We call this
extended model the Coupled Weighted PCR (CWPCR).

In Sect. 5.2, we will present the Panic-Control-Reflex model in its graphical and
mathematical formalism, as published by the authors cited above. Then, in Sect. 5.3,
this model will be improved in order to take into account the role of spatial configu-
rations on behavioural dynamics. The CWPCR model incorporates the pressure and
counter pressure of the crowd in each place via a bottleneck effect, which is induced
by the narrowness and the length of the streets and the size of places. In Sect. 5.4,

1https://geoazur.oca.eu/en/research-geoazur/2158-com2sica-how-to-comprehend-and-simulate-
human-behaviors-in-areas-facing-natural-disasters.

https://geoazur.oca.eu/en/research-geoazur/2158-com2sica-how-to-comprehend-and-simulate-human-behaviors-in-areas-facing-natural-disasters
https://geoazur.oca.eu/en/research-geoazur/2158-com2sica-how-to-comprehend-and-simulate-human-behaviors-in-areas-facing-natural-disasters
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Fig. 5.3 Bullet marks can be easily seen on the wall (Amritsar, India) © D. Provitolo, Feb. 2018

Fig. 5.4 Street and place in Barcelona (Spain) © D. Provitolo, Feb. 2018
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we will consider an oriented network with three nodes representing three places or
public squares of different sizes, linked by narrow streets. This part is therefore
devoted to the analysis of the impact of the parameters (the size of the places, the
width of the streets) on the evacuation of the population in the face of a terrorist
attack, by means of numerical simulations. The numerical results highlight that,
depending on their respective size, intermediate places modulate the dynamics and
the speed of flow of the crowd. In this sense, they become strategic places both for
the planners who must think about the organization of the area to host public events
and festivals, and also for the terrorists who can use these strategic places to multiply
the effect of their harmful actions by trapping the flight movements between two
areas of action. This model is used with a user-friendly graphical representation,
which allows planners to accurately consider where to organize host public events in
a specific territorial context. Finally, in Sect. 5.5, a brief conclusion will be drawn.

5.2 The PCR System: An A-Spatial Model for Analysing
the Dynamics of Human Behaviour During a Disaster

5.2.1 Neuroscientific Background of the PCR System

The PCR model [3–6] is a simulation model of the dynamics of collective human
behaviour during a disaster (Fig. 5.5). It has been developed from the SIR-based
models, which are compartmental models that are widely used in epidemiology [7].
In thesemodels, the population can be decomposed into several subpopulations, each
of which corresponds to a compartment. The PCR model focuses on the following:

i Different human behavioural states, namely daily behaviour before a disaster
occurs, as well as reflex, panic and controlled behaviours that are observed during
a disaster.

ii Transitional processes fromone reaction to another. Indeed, neuroscience research
shows that in disaster situations, humans are rarely stuck in one type of behaviour.
The population switches between different behavioural states, some of which are
the result of instinctive reactions [8], others of reasoned reactions [9].

To take these behavioural sequences into account, the PCR model formalizes human
reactions as a chain of behaviours that appear in a certain order. It distinguishes q(t),
the daily behaviour before, and b(t), after the disaster; r(t) and p(t), the uncontrolled
emotional behaviours which are managed by the reptilian zone of the brain; and c(t),
the reasoned behaviours that are controlled by the prefrontal cortex [10–12]. This is
represented in Fig. 5.5.

As the brain switches from one behavioural state to another, in the context of
terrorist acts and therefore in a situation of sudden and unforeseen threat, the whole
impacted population first adopts a behavioural reaction, Reflex r(t), under the influ-
ence of surprise and the suddenness of the event, before transiting to the Panic reflex
behaviour p(t), or Controlled behaviour c(t).
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Fig. 5.5 Graphical representation of the panic, control, reflex behaviour model (PCR) in the excep-
tional situation of disaster. Source from [3]

Reflex r(t) and Panic p(t) behaviour are instinctive, automatic reactions, allowing
one to react extremely quickly to the threat, either by being stunned and paralysed
r(t), or by fleeing as quickly as possible due to the panic fear p(t). In the context
of a dense crowd, the context sought by terrorist groups, panic escape behaviour
can worsen the vulnerability of the population because of the risk of crushing and
suffocation [13].

Controlled behaviour c(t) concerns reasoned and self-control reactions. They can
take different forms during a catastrophe, for example, in the formof evacuation, leak,
containment, sheltering, search for help, mutual aid or, on the contrary, looting, etc.
Despite their diversity, the PCR model aggregates all of these controlled behaviours.

During the event, the switches from one behavioural state to another are caused
by transitional dynamics due to

i Causal relationships (B1, B2,C1,C2). Once the population is in the reflex
behaviour state, a part of it can evolve towards controlled behaviours at the rate B1

while another part transitions towards panic behaviours at the rate B2. Likewise,
a part of the panicked population may switch to controlled behaviour at the rate
C1. According to the evolution of the situation, individuals who have adopted
a controlled behaviour may switch back to panic behaviour at the rate C2. This
process can be iterated many times.

ii Processes of imitation and contagion, which are well known in crowd psychol-
ogy and have been termed ‘emotional contagion’ [14]. The imitation processes
are modelled identically to epidemiological propagation [15]. The imitation is
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valid in both directions and is modelled by the function F(r, c) Eq. (5.3) for emo-
tional contagion between reflex and controlled behaviour (using the damping
coefficients α1 and α2), by the function G(r, p) Eq. (5.4) for emotional conta-
gion between reflex and panic behaviour (δ1 and δ2), and by the function H(c, p)
Eq. (5.5) for emotional contagion between controlled and panicked behaviour (μ1

and μ2).
iii Domino effects, which illustrate a succession of events (s1 and s2) correspond, for

example, to a new attack in an urban area or to a closed door during an evacuation.
In the PCRmodel, the parameters s1 and s2 are either constant or built in a periodic
form.

The triggering of the threat is represented by a forcing function γ (t), the form of
which may vary according to the specificities of the danger (event with fast or slow
kinetics, expected or not).

5.2.2 Equations of the PCR System

In [4–6], the authors introduce the Panic-Control-Reflex model (PCR) by using a
system of five Ordinary Differential Equations (ODE), which describe the human
behaviours in one specific place, during a catastrophic event. We include these ODE
Eqs. (5.1)–(5.6) in order to describe the modifications we introduce to them in the
next section, where we seek to model such behaviours when a network of places
and streets or stairs linking those places in a town is considered. In Sect. 5.3, we will
identify this network to a mathematical graph; the places are called vertices or nodes,
and the streets and stairs are the edges linking those nodes.

Ẋ = Φ(t, X) (5.1)

with Ẋ = dX
dt , X = (r, c, p, q, b)T ∈ R

5 and Φ given by Φ(t, X) = (Φi (t, X))T ,
i = 1, . . . , 5, where the functions Φi are defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(t, X) = γ (t)q(t)
(
1 − r(t)

rm

)
− (B1 + B2) r(t) + s1(t)c(t) + s2(t)p(t)

+F(r(t), c(t))r(t)c(t) + G(r(t), p(t))r(t)p(t)
Φ2(t, X) = −ϕ(t)c(t)(1 − b(t)) + B1r(t) + C1 p(t) − C2c(t) − s1(t)c(t)

−F(r(t), c(t))r(t)c(t) + H(c(t), p(t))c(t)p(t)
Φ3(t, X) = B2r(t) − C1 p(t) + C2c(t) − s2(t)p(t) − G(r(t), p(t))r(t)p(t)

−H(c(t), p(t))c(t)p(t)

Φ4(t, X) = −γ (t)q(t)
(
1 − r(t)

rm

)

Φ5(t, X) = ϕ(t)c(t)(1 − b(t))

.

(5.2)
And the variables r(t), c(t), p(t), q(t), b(t) denote, respectively, the densities of
people being in a reflex, control, panic, daily or back to daily behaviour [6].
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The parameters involved in Eq. (5.2) are real positive coefficients previously
defined in Sect. 5.2.1: rm > 0 (reflex behaviour maximum value); Bi ≥ 0, Ci ≥ 0,
i = 1, 2; αi ≥ 0, δi ≥ 0, μi ≥ 0, i = 1, 2; si ≥ 0, i = 1, 2.

The imitation functions F,G and H are real-valued functions defined on R × R

by

F(r(t), c(t)) = −α1 f1

(
r(t)

c(t) + ε

)

+ α2 f2

(
c(t)

r(t) + ε

)

(5.3)

G(r(t), p(t)) = −δ1g1

(
r(t)

p(t) + ε

)

+ δ2g2

(
p(t)

r(t) + ε

)

(5.4)

H(c(t), p(t)) = μ1h1

(
c(t)

p(t) + ε

)

− μ2h2

(
p(t)

c(t) + ε

)

, (5.5)

where ε is a positive number and fi , gi , hi for i = 1, 2 are real-valued functions
defined on R. They have a decreasing shape indicating that the behaviour imitation
is symmetric. Moreover they are normalized,

0 ≤ fi (u) ≤ 1, 0 ≤ gi (u) ≤ 1, 0 ≤ hi (u) ≤ 1, ∀u ∈ R, i = 1, 2. (5.6)

Because this model does not take the mortality rate into account, the population
remains constant and, in one node, can be normalized to 1. Therefore, Eq. (5.1) is
considered when time is proceeding from an initial time t0 ≥ 0, with initial condition

(r(t0), c(t0), p(t0), q(t0), b(t0)) = (r0, c0, p0, q0, b0) (5.7)

that satisfies the following properties

r(t0) > 0, c(t0) > 0, p(t0) > 0, q(t0) > 0, b(t0) > 0 (5.8)

r(t0) + c(t0) + p(t0) + q(t0) + b(t0) = 1. (5.9)

Equation (5.9) remains true throughout all the process because the sum of the five
Eqs. (5.2) is null, therefore

b(t) = 1 − (r(t) + c(t) + p(t) + q(t)), ∀t ≥ t0 (5.10)

which implies that Eq. (5.2) can be reduced to the system of only four ODE
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = γ (t)q(t)
(
1 − r(t)

rm

)
− (B1 + B2) r(t) + s1(t)c(t) + s2(t)p(t)

+F(r(t), c(t))r(t)c(t) + G(r(t), p(t))r(t)p(t)
ċ(t) = −ϕ(t)c(t)(1 − b(t)) + B1r(t) + C1 p(t) − C2c(t) − s1(t)c(t)

−F(r(t), c(t))r(t)c(t) + H(c(t), p(t))c(t)p(t)
ṗ(t) = B2r(t) − C1 p(t) + C2c(t) − s2(t)p(t) − G(r(t), p(t))r(t)p(t)

−H(c(t), p(t))c(t)p(t)

q̇(t) = −γ (t)q(t)
(
1 − r(t)

rm

)

.

(5.11)
The initial condition of Eq. (5.11) corresponding to (r0, c0, p0, q0, b0) for Eq. (5.2)
becomes simply

(r0, c0, p0, q0). (5.12)

5.2.3 Transitional Dynamics

Both forcing functions, γ and ϕ, respectively model the beginning of the disaster
and the return to a quiescent daily behaviour. Their shape can be adapted to various
scenarios. When t is sufficiently large, they satisfy γ (t) = ϕ(t) = 1. In catastrophic
situations it is considered that γ is a stiff function, ranging from 0 to 1 in a very brief
interval of time [4–6] because if we consider a bomb attack, all the crowd that is near
the explosion passes from daily to reflex behaviour in an instant, and it takes a very
long time for people to return to their normal state.

Therefore, one can suppose that a terror attack is shaped by two characteristic
times: ts (for start) and te (for end) with t0 < ts < te for which

{
γ (t) = 1, ∀t ≥ ts
ϕ(t) = 0, ∀t < te

. (5.13)

As an example for Itrans = [2.5, 42.5], these functions can be defined by (Fig. 5.6)

ϕ(t) =
⎧
⎨

⎩

0 if 0 ≤ x < 42.5
cos2

(
2π x−2.5

160

)
if 42.5 ≤ x ≤ 82.5

1 if x > 82.5
(5.14)

γ (t) =
{
cos2

(
2π x−2.5

10

)
if 0 ≤ x ≤ 2.5

1 if x > 2.5
. (5.15)

Following [6] we keep the term transitional dynamics for the dynamics of the
PCR model (likewise for both improved WPCR and CWPCR models presented in
Sect. 5.3) in the interval of time Itrans = [ts, te] (in terror attacks, this interval of time
can last from several minutes up to hours as observed during the 2016 terrorist attack
in Nice). Therefore in ∀t ∈ Itrans functions, ϕ and γ verify
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Fig. 5.6 Forcing functions γ (t), blue curve, and ϕ(t), red curve, Itrans = [2.5, 42.5]

{
γ (t) = 1
ϕ(t) = 0

. (5.16)

Hence, during the transitional dynamics, the population with daily behaviour col-
lapses and there is not yet a population that is back to daily behaviour (i.e.
q(t) = b(t) = 0).

System (5.11) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = − (B1 + B2) r(t) + s1(t)c(t) + s2(t)p(t)
+F(r(t), c(t))r(t)c(t) + G(r(t), p(t))r(t)p(t)

ċ(t) = B1r(t) + C1 p(t) − C2c(t) − s1(t)c(t)
−F(r(t), c(t))r(t)c(t) + H(c(t), p(t))c(t)p(t)

ṗ(t) = B2r(t) − C1 p(t) + C2c(t) − s2(t)p(t) − G(r(t), p(t))r(t)p(t)
−H(c(t), p(t))c(t)p(t).

(5.17)

5.3 Mathematical Weighted and Coupled PCR System

5.3.1 The Weighted PCR System

Equations (5.1)–(5.10) model the human behaviours, in one specific place, during
a catastrophic event. As explained in the first part of this article, it is based on
neuroscience studies.
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Fig. 5.7 Possible paths of rushing people in a city network (IGN—BD Ortho, 2017, 50 cm reso-
lution)

However just before a dramatic event like a terror attack in a city, the crowd is
generally spread across several places, public squares and streets. In the aftermath
of the initial shock, people are rushing through the streets to reach what they think
will be more secure places (Fig. 5.7).

In this article, we define the city by a mathematical graph, where the places and
public squares are called vertices or nodes and are denoted by N1, N2, . . . , Np, and
the streets, escalators, doors, and stairs are the oriented edges (Ni → N j ) linking
these nodes. They are oriented because the flow from one place towards another is
not symmetric. Our aim is to model the motion of the crowd through such edges.
To achieve this, we must introduce some ‘geographical’ particularities of the city,
like the size of places, the narrowness of streets and the number of people initially
present in each place. This is why we need to upgrade the standard PCR model into
the Weighted PCR (WPCR) model, by introducing new data, with weight standing
for the relative sizes of crowd, places and streets.

First, on eachnode Nk , k = 1, pwecall rk(t), ck(t), pk(t), qk(t), bk(t) thenumber
of people being in reflex, control, panic, daily and back to daily behaviour and Vk(t)
the total number of people present at this node

Vk(t) = rk(t) + ck(t) + pk(t) + qk(t) + bk(t). (5.18)

Since we consider that the nodes are not identical (as is seen in an actual city), they
do not generally contain, at each moment, the same number of people. Moreover,
this number is varying with time when the crowd is moving through the streets.
That is why it is more convenient to consider that the five variables of the WPCR
model represent actual numbers of people, rather than densities, as in the PCR
model. Densities can be used only when there is no motion at all between places,
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and the population in each place is the same. Of course, this number of people can
be transformed locally to density whenever it is necessary.

Second, in order to more precisely model the characteristics of the city, we intro-
duceWk , the maximum capacity of the number of people who can be present in each
node Nk (i.e. due to the size of the corresponding place). Each maximum capacity is
a constant. At every time one must have

Vk(t) ≤ Wk . (5.19)

The Weighted Panic-Control-Reflex model (WPCR) is then defined on each node k
by

Ẋk = Φ(t, Xk) (5.20)

with Ẋk = dXk
dt , Xk = (rk, ck, pk, qk, bk)T ∈ R

5 and Φ given by Φ(t, Xk) =
(Φi (t, Xk))

T , i = 1, . . . , 5, where the functions Φi are defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(t, Xk) = ṙk(t) = γ (t)qk(t) (Wk − rk(t)) − (B1 + B2) rk(t) + s1(t)ck(t)
+s2(t)pk(t) + F(rk(t), ck(t))rk(t)ck(t)
+G(rk(t), pk(t))rk(t)pk(t)

Φ2(t, Xk) = ċk(t) = −ϕ(t)ck(t)(Wk − bk(t)) + B1rk(t) + C1 pk(t) − C2ck(t)
−s1(t)ck(t) − F(rk(t), ck(t))rk(t)ck(t)
+H(ck(t), pk(t))ck(t)pk(t)

Φ3(t, Xk) = ṗk(t) = B2rk(t) − C1 pk(t) + C2ck(t) − s2(t)pk(t)
−G(rk(t), pk(t))rk(t)pk(t) − H(ck(t), pk(t))ck(t)pk(t)

Φ4(t, Xk) = q̇k(t) = −γ (t)qk(t) (Wk − rk(t))
Φ5(t, Xk) = ḃk(t) = ϕ(t)ck(t)(Wk − bk(t))

(5.21)
the initial condition satisfies

rk(t0) + ck(t0) + pk(t0) + qk(t0) + bk(t0) = Vk(t0)

= rk,0 + ck,0 + pk,0 + qk,0 + bk,0 = Vk,0 ≤ Wk
.

(5.22)

We suppose that the characteristic parameters B1, B2,C1,C2, of each node have
the same value because they depend on cultural and psychological factors specific
to each individual rather than to spatial configurations and crowd context. Thus, all
the parameters and the functions are the same as those defined in Sect. 5.2.2, which
is why we use the function Φi instead of function Φk,i .

5.3.2 Flows and Bottleneck Coupling

As previously defined, nodes are linked by edges.We now aim tomodel themotion of
the crowd through such edges (i.e. streets, stairs, escalators and doors). For the sake
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Fig. 5.8 Two nodes
network: people in every
state are rushing from node 1
towards node 2, maintaining
the same behavioural class
(this representative colour
scheme is used for the
remainder of the article.)

of simplicity, we present the coupling on a simplified oriented network with only two
nodes (N1;W1) and (N2;W2), and one edge (N1 → N2). We suppose that during the
short interval of time when people are travelling inside one edge, they remain in the
same behavioural class (Fig. 5.8.). In this figure, the ‘geographical’ edge (N1 → N2)
(i.e. the street linking node 1 to node 2) is split into three ‘behavioural edges’meaning
that on the same street, people in reflex, panic or controlled behaviour are escaping
from node 1 to node 2, therefore people in each particular behaviour in node 1 are
meeting people in the same behaviour in node 2.

To continue focusing on the special coupling that we are introducing here, we
suppose that imitation mechanisms are not activated (i.e. F ≡ H ≡ G ≡ 0, which is
equivalent to αi = δi = μi = 0 for i = 1, 2), and, furthermore, there is no domino
effect (si = 0, i = 1, 2) and we also suppose that we are in the interval Itrans =
[ts, te] where only transitional dynamics are considered. Of course, it is easy to relax
such limitations, which are not dependent upon the coupling, by not eliminating the
corresponding terms in the equations.

In each node Nk, k = 1, 2; such transitional dynamics are the solution of the
system ⎧

⎨

⎩

ṙk(t) = −(B1 + B2)rk(t)
ċk(t) = B1rk(t) + C1 pk(t) − C2ck(t)
ṗk(t) = B2rk(t) − C1 pk(t) + C2ck(t)

(5.23)

which is the reduction of system (5.21) in the transition interval (as Eq. (5.17) is the
reduction of Eq. (5.2)).

Note: In the WPCR model, the terms ṙk(t), ċk(t), ṗk(t), q̇k(t), ḃk(t) can be con-
sidered as flows, because a flow is a quantity of something divided by a unit of time.
There are two kinds of flows. In Eqs. (5.21)–(5.23), flows are ‘behavioural’, as they
represent the quantities of people changing their behaviour per unit of time. Now we
consider also ‘motion’ flows, which are the quantities of people in each behaviour
class, moving from one node to another node, per unit of time. Of course, both kinds
of flows are combined to produce a global equivalent in the following equations.

In [16] different types of flow situations are considered in pedestrian facilities,
such as unidirectional, bidirectional and crossing: it is said that ‘Unidirectional and
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Fig. 5.9 Relationship between flow and density of pedestrians from the literature, from [[17],
derived from Fruin, Weidmann, Virkler, Older, Sarkar and Tanariboon]

bidirectional flow conditions can be commonly observed in corridors, stairs and
bottlenecks of pedestrian facilities such as transport terminals and shopping malls.
An understanding of the fundamental relationship between flow–speed–density is
important in the planning, design and operation of pedestrian facilities. Capturing
the realistic behaviour of pedestrians in various pedestrian facilities with different
geometric elements such as corridors, bottlenecks, stairs and escalators are essential
in order to estimate the flow parameters accurately. The important parameters such
as the width of the bottleneck and slope of the stairs play a vital role in deciding
the capacity of the respective element. The flow density relationship for different
geometric elements is important and further analysis like spatial and temporal devel-
opment of the basic quantities (velocity, density and flow) on different elements like
corridors, stairs and bottlenecks should be considered’.

Many studies on pedestrian flows have been published [17–23]. We consider, in
particular, the surveyof [17], inwhich the graphs of six different experiments showing
the relationship between the flow of pedestrians and their densities are displayed.
All these graphs show clearly a non-linear relationship of a logistic type between
density and flow (Fig. 5.9).

Moreover, Daamen and co-authors developed a first-order traffic flow theory to
describe two-dimensional pedestrian flow operations in the case of an oversaturated
bottleneck in front of which a large, high-density region has formed (Fig. 5.10). Such
a mathematical model also highlights the logistic relationship for any bottleneck
width.

We now introduce our hypothesis for the coupledWPCR (CWPCR), based on this
type of logistic relationship. Again, for the sake of simplicity, we consider only the
unidirectional motion of the crowd (i.e. motion on an oriented graph) as in Fig. 5.8,
because it is supposed that a terrorist attack occurs in node 1 and that people try
to escape from this node towards node 2. As an aside, in forthcoming research we
will allow bidirectional motion in more complex networks, where the bidirectional
motion will be simply obtained by adding symmetric terms in Eq. (5.24).



5 Topological Analysis of a Weighted Human Behaviour Model Coupled … 133

Fig. 5.10 Relationship between flow and density of pedestrians going through an oversaturated
bottleneck, from [17]

When the crowd ismoving fromone node to another, its speed and the correspond-
ing motion flow depends on three factors. The first factor reflects the narrowness and
the length of the street. More people can go from one place to the next if the street is
large, rather than in the case of a narrow street. This topological characteristic will
be modelled by a ‘roughness’ coefficient η1,2. In fact, in the considered coupling, we
suppose that people cannot change their behaviour when theymove from one node to
another (e.g. controlled people remain controlled, panicked people remain panicked
and so on), and thus we use three such roughness coefficients: ηc,1,2, ηp,1,2, ηr,1,2,
to refer to the population in reflex, panic or controlled situations, respectively. Of
course, they can have the same value. The second factor is proportional to the number
of people present in the first node. This is equivalent to the pressure of the crowd
in the first place. The third factor reflects the counter pressure due to the maximal
capacity of the second place conjugated with the number of persons already present
there. The combination of pressure and counter pressure gives a bottleneck effect.

We propose to model this bottleneck effect by a non-linearity of a logistic type to
keep the same philosophy as the authors cited above.

Thus, the bottleneck coupling corresponding to Fig. 5.8 is given by the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ1(t) = −(B1 + B2)r1(t) − ηr,1,2r1(t)(W2 − c2(t) − p2(t) − r2(t))
ċ1(t) = B1r1(t) + C1 p1(t) − C2c1(t) − ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t))
ṗ1(t) = B2r1(t) − C1 p1(t) + C2c1(t) − ηp,1,2 p1(t)(W2 − c2(t) − p2(t) − r2(t))
ṙ2(t) = −(B1 + B2)r2(t) + ηr,1,2r1(t)(W2 − c2(t) − p2(t) − r2(t))
ċ2(t) = B1r2(t) + C1 p2(t) − C2c2(t) + ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t))
ṗ2(t) = B2r2(t) − C1 p2(t) + C2c2(t) + ηp,1,2 p1(t)(W2 − c2(t) − p2(t) − r2(t))

(5.24)
with initial conditions satisfying

r1,0 + c1,0 + p1,0 = V1,0 ≤ W1; r2,0 + c2,0 + p2,0 = V2,0 ≤ W2.
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Fig. 5.11 Graph of the bottleneck coupling function

In this system the bottleneck coupling, concerning, for example, the controlled pop-
ulation that is moving from node 1 to node 2 is given by the term:

ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t)), (5.25)

in the second equation of (5.24)

ċ1(t) = B1r1(t) + C1 p1(t) − C2c1(t) − ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t)).
(5.26)

In this bottleneck coupling (5.25), ηc,1,2 is the parameter which models the
topological characteristic of the street linking node 1 to node 2. The second fac-
tor c1(t) of (5.25) reflects the pressure of controlled people in node 1 willing
to escape towards node 2 and also the proportionality of people escaping with
respect to people staying in node 1. Finally, the factor (W2 − c2(t) − p2(t) − r2(t))
shows the counter-pressure which is maximum (i.e. the term vanishes) when W2 =
c2(t) + p2(t) + r2(t) because, in this case, there is no more room for people coming
from node 1. This bottleneck coupling is non-linear as shown in Fig. 5.11.

As we consider only transitional dynamics where qk(t) = bk(t) = 0, Eq. (5.25)
can be written as

ηc,1,2c1(t)(W2 − V2(t)). (5.27)
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5.3.3 Fixed Points of the Two-Node System

The fixed-point research allows us to identify the point of equilibrium towards which
the system tends during the transitional period. This equilibrium point highlights
the primordial role of the size of node 2 in the context of evacuation dynamics. It
is important to note that the mathematically calculated equilibrium point does not
necessarily correspond to the equilibrium situation sought by crisis management
personnel. Thus, the equilibrium point obtained in situation 2 below, in which a
part of the population cannot escape and remains in a dangerous place, does not
correspond to a crisis equilibrium situation. The population stranded in the initial
place (node 1) remains very vulnerable to the terrorist threat.

The fixed point (r∗
1 , c

∗
1, p

∗
1, r

∗
2 , c

∗
2, p

∗
2) of the system towards which the solution

Eq. (5.24) converges is easily computed.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r∗
1 = 0
c∗
1 = 0
p∗
1 = 0

r∗
2 = 0 if r1,0 + c1,0 + p1,0 + r2,0 + c2,0 + p2,0 = V1,0 + V2,0 ≤ W2,

c∗
2 = C1(V1,0+V2,0)

C1+C2

p∗
2 = C2(V1,0+V2,0)

C1+C2⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r∗
1 = 0

c∗
1 = C1(V1,0+V2,0−W2)

C1+C2

p∗
1 = C2(V1,0+V2,0−W2)

C1+C2

r∗
2 = 0 if r1,0 + c1,0 + p1,0 + r2,0 + c2,0 + p2,0 = V1,0 + V2,0 > W2,

c∗
2 = C1W2

C1+C2

p∗
2 = C2W2

C1+C2

.

(5.28)
The values of this fixed point mean the following.

Situation 1: If the number of people initially staying in both nodes is less than the
capacity of refuge in node 2 (i.e. V1,0 + V2,0 ≤ W2), after a while, node 1 becomes
empty and all the crowd has sought refuge in node 2.

Alternatively, in Situation 2: If this number is greater than the capacity (i.e. V1,0 +
V2,0 > W2), then node 2 becomes full and the remaining people W2 − (V1,0 + V2,0)

are still stranded in node 1.
From Eq. (5.28), it is obvious that only the ratio C1

C2
is significant for the limit of

solutions of Eq. (5.24) because c∗
1
p∗
1

= c∗
2
p∗
2

= C1
C2
, when defined, instead of parameters

B1 and B2 becomes important for the pace at which the ‘reservoir’ of people in reflex
behaviour is emptied.

Of course, across the world there are different cultures, which lead to different
behaviours. These behaviours can be modelled by varying parameters.

For example, if populations are not made aware of major risks and not prepare
for them, it causes a panic reaction (B1 < B2); this behaviour is then regulated by
the ratio C1

C2
. The higher this ratio, the more the population remains or transits in the

controlled state.
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Fig. 5.12 Situation 1: Convergence towards the fixed point (0, 0, 0, 0, 600, 200). In this figure,
the change of behavioural states is symbolized by dotted arrows, and the motion between nodes by
plain arrows is as displayed in Fig. 5.8

In both simulated situations, we choose a set of parameters that highlight a weak
risk culture while favouring the return to a controlled behaviour; instead, the values,
B1 = 0.2, B2 = 0.4, mean that there is a weak risk culture and C1 = 0.3,C2 = 0.1
mean that the panic in the crowd context is compensated by controlled reactions for
a part of the population who keep self-control, notably because there is no new threat
or sudden attack.

Therefore, in situation 1 (Fig. 5.12) when V1,0 = 700, V2,0 = 100,W2 = 1000
and ηr,1,2 = ηc,1,2 = ηp,1,2 = 0.001, one obtains the following convergence towards
the fixed point: r∗

1 = 0, c∗
1 = 0, p∗

1 = 0, r∗
2 = 0, c∗

2 = C1(V1,0+V2,0)

C1+C2
= 0.3(700+100)

0.3+0.1 =
600, p∗

2 = C2(V1,0+V2,0)

C1+C2
= 200 and V ∗

1 = 0, V ∗
2 = 800 < W2 = 1000.

In situation 2 (Fig. 5.13) when V1,0 = 700, V2,0 = 100,W2 = 500, one obtains
the following convergence towards the fixed point: r∗

1 = 0, c∗
1 = C1(V1,0+V2,0−W2)

C1+C2
=
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Fig. 5.13 Situation 2: Convergence towards the fixed point (0, 225, 75, 0, 375, 125)

0.3(700+100−500)
0.3+0.1 =225, p∗

1 = C2(V1,0+V2,0−W2)

C1+C2
= 75, r∗

2 = 0, c∗
2 = C1W2

C1+C2
= 375, p∗

2 =
C2W2
C1+C2

= 125 and V ∗
1 = 300, V ∗

2 = 500 = W2.
Examining both Figs. 5.12 and 5.13, it appears that one of the main trends of

the CWPCR model is to take into account the role of the spatial configuration on
both behavioural dynamics and on the crowd’ability to escape from a dangerous
place towards a place of shelter, when such a place offers sufficient room for the
crowd. In effect, in the first situation, everyone can leave place 1, as we can see on
Fig. 5.12 where V1(t) vanishes for t > 15 mn, and the entire population escapes to
place 2 (V2(t) = 800 for t > 15 min). However, in the second situation, a part of the
population remains stranded in place 1, because W2 = 500, which is less than the
total number of the crowd equal to 800. Therefore, we can see in Fig. 5.13 that V1(t)
tends to 300 = 800 − 500. These first results lead us to consider more complicated
spatial configuration networks in the following section.
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Fig. 5.14 Three-node network: people in every state are rushing from node 1 towards node 2, and
from node 2 towards node 3, keeping the same behavioural class

5.4 Influence of the Spatial Configuration on the Pace of
Evacuation

We now seek to identify the obstacles that slow the escape of the crowd in the
aftermath of the initial shock by analysing the topology of the network of streets and
places in a city. This information can potentially be used to improve the design of a
city to facilitate the escape of a crowd towards more secure places.

For the sake of simplicity, we consider first a simplified oriented networkwith only
three nodes (N1;W1); (N2;W2); (N3;W3) and two edges (N1 → N2); (N2 → N3)

(Fig. 5.14). Such a simplified network can be straightforward complexified by adding
as many nodes and edges as necessary, without any difficulty. However, it is better
to first focus our attention on the nature of the obstacles in this simplified network.

5.4.1 Equation of the Three-Node Network

The corresponding equation of the three-node network is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1(t) = −(B1 + B2)r1(t) − ηr,1,2r1(t)(W2 − c2(t) − p2(t) − r2(t))
ċ1(t) = B1r1(t) + C1 p1(t) − C2c1(t) − ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t))
ṗ1(t) = B2r1(t) − C1 p1(t) + C2c1(t) − ηp,1,2 p1(t)(W2 − c2(t) − p2(t) − r2(t))
ṙ2(t) = −(B1 + B2)r2(t) + ηr,1,2r1(t)(W2 − c2(t) − p2(t) − r2(t))

−ηr,2,3r2(t)(W3 − c3(t) − p3(t) − r3(t))
ċ2(t) = B1r2(t) + C1 p2(t) − C2c2(t) + ηc,1,2c1(t)(W2 − c2(t) − p2(t) − r2(t))

−ηc,2,3c2(t)(W3 − c3(t) − p3(t) − r3(t))
ṗ2(t) = B2r2(t) − C1 p2(t) + C2c2(t) + ηp,1,2 p1(t)(W2 − c2(t) − p2(t) − r2(t))

−ηp,2,3 p2(t)(W3 − c3(t) − p3(t) − r3(t))
ṙ3(t) = −(B1 + B2)r3(t) + ηr,2,3r2(t)(W3 − c3(t) − p3(t) − r3(t))
ċ3(t) = B1r3(t) + C1 p3(t) − C2c3(t) + ηc,2,3c2(t)(W3 − c3(t) − p3(t) − r3(t))
ṗ3(t) = B2r3(t) − C1 p3(t) + C2c3(t) + ηp,2,3 p2(t)(W3 − c3(t) − p3(t) − r3(t))

. (5.29)
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5.4.2 Scaling the Parameters

Fixing the value of all the parameters in PCR, WPCR or CWPCR is a very
complicated task, which has not yet been done on an experimental basis. In the
framework of the Com2SiCa project, an experimental protocol is under scrutiny,
in order to achieve these results in the near future. However, it is important to
note that only relative values between parameters are important, because there is
a relationship between the unit of time and the unit used for the parameters. In
other words, considering all the parameters of the adimensional Eq. (5.29), (i.e.
Bi ≥ 0,Ci ≥ 0, ηc,i, j , ηp,i, j , ηr,i, j , i = 1, 2, j = 2, 3) integrated with respect to the
variable time t , it is nearly equivalent to consider such parameters multiplied by the
same constant κ and integrated using the time variable τ = t

κ
(e.g. t can be considered

in seconds, minutes, or hours). There is not, strictly speaking, equivalence because
such parameters are linearly used in the WPCR model, however in the CWPCR
model the coupling is non-linear and a slight distortion intervenes during a transient
short period for some variables.

5.4.3 Speed of Convergence Towards the Fixed Points

To stay closer to reality, we further assume that people in reflex situation are stunned
and paralysed. They cannot rush from one node to another (Fig. 5.15), therefore the
transitions between r1, r2, r3 are forbidden. People in this stunned state can only
change their behaviour (from r to p or c).

To achieve this goal Eq. (5.29) is simply modified to vanish parameters ηr,i, j , i =
1, 2, j = 2, 3.

Edge (N1 N2) (Street) Edge (N2 N3) (Street)

r1

p1

c1

p2
c2

r2 r3

p3

c3

Node 1
(Place 1) Node 2

(Place 2)

Node 3
(Place 3)

Fig. 5.15 Three-node network: people in the reflex behaviour state are stranded in their original
node
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As previously described (Sect. 5.3.3), we consider the values of the parameters
B1 = 0.2, B2 = 0.4,C1 = 0.3,C2 = 0.1 and we choose ηc,1,2 = ηc,2,3 = ηp,1,2 =
ηp,2,3 = 0.005.

For the following values V1,0 = 20,000, V2,0 = 0, V3,0 = 0,W2 > 20,000,W1 =
1000,W3 = 20,500, the fixed point (r∗

1 , c
∗
1, p

∗
1, r

∗
2 , c

∗
2, p

∗
2, r

∗
3 , c

∗
3, p

∗
3) =

(0, 0, 0, 0, 0, 0, 0, 15,000, 5000) is straightforward to compute the following.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∗
1 = 0
c∗
1 = 0
p∗
1 = 0

r∗
2 = 0
c∗
2 = 0 if V1,0 + V2,0 + V3,0 ≤ W3

p∗
2 = 0

r∗
3 = 0
c∗
3 = C1(V1,0+V2,0+V3,0)

C1+C2

p∗
3 = C2(V1,0+V2,0+V3,0)

C1+C2

, (5.30)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∗
1 = 0
c∗
1 = 0
p∗
1 = 0

r∗
2 = 0
c∗
2 = C1(V1,0+V2,0+V3,0−W3)

C1+C2

p∗
2 = C2(V1,0+V2,0+V3,0−W3)

C1+C2
ifW3 ≤ V1,0 + V2,0 + V3,0 ≤ W2 + W3

r∗
3 = 0
c∗
3 = C1W3

C1+C2

p∗
3 = C2W3

C1+C2

, (5.31)

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∗
1 = 0
c∗
1 = C1(V1,0+V2,0+V3,0−W2−W3)

C1+C2

p∗
1 = C2(V1,0+V2,0+V3,0−W2−W3)

C1+C2

r∗
2 = 0
c∗
2 = C1W2

C1+C2

p∗
2 = C2W2

C1+C2
ifW2 + W3 ≤ V1,0 + V2,0 + V3,0

r∗
3 = 0
c∗
3 = C1W3

C1+C2

p∗
3 = C2W3

C1+C2

. (5.32)

Moreover V ∗
1 = 0, V ∗

2 = 0, V ∗
3 = 20,000. This value means that, initially, all the

people are in node 1 and both nodes 2 and 3 are empty, but after a certain period of
time, both nodes 1 and 2 are empty and everyone has reached node 3. One can see
the flow of people through the two edges (N1 → N2); (N2 → N3), in Fig. 5.16.
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Fig. 5.16 Convergence towards the fixed point (0, 0, 0, 0, 0, 0, 0, 15,000, 5000)
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5.4.4 Influence of the Intermediate Place Capacity on the
Evacuation Dynamics

Intermediate places play a central role in the fluidity or, to the contrary, the congestion
of movement between a dangerous place and a shelter place. This can be shown in
the following numerical experiments: with the same parameter values, except for the
size of node 2, we analyse the speed at which the people are emptying the place of
the terrorist (node 1). We consider the following values of W2 : 50, 100, 200, 1000
(Fig. 5.17).

In the caseW2 = 1000 (black curves), the flight of the entire population fromplace
1 to place 2 (which can be a small square) and then to place 3 is very fast; it lasts
less than 10 min (Fig. 5.17c, f, i), because place 3 can foster the entire population.
There is a massive influx of panicked people (Fig. 5.17d), which is greater than the
controlled one (Fig. 5.17e), into place 2, which empties very quickly as the majority
of controlled people reach the safe shelter (Fig. 5.17h). However, it can be noted that
a significant number of the panicked population remains in the refuge place, and this
number is only slowly decreased (see bump (Fig. 5.17g)).

This is explained by the fact that the flight dynamics are not hindered by obstacles
or bottlenecks, and the fleeing populations have not enough time to change their
behavioural state.

On the other hand, ifW2 = 50 (red curves), the evacuation of the total population
from place 1 to place 2 and then place 3 is much slower (about 25 min instead of less

Fig. 5.17 Convergence towards the fixed point (0, 0, 0, 0, 0, 0, 0, 15,000, 5000) for the val-
ues of parameters B1 = 0.2, B2 = 0.4,C1 = 0.3,C2 = 0.1, ηc,1,2 = ηc,2,3 = ηp,1,2 = ηp,2,3 =
0.005, V1,0 = 20,000, V2,0 = 0, V3,0 = 0,W1 > V1,W3 = 20,500 and the values ofW2 = 50 (red
curves), W2 = 100 (green curves), W2 = 200 (blue curves), W2 = 1000 (black curves)
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than 10 min, (Fig. 5.17c, f, i)). The panicked population has time to calm down in
place 1, because there is no new attack (it has been assumed that there is no domino
effect, s1 = s2 = 0). It is thus a population that is mainly in a state of reasoned
behaviour that arrives in place 3 (Fig. 5.17g, h).

It can be highlighted from this first analysis that the faster the speed of change
of location (hence decreasing the vulnerability of populations), the faster this speed
leads to significant flows of panic in both places 2 and 3. There is a paradox here:
the fast self-safety movement of populations leads to situations of collective panic
that are more difficult to manage. This fact must be taken into account by emergency
services and emergency physicians.

Although the deaths that occur are not included in this CWPCR model version,
one can imagine that the escape of panicked populations would induce more victims.

As said before, the simulation results shed light on the importance of the size
of the intermediate places and their role in the fluidity or, to the contrary, on the
congestion of movements between a dangerous place and a shelter place.

Depending on their respective size, intermediate places will modulate the dynam-
ics and the speed of flow of the crowds. In this sense, they become strategic places
both for the planners, whomust think about the organization of the area to host public
events, and also for the terrorists who can use these strategic places to multiply the
effect of their harmful actions by trapping the flight movements between two areas
of action.

This can be summarized in both Figs. 5.18 and 5.19, where the duration of evac-
uation time for 80% of people from place 1 is displayed according to two variables:
the capacity of place 2 versus that of place 3. The arrow goes from long durations (in
warm colours) to short durations (in cold colours). This representation is similar to a
heat map. It is an easy way to identify a ‘hot spot’ (i.e. a configuration with an exces-
sively long evacuation time) or, to the contrary, a more comfortable configuration
with an acceptable evacuation duration time, which would save more lives.

In Fig. 5.18, the parameters that model the topological characteristics of the street
linking node 1 to node 2, and node 2 to node 3, are set to ηc,1,2 = ηc,2,3 = ηp,1,2 =
ηp,2,3 = 0.0025.

In contrast, in Fig. 5.19 their values are doubledηc,1,2 = ηc,2,3 = ηp,1,2 = ηp,2,3 =
0.005, to model larger streets. In this case, shorter evacuation times are obtained.

One can see the necessary configurations that are required for a given evacuation
time in Figs. 5.18 and 5.19. As an example, if we consider a duration between 20 and
25 min, in Fig. 5.18; this duration can be obtained with a narrow intermediate place
that can accommodate 40–50 people, only if the capacity of place 3 is greater than
30,000 people. Instead the same duration is possible with a smaller place 3 (with
a capacity between 16,500 and 17,000 people) if the capacity of place 2 is higher
(between 90 and 100 people). That means that if planners who organize sites to host
public events or festivals cannot enlarge the intermediate place (for example, due
to the shape of a historic city center), they must establish a larger final evacuation
shelter.



144 D. Provitolo et al.

Fig. 5.18 Time required to evacuate 80% of population from place 1 according toW2 andW3 with
η = 0.0025 and V1,0 = 20,000

Fig. 5.19 Time required to evacuate 80% of population from place 1 according toW2 andW3 with
η = 0.005 and V1,0 = 20,000
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5.5 Conclusion

In this article, we have developed a newmodel of weighted human behaviour coupled
on street and place networks, in the context of an urban terrorist attack, thus improving
thePCRmodel [3, 4]with bottleneck coupling andby taking into account the capacity
of every place and the number of people stranded in these places. The simulation
results in a simple network with three nodes (places or public squares) and two edges
(streets) that demonstrate the key role of the capacity of an intermediate place in the
dynamics of evacuation fromdangerous to safe places. Thismodel is presentedwith a
user-friendly graphical representation, which allows planners to accurately consider
where to host public events in a specific territorial context.
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Chapter 6
A New Model for Transient Flow in Gas
Transportation Networks

Martin Gugat and Michael Herty

Abstract We consider the flow of gas through networks of pipelines. A hierarchy of
models for the gas flow is available. The most accurate model is the pde system given
by the 1-d Euler equations. For large-scale optimization problems, simplifications
of this model are necessary. Here we propose a new model that is derived for high-
pressure flows that are close to stationary flows. For such flows, we can make the
assumption of constant gas velocity. Under this assumption, we obtain a model that
allows transient gas flow rates and pressures. The model is given by a pde system,
but in contrast to the Euler equations, it consists of linear equations. Based upon this
model, the fast computation of transient large-scale gas network states is possible.

Keywords Optimal control · Gas network · Compressor · Flow rate · Pressure ·
Pressure drop · Pde constrained optimization · Feasibility
AMS Subject Classification 49J20 · 49M37

6.1 Introduction

The most accurate model for the gas flow in pipeline networks is the system of
partial differential equations given by the 1-d Euler equations, see [1]. In practice,
often networks with a large number of pipes occur. The problem of optimal control
of the flow through such networks is a large-scale optimization problem. For the
computational solution of this problem, simplifications of the model are necessary.
Here we propose a new model that allows the computation of optimal controls on
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large graphs. The equations are derived under the assumption of constant gas velocity.
The model allows transient gas flow rates and pressures, in particular at the points
where the flow is controlled, namely, the boundary nodes and the compressors. This
model allows the fast computation of the transient flows for large-scale gas network
optimization problems. The method is based upon the ideas given in [3]. Similar
as in [3], we derive an explicit representation of the system state that allows the
computation of the flow rates in the edges and the time derivatives of the pressure
at the nodes of the network graphs at a given point using only a finite number of
algebraic operations.

A reviewof optimization problems in natural gas transportation systems is given in
[10]. The optimal control of transient flow in gas networks based upon discretization
with the method of lines has been discussed in [11]. An overview of challenges in
optimal control problems for gas and fluid flow in networks of pipes and canals is
given in [7].

This paper has the following structure. In Sect. 6.2, the pde model is introduced.
Our model consists of a transport equation and an ordinary differential equation that
describes the decay of the pressure along the pipes. Then conditions that describe
the flow through the nodes of the network are introduced. The conditions require the
conservation of mass and the continuity of the pressure in the nodes. In Sect. 6.3, the
well-posedness of the system is analyzed. We represent the states using a vector of
functions describing the flow rates along the pipes and a second vector of functions
for the time derivatives of the pressures at the nodes of the network. In Sect. 6.4, a
recursion for the system state is given that allows to derive an explicit representation.

6.2 The System

6.2.1 The Graph of the Network

Let a directed graph G = (V, E) be given. The edges e = (u, v) ∈ E of the graph
correspond to pipes of length Le that are modeled by intervals [0, Le]. The edge
e = (u, v) ∈ E denotes the pipe that has its end zero at the vertex u ∈ V and the end
Le at the vertex v ∈ V . For the flow rates of the gas through the pipe corresponding
to the edge e ∈ E , we use the notation qe (e ∈ E). For v ∈ V , define σ(v, e) = −1
if the end zero of the pipe [0, Le] is located at the node v ∈ V and σ(v, e) = 1 if the
end Le of the pipe corresponds to v.

For a node v ∈ V , let E0(v) ⊂ E denote the set of edges (pipes) that meet at the
node v. Let V0 ⊂ V denote the set of nodes of the graph with at least two adjacent
edges, that is, the interior nodes of the graph. Then for all v ∈ V0, the stationary state
satisfies the node conditions

∑

e∈E0(v)

qeσ(v, e) = 0, (6.1)
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which guarantees the conservation of the gas mass at the interior nodes.
The inflow into the network occurs at the boundary nodes v ∈ VΓ = V \V0 with

σ(v, e) = −1 where e is the unique adjacent edge. The boundary nodes where out-
flow occurs (consumer demand is satisfied) are in the set {v ∈ VΓ : σ(v, e) = 1, e ∈
E0(v)}.

Let De denote the diameter of pipe e. The gas transport velocity νe for pipe e
is given. We assume that the variations in time and space are small, so that we can
consider νe as a constant with respect to time.

Remark 6.1 It is well known that in the physical reality, the gas velocity is often not
constant. In fact, the gas velocity that appears in the model is merely an average value
of the velocity of the gas molecules in the sense of the kinetic theory of gases. Our
assumption that the velocity of the gas is constant should be interpreted in a similar
(average) sense. Gas pipelines are often operated in a neighborhood of a stationary
state (see [6]). The corresponding velocity function can always be approximatedwith
arbitrary precision by a piecewise constant function. We define the edges e of the
graph in such away that they correspond to the intervals that appear in the definition of
such a piecewise constant function. Then in a sufficiently small neighborhood of the
stationary state, the constant velocity values νe that correspond to the approximation
of the stationary state are a reasonable choice for the simplifiedmodel of the transient
states that we derive below.

If νe only depends on the space variable x , to travel through pipe e the gas needs
the time

T e = Le

1
Le

∫ Le

0 νe(x) dx
.

In order to obtain an explicit solution of our state equation, we assume that there
exists a real number δ > 0 such that for all e ∈ E there is a natural number ke such
that T e = ke δ. In other words, we assume that for each pipe, the corresponding
travel time is an integer multiple of the time δ. Note that each set of travel times
{Te : e ∈ E} can be approximated with arbitrary high precision by times that satisfy
this condition by making δ > 0 sufficiently small. By inserting sufficiently many
additional auxiliary nodes of degree two in the network, we can assume without
restriction that for all e ∈ E we have T e = δ. Moreover, by inserting sufficiently
many additional auxiliary nodes of degree two in the network, we can also make all
the pipes sufficiently short such that we can assume that νe is a constant along each
of these short pipes, that is, it does not depend on the time or the space variable.

6.2.2 The Partial Differential Equations

Let pe(t, x) denote the gas pressure in pipe e ∈ E at the time t at the point x ∈ [0, Le].
Let f eg ≥ 0 denote the friction parameter and De > 0 the diameter for pipe e. Let
αe denote the angle of inclination of the pipe e and g the gravitational constant. To
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model the gas flow in a pipe e ∈ E of the network, we use the partial differential
equations

∂t q
e(t, x) + νe∂xq

e(t, x) = 0, (6.2)

∂x p
e(t, x) = − f eg

2 De
|νe| qe(t, x) − g sin(αe)

qe(t, x)

νe
. (6.3)

The first equation is a transport equation, and the second equation is used to compute
the pressure drop along the pipe.

The first equation follows from the continuity equation

∂t

(
qe

νe

)
+ ∂xq = 0

under the assumption that the velocity νe > 0 is constant. Under this assumption,
the second equation follows from

∂t q
e + ∂x

(
νeqe + pe

) = − f eg
2De

qe|νe| − g sin(αe)
qe(t, x)

νe
.

If the time derivative ∂t p exists, Eq. (6.3) implies

∂t p
e(t, Le) − ∂t p

e(t, 0) =
[
f eg νe |νe|
2 De

+ g sin(αe)

] [
qe(t, Le) − qe(t, 0)

]
. (6.4)

To compute the system state, we will work with (6.4) to compute the values of the
time derivative of the pressure at the nodes, that is, ∂t pe(t, 0) and ∂t pe(t, Le) for
each pipe e ∈ E .

The system (6.2), (6.3) is similar to the parabolic system considered in [8], but in
contrast to [8] only first-order derivatives appear.

6.2.3 Node Conditions for the Pressure

In this section, we state the conditions that govern the behavior of the pressure in the
nodes of the network. These conditions have already been considered, for example,
in [1, 4]. The model is similar to the model for the flow in open channel networks
presented in [9]. The stationary states in gas networks that satisfy the node conditions
and the isothermal Euler equations for ideal gas are studied in [5].

First we consider an interior node v ∈ V0.
Let Ein

0 (v) = {e ∈ E0(v) : σ(v, e) = 1} denote the pipes where the end Le is at
the node v and Eout

0 (v) = {e ∈ E0(v) : σ(v, e) = −1} denote the pipes where the
end zero is at the node v. We assume that the pressure in the node is governed by the
relation
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pd(t, 0) = pe(t, 0) = p f (t, L f ) = pg(t, Lg) (6.5)

for all d, e ∈ Eout
0 (v), f, g ∈ Ein

0 (v). Due to (6.5), the value of the pressure at each
node v ∈ V is well defined, so we can introduce the notation

pv(t) = pe(t, 0) = p f (t, L f ) (6.6)

for all e ∈ Eout
0 (v), f ∈ Ein

0 (v). In order to obtain a complete system, we also need
values for the boundary nodes where inflow into the network occurs. These are the
nodes v ∈ VΓ = V \V0 with σ(v, e) = −1. Here for e ∈ E0(v), we have the equation

qe(t, 0) = qv(t). (6.7)

At the other boundary nodes v ∈ VΓ = V \V0 with σ(v, e) = 1 for e ∈ E0(v), we
have the boundary conditions

pe(t, Le) = pv(t). (6.8)

We assume that for the boundary nodes v ∈ VΓ , the input functions pv, qv, respec-
tively, are given.

6.2.4 Initial Conditions for the Flow Rate and the Pressure

We assume that the initial flow rate is given by the conditions

qe(0, x) = qe
0(x), x ∈ [0, Le], e ∈ E (6.9)

with qe
0 ∈ L2(0, Le) and that it is compatible with (6.1). Moreover, we assume that

the initial pressure
pe(0, Le) = pe0

is also given in a way that is compatible with the ordinary differential Eqs. (6.3),
(6.5) and qe

0 . Note that this is also an assumption on the values qe
0 , which must allow

the existence of compatible pressure values.

6.3 Well-Posedness of the System

In this section, we present a representation of the system state for given initial data qe
0

compatible with the node conditions and input functions pv, qv. Our representation
is based upon the functions αe (e ∈ E), βv (v ∈ V ) that are defined in the following
lemma.
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Lemma 6.1 Let a time T > 0 be given. Then there exists a unique set of functions
(αe)e∈E , (βv)v∈V with αe ∈ L2(−δ, T ), βv ∈ L2(0, T ) that satisfy

1. αe(s) = qe
0(−νes) for all s ∈ [−δ, 0).

2. For all v ∈ VΓ with σ(v, e) = −1, e ∈ E0(v) and for all s ∈ [0, T ],

αe(s) = qv(s).

3. For all v ∈ VΓ with σ(v, e) = 1 for e ∈ E0(v) and for all s ∈ [0, T ],

βv(s) = ∂t p
v(s).

4. For all t ∈ [0, T ], e = (v,w) ∈ E, that is e ∈ Eout
0 (v) and e ∈ Ein

0 (w) we have

βw(t) = βv(t) +
[
f eg νe |νe|
2 De

+ g sin(αe)

] [
αe(t − δ) − αe(t)

]
.

5. For all v ∈ V0 and for all t ∈ [0, T ]
∑

e∈Ein
0 (v)

αe(t − δ) =
∑

f ∈Eout
0 (v)

α f (t).

Proof For t ∈ [−δ, 0) and e ∈ E the functions αe are defined from the initial state
qe
0 by 1. Define the constants

ηe = f eg νe |νe|
2 De

+ g sin(αe).

At the boundary nodes v ∈ VΓ = V \V0 with σ(v, e) = 1, the values of βv(t) are
given by 3 for t ∈ [0, T ].

In order to define βv(t) for the interior nodes v ∈ V0 and t ∈ [0, δ), we use the
equations

βv(t) = 1
∑

f ∈Eout
0 (v)

1
η f

· (6.10)

⎡

⎣
∑

f =(v,w)∈V

1

η f
βw(t) +

⎛

⎝
∑

e∈Ein
0 (v)

αe(t − δ)

⎞

⎠ −
⎛

⎝
∑

f ∈Eout
0 (v)

α f (t − δ)

⎞

⎠

⎤

⎦ .

We start from the nodes that have maximal distance one from the outflow nodes
v ∈ VΓ = V \V0 with σ(v, e) = 1 and then compute the values of βv recursively by
increasing the maximal distance from the outflow boundary nodes one by one.

Finally, we consider the boundary nodes v ∈ VΓ = V \V0 with σ(v, e) = −1. Let
e = (u, v) be the adjacent edge. Then by 4 for t ∈ [0, δ) we have
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βv(t) = βu(t) + ηe
[
αe(t − δ) − αe(t)

]
,

and the values of αe are given by the boundary condition 2.
In this way, we obtain (αe(t))e∈E ∈ (L2(−δ, 0))E and (βv(t))v∈V ∈ (L2(0, δ))V .
The values of αe and βv(t) on the following intervals [0, δ), [δ, 2δ), [2δ, 3δ),

respectively, are now obtained recursively in a similar way.
First, for e = (v,w) ∈ E , the values of αe for t ∈ [0, δ) are computed by the

equation

αe(t) = αe(t − δ) + 1

ηe

[
βv(t) − βw(t)

]
(6.11)

that follows from 4. If e = (u, v) with v ∈ VΓ = V \V0 with σ(v, e) = −1, this does
not lead to a contradiction with 2 on account of the definition of βv(t) in the previous
step of the recursion.

Now the values of βv(t) for t ∈ [δ, 2δ) can be computed as in the previous step
of the recursion, using the values of αe on [0, δ).

With the functions αe and βv, we can give the explicit representation of the system
state that is given in the following theorem.

Theorem 6.1 Let a time T > 0 be given. For v ∈ V , let the boundary data qv(t),
∂t pv(t), respectively, in L2(0, T ), be given. Then the system governed by the initial
condition (6.9), the node conditions (6.1), (6.5) for all v ∈ V0, the boundary condi-
tions (6.7), (6.8), respectively, for v ∈ VΓ and the partial differential Eqs. (6.2) and
(6.4) for all e ∈ E has a solution that is given by functions

qe(t, x) = αe
(
t − x

νe

)
(6.12)

and
∂t p

v(t) = βv(t) (6.13)

with αe and βv as in Lemma6.1. Thus, we have for e ∈ Ein
0 (v)

pv(t) = pe0 +
∫ t

0
βv(s) ds. (6.14)

The pressure values pe(t, x) outside the nodes can be obtained by integrating (6.3)
along the edges e ∈ E starting from a node. The solution satisfies the partial differ-
ential Eq. (6.2) in the sense of distributions.

Proof First, we check that the initial condition (6.9) holds. For t = 0, (6.12) yields
qe(0, x) = αe(−x/νe). By point 1 from Lemma6.1, this implies qe(0, x) = qe

0(x),
that is, (6.9) holds.

The partial derivatives of qe in the sense of distributions are given by ∂t qe(t, x) =
αe ′(t − x

νe ), ∂xqe(t, x) = − 1
νe α

e ′(t − x
νe ) where αe ′ denotes the derivative of αe.
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Thus, the transport equation from (6.2) holds for all e ∈ E . Now we check that (6.4)
also holds for all e ∈ E . By point 4 from Lemma6.1, Definition (6.13) of the time
derivative of the pressure pv at the node v ∈ V implies that (6.4) holds for t > 0.

Now we check that the node conditions (6.1) are satisfied. Point 5 in Lemma6.1
yields ∑

e∈Ein
0 (v)

qe(t, Le) =
∑

f ∈Eout
0 (v)

q f (t, 0)

that is (6.1) holds.
Point 2 in Lemma6.1 implies that the boundary condition (6.7) holds.
Point 3 in Lemma6.1 implies that the boundary condition (6.8) holds.
The node condition (6.5) holds since the pressure is only defined at the node v ∈ V

by (6.14) first, so (6.6) holds. Moreover since (6.4) holds, integrating (6.3) along the
edges to obtain the values of the pressure in the edges e ∈ E is compatible with (6.6).

6.4 A Recursion for the System State

Theorem6.1 implies that the functions αe and βv that can be used to represent our
system state by (6.12) and (6.13) satisfy an affine linear recursion for all τ ∈ [0, δ).
For τ ∈ [0, δ), e ∈ E , v ∈ V and j ∈ {0, 1, 2, 3, . . .} with τ + ( j − 1) δ ≤ T define

α( j)
e (τ ) = αe (τ + ( j − 1) δ) , β( j)

v (τ ) = βv (τ + j δ) . (6.15)

Then the functions α( j) =
(
α

( j)
e

)

e∈E
, β( j) =

(
β

( j)
v

)

v∈V
are componentwise in

L2(0, δ) that is each component is in L2(0, δ). Now point 1 from Lemma6.1 implies

α(0)(τ ) = (
αe(τ − δ)

)
e∈E = (qe

0(ν
e (δ − τ)))e∈E . (6.16)

Now the values of β(0)(τ ) can be computed. We start with 3 that yields the values at
the boundary nodes v ∈ VΓ with σ(v, e) = 1 from the boundary data ∂t pv. Going
through paths to the interior nodes v ∈ V0, the linear Eq. (6.10) yields the values at
the adjacent nodes. Finally at the boundary nodes v ∈ Vγ with σ(v, e) = −1, we can
use 4 from Lemma 6.1, where the values of αe(t) in for t ∈ (0, δ) at are obtained
from the boundary condition 2. Now

α(1)(τ ) = (
αe(τ )

)
e∈E , τ ∈ (0, δ)

can be computed using Eq. (6.11) that is linear in the right-hand side. Now the values
of β(1)(τ ) can be computed.
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By repeating the construction we obtain for j ∈ {0, 1, 2, 3, . . .} a linear recursion
of the form (

α( j+1)(τ )

β( j+1)(τ )

)
= A

(
α( j)(τ )

β( j)(τ )

)
+ Bu( j)(τ ), (6.17)

where u( j)(τ ) =
(

(qv (τ + j δ))v∈VΓ ,σ (v, e)=−1
(∂t pv (τ + j δ))v∈VΓ ,σ (v, e)=1

)
contains the given boundary data.

Here A denotes a linear map (that can be represented by a suitable time-independent
matrix). Also B denotes a linear map, also represented by a matrix that is time-
independent due to the definition of u( j+1). The first term in the sum provides the
influence of the values of α from the past and the second term contains the influence
of the inflow u( j+1). The matrices A and B contain the information on the structure
of the graph G and the velocities on the edges.

By an induction argument (6.17) implies the following lemma.

Lemma 6.2 For τ ∈ [0, δ) and j ∈ {1, 2, 3, . . .} with τ + ( j − 1)δ ≤ T the func-
tion

z( j+1)(τ ) =
(

α( j+1)(τ )

β( j+1)(τ )

)

that defines the system state on the network as in (6.12) and (6.13) can be computed
using the following representation:

z( j)(τ ) =
j∑

k=1

A j−k Bu(k−1)(τ ) + A j z(0)(τ ). (6.18)

6.5 Conclusion

We have presented a model for the flow in gas distribution networks. This model
allows a fast and reliable computation of the state also for transient flow locally
around a given stationary state. The model allows an explicit representation of the
flow rates in the edges and the time derivatives of the pressure at the nodes of the graph
as a linear function of the initial data and the boundary data that can be evaluated
almost everywhere using a finite number of algebraic operations. For the solution
of optimal control problems, the evaluation of gradients of the objective function is
useful. Our model allows the derivation of an adjoint calculus similar as in [2].

Acknowledgements This work was supported by DFG grant SFB TRR 154, project C03. This
paper took benefit from discussions at the Basque Center for Applied Mathematics.
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Chapter 7
Mixed-Integer Optimal Control for
PDEs: Relaxation via Differential
Inclusions and Applications to Gas
Network Optimization

Falk M. Hante

Abstract We show that mixed-integer control problems for evolution type partial
differential equations can be regarded as operator differential inclusions. This yields a
relaxation result including a characterization of the optimal value for mixed-integer
optimal control problems with control constraints. The theory is related to partial
outer convexification and sum-up rounding methods. The results are applied to opti-
mal valve switching control for gas pipeline operations. A numerical example illus-
trates the approach.

Keywords Mixed-integer control · Partial differential equations · Switching
control · Optimization · Differential inclusions · Relaxation · Gas networks

7.1 Introduction

The limitation to a finite number of possible control actions can be an important
aspect in the context of optimal control. Such integer restrictions occur, for example,
in autonomous driving in case of vehicles with gear shift power units [16], in contact
problems such as robotic multi-arm transport [3] or in the operation of gas pipeline
and water canal networks with valve switching [11]. Motivated by the latter, we
address suchmixed-integer optimal control problems involving evolution type partial
differential equations (PDEs). This problem class includes in particular, not only
optimal control of switched systems [31, 32] but also optimization of systems with
coordinated activation of multiple actuators, for example, at different locations in
space for certain distributed parameter systems [13, 15].

We show that these problems can be regarded as operator differential inclusions
with set-valued but non-convex right-hand sides. A relaxation result based on exten-
sions of the Filippov–Ważewski Theorem to operator differential inclusions relates
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the non-convex problem to a convexified one. This yields a useful characterization of
the value function for such mixed-integer optimal control problems. Multiplier rep-
resentations of the convexified problem are closely related to a reformulation known
as partial outer convexification [26, 27]. In this paper, we show that this approach
extends to a rather general form of constraints on the controls of a form previously
considered in [9]. It provides a convenient way to obtain near-optimal solutions,
e.g., using sum-up rounding techniques as in [12, 13, 28] if the constraints are not
imposed on the integer part.

Further, we show how this approach can be applied to optimize the operation of
gas pipeline networks in nonstationary situations using valve switching as a control.
While many stationary situations can be handled with algebraic models using tai-
lored mixed-integer programming techniques [17], dynamic optimization remains a
challenge [11] both in control theory and in industrial practice. Based on a recent
result in [24], we show that the dynamic valve switching problem can be cast in the
above framework. A numerical example is given to illustrate the performance of the
relaxation technique combined with sum-up rounding.

The article is organized as follows. In Sect. 7.2, we introduce the problem class
under consideration. In Sect. 7.3, we show that the problem is equivalent to a differ-
ential inclusion. Further, we provide the relaxation result and, closely related to that,
a characterization of the optimal value function for the original problem. In Sect. 7.4,
we apply these results to gas network operation. This includes various modeling
aspects, an abstract problem formulation based on semigroup theory as well as a
numerical example. A conclusion for this article and future research directions are
given in Sect. 7.5.

7.2 Setting

In this section, we introduce the class of optimal control problems considered in this
article.

Let Y be a separable Banach space, U and V be two complete and separable
metric spaces, and f : [t0, t f ] × Y × U × V → Y . We consider the control system

ẏ(t) = Ay(t) + f (t, y(t), u(t), v(t)), t ∈ (t0, t f ) a.e., (7.1)

where [t0, t f ] is a finite time horizon with t0 < t f , A : D(A) → Y is a generator of
a strongly continuous semigroup {T (t)}t≥0 of bounded linear operators on Y , where
u : [t0, t f ] → U and v[t0, t f ] → V are two independent measurable control func-
tions. Throughout the paper we consider the Lebesgue measure. Our main con-
cern will be the confinement that v shall only take values from a finite non-empty
subset V ⊂ V . Without loss of generality, we may identify V with a set of inte-
gers {0, 1, . . . , N − 1} and, in analogy to mixed-integer programming, we refer to
(7.1) as a mixed-integer control system, where u represents ordinary controls and
v integer controls. We will denote the set of measurable ordinary control func-
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tions u : [t0, t f ] → U by U[t0,t f ] and the set of measurable integer control func-
tions v : [t0, t f ] → V by V[t0,t f ]. By the assumed finiteness of V , we actually have
V[t0,t f ] = L∞(t0, t f ;V ).

In addition to the inherent integer confinement, we consider optional control
restrictions of the form

u(t) ∈ U v(t), t ∈ (t0, t f ) a.e., (7.2)

where, for all v ∈ V[t0,t f ], U v is a set-valued map U v [t0, t f ] ⇒ U and we consider
an initial condition

y(t0) = y0, (7.3)

where y0 is a given initial state in Y .

Definition 7.1 We say that y : [t0, t f ] → Y is a solution of the mixed-integer control
system if there exists an ordinary control u ∈ U[t0,t f ] and an integer control v ∈ V[t0,t f ]
such that y ∈ C([t0, t f ]; Y ), satisfies the integral equation

y(t) = T (t − t0)y(t0) +
∫ t

t0

T (t − s) f (s, y(s), u(s), v(s)) ds, t ∈ [t0, t f ] (7.4)

and (7.2) and (7.3) hold.We denote byS[t0,t f ] the set of all such solutions y = y(u, v)
defined on [t0, t f ].

In conjunction with the mixed-integer control system, we consider a cost func-
tion Φ : C([t0, t f ]; Y ) × U[t0,t f ] × V[t0,t f ] → R ∪ {∞} and define the mixed-integer
optimal control problem as

minimize Φ(y, u, v) subject to y = y(u, v) ∈ S[t0,t f ]. (7.5)

We will study the corresponding optimal value given by

ν = inf{Φ(y, u, v) : y = y(u, v) ∈ S[t0,t f ]} ∈ R ∪ {±∞} (7.6)

in its dependency on a parameter λ varying in an interval I ⊂ R and acting on
the initial value y0, on the control constraint U v(t) and the cost function Φ of the
mixed-integer control problem.

7.3 Relaxation via Differential Inclusions

In this section, we show that, for the problem class of Sect. 7.2 and unlike in general
mixed-integer programming, the optimal value function coincides with the optimal
value function for a suitably defined relaxed problem.

For the control system, we assume that
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(i) the map (y, u) �→ f (t, y, u, v) is continuous for a. e. t ∈ (t0, t f ) and all v ∈ V .
(ii) there exists a function k ∈ L1(t0, t f ) such that

(a) for a. e. t ∈ (t0, t f ), for all v ∈ V[t0,t f ], for all u ∈ U v(t) the map y �→
f (t, y, u, v) is k(t)-Lipschitz on Y

(b) for a. e. t ∈ (t0, t f ),

sup
v∈V[t0 ,t f ]

sup
u∈U v(t)

‖ f (t, 0, u, v)‖Y ≤ k(t). (7.7)

(iii) themap t �→ f (t, y, u, v) is stronglymeasurable on [t0, t f ] for all y ∈ Y ,u ∈ U ,
and v ∈ V .

For the cost function, we assume that

(iv) the function Φ(y, u, v) consists of terminal and integral cost

Φ(y, u, v) = ϕ(y(t f )) +
∫ t f

t0

L(t, y(t), u(t), v(t)) dt (7.8)

with a locally Lipschitz continuous function ϕ : Y → R and L : [t0, t f ] × X ×
U × V → R satisfying (i)–(iii) for L in place of f .
For the control constraints, we assume that

(v) the set-valued map U v is measurable with closed, non-empty images for all
v ∈ V[t0,t f ] and, for a. e. t ∈ [t0, t f ], the set

⋃
v∈V[t0 ,t f ]

U v(t) (7.9)

is closed.

In particular, under these assumptions, the integral in (7.4) is well-defined in the
Lebesgue–Bochner sense and from the theory of abstract Cauchy problems [22], we
obtain a solution y in C([0, t f ]; Y ) for all y0 ∈ Y , u ∈ U[t0,t f ] and v ∈ V[t0,t f ].

The main result below is based on rewriting the mixed-integer optimal control
problem as an operator differential inclusion. We will recall the essential aspects
from the theory of operator differential inclusions from [6, 7] and apply these to
obtain a characterization of the optimal value for the original problem by means of
a convexified problem.

Consider a set valuedmapG(t, y) : [t0, t f ] × Y ⇒ Y and the operator differential
inclusion

ẏ(t) ∈ Ay(t) + G(t, y(t)) a.e. in [t0, t f ], y(t0) = y0 ∈ Y. (7.10)

We define a solution of (7.10) as in [7].
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Definition 7.2 A function y ∈ C([t0, t f ]; Y ) is called a mild trajectory of (7.10)
if there exists a Bochner integrable selection g ∈ L1(t0, t f ; Y ) of the map t �→
G(t, y(t)) and

y(t) = T (t − t0)y(t0) +
∫ t

t0

T (t − s)g(s) ds, t ∈ [t0, t f ], y(t0) = y0. (7.11)

We recall that a set-valued map H : Y ⇒ Y is called L-Lipschitz on K ⊂ Y if for
all y ∈ K , H(y) �= ∅, and

H(y) ⊂ H(ỹ) + L‖y − ỹ‖B, y, ỹ ∈ Y, (7.12)

where B denotes the closed unit ball in Y .
We will also need a measurable selection theorem and the direct image theorem

as stated in [6] and proved in [1]. For the convenience of the reader, we restate the
results below.

Lemma 7.1 Consider complete separable metric spaces X and Y , a Carathéodory
map H : [t0, t f ] × X → Y and a measurable set-valued map W : [t0, t f ] ⇒ X with
closed non-empty images. Then for every measurable map h : [t0, t f ] → Y satisfying

h(t) ∈ H(t, W (t)) a.e. in [t0, t f ] (7.13)

there exists a measurable selection w(t) ∈ W (t) s. t.

h(t) = H(t, w(t)) for a.e. t ∈ [t0, t f ]. (7.14)

Lemma 7.2 Let X be a complete separable metric space and U : [t0, t f ] ⇒ X be a
measurable set-valued map with closed images. Consider a Carathéodory set-valued
map G : [t0, t f ] × X to a complete separable metric space Y . Then, the map

t ⇒ G(t, U (t)) (7.15)

is measurable on [t0, t f ].
For y ∈ Y , we now consider the set-valued map

t �→ F(t, y) = { f (t, y, ū, v(t)) : ū ∈ U v(t), v ∈ V[t0,t f ]}, t ∈ [t0, t f ] a.e.
(7.16)

Note that the images of F are unions of infinitely many sets and are thus, in general,
not closed. Still, using the above theory, one can obtain an equivalent representation
of S[t0,t f ].

Theorem 7.1 We have the representation
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S[t0,t f ] =
{

y ∈ C(0, t f ; Y ) :

ẏ(t) ∈ Ay(t) + F(t, y(t)), t ∈ [t0, t f ] a.e., y(0) = y0

}
.

(7.17)

Proof Suppose that y ∈ S[t0,t f ] according to Definition 7.1. Then, the function
g(t) = f (t, y(t), u(t), v(t)) is integrable and a selection of F(t, y(t)). Further, (7.4)
and (7.11) coincide for this choice. Hence, y is a solution of the differential inclusion

ẏ(t) ∈ Ay(t) + F(t, y(t)), t ∈ [t0, t f ] a.e., y(0) = y0 (7.18)

according to Definition 7.2.
Now we show the converse. Let y ∈ C(0, t f ; Y ) be a solution of (7.18). Let X =

U × V and define H : [t0, t f ] × X → Y by H(t, (u, v)) = f (t, y(t), u, v). Then,
by assumption (i)–(iii), H is measurable in t (by Lemma 7.2) and continuous in
(u, v). Moreover, with defining W : [t0, t f ] ⇒ U × V by

W (t) =
⋃

v∈V[t0 ,t f ]

(U v(t), {v(t)}), t ∈ [t0, t f ] a.e. (7.19)

we have g(t) ∈ F(t, y(t)) = H(t, W (t))with W being measurable with closed non-
empty images due to assumption (v) and finiteness of V . Lemma 7.1 then yields
the existence of a measurable selection [u, v](t) ∈ W (t), i. e., controls u ∈ U[t0,t f ]
and v ∈ V[t0,t f ] such that u(t) ∈ U v(t) and g(t) = f (t, y(t), u(t), v(t)) for a. e. t ∈
[t0, t f ]. Again, (7.4) and (7.11) coincide for this g. Hence, y ∈ S[t0,t f ] according to
Definition 7.1.

Based on a generalization of the Filippov–Ważewski Theorem, one proves the
following relaxation theorem [6].

Lemma 7.3 The mild solutions inS[t0,t f ] are dense in the solution setS co
[t0,t f ] defined

as the set of all mild trajectories of the relaxed inclusion

ẏ ∈ Ay(t) + co F(t, y(t)),

y(0) = y0(λ),
(7.20)

where co denotes the closed convex hull and density is to be understood in the metric
of uniform convergence.

The density in Lemma 7.3 means that for every trajectory y of (7.20) and every
δ > 0, there exists a solution y′ of (7.1) such that ‖y − y′‖C([0,t f ];Y ) ≤ δ.

Moreover, we recall the following argument.

Lemma 7.4 Let Y be a metric space, f : Y → R be a continuous function, Ψ ⊆ Y
an arbitrary set, � be a dense subset of Ψ (in the metric of Y ). Then
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inf{ f (y) : y ∈ Ψ } = inf{ f (y) : y ∈ �}. (7.21)

Proof Let a = inf{ f (x) : x ∈ Ψ }. Then a ≤ inf{ f (y) : y ∈ �}, because � ⊂ Ψ .
Suppose that inf{ f (x) : x ∈ �} > a. Then, the sets f −1(B 1

n
(a)) are open in Ψ

(because f is continuous on X and thus on Ψ ) and non-empty in Ψ (because a
is infimum of f on Ψ ). By density of � in Ψ , we find yn ∈ f −1(B 1

n
(a)) ∩ � such

that a ≤ f (yn) ≤ a + 1
n . Thus limn→∞ f (yn) = a, which contradicts inf{ f (x) : x ∈

�} > a.

Lemmas 7.3 and 7.4 imply the following main result concerning a very useful
characterization of the optimal value in mixed-integer optimal control.

Corollary 7.1 The optimal value defined in (7.6) satisfies

ν = inf{ϕ(y(t f )) : y ∈ S co
[t0,t f ]}, (7.22)

where S co
[t0,t f ] denotes the set of all mild trajectories of the relaxed problem (7.20).

Remark 7.1 The representation (7.22) can be used to simplify computations of opti-
mal solutions. For example, in the case that control restrictions are imposed only on
the continuous control, i. e., U v being independent of v ∈ V , integer optimal con-
trols can be obtained numerically by sum-up rounding strategies [27, 28] applied to
multiplier representations of the convexified right-hand side [12, 13]. Alternatively,
gradient descent methods can be applied to parameterizations of integer controls
with switching times and mode sequences [25] or variable time transformations of
the dynamical system [8].

7.4 Application to Gas Network Optimization

In this section, we apply the results from the previous section to gas network oper-
ation. To this end, we introduce the relevant modeling aspects, provide an abstract
problem formulation based on semigroup theory and consider a numerical example.

7.4.1 Networks with Pipes, Valves, and Compressors

We consider a network of pipes modeled by a metric graph G = (V, E) with nodes
V = (v1, . . . , vm) and edges E = (e1, . . . , en) ⊆ V × V for some m, n ∈ N. For
each edge e = (v1, v2) ∈ E , we call v1 the left node and v2 the right node of e. We
exclude self-loops, i.e., we require that v1 �= v2 for any e = (v1, v2) ∈ E . Further,
for any v ∈ V , we define
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the set of ingoing edges by δ+v = {(v1, v2) ∈ E | v2 = v},
the set of outgoing edges by δ−v = {(v1, v2) ∈ E | v1 = v},
the set of incident edges by δv = δ−v ∪ δ+v.

The number |δv| then is called the degree of node v ∈ V .
With each edge e j ∈ E of such a network, we associate a pipe with length L j > 0

parameterized by x ∈ [0, L j ]. We consider the motion of a compressible nonviscous
gas in the pipe associated with e j ∈ E being governed by the following system of
partial differential equations

∂tρ
j + ∂x q j = 0,

∂t q
j + (c j )2∂xρ

j = −θ j q j |q j |
ρ j

− g(h j )′ρ j ,
(7.23)

where ρ j denotes the density in kgm−3 and q j the flux q j = ρ j v j with v j the velocity

inms−1. Thismodel assumes a constant speed of sound c j =
√

RsT
j
0 Z(P j , T j

0 ) for a

constant gas compressibility factor Z(P j , T j
0 ) and a constant temperature T j

0 with Rs

being the specific gas constant.Moreover, in thismodel g j ≈ 9.81 is the gravitational
constant and (h j )′ the slope of the pipe, θ j is a friction factor with θ j = λ j

2D j , where
λ j is coefficient for the roughness of the pipe, and D j is the diameter of the pipe.
Finally, in this model the gas pressure P j in kgm−1 is given by P j = (c j )2ρ j .

These equations are simplifications of the one-dimensional isothermal Euler equa-
tions [2, 20, 21, 30] used for description of the dynamics of natural gas in sub-
sonic regimes with typical values such as c j ≈ 340ms−1 and rather small velocities
|v| ≤ 10ms−1 [14].

In order to simplify technical considerations, we assume that the density (and
hence the pressure) and the flow remain within bounds ρ ∈ [ρ, ρ̄] and q ∈ [q, q̄]
with ρ > 0. Such bounds are typically required in pipeline operations and may even
also be considered explicitly in the optimization [5, 29]. Moreover, we note that
this semilinear pipe model exhibits two simple characteristics speeds λ1 = −c and
λ2 = c for each edge e j ∈ E . We set

z j =
(

ρ j

q j

)
, A j = −

[
0 1
c2j 0

]
, f j (z) =

(
0,−θ j min{q j |q j |, q̄}

max{ρ j , ρ}

)�

for each j ∈ {1, . . . , n}, where ρ̄ > 0 and q̄ > 0 are suitable truncation parameters
to simplify theoretical considerations.

With this, we can summarize the pipe model as

∂t z
j = A∂x z j + f j (z j ), j = 1, . . . , n.
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Furthermore, we impose coupling conditions for the gas density and flow at the
boundary of pipes corresponding to edges being incident to that node. To this end,
we define for v ∈ V and e j ∈ δv

x(v, e j ) =
{
0, if e j ∈ δ−v,

1, if e j ∈ δ+v.

For each node v ∈ V , we then impose a transmission condition for the density and
a balance equation for the fluxes at the node. The transmission condition states that
the density variables ρ j weighted by given factors α ∈ (0,∞)m×2 coincide for all
incident edges e ∈ δv and can be expressed as

αk
x(v,ek )

ρk(t, Lk x(v, ek)) = αl
x(v,el )

ρl(t, Ll x(v, el)), ∀ ek, el ∈ δv, t ∈ [0, T ].

The nodal balance equation for a given outflow function qv : [0, T ] → R is similar
to a classical Kirchhoff condition for the fluxes q j and can be written as

∑
e j ∈δ+v

q j (t, L j ) −
∑

e j ∈δ−v

q j (t, 0) = qv(t), t ∈ [0, T ].

The above setting is general enough to model typical components of gas networks
such as junctions, entires, exists, compressors, and valves. Junctions can be modeled
as nodes v such that qv ≡ 0 and αk

x(v,ek )
= 1 for all ek ∈ δv. Entires and exits can be

modeled as nodes v such that αk
x(v,ek )

= 1 for all ek ∈ δv, but qv �≡ 0. We refer to v
as an entry node, if qv < 0, or an exit node, if qv > 0. Compressors can be modeled
as nodes v with qv ≡ 0 and |δ+v| = |δ−v| = 1. A description established via the
characteristic diagram based on measured specific changes in adiabatic enthalpy Had

of the compression process yields the model

Had = Z̄ T0Rs
κ

κ − 1

⎛
⎝

(
ρl(0, t)

ρk(Lk, t)

) κ−1
κ − 1

⎞
⎠ , ek ∈ δ+v, el ∈ δ−v, t ∈ [0, T ],

where κ is a compressor-specific constant, Z̄ is the gas compressibility factor that is
assumed to be constant and Had is within flow dependent and compressor-specific
bounds obtained from the characteristic diagram [19]. In consistency with the pipe
models, we assume that Had is given by a known reference H̄ad. Then we get

ρl(0, t) = ᾱρk(Lk, t), ek ∈ δ+v, el ∈ δ−v, t ∈ [0, T ]

with a compressor-specific factor
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ᾱ =
(
1 + (κ − 1)H̄ad

κ Z̄ T0Rs

) κ
κ−1

. (7.24)

This yields αk
1 = 1 and αl

0 = ᾱ. Finally, valves can be modeled as short pipes. By
relabeling, we may assume that the edges e1, . . . , env model valves for some nv ∈ N

with 0 < L j � 1, j = 1, . . . , nv. For simplicity, wemay also assume that (h j )′ = 0,
for all j = 1, . . . , nv, i.e., valves are horizontal network elements. For some ε > 0,
we consider the valve action

f j (ρ, q, w j ) =
{

f j (ρ, q), if w j = 1 (valve open)
1
ε

f j (ρ, q), if w j = 0 (valve closed).
(7.25)

The valve action (7.25) can also be expressed as

f j (ρ, q, w j ) = w j f j (ρ, q) + (1 − w j )
1

ε
f j (ρ, q), w j ∈ {0, 1}. (7.26)

We then consider for each j ∈ {1, . . . , nv}, the dynamics for z j = (ρ j , q j )� on e j

given by

z j
t (t, x) + A j z j

x (t, x) = f j (z j (t, x), w j ), t ∈ [0, T ], x ∈ [0, L j ],
z j (0, x) = z j

0(x), x ∈ [0, L j ],
(7.27)

and for all j ∈ {nv + 1, . . . , n} the dynamics for z j = (ρ j , q j )� on e j given by

z j
t (t, x) + A j z j

x (t, x) = f j (z j (t, x)), t ∈ [0, T ], x ∈ [0, L j ],
z j (0, x) = z j

0(x), x ∈ [0, L j ].
(7.28)

As the objective for optimization, we consider a sum of costs for all pipes in the
network

J =
n∑

j=1

∫ T

0

∫ L j

0
γ

j
1 (min{ρ j (t, x), ρ̄} − ρ

j
d (t, x))2

+γ
j
2 (min{q j (t, x), q̄} − q j

d (t, x))2 dx dt,

(7.29)

where ρ
j
d and q j

d are some desired states, and γ
j
1 , γ

j
2 ≥ 0 are given constants, j =

1, . . . , n. Of course, other cost functions are possible.

Remark 7.2 The above valvemodel ismeaningful only for ε being sufficiently small,
e.g., choosing ε = (

min j θ j
)2 q̄

ρ
. However, this modeling is mostly of theoretical

interest since too small ε lead to very stiff problems in the numerics. Alternatively,
valves may be modeled as controlled junctions using α ∈ {0, 1}. This then yields
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a mixed-integer boundary control problem for which relaxation result such as the
one obtained in Sect. 7.3 are still open, but for which our numerical experiments in
Sect. 7.4.3 show that they may still hold. For a more detailed discussion of this and
further challenges with respect to model switching, see [10–12, 24].

7.4.2 Abstract Problem Formulation

Wewill set up an abstract formulation of the gas network system and present a result
about the existence and uniqueness of mild solutions. This will allow us to apply the
theory from the previous section.

As the state and control space, we introduce

Y =
⎡
⎣ n⊗

j=1

L2([0, L j ],R2)

⎤
⎦ ⊗ L2([0,∞),Rm), V = {0, 1}nv � {0, . . . , 2nv − 1},

with a corresponding state vector

y = ((z1)�, . . . , (zn)�, qv1 , . . . , qvm )� ∈ Y

and a corresponding control vector

v = (w1, . . . , wnv ) ∈ {0, 1}nv ∈ V .

With y0, we denote the initial state

y0 = ((z10)
�, . . . , (zn

0)
�, qv1

0 , . . . , qvm
0 )�.

Further, we introduce the operators

A =
⎡
⎢⎣

A1

. . .

An

⎤
⎥⎦ ∂

∂x
, B = im

∂

∂x
(7.30)

and the nonlinear mapping f : Y × V → Y defined by

f (y, v) = ( f 1(y1, w1), . . . , f nv (ynv , wnv ), f nv+1(ynv+1), . . . , f n(yn), 0, . . . , 0)�.

(7.31)
Moreover, we define the block diagonal operator diag(A, B) on the domain
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D

([
A 0
0 B

])

=
{

y = (z1, . . . , zn, qv1 , . . . , qvm )� ∈ Y : y is absolutely continuous,

αk
x(v,ek )

zk
1(Lk x(v, ek)) = αl

x(v,el )
zl
1(Ll x(v, el)) ∀ v ∈ V, ek, el ∈ δv,

∑
e j ∈δ+v

z j
2(L j ) −

∑
e j ∈δ−v

z j
2(0) = qv(0) ∀ v ∈ V

}
.

(7.32)

With that, we can write the gas network dynamics with valve switching control
as an abstract mixed-integer control problem

ẏ(t) =
[

A 0
0 B

]
y(t) + f (y(t), v(t)), t ∈ [t0, t f ], (7.33)

and the initial condition y(t0) = y0 with t0 = 0.
For the homogeneous part of (7.33), we have the following well-posedness result

[24].

Theorem 7.2 The operator

(
D

([
A 0
0 B

])
,

[
A 0
0 B

])

is the infinitesimal generator of a strongly continuous semigroup on Y .

We note that the function f (y, v) as defined in (7.31) is bounded and globally
Lipschitz continuous in y for each fixed v ∈ {0, 1}nv . In particular, the assumptions
(i)–(iii) of Sect. 7.3 are satisfied.Moreover, we can define the following running costs

L(t, y) =
n∑

j=1

∫ L j

0
γ

j
1 (min{ρ j (t, x), ρ̄} − ρ

j
d (t, x))2+

γ
j
2 (min{q j (t, x), q̄} − q j

d (t, x))2 dx dt.

(7.34)

The function L is globally Lipschitz continuous. Hence, the assumption (iv) of
Sect. 7.3 is satisfied with ϕ = 0.

Finally, we do not consider constraints on v. Hence, the assumption (v) of Sect. 7.3
is obsolete in this case. Theorem 7.1 yields that the valve switching problem can be
regraded as a differential inclusion ẏ ∈ Ay + F(y) with the set valued map

F(y) = { f (y, v) : v ∈ {0, 1}nv }. (7.35)

An application of Corollary 7.1 yields that optimal value is the same for the relaxed
problem with a convexified function F(y). From (7.26) we can see that the relaxed
mixed-integer optimal control problem is of the form
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Fig. 7.1 A single valve scenario

Table 7.1 Numerical results for a single-valve scenario

�t Relaxed costs Integer costs Relative error

2.000 16.273 19.489 0.197

1.000 16.273 19.287 0.185

0.500 16.273 16.955 0.041

0.250 16.273 16.302 0.001

min J (y) s.t. ẏ = Ay + f (y, ṽ), y(0) = y0, ṽ ∈ [0, 1]nv , (7.36)

that is, a problem that can be assessed with standard methods.

7.4.3 Numerical Example

We consider a scenario with pipes of 10km each which are coupled by a single valve,
cf. Fig. 7.1. We choose c = 340, λ = 0.01 and impose a zero flow condition at the
two boundary nodes and positive initial data. The objective is to close the valve as to
“capture” most of the gas in the pipe on the right, modeled by tracking with ρd = 0
and qd = 0 for the left pipe.

The minimization of (7.29) subject to the convexified problem (7.36) has been
solved with a sequential quadratic programming method using finite differences for
gradients and BFGS Hessian approximations applied to an explicit finite-volume-
scheme for networked problems from [23, 24]. Integer feasibility is then obtained
via sum up rounding [13, 27] using a step-size�t . The numerical results are reported
in Table7.1. They confirm the theoretical result that the optimality gap between the
relaxed and the rounded solution vanishes with �t tending to zero.

7.5 Conclusion

We have shown that PDE mixed-integer optimal control problems can be regarded
as non-convex operator differential inclusions. This includes a rather general form
of constraints on the controls. Convexification yields a relaxation result and a useful
characterization of the value function for such problems.Multiplier representations of
the convexified problem are closely related to reformulations known as partial outer
convexification. Combined, for example,with using sum-up rounding techniques, the
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approach yields a convenient way to obtain near-optimal solutions.We demonstrated
this for the application of optimized operation of gas pipeline networks in nonsta-
tionary situations using valve switching as a control. We illustrated the approach
using a numerical example.

Future research directions concern extensions of sum-up rounding strategies and
similar decomposition techniques in order to treat more general control constraints.
Also, the proper treatment of state constraints remains an important aspect in this
context.
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Chapter 8
Application of Solution of the Quantum
Kinetic Equations for Information
Technology and Renewable Energy
Problem

Mukhayo Rasulova

Abstract In this paper, there is proved possibility application of the quantum kinetic
equations toward the solution of the problems of information technology and renew-
able energy.

Keywords BBGKY hierarchy · General kinetic equation · Delta potential ·
Information technology · Renewable energy

8.1 Introduction

In 1872, for the first time, to describe the evolution of a classical particle, Ludwig
Boltzmann introduced a kinetic equation [1] for the distribution function depending
on the coordinate and momentum of the particles, called the following name. The
other most well-known kinetic equation describing plasma evolution is the Vlasov
equation [2]. In 1902, Gibbs introduced [3] the equation into statistical mechan-
ics to describe the evolution of many interacting particles, which was derived as
early as 1838 by Liouville. In 1946, starting from the Liouville kinetic equation,
a chain of kinetic equations was formulated that relates the Liouville equation [4]
and the Boltzmann equation and the Vlasov equation. This chain was included in
the physical literature as the Bogolyubov–Born–Green–Kirkwood–Yvon chain [5],
since it summarizes the attempts of different authors to generalize the kinetic equa-
tions for a single particle for the case of systems of many interacting particles. In
quantummechanics, particle dynamics is described by the Schrödinger equation [7].
To describe the physical phenomena in semiconductor physics, in solid-state physics,
the Hartley [8] equation and other equations are used. To describe the evolution of
systems of many interacting particles, the Liouville quantum kinetic equation is also
used. Similarly, the classical case for connecting the equations for the one-particle
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case and the equation for the case of many particles, proceeding from the Liouville
quantum equation, have been derived the BBGKY chain for the quantum kinetic
equations [9] for the density matrices. As is known, the solution of the classical
and quantum chain of BBGKY allows to determine the distribution function and the
density matrix, respectively, in the classical and quantum cases. The definition of
these solutions allows using these results to calculate the average values of physical
quantities, characterizing the considered system of particles. In all areas of physics,
the above equations are used to describe the dynamics of the corresponding particle
systems. In this paper, on the basis of the Liouville quantum kinetic equation and
the chain of quantum kinetic equations of BBGKY, we show the possibility of using
them for information technology and for studying renewable energy.

8.2 Application of the Quantum Kinetic Equations
for the Solution of Problems of Information Technology

To this end, we consider the chain of BBGKY quantum kinetic equations in a one-
dimensional space bounded in Λ [9]:

i
∂ρΛ

s (t, x1, . . . , xs; x ′
1, . . . , x

′
s)

∂t
= [HΛ

s , ρΛ
s ](t, x1, . . . , xs; x ′

1, . . . , x
′
s)

+N

V

(
1 − s

N

)
Trxs+1

∑
1≤i≤s

(
φi,s+1(|xi − xs+1|) − φi,s+1(|x ′

i − xs+1|)
)

× ρΛ
s+1(t, x1, . . . , xs, xs+1; x ′

1, . . . , x
′
s, xs+1), (8.1)

with initial condition

ρΛ
s (t, x1, . . . , xs; x ′

1, . . . , x
′
s)|t=0 = ρΛ

s (0, x1, . . . , xs; x ′
1, . . . , x

′
s).

In (8.1) ρ is the density matrix, x is the one-dimensional coordinate of a particle,
t-time, m-mass mass, � = 1-Planck constant, H -Hamiltonian of the system, the
s-number of particles, φi, j (|xi − x j |)-the potential in this chain will be chosen as the
delta function in the form:

δ(|xi − x j |) =
{∞ i f xi=x j ,

0 i f xi �=x j

.

Hamiltonian system has the form:

HΛ
s (x1, . . . , xs) =

∑
1≤i≤s

(
− 1

2m
�xi +uΛ(xi )

)
+

∑
1≤i< j≤s

φi, j (|xi − x j |),

where �xi -laplacian and φi, j (|xi − x j |) = δ(|xi − x j |).
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To determine the solution of the chain (8.1), we introduce [10, 11] the space of
nuclear operators BΛ which is the Banach space of sequences of positively defined
self-adjoint nuclear operators
ρΛ
s (x1, . . . , xs; x ′

1, . . . , x
′
s)

ρΛ = {ρΛ
0 , ρΛ

1 (x1; x ′
1), . . . , ρ

Λ
s (x1, . . . , xs; x ′

1, . . . , x
′
s), . . .},

where ρΛ
0 are complex numbers, ρΛ

s ⊂ BΛ
s ,

ρΛ
s (x1, . . . , xs; x ′

1, . . . , x
′
s) = 0, when s > s0,

s0 bounded number and the norm is

|ρΛ|1 =
∞∑
s=0

|ρΛ
s |1.

and
|ρΛ

s |1 = sup
∑

1≤i≤∞
|(ρΛ

s ψ s
i , ϕ

s
i )|,

where the upper bound is taken over all orthonormal systems of finite, twice dif-
ferentiable functions with compact support {ψ s

i } and {ϕs
i } in Ls

2(Λ), s ≥ 1 and∣∣ρΛ
0

∣∣
1 = ∣∣ρΛ

0

∣∣ . Introducing operator

(
Ω(Λ)ρΛ

)
s
(x1, . . . , xs; x ′

1, . . . , x
′
s) = N

V

(
1 − s

N

)
×

×
∫

Λ

∑
i

ρΛ
s+1(x1, . . . , xs, xs+1; x ′

1, . . . , x
′
s, xs+1)g

1
i (xs+1)g̃

1
i (xs+1)dxs+1,

andusing themethodof semigroups, on the basis of theStone theoremon the specified
space, we define a unique solution of a chain of quantum kinetic equations in the
form

UΛ(t)ρΛ
s (x1, . . . , xs; x ′

1, . . . , x
′
s) =

= (eΩ(Λ)e−i HΛt e−Ω(Λ)ρΛeiH
Λt )s(x1, . . . , xs; x ′

1, . . . , x
′
s), (8.2)

where

ρΛ
s (x1, . . . , xs; x ′

1, . . . , x
′
s) =

∑
i

ψi (x1, . . . , xs)ψ
∗
i (x ′

1, . . . , x
′
s).
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and

ψ(x1, . . . , xs) = 1

s!
∑

σ

(−1)|σ |exp

⎛
⎝i

s∑
j=1

x j kσ j

⎞
⎠ ×

×exp

⎡
⎣ i

2

∑
j>i

θ(kσ j − kσi )

⎤
⎦ ,

in fundamental domain F : x1 < x2 < · · · < xs with eigenvalues
Es = ∑s

i=1 k
2
i solving the equation

ψ |x j=xk+0 = ψ |x j=xk−0 ,

(
∂ψ

∂x j
− ∂ψ

∂xk

)
|x j=xk+0 −

(
∂ψ

∂x j
− ∂ψ

∂xk

)
|x j=xk−0 = 2cψ |x j=xk ,

for all x j = xk, j, k = 1,2,…,N and j �= k [12]. In [11] have been proved possibility
to use formule (8.2) for information technology.

8.3 Application of the Quantum Kinetic Equations for the
Solution of Problems of Renewable Energy

In the section of paper, Jaynes–Cummings Model (JCM) [13] is investigated in
terms of the methods [14–16]. The system under consideration includes N two-level
atoms, interacting with electromagnetic field mode. Hamiltonian of such systems in
notations [14, 15] is given by

Ĥt = Ĥ0 +
N∑
j=1

�ω0 Ŝ
z
j +

N∑
k=1

�ωk b̂
†
k b̂k+

+ eεt
N∑

k, j=1

�gk√
N

(eikx j b̂k Ŝ
−
j (μ) + e−ikx j b̂†k Ŝ

+
j (μ)), (8.3)

where the first term describes the energy of free atom. This is given by

Ĥ(S) = Ĥ0 +
N∑
j=1

�ω0 Ŝ
z
j .

Here Ĥ0 is the kinetic energy of atoms.
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The second term corresponds to free electromagnetic field and is given by

Ĥ(Σ) =
N∑

k=1

�ωk b̂
†
k b̂k,

where b̂k and b̂†k are the operators of the annihilations and creations of photon with
wave vector k. Here (S) and (Σ) denote (atom) and (field), correspondingly.

The last term corresponds to the interaction of atoms with the field and is given
by

Ĥt (S,Σ) = eεt
N∑

k, j=1

�gk√
N

(eikx j b̂k Ŝ
−
j (μ) + e−ikx j b̂†k Ŝ

+
j (μ)),

where gk is the dipole coupling strength, N is the number of atoms, Ŝ−
j (μ) = Ŝ+

j +
μŜ−

j ; ε, μ ∈ R; x j is the radius vector of the j th atom and 0 ≤ t-time. In (8.3) b̂ and

b̂† are photon annihilation and creation operators, respectively, ω0 is the splitting
frequency between the atomic levels, � is Plank’s constant, ω is the frequency of
the field mode, g is the dipole coupling strength, and Ŝ+, Ŝ−, Ŝz are atomic spin
operators satisfying the following commutation relation

[Ŝ±, Ŝz] = ∓Ŝ±, [Ŝ+, Ŝ−] = 2Ŝz,

where Ŝ+ = 1
2 (σ̂x + i σ̂y), Ŝ− = 1

2 (σ̂x − i σ̂y), Ŝz = 1
2 σ̂z; {σ̂x , σ̂y, σ̂z} are Pauli’s

matrices.
By using themethod of elimination of boson variables developed in [13], Liouville

equation for operator f (S) in Heisenberg representation can be converted to the
following form:

Tr(S)

(
f (S)

∂ρt (S)

∂t
+ Ĥ(S) f (S) − f (S)Ĥ(S)

i�
ρt (S)

)
=

=
N∑

k, j=1

g2k
N

∫ t

t0

dτTr(S,Σ)e
−iωk (t−τ)eε(t+τ){Nke

ikx j Ŝ+
j (τ, μ)×

×[ f (St ), e−ikx j Ŝ−
j (t, μ)] + (1 + Nk)[e−ikx j Ŝ−

j (t, μ), f (St )]×

×eikx j Ŝ+
j (τ, μ)}Dt0(S,Σ) +

N∑
k, j=1

g2k
N

∫ t

t0

dτTr(S,Σ)e
iωk (t−τ)eε(t+τ)×
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×{(1 + Nk)e
−ikx j Ŝ−

j (τ, μ)[ f (St ), eikx j Ŝ+
j (t, μ)]+

+Nk[eikx j Ŝ+
j (t, μ), f (St )]e−ikx j Ŝ−

j (τ, μ)}Dt0(S,Σ),

where Nk = e−β�ω(k)

1−e−β�ω(k) , and f (St ) is the dynamic value, ρ(S) is the reduced density
matrix of S system, D(S,Σ) is the statistical operator of (S,Σ) system. In this
paper, we used statistical approach and consider JCM from the point of view of
many particle systems, thereby, we used collective operators and took into account
the inhomogeneous Lorentz broadening and received formule intensity of emittting
(I (t) > 0):

Iemit(t) = �ω0α

4N

(
N + γ

α

)2
sech2

η(t − t0)

2
,

and under the condition of 〈Ŝz(t)〉< − N
2 and for t t0, intensity of absorption

(I (t)< 0) rate has the form:

Iabs(t) = −�g2ω0α

4N

(
N + γ

α

)2
cosech2

η(t − t0)

2
.

These latter formulas can be used to select efficient materials for converters of
solar energy into electricity.
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Chapter 9
Inverse Problems Involving PDEs with
Applications to Imaging

Taufiquar Khan

Abstract In this chapter, we introduce the general idea of inverse problems par-
ticularly with applications to imaging. We use two well-known imaging modal-
ities namely electrical impedance and diffuse optical tomography to introduce
and describe inverse problems involving PDEs. We also discuss the mathemati-
cal difficulties and challenges for image reconstruction in practice. We describe
both deterministic and statistical regularization techniques including Gauss–Newton
method, Bayesian inversion, and sparsity approaches to provide a broad exposure to
the field.

Keywords Inverse problem involving PDEs · Ill-posed inverse problems in
imaging · Electrical impedance tomography · Diffuse optical tomography

9.1 Introduction

The field of inverse problem is a fairly mature area of research and was initially
motivated by industrial problems [1]. The growth of this research area has been
tremendous in the last two decades. It is predicted that the use of inverse problems
in applications in developing countries will grow due to significant demand from the
industrial sector. Therefore, inverse problems relevant to developing countries should
be getting a lot more attention. For example, the application of inverse problems in
biomedical imaging is relevant in developing countries. Breast cancer is the most
common cancer after skin-related cancers in the US. In 2012, 232,714 women in the
US were diagnosed with breast cancer, of which 43,909 women died from breast
cancer whereas 144,937 women in India were diagnosed with breast cancer during
2012, of which 70,218women died from breast cancer with a significantly higher rate
of death in India than the US. This is partly due to the failure to detect breast cancer
early. X-ray mammography is still the predominant method for detection. However,
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X-rays has drawbacks in terms of harmful radiation exposure and high false-positive
rate in younger women. On the other hand, Diffuse Optical Tomography (DOT)
has potential to be a cheaper alternative particularly useful in developing countries.
However, the mathematics and computational challenges of this highly nonlinear ill-
posed inverse problem is still making it not possible to use in clinical applications.

Let us describe the difference between a forward and an inverse problem. A for-
ward problem is given by a process where given/known model parameters q we need
to predict the solution or the output/data u(q). For example, q could be parameters
involving a partial differential equation (PDE) and u would be the solution of the
PDE. Forward problems involving PDEs have been around hundreds of years where
mathematicians and scientists are looking for appropriate solutions given for known
parameters q. Many practical applications in fields such as biology, medicine, ecol-
ogy, geophysics, flexible structures, aswell as industry including biomedical imaging
involve distributed parameter systems, i.e., partial differential equations (PDEs) [1]
where the solution u is measured but the model parameters q are unknown. In order
to validate models and/or control theoretical issues for these systems, it is often
necessary to determine these model parameters q, such as coefficients, boundary
terms, initial conditions, and control inputs, given a source or forcing function f
and observations of the system z for which a quantitative model is sought. In gen-
eral the inverse parameter estimation problem requires minimizing an error or a cost
functional J (q; z, f ). In most cases a regularization procedure is also required to
generate a well-posed minimization problem (existence, uniqueness, and stability of
the inverse problem with respect to data). If an inverse problem suffers from exis-
tence, uniqueness, or stability, it is referred to as an ill-posed problem. Therefore, a
typical reformulation of an ill-posed inverse parameter estimation problem requires
optimizing J (q; z, f ) + ψ(q) where ψ is a regularization functional. Therefore, for
ill-posed inverse problems, one must investigating several mathematical issues: (i)
the choice of appropriate error or cost functional J ; (ii) the algorithm to find the
parameter q in the appropriate abstract function space given an initial parameter
guess q0; (iii) the selection of the best regularization operator ψ for inverse stability.

Here is an outline of the chapter. In Sect. 9.2, we describe Electrical Impedance
Tomography (EIT) as an example of an ill-posed inverse problem involving PDEs,
and in Sect. 9.3, we describe Diffuse Optical Tomography (DOT) as another example
of an ill-posed inverse problem. In Sect. 9.4, we provide details of computational
challenges including regularization. In Sect. 9.5, we conclude with a summary of
future trends in solving ill-posed inverse problems.

9.2 Electrical Impedance Tomography

The Electrical Impedance Tomography (EIT) problem involves measuring electrical
voltages on the smooth boundary ∂Ω to determine the spatially varying electrical
conductivity q within the bounded regionΩ ⊆ Rd(d = 2, 3).We assume q is strictly
positive, isotropic and bounded conductivity with no current sources inside Ω . The
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EIT forward problem is typically given by the following elliptic partial differential
equation,

− div (q∇u) = 0 in Ω, (9.1)

where u ∈ H 1(Ω) is the electric potential and q is known.
In an EIT experiment, an electrical current (Neumann data) f on ∂Ω is applied

and then the resulting electrical potential (Dirichlet data) g on ∂Ω is measured. The
data collected then provides information and is used to approximate q from a set
of EIT experiments using different input currents [2–4]. EIT can be applied to the
monitoring of oil and gas mixtures in oil pipelines [6], noninvasive medical imaging
[7, 8].

9.2.1 Analytical Setting for the EIT Model

We define the following Neumann and Dirichlet boundary value problems

− div (q∇u) = 0 in Ω, (9.2)

q
∂u

∂n
= f on ∂Ω,

and

− div (q∇u) = 0 in Ω, (9.3)

u = g on ∂Ω.

Let the conductivity q ∈ Q, an appropriate metric space. q is assumed to be bounded
below and above, i.e. 0 < c1 ≤ q ≤ c2 < ∞. In addition, denote byΓDu theDirichlet
trace operator, i.e., the restriction of u to the boundary

ΓD : X → Z

u �→ ΓDu.

As usual in EIT, we restore uniqueness of the solution u of the Neumann problem
(9.2) by requiring that the Dirichlet trace ΓDu satisfies

∫
∂Ω

ΓDu(s)ds = 0. (9.4)

Note that to ensure the solvability of the Neumann problem (9.2) the current f must
satisfy the integrability condition, which, in the absence of a source term, reads∫
∂Ω

f (s)ds = 0. The associated linear forward operator of the Neumann problem,
which maps an input current f to the solution u, is denoted by
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Fq
N : W → X (9.5)

f �→ u solves (9.2). (9.6)

The linear operator Fq
D for the Dirichlet problem (9.3) can be defined analogously.

The NtD map can be written as ΓD F
q
N . The weak formulation of the Neumann

problem (9.2) becomes

∫
Ω

q∇Fq
N ( f ) · ∇vdx =

∫
∂Ω

f ΓDvds (9.7)

for a suitable set of test functions v. The integral on the boundary should beunderstood
in the sense of duality pairing, i.e., f ∈ H−1/2(∂Ω) and ΓDv ∈ H 1/2(∂Ω) yield∫
∂Ω

f ΓDvds = 〈 f, ΓD v〉H−1/2×H 1/2 .
There are several natural choices for the spaces X , Y and W . To this end, we

introduce

X = H̃ 1(Ω) =
{
u ∈ L2(Ω) |

∫
Ω

q(x)|∇u(x)|2dx < ∞,

∫
∂Ω

ΓDu(s)ds = 0

}
.

(9.8)
Because of Eq. (9.4), the following bilinear form defines a scalar product on this
space

〈u, v〉H̃ 1 =
∫

Ω

q∇u · ∇vdx . (9.9)

We use the Dirichlet forward operator Fq
D as an extension operator and define the

following space of functions on the boundary ∂Ω

Z = H̃1/2(∂Ω) =
{
g ∈ L2(∂Ω) |

∫
Ω
q(x)|∇Fq

D(g)(x)|2dx < ∞,

∫
∂Ω

g(s)ds = 0

}

(9.10)
together with its scalar product

〈g, ϕ〉H̃ 1/2 =
∫

Ω

q(x)∇Fq
D(g)(x) · ∇Fq

D(ϕ)(x)dx . (9.11)

The Dirichlet-to-Neumann (DtN) operator q ∂
∂n F

q
D is well defined on H̃ 1/2(∂Ω), and

we introduce

W = H̃−1/2(∂Ω) =
{
f | f = q

∂

∂n
Fq
D(g), g ∈ H̃ 1/2(∂Ω)

}
(9.12)

together with its scalar product

〈 f, ψ〉H̃−1/2 =
∫

Ω

q∇Fq
N (g) · ∇Fq

N (ψ)dx . (9.13)
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We observe that f ∈ H̃−1/2(∂Ω) is the Neumann trace for u = Fq
D(g). This implies

−div(q∇u) = 0 and the integrability condition for Neumann problems yields

∫
∂Ω

f ds = 0 and H̃−1/2(∂Ω) =
{
f ∈ H−1/2(∂Ω)|

∫
∂Ω

f ds = 0

}
. (9.14)

Furthermore, the natural choice for a metric space Q is as follows:

Q = {
q ∈ L∞(Ω)|0 < c1 ≤ q ≤ c2 < ∞}

. (9.15)

9.2.2 Inverse Problem in EIT

The forward problem uses knowledge of conductivity parameter q to find the bound-
ary data associated with a given source. The inverse problem instead uses knowledge
of the source and boundary data and find the conductivity interior to the object. The
goal is to estimate the conductivity distribution q from all pairs of current and volt-
age measurements. The identification of the parameter q can be formulated as the
following minimization problem for the cost functional

J (q) = ||F (q) − gδ||2L2(∂Ω) (9.16)

where gδ approximate the exact data g = F (q) with the accuracy δ, i.e.,

||g − gδ|| < δ (9.17)

However, because of the ill-posedness of the problem, regularization is needed and
one of the well-known regularization is Tikhonov’s regularization mainly,

Jα(q) = ||F (q) − gδ||2L2(∂Ω) + α||q − q∗||2L2(Ω) (9.18)

where λ is the regularization parameter and q∗ is the prior or background parameter.
There are several other regularization approaches (see Sect. 9.4), for example for

a particular EIT application total variation (TV) regularization functional may be the
most appropriate,

Jα(q) = ‖F (q) − gδ‖2L2(∂Ω) + α‖∇q‖L1(Ω) (9.19)

where α is a TV regularization parameter. The regularization parameter α is typically
determined on a trial and error basis.
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Why is the Inverse Problem Ill-Posed?

The inverse problem here is ill-posed because the EIT model is an elliptic PDE and
elliptic forward operator is a highly smooth operator which means the information
about the parameter q is diffused as it travels to the boundary i.e., the boundary
measurements don’t have enough information about an inhomogeneity located far
away from the boundary. In fact, the information from the data at the boundary
about the inhomogeneity is exponentially decayed away from the boundary [9].
This means that if an inhomogeneity is closer to the boundary then the data on the
boundary provides better information for a reconstruction of the inhomogeneity. If an
inhomogeneity is far away from the boundary, then the data on the boundary does not
provide sufficient information due to the exponential decay [9]. So the very fact that
elliptic equations can handle rough parameters q and still solve the forward problem
for u resulting in a very smooth solution, in turn, making the inverse problem ill-
posed. Therefore, EIT is an extremely challenging inverse problem. We will discuss
more about the nonlinearity and ill-posedness of inverse problems while discussing
DOT below.

Connection to DOT

EIT is a close cousin of DOT because the forward problem for both is elliptic with
DOT being worse in the sense that DOT requires estimating two functions mainly
q = (D, μa) rather one parameter for EIT. However, DOT is an important modality
in practice because DOT can be used as an alternative to X-ray in detecting cancer
in the breast and the brain.

9.3 Diffuse Optical Tomography

In optical imaging, low-energy visible light is used to illuminate biological tissue. The
illumination of the tissue is modeled as a photon transport phenomenon. The process
is described by the most widely applied equation in optical imaging, the radiative
transfer, or transport equation (RTE) [10, 11]. RTE is an integro-differential equation
for photon density and has spatially dependent diffusion and absorption parameters
as coefficients. These coefficients are a priori unknown for a particular tissue sample
of an individual who is being examined for cancer. Therefore, the problem is to infer
from the measurements of the photon density on the boundary the absorption and
diffusion coefficients inside the tissue. This estimate helps determine the location
and size of the abnormality in the tissue.
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9.3.1 Radiative Transport Equation

Let Ω ⊂ Rn , with n = 2, 3 and with boundary ∂Ω , ν(x) denote the outward unit
normal to ∂Ω at the point x ∈ ∂Ω , and Γ± is defined as,

Γ± := {
(x, s, t) ∈ ∂Ω × Sn−1 × [0, T ],±ν(x) · s > 0

}
.

For example, one may assume a geometry as shown in Fig. 9.1. Then the RTE is
given by,

1

c

∂u

∂t
(x, s, t) + s · ∇u(x, s, t) + a(x)u(x, s, t) (9.20)

− b(x)
∫
Sn−1

Θ(s · s ′)u(x, s ′, t)ds ′ = f (x, s, t)

together with the initial and boundary conditions,

u(x, s, 0) = 0 in Ω × Sn−1 (9.21)

u(x, s, t) = 0 on Γ− (9.22)

where u(x, s, t) describes the density function of particles (photons) which travel
in Ω at time t though the point x in the direction s ∈ Sn−1, unit sphere in Rn .
The parameter a is the total cross section or attenuation, and b is the scattering
cross section. The difference μ := a − b has the physical meaning of an absorption
cross section. The parameters a, b and μ are assumed to be real, nonnegative and
bounded functions of the position. The parameters a and b are the sought for tissue
parameters and c is the velocity of light. The function Θ is the scattering phase
function characterizing the intensity of a wave incident in direction s ′ scattered in
the direction s. It is assumed to be a real, nonnegative function and is normalized to
one. The inverse problem is to recover a and b from measurements of some given
functionals of the outgoing density u j |Γ+ at the boundary ∂Γ for ms different set of
source distribution f j , j = 1, . . . ,ms .

9.3.2 DOT Model

Simpler deterministic models can be derived from RTE by expanding the density u
and source f in spherical harmonics and retaining a limited number of terms [12–15].
Due to the prevalence of scattering, the flux is essentially isotropic a small distance
away from the sources; i.e., it depends only linearly on s. Thus, we may describe the
process adequately by the first two moments of u. We get diffusion approximation
P0. Frequency-domain diffusion approximation can easily be obtained by Fourier
transforming the time-domain equation. Furthermore, the diffusion approximation
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to the radiative transfer model can be written in the time independent (dc) case as in
[15],

− ∇ · D∇u + μau = 0. (9.23)

The associated boundary condition is

u + 2D
∂u

∂ν
= f , x ∈ ∂Ω. (9.24)

If we let Ω be the domain under consideration with surface ∂Ω , the weak forward
problem corresponding to Eq. (9.23) is to find u ∈ H 1(Ω) such that for all v ∈
H 1(Ω), the following variational equation is satisfied,

∫
Ω

D∇v · ∇udx +
∫

Ω

vμaudx +
∫

∂Ω

1

2
vuds =

∫
∂Ω

v f ds. (9.25)

Now, we can define the forward problem as: given sources f j in ∂Ω and q in Q,
a vector of model parameters, for example the coefficient of diffusion D and the
coefficient of absorption μa (i.e. q = (D, μa)

T ) that belongs to a parameter set Q,
find the data u on ∂Ω and the inverse problem as: given data z on ∂Ω find q.
We can recast the forward problem in an abstract setting with u in an appropriate
abstract space H , and f represents a source or a forcing distribution. In general,
measurement of u may not be possible, only some observable part z = C u(q) of the
actual state u(q)may bemeasured. In this abstract setting, the objective of the inverse
or parameter estimation problem is to choose a parameter q∗ in Q, that minimizes an
error criterion or cost functional J (u(q),C u(q), q) over all possible q in Q subject
to u(q) satisfying the diffusion approximation. A typical observation operator is,

C f u(q) =
{
−D

∂u

∂ν
(xi ; q, f )

}m

i=1

(9.26)
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Fig. 9.2 Nonlinear mapping
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where xi is in ∂Ω ,m is the number of measurements, and the second equality comes
from the boundary condition (9.24). A typical Tikhonov cost functional Jλ is given
as,

Jλ(q) = 1

2

ms∑
j=1

m∑
i=1

wi j

∣∣∣C f j
i u(q) − z

f j
i

∣∣∣2 + λ‖q − q0‖2 (9.27)

where z
f j
i is themeasured data at the boundary for a given source f j ,wi j is the weight

for i j-th data and λ is the Tikhonov regularization parameter. As shown in Fig. 9.2,
composing u(q) and C u(q) we obtain the parameter-to-output mapping:

T : Q → Z

such that Tq = C u(q), where Z is the space of measurements. This is the nonlinear
mapping of DOT in abstract setting. The map from Q to Z is nonlinear because the
solution of a partial differential equation is a nonlinear function of its coefficients
q = (D, μa).

9.4 Computational Aspect and the Regularization of the
Ill-Posed Problem

There are various approaches for solving this nonlinear ill-posedproblems,weoutline
a few approaches in this section. In general, for complex geometries, the analytic
solution is intractable. Therefore, one requires numerical solutions. Thefinite element
method (FEM) is somewhat more versatile because of its ease in complex geometries
andmodeling boundary effects. TheFEM is a variationalmethod used to approximate
the solution by a family of finite-dimensional basis functions. Then the forward
problem is reduced to one of linear algebra and one computes the approximate
solution using FEM codes. The FEM is derived by projecting the weak form of
(9.25) onto a finite-dimensional function space. For example, the finite-dimensional
function space could be the set of continuous and twice differentiable, piecewise
cubic polynomials and obtain a system of equations.
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More precisely, for example in EIT, we can project the infinite dimensional solu-
tion space X into a finite dimensional subspace XK ⊂ X which means to restrict u
and v above to lie in XK rather than X . Let us assume that there exists a family of
basis functions φm(x) for m = 1, . . . , K for XK . Then let uK = ∑K

m=1 cmφm(x) to
be the approximation to u and we want the weak formulation to be satisfied for the K
test functions φk = v for k = 1, . . . , K . Now plugging this into the weak formulation
we obtain the system of equations for cm :

K∑
m=1

(∫
Ω

q∇φm · ∇φkdx

)
cm =

∫
∂Ω

f ΓDφkds (9.28)

for k = 1, . . . , K . If we denote

Amk =
∫

Ω

q∇φm · ∇φkdx

Fk =
∫

∂Ω

f ΓDφkds

then we can solve for the solution c = (cm)Km=1, which depends nonlinearly on q
using the linear system Ac = F where A is a K × K matrix and F is a vector
of length K . We can also approximate the infinite dimensional parameter space Q
by a finite dimensional subspace QM ⊂ Q. The solution to the finite dimensional
problem is the solution qM in QM that is closest to infinite dimensional optimization
problem for example Jα(q). Therefore, we assume that there exists a family of basis
functions ψk(x) for k = 1, . . . , M for QM . Then set qM = ∑M

k=1 qkψk(x) to be the
approximation to q and we arrive at the finite dimensional nonlinear optimization
problem for qM = (qk)Mk=1:

Ĵα1,α2(qM) =
K̂∑

k=1

|ĝk( j) − ĝδ
k |2 + α1

M∑
i=1

δi |qi − q∗
i |p + α2

Z∑
j=1

d j | � j qM |. (9.29)

where 1 ≤ p ≤ 2 and δi ’s are weights, ĝk( f ) = ΓDu
qM
K ( f )[x̂k] is the trace of the

solution evaluated at K̂ boundary points x̂k , ĝδ
k is the noisy voltage data collected at

the boundary point x̂k , the second term is the approximation to the TV term using a
nearest neighbor approximation where Z is the number of nearest neighbors and d j

is the distance between two neighbors [16–18].
EIT is well-known to suffer from a high degree of nonlinearity and severe ill-

posedness [19, 20]. Therefore, regularization is required to produce reasonable elec-
trical impedance images. Most reconstruction methods are deterministic, such as
the factorization method [22], d-bar method [23], and variational type methods for
least squares fitting. The variational type methods use an iterative type method of
a linearized model or fully nonlinear model such as sparsity constraints [19, 20],
iteratively regularized Gauss Newton method [21]. These analytical methods can



9 Inverse Problems Involving PDEs with Applications to Imaging 191

be effective in determining specific conductivity, but statistical inversion methods
[24] can offer an alternative approach. In [25], Kaipio et al. optimizes the current
patterns based on criteria regarding functionals of the posterior covariance matrix.
The Bayesian approach has also been used to study the errors from model reduction
and partially unknown geometry [26, 27]. The sparsity regularization for statistical
inversion enforces the p prior to the expansion coefficients for a certain basis like
the deterministic approaches for EIT [19, 20, 29].

Since we have a nonlinear forward and inverse operator, any iterative algo-
rithm requires computing the jacobian of the forward operator. Under the regularity
assumptions on the domain and the coefficients, the forward operator can be shown
to be differentiable.

Theorem The operator F which maps q to the solution u(q) ∈ H of the forward
problem with current f is Frèchet differentiable. If η ∈ L∞(Ω) is such that q + η ∈
Q, then the derivative F (q)η = w satisfies the following variational problem

b(w, v) = −
∫

Ω

η∇u∇vdx (9.30)

for all v ∈ H , where u = F (q). Using the theorem above, computing the jacobian
is explained in [20].

9.4.1 Iteratively Regularized Gauss–Newton Method

Suppose λk is a sequence of regularizing parameters ([30]). A general algorithm is
given by [30] using a line search procedure with a variable step size αk such that

0 < αk ≤ 1 (9.31)

yielding the following Iteratively Regularized Gauss–Newton (IRGN) algorithm

qk+1 = qk − αk(F
′(qk)TF ′(qk) + λkW2)

−1{F ′(qk)T (F (qk) − gδ) + λkW2(qk − q∗)}
(9.32)

where W2 is a preconditioning matrix. Due to the inexact nature of gδ , we adopt
a stopping rule presented in [31] to terminate the iterations at the first index K =
K (δ), such that

||F (qK ) − gδ||2 ≤ ρδ < ||F (qk) − gδ||2, 0 ≤ k ≤ K , ρ > 1 (9.33)

The line search parameter αk is chosen appropriately with a search direction using a
backtracking strategy until either the strong or weak Wolfe conditions are satisfied
[32], or a maximum number of backtracking steps have been taken.
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9.4.2 The Statistical Inverse Problem

Inverse problems are typically written in terms of a minimization problem. After
discretization, we can also write the finite-dimensional inverse problem in terms of
the posterior density of the conductivity qM given the measurements gK on ∂Ω . In
other words, if we know the density of the conductivity qM given the measurements
gK wecan obtain the expected value of the conductivity given themeasurements. This
estimate is a reasonable point estimate of the solution of the ill-posed inverse problem.
In the statistical setting, one derives the posterior density of the finite-dimensional
version of the conductivity mainly qM given the finite-dimensional measurement gK̂
on ∂Ω [16–18].

9.4.2.1 The Posterior Density

The density of q∗
M is usually called prior density. This is because it contains all the

information about q∗
M that we believe to be true. Here we assume that

πq∗
M
(qM) ∝ χA(qM) exp[−αR(qM)], (9.34)

where R(·) is a regularization function, α > 0 a constant and χA(qM) a indicator
function with A = [0,∞)n . In the following section we discuss several common
choices for the regularizing function R(·).

9.4.3 Regularization Functions

In this section, we discuss several choices for the regularization function R(·). We
have several choices for the regularization function R(·) which are used in the ana-
lytical and the statistical setting.

9.4.3.1 The � p Regularizations

The idea of the p regularization is to force the difference of the parameters qM and
the background qb

M mainly qM − qb
M to be sparse with respect to some basis. For

example, when using EIT to reconstruct an object mainly made of concrete wewould
choose qb

M to be the typical conductivity of concrete. The p regularization Rp (qM)

is defined as

Rp (qM) :=
n∑

i=1

ci |qM(i) − qb
M(i)|p, (9.35)
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where ci represent weights and 0 < p ≤ 2 a constant [24]. In theory a good choice
for the weights would be large values at the boundary and exponentially decreasing
values towards the center ofΩ . This is because the variance is smaller on the boundary
than in the center [9]. The p regularization enforces sparsity when 0 < p ≤ 1 and
enforces smoothness when p ≥ 2.

9.4.3.2 The Total Variation Regularization

The idea behind the total variation regularization is to obtain smooth images. This
is meaningful in most practical applications. The total variation regularization is
defined as

RTVc(q) :=
∫

Ω

|∇q|dx, (9.36)

where q the continuous version of the parameter of interest qM . The discrete analog
for a two-dimensional body of the total variation regularization RTVc [24] is

RTV (qM) :=
h∑

i=1

li |�i qM |, (9.37)

where li is defined as the length of the edge corresponding to the i th adjacent pixel
and

�i = (0, 0, ..., 0, 1a(1,i) , 0, ..., 0,−1a(2,i) , 0, ..., 0), (9.38)

with a = (a( j,i))
h
i=1, j∈{1,2} is the set containing the numbers of all adjacent pixel

tuples (a(1,i), a(2,i)).

9.4.4 The Markov Chain Monte Carlo Method

In the previous sections, we discussed the posterior density with several meaningful
prior densities (regularizations). Hence to obtain a good estimate for q∗

M based on
the measurements gK̂ . That is, the algorithm seeks to find the Bayesian estimate
E(q∗

M |gK̂ ) = ∫
Rn qMπq∗

M
(qM |gK̂ )dqM .

Given that the posterior density πq∗
M
(qM |gK̂ ) does not have a closed form, there

is no direct method of finding the Bayesian estimate E(q∗
M |gK̂ ). Therefore, one uses

theMarkov ChainMonte CarloMethod (MCMC) to generate a large random sample
{q(i)

M }Ni=1 from the posterior density πq∗
M
(qM |gK̂ ) and then approximate the Bayesian

estimate by its sample mean,

E(q∗
M |gK̂ ) =

∫
Rn

qMπq∗
M
(qM |gK̂ )dqM ≈ 1

N

N∑
i=1

q(i)
M . (9.39)
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Typical algorithms to generate such a random samples from a posterior density are
the Gibbs sampler or the Metropolis-Hastings algorithm [18, 33].

9.5 Conclusion

In this chapter, we have introduced inverse problems involving PDEs for imag-
ing applications. We described the challenges and difficulties of solving an ill-posed
inverse problem.We have provided details of two very well-known examples namely
EIT and DOT. A range of both deterministic and statistical regularization approaches
have been exposed and summarized in this chapter. The computational approaches
have been discussed without any rigorous analysis of the convergence rates. The
future challenges in this area can be overcome by reformulating the inverse ques-
tion either using a regularization approach such as a combination of smoothness
and sparsity or statistical approaches or weakening the inverse question itself. The
progress in the area of inverse problems in imaging is expected to be in the intersec-
tion of computation, statistical, and analytical approaches to understand the input out
put behavior of the inverse operator. One of the latest approaches proposed involve
machine learning and training methods for inverse problems. There are already sig-
nificant interests in that direction in the latest literature however many questions
about machine learning and adaptive training methods are still open and subject to
future research.
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Chapter 10
Critical Growth Elliptic Problems with
Choquard Type Nonlinearity: A Survey

K. Sreenadh and T. Mukherjee

Abstract This article deals with a survey of recent developments and results on
Choquard equations where we focus on the existence and multiplicity of solutions
of the partial differential equations which involves the nonlinearity of the convolu-
tion type. Because of its nature, these equations are categorized under the nonlocal
problems. We give a brief survey on the work already done in this regard following
which we illustrate the problems we have addressed. Seeking the help of variational
methods and asymptotic estimates, we prove our main results.

Keywords Hardy–Littlewood–Sobolev inequality · Critical exponent problem ·
Nonlocal elliptic equations

10.1 A Brief Survey

We devote our first section on briefly glimpsing the results that have already been
proved in the context of existence and multiplicity of solutions of the Choquard
equations. Consider the problem

− Δu + u = (Iα ∗ |u|p)|u|p−2u in R
n (10.1)

where u : Rn → R and Iα : Rn → R is the Riesz potential defined by

Iα(x) = Γ
(
n−α
2

)

Γ
(

α
2

)
π

n
2 2α|x |n−α
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for α ∈ (0, n) and Γ denotes the Gamma function. Equation (10.1) is generally
termed as Choquard equations or the Hartree type equations. It has various physical
significance. In the case n = 3, p = 2 and α = 2, (10.1) finds its origin in a work
by S.I. Pekar describing the quantum mechanics of a polaron at rest [63]. Under the
same assumptions, in 1976 P. Choquard used (10.1) to describe an electron trapped
in its own hole, in a certain approximation to Hartree–Fock theory of one component
plasma [46]. Following standard critical point theory, we expect that solutions of
(10.1) can be viewed as critical points of the energy functional

J (u) = 1

2

∫

Rn

(|∇u|2 + u2) − 1

2p

∫

Rn

(Iα ∗ |u|p)|u|p.

It is clear from the first term that naturally we have to take u ∈ H 1(Rn)which makes
the first and second term well defined. Now the question is whether the third term is
well defined and sufficiently smooth over H 1(Rn)? For this, we recall the following
Hardy–Littlewood–Sobolev inequality.

Theorem 10.1.1 Let t, r > 1 and 0 < μ < n with 1/t + μ/n + 1/r = 2, f ∈ Lt

(Rn) and h ∈ Lr (Rn). Then there exists a constant C(t, n, μ, r), independent of f, h
such that ∫

Rn

∫

Rn

f (x)h(y)

|x − y|μ dxdy ≤ C(t, n, μ, r)‖ f ‖Lt‖h‖Lr . (10.2)

If t = r = 2n
2n−μ

then

C(t, n, μ, r) = C(n, μ) = π
μ

2
Γ
(
n
2 − μ

2

)

Γ
(
n − μ

2

)

{
Γ
(
n
2

)

Γ (n)

}−1+ μ

n

.

The inequality in (10.2) is achieved if and only if f ≡ (constant) h and

h(x) = A(γ 2 + |x − a|2) −(2n−μ)

2

for some A ∈ C, 0 	= γ ∈ R and a ∈ R
n.

For u ∈ H 1(Rn), let f = h = |u|p, then by Theorem 10.1.1,

∫

Rn

∫

Rn

|u(x)|p|u(y)|p
|x − y|n−α

dxdy ≤ C(t, n, μ, p)

(∫

Rn

|u| 2np
n+α

)1+ α
n

.

This is well defined if u ∈ L
2np
n+α (Rn). By the classical Sobolev embedding theorem,

the embedding H 1(Rn) ↪→ Lr (Rn) is continuous when r ∈ [2, 2∗], where 2∗ = 2n
n−2 .

This implies u ∈ L
2np
n+α (Rn) if and only if

2α := n + α

n
≤ p ≤ n + α

n − 2
:= 2∗

α. (10.3)
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The constant 2α is termed as the lower critical exponent and 2∗
α is termed as the

upper critical exponent in the sense of Hardy–Littlewood–Sobolev inequality. Then
we have the following result.

Theorem 10.1.2 If p ∈ (1,∞) satisfies (10.3), then the functional J is well defined
and continuously Fréchet differentiable on the Sobolev space H 1(Rn). Moreover, if
p ≥ 2, then the functional J is twice continuously Fréchet differentiable.

This suggests that it makes sense to define the solutions of (10.1) as critical points
of J . A remarkable feature in Choquard nonlinearity is the appearance of a lower
nonlinear restriction: the lower critical exponent 2α > 1. That is the nonlinearity is
superlinear.

10.1.1 Existence and Multiplicity Results

Definition 10.1.3 A function u ∈ H 1(Rn) is said to be a weak solution of (10.1) if
it satisfies

∫

Rn

(∇u∇v + uv) dx +
∫

Rn

(∫

Rn

|u(y)|p
|x − y|α dy

)
|u|p−2uv dx = 0

for each v ∈ H 1(Rn).

Definition 10.1.4 We define a solution u ∈ H 1(Rn) to be a groundstate of the
Choquard equation (10.1) whenever it is a solution that minimizes the functional
J among all nontrivial solutions.

In [54] V. Moroz and J. Van Schaftingen studied the existence of groundstate solu-
tions and their asymptotic behaviour using concentration-compactness lemma. The
groundstate solution has been identified as infimum of J on the Nehari manifold

N = {u ∈ H 1(Rn) : 〈J ′(u), u〉 = 0}

which is equivalent to prove that the mountain pass minimax level inf
γ∈Γ

sup
[0,1]

J ◦ γ is a

critical value. Here the class of paths Γ is defined by Γ = {γ ∈ C([0, 1]; H 1(Rn)) :
γ (0) = 0 and J (γ (1)) < 0}. Precisely, they proved the following existence result.

Theorem 10.1.5 If 2α < p < 2∗
α then there exists a nonzero weak solution u ∈

W 1,2(Rn) of (10.1) which is a groundstate solution of (10.1).

They have also proved the following Pohozaev identity:

Proposition 10.1.6 Let u ∈ H 2
loc(R

n) ∩ W 1, 2np
n+α (Rn) is a weak solution of the equa-

tion
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−Δu + u = (Iα ∗ |u|p)|u|p−2u in R
n

then
n − 2

2

∫

Rn

|∇u|2 + n

2

∫

Rn

|u|2 = n + α

2p

∫

Rn

(Iα ∗ |u|p)|u|p.

Pohozaev identity for some Choquard type nonlinear equations has also been studied
in [21, 51]. Using Proposition 10.1.6, they proved the following nonexistence result.

Theorem 10.1.7 If p ≤ 2α or p ≥ 2∗
α and u ∈ H 1(Rn) ∩ L

2np
n+α (Rn) such that ∇u ∈

H 1
loc(R

n) ∩ L
2np
n+α

loc (Rn) satisfies (10.1) weakly, then u ≡ 0.

Next important thing to note is the following counterpart of Brezis–Leib lemma:
If the sequence {uk} converges weakly to u in H 1(Rn), then

lim
k→∞

∫

Rn

(Iα ∗ |uk |p)|uk |p − (Iα ∗ |u − uk |p)|u − uk |p =
∫

Rn

(Iα ∗ |u|p)|u|p.
(10.4)

One can find its proof in [52, 54]. Equation (10.4) plays a crucial role in obtaining
the solution where there is a lack of compactness.

Next coming to the positive solutions, in [8] authors studied the existence of
solutions for the following equation

− Δu + V (x)u = (|x |−μ ∗ F(u)) f (u), u > 0 in R
n, u ∈ D1,2(Rn) (10.5)

where F denotes primitive of f , n ≥ 3 andμ ∈ (0, n). Assumptions on the potential
function V and the function f are as follows:

(i) lim
s→0+

s f (s)

sq
< +∞ for q ≥ 2∗ = 2n

n−2

(ii) lim
s→∞

s f (s)

s p
= 0 for some p ∈

(
1, 2(n−μ)

n−2

)
when μ ∈ (1, n+2

2 ),

(iii) There exists θ > 2 such that 1 < θF(s) < 2 f (s)s for all s > 0,
(iv) V is a nonnegative continuous function.

Define the function V : [1,+∞) → [0,∞) as

V (R) = 1

R(q−2)(n−2)
inf|x |≥R

|x |(q−2)(n−2)V (x)

Motivated by the articles [11–13], authors proved the following result in [8].

Theorem 10.1.8 Assume that 0 < μ < n+2
2 and (i)−(iv) hold. If there exists a

constantV0 > 0 such that ifV (R) > V0 for some R > 1, then (10.5)admits a positive
solution.

Taking p = 2 in (10.1), Ghimenti, Moroz and Schaftingen [56] established existence
of a least action nodal solution which appeared as the limit of minimal action nodal
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solutions for (10.1) when p ↘ 2. They proved the following theorem by constructing
a Nehari nodal set and minimizing the corresponding energy functional over this set.

Theorem 10.1.9 If α ∈ ((n − 4)+, n) and p = 2 then (10.1) admits a least action
nodal solution.

In [74], Zhang et al. proved the existence of infinitely many distinct solutions for the
following generalized Choquard equation using the index theory

− Δu + V (x)u =
(∫

Rn

Q(y)F(u(y))

|x − y|μ dy

)
Q(x) f (u(x)) in R

n (10.6)

whereμ ∈ (0, n), V is periodic, f is either odd or even and some additional assump-
tions. Although Theorem 10.1.7 holds, when p = 2α in (10.1), Moroz and Schaftin-
gen in [53] proved some existence and nonexistence of solutions for the problem

− Δu + V (x)u = (Iα ∗ |u|2α )|u|2α−2u in R
n (10.7)

where the potential V ∈ L∞(Rn) and must not be a constant. They proved existence
of a nontrivial solution if

lim inf|x |→∞ (1 − V (x))|x |2 >
n2(n − 2)

4(n + 1)

and gave necessary conditions for existence of solutions of (10.7). Because 2α is the
lower critical exponent in the sense of Theorem 10.1.1, a lack of compactness occurs
in minimization technique. So concentration-compactness lemma and Brezis Lieb
type lemma plays an important role. Equation (10.7) was reconsidered by Cassani,
Schaftingen and Zhang in [17] where they gave necessary and sufficient condition
for the existence of positive ground state solution depending on the potential V . In
[1], authors addressed the topic of existence of ground state solutions, existence and
multiplicity of the semiclassical solutions and their concentration behaviour related
to the following singularly perturbed Choquard equation

−ε2Δu + V (x)u = εμ−3

(∫

R3

Q(y)G(u(y))

|x − y|μ dy

)
Q(x)g(u) in R

3

where ε > 0, μ ∈ (0, 3), V , Q are continuous functions onR3, G denotes primitive
of g which has critical growth. We alo refer [25–27, 29, 30, 67] to readers as some
relevant contribution on this topic.

Very recently, in [36], authors studied some existence and multiplicity results for
the following critical growth Kirchhoff-Choquard equations

−M(‖u‖2)Δu = λu + (Iα ∗ |u|2∗
μ)|u|2∗

μ−2u in Ω, u = 0 on ∂Ω

where M(t) ∼ at + btθ , θ ≥ 1 for some constants a and b.
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Now let us consider the critical dimension case that is n = 2 commonly known
as the Trudinger–Moser case. When n = 2, the critical Sobolev exponent becomes
infinity and the embedding goes as W 1,2(R2) ↪→ Lq(R2) for q ∈ [2,∞) whereas
W 1,2(R2) 	↪→ L∞(R2). The following Trudinger–Moser inequality plays a crucial
role when n = 2.

Theorem 10.1.10 For u ∈ W 1,2
0 (R2),

∫

R2
[exp(α|u|2) − 1] dx < ∞.

Moreover if ‖∇u‖2 ≤ 1, ‖u‖2 ≤ M and α < 4π then there exists a C(α, M) > 0
such that ∫

R2
[exp(α|u|2) − 1] dx < C(M, α).

Motivated by this, the nonlinearity in this case is an appropriate exponential function.
The following singularly perturbed Choquard equation

− ε2Δu + V (x)u = εμ−2
(|x |−μ ∗ F(u)

)
f (u) in R

2 (10.8)

was studied by Alves et al. in [7]. Here μ ∈ (0, 2), V is a continuous potential, ε is a
positive parameter, f has critical exponential growth in the sense of Trudinger–Moser
and F denotes its primitive. Under appropriate growth assumptions on f , authors in
[7] proved existence of a ground state solution to (10.8) when ε = 1 and V is periodic
and also established the existence and concentration of semiclassical ground state
solutions of (10.8) with respect to ε. An existence result for Choquard equation
with exponential nonlinearity in R

2 has also been proved in [6]. The Kirchhoff-
Choquard problems in this case are studied in the work [9]. Very recently, Yang in
[73] established an existence and concentration behaviour of solutions for Choquard
equations in R2 with critical growth.

Now let us consider theChoquard equations in the bounded domains. In particular,
consider the Brezis–Nirenberg type problem for Choquard equation

− Δu = λu +
(∫

Ω

|u|2∗
μ(y)

|x − y|μ dy

)

|u|2∗
μ−2u in Ω, u = 0 on ∂Ω (10.9)

whereΩ is bounded domain inRn with Lipschitz boundary,λ ∈ R and 2∗
μ = 2n − μ

n − 2
which is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality.
These kind of problems aremotivated by the celebrated paper ofBrezis andNirenberg
[15]. Gao and Yang in [32] proved existence of nontrivial solution to (10.9) for n ≥ 4
in case λ is not an eigenvalue of −Δ with Dirichlet boundary condition and for a
suitable range of λ when n = 3. They also proved the nonexistence result when Ω is
a star shaped region with respect to origin. Here, the best constant for the embedding
is defined as
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SH,L := inf

{∫

Rn

|∇u|2 : u ∈ H 1(Rn),

∫

Rn

(|x |−μ ∗ |u|2∗
μ)|u|2∗

μdx = 1

}
.

They showed that the minimizers of SH,L are of the form U (x) =
(

b
b2+|x−a|2

) n−2
2

where a, b are appropriate constants. We remark that U (x) is the Talenti function
which also forms minimizers of S, the best constant in the embedding H 1

0 (Ω) into
L2∗

(Ω). Let us consider the family Uε(x) = ε
2−n
2 U ( x

ε
). Using Brezis–Lieb lemma,

in [32] it was shown that every Palais Smale sequence is bounded and the first critical
level is

c <
n + 2 − μ

4n − 2μ
S

2n−μ

n+2−μ

H,L .

If Qλ := inf
u∈H 1

0 (Ω)\{0}

∫
Ω

|∇u|2−λu
∫
Ω

(|x |−μ∗|u|2∗μ )|u|2∗μdx , then Qλ < SH,L which can be shown using

Uε’s. Then using Mountain pass lemma and Linking theorem depending on the
dimension n, existence of first solution to (10.9) is shown. The nonexistence result
was proved after establishing a Pohozaev type identity. Gao and Yang also studied
Choquard equations with concave-convex power nonlinearities in [31] with Dirichlet
boundary condition.

Very recently, the effect of topology of domain on the solution of Choquard equa-
tions has been studied by some researchers. Ghimenti and Pagliardini [34] proved
that the number of positive solution of the following Choquard equation

− Δu − λu =
(∫

Ω

|u|pε (y)

|x − y|μ dy

)
|u|pε−2u, u > 0 in Ω, u = 0 in R

n \ Ω

(10.10)
depends on the topology of the domain when the exponent pε is very close to the
critical one. Precisely, they proved.

Theorem 10.1.11 There exists ε̄ > 0 such that for every ε ∈ (0, ε̄], Problem (10.10)
has at least catΩ(Ω) low energy solutions. Moreover, if it is not contractible, then
there exists another solution with higher energy.

Here catΩ(Ω) denotes the Lusternik–Schnirelmann category of Ω . They used vari-
ational methods to look for critical points of a suitable functional and proved a
multiplicity result through category methods. This type of result was historically
introduced by Coron for local problems in [10]. Another significant result in this
regard has been recently obtained by authors in [37]. Here they showed existence of
a high energy solution for

−Δu =
(∫

Ω

|u|2∗
μ(y)

|x − y|μ dy

)

|u|2∗
μ−2u in Ω, u = 0 on ∂Ω,

where Ω is an annular type domain with sufficiently small inner hole.
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10.1.2 Radial Symmetry and Regularity of Solutions

Here, we try to give some literature on radially symmetric solutions and regularity
of weak solutions constructed variationally for Choquard equations.

First we come to the question of radially symmetric solutions. Is all the positive
solutions for the equation

Δu − ωu + (|x |−μ ∗ |u|2α )p|u|2α−2u = 0, ω > 0, u ∈ H 1(Rn) (10.11)

are radially symmetric and monotone decreasing about some fixed point? This was
an open problem which was settled by Ma and Zhao [50] in case 2 ≤ p <

2n−μ

n−2 and
some additional assumptions. The radial symmetry and uniqueness of minimizers
corresponding to some Hartree equation has also been investigated in [33]. Recently,
Wang and Yi [70] proved that if u ∈ C2(Rn) ∩ H 1(Rn) is a positive radial solution of
(10.1) with p = 2 andα = 2 then umust be unique. UsingMa and Zhao’s result, they
also concluded that the positive solutions of (10.1) in this case is uniquely determined,
up to translations in the dimension n = 3, 4, 5. Huang et al. in [42] proved that (10.1)
with n = 3 has at least one radially symmetric solutions changing sign exactly k-
times for each k when p ∈ (2.5, 5). Taking V ≡ 1 in (10.6) and f satisfies almost
necessary the upper critical growth conditions in the spirit of Berestycki and Lions,
Li and Tang [45] very recently proved that (10.6) has a ground state solution, which
has the constant sign and is radially symmetric with respect to some point inRn . They
used the Pohozaev manifold and a compactness lemma by Strauss to conclude their
main result. For further results regarding Choquard equations, we suggest readers to
refer [57] which extensively covers the existing literature on the topic. Very recently,
in [37] authors studied the classification problemandproved that all positive solutions
of the following equation are radially symmetric: for p = 2∗

μ

− Δu = (Iμ ∗ |u|p)|u|p−2u in R
n. (10.12)

They observed that the solutions of this problem satisfy the integral system of equa-
tions

u(x) =
∫

Rn

u p−1(y)v(y)

|x − y|N−2
dy, u ≥ 0 in Rn

v(x) =
∫

Rn

u p(y)

|x − y|N−μ
dy, v ≥ 0 in Rn .

(10.13)

By obtaining the regularity estimates and using moving method they proved the
following result:
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Theorem 10.1.12 Every nonnegative solution u ∈ D1,2(RN ) of equation (10.12) is
radially symmetric, monotone decreasing and of the form

u(x) =
(

c1
c2 + |x − x0|2

) N−2
2

for some constants c1, c2 > 0 and some x0 ∈ R
N .

Next we recall some regularity results for the problem (10.1). Fix α ∈ (0, n) and
consider the problem (10.1), then in [54] authors showed the following-

Theorem 10.1.13 If u ∈ H 1(Rn) solves (10.1) weakly for p ∈ (2α, 2∗
α) then u ∈

L1(Rn) ∩ C2(Rn), u ∈ W 2,s(Rn) for every s > 1 and u ∈ C∞(Rn \ u−1{0}).
The classical bootstrap method for subcritical semilinear elliptic problems combined
with estimates for Riesz potentials allows them to prove this result. Precisely, they
first proved that Iα ∗ |u|p ∈ L∞(Rn) and using the Calderón–Zygmund theory they
obtain u ∈ W 2,r (Rn) for every r > 1. Then the proof of Theorem 10.1.13 followed
from application of Morrey–Sobolev embedding and classical Schauder regularity
estimates. In [55], author extended a special case of the regularity result by Brezis
and Kato [14] for the Choquard equations. They proved the following-

Theorem 10.1.14 If H, K ∈ L
2n
α (Rn) ∩ L

2n
α+2 (Rn) and u ∈ H 1(Rn) solves

−Δu + u = (Iα ∗ Hu)K in R
n

then u ∈ L p(Rn) for every p ∈
[
2, 2n2

α(n−2)

)
.

They proved it by establishing a nonlocal counterpart of Lemma 2.1 of [14] in terms
of the Riesz potentials. After this, they showed that the convolution term is a bounded
function that is Iα ∗ |u|p ∈ L∞(Rn). Therefore,

| − Δu + u| ≤ C(|u| α
n + |u| α+2

n−2 )

that is the right hand side now has subcritical growth with respect to the Sobolev
embedding. So by the classical bootstrap method for subcritical local problems in
bounded domains, it is deduced that u ∈ W 2,p

loc (Rn) for every p ≥ 1. Moreover it
holds that if (10.1) admits a positive solution and p is an even integer then u ∈ C∞,
refer [23, 43, 44]. Using appropriate test function and results from [55], Gao and
Yang in [31] established the following regularity and L∞ estimate for problems on
bounded domains-

Lemma 10.1.15 Let u be the solution of the problem

− Δu = g(x, u) in Ω, u ∈ H 1
0 (Ω), (10.14)
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where g is satisfies |g(x, u)| ≤ C(1 + |u|p) +
(∫

Ω

|u|2∗
μ

|x − y|μ dy
)

|u|2∗
μ−2u,

μ ∈ (0, n), 1 < p < 2∗ − 1 and C > 0 then u ∈ L∞(Ω).

As a consequence of this lemma we can obtain u ∈ C2(Ω̄) by adopting the classical
L p regularity theory of elliptic equations. Lopes and Maris in [48] proved radially
symmetrical of minimizers of a generalized Choquard functional

E(u) = 1

2

∫

Rn

|∇u|2dx −
∫

Rn

∫

Rn

F(u(y))(F(u(x))

|x − y|n−2
dxdy +

∫

Rn

H(u(x))dx

under the constraint Q(u) = ∫
Rn G(u(x))dx = constant 	= 0, where n ≥ 3. They

have also proved some regularity results in Lemma [48].

10.1.3 Choquard Equations Involving the p(.)-Laplacian

Firstly, let us consider the quasilinear generalization of the Laplace operator that is
the p-Laplace operator defined as

−Δpu := −∇ · (|∇u|p−2∇u), 1 < p < ∞.

The Choquard equation involving −Δp has been studied in [3–5]. In [4], Alves
and Yang studied concentration behaviour of solutions for the following quasilinear
Choquard equation

− ε pΔpu + V (x)|u|p−2u = εμ−n

(∫

Rn

Q(y)F(u(y))

|x − y|μ
)
Q(x) f (u) in R

n

(10.15)
where 1 < p < n, n ≥ 3, 0 < μ < n, V and Q are two continuous real valued func-
tions onRn , F(s) is the primitive function of f (s) and ε is a positive parameter. Tak-
ing Q ≡ 1, Alves and Yang also studied (10.15) in [3]. Recently, Alves and Tavares
proved a version of Hardy–Littlewood–Sobolev inequality with variable exponent
in [2] in the spirit of variable exponent Lebesgue and Sobolev spaces. Precisely,
for p(x), q(x) ∈ C+(Rn) with p− := min{p(x), 0} > 1, and q− > 1, the following
holds:

Theorem 10.1.16 Let h ∈ L p+
(Rn) ∩ L p−

(Rn), g ∈ Lq+
(Rn) ∩ Lq−

(Rn) and λ :
R

n × R
n → R be a continuous function such that 0 ≤ λ+ ≤ λ− < n and

1

p(x)
+ λ(x, y)

n
+ 1

q(y)
= 2, ∀x, y ∈ R

n .
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Then there exists a constant C independent of h and g such that

∣∣∣
∣

∫

Rn

∫

Rn

h(x)g(y)

|x − y|μ dxdy

∣∣∣
∣ ≤ C(‖h‖p+‖g‖q+ + ‖h‖p−‖g‖q−).

In the spirit of Theorem 10.1.16, authors in [2] proved existence of a solution
u ∈ W 1,p(x)(Rn) to the following quasilinear Choquard equation using variational
methods under the subcritical growth conditions on f (x, u):

− Δp(x)u + V (x)|u|p(x)−2u =
(∫

Ω

F(x, u(x))

|x − y|λ(x,y)
dx

)
f (y, u(y)) in R

n,

(10.16)
where Δp(x) denotes the p(x)-Laplacian defined as −Δp(x)u := −div(|∇u|p(x)−2

∇u), V , p, f are real valued continuous functions and F denotes primitive of f with
respect to the second variable.

10.2 Choquard Equations Involving the Fractional
Laplacian

In this section, we summarize our contributions related to the existence and multi-
plicity results concerning different Choquard equations, in separate subsections. We
employ the variational methods and used some asymptotic estimates to achieve our
goal.While dealingwith critical exponent in the sense ofHardy–Littlewood–Sobolev
inequality, we always consider the upper critical exponent. We denote ‖ · ‖r as the
Lr (Ω) norm.

10.2.1 Brezis–Nirenberg Type Existence Results

The fractional Laplacian operator (−Δ)s on the set of the Schwartz class functions
is defined as

(−Δ)su(x) = −P.V.

∫

Rn

u(x) − u(y)

|x − y|n+2s
dy

(up to a normalizing constant), where P.V. denotes the Cauchy principal value,
s ∈ (0, 1) and n > 2s. The operator (−Δ)s is the infinitesimal generator of Lévy
stable diffusion process. The equations involving this operator arise in the modelling
of anomalous diffusion in plasma, population dynamics, geophysical fluid dynamics,
flames propagation, chemical reactions in liquids and American options in finance.
Motivated by (10.9), in [59] we considered the following doubly nonlocal equation
involving the fractional Laplacian with noncompact nonlinearity
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(−Δ)su =
(∫

Ω

|u|2∗
μ,s

|x − y|μ dy
)

|u|2∗
μ,s−2u + λu in Ω, u = 0 in Rn \ Ω, (10.17)

whereΩ is a boundeddomain inRn withLipschitz boundary,λ is a real parameter, s ∈
(0, 1), 2∗

μ,s = 2n − μ

n − 2s
, 0 < μ < n andn > 2s.Here, 2∗

μ,s appears as theupper critical

exponent in the sense of Hardy–Littlewood–Sobolev inequality when the function is
taken in the fractional Sobolev space Hs(Rn) := {u ∈ L2(Rn) : ‖(−Δ)

s
2 u‖2 < ∞}

which is continuously embedded in L2∗
s (Rn) where 2∗

s = 2n

n − 2s
. For more details

regarding the fractional Sobolev spaces and its embeddings, we refer [62]. Following
are the main results that we have proved.

Theorem 10.2.1 Let n ≥ 4s for s ∈ (0, 1), then (10.17) has a nontrivial weak solu-
tion for every λ > 0 such that λ is not an eigenvalue of (−Δ)s with homogenous
Dirichlet boundary condition in Rn \ Ω .

Theorem 10.2.2 Let s ∈ (0, 1) and 2s < n < 4s, then there exist λ̄ > 0 such that
for any λ > λ̄ different from the eigenvalues of (−Δ)s with homogenous Dirichlet
boundary condition in Rn \ Ω , (10.17) has a nontrivial weak solution.

Theorem 10.2.3 Let λ < 0 and Ω 	≡ R
n be a strictly star shaped bounded domain

(with respect to origin) with C1,1 boundary, then (10.17) cannot have a nonnegative
nontrivial solution.

Consider the space X defined as

X =
{
u| u : Rn → R is measurable, u|Ω ∈ L2(Ω) and

(u(x) − u(y))

|x − y| n
2 +s

∈ L2(Q)

}
,

where Q = R
2n \ (CΩ × CΩ) and CΩ := R

n \ Ω endowed with the norm

‖u‖X = ‖u‖L2(Ω) + [u]X ,

where

[u]X =
(∫

Q

|u(x) − u(y)|2
|x − y|n+2s

dxdy

) 1
2

.

Then we define X0 = {u ∈ X : u = 0 a.e. in R
n \ Ω} and we have the Poincare type

inequality: there exists a constantC > 0 such that ‖u‖L2(Ω) ≤ C[u]X , for all u ∈ X0.
Hence, ‖u‖ = [u]X is a norm on X0. Moreover, X0 is a Hilbert space and C∞

c (Ω) is
dense in X0. For details on these spaces and variational setup we refer to [65].

Definition 10.2.4 We say that u ∈ X0 is a weak solution of (10.17) if
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∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dxdy =
∫

Ω

∫

Ω

|u(x)|2∗
μ,s |u(y)|2∗

μ,s−2u(y)ϕ(y)

|x − y|μ dxdy

+ λ

∫

Ω
uϕ dx, for every ϕ ∈ X0.

The corresponding energy functional associated to the problem (10.17) is given by

Iλ(u) = I (u) := ‖u‖2
2

− 1

22∗
μ,s

∫

Ω

∫

Ω

|u(x)|2∗
μ,s |u(y)|2∗

μ,s

|x − y|μ dxdy − λ

2

∫

Ω

|u|2dx .

Using Hardy–Littlewood–Sobolev inequality, we can show that I ∈ C1(X0,R) and
the critical points of I corresponds to weak solution of (10.17). We define

SH
s := inf

Hs (Rn)\{0}

∫

Rn

∫

Rn

|u(x) − u(y)|2
|x − y|n+2s

dxdy

(∫

Rn

∫

Rn

|u(x)|2∗
μ,s |u(y)|2∗

μ,s

|x − y|μ dxdy

) 1
2∗μ,s

as the best constant which is achieved if and only if u is of the form

C

(
t

t2 + |x − x0|2
) n−2s

2

, for all x ∈ R
n,

for some x0 ∈ R
n , C > 0 and t > 0. Moreover, SH

s C(n, μ)
1

2∗μ,s = Ss, where Ss is
the best constant of the Sobolev imbedding Hs(Rn) into L2(Rn). Using suitable
translation and dilation of the minimizing sequence, we proved.

Lemma 10.2.5 Let

SH
s (Ω) := inf

X0\{0}

∫

Q

|u(x) − u(y)|2
|x − y|n+2s

dxdy

(∫

Ω

∫

Ω

|u(x)|2∗
μ,s |u(y)|2∗

μ,s

|x − y|μ dxdy

) 1
2∗μ,s

.

Then SH
s (Ω) = SH

s and SH
s (Ω) is never achieved except when Ω = R

n.

Since (10.17) has a lack of compactness due to the presence of the critical exponent,
we needed a Brezis–Lieb type lemma which can be proved in the spirit of (10.4) as
follows-
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∫

Rn

∫

Rn

|uk(x)|2
∗
μ,s |uk(y)|2

∗
μ,s

|x − y|μ dxdy −
∫

Rn

∫

Rn

|(uk − u)(x)|2∗
μ,s |(uk − u)(y)|2∗

μ,s

|x − y|μ dxdy

→
∫

Rn

∫

Rn

|u(x)|2∗
μ,s |u(y)|2∗

μ,s

|x − y|μ dxdy as k → ∞

where {uk} is a bounded sequence in L2∗
s (Rn) such that uk → u almost everywhere in

R
n as n → ∞. Next, we prove the following properties concerning the compactness

of Palais–Smale sequences. If {uk} is a Palais–Smale sequence of I at c. Then

(i) {uk} must be bounded in X0 and its weak limit is a weak solution of (10.17),
(ii) {uk} has a convergent subsequence if

c <
n + 2s − μ

2(2n − μ)
(SH

s )
2n−μ

n+2s−μ .

Let us consider the sequence of eigenvalues of the operator (−Δ)s with homogenous
Dirichlet boundary condition in R

n \ Ω , denoted by

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λ j ≤ λ j+1 ≤ . . .

and {e j } j∈N ⊂ L∞(Ω) be the corresponding sequence of eigen functions. We also
consider this sequence of e j ’s to form an orthonormal basis of L2(Ω) and orthogonal
basis of X0. We then dealt with the cases λ ∈ (0, λ1) and λ ∈ (λr , λr+1) separately.
We assume 0 ∈ Ω and fix δ > 0 such that Bδ ⊂ Ω ⊂ Bk̂δ , for some k̂ > 1. Let
η ∈ C∞(Rn) be such that 0 ≤ η ≤ 1 in R

n , η ≡ 1 in Bδ and η ≡ 0 in R
n \ Ω . For

ε > 0, we define the function uε as follows

uε(x) := η(x)Uε(x),

for x ∈ R
n , where Uε(x) = ε− (n−2s)

2

(
u∗ ( x

ε

)

‖u∗‖2∗
s

)

and u∗(x) = α

(

β2 +
∣
∣∣∣

x

S
1
2s
s

∣
∣∣∣

2
)− n−2s

2

with α ∈ R \ {0}, β > 0. We obtained the following important asymptotic estimates

Proposition 10.2.6 The following estimates holds true:

∫

Rn

|uε(x) − uε(y)|2
|x − y|n+2s

dxdy ≤
(
(C(n, μ))

n−2s
2n−μ SH

s

) n
2s + O(εn−2s),

(∫

Ω

∫

Ω

|uε(x)|2∗
μ,s |uε(y)|2∗

μ,s

|x − y|μ dxdy

) n−2s
2n−μ

≤ (C(n, μ))
n(n−2s)
2s(2n−μ) (SH

s )
n−2s
2s + O(εn),
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and

(∫

Ω

∫

Ω

|uε(x)|2∗
μ,s |uε(y)|2∗

μ,s

|x − y|μ dxdy

) n−2s
2n−μ

≥
(
(C(n, μ))

n
2s (SH

s )
2n−μ

2s − O
(
εn
)) n−2s

2n−μ

.

When n ≥ 4s, we proved that the energy functional Iλ satisfies the Mountain pass
geometry if λ ∈ (0, λ1) and Linking Theorem geometry if λ ∈ (λr , λr+1). Also in
both the cases, Proposition 10.2.6 helped us to show that for small enough ε > 0

‖uε‖2 − λ
∫
Ω

|uε|2dx
(∫

Ω

∫
Ω

|uε(x)|2∗μ,s |uε(y)|2∗μ,s

|x−y|μ dxdy
) n−2s

2n−μ

< SH
s . (10.18)

Then the proof of Theorem 10.2.1 follows by applying Mountain Pass Lemma and
Linking Theorem. On the other hand when 2s < n < 4s, (10.18) could be proved
only when λ > λ̄ for some suitable λ̄ > 0, when ε > 0 is sufficiently small. Hence
again applying Mountain Pass Lemma and Linking Theorem in this case too, we
prove Theorem 10.2.2. To prove Theorem 10.2.3, we first prove that if λ < 0 then
any solution u ∈ X0 of (10.17) belongs to L∞(Ω) which implied that when Ω is a
C1,1 domain then u/δs ∈ Cα(Ω̄) for some α > 0 (depending on Ω and s) satisfying
α < min{s, 1 − s}, where δ(x) = dist(x, ∂Ω) for x ∈ Ω . Then using (x .∇u) as a
test function in (10.17), we proved the following Pohozaev type identity-

Proposition 10.2.7 If λ < 0, Ω be bounded C1,1 domain and u ∈ L∞(Ω) solves
(10.17), then

2s − n

2

∫

Ω

u(−Δ)su dx − Γ (1 + s)2

2

∫

∂Ω

( u
δs

)2
(x .ν)dσ

= −
(
2n − μ

22∗
μ,s

∫

Ω

∫

Ω

|u(x)|2∗
μ,s |u(y)|2∗

μ,s

|x − y|μ dxdy + λn

2

∫

Ω

|u|2dx
)

,

where ν denotes the unit outward normal to ∂Ω at x and Γ is the Gamma function.

Using Proposition 10.2.7, Theorem 10.2.3 easily followed.

10.2.2 Magnetic Choquard Equations

Very recently Lü [49] studied the problem

(−i∇ + A(x))2u + (g0 + μg)(x)u = (|x |−α ∗ |u|p)|u|p−2u, u ∈ H 1(Rn,C),

(10.19)
where n ≥ 3, α ∈ (0, n), p ∈ ( 2n−α

n , 2n−α
n−2

)
, A = (A1, A2, . . . , An) : Rn → R

n is a
vector (or magnetic) potential such that A ∈ Ln

loc(R
n,Rn) and A is continuous at 0,
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g0 and g are real valued functions on R
n satisfying some necessary conditions and

μ > 0. He proved the existence of ground state solution when μ ≥ μ∗, for some
μ∗ > 0 and concentration behaviour of solutions asμ → ∞. Salazar in [64] showed
existence of vortex type solutions for the stationary nonlinear magnetic Choquard
equation

(−i∇ + A(x))2u + W (x)u = (|x |−α ∗ |u|p)|u|p−2u in R
n,

where p ∈ [2, 2∗
α

)
and W : Rn → R is bounded electric potential. Under some

assumptions on decay of A and W at infinity, Cingloni, Sechi and Squassina in
[21] showed existence of family of solutions. Schrödinger equations with magnetic
field and Choquard type nonlinearity has also been studied in [22, 23]. But the criti-
cal case in (10.19) was still open which motivated us to study the problem (Pλ,μ) in
[60]:

(Pλ,μ)

{
(−i∇ + A(x))2u + μg(x)u = λu + (|x |−α ∗ |u|2∗

α )|u|2∗
α−2u in Rn

u ∈ H 1(Rn,C)

where n ≥ 4, 2∗
α = 2n−α

n−2 , α ∈ (0, n), μ > 0, λ > 0, A = (A1, A2, . . . , An) : Rn →
R

n is a vector(or magnetic) potential such that A ∈ Ln
loc(R

n,Rn) and A is continuous
at 0 and g(x) satisfies the following assumptions:

(g1) g ∈ C(Rn,R), g ≥ 0 and Ω := interior of g−1(0) is a nonempty bounded set
with smooth boundary and Ω = g−1(0).

(g2) There existsM > 0 such thatL {x ∈ R
n : g(x) ≤ M} < +∞,whereL denotes

the Lebesgue measure in Rn .

Let us define −∇A := (−i∇ + A) and

H 1
A(R

n,C) = {
u ∈ L2(Rn,C) : ∇Au ∈ L2(Rn,Cn)

}
.

Then H 1
A(R

n,C) is a Hilbert space with the inner product

〈u, v〉A = Re

(∫

Rn

(∇Au∇Av + uv) dx

)
,

where Re(w) denotes the real part of w ∈ C and w̄ denotes its complex conjugate.
The associated norm ‖ · ‖A on the space H 1

A(R
n,C) is given by

‖u‖A =
(∫

Rn

(|∇Au|2 + |u|2) dx
) 1

2

.

We call H 1
A(R

n,C) simply H 1
A(R

n). Let H 0,1
A (Ω,C) (denoted by H 0,1

A (Ω) for sim-
plicity) be the Hilbert space defined by the closure of C∞

c (Ω,C) under the scalar
product 〈u, v〉A = Re

(∫
Ω

(∇Au∇Av + uv) dx
)
, whereΩ = interior of g−1(0). Thus
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norm on H 0,1
A (Ω) is given by

‖u‖H 0,1
A (Ω) =

(∫

Ω

(|∇Au|2 + |u|2) dx
) 1

2

.

Let E = {
u ∈ H 1

A(R
n) : ∫

Rn g(x)|u|2 dx < +∞}
be theHilbert space equippedwith

the inner product

〈u, v〉 = Re

(∫

Rn

(∇Au∇Av dx + g(x)uv̄
)
dx

)

and the associated norm ‖u‖2E = ∫
Rn

(|∇Au|2 + g(x)|u|2) dx . Then ‖ · ‖E is clearly
equivalent to each of the norm ‖u‖2μ = ∫

Rn

(|∇Au|2 + μg(x)|u|2) dx for μ > 0. We
have the following well known diamagnetic inequality (for detailed proof, see [47],
Theorem 7.21).

Theorem 10.2.8 If u ∈ H 1
A(R

n), then |u| ∈ H 1(Rn,R) and

|∇|u|(x)| ≤ |∇u(x) + i A(x)u(x)| for a.e. x ∈ R
n .

So for each q ∈ [2, 2∗], there exists constant bq > 0 (independent of μ) such that

|u|q ≤ bq‖u‖μ, for any u ∈ E, (10.20)

where | · |q denotes the norm in Lq(Rn,C) and 2∗ = 2n
n−2 is the Sobolev critical

exponent. Also H 1
A(Ω) ↪→ Lq(Ω,C) is continuous for each 1 ≤ q ≤ 2∗ and com-

pact when 1 ≤ q < 2∗. We denote λ1(Ω) > 0 as the best constant of the embedding
H 0,1

A (Ω) into L2(Ω,C) given by

λ1(Ω) = inf
u∈H 0,1

A (Ω)

{∫

Ω

|∇Au|2 dx :
∫

Ω

|u|2 dx = 1

}

which is also the first eigenvalue of −ΔA := (−i∇ + A)2 on Ω with boundary
condition u = 0. In [60], we consider the problem

(Pλ) (−i∇ + A(x))2u = λu + (|x |−α ∗ |u|2∗
α )|u|2∗

α−2u in Ω, u = 0 on ∂Ω

and proved the following main results:

Theorem 10.2.9 For every λ ∈ (0, λ1(Ω)) there exists a μ(λ) > 0 such that (Pλ,μ)

has a least energy solution uμ for each μ ≥ μ(λ).

Theorem 10.2.10 Let {um} be a sequence of nontrivial solutions of (Pλ,μm ) with

μm → ∞ and Iλ,μm (um) → c < n+2−α
2(2n−α)

S
2n−α
n+2−α

A as m → ∞. Then um concentrates
at a solution of (Pλ).
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We give some definitions below-

Definition 10.2.11 We say that a function u ∈ E is a weak solution of (Pλ,μ) if

Re

(∫

Rn
∇Au∇Av dx +

∫

Rn
(μg(x) − λ)uv dx −

∫

Rn
(|x |−α ∗ |u|2∗

α )|u|2∗
α−2uv dx

)
= 0

for all v ∈ E .

Definition 10.2.12 A solution u of (Pλ,μ) is said to be a least energy solution if the
energy functional

Iλ,μ(u) =
∫

Rn

(
1

2

(|∇Au|2 + (μg(x) − λ)|u|2)− 1

22∗
α

(|x |−α ∗ |u|2∗
α )|u|2∗

α

)
dx

achieves its minimum at u over all the nontrivial solutions of (Pλ,μ).

Definition 10.2.13 A sequence of solutions {uk} of (Pλ,μk ) is said to concentrate at
a solution u of (Pλ) if a subsequence converges strongly to u in H 1

A(R
n) asμk → ∞.

We first proved the following Lemma.

Lemma 10.2.14 Suppose μm ≥ 1 and um ∈ E be such that μm → ∞ as m → ∞
and there exists a K > 0 such that ‖um‖μm < K, for all m ∈ N. Then there exists
a u ∈ H 0,1

A (Ω) such that (upto a subsequence), um ⇀ u weakly in E and um → u
strongly in L2(Rn) as m → ∞.

Then we define an operator Tμ := −ΔA + μg(x) on E given by

(
Tμ(u), v

) = Re

(∫

Rn

(∇Au∇Av + μg(x)uv) dx

)
.

Clearly Tμ is a self adjoint operator and if aμ := inf σ(Tμ), i.e. the infimum of the
spectrum of Tμ, then aμ can be characterized as

0 ≤ aμ = inf{(Tμ(u), u
) : u ∈ E, ‖u‖L2 = 1} = inf{‖u‖2μ : u ∈ E, ‖u‖L2 = 1}.

Then considering a minimizing sequence of aμ, we were able to prove that for each
λ ∈ (0, λ1(Ω)), there exists a μ(λ) > 0 such that aμ ≥ (λ + λ1(Ω))/2 whenever
μ ≥ μ(λ). As a consequence

(
(Tμ − λ)u, u) ≥ βλ‖u‖2μ

for all u ∈ E , μ ≥ μ(λ), where βλ := (λ1(Ω) − λ)/(λ1(Ω) + λ). We fix λ ∈ (0,
λ1(Ω)) and μ ≥ μ(λ). Using standard techniques, we established the following
concerning any Palais Smale sequence {uk} of Iλ,μ-
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(i) {um} must be bounded in E and its weak limit is a solution of (Pλ,μ),
(ii) {um} has a convergent subsequence when c satisfies

c ∈
(

−∞,
n + 2 − α

2(2n − α)
S

2n−α
n+2−α

A

)

where SA is defined as follows

SA = inf
u∈H 1

A(Rn)\{0}

∫

Rn

|∇Au|2 dx
∫

Rn

(|x |−α ∗ |u|2∗
α )|u|2∗

α dx
.

Using asymptotic estimates andusing the familyUε(x) = (n(n − 2))
n−2
4

(
ε

ε2+|x |2
) n−2

4
,

we showed that-

Theorem 10.2.15 If g ≥ 0 and A ∈ Ln
loc(R

n,Rn), then the infimum SA is attained
if and only if curl A ≡ 0.

Our next step was to introduce the Nehari manifold

Nλ,μ = {
u ∈ E \ {0} : 〈I ′

λ,μ(u), u〉 = 0
}

and consider the minimization problem kλ,μ := infu∈Nλ,μ
Iλ,μ(u). Using the family

{Uε}, we showed that

kλ,μ <
n + 2 − α

2(2n − α)
S

2n−α
n+2−α

A .

Then the proof ofTheorem10.2.9 followedbyusing theEkelandVariational Principle
over Nλ,μ. The proof of Theorem 10.2.10 followed from Lemma 10.2.14 and the
Brezis–Lieb type lemma for the Riesz potentials.

Remark 10.1 These results can be generalized to the problems involving fractional
magnetic operators:

(Ps
λ,μ)

{
(−Δ)sAu + μg(x)u = λu + (|x |−α ∗ |u|2∗

α,s )|u|2∗
α,s−2u in R

n,

u ∈ Hs
A(R

n,C)

where n ≥ 4s, s ∈ (0, 1) and α ∈ (0, n). Here 2∗
α,s = 2n−α

n−2s is the critical exponent in
the sense of Hardy–Littlewood–Sobolev inequality. We assume the same conditions
on A and g as before. For u ∈ C∞

c (Ω), the fractional magnetic operator (−Δ)sA,
up to a normalization constant, is defined by

(−Δ)sAu(x) = 2 lim
ε→0+

∫

Rn\Bε(x)

u(x) − ei(x−y)·A( x+y
2 )u(y)

|x − y|n+2s
dy
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for all x ∈ R
n . With proper functional setting, we can prove the existence and con-

centration results for the problem (Ps
λ,μ) employing the same arguments as in the

local magnetic operator case.

10.2.3 Singular Problems Involving Choquard Nonlinearity

The paper by Crandal, Rabinowitz and Tartar [24] is the starting point on the semi-
linear problem with singular nonlinearity. A lot of work has been done related to the
existence and multiplicity results for singular problems, see [39–41]. Using splitting
Nehari manifold technique, authors in [40] studied the existence ofmultiple solutions
of the problem:

− Δu = λu−q + u p, u > 0 in Ω, u = 0 on ∂Ω, (10.21)

whereΩ is smooth bounded domain inRn , n ≥ 1, p = 2∗ − 1,λ > 0 and 0 < q < 1.
In [39], Haitao studied the equation (10.21) for n ≥ 3, 1 < p ≤ 2∗ − 1 and showed
the existence of two positive solutions for maximal interval of the parameter λ using
monotone iterations and mountain pass lemma. But the singular problem involving
Choquard nonlinearity was completely open until we studied the following problem
in [58]

(Pλ) : −Δu = λu−q +
(∫

Ω

|u(y)|2∗
μ

|x − y|μ dy

)

|u|2∗
μ−2u, u > 0 in Ω, u = 0 on ∂Ω,

whereΩ ⊂ R
n , n > 2 be a bounded domain with smooth boundary ∂Ω , λ > 0, 0 <

q < 1, 0 < μ < n and 2∗
μ = 2n−μ

n−2 . The main difficulty in treating (Pλ) is the pres-
ence of singular nonlinearity along with critical exponent in the sense of Hardy–
Littlewood–Sobolev inequality which is nonlocal in nature. The energy functional
no longer remains differentiable due to presence of singular nonlinearity, so usual
minimax theorems are not applicable. Also the critical exponent term being nonlocal
adds on the difficulty to study the Palais–Smale level around a nontrivial critical
point.

Definition 10.2.16 We say that u ∈ H 1
0 (Ω) is a positive weak solution of (Pλ) if

u > 0 in Ω and

∫

Ω

(∇u∇ψ − λu−qψ) dx −
∫

Ω

∫

Ω

|u(x)|2∗
μ |u(y)|2∗

μ−2u(y)ψ(y)

|x − y|μ dxdy = 0

(10.22)
for all ψ ∈ C∞

c (Ω).

We define the functional associated to (Pλ) as I : H 1
0 (Ω) → (−∞,∞] by
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I (u) = 1

2

∫

Ω

|∇u|2 dx − λ

1 − q

∫

Ω

|u|1−qdx − 1

22∗
μ

∫

Ω

∫

Ω

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy,

for u ∈ H 1
0 (Ω). For each 0 < q < 1, we set H+ = {u ∈ H 1

0 (Ω) : u ≥ 0} and

H+,q = {u ∈ H+ : u 	≡ 0, |u|1−q ∈ L1(Ω)} = H+ \ {0}.

For each u ∈ H+,q we define the fiber map φu : R+ → R by φu(t) = Iλ(tu). Then
we proved the following:

Theorem 10.2.17 Assume 0 < q < 1 and let Λ be a constant defined by

Λ = sup
{
λ > 0 : for each u ∈ H+,q\{0}, φu(t) has two critical points in (0,∞)

and sup

{∫

Ω
|∇u|2 dx : u ∈ H+,q , φ′

u(1) = 0, φ′′
u (1) > 0

}
≤ (2∗

μS
2∗
μ

H,L )

1
2∗μ−1

}

.

Then Λ > 0.

Using the variational methods on the Nehari manifold, we proved the following
multiplicity result.

Theorem 10.2.18 For all λ ∈ (0,Λ), (Pλ) has two positive weak solutions uλ and
vλ in C∞(Ω) ∩ L∞(Ω).

We also have that if u is a positive weak solution of (Pλ), then u is a classical
solution in the sense that u ∈ C∞(Ω) ∩ C(Ω̄).We define δ : Ω → [0,∞) by δ(x) =
inf{|x − y| : y ∈ ∂Ω}, for each x ∈ Ω .

Theorem 10.2.19 Let u be a positive weak solution of (Pλ), then there exist
K , L > 0 such that Lδ ≤ u ≤ K δ in Ω .

We define the Nehari manifold

Nλ = {u ∈ H+,q |
〈
I ′(u), u

〉 = 0}

and show that I is coercive and bounded below onNλ. It is easy to see that the points
inNλ are corresponding to critical points of φu at t = 1. So, we dividedNλ in three
sets corresponding to local minima, local maxima and points of inflexion

N +
λ = {t0u ∈ Nλ| t0 > 0, φ′

u(t0) = 0, φ′′
u (t0) > 0},

N −
λ ={t0u ∈ Nλ| t0 > 0, φ′

u(t0) = 0, φ′′
u (t0) < 0}

andN 0
λ = {u ∈ Nλ|φ′

u(1) = 0, φ′′
u (1) = 0}.We aimed at showing that theminimiz-

ers of I overN + andN − forms aweak solution of (Pλ).We briefly describe the key
steps to show this. Using the fibering map analysis, we proved that there exist λ∗ > 0
such that for eachu ∈ H+,q\{0}, there is unique t1 and t2 with the property that t1 < t2,
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t1u ∈ N +
λ and t2u ∈ N −

λ , for all λ ∈ (0, λ∗). This implied Theorem 10.2.17. Also
N 0

λ = {0} for all λ ∈ (0, λ∗). Then it is easy to see that sup{‖u‖ : u ∈ N +
λ } < ∞

and inf{‖v‖ : v ∈ N −
λ } > 0. Suppose u and v are minimizers of I onN +

λ andN −
λ

respectively. Then for each w ∈ H+, we showed u−qw, v−qw ∈ L1(Ω) and

∫

Ω

(∇u∇w − λu−qw) dx −
∫

Ω

∫

Ω

|u(y)|2∗
μ |u(x)|2∗

μ−2u(x)w(x)

|x − y|μ dydx ≥ 0,

(10.23)
∫

Ω

(∇v∇w − λv−qw) dx −
∫

Ω

∫

Ω

|v(y)|2∗
μ |u(x)|2∗

μ−2v(x)w(x)

|x − y|μ dydx ≥ 0.

(10.24)

Particularly, u, v > 0 almost everywhere in Ω . Then the claim followed using the
Gatéaux differentiability of I . Lastly, the proof of Theorem 10.2.18 followed by
proving that I achieves its minimum over the setsN +

λ and N −
λ .

In the regularity section, firstly, we showed that (10.22) holds for all ψ ∈ H 1
0 (Ω)

and each positive weak solution u of (Pλ) belongs to L∞(Ω). Under the assumption
that there exist a ≥ 0, R ≥ 0 and q ≤ s < 1 such that Δδ ≤ Rδ−s in Ωa := {x ∈
Ω, δ(x) ≤ a}, using appropriate test functions, we proved that there exist K > 0
such that u ≤ K δ in Ω . To get the lower bound on u with respect to δ, following
result from [16] plays a crucial role.

Lemma 10.2.20 Let Ω be a bounded domain in Rn with smooth boundary ∂Ω . Let
u ∈ L1

loc(Ω) and assume that for some k ≥ 0, u satisfies, in the sense of distributions

−Δu + ku ≥ 0 in Ω, u ≥ 0 in Ω.

Then either u ≡ 0, or there exists ε > 0 such that u(x) ≥ εδ(x), x ∈ Ω.

Additionally, we also prove that the solution can be more regular in a restricted range
of q.

Lemma 10.2.21 Let q ∈ (0, 1
n ) and let u ∈ H 1

0 (Ω) be a positive weak solution of
(Pλ), then u ∈ C1+α(Ω̄) for some 0 < α < 1.

10.3 System of Equations with Choquard Type
Nonlinearity

In this section, we briefly illustrate some existence and multiplicity results proved
concerning the system of Choquard equations with nonhomogeneous terms. We
consider the nonlocal operator that is the fractional Laplacian and since the Choquard
nonlinearity is also a nonlocal one, such problems are often called ‘doubly nonlocal
problems’. We employ the method of Nehari manifold to achieve our goal.
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10.3.1 Doubly Nonlocal p-Fractional Coupled Elliptic
System

The p-fractional Laplace operator is defined as

(−Δ)spu(x) = 2 lim
ε↘0

∫

|x |>ε

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|n+sp
dy, ∀x ∈ R

n,

which is nonlinear and nonlocal in nature. This definition matches to linear frac-
tional Laplacian operator (−Δ)s , up to a normalizing constant depending on n and
s, when p = 2. The operator (−Δ)sp is degenerate when p > 2 and singular when
1 < p < 2. For details, refer [62]. Our concern lies in the nonhomogenous Choquard
equations and system of equations. Recently, authors in [66, 72] showed multiplicity
of positive solutions for a nonhomogeneous Choquard equation using Nehari man-
ifold. The motivation behind such problems lies in the famous article by Tarantello
[68] where author used the structure of associated Nehari manifold to obtain the
multiplicity of solutions for the following nonhomogeneous Dirichlet problem on
bounded domain Ω

−Δu = |u|2∗−2u + f in Ω, u = 0 on ∂Ω.

System of elliptic equations involving p-fractional Laplacian has been studied in [18,
19] using Nehari manifold techniques. Very recently, Guo et al. [38] studied a non-
local system involving fractional Sobolev critical exponent and fractional Laplacian.
There are not many results on elliptic systems with nonhomogeneous nonlinearities
in the literature but we cite [20, 28, 69] as some very recent works on the study of
fractional elliptic systems.

Motivated by these articles, we consider the following nonhomogenous quasilin-
ear system of equations with perturbations involving p-fractional Laplacian in [61]:

Let p ≥ 2, s ∈ (0, 1), n > sp, μ ∈ (0, n), p
2

(
2 − μ

n

)
< q <

p∗
s
2

(
2 − μ

n

)
,

α, β, γ > 0,

(P)

⎧
⎪⎪⎨

⎪⎪⎩

(−Δ)spu + a1(x)u|u|p−2 = α(|x |−μ ∗ |u|q)|u|q−2u + β(|x |−μ ∗ |v|q)|u|q−2u
+ f1(x) in R

n,

(−Δ)spv + a2(x)v|v|p−2 = γ (|x |−μ ∗ |v|q)|v|q−2v + β(|x |−μ ∗ |u|q)|v|q−2v

+ f2(x) in R
n,

where 0 < ai ∈ C1(Rn,R), i = 1, 2 and f1, f2 : Rn → R are perturbations. Here
p∗
s = np

n−sp is the critical exponent associated with the embedding of the fractional

Sobolev space Ws,p(Rn) into L p∗
s (Rn). Wang et. al in [71] studied the problem (P)

in the local case s = 1 and obtained a partial multiplicity results. We improved their
results and showed the multiplicity results with a weaker assumption (10.25) of f1
and f2 below. For i = 1, 2 we introduce the spaces
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Yi :=
{
u ∈ Ws,p(Rn) :

∫

Rn

ai (x)|u|p dx < +∞
}

then Yi are Banach spaces equipped with the norm

‖u‖p
Yi

=
∫

Rn

∫

Rn

|u(x) − u(y)|p
|x − y|n+sp

dxdy +
∫

Rn

ai (x)|u|pdx .

We define the product space Y = Y1 × Y2 which is a reflexive Banach space with
the norm

‖(u, v)‖p := ‖u‖p
Y1

+ ‖v‖p
Y2

,

for all (u, v) ∈ Y . We assume the following condition on ai , for i = 1, 2

(A) ai ∈ C(Rn), ai > 0 and there exists Mi > 0 such that μ({x ∈ R
n : ai ≤ Mi }) < ∞.

Then under the condition (A) on ai , for i = 1, 2, we get Yi is continuously imbed-
ded into Lr (Rn) for r ∈ [p, p∗

s ]. To obtain our results, we assumed the following
condition on perturbation terms:

∫

Rn

( f1u + f2v) < Cp,q

(
2q + p − 1

4pq

)
‖(u, v)‖ p(2q−1)

2q−p (10.25)

for all (u, v) ∈ Y such that

∫

Rn

(
α(|x |−μ ∗ |u|q)|u|q + 2β(|x |−μ ∗ |u|q)|v|q + γ (|x |−μ ∗ |v|q)|v|q) dx = 1

and

Cp,q =
(

p − 1

2q − 1

) 2q−1
2q−p

(
2q − p

p − 1

)
.

It is easy to see that 2q > p
( 2n−μ

n

)
> p − 1 >

p−1
2p−1 which implies 2q+p−1

4pq < 1. So
(10.25) implies that

∫

Rn

( f1u + f2v) < Cp,q‖(u, v)‖ p(2q−1)
2q−p (10.26)

which we used more frequently rather than our actual assumption (10.25). Now, the
main results goes as follows.

Theorem 10.3.1 Suppose
p

2

(
2n − μ

n

)
< q <

p

2

(
2n − μ

n − sp

)
, μ ∈ (0, n) and (A)

holds true. Let 0 	≡ f1, f2 ∈ L
p

p−1 (Rn) satisfies (10.25) then (P) has at least twoweak
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solutions, in which one forms a local minimum of J on Y . Moreover if f1, f2 ≥ 0
then this solution is a nonnegative weak solution.

If u, φ ∈ Ws,p(Rn), we use the notation 〈u, φ〉 to denote

〈u, φ〉 :=
∫

Rn

∫

Rn

(u(x) − u(y))|u(x) − u(y)|p−2(φ(x) − φ(y))

|x − y|n+sp
dxdy.

Definition 10.3.2 A pair of functions (u, v) ∈ Y is said to be a weak solution to (P)

if

〈u, φ1〉 +
∫

Rn

a1(x)u|u|p−2φ1 dx + 〈v, φ2〉 +
∫

Rn

a2(x)v|v|p−2φ2 dx

− α

∫

Rn

(|x |−μ ∗ |u|q)u|u|q−2φ1 dx − γ

∫

Rn

(|x |−μ ∗ |v|q)v|v|q−2φ2 dx

− β

∫

Rn

(|x |−μ ∗ |v|q)u|u|q−2φ1 dx − β

∫

Rn

(|x |−μ ∗ |u|q)v|v|q−2φ2 dx

−
∫

Rn

( f1φ1 + f2φ2) dx = 0, ∀ (φ1, φ2) ∈ Y.

Thus, we define the energy functional corresponding to (P) as

J (u, v) = 1

p
‖(u, v)‖p − 1

2q

∫

Rn

(
α(|x |−μ ∗ |u|q )|u|q + β(|x |−μ ∗ |u|q )|v|q) dx

− 1

2q

∫

Rn

(
β(|x |−μ ∗ |v|q )|u|q + γ (|x |−μ ∗ |v|q )|v|q) dx −

∫

Rn
( f1u + f2v)dx

= 1

p
‖(u, v)‖p − 1

2q

∫

Rn

(
α(|x |−μ ∗ |u|q )|u|q + 2β(|x |−μ ∗ |u|q )|v|q

+γ (|x |−μ ∗ |v|q )|v|q) dx −
∫

Rn
( f1u + f2v)dx .

Clearly, weak solutions to (P) corresponds to the critical points of J . To find the
critical points of J , we constraint our functional J on the Nehari manifold

N = {(u, v) ∈ Y : (J ′(u, v), (u, v)) = 0},

where

(J ′(u, v), (u, v)) =‖(u, v)‖p −
∫

Rn

(
α(|x |−μ ∗ |u|q)|u|q + 2β(|x |−μ ∗ |u|q)|v|q

+γ (|x |−μ ∗ |v|q)|v|q) dx −
∫

Rn

( f1u + f2v)dx .
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Clearly, every nontrivial weak solution to (P) belongs to N . Denote I (u, v) =
(J ′(u, v), (u, v)) and subdivide the set N into three sets as follows:

N ± = {(u, v) ∈ N : ±(I ′(u, v), (u, v)) > 0},

N 0 = {(u, v) ∈ N : (I ′(u, v), (u, v)) = 0}.

Then N 0 contains the element (0, 0) and N + ∪ N 0 and N − ∪ N 0 are closed
subsets of Y . For (u, v) ∈ Y , we define the fibering map ϕ : (0,∞) → R as ϕ(t) =
J (tu, tv). One can easily check that (tu, tv) ∈ N if and only if ϕ′(t) = 0, for t > 0
and N +,N − and N 0 can also be written as

N ± = {(tu, tv) ∈ N : ϕ′′(t) ≷ 0}, and N 0 = {(tu, tv) ∈ N : ϕ′′(t) = 0}.

We showed that J becomes coercive and bounded from below onN . By analyzing
the fiber maps ϕu,v(t) we proved that if (10.25) holds, then N0 = {(0, 0)} and N −
is a closed set. By Lagrange multiplier method, we showed that minimizers of J over
N + andN − are theweak solutions of (P). So our problem reduced tominimization
problem is given below.

Υ + := inf
(u,v)∈N +

J (u, v), and Υ − := inf
(u,v)∈N −

J (u, v).

Using again the map ϕu,v , we could show that Υ + < 0 whereas Υ − > 0. Our next
task was to consider

Υ := inf
(u,v)∈N

J (u, v)

and show that there exist a constantC1 > 0 such thatΥ ≤ − (2q−p)(2qp−2q−p)
4pq2 C1.Our

next result was crucial one, which concerns another minimization problem.

Lemma 10.3.3 For 0 	= f1, f2 ∈ L
p

p−1 (Rn),

inf
Q

(
Cp,q‖(u, v)‖ p(2q−1)

2q−p −
∫

Rn

( f1u + f2v) dx

)
:= δ

is achieved, where Q = {(u, v) ∈ Y : L(u, v) = 1}. Also if f1, f2 satisfies (10.25),
then δ > 0.

After this, using the Ekeland variational principle we proved the existence of a Palais
Smale sequence for J at the levelsΥ andΥ −. Keeping this altogether, we could prove
that Υ and Υ − are achieved by some functions (u0, v0) and (u1, v1) where (u0, v0)
lies in N + and forms a local minimum of J . The non negativity of (ui , vi ) for
i = 0, 1 was showed using the modulus function (|ui |, |vi |) and their corresponding
fiber maps. Hence we conclude our main result, Theorem 10.3.1.
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10.3.2 Doubly Nonlocal System with Critical Nonlinearity

In this section, we illustrate our results concerning a system of Choquard equation
with Hardy–Littlewood–Sobolev critical nonlinearity which involves the fractional
Laplacian. Precisely, we consider the following problem in [35]

(Pλ,δ)

⎧
⎪⎪⎨

⎪⎪⎩

(−Δ)su = λ|u|q−2u +
(∫

Ω

|v(y)|2∗μ
|x−y|μ dy

)
|u|2∗

μ−2u in Ω

(−Δ)sv = δ|v|q−2v +
(∫

Ω

|u(y)|2∗μ
|x−y|μ dy

)
|v|2∗

μ−2v in Ω

u = v = 0 in R
n \ Ω,

where Ω is a smooth bounded domain in R
n , n > 2s, s ∈ (0, 1), μ ∈ (0, n), 2∗

μ =
2n − μ

n − 2s
is the upper critical exponent in the Hardy–Littlewood–Sobolev inequality,

1 < q < 2, λ, δ > 0 are real parameters. As we illustrated some literature on system
of elliptic equation involving fractional Laplacian in the last subsection, it was an
open question regarding the existence and multiplicity result for system of Choquard
equation with Hardy–Littlewood–Sobolev critical nonlinearity, even in the local case
s = 1. Using the Nehari manifold technique, we prove the following main result.

Theorem 10.3.4 Assume 1 < q < 2 and 0 < μ < n then there exists positive con-
stants Θ and Θ0 such that

1. if μ ≤ 4s and 0 < λ
2

2−q + δ
2

2−q < Θ , the system (Pλ,δ) admits at least two non-
trivial solutions,

2. if μ > 4s and 0 < λ
2

2−q + δ
2

2−q < Θ0, the system (Pλ,δ) admits at least two non-
trivial solutions.

Moreover, there exists a positive solution for (Pλ,δ).

Consider the product space Y := X0 × X0 endowed with the norm ‖(u, v)‖2 :=
‖u‖2 + ‖v‖2. For notational convenience, if u, v ∈ X0 we set

B(u, v) :=
∫

Ω

(|x |−μ ∗ |u|2∗
μ)|v|2∗

μ .

Definition 10.3.5 We say that (u, v) ∈ Y is a weak solution to (Pλ,δ) if for every
(φ,ψ) ∈ Y , it satisfies

(〈u, φ〉 + 〈v, ψ〉) =
∫

Ω
(λ|u|q−2uφ + δ|v|q−2vψ)dx

+
∫

Ω
(|x |−μ ∗ |v|2∗

μ)|u|2∗
μ−2uφ dx +

∫

Ω
(|x |−μ ∗ |u|2∗

μ)|v|2∗
μ−2

vψ dx .

Equivalently, if we define the functional Iλ,δ : Y → R as
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Iλ,δ(u) := 1

2
‖(u, v)‖2 − 1

q

∫

Ω

(λ|u|q + δ|v|q) − 2

22∗
μ

B(u, v)

then the critical points of Iλ,δ correspond to the weak solutions of (Pλ,δ). We set

S̃H
s = inf

(u,v)∈Y\{(0,0)}
‖(u, v)‖2

(∫
Ω

(|x |−μ ∗ |u|2∗
μ)|v|2∗

μ dx
) 1

2∗μ
= inf

(u,v)∈Y\{(0,0)}
‖(u, v)‖2
B(u, v)

1
2∗μ

and show that S̃H
s = 2SH

s . We define the set

Nλ,δ := {(u, v) ∈ Y \ {0} : (I ′
λ,δ(u, v), (u, v)) = 0}

and find that the functional Iλ,δ is coercive and bounded below on Nλ,δ . Consider
the fibering map ϕu,v : R+ → R as ϕu,v(t) = Iλ,δ(tu, tv) which gives another char-
acterization of Nλ,δ as follows

Nλ,δ = {(tu, tv) ∈ Y \ {(0, 0)} : ϕ′
u,v(t) = 0}

because ϕ′
u,v(t) = (I ′

λ,δ(tu, tv), (u, v)). Naturally, our next step is to divideNλ,δ into
three subsets corresponding to local minima, local maxima and point of inflexion of
ϕu,v namely

N ±
λ,δ := {(u, v) ∈ Nλ,δ : ϕ′′

u,v(1) ≷ 0} and N 0
λ,δ := {(u, v) ∈ Nλ.δ : ϕ′′

u,v(1) = 0}.

As earlier, the minimizers of Iλ,δ onN
+

λ,δ andN
−

λ,δ forms nontrivial weak solutions
of (Pλ,δ). Then we found a threshold on the range of λ and δ so that Nλ,δ forms a
manifold. Precisely we proved.

Lemma 10.3.6 For every (u, v) ∈ Y \ {(0, 0)} and λ, δ satisfying 0<λ
2

2−q +δ
2

2−q <

Θ , where Θ is equal to

⎡

⎢
⎣
22

∗
μ−1(Cn

s )
22∗μ−q

2−q

C(n, μ)

(
2 − q

22∗
μ − q

)(
22∗

μ − 2

22∗
μ − q

) 22∗μ−2

2−q

S
q(2∗μ−1)

2−q +2∗
μ

s |Ω|−
(2∗s −q)(22∗μ−2)

2∗s (2−q)

⎤

⎥
⎦

1
2∗μ−1

(10.27)
then there exist unique t1, t2 > 0 such that t1 < tmax(u, v) < t2, (t1u, t1v) ∈ N +

λ,δ and
(t2u, t2v) ∈ N −

λ,δ . Moreover,N 0
λ,δ = ∅. As a consequence, we infer that for any λ, δ

satisfying 0 < λ
2

2−q + δ
2

2−q < Θ ,

Nλ,δ = N +
λ,δ ∪ N −

λ,δ.

After this, we prove that any Palais Smale sequence {(uk, vk)} for Iλ,δ must be
bounded in Y and its weak limit forms a weak solution of (Pλ,δ). We define the
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following
lλ,δ = inf

Nλ,δ

Iλ,δ and l±λ,δ = inf
N ±

λ,δ

Iλ,δ.

We fix 0 < λ
2

2−q + δ
2

2−q < Θ and showed that lλ,δ ≤ l+λ,δ < 0 and inf{‖(u, v)‖ :
(u, v) ∈ N −

λ,δ} > 0.
To prove the existence of first solution, we first show that there exists a (PS)lλ,δ

sequence {(uk, vk)} ⊂ Nλ,δ for Iλ,δ using the Ekeland variational principle and then
prove that l+λ,δ is achieved by some function (u1, v1) ∈ N +

λ,δ . Moreover u1, v1 > 0 in
Ω and for each compact subset K ofΩ , there exists amK > 0 such that u1, v1 ≥ mK

in K . Thus, we obtain a positive weak solution (u1, v1) of (Pλ,δ).
On the other hand, proof of existence of second solution has been divided into

two parts-μ ≤ 4s andμ > 4s. In the caseμ ≤ 4s, using the estimates in Proposition
10.2.6, we could reach the first critical level as follows:

sup
t≥0

Iλ,δ((u1, v1) + t (w0, z0)) < c1 := Iλ,δ(u1, v1) + n − μ + 2s

2n − μ

(
Cn
s S̃

H
s

2

) 2n−μ

n−μ+2s

for some nonnegative (w0, z0) ∈ Y \ {(0, 0)}. This implied l−λ,δ < c1. Whereas to
show the same thing in the case μ > 4s, we had to take another constant Θ0 ≤ Θ

and the same estimates as in Proposition 10.2.6. Consequently, we prove that there
exists a (u2, v2) ∈ N −

λ,δ such that l
−
λ,δ is achieved, hence gave us the second solution.

From this, we concluded the proof of Theorem 10.3.4.

10.4 Some Open Questions

Here we state some open problems in this direction.

1. H 1 versus C1 local minimizers and global multiplicity result: Consider energy
functional defined on H 1

0 (Ω) given by Φ(u) = ‖u‖2
2 − λ

∫
Ω
F(x, u) where F is

the primitive of f . When | f (u)| ≤ C(1 + |u|p) for p ∈ [1, 2∗], Brezis and Niren-
berg in [16] showed that a local minimum of Φ in C1(Ω)-topology is also a local
minimum in the H 1

0 (Ω)-topology. Such property of the functional corresponding
to Choquard type nonlinearity and singular terms is still not addressed.

2. Variable exponent problems: As pointed out in Sect. 10.1.3, existence of a solution
for problem (10.16) has been studied in [2] but the question of multiplicity of
solutions for variable exponent Choquard equations is still open.

3. p-Laplacian critical problems: The Critical exponent problem involving the p-
Laplacian and Choquard terms is an important question. This requires the study
of minimizers of SH,L . Also, the regularity of solutions and the global multiplicity
results for convex-concave nonlinearities is worth exploring.
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4. Hardy-Sobolev operators and nonlocal problems: The doubly critical problems
arise due to the presence of two noncompact terms. Hardy-Sobolev operator is
defined as−Δpu − μ|u|p−2u

|x |2 . Here the critical growth Choquard terms in the equa-
tions require theminimizers and asymptotic estimates to study the compactness of
minimizing sequences. The existence and multiplicity results are good questions
to explore in this case.
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Chapter 11
Wavelet Galerkin Methods for Higher
Order Partial Differential Equations

B. V. Rathish Kumar and Gopal Priyadarshi

Abstract In this paper, we develop efficient and accurate wavelet Galerkin meth-
ods for higher order partial differential equations. Compactly supported Daubechies
wavelets are used for spatial discretization, whereas stable finite difference meth-
ods are used for temporal discretization. The exact values of two-term connection
coefficients are effectively used for the evaluation of integrals consisting of higher
order derivatives. For the nonlinear elliptic partial differential equations, we have
employed quasilinearization technique to obtain the nonlinear wavelet coefficients.
Sparse GMRES solver is used to solve linear system of equations obtained after
spatial and temporal discretization. Error analysis has been carried out to ensure the
convergence of the proposed method. Finally, the method is successfully tested on
few linear and nonlinear 1D and 2D PDEs.

Keywords Wavelet Galerkin method · Higher order PDEs · Daubechies
wavelets · Nonlinear PDEs · GMRES method

11.1 Introduction

This paper is concerned with fully discrete wavelet Galerkin methods for higher
order partial differential equations of the form

F(x, u(x),∇u(x),Δu(x),∇Δu(x),Δ2u(x)) = f (x), (11.1)

F(x, t, u(x, t), ut (x, t),∇u(x, t),Δu(x, t),∇Δu(x, t),Δ2u(x, t)) = f (x, t),
(11.2)
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and

F(x, t, u(x, t), utt (x, t),∇u(x, t),Δu(x, t),∇Δu(x, t),Δ2u(x, t)) = f (x, t),
(11.3)

where x ∈ R
n, t ∈ [0, T ], u(x, t) is the unknown solution and F may be a linear or

nonlinear function.
In particular, we consider linear and nonlinear biharmonic equation, fourth-order

diffusion equation and fourth-order wave equation with one-periodic boundary con-
ditions given by

Δ2u(x) = f (x) (11.4)

Δ2u(x) + u2(x) = f (x) (11.5)

ut (x, t) + ηΔ2u(x, t) = f (x, t)
u(x, 0) = g(x)

}
(11.6)

ut (x, t) + ηΔ2u(x, t) + u2(x, t) = f (x, t)
u(x, 0) = g(x)

}
(11.7)

utt (x, t) + ηΔ2u(x, t) = f (x, t)
u(x, 0) = g(x)
ut (x, 0) = h(x)

⎫⎬
⎭ (11.8)

utt (x, t) + ηΔ2u(x, t) + u2(x, t) = f (x, t)
u(x, 0) = g(x)
ut (x, 0) = h(x)

⎫⎬
⎭ . (11.9)

These PDEs have many applications in various areas of science and engineering. For
example, biharmonic equation appears in continuummechanics, elasticity, dynamical
system, and fluid dynamics, whereas fourth-order diffusion equation arise inmaterial
science, computer graphics, and image processing. In the study of vibration of beams
and thin plates, fourth-order wave equation plays an important role.

In the last few decades, wavelets have emerged as a powerful tool to solve partial
differential equations numerically. For the first time, Beylkin et al. [1, 2] realized
that certain operators may have sparsemultiscale representation in terms of wavelets.
Thereafter, Glowinski et al. [3] used wavelets in the Galerkin framework to solve
linear and nonlinear elliptic, parabolic, and hyperbolic problems. Qian et al. [4] used
wavelet Galerkin solver with an adaptation of capacitance matrix method to solve
Helmholtz equation in nonseparable domain. Amaratunga et al. [5] proposed wavelet
Galerkin method based on Daubechies wavelets for solving one-dimensional partial
differential equations with periodic boundary conditions. Adaptive wavelet methods
have been investigated by several researchers, e.g., Masson et al. [6, 7], Urban et al.
[8], Stevenson et al. [9, 10], and DeVore et al. [11].
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There is not much literature on the wavelet methods for higher order partial differ-
ential equations. In 2012, Shi et al. [12] proposed collocation method based on Haar
wavelets to solve multidimensional biharmonic and Poisson equations. Bertoluzza
et al. [13] constructed a mixed Lagrange–Hermite interpolating wavelet family for
solving fourth-order elliptic equation, in particular, one-dimensional Euler–Bernoulli
beam equation. Qian et al. [14] proposed wavelet capacitance matrix method to solve
biharmonic equation with nonseparable boundary conditions. They used Daubechies
wavelets to achieve a spectral convergence rate. Dahlke et al. [15] developed a
numerical scheme based onDeslauriers–Dubuc fundamental functions andNewton’s
method to solve nonlinear elliptic partial differential equations. Recently, Priyadarshi
et al. [16, 17] investigated wavelet-based numerical methods to solve higher order
elliptic PDEs.

Wavelet-based methods have been extensively studied for the second-order
parabolic and hyperbolic partial differential equations. Rathish et al. [18–22] devel-
oped various numerical methods, e.g., wavelet Taylor–Galerkin method, three-step
wavelet Galerkinmethod, and time accurate pseudo-wavelet method to solve second-
order parabolic and hyperbolic PDEs. They derived a priori error estimates [23, 24]
using spectral decomposition theorem and wavelet approximation properties. How-
ever, these schemes are limited to second-order PDEs and largely to one- and two-
dimensional problems only. Alam et al. [25] proposed space–time adaptive wavelet
method to solve second-order nonlinear parabolic PDEs. They have found that the
proposed method used roughly 18 times less grid points and roughly 4 times faster
than a dynamically adaptive time marching scheme. Henn et al. [26] proposed a
numerical method based on finite difference and multigrid approach to solve fourth-
order diffusion equation with an application to image processing. Recently, Rathish
et al. [27] proposed a wavelet-based numerical method for higher order parabolic
PDEs. Fourth-order wave equations with dissipative and nonlinear strain terms have
been investigated by Yacheng et al. [28]. The investigation is based on potential
well methods. Decay estimate for fourth-order wave equation has been studied by
Levandosky et al. [29]. They have obtained both L p − Lq estimates and space–time
integrability estimates on the solutions of linear wave equation.

Basedon compactly supportedDaubechieswavelets,wedevelopwaveletGalerkin
methods to solve linear and nonlinear PDEs. Various attractive properties, such as
compact support, orthogonality, high-order vanishing moments, and arbitrary regu-
laritymakeDaubechies wavelets a natural choice for the numerical solution of PDEs.
To compute the integrals consisting of higher order derivatives, we exploit the exact
values of two-term connection coefficients [30] which make the computation easier
and accurate. For the nonlinear elliptic case, we exploit the property of wavelet coef-
ficients obtained from the linear problem to get wavelet coefficients for the nonlinear
problem. We derive error estimate using wavelet approximation results and Sobolev
space theory. Finally, numerical results are provided to demonstrate the accuracy of
the proposed methods.

The content of this paper is organized as follows. In Sect. 11.2, we provide a
brief background of wavelets, in particular, Daubechies wavelets and some standard
results which have been used throughout the paper. In Sect. 11.3, we develop wavelet
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Galerkin methods for higher order linear and nonlinear partial differential equations.
Error estimates are also derived in this section. In Sect. 11.4, we present some numer-
ical results which ensure the accuracy of the proposed method. A brief conclusion is
presented in Sect. 11.5.

11.2 Basic Background

In this section, we provide a basic background of wavelet, in particular, Daubechies
wavelet which has been used extensively throughout this paper. For more details on
Daubechies wavelet, one may refer to [31, 32].

The continuous wavelet family is defined as

ψm,n(x) = |m|−1/2ψ

(
x − n

m

)
, m, n ∈ R,m �= 0,

where the translation parameter, n, and the dilation parameter,m, vary continuously.
If we take the translation and dilation parameters knm−J and m−J , respectively,
wherem > 1, n > 0, J and k are positive integers, thenwe obtain a family of discrete
wavelets

ψJ,k(x) = |m|J/2ψ(mJ x − nk), x ∈ R.

In the special case, m = 2 and n = 1, the family of functions ψJ,k(x) forms an
orthonormal basis for L2(R).

Multiresolution Analysis: A multiresolution analysis is a sequence of nested sub-
spaces VJ (J ∈ Z) of L2(R) which satisfies the following conditions:

(i) VJ ⊂ VJ+1, ∀J ∈ Z,

(ii) f ∈ VJ ⇔ f (2(·)) ∈ VJ+1, ∀J ∈ Z,

(iii)
⋂
J∈Z

VJ = {0},
(iv)

⋃
J∈Z

VJ = L2(R),

(v) There exists a function φ ∈ V0, known as scaling function, such that {φ(· − k):
k ∈ Z} forms an orthonormal basis for V0.

Define
φJ,k(x) = 2J/2φ(2J x − k), J, k ∈ Z.

Using themultiresolution analysis, it can be proved that the set {φJ,k(x) ∈ L2(R) | k ∈
Z} forms an orthonormal basis for VJ .

Since, φ(x) ∈ V0 ⊂ V1, we have a two-scale relation

φ(x) = √
2

∞∑
k=−∞

akφ(2x − k), (11.10)
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where

ak = √
2

∫ ∞

−∞
φ(x)φ(2x − k)dx .

Similarly, ψ(x) ∈ W0 ⊂ V1, we get the following:

ψ(x) = √
2

∞∑
k=−∞

bkφ(2x − k), (11.11)

where

bk = √
2

∫ ∞

−∞
ψ(x)φ(2x − k)dx .

For Daubechies scaling function, only finitely many filter coefficients (ak) are
nonzero (see [31]). Hence, Eq. (11.10) becomes

φ(x) = √
2
D−1∑
k=0

akφ(2x − k),

where D(= 2r) is called the wavelet genus and a0, a1, . . . , aD−1 are called the filter
coefficients.

Similarly, for Daubechies wavelet, only finitely many filter coefficients (bk) are
nonzero (see [31]). Hence, Eq. (11.11) becomes

ψ(x) = √
2

D−1∑
k=0

bkφ(2x − k).

The filter coefficients ak and bk are related in the following way:

bk = (−1)kaD−1−k, k = 0, 1, . . . , D − 1.

Properties of Daubechies Wavelet

• For r = 1, we recover the Haar wavelet.
• The length of the support of Dbr is (2r − 1).
• The number of vanishing moments of Dbr is r .
• Dbr ∈ Cμr where μ ≈ 0.2 for large r .

The orthogonal projection PJ : L2(R) → VJ is given by

PJ ( f ) =
∑
k∈Z

〈 f, φJ,k〉φJ,k,

where 〈 . 〉 denotes the standard inner product in L2(R).
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11.2.1 Periodized Wavelet

Based on the technique developed byMeyer [33], we define periodic scaling function
and periodic wavelet. Let φ ∈ L2(R) andψ ∈ L2(R) be scaling function andwavelet
from a multiresolution analysis. For any J, k ∈ Z, the one-periodic scaling function
is defined as

φ̃J,k(x) =
∞∑

n=−∞
φJ,k(x + n) = 2J/2

∞∑
n=−∞

φ(2J (x + n) − k), x ∈ [0, 1],

and the one-periodic wavelet

ψ̃J,k(x) =
∞∑

n=−∞
ψJ,k(x + n) = 2J/2

∞∑
n=−∞

ψ(2J (x + n) − k), x ∈ [0, 1].

Approximation space ṼJ is defined as

ṼJ = span{φ̃J,k(x) | k = 0, 1, . . . , 2J − 1}, x ∈ [0, 1].

It can be easily observed that the family of ṼJ ’s forms an MRA for L2[0, 1].
For the higher dimensional problem, we define the approximation space as tensor

product of ṼJ . For example, in 2D case, the approximation space X̃ J is defined as

X̃ J = span{φ̃J,k(x)φ̃J,l(y) | k, l = 0, 1, . . . , 2J − 1}, (x, y) ∈ [0, 1] × [0, 1].

Two-Term Connection Coefficients
In order to solve higher order partial differential equations, we have to deal with
the integrals consisting higher order derivatives. So, we define two-term connection
coefficients as follows:

Γ
d1,d2
J,k,l =

∫ ∞

−∞
φ
d1
J,k(x)φ

d2
J,l(x)dx, J, k, l ∈ Z,

where d1, d2 are order of differentiation and φJ,k, φJ,l are Daubechies scaling func-
tions.

Change of variables and repeated integration by parts yields

Γ
d1,d2
J,k,l = (−1)d12JdΓ

0,d
0,0,l−k,

where d = d1 + d2. Therefore, it is sufficient to consider only one order of differen-
tiation and one shift of parameter.

Hence, we define

Γ d
n =

∫ ∞

−∞
φ(x)φd

n (x)dx,
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where φd
n (x) = φd(x − n).

SinceDaubechies scaling functions are highly oscillatory in nature, using standard
numerical quadrature is impractical for computing two-term connection coefficients.
An exact method to evaluate two-term connection coefficients has been developed
by Latto et al. [30].

Wavelet Approximation Results
Let the Daubechies scaling function be k-regular, that is, for each n ∈ N there exists
cn such that for all multi-index α, |α| ≤ k, the following condition holds:

|Dαφ(x)| ≤ cn(1 + |x |)−n. (11.12)

Lemma 11.1 (see [34]) Let k is fixed then, for any 0 < m ≤ k + 1, there exists a
constant c > 0 such that for all u ∈ Hm(Ω) and J ∈ N

‖u − PJu‖H 0(Ω) ≤ c2−Jm‖u‖Hm (Ω), (11.13)

where PJu is the orthogonal projection of u.
It is clear from Lemma 11.1 that the approximation error tends to zero as we go

to higher and higher resolution level provided the function is sufficiently smooth.

11.3 Wavelet Galerkin Methods for Higher Order PDEs

In this section,wewill describewavelet Galerkinmethods for higher order partial dif-
ferential equations. For the spatial discretization, we have used Daubechies wavelets,
whereas stable finite difference schemes are used for temporal discretization.

Let us consider linear elliptic partial differential equation

d4u

dx4
(x) = f (x), x ∈ R, (11.14)

with one-periodic boundary conditions. It is assumed that f is one periodic.
Since we are looking for one-periodic solution u, it is sufficient to consider u on

the unit interval.
The Daubechies approximation for u is given by

uJ (x) =
2J−1∑
k=0

aJ,k φ̃J,k(x), (11.15)

where aJ,k are wavelet coefficients.
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Discretizing Eq. (11.14) by replacing
d4u

dx4
with the following Daubechies approx-

imation in the subspace ṼJ :

d4uJ

dx4
(x) =

2J−1∑
k=0

(aJ,k)
∗φ̃J,k(x), (11.16)

where

(aJ,k)
∗ =

D−2∑
n=2−D

(aJ,〈n+k〉2J )2
4JΓ 4

n , (11.17)

and obtain the following equation:

2J−1∑
k=0

(aJ,k)
∗φ̃J,k(x) = f (x). (11.18)

Multiplying Eq. (11.18) by φ̃J,p(x) and integrating over unit interval and using
orthonormality property, we obtain

(aJ,p)
∗ = f J,p, p = 0, 1, . . . , 2J − 1, (11.19)

where

f J,p =
∫ 1

0
f (x)φ̃J,p(x)dx . (11.20)

Using Eq. (11.17) in Eq. (11.19), we get

D−2∑
n=2−D

(aJ,〈n+p〉2J )2
4JΓ 4

n = f J,p, p = 0, 1, . . . , 2J − 1. (11.21)

The set of equations obtained from (11.21) leads to a matrix equation

Ma = f, (11.22)

where M is a 2J × 2J symmetric matrix consisting of two-term connection coef-
ficients, a is a column vector consisting of wavelet coefficients (aJ,p), and f is a
column vector consisting of f J,p. f J,p’s are calculated using appropriate quadrature
formula.

Let us consider nonlinear elliptic partial differential equation

d4u

dx4
(x) + u2(x) = f (x), x ∈ R, (11.23)
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with one-periodic boundary conditions. It is assumed that f is one periodic.
For the nonlinear problem, we apply quasilinearization technique to handle non-

linear terms arising after spatial discretization.
As done in the linear case, we obtain

(aJ,p)
∗ + (aJ,p)

2 = f J,p, p = 0, 1, . . . , 2J − 1. (11.24)

Using Eq. (11.17) in Eq. (11.24), we obtain

D−2∑
n=2−D

(aJ,〈n+p〉2J )2
4JΓ 4

n + (aJ,p)
2 = f J,p, p = 0, 1, . . . , 2J − 1. (11.25)

The set of Eq. (11.25) leads to a nonlinear matrix equation which is difficult to solve.
To overcome this difficulty, we first solve linear system of equations given by

D−2∑
n=2−D

(aJ,〈n+p〉2J )2
4JΓ 4

n + aJ,p = f J,p, p = 0, 1, . . . , 2J − 1. (11.26)

Obtain the wavelet coefficients aJ,p and name it aoldJ,p. Rewrite Eq. (11.24) as

(anewJ,p )∗ + (anewJ,p )(aoldJ,p) = f J,p, p = 0, 1, . . . , 2J − 1, (11.27)

where (anewJ,p ) is wavelet coefficient of nonlinear problem.
In vector notation, we can write

(aJnew)∗ + (aJnew)(aJold) = f, (11.28)

where
aJnew = [anewJ,0 , anewJ,1 . . . , anewJ,2J−1]T ,

aJold = [aoldJ,0, a
old
J,1 . . . , aoldJ,2J−1]T ,

f = [ f J,0, f J,1 . . . , f J,2J−1]T .

The matrix equation is given by

(M1 + M2)aJnew = f, (11.29)

where M1 is a 2J × 2J matrix corresponding to (aJnew)∗ and M2 is a diagonal matrix
whose diagonal entries are the elements of aJold. The matrix equation (11.29) is
solved using GMRES iterative solver. Once we obtain aJnew then again rename it
aJold and solve (11.28). We repeat this process until the maximum norm error of
aJnew and aJold becomes less than some prescribed tolerance ε.
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Theorem 11.1 Let u and uJ be the exact and approximate solution, then

‖u − uJ‖L2 ≤ C2−4J |u|H 4 , u ∈ H 4.

The above result can be obtained using standard Cea’s lemma and wavelet projection
estimate.

Let us consider linear parabolic partial differential equations

∂u

∂t
(x, t) + η

∂4u

∂x4
(x, t) = f (x, t),

u(x, 0) = g(x),

⎫⎬
⎭ (x, t) ∈ R × [0, T ] (11.30)

with one-periodic boundary conditions. It is assumed that η is a positive constant,
whereas f and g are one-periodic square-integrable functions.

Following the same process as done in the linear elliptic case, we get

d

dt
aJ,p(t) + η(aJ,p(t))

∗ = f J,p(t), p = 0, 1, . . . , 2J − 1,

where

f J,p(t) =
∫ 1

0
f (x, t)φ̃J,p(x)dx .

In vector notation
d

dt
a(t) + ηa∗(t) = f(t)

a(0) = ag

}
,

where
a(t) = [aJ,0(t), aJ,1(t), . . . , aJ,2J−1(t)]T ,

a∗(t) = [(aJ,0(t))
∗, (aJ,1(t))

∗, . . . , (aJ,2J−1(t))
∗]T ,

f(t) = [ f J,p(t), p = 0, 1, . . . , 2J − 1]T ,

ag = [gJ,p, p = 0, 1, . . . , 2J − 1]T ,

f J,p(t) =
∫ 1

0
f (x, t)φ̃J,p(x)dx,

gJ,p =
∫ 1

0
g(x)φ̃J,p(x)dx .
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Applying backward Euler scheme for time discretization and get

an+1 − an
�t

+ ηXan+1 = fn+1,

where an = a(n�t). This leads to the recursive relation

an+1 = (I + η�tX)−1(an + fn+1�t), (11.31)

where X is a 2J × 2J symmetric matrix consisting connection coefficients and an is
a column vector consisting unknown wavelet coefficients. a(0) is calculated using
appropriate quadrature rule.

Using Eq. (11.31), we obtain wavelet coefficients and subsequently the solution
at desired time.

Let us consider nonlinear parabolic partial differential equation

∂u

∂t
(x, t) + η

∂4u

∂x4
(x, t) + u2(x, t) = f (x, t)

u(x, 0) = g(x)

⎫⎬
⎭ . (11.32)

Applying finite difference scheme and following the same process as done in the
case of linear parabolic PDEs, we get

an+1 − an
�t

+ ηXan+1 = fn+1 − Un,

where Un =
[ ∫ 1

0
u2nφ̃J,p(x)dx : p = 0, 1, . . . , 2J − 1

]
. This leads to the recursive

relation
an+1 = (I + η�tX)−1(an + (fn+1 − Un)�t),

where X is a 2J × 2J symmetric matrix consisting of connection coefficients and
an is a column vector consisting of unknown wavelet coefficients. U0 is calculated
using appropriate quadrature rule.

Error Analysis of a Fully Discrete Wavelet Galerkin Scheme

Theorem 11.2 Let un and unJ be the exact and Daubechies solution at time tn, then

max
0≤n≤p

‖un − unJ‖ = O(k + 2−Js),

where u ∈ Hs and k is the time step.

We provide the key steps for the proof of the above theorem.

• Compare uJ not directly to u, but with elliptic projection yJ .
• ‖u − uJ‖ ≤ ‖u − yJ‖ + ‖yJ − uJ‖.
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• Choose u0J such that ‖u0 − u0J‖ = O(2−Js).
• Obtain consistency error:

〈
yn+1
J − ynJ

k
, v

〉
+ a(yn+1

J , v) − 〈 f n+1, v〉 = 〈xn, v〉,where

xn =
(
un+1 − un

k
− ∂un+1

∂t
+ yn+1

J − ynJ
k

− un+1 − un

k

)
.

• Estimate xn using Taylor’s theorem

‖xn‖ ≤ c

(
k‖∂2u

∂t2
‖L∞([0,T ],L2) + 2−Js‖∂u

∂t
‖L∞([0,T ],Hs )

)
= M.

• Choose z J = yJ − uJ and apply Cauchy–Schwarz inequality to get

‖zn+1
J ‖ ≤ k‖xn‖ + ‖znJ‖.

• By repeated iteration
max
0≤n≤p

‖znJ‖ ≤ ‖z0J‖ + T M.

• Use elliptic projection estimate to get

max
0≤n≤p

‖un − unJ‖ = O(k + 2−Js).

Let us consider linear fourth-order wave equation

∂2u

∂t2
(x, t) + η

∂4u

∂x4
(x, t) = f (x, t),

u(x, 0) = g(x),
∂u

∂t
(x, 0) = h(x),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(x, t) ∈ R × [0, T ] (11.33)

with one-periodic boundary conditions. It is assumed that η is a positive constant,
whereas g(x), h(x), and f (x, t) are one-periodic functions.

Following the same process as done in the linear parabolic case, we get

d2

dt2
aJ,p(t) + η(aJ,p(t))

∗ = f J,p(t).

In vector notation
d2

dt2
a(t) + ηa∗(t) = f(t)

a(0) = ag
at(0) = ah,

⎫⎪⎬
⎪⎭
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where
ah = {hJ,p, p = 0, 1, 2, ..., 2J − 1},

hJ,p =
∫ 1

0
h(x)φ̃J,p(x)dx .

Applying finite difference formula for temporal discretization, we get

an+1 − 2an + an−1

�t2
+ ηYan+1 = fn+1,

where an = a(n�t). This leads to the recursive relation

an+1 = (I + η�t2Y)−1(2an − an−1 + �t2fn+1). (11.34)

From the initial condition, we have

a−1 = a1 − 2�tah.

So
a1 = (2I + η�t2Y)−1(2a0 + 2�tah + �t2f1).

Using Eq. (11.34), we obtain the wavelet coefficients and subsequently solution at
desired time.

Let us consider nonlinear fourth-order wave equation

∂2u

∂t2
(x, t) + η

∂4u

∂x4
(x, t) + u2(x, t) = f (x, t)

a(0) = ag
at(0) = ah .

⎫⎪⎬
⎪⎭

Following the same process as done in the linear case, we get

an+1 − 2an + an−1

�t2
+ ηYan+1 = fn+1 − Un (11.35)

Un =
[ ∫ 1

0
u2nφ̃J,p(x)dx : p = 0, 1, . . . , 2J − 1

]
. Equation (11.35) leads to the

recursive relation

an+1 = (I + η�t2Y)−1(2an − an−1 + �t2(fn+1 − Un)). (11.36)

From the initial condition, we have

a−1 = a1 − 2�tah.
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Fig. 11.1 Comparison between the exact and Daubechies solutions

Table 11.1 Numerical error
at various resolution levels

J ‖u − uJ ‖J,∞
7 8.5 × 10−2

8 4.2 × 10−2

9 2.1 × 10−2

10 1.0 × 10−2

11 5.3 × 10−3

12 2.6 × 10−3

So
a1 = (2I + η�t2Y)−1(2a0 + 2�tah + �t2(f1 − U0)).

Using Eq. (11.36), we obtain the wavelet coefficients and subsequently solution at
desired time.

11.4 Numerical Results

Example 1 Consider the linear elliptic partial differential equation

d4u

dx4
(x) = 256π4 sin(4πx), x ∈ R (11.37)

with one-periodic boundary conditions.
The exact solution of (11.37) is

u(x) = sin(4πx).

The exact and Daubechies solutions at different resolution levels are reported in
Fig. 11.1, whereas Table11.1 presents max norm error at different resolution levels.
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Fig. 11.2 Comparison between the exact and Daubechies solutions

Table 11.2 Numerical error
at various resolution levels

J ‖u − uJ ‖J,∞
7 4.0 × 10−2

8 1.9 × 10−2

9 1.0 × 10−2

10 5.0 × 10−3

11 2.5 × 10−3

12 1.2 × 10−3

Due to large oscillation in the solution u, we are achieving a good accuracy at high
resolution level (see, Table11.1).

Example 2 Consider the nonlinear elliptic partial differential equation

d4u

dx4
(x) + u2(x) = 16π4 sin(2πx) + sin2(2πx), x ∈ R (11.38)

with one-periodic boundary conditions.
The exact solution of (11.38) is

u(x) = sin(2πx).

The exact and Daubechies solutions at different resolution levels are reported in
Fig. 11.2, whereas Table11.2 presents max norm error at different resolution levels.

It is observed that maximum error reduces with increasing level of resolution.

Example 3 Consider the 2D biharmonic equation

∂4u

∂x4
(x, y) + 2

∂4u

∂x2∂y2
(x, y) + ∂4u

∂y4
(x, y) = 400π4 sin(4πx) sin(2πy), (11.39)

with one-periodic boundary conditions.
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Fig. 11.3 a Exact solution. b Daubechies solution at J = 7 and D = 6

Table 11.3 Numerical error
at various resolution levels

J ‖u − uJ ‖J,∞
7 8.0 × 10−2

8 4.1 × 10−2

9 2.1 × 10−2

10 1.0 × 10−2

11 5.1 × 10−3

12 2.5 × 10−3

The exact solution of (11.39) is

u(x, y) = sin(4πx) sin(2πy).

The exact and Daubechies solutions at resolution level 8 are reported in Fig. 11.3.
Table11.3 presents max norm error at different resolution levels.

Example 4 Consider the linear parabolic partial differential equation

∂u

∂t
(x, t) + 1

16π4

∂4u

∂x4
(x, t) = 15e−t sin(4πx),

u(x, 0) = sin(2πx) + sin(4πx),

⎫⎬
⎭ (x, t) ∈ R × [0, T ] (11.40)

with one-periodic boundary conditions.
The exact solution of (11.40) is

u(x, t) = e−t (sin(2πx) + sin(4πx)).

Figure11.4 presents the exact and Daubechies solutions at time t = 0.6. Max norm
errors at various time points and resolution levels are reported in Table11.4.
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Fig. 11.4 Comparison between the exact and Daubechies solutions

Table 11.4 Numerical error at various time points and resolution levels

J k At time Max norm error

9 10−2 0.2 3.0 × 10−2

0.4 2.4 × 10−2

0.6 2.0 × 10−2

0.8 1.6 × 10−2

10 10−2 0.2 1.5 × 10−2

0.4 1.2 × 10−2

0.6 1.0 × 10−2

0.8 8.3 × 10−3

11 10−2 0.2 7.5 × 10−3

0.4 6.2 × 10−3

0.6 5.1 × 10−3

0.8 4.1 × 10−3

Note: Due to large oscillation in the solution, we have achieved a good accuracy at
very high resolution level (see Table11.4).

Example 5 Consider the nonlinear parabolic partial differential equation

∂u

∂t
(x, t) + 1

1296π4

∂4u

∂x4
(x, t) + u2(x, t) = e−2t sin2(6πx),

u(x, 0) = sin(6πx),

⎫⎬
⎭ (x, t) ∈ R × [0, T ]

(11.41)
with one-periodic boundary conditions.

The exact solution of (11.41) is

u(x, t) = e−t sin(6πx).
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Fig. 11.5 Comparison between the exact and Daubechies solutions

Table 11.5 Numerical error at various time points and resolution levels

J k At time Max norm error

8 10−2 0.2 6.0 × 10−2

0.4 5.0 × 10−2

0.6 4.7 × 10−2

0.8 4.3 × 10−2

9 10−2 0.2 3.0 × 10−2

0.4 2.5 × 10−2

0.6 2.3 × 10−2

0.8 2.1 × 10−2

10 10−2 0.2 1.5 × 10−2

0.4 1.2 × 10−2

0.6 1.1 × 10−2

0.8 1.0 × 10−2

Figure11.5 presents the exact and Daubechies solutions at time t = 0.8. Max norm
errors at various time points and resolution levels are reported in Table11.5.

Due to large oscillation in the solution u, we have to calculate the solution at very
high resolution level to achieve a good accuracy (see Table11.5).

Example 6 Consider the fourth-order diffusion equation in 2D

∂u

∂t
(x, y, t) + 1

1024π4
Δ2u(x, y, t) = 0,

u(x, y, 0) = sin(4πx) sin(4πy),

}
(x, y, t) ∈ R × R × [0, T ] (11.42)

with one-periodic boundary conditions.
The exact solution of (11.42) is
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Fig. 11.6 a Exact solution. b Daubechies solution at J = 7 and D = 6, k = 10−2

Table 11.6 Numerical error at various time points and resolution levels

J k At time Max norm error

8 10−2 0.2 4.1 × 10−2

0.4 3.2 × 10−2

0.6 2.6 × 10−2

0.8 2.2 × 10−2

9 10−2 0.2 2.0 × 10−2

0.4 1.6 × 10−2

0.6 1.3 × 10−2

0.8 1.1 × 10−2

10 10−2 0.2 1.0 × 10−2

0.4 8.0 × 10−3

0.6 6.5 × 10−3

0.8 5.5 × 10−3

u(x, y, t) = e−t sin(4πx) sin(4πy).

Figure11.6a and b presents the exact and Daubechies solutions at time t = 0.5. Max
norm errors at various time points and resolution levels are reported in Table11.6.

Example 7 Consider the fourth-order linear wave equation

∂2u

∂t2
(x, t) + 1

64π4

∂4u

∂x4
(x, t) = 8e−2t sin(4πx),

u(x, 0) = sin(4πx),
ut (x, 0) = −2 sin(4πx),

⎫⎪⎬
⎪⎭ (x, t) ∈ R × [0, T ]

(11.43)
with one-periodic boundary conditions.

The exact solution of (11.43) is

u(x, t) = e−2t sin(4πx).
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Fig. 11.7 Comparison between the exact and Daubechies solutions at t = 0.5

Table 11.7 Numerical error at various time points and resolution levels

J �t At time Max norm error

8 10−3 0.25 2.9 × 10−2

0.50 1.8 × 10−2

0.75 1.1 × 10−2

9 10−3 0.25 1.5 × 10−2

0.50 9.0 × 10−3

0.75 5.5 × 10−3

10 10−3 0.25 7.4 × 10−3

0.50 4.5 × 10−3

0.75 2.7 × 10−3

Figure11.7 presents the exact and Daubechies solutions at time t = 0.5. Max norm
errors at various time points and resolution levels are reported in Table11.7.

Example 8 Consider the fourth-order nonlinear wave equation

∂2u

∂t2
(x, t) + 1

8π4
∂4u

∂x4
(x, t) + u2(x, t) = 3e−t sin(2πx) + e−2t sin2(2πx),

u(x, 0) = sin(2πx),
ut (x, 0) = − sin(2πx),

⎫⎪⎪⎬
⎪⎪⎭

(x, t) ∈ R × [0, T ]

(11.44)
with one-periodic boundary conditions.

The exact solution of (11.44) is

u(x, t) = e−t sin(2πx).

Figure11.8 presents the exact and Daubechies solutions at time t = 0.5. Max norm
errors at various time points and resolution levels are reported in Table11.8.
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Fig. 11.8 Comparison between the exact and Daubechies solutions at t = 0.5

Table 11.8 Numerical error at various time points and resolution levels

J �t At time Max norm error

8 10−3 0.25 1.9 × 10−2

0.50 1.5 × 10−2

0.75 1.1 × 10−2

9 10−3 0.25 9.6 × 10−3

0.50 7.5 × 10−3

0.75 5.8 × 10−3

10 10−3 0.25 4.8 × 10−3

0.50 3.7 × 10−3

0.75 3.0 × 10−3

11.5 Conclusion

In this paper, we have developed wavelet Galerkin methods for linear and nonlinear
partial differential equations. For the efficient and accurate evaluation of integrals
consisting of derivatives or product of derivatives, we have used the two-term con-
nection coefficients table. Sparse GMRES solver has been used to solve linear system
of algebraic equations. Error estimates are derived in order to show the convergence
of proposed method. Finally, numerical results are presented and it is shown that the
numerical results are in good agreement with exact results.
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Chapter 12
Resilience and Dynamics of Coral Reefs
Impacted by Chemically Rich Seaweeds
and Unsustainable Fishing

Samares Pal and Joydeb Bhattacharyya

Abstract Coral reefs are globally threatened by numerous natural and anthro-
pogenic impacts. The proliferation of seaweeds in coral reefs is one of the most
common and significant reasons for the decline of healthy corals. Some seaweeds
release chemicals that are harmful to corals. The chemicals released by toxic sea-
weeds damage corals in areas of direct contact. While herbivorous reef fish play an
important role in preventing the overgrowth of seaweeds on corals, unsustainable
fishing of herbivores disrupts the ecological balance in coral reefs. This induces
changes in the community structure from the dominant reef-building corals to one
by seaweeds. We have considered a mathematical model of interactions between
coral, toxic seaweeds, and herbivores to investigate the phase shifts from coral-
to seaweed-dominated states. We investigate how seaweed toxicity and overfishing
trigger negative effects on the ecological resilience of coral reefs through trophic
cascades. It is observed that in the presence of seaweed toxicity and unsustainable
fishing, the system can exhibit an irreversible dynamics through hysteresis cycles.
Further, we employMawhin’s coincidence degree theory to investigate the existence
of a unique positive almost periodic solution of the nonautonomous version of our
model by incorporating synchronous or asynchronous seasonal variations in differ-
ent parameters. The results from computer simulations have potential applications
to control the overgrowth of seaweeds in coral reefs as well as to prevent coral
bleaching.
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12.1 Introduction

Coral reefs are among the most species-rich and productive, yet vulnerable marine
habitats around the world. Exposed to numerous natural and anthropogenic stresses,
coral reef ecosystems do not necessarily respond smoothly to gradual changes in
slow variables, which are often caused by these stresses. Instead, they can switch
rapidly into a new regime when a threshold level of a controlling parameter in the
system is passed, a process termed as regime or phase shift [1, 2]. The resilience
of coral reefs can be thought of as the ability of reefs to resist and recover from
recurrent stresses without switching to an alternative stable state. Seaweeds play
many important ecosystem functioning roles in coral reefs. Despite their importance
in coral reefs, the proliferation of seaweeds on coral reefs is increasingly related to
the reduction in the resilience of coral reefs [3, 4]. Done [5] and Bellwood et al.
[6] observed that the loss of resilience of coral reefs corresponding to the reduction
in the adaptive capacity of coral reefs can lead to a shift of regime from coral-
dominated state to an alternate stable state, typically dominated by seaweeds or other
benthic organisms [7, 8]. Phase shifts in coral reefs are largely the result of seaweeds
displacing corals by means of shading and allelopathic chemical defences [9, 10].
Also, faster growing seaweeds dominate coral reefs by reducing the available space
for the successful settlement of corals [11, 12]. Although the growth rate of corals
is less compared to that of seaweeds, once bleached, corals can return to dominate
seaweeds within a decade [13].

The resilience of an ecosystem is a dynamic property of the system that changes
through time. Natural and anthropogenic stresses often lead to a slow erosion of
resilience of the ecosystem, which goes unnoticed until a perturbation that could
have been absorbed previously leads to a catastrophic shift into a different regime.
There are two views of resilience recognized in the ecological literature—ecological
resilience and engineering resilience. Ecological resilience, described by Holling
[14], deals with systems having multiple attractors. It can be defined as the ability
of the system to absorb disturbances without being shifted to an alternative basin
of attraction. According to Walker et al. [15], ecological resilience is characterized
by the four key features—latitude, resistance, precariousness, and panarchy. The
first three can be applicable to a system that makes it up, whereas panarchy describes
cross-scale interactions and howperturbations at one scalemay create regime shifts at
some other scale of observation. Declines in reef-building corals have been reported
across different regions due to rapid loss of herbivores and high macroalgal toxicity
[16]. In coral reef ecosystems, there is a competition between seaweeds and corals
to encroach the available space in seabed and when there is a decline in herbivore
biomass, seaweeds overgrow corals by allelopathic interactions and by depriving the
corals of essential sunlight [12, 17–19]. There are at least two alternate attractors on
some coral reef ecosystems, one dominated by seaweeds and the other is dominated
by corals. The ecological resilience of these systems is the amount of disturbance
that the systems can absorb without switching to an alternative steady state. Since
each alternative regime is stabilized by a distinct set of feedbacks, reverting back
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the system from seaweeds-dominated regime to the regime dominated by corals
becomes difficult. It is, therefore, evident that the threshold for a change in regime
and its subsequent recovery can become different, a phenomenon called hysteresis.

On the other hand, engineering resilience is applicable for ecosystems having a
single attractor and is quantified as the return rate to the steady state after a small
perturbation. In nearly pristine coral reefs [20], themacroalgal cover is low compared
to coral cover and the herbivore grazing helps in increasing the resilience of the coral-
dominated reef. As observed by the researchers [21–23], overfishing of herbivores
in coral reefs is one of the reasons for the proliferation of seaweeds on coral reefs
that cause a permanent change in the regime dominated by seaweeds. If the growth
of macroalgae in coral reefs is not kept in check by the grazers, it becomes difficult
to shift the system back toward the coral-dominated state, resulting in a seaweeds-
dominated single attractor state. In this situation, the resilience of the system can
be measured by the time of return to the seaweeds-dominated steady state after an
arbitrary perturbation.

Several seaweeds species contain varying levels of harmful hydrophobic com-
pounds that damage coral tissues [24, 25]. As observed by Andras et al. [26] and
Rasher et al. [27], the presence of toxic seaweeds in coral reefs leads to a significant
reduction in fecundity and an increase in the mortality rate of corals. Researchers
[24] found that toxic seaweeds Chlorodesmis fastigiata, when in contact with the
coral species A. millepora, produce a concoction of chemicals which is lethal to
corals. Our proposed model is an extension of the models studied in [34, 35] under
the assumption that seaweeds recruits externally from the surrounding seascape and
produce toxins which are lethal to corals. The complexity in the model formulation is
due to the complexity in the endosymbiotic relationship between corals and microal-
gae together with the competitive but nonconsumptive direct interactions between
corals and macroalgae. As observed by Underwood et al. [28], many reefs are demo-
graphically independent and the hydrodynamics associated with these reefs restrict
the movement of coral larvae. Thus, we exclude the immigration of coral larvae
in our model. We assume that herbivorous Parrotfish follow a logistic growth with
macroalgal-biomass-dependent carrying capacity in the absence of harvesting. We
analyze the stability and bifurcations by linearizing the system about the equilibrium
points, using the techniques previously adopted in [35]. The conditions for stability
of the system is determined based on macroalgal toxicity and the harvesting rates of
the herbivores. Further, we include the effect of seasonality in the model by means
of periodic fluctuation of the model parameters.

In this paper, the main emphasis will be put in studying the effect of overfishing
of herbivorous Parrotfish in phase shift from coral to seaweed-dominated systems as
well as to examine the feedback in the seaweed-coral-herbivore interaction triangle
on the dynamics of coral reef ecosystem. The effects of seasonality on parameters
of the interacting species of our proposed model have been reported in this study.
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12.2 The Basic Model

In this paper, we consider a mathematical model to investigate the dynamics of corals
(C), algal turf (T ), and toxic seaweeds (M) competing for a particular area on the
seabed in presence of herbivorous Parrotfish (P). We assume that seaweeds can sur-
vive in the system irrespective of the abundance of corals. Ignoring the existence of
an empty seabed, we have M(t) + C(t) + T (t) = M(0) + C(0) + T (0) = c0 (con-
stant) at any instant t .

The following assumptions are made in formulating the model:
(H1) Corals are overgrown by seaweeds, at a rate α.
(H2) Seaweeds spread vegetatively over algal turfs at a rate a.
(H3) The rate of colonization of newly immigrated seaweeds on turf algae is b.
(H4) The recruitment rate of corals on algal turfs is r .
(H5) Seaweeds and corals have natural mortality rates d1 and d2, respectively.
(H6) Mortality rate of corals from seaweed toxicity [24] is γ .
(H7) The maximum grazing intensity of Parrotfish, in absence of harvesting, is g.
(H8) The growth rate of Parrotfish is s.
(H9) The grazing intensity gP

k of Parrotfish is proportional to the abundance of
Parrotfish relative to its maximum carrying capacity k with maximal grazing rate, g.
The loss of seaweed cover and subsequent recolonization of algal turfs due to grazing
is at a rate gMP

k(M+T )
.

(H10) The harvesting rate of Parrotfish is h.
A schematic diagram of the system is given in Fig. 12.1. The equations repre-

senting reef dynamics in presence of grazing are given by:

dM

dt
= M

{
αC − gP

k(M + T )
− d1

}
+ (aM + b)T

dC

dt
= C {rT − (α + γ )M − d2} (12.1)

dT

dt
= M

{
gP

k(M + T )
+ d1

}
+ d2C + γ MC − T (aM + rC + b)

dP

dt
= P

[
s

{
1 − P

k(M + T )

}
− h

]

where M(0) > 0,C(0) ≥ 0, T (0) > 0, and P(0) ≥ 0.
The parameters considered in the system (12.1) are nonnegative and are given

in Table12.1. The parameters related to macroalgae and corals were derived from
empirical studies in the Leeward Islands [29], southern Caribbean [30], and Central
America [31]. The experimental observations by Box et al. [3] shows that the of
corals grow in cage control and in no-cage control at a rate (r) 1cm yr−1 and 0.55cm
yr−1, respectively. The yearly mortality rate (d2) of coral exposed to seaweeds is
0.42 ± 1.62. In Table12.1, we have considered themortality rate of coral as 0.24yr−1

which lies well within the estimated 95% confidence interval for the yearly mortality
rate. The toxic seaweed-inducedmortality (γ ) of corals is taken as 0.1yr−1. Thus, the
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Fig. 12.1 Schematic representation of coral-macroalgal competition for occupying turf algae in
presence of Parrotfish

estimated mortality rate of corals is 0.34yr−1. The overgrowth rate of seaweeds on
corals (α) is taken from the experimental observations by Lirman [10]. Mumby et al.
[31] observed that in absence of environmental perturbations, the vegetative growth
rate (a) of seaweeds on algal turf is 1.2yr−1. The researchers [31] also observed that
the growth rate of seaweeds during hurricane period becomes 0.35yr−1. This gives an
estimated average growth rate of seaweeds as 0.77yr−1. Further, Mumby et al. [31]
observed that during hurricane impact, there is a severe loss in the seaweed cover
and estimated the average annual loss as 0.083. We have considered the seaweed
mortality rate (d1) to be a combination of natural mortality rate and mortality rate
due to external perturbations as 0.1yr−1. The rate of colonization (b) of seaweeds on
algal turf, the intrinsic growth rate (s) of Parrotfish, and the maximum grazing rate
(g) of Parrotfish are taken from [32]. We have chosen the harvesting parameter as
nonnegative.

Without any loss of generality, we may assume that c0 = 1. Then from (12.1) we
obtain

dM

dt
= M

{
αC − gP

k(1 − C)
− d1

}
+ (aM + b)(1 − M − C) ≡ f 1

dC

dt
= C {r(1 − M − C) − (α + γ )M − d2} ≡ f 2 (12.2)
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dP

dt
= P

[
s

{
1 − P

k(1 − C)

}
− h

]
≡ f 3

where 0 < M(0) < 1, 0 ≤ C(0) < 1 and P(0) ≥ 0.
The right-hand sides of the system (12.2) are smooth functions of M,C, P and

the parameters. The existence and uniqueness of solutions of the system (12.2) hold
in the positive octant as long as the variables and the parameters are nonnegative.

Lemma 12.2.1 For all ε > 0, there exists tε > 0 such that all the solutions of (12.2)
enter into the set

{
(M,C, P) ∈ R3 : M(t) + C(t) + P(t) < 1 + k + ε

}
whenever

t ≥ tε .

Proof We have d
dt (P(t)) ≤ sP(t)

(
1 − P(t)

k

)
.

Let u(t) be the solution of d
dt u(t) = su(t)

(
k−u(t)

k

)
, satisfying u(0) = P(0).

Then u(t) = k
(
1 + k−P(0)

P(0) e−st
)−1 → k as t → ∞.

Applying the standard theorem of differential inequality it follows that limt→∞
sup P(t) ≤ k.

Also, M(t) + C(t) + T (t) = 1 for all t ≥ 0 implies M(t) + C(t) + P(t) ≤ 1 +
k as t → ∞.

12.3 Equilibria and Their Stability

In this section, we determine the equilibrium solutions of the model and investigate
the effect of parameters on the stability of the system at the biologically feasible
equilibria.

The system (12.2) possesses the following equilibria:
(i) Coral and Parrotfish-free equilibrium E0 = (M0, 0, 0), where M0 =
a−b−d1+

√
(a+b−d1)2+4bd1
2a .

E0 always exists;
(i i) Parrotfish-free equilibrium E1 = (M1,C1, 0), where C1 = p + qM1, p =

1 − d2
r , q = − r+α+γ

r and

M1 = (r−d2)α−rd1+ad2+b(α+γ )+
√

{(r−d2)α−rd1+ad2+b(α+γ )}2+4bd2{(α−a)(α+γ )+rα}
2{(α−a)(α+γ )+rα} .

E1 exists if (α − a)(α + γ ) + rα > 0;
(i i i) coral-free equilibrium in presence of seaweeds and Parrotfish E2 = (M2, 0,

P2), where

M0 = a−b−d1−g(1− h
s )+

√
{a−b−d1−g(1− h

s )}2+4ab

2a and P2 = k
(
1 − h

s

)
. E2 exists if h < s;

(iv) interior equilibrium E∗ = (M∗,C∗, P∗), where M∗ is a positive root of the
equation

∑3
i=1 ai M

4−i = 0,C∗ = p1 + q1M∗ and P∗ = p2 + q2M∗, where a1 =
k
r2 (r + α + γ )[(a − α)(α + γ ) − rα], a2 = kαq1(1 − p1) − kq1(αp1 − d1)
− gq2 + bk(1 + q1) − ak(1 − p1)(1 + 2q1), a3 = k(αp1 − d1)(1 − p1) − gp2 −



12 Resilience and Dynamics of Coral Reefs Impacted … 261

bk(1 − p1)(2q1 + 1) + ak(1 − p1)2, a4 = bk(1 − p1)2, p1 = 1 − d2
r , p2 =

k(s−h)(1−p1)
s , q1 = − r+α+γ

r and q2 = − q1k(s−h)

s . E∗ exists uniquely if r > (α +
γ )

(
a−α
α

)
.

At E0 the eigenvalues of the Jacobian matrix of the system (12.2) are −√
(a − b − d1)2 + 4ab, r − d2 − M0(r + α + γ ) and s − h. Therefore, all the eigen-

values of the Jacobian matrix are negative if r + α + γ > r−d2
M0

and h > s. This gives
the following lemma.

Lemma 12.3.1 The system (12.2) is locally asymptotically stable at E0 if γ > γ1
and h > s, where γ1 = r−d2

M0
− (r + α).

Therefore, with high macroalgal toxicity and high rate of harvesting of Parrotfish,
the system stabilizes at seaweeds-dominated steady state with complete elimination
of coral and Parrotfish.

Lemma 12.3.2 If α > 1
2

{
a + b − d1 + √

(a + b − d1)2 + 4ad1
}
and h > s, the

system (12.2) undergoes a transcritical bifurcation at E0 when γ crosses γ1.

Proof At γ = γ1, we have

J0 =
⎛
⎝−√

(a − b − d1)2 + 4ab (α − a)M0 − b − gM0

k
0 0 0
0 0 s − h

⎞
⎠

Therefore, the zero eigenvalue of the Jacobian matrix is simple.

Let V1 and W1 be the eigenvectors corresponding to the zero eigenvalue for J0 and
J T
0 , respectively.

ThenweobtainV1 =
(

(α−a)M0−b√
(a−b−d1)2+4ab

1 0
)T

andW1 = (
0 1 0

)T
. Let us express

the system (12.2) in the form Ẋ = f (X; γ ), where X = (
M C P

)T
and f (X; γ ) =(

f 1 f 2 f 3
)T

Then WT fγ (M0, 0, 0; γ1) = 0 and so no saddle-node bifurcation occurs at E0

when γ crosses γ1.
Also, Dfγ (M0, 0, 0; γ1)V1 = (

0 −M0 0
)T

and so WT [Dfγ (M0, 0, 0; γ1)V1] =
−M0 < 0.

Now,wehaveD2 f (M0, 0, 0; γ1)(V1, V1)=

⎛
⎜⎜⎝

2(α−a){(α−a)M0−b}√
(a−b−d1)2+4ab

− 2a{(α−a)M0−b}2
(a−b−d1)2+4ab

−2r − 2(r−d2){(α−a)M0−b}
M0

√
(a−b−d1)2+4ab

0

⎞
⎟⎟⎠

This gives WT [D2 f (M0, 0, 0; γ1)(V1, V1)] = −2r − 2(r−d2){(α−a)M0−b}
M0

√
(a−b−d1)2+4ab

.

Ifα > 1
2

{
a + b − d1 + √

(a + b − d1)2 + 4ad1
}
holds thenWT [D2 f (M0, 0, 0;

γ1)(V1, V1)] < 0.
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Therefore, if α > 1
2

{
a + b − d1 + √

(a + b − d1)2 + 4ad1
}
and h > s are sat-

isfied, by Sotomayor theorem [33] it follows that the system (12.2) undergoes a
transcritical bifurcation at E0 when γ crosses γ1.

The Jacobian J1 ≡ J (E1) of the system (12.2) evaluated at an interior equilibrium
E1 is

J1 =
⎛
⎝ (αC1 − d1)(1 + M1) (α − a)M1 − b − gM1

k(1−C1)2−(r + α + γ )C1 −rC1 0
0 0 s − h

⎞
⎠

At E1 one eigenvalue of the Jacobian matrix of the system (12.2) is s − h and
the other two eigenvalues are given by the equation λ2 + λ{rC1 + (d1 − αC1)(1 +
M1)} + (r + α + γ )C1{(α − a)M1 − b} − rC1(αC1 − d1)(1 + M1) = 0.

Now rC1 + (d1 − αC1)(1 + M1) > (r − 2α)C1 > 0 if r > 2α and (r + α +
γ ){(α − a)M1 − b} − r(αC1 − d1)(1 + M1) > {(r − a)d1 + (α + γ )(α − a)}
M1 − b(r + α + γ ) − r(α − d1) > 0 if a <

rd1+α(α+γ )

α+γ+d1
and b(r+α+γ )+r(α−d1)

(r−a)d1+(α+γ )(α−a)
<

M1 < 1. This gives the following lemma.

Lemma 12.3.3 If r > 2α, a <
rd1+α(α+γ )

α+γ+d1
,

b(r+α+γ )+r(α−d1)
(r−a)d1+(α+γ )(α−a)

< M1 < 1 and h > s,
the system (12.2) is locally asymptotically stable at E1.

Therefore, with high rate of harvesting of Parrotfish, high recruitment rate of
corals, and low seaweed growth rate on turf algae, corals, and seaweeds can coexist
even in absence of Parrotfish.

At E2 the eigenvalues of the Jacobian matrix of the system (12.2) are −√{
a − b − d1 − g

(
1 − h

s

)}2 + 4ab, r − d2 − M2(r + α + γ ) and h − s.
Therefore, all the eigenvalues of the Jacobian matrix are negative if r + α + γ >

r−d2
M2

and h < s. This gives the following lemma.

Lemma 12.3.4 The system (12.2) is locally asymptotically stable at E2 if γ > γ2
and h < s, where γ2 = r−d2

M2
− (r + α).

Therefore, with high seaweed toxicity and low rate of harvesting of Parrotfish, the
system stabilizes at seaweeds-dominated steady state in presence of Parrotfish with
complete elimination of corals.

Lemma 12.3.5 If h < s and γ2 
= 2r
√
{a−b−d1+g(1− h

s )}2+4ab

(α−a)M2−b − (r + α), the system
(12.2) undergoes a transcritical bifurcation at E2 when γ crosses γ2.

Proof At γ = γ2, we have

J2=
⎛
⎜⎝

−
√{

a − b − d1 − g
(
1 − h

s

)}2 + 4ab
{
α − a − g

(
1 − h

s

)}
M2 − b − gM2

k

0 0 0

0 −sk
(
1 − h

s

)2
h − s

⎞
⎟⎠

Therefore, the zero eigenvalue of the Jacobian matrix is simple.
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Let V2 and W2 be the eigenvectors corresponding to the zero eigenvalue for J2 and
J T
2 , respectively.

Then we obtain V2 =
(

(α−a)M2−b√
{a−b−d1+g(1− h

s )}2+4ab
1 k(h−s)

s

)T

and W2 = (
0 1 0

)T
.

SinceWT
2 fγ (E2; γ2) = 0, it follows that no saddle-node bifurcation occurs at E2

when γ crosses γ2.
Also, Dfγ (E2; γ2)V2 = (

0 −M2 0
)T

and so WT
2 [Dfγ (E2; γ2)V2] = −M2 < 0.

This gives WT
2 [D2 f (E2; γ2)(V2, V2)] = −2r − 2(r−d2){(α−a)M2−b}

M2

√
{a−b−d1−g(1− h

s )}2+4ab
.

If γ2 
= 2r
√
{a−b−d1+g(1− h

s )}2+4ab

(α−a)M2−b − (r + α) holds, then WT
2 [D2 f (E2; γ2)(V2,

V2)] 
= 0.

Therefore, if h < s and γ2 
= 2r
√
{a−b−d1+g(1− h

s )}2+4ab

(α−a)M2−b − (r + α) hold, the system
(12.2) undergoes a transcritical bifurcation at E2 when γ crosses γ2.

The interior equilibrium E∗ is persistent if the boundary equilibria E0, E1, and E2

repel interior trajectories.We see that the boundary equilibria of the system (12.2) are
unstable if γ < min {γ1, γ2} and h < s. Also, the system is bounded. The following
lemma gives the condition of persistence of the system (12.2) at E∗:

Lemma 12.3.6 The system (12.2) is persistent at E∗ if γ < min {γ1, γ2} and h < s.

Therefore, with low seaweed toxicity level and low rate of harvesting of Parrotfish,
all the organisms in the system coexists.

The Jacobian J ∗ ≡ J (E∗) of the system (12.2) evaluated at an interior equilib-
rium E∗ is

J ∗ =
⎛
⎜⎝

−aM∗ − b(1−C∗)
M∗ (α − a)M∗ − b − gM∗P∗

k(1−C∗)2 − gM∗
k(1−C∗)

−(r + α + γ )C∗ −rC∗ 0
0 − sP∗2

k(1−C∗)2 − sP∗
k(1−C∗)

⎞
⎟⎠

The characteristic equation of the Jacobian J ∗ of the system (12.2) is λ3 + A1λ
2 +

A2λ + A3 = 0, where
A1 = rC∗ + aM∗ + b(1−C∗)

M∗ + gP∗
k(1−C∗)2 ,

A2 = rsC∗P∗
k(1−C∗) +

{
aM∗ + b(1−C∗)

M∗

} {
rC∗ + sP∗

k(1−C∗)

}

+(r + α + γ )
{
(α − a)M∗C∗ − bC∗ − gM∗C∗P∗

k(1−C∗)2

}
,

A3 = s(r+α+γ )C∗P∗
k(1−C∗) {(α − a)M∗ − b}.

The system is locally asymptotically stable at E∗ if A1A2 > A3.

At α = a + b
M∗ = α∗(say), we have A2(α

∗) = rsC∗P∗
k(1−C∗) +

{
aM∗ + b(1−C∗)

M∗

}
{
rC∗ + sP∗

k(1−C∗)

}
− gM∗C∗P∗(r+α∗+γ )

k(1−C∗)2 . Therefore, at α = α∗ if A2(α
∗) > 0, then the

Jacobian J ∗ of the system (12.2) has a simple zero eigenvalue.
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Table 12.1 Parameter values used in the numerical analysis

Parameters Description of parameters Value Ref.

α Rate of overgrowth of seaweeds on coral 0.1 [10, 32, 34]

r Recruitment rate of corals on turf algae 0.55 [3, 32]

a Rate of vegetative spread of seaweed over
algal turfs

0.77 [31, 32]

b Colonization rate of newly immigrated
seaweeds on algal turf

0.005 [32]

d1 Natural mortality rate of seaweeds 0.1 [31, 35]

d2 Natural mortality rate of corals 0.24 [3, 35]

γ Toxin-induced death rate of corals 0.1 [35]

s Intrinsic growth rate of Parrotfish 0.49 [32]

k Maximal carrying capacity of Parrotfish 1 [32]

g Maximal seaweeds-grazing rate of
Parrotfish

0.5 [32]

h Harvesting rate of Parrotfish 0.05 –

Let V ∗ and W ∗ are the eigenvectors corresponding to the zero eigenvalue for

J ∗ and J ∗T , respectively. Then we obtain V ∗ =
( −r

r+α∗+γ
1 −P∗

)T
and W ∗ =(

1 − aM∗+ b(1−C∗)

M∗
C∗(r+α∗+γ )

− gM∗
sP∗

)T
.

Due to the complexity in the algebraic expressions involved,wewill use numerical
simulations to verify that W ∗T fα(E∗;α∗) 
= 0 and W ∗T [D2 f (E∗;α∗)(V ∗, V ∗)] 
=
0. In this case, the system undergoes a saddle-node bifurcation at E∗ when α crosses
α∗. By analyzing the system (12.2) we are able to show that a sharp transition with
hysteresis can be achieved by varying some of the parameter values.

To identify the impact of seaweed toxicity on corals, we plot the solutions of the
nullcline equations projected onto theC − γ plane (Fig. 12.2), yielding a bifurcation
diagram. The curves of stable interior equilibria are shown in black, stable boundary
equilibrium E2 are shown in blue and unstable equilibria are shown in red. The
region I represents monostability at E∗ for 0 ≤ γ < γ2 = r−d2

M2
− (r + α) = 0.1469

for all nonnegative initial conditions. In this region, the system will ultimately arrive
at a coral-dominated state corresponding to low levels of seaweeds in presence of
Parrotfish. The bistable region is represented by the region I I for γ2 < γ < γ ∗ =
0.1506.Once the seaweed toxicity level surpasses the threshold γ ∗, the system arrives
at a seaweeds-dominated and coral-depleted stable state in presence of Parrotfish,
represented by the region I I I of monostability at E2. Hysteresis will result, with
low seaweed cover followed by an increase in the seaweed cover above the critical
threshold γ ∗. A backward shift occurs only if the seaweed toxicity level is reduced
far enough to reach the other bifurcation point γ2.

To study the ecological resilience of the system at a particular point on the equi-
librium curve in the bistable region I I , we consider an arbitrary point A on the
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curve of stable interior equilibrium in the bistable region. If there is a drop of coral
cover from the stable coexistence steady state A upto or just beyond the unstable
coexistence state (in red), then there will be a shift of regime to the coral-free steady
state in presence of Parrotfish. In this case, the latitude at A is defined as the distance
(L) between the stable coexistence state A and its basin boundary. Also, due to the
increase of seaweed toxicity beyond γ ∗, there is a shift of regime by overcoming the
“resistance” of the coexistence state and eroding the size of its basin of attraction.
The resistance of the system at A can be defined as the minimum additional seaweed
toxicity level required for the complete elimination of corals and is denoted by R.
The latitude (L) component of resilience is measured in terms of coral cover and
the resistance (R) component of resilience is measured in terms of seaweed toxicity
level. The precariousness (Pr) of the system at A is defined as the current position
and trajectory of the system in the basin of attraction relative to the edge and can be
measured as the linear distance from A to the point of saddle-node bifurcation. The
ecological resilience of the system at A can be represented as a combination of the
latitude component vector, the resistance component vector and the precariousness
component vector at A. The bistable region I I in Fig. 12.2 is a representation of the
three aspects of ecological resilience of our system at A in terms of seaweed toxicity
and coral cover. With low seaweed toxicity, the system has a coral-dominated single
attractor. In this case the rate of recovery from small perturbations is an indicator of
engineering resilience. FromFig. 12.3a it follows that the recovery time in themonos-
table region I after an arbitrary perturbation is least in absence of seaweed toxicity
and increases due to the increase of seaweed toxicity. Consequently, the engineering
resilience of the system in the monostable region I decreases due to the increase of
seaweed toxicity. From Fig. 12.3b it follows that the ecological resilience of the sys-
tem at the interior equilibrium is maximum when seaweed toxicity level is less than
γ2 and decreases in the bistable region I I due to the increase of seaweed toxicity.
The ecological resilience of the coexistence steady state becomes minimum when
seaweed toxicity level approaches the threshold value γ ∗. In this case, slight increase
in seaweed toxicity leads to a catastrophic shift of regime to a seaweeds-dominated
ecosystem in presence of Parrotfish.

From Fig. 12.3c we see that for 0 ≤ γ < γ2 two eigenvalues of the Jacobian of
the system at E2 are negative and one eigenvalue is positive, i.e., the fixed point E2 is
unstable. The stability of the system changes when γ crosses γ2. All the eigenvalues
becomesnegative for γ > γ2, representing the stability of the system at E2. From
Fig. 12.3d it follows that the system (12.2) has a stable node at E∗ for γ < γ ∗. Also,
E∗ ceased to exist for γ > γ ∗. Thus, there are changes in the stability of the system
when γ crosses γ2 and γ ∗. We use numerical simulations to determine the nature of
bifurcations at γ = γ2 and γ = γ ∗.

At γ = γ2, we have E2 = (0.389, 0, 0.898) and

J2 =
⎛
⎝−0.4281 −0.4853 −0.1945

0 0 0
0 −0.3951 −0.44

⎞
⎠
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Fig. 12.2 Bifurcation diagram of γ versus the equilibrium value of coral cover, where h < s.
Coral-dominated stable interior equilibria are indicated by black curves, seaweeds-dominated stable
equilibria E2 are indicated by blue curves, and unstable equilibria by red curves

has a simple zero eigenvalue. Also, we obtain V2 = (−0.7257 1 −0.8980
)T
,

W2 = (
0 1 0

)T
, WT

2 fγ (E2; γ2) = 0, WT
2 [Dfγ (E2; γ2)V2] = −0.389 < 0 and

WT
2 [D2 f (E2; γ2)(V2, V2)] = 0.0565 > 0, satisfying the conditions of transcritical

bifurcation at E2 when γ crosses γ2.
At γ = γ ∗, we have E∗ = (0.326, 0.0891, 0.818) and

J ∗ =
⎛
⎝−0.3907 −0.4291 −0.179

−0.0713 −0.049 0
0 −0.3951 −0.44

⎞
⎠

with eigenvalues 0, −0.5469 and −0.3328. Also, we obtain V ∗ =(
0.8769 0.1256 0.4641

)T
,W ∗= (

0.4742 −0.3852 −0.7917
)T
,W ∗T fγ (E∗; γ ∗) =

0.0112 > 0 and W ∗T [D2 f (E∗; γ ∗)(V ∗, V ∗)] = −0.5502 < 0, satisfying the con-
ditions of saddle-node bifurcation at E∗ when γ crosses γ ∗.

To identify the impact of seaweed toxicity on coral cover with high rate of har-
vesting of Parrotfish (h > s) and low seaweed recruitment rate on turf algae, we
represent a bifurcation diagram in Fig. 12.4a with γ as an active parameter. Coor-
dinates of stable boundary equilibria E1 are shown in green, stable boundary equi-
librium E0 are shown in cyan and unstable equilibria are shown in red. The region
I V represents monostability at E1 for 0 ≤ γ < γ1 = r−d2

M0
− (r + α) = 0.0226 for

all nonnegative initial conditions. In this region, the system will ultimately arrive at a
coral-dominated state corresponding to low levels of seaweeds in absence of Parrot-
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Fig. 12.3 a Change in the engineering resilience of the system in the monostable region I with γ
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fish. Once the seaweed toxicity level surpasses the threshold γ1, the system arrives
at a seaweeds-dominated and coral-depleted stable state in absence of Parrotfish,
represented by the region V of monostability at E0. We use numerical simulations
to determine the nature of bifurcation at γ = γ1.

At γ = γ1, we have E0 = (0.4609, 0, 0) and

J0 =
⎛
⎝−0.144 −0.0394 −0.2304

0 0 0
0 0 −0.01

⎞
⎠

has a simple zero eigenvalue.Also,weobtainV1 = (−0.2737 1 0
)T
,W1 = (

0 1 0
)T
,

W T
1 fγ (E0; γ1) = 0, W T

1 [D fγ (E0; γ1)V1] = −0.4609 < 0 and W T
1 [D2 f (E0; γ1)

(V1, V1)] = −0.7319 < 0, satisfying the conditions of transcritical bifurcation at
E0 when γ crosses γ1.

From Fig. 12.4b it is observed that with high rate of harvesting of Parrotfish
(viz. h = 0.1), the system is seaweeds-dominated and stable even with low toxicity
level of seaweeds. The decrease in the rate of harvesting of Parrotfish increases
the latitude component of resilience due to the increase of coral cover. Also, the
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Fig. 12.4 a Bifurcation diagram of γ versus the equilibrium value of coral cover with h = 0.5 (h >

s) and a = 0.077. Coral-dominated stable equilibria E1 are indicated by green curves, seaweeds-
dominated stable equilibria E0 are indicated by cyan curves and unstable equilibria by red curves.
b Bifurcation diagram of γ versus the equilibrium value of coral cover for different values of h. c
Two-parameter bifurcation diagram with γ and h as active parameters

resistance component of resilience of coral-dominated regime is increased even with
the increase of seaweed toxicity, measured by taking the difference of the values of
γ at the saddle-node bifurcating point (LP) and at transcritical bifurcating point (BP)
for a particular value of h.With γ and h as active parameters, the ecological resilience
of the system becomes minimumwhen rate of harvesting of Parrotfish is greater than
h = 0.0863 where the saddle-node curve meets the parameter axis at γ = 0.082,
generating a cusp point (CP) at their point of intersection. Figure12.4c gives a two-
parameter bifurcation diagramwith γ and h as active parameters, representing a cusp
point at (γ, h) = (0.082, 0.0863) on the saddle-node curve.

The impact of seaweed overgrowth rate on coral cover is given by the solutions
of the nullcline equations projected onto the C − α plane (Fig. 12.5). The region V I
represents monostability at E∗ for 0 ≤ α < α∗ = r−d2

M2
− (r + γ ) = 0.0412, repre-

senting the coexistence steady state for all nonnegative initial conditions. In this
region, the system will ultimately arrive at a coral-dominated state corresponding to
low levels of seaweeds in presence of Parrotfish. The bistable region is represented
by the region V I I for α∗ < α < α∗ = 0.043. In this region, all the trajectories of the
system will arrive at E∗ or E2 depending upon the initial conditions. Once the rate
of seaweed overgrowth rate on corals surpasses the threshold α∗, the system arrives
at a seaweeds-dominated and coral-depleted stable state in presence of Parrotfish,
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represented by region V I I I of monostability at E2. Hysteresis will result, with low
seaweed cover followed by an increase in the seaweed cover above a critical thresh-
old α∗. A backward shift occurs only if the seaweed immigration rate is reduced far
enough to reach the other bifurcation point α∗. With low seaweed growth rate on
coral cover (viz. α = 0.01), the system has a coral-dominated single attractor and
the corresponding rate of recovery from small perturbations quantifies the engineer-
ing resilience of the system. From Fig. 12.6a it follows that the recovery time in the
monostable region V I after an arbitrary perturbation increases due to the increase of
seaweed growth rate on coral cover, and so, the engineering resilience of the system
in the monostable region V I decreases due to the increase of seaweed growth rate.
From Fig. 12.6b it follows that the ecological resilience of the system at the interior
equilibrium in the bistable region V I I is maximum when seaweed overgrowth rate
on corals is less than α∗ and decreases due to the increase of seaweed overgrowth on
corals. The ecological resilience becomes minimum when seaweed overgrowth rate
on corals approaches the threshold value α∗. In this case, slight increase in α leads
to a catastrophic shift of regime to a seaweeds-dominated ecosystem in presence of
Parrotfish.

From Fig. 12.6c it is observed that with low grazing rate of Parrotfish (viz.
g = 0.43), the system is seaweeds-dominated and stable even with low seaweed
overgrowth rate on corals. In this case, the system undergoes a sudden change in
transition from coral-seaweeds coexistence steady state to coral-depleted steady
state when α crosses α∗. The increase of grazing rate of Parrotfish increases the
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Fig. 12.6 a Change in the engineering resilience of the system in the monostable region V I with
α as an active parameter. b Change in the ecological resilience of the system in the bistable region
V I I with α as an active parameter. c Bifurcation diagram of α versus the equilibrium value of
coral cover for different values of g. d Two-parameter bifurcation diagram with α and g as active
parameters

latitude component of ecological resilience of coral-dominated bistable regime V I I
due to the increase of coral cover. Also, the resistance component of resilience of
coral-dominated regime is increased even with high seaweed overgrowth on corals,
measured by taking the difference of the values of α at the saddle-node bifurcating
point (LP) and at transcritical bifurcating point (BP) for a particular value of g (cf.
Fig. 12.6b). With α and g as active parameters, the resilience of the system with high
seaweed overgrowth on corals becomesmaximumwhen the grazing intensity crosses
the threshold g = 0.4892 where the saddle-node curve meets the parameter axis at
α = 0.1291, generating a cusp point (CP) at the point of intersection. Figure12.6d
gives a two-parameter bifurcation diagram with α and g as active parameters, repre-
senting the cusp point at (α, g) = (0.1291, 0.4892) on the saddle-node curve.

The grazing rate g depends on the abundance of Parrotfish and is thus subjected to
variationwith changes in available refuge and food abundance. To identify the impact
of changes in grazing intensity on coral cover, in Fig. 12.7, we plot the solutions of
the nullcline equations in the C − g plane with γ = 0.25, yielding a bifurcation
diagram. The region I X represents monostability at E2 for 0 ≤ g < g∗ = 0.549,
representing seaweeds-dominated and coral-depleted state in presence of Parrotfish
for all nonnegative initial conditions. The bistable region is represented by the region
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X for g∗ < g < g∗ = 0.5568. In this region, all the trajectories of the system will
arrive at E∗ or E2 depending upon the initial conditions. Once the grazing intensity
surpasses the threshold g = g∗, the system arrives at the coexistence stable state,
represented by region X I of monostability at E∗. From Fig. 12.8a it follows that
the ecological resilience of the system at the interior equilibrium is maximum when
grazing intensity exceeds g = g∗ and decreases in the bistable region X due to the
decrease of grazing intensity. The ecological resilience becomes minimum when
grazing intensity of Parrotfish approaches the threshold value g∗. In this case, slight
decrease in g leads to a catastrophic shift of regime to a seaweeds-dominated ecosys-
tem in presence of Parrotfish. With high rate of grazing by herbivores (viz. g = 0.6),
the system stabilizes at coral-dominated single attractor and the corresponding rate
of recovery from small perturbations gives the measure of engineering resilience of
the system in the monostable region X I . From Fig. 12.8b it follows that the recovery
time in the monostable region X I after an arbitrary perturbation decreases due to the
increase of grazing intensity. Consequently, the engineering resilience of the system
in the monostable region X I increase due to the increase of grazing intensity of
Parrotfish.

From Fig. 12.8c it is observed that with low grazing rate of Parrotfish the system
is seaweeds-dominated and stable even with low seaweed toxicity. The increase of
seaweed toxicity decreases the latitude component of resilience of coral-dominated
regime due to the decrease of coral cover.Also, the resistance component of resilience
of coral-dominated regime is decreased even with high grazing rate of Parrotfish,
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Fig. 12.8 a Change in the ecological resilience of the system in the bistable region X with g as an
active parameter. b Change in the engineering resilience of the system in the monostable region X I
with g as an active parameter. c Bifurcation diagram of g versus the equilibrium value of coral cover
for different values of γ . d Two-parameter bifurcation diagram with g and γ as active parameters

measured by taking the difference of the values of g at the saddle-node bifurcating
point (LP) and at transcritical bifurcating point (BP) for a particular value of γ .
With g and γ as active parameters, the ecological resilience of the system becomes
maximum when the seaweed toxicity is less than the threshold value γ = 0.082
where the saddle-node curve meets the parameter axis at g = 0.4588, generating
a cusp point (CP) at the point of intersection. Figure12.8d gives a two-parameter
bifurcation diagram with g and γ as active parameters, representing the cusp point
at (g, γ ) = (0.4588, 0.082) on the saddle-node curve.

To identify the effect of harvesting of Parrotfish on coral cover in presence of
high seaweed toxicity, in Fig. 12.9, we plot the equilibrium values projected onto the
C − h plane with γ = 0.22. The system is monostable at E∗ in region X I I for 0 <

h < h∗ = 0.0138. The bistable region is represented by the region X I I I for h∗ <

h < h∗ = 0.0191. For h > h∗, the system becomes monostable at the seaweeds-
dominated and coral-depleted steady state as depicted by the region X IV . Hysteresis
occurs in the bistable region X I I I with low seaweed cover followed by an increase
in the seaweed cover above the critical threshold h = h∗. A backward shift occurs
only if the rate of harvesting of Parrotfish reduced far enough to reach the other
bifurcation point h = h∗. With low rate of harvesting by herbivores (viz. h = 0.01),
the system stabilizes at coral-dominated single attractor. In this case, the rate of



12 Resilience and Dynamics of Coral Reefs Impacted … 273

0.0115 0.0138 0.0191 0.022
0

0.05

0.1

0.15

0.2

0.25

 Harvesting rate (h)

 C
or
al

 c
ov

er
 (

C
)

 L

 XII

 (Engineering Resilience)

 Coral−dominated attractor

 Alternative attractors

 (Ecological Resilience)

XIII XIV

 (Engineering Resilience)

 ( h* ) ( h
*
 )

 Bistable at E
2
 & E*  Monostable at E

2

 Macroalgae−dominated attractor

 Pr

 R

 Monostable at E*
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recovery from small perturbations quantifies engineering resilience of the system
in the monostable region X I I . From Fig. 12.10a it follows that the recovery time
in the monostable region X I I after an arbitrary perturbation is least in absence of
harvesting of Parrotfish and increases due to the increase of harvesting. Consequently,
the engineering resilience of the system in the monostable region X I I decreases
due to the increase of harvesting of Parrotfish. From Fig. 12.10b it follows that the
ecological resilience of the system at the interior equilibrium is minimum when
the harvesting rate of Parrotfish exceeds h = h∗ and increases in the bistable region
X I I I due to the decrease of harvesting rate. The resilience becomesmaximumwhen
rate of harvesting is lowered below h = h∗.

From Fig. 12.10c it is observed that with high seaweed toxicity (viz. γ = 0.22),
the system is seaweeds-dominated and stable even with low harvesting rate of Par-
rotfish followed by a sudden change in transition from coral-seaweeds coexistence
steady state to coral-depleted steady state. The decrease of seaweed toxicity increases
the latitude component of resilience of coral-dominated regime due to the increase in
coral cover. Also, the resistance component of resilience of coral-dominated regime
is increased even with the increase in harvesting of Parrotfish, measured by tak-
ing the difference of the values of h at the saddle-node bifurcating point (LP) and
at transcritical bifurcating point (BP) for a particular value of γ . With h and γ as
active parameters, the resilience of the system becomes maximum when the sea-
weed toxicity level is less than γ = 0.0854 where the saddle-node curve meets the
parameter axis at γ = 0.0736, generating a cusp point (CP) at their point of inter-
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Fig. 12.10 a Change in the engineering resilience of the system in the monostable region X I I with
h as an active parameter. b Change in the ecological resilience of the system in the bistable region
X I I I with h as an active parameter. c Bifurcation diagram of h versus the equilibrium value of
coral cover for different values of γ . d Two-parameter bifurcation diagram with h and γ as active
parameters

section. Figure12.10d gives a two-parameter bifurcation diagram with h and γ as
active parameters, representing the cusp point at (h, γ ) = (0.0854, 0.0736) on the
saddle-node curve.

The effect of high seaweed toxicity and colonization of seaweeds on algal turf is
shown in Fig. 12.11a, where we plot the solutions of the nullcline equations projected
onto the C − b plane with γ = 0.2. The region XV represents monostability at E∗
for 0 ≤ b < b∗ = 0.0343, representing coral-seaweeds coexistence steady state for
all nonnegative initial conditions. In this region, the system will ultimately arrive at a
coral-dominated state corresponding to low levels of seaweeds. The bistable region
is represented by the region XV I for b∗ < b < b∗ = 0.0394. Once the rate of sea-
weed immigration surpasses the threshold b = b∗, the system arrives at a seaweeds-
dominated and coral-depleted stable state in presence of Parrotfish, represented by
region XV I I of monostability at E2. Hysteresis will result, with low seaweed cover
followed by an increase in the seaweed cover above a critical threshold b = b∗. A
backward shift occurs only if the seaweed immigration rate is reduced far enough to
reach the other bifurcation point b = b∗. From Fig. 12.11b it follows that the ecologi-
cal resilience of the system at the interior equilibrium is minimumwhen the seaweed
immigration rate exceeds b = b∗ and increases in the bistable region XV I due to
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Fig. 12.11 a Bifurcation diagram of b versus the equilibrium value of coral cover with γ = 0.2.
Coral-dominated stable interior equilibria are indicated by black curves, seaweeds-dominated stable
equilibria E2 are indicated by blue curves, and unstable equilibria by red curves. b Change in the
ecological resilience of the system with b as an active parameter. c Bifurcation diagram of b versus
the equilibrium value of coral cover for different values of γ . d Two-parameter bifurcation diagram
with b, and γ as active parameters

the decrease of immigration rate. The resilience becomes maximum when rate of
immigration is lowered below b = b∗.

From Fig. 12.11c it is observed that with high seaweed toxicity (viz. γ = 0.3), the
system is seaweeds-dominated and stable evenwith lowcolonization rate of seaweeds
on algal turf followed by a sudden change in transition from coral-seaweeds coex-
istence steady state to coral-depleted steady state. The decrease of seaweed toxicity
increases the resilience of coral-dominated regime even with the increase in colo-
nization rate of seaweeds, measured by taking the difference of the values of b at the
saddle-node bifurcating point (LP) and at transcritical bifurcating point (BP) for a par-
ticular value of γ . With b and γ as active parameters, the ecological resilience of the
system becomes maximum when the seaweed toxicity level is less than b = 0.0614
where the saddle-node curve meets the parameter axis at γ = 0.1165, generating a
cusp point (CP) at their point of intersection. Figure12.11d gives a two-parameter
bifurcation diagram with b and γ as active parameters, representing the cusp point
at (b, γ ) = (0.0614, 0.1165) on the saddle-node curve.
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12.4 Seasonally Forced System

Coral reef ecosystems are subject to increasing environmental fluctuations. Seasonal-
ity, which is a kind of periodic fluctuation varyingwith changing seasons, is proposed
to be considered in our model to describe more realistic relationships between sea-
weeds, corals, and reef-herbivores.As observed by the researchers [36, 37], seaweeds
are highly seasonal in their occurrence, growth, and reproduction. To include the sea-
sonal influence on bioactivity of seaweeds in coral reefs, we consider the seasonal
forcing as a sinusoidal function of relevant parameters of our model. Considering the
growth and immigration rate of seaweeds as periodically varying function of time due
to seasonal variations, we adoptα(t) = α(1 + ε1 sin(ωt)), a(t) = a(1 + ε2 sin(ωt)),
and b(t) = b(1 + ε3 sin(ωt)), where αε1, aε2, and bε3 are the amplitudes and ω is
the frequency of sinusoidal perturbations in α, a, and b, respectively. Also, consider-
ing the seasonal variations in seaweed toxicity, we adopt γ (t) = γ (1 + ε4 sin(ωt)),
where γ ε4 is the amplitude of sinusoidal perturbations in γ . Variability in grazing
pressure has also been related to seasonal changes in the abundance and productiv-
ity of seaweeds. We, therefore, consider the maximal grazing rate g and maximal
carrying capacity k of Parrotfish as periodically varying function of time due to sea-
sonal variations by adopting g(t) = g(1 + ε5 sin(ωt)) and k(t) = k(1 + ε6 sin(ωt)).
Seasonally varying growth rate of corals has been reported by many researchers
[38]. Since coral distribution is negatively associated with seaweed abundance, we
choose r(t) = r(1 + ε7 sin(ωt + φ)), where the parameter φ (0 ≤ φ ≤ 2π ), can be
interpreted as a difference in phase angle between the seasonality in the growth
rates of corals and seaweeds. Since the parameters are necessarily positive, we have
0 ≤ εi ≤ 1 (i = 1, . . . , 7).

Considering the seasonally varying parameters of the system (12.2), we propose
a nonautonomous system as follows:

dM

dt
= M

{
α(t)C − g(t)P

k(t)(1 − C)
− d1

}
+ (a(t)M + b(t))(1 − M − C)

dC

dt
= C {r(t)(1 − M − C) − (α(t) + γ (t))M − d2} (12.3)

dP

dt
= P

[
s

{
1 − P

k(t)(1 − C)

}
− h

]

where α(t), γ (t), a(t), b(t), g(t), k(t), r(t) are all positive ω-periodic functions in
[0,∞); d1, d2, s, h are time-independent positive parameters.

In order to study the existence of a unique positive almost periodic solution for the
system (12.3), we will establish sufficient conditions based on Gaines and Mawhin’s
[39] coincidence degree theory. We will summarize some basic results form [39]
that will be important for this section. Let X and Z be real Banach spaces, L :
DomL ⊂ X → Z be a linear mapping, and N : X → X be a continuous mapping.
The mapping L is a Fredholm mapping of index zero if dimKer L = codimImL <

∞ and ImL is closed in Z . If L is a Fredholm mapping of index zero and there exist
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continuous projections P : X → X and Q : Z → Z such that ImP = Ker L and
KerQ = ImL = Im(I − Q), it follows that L |DomL∩Ker P : (I − P)X → ImL is
invertible. Let KP be its inverse mapping. If Ω is an open bounded subset of X , the
mapping N is L-compact on Ω̄ if QN (Ω̄) is bounded and KP(I − Q)N : P → X is
compact. Since ImQ is isomorphic to Ker L , there is an isomorphism J : ImQ →
Ker L .

Lemma 12.4.1 (Mawhin’s continuation theorem [39])Let L beaFredholmmapping
of index zero and let N be L-compact on Ω̄ . Suppose that
(i) Lx 
= λNx for any x ∈ ∂Ω and λ ∈ (0, 1);
(i i) QNx 
= 0 for any x ∈ ∂Ω ∩ Ker L;
(i i i) deg{J QN ,Ω ∩ Ker L , 0} 
= 0.
Then the operator equation Lx = Nx has at least one solution in DomL ∩ Ω̄ .

Supposing that f (t), t ∈ [0,∞) is a continuous functionwith periodω, we denote

f L = min
t∈[0,ω]{ f (t)}, f M = max

t∈[0,ω]{ f (t)}, f̄ = 1

ω

∫ ω

0
f (t)dt

Following the boundedness of the system (12.2) we have M(t) + C(t) + P(t) <

1 + kM and so the system (12.3) is also bounded.

Lemma 12.4.2 The system (12.3) has at least one ω-periodic solution if ā > b̄ +
ᾱ − d1, r̄ > d2 and s > h hold.

Proof Let us consider the following system:

du1(t)

dt
= α(t)eu2(t) − g(t)eu3(t)

k(t)
(
1 − eu2(t)

) +
(
a(t) + b(t)e−u1(t)

) (
1 − eu1(t) − eu2(t)

)
− d1

du2(t)

dt
= r(t)

(
1 − eu1(t) − eu2(t)

)
− (α(t) + γ (t)) eu1(t) − d2 (12.4)

du3(t)

dt
= s

{
1 − eu3(t)

k(t)
(
1 − eu2(t)

)
}

− h

where all functions are defined as ones in system (12.3). It is easy to see that if sys-
tem (12.4) has one ω-periodic solution

(
u∗
1(t), u

∗
2(t), u

∗
3(t)

)T
, then (M∗(t),C∗(t),

P∗(t))T = (
eu

∗
1(t), eu

∗
2(t), eu

∗
3(t)

)T
is a positive ω-periodic solution of system (12.3).

Therefore, to complete the proof it suffices to show that system (12.4) has aω-periodic
solution.

Since 0 < M∗,C∗ < 1, we must have u∗
1, u

∗
2 < 0.

Taking X=Y = (
(u1(t), u2(t), u3(t))

T ∈ C(R, R3) : ui (t + ω) = ui (t), t ∈ R,

i = 1, 2, 3), we define

‖ (u1(t), u2(t), u3(t))
T ‖ = �3

i=1 max
t∈[0,ω] |ui (t)|,
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where |.| denotes the Euclidian norm. Then X and Y both are Banach spaces when
they are endowed with the norm ‖.‖.

Let L : DomL ∩ X, L (u1(t), u2(t), u3(t))
T =

(
du1(t)
dt , du2(t)

dt , du3(t)
dt

)T
, where

DomL = {
(u1(t), u2(t), u3(t))

T ∈ C1(R, R3)
}
, N : X → X and

N

(
u1(t)
u2(t)
u3(t)

)
=

⎛
⎜⎜⎝

α(t)eu2(t) + g(t)eu3(t)

k(t)
(
eu2(t)−1

) − d1 + (
a(t) + b(t)e−u1(t)

) (
1 − eu1(t) − eu2(t)

)
r(t)

(
1 − eu1(t) − eu2(t)

) − (α(t) + γ (t)) eu1(t) − d2

s

{
1 + eu3(t)

k(t)
(
eu2(t)−1

)
}

− h

⎞
⎟⎟⎠

With these notations system (12.4) can be written in the form Lu = Nu, u ∈ X .
Now define two projectors P : X → X and Q : Y → Y as

P

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ = Q

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ =

⎛
⎝

1
ω

∫ ω

0 u1(t)dt
1
ω

∫ ω

0 u2(t)dt
1
ω

∫ ω

0 u3(t)dt

⎞
⎠ ,

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ ∈ X = Y.

Then P and Q are continuous projectors such that ImP = Ker L , KerQ =
ImL = Im(I − Q).

Obviously, we have Ker L = R3, ImL = (
(u1, u2, u3)

T ∈ Y : ∫ ω

0 ui (t)dt =
0, i = 1, 2, 3) is closed in Y , and dimKer L = codimImL = 3. Therefore L is
a Fredholm mapping of index zero.

Furthermore, the generalized inverse (to L) KP : ImL → DomL ∩ Ker P exists
and is given by

KP

⎛
⎝ u1(t)
u2(t)
u3(t)

⎞
⎠ =

⎛
⎝

∫ t
0 u1(s)ds − 1

ω

∫ ω

0

∫ t
0 u1(s)dsdt∫ t

0 u2(s)ds − 1
ω

∫ ω

0

∫ t
0 u2(s)dsdt∫ t

0 u3(s)ds − 1
ω

∫ ω

0

∫ t
0 u3(s)dsdt

⎞
⎠

Accordingly, QN : X → Y and KP(I − Q)N : X → X lead

(QN )u =

⎛
⎜⎜⎝

1
ω

∫ ω

0

[
α(t)eu2(t) + g(t)eu3(t)

k(t)
(
eu2(t)−1

) − d1 +
(
a(t) + b(t)

eu1(t)

) (
1 − eu1(t) − eu2(t)

)]
dt

1
ω

∫ ω

0

[
r(t)

(
1 − eu1(t) − eu2(t)

) − (α(t) + γ (t)) eu1(t) − d2
]
dt

1
ω

∫ ω

0

[
s

{
1 + eu3(t)

k(t)
(
eu2(t)−1

)
}

− h

]
dt

⎞
⎟⎟⎠

and

KP (I − Q)Nu =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ t
0

[
α(s)eu2(s) + g(s)eu3(s)

k(s)
(
eu2(s)−1

) − d1 +
(
a(s) + b(s)

eu1(s)

) (
1 − eu1(s) − eu2(s)

)]
ds∫ ω

0

[
r(s)

(
1 − eu1(s) − eu2(s)

) − (α(s) + γ (s)) eu1(s) − d2
]
ds∫ ω

0

[
s

{
1 + eu3(s)

k(s)
(
eu2(s)−1

)
}

− h

]
ds

⎞
⎟⎟⎟⎟⎟⎟⎠
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−

⎛
⎜⎜⎝

1
ω

∫ ω

0

∫ t
0

[
α(s)eu2(s) + g(s)eu3(s)

k(s)
(
eu2(s)−1

) − d1 +
(
a(s) + b(s)

eu1(s)

) (
1 − eu1(s) − eu2(s)

)]
dsdt

1
ω

∫ ω

0

∫ t
0

[
r(s)

(
1 − eu1(s) − eu2(s)

) − (α(s) + γ (s)) eu1(s) − d2
]
dsdt

1
ω

∫ ω

0

∫ t
0

[
s

{
1 + eu3(s)

k(s)
(
eu2(s)−1

)
}

− h

]
dsdt

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

( t
ω

− 1
2

) ∫ ω

0

[
α(s)eu2(s) + g(s)eu3(s)

k(s)
(
eu2(s)−1

) − d1 +
(
a(s) + b(s)

eu1(s)

) (
1 − eu1(s) − eu2(s)

)]
ds( t

ω
− 1

2

) ∫ ω

0

[
r(s)

(
1 − eu1(s) − eu2(s)

) − (α(s) + γ (s)) eu1(s) − d2
]
ds( t

ω
− 1

2

) ∫ ω

0

[
s

{
1 + eu3(s)

k(s)
(
eu2(s)−1

)
}

− h

]
ds

⎞
⎟⎟⎠

Clearly, QN and KP(I − Q)N are continuous by the Lebesgue theorem and, further-

more, by the Arzela–Ascoli theorem, it follows that QN (Ω̄) and KP(I − Q)N (Ω̄)

are relatively compact for any open bounded set Ω ⊂ X . Hence N is L-compact on
Ω̄ for any open bounded setΩ ⊂ X . Corresponding to operator equation Lu = λNu,
λ ∈ (0, 1), we have

du1(t)

dt
= λ

[
α(t)eu2(t) + g(t)eu3(t)

k(t)
(
eu2(t) − 1

) − d1 +
(
a(t) + b(t)e−u1(t)

) (
1 − eu1(t) − eu2(t)

)]

du2(t)

dt
= λ

[
r(t)

(
1 − eu1(t) − eu2(t)

)
− (α(t) + γ (t)) eu1(t) − d2

]
(12.5)

du3(t)

dt
= λ

[
s

{
1 + eu3(t)

k(t)
(
eu2(t) − 1

)
}

− h

]

Suppose that (u1(t), u2(t), u3(t))
T ∈ X is a solution of (12.5) for a certain λ ∈

(0, 1). By integrating (12.5) over the interval [0, ω] we obtain

1

ω

∫ ω

0

[
(α(t) − a(t)) eu2 − a(t)eu1 − g(t)eu3

k(t) (1 − eu2 )
+ b(t)

(
1 − eu2

)
eu1

]
dt = ā − b̄ + d1 (12.6)

1

ω

∫ ω

0

[
r(t)

(
eu1(t) + eu2(t)

)
+ (α(t) + γ (t)) eu1(t)

]
dt = r̄ − d2 (12.7)

1

ω

∫ ω

0

eu3(t)

k(t)
(
1 − eu2(t)

) dt = s − h (12.8)

From (12.5) to (12.8) we obtain

∫ ω

0

∣∣∣u1
dt

∣∣∣ dt < 2ω(ā + b̄ + d1),
∫ ω

0

∣∣∣u2
dt

∣∣∣ dt < 2ω(r̄ + d2),
∫ ω

0

∣∣∣u3
dt

∣∣∣ dt < 2ω(s + h) (12.9)

Since (u1(t), u2(t), u3(t))
T ∈ X , there exists ξi , ηi ∈ [0, ω], (i = 1, 2, 3) such that

ui (ξi ) = min
t∈[0,ω] ui (t), ui (ηi ) = max

t∈[0,ω] ui (t), (i = 1, 2, 3)

From (12.7) we get
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ω(r̄ − d2) ≥
∫ ω

0
(α(t) + γ (t)) eu1(t)dt ≥ ω(ᾱ + β̄)eu1(ξ1) ⇒ u1 (ξ1) ≤ ln

(
r̄ − d2
ᾱ + γ̄

)
= H11

and

ω(r̄ − d2) ≥
∫ ω

0
r(t)eu2(t)dt ≥ ωr̄ eu2(ξ2) ⇒ u2 (ξ2) ≤ ln

(
r̄ − d2

r̄

)
= H21,

where r̄ > d2. Then, we have,

u1(t) ≤ u1 (ξ1) + ∫ ω

0

∣∣∣ du1(t)dt

∣∣∣ dt ≤ H11 + 2ω(ā + b̄ + d1) and

u2(t) ≤ u2 (ξ2) + ∫ ω

0

∣∣∣ du2(t)dt

∣∣∣ dt ≤ H21 + 2ω(r̄ + d2).

From (12.6) we get

ω(ā − b̄ + d1) ≤ ᾱωeu2(η2) + b̄ωe−u1(ξ1)

⇒ u2 (η2) ≥ ln

{
ā + d1 − b̄

(
1 + e−u1(ξ1)

)
ᾱ

}
= H22,

where u1 (ξ1) ≥ ln
(

b̄
ā−b̄+d1

)
and b̄ < ā + d1.

Therefore, u2(t) ≥ u2 (η2) − ∫ ω

0

∣∣∣ du2(t)dt

∣∣∣ dt ≥ H22 − 2ω(r̄ + d2) and so

max
t∈[0,ω] |u2(t)| ≤ max {|H21 + 2ω(r̄ + d2)|, |H22 − 2ω(r̄ + d2)|} = B2

Again, from (12.6) we get

ω(ā − b̄ + d1) ≤ ᾱωeu2(η2) + āωeu1(η1) + b̄ωe−u1(ξ1)

⇒ u1 (η1) ≥ ln

{
ā + d1 − ᾱ − b̄

(
1 + e−u1(ξ1)

)
ā

}
= H12,

where u1 (ξ1) ≥ ln
(

b̄
ā−ᾱ−b̄+d1

)
and b̄ + ᾱ < ā + d1.

Therefore, u1(t) ≥ u1 (η1) − ∫ ω

0

∣∣∣ du1(t)dt

∣∣∣ dt ≥ H12 − 2ω(ā + b̄ + d1) and so

max
t∈[0,ω] |u1(t)| ≤ max

{|H11 + 2ω(ā + b̄ + d1)|, |H12 − 2ω(ā + b̄ + d1)|
} = B1

From (12.8) we get

ω(s − h) =
∫ ω

0

eu3(t)

k(t)
(
1 − eu2(t)

)dt ≥ ωeu3(ξ3)

k̄
⇒ u3 (ξ3) ≤ ln{k̄(s − h)} = H31,
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where s > h so that u3 (ξ3) ≤ ln{k̄(s − h)} + ∫ ω

0

∣∣∣ du3(t)dt

∣∣∣ dt ≤ H31 + 2ω(s + h).

Also, (12.8) gives

ω(s − h) ≤
∫ ω

0

eu3(t)

k(t)
(
1 − eu2(η2)

)dt ≤ ωeu3(η3)

k̄
(
1 − eu2(η2)

)

⇒ u3 (η3) ≥ ln
{
k̄(s − h)

(
1 − eu2(η2)

)} = H32,

where u2 (η2) < 0 and so

max
t∈[0,ω] |u3(t)| ≤ max {|H31 + 2ω(s + h)|, |H32 − 2ω(s + h)|} = B3

Clearly, Hi j and Bi are independent of λ for i = 1, 2, 3 and j = 1, 2.
Denote B̃ = ∑3

i=1 Bi + B0, where B0 is chosen sufficiently large so that each

solution
(
v∗
1, v

∗
2, v

∗
3

)T
with v∗

i > 0 (i = 1, 2, 3) of the system of algebraic equations

ḡv3
k̄ (v2 − 1)

+ ᾱv2 = ā (v1 + v2 − 1) + b̄

v1
(v2 − 1) + b̄ + d1

(r̄ + ᾱ + γ̄ ) v1 + r̄ v2 = r̄ − d2 (12.10)

sv3 = k̄(s − h)(1 − v2)

satisfies ‖ (
ln(v∗

1), ln(v
∗
2), ln(v

∗
3)

)T ‖ = �3
i=1| ln(v∗

i )| < B̃, provided that the system
(12.10) has solutions.

Now, we take Ω =
{
(u1, u2, u3)

T ∈ X : ‖(u1, u2, u3)T ‖ < B̃
}
. Thus, condi-

tion (i) of Lemma 4.1 is satisfied. When (u1, u2, u3)
T ∈ ∂Ω ∩ Ker L = ∂Ω ∩ R3,

(u1, u2, u3)
T is a constant vector in R3 with |u1| + |u2| + |u3| = B̃. If system (12.10)

has at least one solution, then we have

QN

⎛
⎝ u1
u2
u3

⎞
⎠ =

⎛
⎜⎝

ḡeu3

k̄(eu2−1)
− ā (eu1 + eu2 − 1) − b̄e−u1 (eu2 − 1) − b̄ − d1 + ᾱeu2

r̄ (eu1 + eu2) + (ᾱ + γ̄ ) eu1 − r̄ + d2
eu3

k̄(eu2−1)
− h

s + 1

⎞
⎟⎠

If system (12.9) does not have a solution, then we can directly derive

QN

⎛
⎝ u1
u2
u3

⎞
⎠ 
=

⎛
⎝0
0
0

⎞
⎠

Thus, condition (i i) in Lemma 4.1 is satisfied.
In order to compute the Brouwer degree, let us consider the homotopy Hμ(u) =

μQN (u) + (1 − μ)G(u) for μ ∈ [0, 1], where
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G

⎛
⎝ u1
u2
u3

⎞
⎠ =

⎛
⎝ ᾱeu2 − b̄ − d1

(ᾱ + γ̄ ) eu1 − r̄
eu3

k̄(eu2−1)
− 1

⎞
⎠

Then we have 0 /∈ Hμ(∂Ω ∩ Ker L) for μ ∈ [0, 1]. Moreover, one can easily
show that the algebraic equation G(u) = 0 has a unique solution (u∗

1, u
∗
2, u

∗
3) =(

ln
(

r̄
ᾱ+γ̄

)
, ln

(
b̄+d1

ᾱ

)
, ln

(
b̄+d1−ᾱ

ᾱ/k̄

))
∈ R3.

By the invariance property of homotopy, direct calculation produces

deg(G,Ω ∩ Ker L , 0) = sng(u∗
1,u

∗
2,u

∗
3)∈QN−1{0}[det DG(u)]

= sng

∣∣∣∣∣∣
0 ᾱeu2 0

(ᾱ + γ̄ ) eu1 0 0
0 eu2+u3

k̄(eu2−1)2
eu3

k̄(eu2−1)

∣∣∣∣∣∣ = −1 
= 0,

where DG(u) is the Jacobian matrix of G in u.
Thus system (12.5) has at least one ω-periodic solution. Then the condition (i i i)

of Lemma (4.1) holds, as a consequence, the system (12.4) has at least one positive
ω-periodic solution. This completes the proof.

To study the seasonal variation of the growth of seaweeds, corals, and Parrotfish
we consider the rate parameters as a sinusoidal function with a period of 1 year so
that ω = 2π

365 = 0.01721. Simulating the nonautonomous system (12.3) we observe
that there exists a positive periodic solution with different phase differences and all
the positive periodic solutions initiating from different initial values converge to a
single periodic solution (cf. Fig. 12.12).

12.5 Discussion

In this paper, we have investigated the dynamics of coral reef benthic system in
which seaweeds and corals are competing to occupy turf algae in presence of her-
bivorous Parrotfish. We assume that seaweeds immigrate from other areas of the sea
bed while corals do not engage in immigration. We analyze the stability and bifur-
cations by linearizing the system about the equilibrium points, using the techniques
previously adopted in [35]. The conditions for stability of the system is determined
based onmacroalgal toxicity and the harvesting rates of the herbivores. On analyzing
our proposed model we observe that the system is capable of exhibiting the exis-
tence of two stable configurations of the community under identical environmental
conditions, allowing saddle-node bifurcations along with hysteresis cycles. The tran-
sition between the branches of stable coexistence steady states is not reversible but
exhibits hysteresis when the grazing rate of herbivores and seaweed growth rate cross
some certain thresholds. It is observed that with low seaweed toxicity, the system
exhibits two alternative stable states. With high toxicity level, the system becomes
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Fig. 12.12 Dynamic behavior of the nonautonomous system (12.3) with different initial con-
ditions (represented by red, green and blue) and with different phase differences for εi = 0.5
(i = 1, . . . , 7), ω = 0.01721 and other parameter values as in Table12.1

locally asymptotically stable at coral-free equilibrium followed by a sudden change
of transition and associated hysteresis effect, justifying the observations of [24] that
allelopathy can suppress coral resilience by preventing coral recovery. It is observed
that the system exhibits a sudden change of transition associated with saddle-node
bifurcation and hysteresis effects when the immigration rate of seaweeds crosses
some certain threshold. Also, with low grazing intensity of herbivores can lead to a
sudden change of regime from a coral-dominated regime to one that is dominated
by seaweeds. Moreover, overfishing of Parrotfish marks the transition from a coral-
seaweeds bistable regime to a seaweeds-dominated regime. Based on the existence
of two or multiple alternative stable configurations, we have defined different com-
ponents of ecological resilience and illustrated the components inscribed in each of
the bifurcation plots. We simulate the measures of ecological resilience by varying
the key parameters of the model. For the monostable scenario where the ecological
resilience is no longer applicable, we have defined the engineering resilience and
evaluated the resilience of the system by giving some perturbation in the system at a
given point of time. The perturbations and the corresponding measure of engineering
resilience are illustrated as a time series plot of the system. Further, we include the
effect of seasonal variations as sinusoidal functions of the biological parameters of
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our model to study the dynamics of the nonautonomous system. We obtain sufficient
conditions for the existence of positive periodic solutions and observed that a pos-
itive periodic solution with different phase differences and all the positive periodic
solutions initiating from different initial values converge to a single periodic solution.

Throughout the article, an attempt is made to search for a suitable way to restore
corals from possible bleaching effect and maintain a healthy coral reef ecosystem.
From analytical and numerical observations, it is seen that a sudden shift of transition
from the coral-dominated regime to the seaweed-dominated regime canhappendue to
the reduction in herbivory. Further, analytical and numerical simulations demonstrate
the following conclusions:

(i) With the increase of seaweed growth rate on corals, the resilience of coral-
dominated coexistence steady state gradually decreases until the growth rate of sea-
weeds reaches a critical threshold. It is observed that as the seaweed growth rate is
increased, two interior equilibria approach each other, collide and undergo mutual
annihilation, leading to a catastrophic shift of regime to a seaweeds-dominated and
coral-depleted steady state in presence of Parrotfish.

(i i) With low toxicity of seaweeds, the system becomes stable at the coral-
dominatedmonostable regime.An increase of seaweed toxicity reduces the resilience
of the system and determines two possible stable regimes depending upon the ini-
tial conditions. With high toxicity of seaweeds, the system becomes monostable at
the seaweed-dominated equilibrium followed by the complete elimination of live
corals, justifying the experimental observations of Bonaldo and Hay [24] that toxic
seaweeds can exhibit significant negative impact on coral species.

(i i i) With high seaweed toxicity, the increase of grazing rate of herbivores
increases the resilience of the coral-dominated regime, signifying the importance
of grazers in coral reefs affected by the allelopathy of seaweeds.

(iv) The system will be seaweed-dominated for low seaweed grazing intensity of
herbivores. It is observed that a sudden shift of transition from the coral-dominated
regime to the seaweed-dominated regime can happen due to the reduction in her-
bivory. An increase in the grazing intensity of herbivores increases the resilience of
the coral-dominated regime.

(v) The resilience of the coexistence state decreases owing to the increase of
seaweed toxicity, the increase in the rate of harvesting of herbivores, the increase of
seaweed external immigration rate and the decrease of grazing intensity of herbivores.

Moreover, we have observed that there is a gradual decrease in the toxicity-
tolerance level of the stable coexistence state with a steady increase in the harvesting
rate of herbivores. Also, a sharp decrease in the toxicity-tolerance level of the stable
coexistence state can occur even with a slight decrease of herbivore grazing intensity
and a slight increase in the immigration rate of toxic seaweeds. The gradual decrease
of ecological resilience followed by the emergence of a monostable regime can be
taken into consideration as an early warning signal for a catastrophic shift of regime
in coral reefs.
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Chapter 13
Multigrid Methods for the Simulations
of Surfactant Spreading on a Thin
Liquid Film

Satyananda Panda and Aleksander Grm

Abstract A multigrid approach is proposed in this work for the simulations of
surfactant spreading on a thin liquid film. The model equations for the descriptions
of the surfactant dynamics are the coupled nonlinear partial differential equations
in radial coordinate. The finite volume method on a uniform grid is used for the
discretizationof thegoverning equations inwhich thefluxes are discretized implicitly.
The discretized system is solved using the nonlinearmultigridmethod such as the full
approximation scheme. The obtained simulation results are discussed and validated
with existing results.

Keywords Thin liquid film · Surfactant transport · Multigrid methods

13.1 Introduction

The simulation of surfactant dynamics on a thin liquid film has important applica-
tions in many areas of engineering and sciences, for example, surfactant replacement
therapy [1], pulmonary drug delivery [2], crude oil recovery [3], ocular surfactant
and blinking dynamics [4], etc. Such flows can be described by the system of partial
differential equations (PDEs), which consists of equations for conservation of mass,
momentum, and surfactant transport. The free surface boundary conditions support
these equations, which are difficult in general for the solution. But the slenderness of
the fluid domain enables the simplification of the full two/three-dimensional math-
ematical model using lubrication analysis. Subsequently, the surfactant flow can be
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predicted by a one-dimensional coupled system of partial differential equations for
the free surface height and the surfactant concentration. A closed-form solution of
such combined system of equations is not available, except for certain simplified
conditions, and they must be solved using appropriate numerical techniques. The
process is transient and needs long simulation times for the fine grid. In this paper,
a nonlinear multigrid method based on the finite volume method is presented. The
method is applied for the solutions of the coupled PDEs derived by Gaver et al. [5] to
predict the dynamics of free fluid surface and surfactant concentration distribution.
We demonstrate that the proposed method is more accurate, efficient, and robust.

The paper is structured as follows. Section13.2 deals with the description of the
model proposed by Gaver and Grotberg [5] for the flow of surfactant concentration
and the film thickness. In the next section, we describe the discretization procedure
based on the finite volume method of the governing PDEs on radial coordinate.
The nonlinear multigrid method is then discussed for the solution of the discrete
nonlinear equations. In the penultimate section, we show the simulation results, and
the validation and the mesh refinement analysis are performed. The last section
presents the concluding remarks.

13.2 Model Description

Thegoverningnondimensional equationswhichdescribe the axisymmetric spreading
of an insoluble surfactant of a thin liquid film of Newtonian incompressible fluid are
the system of nonlinear time-dependent partial differential equations for the film
thickness h(r, t) and surfactant concentration γ (r, t). Here r is the radial coordinate
and t is the time from the release of surfactant. The formulation of the problem, as
well as the notations used, is from [1, 5, 6]

∂h

∂t
= 1

r

∂

∂r

(
G r

h3

3

∂h

∂r
− r

∂σ

∂γ

∂γ

∂r

)
(13.1)
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∂r
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2
rγ h2

∂h

∂r

)
, (13.2)

where G is the gravitational parameter, and Pe is the surface Peclet number.
The equation of state which describes the relationship between the surfactant

concentration γ and the surface tension σ is defined by

σ(γ ) = (β + 1)
[
1 + Θ(β)γ

]−3 − β , (13.3)

with Θ(β) = ((β + 1)/β)1/3 − 1. It should be noted that the constitutive Eq. (13.3)
used by [7, 8] has the following properties: the surface tension is a monotonically
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decreasing function of surfactant concentration, and the value of the dimensionless
surface tension lies between 0 and 1 and σ(0) = 1.

As reported in [5], the film is initially flat and locally contaminated by a spot of
insoluble surfactant which prompts h(r, t = 0) = 1, and the starting condition for
the surfactant distribution is given by

γ (r, t = 0) =

⎧⎪⎪⎨
⎪⎪⎩

γmax , (r ≤ RI )

γmax

(
0.5 cos

(
π(r−RI )
(1−RI )

)
+ 0.5

)
, (RI < r ≤ 1)

0 , (r > RI ) ,

(13.4)

where we used γmax = 1 and RI = 0.7 in the following.
Since the insoluble surfactant spreads radially on the surface, it is symmetric in

any plane perpendicular to the surface. Due to this symmetry, the insoluble surfactant
is treated as an axisymmetric body, and only half of the domain is considered in the
analysis. Thus, because of the symmetry of the problem, we suppose that the film
thickness and surfactant concentration are smooth at the origin. Accordingly, the
gradient of all field variables must vanish about the axis r = 0, i.e.,

∂h

∂r
(0, t) = 0,

∂γ

∂r
(0, t) = 0. (13.5)

For the far away condition, we also assume that

h(+∞, t) = 1, γ (+∞, t) = 0, (13.6)

where +∞ stands for the limit of the computational domain. In the following, we
consider the computational domain spans over the length 4 (nondimensional) which
is sufficiently large enough such that the endpoint does not affect the spreading
dynamics.

13.3 Discretization

The discretization of the coupled nonlinear partial differential equations (PDEs)
(13.1) and (13.2) subject to initial and boundary conditions is performed using finite
volume method [9] on radial coordinates. The details of the finite volume discretiza-
tion are given in [6]. We describe in brief here for the completeness. In order to solve
this set of PDEs, we first adapt Eqs. (13.1), (13.2) in conservative form as follows:

r
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∂r
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G r
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)
(13.7)
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We discretize the flow domain [0, L] into N equal size grid cells of size Δr =
L/N (see Fig. 13.1). We define the center of the cell r j as r j = Δr/2 + jΔr , j =
0, 1, . . . , N − 1. The cell edges of the cell j are located at r j−1/2 = r j − Δr/2 and
r j+1/2 = r j + Δr/2. In order to set up discrete equations, the functions h and γ are
approximated over the cell [r j−1/2, r j+1/2], i.e.,

h j (t) ∼ h(r j , t) = 1

Δr

∫ r j+1/2

r j−1/2

h(r, t)dr (13.9)

and

γ j (t) ∼ γ (r j , t) = 1

Δr
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γ (r, t)dr. (13.10)

The discrete relations for h j (t) and γ j (t) for j = 1, 2, . . . , N − 2 are obtained
by integrating the governing Eqs. (13.7) and (13.8) over the interval [r j−1/2, r j+1/2],
i.e.,
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Following the integration procedure given in [6], we obtain
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)
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and similarly for the left-hand side of Eq. (13.12).
Finally, we obtain the following discrete equations after integrating the right-hand

side of Eqs. (13.11) and (13.12),
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The discrete flux functions Fn+1
r j+1/2 and Gn+1

r j+1/2 are given by

Fn+1
r j+1/2 = F

(
r j + 1

2
Δr, tn+1

)
and Gn+1

r j+1/2 = G

(
r j + 1

2
Δr, tn+1

)
. (13.16)

The face values are evaluated as the mid-values of the two neighboring nodal values,
i.e.,

h(r j+1/2, t
n+1) = 1

2

(
hn+1
j + hn+1

j

)
(13.17)

and the forward differences are used for the evaluation of gradient, i.e.,

∂h

∂r
(r j+1/2, t

n+1) = 1

Δr

(
hn+1
j+1 − hn+1

j

)
. (13.18)

We approximate all time derivative terms using forward differences, e.g.,

∂h j

∂t
= hn+1

j − hnj
Δt

. (13.19)

At the boundary nodes r0 and rN−1, the discretized equations are derived applying the
boundary conditions (13.5) and (13.6). We additionally assume that at the boundary
nodes, the value of the time derivative term which is outside the cell is zero.
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13.4 Numerical Approach—Nonlinear
Multigrid Method (FAS)

The large system of equations obtained by time and space discretization of the partial
differential equations has to be solved for every time step. There are many linear and
nonlinear solvers to solve such system. The multigrid strategies are a great class
of iterative solvers for the solution of the discretized PDEs. The main idea of the
multigrid techniques was first presented by Southwell [10], where he depicted an
application which solves on a coarse framework and afterward interpolated the solu-
tion on a fine grid to enhance the initial guess. Brandt [11] introduced systematically
the multigrid methods and their applications. There are two fundamental kinds of
multigrid strategies: geometric and algebraic. This work is concerned about geo-
metric multigrid techniques, in which geometric data with respect to the problem
are utilized to form a solution algorithm. The geometric multigrid method operates
on the hierarchy of the grids. The algebraic multigrid works on the principle of the
multigrid method but does not require the grid information [12, 13]. In this work,
we have developed a nonlinear multigrid [14] algorithm based on the finite volume
method for the solution of the nonlinear system of equations described in Sect. 13.3.
We described the procedure in detail.

Let L (y) = f be the given nonlinear system of equations. After discretization
with grid size Δr , we get a system of nonlinear equations L Δr (yΔr ) = fΔr , where
L is a nonlinear operator. As per discretization given in Sect. 13.3, we have yΔr =
(y1, y2, . . . , y2N−1, y2N )∗ and fΔr (y) = ( f1(y), f2(y), . . . , f2N−1(y), f2N (y))∗.
Here the superscript star (∗) denotes the transpose operator. The solution of this
nonlinear system can be obtained using any nonlinear solver. In this work, we pro-
pose a nonlinear multigrid method, known as the full approximation scheme (FAS)
to obtain the numerical solution of the discrete equations.

Themethodbeginswith an initial guess and then threeNewton–Raphson iterations
are applied for all the internal nodes on such a grid as the pre-smoother in order
to smooth the high-frequency error. The residual on the finest grid is calculated.
The next step is restricting both residual and the value of yΔr onto a coarser grid.
Additionally, the modified right-hand side is also obtained and stored on the coarse
grid. This process is recursively called on every grid (except the coarsest grid), until
the coarsest grid is reached. Then the coarse grid problem is solved exactly by using
the Newton–Raphson method. Since the main reason of using the full approximate
storage (FAS) is to store the actual value of y on every grid (including the coarsest
grid), wewill obtain an exact solution at the coarsest grid. By subtracting this solution
from the restricted value of y from the finer grid, we can obtain the error term. Such
error is interpolated recursively back to a finer grid, and simple correction is applied
by adding the old value y on that grid with this interpolated error on every grid. This
interpolation process runs until the finest grid is reached. Finally, three Newton–
Raphson iterations are taken as the post-smoother on each grid immediately after the
coarse grid correction. This procedure is called the nonlinear multigrid V-cycle [14].
The algorithm is given below.
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FAS Algorithm—A Nonlinear Multigrid (NLMG) Method (v-Cycle) for the
System of PDEs

Let γ1 and γ2 be the number of iterations performed by Newton–Raphson method as
pre- and post-smothers, respectively. Here Δr is the grid length on a given grid ΩΔr

and Δt is the known time step.
Function: yΔr = FASNLMG

(
yΔr , fΔr ,L Δr (yΔr ),Δt

)
:

• Given an initial guess yΔr
o , relax γ1 times on L Δr (yΔr ) = fΔr .

• Compute the fine grid residual rΔr
res = fΔr − L Δr (yΔr ).

• Restrict fine grid residual to the coarse grid as r2Δr
res = RΔr

2Δrr
Δr
res , where RΔr

2Δr is a
full weighted average operator.

• Initialize coarse guess: y2Δr
0 = R̃2Δr

h ỹΔr , where R̃2Δr
Δr is the restriction operator.

• Compute the coarse right-hand side vector: f2Δr = L 2Δr
(
y2Δr
0

) + r2Δr
res .

• if Ω2Δr is the coarsest grid, then solve: L 2Δr (y2Δr ) = f2Δr for y2Δr .
• else y2Δr=FASNLMG

(
y2Δr , f2Δr ,L 2Δr (y2Δr ),Δt

)
, endif.

• Compute the error: e2Δr = y2Δr − y2Δr
0 .

• Interpolate the error approximation to the fine grid: eΔr = IΔr
2Δre

2Δr , where IΔr
2Δr is

the linear interpolation operator.
• Correct the solution on the fine grid: yΔr = yΔr + eΔr .
• Relax on the new solution γ2 times.

The nonlinear multigrid (NLMG) algorithm includes the step of solving system
of nonlinear equations for a specific time step with Newton–Raphson (NR) method.
In NR method, we have to provide the information of Jacobian. In our case, the
Jacobian is approximated with the finite difference method.

13.5 Result and Discussions

The proposed NLMG algorithm was implemented in Matlab, and the results are
obtained with an accuracy of order 10−6. Figure13.2a, b shows the numerical results
obtained using NLMG for G = 1, Pe = 10, β = 5, RI = 0.5, and γmax = 1. The
results show the evolution of film thickness over time. The total simulation time is
1 (nondimensional). The figure shows that the film thickness at the center of the
domain decreases due to the liquid having high surfactant concentration are draining
away. The surfactant concentration distribution is given at the right panel (Fig. 13.2b)
for different times. The figure shows that the spreading of surfactant distribution
increases with the advancement of time.

13.5.1 Validation

Toexhibit the effective implementation of theNLMGtechnique, the numerical results
are first compared to those obtained by Gaver and Grotberg in [5]. The NLMG
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Fig. 13.2 Numerical results computed for film thickness h(r, t) and surfactant concentration γ (r, t)
at several times using the proposed NLMG method for G = 1, Pe = 10, β = 5, RI = 0.7, and
γmax = 1. The total simulation time is 1 (dimensionless time unit) with increment of 0.1
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Fig. 13.3 Comparison of the results obtained by Gaver et al. [5] and the numerical simulation using
NLMG method for G = 1, Pe = 10, β = 5, RI = 0.7, γmax = 1 and t = 0.5: left: film thickness
distribution; b surfactant concentration distribution

simulation was performed with the grid points 26 + 1 and time step Δt = 0.001.
Figure13.3 demonstrates the numerical results obtained using the NLMG method
(solid line) for G =1, Pe = 10, β = 5, RI = 0.7, γmax = 1, and t = 0.5 (nondi-
mensional). The figure shows the NLMG results that are in good agreement, which
provides the necessary confidence that the NLMGmethod has been correctly imple-
mented.

Although the numerical scheme validates implementation and compareswell with
the solution in the available literature, we need to make sure that the solution is also
independent of mesh and time resolution. The mesh and time resolution analyses are
shown in the following subsection.
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Fig. 13.5 Time convergence test with grid size Δr = 4/26: a film thickness and b surfactant
concentration

13.5.2 Mesh and Time Convergence Study

The mesh and time convergence studies were conducted on NLMG method to find
out optimummesh size to balance between the accuracy and computational easiness.
In the present analysis, three different mesh sizes were used for the solutions, and
it can be observed that the results (Fig. 13.4) are independent of the mesh grid.
Thus, it validates that the convergence of the NLMG solution is independent of the
grid mesh size. Similarly, for the time-independent study, the results for the film
thickness height and the surfactant concentration distribution are plotted (Fig. 13.5)
for the three different time step sizes keeping the grid size Δr = 4/26 constant. The
results at different time steps are indistinguishable, which is another advantage to
the proposed method to compute solution at the faster time.
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Fig. 13.6 Comparison among results of Gaver et al. [5] and numerical results by fsolve (Matlab)
and NLMG

13.5.3 Comparison with Matlab Solver

In the following,we compare the performance of theNLMGmethodwithMatlab [15]
nonlinear solver fsolve, as illustrated in Fig. 13.6. The figure plots the film thickness
and surfactant concentration distributions at time t = 0.5 (nondimensional). For the
comparison, we solve the discretized system using Matlab fsolve routine. This rou-
tine solves the nonlinear equations using trust-region-dogleg (Levenberg–Marquardt)
method. The number of grid points chosen is equal to 26 + 1, and the time step is
Δ = 0.001. It can be observed that the solution obtained with the fsolve does not
agree well with the solution of Gaver and Grotberg [5] whereas the NLMG solver
produces the exact result that matches well. It is further observed that the NLMG
solver performs well even with larger time step and confirms the robustness of the
multigrid numerical method.

13.5.4 Mesh Refinement Analysis

We display in Table13.1 a mesh refinement analysis for the film thickness h and the
surfactant concentration γ . We ran the NLMG scheme for the grid points 232 + 1,
264 + 1 and 2128 + 1. For the analysis, we denote θ(M) as the variable θ computed
with 2M + 1 grid points, and its relative error is estimated by comparison to the most
refined computation, i.e.,

e
(
θ(M)

) =
∥∥θ(M) − θ(128)

∥∥
2∥∥θ(128)

∥∥
2

, (13.20)

where ‖.‖2 is the L2 norm. The relative error for the film thickness and the surfactant
distribution is computed using Eq. (13.20) and given in Table13.1. The table shows
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Table 13.1 Mesh refinement analysis for the film thickness (h) and the surfactant concentration
(γ ) at various times for G = 1, Pe = 10, β = 5, RI = 0.7, and γmax = 1

T ime (t) e
(
h(32)

)
e
(
h(64)

)
Rate e

(
γ (32)

)
e
(
γ (64)

)
Rate

0.1 0.0013 3.7781e-04 1.7828 0.0027 8.0066e-04 1.7537

0.5 0.0011 3.1301e-04 1.8132 0.0036 9.9039e-04 1.8619

1.0 9.2714e-04 2.7631e-04 1.7465 0.0034 9.5498e-04 1.8320

2.0 8.9214e-04 2.8451e-04 1.6488 0.0031 8.9824e-04 1.7871

that both the variables attain the superlinear rate of convergence. It can be further
noted that the superlinear accuracy is achieved for all the times, but the convergence
rate decreases after time t = 0.5 (nondimensional) for both the film thickness and
surfactant variables. This can be attributed to the fact that at the origin the surfactant
is initially higher results in lower the surface tension that drives the fluid away from
the center at the faster speed. With the advancement of time, the spreading rate of
surfactant concentration distribution is slower, which decreases the movement of
fluid from the origin as it approaches the steady state.

13.6 Validation Case with Sharp Changes in Gradient in
the Free Surface Profile and Surfactant Concentration

As one intuitively expects, the free surface of the thin film and concentration can also
experience a shock-type structure in the absence of surface tension, and the question
arises as to whether the proposed NLMG method can predict the sharp changes
in gradient in the free surface profile and surfactant concentration. To address this
question, we consider a model given in [16, 17] in the absence of surface tension for
the description of the spreading of an insoluble surfactant on the free surface of a
thin liquid film. The governing nonlinear partial differential equations in Cartesian
coordinates system for the free surface height h = h(x, t) of the thin liquid film and
the surfactant concentration Γ = Γ (x, t) are

∂h

∂t
+ ∂Q

∂x
= 0, (13.21)

and
∂Γ

∂t
+ ∂P

∂x
= 0, (13.22)

where

Q = −h2

2

∂Γ

∂x
+ h3

3
, and P = −hΓ

∂Γ

∂x
+ h2

2
Γ.
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The boundary conditions are

h(0, t) = 1, Γ (0, t) = 1 (13.23)

and
∂h

∂x
|x=0,x=∞= 0,

∂Γ

∂x
|x=0,x=∞= 0. (13.24)

The initial film profile is considered as exponential:

h(x, 0) = e−x2 , (13.25)

and for the exogenous surfactant, we have

Γ (x, 0) = e−x2 . (13.26)

Authors Momoniat et al. [17] have developed a higher order numerical scheme
based on finite volume approximation for the solution of Eqs. (13.21) and (13.22).
A BDF approximation of order four is used for the time derivative, and the fluxes
are approximated explicitly by the three-point central difference scheme with Roe–
Sweby flux limiter.

For the validation purpose, we follow the same finite volume discretization as
described in Sect. 13.3 to discretize the spatial derivatives. The discrete equations
are in the form:

hn+1
j = hnj + Δt

Δx

(
Qn+1

j+1/2 − Qn+1
j−1/2

)
, (13.27)

and

Γ n+1
j = Γ n

j + Δt

Δx

(
Pn+1
j+1/2 − Pn+1

j−1/2

)
. (13.28)

The fluxes are approximated implicitly, i.e.,

Qn+1
j+1/2 = Q

(
x j + 1

2
Δx, tn+1

)
, and Pn+1

j+1/2 = P

(
x j + 1

2
Δx, tn+1

)

with (
∂Γ

∂x

)n+1

j+1/2

=
(
Γ n+1

j+1 − Γ n+1
j

)
Δx

,

and

hn+1
j+1/2 = 1

2

(
hn+1
j + hn+1

j+1

)
.

The discretized Eqs. (13.27) and (13.28) with prescribed initial and boundary
conditions are solved using the developed NLMG solver. For the fine resolution
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Fig. 13.7 Comparison of results of Momoniat et al. [17] and numerical results by NLMG at time
t = 5

of the solution, the number of grid points chosen is equal to 212 + 1, and the time
step is Δt = 0.001. The numerical results obtained with the proposed algorithm are
compared to those obtained by Momoniat et al. [17] at time t = 5. Specifically, the
data of results of Fig. 2 in [17] are read here for validation purpose. Figure13.7 shows
the free surface profile of the thin film (left panel) and the surfactant distribution (right
panel) at different times.

It is apparent from these profiles that the steep changes in gradient in film thickness
and concentration variations occur on a much shorter length scale which will lead to
a more difficult test case for the NLMG algorithm, as one would expect. The reason
is that the derivative terms in the finite volume discretization are of lower order
approximation, and thus, a higher order finite volume discretization will be explored
in future for the correct resolution of the solution. In spite of these limitations, the
NLMG solver is capturing the shock front for the small time step without introducing
any limiters.

13.7 Concluding Remarks

In this work, a nonlinear multigrid method based on finite volume method in radial
coordinate is presented to solve the surfactant-driven thin liquid film equations
derived by Gaver et al. [5]. We have demonstrated that the developed algorithm
is quite robust and stable in the sense that it solves the discretized nonlinear equa-
tions for the large time step compared to ordinary methods. The simulation results
of the nonlinear multigrid code were validated with the existing results of Gaver
and Grotberg [5]. The time effectiveness of NLMG solver was explored compared
to the Matlab solver fsolve. The results were very impressive showing speedup of
few orders compared to the Matlab solver. Also, the accuracy of the Matlab solver
was not satisfactory. Expectedly, not every free surface profile and surfactant con-
centration can be captured with a first-order numerical scheme with multigrid solver
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when the changes in the gradient of these profiles are very sharp. There is obvious
limitation to the proposed finite volume discretization scheme when there is a sharp
change in the gradient of the solution variables. Therefore, in order to have a shock-
capturing NLMG solver, the planned work will develop a higher order finite volume
discretization scheme.

In spite of these limitations, the proposed NLMG solver is very fast, accurate, and
robust for the particular problems and can be implemented in many different areas
of numerical solutions for highly nonlinear time-dependent PDE systems.
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Chapter 14
Hopf Bifurcation in a Mathematical
Model of Tuberculosis with Delay

Eenezer Bonyah, Fahad Al Basir and Santanu Ray

Abstract Tuberculosis is an air-borne infectious disease which is transmitted to one
another through the respiratory system and mostly occurs due to close contact with
an infected person. Here, a mathematical of SIR type is proposed for the dynamics
of tuberculosis with the effect of treatment and time delay. The level of treatment is
assumed proportional to the number of infected people reported to the health orga-
nization. The equilibria and stability analysis has been carried out using qualitative
theory. This paper provides some vital information such as the basic reproduction
number R0 and the stability of equilibrium points. Hopf bifurcation at the endemic
steady states has been analyzed taking delay as the main parameter. Numerical sim-
ulations fulfill analytical outcomes. We found that large time delay in treatment can
cause problems and it should be avoided.

Keywords Mathematical model · Delay differential equation · Basic reproduction
number R0 · Stability · Hopf bifurcation

14.1 Introduction

Tuberculosis is known to have killed humans than any other disease of mankind and
the infection rate is higher than any other disease in the world [1]. In Africa TB
is considered as a dangerous disease and many nongovernmental organizations are
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helping to manage the death associated with this disease. There are instances where
drugs for curingTB are given free to patients however, in some communities inAfrica
due to cultural practices that has not been successful. The developed countries are also
facing the challenges of TB. For instance, in 2015 alone about 10.4 million people
were contractedwithMycobacterium tuberculosis (Mtb), ofwhich 1.8million people
perished due to the disease [2, 3]. Nearly 80% of the current report cases of TB in
the world crop up in 22 high burden countries noted for a high incidence rate from
59 to 1003 per 100,000 people. China and India alone account for 38% of the total
TB cases in the world. The one-third of the world’s population is infected with TB
and this shows the seriousness of TB [4].

Time delays on the treatment of TB has a serious consequence on the spread
and the control of the disease. This is because it reduces the chance of survival, the
cost of treatment and also the productivity of the individuals. It can be connected
with both patients’ altitude and medical health facilities [4]. TB has become a major
health problem in both developing and developed countries due to drug resistance
[5]. Of all the advancements in medicine and technology TB still remains one of the
major causes of death in many high incidence countries. Thus, no country is safe
irrespective of the health care system [6].

Mathematical modeling has become a powerful tool for examining dynamics of
diseases in order to provide clear information on the spread and control of many
infectious diseases [7, 8]. Several mathematical models in different forms have been
constructed to study the dynamics of TB [9–13]. Houben et al. [11] constructed
a mathematical model to examine the feasibility of achieving the 2025 global TB
target among three countries South Africa, China, and India. Li et al. [12] proposed
a mathematical model incorporating mixed cross infection in public farms. In [14],
Blower developed a mathematical model to study the intrinsic dynamics of TB. Jia
et al. [15] have examined the impact of immigration on the transmission of TB while
Bhunu [16] constructed a TB model with chemoprophylaxis. Cohen and Murray
[17] has developed a mathematical model to explore the multi drug resistant M.
tuberculosis of heterogeneous fitness.

Delay in treatment plays a crucial role in the survival of TB patient however, there
have been fewmathematical models on delay, [6, 18] and the references therein. The
effect of delay in the treatment of TB in many of the Sub-Saharan countries cannot
be quantified because of the geographical and cultural arrangement [19]. Even in
some communities it is wrong to send a sick person to the hospital utill the gods have
been consulted. In some cases, poverty is so high such that many of them cannot
meet the cost for treatment where TB treatment is not free. In Ghana, for example,
the government has made the treatment of this disease for free and also a constant
public education is being undertaken.

In this article,we assume the level of control in the formof treatment for the control
of the disease. Moreover, it is assumed that the level of control is proportional to the
number of infected people reported to the health organization. The aim here is to
examine the effect of time delay in the treatment of TB which is vital for it controls
such as in determining drug dosage, efficacy of drugs and others. Consequently,
a delay model is formulated and analyzed. Numerically, we have shown the main
results.



14 Hopf Bifurcation in a Mathematical Model of Tuberculosis with Delay 303

14.2 Mathematical Model Formulation

Following assumptions are made for the formulation of desired mathematical model.

– The model sub-partitions the entire human population at time t into the following
sub-populations of susceptible individuals who are not yet suffering tuberculosis,
S(t), infected individuals who are infected with tuberculosis, I (t) and recovered
individuals are those infected but have recovered through treatment R(t).

– The recruitment rate into the susceptible population is denoted by�. The effective
contact infection between the susceptible individuals and infected individuals is
denoted by β1.

– The naturalmortality rate of a human isμ and disease induced death rate is denoted
by d.

– The level of treatment is proportional to the number of infected individual modeled
via the term α f (I ) where α is the maximum level of treatment and f (x) is an
increasing function of I (t) and 0 ≤ f (I ) ≤ 1.

– The recovery rate of the infected individuals is α f (I ) and the rate individuals
recovered loss immunity and become infected through contact with infected ones
is denoted by β2.

The following equations depict the various interactions between the compart-
ments:

dS

dt
= � − β1 I S − μS,

d I

dt
= β1 I S − (μ + d)I − α f (I (t − τ))I + β2 I R,

dR

dt
= α f (I (t − τ))I − β2 I R − μR. (14.1)

with initial conditions:

S(θ) > 0, I (θ) > 0, R(θ) > 0, θ ∈ [−τ, 0]. (14.2)

By the fundamental theory of functional differential equations [20], we know
that there is a unique solution (S(t), I (t), R(t)) to system (14.1) with the initial
conditions given in (14.2).

Somebasic properties such as positive invariance andboundedness of the solutions
are discussed through the following theorems.

Theorem 14.2.1 All the solution of (14.1) with initial conditions (14.2) are positive.

Proof The system (14.1) can be written as:

dX

dt
= g(X, t, τ ) =

⎛
⎝
g1
g2
g3

⎞
⎠ =

⎛
⎝

� − β1 I S − μS
β1 I S − (μ + d)I − α f (I (t − τ))I + β2 I R

α f (I (t − τ))I − β2 I R − μR

⎞
⎠ (14.3)
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where, X (t) = (X1(t), X1(t), X1(t))T = (S(t), I (t), R(t))T .
It is easy to check in system (14.1) that whenever choosing X (θ) ∈ R+ such that

S = 0, I = 0, R = 0, then

gi (X)|xi=0,X∈R3+ ≥ 0, i = 1, 2, 3.

with x1(t) = S(t), x2(t) = I (t), x3(t) = R(t).
Using the Lemma 1 in [21], Theorem 1.1 in [20], we can conclude that any solution

of (14.1) with X (θ) ∈ C, say X (t) = X (t, X (θ)), is such that X (θ) ∈ R
3+ for all

t ≥ 0. Hence the solution of the system of system (14.1) exist in the region R
3+ and

all solutions remain nonnegative for all t > 0.

The following theorem characterize the boundedness of solutions of the model sys-
tem (14.1).

Theorem 14.2.2 All the solutions of (14.1), that are initiated from R
3+, will be con-

fined in the region

� =
{
(S, I, R) ∈ R

3
+ : 0 ≤ S + I + R ≤ �

μ

}
. (14.4)

14.2.1 Existence of Steady States

The system (14.1) has two equilibria, namely:

(i) the disease-free equilibrium point E0(
�
μ
, 0, 0)

(ii) the endemic equilibrium point, E∗(S∗, I ∗, R∗) where

S∗ = �

β I ∗ + μ
, R∗ = α f (I ∗)I ∗

β I ∗ + μ
(14.5)

and I ∗ is the positive root of

�β1 I (β2 I + μ) − I [(μ + d) + α f (I )](β1 I + μ) · (β2 I + μ) + β2α f (I )I (β1 I + μ) = 0.

14.3 Stability of Equilibria

In this subsection, we determine the local stability of the endemic equilibrium by
finding the eigenvalues of the Jacobian matrix. For this we need the Characteristic
equation of Jacobian matrix.
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14.3.1 Characteristic Equation

Linearizing the system (14.1) about any point E(S, I, R), we get:

dX

dt
= FX (t) + QX (t − τ). (14.6)

Here F, Q are 3 × 3 matrices, given as below:

F = [Fi j ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

−β1 I − μ −β1S 0

β1 I β1S − μ − d − α f (I ) + β2R β2 I

0 α f (I ) − β2R −β2 I − μ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Q = [Qi j ] =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 −α f ′(I )I 0

0 α f ′(I )I 0

⎤
⎥⎥⎥⎥⎦

, (14.7)

The characteristic equation of the delay system (14.1) is given by,

H(ρ) =| ρ I − P − e−ρτ Q |= 0.

This gives,

H(ρ, τ ) = ρ3 + m1ρ
2 + m2ρ + m3 + e−ρτ [m4ρ

2 + m5ρ + m6] = 0. (14.8)

Here,

m1 = −[F11 + F22 + F33], m2 = F22F33 + F11F33 + F11F22 − F21F12,

m3 = F11F22F33 + F12F21F33, m4 = −Q22, m5 = Q22F33 + F11Q22

m6 = F11Q22F33.

For τ = 0, (14.8) becomes

H(ρ, 0) = ρ3 + (m1 + m4)ρ
2 + (m2 + m5)ρ + (m3 + a6) = 0. (14.9)

Let
σ1 = (m1 + m4), σ2 = (m2 + m5), σ3 = (m3 + a6), (14.10)

then the following results can be obtained.
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Theorem 14.3.1 Let

R0 = β1�

μ(d + μ + α)
, (14.11)

then disease-free equilibrium E0 is locally asymptotically stable when R0 < 1 and
unstable otherwise. Transcritical bifurcation occurs at R0 = 1.

Remark Infection cannot spread across the population if R0 < 1 and the disease-free
state is locally asymptotically stable. Each infected human produces more than one
secondary infected individuals if R0 > 1 and as a result of this, the invasion is always
possible which makes the disease-free state unstable.

Theorem 14.3.2 The coexistence equilibrium point E∗(S∗, I ∗, R∗) is stable if the
following conditions are satisfied:

σ1 > 0, σ3 > 0, σ1σ2 − σ3 > 0

where, σi , i = 1, 2, 3 are defined in (14.10).

Proof The characteristic for τ = 0 becomes

ρ3 + σ1ρ
2 + σ2ρ + σ3 = 0, (14.12)

Thus, if the conditions stated in the theorem hold then using the Routh–Hurwitz
criteria, the coexistence equilibrium E∗ of the system (14.1) is locally asymptotically
stable for τ = 0.

14.3.2 Length of Delay and Hopf Bifurcation

For τ > 0, the characteristic equation is a transcendental equation in ρ. It is known
that E∗ is locally asymptotically stable if all the roots of the corresponding char-
acteristic equation have negative real parts and unstable if purely imaginary roots
exist.

Assuming ρ = iω as a root of the Eq. (14.8) and separating the real and imaginary
parts, we obtain

m3 − ω2 = m4ω
2 cosωτ − m5ω sinωτ − m6 cosωτ,

−ω3 + m3ω = −m4ω
2 sinωτ − m5ω cosωτ + m6 sinωτ.

(14.13)

It follows from (14.13) that

ω6 + δ1ω
4 + δ2ω

2 + δ3 = 0, (14.14)

where
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δ1 = m2
1 − 2m2 − m2

4, δ2 = m2
2 + 2m4m6 − 2m1m3 − m2

5, δ3 = m2
3 − m2

6.

Let ω2 = a, then the Eq. (14.14) becomes

F(a) = a3 + δ1a
2 + δ2a + δ3 = 0, (14.15)

If δ1 > 0, δ2 > 0 and δ3 > 0, we can claim there exists no w such that iw is the
eigenvalue of the characteristic Eq. (14.8). Therefore, the real parts of all the eigen-
values of (14.8) are negative for all τ ≥ 0 and thud system is stable for all τ ≥ 0.
Therefore, we have the following theorem.

Theorem 14.3.3 If the following conditions: σ1 > 0, σ3 > 0, σ1σ2 − σ3 > 0 and
δ1 ≥ 0, δ3 ≥ 0, δ2 > 0 are satisfied then the infected steady state E∗ is asymptotically
stable for all τ ≥ 0.

Now, if δ3 < 0, then there exists a positive root a0 of (14.15) for which the
characteristic equation has a pair of purely imaginary roots ±iω0. Then Eq. (14.14)
possesses a pair of purely imaginary roots ±iω0.

Now, suppose that (14.15) has positive roots and are denoted by ai , i = 1, 2, 3.
Then (14.14) has three positive roots, ωi = √

ai , i = 1, 2, 3. From Eq. (14.13), we
obtain the value of τ as

τnk = 1

ω0

(
cos−1 (m5 − m4m1)ω

4
0 + (m3m4 + m1m6 − m2m5)ω

2
0 − m6m3

m2
4ω

4
0 + (m2

5 − 2m6m4)ω
2
0 + m2

6

+ 2nπ
)
,

(14.16)
for k = 0, 1, 2, 3 and n = 1, 2, . . . . Thus ±iωk is a pair of purely imaginary roots
of (14.8).

Let
τ0 = τ

n0
k0

= min
n≥0,1≤k≤3

{τ n
k }, ω0 = ωk0 .

The above results can be given in the following theorem (Fig. 14.1).

Fig. 14.1 Forward
transcritical bifurcation:
Steady state values of
infected human is plotted
with parameters values as
� = 40,
d = 0.012, μ = 0.01,
β2 = 0.00002, α = 0.2,
β1 ∈ [0.000002, 0.00006]
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Theorem 14.3.4 Suppose that the interior equilibrium point E∗ exists and is locally
asymptotically stable for τ = 0 and if either, δ3 < 0 or δ3 ≥ 0 and δ2 < 0, then E∗
is asymptotically stable when τ < τ0 and unstable when τ > τ0. When τ = τ0, Hopf
bifurcation occurs provided the following transversality condition is satisfied,

3ω4
0 + 2δ1ω

2
0 + δ2 > 0.

Proof We only need to prove the transversality condition only. Denoting ρ = ρ(τ),
differentiating (14.8), we have

(
dρ(τ)

dτ

)−1

= − 3ρ2 + 2m1ρ + m2

ρ(ρ3 + m1ρ2 + m2ρ + m3)
+ 2m4ρ + m5

ρ(m4ρ2 + m5ρ + m6)
− τ

ρ
,

which leads to

sign

{
Re

(
dρ

dτ

)

τ=τ j

}

= sign

{
Re

(
dρ

dτ

)−1

τ=τ j

}

= sign
{
3ω4

0 + (2m2
1 − 4m2 − 2m2

4)ω
2
0 + m2

2 + 2m4m5 − 2m1m3 − m2
5

}

= sign
{
3ω4

0 + 2δ1ω
2
0 + δ2

}
.

(14.17)
Thus, the transversality condition holds andHopf bifurcation occurs at τ = τ0. Hence
the theorem.

14.4 Numerical Simulations

The numerical simulations of the system (14.1) are carried out in this section to
explore the dynamics of the model. The effect of increasing delay of treatment is crit-
ically investigated in this section to confirm some of the theoretical findings already
established in previous sections. We have taken f (I ) = I/(1 + I ) for numerical
simulations.

In Figure14.1, we have seen that the disease will persist if R0 > 1, system will
be disease free for R0 < 1, and Transcritcal bifurcation will occur at R0 = 1.

Figure14.2 shows that the infected individual decreases for increasing values of
α (the level of treatment). This may suggest that individuals become aware of TB
and adopt strategies to prevent infection in the population.

The endemic equilibrium of the system (14.1) without delay (τ = 0) is asymp-
totically stable if the given parameter values as the conditions of Theorem 14.3.2
are satisfied. The system populations initially exhibit a small amount of oscillation
become stable when the delay is smaller than its critical value τ ∗ (Fig. 14.3). This
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Fig. 14.2 Effect of ‘level of treatment’ on the system populations. Steady state value of infected
human (I ∗) is plotted for a range of values of α. The parameters values are:� = 40, β1 = 0.00025,
d = 0.012, μ = 0.01, β2 = 0.00002 and α ∈ (0.2, 1)
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Fig. 14.3 Numerical solution of the system for different values of τ . Parameter values used for the
simulation are the same as in Fig. 14.2

suggests that making a prediction with regard to the epidemic size may not be too
difficult.

Figure14.3 also depicts periodic oscillation for (τ > τ ∗ ≈ 32.3) i.e. endemic
equilibrium is unstable for (τ > τ ∗) (Theorem 14.3.4). This implies that in some
instances the number of infective will be rising and other time may be in decreasing
which will result in the difficulty of estimating the actual size of the epidemic.
This suggests that all state variables bifurcate into periodic solution at for (τ = τ ∗)
(Fig. 14.4).
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Fig. 14.4 Hopf bifurcation solution of the system for τ = 13. The parameters are same as Fig. 14.3

14.5 Discussion and Conclusion

In this chapter, amathematical is developed for the dynamics of tuberculosis epidemic
using a set of delay differential equations with an aim to examine the effect of time
delay in controlling the disease. Recovery is assumed to be proportional to the level
of treatment/control of the disease also assumed as a delayed process.

Themodel systemhas two equilibria: the disease-free equilibriumand the endemic
equilibrium. Disease-free equilibrium is stability for R0 < 1 and becomes unstable
if R0 > 1. Endemic equilibrium become feasible for R0 > 1 and undergoes Hopf
bifurcation if the delay parameter crosses a threshold value, τ ∗.

In conclusion, the persistence of long period of oscillation if the lag period is
increased has a serious negative effect on controlling TB epidemic in the communi-
ties.
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Chapter 15
Treatment of Psoriasis by Interleukin-10
Through Impulsive Control Strategy: A
Mathematical Study

Amit Kumar Roy and Priti Kumar Roy

Abstract Psoriasis is characterized by anomalous growth of keratinocytes (skin
cells), which occurs due to abrupt signaling within immune cells and cytokines. The
most significant immune cells, T cells go through differentiation with interaction of
dendritic cells (DCs) to produce Type 1 T helper cell (Th1) and Type 2 T helper cell
(Th2) subtypes. In psoriatic progression dynamics, the inflammation effect of Th1
mediated cytokines (pro-inflammatory) are responsible for the abnormal growth of
keratinocytes. In this measure, the effect of anti-inflammatory cytokines secreted by
Th2 subtype partially downregulate the growth of epidermal cell. In this research arti-
cle, we have constructed a five-dimensional mathematical model involving T cells,
dendritic cells, Th1, Th2, and keratinocyte cell populations for better understanding
the development of psoriatic lesions. Moreover, we have evaluated the role of Th1,
Th2, and interplay of various cytokine networks in Psoriasis through a set of nonlin-
ear differential equations. Our analytical study reveals the preconditions for disease
persistence and also validates the stability criteria of endemic equilibrium for the
disease. Furthermore, we have used one-dimensional impulsive differential equation
to examine the effects of different levels of biologic (Interleukin-10) for different
dosing intervals in keratinocytes cell population. We have also examined the quali-
tative behavior of keratinocyte by considering two different values of the parameter
corresponding to the reduction of keratinocyte due to the impact of drug (IL-10). We
have also found the perfect dosing intervals of biologic (Interleukin-10) that could
tolerate the keratinocytes at the desired level. Finally, our analytical and numerical
computations reveal that the use of IL-10 through impulsive way is proven better
treatment compared with other trivial therapeutic policies for psoriatic patients.
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15.1 Introduction

Psoriasis is an autoimmune disorder which persists with hyper-proliferation of the
dermal cells with multifarious dermatological symptoms. Recently, it is a serious
dermatological disorder which has a deep disagreeable effect on patient’s social,
mental, and physical happiness globally. Scientists nowbelieve that at least 10 percent
of the general population inherits the genes that create a predisposition to psoriasis
development [1]. Certain environmental factors may also trigger the psoriasis onset,
causing the disease to become active. These environmental triggers vary from person
to person and sometimes it becomes a privilege for a patient. However, etiology of
psoriasis remains unclear till date, but substantial evidence for recurring immune
imbalance indicates psoriasis development.

Human immune cells, T cell and dendritic cell (DCs) take vital accountability for
creating the hyper-proliferation of keratinocyte which is the causal fact of the disease
psoriasis. T cell is a kind of lymphocyte (a subtype of white blood cell) that plays a
central role in cell-mediated immunity, arise in the bone marrow and migrate to thy-
mus gland to mature [2]. Dendritic cells are particular antigen-presenting cells and
important intermediaries of immunity originated from monocyte and dendritic cell
progenitor in bone marrow [3]. Naive T cells (T cells that have not yet encountered
antigen) undergo a differentiation with the interaction of DCs to produce Th1 and
Th2 subtypes under certain cytokine environments [2, 4]. If the naive T cells interact
with DCs in Interleukin 12 (IL-12) dominated region, it results in T cells to differen-
tiate into a large amount of Th1 cells that secrete pro-inflammatory cytokines, viz.,
Interferon-gamma (IFN-γ ), Transforming growth factor-beta (TGF-β), and Tumor
necrosis factor-alpha (TNF-α). At the time of naive T cells differentiation, if the
periphery is Interleukin 4 (IL-4) conquered, it results in the enrichment of the den-
sity of Th2 cells, which secrets anti-inflammatory cytokines family, viz., Interleukin
4 (IL-4) and Interleukin 10 (IL-10). In the presence of pro-inflammatory cytokines,
the proliferation of Th2 cells is downregulated and on the other hand, the prolifer-
ation of Th1 cells is upregulated [4, 5]. Nowadays, psoriasis is treated as Th1 cells
mediated skin disorder, characterized by the overproduction of IFN-γ , TNF-α, and
TGF-β [6]. Keratinocyte is a principal epidermal cell, expected as major target tis-
sue of TGF-β and it differentiates by the influence of TGF-β signaling [7]. IFN-γ
is a multifunctional and immunomodulatory cytokine, which activate keratinocyte
by the possess of biochemical requirements [8]. TNF-α alone is not capable to pro-
voke immunologic reaction but in combination with IL-17A, IL-17C, and other
cytokines, it forms strong synergies [9, 10]. Under this strong synergism, the expres-
sion of IL-17R is increased by keratinocyte, which gives the significant response in
hyper-proliferation of keratinocyte [10, 11]. However, there is increasing evidence
that IL-4 gives pleiotropic effects on the immune system and directly suppress Th1
mediated inflammation on keratinocyte. It is conveyed that IL-10 cytokine stimulates
the enlargement of anti-inflammatory cytokines by inhibiting the IFN-γ production.
Although anti-inflammatory cytokines secreted fromTh2 cells negatively regulate the
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keratinocytes population, yet overexpression of various pro-inflammatory cytokines
play a central role in the disease progression [12].

Clinically, it is accepted that the turnover time for the epidermis in psoriatic
case is 7 days (normal turnover time for the keratin layer is 2 days) and also a
doubling of the proliferative cell population in psoriasis is from 27,000 to 52,000
cells/mm [13, 14]. Microarray analysis performed by Johnson-Huang et al. reported
that IFN-γ and TNF-α are the key regulatory cytokines in psoriasis development
[15, 16]. Mussi et al. already developed an experimental study on the level of serum
TNF-α which is significantly high for psoriasis using enzyme-linked immunosorbent
assay (ELISA) kits [17]. Using ELISA method, Baran et al. specified that the con-
centrations of TGF-β were dramatically increased for patients with psoriasis [18].
Promising new therapies aremainly pro-inflammatory cytokines inhibitor implicated
in psoriasis [19]. Through clinical trial program, many biological agents (Alefacept,
Efalizumab, Etanercept, Infliximab, and Adalimumab) are globally accepted as a
safe and effective drug for patients with psoriasis [19]. Recently, many biological
and clinical experimenters suggested that injection of anti-inflammatory cytokines
(IL-4 and IL-10) may be a successful treatment for psoriasis [20, 21]. They have also
suggested that receiving of IL-10 (20 ug/kg of body weight, 3 times per week) may
reduce about 90% of initial psoriasis area within 50 days [20, 22–24].

During the last decade, some mathematical models are being developed using
Ordinary Differential Equation (ODE) as well as Partial Differential Equation (PDE)
on the disease dynamics of psoriasis introducing different cell population of T cells,
dendritic cells and keratinocytes along with cytokine influence [25–28]. Roy et al.
also studied the mathematical model on psoriasis based on Fractional Order Differ-
ential Equation (FDE) and they discussed about the control of the disease using the
negative feedback loop [4, 29–31]. In the previous study of psoriasis in the math-
ematical aspect, it was considered that T Cells and dendritic Cells play a vital role
in the disease dynamics and all disease control approaches were based on some
hypothetical assumptions. In this research article, we have emphasized the effect of
Th1 and Th2 on the hyper-proliferation of keratinocytes through pro-inflammatory
and anti-inflammatory cytokines network. We have also studied our proposed math-
ematical system introducing the therapeutic agent (IL-10). In the disease control
strategy, we have considered the one-dimensional growth equation of keratinocyte
which represents the maximum density of epidermal cell, present during the disease
progression. Furthermore, we have studied the keratinocyte proliferation under IL-
10 therapy using modified impulsive method. Our analytical and numerical analysis
reveals that using IL-10 in perfect dose with some fixed time interval may reduce
more than 90% of psoriatic plaque more quickly.

The article begins with an overall introductory section; then, we have formulated
the mathematical model based on suitable assumptions and the basic property of
formulated model has been also discussed in Sect. 15.2. In Sect. 15.3, we have stud-
ied the model system analytically which explores the existence and stability criteria
of endemic equilibria. In Sect. 15.4, we have investigated the Keratinocyte density
using impulse therapeutic approach under fixed IL-10 injecting process. Section15.5
presents the numerical simulation of system dynamics for without and with therapy.
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In Sect. 15.6, we have discussed about the consequences of outcomes which we have
found out in different sections and we have drawn the conclusion of this research
work, in Sect. 15.7.

15.2 The Model

15.2.1 Model Formulation with Suitable Assumptions

Wedevelop amathematical model of psoriasis by introducing different cells to reflect
the cell-biological relationships in expressing the disease. In order to develop the
mathematical model we have considered the schematic diagram (Fig. 15.1). Here,
T (t), D(t), T1(t), T2(t), and K (t) represent the densities of naive T cells, dendritic
cells, Th1 cells, Th2 cells, and epidermal keratinocytes, respectively, at any time t .
The following assumptions are considered to develop our mathematical model.

(A) Naive T cells and DCs strictly originated from bone marrow and got mature
at thymus. The accumulation rate of naive T cells and DCs in the area proximity at
the suitable management are assumed aL and aD , respectively. We assume that the
proliferation of naive T cells is logistic, where ρ indicates themaximum proliferation

Fig. 15.1 Schematic diagram of the interactions between the components of the model
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rate and Tmax stands for the maximum stage of T cell proliferation [32]. T cells and
DCs are two different types of immune cells with dissimilar features in the human
immune system. Therefore, we have considered different activation rates of T cells
and DCs for justification of our mathematical model. The rate at which T cells bind
with dendritic cells is denoted as δ1. On the other hand, δ2 is the rate of stimulation
of dendritic cells with T cells. In mathematical perceptive, the interaction obey the
Law of Mass Action. Under mixing homogeneity, the combined interaction of naive
T cells and DCs contributes to the subtype of T cells (Th1 and Th2). The per capita
removal rates of T cells and DCs are assumed as μ1 and μ2, respectively, throughout
normal sequence.

(B) Th1 (T1(t)) and Th2 (T2(t)) cells are furnished due to cytokine conformational
changes of naive T cells after the interaction with dendritic cells (DCs). We assume
that η1 and η2 are the rates of accumulation of Th1 and Th2, respectively. Note
that the summation of activation rates of T cells and DCs is greater than the total
rates of accumulation of Th1 and Th2, which is expressed as (δ1 + δ2 ≥ η1 + η2).
Th1 cells proliferation is upregulated in the presence of pro-inflammatory cytokine
released by itself. Here, we consider that α is the regulation rate of Th1 cells in the
presence of pro-inflammatory cytokine. Again, we consider that at a rate β, Th2 cell
is downregulated due to the effect of pro-inflammatory cytokine released by Th1.
Natural death rates of Th1 and Th2 cells are noted by μ3 and μ4, respectively, due to
normal cell death.

(C) Psoriasis is characterized by hyper-proliferation of keratinocytes due to over
expression of pro-inflammatory cytokines released by Th1 cells. Keratinocytes’
proliferation may be reduced to a certain level by the effect of anti-inflammatory
cytokines secreted by Th2 cells. In the keratinocyte density, it is to be noted that
release factors of Th1 cells increase the keratinocytes’ proliferation at a rate γ . We
also assume that ξ be the anti-inflammatory cytokines’ effect on keratinocytes by Th2
cells. Here, we consider aK is the constant growth of keratinocytes due to cell migra-
tion from the dermal layer to epidermal layer and the removal rate of keratinocytes
is considered as μ5.

Assembling the above three assumptions (A,B,C),we can formulate the following
mathematical model:

dT

dt
= aT + ρT

(
1 − T

Tmax

)
− δ1T D − μ1T,

dD

dt
= aD − δ2T D − μ2D,

dT1
dt

= η1T D + αT1 − μ3T1, (15.1)

dT2
dt

= η2T D − βT1T2 − μ4T2,

dK

dt
= aK + γ T1K − ξT2K − μ5K ,
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where T (0) > 0, D(0) > 0, T1(0) > 0, T2(0) > 0, and K (0) > 0 are initial condi-
tions.

15.2.2 Model Properties

The right-hand sides of system (15.1) are smooth and nonlinear functions of the vari-
able T, D, T1, T2, and K and also the parameters are always nonnegative.Henceforth,
the system dynamics is assuredly bounded in the positive octant and the considered
cells’ concentration is less than a pre-assumed quantity. In the following theorem,
we wish to clarify that the solution of the dynamical system is bounded.

Theorem 15.1 The solutions of system (15.1), which satisfy the initial condi-
tions, i.e., T (t) > 0, D(t) > 0, T1(t) > 0, T2(t) > 0, andK (t) > 0 for all t > 0.
The region Ω ⊂ R5+ is positively invariant and attracting with respect to system
(15.1). Where

Ω =
{
(T, D, T1, T2, K ) ∈ R5+ : 0 ≤ T ≤ aT

μ1 − ρ
, 0 ≤ D ≤ aD

μ2
,

0 ≤ T1 ≤ η1aT aD
(μ1 − ρ)μ2(μ3 − α)

, 0 ≤ T2 ≤ η2aT aD(μ3 − α)

βη1aT aD + μ2μ4(μ1 − ρ)(μ3 − α)
,

0 ≤ K ≤ aK (μ1 − ρ)μ2(μ3 − α)

(μ1 − ρ)μ2μ5(μ3 − α) − γ η1aT aD

}
.

Proof From the first equation of system (15.1), we can predict the upper threshold
of T cells exist in psoriatic patients.

dT

dt
= aT + ρT

(
1 − T

Tmax

)
− δ1T D − μ1T,

≤ aT − (μ1 − ρ)T . (15.2)

Now, by solving the above inequality (15.2) for a long time interval and for positive
(μ1 − ρ), we get T (t) ≤ aT

μ1−ρ
, the maximum density of T cells present in the case

of psoriasis. In a similar manner, we also determine from the second equation of the
system (15.1), density of dendritic cell at any time cannot exceed the ratio of it’s
constant accumulation and natural death, i.e., D(t) ≤ aD

μ2
.

Now considering the third equation of model (15.1), we get the following:

dT1
dt

= η1T D + αT1 − μ3T1.

We get the following inequation by putting the maximum density of T cell and DCs.
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dT1
dt

≤ η1
aT aD

(μ1 − ρ)μ2
− (μ3 − α)T1, (15.3)

solving the above inequality (15.3), we get

T1(t) ≤ η1aT aD
(μ1 − ρ)μ2(μ3 − α)

+
(
T1(0) − η1aT aD

(μ1 − ρ)μ2(μ3 − α)

)
e−(μ3−α)t .

For the positive value of (μ3 − α) and for long time period, we get

T1(t) ≤ η1aT aD
(μ1 − ρ)μ2(μ3 − α)

. (15.4)

Similarly, using the maximum value of density of T cell, Dcs, and Th1, we also get
the upper threshold of Th2 density from the fourth equation of our formulated model
(15.1)

T2(t) ≤ η2aT aD(μ3 − α)

βη1aT aD + μ2μ4(μ1 − ρ)(μ3 − α)
. (15.5)

From the last equation of system (15.1)

dK

dt
= aK + γ T1K − ξT2K − μ5K . (15.6)

It is to be mentioned here that the reducing effect of anti-inflammatory cytokine
over the keratinocytes by Th2 is low in amount for the case of psoriatic patients.
So neglecting the negative effect of Th2 on keratinocyte and also considering the
maximum density level of Th1 cell, we get the following inequation from the above
Eq. (15.6)

dK

dt
≤ aK −

(
μ5 − γ η1aT aD

(μ1 − ρ)μ2(μ3 − α)

)
K , (15.7)

in order to find the maximum value of Keratinocyte’s density in psoriatic patient
we solve the above inequation (15.7) for long time period and by considering the

positive value of
(
μ5 − γ η1aT aD

(μ1−ρ)μ2(μ3−α)

)
, we get

K (t) ≤ aK (μ1 − ρ)μ2(μ3 − α)

(μ1 − ρ)μ2μ5(μ3 − α) − γ η1aT aD
. (15.8)

From the above discussion and the inequations (15.4), (15.5), (15.8), we can conclude
that all cell populations are bounded in positive octant and Ω ⊂ R5+ is positively
invariant and attracting with respect to the system (15.1).
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15.3 Equilibrium Analysis

15.3.1 Existence Condition

In this system, we consider an interior equilibrium point E(T ∗, D∗, T ∗
1 , T ∗

2 , K ∗),
where the disease persists in the population. The interior equilibriumpoint is obtained
by setting equations of the system to zero. We then solve for state variables in terms
of T ∗ and obtain the following:

D∗ = aD
δ2T ∗ + μ2

;

T ∗
1 = η1aDT ∗

A
;

T ∗
2 = η2aDT ∗(μ3 − α)

βη1aDT ∗ + μ4A
;

K ∗ = aKA [βη1aDT ∗ + μ4A ]
[μ5βη1aDT ∗ + μ4μ5A + ξη2T ∗aD(μ3 − α)]A − γ η1T ∗aD[βη1T ∗aD + μ4A ] ; (15.9)

whereA = (δ2T ∗ + μ2)(μ3 − α) and T ∗ is the positive root of the following cubic
equation:

a3(T
∗)3 − a2(T

∗)2 − a1T
∗ − a0 = 0, (15.10)

where

a3 = ρδ2
Tmax

, a2 =
(
ρδ2 − ρμ2

Tmax

)
, a1 = (aT δ1 + ρμ2 − δ1aD − μ1), a0 = aTμ2.

Since a0 is always positive, there exists at least one positive root of Eq. (15.10).
From the above mathematical expression, we can conclude the existence condition
of the endemic equilibrium (E) by the following proposition

Proposition 15.1 At least an endemic equilibrium (E) of our formulated mathe-
matical model (15.1) exists, if the positive root (T ∗) of the Eq. (15.10) satisfies the
inequality A > 0, i.e., μ3 > α.

15.3.2 Stability Criteria

The Jacobian matrix for the endemic equilibrium of model system (15.1) is given by

J (T ∗, D∗, T ∗
1 , T ∗

2 , K ∗) =

⎡
⎢⎢⎢⎢⎢⎣

− aT
T ∗ − ρT ∗

Tmax
−δ1T ∗ 0 0 0

−δ2D∗ − aD
D∗ 0 0 0

η1D∗ η1T ∗ α − μ3 0 0
η2D∗ η2T ∗ −βT ∗

2 − η2T ∗D∗
T ∗
2

0

0 0 γ K ∗ −ξK ∗ − aK
K ∗

⎤
⎥⎥⎥⎥⎥⎦
.
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J (T ∗, D∗, T ∗
1 , T ∗

2 , K ∗) can be expressed as a block diagonal matrix by: J (T ∗, D∗,

T ∗
1 , T ∗

2 , K ∗) =
[
J11 O
J21 J22

]
.

Where J11 =
⎡
⎣

− aT
T ∗ − ρT ∗

Tmax
−δ1T ∗ 0

−δ2D∗ − aD
D∗ 0

η1D∗ η1T ∗ α − μ3

⎤
⎦, J21 =

[
η2D∗ η2T ∗ −βT ∗

2
0 0 γ K ∗

]
and

J22 =
[

− η2T ∗D∗
T ∗
2

0

−ξK ∗ − aK
K ∗

]
.

Submatrix J22 has two negative eigenvalues, viz., − aK
K ∗ and −βT ∗

1 − μ4. So the sta-
bility criteria of the dynamical system around the interior equilibrium (E) depends
on the eigenvalues of J11. After expanding the matrix J11 in order to develop the
characteristic equation in form,

(α − μ3 − λ)

(
λ2 + λ

(
aT
T ∗ + ρT ∗

Tmax
+ aD

D∗

)
+

(
aT aD
T ∗D∗ + ρT ∗aD

Tmax D∗ − δ1δ2T
∗D∗

))
= 0 (15.11)

From the existence criteria of the interior equilibrium, the death rate of Th1 is higher
compared with the pro-inflammatory cytokine effect over Th1, so it is obvious that
(α − μ3) < 0. Now, by considering Eq. (15.11) and using Routh–Hurwitz criteria
[33, 34], we can state that the interior equilibrium will be locally asymptotically
stable if

( aT aD
T ∗D∗ + ρT ∗aD

Tmax D∗ − δ1δ2T ∗D∗) > 0.

Proposition 15.2 Along with the existence condition (i.e., A > 0), if aT aD
T ∗D∗ +

ρT ∗aD
Tmax D∗ > δ1δ2T ∗D∗, then the interior equilibrium E = (T ∗, D∗, T ∗

1 , T ∗
2 , K ∗) is

locally asymptotically stable.

15.4 Impulse Therapeutic Approaches

In this section,we analyze our drug-induced systemusingmodified impulsivemethod
for a better understanding of drug dynamics [35, 36]. Here, we study the effects of IL-
10 through impulsive way with a fixed time interval to control the keratinocytes’ cell
population. During the therapy period of biologic (IL-10), taken through injection,
the cell density of keratinocytes aremade less by some proportion r . Here, we assume
that the injections are taken at a fixed time interval and the effects of IL-10 on Th1
and Th2 are not considered. Now by taking the maximum density of keratinocyte,
the one-dimensional impulsive differential equation takes the form:

dK

dt
≤ aK −

(
μ5 − γ η1aT aD

(μ1 − ρ)μ2(μ3 − α)

)
K , for t �= tk

ΔK = −r K , for t = tk where k = 1, 2, 3, . . . , n. (15.12)
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For mathematical simplicity, we use the notation P instead of the large expression(
μ5 − γ η1aT aD

(μ1−ρ)μ2(μ3−α)

)
. Here for single impulsive cycle tk ≤ t ≤ tk+1, the solution of

the Eq. (15.12) is

K (t−k+1) = aK
P

[
1 − e−P (tn+1−tn)

]
+ K (t+n )e−P (tn+1−tn). (15.13)

Where K (t−k ) is the value immediately before and K (t+k ) is the value immedi-
ately after the impulse therapy. Now, for different successive time interval, solutions
become

K (t−1 ) = aK
P

,

K (t+1 ) = (1 − r)
aK
P

,

K (t−2 ) = (1 − r)
aK
P

e−P (t2−t1) + ak
P

[
1 − e−P (t2−t1)

]
,

K (t+2 ) = (1 − r)2
aK
P

e−P (t2−t1) + (1 − r)
aK
P

[
1 − e−P (t2−t1)

]
,

K (t−3 ) = aK
P

[
(1 − r)2e−P (t3−t1) + (1 − r)e−P (t3−t2) − (1 − r)e−P (t3−t1)

+1 − e−P (t3−t2)
]
,

K (t+3 ) = aK
P

[
(1 − r)3e−P (t3−t1) + (1 − r)2e−P (t3−t2) − (1 − r)2e−P (t3−t1)

+(1 − r) − (1 − r)e−P (t3−t2)
]
,

K (t−4 ) = aK
P

[
(1 − r)3e−P (t4−t1) + (1 − r)2e−P (t4−t2) + (1 − r)e−P (t4−t3) +

1 − (1 − r)2e−P (t4−t1) − (1 − r)e−P (t4−t2) − e−P (t4−t3)
]
,

K (t+4 ) = aK
P

[
(1 − r)4e−P (t4−t1) + (1 − r)3e−P (t4−t2) + (1 − r)2e−P (t4−t3) +

(1 − r)3e−P (t4−t1) − (1 − r)2e−P (t4−t2) − (1 − r)e−P (t4−t3) + (1 − r)
]
.

...................................................................................................

The general solution becomes

K (t−n ) = aK
P

[
(1 − r)(n−1)e−P (tn−t1) + (1 − r)(n−2)e−P (tn−t2) + · · ·

+(1 − r)e−P (tn−tn−1) + 1 − (1 − r)(n−2)e−P (tn−t1) − (1 − r)(n−3)e−P (tn−t2) − · · ·
−e−P (tn−tn−1)

]
(15.14)
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K (t+n ) = aK
P

[
(1 − r)ne−P (tn−t1) + (1 − r)(n−1)e−P (tn−t2) + · · ·

+(1 − r)2e−P (tn−tn−1) − (1 − r)(n−1)e−P (tn−t1) − (1 − r)(n−2)e−P (tn−t2) − · · ·
−(1 − r)e−P (tn−tn−1) + (1 − r)

]
(15.15)

The above general solutions (15.14), (15.15) help to predict the maximal Ker-
atinocytes present in the formation of psoriasis, just before and after was injection
taken. Note that the solutions do not depend on the time between two consecutive
drug doses.

15.4.1 System Under Fixed IL-10 Injecting Process

For a fixed time period, i.e., τ = tn+1 − tn is constant, then we have

K (t−n ) = aK
P

[
1 + (1 − r)e−P τ+(1 − r)2e−2P τ + · · · + (1 − r)n−1e−(n−1)P τ

−e−P τ
(
1 + (1 − r)e−P τ + · · · + (1 − r)n−2e−(n−2)P τ

)]

= aK
P

[1 − (1 − r)ne−nP τ

1 − (1 − r)e−P τ
− e−P τ 1 − (1 − r)n−1e−(n−1)P τ

1 − (1 − r)e−P τ

]

lim
n→∞ K (t−n ) = aK

P

[ 1

1 − (1 − r)e−P τ
− e−P τ 1

1 − (1 − r)e−P τ

]

= aK
P

[ 1 − e−P τ

1 − (1 − r)e−P τ

]
.

This is the density of keratinocytes before taking the drug dose, in the long term.
Now, after applying drug, the density of the keratinocyte will be expressed by the
following expression:

lim
n→∞ K (t+n ) = (1 − r) lim

n→∞ K (t−n ),

= (1 − r)
aK
P

[ 1 − e−P τ

1 − (1 − r)e−P τ

]
. (15.16)

After the long-term biologic therapy, to keep the keratinocyte density (from the
Eq. (15.16)) below a certain threshold K̃ (the normal keratinocyte density), we need
the maximum time interval of applying two consecutive doses, i.e., τmax , which must
satisfy

τ < (1 − r)
1

P
ln

[ aK − (1 − r)K̃P

aK − K̃P

]
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Fig. 15.2 Qualitative behavior of system variables (T cell, DCs, Th1, Th2, and keratinocyte) are
demonstrated by the bar diagram

τ < (1 − r)
1(

μ5 − γ η1aT aD
(μ1−ρ)μ2(μ3−α)

) ln

⎡
⎣ aK − (1 − r)K̃

(
μ5 − γ η1aT aD

(μ1−ρ)μ2(μ3−α)

)

aK − K̃
(
μ5 − γ η1aT aD

(μ1−ρ)μ2(μ3−α)

)
⎤
⎦ ≡ τmax (say).

(15.17)

The maximum period mentioned by the Eq. (15.18) between two consecutive IL-
10 injections must be required to maintain the keratinocyte density below K̃ . The
threshold value K̃ must satisfy

K̃ <
aK(

μ5 − γ η1aT aD
(μ1−ρ)μ2(μ3−α)

) . (15.18)

It follows that, in the case of fixed IL-10 injecting process, we can derive a maximal
gap of injection (15.18), which is fixed and that may keep the concentration of
keratinocyte strictly below the threshold described by the Eq. (15.16).

15.5 Numerical Simulations

In the previous sections, we have used several analytic tools for theoretical analysis of
the formulated mathematical model and also, we studied the system behavior intro-
ducing biologic. In this section, we execute the numerical simulation of our model
system on the basis of analytical outcomes. The valueswe assigned to each parameter
are collected from different papers, listed in Table15.1. Initial values of the cells den-
sity are assigned as T (0) = 25, D(0) = 20, T1(0) = 15, T2(0) = 7, and K (0) = 20.
Here, we have tried to emphasize the cells’ interaction toward the psoriatic expres-
sion and also, dynamical behavior of the cell components were numerically evaluated
under impulsive approach with IL-10 therapy. Numerical simulations are done using
Mathworks MATLAB (version 7.6.0).
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Table 15.1 Parameters value using for numerical simulation

Parameter Assigned value Range References

aT 9mm−3Day−1 9–15mm−3Day−1 [25, 30]

aD 12mm−3Day−1 12–14mm−3Day−1 [30, 31]

ρ 0.03 Day−1 0.03 Day−1 [32]

Tmax 1500mm−3 1500mm−3 [32]

δ1 0.07 Day−1 0.005–0.15 Day−1 [27, 29]

δ2 0.08 Day−1 0.00004–0.4 Day−1 [30, 31]

μ1 0.1 Day−1 0.007–0.1 Day−1 [27, 29]

η1 0.05 Day−1 Estimated [37]

η2 0.03 Day−1 Estimated [37]

α 0.04 Day−1 Estimated [38, 39]

μ2 0.05 Day−1 0.002–0.05 Day−1 [27, 31]

β 0.02 Day−1 – Assumed

μ3 0.24 Day−1 0.24 Day−1 [40]

μ4 0.24 Day−1 0.24 Day−1 [40]

γ 0.0001 Day−1 – Assumed

ξ 0.04 Day−1 – Assumed

μ5 0.88 Day−1 0.04–0.9 Day−1 [25, 27]

aK 30mm−3Day−1 Estimated [14, 41]
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Fig. 15.3 Dynamical behavior of T cell, DCs, and keratinocyte are plotted with respect to time for
different activation rates of T cell and dendritic cell (δ1 and δ2)

In Fig. 15.2, we investigate the qualitative behavior of considered cells between
200 days. From Fig. 15.2, it is manifested that due to interaction between T cell and
dendritic cell both population will be decreased chronologically. Both T cell and
DCs density reached a stable condition after 50 days approximately. For the effect
of pro-inflammatory cytokine, Th1 is upregulated and Th2 is subjected to suppressed
condition. After initial 50 days, both the population (Th1 and Th2) will be stable.
For the Th1 mediated cytokines, the keratinocyte population is increased but the
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Fig. 15.4 Qualitative behavior of Th1, Th2, and keratinocyte are plotted with respect to time for
different accumulation rates of Th1 and Th2 (η1 and η2) from naive T cell

rate becomes slow due to the effect of anti-inflammatory cytokines released by Th2.
Eventually, keratinocytes population will be stable between 180 days.

In Fig. 15.3, the dynamical nature of T cells, dendritic cells, and keratinocytes
are demonstrated with respect to time for different activation rates of T cell (δ1) and
dendritic cell (δ2). This figure manifests that for low activation rate of T cell and
dendritic cell (δ1 = 0.06 and δ2 = 0.07), rate of synapse formation among DCs and
T cells slows down. Due to slow synapse formation, the density of both immune cells
initially reduce but after a short time interval, they chronologically increase. For low
activation rate, T cells and dendritic cells reach a stable condition after 100 days
at density level 21mm−3 and 14.5mm−3. On the other hand, if the activation rates
are high (δ1 = 0.08 and δ2 = 0.09), the population of T cell and dendritic cell will
be reduced to reach a stable situation at density level 2 and 5 mm−3, respectively.
Since the growth of keratinocyte depends upon Th1 and Th2 regulation, so it is
also indirectly dependent on the activation rate of T cell and dendritic cell. Hence,
the keratinocyte density reaches 1150mm−3 for low activation rate. Conversely, for
higher activation rate, the growth of keratinocyte is dramatically increased to density
level 1600mm−3. It is to be noted that due to the presence of Th2, the density
deflection of keratinocyte is low in comparison with the other two immune cells.

Th1, Th2 and keratinocyte are plotted with respect to time for different accumu-
lation rates of Th1 and Th2 (η1 and η2) in Fig. 15.4, other parameters are taken as
same in Table15.1. For the higher accumulation rate of Th1 (η1 = 0.1) and lower
accumulation rate of Th2 (η2 = 0.02), Th1 density reaches at the level 210mm−3

and Th2 density reduces to 1mm−3. In this case, we notice a startling change in
keratinocyte concentration which reaches a level of 1300mm−3 due to high inflam-
mation effect of Th1. From this figure, it is also clear that for low accumulation rate
of Th1 (η1 = 0.08) and higher accumulation rate of Th2 (η2 = 0.04), Th1 density
reduced to 160mm−3 and Th2 density increased to level 2mm−3. In that case, we
observe that the concentration level of Th2 is more efficient to maintain the balancing
between pro-inflammatory and anti-inflammatory cytokine which ultimately reduces
the keratinocyte density to level 510mm−3. This figure also manifest that due to high
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Fig. 15.5 Dynamical behavior of Th1, Th2, and keratinocyte are plotted with respect to time under
different effects of pro-inflammatory cytokine on Th1 and Th2 (α and β)

inflammation effect of pro-inflammatory cytokine for psoriatic patient, a little bit of
increment of Th1 accumulation has a great impact on keratinocyte concentration.

In Fig. 15.5, we demonstrate how the density of Th1, Th2, and keratinocyte depend
on both inflammation effect (negative and positive) of Th1 cell-mediated cytokines,
represented by α and β. It is to be noticed that when the inflammation effects are con-
sidered asα = 0.04 andβ = 0.02, then the cells density of Th1 and Th2 reach a stable
concentration level of 185mm−3 and 2mm−3 , respectively, and under this circum-
stance, keratinocyte reaches a density level of 725mm−3. From this figure, it is clear
that due to higher inflammation efficacy (α = 0.05 and β = 0.03) on Th1 and Th2,
keratinocyte shows a hyper-proliferative nature and it becomes stable at 1050mm−3.
Furthermore, for the low inflammation effect (α = 0.03 and β = 0.01), Th1 den-
sity gradually decreases and Th2 density chronologically increases to a certain level.
Under this well managed condition, keratinocyte goes into a suppressed situation
(density of keratinocyte <625mm−3). This figure mainly emphasize an abnormal
deflection of keratinocyte due to higher inflammation effect of pro-inflammatory
cytokine. The anti-inflammation effect of Th2 mediated cytokine is lower to com-
pare with the pro-inflammatory effect on keratinocyte cell population through Th1
mediated cytokine, it results in the changes of keratinocyte density that is not smooth
for different effects of pro-inflammatory cytokine.

In Fig. 15.6, we manifest that how the nature of keratinocytes population changes
under impulsive therapeutic approach with respect to time t and we also plot a
comparison simulation between with control and without control situation of ker-
atinocyte. In Fig. 15.6a, the solid line indicates the keratinocyte density during ther-
apy period and the dotted lines indicate the upper threshold of normal growth of
keratinocyte. We evaluate the upper boundary of keratinocyte density as 272mm−3,
using the Eq. (15.18) and considering the parameter from Table15.1. This mathe-
matically evaluated upper threshold is represented by a red dotted line. The natural
growth of keratinocyte is also estimated to be 195200mm−3 in comparison with
the ratio of the other cells taken in our model, represented by the green dotted line
[14, 42]. It is evident from this figure, for impulse dosing (r = 0.005 and dosing
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Fig. 15.6 Simulations of keratinocyte density under fixed IL-10 injecting process by considering
the value of the parameter corresponding to reduction of keratinocyte due to the impact of drug (IL-
10), i.e., r = 0.005 and dosing interval 4.5 days. a Qualitative behavior of keratinocyte is plotted
with respect to time. b Reduction of keratinocyte density for different days interval due to the effect
of IL-10

interval(τ) = 4.5), the keratinocyte density is just below the threshold (272mm−3).
For this proposed drug dose, keratinocyte satisfies the mathematical threshold but
biologically estimated threshold is not gratified accurately. After initial 30 days of
injecting, keratinocytes show an oscillatory behavior to a fixed magnitude of 170–
272mm−3. In Fig. 15.6b, we emphasize the reduction of keratinocyte during IL-10
therapy for initial 36 days. From this figure, it is clear that initially parameter corre-
sponding to the reduction of keratinocyte due to the impact of drug (IL-10) is low
due to the presence of a high amount of pro-inflammatory cytokine. Within 20 days
of treatment, IL-10 reduces the Th1 cell density in a noticeable amount; after that, it
directly downregulates the keratinocyte density. From this figure, it is observed that
after 27 days, the reduced amount of keratinocyte is more than 300mm−3.

Figure15.7 depicts the dynamical behavior of keratinocyte under perfect bio-
logic dose (parameter corresponding to the reduction of keratinocyte due to the
impact of drug (IL-10), i.e., r = 0.005 and considering dosing interval 2.8 days)
for a psoriatic patient and simulation results of keratinocyte’s retrenchment from
initial to under treatment condition. In Fig. 15.7a, it is clear that when we fix the
value of r as 0.005 and dosing interval 2.8 days, keratinocytes maintain its density
level under 200mm−3. For this particular IL-10 dosing, keratinocytes density satis-
fied the biological estimation as well as mathematical evaluation. The keratinocyte
density reaches a stable condition within 36 days and oscillates with a fixed ampli-
tude between 120200mm−3. Figure15.7b, demonstrates the reduction amount of
keratinocyte during IL-10 therapy for first 36 days. Here, we simulate the reduced
amount of keratinocyte density after every 9 days of treatment, evaluated by sub-
tracting the density of keratinocyte of with treatment policy from that of in the
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Fig. 15.7 Simulations of keratinocyte density under fixed IL-10 injecting process by considering
the value of the parameter corresponding to the reduction of keratinocyte due to the impact of
drug (IL-10), i.e., r = 0.005 and dosing interval 2.8 days. a Qualitative behavior of keratinocyte is
plotted with respect to time. b Reduction of keratinocyte density for different days due to the effect
of IL-10

without treatment policy.After initial 9 days, the consolidated amount of keratinocyte
(280mm−3) is near about 70% of hyper-proliferative keratinocyte density. From this
figure, it is also clear that after 30 days of biologic treatment (r = 0.005 and con-
sidering dosing interval 2.8 days) keratinocyte density suppressed in a noticeable
amount (380mm−3), i.e., above 90% of its prime density.

15.6 Discussion

In this manuscript, we have studied the role of immune cells (T cell, DCs, Th1,
and Th2) along with inflammation effect of cytokine network for psoriatic skin by
considering a mathematical model. In our analytical study, we obtain the existence
condition of interior equilibriumwhich describes that the natural death rate of Th1 cell
(μ3) is greater than the inflammatory effect on itself by Th1, indicated by α. We also
established the stability criterion of interior equilibriumdependingonRouth–Hurwitz
criteria, which validate the existence condition along with biological restrictions.
Here, we have discussed about cytokine treatment which gives a better impact on
disease pathogenesis using some mathematical tools and numerical simulations. To
control the hyper-proliferative nature of keratinocyte, we use biologic (IL-10) and
consider it’s direct effect on keratinocytes using the modified impulsive method.
Our mathematical outcomes depict that if we fix the time gap of two consecutive
doses less than τmax , then the disease will be under control. We also analytically
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determined the threshold for keratinocyte (K̃ ) and we also get the estimated value
of normal keratinocyte proliferation (200mm−3) rate from various clinical studies.
Our numerical results reveal that if the dose interval of IL-10 is fixed as 2.8 days
(<τmax ) and the parameter corresponding to the reduction of Keratinocyte due to
the impact of drug (IL-10), i.e., r = 0.005, the keratinocyte density can be reduced
to a certain level which validated both the mathematical and clinical outcomes. It is
also observed that considering the effect of IL-10 on keratinocyte through modified
impulsive method, it is possible to control the keratinocyte density within about 36
days.

15.7 Conclusion

Here,we introduce IL-10 as a biologic (drug) from the cell-biological point of view as
hyper-proliferation of keratinocytes is the main cause of psoriasis. We demonstrate
the impact of this drug on keratinocyte population only by considering a suitable
value of the parameter (r ) which corresponds to the reduction of keratinocyte due
to the impact of drug (IL-10). In the present study, we assume a very small value of
this parameter (r ) to avoid the side effects of this highly sensitive cytokine treatment
and also to reduce the cost of drug administration. We use impulsive control strat-
egy among all the control strategies to make drug administration more realistic and
biologically relevant. Our analytical and numerical results reveal that keratinocyte
population reduces significantly by applying biologic (IL-10), which suggests this
drug as a potential drug for better treatment of psoriasis. In fact, our study suggests
that using IL-10, it is possible to remove more than 90% of psoriatic plaque within 5
weeks and this will be a burning challenge for clinical and experimental researchers
in the future.
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Chapter 16
On Fractional Partial Differential
Equations of Diffusion Type with
Integral Kernel

A. Akilandeeswari, K. Balachandran and N. Annapoorani

Abstract The main purpose of this work is to investigate the existence of solution
of the fractional partial differential equations of diffusion type with integral kernel.
The existence of solutions of the problemwith Dirichlet boundary condition is estab-
lished by using the Leray–Schauder fixed point theorem and Arzela–Ascoli theorem
under suitable assumptions. Then, the result is generalized for Neumann boundary
condition with the help of Green’s identity.

Keywords Existence and uniqueness · Fractional derivatives and integrals ·
Partial Integrodifferential equations · Fixed point theorem
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16.1 Introduction

To model a process with delay, it is not sufficient to employ an ordinary or partial
differential equations. An approach to resolve this problem is to use integrodifferen-
tial equations. In some fields such as nuclear reactor dynamics and thermoelasticity,
we need to reflect the effect of the memory of the systems in the model. If such
systems are modeled using partial differential equation, the effect of past history
is ignored. Therefore in order to incorporate the memory effect in such systems, an
integral term in the partial differential equation is introduced and this leads to a partial
integrodifferential equation [7]. In recent years, due to the novel surprising insights
and framework of fractional calculus, the fractional partial integrodifferential equa-
tions have been scrutinized by several authors. Historically, the origins of fractional
calculus can be traced back to the end of the seventeenth century, the time when
Newton and Leibniz developed the foundations of differential and integral calculus.
It extends the differentiation and integration of integer order to an arbitrary order
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and concatenates these two operators. To be precise, it consists of integrodifferential
operators with the convolution type integrals and power-law type weakly singular
kernels. An imperative feature is that fractional derivatives and integrals are non
local, since it depends on all of its historical states. This is very effective when the
system has a longterm memory and any evaluation point depends on the past values
of the function. For example, the use of half derivatives and integrals lead to the for-
mulation of certain electrochemical problems which are more economical and useful
than the classical approach in terms of Fick’s law of diffusion. Some of the appli-
cations of fractional calculus in interdisciplinary sciences can be found in [30, 34].
During the last few decades, fractional differentiation is drawing huge consideration
toward physical and biological behaviors. The reason behind using fractional order
differential equation is that it is naturally related to systems with memory which
exists in most biological systems and fractional order system response ultimately
converges to the integer-order equations. The elementary theory and some applica-
tions of fractional differential equations are widely covered in [14, 26, 29] and for
the books associated with fractional differential equations, see [18, 21, 24, 28]. The
applications of fractional derivatives in reservoir engineering problems are given in
[23]. Jesus et al. [19] investigated the fractional model of the electrical impedance
for botanical elements according to Bode and polar diagrams. A review of some
applications of fractional derivatives in continuum and statistical mechanics is given
by Carpinteri and Mainardi [11]. Next, we propose some of the works concerning
the solvability of fractional differential equations. For instance, Balachandran et al.
[8, 9] studied the existence results for several kinds of fractional integrodifferential
equations in a Banach space using a fixed point technique. In [36], Zhang et al.
investigated the existence of nonnegative solutions for nonlinear fractional differen-
tial equations with nonlocal fractional integrodifferential boundary conditions on an
unbounded domain by using the Leray–Schauder nonlinear alternative theorem. The
differential transform method was applied to fractional integrodifferential equations
in [6] to solve those equations analytically. To knowmore details about the existence
of solutions of integrodifferential equation, see the papers [1, 2, 5, 12, 20] and for
fractional partial integrodifferential equations refer [3, 4]. In this paper, we extend
the results of [25] to fractional order partial integrodifferential equation of diffusion
type with integral kernel.

16.2 Basic Concepts

Now, we present the definitions of some well-known fractional operators that play
an important role in fractional calculus. For any n − 1 < α < n, n ∈ N, the Rieman–
Liouville fractional integral operator is defined as follows:

Definition 16.2.1 ([21]) The partial Riemann–Liouville fractional integral operator
of order α with respect to t of a function f (x, t) is defined by
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I α f (x, t) = 1

Γ (α)

t∫

0

f (x, s)

(t − s)n−α
ds.

where f (·, t) is an integrable function.

The most popular definition of fractional calculus is Riemann–Liouville fractional
derivative definition, which is basic for the Caputo fractional derivative. It is written
as follows:

Definition 16.2.2 ([21]) The partial Riemann–Liouville fractional derivative of
order α of a function f (x, t) with respect to t is of the form

∂α

∂tα
f (x, t) = 1

Γ (n − α)

∂n

∂tn

t∫

0

f (x, s)

(t − s)α−n+1
ds.

where the function f (·, t) has absolutely continuous derivatives up to order (n − 1).

Since the Riemann–Liouville fractional derivative of a constant is a function, to
overcome this difficulty, Caputo [10] reformulated the Riemann–Liouville fractional
derivative to handle integer order initial conditions, in the following way.

Definition 16.2.3 ([21]) The Caputo partial fractional derivative of order α with
respect to t of a function f (x, t) is defined as

C∂α

∂tα
f (x, t) = 1

Γ (n − α)

t∫

0

1

(t − s)α−n+1

∂n f (x, s)

∂sn
ds.

where the function f (·, t) has absolutely continuous derivatives up to order (n − 1).

To know the properties of these operators, see the books [21, 28] and for more facts
on the geometric and physical interpretation of fractional derivatives with Riemann–
Liouville and Caputo types, see [17, 22]. There has been a significant development
in ordinary and partial differential equations involving both Riemann–Liouville and
Caputo fractional derivatives in the past fewyears, for instance, see the papers ofGejji
and Jafari [16], Furati and Tatar [15]. The Riemann Liouville and Caputo fractional
derivatives are linked by the following relationship:

C∂α

∂tα
f (x, t) = ∂α

∂tα
f (x, t) −

n−1∑
k=0

t k−α

Γ (k + 1 − α)

∂k

∂t k
f (x, 0).

Before looking at the existence result of fractional partial integrodifferential equa-
tions, we introduce some basic results that are inherently tied to existence theory.



336 A. Akilandeeswari et al.

Lemma 16.2.1 ((Leray–Schauder fixed point theorem) [25]) If U is a closed
bounded convex subset of a Banach space X and T : U → U is completely con-
tinuous, then T has at least a fixed point in U.

Lemma 16.2.2 ((Arzela–Ascoli Theorem) [25]) Assume that K is a compact set in
R

n, n ≥ 1, then a set S ⊂ C(K ) is relatively compact in C(K ) if and only if the
functions in S are uniformly bounded and equicontinuous on K .

Lemma 16.2.3 ((Green’s Identity) [13]) Let Ω be a bounded domain in R
m with

smooth boundary ∂Ω . Then, for any u, v ∈ C2(Ω),

∫
Ω

vΔu dx =
∫

∂Ω

v
∂u

∂n
ds −

∫
Ω

∇u · ∇v dx,

where n is the outward unit normal to the boundary ∂Ω and ds is the element of arc
length. For the special case v = 1,

∫
Ω

Δu dx =
∫

∂Ω

∂u

∂n
ds. (16.1)

This is called Green’s first identity.

16.3 Fractional Partial Differential Equations with Kernel

LetΩ be a bounded subset of anm-dimensional space with smooth boundary and let
J = [0, T ]. Consider the fractional partial integrodifferential equation of the form

C∂αu

∂tα
= a(t)Δu(x, t) +

∫ t

0
h(t − s)Δu(x, s) ds + f

(
t, u(x, t)

)

+
∫ t

0
g(t, s, u(x, s)) ds, t ∈ J, (16.2)

with the initial condition

u(x, 0) = u0(x), x ∈ Ω,

where 0 < α < 1, h : J → R is a positive kernel and f : J × R → R is a nonlinear
function. This (16.2) is a special case of integrodifferential equation of motion of
fractional Maxwell fluid with zero pressure. This type of equation appears in the
investigation of viscoelastic property. This equation gets attention from the fact that
the fractional derivatives are used to depict the viscoelasticity phenomena with little
amount of constraints.Aviscoelastic fractional ordermathematicalmodel of a human
root dentin is proposed by Petrovic et al. in [27]. Fractional partial integrodifferential
equation has also been applied in the study of signal processing, turbulence, plasma
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physics, and in many other fields, for instance, see [31–33]. The integral equation
corresponding to (16.2) can be written as

u(x, t) = u0(x) + 1

Γ (α)

∫ t

0
(t − s)α−1a(s)Δu(x, s) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

(∫ s

0
h(s − τ)Δu(x, τ ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1 f

(
s, u(x, s)

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g(s, τ, u(x, τ )) dτ

)
ds. (16.3)

Next, we present some hypotheses which will be used to prove our main result.

(H1) a(t) is continuous on J and a(t) ∈ L1/β(0, t), for all t ∈ J and some β ∈
(0, α). That is,

( ∫ t

0
(a(s))

1
β ds

)β

≤ C1.

(H2) f (t, u) is continuous with respect to u, Lebesgue measurable with respect to
t and satisfies

∫
Ω

φ(x) f (t, u) dx
∫
Ω

φ(x) dx
≤ f

⎛
⎜⎝t,

∫
Ω

φ(x)u(x, t) dx
∫
Ω

φ(x) dx

⎞
⎟⎠ ,

for some function φ(x).
(H3) There exists an integrable function m1(t) : J → [0,∞) such that

‖ f (t, u) ‖≤ m1(t)‖u‖,

where m1(t) ∈ L1/β(0, t), for all t ∈ J and
( ∫ t

0
(m1(s))

1
β ds

)β ≤ C2, for β

as in (H1) and C2 ≥ 0.
(H4) g(t, s, u) is continuous with respect to u, Lebesgue measurable with respect

to t and also satisfies the inequality

∫
Ω

φ(x)g(t, s, u) dx
∫
Ω

φ(x) dx
≤ g

⎛
⎜⎝t, s,

∫
Ω

φ(x)u(x, t) dx
∫
Ω

φ(x) dx

⎞
⎟⎠ .

(H5) There exists an integrable function m2(t, s) : J × J → [0,∞), such that

‖ g(t, s, u) ‖≤ m2(t, s)‖u‖,
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and for a nonnegative integer C3,

( ∫ t

0

( ∫ s

0
m2(s, τ ) dτ

) 1
β

ds
)β ≤ C3.

(H6) The integral kernel satisfies

( ∫ t

0

( ∫ s

0
h(s − τ) dτ

) 1
β
)β ≤ C4,

where C4 ≥ 0.

16.3.1 Dirichlet Boundary Condition

This section is consecrated to the existence of solution of (16.2)withDirichlet bound-
ary condition

u(x, t) = 0, (x, t) ∈ ∂Ω × J, (16.4)

where ∂Ω is the boundary of Ω . In order to achieve the required result, consider the
following eigenvalue problem:

Δu + λu = 0, (x, t) ∈ Ω × J,
u = 0, (x, t) ∈ ∂Ω × J,

}
(16.5)

where λ is a constant not depending on the variables x and t . The theory of eigenvalue
problems is well known [35]. Thus for x ∈ Ω , the smallest eigenvalue λ1 of the
problem (16.5) is positive and the corresponding eigenfunction is φ(x) ≥ 0. Now,
we define the function U (t) as

U (t) =
∫
Ω

u(x, t)φ(x) dx
∫
Ω

φ(x) dx
. (16.6)

The main theorem is as follows:

Theorem 16.3.1 Assume that there exists a β ∈ (0, α) for some 0 < α < 1 such
that (H1)–(H3) and (H6) hold. For any constant b > 0, suppose that

r1 = min

⎧⎨
⎩T,

[
Γ (α)b

(‖U (0)‖ + b)(λ1(C1 + C4) + C2 + C3)

(
α − β

1 − β

)1−β
] 1

α−β

⎫⎬
⎭ .
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Then there exists at least one solution for the initial value problem (16.2) on Ω ×
[0, r1].
Proof Our first aim is to prove that the initial value problem (16.2) has a solution if
and only if the equation

U (t) = U (0) − λ1

Γ (α)

∫ t

0
(t − s)α−1a(s)U (s) ds

− λ1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)U (τ ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1 f (s,U (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ,U (τ )

)
dτ

)
ds (16.7)

has a solution.
Step1.We start the proof by assumingu(x, t) to be a solution of (16.3).On integrating
both sides of (16.3) with respect to x ∈ Ω , we get

∫
Ω

u(x, t) dx =
∫

Ω

u0(x) dx + 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1a(s)Δu(x, s) ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)Δu(x, τ ) dτ

)
ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1 f (s, u(x, s)) ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ, u(x, τ )

)
dτ

)
ds dx .

(16.8)

Combining (16.6) and assumptions (H2) and (H6), (16.8) we get

U (t) ≤ U (0) + 1

Γ (α)

∫ t

0
(t − s)α−1a(s)ΔU (s) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)ΔU (τ ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1 f (s,U (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ,U (τ )

)
dτ

)
ds. (16.9)

Let K = {U : U ∈ C(J, R), ‖ U (t) −U (0) ‖≤ b} and define an operator T :
C(J, R) → C(J, R) by
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TU (t) = U (0) + 1

Γ (α)

∫ t

0
(t − s)α−1a(s)ΔU (s) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)ΔU (τ ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1 f (s,U (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ,U (τ )

)
dτ

)
ds. (16.10)

Clearly, U (0) ∈ K . This means that K is nonempty. From our construction of K ,
we can say that K is closed and bounded. Now, for any U1,U2 ∈ K and for any
a1, a2 ≥ 0 such that a1 + a2 = 1,

‖ a1U1(t) + a2U2(t) −U (0) ‖ ≤ a1 ‖ U1(t) −U (0) ‖ + a2 ‖ U2(t) −U (0) ‖
≤ a1b + a2b = b.

Thus a1U1 + a2U2 ∈ K . Therefore K is a nonempty closed convex set. Next, we
move on to verify that T maps K into itself.

‖ TU (t) − TU (0) ‖ ≤ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t

0
(t − s)α−1‖a(s)‖ ds

+ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1‖ f (s,U (s))‖ ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
‖g(s, τ,U (τ )

)‖dτ
)
ds.

Making use of Holder’s inequality and the assumptions, for any U ∈ K , we can
establish

‖ TU (t)−TU (0) ‖≤ λ1C1

Γ (α)
(‖U (0)‖ + b)

(∫ t

0

(
(t − s)α−1) 1

1−β ds

)1−β

+ λ1C4

Γ (α)
(‖U (0)‖ + b)

(∫ t

0

(
(t − s)α−1

) 1
1−β ds

)1−β

+ 1

Γ (α)

∫ t

0
m1(s)(t − s)α−1‖U (s)‖ ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

(∫ s

0
m2(s, τ )‖U (s)‖ dτ

)
ds
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≤ (‖U (0)‖ + b) λ1C1

Γ (α)

(
1 − β

α − β

)1−β

rα−β
1 + (‖U (0)‖ + b) λ1C4

Γ (α)

(
1 − β

α − β

)1−β

rα−β
1

+ (‖U (0)‖ + b)C2

Γ (α)

(
1 − β

α − β

)1−β

rα−β
1 + (‖U (0)‖ + b)C3

Γ (α)

(
1 − β

α − β

)1−β

rα−β
1

= (‖U (0)‖ + b) (λ1(C1 + C4) + C2 + C3)

Γ (α)

(
1 − β

α − β

)1−β

rα−β
1

≤ b, t ∈ [ 0, r1 ].

Now, define a sequence {Uk(t)} in K such that

U0(t) = U (0) and Uk+1(t) = Uk(t), k = 0, 1, 2, . . .

Since K is closed, there exists a subsequence {Uki (t)} of Uk(t) and Ũ (t) ∈ K such
that

lim
ki→∞Uki (t) = Ũ (t). (16.11)

Then, Lebesgue’s dominated convergence theorem yields

Ũ (t) = Ũ (0) − λ1

Γ (α)

∫ t

0
(t − s)α−1a(s)Ũ (s) ds

− λ1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)Ũ (τ ) dτ

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, Ũ (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

(∫ s

0
g
(
s, τ, Ũ (s)

)
dτ

)
ds.

Next, we claim that T is continuous.
Step 2. Let {Um(t)} be a converging sequence in K toU (t). Then, for any ε > 0, let

‖Um(t) −U (t)‖ ≤ Γ (α)ε

4λ1Cr
α−β

1

(
α − β

1 − β

)1−β

, (16.12)

where C = max{C1,C4}. By assumption (H2) and (H4),

f (t,Um(t)) −→ f (t,U (t)) and g(t, s,Um(t)) −→ g(t, s,U (t))

for each t ∈ [0, r1]. Therefore, for any ε > 0, we can take

∥∥ f (t,Um(t)) − f (t,U (t))
∥∥ ≤ αΓ (α)ε

4rα
1

(
α − β

1 − β

)1−β

, (16.13)
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∥∥g(t, s,Um(t)) − g(t, s,U (t))
∥∥ ≤ Γ (α)ε

4Trα
1

(
α − β

1 − β

)1−β

. (16.14)

Employing (16.12) and (16.13) and simplifying, we have

‖TUm(t) − TU (t)‖ ≤ λ1C1

Γ (α)

(
1 − β

α − β

)1−β

rα−β

1 ‖Um(t) −U (t)‖

+ λ1C4

Γ (α)

(
1 − β

α − β

)1−β

rα−β

1 ‖Um(t) −U (t)‖

+ rα
1

αΓ (α)

∥∥ f (s,Um(s)) − f (s,U (s))
∥∥

+ rα
1

Γ (α)

(
1 − β

α − β

)1−β ∫ s

0

∥∥g(t, s,Um(t)) − g(t, s,U (t))
∥∥ ds

≤ ε.

Since ε can be arbitrarily small, taking limit m → ∞ implies T is continuous.
Step 3. Moreover, for U ∈ K ,

‖ TU (t) ‖ ≤ ‖U (0)‖ + λ1(C1 + C4) + C2 + C3

Γ (α)
(‖U (0)‖ + b)

(
1 − β

α − β

)1−β

rα−β

1

≤ ‖U (0)‖ + b.

Hence, T K is uniformly bounded and so T is completely continuous. At this point,
it remains to show that T maps K into an equicontinuous family.
Step 4. Now, letU ∈ K and t1, t2 ∈ J . Then, if 0 < t1 < t2 ≤ r1, by the assumptions
(H1)–(H6), we obtain

‖ TU (t1) − TU (t2) ‖

≤ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
‖a(s)‖ ds

+ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t2

t1
(t2 − s)α−1‖a(s)‖ ds

+ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) ( ∫ s

0
h(s − τ) dτ

)
ds

+ λ1

Γ (α)
(‖U (0)‖ + b)

∫ t2

t1
(t2 − s)α−1

( ∫ s

0
h(s − τ) dτ

)
ds

+ 1

Γ (α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)∥∥ f (s,U (s))
∥∥ ds

+ 1

Γ (α)

∫ t2

t1
(t2 − s)α−1∥∥ f (s,U (s))

∥∥ ds

+ 1

Γ (α)

∥∥∥∥
∫ t1

0

(
(t2 − s)α−1− (t1 − s)α−1

)(∫ s

0
g
(
s, τ,U (τ ) dτ

))
ds

∥∥∥∥
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+ 1

Γ (α)

∥∥∥∥
∫ t2

t1
(t2 − s)α−1

( ∫ s

0
g
(
s, τ,U (τ ) dτ

))
ds

∥∥∥∥

≤ λ1C1

Γ (α)
(‖U (0)‖ + b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

)1−β

+ λ1C1

Γ (α)
(‖U (0)‖ + b)

(∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β

+ λ1C4

Γ (α)
(‖U (0)‖ + b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

)1−β

+ λ1C4

Γ (α)
(‖U (0)‖ + b)

(∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β

+ (‖U (0)‖ + b)

Γ (α)

(∫ t1

0

(
(t2 − s)α−1− (t1 − s)α−1

) 1
1−β ds

)1−β(∫ t

0
(m1(s))

1
β ds

)β

+ 1

Γ (α)
(‖U (0)‖ + b)

( ∫ t2

t1

(
(t2 − s)α−1) 1

1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+ C3

Γ (α)
(‖U (0)‖ + b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

)1−β

+ C3

Γ (α)
(‖U (0)‖ + b)

(∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β

≤ λ1(C1 + C4) + C2 + C3

Γ (α)
(‖U (0)‖ + b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1) 1

1−β ds

)1−β

+ λ1(C1 + C4) + C2 + C3

Γ (α)
(‖U (0)‖ + b)

(∫ t2

t1

(
(t2 − s)α−1) 1

1−β ds

)1−β

.

Clearly, T maps K into an equicontinuous family of functions and it is noted that T is
completely continuous by Ascoli–Arzela theorem. Then, applying Leray–Schauder
fixed point theorem, we achieve that T has a fixed point in K which is a solution of
(16.2).

16.3.2 Neumann Boundary Condition

Next, our aim is to show the existence of solutions of (16.2) with Neumann boundary
condition instead of Dirichlet boundary condition. That is,

∂u(x, t)

∂n
= 0, (x, t) ∈ ∂Ω × J, (16.15)

where n is an outward unit normal. Now, we define the function V (t) by
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V (t) =
∫
Ω

u(x, t) dx
∫
Ω

dx
. (16.16)

The following theorem asserts the existence of solution of (16.2) with Neumann
boundary conditions (16.15).

Theorem 16.3.2 Assume that there exists a β ∈ (0, α) for some 0 < α < 1 such
that (H2) and (H3) hold. For any constant b > 0, suppose that

r2 = min

⎧⎨
⎩T,

[
Γ (α)b

(‖V (0)‖ + b)C2

(
α − β

1 − β

)1−β
] 1

α−β

⎫⎬
⎭ .

Then, there exists at least one solution for the initial value problem (16.2) on Ω ×
[0, r2].
Proof In order to prove the existence of solutions of (16.2), it is enough to show that
the equation

V (t) = V (0) + 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, V (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ, V (τ )

)
dτ

)
ds (16.17)

has a solution.

Step 1. Assume u(x, t) to be a solution of (16.2). Then, it follows that u(x, t) is a
solution of (16.3). Now, integrating both sides of Eq. (16.3) with respect to x ∈ Ω ,
we are led to

∫
Ω

u(x, t) dx =
∫

Ω

u0(x) dx + 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1a(s)Δu(x, s) ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1

( ∫ s

0
h(s − τ)Δu(x, τ ) dτ

)
ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1 f (s, u(x, s)) ds dx

+ 1

Γ (α)

∫
Ω

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ, u(x, τ )

)
dτ

)
ds dx .

(16.18)

Combining Green’s identity and the Neumann boundary condition, the assumption
(H2), (16.18) can be written as
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V (t) ≤ V (0) + 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, V (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ, V (τ )

)
dτ

)
ds. (16.19)

Now, an operator P : C(J, R) → C(J, R) is defined by

PV (t) = V (0) + 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, V (s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
g
(
s, τ, V (τ )

)
dτ

)
ds. (16.20)

Next, we have to prove that the operator P maps K into itself. From the above
equation, we observe that

‖ PV (t) − PV (0) ‖ ≤ 1

Γ (α)

∫ t

0
(t − s)α−1‖ f (s, V (s))‖ ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
‖g(s, τ, V (τ )

)‖dτ
)
ds.

Then, by using the Holder inequality and the assumptions (H2) and (H3), we obtain

‖ PV (t) − PV (0) ‖≤ 1

Γ (α)

∫ t

0
(t − s)α−1

∥∥ f (s, V (s))
∥∥ ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

(∫ s

0
‖g(s, τ, V (τ ))‖ dτ

)
ds.

≤ 1

Γ (α)

∫ t

0
m1(s)(t − s)α−1 (‖V (s)‖) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

( ∫ s

0
m2(s, τ )‖V (s)‖ dτ

)
ds

≤ 1

Γ (α)
(‖V (0)‖ + b)

(∫ t

0

(
(t − s)α−1

) 1
1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+ 1

Γ (α)
(‖V (0)‖ + b)

(∫ t

0

(
(t − s)α−1

) 1
1−β ds

)1−β
(∫ t

0

(∫ s

0
m2(s, τ ) dτ

) 1
β

ds

)β

≤ (‖V (0)‖ + b)C2

Γ (α)

(
1 − β

α − β

)1−β

rα−β

2 + (‖V (0)‖ + b)C3

Γ (α)

(
1 − β

α − β

)1−β

rα−β

2

= (‖V (0)‖ + b) (C2 + C3)

Γ (α)

(
1 − β

α − β

)1−β

rα−β

2

≤ b, t ∈ [ 0, r2 ].
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Since K is closed, we next define a sequence {Vk(t)} in K which has a subsequence
{Vki (t)} such that

lim
ki→∞ Vki (t) = Ṽ (t). (16.21)

Thus, by Lebesgue’s dominated convergence, we obtain

Ṽ (t) = Ṽ (0) + 1

Γ (α)

∫ t

0
(t − s)α−1 f

(
s, Ṽ (s)

)
ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1

(∫ s

0
g
(
s, τ, Ṽ (s)

)
dτ

)
ds.

Now, we intend to show that P is continuous.

Step 2. Let {Vm(t)} be a converging sequence in K to V (t). Therefore, for any ε > 0
and for each t ∈ [ 0, r2 ], let

∥∥ f
(
t, Vm(t)

) − f
(
t, V (t)

)∥∥ ≤ αΓ (α)ε

2rα
2

(
α − β

1 − β

)1−β

, (16.22)

∥∥g(t, s, Vm(t)) − g(t, s, V (t))
∥∥ ≤ Γ (α)ε

2Trα
2

(
α − β

1 − β

)1−β

. (16.23)

Making use of (16.13) and then simplifying, we have

‖PVm(t) − PV (t)‖ ≤ rα
2

αΓ (α)

(
1 − β

α − β

)1−β ∥∥ f (s, Vm(s)) − f (s, V (s))
∥∥

+ rα
2

Γ (α)

(
1 − β

α − β

)1−β ∫ s

0

∥∥g(t, s, Vm(t)) − g(t, s, V (t))
∥∥ ds

≤ ε.

Taking limit m → ∞, for sufficiently small ε, P is continuous.

Step 3. Moreover, for V ∈ K ,

‖ PV (t) ‖ ≤ ‖V (0)‖ + (C2 + C3)

Γ (α)
(‖V (0)‖ + b)

(
1 − β

α − β

)1−β

rα−β

2

≤ ‖V (0)‖ + b.

Hence, PK is uniformly bounded. Now, it remains to show that P maps K into an
equicontinuous family.

Step 4. Now, let V ∈ K and t1, t2 ∈ J . Then, if 0 < t1 < t2 ≤ r2, by the assumptions
(H2) and (H3), we obtain
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‖ PV (t1) − PV (t2) ‖

≤ 1

Γ (α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)∥∥ f (s, V (s))
∥∥ ds

+ 1

Γ (α)

∫ t2

t1
(t2 − s)α−1∥∥ f (s, V (s))

∥∥ ds

+ 1

Γ (α)

∥∥∥∥
∫ t1

0

(
(t2 − s)α−1− (t1 − s)α−1

)(∫ s

0
g
(
s, τ, V (τ ) dτ

))
ds

∥∥∥∥
+ 1

Γ (α)

∥∥∥∥
∫ t2

t1
(t2 − s)α−1

(∫ s

0
g
(
s, τ, V (τ ) dτ

))
ds

∥∥∥∥

≤ (‖V (0)‖ + b)

Γ (α)

(∫ t1

0

(
(t2 − s)α−1− (t1 − s)α−1

) 1
1−β ds

)1−β(∫ t

0
(m1(s))

1
β ds

)β

+ (‖V (0)‖ + b)

Γ (α)

( ∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+ 1

Γ (α)
(‖V (0)‖ + b)

(∫ t1

0

(
(t − s)α−1

) 1
1−β ds

)1−β
⎛
⎝
∫ t1

0

(∫ s

0
m2(s, τ ) dτ

) 1
β
ds

⎞
⎠

β

+ 1

Γ (α)
(‖V (0)‖ + b)

(∫ t2

t1

(
(t − s)α−1

) 1
1−β ds

)1−β
⎛
⎝
∫ t2

t1

(∫ s

0
m2(s, τ ) dτ

) 1
β
ds

⎞
⎠

β

≤ C2

Γ (α)
(‖V (0)‖ + b)

(∫ t1

0
((t2 − s)α−1 − (t1 − s)α−1)

1
1−β ds

)1−β

+ C2

Γ (α)
(‖V (0)‖ + b)

(∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β

+ C3

Γ (α)
(‖V (0)‖ + b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

)1−β

+ C3

Γ (α)
(‖V (0)‖ + b)

(∫ t2

t1
((t2 − s)α−1)

1
1−β ds

)1−β

.

Thus, P maps K into an equicontinuous family of functions. Then, as in the previous
case, from Leray–Schauder fixed point theorem, we conclude that P has a fixed point
in K which is a solution of (16.2).

Conclusion

In this chapter, we consider fractional integrodifferential equation describing the
motion of fractional Maxwell fluid with zero pressure. This equation gets attention
from the fact that the fractional derivatives are used to depict the viscoelasticity
phenomena with little amount of constraints. Since this equation has a positive kernel
with diffusion term, this is different from the integrodifferential equation considered
in [3]. Further, our equation is not a particular case of the equation discussed in [3].



348 A. Akilandeeswari et al.

Acknowledgements The authors are thankful to the referees for their valuable suggestions for the
improvisation of the paper. The first author is thankful for the financial support under UGC-SAP-
DRS-III project (Grant No. G2/10810/2017) and the second author is thankful to UGC-BSR Faculty
fellowship for carrying out this work.

References

1. K.S. Akiladevi, K. Balachandran, On fractional delay integrodifferential equations with four-
point multiterm fractional boundary conditions. Acta Math. Univ. Comen. 86, 187-204 (2017)

2. K.S. Akiladevi, K. Balachandran, J.K. Kim, Existence results for neutral fractional integrodif-
ferential equations with fractional integral boundary conditions. Nonlinear Funct. Anal. Appl.
19, 251-270 (2014)

3. A. Akilandeeswari, K. Balachandran, J.J. Trujillo, M. Rivero, On the solutions of partial inte-
grodifferential equations of fractional order. Tiblisi Math. J. 10, 19–29 (2017)

4. A. Akilandeeswari, K. Balachandran, N. Annapoorani, Existence of solutions of fractional
partial integrodifferential equationswithNeumann boundary condition. Nonlinear Funct. Anal.
Appl. 22, 711–722 (2017)

5. N. Annapoorani, K. Balachandran, Existence of solutions of partial neutral integrodifferential
equations. Carpathian J. Math. 26, 134–145 (2010)

6. A. Arikoglu, I. Ozkol, Solution of fractional integrodifferential equations by Fourier transform
method. Chaos Solitons Fractals 40, 521–529 (2009)

7. I. Aziz, I. Khan, Numerical solution of partial integrodifferential equations of diffusion type.
Math. Probl. Eng. 2017, 1–11 (2017)

8. K. Balachandran, N. Annapoorani, Existence results for impulsive neutral evolution integrod-
ifferential equations with infinite delay. Nonlinear Anal.: Hybrid Syst. 3, 674–684 (2009)

9. K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrod-
ifferential equations in Banach spaces. Nonlinear Anal. 72, 4587–4593 (2010)

10. M.Caputo, Linearmodels of dissipationwhoseQ is almost frequency independent-II. Geophys.
J. R. Astron. Soc. 13, 529–539 (1967)

11. A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics
(Springer, New York, 1997)

12. M. De La Sena, V. Hedayati, Y.G. Atani, S. Rezapour, The existence and numerical solution
for a k-dimensional system of multi-term fractional integro-differential equations. Nonlinear
Anal.: Model. Control 22, 188–209 (2017)

13. L.C. Evans,PartialDifferential Equations (AmericanMathematical Society, Providence, 1998)
14. M.A. Ezzat, Theory of fractional order in generalized thermoelectricMHD.Appl.Math.Model.

35, 4965–4978 (2011)
15. K.M.Furati,N.E. Tatar, Behavior of solutions for aweightedCauchy-type fractional differential

problem. J. Fract. Calc. 28, 23–42 (2005)
16. V.D. Gejji, H. Jafari, Boundary value problems for fractional diffusion-wave equation. Aus-

tralian J. Math. Anal. Appl. 3, 1–8 (2006)
17. M.A.E. Herzallah, A.M.A. El-Sayed, D. Baleanu, On the fractional order diffusion-wave pro-

cess. Romanian J. Phys. 55, 274–284 (2010)
18. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishing, Singa-

pore, 2000)
19. I.S. Jesus, J.A.T. Machado, J.B. Cunha, Fractional electrical impedances in botanical elements.

J. Vib. Control 14, 1389–1402 (2008)
20. B. Kamalapriya, K. Balachandran, N. Annapoorani, Existence results for fractional integrod-

ifferential equations. Nonlinear Funct. Anal. Appl. 22, 641–653 (2017)
21. A.A. Kilbas, H.M. Srivasta, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations (Elsevier, Amstrdam, 2006)



16 On Fractional Partial Differential Equations … 349

22. X. Li, C. Xu, A space-time spectral method for the time-fractional diffusion equation. SIAM
J. Numer. Anal. 47, 2108–2131 (2009)

23. A.D. Obembe, H.Y. Al-Yousef, M.E. Hosssin, S.A. Abu-Khamsin, Fractional derivatives and
their applications in reservoir engineering problems: a review. J. Petrol. Sci. Eng. 157, 312–327
(2017)

24. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, New York, 2011)
25. Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order

partial differential equations with delay. Comput. Math. Appl. 61, 860–870 (2011)
26. M. Ozalp, I. Koca, A fractional order nonlinear dynamical model of interpersonal relationships.

Adv. Differ. Equ. 2012, 1–7 (2012)
27. L.M. Petrovic, D.T. Spasic, T.M. Atanackovic, On a mathematical model of a human root

dentin. Dent. Mater. 21, 125–128 (2005)
28. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
29. S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arfa, Effect of bacterial memory dependent growth by

using fractional derivatives reaction diffusion chemotactic model. J. Stat. Phys. 140, 797–811
(2010)

30. B. Ross, A brief history and exposition of the fundamental theory of fractional calculus. Frac-
tional Calculus and Its Applications, vol. 57 (1975), pp. 1–36

31. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications (Gordon and Breach Science Publishers, Yverdon, 1993)

32. H. Schiessel, R. Metzler, A. Blumen, T.F. Nonnenmacher, Generalized viscoelastic models:
their fractional equations with solutions. J. Phys. A: Math. Gen. 28, 6567–6584 (1995)

33. W.R. Schneider,W.Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144
(1989)

34. X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equa-
tions. Appl. Math. Lett. 22, 64–69 (2009)

35. V.S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1981)
36. L. Zhang, B. Ahmad, G. Wang, R.P. Agarwal, M. Al-Yami, W. Shammakh, Nonlocal integrod-

ifferential boundary value problem for nonlinear fractional differential equations on unbounded
domain. Abstr. Appl. Anal. 2013, 1–5 (2013)



Chapter 17
Mathematical Study on Human Cells
Interaction Dynamics for HIV-TB
Co-infection

Suman Dolai, Amit Kumar Roy and Priti Kumar Roy

Abstract Co-infectionofTuberculosis (causedbyMycobacterium tuberculosis bac-
teria) and HIV (caused by Human Immunodeficiency virus) remains a global burden
on public health system and poses particular diagnostic and therapeutic challenges.
Due to co-infection, HIV speeds up the progression from latent to active TB and
TB bacteria also accelerates the progress of HIV infection which ultimately leads
to serious condition in individuals. In this research work, we formulate a six com-
partment mathematical model on the HIV-TB co-infection dynamics incorporating
Macrophage (active and infected), T-cell (active and infected), Virus, and Bacteria
population. Moreover, we explore the accelerating effect of both pathogens on each
other in mathematical perceptive. Our analytical study reveals the conditions for
the persistence of co-infection and also validates the stability criteria of equilibrium
points for the disease. We also evaluate the disease-free condition using next genera-
tion method, expressed by the basic reproductive ratio (R0). Moreover, our analytical
and numerical simulations manifest the influence of certain key parameters on the
threats posed by the impact of HIV-TB co-infection.

Keywords HIV · TB · Co-infection · Basic reproductive ratio · Sensitivity
analysis

17.1 Introduction

Tuberculosis (TB) is one of the main reasons for human death among all infectious
diseases; close to 2 million people passed away at the end of 2016 [1]. World Health
Organization (WHO) reported that one-third of the world’s total population live with
TB latency but only 5–10% individualswill advancewith active TBdisease [2–4]. On
the other hand, according to UNAIDS; 1.8 million people became infected with HIV
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and approximately 1.0 million died globally due to AIDS in the last year [5]. AIDS
is a syndrome caused by the virus HIV which alters the immune system and makes
people much more vulnerable to infections [6]. Due to the damaged immune system,
the HIV infected individuals can become afflict with active TB disease within weeks
to months which is 20–30 times greater than among those without HIV infection [7].
Estimated by the WHO in 2016, one million new TB cases ascended among people
who were HIV positive and about 374,000 people died worldwide [8].

Human immune system is the prime shield that is accountable to defense against
foreign body particle (virus, bacteria, and parasites); made by different organs, cells,
and cytokines [9]. The two most important immune cells are Macrophage (Bone
marrow derived) and T-cell (derived from human cord blood hematopoietic stem
cells) which are different types of white blood cell [10–12]. Like all retroviruses,
HIV-1 attacks T-cells as well as macrophages with two types of CD4+ receptors
(CXCR4 and CCR5) and infects those two key immune cells [2, 13, 14]. This infec-
tion process is categorized into three steps: First, HIV attacks to the body immune
system through transmission process; next, HIV exists in latent stage; and finally,
there is AIDS when individual has extreme viral load [15]. Moreover, Cytotoxic T
lymphocytes (CD8+T-cells) are believed to play amajor role in killing virus levels in
asymptomatic period (primary stage) of HIV infection [16]. Furthermore, Mycobac-
teriumTuberculosis (TB bacteria) progresses so slowly that it could bemisdiagnosed
initially and Macrophages act as a primary reservoir cell for this bacterial growth.
After activation by T-cell, Macrophages engulf TB bacteria by detecting them with
toll-like receptors [2, 17] and kill them by producing reactive oxygen species (nitric-
oxide) [2, 3]. These TB bacteria can survive inside the macrophage; they replicate
themselves more and more until the macrophages burst and attain the active stage [2,
18]. During co-infection, the activation of TB from latent stage is more prominent
due to huge loss of macrophage cell in presence of HIV. HIV decreases the ability of
macrophage to produce the nitric oxide and also distract to engulf TB bacteria due to
loss of CD4+ T-cell [2, 19, 20]. Tumor necrosis factor alpha (TNF − α) is the pro-
inflammatory cytokine released for controlling TB bacterial growth which ultimately
helps to enhance HIV replication in co-infected individuals [2, 21]. Upregulation of
co-receptors (CXCR4 and CCR5) expressions on CD4+ T-cell and downregulated
CCL5 ligand by TB bacteria permit to increase the virus replication [2, 22]. In this
way, both virus and bacteria give a great positive impact on each other to develop
active stage in a short time.

During last few decades, many clinical and experimental studies have been per-
formed on HIV-TB co-infection disease. Pawlowski et al. suggested that the risk
of developing TB from latent to active is approx. 20 fold during co-infection [2].
Selwyn et al. investigated that seven of the eight cases of tuberculosis occurred
in HIV infected individuals through a prior positive PPD test [23]. Diedrich et al.
reported that there was a 5–160 fold increase in plasma viral titers during acute infec-
tion with TB, which are 2.5 times higher in HIV+ individuals upon TB diagnosis
[24]. Though many clinical and experimental studies have been done on HIV-TB
co-infection but its mathematical outlook is highly anticipated.
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In this direction, somemathematical works have been done related to co-infection
of HIV and TB from epidemiological and cell dynamical aspect. Naresh et al. inves-
tigated the effect of TB on HIV infected people by formulating a four-dimensional
mathematical model focusing on population dynamics and discussed about some
key parameters on spread of the disease [25]. Boralin G. et al. discussed the effect
of treatment on the TB in HIV/TB co-infection by constructing a six-dimensional
epidemiological model [26] and Cristiana J. Silva et al. extended the work in which
they investigated the treatment of TB, HIV, and TB/HIV co-infection separately [27].
In recent years, some mathematical models focusing on various treatment process
of HIV/TB co-infection have been established [28, 29]. Roger et al. developed a
eight-dimensional mathematical model mentioning the joint dynamics of HIV and
TB in a pseudo-competitive environment, at the population level [30]. However, all
the above articles are based on population dynamics, but our aim is to investigate
the dynamical behavior of human immune cells when two diseases coexist in human
body. In this direction, Kirschner et al. first instigated a four-dimensional mathemat-
ical model based on cell–cell interaction dynamics (macrophage, T-cell, virus, and
bacteria) [18] andMagombedze et al. extended the work by considering two types of
T-cells and macrophage cells (uninfected and infected) [31]. However, these works
fail to demonstrate about the acceleration hypothesis between virus and bacteria dur-
ing co-infection in mathematical conjecture. In this research work, we have proposed
a six-dimensional mathematical model based on cell dynamical system introducing
two acceleration parameterswhich indicates the cross talk betweenvirus andbacteria.
Our analytical and numerical studies show that how the key parameters (acceleration
parameters) play a crucial role in disease pathogenesis.

This article is startedwith a general introductory section and in Sect. 17.2, we have
introduced our models and analyzed the model properties. In Sect. 17.3, the equilib-
rium points, stability conditions, and sensitivity analysis have been discussed and
numerical simulations with varying parameters are given in Sect. 17.4. In Sect. 17.5,
we summarize the results of our analysis with some concluding remarks.

17.2 The Model

17.2.1 The Deterministic Model

We develop a six-dimensional mathematical model of HIV-TB co-infection by intro-
ducing different cells to reflect the cell-biological relationships in expressing the
disease. Here, M(t), Mi (t), T (t), Ti (t), V (t), and B(t) represent the densities of
Macrophage cell, Infected Macrophage cell, T-cell, Infected T-cell, Virus popula-
tion, and Bacteria population at any time t , respectively. Now, the deterministic
mathematical model is given as follows:
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dM

dt
= SM − λ1BM − λ2MV − μMM,

dMi

dt
= λ1BM + λ2MV − a1Mi − a2Mi − μMi Mi ,

dT

dt
= ST − λ3T V − μT T,

dTi
dt

= λ3T V − a3Ti − μTi Ti ,

dV

dt
= N3a3Ti + N2a2Mi + γ1V B − k1VT − μV V,

dB

dt
= N1a1Mi + γ2V B − k2BM − μB B, (17.1)

where M(0) > 0, Mi (0) ≥ 0, T (0) > 0, Ti (0) ≥ 0, V (0) ≥ 0, and B(0) ≥ 0 are the
initial conditions.

In system (17.1), the first equation illustrates the growth dynamics ofmacrophage.
Here, SM is the constant production of macrophages from bone marrow through
thymus. λ1 and λ2 are symbolized the rate at which MTB and HIV infect the
macrophages, respectively. The last term of the first equation expresses the death
term of macrophage andμM is the natural decay rate. The second equation of system
(17.1) represents the growth rate of infected macrophage. The diseases (HIV and
TB both) replicate inside the infected cells more and more until those cells burst and
after bursting of host cells, diseases come out from the cell. Here, a1 and a2 indicate
the bursting rate of infected macrophage cell due to bacteria and virus, respectively.
The natural death rate of infected macrophage is denoted by μMi .

In the third equation, ST and μT indicate the constant accumulation rate and
mortality rate of T-cell. At a rate λ3 HIV attacks T-cell and convert into infected one.
The fourth equation stands for the growth equation of infected T-cell. a3 represents
the bursting rate of infected T-cell and μTi denotes death rate.

The last two equations denote the dynamics of virus and bacteria populations. In
the fifth equation, N3 and N2 specify the virus production rate due to destroying of
infected T-cell and infected macrophage, respectively. k1 is the rate at which virus
killed byT-cell (specially killed byCD8+T-cell). N1 is the production rate of bacteria
for bursting of MTB specific infected macrophage. k2 represents the killing rate of
bacteria by macrophages. γ1 and γ2 represent the accelerating growth rate of virus
and bacteria by one another, respectively. μV and μB denote the death rate of virus
and bacteria, respectively.

17.2.2 Boundedness

Let Ω = {(M, Mi , T, Ti , V, B) ∈ R6: 0 < (M + Mi )(t) ≤ SM
μ1
, 0 < (T + Ti )(t) ≤

ST
μ2

and 0 < (V + B)(t) ≤ μ

2γ − a} is a positive invariant subset of R6.
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The right-hand sides of system (17.1) are smooth and nonlinear functions of the
variable M , Mi , T , Ti , V , and B and also the parameters are always nonnegative.
Henceforth, the system dynamics is assuredly bounded in the positive octant and the
considered cells concentration are less than a pre-assumed quantity. In the following
theorem, we wish to clarify that the solution of the dynamical system is bounded.

Theorem 17.1 The solutions of the system (17.1) with initial conditions satisfy
M(t)>0, Mi (t)>0, T (t)>0, Ti (t)>0, V (t)>0, and B(t)>0 for all t > 0. The region
Ω ⊂ R6+ is positively invariant and attracting with respect to system (17.1).

Proof Adding first two equation of our mathematical model, we get

d(M + Mi )

dt
= SM − (a1 + a2 + μMi )Mi − μMM.

From this equation, it follows that

d(M + Mi )

dt
≤ SM − μ1(M + Mi ),

where μ1 = min{(a1 + a2 + μMi ), μM }.
Now, solving the above inequality, we get

(M + Mi )(t) ≤ SM
μ1

+
(
SM
μ1

− M(0)

)
exp−μ1t .

For long time interval, we also obtain (M + Mi )(t) ≤ SM
μ1
, the maximum value of

active and infected macrophage present in the case of co-infection.
Again we add third and fourth equation of our model and taking μ2 = min{μT ,

(a3 + μTi )}, we get
d(T + Ti )

dt
≤ ST − μ2(T + Ti ).

Now, solving the above inequality, we get

(T + Ti )(t) ≤ ST
μ2

+
(
ST
μ2

− T (0)

)
exp−μ2t .

Now,we get (T + Ti )(t) ≤ ST
μ2

the maximum value of active and infected T-cell.
Similarly, using the maximum value of M , Mi , T , and Ti cells, we also get from the
fifth and sixth equation of our model:

d(V + B)

dt
= N1a1Mi + N2a2Mi + N3a3Ti + γ1V B + γ2V B − k1VT − k2BM − μV V − μB B,

≤ X + γ1V B + γ2V B − μvV − μB B,

≤ X + γ V B + γ V B + γ V 2 + γ B2 − μ(V + B),
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where X = N3a3ST
μ2

+ N2a2SM
μ1

+ N1a1SM
μ1

, μ = min{μV , μB} and γ = max{γ1, γ2}.
Now, solving the above inequality, we get the threshold value of virus and bacteria

population as follows:
(V + B)(t) ≤ μ

2γ − a, where a2 = μ2

4γ 2 − X
γ
and μ

2γ − a > 0.

Hence, the system is bounded in the region Ω ⊂ R6 with the initial conditions
M(t)>0, Mi (t)≥0, T (t)>0, Ti (t)≥0, V (t)≥0, and B(t)≥0.

17.3 Equilibrium Analysis

The endemic equilibrium E∗ = (M∗, M∗
i , T

∗, T ∗
i , V ∗, B∗) is obtained by setting

equation of the system to zero. Then, the values of M∗, M∗
i , T

∗, T ∗
i , V

∗, B∗ are
given follows:
M∗ = (a1+a2+μMi )M

∗
i

λ1B∗+λ2V ∗ ,

T ∗ = (a3+μTi )T
∗
i

V ∗ ,

V ∗ = N3a3T ∗
i +N2a2M∗

i
k1T ∗+μV −γ1B∗ ,

B∗ = N1a1M∗
i

k2M∗+μB−γ2V ∗ ,

where T ∗
i = λ3T ∗V ∗

a3+μTi
and M∗

i = λ1B∗M∗+λ2M∗V ∗
a1+a2+μMi

.

Now, the disease-free equilibrium point is E0 = (M1, 0, T1, 0, 0, 0) where M1 =
SM
μM

and T1 = ST
μT

.

17.3.1 Stability of the Endemic Equilibrium

The Jacobian matrix for the endemic equilibrium of model system (17.1) is given by

J (E∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ1B
∗ − λ2V

∗ − μM 0 0 0 −λ2M
∗ −λ1M

∗
λ1B

∗ + λ2V
∗ −a1 − a2 − μMi

0 0 λ2M
∗ λ1M

∗
0 0 λ3V

∗ − μT 0 λ3T
∗ 0

0 0 λ3V
∗ −a3 − μTi

λ3T
∗ 0

0 N2a2 −k1V
∗ N3a3 γ1B

∗ − k1T
∗ − μV γ1V

∗
−k2B

∗ N1a1 0 0 γ2B
∗ γ2V

∗ − k2M
∗ − μB

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let, element of the above matrix J (E∗) are in the form of ai j where {i and j ∈
(1, 2, . . . , 6)}.

The characteristic polynomial of the above matrix is

det (J − uI6) = u6 + Au5 + Bu4 + Cu3 + Du2 + Eu + F.

Here, A, B, C , D, E , and F are coefficients of the above polynomial. See the
Appendix for the value of these coefficients.
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Let H1 = (
A

)
, H2 =

(
A 1
0 B

)
, H3 =

⎛
⎝ A 1 0
C B A
0 0 C

⎞
⎠ , H4 =

⎛
⎜⎜⎝

A 1 0 0
C B A 1
0 D C B
0 0 0 D

⎞
⎟⎟⎠ ,

H5 =

⎛
⎜⎜⎜⎜⎝

A 1 0 0 0
C B A 1 0
E D C B A
0 0 E D C
0 0 0 0 E

⎞
⎟⎟⎟⎟⎠, and H6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

A 1 0 0 0 0
C B A 1 0 0
F E D C B A
0 F E D C B
0 0 0 F E D
0 0 0 0 0 F

⎞
⎟⎟⎟⎟⎟⎟⎠

are all Hurwitz matrix.

Lemma All the roots of the characteristic equation are negative or negative real part
if the determinants of all the Hurwitz matrices are positive, i.e., det (Hj ) > 0, j =
1, 2 . . . 6. Thus, from the Routh–Hurwitz criterion [32], the system is asymptotically
stable if det (Hj ) > 0, j = 1, 2 . . . 6.

17.3.2 Reproduction Number

a = a1 + a2 + μMi ,
b = a3 + μTi ,
c = k1T1 + μV and
d = k2M1 + μB are some preassigned parameters.

The linearisation of the second, fourth, fifth, and sixth equation of the model
at the disease-free equilibrium E0 can be written as dY

dt = (F − V )Y , where Y =
[Mi , Ti , V, B]T ,

F =

⎛
⎜⎜⎝
0 0 λ2M1 λ1M1

0 0 λ3T1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and V =

⎛
⎜⎜⎝

a 0 0 0
0 b 0 0

−N2a2 −N3a3 c 0
−N1a1 0 0 d

⎞
⎟⎟⎠.

The basic reproduction number, R0 is determined by the method of next generation
matric (van den Driessche andWatmough, 2002). Therefore, to find R0, wemust find
the dominant eigenvalue of FV−1 where FV−1 =⎡
⎢⎢⎢⎢⎣

λ2N2a2M1
ac + λ1N1a1M1

ad
λ2N3a3M1

bc
λ2M1
c

λ1M1
d

λ3N2a2T1
ac

λ3N3a3T1
bc

λ3T1
c 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦.

The characteristic equation of the above matrix is given by
λ2(λ2 − Pλ + Q) = 0,
where P = λ1N1a1M1

ad + λ2N2a2M1
ac + λ3N3a3T1

bc

and Q = λ1N1a1M1λ3N3a3T1
abcd .

The dominant eigenvalue is denoted by ρ(FV−1), which is also R0. Hence,
R0 = P+(p2−4Q)1/2

2 .
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17.3.3 Stability of Disease-Free Equilibrium

Theorem 17.2

A3 = a + b + c + d;
A2 = ab + ac + ad + bc + bd + cd − λ1a1N1M1 − λ2a2N2M1 − λ3a3N3T1;
A1 = abc + abd + acd + bcd − (b + c)λ1a1N1M1 − (b + d)λ2a2N2M1 − (a + d)λ3a3N3T1;
A0 = abcd + λ1a1N1M1λ3a3N3T1 − bcλ1a1N1M1 − bdλ2a2N2M1 − adλ3a3N3T1.

If H = min{(k1 − λ3N3), (μB − λ1N1), (μV − λ2N2), and (A3A2A1 − A2
1 − A2

3
A0)}>0 then the disease-free equilibrium is asymptotically stable.

Proof The Jacobian matrix at the disease-free equilibrium of model system (17.1)

is given by J (E0) =
⎡
⎢⎣

−μM 0 0 0 −λ2M1 −λ1M1
0 −a1 − a2 − μMi

0 0 λ2M1 λ1M1
0 0 −μT 0 −λ3T1 0
0 0 0 −a3 − μTi

λ3T1 0
0 N2a2 0 N3a3 −k1T1 − μV 0
0 N1a1 0 0 0 −k2M1 − μB

⎤
⎥⎦.

After expanding with respect to the term, we get the characteristic polynomial of
the jacobian matrix as follows:

det (J − λI ) = (λ + μM)(λ + μT )(λ4 + A3λ
3 + A2λ

2 + A1λ + A0).

By assumptionμM andμT are all strictly positive, so it suffices to examine the fourth
degree equation

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0.

where A3 = a + b + c + d > 0 trivially.
Again,we show that A0 > 0 and A2A3 − A1 > 0 if k1 > λ3N3,μB > λ1N1,μv >

λ2N2. From theRouth–Hurwitz criteria (R-H criteria), if A3>0 and A2A3 − A1 > 0,
A0>0 and A3A2A1 − A2

1 − A2
3A0>0, then the above equation has rootswith negative

real part. If these conditions exist, then disease-free equilibrium E0 is asymptotically
stable.

Remark 1 From this theorem, we can show the stability condition of disease-free
equilibrium point and get three valid biological results k1 > λ3N3,μB > λ1N1,μv >

λ2N2 by solving the stability criterion.

Remark 2 If R0 < 1, then the disease-free equilibrium point is asymptotically stable
and if it is greater than one, the endemic equilibrium point exists.

Remark 3 If k1 > λ3N3,μB > λ1N1, andμV > λ2N2, then the reproductionnumber
R0 < 1.
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Table 17.1 Sensitivity analysis of parameters

Parameter Sensitivity index of R0 w.r.t
parameters

Positive or negative

SM −0.4289 −
λ1 0.1575 +
λ2 0.2689 +
μM −0.4406 −
a1 −0.000337 −
a2 0.1866 +
μMi −0.18629 −
ST −0.6538 −
λ3 0.57124 Most positive

μT −0.57145 −
a3 0.57123 +
μTi −0.91399 Most negative

N2 0.5425 +
N3 0.2112 +
k1 −0.8492 −
μV −0.6988 −
N1 0.01598 +
k2 −0.1259 −
μB −0.0058 −

17.3.4 Sensitivity Analysis

In this section, we use sensitivity analysis to investigate the impact of various inter-
vention measure. By this method, we can identify the parameters that have high
impact on the basic reproductive ratio R0, as well as on the disease transmission.
Here, we derive the sensitivity index by using partial rank correlation coefficients
(PRCC) of the basic reproductive ratio with respect to parameters. According to
[33], the normalized forward sensitivity index of R0 with respect to a parameter c is
defined as follows:

R0∏
c

= δR0

δc
× c

R0
. (17.2)

In Table17.1, we have written sensitivity index of R0 w.r.t parameters by using above
formula. This demonstrates that R0 is most negatively sensitive to the mortality of
infected macrophage (μTi ), meaning that if we increase the value of μTi , that can
reduce new cases and disease prevalence. On the other hand, λ3 is most positive
effect on R0, i.e., if we increase the value of λ3, then the value of R0 increases.
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Table 17.2 Parameters value using for numerical simulation

Parameter Assigned value Range References

SM 12mm−3Day−1 12–14mm−3Day−1 [34]

λ1 0.0003mm3Day−1 – Assumed

λ2 0.0000022mm3Day−1 0.000002–
0.000025mm3Day−1

[18, 35]

μM 0.011 Day−1 0.011–0.05 Day−1 [31, 34]

a1 0.00002 Day−1 – [31]

a2 0.015 Day−1 – Assumed

μMi 0.011 Day−1 – [31]

ST 12mm−3Day−1 9-15 mm−3Day−1 [34]

λ3 0.000024mm3Day−1 – [18]

μT 0.05 Day−1 0.007–0.1 Day−1 [18, 34]

a3 0.1 Day−1 – Assumed

μTi 0.025 Day−1 – [35]

N2 500 100–1000 [18]

N3 500 100–1000 [18]

γ1 0.03 mm3Day−1 – Assumed

k1 0.00074mm3Day−1 – [18]

μV 2.4 Day−1 – [18]

N1 50 – [31, 36]

γ2 0.007mm3Day−1 – Assumed

k2 0.5mm3Day−1 – [18]

μB 0.5 Day−1 – [18]

17.4 Numerical Simulation

In this section, we study the numerical simulations of our model system on the
basis of analytical findings. Our numerical studies were done using the MathWorks
MATLAB 2016a. For numerical simulations, we take a set of parameter values given
in Table17.2. Some parameter values are taken from different journals, some are
estimated, and remaining values are assumed. We choose the initial values in ratio
dependant according to cardinal rule of scientific hypothesis.

From Fig. 17.1, we investigate the qualitative behavior of considered cells
(Macrophage, T-cell, virus, and bacteria) between time intervals 400 days and also
observe the time period for steady state. In Fig. 17.1a, initially macrophage decreases
dramatically due to the negative effect of both pathogens on it. After 200 days,
macrophage concentration increases in a small amount and reaches a stable density
level 200mm−3 due to positive impact of CTL cells. As a result, infectedmacrophage
chronologically increases and reaches steady concentration level about 579mm−3.
From Fig. 17.1b, we observe that the gradient of infected T-cell gains the highest
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Fig. 17.1 Graphs of numerical solutions showing propagation of macrophages, T-cell, Bacteria,
and virus in Co-infection with parameter values given in Table (17.1): a Macrophage and Infected
Macrophages,bT-cell and InfectedT-cell cBacteria andVirus Population. Initial values areM(0) =
500, Mi (0) = 35, T (0) = 600, Ti (0) = 100, V (0) = 50, and B(0) = 10
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Fig. 17.2 Qualitative behavior of Active Macrophage cell, Infected Macrophage cell, and Bacteria
population with initial conditions M(0) = 500, Mi (0) = 35, and B(0) = 10: a Macrophage cells,
b Infected Macrophage cells, and c Bacteria population

level density 1800mm−3 between 100 days. Then, it declines overly to reach stable
condition due to the CTL response. Figure17.1c demonstrates that virus and bacte-
ria population reach the top most concentration level (3000mm−3 and 1300mm−3,
respectively) after initial 90 days due to high acceleration effect and then the trajec-
tories become stable after 250 days.

In Fig. 17.2, we plot macrophage, infected macrophage, and bacteria population
with respect to time and study the dynamical nature of the trajectories for twodifferent
conditions (TBwithout HIV and TBwith HIV). From Fig. 17.2a, the green trajectory
of macrophage (for the case of co-infection) decreases more than the red trajectory
of that (for the case of TB without HIV) due to the enhancement effect of HIV.
After 500 days, both trajectories of macrophage reach the stable density level at
300 and 430.7mm−3. For the same reason in Fig. 17.2b, it is noted that the infected
macrophage reaches at the density level 560mm−3 very fast during co-infection
compare with when HIV is absent. Figure17.2c illustrates the dynamical behavior
of bacterial growth for co-infection (red line) and without co-infection (green line).
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Fig. 17.4 Graph of numerical simulations for increment of Infected macrophage cells. The param-
eter values are a1 = 0.00002, a2 = 0.015 and μMi = 0.011 with initial conditions M(0) = 500,
Mi (0) = 35, V (0) = 50, and B(0) = 10

During co-infection, the increment of bacterial growth is very fast and reaches the
highest density level at 1300mm−3 between 500 days but for the case of TB without
HIV gain the maximum density level (100mm−3) in the same time interval. Then,
bacterial density falls chronologically and gains a stable condition after 1500 days.

Figure17.3 manifests the qualitative behavior of macrophage, infected
macrophage along with virus population between time intervals 400 days and
demonstrates two trajectories (Red and Blue color based on co-infection and with-
out co-infection dynamics, respectively). Figure17.3a shows the trajectories of
macrophages decrease initially due to effect ofHIVand co-infection, respectively and
reach the steady state level at 200 and 310mm−3 after 300 days. From Fig. 17.3b, it
is investigated that for the same reason trajectories of infected macrophages increase
to reach a steady state density level 350 and 300mm−3 after 300 days. In Fig. 17.3c,
it is prominent that the increment of viral growth is higher during the co-infection.
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Fig. 17.5 Basic reproduction ratio R0 (Left Panel). Increment of HIV and TB due to acceleration
effect on each other (Right Panel). The parameter values are taken from the above Table17.1

Figure17.4 shows the change in qualitative behavior of infected macrophage
with respect to time for different values of λ1 (0.0003, 0.000301, and 0.000299) and
λ2 (0.000001, 0.0000002, and 0.000003) when λ2 = 0.0000022 and λ1 = 0.0003,
respectively. From Fig. 17.4a (the value of λ2 is fixed), it is clear that for the lower
value of λ1 (0.000299), the density of infected macrophage is in level 350mm−3

and if we increase the value of λ1 in small amount (0.000001), the density increase
approx. 80mm−3. Furthermore, for the greater value of λ1, the density of infected
macrophage increases approx. 50mm−3. Similarly, we vary the λ2 when the value
of λ1 is fixed, we get different trajectories from which the deflection form lower
to upper trajectories is 45 mm−3. From Fig. 17.4a and b, it is clear that λ1 is more
effective to infect macrophage than λ2.

Figure17.5 (Left panel) gives the contour plot of the basic reproduction ratio
(R0) as a function of μV (natural mortality rate of virus) and λ3 (the rate at which
T-cell infected by HIV). The figure illustrates that the change of the parameter R0

as μV and λ3 vary. We observe that when the ratio of rate at which T-cell infected
by HIV and natural death rate of virus becomes less than unity, our system will
be locally asymptotically stable indicated by dark blue region. It becomes unstable
when the ratio will be greater than unity located in the figure in all parts other than the
blue region. Analytically, we obtain three results connecting different parameters,
but we cannot get relation between some parameters for checking the behavior of
this threshold value. So, here we take different two parameters to check qualitative
behavior of it. From this figure, it is also clear that if the value of λ3 is below a certain
level (approximate λ3 = 0.0000239), the system is always stable even if higher level
ofμV . For other values of the parameters, however, R0 is relatively stablewith respect
to variations.

In Fig. 17.5 (Right panel), we elaborate the growth increment (difference between
growth for co-infection and without co-infection) of virus and bacteria between 200
days. From this figure, we can say that the increment of bacterial growth due to co-
infection is much more than the growth of viral population. It is also manifested by
this figure, after 100 days, the increment of TB is maximum and then the acceleration
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effect of HIV on TB gradually decreases due to CTL response. From this figure it is
clear that reactivation of TB due to co-infection is greater than that of HIV.

17.5 Discussion

In this research work, we have analyzed the role of two immune cells (Macrophage
cell and T-cell) along with various cytokines effect on the dynamics of HIV/TB
co-infection. In our analytical study, we have verified the existence condition of
disease-free and endemic equilibrium depending on the basic reproductive ratio (R0),
using next generation method. We have studied the stability criteria of disease-free
as well as endemic equilibrium using Routh–Hurwitz criterion point depending on
some key parameters. However, our stability analysis of disease-free equilibrium
demonstrates that the mortality rate of bacteria (μB) is greater than the product of
bacterial infection rate of macrophage (λ1) and birth rate of new bacteria due toMTB
specific macrophages (N1). We also analytically reveal an important cell-biological
phenomenon for the disease-free condition: the killing rate of virus due to CTL
response (k1) is always greater than the product of the viral infection of T-cell (λ3)
and production rate of virus due to infected T-cell (N3). Our numerical outcomes
are associated with analytical results which allow more precise prediction about
reactivation of both pathogens by each other due to co-infection. Our numerical
simulation shows that the accelerating effect on TB due to presence of HIV is greater
than the effect on HIV by TB. Finally, our analysis speculates that if TB is effectively
treated in the areas where HIV is widespread, then the rate of AIDS related deaths
can be slowed down and the life span of dually infected patients will be larger.
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17.6 Appendix

A = −∑
aii

B = ∑
aiia j j − ∑

ai j a ji

C = ∑
ai j a ji akk − ∑

aiia j j akk − ∑
ai j a jkaki

D = ∑
aiia j j akkall + ∑

ai j a ji akiall+ ∑
ai j a ji aklalk− ∑

ai j a ji akkall− ∑
ai ja jk

aklali
E = ∑

ai j a ji akkallamm − ∑
aiia j j akkallamm − ∑

ai j a jkaklali amm − ∑
ai j a jkaki

allamm − ∑
ai j a ji aklalkamm + ∑

ai j a jkaklalmami

F = ∑
aiia j j akkallammann+ ∑

ai j a jkaklalmamiann+ ∑
ai j a ji aklalkammann+∑

ai j a jkakialmamnanl −∑
ai j a ji akkallammann − ∑

ai ja ji aklalmamkann
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Here, A, B, C , D, E , and F follows a rule: i �= j �= k �= l �= m �= n. In ai j , if i = 1,
then j can go to 6 or 5. Following same rule for k, l, m, n. Similarly, 2 can go 5 or
6. 3 can go 5. 4 can go 5 or 3. 5 can go 2 or 3 or 4 or 6 and 6 can go 1 or 2 or 5. In
ai j a ji , let i = 1 then j can go 5 or 6. But, a15a51 does not exist because 5 cannot go
to 1.
Let B = ∑

aiia j j − ∑
ai j a ji

By above rule B = ∑5
i=1 aii

∑6
j=i+1 a j j − {a16a61 + a26a62 + a25a52 + a35a53 +

a45a54 + a56a65}.
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Chapter 18
Relative Controllability of Nonlinear
Fractional Damped Delay Systems
with Multiple Delays in Control

P. Suresh Kumar

Abstract This paper is concerned with the relative controllability of fractional
damped dynamical systems with multiple delays in control for finite-dimensional
spaces. Sufficient conditions for controllability are obtained using Schauder’s fixed
point theorem and the controllability Grammian matrix which is defined by the
Mittag-Leffer matrix function. An example is provided to illustrate the theory.

Keywords Controllability · Fractional differential equations · Mittag-Leffler
matrix function · Laplace transform

18.1 Introduction

Nowadays it is the realm of physicists and mathematicians who investigate the use-
fulness of non-integer order derivatives and integrals in different areas of physics and
mathematics. It is a successful tool for describing complex quantum field dynami-
cal systems, dissipation and long-range phenomena that cannot be well illustrated
using ordinary differential operators. Many models are reformulated and expressed
in terms of fractional differential equations so that their physical meaning will be
incorporated in the mathematical models more realistically. In fact, fractional calcu-
lus attracts many physicists, biologists, engineers, and mathematicians for its inter-
disciplinary applications which are elegantly modeled with the help of fractional
derivatives and it was conceptualized in connection with the infinitesimal calculus.
Delay differential equations are often solved using numerical methods, asymptotic
methods and graphical tools. Number of attempts have been made to find an analyt-
ical solution for delay differential equations by solving the characteristic equation
under different conditions [16].

Controllability is one of the important qualitative aspects of a dynamical system.
It is used to influence an object’s behavior so as to accomplish the desired goal.
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Analysis of the control problems of fractional delay dynamical system is much more
advanced. The control problems involving the delay in state variables are not devel-
oped much. Controllability of delay dynamical systems was studied by Wiess [19].
Chung [5] investigated the controllability of linear time-varying systems with delay.
Controllability of nonlinear delay dynamical systems is studied byDauer [6].Klamka
[8] addressed the constrained controllability of semilinear delayed systems. A sliding
mode control for linear fractional systemswith input and state delays is studied by Si-
Ammour [14]. Balachandran et al. [1–4] investigated the controllability of damped
dynamical systems with multiple delays in control. Controllability criteria for linear
fractional differential systems with state delay and impulse are studied by Zhang
et al. [20]. Wang [18] proposed a numerical method for delayed fractional-order
differential equations. Explicit representations of solutions of linear delay systems
are studied by Shu [13]. Morgado [9] analyzed and proposed numerical methods for
fractional differential equations with delay. Recently controllability of a fractional
delay dynamical systems and fractional systems with time-varying delays in control
is studied by Joice Nirmala et al. [10, 11]. He et al. [7] addressed the controllability of
fractional damped dynamical systems with delay in control. Suresh Kumar et al. [17]
studied the controllability of nonlinear fractional Langevin delay systems by assum-
ing the conditions 0 < α, β ≤ 1 and α + β > 1. In Caputo differential operators do
not satisfy the semigroup property. We can apply the only fractional integral defi-
nition. Hence in the present manuscript, we consider 0 < β ≤ 1 < α ≤ 2. So, both
the problems are different by formation in the fractional sense even though they are
similar in the integer case. Moreover constrained controllability of fractional linear
systems with delays in control is discussed by Sikora and Klamka [15]. Motivated
by this, the main aim of the present article is to present controllability of nonlinear
fractional damped delay dynamical systems with multiple delays in control of order
0 < β ≤ 1 < α ≤ 2.

In this paper, we discuss the controllability of linear fractional damped delay
dynamical system by utilizing the solution representation. Further, sufficient condi-
tions for the controllability of nonlinear fractional damped delay systems are estab-
lishedbyusingSchauder’s fixedpoint theorem.Numerical exampleswith simulations
are provided to illustrate the theory.

18.2 Preliminaries

In this section, we introduce the definitions and preliminary results from fractional
calculus which are used throughout this paper.

Definition 18.1 The Caputo fractional derivative of order α ∈ C with 1 < α ≤ 2,
for a suitable function f is defined as

CDα
0+ f (t) = 1

Γ (2 − α)

∫ t

0
(t − s)1−α f (2)(s)ds.

For brevity, the Caputo fractional derivative CDα
0+ is taken as CDα .
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Definition 18.2 The Mittag-Leffler functions of various type are defined by

Eα(z) =
∞∑
k=0

zk

Γ (αk + 1)
, (α > 0, z ∈ C).

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, (α, β > 0, z ∈ C),

Eγ

α,β(z) =
∞∑
k=0

(γ )k zk

k!Γ (αk + β)
,

where (γ )n is a Pochhammer symbol which is defined as γ (γ + 1) . . . (γ + n − 1)
and (γ )n = Γ (γ+n)

Γ (γ )
. For an n × n matrix A

Eα,β(A) =
∞∑
k=0

Ak

Γ (αk + β)
, α, β > 0,

Eα,1(A) = Eα(A) with β = 1.

Definition 18.3 ([12]) The formal definition of the Laplace transform of a function
f (t) of a real variable t ∈ R

+ = (0,∞) is given by

L { f (t)} =
∫ ∞

0
e−st f (t)dt, s ∈ C.

The convolution operator of two functions f (t) and g(t) given on R+ is defined
for x ∈ R

+ by the integral

( f ∗ g)(t) =
∫ t

0
f (t − s)g(s)ds.

The Laplace transform of a convolution is given by

L { f (t) ∗ g(t)} = L { f (t)}L {g(t)} .

LetL { f (t)} = F(s) andL {g(t)} = G(s). The inverse Laplace transform of prod-
uct of two functions F(s) and G(s) is defined by

L −1 {F(s)G(s)} = L −1 {F(s)} ∗ L −1 {G(s)} .

The Laplace transforms of Mittag-Leffler functions are defined as

L [Eα,1(±λtα)](s) = sα−1

(sα ∓ λ)
, Re(α) > 0,
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L [tβ−1Eα,β(±λtα)](s) = sα−β

(sα ∓ λ)
, Re(α) > 0, Re(β) > 0,

L [tβ−1Eγ

α,β(±λtα)](s) = sαγ−β

(sα ∓ λ)γ
, Re(α) > 0, Re(β) > 0.

18.3 Linear System with Multiple Delays in Control

Consider the linear fractional damped delay dynamical system with multiple delays
of the form

C Dαx(t) − ACDβx(t) = Bx(t) + Cx(t − τ) +
M∑
i=0

Diu(hi (t)), t ∈ J : [0, T ],

x(t) = φ(t), −τ < t ≤ 0, (18.1)

x ′(0) = q0,

where 0 < β ≤ 1 < α ≤ 2, x ∈ R
n , u ∈ R

m , A, B and C are n × n matrices and Di

for n × m matrices for i = 0, 1, 2, . . . , M . Assume the following conditions:

(H1) The functions hi : J → R, i = 0, 1, 2, . . . M are twice differentiable and
strictly increasing in J . Moreover

hi (t) ≤ t, for i = 0, 1, 2, . . . M, for all t ∈ J, (18.2)

(H2) Introduce the time lead functions ri (t) : [hi (0), hi (T )] → [0, T ], i =
0, 1, 2, . . . M, such that ri (hi (t)) = t for t ∈ J . Further h0(t) = t and for
t = T . The following inequality holds

hM(T ) ≤ hM−1(T ) ≤ . . . hm+1(T ) ≤ 0 = hm(T ) < hm−1(T ) = . . .

= h1(T ) = h0(T ) = T . (18.3)

(H3) Let h > 0 be given. For functions u : [−h, T ] → R
n and t ∈ J , we use the

symbol ut denote the function on [−h, 0] defined by ut (s) = u(t + s), for
s ∈ [−h, 0).

The following definitions of complete state of the system (18.1) at time t and relative
controllability are assumed.

Definition 18.4 The set y(t) = {x(t), ut } is the complete state of the system (18.1)
at time t .

Definition 18.5 System (18.1) is said to be relatively controllable on [0, T ] if, for
every complete state y(t) and every x1 ∈ R

n there exists a control u(t) defined on
[0, T ] such that the solution of system (18.1) satisfies x(T ) = x1.
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Here the complete state y(0) and the vector x1 ∈ R
n are chosen arbitrarily. The

solution of the system (18.1) can be written [11] as

x(t) = Xα−β(t)φ(0) − AXα−β,α−β+1(t)φ(0) + t Xα−β,2(t)q0

+C
∫ 0

−τ

(t − s − τ)α−1Xα−β,α(t − s − τ)φ(s)ds

+
∫ t

0
(t − s)α−1Xα−β,α(t − s)

M∑
i=0

Diu(hi (s))ds. (18.4)

Using the time lead functions ri (t), we have

x(t) = xL(t;φ) +
M∑
i=0

∫ hi (t)

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds,

where

xL(t;φ) = Xα−β(t)φ(0) − AXα−β,α−β+1(t)φ(0) + t Xα−β,2(t)q0

+C
∫ 0

−τ

(t − s − τ)α−1Xα−β,α(t − s − τ)φ(s)ds.

By using the inequality (18.3) we get

x(t) = xL(t;φ) +
m∑
i=0

∫ 0

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds

+
M∑

i=m+1

∫ hi (t)

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) + G(t) +
M∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds,

(18.5)

where

G(t) =
m∑
i=0

∫ 0

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds
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+
M∑

i=m+1

∫ hi (t)

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds.

Now let us define the controllability Grammian matrix by

W =
m∑
i=0

∫ T

0
(T − ri (s))

2(α−1)(Xα−β,α(T − ri (s))Di ṙi (s))(Xα−β,α(T − ri (s))Di ṙi (s))
∗ds.

Theorem 18.1 The linear system (18.1) is relatively controllable on [0, T ] if and
only if the controllability Grammian matrix is positive definite for some T > 0.

Proof Assume that W is positive definite. Define the control function by

u(t) = (T − ri (t))
α−1(Xα−β,α(T − ri (t))Diṙi (t))

∗W−1[x1 − xL(T ;φ) − G(T )],
(18.6)

where the complete state y(0) and the vector x1 ∈ R
n are chosen arbitrary. Taking

t = T in (18.5) and by using (18.6), we have x(T ) = x1. Then

y∗Wy = 0,

that is,

y∗
[ m∑

i=0

∫ T

0
(T − ri (s))

2(α−1)(Xα−β,α(T − ri (s))Di ṙi (s))(Xα−β,α(T − ri (s))Di ṙi (s))
∗ds

]
y = 0,

which implies

y∗
m∑
i=0

(T − ri (s))
α−1(Xα−β,α(T − ri (s))Diṙi (s)) = 0, on [0, T ].

Consider the zero initial function φ = 0 and u0 = 0 on [−h, 0] and the final point
x1 = y. Since the system is controllable there exists a control u(t) on J that steers
the response to x1 = y. For φ = 0, xL(T, φ) = 0, G(t) = 0. On the other hand

y = xL(T ) =
m∑
i=0

∫ T

0
(T − ri (s))

α−1Xα−β,α(T − ri (s))Diṙi (s)u(s)ds.

Then

y∗y =
m∑
i=0

∫ T

0
y∗(T − ri (s))

α−1Xα−β,α(T − ri (s))Diṙi (s)u(s)ds = 0.

This contradicts for y 	= 0. Hence W is nonsingular.
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18.4 Nonlinear Systems with Multiple Delays in Control

Consider the nonlinear fractional damped delay dynamical system with multiple
delays in control of the form

C Dαx(t) − AC Dβ x(t) = Bx(t) + Cx(t − τ) +
M∑
i=0

Diu(hi (t)) + f (t, x(t), x(t − τ), u(t)),

x(t) = φ(t),

x ′(0) = q0, −τ < t ≤ 0, (18.7)

where 0 < β ≤ 1 < α ≤ 2, x ∈ R
n is a state vector, u ∈ R

m is a control vector, A,
B, C are n × n matrices, Di for i = 0, 1, 2, . . . M, are n × m matrices and f :
J × R

n × R
n × R

n × R
m → R

n is a continuous function. Further we impose the
following assumption:

Let Q be the Banach space of continuous Rn × R
m valued functions defined on

the interval J with the norm

‖(x, u)‖ = ‖x‖ + ‖u‖,

where ‖x‖ = sup{x(t) : t ∈ J } and ‖u‖ = sup{u(t) : t ∈ J }. That is Q = Cn(J ) ×
Cm(J ), where Cn(J ) is the Banach space of continuous Rn valued functions defined
on the interval J with the sup norm.

Similar to the linear system, the solution of nonlinear system (18.7) using time
lead function ri (t) is given as

x(t) = xL(t;φ) + G(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα−β,α(t − s) f (s, x(s), x(s − τ), u(s))ds. (18.8)

Theorem 18.2 Let the continuous function f satisfy the condition

lim|p|→∞
| f (t, p)|

|p| = 0 (18.9)

uniformly in t ∈ J and suppose that the system (18.1) is relatively controllable on
J . Then the system (18.7) is relatively controllable on J .

Proof Let φ(t) be continuous on [−τ, 0] and let x1 ∈ R
n . Let Q be the Banach space

of all continuous functions

(x, u) : [−τ, T ] × [0, T ] → R
n × R

m,

with the norm
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‖(x, u)‖ = ‖x‖ + ‖u‖,

where ‖x‖ = {sup |x(t)| for t ∈ [−τ, T ]} and ‖u‖ = {sup |u(t)| for t ∈ [0, T ]}.
The solution of (18.7) using time lead function ri (t) is given by

x(t) = xL(t;φ) + G(t) +
M∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα−β,α(t − s) f (s, x(s), x(s − τ), u(s))ds. (18.10)

Let us assume

ai = sup ‖Xα−β,α(T − ri (s))‖, bi = ‖ṙi (s)‖, i = 0, 1, 2, . . . , M, υ = sup ‖u0(s)‖,

ϑ = sup ‖Xα−β,α(T − s)‖, μ =
m∑
i=0

ai bi‖Di‖Ni +
M∑

i=m+1

ai bi‖Di‖Mi ,

c1 = 4[ai bi‖D∗
i ‖]‖W−1‖υ(α − β)−1T α−β , d1 = 4[ai bi‖D∗

i ‖]‖W−1‖[|x1 + γ + μ|],

a = max{b(α − β)−1T α−β‖Di‖, 1}, b =
m∑
i=0

ai bi Li , c2 = 4ϑ(α − β)−1T α−β , d2 = 4[γ + υμ],

Ni =
∫ 0

h(0)
(T − ri (s))

α−1ds, Mi =
∫ hi (T )

h(0)
(T − ri (s))

α−1ds,

Li =
∫ T

0
(T − ri (s))

α−1ds, c = max{c1, c2}, d = max{d1, d2},

and

sup = {sup | f (t, x(t), x(t − τ), u(t))|, t ∈ J }.

Define � : Q → Q by

�(x, u) = (z, v),

where

v(t) = (T − ri (t))
α−1(xα−β,α(T − ri (t))(Di )

∗ṙi (t))∗W−1

[
x1 − xL(T ;φ)

−
m∑
i=0

∫ 0

hi (0)
(T − ri (s))

α−1Xα−β,α(T − ri (s))Diṙi (s)u0(s)ds

+
M∑

i=m+1

∫ T

0
(T − ri (s))

α−1Xα−β,α(T − ri (s))Diṙi (s)u0(s)ds

−
∫ T

0
(T − s)α−1Xα−β,α(T − s) f (s, x(s), x(s − τ), u(s))ds

]
,
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and

z(t) = xL(t;φ) −
m∑
i=0

∫ 0

hi (0)
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)v(s)ds

+
M∑

i=m+1

∫ t

α0

(t − ri (s))
α−1Xα−β,α(t − ri (s))Diṙi (s)u0(s)ds

+
∫ t

0
(t − s)α−1Xα−β,α(t − s) f (s, x(s), x(s − τ), u(s))ds.

Then

|v(t)| ≤ ‖D∗
i ‖aibi‖w−1‖[‖x1‖ + γ + μ] + aibi‖D∗

i ‖‖W−1‖ϑ(α − β)−1T α−β,

≤ 1

4a
(d + c sup | f |)

and

|z(t)| ≤ γ + υμ +
( m∑

i=0

aibi‖Di‖Liα
−1T α−β

)
v(s) + ϑ(α − β)−1T α−β sup | f |,

≤ d

2
+ c

2
sup | f |.

Further P maps

Q(r) =
{
(z, v) ∈ Q : ‖z‖ ≤ r

2
and ‖v‖ ≤ r

2

}

into itself and has a fixed point by the Schauder’s fixed point theorem such that
P(z, v) = (z, v) = (x, u). Hence we have

x(t) = xL(t;φ) + G(t) +
M∑
i=0

∫ t

0
(t − ri (s))

α−1Xα−β,α(t − ri (s))Diṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα−β,α(t − s) f (s, x(s), x(s − τ), u(s))ds. (18.11)

for t ∈ J and x(t) = φ(t) for t ∈ [−τ, 0] and

x(T ) = x1.

Hence the system (18.7) is relatively controllable on J .
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18.5 Example

Example 18.1 Consider the nonlinear fractional damped delay dynamical system

C Dαx(t) − AC Dβ x(t) = Bx(t) + Cx(t − 1) + D0u(t) + D1u(t − 1) + f (t, x(t), x(t − 1), u(t)),

x(t) = φ(t),

x ′(0) = q0, −1 < t ≤ 0, (18.12)

The solution of the above problem (18.12) using Laplace transform we get

x(t) =
[t]∑
n=0

[
Bn(t − n)αn En+1

α−β,αn+1(A(t − n)α−β) + Cn(t − n)αn En+1
α−β,αn+1(A(t − n)α−β)

]
φ(0)

−A
[t]∑
n=0

[
Bn(t − n)αn+α−βEn+1

α−β,αn+α−β+1(A(t − n)α−β)

+Cn(t − n)αn+α−βEn+1
α−β,αn+α−β+1(A(t − n)α−β)

]
φ(0)

+
[t]∑
n=0

[
Bn(t − n)αn+1En+1

α−β,αn+2(A(t − n)α−β

+Cn(t − n)αn+1En+1
α−β,αn+2(A(t − n)α−β)

]
y0

+C
[t]∑
n=0

Bn
∫ 0

−1
(t − s − n − 1)αn+α−1En+1

α−β,α(A(t − n)α−β)φ(s)ds

+Cn
∫ 0

−1
(t − s − n − 1)αn+α−1En+1

α−β,α(A(t − n)α−β)φ(s)ds

+
[t]∑
n=0

[
Bn

∫ t−n

0
(t − s − n)αn+α−1En+1

α−β,α(A(t − n)α−β)

+Cn
∫ t−n

0
(t − s − n)αn+α−1En+1

α−β,α(A(t − n)α−β)

]
Dṙiu(s)ds

+
[t]∑
n=0

[
Bn

∫ t−n

0
(t − s − n)αn+α−1En+1

α−β,α(A(t − n)α−β)

+Cn
∫ t−n

0
(t − s − n)αn+α−1En+1

α−β,α(A(t − n)α−β)

]
f (s, x(s), x(s − 1), u(s)ds,

where [·] is the greatest integer function. Now consider the controllability on

[0, 1]. Here [t]=0; and let α = 3
2 , β= 1

2 , h = 1, A =
(
0 −1
1 0

)
, B =

(
1 1

−1 0

)
,
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C =
(
1 −1
0 2

)
, x(t) = φ(t) ∈ R

2 and x(t) =
(
x1(t)
x2(t)

)
with initial conditions

φ(0) =
(
0
1

)
, y0 =

(
0
0

)
and final condition x(1) =

(
1
0

)
, f (t, x(t), x(t − 1),

u(t)) = x(t)+x(t−1)
x2(t)+x2(t−1)+u(t) . By applying Laplace transform on both sides of the equa-

tion, we get the solution as therefore the solution of (18.12) on [0,1] is

x(t) = 2Eα−β(Atα−β)φ(0) − 2tα−β AEα−β,α−β+1(At
α−β)φ(0) + 2t Eα−β,2(At

α−β)y0

+2C
∫ 0

−1
(t − s − 1)α−βEα−β,α(A(t − s − 1)α−β)φ(s)ds

+2
∫ t

0
(t − ri (s))

α−1Eα−β,α(A(t − ri (s))
α−β)Dṙi u(s)ds

+2
∫ t

0
(t − ri (s))

α−1Eα−β,α(A(t − ri (s))
α−β) f (s, x(s), x(s − 1), u(s)ds,

and on further simplification

x(t) = 2Eα−β(Atα−β)φ(0) − 2tα−β AEα−β,α−β+1(At
α−β)φ(0) + 2t Eα−β,2(At

α−β)y0

+2tα−1(t)α−βEα−β,α(A(t)α−β)φ(0)

+2
∫ t

0
(t − ri (s))

α−1Eα−β,α(A(t − ri (s))
α−β)Dṙi u(s)ds

+2
∫ t

0
(t − ri (s))

α−1Eα−β,α(A(t − ri (s))
α−β) f (s, x(s), x(s − 1), u(s)ds,

By simple matrix calculation, we have the controllability Grammian matrix as

W =
(

26.6369 −19.9353
−19.9353 57.6070

)
> 0,

which is positive definite. Hence the system (18.12) is controllable on [0, 1]. There-
fore, the linear system of (18.12) is controllable on [0, 1]. And the nonlinear function
f (t, x(t), x(t − 1), u(t)) satisfies the hypothesis of Theorem (18.2) and hence the

nonlinear system (18.12) steering from the initial point φ0 =
(
0
1

)
to a desire state

x1 =
(
1
0

)
during [0, 1]. Hence the nonlinear system (18.12) is relatively control-

lable.

18.6 Conclusion

This paper deals with the relative controllability of nonlinear fractional damped
delay systems with multiple delays in control. In [10, 11] the authors have studied
the problem of order 0 < α ≤ 1. In this paper, we considered two different orders α
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and β which satisfy 0 < β ≤ 1 < α ≤ 2. Sufficient conditions for the controllability
results are established using Schauder’s fixed point theorem. Also, the controllability
of nonlinear fractional damped delay system with multiple delays in control are
discussed. An example is provided to illustrate the theory.
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Chapter 19
A Graphical User Interface-Based
Fingerprint Recognition

Rohit Khokher and Ram Chandra Singh

Abstract Biometric authentication is a process of establishing an individual’s iden-
tity through measurable characteristics of their behavior, anatomy, or physiology.
Fingerprint recognition is a biometric technology that has been extensively used in
a various range of contexts from immigration control on airports, transactions in
banks, applying for a driving license, a passport to Aadhar card in India, and per-
sonal computing. In recent emerging technologies, the usability aspects of system
design have received less attention rather than technical aspects. The researches on
fingerprint have shown many challenges for users like placing fingers to capture fin-
gerprints, system feedback, and instructions to use fingerprint systems. This paper
proposes a Graphical User Interface (GUI) system for studying various operations in
recognizing fingerprints for biometric identification of individuals using an iterative,
participative design approach. During this process, several different layouts have
been identified. The fingerprint GUI provides facility to users to use by clicking on
the buttons on the front-end interface of the system. The coding for the back-end
interface functions is written in MATLAB. This study has been tested over DB1 of
FVC2006 database. The dataset consists of 1800 images captured by electric field
sensor at 250dpi. The volunteers were asked to put their fingers naturally on the
acquisition device and no constraints were enforced to guarantee a minimum quality
in the images. The minutiae and texture features of fingerprints have been studied
and the results show 100% matching of an individual from the collected database.
Fingerprint recognition using GUI is reliable and easy to understand the operations
and results more efficiently.
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19.1 Introduction

In today’s life, information and communication technologies (ICT) are spreading
widely throughout the globe in daily routine activities. Therefore, the security of
these systems is themost important challenge. Identification of genuine users of these
systems is the need for secure systems. A user can be identified in three different
ways—Token-based, knowledge-based, and biometrics identifications. Token-based
identification requires the presence of physical objects like ID card, pass, etc. to
authenticate a user aswhere in knowledge-based identification it relies on nonobvious
information like passwords, personal identification numbers (PINs) to confirm the
authenticity of an individual. In contrast, biometric identification considers physical,
behavioral, or anatomical characteristics of the user to authenticate the identity. The
use of biometrics for identification is increasing day by day because of its features
used for authentication as it cannot be stolen or lost [1–3].

Nowadays biometric authentication technology is being used both in commercial
and public sectors. According to International Biometrics Group (IBG), the usage of
biometrics will be doubled in size over the next five years and there are numerous
trends that support IBG [4]. The secure user identification is an international trend
that is being used worldwide that uses public facing implementations of biometric
systems such as the immigration control in US, Dubai, Malaysia, etc.; identity card
scheme in the United Kingdom; and Aadhar card in India. To secure the informa-
tion in IT world the usage of biometric technology has emerged as a powerful tool
to secure the information. There are many challenges associated with the use of
biometrics such as enrolment or registration and authentication processes. During
enrolment process, the biometric traits of an individual are stored in the database. In
identification or authentication process, the data of enrolled traits in the database are
matched with the input data to verify an individual’s identity. Generally, in process of
automated identity verification through biometrics, the users have no familiarity with
the technology being used during the authentication process. This motivated us to
develop a Graphical User Interface (GUI) for fingerprint recognition. This interface
would help the users to understand the results visually of the operations performed
by a click on the button of the panel.

The fingerprint biometric systems are the most commonly used commercially
available biometric system as it has achieved the accuracy of 100% [5–10]. Fur-
ther, there is a need for a system that explains the complete process of fingerprint
recognition using GUI. During last few years, design of the interface for finger-
print systems has received an increased amount of attention from the industry. The
motivation behind developing this system is to help students, young researchers,
and users to understand the process of fingerprint recognition. The GUI proposed in
this study for fingerprint recognition includes the enhancement operations, feature
extractions, plotting of histograms, noising and denoising and computation of sim-
ilarity measures and performance parameters. The organization of rest of the paper
is as follows: Sect. 19.2 describes an overview of proposed GUI, the functionalities
of the buttons of the interface are discussed in Sects. 19.3, 19.4 deals with the results
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obtained in the authentication process and Sect. 19.5 ends with the overall conclusion
and the future scope of this GUI. TheMATLAB functions have been used to develop
this GUI.

19.2 System Development

Abiometric system is essentially a pattern recognition system that operates by acquir-
ing biometric data from an individual, extracting a feature set from the acquired data,
and comparing this feature set against the template set in the database. Depending on
the application context, a biometric system may operate either in verification mode
or in identification mode. In the verification mode, the system validates a person’s
identity by comparing the captured biometric data with his/her own biometric tem-
plate(s) stored in the centralized system database. In the identification mode, the
system recognizes an individual by searching the templates of all the person in the
database for a match. Therefore, the system conducts a one-to-many comparison to
establish an individual’s identity. A biometric system is designed using the following
fivemain modules. Enrolment module is the first module where user’s biometric data
is captured using sensor. The second module is image enhancement module, which
improves the visibility of any portion or feature of the image and suppresses the infor-
mation in other parts. It is done after enrolment is completed. It includes brightening,
sharpening, adjusting contrast, etc., so that the image is usable for further process-
ing. Feature extraction module is the third module, where the acquired biometric
data is processed to extract a set of salient and discriminatory features. In this study,
the position and orientation of minutiae points (local ridges and valley singularities)
in a fingerprint are extracted. The fourth module is matching module in which the
features that have been extracted during recognition are compared against the stored
template(s) to generate matching scores. The number of matching minutiae between
the input and the template fingerprint image is determined and a matching score is
computed in this work. This module also encapsulates a decision-making module,
in which a user’s claimed identity is confirmed (verification) or a user’s identity is
established (identification) based on the matching score. The last module is system
database module, which is used to store the biometric templates of the enrolled users
in the centralized database of the biometric system.

In this study, a GUI has been developed to support the understanding of aforesaid
operations that are used in fingerprint recognition. The GUI for fingerprint recogni-
tion with 2-axis and 8 panels has been developed using MATLAB and is shown in
Fig. 19.1. The first axis is for the input image and the second is to display the output
image after performing the operations on the input image. Panel-1 is for basic oper-
ations that contains Load Image and Reset buttons. Load Image button is to import
the image for processing and Reset button is used to restart the processing. Panel-2
is the image enhancement panel that contains Normalization,Orient. & Ridge Freq.,
Filtering, Bin. & Thin., andMasking buttons. Panel-3 is the histogram panel of GUI
with two buttons, namely, Histogram and Histogram EQV which are used for the
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Fig. 19.1 GUI of fingerprint recognition

adjustment of intensity of the input image. Panel-4 is used for feature extraction such
as Minutiae, Entropy, Energy, and Correlations of a fingerprint image to recognize
an individual. Addition of artificial noises like Gaussian, Salt and Pepper, Poisson,
and Speckle and their removal using various sharpening and smoothing filters have
been shown in Panel-5.

Panel-6 is developed for similarity measure and Panel-7 is to measure the perfor-
mance parameters of the input image. Both of these contain buttons for evaluating
False Match Rate (FMR), Genuine Acceptance Rate (GAR), False Non-Match Rate
(FNMR), and Accuracy. Panel-8 is used for display of numerical values of various
operations.

19.3 Proposed System Functions

In this study, a prototype GUI of fingerprint recognition has been developed and
tested on DB1 of FVC2006 database which consists of 1800 fingerprint images. The
functionalities of fingerprint GUI system are as follows.

19.3.1 Panel-1: Basic Operation Panel

This panel contains Load Image and Reset buttons which are used to upload the
input fingerprint image from the database using imread() function and to restart the
process of the system, respectively.
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Fig. 19.2 Histogram and histogram equalization of an image

19.3.2 Panel-2: Histogram

Histogram and histogram equalization are the techniques that provide a sophisti-
cated method for modifying the dynamic range and contrast of an image by altering
that image such that its intensity of the desired shape. Histogram technique may
employ nonlinear and non-monotonic transfer functions to map between pixel inten-
sity values in the input and output images. Histogram of an image represents relative
frequency of occurrence of various gray levels. In a 2-dimensional plot, x-axis rep-
resents gray levels and y-axis represents the number of pixels in each gray level.
Histogram equalization employs a monotonic, nonlinear mapping which reassigns
the intensity values of the pixel in the input image such that the output image contains
a uniform distribution of intensities. Therefore, histogram equalization generally is
used to enhance the contrast of an image [11]. Figure19.2 shows histogram and his-
togram equalized image of a fingerprint. The function imhist() is used to generate the
histogram for the fingerprint image and histeq() is used to equalize the histogram,
respectively.
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19.3.3 Panel-3: Image Enhancements

The fingerprint image enhancement algorithm, involves a set of intermediate opera-
tions which are applied to input fingerprint image, generates output enhanced finger-
print image [12, 13]. A gray-level fingerprint image, im, is defined as N×N matrix
where im (i, j) represents the intensity of the pixel at ith row and jth column. As
per FBI recommendation the fingerprint images should be scanned at a resolution of
500dpi. The mean and variance of the gray-level fingerprint image, im, are defined,
respectively, as

¯im =
N∑

i=1

imi

N
,

and

var(im) =
N∑

i=1

(imi − ¯im)2

N

Normalization operation on fingerprint image is applied to obtain a pre-specified
mean and variance. This operation is performed using ridgesegment(im, blksze,
thresh) functionwhere im is fingerprint image to be segmented,blksze is the block size
over which the standard deviation is determined and thresh is threshold of standard
deviation for ridge region. This operation can be performed using the Normalization
button. An orientation image, O(i, j), represents the local ridge frequency at pixel
(i, j) and the size of this image would also be N×N. This operation is performed for
a block rather than at every pixel. Therefore, the normalized image is divided into a
set of M×M nonoverlapping blocks.

To calculate the ridge frequency, the function ridgefreq(im,mask, orientim, blksze,
windsze, minWaveLength, maxWaveLength) is used where im is normalized finger-
print image, mask defines ridge regions obtained from ridgesegment(), orientim is
ridge-oriented fingerprint image obtained from ridgeorient() function, blksze is size
of image block to be used, windsze is window length used to identify peaks, min-
WaveLength and maxWaveLength are minimum and maximum ridge wavelengths.
To obtain orientim, the function ridgeorient(im, gradientsigma, blocksigma, ori-
entsmoothsigma) is used where gradientsigma is used to compute image gradients,
blocksigma is sigma of the Gaussian weighting used to sum the gradient moments
and orientsmoothsigma is used to smooth the final orientation vector field. Orient.
& Ridge Freq. button can be used for this operation.

The configurations of parallel ridges and furrows with well-defined frequency and
orientation in a fingerprint image provide useful features. A band-pass filter is used
to remove the undesired noise and preserve the true ridge and furrow structure. The
filtered image can be obtained using the function ridgefilter(im, orientim, freqim,
kx, ky, showfilter) where freqim is ridge frequency image obtained from ridgefreq(),
kx, and ky are scale factors specifying the filters sigma relative to the wavelength
of the filter, kx controls the sigma in x-direction which is along the filter and hence
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Fig. 19.3 Image enhancement processes

control the bandwidth of the filter and ky controls the sigma across the filter and hence
controls the orientational selectivity of the filter, and showfilter is an optional flag
having values either 0 or 1. This operation is performed using the Filtering button
of GUI. The image obtained from the filtering operation is binarized and thinned to
make itmore suitable for feature extractions. The success of these operations depends
on the difference between the mean of the considered blocks. The binary image then
submitted to the thinning algorithm which reduces the ridge thickness to one pixel
wide. The operation that converts a gray-scale image into a binary image is known as
binarization. Pixels with the value 0 are displayed as black and with 1 are displayed
as white and thinning operation is performed using the function bwmorph(). Bin. &
Thin. button is used for this operation. The last operation to get an enhanced image is
masking which is performed to obtain the mask region by classifying each block in
the fingerprint image into recoverable and unrecoverable blocks. The output images
of the above discussed operations are shown in Fig. 19.3.

All the enhancement operations can be performed together through Enhanced
Image button on the GUI panel.

19.3.4 Panel-4: Feature Extraction

The feature of an image is defined as a function of one or more measurements each of
which specifies some quantifiable properties of the image and is computed to quantify
significant characteristics of the image. One can say that feature extraction is a pro-
cess of extracting the information from the image such that distinctive properties of
extracted features help in differentiating between the categories of input patterns [14,
15]. Feature extraction is also preferred to reduce the cost of feature measurements,
to increase classifier efficiency, and allows higher matching accuracy to identify an
individual. The features extracted in this study for fingerprints are minutiae, energy,
entropy, and correlation.
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Fig. 19.4 Minutiae of fingerprint

19.3.4.1 Minutiae Features

Most of the fingerprint scanned technologies are based onminutiae-based techniques
that represent the fingerprint by its local features like ridge terminations and ridge
bifurcations. Ridge termination is a point where a ridge ends abruptly and ridge
bifurcation is the pointwhere a ridge forks or diverges into branch ridges. Collectively
these features are called minutiae [16]. A good quality fingerprint image typically
contains 40–100minutiae. Two fingerprints match if their minutiae points match
and this approach is being intensively used in the available commercial fingerprint
biometric system. In this study the function ext_finger(im, display_flag) is used to
compute minutiae where im is fingerprint image and display_flag is a flag to display
an image. The minutiae’s of the input fingerprint can be seen using the Minutiae
button on GUI as shown in Fig. 19.4.

19.3.4.2 Entropy

The entropy of an image is defined as ameasure of the average information content. In
other words, it is a statistical measure of randomness that can be used to characterize
the texture of an image. Mathematically it is defined as

En = −
k∑

i=1

Pi log2 Pi ,

where Pi is the ith frequency value generated from k-bin normalized intensity his-
togramof the image. The normalized values are computed by dividing each frequency
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Fig. 19.5 Entropy computed of a fingerprint

count by the sum of the pixels in the image using the equation

Pi = fi
N

Here, f i is the ith frequency value of the histogram and N is the total number of
pixels. The entropy of the fingerprint image can be seen in the result panel using
the Entropy button. For a good quality fingerprint image, the entropy should have a
lower value (Fig. 19.5).

19.3.4.3 Energy

Energy in image processing has different meanings depending on the context. There
are more than one definitions of energy in image processing as it depends on the con-
text where it is being used. In fingerprint image, energy is used to describe a measure
of information while formulating an operation under a probability framework. It is
defined as ∑

i, j

p(i, j)2

where p(i, j) represents the probability of ith row and jth column pixel in the image.
The function graycoprops(GLCM, properties) is used to compute the energy of

a given fingerprint where GLCM is gray-level co-occurrence matrix obtained by the
pre-defined function graycomatrix() and properties is a constant value. For example,
to compute energy, the value for properties will be “energy”, for entropy and corre-
lation, the values will be entropy and correlation, respectively. The values of these
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Fig. 19.6 Energy computed from fingerprint image

parameters for a given fingerprint image can be seen in the result panel using their
respective button (Fig. 19.6).

19.3.4.4 Correlation

Correlation is a method for establishing the degree of probability that a linear rela-
tionship exists between two measured quantities [17]. In 1895, Karl Pearson defined
the Pearson product-moment correlation coefficient, r. Pearson’s correlation coeffi-
cient was the first formal correlation measure and is widely used in statistical analy-
sis, pattern recognition, and image processing. For monochrome digital images, the
Pearson’s correlation coefficient is defined as

r =
∑

i (xi − xm)(yi − ym)√∑
i (xi − xm)2

√∑
i (yi − ym)2

where xi and yi are intensity values of ith pixel in first and second image, respectively.
Also, xm and ym aremean intensity values of first and second image, respectively. The
correlation coefficient has the value r = 1 if the two images are absolute identical,
r = 0 if they are completely uncorrelated and r = −1 if they are completely anti-
correlated. The Pearson product-moment correlation coefficient is a dimensionless
index which is invariant to linear transformations of either variable.

In this study, the correlation of fingerprint image is computed using Correlation
button. The function graycoprops(GLCM, properties), where GLCM is gray-level
co-occurrence matrix obtained by the pre-defined function graycomatrix() and prop-
erties will be given as “correlation”, will be executed to compute the correlation. The
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Fig. 19.7 Correlation computed from fingerprint image

result of correlation of a fingerprint image is shown in result section of the interface
which is shown in Fig. 19.7.

19.3.5 Panel-5: Noises and Filters

This panel describes the types of noises that are generally introducedduring the acqui-
sition and transmission of fingerprint images and their removal using the smoothing
and sharpening filters.

19.3.5.1 Noises

Noise is an evitable problem of image processing which occurs in the image during
image acquisition or image transmission. Noises can be differentiated on the basis
of their characteristics like intensity, wavelength, etc. and can be introduced in the
image to study their effects on the image [18]. Few prominent noises used in this
study are discussed here briefly.

Gaussian Noise

The Gaussian noise is generally uniformly distributed over the image. The distribu-
tion function of Gaussian noise is given by
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p(z) = e
(z−μ)2

2a2√
2πσ

where z is gray-level, μ is average or mean of a function, σ is standard deviation
of a noise and p(z) is the probability density function. In an image default value of
Gaussian noise has zero mean value and 0.05 variance. The Gaussian noise can be
computed using Gaussian button.

Salt and Pepper Noise

Salt and pepper noise is sparsely occurring white and black pixels in an image. The
pixels of an image is corrupted or not can be represented by a probability function q
whose values lie in the range 0≤ q≤ 1. A system can introduce salt and pepper noise
in an image by setting a fraction q/2 randomly for black and another q/2 fraction
for white pixels. This noise in an input image can be seen using Salt & Pepper button.

Poisson Noise

Poisson noise is a discrete probability distribution that expresses the probability of
a given number of events occurring in a fixed interval of time or space in an image.
If these events occur with a nonconstant rate independent of time. This noise in the
image can be seen using Poisson button of the panel.

Speckle Noise

Speckle is a granular noise that inherently exists in the image that degrades the
quality of the image. The large area of surfaces, synthetic, or natural is extremely
rough. Images obtained from these surfaces generally suffer from speckle noise.
The function available in MATLAB to introduce these noises is imnoise(im, type,
parameters) where im is fingerprint image, type defines the type of noise to be
introduced and parameters is an optional parameter to the function that defines the
intensity ranging from 0 to 1. The noises discussed above are shown in Fig. 19.8.

19.3.5.2 Sharpening Filters

Sharpening is a technique for increasing the sharpness of an image which is a combi-
nation of two factors: resolution and acutance [19]. Resolution is the number of the
pixels in an image, i.e., higher the resolution, more pixels are required to sharpen the
image. Acutance is the measure of the contrast at an edge of the image. Edges that
have more contrast appear to have a more defined edge to the human visual system.
Image sharpening refers to enhancement technique that highlights the edges, line
structures, and fine details in an image. High-pass filters are used for sharpening of
an image. The high-pass filters which have been used in this study are Sobel, Prewitt,
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Fig. 19.8 Noises added to the fingerprint image

Robert, and Canny filters. Sobel filter is used to detect the edges in the image. The
Sobel filter reduces the visibility of those regions in the image where the intensity
changes slowly which allows to highlight the edges. A 2-D gradient is computed by
Sobel operator to find out the edge strength at each point of the image. Normally a
3×3 matrix is used as a gradient along the x-axis and y-axis. Prewitt filter is another
operator which is used for edge detection in the image by calculating the gradients
of the image intensity at each point. The resulted image shows the smooth or abrupt
changes in the image at that point that helps to detect the edge and its orientation.
This filter detects edges horizontally and vertically and is, therefore, computationally
inexpensive in comparison to Sobel. Robert and Canny filters are also used to detect
the edges in the image.

Function which is used to compute the gradients for these filters is edge(im, type,
thresh) where im is fingerprint image, type defines the type of filter to be used and
thresh is an optional parameter to the function. The output of sharpening filter can
be seen in Fig. 19.9.

19.3.5.3 Smoothing Filters

Smoothing filters are low-pass filters that are often used to reduce noise within an
image or to produce a less pixelated image [20]. Average, Gaussian, Median, and
Wiener are the four filters that have been used in this study. These filters can be used
to replace each data point by local average of surrounding data points in an image.
Function filter2(fspecial(type, hsize), im) has been used to reduce the noise from the
image where fspecial() function has parameters type is average filter and hsize is the
size of filter and im is the fingerprint image. The function imgaussfilt(im) is used to
remove the noise using Gaussian filter. The medfilt2(im, [m n]) function is used to
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Fig. 19.9 Sharpening filters

Fig. 19.10 Smoothing filters

smooth the fingerprint image and removing noise using median filter. The Wiener
filter uses function wiener2(im, [m n]) to remove the noise from a fingerprint image.
The output of all these filters can be obtained using their respective buttons on the
interface that has been shown in Fig. 19.10.

19.3.6 Panel-6: Similarity Measure

Biometric system using fingerprints as a biometric trait stores a user’s fingerprint data
in the form of a template and compact form of an image. The template is considered
to be an accurate representation of user’s biometric feature. A fingerprint template
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Fig. 19.11 Similarity measure

contains spatial information about the minutiae, which are generally between 30 and
100 points. A match of 6–8 minutiae points is usually considered sufficient for ver-
ification of an individual’s fingerprint. The similarity measure does not provide the
inference that two templates in the database belong to the same person rather it is
an indicator of the level of difficulty of recognizer in comparing the two templates
[21, 22]. A pair of template having an extreme similarity value, i.e., either too low or
too high should be correctly classified by the biometric system with ease and pairs
with intermediate values are going to take a greater computation from matcher to
classify. The similarity measure gives good result in cases where the matching is
either extremely too low or too high. For perfect match, the matching probability
should be extremely high and for mismatch is should be extremely low. The function
which is used in this study to compute the similarity metric is match(M1, M2, dis-
play_flag) whereM1 is minutiae of the input image,M2 is minutiae in the database,
and display_flag is the flag that defines the display of the image. Figure19.11 shows
the similarity measure of the input and the matched images which can be seen using
Minutiae Matching button.

19.3.7 Panel-7: Performance Parameters

This panel is used to evaluate the performance parameters of fingerprint recognition
system. In this study, False Match Rate (FMR), False Non-Match Rate (FNMR),
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Genuine Acceptance Rate (GAR), Equal Error Rate (ERR), and Accuracy have been
computed. The FMR is the percentage of invalid inputs that are incorrectly accepted
(match between input and a nonmatching template). The FNMR is the percentage of
valid inputs that are incorrectly rejected (fails to detect a match between input and
matching template). The accuracy of the system could also be expressed in terms of
ERR which is the value of the FNMR at a particular threshold when it is equal to the
FMR [23–25].

19.3.8 Panel-8: Results

This panel is used to display various numerical values computed for different oper-
ations performed for fingerprint study.

19.4 Results and Discussion

In this study, various performance parameters have been computed to test the per-
formance and efficiency of the proposed GUI of fingerprint recognition system. A
dataset of 1800 fingerprint images has been stored in the database to compute param-
eters like FAR, FRR ERR, and Accuracy. The False Acceptance Rate (FAR) is the
measure of the likelihood that the biometric security system incorrectly provides an
access to unauthorized user. The result shows that when the threshold is low the
system accepts fingerprints of imposter users but when the threshold value starts
increasing the probability of providing access to imposter users starts decreasing
because more feature matchings are required for identification. This study shows
that zero FAR is achieved at the threshold 0.45, i.e., no fingerprint of imposter users
will be accepted after this threshold.

The False Rejection Rate (FRR) is defined when the biometric security system
incorrectly rejects access to authorized users. The result of this parameter shows
that when the threshold value is high the system rejects the genuine users but as
the threshold value starts decreasing the probability of rejecting authorized users
starts decreasing. Some of the possible reasons for rejecting an authorized user at
some high threshold value could be variations in the skin conditions, impression
conditions such as scars, humidity, dirt, and nonuniform contact with the biometric
system during capturing of fingerprint images, variable pressure on the fingerprint
capturing device by user and variable area of contact with the device. In this study,
zero FRR is achieved at threshold 0.19, i.e., no authorized user will be rejected after
this threshold value.

The Equal Error Rate (EER) is termed as the crossover point on a graph that has
both FAR and FRR curves plotted. The crossover point shows that the probability
of accepting and rejecting an imposter and an authorized user will be same at this
point. Performance parameters EER, FAR, and FRR has been calculated and plotted
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Fig. 19.12 Equal error rate (ERR)

for threshold value from 0 to 1 on the graph as shown in Fig. 19.12. Here, the EER
lies near the threshold 0.32, i.e., the system will accept and reject the same number
of imposter users and authorized users at this point, respectively. Figure19.12 indi-
cates the inverse relationship of FAR and FRR rates by plotting them against each
other at different thresholds. The FAR is given by the percentage of comparisons
between different fingerprints where the system has accepted the imposter users.
The FRR is given by the percentage of comparisons between different samples of
the same fingerprint where the system has rejected the authorized users. The point
at which these two probabilities cross is called EER. The steps involved to compute
the performance parameters are given below:

1. Enroll n different fingerprint records for the first time in the database. Every record
must be unique and labeled as F = { f1, f2, f3, . . . , fn}. Here the value of n is
1800.

2. Enroll same fingerprints of an individual again and label them as P = {p1, p2,
p3, . . . , pn}.

3. Perform verification of all fingerprints from F against all records from P. Hence,
there will be a 1800×1800 matching probability, i.e., 3240000 matching results
for every pair.

4. Analyze for genuine distribution having the same label.
5. Analyze imposter distribution having different label.
6. Calculate FAR, FRR, and Accuracy using steps 1–5.

The FRR is the expected probability that f i is not matched with pi, i.e.,
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Table 19.1 False reject rate Label Should: accept Should: reject

Reality: accepted TA(1800) FA(0)

Reality: rejected FR(0) TR(3238200)

Table 19.2 False accept rate Label Should: accept Should: reject

Reality: accepted TA(1800) FA(0)

Reality: rejected FR(0) TR(3238200)

FRR = FR

(FR + T A)
× 100

where FR is total number of false reject and TA is total number of acceptance. The
computed FRR is found to be 0% and shown in Table19.1. The FAR is the expected
probability that f i will be falsely declared to match pi.

FAR = FA

(FA + T R)
× 100

where,FA is total number of false acceptance and TR is the total number of rejections.
The computed FAR is found to be 0% and shown in Table19.2. The accuracy of the
system is calculated using the formula

Accuracy =
(
1 − (FRR + FAR)

2

)
× 100

The accuracy is reported to be 100%.

19.5 Conclusion

Fingerprint recognition is one of the reliable and well-known biometrics recognition
techniques. In this study, a GUI has been developed to recognize fingerprints of an
individual using MATLAB. The proposed system will help the young researchers to
understand various basic operations on images like histogram, histogram equaliza-
tion, image enhancement, feature extraction, noise addition and removal, filtration
of an image, computation of performance parameters, and similarity measures etc.
visually. One of the best advantage of a GUI is that one can use it without having
prior knowledge in this area. For example, if someone wishes to extract features of
a fingerprint, they need not know about algorithms rather they can extract them on
select of options provided onto the interface. In addition, GUIs are user-friendly that
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make learning intuitive, attractive, and interactive. In this study, various features have
been extracted, namely, minutiae, entropy, energy, and correlation. These features
have been used to obtain a match between the trained fingerprint image and the input
test fingerprint image. The similarity measures have been computed for input test fin-
gerprint image and the template which helped to recognize the exact match with the
template. The proposed system has shown satisfactory results with 100% accuracy in
recognizing a fingerprint. In the future work, we intend to analyze and test the results
on larger datasets and to extend this GUI by providing the functionalities to compute
other features of a fingerprint image that can help in recognizing an individual.
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Chapter 20
Existence and Stability Results for
Stochastic Fractional Delay Differential
Equations with Gaussian Noise

P. Umamaheswari, K. Balachandran and N. Annapoorani

Abstract In this paper, the existence and uniqueness of solutions of stochastic frac-
tional delay differential equations is obtained by using Picard–Lindelöf successive
approximation scheme. Further, the stability results are established using theMittag-
Leffler function. Examples are provided to illustrate the theory.

20.1 Introduction

Stochastic Differential Equations (SDEs) are natural extension of deterministic.
These equations play an important role in characterizing many physical, biological,
and engineering problems. They are important from the viewpoint of applications
since they incorporate randomness into the mathematical description of the phenom-
ena and provide a more accurate description of it. Therefore, the theory of SDEs has
developed quickly and the investigation for SDEs has attracted considerable attention
[7, 17, 19]. On the other hand, fractional differential equations [6, 13, 18] describe
the dynamical behavior of real-life phenomena more accurately than integer-order
equations because of its ability to describe systems with memory and hereditary
properties. It generalizes the concepts of derivative and integral of a function to a
noninteger order.

The motivation for considering fractional differential equations with random ele-
ments comes from the fact that many phenomena in science that have been modeled
by fractional differential equations have some uncertainty. Therefore, it is important
to analyze the solution of stochastic fractional differential equations. These equations
have physical applications in many fields such as turbulence, heterogeneous flows
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and materials, viscoelasticity, and electromagnetic theory [25, 26]. Many authors
[7, 14, 19, 21] discussed the existence and uniqueness of the solution of stochastic
differential equations. Pedju and Ladde [20] studied the existence of solutions of
stochastic fractional differential equations using an independent set of time scales.

The concept of stability is extremely important because almost every workable
control system is designed to be stable. It means that the system remains in a constant
state unless affected by an external action and returns to a constant state when the
external action is removed. Balachandran et al. [1], Luo [16] and Khasminskii [12]
discussed the stability of stochastic differential equations. Taniguchi [24] discussed
the exponentially asymptotic stability of the stochastic evolution equations. Expo-
nential stability for stochastic neutral partial functional differential equations was
obtained by Govindan using semigroup theory [8, 10]. Stability of fractional dynam-
ical systems is studied by many authors [5, 11, 22]. Delay differential equations are
often used as tools in several areas of applied mathematics including the study of
epidemics, population dynamics, automation, control theory, industrial robotics, and
so on. The literature related to the existence of solutions of fractional order delay
differential equations is extensive. See, for instance, [3, 4]. For stochastic equations
with delay, one can refer [9, 28]. In this paper, we prove the existence of solutions
of stochastic fractional delay differential equations and stability analysis of such
equations.

20.2 Preliminaries

Now we present a few well-known concepts of fractional and stochastic differential
equations.

Definition 20.1 (Riemann–Liouville fractional integral) The Riemann–Liouville
fractional integral operator of order α > 0 of a function f ∈ L1(R+) is defined
as

I α
0+ f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s) ds, t > 0, (20.1)

where Γ (·) is the Euler gamma function.

Definition 20.2 (Riemann–Liouville fractional derivative) The Riemann–Liouville
fractional derivative of order α > 0, n − 1 < α < n, n ∈ N, is defined as

Dα
0+ f (t) =

(
d

dt

)n

I n−α
0+ f (t) = 1

Γ (n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1 f (s) ds,

(20.2)

where the function f (t) has absolutely continuous derivatives up to order (n − 1).
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Definition 20.3 (Caputo fractional derivative) The Caputo fractional derivative of
order α > 0, n − 1 < α < n, n ∈ N, is defined as

C Dα
0+ f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n)(s) ds, (20.3)

where the function f (t) has absolutely continuous derivatives upto order n.

Definition 20.4 (Mittag-Leffler Function) The one-parameter Mittag-Leffler func-
tion is defined by

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (z ∈ C, Re(α) > 0). (20.4)

A two-parameter function of the Mittag-Leffler type is defined by

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (z, β ∈ C, Re(α) > 0). (20.5)

In particular, when β = 1 then Eα,1(z) = Eα(z). The Mittag Leffler function of a
matrix A is defined by

Eα,β(At) =
∞∑

k=0

(At)k

Γ (αk + β)
, (α, β > 0, A ∈ R

n×n).

Definition 20.5 (Stochastic Process)Acollection {X (t)| t ≥ 0} of randomvariables
is called a stochastic process.

Definition 20.6 (Chebyshev’s Inequality) If X is a randomvariable and 1 ≤ p < ∞,

then

P(|X | ≥ λ) ≤ 1

λp
E(|X |p) f or all λ > 0.

Lemma 20.1 (Borel Cantelli Lemma) If {Ak} ⊂ F and
∞∑

k=1
P(Ak) < ∞, then

P

(
lim

k→∞ sup Ak

)
= 0.

Theorem 20.1 (i) If {Xn}∞n=1 is a submartingale, then

P

(
max
1≤k≤n

Xk ≥ λ

)
≤ E(X+

n )

for all n = 1, 2, . . . and λ > 0.
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(ii) If {Xn}∞n=1 is a martingale and 1 < p < ∞, then

E

(
max
1≤k≤n

|Xk |p

)
≤

(
p

p − 1

)p

E(|Xn|p)

for all n = 1, 2, . . . .

20.3 Existence and Uniqueness

In this section, we prove the existence and uniqueness of solution of nonlinear
stochastic fractional delay differential equations with Gaussian noise. Here the suc-
cessive approximation technique is used to obtain the existence of the solution [27].
For convenience x(t, ω), t ≥ 0 and ω ∈ Ω can be written as x(t) throughout this
paper. Consider the stochastic fractional delay differential equation of the form

C Dαx(t) = b(t, x(t), x(t − δ)) + σ(t, x(t), x(t − δ))
dW (t)

dt
, t ∈ J = [0, T ]

x(t) = ξ(t), t ∈ [−δ, 0],

⎫⎬
⎭ (20.6)

where α ∈ (1/2, 1), δ > 0, b ∈ C(J × R
n × R

n,Rn), σ ∈ C(J × R
n,Rn×m) and

W = {W (t), t ≥ 0} is anm-dimensional Brownianmotion on a complete probability
space (Ω,F ,P). We can rewrite the Eq. (20.6) in its equivalent integral form as

x(t) = ξ(0) + 1

Γ (α)

∫ t

0
(t − s)α−1b(s, x(s), x(s − δ)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1σ(s, x(s), x(s − δ)) dW (s). (20.7)

Theorem 20.2 (Existence and Uniqueness) Assume that (t, x) ∈ J × R
n, α ∈

(1/2, 1), b ∈ C(J × R
n × R

n,Rn), σ ∈ C(J × R
n × R

n,Rn×m), and W = {W (t),
t ≥ 0} is an m-dimensional Brownian motion on a complete probability space
(Ω,F ,P). Suppose the following inequalities hold:
(i) Linear growth condition:

|b(t, x, y)|2 + |σ(t, x, y)|2 ≤ K 2
1 (1 + |x |2 + |y|2) (20.8)

|y|2 ≤ K 2
2 (1 + |x |2) (20.9)

for some constant K1, K2 > 0.
(ii) The Lipschitz condition:
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|b(t, x1, y1) − b(t, x2, y2)|2 + |σ(t, x1, y1) − σ(t, x2, y2)|2 ≤ L2
1(|x1 − x2|2 + |y1 − y2|2)

(20.10)

|y1 − y2|2 ≤ L2
2(|x1 − x2|2) (20.11)

for some constant L1, L2 > 0.
Let ξ(0) be a random variable defined on (Ω,F ,P) and independent of the

σ -algebra F t
s ⊂ F generated by {W (s), t ≥ s ≥ 0} and such that E|ξ(0)|2 < ∞.

Then the initial value problem (20.6) has a unique solution which is t-continuous
with the property that x(t, ω) is adapted to the filtration F x0

t generated by x0 and
{W (s)(·), s ≤ t} and

sup
0≤t≤T

E[|x(t)|2] < ∞. (20.12)

Proof Existence: First, we establish the existence of solution of the initial value prob-
lem. Let us define y(t) = x(t − δ), x (0)(t) = ξ(0) and x (k)(t) = x (k)(t, ω) induc-
tively as follows:

x (k+1)(t) = ξ(0) + 1

Γ (α)

∫ t

0
(t − s)α−1b(s, x (k)(s), y(k)(s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1σ(s, x (k)(s), y(k)(s)) dW (s) (20.13)

for k = 0, 1, 2, . . . . If, for fixed k ≥ 0, the approximation x (k)(t) is Ft -measurable
and continuous on J , then it follows from (20.8)–(20.11), that the integrals in (20.13)
are meaningful and that the resulting process x (k+1)(t) isFt -measurable and contin-
uous on J . As x (0)(t) is obviously Ft -measurable and continuous on J , it follows
by induction that so too is each x (k)(t) for k = 1, 2, . . . .

Since ξ(0) is Ft -measurable with E(|ξ(0)|2) < ∞, it is clear that

sup
0≤t≤T

E(|x (0)(t)|2) < ∞.

Applying the algebraic inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), the Cauchy–
Schwarz inequality, the Itô isometry, and the linear growth condition (20.8) we obtain
from (20.13) that

E(|x (k+1)(t)|2) ≤ 3E[|ξ(0)|2] + 3

(Γ (α))2

T 2α−1

2α − 1
E

[∫ t

0

∣∣∣∣b(s, x (k)(s), y(k)(s)

∣∣∣∣
2

ds

]

+ 3

(Γ (α))2

T 2α−1

2α − 1
E

[∫ t

0

∣∣∣∣σ(s, x (k)(s), y(k)(s))

∣∣∣∣
2

ds

]
.

Therefore
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E(|x (k+1)(t)|2) ≤ 3E[|ξ(0)|2] + 2K 2
1 (1 + K 2

2 )
3

(Γ (α))2

T 2α−1

2α − 1

E

(∫ t

0

(
1 + |x (k)(s)|2) ds

)
,

for k = 0, 1, 2, . . . . By induction, we have

sup
0≤t≤T

E(|x (k)(t)|2) ≤ C0 < ∞,

for k = 1, 2, 3, . . . and C0 is a positive constant. Let

d(k)(t) = E(|x (k+1)(t) − x (k)(t)|).

We claim that

d(k)(t) ≤ (Mt)(k+1)

(k + 1)! , for all k = 0, 1, 2, . . . , (20.14)

for some constants M , depending in K1, K2, L1, L2, and ξ(0). From Eq. (20.13) by
applying the Schwarz inequality, Itô isometry, and the Lipschitz condition (20.10)
and (20.11) we obtain

d(k)(t) = E[|x(k+1)(t) − x(k)(t)|2]

≤ 2

(Γ (α))2
T 2α−1

2α − 1

∫ t

0
E

[∣∣∣b(s, x(k)(s), y(k)(s)) − b(s, x(k−1)(s), y(k−1)(s))
∣∣∣2

]
ds

+ 2

(Γ (α))2
T 2α−1

2α − 1

∫ t

0
E

[∣∣∣σ(s, x(k)(s), y(k)(s)) − σ(s, x(k−1)(s), y(k−1)(s))
∣∣∣2

]
ds

≤ 2
L2
1

(Γ (α))2
(1 + L2

2)
T 2α−1

2α − 1

∫ t

0
E

[∣∣∣x(k)(s) − x(k−1)(s)
∣∣∣2

]
ds

+ 2
L2
1

(Γ (α))2
(1 + L2

2)
T 2α−1

2α − 1

∫ t

0
E

[∣∣∣x(k)(s) − x(k−1)(s)
∣∣∣2

]
ds. (20.15)

By applying again the Schwarz inequality, the Itô isometry together with the growth
conditions (20.8) and (20.9) for k = 0,

d(0)(t) = E[|x (1)(t) − x (0)(t)|2]

≤ 2

(Γ (α))2
E

(∣∣∣∣
∫ t

0
(t − s)α−1b(s, x (0)(s), y(0)(s)) ds

∣∣∣∣
2
)

+ 2

(Γ (α))2
E

(∣∣∣∣
∫ t

0
(t − s)α−1σ(s, x (0)(s), y(0)(s)) dW (s)

∣∣∣∣
2
)

≤ 2

(Γ (α))2

T 2α−1

2α − 1

∫ t

0
E

[∣∣b(s, x (0), y(0)(s)(s))
∣∣2] ds
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+ 2

(Γ (α))2

T 2α−1

2α − 1

∫ t

0
E

[∣∣σ(s, x (0)(s), y(0)(s))
∣∣2] ds

≤ K 2
1 (1 + K 2

2 )
4

(Γ (α))2

T 2α−1

2α − 1
E

(∫ t

0
(1 + |x0|2)ds

)

≤ K 2
1 (1 + K 2

2 )
4

(Γ (α))2

T 2α−1

2α − 1
(t)(1 + E(|x0|2)). (20.16)

Now, for k = 1, replacingE[|x (1)(t) − x (0)(t)|2] in the inequality (20.15) with the
value on the right-hand side of inequality (20.16) and integrating, we obtain

E[|x(2)(t) − x(1)(t)|2] ≤ L2
1(1 + L2

2)
4

(Γ (α))2
T 2α−1

2α − 1

∫ t

0
E[|x(1)(s) − x(0)(s)|2] ds

≤ K 2
1 (1 + K 2

2 )(1 + E(|x0|2))
(

L2 4

(Γ (α))2
T 2α−1

2α − 1

)2 ∫ t

0
sds

≤ K 2(1 + E(|x0|2))
(

L2 4

(Γ (α))2
T 2α−1

2α − 1

)2

× t2

2! , (20.17)

where L2 = L2
1(1 + L2

2) and K 2 = K 2
1 (1 + K 2

2 ). For k = 2, proceeding as before,
we have

E[|x (3)(t) − x (2)(t)|2] ≤ K 2(1 + E(|x0|2))
(

L2 4

(Γ (α))2

T 2α−1

2α − 1

)3

× t3

3! . (20.18)

Thus, by the principle of mathematical induction, we have

d(k)(t) = E[|x (k+1)(t) − x (k)(t)|2] ≤ B Mk+1t (k+1)

(k + 1)! , k = 0, 1, 2, . . . , 0 ≤ t ≤ T,

(20.19)

where B = K 2(1 + E|x0|2) and M =
(

L2 4

(Γ (α))2

T 2α−1

2α − 1

)
is a constant depending

only on α, T, L2, and E|x0|2. Note that
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2

≤2 max
0≤t≤T

∫ t

0
(t − s)α−1|b(s, x (k)(s), y(k)(s)) − b(s, x (k−1)(s), y(k−1)(s))|2ds

+2 max
0≤t≤T

∫ t

0
(t − s)α−1|σ(s, x (k)(s), y(k)(s)) − σ(s, x (k−1)(s), y(k−1)(s))|2dW (s).

Taking expectation on both sides, we have

E

(
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2
)

≤ 2L2 T 2α−1

2α − 1
E

(
max
0≤t≤T

∫ t

0
|x (k)(s) − x (k−1)(s)|2ds

)
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+ 2E

(
max
0≤t≤T

∫ t

0
(t − s)α−1|σ(s, x (k)(s), y(k)(s)) − σ(s, x (k−1)(s), y(k−1)(s))|2dW (s)

)

Using second part of the Theorem20.1 gives

E

(
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2
)

≤ 2L2 T 2α−1

2α − 1
E

(∫ T

0
|x (k)(s) − x (k−1)(s)|2ds

)

+ 8L2 T 2α−1

2α − 1
E

(∫ T

0
|x (k)(s) − x (k−1)(s)|2ds

)

≤ B
Mk+1

(k + 1)!T (k+1), (20.20)

where B is a constant depending on L and T . By using Chebyshev’s inequality gives

P

(
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2 >
1

k2

)
≤ 1

(1/k2)2
E

(
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2
)

.

Using the Eq. (20.20) and summing up the resultant inequalities gives,

∞∑
k=0

P

(
max
0≤t≤T

|x (k+1)(t) − x (k)(t)|2 >
1

k2

)
≤

∞∑
k=0

B Mk+1k4T (k+1)

(k + 1)! .

where the series on the right side converges by ratio test. Hence the series on
the left side also converges, so by the Borel–Cantelli lemma, we conclude that
max
0≤t≤T

(|x (k+1)(t) − x (k)(t)|2) converges to 0, almost surely, that is, the successive

approximations x (k)(t) converge, almost surely, uniformly on J to a limit x(t) defined
by

lim
n→∞

(
x (0)(t) +

n∑
k=1

(x (k)(t) − x (k−1)(t))

)
= lim

n→∞ x (n)(t) = x(t). (20.21)

From (20.13), we have

x(t) = ξ(0) + 1

Γ (α)

∫ t

0
(t − s)α−1b(s, x(s), y(s)) ds

+ 1

Γ (α)

∫ t

0
(t − s)α−1σ(s, x(s), y(s)) dW (s). (20.22)

for all t ∈ J . This completes the proof of the existence of solution of (20.6).
Uniqueness: The uniqueness follows from the Itô isometry, the Lipschitz conditions
(20.10).
Let x(t, ω) and y(t, ω) be solution processes through the initial data (0, ξ(0)) and
(0, ν(0)), respectively, that is, x(0, ω) = ξ(0)(ω) and y(0, ω) = ν(0)(ω), ω ∈ Ω.
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Let

a(s, ω) = b (s, x1(s), y1(s)) − b (s, x2(s), y2(s)) ,

γ (s, ω) = σ (s, x1(s), y1(s)) − σ (s, x2(s), y2(s)) .

Thenby virtue of the Schwarz inequality and the Itô isometry, we have

E[|x(t) − y(t)|2] ≤ 3

(Γ (α))2
E[|ξ(0)−ν(0)|2] + 3

(Γ (α))2
t2α−1

2α − 1
E

[ ∫ t

0
|a(s, ω)|2ds

]

+ 3

(Γ (α))2
t2α−1

2α − 1
E

[ ∫ t

0
|γ (s, ω)|2ds

]

≤ 3

(Γ (α))2
E[|ξ(0) − ν(0)|2] + 2L2 3

(Γ (α))2
t2α−1

2α − 1

∫ t

0
E[|x(s) − y(s)|2] ds.

We define v(t) = E[|x(t) − y(t)|2]. Then the function v satisfies v(t) ≤ F + A∫ t

0
v(s)ds, where F = 3

(Γ (α))2
E[|ξ(0) − ν(0)|2] and A = 2L2 3

(Γ (α))2

t2α−1

2α − 1
.

By the application of the Gronwall inequality, we conclude that

v(t) ≤ F exp(At).

Now assume that ξ(0) = ν(0). Then F = 0 and so v(t) = 0 for all t ≥ 0. That is,

E[|x(t) − y(t)|2] = 0.

Which gives ∫ t

0
|x(t) − y(t)|2dP = 0.

This implies that x(t) = y(t) a.s for all t ∈ J. That is

P
{|x(t, ω) − y(t, ω)| = 0 for all t ∈ J

} = 1,

that is, the solution is unique. This completes the proof of existence and uniqueness
of solution of the given stochastic fractional differential equation (20.6).

20.4 Stability Analysis

In this section, we study the exponentially asymptotic stability in the quadratic mean
of a trivial solution. Consider the following stochastic fractional nonlinear system of
the form
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C Dαx(t) = Ax(t) + f (t, x(t), x(t − δ)) + σ(t, x(t), x(t − δ))
dW (t)

dt
,

x(t) = ξ(t), t ∈ [−δ, 0]

}

(20.23)

where α ∈ (1/2, 1), f ∈ C(J × R
n × R

n,Rn), σ ∈ C(J × R
n × R

n,Rn×m) and
W = {W (t), t ≥ 0} is anm-dimensional Brownianmotion on a complete probability
space Ω ≡ (Ω,F , P), A ∈ R

n×n is a diagonal stability matrix. Assume from now
on that f (t, 0, 0) = σ(t, 0, 0) ≡ 0 a.e t so that Eq. (20.23) admits a trivial solution.

Definition 20.7 The trivial solution of Eq. (20.23) is said to be exponentially stable
in the quadratic mean if there exist positive constants C, ν such that

E(|x(t)|2) ≤ CE(|ξ(0)|2) exp(−νt), t ≥ 0.

The following lemmas are necessary to obtain the main results. For that, we assume
the following hypothesis:

(H1) There exists a constant M > 0 such that for t ≥ 0,

|Eα,β(Atα)| ≤ Me−at ,

where 0 < α < 1 and β = 1, 2 and α.

Lemma 20.2 Assume that the hypothesis (H1) holds. Then for any stochastic pro-

cess F : [0,∞) → R
n which is strongly measurable with

∫ T

0
E|F(t)|2ds < ∞,

0 < T ≤ ∞, the following inequality holds for 0 < t ≤ T ,

E

∣∣∣∣
∫ t

0
Eα,β(A(t − s)α)F(s) ds

∣∣∣∣
2

≤ (M2/a)

∫ t

0
exp(−a(t − s))E|F(s)|2ds,

where α ∈ (1/2, 1) and β = 1, 2, and α.

Proof Assume that the hypothesis (H1) holds; that is there exists a constants a > 0
and M > 0 such that for t ≥ 0

|Eα,β(Atα)| ≤ Me−at ,

where 0 < α < 1 and β = 1, 2, and α. By the Hölder inequality, we obtain, for
0 < t ≤ T ,

E

∣∣∣∣
∫ t

0
Eα,β(A(t − s)α)F(s) ds

∣∣∣∣
2

≤ E

(∫ t

0
M exp(−(a/2)(t − s)) exp(−(a/2)(t − s))|F(s)| ds

)2
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≤ E

(∫ t

0
M exp(−(a/2)(t − s))ds

)2

E

(∫ t

0
exp(−(a/2)(t − s))|F(s)| ds

)2

≤ (M2/a)

∫ t

0
exp(−a(t − s))E(|F(s)|2) ds,

which complete the proof of the lemma.

Lemma 20.3 Assume that the hypothesis (H3) holds. Then for any Bt -adapted pre-

dictable process  : [0,∞) → R
n with

∫ T

0
E|(s)|2ds < ∞, t ≥ 0, the following

inequality holds for 0 < t ≤ T ,

E

∣∣∣∣
∫ t

0
Eα,β(A(t − s)α)(s) dW (s)

∣∣∣∣
2

≤ M2
∫ t

0
exp(−a(t − s))E|(s)|2ds,

where α ∈ (1/2, 1) and β = 1, 2 and α.

The proof is similar to the previous Lemma.

Theorem 20.3 Let the assumptions of Theorem20.2 holds. Then the solution of
equation (20.23) is exponentially stable in the quadratic mean provided

a > β = β(a, K , M) = 3M2(K 2
1/a + k2

1)(1 + K 2
2 )T

2α−1

2α − 1
.

Proof The integral form of the Eq. (20.23) can be given by [2, 15]

x(t) = Eα(Atα)ξ(0) +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α) f (s, x(s), x(s − δ)) ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ (s, x(s), x(s − δ)) dW (s).

(20.24)

By using Hölder inequality and Lemmas20.2 and 20.3, we get

E|x(t)|2 ≤ 3M2 exp(−at)E|ξ(0)|2

+ 3(M2/a)
T 2α−1

2α − 1

∫ t

0
exp(−a(t − s))E| f (s, x(s), x(s − δ))|2ds

+ 3M2 T 2α−1

2α − 1

∫ t

0
exp(−a(t − s))E|σ(s, x(s), x(s − δ))|2ds.

Linear growth assumption (20.8) when f (t, 0, 0) = σ(t, 0, 0) ≡ 0 a.e t yields
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exp(at)E|x(t)|2 ≤ 3M2
E|ξ(0)|2+3(M2/a)K 2

1 (1 + K 2
2 )

T 2α−1

2α − 1

∫ t

0
exp(as)E|x(s))|2ds

+3M2K 2
1 (1 + K 2

2 )
T 2α−1

2α − 1

∫ t

0
exp(as)E|x(s))|2ds.

≤ 3M2
E|ξ(0)|2 + 3M2(K 2

1 /a + K 2
1 )(1 + K 2

2 )
T 2α−1

2α − 1

∫ t

0
exp(as)E|x(s))|2ds

Applying Gronwall’s inequality, we obtain

exp(at)E|x(t)|2 ≤ 3M2
E|ξ(0)|2 exp

(
3M2(K 2

1/a + K 2
1 )(1 + K 2

2 )
T 2α−1

2α − 1
t

)

Consequently,

E|x(t)|2 ≤ CE|ξ(0)|2 exp(−νt), t ≥ 0, (20.25)

where ν = a − β and C = 3M2.

20.5 Examples

Example 20.1 Consider the following stochastic fractional delay differential equa-
tion of the form:

C D0.6x(t) + 0.2x(t) = − t2y(t)

Γ (3 − α)
+ t2

dW (t)

dt
, t ∈ J

x(t) = 0.t ∈ [−1, 0]

⎫⎪⎬
⎪⎭ (20.26)

Here f (t, x(t), y(t)) = −0.2x(t) − t2y(t)

Γ (3 − α)
, σ(t, x(t), y(t)) = t2. It can be eas-

ily seen that f (t, x(t), y(t)) and σ(t, x(t), y(t)) satisfies the condition of (20.8),
(20.9), (20.10), and (20.11) of Theorem20.2 forα = 0.6. Hence by the Theorem20.2
the stochastic fractional delay differential equation (20.26) has a unique solution.
Also, Eq. (20.26) satisfy the condition of Theorem20.3. So from Theorem20.3 the
stochastic fractional differential equation with A = −0.2 is exponentially stable.

Example 20.2 Consider the nonlinear stochastic fractional system, for t ∈ [0, T ],

C D
3
4 x(t) =

(
1 −1
0 2

)
x(t) + t3y(t) +

(
1

1+t

e
sin(x2)

10(1+t)

)
dW (t)

dt
, (20.27)

x(0) = x0,
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where x(t) =
(

x1(t)
x2(t)

)
and α = 3

4 . It can be easily seen that f (t, x(t), y(t)) and

σ(t, x(t), y(t)) satisfies the condition of (20.8), (20.9), (20.10), and (20.11) of The-
orem20.2. Hence by the Theorem20.2 the stochastic fractional delay differential
equation (20.27) has a unique solution. Also Eq. (20.27) satisfies the condition of
Theorem20.3 which gives the exponential stable.

Conclusion

The existence and uniqueness of solution of the nonlinear stochastic fractional delay
differential equation with Gaussian noise is obtained. To study the nonlinear system,
an equivalent nonlinear integral equation to the nonlinear stochastic fractional delay
differential equation is given. Using the integral equation, the sufficient conditions
for ensuring the stability of the stochastic fractional differential equations with Gaus-
sian noise is established. The Picard–Lindelöf method of successive approximation
technique is used to obtain the results. Examples are provided to illustrate the theory
developed.
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Chapter 21
Asymptotic Stability of Implicit
Fractional Volterra Integrodifferential
Equations

Kausika Chellamuthu

Abstract In this paper, we discuss the stability of fractional Volterra integrodiffer-
ential equations using a method based on eigenvalue criterion. Lyapunov’s definition
of stability is used and of the twomethods, Lyapunov’s first or indirectmethod is used
to prove the stability results. Some sufficient conditions ensuring asymptotic stability
of the system involving implicit fractional derivative are established. Examples are
provided to demonstrate the effectiveness of the method.

Keywords Caputo derivative · Fractional differential equations · Mittag-Leffler
function · Asymptotic stability

21.1 Introduction

Fractional calculus has attracted the attention of a large number of mathematicians,
physicists and engineers in the recent years. The past three decades have seen a
considerable number of interesting and novel applications of fractional differential
equations in physics, biology, chemistry, engineering, finance, other recently devel-
oped sciences and even psychology, where fractional differential equations capture
human behaviour more rationally.

Recently, the stability of fractional differential equations is gaining attention due
to its importance in control theory, since every controllable system is designed to be
stable. In 1996, Matignon [20] firstly gave the stability result on linear autonomous
fractional differential systems from a control-theoretic point of view. This result
formed the basis for further research concerning stability issues [12, 20, 22]. There
are variousmethods to solve stability problems. Some of the early works on integrod-
ifferential equations were done using Lyapunov theory [19], but the construction of
the Liapunov functional is a demanding art. Manymethods thereafter came to bypass
this difficulty. The study by Burton [7] showed the effectiveness of the fixed point
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techniques in dealing with the stability problems shedding light on systems with
nonunique solutions. Qian et al. [26] proposed an eigenvalue criterion to check the
stability of fractional differential equations. This point of view helps to study the
stability of fractional differential equation in parallel with the ordinary differential
equation as one may observe the importance of Mittag Leffler functions as eigen-
functions of fractional differential equations analogous to how exponential functions
are to ordinary differential equations as far as autonomous systems are concerned.
Priyadharsni [25] studied the stability of fractional neutral and integrodifferential
equations in a similar way.

Also, there have been various notions of stability given by different authors. The
Ulam Hyers and Ulam Hyers Rassias stability of nonlinear Volterra integrodifferen-
tial equations has been discussed [13, 27, 28], in both integer- and fractional-order
cases. A note on Mittag-Leffler stability can be seen in [18] and references therein.
Balachandran et al. [1–5, 14] studied existence and other qualitative behaviours of
nonlinear integrodifferential equations in both integer and fractional orders. Ben-
chohra and Lazreg [6] studied Ulam Hyers stability of nonlinear fractional differen-
tial equations with an implicit derivative. Coming to the nonlinear fractional implicit
differential equations, fewer works are reported [16, 21, 32] and to the best of our
knowledge no work has been reported using Lyapunov’s indirect method of stabil-
ity investigation. In Lyapunov’s first or indirect method, the nonlinear equation is
linearized and then the stability results are transferred from the linear to nonlinear
equation using appropriate growth conditions on the nonlinear terms. This method
is adopted to investigate the stability results in our work. In this paper, we study the
following fractional Volterra integrodifferential equation with an implicit derivative,
where the fractional derivative is taken in the sense of Caputo.

C Dαx(t) = Ax(t) +
∫ t

0
K (t, s)G(x(s),C Dβ x(s)) ds, 0 < α, β < 1, t ∈ J, (21.1)

x(0) = x0,

where x ∈ R
n , J := [0, T ], A ∈ R

n×n , K : R+ × R
+ → R andG : Rn × R

n → R
n.

21.2 Preliminaries

Definition 21.1 The operator I α defined on L1[0, T ] by

I α f (t) := 1

Γ (α)

∫ t

0
(t − s)α−1 f (s) ds, 0 < α < 1,

is called the Riemann–Liouville fractional integral operator of order α.

Definition 21.2 The Caputo fractional differential operator C Dα is defined by
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C Dα f (t) := 1

Γ (1 − α)

∫ t

0
(t − s)−α f ′(s) ds 0 < α < 1,

whenever f ′ ∈ L1[0, T ].
Definition 21.3 Let α ∈ C. The function Eα defined by

Eα(z) :=
∞∑
j=0

z j

Γ (α j + 1)

whenever the series converges is called the Mittag-Leffler function of order α.

Definition 21.4 Let α, β ∈ C. The function Eα,β defined by

Eα,β(z) :=
∞∑
j=0

z j

Γ (α j + β)

whenever the series converges is called the two-parameter Mittag-Leffler function
with parameters α, β.

Laplace transforms of Mittag-Leffler functions which are useful in next section
are given below [23]:

• L {tβ−1Eα,β(±λtα)}(s) = sα−β

sα ∓ λ
,

• L {tα+β−1Eα,α+β(±λtα)}(s) = s−β

sα ∓ λ
.

Derivatives of some Mittag-Leffler-type functions are given below:

• d

dt
(Eα(Atα)) = Atα−1Eα,α(Atα),

• d

dt

[
(t − s)αEα,α+1(A(t − s)α)

]
= (t − s)α−1Eα,α[A(t − s)α],

where Re(α) > 0, Re(β) > 0, t ≥ 0 and λ ∈ R.

Theorem 21.1 ([11]) Assume that f : [0,∞) → R is such that L { f } exists on
[s0,∞) with some s0 ∈ R. Let α > 0 and m := [α]. Then, for s > max{0, s0}, we
have

L {I α f (s)} = 1

sα
L { f (s)}

and

L {C Dα f (s)} = sαL { f (s)} −
m∑

k=1

sα−k f (k−1)(0).

Now we state the stability concepts.
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Definition 21.5 ([11])

(a) The zero solution of the differential equation (21.1) is called “stable” if, for any
ε > 0 there exists some δ > 0 such that the solution of the initial value problem
consisting of the differential equation (21.1) and the initial condition x(0) = x0
satisfies ‖x(t)‖ < ε for all t ≥ 0 whenever ‖x0‖ < δ.

(b) The zero solution of the differential equation (21.1) is called “asymptotically
stable” if it is stable and there exists some γ > 0 such that limt→0 ‖x(t)‖ = 0
whenever ‖x0‖ < γ .

Well-posedness of our initial value problem asserts that under the usual continuity
and Lipschitz assumptions on f , the solution of a fractional differential equation does
not change much over some finite interval if we perturb the initial values by a small
magnitude. The notion of stability is the extension of this idea to unbounded intervals.
The trivial solution is stable if a small change in initial value leads to a small change
of the solution over the complete positive half-plane. Asymptotic stability is even
stronger as it requires the solution of the perturbed problem not only to remain close
to the original solution but also converge to the latter.

It is well known that the homogeneous linear fractional differential equation with
constant coefficients

C Dαx(t) = Ax(t), 0 < α < 1, (21.2)

x(0) = x0,

where A is an arbitrary n × n matrix has the following property.

Theorem 21.2 ([20])

(a) The solution x(t) = 0 of the system (21.2) is asymptotically stable if and only if
all eigenvalues λ j ( j = 1, 2, . . . , n) of A satisfy |argλ j | > απ/2.

(b) The solution x(t) = 0 of the system (21.2) is stable if and only if the eigenvalues
satisfy |argλ j | ≥ απ/2 and all the eigenvalues with |argλ j | = απ/2 have a
geometric multiplicity that coincides with their algebraic multiplicity.

Note that in the limiting case α → 1, we recover the well known classical results.
To discuss asymptotic stability, mainly we need the following two theorems. One is
asymptotic expansions of the Mittag-Leffler functions and the other is a Grownwall-
type inequality.

Theorem 21.3 ([11]) If 0 < α < 2, β is an arbitrary complex number and μ is an
arbitrary real number such that

πα

2
< μ < min{π, πα},

then, for an arbitrary p ≥ 1, the following expansion holds:
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Eα,β(z) = −
p∑

k=1

z−k

Γ (β − αk)
+ O

(|z|−1−p
)
, |z| → ∞, μ ≤ |arg(z)| ≤ π.

(21.3)

Theorem 21.4 ([9] [Grownwall-type inequality]) If

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s)ds, t ∈ [t0, T ),

where all the functions involved are continuous on [t0, T ), T ≤ ∞ and k(t) ≥ 0,
then x(t) satisfies

x(t) ≤ h(t) +
∫ t

t0

h(s)k(s) exp
[ ∫ t

s
k(u)du

]
ds, t ∈ [t0, T ).

If, in addition, h(t) is non-decreasing, then

x(t) ≤ h(t) exp
( ∫ t

t0

k(s)ds
)
, t ∈ [t0, T ).

We need the following estimates on Mittag Leffler type functions that is going to
arise in the solution representation of our problem.

Lemma 21.1 ([26]) If all the eigenvalues of A satisfy |arg(spec(A))| > απ/2,
0 < α < 1,

(i) ‖tα−1Eα,α(Atα)‖ → 0 as t → ∞.

(ii) exp
{
M

∫ t
0 ‖sα−1Eα,α(Asα)‖ds

}
is bounded.

In view of the above lemma, one obtains the following analogous conditions for
Eα,α+1(Atα) by substituting the corresponding asymptotic expansions and following
a similar line of proof.

Lemma 21.2 If all the eigenvalues of A satisfy |arg(spec(A))|>απ/2, 0<α<1,
for arbitrary γ ≥ 0, then

(i) ‖tαEα,α+1(Atα)‖ → 0 as t → ∞.

(ii) exp
{
M

∫ t
0 ‖sαEα,α+1(Asα)‖ds

}
is bounded.

Proof By definition, the series tαEα,α(λtα) is always greater than or equal to the
series tαEα,α+1(λtα). Hence by asymptotic expansion of the first series for 0<α<2,
β = α,

πα

2
< μ < min{π, πα},

for an arbitrary p ≥ 2, the following expansion holds:
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tαEα,α(λtα) = −
p∑

k=2

tα(λtα)−k

Γ (α − αk)
+ O(|λtα|−1−p), |t | → ∞, μ ≤ |arg(λ)| ≤ π.

(21.4)
Hence for p = 3, we have

tαEα,α(λtα) = − tα

λ2t2αΓ (α − 2α)
− tα

λ3t3αΓ (α − 3α)
+ O

( tα

|λtα|4
)

= −1

λ2tαΓ (−α)
− 1

λ3t2αΓ (−2α)
+ O

( 1

|λ|4t3α
)

→ 0 as t → ∞.

Hence ‖tαEα,α+1(λtα)| ≤ ‖tαEα,α(λtα)‖ → 0 as t → ∞, whenever |arg(λ)| >
απ
2 . Coming to the matrix portion, by some simple calculations, we see that

‖tαEα,α+1(Atα)‖ → 0 whenever |arg(spec(A))| > απ
2 . The result (ii) can be

obtained through a series of steps similar to the proof as in [26].

21.3 Main Results

Consider the nonlinear fractional Volterra integrodifferential equation of the form

C Dαx(t) = Ax(t) +
∫ t

0
K (t, s)G(x(s),C Dβ x(s)) ds, 0 ≤ α, β ≤ 1, t ∈ J, (21.5)

x(0) = x0,

where x ∈ R
n , A ∈ R

n×n , K : R+ × R
+ → R and G : Rn × R

n → R
n.

We assume the following hypotheses.

(H1) There exists a continuous function m1 : [0, T ] → [0,∞) such that

‖K (t, s)‖ ≤ m1(t)

and a continuous non-decreasing function Ω : (0,∞) → (0,∞) such that

‖G(y)‖ ≤ Ω(‖x‖ + ‖y‖)

and ∫ T

r
m(s)ds <

∫ ∞

r

ds

Ω(s)
.

(H2) There exists a constant M > 0 and a continuous function m2 : [0, T ] →
[0,∞) such that
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k1
Γ (1 − β)

t−β + n2
Γ (1 − β)

∫ t

0
(t − ξ)−βm1(ξ) Ω(r(ξ)) dξ ≤ Mm2(t) Ω(r(t)),

where

n1 = sup ‖Eα(Atα)‖, t ∈ J ,

n2 = sup ‖(t − s)αEα,α+1(A(t − s)α)‖, t, s ∈ J ,

n3 = sup ‖Atα−1Eα,α(Atα)‖, t ∈ J ,

n4 = sup ‖(t − s)α−1Eα,α[A(t − s)α]‖, t, s ∈ J ,

m(t) = n2m1(t) + Mm2(t),

r = n1‖x0‖.

(H3) The kernel K (t, s) is bounded by a constant say, M1 > 0, and the nonlinear
function G(x, y) is bounded in the sense that ‖G(x, y)‖ ≤ M2(‖x‖ + ‖y‖),
where M2 > 0 is a constant.

Lemma 21.3 Consider the nonlinear system (21.5). Under the hypotheses (H1)–
(H2), the norm functions ‖x(t)‖ and ‖C Dβx(t)‖ are bounded.

Proof The solution of (21.5) by using the Laplace transform technique is given by

x(t) = Eα(Atα)x0 +
∫ t

0
(t − s)αEα,α+1(A(t − s)α)K (s, τ )G(C Dβx(s)) ds.

By the hypotheses, we have

‖x(t)‖ ≤ n1‖x0‖ + n2

∫ t

0
m1(s)Ω(‖x‖ + ‖C Dβx‖) ds.

Let us take the right-hand side of the inequality as r1(t); then

r ′
1(t) = n2m1(t)Ω(‖x‖ + ‖C Dβx‖). (21.6)

Now

x ′(t) = Atα−1Eα,α(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)K (s, τ )G(x(s), C Dβ x(s)) ds

and ‖x ′(t)‖ ≤ n3‖x0‖ + n4

∫ t

0
m1(s)Ω(‖x‖ + ‖C Dβx‖)ds

≡ k2 + n4

∫ t

0
m1(s)Ω(‖x‖) + ‖C Dβx‖) ds. (21.7)
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Hence it follows that

‖C Dβ x(t)‖ ≤ 1

Γ (1 − β)

∫ t

0
(t − s)−β‖x ′(s)‖ ds

≤ k2
Γ (1 − β)

[ t1−β

1 − β

]

+ n4
Γ (1 − β)(1 − β)

∫ t

0
(t − ξ)1−βm1(ξ)Ω(‖x‖ + ‖C Dβ x‖) dξ

≤ k2
Γ (2 − β)

t1−β + n4
Γ (2 − β)

∫ t

0
(t − ξ)1−βm1(ξ)Ω(‖x‖ + ‖C Dβ x‖) dξ.

Let us take the right hand side of the inequality as r2(t); then

r ′
2(t) = k2

Γ (1 − β)
t−β + n4

Γ (1 − β)

∫ t

0
(t − ξ)−βm1(ξ)Ω(‖x‖ + ‖C Dβx‖) dξ.

(21.8)
Now we see that r1(0) = n1‖x0‖ = r , as given in the hypothesis and r2(0) = 0. Let
w(t) = r1(t) + r2(t), t ∈ J . Then w(0) = r1(0) + r2(0) = r and

w′(t) = r ′
1(t) + r ′

2(t) ≤ m(t)Ω(w(t)).

Then, for each t ∈ J, ∫ t

r

w′(s)
Ω[w(s)] ds ≤

∫ T

r
m(s) ds

which implies ∫ w(t)

w(0)

ds

Ω(s)
≤

∫ T

r
m(s) ds <

∫ ∞

r

ds

Ω(s)
.

The above inequality implies that there exists a constant K such that w(t) =
r1(t) + r2(t) ≤ K , t ∈ J, and hence

‖x(t)‖ + ‖C Dβx(t)‖ ≤ K .

We establish the main result now.

Theorem 21.5 Assume that the hypotheses (H1)–(H3) hold. Then the nonlinear
system (21.5) is asymptotically stable whenever the eigenvalues of A satisfy

‖arg(spec(A))‖ >
απ

2
. (21.9)
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Proof The solution of the system is given by

x(t) = Eα(Atα)x0 +
∫ t

0
(t − s)αEα,α+1(A(t − s)α)K (s, τ )G(x(s), C Dβx(s)) ds,

hence

‖x(t)‖ ≤ ‖Eα(Atα)x0‖ +
∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖‖K (s, τ )‖‖G(x(s), C Dβ x(s))‖ ds.

By using the hypothesis (H3) and Lemma 21.3, we have

‖x(t)‖ ≤ ‖Eα(Atα)x0‖ + M1M2

∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖(‖x‖ + ‖C Dβ x‖) ds,

≤ ‖Eα(Atα)x0‖ + M1M2K
∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖ ds,

≤ ‖Eα(Atα)x0‖ + M1M2KK ′
∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖‖x‖ ds,

for a suitable choice of a constant K ′ > 0. By using the Grownwall-type inequality,
we have

‖x(t)‖ ≤ ‖Eα(Atα)x0‖
[
exp

{
M1M2KK ′

∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖ds

}]
.

By inequality (21.9) and hence by Lemma 21.2, the term

exp
{
M1M2KK ′

∫ t

0
‖(t − s)αEα,α+1(A(t − s)α)‖ds

}

is bounded. Also, by Theorem 21.2,

‖Eα(Atα)‖ → 0 as t → ∞.

Hence ‖x(t)‖ → 0 as t → ∞ for any non-zero initial value x0. Hence the zero
solution of the system (21.5) is asymptotically stable.

21.4 Examples

We give some examples to validate the theory.

Example 21.1 Consider the nonlinear Volterra integrodifferential equation
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Fig. 21.1 The nonlinear system (21.10) is asymptotically stable

C Dαx(t) = Ax(t) +
∫ t

0
K (t, s)G(x(s), C Dβx(s)) ds, t ∈ J, (21.10)

x(0) = x0,

where α = 0.6, β = 0.3, A =
⎛
⎝ −2 1 1/2
1/2 −1 4/5
0 1/5 −1

⎞
⎠, K (t, s) = 1

e3(t−s)
, G(x, C Dβx) =

C D0.3x3(s) and x(t) =
⎛
⎝x1(t)
x2(t)
x3(t)

⎞
⎠ with x0 =

⎛
⎝ 1

−1
1

⎞
⎠.

The eigenvalues of matrix A are −2.3699, 0.3820, and −1.2481. Then

|arg(−2.3699)| = | tan−1
( 0

−2.3699

)
| = π >

3π

10
,

|arg(−0.3820)| = | tan−1
( 0

−0.3820

)
| = π >

3π

10

and

|arg(−1.2481)| = | tan−1
( 0

−1.2481

)
| = π >

3π

10
.

The eigenvalue criterion is satisfied. Also the kernel
1

e3(t−s)
is continuous and

bounded; the nonlinear function C D0.3x3(s) is continuous and both satisfy growth
conditions given in the hypotheses of Theorem 21.5. Hence the system (21.10) is
asymptotically stable as can be observed in Fig. 21.1. The convergence rate of the
solution is different for different values of α, as can be seen in Fig. 21.2.

Example 21.2 Consider the nonlinear Volterra integrodifferential equation
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Fig. 21.2 Asymptotic stability of the nonlinear system (21.10), for different values of α

C Dαx(t) = Ax(t) +
∫ t

0
K (t, s)G(x(s), C Dβx(s)) ds, t ∈ J, (21.11)

x(0) = x0,

where α = 0.65, β = 0.8, A =
(
1 + 2i 1/4
3/5 1 + 3i

)
, K (t, s) = sin(t − s)

e4t
,

G(x, C Dβx) = C D0.8(sin(x(s))) and x(t) =
(
x1(t)
x2(t)

)
with x0 =

(
1

−1

)
.

The eigenvalues of the matrix A are 1 + 2.1838i and 1 + 2.8612i . Then the required
eigenvalue criterion is

|arg(1 + 1838i)| = 1.1414 >
απ

2
= α(1.5708)

and
|arg(1 + 8162i)| = 1.2296 >

απ

2
= α(1.5708).

The above two inequalities are satisfied only if α < min(0.7266, 0.7828) = 0.7266.

Also the kernel
sin(t − s)

et
is continuous and bounded; the nonlinear function

C D0.8(sin(x(s))) is continuous and both satisfy growth conditions given in the
hypotheses of Theorem 21.5. Hence for all values of α < 0.7266, the nonlinear
system (21.11) is asymptotically stable as it can be observed in Fig. 21.3. Also, it is
to be noted that for α > 0.73, the system is unstable as shown in Fig. 21.4. Here we
observe that the first order system is unstable but still it’s fractional counterpart is
stable for the prescribed values of α.
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Fig. 21.3 The nonlinear system (21.11) is asymptotically stable for α < 0.73

Fig. 21.4 The nonlinear
system (21.11) is unstable
for α > 0.73
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21.5 Conclusion

We have obtained a set of sufficient conditions to establish the asymptotic stability of
the implicit fractional Volterra integrodifferential equation. However, the conditions
can be improved further. Lyapunov’s indirect method is followed to establish the
asymptotic stability. The graphical examples provided illustrate the effectiveness of
considering fractional systems over integer-order systems.
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