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Abstract. Multi-state is a characteristic of advanced engineering systems and
products. The reliability of multi-state systems (MSSs) has been received con-
siderable attentions since the middle of 1970s. Over the last decade, Bayesian
networks (BNs), as an effective and efficient reasoning tool under uncertainty,
have been intensively concerned in MSS reliability modeling and assessment.
This chapter presented a holistic framework for MSS reliability modeling and
assessment by BNs. Firstly, the basic characteristics of MSSs and BNs are
reviewed. Secondly, the detailed procedures of constructing the BN models of
diverse MSSs are provided. The corresponding dynamic Bayesian network
(DBN) models are also constructed to characterize the degradation profiles of
MSSs over time, as well as various dependencies among components. Thirdly, a
reliability assessment method by fusing multi-level observation data is devel-
oped. The results show that the reliability modeling and assessment for MSSs by
BNs are effective considerably.
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1 Introduction

Multi-state is a typical characteristic of advance engineering systems and products
[1–4]. Many technical systems that perform their intended tasks/missions with multiple
(more than two) distinguishable states between perfectly functioning and completely
failed can be regarded as multi-state systems (MSSs) [1]. The MSS reliability models,
first introduced in the mid-1970s, have received considerable concerns in the past few
decades, because the models can characterize complicated deterioration processes of
engineering systems more precisely than that of the traditional binary-state system
(BSS) reliability models [1, 5]. For example, based on the length of flank wear, the
health status of a cutting tool can be classified approximately into five discrete states
from the normal state (perfectly functioning) to nominally sharp (<0.1 mm), part worn
(0.1–0.15 mm), severely worn (>0.15 mm), and fractured/chipped (completely failed)
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states [6]. Another instance is that a power generating system can function at multiple
levels of generating capacity [1]. Similar treatment can also be found in diverse
engineering situations, e.g., manufacturing systems, networked systems, grid systems,
spacecraft, and municipal infrastructure.

As both components, subsystems, and the entire system can manifest multiple states,
the MSS reliability models are, therefore, much complicated. The approaches to MSS
reliability modeling and assessment can be roughly classified into four categories [1].

• An extension of the Boolean models to the multi-value case. The methods based on
the extension of the Boolean models is natural expansions of Boolean methods that
were well implemented in BSSs, such as, for example, multi-state fault tree [7],
multi-state minimal cuts/paths [8, 9], and multi-value decision diagram [10].

• Stochastic models. The stochastic models, such as homogeneous/non-homogeneous
Markov [11] and semi-Markov [12, 13], are more universal to characterize the
degradation processes of MSSs. However, due to the dimension damnation, the
stochastic models only suit to relatively small scale MSSs because the number of
system states increases dramatically with the increase in the number of components
and component states. Another severe restriction to implement the stochastic
models is the computational complexity, because it is inevitably to solve a system
of differential equations (for homogeneous/non-homogeneous Markov) or a system
of integral equations (for semi-Markov).

• Universal generating functions (UGFs). The UGF technique is effective enough that
utilizes a rapid algebraic procedure to identify the state probability distribution of
the entire system based on the state probability distributions of all the components
[14]. However, this technique is a sort of “static” approaches that cannot charac-
terize the dynamic degradation profiles of MSSs.

• Simulation-based methods. The degradation behaviors of most MSSs in real-world
situations can be simulated by the Monte Carlo method [15]. Nevertheless, the time
consumption involved in the development and execution of the simulation models
are oftentimes unaffordable to achieve a high accurate result.

The recursive algorithms were also developed to evaluate the reliability of gener-
alized multi-state k-out-of-n systems and multi-state weighted k-out-of-n systems [16,
17]. It was proved that the recursive algorithms can outperform the UGF approaches
with or without collecting like terms for the reliability assessment of multi-state
weighted k-out-of-n systems. In addition, the degradation process of each multi-state
component in an MSS can be characterized by the stochastic models, and thus the state
probability distribution of the component at any particular time can be obtained. By
combining the stochastic models and UGF approaches, the state probability distribution
of the entire system at any particular time can be readily obtained, even for relatively
large-scale systems.

Apart from the aforementioned methods and tools, Bayesian networks (BNs) [18], as
a probabilistic graphical model, are capable of handling with various uncertainty prob-
lems effectively based on probabilistic information representation and inference. BNs
have gained considerable popularity inMSS reliabilitymodeling and assessment over the
last decade. There is still a booming interest for using BNs in the reliability community,
especially for MSS reliability modeling and assessment. This chapter will present a
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holistic framework for MSS reliability modeling and assessment with BNs. The contri-
butions of this chapter are trifold: (1) the proposed framework can effectively characterize
the dynamic behaviors of various MSSs; (2) the proposed framework can effectively
characterize various dependencies in MSSs; (3) the proposed framework can effectively
aggregate multi-level observation data to dynamically assess reliability of MSSs.

The reminder of this chapter is organized as follows. In Sect. 2, the basic char-
acteristics of MSS and BNs are reviewed. The detailed procedures of constructing the
BN models for a diversity of MSSs are provided in Sect. 3. A reliability assessment
method by fusing multi-level observation data is developed in Sect. 4. A brief closure
is given in Sect. 5.

2 Preliminaries

2.1 Multi-state Systems

An MSS herein is composed of Mc homogenous or heterogeneous multi-state com-
ponents. The states of each component are distinguished by its performance capacities
or degradation levels. Suppose that component l can possess Nc

l mutually ordered
states, then the sets of the performance capacity and state component l can be denoted
as gcl ¼fgl;1; gl;2; . . .gl;Nc

l
g and scl ¼f1; 2; . . .;Nc

l g, respectively. States 1 and Nc
l are the

best state and worst state of component l, respectively. The performance capacity and
state of component l at time t are denoted as Gc

l ðtÞ (Gc
l ðtÞ 2 gcl ) and ClðtÞ (ClðtÞ 2 scl ),

respectively. If component l sojourns in state i at time t, i.e., ClðtÞ ¼ i, the performance
capacity Gc

l ðtÞ ¼ gl;i. In this chapter, states f1; 2; . . .;Nc
l � 1g are acceptable states;

therefore, component l is viewed as being failed if the component sojourns in state Nc
l .

In this chapter, the degradation profile of each component is assumed to follow a
homogeneous discrete-time Markov process. Other stochastic models, such as non-
homogenous Markov process and semi-Markov process, can also be adopted. As each
component degrades from the best state to the worst state, the Markov model is
irreducible, transient, and aperiodic. The one-step state transition matrix of the Markov
model for component l is represented as:

Pl ¼

pl;ð1;1Þ pl;ð1;2Þ . . . pl;ð1;Nc
l Þ

0 pl;ð2;2Þ . . . pl;ð2;Nc
l Þ

..

. ..
. . .

. ..
.

0 0 . . . pl;ðNc
l ;N

c
l Þ

2
6664

3
7775;

where pl;ði;jÞ ¼ PrfClðtþDtÞ ¼ jjClðtÞ ¼ ig (1� i� j�Nc
l ) is the state probability of

component l from state i to state j within a basic time interval Dt. The state probability
distribution of component l at time t is denoted by a probability vector
plðtÞ ¼ ½pl;1ðtÞ; pl;2ðtÞ; . . .; pl;Nc

l
ðtÞ�, where pl;iðtÞ ¼ PrfClðtÞ ¼ ig. With the known state

probability distribution of component l at time t, i.e., plðtÞ, the state probability dis-
tribution of the component at time tþ kDt can be computed as follows:
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plðtþ kDtÞ ¼ plðtÞ � ðPlÞk: ð1Þ

Based on the physical configuration and/or functional relations between compo-
nents, the components in an MSS can be divided into Msub subgroups that are con-
sidered as Msub subsystems. The number of the states that subsystem m and the entire
system can have are Nsub

m and Nsys, respectively. Likewise, the performance capacity
and state of subsystem m at time t are denoted as Gs

mðtÞ and SmðtÞ, respectively; the
performance capacity and state of the entire system at time t are denoted as GðtÞ and
SðtÞ, respectively; states 1 is the best state each subsystem and the entire system; states
Nsub
m and Nsys are the worst states of subsystem m and the entire system, respectively.
The states of each subsystem and the entire system are completely determined by

the state combinations of their corresponding constituents. The structure function /mð�Þ
that identifies the relation between subsystem m and its constituents are deterministic
and known; the structure function /ð�Þ that identifies the relation between the entire
system and its constituents are also deterministic and known. It is common that more
than one state combination of components may result in particular subsystem and/or
system state [19]. An MSS is considered reliable if the system sojourns in the
acceptable states during the operation period. Therefore, the reliability of an MSS is
defined as the sum of the probabilities of the system sojourning in the acceptable states.

2.2 Bayesian Networks

BNs [18], also known as belief networks, Bayesian belief networks, and casual net-
works, are inherently compact representations of multivariate statistical distribution
functions. A BN contains a qualitative part, i.e., the direct acyclic graph (DAG), and a
quantitative part, i.e., a set of conditional probability tables (CPTs). The DAG of a BN
consists of a set of nodes denoting random variables fX1; X2; . . .; Xng and a set of
links characterizing the probabilistic dependencies among nodes. The terms node and
random variable are used interchangeably hereinafter. Based on the types of all nodes,
a BN can be classified into one of the three categories [20], i.e., discrete BNs, con-
tinuous BNs, and hybrid BNs. This chapter limits the treatment to the discrete BNs in
which all nodes are discrete.

Each node in a BN can manifest finite mutually exclusive states. A link, as a
directed edge from Xj to Xi, represents that Xj has a directed casual effect on Xi.
Therefore, Xj is considered a parent of Xi, which can be denoted as Xj 2 paðXiÞ;
whereas Xi is regarded as a child of Xj. Particularly, a node without any parent nodes
and child nodes are called a root node and a leaf node, respectively. The DAG of a BN
reflects the casual relations between all nodes, whereas the CPTs of the BN characterize
the strength of these casual relations quantitatively. For a node Xi with a parent set
paðXiÞ, the CPT of Xi, denoted as PrfXijpaðXiÞg represents the conditional probability
mass function of Xi under the condition of paðXiÞ. Particularly, a set of marginal
probability tables (MPTs) need to be assigned to all root nodes. An illustrative BN with
six nodes is shown in Fig. 1. X1 and X3 are root nodes, whereas X5 and X6 are leaf
nodes. The parent nodes of X2 and X4 are denoted as paðX2Þ ¼ X1 and
paðX4Þ ¼ fX1;X2;X3g, respectively. The parent node of both X5 and X6 is X4.
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Based on the chain rule, the joint probability distribution of all the random variables
in a BN can be decomposed into the product of a set of conditional probability dis-
tributions, and it is given by:

PrfX1;X2; . . .;Xng ¼
Yn
i¼1

PrfXijpaðXiÞg: ð2Þ

As an example, the joint probability distribution of the BN in Fig. 1 is represented as:

PrfX1;X2; . . .;X6g
¼ PrfX1g PrfX3g PrfX2jX1g PrfX4jX1;X2;X3g PrfX5jX4g PrfX6jX4g

: ð3Þ

When one or more nodes are observed/instantiated, or say, evidences are inputted

into these nodes, BNs are capable of updating the probability distributions of other
nodes without observation/instantiation/evidence via effective inference. Various effi-
cient algorithms for exact or approximate probabilistic inference can be utilized to
update the entire BN, such as variable elimination algorithm, junction tree algorithm,
and Markov chain Monte Carlo (MCMC) methods. The details of the BN inference
algorithms can be referred to the books by Jensen and Nielsen [18], and Koller and
Friedman [21].

The BN in Fig. 1 is essentially a static model that can only represent the casual
relations among nodes at a particular time instant. To characterize to the evolving
behaviors of random variables over time, local models are necessary to be constructed
for each unit of time. A local BN model at a particular time is called a time slice.
Temporal links that are also directed edges are introduced to constitute a full model by
connecting all the time slices in a chronological order. The full model is called a
dynamic Bayesian network (DBN). The detailed procedures of constructing DBN
models will be elaborated in Sect. 3.2.

X1 X3

X4

X5

X2

X6

Fig. 1. An illustrative BN
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Numerous software can be utilized to model practical problems by BN or DBN
from different aspects. An overview of available software in the literature are provided
herein without pretending to be exhaustive.

• Various software with integrated and intuitive graphical interfaces are powerful and
user-friendly, e.g., BayesiaLab, GeNIe, Hugin, Netica, and AgenaRisk.
These software make BNs accessible to engineers without programming skills.

• A diversity of packages in different programming environments are also available,
e.g., various R packages on CRAN, BNT in MATLAB, and BayesPy in Python.
These packages that can make BNs manipulable are efficient, flexible, and
extendable enough for engineers with proficient programming skills.

• BUGS (Bayesian inference Using Gibbs Sampling) is concerned with several
flexible software that implement the approximate Bayesian inference using MCMC
methods. The well-known WinBUGS, OpenBUGS, and JAGS are all a sort of BUGS
software packages.

BNs can represent and characterize various uncertainties and dependencies in
reliability engineering in an intuitive, flexible, and effective manner; therefore, BNs
have become a very popular tool to address diverse practical reliability problems [22–
27]. The reported works in the literature regarding to BN applications in BSSs can be
essentially extended to multi-state cases. As each node of a BN can have multiple
(more than two) mutually exclusive states, BNs have gained considerable concerns in
MSS reliability modeling and assessment recently. Compared with classical reliability
formalisms, such as fault trees [28–30], in both modeling and analysis features, BNs
have showed significant advantages over the traditional frameworks. Therefore, BNs
have been applied to a diversity of engineering cases, such as the search and rescue
operations [31], medium voltage air insulated switch operation [32], axle and vehicle
[33], power generating systems [19], cutter feeding control system [34, 35], water
distribution system [36, 37], bridge condition modeling [38], and subsea blowout
preventer [39–41].

Due to the powerful capabilities in modeling and reasoning, BNs were utilized to
characterize both random and epistemic uncertainties as well as various dependencies
in the context of MSSs. For example, to deal with epistemic uncertainty in reliability
evaluation, BNs and DBNs were extended to evidential networks and dynamic evi-
dential networks based on Dempster-Shafer evidence theory [34, 35, 42], respectively.
Various failure dependencies between components, such as common cause failures
(CCFs) [34, 43, 44] and cascading failures [45], were also modeled by BNs. As the
system reliability can be updated based on BN inference algorithms if a component
node is instantiated, BNs were adopted in the importance measure analysis [35, 46]. In
addition to these aspects, BNs have also been extensively applied to system mainte-
nance management in which BNs were used to infer the condition of a system or its
components if some components and/or the entire system can be observed before
maintenance decision-making [23, 47–51].

The temporal BN model of a system can be constructed to characterize the
degradation/failure profile (temporal dependency) of the system. In general, temporal
models can be divided into two broad categories based on the time representation, i.e.,
event-based approaches and time-sliced approaches. Based on the event-based
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approaches, Boudali and Dugan [52, 53] constructed a discrete-time BN and a
continuous-time BN reliability modeling and analysis frameworks. Based on the time-
sliced approaches, various DBN models were constructed to evaluate reliability of a
system over time [19, 43, 54–58]. For example, Cai et al. [43] constructed a multi-
phase DBN model to determine the safety integrity level of a safety instrumented
system with CCFs. Jiang and Liu [19], and Xu et al. [57] developed a data-driven
reliability assessment method based on DBNs by aggregating multi-level observation
data. Khakzad [58] developed a DBN model to characterize the dynamic behaviors of
the wildfire spread in wildland-industrial interfaces. Additionally, by decomposing an
entire system model into several smaller modules, the object-oriented BNs were built
up for large-scale, complex, and hierarchical systems [59–63].

To improve the modeling and inference efficiencies, various improved algorithms
were proposed for BNs and DBNs, such as the topology optimization algorithm [64],
dynamic discretization method [65], discretization of continuous random variables
[66], compression inference algorithm [67], and improved compression inference
algorithm [68].

3 Reliability Modeling by BNs

This section provides general procedures of constructing BN and DBN models for
various typical MSSs, e.g., series systems, parallel systems, series-parallel systems,
bridge systems, and phased-mission systems. Two kinds of failure dependencies among
components are also considered in the BN and DBN models.

3.1 BN Models of Typical MSSs

The states of the components, subsystems, and the entire system of an MSS at a
particular time are all inherently random variables. To characterize an MSS in the
framework of BNs, the components, subsystems, and the entire system of an MSS are
represented by nodes. For an MSS consisting of Mc components that can be divided
into Msub subsystems, a corresponding BN model of the system can be constructed
using a set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ; S1; S2; . . .; SMsub ; Sg. In
the BN model, nodes Cl (l 2 f1; 2; . . .;Mcg), Sm (m 2 f1;2; . . .;Msubg), and S corre-
spond to component l, subsystem m, and the entire system, respectively. Directed edges
that link different nodes are added based on the relations between the states of com-
ponents, subsystems, and the entire system. For an MSS with all the components being
s-independent, node Cl (l 2 f1; 2; . . .;Mcg) is a root node, whereas node S is a leaf
node. If subsystem m (or the entire system) is composed of components fl1; l2; . . .; lkg
and subsystems fm1; m2; . . .; mng, directed edges for nodes fCl1 ; Cl2 ; . . .; Clk ;
Sm1 ; Sm2 ; . . .; Smng to node Sm (or node S) are added into the BN model.

The CPTs and MPTs of the nodes quantifies the directed edges in a BN model. For
an MSS in which all the components are s-independent, the MPT of each root node Cl

is the state probability distribution of component l at a particular time. The CPTs of
each node Sm and leaf node S can be essentially obtained by the structure function of
subsystem m and the entire system, respectively.
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To provide the detailed procedures of constructing various BN models, several
typical MSSs, i.e., series systems, parallel systems, series-parallel systems, bridge
systems, and phased-mission systems, shown in Fig. 2, are used for illustration here-
inafter. For a better comparison of the BN models for different system types, the
components that constitute these systems are set to be the same. Each system is
composed of five s-independent components, and the performance capacities of each
component corresponding to its states are tabulated in Table 1.

3.1.1 BN Models of the Illustrative Series System
As all the five components are connected in series, two candidate BN models of the
illustrative series system, shown in Fig. 3, can be constructed. Although both two
candidate BN models are correct, candidate BN model 2 is superior to model 1 because

C1 C4C2 C3 C5

C4

C3

C5

C1

C2

(a) Series system (b) Parallel system

C4

C3

C1

C2 C5

C4

C3

C5

C1

C2

(c) Series-parallel system (d) Bridge system

Phase 1 Phase 2 Phase 3

C3

C1

C2

C4C1

C2 C5

C4

C3

C5

Time

(e) Phased-mission system

Fig. 2. Configurations of several typical MSSs

Table 1. Performance capacities of each component

Component no. State 1 State 2 State 3 State 4

1 7 3 0 –

2 8 4 0 –

3 11 8 3 0
4 7 3 0 –

5 8 4 0 –
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it has a simpler CPT for each child node than that of model 1. For candidate BN model
1, all the component nodes, i.e., nodes fC1;C2; . . .;C5g, are linked to the system node,
i.e., node S, directly; therefore, the CPT of node S is a Cartesian product of
Nc
1 � Nc

2 � . . . � Nc
5. For candidate BN model 2, three additional child nodes of the

component nodes, i.e., nodes S1, S2, and S3, are added, and they can avoid an oversize
CPT of the system node. The dimensions of the CPTs for nodes S1, S2, S3, and S in
model 2 are Nc

1 � Nc
2, N

c
3 � Ns

1, N
c
4 � Ns

2, and Nc
5 � Ns

3, respectively. In this regard,
candidate BN model 2 of the illustrative series system is preferable and will be used for
further analysis hereinafter. Interested readers can also find more details in [64] where a
topology optimization algorithm was proposed to address the inefficiency of a con-
verging BN structure.

For any multi-state series system consisting of n s-independent components
fCl1 ;Cl2 ; . . .;Clng, the system performance capacity at any time is determined by the
performance capacities of all the components and is equal to GðtÞ ¼ minfGc

l1ðtÞ;
Gc

l2ðtÞ; . . .; Gc
lnðtÞg. Therefore, the system state can be obtained based on the state

combinations of all the components. As an example, for the series system in Fig. 2, the
performance capacity of subsystem 1 at any time is completely determined by com-
ponents 1 and 2. The relations between the performance capacities (states) of sub-
system 1 and the corresponding state combinations of components 1 and 2 are given in
Table 2. As a result, the CPT of node S1 in the BN model of the series system, shown
in Table 3, can be obtained. Each element in Table 3 is a conditional probability of
node S1 conditional on a particular state combination of nodes C1 and C2. In a similar
manner, the CPTs of nodes S2, S3, and S can be obtained readily. The MPT of node Cl

(l 2 f1; 2; . . .; 5g) are essentially the state probability distributions of component l at a
particular time, and it can be obtained by Eq. (1).

C1 C3 C4 C5C2

S1

S2

S3

S

(a) Candidate BN model 1 (b) Candidate BN model 2

C1 C3 C4 C5C2

S

Fig. 3. Two candidate BN models of the series and parallel systems
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3.1.2 BN Models of the Illustrative Parallel System
For the illustrative parallel system that is composed of five s-independent components,
two candidate BN models, shown in Fig. 3, can also be constructed. It is worth noting
that the two DAGs of both the two candidate BN models for the illustrative series and
parallel system are exactly the same. Likewise, candidate BN model 2 of the illustrative
parallel system is preferable and will be used for further analysis hereinafter.

For any multi-state parallel system consisting of n s-independent components
fCl1 ;Cl2 ; . . .;Clng, the system performance capacity at any time is determined by the
performance capacities of all the components and is equal to GðtÞ ¼ Pn

k¼1 G
c
liðtÞ.

Therefore, the system state can be obtained based on the state combinations of all the
components. As an example, for the parallel system in Fig. 2, the performance capacity
of subsystem 1 at any time is completely determined by components 1 and 2. The
relations between the performance capacities (states) of subsystem 1 and the corre-
sponding state combinations of components 1 and 2 are given in Table 4. As a result,
the CPT of node S1 in the BN model of the parallel system, shown in Table 5, can be
obtained. It can be seen that the CPT of node S1 of the parallel system is different from
the CPT of node S1 of the series system. The CPTs of nodes S2, S3, and S can be
obtained readily in the same fashion.

Table 2. Performance capacities and states of subsystem 1 of the series system

Performance capacity State of subsystem 1 State of component 1 State of component 2

7 1 1 1
4 2 1 2
3 3 2 1

2 2
0 4 1, 2 3

3 1, 2, 3

Table 3. CPT of node S1 of the series system

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node S1 1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0
4 0 0 1 0 0 1 1 1 1

Table 4. Performance capacities and states of subsystem 1 of the parallel system

Performance capacity State of subsystem 1 State of component 1 State of component 2

15 1 1 1
11 2 1 2

2 1

(continued)
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3.1.3 BN Model of the Illustrative Series-Parallel System
Based on the system structure of the illustrative series-parallel system in Fig. 2, two
candidate BN models, shown in Fig. 4, can also be constructed. Although candidate
BN model 1 is intuitive, the CPTs of the child nodes in candidate BN model 2 are
simplified by adding a subsystem node, i.e., node S2 of candidate BN model 2.
Therefore, candidate BN model 2 of the illustrative series-parallel system is preferable
and will be used for further analysis hereinafter.

Corresponding to candidate BN model 2, subsystem 1 is composed of components
1 and 2 in parallel; subsystem 2 is composed of component 3 and subsystem 1 in series;
subsystem 3 is composed of components 4 and 5 in parallel; the entire system consists
of subsystems 2 and 3 in series. Consequently, the performance capacities of subsys-
tems 1, 2, and 3 at time t are computed as Gs

1ðtÞ ¼ Gc
1ðtÞþGc

2ðtÞ, Gs
2ðtÞ ¼ minfGc

3ðtÞ;
Gs

1ðtÞg, and Gs
3ðtÞ ¼ Gc

4ðtÞþGc
5ðtÞ, respectively; the performance capacity of the entire

system at time t is computed as GðtÞ ¼ minfGs
2ðtÞ;Gs

3ðtÞg. The similar analyses
implemented in Tables 3 and 5 can also be done herein to obtain the CPTs of nodes S1,
S2, S3, and S.

Table 4. (continued)

Performance capacity State of subsystem 1 State of component 1 State of component 2

8 3 3 1
7 4 1 3

2 2
4 5 3 2
3 6 2 3
0 7 3 3

Table 5. CPT of node S1 of the parallel system

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node S1 1 1 0 0 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0
4 0 0 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 0 1
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3.1.4 BN Model of the Illustrative Bridge System
The BN model of the illustrative bridge system can be constructed based on the minimal
success paths [42]. For the illustrative bridge system in Fig. 2, there exist four minimal
success paths, i.e., fC1;C4g, fC1;C3;C5g, fC2;C5g, and fC2;C3;C4g. Therefore, the
bridge system can be decomposed into two simplified sub-models, and the BN model of
the bridge system can be constructed as shown in Fig. 5. In the BN model, nodes S3 and
S6 represent sub-models 1 and 2, respectively; node S represents the entire bridge
system. The performance capacities of subsystems 1, 2, and 3 at time t can be computed
as Gs

1ðtÞ ¼ minfGc
3ðtÞ; Gc

5ðtÞg, Gs
2ðtÞ ¼ Gc

4ðtÞ þ Gs
1ðtÞ, and Gs

3ðtÞ ¼ minfGc
1ðtÞ;

Gs
2ðtÞg, respectively; the performance capacities of subsystems 4, 5, and 6 at time t can

be computed as Gs
4ðtÞ ¼ minfGc

3ðtÞ; Gc
4ðtÞg, Gs

5ðtÞ ¼ Gc
5ðtÞ þ Gs

4ðtÞ, and Gs
6ðtÞ ¼

minfGc
2ðtÞ; Gs

5ðtÞg, respectively; the performance capacity of the entire system at time t
can be computed as GðtÞ ¼ Gs

3ðtÞþGs
6ðtÞ. Consequently, the CPTs of all the child

nodes in the BN model can be obtained readily.
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Fig. 5. Decomposition and BN model of the bridge system
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3.1.5 BN Model of the Illustrative Phased-Mission Systems
The multi-state phased-mission system herein is intended to perform a mission with H
phases. The system may reconfigure in different phases to meet varying mission
demands, resulting in a distinct system structure in each phase. If a component is
suspended in a phase, the component is assumed to not deteriorate during the phase and
its state remains unchanged. The number of subsystems in phase h is denoted by Msub

h
(h 2 f1; 2; . . .;Hg); the numbers of the states of subsystem m and the entire system in
phase h are denoted by Nsub

m;h and Nsys
h , respectively. The performance capacities of

component l, subsystem m, and the entire system at time t in phase h are denoted by
Gc

l;hðtÞ, Gs
m;hðtÞ, and GhðtÞ, respectively. The states of component l, subsystem m, and

the entire system at time t in phase h are denoted by Cl;hðtÞ, Sm;hðtÞ, and ShðtÞ,
respectively. It should be noted that SmðtÞ hereinbefore denotes the state of subsystem
m at time t for a general MSS, whereas ShðtÞ herein represents the state of the entire
system at time t in phase h for a multi-state phased-mission system. The duration of
phase h is Th (h 2 f1; 2; . . .;Hg) times of the basic time interval.

The system survival at the end of a phase is not only determined by the system state
at the end of the phase, but also depends on whether the system can survive at the end
of the last phase. Therefore, a binary-state node, denoted as Dh (h 2 f1; 2; . . .;Hg), is
introduced herein to indicate whether the system can survive at the end of phase h. By
linking node Dh of adjacent phases by the directed edges, the probability of the system
surviving in each phase can be characterized. Let Dh ¼ 1 and Dh ¼ 2 denote the
system being in the functioning state and failure state at the end of phase h, respec-
tively. Therefore, the conditional probabilities of node Dh can be represented as
follows:

PrfDh ¼ 1jDh�1; Shg ¼ 1 Dh�1 ¼ 1 and Sh is acceptable
0 otherwise

�
; ð4Þ

PrfDh ¼ 2jDh�1; Shg ¼ 1 Dh�1 ¼ 2 or Sh is unacceptable
0 otherwise

�
: ð5Þ

A set of nodes, which is denoted as X ¼ fX1;X2; . . .;XHg, are used to construct
the BN model of a phased-mission system. Xh ¼ fC1;h; C2;h; . . .; CMc;h; S1;h;
S2;h; . . .; SMsub;h; Sh; Dhg (h 2 f1; 2; . . .;Hg) is the set of nodes in phase h, where
nodes Cl;h ðl 2 f1; 2; . . .; McgÞ; Sm;hðm 2 f1; 2; . . .; Msub

h gÞ; and Sh correspond
to component l, subsystem m, and the entire system in phase h, respectively. In each
phase, a local BN model can be constructed first based on the corresponding system
structure. Directed edges are then added between component nodes across different
phases to characterize the relations between different phases. The BN model of the
illustrative phased-mission system in Fig. 2 can be constructed as shown in Fig. 6. The
local BN model of phase h characterizes the phased-mission system at the end of phase
h. In phase 1, components 1, 2, and 3 are in operation, whereas components 4 and 5 are
suspended. The performance capacities of subsystem 1 and the entire system at time t
in phase 1 are denoted as Gs

1;1ðtÞ ¼ Gc
1;1ðtÞþGc

2;1ðtÞ and G1ðtÞ ¼ minfGc
3;1ðtÞ;

Gs
1;1ðtÞg, respectively. Likewise, the performance capacities of the subsystem(s) and the
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entire system in phases 2 and 3 can be obtained. Consequently, the CPTs of all the
subsystem nodes and the system nodes in the BN model can be obtained readily.

If a component node in a phase is a root node, the MPT of the component node in
the phase is essentially the state probability distribution of the corresponding compo-
nent at a particular time. Nevertheless, if a component node in a phase is a child node,
the CPT of the component node in the phase is essentially the state transition matrix of
the corresponding component. As an example, for the BN model of the illustrative
phased-mission system in Fig. 6, the CPTs of nodes C1;2 and C2;2 are the T2-step state
transition matrix of components 1 and 2, respectively; the CPTs of nodes C4;3 and C5;3

are the T3-step state transition matrix of components 4 and 5, respectively; the CPT of
node C3;3 is the T3-step state transition matrix of component 3.

3.2 DBN Models of Typical MSSs

The BN models in Sect. 3.2 are all static models that can only represent an MSS at a
particular time. The DBN model of an MSS can characterize the degradation process of
the MSS during the operation period. By using a time slice to represent an MSS at a
particular time, the DBN model of the MSS is inherently a discrete-time model. In a
DBN model, all the time slices are the repetitive BN models of an MSS at a particular
time. The time interval between two adjacent time slices is a basic time interval, i.e., Dt.
Suppose that the operation period is T � Dt, the number of time slices is thus equal to
T þ 1. Time slice t (t 2 f0; 1; . . .; Tg) represents the local BN model at time t. A set of
nodes, denoted as X ¼ fXð0Þ; Xð1Þ; . . .; XðTÞg, are used to construct the DBN
model of an MSS. XðtÞ ¼ fC1ðtÞ; C2ðtÞ; . . .; CMcðtÞ; S1ðtÞ; S2ðtÞ; . . .; SMsubðtÞ;
SðtÞg is the set of nodes in time slice t, where ClðtÞ ðl 2 f1; 2; . . .; McgÞ;
SmðtÞ ðm 2 f1; 2; . . .; MsubgÞ; and SðtÞ correspond to component l, subsystem m,
and the entire system at time t, respectively. The MPT of node Clð0Þ is the state
probability distribution of component l at the beginning of use.

A temporal link from node ClðtÞ ðl 2 f1; 2; . . .; Mcg; t 2 f0; 1; . . .; T � 1gÞ
to node Clðtþ 1Þ is added to connect the two component nodes between two adjacent
time slices, and it characterizes the degradation profiles of component l within a basic
time interval. The strength of the temporal link from node ClðtÞ to node Clðtþ 1Þ is

C1,1 C3,1C2,1

S1,1

S1

D1

C1,2 C4,2 C5,2C2,2

S1,2 S2,2

S2

D2

C3,3 C4,3 C5,3

S1,3

S3

D3

Phase 1 Phase 2 Phase 3

Fig. 6. BN model of the phased-mission system
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quantified by the CPT of node Clðtþ 1Þ which is equivalent to the state transition
matrix of component l. The illustrative systems in Fig. 2 are used herein to provide
detailed procedures of constructing the DBN models of various systems.

The DBN models of the illustrative series system in an extended form and an
abstract form are shown in Fig. 7. In the extended form of the DBN model, all the time
slices from time slice 0 to time slice T are displayed. In the abstract form of the DBN
model, only a particular time slice, i.e., time slice t, is displayed. The number attached
to each temporal link, i.e., “1”, represents the number of time slices used for the
temporal dependency. The number in the square box, i.e., T þ 1, represents the total
number of time slices in the DBN model. The DBN models of the illustrative parallel
system in an extended form and an abstract form are also shown in Fig. 7. As discussed
in Sect. 3.1, although the DAGs of the DBN models for the series and parallel systems
are identical, the CPTs of the subsystem nodes and system nodes, i.e., nodes
SmðtÞ ðm 2 f1; 2; . . .; Msubg; t 2 f0; 1; . . .; TgÞ and SðtÞ ðt 2 f0; 1; . . .; TgÞ
are distinct. In a similar manner, the abstract forms of the DBN models of the illus-
trative series-parallel and bridge systems are shown in Fig. 8.

…
…

…
…

…

…
…

…
…

…

C1(t) C3(t) C4(t) C5(t)C2(t)

S1(t)

S2(t)

S3(t)

S(t)

1 11 1 1

(a) Extended form

(b) Abstract form

T+1

Fig. 7. DBN models of the series and parallel systems
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For a phased-mission system, a set of nodes, denoted as X ¼ fX1; X2; . . .; XHg;
are used to construct the DBN model, where X1 ¼ fX1ð0Þ; X1ð1Þ; . . .; X1ðT1Þg and
Xh ¼ fX1ð

Ph�1
k¼1 Tk þ 1Þ; Xhð

Ph�1
k¼1 Tk þ 2Þ; . . .; Xhð

Ph
k¼1 TkÞg ðh 2 f2; 3; . . .;

HgÞ represent the local DBN models of the system in phase 1 and phase h, respectively.
XhðtÞ ¼ fC1;hðtÞ; C2;hðtÞ; . . .; CMc;hðtÞ; S1;hðtÞ; S2;hðtÞ; . . .; SMsub;hðtÞ; ShðtÞ; DhðtÞg
ðh 2 f1; 2; . . .; HgÞ represents time slice t in phase h, where Cl;hðtÞ ðl 2 f1; 2;
. . .;McgÞ, Sm;hðtÞ ðm 2 f1; 2; . . .; Msub

h gÞ; ShðtÞ, and DhðtÞ correspond to component
l, subsystem m, the entire system, and system survival at time t in phase h, respectively. t
is elapse time from the beginning of use.

The DBN model of the illustrative phased-mission system is shown in Fig. 9. In
each phase, a local DBN model is constructed to characterize the degradation process
of the system in the phase. T1 þ 1, T2, and T3 time slices are repeated in phases 1, 2,
and 3, respectively. Particularly, the adjacent time slices at the end of phase h
(h 2 f1; 2g) and the beginning of phase hþ 1 are depicted to shown the detailed
temporal dependencies between the two adjacent phases. As components 1 and 2 are in
operation in both phases 1 and 2, in time slices T1 þ 1 and T1 þ 2, only two temporal
links are added to the corresponding component nodes, i.e., the directed edge from
node Cl;1ðT1 þ 1Þ to node Cl;2ðT1 þ 2Þ (l 2 f1; 2g). Likewise, as components 4 and 5
are in operation in both phases 2 and 3, in time slices T1 þ T2 þ 1 and T1 þ T2 þ 2, only
two temporal links are added to the corresponding component nodes, i.e., the directed
edge from node Cl;2ðT1 þ T2 þ 1Þ to node Cl;3ðT1 þ T2 þ 2Þ (l 2 f4; 5g). As compo-
nents 4 and 5 are suspended in phase 1, the state probability distributions of nodes
C4;2ðT1 þ 2Þ and C5;2ðT1 þ 2Þ are actually the corresponding state probability distri-
butions of components 4 and 5 at the beginning of use, respectively. Nevertheless, as
component 3 is in operation in phases 1 and 3 and in idle in phase 2, the state
probability distribution of node C3;3ðT1 þ T2 þ 2Þ is equal to the state probability
distribution of node C3;1ðT1 þ 1Þ.

C1(t) C3(t) C4(t) C5(t)C2(t)
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(a) Series-parallel system
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(b) Bridge system

T+1
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Fig. 8. DBN models of the series-parallel and bridge systems
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3.3 Failure Dependencies in BN and DBN Models

The components in the BN and DBN models presented in Sects. 3.1 and 3.2 are
assumed to be s-independent. Nevertheless, in real-world situations, the failure pro-
cesses of the components may be inevitably s-dependent. BNs are a powerful tool to
cope with various dependencies and can be utilized to model failure dependencies
between components during their degradation processes. Two typical failure depen-
dencies,.i.e., CCFs [44, 69–72] and immediate failure dependence (IFD) [73, 74], are
considered in the illustrative series-parallel system herein.

CCFs are the failures of multiple dependent components within a system because of
a share root cause or a common cause (CC) [69, 71], such as extreme environmental
conditions or human errors. The presence of CCFs tends to increase the joint failure
probability of a system, contributing significantly to the overall unreliability of systems
subject to CCFs. Therefore, it is crucial to incorporate CC effects into the reliability
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Fig. 9. DBN model of the phased-mission system
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modeling and assessment of systems subject to CCFs to avoid overestimation of system
reliability measures.

An MSS can be subject to CCFs because of various elementary CCs. CCs are
exclusive mutually and are external to the system. In general, CCs existing in an MSS
can be denoted as fCC1; CC2; . . .; CCnCCg, where nCC represents the number of
elementary CCs. Therefore, a set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ;
S1; S2; . . .; SMsub ; S; CC1; CC2; . . .; CCnCC ; U1; U2; . . .; UMcg, can be used to
construct the BN model of an MSS with CCFs. Node Cl (l 2 f1; 2; . . .;Mcg) denotes
the state probability distribution of component l caused by its own degradation,
whereas node Ul denotes state probability distribution of component l incorporating the
effects of CCs. Node Ul can be a null node if component l is not affected by any CCs.
Node CCk (k 2 f1; 2; . . .; nCCg) has two states, i.e., CCk 2 f1; 2g. States 1 and 2 of
node CCk represent the non-occurrence and occurrence the k th CC, respectively. The
inter-arrival time of the k th CC is assumed to be exponentially distributed with
parameter kCCk . If component l is affected by n CCs fCCk1 ;CCk2 ; . . .;CCkng, the con-
ditional probabilities of node Ul can be represented as follows:

PrfUl ¼ Nc
l jCl;CCk1 ;CCk2 ; . . .;CCkng ¼ 1 Cl ¼ Nc

l or 9CCkj ¼ 2
0 Cl 6¼ Nc

l and 8CCkj ¼ 1

�
; ð6Þ

PrfUl ¼ ijCl;CCk1 ;CCk2 ; . . .;CCkng ¼ 1 Cl ¼ i and 8CCkj ¼ 1
0 Cl 6¼ i or 9CCkj ¼ 2

�
; i 6¼ Nc

l : ð7Þ

In the DBN model with CCFs, the temporal links are added to the CC nodes to
characterize the occurrence of the CCs. The marginal probabilities of node CCkð0Þ in
time slice 0 can be denoted as PrfCCkð0Þ ¼ 1g ¼ 1 and PrfCCkð0Þ ¼ 2g ¼ 0. Due to
the memoryless of the exponential distribution, the conditional probabilities of node
CCkðtÞ (t 2 f1; 2; . . .;Tg) can be represented as follows:

PrfCCkðtÞ ¼ 1jCCkðt � 1Þg ¼ 1� expð�kCCk � DtÞ; ð8Þ

PrfCCkðtÞ ¼ 2jCCkðt � 1Þg ¼ expð�kCCk � DtÞ: ð9Þ

In addition, if component l is not affected by CCs, a temporal link will be added to
node ClðtÞ from time slice t � 1 (t 2 f1; 2; . . .;Tg) to time slice t. On the contrary, if
component l is affected by CCs, a temporal link will be added from node Ulðt �
1Þ ðt 2 f1; 2; . . .; TgÞ to node ClðtÞ as Ulðt � 1Þ represents the actual condition of
component l.

The illustrative series-parallel system in Fig. 2 is used herein for further analysis.
Suppose that two CCs exist in the system; CC1 affects components 1 and 2; CC2 affects
components 4 and 5. Consequently, the BN and DBN models of the illustrative series-
parallel system with CCFs are shown in Fig. 10. In the BN model, node U3 is omitted
since component 3 is not affected by any CCs. As an example, based on Eqs. (6) and
(7), the CPT of U1 is tabulated in Table 6. Two time slices of the DBN model are
shown in Fig. 11 to present the details of the temporal links between the CC nodes and
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component nodes. In the DBN model, the CPT of node ClðtÞ ðt 2 f1; 2; . . .; TgÞ is
always the one-step transition matrix of component l regardless of the parent node of
node ClðtÞ. Furthermore, the BN and DBN models with CCFs can be extended to more
generalized cases, such as probabilistic CCFs [71, 72] and the case in which a CC can
manifest multiple states [43].

IFD is common in real-world situations, and it refers to that the failure a component
(influencing component) may cause immediate failures of some other components
(affected components) [73, 74]. For instance, the failure of an electrical component
creates a voltage spike that immediately triggers the failures of the neighboring
components.

A set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ; S1; S2; . . .; SMsub ; S; U1;
U2; . . .; UMcg, can be used to construct the BN model of an MSS with IFD. Node Cl

(l 2 f1; 2; . . .;Mcg) denotes the state probability distribution of component l caused by
its own degradation, whereas node Ul denotes state probability distribution of com-
ponent l incorporating the effects of IFD. Likewise, node Ul can be a null node if
component l is not affected by other components. Suppose that an immediate failure of
affected component l occurs with probability pIFl if component l is not failed and one of
its influencing components fails. If the failure of any of n components
fCk1 ;Ck2 ; . . .;Ckng can cause the failure of component l, the conditional probability of
node Ul can be represented as follows:

CC2

U1

C3

U4 U5U2

S1 S3

S

S2

C1 C4 C5C2CC1

(a) BN model with CCFs (b) DBN model with CCFs
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11 1

U1(t) U4(t) U5(t)U2(t)

S1(t) S3(t)

S(t)

S2(t)

C1(t) C5(t)C2(t)CC1(t) CC2(t)C3(t) C4(t)

1 11

1

Fig. 10. BN and DBN models of the series-parallel system with CCFs

Table 6. CPT of node U1 in the BN model with CCFs

State of node CC1 1 2

State of node C1 1 2 3 1 2 3

State of node U1 1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 1 1 1
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PrfUl ¼ Nc
l jCl;Ck1 ;Ck2 ; . . .;Ckng ¼

1 Cl ¼ Nc
l

pIFl Cl 6¼ Nc
l and 9Ckj ¼ Nc

l ;
0 Cl 6¼ Nc

l and 8Ckj 6¼ Nc
l

8<
: ð10Þ

PrfUl ¼ ijCl;Ck1 ;Ck2 ; . . .;Ckng ¼
1 Cl ¼ i and 8Ckj 6¼ Nc

l
1� pIFl Cl ¼ i and 9Ckj ¼ Nc

l
0 Cl 6¼ i

8<
: ; i 6¼ Nc

l : ð11Þ

In the DBN model with IFD, if component l is not affected by other components, a
temporal link will be added to node ClðtÞ from time slice t � 1 (t 2 f1; 2; . . .;Tg) to
time slice t. On the contrary, if the failure of any of n components fCk1 ;Ck2 ; . . .;Ckng
can cause the failure of component l, a temporal link will be added from node Ulðt �
1Þ ðt 2 f1; 2; . . .; TgÞ to node ClðtÞ since Ulðt � 1Þ represents the actual condition
of component l.

The illustrative series-parallel system in Fig. 2 is used herein for further analysis.
Suppose that the failure of component 1 can cause an immediate failure of component
2; the failure of component 4 can also lead to a failure of component 5 immediately.
Consequently, the BN and DBN models of the illustrative series-parallel system with
IFD are shown in Fig. 12. In the BN model, nodes U1, U3, and U4 are omitted. As an
example, based on Eqs. (10) and (11), the CPT of node U2 is tabulated in Table 7.
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Fig. 11. Two time slices of the DBN model with CCFs
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4 Reliability Assessment by DBNs

In this section, system reliability of the preceding MSSs can be assessed based on DBN
models. If no evidence is inserted, the state probability distribution of the entire system
at any time can be obtained by marginalizing the system node in the corresponding
time slice. If some nodes are instantiated, the state probability distribution of the system
node in any time slice can be updated by BN inference algorithms. Subsequently, by
defining the acceptable states of an MSS, the reliability of the entire system can be
estimated for any time instant.

4.1 BN Inference

Let the node set X ¼ fXð0Þ; Xð1Þ; . . .; XðTÞg denote the DBN model of an MSS,
whereXðtÞ ¼ fC1ðtÞ; C2ðtÞ; . . .; CMcðtÞ; S1ðtÞ; S2ðtÞ; . . .; SMsubðtÞ; SðtÞg. The joint
probability of the DBN model can be expressed as:

C3 U5U2

S1 S3

S
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C1 C4

C5C2

(a) BN model with IFD

S1(t) S3(t)

S(t)

S2(t)
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Fig. 12. BN and DBN models of the series-parallel system with IFD

Table 7. CPT of node U2 in the BN model with IFD

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node U2 1 1 0 0 1 0 0 1� pIF2 0 0

2 0 1 0 0 1 0 0 1� pIF2 0

3 0 0 1 0 0 1 pIF2 pIF2 1
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PrðXÞ ¼ Pr
[T
t¼0

[Mc

l¼1

ClðtÞ;
[Msub

m¼1

SmðtÞ; SðtÞ
" #( )

¼
Y

QMc

l¼1
PrfClð0Þg

QT
t¼1

PrfClðtÞjClðt � 1Þg component nodes

QMsub

m¼1

QT
t¼0

PrfSmðtÞjpaðSmðtÞÞg subsystem nodes

QT
t¼0

PrfSðtÞjpaðSðtÞÞg system nodes

8>>>>>>>><
>>>>>>>>:

: ð12Þ

The state probability distribution of the entire system at time t can be obtained by
marginalizing node SðtÞ, which is represented as [18]:

PrfSðtÞg ¼
X

XnSðtÞ PrfXg: ð13Þ

During the operation period, the states of some components, subsystems, and the
entire system can be observed by conducting condition monitoring periodically or non-
periodically. If a component, subsystem, or the entire system is observed in a particular
state at a particular time, the corresponding node in the DBN model of the system is
instantiated with the observed state. Suppose that ne nodes in a DBN model are
instantiated, the evidence of a DBN model is denoted as e ¼ feX1 ; eX2 ; . . .; eXneg, where
eXi (i 2 f1; 2; . . .; neg) denotes the evidence of node Xi, i.e., the observed state of a
component, subsystem, or the entire system at a particular time. Consequently, when
evidence e is inputted into a DBN model, on the basis of the Bayes formula, the
posterior probability distribution of the system state at time t can be obtained by
marginalizing node SðtÞ, and it is represented as follows [18]:

PrfSðtÞjeg ¼
P

XnSðtÞ PrfX; eg
Prfeg ; ð14Þ

where Prfeg is the prior probability of evidence e. Prfeg can be calculated by
marginalizing the instantiated nodes, i.e., nodes fX1;X2; . . .;Xneg, which is represented
as follows [18]:

Prfeg ¼
X

XnfX1;X2;...;Xneg PrfX; eg: ð15Þ

Equations (13)–(15) can be calculated by various BN inference algorithms, such as
variable elimination algorithm and junction tree algorithm. The details involved in the
BN inference algorithms can be found in the books by Jensen and Nielsen [18], and
Koller and Friedman [21]. Consequently, the state probability distribution of the entire
system at time t can be evaluated by Eq. (13).

220 T. Jiang et al.



4.2 Reliability Assessment by Aggregating Multi-level Observation Data

The degradation processes of the components, subsystems, and the entire system of an
MSS can be inspected by collecting condition monitoring data from sensors that are
mounted at various physical levels of the system (component level, subsystem level,
and system level). Observation data can be collected from multiple levels of an MSS
simultaneously or asynchronously during the operation stage [7, 19, 75–77]. If an
inspection is conducted at a particular time, the state probability distribution and
reliability of an MSS can be updated by aggregating multi-level observation data.
Moreover, if inspections are conducted chronologically during the operation period, the
state probability distribution and reliability of an MSS can be updated dynamically. An
evidence in the DBN model of an MSS is essentially the collected multi-level obser-
vation data. Therefore, the state probability distribution and reliability of an MSS can
be updated using Eq. (14) once an evidence is inserted into the DBN model of the
MSS. More details involved in updating system reliability dynamically by observation
data during the operation period can be referred to [77–79]. The illustrative systems in
Fig. 2 are used herein for further analysis.

For each of the five systems in Fig. 2, i.e., the series system, parallel system, series-
parallel system, bridge system, and phased-mission system, the system is considered as
reliable if the performance capacity of the entire system is not less than a user demand.
The user demand of the five systems are set to be 3. The one-step state transition
matrixes of all the components are given as follows:

P1 ¼
0:9185 0:0564 0:0251

0 0:9608 0:0392
0 0 1

2
4

3
5; P2 ¼

0:9231 0:0474 0:0295
0 0:9734 0:0266
0 0 1

2
4

3
5;

P4 ¼
0:9579 0:0290 0:0131

0 0:9724 0:0276
0 0 1

2
4

3
5; P5 ¼

0:9550 0:0308 0:0142
0 0:9704 0:0296
0 0 1

2
4

3
5;

P3 ¼
0:9465 0:0286 0:0149 0:0100

0 0:9589 0:0281 0:0130
0 0 0:9802 0:0198
0 0 0 1

2
664

3
775:

The duration of the operation period is set at T ¼ 50 units of time. For the phased-
mission system, the durations of the three phases are set at T1 ¼ 12 units of time,
T2 ¼ 18 units of time, and T3 ¼ 20 units of time. Consequently, for the series, parallel,
series-parallel, and bridge systems, system reliabilities at time t, denoted as RðtÞ, are
shown in Fig. 13; for the phased-mission system, system reliability at time t is shown
in Fig. 14.
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When one or more inspections are conducted chronologically, the system reliability
of an MSS will be updated dynamically. The system-level or multi-level observation
data of the five systems collected at two different time instants, i.e., t1 ¼ 8 units of time
and t2 ¼ 20 units of time, are listed in Table 8. As a result, for each of the five systems,
system reliability can be updated dynamically at the two inspection time instants. The
updated system reliabilities of the series, parallel, series-parallel, and bridge systems
are shown in Fig. 13. The updated system reliabilities of the phased-mission system are
shown in Fig. 14.

(a) Series system (b) Parallel system

(c) Series-parallel system (d) Bridge system
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Fig. 13. Original and updated system reliabilities of the four systems
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5 Conclusions and Discussions

In this chapter, a holistic framework for MSS reliability modeling and assessment based
on BNs and DBNs is presented. The basic characteristics of MSSs and BNs are pre-
sented. The detailed procedures of constructing the BN and DBN models of various
MSSs are provided. The results show that BNs and DBNs can effectively represent and
characterize dependency among components in MSSs. A reliability assessment
approach by aggregating multi-level observation data is developed, which can update
the system reliability dynamically once an additional inspection is conducted. The
reliability modeling and assessment results of five typical MSSs show that BNs and
DBNs are effective considerably in terms of modeling and assessing reliability of MSSs.

A crucial premise in this chapter is that the degradation process of each component
in an MSS is characterized by a homogenous Markov process. Nevertheless, in real-
world situations, the degradation process of a component may follow a non-
homogenous Markov process or semi-Markov process. Under such a circumstance, one
can calculate the transition probability matrix of a non-homogenous Markov process or
semi-Markov process between any two time instants [12, 13, 80]. By setting the

0 8 10 12 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time

R
el

ia
bi

li
ty

P hase 1 P hase 2 P hase 3

y

R(t) in Phase 1 
R(t) in Phase 1 R(t) in Phase 2

01020304050
Time

R R(t) in Phase 2 after t2=20
01020304050

00.20.40.6

el
ia

b

R(t) in Phase 3 after t1=8

R(t) in Phase 3 after t2=20

R(t) in Phase 3

after t1=8
0 60.81bi

li
ty R(t) in Phase 2 after t1=8

Fig. 14. Original and updated system reliabilities of the phased-mission system

Table 8. Multi-level observation data

Systems Observations
t1 ¼ 8 t2 ¼ 20

Series Sð8Þ ¼ 1 Sð20Þ ¼ 2, C1ð20Þ ¼ 1
Parallel Sð8Þ ¼ 3 Sð20Þ ¼ 16, S2ð20Þ ¼ 6
Series-parallel Sð8Þ ¼ 2, S1ð8Þ ¼ 2 Sð20Þ ¼ 4, C4ð20Þ ¼ 2
Bridge Sð8Þ ¼ 1, C3ð8Þ ¼ 2 Sð20Þ ¼ 5, C3ð20Þ ¼ 3, C4ð20Þ ¼ 2
Phased-mission S1ð8Þ ¼ 1, S1;1ð8Þ ¼ 2 S2ð20Þ ¼ 3, S1;2ð20Þ ¼ 3, C4;2ð20Þ ¼ 2
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transition probability matrix as the corresponding CPT between two time slices, the
proposed DBN models can be further extended to the non-homogenous Markov or
semi-Markov case. Additionally, the CPTs of subsystem and system nodes in this
chapter are all assumed to be deterministic. It is noted that probabilistic CPTs of
subsystem and system nodes correspond to a generalized BN model which can reflect
imperfect knowledge of system behaviors [28, 81].
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