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Abstract. We study the asymptotic behavior of tail probability for the
waiting time in the steady-state M/G/1/ROS multiple-vacation queue
with regularly-varying service time and vacation time distributions. Con-
ditioning on the server being busy or on vacation, the asymptotic con-
ditional tail probabilities are obtained explicitly. We also verify that
the waiting-time tail for M/G/1/ROS queue with multiple-vacation is
asymptotically equivalent to that for the standard M/G/1/ROS queue
(without vacation), as long as the vacation time has a tail probability
lighter than the service time.
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1 Introduction

Triggered by the desire for measuring the quality of service (QoS) in modern
communication networks (see, e.g., [14] and [15]), there has been much inter-
est in studying the asymptotic behaviors for queues with heavy-tailed service
time distributions. The tail asymptotics for queueing quantities, such as queue
length and waiting time, is of fundamental importance due to the stringent QoS
requirements often requiring these tail probabilities to be significantly small.

Queueing systems with vacations are a type of very important queueing sys-
tems, which find many applications in abroad range of areas, e.g., production,
computer, and communication systems. A variety of queues with vacations have
been extensively studied for more than 40 years. Literature reviews on vacation
queues can be found in, e.g., the survey [8] and the book [17].

In this paper, we are interested in the asymptotic behavior of tail probability
for the stationary waiting time in the M/G/1 queue with multiple-vacation and
random order service (ROS) discipline. The customers are assumed to arrive
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according to a Poisson process with rate λ. The service time Tβ is assumed to
be i.i.d. r.v.’s having the distribution Fβ(t) with Fβ(0) = 0 and mean β1 < ∞.
Each time a service is completed and the system is not empty, the next customer
to be served is selected at random from all the customers waiting in the queue.
Each time a busy period ends and system becomes empty, the server undergoes
a vacation of random length of time Tα. Whenever the server returns from a
vacation and finds one or more customers waiting, the server goes on serving
a customer immediately, otherwise, on return from a vacation, the server finds
no customer waiting, the server takes on a vacation again. The generic vacation
time Tα is assumed to have the distribution Fα(t) with Fα(0) = 0 and mean
α1 < ∞. Besides, we use the notations α(s) and β(s) to represent the Laplace-
Stieltjes (LS) transforms of Fα(t) and Fβ(t), respectively. It is well known that
the system is stable if and only if (iff) ρ = λβ1 < 1, which is assumed to hold
throughout this paper.

There are many references on asymptotic analysis for queueing systems with
heavy-tailed distributions, e.g., Asmussen, Klüppelberg and Sigman [1], Boxma
and Denisov [4], and more references can be found in two excellent surveys: Borst
et al. [3], and Boxma and Zwart [6]. As far as the ROS discipline concerned, we
refer readers to [5] and [12]. Under the assumption of regularly-varying service
time distribution, Borst, et al. [5] and Kim, et al. [12] obtained asymptotic
expressions for the waiting time distributions in the ordinary M/G/1 queue
(without vacation) and the M/G/1 queue with retrials, respectively.

Our focus in this paper is to study the asymptoic behavior for the tail prob-
ability of the waiting time in the M/G/1/ROS vacation queue with regularly-
varying service time and vacation time distributions, which is one of typical
and commonly used heavy-tailed distributions. Conditioning on the server being
busy or on vacation, the asymptotic conditional tail probabilities are obtained
explicitly. As a side product (Remark 2) of main results obtained in this paper,
we verify that the waiting-time tail for M/G/1/ROS queue with multiple vaca-
tion is asymptotically equivalent to that for the standard M/G/1/ROS queue
(without vacation), as long as the vacation time has a tail probability lighter
than the service time.

The rest of the paper is organized as follows: Sect. 2 provides preliminaries
to facilitate our analysis. In Sects. 3 and 4, we study the asymptotic behaviors
for the conditional tail probabilities of waiting time conditioning on the server
being busy and on vacation, respectively.

2 Preliminary

In this section, we present some definitions, notations and useful literature
results, which will be used in later sections

Definition 1 (Bingham, Goldie and Teugels [2]). A measurable function
U : (0,∞) → (0,∞) is regularly varying at ∞ with index σ ∈ (−∞,∞) (written
U ∈ Rσ) iff limt→∞ U(xt)/U(t) = xσ for all x > 0. If σ = 0 we call U slowly
varying, i.e., limt→∞ U(xt)/U(t) = 1 for all x > 0.
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We will use L(t) to represent a slowly varying function at ∞ (see Definition 1)
and make the following basic assumptions on the service time Tβ and the vacation
time Tα:

A1. The service time Tβ has tail probability P{Tβ > t} ∼ t−bL(t) as t → ∞,
where 1 < b < 2.

A2. The vacation time Tα has tail probability P{Tα > t} ∼ γP{Tβ > t} as
t → ∞, where γ ≥ 0.

Remark 1. When γ = 0, Assumption A2 is to be interpreted as P{Tα > t} =
o
(
P{Tβ > t})

, which means that the vacation time has a tail probability lighter
than the service time. When γ > 0, two tail probabilities are asymptotically
equivalent up to a prefactor γ.

Let Tπ be the busy period of the standard M/G/1 queue with arrival rate λ

and service time Tβ . It is well known that π1
def= E(Tπ) = β1/(1 − ρ). By π(s),

we denote the LS transform of the probability distribution function of Tπ. Under
Assumption A1, the tail probability P{Tπ > t} is regularly varying according to
de Meyer and Teugels [7]:

P{Tπ > t} ∼ 1
(1 − ρ)b+1

· t−bL(t) as t → ∞. (1)

Let F
(e)
β (t) be the so-called equilibrium distribution of Fβ(t), which is defined

as F
(e)
β (t) = β−1

1

∫ t

0
(1 − Fβ(x))dx. Similarly, we define F

(e)
α (t) = α−1

1

∫ t

0
(1 −

Fα(x))dx and F
(e)
π (t) = π−1

1

∫ t

0
(1 − Fπ(x))dx. Denote by β(e)(s), α(e)(s) and

π(e)(s) the LS transforms of F
(e)
β (t), F

(e)
α (t) and F

(e)
π (t), respectively.

By Karamata’s theorem (e.g., p. 28 in Bingham, Goldie and Teugels [2]) and
Assumptions A1 and A2, we know that 1−F

(e)
β (t) ∼ cβt−b+1L(t), 1−F

(e)
α (t) ∼

cαt−b+1L(t) and 1 − F
(e)
π (t) ∼ cπt−b+1L(t) as t → ∞, where

cβ =
1

(b − 1)β1
, (2)

cα =
γ

(b − 1)α1
, (3)

cπ =
1

(b − 1)π1
· 1
(1 − ρ)b+1

=
cβ

(1 − ρ)b
. (4)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we further obtain the
asymptotic properties for LS transforms β(e)(s), α(e)(s) and π

(e)
0 (s):

1 − β(e)(s) = cβc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (5)

1 − α(e)(s) = cαc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (6)
1 − π(e)(s) = cπc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (7)

where c(b) = Γ (b − 1)Γ (2 − b)/Γ (b − 1).
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Let W be the waiting time of a generic customer, Wb and Wv be two r.v.s
whose probability distributions coincide with the conditional probability dis-
tributions of W given that the generic customer finds the server busy and on
vacation upon its arrival, respectively. Precisely, P{Wb ≤ t} = P{W ≤ t|busy}
and P{Wv ≤ t} = P{W ≤ t|vacation}. Therefore, the probability distributions
P{Wb ≤ t} and P{Wv ≤ t} have the LS transforms Wb(s)

def= E(e−sW |busy) and
Wv(s) def= E(e−sW |vacation), respectively. Our starting point for tail asymptotic
analysis on P{Wb > t} and P{Wv > t} is based on the expressions for Wb(s)
and Wv(s), which can be found in [17].

Wb(s) =
1 − ρ

α1ρs

∫ 1

π(s)

[
1 − α(λ − λu)

][
β(λ − λu) − β(s + λ − λu)

]
[
β(λ − λu) − u

][
u − β(s + λ − λu)

]

· exp {−G(s, u)} du, (8)

Wv(s) =
1

α1s

∫ 1

π(s)

α(λ − λu) − α(s + λ − λu)
u − β(s + λ − λu)

· exp {−G(s, u)} du, (9)

where

G(s, u) =
∫ 1

u

1
v − β(s + λ − λv)

dv. (10)

3 Asymptotic Tail Probability of Wb

In this section, we are going to derive the asymptotic expression of P{Wb > t}
as t → ∞ based on Wb(s), the LS transform of distribution function P{Wb ≤ t}.
Let us rewrite (8) as follows

Wb(s) =
1 − ρ

ρs

∫ 1

π(s)

α(e)(λ − λu) ·
[ λ − λu

β(λ − λu) − u
+

λ − λu

u − β(s + λ − λu)

]

· exp {−G(s, u)} du. (11)

Setting u = u(t) = 1 − st/λ in (11), and noting that

λ − λπ(s)
s

=
ρ

1 − ρ
· 1 − π(s)

sE(Tπ)
=

ρ

1 − ρ
π(e)(s), (12)

we get that

Wb(s) =
1 − ρ

ρ

∫ ρ
1−ρ π(e)(s)

0

α(e)(st)
[ st

st − λ + λβ(st)
+

st

−st + λ − λβ(s + st)

]

· exp{−G(s, 1 − st/λ)}dt. (13)



Tail Asymptotics for an M/G/1/ROS Vacation Queue 365

It follows from (10) that

G(s, 1 − st/λ) =
∫ 1

1−(st/λ)

1
v − β(s + λ − λv)

dv

=
∫ 1

0

st

−stw + λ − λβ(s + stw)
dw

=
∫ 1

0

1
D(s, t, w)

dw, (14)

where

D(s, t, w) =
−stw + λ − λβ(s + stw)

st
= −w + ρ(w + 1/t)β(e)(s + stw).(15)

Let

B1(s, t) =
st

st − λ + λβ(st)
=

1
1 − ρβ(e)(st)

, (16)

B2(s, t) =
st

−st + λ − λβ(s + st)
=

1
D(s, t, 1)

, (17)

C(s, t) = exp
{

−
∫ 1

0

1
D(s, t, w)

dw

}
, (18)

g(s, t) = α(e)(st)
(
B1(s, t) + B2(s, t)

)
C(s, t). (19)

Then we can further rewrite (13) as

Wb(s) =
1 − ρ

ρ

∫ ρ
1−ρ π(e)(s)

0

g(s, t)dt = Wb1(s) − Wb2(s) (20)

where

Wb1(s) =
1 − ρ

ρ

∫ ρ
1−ρ

0

g(s, t)dt, Wb2(s) =
1 − ρ

ρ

∫ ρ
1−ρ

ρ
1−ρ π(e)(s)

g(s, t)dt. (21)

In following subsections, we are going to discuss the asymptotic properties
for Wb1(s) and Wb2(s) as s ↓ 0, which will be used to obtain the asymptotics
of P{Wb > t} as t → ∞ later. For this purpose, we start with studying the
asymptotic behaviors for B1(s, t), B2(s, t) and C(s, t) as s ↓ 0.

3.1 Asymptotic Properties for B1(s, t), B2(s, t) and C(s, t) as s ↓ 0

It follows from (16) and (5) that

B1(s, t) =
1

1 − ρ + ρ(1 − β(e)(st))
=

1
1 − ρ

· 1

1 +
ρ

1 − ρ
β
(e)
0 (st)

=
1

1 − ρ
− cβc(b)ρ

(1 − ρ)2
(st)b−1L(1/s)(1 + o(1)). (22)
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where we have used the fact that 1/(1 − x) = 1 + x + x2 + · · · for |x| < 1.
It follows from (15) and (5) that

D(s, t, w) = −w + ρw + ρ/t − ρ(w + 1/t)β(e)
0 (s + stw)

= (−w + ρw + ρ/t)
[
1 − ρ(w + 1/t)β(e)

0 (s + stw)
−w + ρw + ρ/t

]

= (−w + ρw + ρ/t)

·
[
1 − cβc(b)ρ

(1/t)(1 + tw)b

−w + ρw + ρ/t
· sb−1L(1/s)(1 + o(1))

]
, (23)

which implies that

1
D(s, t, w)

=
1

−w + ρw + ρ/t

+cβc(b)ρ
(1/t)(1 + tw)b

(−w + ρw + ρ/t)2
· sb−1L(1/s)(1 + o(1)). (24)

Therefore, by (18),

C(s, t) = ϕ(t) · exp
{−cβc(b)ρH(t)sb−1L(1/s)(1 + o(1))

}
, (25)

where

ϕ(t) = exp
{

−
∫ 1

0

1
−w + ρw + ρ/t

dw

}
=

(−t + ρt + ρ

ρ

) 1
1−ρ

, (26)

H(t) =
∫ 1

0

(1/t)(1 + tw)b

(−w + ρw + ρ/t)2
dw. (27)

Note that the fact that e−x = 1 − x + (−x)2/2! + · · · . Then (25) yields

C(s, t) = ϕ(t)
[
1 − cβc(b)ρH(t)sb−1L(1/s)(1 + o(1))

]
. (28)

In addition, by (17) and (24), we get

B2(s, t) =
1

−1 + ρ + ρ/t
+ cβc(b)ρ

(1/t)(1 + t)b

(−1 + ρ + ρ/t)2
sb−1L(1/s)(1 + o(1)).(29)

3.2 Asymptotic Property for Wb1(s) as s ↓ 0

It follows from (22) and (29) that

B1(s, t) + B2(s, t) = ψ(t) − cβc(b)ρK(t)sb−1L(1/s)(1 + o(1)), (30)
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where

ψ(t) =
1

1 − ρ
· ρ

−t + ρt + ρ
. (31)

K(t) = K0(t) − K1(t) (32)

K0(t) =
tb−1

(1 − ρ)2
, (33)

K1(t) =
(1/t)(1 + t)b

(−1 + ρ + ρ/t)2
. (34)

By (19), (6), (28) and (30), we know

g(s, t) = ϕ(t)ψ(t) −
[
cαc(b)tb−1ϕ(t)ψ(t) + cβc(b)ρϕ(t)

(
K(t) + ψ(t)H(t)

)]

·sb−1L(1/s)(1 + o(1)). (35)

Recalling the expression of Wb1(s) in (21), along with (35), we can write

Wb1(s) =
1 − ρ

ρ

∫ ρ
1−ρ

0

ϕ(t)ψ(t)dt −
[
cαc(b)

1 − ρ

ρ

∫ ρ
1−ρ

0

tb−1ϕ(t)ψ(t)dt +

cβc(b)(1 − ρ)
∫ ρ

1−ρ

0

ϕ(t)
(
K(t) + ψ(t)H(t)

)
dt

]

·sb−1L(1/s)(1 + o(1)). (36)

In the following, we are going to calculate the integrals in (36). By (26) and (31),

ϕ(t)ψ(t) =
1

1 − ρ

(−t + ρt + ρ

ρ

) 1
1−ρ −1

, (37)

hence

1 − ρ

ρ

∫ ρ
1−ρ

0

ϕ(t)ψ(t)dt =
1

1 − ρ

∫ 1

0

(1 − x)
1

1−ρ −1dx = 1, (38)

1 − ρ

ρ

∫ ρ
1−ρ

0

tb−1ϕ(t)ψ(t)dt =
1
ρ

( ρ

1 − ρ

)b
∫ 1

0

(1 − x)
1

1−ρ −1xb−1dx. (39)

By (26) and (33),
∫ ρ

1−ρ

0

ϕ(t)K0(t)dt =
1

(1 − ρ)2

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ · tb−1dt

=
1

(1 − ρ)2
( ρ

1 − ρ

)b
∫ 1

0

(1 − x)
1

1−ρ · xb−1dx. (40)

By (26) and (34),
∫ ρ

1−ρ

0

ϕ(t)K1(t)dt =
∫ ρ

1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ · t(1 + t)b

(−t + ρt + ρ)2
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2 · x
(
1 +

ρ

1 − ρ
x
)b

dx. (41)
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By (37) and (27),

∫ ρ
1−ρ

0

ϕ(t)ψ(t)H(t)dt

=
∫ ρ

1−ρ

0

ϕ(t)ψ(t) ·
(∫ t

0

(1 + y)b

(−y + ρy + ρ)2
dy

)
dt

=
1

(1 − ρ)

∫ ρ
1−ρ

0

(1 + y)b

(−y + ρy + ρ)2
[ ∫ ρ

1−ρ

y

(−t + ρt + ρ

ρ

) ρ
1−ρ

dt
]
dy

=
1

(1 − ρ)ρ

∫ ρ
1−ρ

0

(−y + ρy + ρ

ρ

) ρ
1−ρ −1

(1 + y)bdy

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2
(
1 +

ρ

1 − ρ
x
)b

dx. (42)

Noting that K(t) is given in (32) and substituting (38)–(42) into (36), we obtain

Wb1(s) = 1 − dbc(b) · sb−1L(1/s)(1 + o(1)), (43)

where

db =
(cα

ρ
+

cβ

1 − ρ

)( ρ

1 − ρ

)b
∫ 1

0

(
1 − x

) 1
1−ρ · xb−1dx

+
cβ

1 − ρ

∫ 1

0

(
1 − x

) 1
1−ρ −1(

1 +
ρ

1 − ρ
x
)b

dx. (44)

3.3 Asymptotic Property for Wb2(s) as s ↓ 0

Recall (21). By the integration middle value theorem, there exists ξ(s) ∈ (0, 1)
such that

Wb2(s) = g
(
s, h(s)

)(
1 − π(e)(s)

)
, (45)

where h(s) = ρ
1−ρ

[
π(e)(s) + ξ(s)(1 − π(e)(s))

]
. It follows from (7) that

h(s) =
ρ

1 − ρ

(
1 + O(1) · sb−1L(1/s)

)
. (46)

Next, we will prove that g
(
s, h(s)

)
= o(1). By (35), we have

g
(
s, h(s)

)
= ϕ(h(s))ψ(h(s)) −

[
cαc(b)(h(s))b−1ϕ(h(s))ψ(h(s))

+cβc(b)ρϕ(h(s))
(
K(h(s)) + ψ(h(s))H(h(s))

)]

·sb−1L(1/s)(1 + o(1)). (47)
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By (46), we know that −h(s) + ρh(s) + ρ = O(1) · sb−1L(1/s), which together
with (26) and (37) leads to

ϕ(h(s)) = O(1) · s(b−1)/(1−ρ)
(
L(1/s)

) 1
1−ρ , (48)

ϕ
(
h(s)

)
ψ

(
h(s)

)
= O(1) · s(b−1)( 1

1−ρ −1)
(
L(1/s)

) 1
1−ρ −1

. (49)

Because lims→0 h(s) = ρ/(1 − ρ), it follows from (33), (34) and (27) that

K0(h(s)) =
(h(s))b−1

(1 − ρ)2
= O(1), (50)

K1(h(s)) =
(1/h(s))(1 + h(s))b

(−1 + ρ + ρ/h(s))2
= O(1) ·

( 1
sb−1L(1/s)

)2

, (51)

H(h(s)) =
∫ 1

0

(1/h(s))(1 + h(s)w)b

(−w + ρw + ρ/h(s))2
dw = O(1). (52)

Further, by (48)–(52),

ϕ(h(s))K(h(s))sb−1L(1/s) = o(1), (53)
ϕ
(
h(s)

)
ψ

(
h(s)

)
H(h(s))sb−1L(1/s) = o(1). (54)

It follows from (47), (49), (53) and (54) that g
(
s, h(s)

)
= o(1), which, together

with (45) and (7), results in

Wb2(s) = o(1) · sb−1L(1/s). (55)

3.4 Tail Probability Asymptotics for Wb

By (20), (43) and (55),

Wb(s) = 1 − c(b)dbs
b−1L(1/s)(1 + o(1)). (56)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we obtain

P{Wb > t} = P{W > t|busy} ∼ dbt
−b+1L(t) as t → ∞. (57)

where db is given in (44).

4 Asymptotic Tail Probability of Wv

In this section, we are going to derive the asymptotic expression of P{Wv > t}
as t → ∞ based on Wv(s) given in (9). Let

A(s, t) =
α(st) − α(s + st)

α1st
= (1 + 1/t)α(e)(s + st) − α(e)(st), (58)

gv(s, t) = A(s, t)B2(s, t)C(s, t). (59)
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Similar to derivation of (20), we get that

Wv(s) =
∫ ρ

1−ρ π(e)(s)

0

gv(s, t)dt = Wv1(s) − Wv2(s), (60)

where

Wv1(s) =
∫ ρ

1−ρ

0

gv(s, t)dt, Wv2(s) =
∫ ρ

1−ρ

ρ
1−ρ π(e)(s)

gv(s, t)dt. (61)

In following subsections, we will discuss the asymptotic behavior of Wv1(s)
and Wv2(s) as s ↓ 0, which will be used later to obtain the asymptotics of
P{Wv > t} as t → ∞.

4.1 Asymptotic Property for Wv1(s) as s ↓ 0

It follows from (6) and (58) that

A(s, t) =
1
t

[
1 − cαc(b)

(
(1 + t)b − tb

)
sb−1L(1/s)(1 + o(1))

]
, (62)

which, together with (29), implies that

A(s, t)B2(s, t) =
1

−t + ρt + ρ

[
1 −

(
cαc(b)

(
(1 + t)b − tb

) − cβc(b)ρ
(1 + t)b

−t + ρt + ρ

)

·sb−1L(1/s)(1 + o(1))
]

=
1 − ρ

ρ
ψ(t)

[
1 − c(b)ρ

(
cαR1(t) − cβR2(t)

)

·sb−1L(1/s)(1 + o(1))
]
. (63)

where

R1(t) =
(1 + t)b − tb

ρ
, (64)

R2(t) =
(1 + t)b

−t + ρt + ρ
. (65)

By (63) and (28), we obtain

gv(s, t) = ϕ(t)ψ(t)
[1 − ρ

ρ
− c(b)(1 − ρ)

(
cβH(t) + cαR1(t) − cβR2(t)

)

·sb−1L(1/s)(1 + o(1))
]
. (66)

Recalling the expression of Wv1(s) given in (61), along with (38) and (66), we
can write

Wv1(s) = 1 − c(b)(1 − ρ)
[ ∫ ρ

1−ρ

0

ϕ(t)ψ(t)
(
cβH(t) + cαR1(t) − cβR2(t)

)
dt

]

·sb−1L(1/s)(1 + o(1)). (67)
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Next, let us calculate the integrals in (67). By (37) and (64),
∫ ρ

1−ρ

0

ϕ(t)ψ(t)R1(t)dt

=
1

ρ(1 − ρ)

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ −1

·
[
(1 + t)b − tb

]
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −1
[(

1 +
ρx

1 − ρ

)b

−
( ρx

1 − ρ

)b]
dx. (68)

By (37) and (65),
∫ ρ

1−ρ

0

ϕ(t)ψ(t)R2(t)dt =
1

1 − ρ

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ −1

· (1 + t)b

−t + ρt + ρ
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2 ·
(
1 +

ρ

1 − ρ
x
)b

dx. (69)

Substituting (68), (69) and (42) into (67), we obtain

Wv1(s) = 1 − c(b)dv · sb−1L(1/s)(1 + o(1)), (70)

where

dv =
cα

1 − ρ

∫ 1

0

(1 − x)
1

1−ρ −1
[(

1 +
ρx

1 − ρ

)b

−
( ρx

1 − ρ

)b]
dx. (71)

4.2 Asymptotic Property for Wv2(s) as s ↓ 0

Recall (61). By the integration middle value theorem, there exists ξv(s) ∈ (0, 1)
such that

Wv2(s) = gv

(
s, hv(s)

)(
1 − π(e)(s)

)
, (72)

where hv(s) = ρ
1−ρ

[
π(e)(s) + ξv(s)(1 − π(e)(s))

]
. Further, by (7),

hv(s) =
ρ

1 − ρ

[
1 + O(1) · sb−1L(1/s)

]
. (73)

Next, we will prove that gv

(
s, hv(s)

)
= o(1). By (66), we have

gv

(
s, hv(s)

)

= ϕ(hv(s))ψ(hv(s))
[1 − ρ

ρ
− c(b)(1 − ρ)

·
(
cβH(hv(s)) + cαR1(hv(s)) − cβR2(hv(s))

)
sb−1L(1/s)(1 + o(1))

]
. (74)

Immediately, by (73), we know that −hv(s) + ρhv(s) + ρ = O(1) · sb−1L(1/s),
which together with (37) leads to

ϕ
(
hv(s)

)
ψ

(
hv(s)

)
= O(1) · s(b−1)( 1

1−ρ −1)
(
L(1/s)

) 1
1−ρ −1

. (75)
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Because lims→0 hv(s) = ρ/(1 − ρ), it follows from (64) and (65) that

R1(hv(s)) =
(1 + hv(s))b − (hv(s))b

ρ
= O(1), (76)

R2(hv(s)) =
(1 + hv(s))b

−hv(s) + ρhv(s) + ρ
= O(1) ·

( 1
sb−1L(1/s)

)
, (77)

H(hv(s)) =
∫ 1

0

(1/hv(s))(1 + hv(s)w)b

(−w + ρw + ρ/hv(s))2
dw = O(1). (78)

Further, by (75) and (77),

ϕ(hv(s))ψ(hv(s))R2(hv(s))sb−1L(1/s) = o(1). (79)

It follows from (74)–(76) and (78)–(79) that gv

(
s, hv(s)

)
= o(1), which, together

with (72) and (7), results in

Wv2(s) = o(1) · sb−1L(1/s). (80)

4.3 Tail Probability Asymptotics for Wv and W

By (60), (70) and (80)

Wv(s) = 1 − c(b)dv · sb−1L(1/s)(1 + o(1)). (81)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we obtain

P{W > t|vacation} = P{Wv > t} ∼ dv · t−b+1L(t) as t → ∞. (82)

where dv is given in (71).
Note that P{W > t} = ρP{Wb > t} + (1 − ρ)P{Wv > t}. By (57) and (82),

we have

P{W > t} ∼
(
ρdb + (1 − ρ)dv

)
· t−b+1L(t) as t → ∞. (83)

A special case: γ = 0.
This is the case when the vacation time Tα has a tail lighter than the service
time Tβ , in which cα = 0. Thus, by (83), (44) and (71),

P{W > t} ∼ ρ

1 − ρ
cβcW · t−b+1L(t) as t → ∞. (84)

where

cW =
( ρ

1 − ρ

)b
∫ 1

0

(
1 − x

) 1
1−ρ · xb−1dx

+
∫ 1

0

(
1 − x

) 1
1−ρ −1(

1 +
ρ

1 − ρ
x
)b

dx. (85)

Remark 2. In [5], Boxma et al. (2004) have shown that the asymptotic result
(84), along with (85) is true for the standard M/G/1/ROS queue (without
vacation). As one of side products in this paper, we have verified that such a
result is still valid even for the M/G/1/ROS queue with multiple vacations, as
long as the vacation time has a tail probability lighter than the service time.
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