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Jinhua Cao (a picture in the Xiangshan Park, Beijing, 2008)
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Preface

This book is dedicated to Jinhua Cao on the occasion of his 80th birthday. The title
“Stochastic Models in Reliability, Network Security and System Safety” reflects the
research interests and achievements of this outstanding scientist. Jinhua is an ordinary
Chinese scientist with a complete historical experience: from the victory in World
War II to the rapid economic growth of China; from the behindhand environment of
science and technology to their fast development in China. During such a critical
development period of China, Jinhua has been able to combine high-level innovation
ability in scientific work with remarkable successes and opportunities in high admin-
istrative and organizational positions. In the research field of reliability in China, he has
played a key role in not only theoretical research and engineering applications but also
in cultivating more and more students and engineering technicians, many of whom
have become outstanding talents and excellent leaders in a lot of enterprises and
industries related to reliability in China. In addition, we also need to emphasize that one
of Jinhua’s main contributions to China is that through offering many early classes and
courses of reliability, he cultivated a lot of reliability talents who successfully fulfilled
the urgent need of many practical areas in the process of China’s economic develop-
ment, such as machinery, electronics, aerospace, weaponry, and so forth. Therefore, the
high admiration that Jinhua enjoys in the scientific community in China and even all
over the world was witnessed by the enthusiastic response from the contributors of this
book.

Jinhua Cao was born in Shanghai in December 1939, and received his education in
the same city. Jinhua’s middle school was affiliated with the Shanghai Hujiang
University (i.e. a church university), whose name was changed to Shanghai Beijiao
Middle School one year after his enrolment. When studying at the junior middle
school, the first thing stimulating his interest in mathematics was the planar geometry
class taught by an excellent teacher, whose talent in the planar geometry inspired
Jinhua to look for extracurricular math books to read independently. Moreover, the
education at senior middle school further promoted Jinhua’s great interest in mathe-
matics. In 1957, Jinhua’s second year of senior middle school, he participated in the
Shanghai Mathematical Competition and won first prize as well as the Shanghai
Excellence Award, becoming the only winner from his school. Shortly thereafter,
Chinese mathematicians living in Shanghai, such as Buqing Su, Chaohao Guo, and
Daoxing Xia, made a series of mathematical reports for those winners (including
Jinhua) of the Shanghai Mathematical Competition. All of these strengthened Jinhua’s
excellent grades in mathematics so that he happily completed his studies at the senior
middle school. Of course, Jinhua’s early success and learning confidence immeasurably
made him believe that mathematics was his biggest interest and even the most ideal
career to pursue in his life.

Jinhua Cao entered the University of Science and Technology of China (Beijing)
with excellent scores and marks. He started his undergraduate studies in 1958 and



finished in 1963. This was his favorite university with many outstanding professors in
the field of mathematics from China, who had all undertaken the basic and professional
courses, for example, Loo-keng Hua, Yuan Wang, Minyi Yue, Zhexian Wan, Xiaqi
Ding, Zhongci Shi, Xiru Chen, Guozhi Xu, and so on. In the first half of 1963, Jinhua
luckily followed Minyi Yue, and began his research of queuing theory as his under-
graduate thesis. Based on this, Jinhua published his first paper (1963): “Some Problems
of M/G/1 Queueing System in Which the Probability That a Customer Joins in Queue
Depends on the Queue Size” – achieving an indelible memory.

After graduating with a much better understanding of queueing research, Jinhua
started his first job at the Institute of Mathematics, Chinese Academy of Sciences,
Beijing. Since then, his academic titles are listed as follows: 1963–1978, Research
Assistant; 1978–1981, Research Associate; 1981–1987, Associate Professor;
1987–present, Professor; and he has been retired happily since 2005. During his stable
career, it is worthwhile to mention that the Institute of Mathematics was changed to
Institute of Applied Mathematics from 1978 to 1999, and further to the Academy of
Mathematics and Systems Sciences in 1999.

Following his undergraduate thesis, Jinhua Cao joined the research team of Minyi
Yue as his first job at the end of 1963, and continued his research in queuing theory. In
the process of an initial research work, which got his entire career started, there were
two things that Jinhua remembers deeply. One is studying Markov chains with
stationary transition probabilities by Chung (1960), and the other is discussing frontier
directions of queuing theory. In fact, in the early 1960s, the international frontier of
queuing research included the embedding Markov chain, the supplementary variable
method, the random walk, the differential integral equation, and so forth. Although the
theoretical research and technological developments were simple by today’s standards,
they were the most advanced research topics in the field of international queuing theory
in the 1960s. The queueing research group (including Jinhua) at the Institute of
Mathematics, Chinese Academy of Sciences, completed high-quality research works
on queuing systems during that period.

Jinhua’s career as a researcher and teacher is outstanding. He is the author of eight
scientific books or book chapters as well as over 100 papers in various journals and
conference proceedings. He has supervised a number of MSc and PhD theses with
excellent marks. He has received nearly ten research awards from the Chinese
Academy of Sciences and the government of China. On the other hand, he also has a
rich background and experiences in international cooperation and exchange with peers
in many countries and districts, such as the USA, Canada, Japan, Europe, Taiwan
(China), Hong Kong (China), and so forth. In this book, an internationally famous
reliability expert (the president of the City University of Hong Kong), Way Kuo, wrote
a Chinese couplet dedicated to Jinhua’s 80th birthday celebrations, which was truly
inspiring and exciting, with a lot of appreciation for Jinhua’s valuable contributions.

One of the main contributions by Jinhua Cao is on how to set up some basic
relations between queueing theory and reliability. See “Analysis of M/G/1 Queueing
System with Repairable Service Station” by Cao and Cheng (1982) for more details,
which is always interesting but difficult in the study of stochastic models (or systems).
In fact, Jinhua’s early work quickly became very important and useful in much sub-
sequent research in emerging engineering fields, for example, manufacturing systems
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in the 1980s to 2000s (see the books: Stochastic Models of Manufacturing Systems by
Buzacott and Shanthikumar (1993), and Manufacturing Systems Engineering by
Gershwin (1994)); information and network security (see the books: Information
Security Management Handbook by Tipton and Nozaki (2007) and Computer Security:
Principles and Practice by Stallings et al. (2012)); and so forth. The research of
repairable queues by Cao and Cheng (1982) is so fundamental and significant that it
has promoted a long-term research boom of queueing theory as well as reliability
engineering in China. Also, some of their excellent papers were published in leading
journals that receive much attention. In addition, the extension and generalization of
repairable queues were further developed to either block structure or network
architecture.

Although the embedding Markov chain by Kendall (1953), together with the
semi-Markov process, the Markov renewal process, and the regeneration point process,
had obtained many theoretically critical advances in the 1960s to 1980s, it is still very
difficult and challenging to deal with complicated stochastic models in practice when
using these mathematical methods. Within such a field, Jinhua Cao completed more
works to discuss various reliability (repairable) models which provided better reference
examples for how to apply the Markov renewal process, the embedding Markov chain,
and the regeneration point process to deal with practical and real stochastic systems.
Based on this, the book Introduction to Reliability Mathematics by Cao and Cheng
(1986) provided a systematic summary for the reliability (repairable) models analyzed
by using the Markov renewal process, the embedding Markov chain, the regeneration
point process, and the supplementary variable method. In addition, the book also
conducted some analysis for other interesting topics of reliability theory, for instance,
life distribution classes, coherent systems, fault trees, maintenance policies, reliability
statistics, and so on. So far, Cao and Cheng (1986) have played an important role in
and generated a high impact on not only reliability courses of undergraduate seniors
and graduate students but also academic research and engineering applications in
China. To master the basic methods of stochastic modeling and analysis, the key is to
cultivate and develop the ability of students to solve various practical stochastic
problems by applying Markov processes, Markov renewal processes, Markov reward
processes, Markov decision processes, and stochastic game theory. Therefore, from the
perspective of cultivating students, during the last four decades, Jinhua’s research and
his book have played a key role in reliability education, academic research, and
engineering applications in China. Finally, we also mention that Jinhua’s book is the
most frequently cited one among many Chinese reliability books.

Over the last four decades (1963 to 2005), Jinhua’s research group carried out a
number of outstanding research works including life distribution classes, repairable
systems, repairable queueing systems, multi-server vacation queues, retrial queues,
production-inventory systems, computer integrated manufacturing systems, and the
matrix-analytic methods. Here, we refer to one of Jinhua’s theoretical works, which gives
a basic understanding of generalMarkov processes. Since the late 1970s,Marcel F. Neuts
proposed and developed two seminal works: The phase-type (PH) distribution and the
Markovian arrival process (MAP), see the book: Matrix-Geometric Solutions in
Stochastic Models: An Algorithmic Approach by Neuts (1981) for more details. Based on
these works, he further developed the matrix-geometric solutions in stochastic models,
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which is regarded as an important breakthrough of theoretical research in the field of
queuing theory. In light of this research direction, the paper “Two Types of
RG-factorizations of Quasi-birth-and-death Processes” by Li and Cao (2004) proposed
and developed two types of RG-factorizations in a general quasi-birth-and-death
(QBD) process. The RG-factorizations play an important role in the study of stochastic
models. First, the RG-factorizations construct a new theoretical system of Markov
processes by means of the Wiener-Hopf equations as well as the infinite-dimensional
Gaussian elimination, thus they are a unified common property of general Markov
processes. Second, by using the RG-factorizations, some difficult problems of Markov
processes have been solved recently, for example, quasi-stationary distribution, Poisson’s
equation, perturbed Markov chain, and so on. Third, the RG-factorizations extend and
generalize the matrix-geometric solution by Neuts (1981) to a new version such that the
stationary performance, the transient solution, the first passage time, and the sojourn time
can be discussed in a unified computational framework. In addition, theRG-factorizations
by Li and Cao (2004) were further discussed and practically applied by some famous
scholars. Crucially, by using various useful relations between the random walk and the
Markov chain, the paper “LU-factorization Versus Wiener-Hopf Factorization for
Markov Chains” by Vigon (2013) systematically proved that the two types of
RG-factorizations offer a complete factorization framework of generalMarkov processes.

Starting from 1978, China has been strengthening its economic construction and
development. In such an economic climate, reliability theory and engineering
applications become increasingly important. There is an especially high demand for
reliability in management departments of Chinese government and in many kinds of
enterprises and industries. Therefore, Jinhua held many courses of reliability theory and
engineering applications in China from 1981 to 2005, in which those learners came not
only from faculty and graduate students in Chinese universities and research institutes,
but also from reliability engineering technicians in enterprises as well as managers in
Chinese government departments. Later, many of these people became outstanding
talents and excellent leaders in a lot of enterprises and industries related to reliability in
China, so that they were able to meet China’s actual need and demand with respect to
reliability theory, technologies, and engineering applications. Until today, many major
scientific and engineering projects in China still insist on the one-vote veto system of
reliability assessment. From these levels and perspectives, Jinhua’s reliability work is a
long-term contribution to the economic development of China.

It is no wonder that Jinhua Cao is one of the most active and influential reliability
experts in China. It goes back to 1975 when Jinhua began to organize some reliability
seminars for Chinese scholars and students in Beijing. Based on such early, solid
preparation for both scholars and reliability architecture, in 1981 Jinhua pushed to set up
the Reliability Society of China, which belongs to the Operations Research Society of
China. Under Jinhua’s great patience and efforts, the first seven Chinese conferences of
reliability mathematics were held from 1982 to 2005 in mainland China: 1982 (Wuxi),
1985 (Shanghai), 1989 (Xi’an), 1992 (Guilin), 1995 (Chengde), 1998 (Taian), and 2005
(Beijing). After Jinhua retired in 2005, as an honorary president of the Reliability
Society of China, he continued to provide active enthusiastic guidance and help for the
subsequent three conferences: 2009 (Nanjing), 2013 (Changsha), and 2017 (Beijng). In
addition, from 1975 to 2005, Jinhua still established other interesting conferences, for
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example, Sino-Japanese reliability academic conference, Shanghai, September 13–16,
1987, in which Reliability Theory and Applications with 42 selected papers, edited by S.
Osaki and J. Cao, was published by World Scientific. Moreover, Jinhua’s academic
activities and organization efforts also include other research directions, such as software
reliability, risk management, network and information security, system maintenance and
safety, etc. Therefore, we cannot thank Jinhua enough for not only his selfless and
generous but also hard work of academic organization during such a long period. This
really drives the whole development of reliability theory, technologies, and applications
in China, and also builds a strong bridge of exchanges and cooperation among the
reliability organizations from China to other countries.

Since 2005, Jinhua has been living a very happily retired life with his family in
China and Canada. Jinhua’s son, Ye Cao, is excellent, with a happy family of three, the
most important one of whom is Jinhua’s lovely small granddaughter, who likes
physical exercise, loves science, has the best imagination, and so much more. Jinhua
loves his son’s family, but his son’s family loves him best. Because of this, Jinhua
travels between China and Canada, living a life surrounded by beauty, happiness, and
endless joy. In addition, Jinhua loves his country for trees, mountains, rivers, and blue
skies; and he also likes Beijing very much for imperial palaces, historic parks, and
grand and spacious city layouts. From here and from there, really and truly, Jinhua has
a very healthy body, and he always briskly walks in either beautiful Beijing streets or
interesting parks every day. Such a beautiful environment surely sustains his good
mood and healthy mindset which are very important for him at all times.

For this book, we received 31 submissions from mainland China, Hong Kong, Japan,
the UK, and the USA, most of which were invited from famous research groups related to
reliability, stochastic operations research, and artificial intelligence. All papers were
peer-reviewed and evaluated on the quality, originality, soundness, and significance
of their contributions by many high-level reviewers invited from different countries.
Finally, 25 papers were accepted as full papers appearing in this CCIS proceedings
published by Springer, 4 congratulatory messages within 2 pages were accepted as
congratulations on Jinhua’s 80th birthday, and an appendix lists Jinhua’s past
publications.We are very grateful to each author of this book and all the invited reviewers.
Our special thanks also go to professors Way Kuo, Xiaodong Hu, and Wei Li for their
great help and support in publishing this book. We thank the National Natural Science
Foundation of China, the Operations Research Society of China, and the Reliability
Society of China for their great support and encouragement.

Each of the three editors of this book has a warm and close friendship with Jinhua,
which developed throughout the past many years. In particular, Quan-Lin and Jinting
are grateful to him as their doctoral supervisor; while Haibo is also grateful for many
years of great friendship. We wish Jinhua continuing success, happiness, satisfaction,
and health in science, life, and travels in the years to come.

With the help of this book, all of us, new and old friends, warmly congratulate
Jinhua on his 80th birthday, and wish him a long and healthy life.

September 2019 Quan-Lin Li
Jinting Wang
Hai-Bo Yu
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A Sincere Congratulations on Jinhua Cao’s
80th Birthday

Way Kuo

President and University Distinguished Professor
City University of Hong Kong, Kowloon, Hong Kong

office.president@cityu.edu.hk

I am pleased to have known Professor Jinhua Cao for over 30 years. When I first visited
the Institute of Applied Mathematics, Chinese Academy of Sciences in 1988, Professor
Cao was the host of my visit. Since then, we met socially in various professional

Way Kuo offered congratulations in September 2019



meetings and international conferences. I was so impressed by Professor Cao’s
accomplishments and personality. He is renowned for his work in reliability theory,
stochastic operations research, and stochastic models of manufacturing systems. He has
always been an ardent supporter of high-quality engineering education and is a pioneer
of reliability mathematics in the mainland. I hold him in high esteem.

xiv W. Kuo



A Tribute to Professor Jinhua Cao
on His 80th Birthday

Wei Li

Department of Computer Science
Texas Southern University
Houston, TX 77004, USA

LiW@tsu.edu

Talented. Jolly. Determined. Just a few words that describe my wonderful professor,
Jinhua Cao, an emeritus fellow from the Chinese Academy of Science (CAS). As the
first PhD student under Professor Cao’s supervision, currently a Professor in the
Department of Computer Science and the Director of Center for Research on Complex
Networks supported by the National Science Foundation (NSF) at Texas Southern
University, I sincerely wish you a very happy 80th birthday, Professor Cao! May all
your wishes come true.

I could purchase almost anything I want with money, but the manners, morals, and
integrity you taught me, I cannot. Thank you, Sir, for teaching me how to be a good
human being. I still clearly remember the first time I visited you in your home in 1990 –
it was an important event in my life. This visit, augmented by everything I learned from
you later, completely changed my career. You have always fully supported me, from
pursuing my PhD degree under your co-supervision in 1991 to the excitement of
starting my employment in 1996 at the CAS, and even to assuming challenging
positions as a tenure-track and eventually tenured Professor and Administrator at
several research universities in the United States. The beautiful memories of interacting
with you for almost over 30 years are always joyous.

At this moment of celebrating your 80th birthday, I find myself deeply reflecting
the impact of the manners, morals, and integrity I learnt from you. I first witnessed your
serious and thoughtful manner of research whenever I joined your research group in
1991, although at that time I already knew that you had been recognized as a
well-known researcher who published numerous research papers in the reliability
theory and related subjects and also a highly cited book with the title of Introduction to
Reliability Mathematics. Your various corrections and modifications on my first
research paper in 1992, among the 15 published papers I accomplished under your
supervision for prestigious publications, were very impressive and made me realize
how much I could learn from you and how extensive and perceptive your knowledge
was. Participating in the 4th National Conference of Reliability Society of the
Operations Research Society of China (RS-ORSC) in Guilin in 1992 with you gave me
the opportunity to perceive your wisdom and acumen as the President of RS-ORSC.
These observations have had a significant impact on me in all my academic jobs both in
China and in the United States. Thank you, Professor Cao, for inspiring me not only to
read professional journals but also to look beyond classroom walls and reach heights
that were beyond my expectations. Your guidance during my co-organization for the



First Youth Reliability Conference of the RS-ORSC in Qinhuangdao in 1994 taught me
the first lesson of your moral and ethical standards in dealing with various partnerships,
which was the key to making the conference a great success. Your exemplary daily
working style in professional research has been the consummate model for my humble
efforts. Your amiable countenance in dealing with various societies, no matter how
difficult or contentious they were, has influenced me to respond in a similar manner.
Your example has taught me, as well as your other PhD Students and Postdoctoral
Fellows I know, such as Bin Liu, Dequan Yue, Quan-Lin Li, Jinting Wang, and
Chenghong Wang, et al., how to maintain thoughtful manners, good morals, and high
integrity throughout our entire careers.

You opened my mind to a thousand new things. Thank you for being a terrific
professor and giving me wings. Have a wonderful 80th birthday, Prof. Jinhua Cao!

xvi W. Li



Dedicated to Prof. Jinhua Cao’s 80th Birthday

Xiaodong Hu

Institute of Applied Mathematics
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
Beijing 100190, China

I was a graduate student at the Operations Research Department (ORD) of Institute of
Applied Mathematics (IAM), Chinese Academy of Sciences (CAS), during
1985–1989, where I came to know and got acquainted with Professor Jinhua Cao.
I joined IAM after I received my PhD in 1989. Prof. Cao was the director of ORD
during 1987–1997. As one of the graduate students and young researchers at ORD, I
learned quite a lot from Prof. Cao. Time flies, 30 years have passed since I graduated
and joined IAM. On the occasion of celebrating Prof. Cao’s 80th birthday, I’m very
pleased to write an essay about Prof. Cao.

Prof. Cao graduated from the University of Science and Technology of China
(Beijing) in 1963. Because of his excellent performance at the university, he was
recommended to the Institute of Mathematics of CAS as an Intern Research Fellow
after his graduation. He joined the Operations Research Group in the institute and
began his academic career under the supervision of Prof. Minyi Yue, who was the
leader of the group and now is considered one of the pioneers of operations research in
China. With the strong promotion from the world-famous mathematician
Prof. Loo-keng Hua, CAS established the Institute of Applied Mathematics (IAM) in
1979 and appointed Prof. Hua as the founding director of IAM. As Prof. Cao worked
on reliability and queueing theory, he was assigned to the new institute, together with
some colleagues including Prof. Yue. Since then, Prof. Cao has always been working in
ORD of IAM until he retired in 2005.

In nearly 50 years of his academic career, Prof. Cao’s work covers many key topics
of operations research. In particular, he has made great contributions to reliability,
queuing theory, stochastic operations research, and stochastic optimization. He has
published more than 100 research articles, some of them have had a great impact
worldwide. In addition, he has supervised a lot of graduate students including Ph.D.
students, Master student as well as Postdoctoral fellows during his whole academic life
at IAM, some of them have become famous scholars not only in China but also in the
world. As one of the major contributors, Prof. Cao received the National Science
Congress Award of China in 1978.

Furthermore, I would like to mention a few words on Prof. Cao’s contribution to
the development of Operations Research Society of China (ORSC), which was founded
in 1980. In 1981 ORSC established the Reliability Society, which is the earliest
established one among all 15 Societies of ORSC. Prof. Cao played an important rule in
the creation of this Reliability Society and then paid great attention to its development
and innovation until his retirement in 2005. As the executive manager and also once the



President of Reliability Society of ORSC since 1981, it is no doubt that Prof. Cao will
be recognized forever as a key founder in the history of the Reliability Society of
ORSC.

At the end, as the president of ORSC, I would like to express my sincere thanks to
Prof. Cao’s contributions to the operations research development in China, and I
personally feel very grateful to his invaluable support towards myself in the past 30
years.

xviii X. Hu



Foreword in Honor of Professor Jinhua Cao’s Birthday

Jinting Wang
School of Management Science and Engineering
Central University of Finance and Economics

Beijing 100081, China
jtwang@cufe.edu.cn

While celebrating Professor Jinhua Cao’s 80th birthday, as President and on behalf
of the Reliability Society of the Operations Research Society of China (RS-ORSC), I
would like to express our hearty gratitude to him for his lifetime contribution to the
exploration and development of Reliability Theory research in China and particularly
to the creation and advancement of the RS-ORSC.

Professor Cao devoted himself entirely to the education, training, and research of
various nationwide reliability theory activities when he was first employed as a
research assistant in the Chinese Academy of Science (CAS) in 1963. Having
continued on the first reliability mathematics workshop, which was organized by him in
Beijing in 1980, Professor Cao organized over 30 different training classes on
reliability theory in various universities, research departments, and enterprises, among
others, to cultivate graduate students and young teachers in his subsequent 25-year
academic career in the CAS. His contribution through the lectures and research
examples has established a solid foundation in the research of reliability theory for all
attendees. Several hundred academic researchers and engineering technicians benefited
greatly from him, most of whom later on became outstanding professors and excellent
leaders in the reliability area of China. In addition to his more than 100 prestigious
research publications, it is worth noting that the book “Introduction to Reliability
Mathematics,” authored by Jinhua Cao and Kan Cheng in 1986, has played a principal
part in the history of reliability theory research in China. As of today, this book has
been cited over 2,000 times, according to CNKI citation, by scholars from all over the
world. Now, it has become the first book for beginners in the reliability theory area to
read because it condensed many years of the authors’ experience and wisdom. From
my observations over the last 20 years, it is clear that several generations of graduate
students and young teachers in both operations research and applied statistics have
learned their reliability theory from this book. Without a doubt, it will continue to be
used and to be highly cited in the literature. Nowadays, many reliability talents working
in diverse areas such as machinery, electronics, aerospace, and so forth, are influenced
by Professor Cao’s research through this book. And truthfully, as one of three editors of
this book, when I edited the collection of essays in honor of Professor Cao’s 80th
birthday, I witnessed and felt in my heart the enthusiastic responses and respects from
contributors around the world who benefited from Professor Cao’s book and
knowledge.



In addition to his devotion to Chinese reliability theory education and research,
Prof. Cao’s life was also dedicated to the initiation and the innovation of Reliability
Society of the Operations Research Society of China (ORSC) and his tremendous effort
finally resulted in the official establishment of RS-ORSC in 1981. Prof. Cao was an
active executive, as well as President, of RS-ORSC for 25 years, from 1981 to 2005.
He planned and designed each of the RS-ORSC annual meetings together with other
senior leaders; attended with guidance each of national meetings within RS-ORSC,
including the first National Youth Reliability Conference in 1994; and originated
almost every one of the subcommittees within RS-ORSC. With his leadership, the
RS-ORSC established a clear vision and mission for the promotion and innovation of
Reliability Theory research in China. Over the last about 40 years under the proposed
direction, the RS-ORSC has grown rapidly and has been widely recognized as the
premier established reliability society in the nation and beyond, with a large number of
registered members who are working in diverse research directions of the reliability
field. As of now, the RS-ORSC has organized over 50 national academic conferences
and organized/sponsored over 20 international academic events since 1981. I cannot
omit mentioning the first RS-ORSC international conference – the Sino-Japan joint
conference in 1987 – organized with Professor Cao’s key leadership. This conference
was a tremendous success and had a far-reaching impact internationally. As Professor
Cao directed, the RS-ORSC will continuously strive to achieve its long-term goal, that
is, to unite the vast number of reliability researchers, to create a relaxed, harmonious
and united academic atmosphere, and to contribute to the development of China’s
society and economy. Professor Cao served once as our former President and has been
serving as an Honorary President of the RS-ORSC since he started enjoying his
retirement life in 2005, and he will continue to play an active role in the promotion and
development of reliability theory research in China. We do believe, that if we continue
to advance with the innovation guidance established by Prof. Cao and all other former
senior leaders, the RS-ORSC will certainly be moving at a vigorous pace towards the
international scientific and technological arena.

Other students are probably jealous of those who are fortunate to have Professor Cao
as a supervisor. As I know, many of his students have achieved great success later in
various positions, e.g., as the president of a professional society, as an established
professor in the nation and overseas, or as a successful manager in the business world,
etc. Personally, the commemoration of his 80th birthday has a dual significance for me,
not only because I acquired a rich knowledge of reliability theory from him but also
because I eventually chose reliability research as my academic career. All due to his
impact on me. Finally, I would like to point out that Professor Cao’s example in
research and education has influenced me very much during the past 20 years and
particularly has taught me how to maintain integrity and honesty during my whole
career. Thank you very much, Professor Cao! Wishing you a long and healthy life!

xx J. Wang
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Consecutive k and Related Models—A Survey

Lirong Cui1(&) and Qinglai Dong1,2

1 School of Management and Economics, Beijing Institute of Technology,
Beijing, China
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2 School of Mathematics and Computer Science, Yan’an University,
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Abstract. As one of the most popular reliability models, the previous several
decades have witnessed remarkable developments and extensive applications of
consecutive k systems, and a number of related models have been developed. In
the paper, a summary of the state of the arts in the field is provided. After a brief
introduction of conventional consecutive k systems, we focus on variants of the
consecutive k systems by considering failure criteria (single failure criterion and
multiple failure criteria), geometric structure of the system, states of components
and the system, weight of each component, dependency of components. Finally,
several future challenges deserving further studies are highlighted.

Keywords: Consecutive k-out-of-n systems � System reliability � Component
importance � System signature

1 Introduction

Consecutive k systems were first introduced by Kontoleon (1978), and the name
consecutive k-out-of-n: F system was first coined by Chiang and Niu (1981). In
practice, consecutive k systems can be used to model the spatial distributed systems,
such as the telecommunication systems, oil pipeline systems, photography of a nuclear
accelerator, vacuum systems in an electron accelerator, computer ring networks,
supervision systems, pattern detection systems, rows of street lights, and so on (Chang
et al. 2000). Based on the geometric structure of the system, there are two basic models
for consecutive k systems, i.e., the linear consecutive k-out-of-n: F systems and the
circular consecutive k-out-of-n: F systems, whose closed reliability formulae were
given by Lambiris and Papastavridis (1985). The linear (or circular) consecutive k-out-
of-n: F system consists of n components ordered in a line (or a circle), and the system
fails if and only if there exist at least consecutive k failed components. For the circular
consecutive k-out-of-n: F system, it is assumed that the first component is adjacent to
(and follows) the nth component in the system (Derman et al. 1982). If the condition
for continuous arrangement of n failed components is weakened, i.e., the system fails if
there are at least k failed components, it will become the k-out-of-n: F system. When
k = 1, the k-out-of-n: F system and the consecutive k-out-of-n: F system reduce to the
series system, and when k = n, the k-out-of-n: F system and the consecutive k-out-of-n:
F system reduce to the parallel system. Comparing with series systems (the reliability is
low) and parallel systems (the reliability is high but they tend to be very expensive),
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consecutive k systems have two main advantages: much higher reliability than series
systems and less expensive than parallel systems (Chao et al. 1995). Based on the
description of the system from the perspective of working or failed, consecutive k-out-
of-n: F systems and consecutive k-out-of-n: G systems are two basic models of con-
secutive k systems. The linear (or circular) consecutive k-out-of-n: G system is defined
as a system that consists of n components ordered in a line (or a circle), and the system
works if and only if there exist at least consecutive k working components. From the
definition of a dual structure (Barlow and Proschan 1965), the consecutive k-out-of-n: F
system and the consecutive k-out-of-n: G system are dual systems, and duality also
holds between series and parallel systems, k-out-of-n: F and k-out-of-n: G systems
(Kuo et al. 1990; Cui et al. 2006).

Due to the motivation of theory development and practical application in reliability
field, consecutive k systems have caught the attention of many engineers and
researchers and have been widely studied. So far, there is a concise monograph written
by Chang et al. (2000). Extensive reviews can be found in Ge (1993), Chao et al.
(1995), Kuo and Zuo (2003), Eryilmaz (2010), Daus and Beiu (2014), Sen et al. (2015).
To facilitate the research on reliability, this paper devotes to the review of consecutive
k and related models. In the following, a number of references will be mentioned, but
not all published research on consecutive k and related systems will be covered. We
apologize that some interesting articles might be omitted from this short survey.

At present, in order to accommodate more flexible operation principles, a lot of
modifications or generalizations of the consecutive k-out-of-n: F (G) system have been
proposed in the following directions: failure criteria (single failure criterion and mul-
tiple failure criteria), geometric structure of the system, states of components and the
system, weight of each component, dependency of components, and so on. The tax-
onomy of consecutive k and related models is shown in Fig. 1.

2 Extended Systems Based on the Failure Criteria

The system failure criteria may be single or multiple; therefore, there are two classes of
extended systems based on the failure criteria.

(1) Extended systems based on the single failure criterion. In the case of single failure
criterion, there are three basic models of consecutive k systems: consecutive k-out-
of-n: F (G) systems, m-consecutive-k-out-of-n: F (G) systems and consecutive k-
within-m-out-of-n: F (G) systems, where the latter two systems are also called
window systems, which were first introduced by Griffith (1986). In the literature,
there are some alternative names, such as consecutive k-out-of-m-from-n: F
(G) and k-within-consecutive m-out-of-n: F (G) which were all used for the
consecutive k-within-m-out-of-n: F (G) system. The m-consecutive-k-out-of-n: F
(G) system fails (or works) if and only if there exist at least m non-overlapping
runs of consecutive k failed (or working) components, and if m = 1, it reduces to
the consecutive k-out-of-n: F (G) system. Agarwal et al. (2007b) extended the
Griffith’s model to the m-consecutive-atleast-k-out-of-n: F system. The consecu-
tive k-within-m-out-of-n: F (G) system fails (or works) if there exists a window
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consisting of m non-overlapping consecutive components in which at least
k components fail (or work). If k = m, it reduces to the consecutive k-out-of-n: F
(G) system, and if k = n, it reduces to the k-out-of-n: F (G) system. In fact, except
of non-overlapping, there exists another way to count the runs: overlapping. M-
consecutive-k-out-of n: F system with overlapping runs was proposed and studied
by Agarwal and Mohan (2008), in which “the system fails if and only if there exist
at least m overlapping runs of k consecutive failures”. Considering that the system
fails if and only if at least m times l-overlapping runs of consecutive failed
(working) components, Eryilmaz and Mahmoud (2012) proposed the linear m-
consecutive-k, l-out-of-n system and gave the number of path sets, reliability and
signature by using of a combinatorial method. Cui et al. (2015) gave the reliability
formulae for the linear and circular m-consecutive-k, l-out-of-n systems by use of
the finite Markov chain imbedding approach (FMCIA), which was invented by Fu
and Koutras (1994), and a survey paper on the developments and applications of
FMCIA in reliability was given by Cui et al. (2010). In order to gain more
information on both ways to count the runs, we can refer the reader to Levitin
(2005), Zhao et al. (2007), Levitin and Dai (2011), Gera (2011), Eryilmaz (2012),
Eryilmaz and Bayramoglu (2012), Zhu et al. (2017), and so on.

Basic models of consecutive k systems
consecutive k-out-of-n: F (G) system (Kontoleon, 1978; Chiang & Niu ,1981)

consecutive k-within-m-out-of-n: F (G) system (Griffith, 1986)
m-consecutive-k-out-of-n: F (G) system (Griffith, 1986)

Single failure 
criterion

Multiple 
states

Weight

Geometric 
structures

Dependency

m-consecutive-at least-k-out-of-n system
(Agarwal et al., 2007b,  etc.);
m-consecutive-k-out-of n: F system with 
overlapping runs (Agarwal & Mohan, 2008, 
Eryilmaz, 2012; etc.);
m-consecutive-k, l-out-of-n system (Eryilmaz &
Mahmoud, 2012; Cui et al., 2015,  etc.);
consecutive-k system with sparse d (Zhao et al., 
2007;  Mohan et al., 2009b; Shen et al., 2015,  Zhu 
et al., 2018, etc.);
r-gap-consecutive k-out-of-m-from-n system 
(Levitin, 2011; Xiao et al., 2014,  etc.)

(n, f, k) system (Tung, 1982; Chang et al., 1999,  
etc.);
<n, f, k> system (Cui et al., 2006; Kamalja, 2014, 

etc.);
(n, f, k(i, j) ),  <n, f, k(i, j) > system (Guo et al.,
2006, etc.);
combined consecutive system (Zuo et al., 2010;

Mohan et al., 2009a; Boushaba & Benyahia, 2018,
etc.)

Multiple 
failure criteria

components have multiple states, but the system 
has  two possible states (Hwang & Yao, 1989; Zuo 
& Liang, 1994; Kossow & Preuss, 1995; Levitin,
2001, etc.);
both the system and components have more than 
two possible states (Koutras, 1997, Huang et al.,
2003;Habib et al., 2007;  Zhao & Cui, 2010;
Radwan et al., 2011; Yi et al., 2019, etc.);
multi-state sliding window system (Levitin, 2003;
Levitin & Ben-Haim, 2011; Levitin et al., 2015;
Xiao et al., 2016; Wang et al. 2016; Lu et al., 2019,
etc.)

2-dimensional consecutive k system (Salvia &
Lasher, 1990;Zuo (1993), Godbole et al. (1998),
Yamamoto & Akiba, 2003, 2005; Hsieh & Chen,
2004; Habib et al., 2010; Zhao et al., 2011a ; Chang 
& Huang, 2010, etc.);
d -dimensional consecutive k system
(Boushaba & Azouz, 2011; Kulkarni & Kashikar, 
2014; Cowell, 2015, etc.);
consecutive k-out-of-n: F system on directed trees
(Aki, 1999);
consecutive-kr-out-of-nr: F system with linear 
zigzag structure and circular polygon structure
(Lin et al., 2016)

weighted-consecutive-k-out-of-n system (Wu & 
Chen, 1994b; Chang et al., 1998;
Chadjiconstantinidis & Koutras, 1999; Eryilmaz &
Tutuncu, 2009; Kamalja & Amrutkar, 2014, etc.);
weighted-m-consecutive-k-out-of-n system
(Kamalja & Amrutkar, 2014);
weighted-r-within consecutive-k-out-of-n: F
system (Kamalja & Amrutkar, 2018);
weighted  (n, f, k) and <n, f, k> systems  (Eryilmaz 
& Aksoy, 2010; Zhu & Boushaba, 2017; Amrutkar 
& Kamalja, 2017; Nashwan, 2017, etc.)

Markov dependency (Papastavridis &
Lambiris,1987; Ge & Wang, 1990; Lam & Ng,
2001; Agarwal et al., 2007b; Xiao & Li, 2008; Zhu 
et al., 2015, 2016, 2017, 2018; Zhu & Boushaba, 
2017; Boushaba & Benyahia, 2018, etc.);
Block-k dependency (Agarwal et al., 2007a) ;
s-dependency (Gera, 2000; Eryilmaz, 2007, 2009; 
Salehi, 2016);
exchangeable-dependency (Shanthikumar, 1985;
Eryilmaz et al., 2011;  Eryilmaz, 2013;  Mahmoud 
& Eryilmaz, 2014, etc.)

Fig. 1. The taxonomy of consecutive k and related models
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The research contents of three basic models of consecutive k systems involve
reliability analysis (e.g., Bollinger 1982; Sfakianakis et al. 1992), importance analysis
(e.g., Chang et al. 2002; Kamalja 2012, 2014; Eryilmaz 2013a; Shen et al. 2015; Zhu
et al. 2017, 2018); signature (e.g., Eryilmaz et al. 2011; Triantafyllou and Koutras
2011; Kulkarni and Kashikar 2014), the bounds for the system reliability (e.g., Cai
1994; Daus and Beiu 2014), algorithms to evaluate the system reliability (e.g.,
Papastavridis and Sfakianakis 1991; Psillakis 1995), stochastic orderings (e.g., Boland
and Samaniego 2004; Eryilmaz 2011; Salehi et al. 2012; Salehi 2016), optimal
arrangement of components (e.g., Malon 1985; Sfakianakis 1993; Cui and Hawkes
2008; Shingyochi et al. 2010, 2015, 2016), repairable consecutive k systems (e.g.,
Papastavridis and Koutras 1992; Zhang and Lam 1998; Lam and Ng 2001; Xiao and Li
2008; Tang and Hou 2012; Lam and Zhang 2015), and so on.

Based on three basic models, many other extended models have also been pro-
posed. Considering the concept of sparse d (i.e., “if the number of working components
between two failed components is less than d, the two failed components can be viewed
as consecutive”), Zhao et al. (2007) proposed the consecutive k systems with sparse
d and gave formulae for the system reliability. Mohan et al. (2009b) applied the
Graphical Evaluation and Review Technique (GERT) in the same systems and studied
the system reliability. When d = 0, the consecutive-k systems with sparse d will reduce
to the ordinary consecutive k systems. Shen et al. (2015) and Shen and Cui (2015)
studied the Birnbaum importance of linear and circular consecutive-k-out-of-n systems
with sparse d, respectively. Zhu et al. (2018) considered an m-consecutive-k-out-of-n: F
(G) system with sparse d of nonhomogeneous Markov-dependent components and
gave closed-form formulae for system reliability and importance.

The above literature is focused on one group of m consecutive components, a
natural extension is to consider the problem of several groups of m consecutive
components. Considering the gap between any pair of groups of m consecutive com-
ponents, Levitin (2011) proposed the linear r-gap-consecutive k-out-of-m-from-n: F
systems and presented the bounds and approximations for the survival function. A re-
liability evaluation algorithm for a linear r-gap-consecutive k-out-of-m-from-n: F
system with different components was proposed by Xiao et al. (2014), in which it is
assumed that the elements are subjected to the common cause failures.

(2) Extended systems based on multiple failure criteria. Multiple failure criteria are
common for complex systems, especially for consecutive k systems (Levitin 2004;
Cui et al. 2006). Tung (1982) introduced (n, f, k) system, which consists of
n components ordered in a line and fails if and only if there exist at least f failed
components or at least k consecutive failed components. Chang et al. (1999)
extended it to the case that n components are ordered in a circle. Cui et al. (2006)
proposed its dual system: <n, f, k> system, i.e., double failure criteria are modi-
fied from the relation of “or” to the relation of “and”. Kamalja (2014) developed
the formula for evaluation of exact Birnbaum reliability importance of these two
systems. Guo et al. (2006) proposed the (n, f, k (i, j)) system and <n, f, k (i, j)
> system, i.e., “the system fails if and only if there exist at least f failed com-
ponents or (and) at least k consecutive failed components among components i,
i + 1, …, j, which is suitable for the analysis of a system involving components
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requiring special attention”. In fact, (n, f, k), <n, f, k>, (n, f, k (i, j)) and <n, f, k (i,
j)> systems can be viewed as the combination of failure criteria of k-out-of-
n system and consecutive-k-out-of-n system. Based on combined failure criteria of
consecutive k systems, Zuo et al. (2000) introduced three combined consecutive
systems including combined k-out-of-n: F & consecutive-k-out-of-n: F, combined
k-out-of-mn: F & linear connected-(r, s)-out-of-(m, n): F system, combined k-out-
of-mn: F, consecutive-kc-out-of-n: F & linear (r, s)-out-of-(m, n): F system.
Considering two failures criteria, i.e., if and only if there exist at least non-
overlapping runs of k consecutive failed components, or at least kb consecutive
failed components, where kc < mk, Mohan et al. (2009a) developed a combined-
consecutive-k-out-of-n: F & consecutive-kb-out-of-n: F system. Boushaba and
Benyahia (2018) proposed a combined m-consecutive-k-out-of-n: F & consecu-
tive-kb-out-of-n: F systems.

3 Multi-state Consecutive k Systems

In practice, a system may operate in degraded states, i.e., there may exist many
intermediate states between full working state and failed state (Zhao and Cui 2010).
Therefore, it is much more flexible to consider the multi-state consecutive k systems.
Hwang and Yao (1989) proposed the first multi-state generalization of the consecutive
k-out-of-n system. Thereafter, Zuo and Liang (1994) and Kossow and Preuss (1995)
studied the algorithms of the system reliability. For these systems, their components
have more than two possible states, but the system has only two possible states.
Koutras (1997) proposed a three-state consecutive-k-out-of-n: F system, in which the
system and each component have one working state and two different failure states. For
more general multi-state systems, there are more than two possible states for both the
system and components. Huang et al. (2003) generalized the consecutive k-out-n: F
system to the multi-state case and gave the exact reliability of decreasing multi-state
system and bounds of increasing multi-state system, in which the system state is below
j if at least kl consecutive components are in states below l for all j � l � M. Simi-
larly, Radwan et al. (2011) generalized the consecutive k-out-of-r-from-n: F system to
multi-state case and gave bounds of increasing multi-state system. Assuming that if at
least kj components out of r consecutive components are in state j or above the system
is in state j or above, Habib et al. (2007) proposed a multistate consecutive k-out-of-r-
from-n: G system.

Another generalization of the linear consecutive k-out-of-r-from-n: G system was
provided by Levitin (2003) in which the system is named as “linear multi-state sliding
window system”, which fails “if the sum of the performance rates of any r consecutive
multi-state elements is lower than a minimum allowable level”. The linear multi-state
sliding window system was generalized to the multi-state sliding window system with
m consecutive overlapping windows by Levitin and Ben-Haim (2011). Xiao et al.
(2016) proposed the multi-state k-within-m-from-r/n sliding window system, which
fails “if at least k groups out of m consecutive groups of r consecutive multi-state
elements have cumulative performance lower than the demand W”, and the system
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covers the models of Levitin (2003), Levitin and Dai (2011), Levitin and Ben-Haim
(2011) as special cases. Lu et al. (2019) considered a sliding window system with two
failure modes: “the total number of failed groups of r consecutive elements reaches k or
the gap between any two adjacent failed groups of r consecutive elements is less than
m working groups” and analyzed the reliability, importance and the optimal component
allocation. In practice, the sliding window system can also be regarded as an effective
tool to describe the consecutive connected systems with multi-phase missions, for
example, see Levitin et al. (2015), Wang et al. (2016).

In order to obtain the system reliability evaluation of the multi-state systems,
several methods were also investigated in the literature. The universal z-transform
technique is adopted by Levitin (2003), Levitin and Dai (2011), Levitin and Ben-Haim
(2011), and so on. Huang et al. (2003) used a minimal path vector method to obtain the
state distributions or state distribution bounds. However, the methods used in the above
papers can only be applied for monotonic multistate consecutive-k-out-of-n: F
(G) systems. Combinational analysis method was used by Belaloui and Ksir (2007) to
compute the reliability of monotonic multistate consecutive-k-out-of-n: G systems.
Yamamoto et al. (2006) provided an algorithm for state distributions of general mul-
tistate consecutive k-out-of-n: G systems. By using the FMCIA, Zhao and Cui (2010)
presented a unified formula for evaluating the system state distribution for generalized
multi-state k-out-of-n: F systems which cover many multi-state systems. Zhao et al.
(2012) obtained a unified formula for evaluating the system state distribution of two
kinds of multistate consecutive-k systems including multi-state consecutive-k-out-of-n:
G systems and multi-state consecutive-k-out-of-r-from-n systems. Yi et al. (2019) gave
the reliability formulae of four multistate consecutive-k systems including a multistate
linear m-consecutive-k-out-of-n: G system, a multistate linear consecutive-k-out-of-n:
G system with sparse d, a multistate linear m-consecutive-k-out-of-n: G system with
sparse d, and a multistate linear <n, f, k>: G system.

4 Consecutive k Systems Based on the Geometric Structure
of Systems

A line and a circle are the most widely studied geometric structures of consecutive
k systems (Preuss and Boehme 1994). However, Aki (1999) pointed out it is much
more practical to assume that the components of a system are not necessarily allocated
in a line or a circle. A natural generalization is the topology of a system being extended
to a plane or space, i.e., the consecutive k systems can be extended to multi-
dimensional cases (Yamamoto and Akiba 2003). Salvia and Lasher (1990) first pro-
posed a two-dimensional consecutive-k-out-of-n: F system which is denoted as k2/n2: F
system. The k2/n2: F system is a square grid of side n (containing n2 components),
which fails if and only if there is at least one square of side k (2 � k � n-1) that
contains all failed components. Boehme et al. (1992) extended the above model to the
general connected-X-out-of-(m, n): F lattice system, in which X is the figure consisting
of the failed components, such as the connected-(r, s)-out-of-(m, n): F system, which
fails “whenever there exists a grid of r rows and s columns that consists of all failed
components”. Since then, many authors have devoted to the studies of these systems,
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for example, see Zuo (1993), Godbole et al. (1998), Yamamoto and Akiba (2005),
Habib et al. (2010), Zhao et al. (2011a). By using artificial perfect components, Hsieh
and Chen (2004) converted the two-dimensional consecutive-k-out-of-n: F system into
a general one-dimensional consecutive-k-out-of-n: F system. Yamamoto and Akiba
(2005) proposed a two-dimensional k-within consecutive-r � s-out-of-m � n: F sys-
tem and gave upper and lower bounds of system reliability, and Chang and Huang
(2010) provided an evaluation method of the reliability by use of FMCIA. A two-
dimensional linear connected-k system was proposed by Zhao et al. (2011b), in which
the system and components have three states: full working, degrading working, and
failure. Boushaba and Azouz (2011) considered a 3-dimensional consecutive k-out-of-
n: F system and gave the lower bound of the reliability. Akiba et al. (2005) introduced
the consecutive-(r1, r2, r3)-out-of-(n1, n2, n3): F system, which fails “only when failed
components in the system form a cuboid of size (r1, r2, r3)” and can be viewed as a
generalization of the two-dimensional consecutive-(r, s)-out-of-(m, n): F system.
Combining the 3-dimensional consecutive-(s, s, s)-out-of-(s, s, m): F system and 2 s3-
out-of-ms2: F system, Kulkarni and Kashikar (2014) introduced a conditional 3-
dimensional consecutive (s, s, s)-out-of-(s, s, m): F system and obtained the expressions
of the signature and reliability. Cowell (2015) provided a novel formula for the reli-
ability of a general d-dimensional consecutive-k-out-of-n: F system, as an exact
polynomial in q.

Except of the above extensions, Aki (1999) proposed a consecutive k-out-of-n: F
system on directed trees. It is assumed that n components are placed at the vertices one
by one, and the system fails if and only if there exist at least consecutive k failed
components along the direction. Aki’s model includes linear consecutive k systems as
special cases, because “the tree will reduces to a line system if there is only one child
for every vertex of the tree except for a leaf”. Considering the components’ spatial
distribution, Lin et al. (2016) introduced and studied the consecutive-kr-out-of-nr: F
system with linear zigzag structure and circular polygon structure. The consecutive-kr-
out-of-nr: F system with linear zigzag structure is composed of m lines, in which two
adjacent lines overlap with one shared node, and each line is regarded as a consecutive-
kr-out-of-nr: F subsystem (r = 1, 2, …, m). If and only if all m lines are reliable, the
system is reliable. Moreover, if the m lines form a circle, it is called the consecutive-kr-
out-of-nr: F system with circular polygon structure. Obviously, if r = 1, it reduces to
the linear (or circular) consecutive k-out-of-n: F system.

5 Weighted Consecutive k Systems

In practice, it is common that the components have different weights and reliabilities
(Eryilmaz and Sarikaya 2014), i.e., the components are not always identical. Consid-
ering unequal weights for the components, Wu and Chen (1994a) introduced the
weighted k-out-of-n: F (G) system which has n components, each with its own positive
integer weight and “the system fails (or works) if and only if the total weight of failed
(or working) components is at least k”. Since then, the weighted k-out-of-n system has
been discussed by many authors, for example, Chen and Yang (2005), Li and Zuo
(2008), Ding et al. (2010), Faghih-Roohi et al. (2014), Zhuang et al. (2018), and so on.
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In the above research, the weight of each component is assumed to be positive integer.
Li et al. (2016) considered a more general weighted k-out-of-n system, in which the
weight of each component can take any positive value. Eryilmaz (2013b) proposed a k-
out-of-n systems with components having random weights and gave a recursive for-
mula to compute the system state probabilities, and Meshkat and Mahmoudi (2017)
gave the joint importance of two components.

A consecutive-weighted-k-out-of-n system was proposed by Wu and Chen (1994b),
in which the evaluation algorithms of reliability were given. Chang et al. (1998)
provided a fast reliability-algorithm, and Chadjiconstantinidis and Koutras (1999) gave
recursive reliability-formula by use of FMCIA. When each component has weight 1,
the usual k-out-of-n: system and the consecutive-k-out-of-n system are special case of
the weighted consecutive k systems. Eryilmaz and Tutuncu (2009) provided the exact
formulae for the system reliability of linear systems with independent and non-identical
components and the approximate formulae in the case that the components are non-
homogeneous Markov dependent. Kamalja and Amrutkar (2014) developed a formula
for the evaluation of reliability and importance measures of the weighted-consecutive-
k-out-of-n and weighted-m-consecutive-k-out-of-n systems. A r-within consecutive-k-
out-of-n: F system with weighted components was proposed by Kamalja and Amrutkar
(2018), in which a binomial-type weighted scan statistic was introduced to study the
system reliability and importance. The linear weighted (n, f, k) system was introduced
by Eryilmaz and Aksoy (2010), and the recursive formula of the system reliability was
obtained, where the system fails if and only if the total weight of failed components is
at least f, or the total weight of failed consecutive components is at least k. Amrutkar
and Kamalja (2017) studied the system reliability and importance measures of linear
weighted (n, f, k) and <n, f, k> systems. Nashwan (2017) provided the reliability and
the failure functions of linear and circular weighted (n, f, k) and <n, f, k> systems. Zhu
and Boushaba (2017) extended the results of the weighted consecutive-k-out-of-n sys-
tems and the weighted k-out-of-n systems to the case of a linear weighted (n, f,
k) system with non-homogeneous Markov-dependent components.

6 Consecutive k Systems Based on Dependency

In most of the above literature, it is assumed that consecutive k systems consist of
independent components. However, in reality it is inevitable for components to be
dependent with each other because they are influenced by common production and
operating environment. Considering the Markov dependency, Papastavridis and
Lambiris (1987) assumed that the probability of failure of a component depends on the
preceding one and proposed the system reliability of a consecutive k-out-of-n: F system
by use of a recurrence relation. Fu and Hu (1987) developed a consecutive k-out-of-n: F
system with (k-1)-step Markov dependence, i.e., “each component-failure probability
depends on the number of consecutive failures immediately preceding the component”.
Lam and Ng (2001) proposed a consecutive-k-out-of-n: F repairable system with
exponential distribution and (k-1)-step Markov dependence. Xiao and Li (2008) gave
direct simulation and conditional expectation estimation for some reliability indices of
consecutive-k-out-of-n: F repairable systems with (k-1)-step Markov dependence.
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Many other consecutive k systems with Markov-dependent components have also been
proposed, for example, m consecutive-k-out-of-n: F systems with (k-1)-step Markov
dependence components (Agarwal et al. 2007a), consecutive-k-out-of-n: F systems and
m consecutive-k-out-of-n: F systems with homogeneous Markov-dependent compo-
nents (Zhu et al. 2015), consecutive-k-within-m-out-of-n: F system with Markov-
dependent components (Zhu et al. 2016), linear weighted (n, f, k) systems with non-
homogeneous Markov-dependent components (Zhu and Boushaba 2017), m-con-
secutive-k, l-out-of-n system with non-homogeneous Markov-dependent components
(Zhu et al. 2017), combined m-consecutive-k-out-of-n: F and consecutive-kb-out-of-n:
F systems with non-homogeneous Markov-dependent components (Boushaba and
Benyahia 2018), linear m-consecutive-k-out-of-n systems with sparse d of nonhomo-
geneous Markov-dependent components (Zhu et al. 2018), and so on.

Except of the Markov dependency, Block-k dependency and s-dependency of
components are also considered in the literature. Agarwal et al. (2007a) assumed each
subsequent occurrence of a block of k-consecutive failures increases the failure prob-
ability of the remaining components and proposed m-consecutive-k-out-of-n: F system
with Block-k dependence. By use of a matrix formulation, Gera (2000) obtained the
reliability of consecutive k-out-of n: G system. Eryilmaz (2007) considered a con-
secutive k-out-of-n: F system with s-dependent components and showed that the mean
residual life ordering was not preserved. Erylmaz (2009) discussed the reliability
properties of consecutive k-out-of-n systems consisting of arbitrarily dependent com-
ponents. Some stochastic ordering properties of residual lifetime, inactivity time of the
component of consecutive k-out-of-n systems consisting of arbitrarily dependent
components was presented by Salehi (2016). In fact, when the dependency is involved,
it is much more difficult to analyze the reliability properties of consecutive k systems.
Therefore, many authors have considered the flexible cases, such as the consecutive
k systems with exchangeable components (Shanthikumar 1985; Eryilmaz et al. 2011;
Eryilmaz 2013a, b; Mahmoud and Eryilmaz 2014).

7 Conclusion and Future Challenges

In the paper, we have presented a comprehensive review on consecutive k and related
models. The review is focused on conventional consecutive k models and the associ-
ated variants of the consecutive k systems considering failure criteria, geometric
structure of the system, state of components and the system, weight of each component,
dependency of components, and so on.

Although significant progress has been made to extend the flexibility of consecutive
k systems, there are still several challenges deserving further research. There are the-
oretical and practical implications for these challenges and problems, but they are not
fully dealt with in the current literature. Several directions are listed as follows.

(1) The development of new consecutive k systems, for example, high-dimensional
consecutive k systems, consecutive k systems with non-Markov dependency, multi-
state consecutive k systems, consecutive k systems with non-integer weights, and
so on.
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(2) Consecutive k systems considering the geometric structure of the system, for
example consecutive k systems on graph.

(3) The efficient and effective computation method of related reliability measurement
including reliability, importance, the lifetime distribution, inactivity time, and so
on.
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Abstract. Many practical systems need to fulfill their mission in multiple
phases, where the system in different phases may have to perform different tasks
undergoing different environmental conditions and success criteria. In the last
few decades, reliability modeling and evaluation of phased mission systems
(PMSs) and related optimization problems have attracted a lot of attention. This
chapter is dedicated to a comprehensive review of recent developments on
reliability evaluation and optimization of PMSs. Different evaluation methods
are classified and their applicability to different types of PMSs (e.g., static versus
dynamic; redundant versus non-redundant; perfect coverage versus imperfect
coverage) are discussed. Traditional and recently-developed optimization
problems related to PMSs are introduced. Some directions for future researches
are suggested.

Keywords: Analytical techniques � Multi-valued decision diagram �
Optimization � Phased mission systems � Reliability

1 Introduction

Complex systems, such as those in aerospace, chemical control, communication net-
works, electronics, transportation and nuclear, usually consist of several subsystems
each aiming to accomplish a specific and different task. The process of mission exe-
cuted by these systems can typically be divided into several consecutive phases typi-
cally involving different subsystems or components. For instance, an aircraft system
needs to undergo take-off, ascent, level flight, descent, and landing phases. These
systems are referred to as phased mission systems (PMSs). Compared to single-phase
systems, the analysis of PMSs is more challenging due to the following aspects: (1) the
system structure function (determined based on the reliability requirements) can change
from phase to phase; (2) components may occupy different weights or importance
values in different phases due to the changing system structure functions; (3) compo-
nents may have different reliability parameters in different phases since they may be
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exposed in diverse environment conditions in different phases; (4) the state of a
component at the beginning of a phase depends on its state at the end of the previous
phase.

Considerable research efforts have been expended in the reliability analysis of
PMSs. Two classes of approaches have been developed: simulations and analytical
modelling methods. Simulations can typically offer great generality in system repre-
sentation, but can only offer approximate results and are often expensive in compu-
tational requirements. This chapter focuses on the analytical modelling methods that
can typically offer accurate results with reasonable computational overhead. The ana-
lytical modeling methods can be further classified into four categories: combinatorial
methods, state-space oriented methods, modular methods that combine the former two
methods, and recursive methods (Sect. 3). Based on these evaluation methods, many
researchers have formulated and solved different optimization problems to improve
performance of PMSs.

The remaining of this chapter is organized as follows: Sect. 2 gives classifications
of PMSs from different aspects. Section 3 reviews diverse analytical modeling methods
for PMS reliability evaluation. Section 4 introduces optimization problems for PMSs
and solution methods. Section 5 discusses potential future works on PMS research.

The abbreviations used in this chapter are summarized in Table 1.

2 Classification of PMSs

A component in a PMS may fail by itself (e.g., due to wear-out) or due to common-
cause failures (CCFs) (Xing et al. 2009). CCFs are simultaneous failures of multiple
components due to a shared root cause, which can be an external or internal cause
(Xing 2007; Xing and Levitin 2013). It has been shown by many studies that CCFs can

Table 1. Abbreviations

BDD binary decision diagram
CCF common-cause failure
CPR combinatorial phase requirement
CTMC continuous-time Markov chain
ELC element-level coverage
FLC fault-level coverage
ite if-then-else
MDD multi-valued decision diagram
PDO phase dependent operation
PMF probability mass function
PMS phased mission system
PN petri net
RAP redundancy allocation problem
RBD reliability block diagram
UGF universal generating function

20 D. Wu et al.



increase the joint failure probabilities of system components and lead to the augment of
the overall system unreliability. Both individual failures and CCFs (when applicable)
should be considered for reliability analysis of PMSs.

To facilitate the review of PMS reliability evaluation methods, some common
categories of PMSs studied in literature are presented below.

Repairable Versus Non-repairable PMS: In a non-repairable PMS, the state of a
component at the beginning of a phase should be identical to its state at the end of the
previous phase, and the system state depends mainly on failure characteristics of its
components. Nonetheless, in a repairable PMS, the state of the system depends not
only on failure characteristics of its components but also on maintenances conducted
during the mission. The maintenance policies can be divided into three categories:
1. Failure-driven maintenance is triggered by the occurrence of a component failure;
2. Time-driven maintenance is conducted based on a pre-determined schedule;
3. Condition-driven maintenance is conducted based on the monitored condition of the
system (e.g., the maintenance is triggered when some components are out of work
while the whole system remains functional) (Tinga 2013; Ding and Kamaruddin 2015).
While the study on non-repairable PMSs is extensive (Peng et al. 2019), the study on
repairable PMSs is still limited. Example works on repairable PMSs include Shrestha
et al. (2011), in which decision diagrams and Markov models were integrated to
analyze reliability of repairable PMSs with multiple component states. Lu and Wu
(2014) employed continuous time Markov chains (CTMCs) to evaluate the reliability
of a generalized PMS with repairable components. Lu et al. (2015) analyzed the
reliability of large PMSs with repairable components based on success-state sampling
(or the discretization method). Wu and Wu (2015) proposed an extended object-
oriented Petri net model for mission reliability simulation of repairable PMSs with
CCFs.

Static Versus Dynamic PMS: A PMS is considered to be static if the structure of the
reliability model for any phase of the system is combinational. That is, the failure of the
mission in any phase depends only on combinations of component failure events, not
on the occurrence sequence of the input events. In contrast, if the structure of the
reliability model is not only combinational but also involves certain dependencies
among the system components, the PMS is considered to be dynamic. Particularly,
dynamic PMSs can involve sequence dependence (the order in which the component
failure events occur affects the system outcome or status), function dependence (the
failure of certain component causes other components within the same system to
become isolated, i.e., unusable or inaccessible) or spares management (Xing et al.
2019). For the analysis of static PMSs, combinatorial methods like binary decision
diagrams (Sect. 3.1) can be employed; for the evaluation of dynamic PMSs, state-space
methods like CTMCs (Sect. 3.2) are often applied.

Binary-State Versus Multi-state PMS: If components in a PMS only assume two states
(function or failure), then the system is known as binary-state. Levitin et al. (2012)
developed a recursive algorithm for reliability evaluation of PMSs with binary-state
elements. In recent years, multi-state systems have been widely studied to describe
multiple levels of working performance or the degradation process of components and
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systems. Decision diagram methods, stochastic process methods, universal generating
function methods have been proposed to obtain the reliability of generic multi-state
systems (Levitin 2005; Xing and Amari 2015). Example works on addressing multi-
state PMSs include an integrated modeling approach proposed by Shrestha et al. (2011)
for reliability analysis of repairable PMSs with multiple ordered or unordered com-
ponent states. Li et al. (2018) employed a multi-state multi-valued decision diagram
(MDD) algorithm for modeling reliability of PMSs with non-repairable, multi-state
components. Besides addressing challenges in analyzing binary-state PMSs (described
in Introduction), reliability analysis of multi-state PMSs also needs to consider
dependencies among different states across different phases for each system component
during both modeling and evaluation procedures.

Coherent Versus Non-coherent PMS: If at least one of each component’s states con-
tributes to the system state and any additional component failure may only make the
system status worse or at least no improvement in the system performance, the PMS is
considered to be coherent. In contrast, the state of a non-coherent PMS does not
monotonically increase with an additional number of functioning components. For a
non-coherent system, both component failures and repairs can contribute to the system
failure. Example works of non-coherent systems can be found in Niu et al. (2012), Chu
(2009), Matuzas and Contini (2015). This chapter concentrates on the analysis of
coherent systems.

Redundant Versus Non-redundant PMS: In the case of no extra unit being provided, a
PMS is non-redundant. If extra units are used to enhance system reliability, then the
PMS is considered a redundant system. Three types of redundancy are widely
employed: (1) Standby redundancy, also known as backup redundancy, involves one or
multiple primary online units and some standby units that take over the mission when
an online unit fails. There are three standby modes: cold, warm, and hot depending on
the readiness of the standby unit. (2) Active redundancy, also known as parallel
redundancy, involves multiple units functioning in parallel. (3) 1: N redundancy,
involves a single backup shared by multiple units. If the backup is used by one of the
units, it is not available for the remaining units. Levitin et al. (2017) formulated the
redundancy allocation problem (RAP) in PMSs and applied several optimization
methods to solve the problem.

PMS with Perfect Coverage Versus Imperfect Coverage: If the system can adequately
detect, locate, and recover from a component fault, then the system has perfect cov-
erage, which is a common assumption for PMS studies. In contrast, the system’s fault
recovery mechanism is not perfect so that an undetected or uncovered component fault
leads to the corruption of the entire system. This behavior is known as imperfect
coverage. It introduces two types of failure modes: a covered failure that affects only a
single component, and an uncovered failure that can propagate through the system and
lead to the failure of the entire system. Example works on PMSs with imperfect
coverage include Xing and Dugan (2002), where a separable binary decision diagram-
based method was proposed to address imperfect coverage in reliability analysis of
PMSs with combinatorial phase requirements. Xing (2007) addressed imperfect cov-
erage in reliability analysis of PMSs subject to CCFs. Xing et al. (2012) modeled
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reliability of k-out-of-n PMSs with identical components and imperfect coverage using
a recursive method; Wang et al. (2018a) modeled the same problem using a record
value-based method. The above-mentioned works assume the element-level coverage
(ELC) model for addressing imperfect coverage, where the fault coverage probability
of an element does not depend on states of other system elements (Myers and Rauzy
2008; Levitin and Amari 2009). Another common model for imperfect coverage is
fault-level coverage (FLC), where the fault coverage probability depends on the
number of faults happening to a group within a certain recovery window. Example
works of considering PMSs with FLC include Peng et al. (2014), (2016).

PMS with Fixed Versus Dynamic Duration: The phase duration can be fixed and
remain unchanged during the whole mission; it can also be stochastic and follow
certain distribution, e.g., the log-normal distribution. Literature on PMSs with dynamic
durations is limited. For example, Li and Peng (2014) considered stochastic phase
durations in multi-state series-parallel PMSs and employed the combination of Markov
chains and universal generating functions to calculate the system availability and
operation cost. Si et al. (2015) employed stochastic filtering to model dynamic phase
durations in the reliability analysis of PMSs subject to phase-dependent degradation
processes.

PMS with Series Versus Combinatorial Phase Requirement. If the entire mission fails
as long as the system fails in any period of its life span, then the PMS is classified as a
series PMS or a PMS with phase-OR requirements. As a generalization, Xing and
Dugan (2002) introduced PMSs with combinatorial phase requirements (CPRs), where
a phase failure does not necessarily result in the entire mission failure. Specifically, the
failure criteria of a PMS with CPRs can be illustrated as a logical AND/OR combi-
nation of phase failures.

PMS with Fixed Versus Dynamic Phase Sequence: For some PMSs, the sequence of
phases traversed by the system to accomplish its mission goal is always composed of a
single path from the first phase to the last phase. For other PMSs, at the end of each
phase, the next phase to perform is dynamically determined based on the state of the
system, i.e., the sequence of phases traversed by the mission can be dynamic. While the
existing works have mostly focused on sequential PMSs, little studies were dedicated
to modeling PMSs with dynamic phase sequences. For example, Mura and Bondavalli
(2002), Bondavalli et al. (2004) employed Markov regenerative stochastic Petri nets to
model PMSs with dynamic phase sequences.

3 Evaluation Techniques of PMSs

Four different types of analytical modeling methods for reliability analysis of PMSs are
reviewed, including the combinatorial methods in Sect. 3.1, the state space-based
approaches in Sect. 3.2, the modular methods in Sect. 3.3, and the recursive methods in
Sect. 3.4. In Sect. 3.5, we summarize the applicability of the different methods
reviewed in this section.
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3.1 Combinatorial Methods

Four different combinatorial methods are discussed, including the mini-component
technique, Boolean algebraic-based binary decision diagrams, multi-valued decision
diagrams, and the universal generating function-based method.

The Mini-component Technique
Esary and Ziehms (1975) first introduced the mini-component technique that deals with
s-dependence across phases by replacing a component in each phase with a series of
independent mini-components. It is proved that the reliability of the modified system
(after the replacement) is same as that of the original PMS. Figure 1 illustrates the
replacement procedure in two different system reliability models. Specifically, if the
reliability block diagram (RBD) is used as the reliability model, a component X in
phase j of a PMS is replaced by a set of s-independent mini-component fxig; i ¼
1; . . .; j connected in a series structure and the relation between a component and its
mini-component can be denoted as: Xj ¼ x1 � x2 � . . . � xj. This equation represents that
the component is operational (Xj ¼ 1 or Xj ¼ 1) in phase j if and only if it has func-
tioned in all phases from phase 1 to phase j. If the fault tree is used as the system
reliability model, then the event representing component X failing in phase j is replaced
by an OR gate with j inputs, each being the failure of one mini-component
fxig; i ¼ 1; . . .; j, as illustrated in Fig. 1. This replacement process represents that
component X is failed in phase j if one of the mini-components fxig; i ¼ 1; . . .; j is
failed.

Illustrative Example: The example PMS has three components employed in two non-
overlapping and consecutive phases. The system demand in each phase is denoted as
dj; j ¼ 1; 2; the capacity of three independent components in each phase is denoted as
qij; i ¼ A;B;C; j ¼ 1; 2. In phase one, d1 ¼ 6; qA1 ¼ 6; qB1 ¼ 4; qC1 ¼ 2; in phase two,
d2 ¼ 8; qA2 ¼ 5; qB2 ¼ 4; qC2 ¼ 3. The system fails in a phase if the summation of
components’ capacity is smaller than the desired demand in that phase. Figure 2 pre-
sents the fault tree model of each phase.

Fig. 1. Illustration of the mini-component technique.
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Applying the mini-component technique, Fig. 3 shows the fault tree of the example
PMS after the replacement, which can be analyzed without considering s-dependencies
across phases for each component. However, the disadvantage of this method is the
size of the system model after the replacement can become very large as the number of
components increases and the number of phases increases. Thus, significant compu-
tational power and space are needed for obtaining the solution.

Fig. 2. Fault tree of the example PMS.

Fig. 3. Equivalent mini-component system model.
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Boolean Algebra-Based Binary Decision Diagrams (BDDs)
A BDD is a directed acyclic graph, where all the paths start at the root node, traverse
some non-sink nodes, and end at one of two terminal nodes representing the system
being failed (labeled by 1) or operational (labeled by 0) (Xing and Amari 2015; Mo
2009), respectively. Each non-sink node (corresponding to a system component) has
two outgoing branches or edges, representing the failure (right edge or then edge) and
operation (left edge or else edge) of the corresponding component.

In the Boolean algebra-based BDD method, the PMS fault tree is obtained by
simply connecting each single-phase fault tree model using a logic OR gate, as illus-
trated in Fig. 4 for the example PMS.

The PMS fault tree can then be analyzed using the following four steps.

Step 1. Ordering component variables.
Step 2. Generating BDD for each phase fault tree.
Step 3. Combining single-phase BDDs to obtain the entire PMS BDD.
Step 4. Evaluating the PMS BDD to obtain the reliability of the whole PMS.

In step 1, there are two types of variables that influence the generation procedure of
the BDD: variables belonging to different components and variables representing the
same component in different phases. There is no exact method to obtain the best way of
ordering for a given fault tree structure; heuristic algorithms are often used to find a

Fig. 4. PMS employs Boolean algebra based BDD method.
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reasonable ordering (or indexes) of variables belonging to different components. For
variables representing the same component in different phases, forward or backward
ordering can be used. In the forward phase dependent operation (PDO), the variables
belonging to the same component in different phases stay together and the order of
these variables is consistent with the phase order. In contrast, in the backward PDO,
though the variables belonging to the same component in different phases still stay
together, the order of these variables is opposite to the phase order.

In step 2, BDD is generated for each single phase fault tree based on the manip-
ulation rules in Zang et al. (1999) and Xing and Amari (2015). Specifically, Boolean
logic expressions g and h encoding two BDD models can be represented using the
if-then-else (ite) format as:

g ¼ iteðx; gx¼1; gx¼0Þ ¼ iteðx;G1;G2Þ; ð1Þ

h ¼ iteðy; hy¼1; hy¼0Þ ¼ iteðy;H1;H2Þ: ð2Þ

x and y are root nodes of the BDD models to be combined. A logic operation
(denoted by “�”) between g and h can be represented using the following manipulations
rules:

iteðx;G1;G2Þ � iteðy;H1;H2Þ ¼
iteðx;G1 � H1;G2 � H2Þ indexðxÞ ¼ indexðyÞ
iteðx;G1 � h;G2 � hÞ indexðxÞ\indexðyÞ
iteðy; g � H1; g � H2Þ indexðxÞ[ indexðyÞ

8
<
: :

ð3Þ

For example, Fig. 5 illustrates the BDD model for each phase of the example PMS.

Fig. 5. BDD model for each phase.
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In step 3, the rules of phase algebra are introduced for combining terms containing
multiple variables belonging to the same component but different phases. Specifically,
if we use Ai and Aj; j\i, to respectively represent that component A works in phase i
and in phase j, then the following phase algebra rules hold:

Aj � Ai ! Ai; ð4Þ

Aj � Ai ! Aj; ð5Þ

Aj � Ai ! 0; ð6Þ

Aj þAi ! Ai; ð7Þ

Aj þAi ! Aj; ð8Þ

Aj þAi ! 1: ð9Þ

The proof of these rules can be found in Zang et al. (1999) by using the relation
between a component and its mini-components. The phase algebra rules are used in
combining single phase BDDs into the PMS BDD. Figure 6 illustrates the PMS BDD
of the example PMS.

In step 4, the PMS BDD is evaluated to find the reliability of the PMS. In the case
of edges linking variables belonging to the same component in different phases, phase
algebra rules (6) must be applied to address dependencies of those variables during the
PMS BDD evaluation.

In Wang et al. (2012), the PMS BDD method is utilized in a combinatorial pro-
cedure for addressing competing failure propagation and failure isolation effects in the
reliability analysis of PMSs subject to function dependence in one of the mission
phases.

Fig. 6. PMS BDD of the example PMS.
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Multivalued Decision Diagrams (MDDs)
MDDs are extensions of BDDs to the multi-valued logic (Mo et al. 2014b). Xing and
Dai (2009) first adapted MDDs for the reliability analysis of generic multi-state systems
(MSSs), where the two sink nodes represent the system being in (labeled 1) or not in
(labeled 0) a particular state. A non-sink node in the MDD has multiple outgoing edges
each corresponding to a different state of the multi-state component represented by the
node. Later on, Mo et al. (2014a) employed MDDs for analyzing reliability of PMSs,
where each PMS component is modeled as a multi-state non-sink node with multiple
edges including edge 0 and one edge for each phase.

The MDD-based method for PMS reliability analysis can be summarized as the
following four-step procedure:

Step 1. Ordering all component variables using a heuristic method.
Step 2. Generating MDD for each phase fault tree.
Step 3. Combining single-phase MDDs to obtain the entire PMS MDD.
Step 4. Evaluating the PMS MDD to obtain the reliability of the whole PMS.

Different from the BDD-based method in previous subsection, no dependencies
exist among variables in the PMS MDD method, thus no phase algebra rules are
needed during the model generation and evaluation.

Figure 7 gives the MDD model for the example PMS generated in step 3 using
ordering of A\B\C.

In Wang et al. (2018b), the MDD-based method is utilized in a combinatorial
procedure for addressing competing failure propagation and probabilistic failure iso-
lation effects in the reliability analysis of PMSs subject to probabilistic function
dependence (e.g., body sensor networks).

Fig. 7. MDD of the example PMS.
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Universal Generating Function
Universal generating function (UGF) is a flexible and powerful technique to depict
different states of multi-state systems since it can represent the performance distribu-
tions of system elements using algebraic procedures (Levitin 2005). Specifically, the
UGF represents the probability mass function (PMF) aj;h ¼ PrðYj ¼ yj;hÞ of a discrete
random variable Yj with kj possible values in the form of

ujðzÞ ¼
Xkj

h¼1

aj;hz
yj;h : ð10Þ

Moreover, the operation uðY1; Y2; . . .; YnÞ performed on n independent random vari-
ables can be denoted as

UðzÞ ¼ �
u
ðu1ðzÞ; . . .; unðzÞÞ ¼ �

u
ð
Xk1

h1¼1

a1h1z
y1;h1 ; . . .;

Xkn

hn¼1

anhnz
yn;hn Þ

¼
Xk1

h1¼1

Xk2

h2¼1

. . .
Xkn

hn¼1

ð
Yn

i¼1

aihi z
uðy1;h1 ;...;yn;hn ÞÞ:

ð11Þ

For the reliability evaluation of the example PMS, the failure probability of each
component i in phase j, denoted by lij should be given or can be derived from input
parameters. The UGF of component i in two phases can thus be denoted as

Ui ¼ li1z
ð0;0Þ þ li2z

ðqi1;0Þ þ ð1� li1 � li2Þzðqi1;qi2Þ: ð12Þ

where qij; i ¼ A;B;C; j ¼ 1; 2 represents the capacity of component i in phase j.
Recursive procedures can be employed to obtain the UGF of the entire system.

Specifically, UA and UB are first combined, which is then combined with UC to obtain
the UGF of the whole system. Assume that the benchmark takes the value of lA1 ¼
0:1; lA2 ¼ 0:1; lB1 ¼ 0:2; lB2 ¼ 0:1; lC1 ¼ 0:1 and lC2 ¼ 0:2. The UGFs of the three
components in the example PMS are

UA ¼ 0:1zð0;0Þ þ 0:1zð6;0Þ þ 0:8zð6;5Þ;

UB ¼ 0:1zð0;0Þ þ 0:2zð4;0Þ þ 0:7zð4;4Þ;

UC ¼ 0:2zð0;0Þ þ 0:1zð2;0Þ þ 0:7zð2;3Þ:

The UGF of the combination of components A and B is obtained as

UA�B ¼ UA �� UB ¼ 0:02zð0;0Þ þ 0:01zð4;0Þ þ 0:07zð4;4Þ þ 0:02zð6;0Þ þ 0:01zð10;0Þ

þ 0:07zð10;4Þ þ 0:16zð6;5Þ þ 0:08zð10;5Þ þ 0:56zð10;9Þ:
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Note that the composition operator �
�
implements the multiplication of coefficients

and the summation of exponents for every pair of terms of the two UGFs at both sides
of the operator. The UGF of the system can be further obtained by combining UA�B

with UC as

Ux ¼ UA�B �� UC ¼ 0:002zð0;0Þ þ 0:004zð2;0Þ þ 0:014zð2;3Þ þ 0:001zð4;0Þ þ 0:002zð6;0Þ

þ 0:007zð6;3Þ þ 0:007zð4;4Þ þ 0:014zð6;4Þ þ 0:049zð6;7Þ þ 0:002zð6;0Þ þ 0:004zð8;0Þ

þ 0:014zð8;3Þ þ 0:001zð10;0Þ þ 0:002zð12;0Þ þ 0:007zð12;3Þ þ 0:007zð10;4Þ þ 0:014zð12;4Þ

þ 0:049zð12;7Þ þ 0:016zð6;5Þ þ 0:032zð8;5Þ þ 0:112zð8;8Þ þ 0:008zð10;5Þ þ 0:016zð12;5Þ

þ 0:056zð12;8Þ þ 0:0056zð10;9Þ þ 0:112zð12;9Þ þ 0:392zð12;12Þ:

Recall that the system fails when the summation of capacity in any phase cannot
satisfy the demand. Therefore, the system fails when the first exponent of z is lower
than 6 or the second exponent of z is lower than 8. In other words, the possible cases for
the survival of the system are ð8; 8Þ; ð12; 8Þ; ð10; 9Þ; ð12; 9Þ and ð12; 12Þ. Therefore, the
reliability of the example PMS can be calculated as the summation of coefficients of
those cases.

R ¼ 0:112þ 0:056þ 0:056þ 0:112þ 0:392 ¼ 0:728:

Recently, Peng et al. (2016) employed the UGF technique to analyze the reliability
of PMSs subject to fault-level coverage. The multivariable UGFs are introduced to link
states of a certain component throughout the mission with its corresponding state
probabilities.

3.2 State Space Based Approaches

Conventionally, if the failure criteria in any one phase of the PMS are dynamic, then a
state space-based approach should be employed. We first discuss the CTMC solution
and then introduce the application of Petri nets to the PMS analysis in this subsection.

Continuous-Time Markov Chain (CTMC)
The basic idea is to construct a CTMC to represent the failure behavior of the entire
PMS, or construct several Markov chains each representing the failure behavior of each
phase of the PMS. These Markov models account for dependence among components
within a phase as well as dependence across phases for a given component. The
probability of the system in each state can be obtained through solving the CTMC
models constructed. The unreliability of the whole PMS can thus be obtained through
summing all the failure state probabilities.

For a specific example, Smotherman and Zemoudeh (1989) used a single non-
homogeneous Markov chain model to perform the reliability analysis of a PMS. The
method is known as the SZ approach. Consider the example PMS in Fig. 2. Assume
the failure rate of component i 2 fA;B;Cg in each phase j 2 f1; 2g is denoted as lij.
Figure 8 illustrates the Markov chain model under the SZ approach, where the system
state is represented by a 3-tuple indicating statuses of the three components (“1”:
operational, “0”: failed). For instance, state (101) implies that A and C are operational
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and B has failed. Note that “F” in Fig. 8 represents the system failure. Transition
function hðtÞ represents the failure rate from one phase to another phase, associated
with the time at which the phase change occurs.

For another example, Somani et al. (1992) proposed to generate and solve separate
Markov chains for individual phases of a PMS. While analyzing a phase, only states
relevant to that phase are considered. Figure 9 illustrates theMarkovmodel in each phase
of the example PMS. The initial state occupation probability vector consists of a “1” for
the initial state and “0” for all other states when solving the Markov chain of the first
phase. State occupation probabilities at the end of any phase become the initial state
occupation probabilities of the corresponding stateswhen solving theMarkov chain of the
next phase. The summation of operational state probabilities obtained by solving the
Markov chain of the last mission phase gives the reliability of the whole PMS.

Fig. 8. Markov chain model under the SZ approach.

Fig. 9. Markov model for each phase of the example PMS.
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Wang et al. (2017) extended the separated Markov method of Somani et al. (1992)
for the reliability analysis of PMSs subject to competitions between failure propagation
and failure isolation caused by the function dependence happening in multiple phases.

Lu and Wu (2014) proposed a CTMC-based analytical approach to evaluate the
reliability of PMSs considering both CPR and repairable components. In their work,
the CPR is analyzed by decomposing the overall mission success into the corre-
sponding system behavior in each phase. The method can exclude a large number of
redundant states from the model, instead of incorporating all states like the traditional
CTMC-based approaches.

Petri Nets
Integrating benefits from both analytical modeling and simulations, Petri nets
(PNs) have been widely employed for dynamic system modelling. We explain the
typical features of a Petri net using an example in Fig. 10.

In Fig. 10, the circles and squares respectively represent places and transitions.
Solid dots in circles represent tokens. A PN containing tokens is referred to as a marked
PN. The location of tokens indicates the marking or state of the system at the moment.
As tokens move through the system, the system state changes, making the dynamic
process representation possible. The movement of tokens is facilitated by the firing of a
transition. To enable a transition firing, each input place should be populated with at
least as many tokens as the weight of the respective directed edge input to the tran-
sition. Upon firing a transition, tokens are removed from the input places in a quantity
that matches the weight of the respective input directed edge, new tokens are created in
the output place(s) in a quantity that matches the weight of the respective output
directed edges. Figure 10(b) illustrates the PN after firing the transition in Fig. 10(a).

Figure 11 illustrates the PN of the example PMS, where “up” means that the
component state is working, and “dn” means that the component state is failed. In this
PN model, the master part is used to describe the phase sequence, the components part
is used to describe the components state change, and the logic part is used to present
phase failure logic.

Fig. 10. An example of Petri nets.
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Chew et al. (2008) proposed a simulation model to assess the overall reliability,
which can be summarized as the following procedure:

Step 1. Sampling switching times for each newly enabled timed transition in each
subnet from the switching time distribution randomly.
Step 2. Locating the transition with the earliest switching time and firing it.
Step 3. Searching through each of the immediate transitions and if there are any
enabled, firing it.
Step 4. Repeating step 3 until no more immediate transitions are enabled.
Step 5. Testing and logging the conditions based on several rules:

(a) Begin next simulation if the system has failed;
(b) Begin next operating period if the system has been abandoned;
(c) Begin next mission if the mission has completed;

Step 6. If simulations complete before the maximal running time, go to step 1,
otherwise end.

Another method to evaluate PN is to convert the reachability graph of the PN to the
isomorphic CTMC model for analysis (Bouali et al. 2012).

Recently, Remenyte-Prescott and Andrews (2011) considered fault propagation
modeling using Petri nets. Michael et al. (2014) employed a Petri net approach to fault
verification in PMSs using a standard deviation technique. Wu and Wu (2015) pro-
posed an extended object-oriented Petri net model for mission reliability simulation of
a repairable PMS with CCFs.

Fig. 11. Petri net of the example PMS.
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3.3 Modular Methods

Combinatorial methods can analyze PMSs efficiently, but can only handle systems with
s-independent components. The state space-based approaches are flexible and powerful
in modelling PMSs with complex dynamic behaviors. However, they suffer from the
state space explosion problem. Modular methods have been developed to analyze
PMSs with a large number of components, which merge advantages of both combi-
natorial methods and state space-based approaches (Xing and Amari 2008; Yang and
Wu 2014; Zhai et al. 2018).

The phase-modular approach involves the following major steps (Meshkat 2000;
Meshkat et al. 2003; Xing and Amari 2008):

Step 1. Representing each mission phase with a fault tree and linking the phase fault
trees with gates representing the CPRs.
Step 2. Dividing each phase fault tree into independent subtrees/modules.
Step 3. Characterizing each phase module as static or dynamic.
Step 4. Identifying each phase module as bottom-level or upper-level.
Step 5. Finding the system-level independent modules and finding the unions of
components in all the phase modules that overlap in at least one component.
Step 6. Identifying each system-level module as static or dynamic across the phases
(identifying a component as dynamic in at least one mission phase is sufficient for
the identification of the corresponding system-level module as dynamic).
Step 7. Grouping the phase modules according to the corresponding system-level
module.
Step 8. Finding the joint phase module probabilities for all system-level modules.
The BDD method can be employed for modules that are static across all phases and
the combined Markov chain can be employed for dynamic modules.
Step 9. Considering each module as a basic event of a static fault tree of the entire
system and solving the corresponding fault tree using BDD to find the overall
system reliability based on the reliability of the modules.

3.4 Recursive Methods

The recursive method involves two major steps: generating combinations of element
failures and employing the backward recursion algorithm.

Consider a random vector Xj ¼ ðx1ðjÞ; . . .; xnðjÞÞ, representing the system state
(composition of states of n elements) at the end of phase j. Each xiðjÞ; 1� i� n is a
Boolean variable assuming value of either “1” (representing the working state of
component) or “0” (representing the failed state of the component). It is further
assumed that a realization Y ¼ ðy1ðjÞ; . . .; ynðjÞÞ of vector Xj consists of s zeros. In
other words, s out of n elements fail before the end of phase j. Specifically, zero
elements have numbers cðkÞ; 1� k� s. xiðjÞ; 1� i� n are non-increasing functions of j,
and any yiðjÞ ¼ 1 implies that xiðmÞ ¼ 1 for m ¼ 1; . . .; j� 1. Therefore, different
system states that can precede state Y can be obtained only by replacing zeros with
ones in Y . This relationship represents that the corresponding elements work at the end
of phase j� 1 and fail during phase j. For the sake of obtaining all possible realization
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of state Xj�1 preceding state Y , one has to enumerate all the possible combinations of
vector elements that take the value of one in Xj�1 and the value of 0 in Y . Further, to
obtain any combination of elements failed during phase j, one can run the integer index
r from r ¼ 0 to r ¼ 2s � 1 given that the system state at the end of this phase is Y . If
mod2 r

2i�1

� � ¼ 1, element cðiÞ remains functioning; if mod2 r
2i�1

� � ¼ 0, the element fails
during phase j. Thus, one can obtain the possible rth realizations of system state vector
Xj�1 preceding the realization of system state vector Xj using the operator
Xj�1 ¼ pðY ; rÞ, where pðY ; rÞ represents a binary vector Y with zero elements
ycð1ÞðjÞ; . . .; ycðsÞðjÞ and integer number r. Specifically, the following recursive proce-
dure can be used to obtain pðY ; rÞ.

Step 1. d ¼ 1
Step 2. For i ¼ 1 to s,
2.1 If mod2 r

d

� � ¼ 1, assign ycðiÞðhÞ ¼ 1;
2.2 Assign d ¼ 2d.

The probability of the combination of failures causing the system transition from
state pðY ; rÞ in the beginning of phase j to state Y in the end of phase j can be denoted
through substituting the value of index r and the conditional failure probabilities qcðiÞ
of elements cðiÞ. Specifically, the probability can be represented as

QjðrÞ ¼
Ys

i¼0

ðqcðiÞðhÞÞmod2 r
2i�1

� �
: ð13Þ

Further, we let Zj;Y represent the probability of the event when Xj ¼ Y andulðXlÞ ¼ 1
for all l\j. Among, ulðXlÞ; 1� l� j represents system state acceptability function in
phase j. In other words, we have

Zj;Y ¼ PrfXj ¼ Y ;uj�1ðXj�1Þ ¼ 1; ; . . .;u1ðX1Þ ¼ 1g: ð14Þ

Because of the Markov property of Xj, the conditional distribution of Xj given the
entire sequence ðX1; . . .;Xj�1Þ depends only on the most recent value Xj�1. Thus, Zj;Y
can be calculated through

Zj;Y ¼
Yn

i¼0

piðjÞyk �
X2s�1

r¼0

uj�1ðpðY ; rÞÞZj�1;pðY ;rÞQjðrÞ: ð15Þ

where piðjÞ represents the conditional reliability of element i at phase j. It is easy to
derive Z1;Y as

Z1;Y ¼
Y2n�1

i¼0

ðqið1ÞÞ1�yiðpið1ÞÞyi : ð16Þ
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Thus, the reliability of the whole system in j phases can be denoted as

R ¼
X2n�1

r¼0

ujðpð0; rÞÞZj;pð0;rÞ: ð17Þ

As an illustration, we employ the recursive algorithm to evaluate the reliability of
the example PMS in Fig. 2. Since there are three components in the example system,
there are eight different combinations in any phase j; j ¼ 1; 2:
AjBjCj;AjBjCj;AjBjCj;AjBjCj;AjBjCj;AjBjCj;AjBjCj and AjBjCj. Among these combi-
nations, A2B2C2;A2B2C2 and A2B2C2 make the system survive in the second phase.
We first consider the case for A2B2C2, the only possible combination that can occur in
phase one is A1B1C1. Therefore, we have

RA1B1C1�A2B2C2 ¼ 0:8� 0:8� 0:7 ¼ 0:392:

When the combination in phase two is A2B2C2, the possible combinations in phase
one are A1B1C1 and A1B1C1. Thus, we have

RA1B1C1�A2B2C2
þRA1B1C1�A2B2C2

¼ 0:8� 0:7� 0:2þ 0:8� 0:7� 0:1 ¼ 0:168:

When the combination in phase two is A2B2C2, the possible combinations in phase
one are A1B1C1 and A1B1C1. Under this case, we have

RA1B1C1�A2B2C2
þRA1B1C1�A2B2C2

¼ 0:8� 0:7� 0:1þ 0:8� 0:7� 0:2 ¼ 0:168::

Therefore, the reliability of the whole system evaluated by the recursive method can
be obtained as

R ¼ 0:392þ 0:168þ 0:168 ¼ 0:728;

which matches the results obtained using the UGF method.
The main advantage of the recursive method is that it does not require the com-

position of any graph models. Moreover, both its computational time and memory
requirements are linear in terms of the system size.

The recursive algorithm has been applied or extended in several directions. For
example, Amari and Xing (2011) proposed an efficient recursive method for exact
reliability evaluation of k-out-of-n PMS with identical components. Levitin et al.
(2012) employed the recursive algorithm to evaluate the reliability of arbitrary binary
or multi-state PMS consisting of non-identical, binary and non-repairable elements.
Levitin et al. (2013b) proposed a recursive and exact method for reliability evaluation
of PMSs with failures originating from some system elements that can propagate
causing common cause failures of groups of elements. Levitin et al. (2013a) extended
the recursive method for the exact reliability evaluation of PMS consisting of non-
identical, non-repairable, multistate elements.
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3.5 Summary of PMS Analysis Methods

Table 2 summarizes the PMS evaluation methods reviewed in this section and their
applicability based on main characteristics used for the PMS classification in Sect. 2.
Note that these characteristics are not necessarily exclusive; but different perspectives
to characterize a PMS. With this check table, the specific kind of PMSs each method is
applicable to can be easily identified. For example, BDD is applicable to “Coherent”,
but not “Multi-State”. As a multistate system may also be coherent, by integrating the
properties checked in the table, it can be judged that BDD is applicable to coherent
binary systems, but not coherent multistate systems.

4 Optimization of PMSs

Several optimization issues of PMSs have been formulated and solved: system struc-
ture optimization, component separation and combination optimization, redundancy
optimization, standby element sequencing optimization, and component test and
maintenance optimization.

System structure optimization is a well-studied problem in the field of reliability
engineering, aiming at balancing reliability and cost for the system design. Tradi-
tionally, this problem was only solved for systems that do not change their tasks and
configurations during the mission. In the past decade, the system structure optimization
problem was solved for PMSs with dynamic system configuration, success criteria and

Table 2. Applicability of Methods to PMSs with different characteristics.

Mini-Comp. BDD MDD UGF MC PN Modular Recursive

Repairable ✓ ✓ ✓ ✓ ✓

Non-repairable ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Static structure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic structure ✓ ✓ ✓ ✓ ✓

Binary-state ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multi-State ✓ ✓ ✓ ✓ ✓ ✓

Coherent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-coherent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Redundant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-redundant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Perfect Coverage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Imperfect Coverage ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fixed Duration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic Duration ✓ ✓ ✓ ✓ ✓ ✓ ✓

Series PMS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PMS with CPR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fixed phase sequence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic phase sequence ✓ ✓ ✓ ✓ ✓ ✓
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element behavior. In particular, Dai et al. (2013) employed the recursive algorithm to
evaluate the reliability of a non-repairable PMS and then applied the genetic algorithm
to determine the optimal system structure. Peng et al. (2016) employed the UGF to
evaluate reliability of a PMS consisting of subsystems connected in series, where each
subsystem contains components with different capacities. The components within the
same subsystem are divided into several disjoint work-sharing groups. Since different
partitions of the working groups may lead to different reliability, optimizing the system
structure is relevant and significant. Based on the UGF evaluation, the genetic algo-
rithm method was applied to find the optimal structure of PMS maximizing the entire
system reliability. Yu et al. (2017) considered the reliability of a phased-mission
common bus system with CCFs using a recursive algorithm. The genetic algorithm was
employed to search the optimal allocation strategies of the service elements.

The improvement in the survivability of a system can result from separating its
elements. Levitin et al. (2013c), (2014a) formulated the optimal element separation
problem in non-repairable PMSs. Levitin et al. (2014c) studied the problem in linear
consecutively-connected systems subject to multiple phases of mission and CCFs.

The traditional redundancy allocation problem (RAP) has also been solved for
PMSs. Yu et al. (2010) considered the RAP for PMSs by employing the particle swarm
optimization. Levitin et al. (2017) formulated a constrained RAP and solved it through
the brute force approach.

Levitin et al. (2014b), (2016) considered the optimization on standby element
sequencing problem. Specifically, Levitin et al. (2014b) analyzed the optimal cold
standby element sequencing problem. The initiation sequence of the system elements
was investigated to minimize the expected mission cost while providing a desired level
of system reliability. In Levitin et al. (2016), they considered a warm standby system to
obtain the optimal activation sequence that maximizes system reliability, or minimizes
expected mission cost, or minimizes expected uncompleted work.

Feyzioğlu et al. (2008) considered the optimal component test plans for PMSs.
They formulated the optimal component testing problem as a semi-infinite linear
program and employed an algorithmic procedure to compute optimal test times based
on the column generation technique.

Jia et al. (2018) proposed a selective maintenance model for PMSs subject to
random CCFs and optimally identified a subset of maintenance activities to be per-
formed on some elements of the system to maximize the reliability of the whole
system.

5 Future Research

In this chapter, we extend the review in Xing and Amari (2008) by introducing the
PMS analysis methods and optimization problems developed in the last decade. One of
the future research directions is to analyze cascading failures in multi-state PMSs,
especially those that can influence function of subsequent phases. In other words, the
failure of some component in one phase may lead to failures of other system com-
ponents in subsequent phases. Moreover, the analysis of PMSs with storage compo-
nents is also interesting, where the redundant capacity in one phase can be stored for
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use in later phases (Qiu et al. 2018). Another direction is to study the mission abortion
strategy for PMSs used in life-critical applications where accomplishing a specified
mission and aborting mission objectives in the case of certain condition being met to
survive the system are both crucial (Levitin et al. 2018, 2019).
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Abstract. Markov decision processes (MDPs) in queues and networks
have been an interesting topic in many practical areas since the 1960s.
This paper Provides a detailed overview on this topic and tracks the evo-
lution of many basic results. Also, this paper summarizes several inter-
esting directions in the future research. We hope that this overview can
shed light to MDPs in queues and networks, and also to their extensive
applications in various practical areas.
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1 Introduction

One main purpose of this paper is to provide an overview for research on MDPs in
queues and networks in the last six decades. Also, such a survey is first related to
several other basic studies, such as, Markov processes, queueing systems, queue-
ing networks, Markov decision processes, sensitivity-based optimization, stochas-
tic optimization, fluid and diffusion control. Therefore, our analysis begins from
three simple introductions: Markov processes and Markov decision processes,
queues and queueing networks, and queueing dynamic control.

Quan-Lin Li was supported by the National Natural Science Foundation of China
under grants No. 71671158 and 71932002, and by the Natural Science Foundation of
Hebei province under grant No. G2017203277. Li Xia was supported by the National
Natural Science Foundation of China under grant No. 61573206. The authors thank
X.R. Cao and E.A. Feinberg for their valuable comments and suggestions to improve
the presentation of this paper.

c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 44–71, 2019.
https://doi.org/10.1007/978-981-15-0864-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0864-6_3&domain=pdf
https://doi.org/10.1007/978-981-15-0864-6_3


An Overview for Markov Decision Processes in Queues and Networks 45

(a) Markov processes and Markov decision processes
The Markov processes, together with the Markov property, were first introduced
by a Russian mathematician: Andrei Andreevich Markov (1856–1922) in 1906.
See Markov [238] for more details. From then on, as a basically mathematical
tool, the Markov processes have extensively been discussed by many authors,
e.g., see some excellent books by Doob [99], Karlin [175], Karlin and Taylor
[176], Chung [80], Anderson [21], Kemeny et al. [181], Meyn and Tweedie [241],
Chen [77], Ethier and Kurtz [110] and so on.

In 1960, Howard [165] is the first to propose and discuss the MDP (or stochas-
tic dynamic programming) in terms of his Ph.D thesis, which opened up a new
and important field through an interesting intersection between Markov pro-
cesses and dynamic programming (e.g., see Bellman and Kalaba [32]). From
then on, not only are the MDPs an important branch in the area of Markov
processes, but also it is a basic method in modern dynamic control theory. Cru-
cially, the MDPs have been greatly motivated and widely applied in many prac-
tical areas in the past 60 years. Readers may refer to some excellent books, for
example, the discrete-time MDPs by Puterman [261], Glasserman and Yao [143],
Bertsekas [33], Bertsekas and Tsitsiklis [34], Hernádez-Lerma and Lasserre
[155,156], Altman [10], Koole [193] and Hu and Yue [166]; the continuous-time
MDPs by Guo and Hernández-Lerma [145]; the partially observable MDPs by
Cassandra [67] and Krishnamurthy [196]; the competitive MDPs (i.e., stochastic
game) by Filar and Vrieze [127]; the sensitivity-based optimization by Cao [58];
some applications of MDPs by Feinberg and Shwartz (Eds.) [122] and Boucherie
and Van Dijk (eds.) [44]; and so on.

(b) Queues and queueing networks
In the early 20th century, a Danmark mathematician: Agner Krarup Erlang,
published a pioneering work [109] of queueing theory in 1909, which started the
study of queueing theory and traffic engineering. Over the past 100 years, queue-
ing theory has been regarded as a key mathematical tool not only for analyzing
practical stochastic systems but also for promoting theory of stochastic processes
(such as Markov processes, semi-Markov processes, Markov renew processes, ran-
dom walks, martingale theory, fluid and diffusion approximation, and stochastic
differential equations). On the other hand, the theory of stochastic processes
can support and carry forward advances in queueing theory and applications
(for example single-server queues, multi-server queues, tandem queues, parallel
queues, fork-join queues, and queueing networks). It is worthwhile to note that
so far queueing theory has been widely applied in many practical areas, such as
manufacturing systems, computer and communication networks, transportation
networks, service management, supply chain management, sharing economics,
healthcare and so forth.

The Single-Server Queues and the Multi-server Queues: In the early development
of queueing theory (1910s to 1970s), the single-server queues were a main topic
with key results including Khintchine formula, Little’s law, birth-death processes
of Markovian queues, the embedded Markov chain, the supplementary variable
method, the complex function method and so on. In 1969, Professor J.W. Cohen
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published a wonderful summative book [81] with respect to theoretical progress
of single-server queues.

It is a key advance that Professor M.F. Neuts proposed and developed the
phase-type (PH) distributions, Markovian arrival processes (MAPs), and the
matrix-geometric solution, which were developed as the matrix-analytic method
in the later study, e.g., see Neuts [245,246] and Latouche and Ramaswami [210]
for more details. Further, Li [218] proposed and developed the RG-factorizations
for any generally irreducible block-structured Markov processes. Crucially, the
RG-factorizations promote the matrix-analytic method to a unified matrix
framework both for the steady-state solution and for the transient solution (for
instance the first passage time and the sojourn time). In addition, the matrix-
analytic method and the RG-factorizations can effectively deal with small-scale
stochastic models with several nodes.

In the study of queueing systems, some excellent books include Kleinrock
[184,185], Tijms [304] and Asmussen [23]. Also, an excellent survey on key queue-
ing advances was given in Syski [302]; and some overview papers on different
research directions were reported by top queueing experts in two interesting
books by Dshalalow [104,105].

The Queueing Networks:In 1957, J.R. Jackson published a seminal paper [168]
which started research on queueing networks. Subsequent interesting results
include Jackson [169], Baskett et al. [29], Kelly [178,180], Disney and König
[97], Dobrushin et al. [98], Harrison [152], Dai [86] and so on. For the queueing
networks, the well-known examples contain Jackson networks, BCMP networks,
parallel networks, tandem networks, open networks, closed networks, polling
queues, fork-join networks and distributed networks. Also, the product-form
solution, the quasi-reversibility and some approximation algorithms are the basic
results in the study of queueing networks.

For the queueing networks, we refer readers to some excellent books such as
Kelly [179], Van Dijk [310], Gelenbe et al. [138], Chao et al. [72], Serfozo [284],
Chen and Yao [76], Balsamo et al. [27], Daduna [85], Bolch et al. [41], Bramson
[46] and Boucherie and Van Dijk (Eds.) [43].

For applications of queueing networks, readers may refer to some excellent
books, for example, manufacturing systems by Buzacott and Shanthikumar [52],
communication networks by Chang [71], traffic networks by Garavello and Piccoli
[133], healthcare by Lakshmi and Iyer [206], service management by Demirkan
et al. [92] and others.

(c) Queueing dynamic control
In 1967, Miller [242] and Ryokov and Lembert [277] are the first to apply the
MDPs to consider dynamic control of queues and networks. Those two works
opened a novel interesting research direction: MDPs in queues and networks.

For MDPs of queues and networks, we refer readers to three excellent books
by Kitaev and Rykov [182], Sennott [282] and Stidham [298].

In MDPs of queues and networks, so far there have been some best survey
papers, for instance, Crabill et al. [83,84], Sobel [289], Stidham and Prabhu
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[299], Rykov [272,274], Kumar [198], Stidham and Weber [300], Stidham [296]
and Brouns [50].

For some Ph.D thesises by using MDPs of queues and networks, reader may
refer to, such as, Farrell [114], Abdel-Gawad [1], Bartroli [28], Farrar [112], Veatch
[314], Altman [8], Atan [25] and Efrosinin [107].

Now, MDPs of queues and networks play an important role in dynamic
control of many practical stochastic networks, for example, inventory control
[54,116,117], supply chain management [111], maintenance and quality [95,200],
manufacturing systems [52,172], production lines [323], communication networks
[6,12,251], wireless and mobile networks [4,96], cloud service [301], healthcare
[254,308], airport management [211,271], energy-efficient management [250,262]
and artificial intelligence [188,287]. With rapid development of Internet of Things
(IoT), big data, cloud computing, blockchain and artificial intelligence, it is nec-
essary to discuss MDPs of queues and networks under an intelligent environment.

From the detailed survey on MDPs of queues and networks, this paper sug-
gests a future research under an intelligent environment from three different
levels as follows:

1. Networks with several nodes: Analyzing MDPs of policy-based Markov pro-
cesses with block structure, for example, QBD processes, Markov processes
of GI/M/1 type, and Markov processes of M/G/1 type, and specifically, dis-
cussing their sensitivity-based optimization.

2. Networks with a lot of nodes: discussing MDPs of practical big networks,
such as blockchain systems, sharing economics, intelligence healthcare and so
forth.

3. Networks with a lot of clusters: studying MDPs of practical big networks by
means of the mean-field theory, e.g., see Gast and Gaujal [134], Gast et al.
[135] and Li [219].

The remainder of this paper is organized as follows. Sections 2 to 5 provide
an overview for MDPs of single-server queues, multi-server queues, queueing
networks, and queueing networks with special structures, respectively. Section 6
sets up specific objectives to provide an overview for key objectives in queueing
dynamic control. Section 7 introduce the sensitivity-based optimization and the
event-based optimization, both of which are applied to analyze MDPs of queues
and networks. Finally, we give some concluding remarks in Sect. 8.

2 MDPs of Single-Server Queues

In this section, we provide an overview for MDPs of single-server queues, includ-
ing the M/M/1 queues, the M/G/1 queues, the GI/M/1 queues and others. In
the early research on MDPs of queues and networks, the single-server queues
have been an active topic for many years.
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(1) MDPs of M/M/1 queues
Kofman and Lippman [187], Rue and Rosenshine [268,269], Yeh and Thomas
[338], Lu and Serfozo [231], Plum [258], Altman [18], Kitaev and Serfozo [183],
Savaşaneril et al. [279] and Dimitrakopoulos and Burnetas [94].

(2) MDPs of M/G/1 queues
Mitchell [243], Doshi [100,101], Gallisch [130], Rue and Rosenshine [270], Jo
and Stidham [173], Mandelbaum and Yechiali [236], Kella [177], Wakuta [317],
Altman and Nain [7], Feinberg and Kim [120], Feinberg and Kella [119] and
Sanajian et al. [278].

(3) MDPs of GI/M/1 queues
Stidham [293] and Mendelson and Yechiali [239].

(4) MDPs of more genernal single-server queues
Stidham [292], Crabill [82], Lippman [227], Schassberger [280], Stidham [294],
Hordijk and Spieksma [164], Federgruen and So [115], Lamond [207], Towsley
et al. [307], Koole [190], Haviv and Puterman [153], Lewis et al. [216], George
and Harrison [139], Johansen and Larsen [174], Piunovskiy [256], Stidham [297],
Adusumilli and Hasenbein [3], Kumar et al. [199] and Yan et al. [335].

(5) MDPs of single-server batch queues
Deb and Serfozo [90], Deb [89] and Powell and Humblet [259] with batch services;
and Nobel and Tijms [248] with batch arrivals.

(6) MDPs of single-server queues with either balking, reneging or
abandonments
Blackburn [39] with balking, Down et al. [102] with reneging, and Legros [215]
with abandonments.

(7) MDPs of single-server priority queues
Robinson [264], Browne and Yechiali [47], Groenevelt et al. [144] and Brouns
and Van Der Wal [51].

(8) MDPs of single-server processor-sharing queues
De Waal [93], Altman et al. [16], Van der Weij et al. [309] and Bhulai et al. [38].

(9) MDPs of single-server retrial queues
Liang and Kulkarni [225], Winkler [322] and Giovanidis et al. [141].

(10) MDPs of single-server information-based queues
Kuri and Kumar [201,202], Altman and Stidham [19] and Honhon and Seshadri
[159].

(11) MDPs of single-server queues with multiple classes of customers
Harrison [151], Chen [73], Browne and Yechiali [49], De Serres [87,88], Ata [24],
Feinberg and Yang [123] and Larrañaga et al. [209].

(12) MDPs of single-server queues with optimal pricing
Low [229], Chen [73], Yoon and Lewis [340], Çelik and Maglaras [69], Economou
and Kanta [106] and Yildirim and Hasenbein [339].
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(13) MDPs of single-server manufacturing queues
(a) The make-to-stock queues: Savaşaneril et al. [279], Sanajian et al. [278],

Perez and Zipkin [255], Jain [170] and Cao and Xie [54].
(b) The make-to-order queues: Besbes and Maglaras [36] and Çelik and

Maglaras [69].
(c) The assemble-type queues: Argon and Tsai [22] and Nadar et al. [244].
(d) The inventory control queues: Veatch [314], Savaşaneril et al. [279],

Federgruen and Zipkin [117], Federgruen and Zheng [116], Feinberg [118],
Feinberg and Liang [121].

(14) MDPs of inventory rationing across multiple demand classes
Ha [146–148], Gayon et al. [137] and Li et al. [222].

3 MDPs of Multi-server Queues

In this section, we provide an overview for MDPs of multi-server queues, which
are another important research direction.

(1) MDPs of M/M/c queues
Low [230], Anderson [20], Printezis and Burnetas [260] and Feinberg and Yang
[123,124].

(2) MDPs of GI/M/c queues
Yechiali [337], Van Nunen and Puterman [312] and Feinberg and Yang [125].

(3) MDPs of two-server queues
Larsen and Agrawala [208], Lin and Kumar [226], Hajek [149], Varma [313],
Chen et al. [75] and Xu and Zhao [333].

(4) MDPs of multi-server queues
Emmons [108], Helm and Waldmann [154], Blanc et al. [40], Bradford [45],
Koçaǧa and Ward [186] and Lee and Kulkarni [212].

(5) MDPs of heterogeneous server queues
Rosberg and Kermani [265], Nobel and Tijms [249], Rykov [273], Rykov and
Efrosinin [275] and Tirdad et al. [306].

4 MDPs of Queueing Networks

In this section, we provide an overview for MDPs of queueing networks. Note
that the MDPs of queueing networks have been an interesting research direction
for many years, and they have also established key applications in many practical
areas.

(1) MDPs of more general queueing networks
Ross [267], Weber and Stidham [320], Stidham [295], Shanthikumar and Yao
[285], Veatch and Wein [315], Tassiulas and Ephremides [303], Papadimitriou
and Tsitsiklis [252], Bäuerle [30], Bäuerle [31] and Solodyannikov [290].



50 Q.-L. Li et al.

(2) MDPs of queueing networks with multiple classes of customers
Shioyama [286], Bertsimas et al. [35], Maglaras [235], Chen and Meyn [78] and
Cao and Xie [55].

(3) Queueing applications of Markov decision processes
Serfozo [283] studied the MDPs of birth-death processes and random walks,
and then discussed dynamic control queueing networks. White [321] focused on
the MDPs of QBD processes, which were used to deal with dynamic control
of queueing networks. Robinson [263] and Hordijk et al. [163] studied the MDP
which were applied to the study of queueing networks. Sennott [281] analyzed the
semi-MDP and applied the obtained results to discuss the queueing networks.

Other key research includes Van Dijk and Puterman [311], Liu et al. [228],
Altman et al. [13] and Adlakha et al. [2].

5 MDPs of Queueing Networks with Special Structure

In this section, we provide an overview for MDPs of queueing networks with spe-
cial Structure, for example, multi-station tandem queues, multi-station parallel
queues, polling queues, fork-join queues, distributed queueing networks, heavy
traffic analysis for queueing control and so on.

(1) MDPs of two-station tandem queues
Ghoneim and Stidham [140], Nishimura [247], Farrar [113], Iravani et al. [167],
Ahn et al. [5] and Zayas-Cabán et al. [341].

(2) MDPs of multi-station tandem queues
Rosberg et al. [266], Hordijk and Koole [160], Hariharan et al. [150], Gajrat et
al. [129], Koole [192], Zhang and Ayhan [344] and Leeuwen and Núnez-Queija
[213].

(3) MDPs of parallel queues
Weber [319], Bonomi [42], Menich and Serfozo [240], Xu et al. [332], Hordijk and
Koole [161], Chen et al. [70], Sparaggis et al. [291], Koole [189], Ku and Jordan
[197], Down and Lewis [103], Delasay et al. [91] and Feinberg and Zhang [126].

(4) MDPs of polling queues
Browne and Yechiali [48], Gandhi and Cassandras [131], Koole and Nain [195]
and Gaujal et al. [136].

(5) MDPs of fork-Join queueing networks
Pascual et al. [253], Zeng et al. [342], Marin and Rossi [237] and Zeng et al. [343].

(6) MDPs of Call Centers
Koole [194], Bhulai [37], Legros et al. [214], Gans et al. [132] and Koole and
Mandelbaum [191].

(7) MDPs of distributed queueing networks
Chou and Abraham [79], e Silva and Gerla [288], Franken and Haverkort [128],
Li and Kameda [217], Nadar et al. [244] and Vercraene et al. [316].
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(8) Competitive MDPs of distributed queueing networks
The competitive MDPs are called stochastic games. Altman and Hordijk [14]
studied the zero-sum Markov game and applied the obtained results to the
worst-case optimal control of queueing networks. Altman [9] studied non-zero
stochastic games and applied their results to admission, service and routing con-
trol in queueing networks. Altman [11] proposed a Markov game approach for
analyzing the optimal routing of a queueing network. Hordijk et al. [162] studied
a multi-chain stochastic game which was applied to the worst case admission
control in a queueing network. Xu and Hajek [334] studied the game problem
of supermarket models. Xia [324] applied the stochastic games to analyzing the
service rate control of a closed queueing network.

(9) Heavy traffic analysis for controlled queues and networks
Heavy traffic analysis can be used to deal with a class of important problems of
controlled queues and networks by means of fluid and diffusion approximation.
Readers may refer to, for example, Kushner [203], Kushner and Ramachandran
[205], Kushner and Martins [204]; Harrison [152], Plambeck et al. [257]; Chen
and Yao [76], Atar et al. [26].

6 Key Objectives in Queueing Dynamic Control

In this section, we introduce some key objectives to classify the literature of
queueing dynamic control, for example, input control, service control, dynamic
control under different service mechanisms, dynamic control with pricing, thresh-
old control and so forth.

Objective One: Input Control
The input control is to apply the MDPs to dynamically control the input process
of customers in the queues and networks, including the input rate control, the
interval time control, and the admission access control (e.g., probability that an
arriving customer chooses entering the system or some servers).

(a) The input rate control: Kitaev and Rykov [182], Sennott [282], Crabill
et al. [84], Stidham and Weber [300], Crabill [82] and Lee and Kulkarni [212].

(b) The input process control: Kitaev and Rykov [182], Sennott [282],
Crabill et al. [84], Stidham and Weber [300], Abdel-Gawad [1], Doshi [100],
Stidham [293], Piunovskiy [256], Kuri and Kumar [201], Kuri and Kumar [202],
Van Nunen and Puterman [312], Helm and Waldmann [154], Ghoneim and
Stidham [140] and Nishimura [247].

(c) The admission access control: Crabill et al. [83,84], Stidham and Weber
[300], Brouns [50], Rue and Rosenshine [268–270], Dimitrakopoulos and Burnetas
[94], Mandelbaum and Yechiali [236], Mendelson and Yechiali [239], Stidham
[294], Hordijk and Spieksma [164], Lamond [207], Lewis et al. [216], Adusumilli
and Hasenbein [3], Altman et al. [16], Honhon and Seshadri [159], Yoon and
Lewis [340], Yildirim and Hasenbein [339], Anderson [20], Emmons [108], Blanc
et al. [40], Koçaǧa and Ward [186], Zhang and Ayhan [344], Altman [9], Hordijk
et al. [162] and Xia [324].
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Objective Two: Service Control
The service control is to use the MDPs to dynamically control the service pro-
cess in queues and networks, including the service rate control, the service time
control, and the service process control.

(a) The service rate control: Kitaev and Rykov [182], Sennott [282], Stidham
[296,298], Crabill et al. [83,84], Stidham and Weber [300], Yao and Schechner
[336], Dimitrakopoulos and Burnetas [94], Mitchell [243], Doshi [101], Jo and
Stidham [173], Adusumilli and Hasenbein [3], Kumar et al. [199], Anderson [20],
Lee and Kulkarni [212], Weber and Stidham [320], Ma and Cao [232], Xia [324],
Xia and Shihada [331] and Xia and Jia [329].

(b) The service time control: Gallisch [130].
(c) The service process control: Kitaev and Rykov [182], Sennott [282],

Stidham [298], Crabill et al. [83,84], Stidham and Weber [300], Schassberger
[280], Johansen and Larsen [174], Stidham [297], Nishimura [247], Rosberg et al.
[266], Altman [9] and Hordijk et al. [162].

Objective Three: Dynamic Control Under Different Service
Mechanisms
Many practical and real problems lead to introduction of different service mech-
anisms which make some interesting queueing systems, for example, priority
queues, processor-sharing queues, retrial queues, vacation queues, repairable
queues, fluid queues and so on.

(a) The priority queueing control: The priority is an important service mech-
anism, and it is a precondition that sets up useful relations among key customers,
segmenting market and adhering to long-term cooperation. Note that the prior-
ity makes dynamic control of queues with multi-class customers. Readers may
refer to Rykov and Lembert [277], Crabill et al. [83,84], Stidham and Weber
[300], Kofman and Lippman [187], Robinson [264], Browne and Yechiali [47],
Groenevelt et al. [144], Brouns and Van Der Wal [51], Jain [170], Printezis and
Burnetas [260] and Koole and Nain [195].

(b) The processor-sharing queueing control: Crabill et al. [83,84], Stidham
and Weber [300], De Waal [93], Altman et al. [16], Van der Weij et al. [309],
Bhulai et al. [38] and Bonomi [42].

(c) The retrial queueing control: Bhulai et al. [38], Liang and Kulkarni [225],
Winkler [322] and Giovanidis et al. [141].

(d) The vacation queueing control: Li et al. [220], Altman and Nain [7,18],
Kella [177] and Federgruen and So [115].

(e) The repairable queueing control: Dimitrakos and Kyriakidis [95], Rykov
and Efrosinin [276], Tijms and van der Duyn Schouten [305].

(f) The removable server control: For dynamic control of working servers, it is
necessary to real-time response to the peak period or an emergency phenomenon
through increasing or decreasing the number of working servers according to
either customer number or system workload. We refer the readers to Feinberg
and Kim [120], Feinberg and Kella [119] and Iravani et al. [167].
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(g) The dynamic control of queueing behavior: blocking by Blackburn [39]
and Economou and Kanta [106]; reneging and impatience by Li et al. [220]
and Anderson [20]; and abandonment by Down et al. [102], Legros et al. [215],
Larrañaga et al. [209] and Zayas-Cabán et al. [341].

Objective Four: Threshold Control
In dynamic control of queues and networks, the threshold-type policy is a simple
and effective mode, including single-threshold and dual-threshold.

(a) The single-threshold policy: Brouns [50], Altman and Nain [18],
Federgruen and So [115], Brouns and Van Der Wal [51];

(b) The dual-threshold policy: Lu and Serfozo [231], Plum [258] and Kitaev
and Serfozo [183].

Objective Five: Optimal Routing Control
(a) The entering parallel-server policy: Rosberg et al. [266], Weber [319],

Bonomi [42], Menich and Serfozo [240], Xu et al. [332], Hordijk and Koole [161],
Chang et al. [70], Sparaggis et al. [291], Koole [189], Ku and Jordan [197], Down
and Lewis [103], Delasay et al. [91] and Li and Kameda [217].

(b) The routing policy: Abdel-Gawad [1], Altman [8,10], Towsley et al. [307],
Liang and Kulkarni [225], Xu and Zhao [333], Bradford [45], Rosberg and
Kermani [265], Ross [267], Stidham [295], Tassiulas and Ephremides [303],
Menich and Serfozo [240], Koole [189], Browne and Yechiali [47], Altman and
Nain [18] and Ho and Cao [157].

(c) The assignment policy: Weber [319], Bonomi [42] and Xu et al. [332].

Objective Six: Controlled Queues and Networks with Useful
Information
In the queueing networks, the useful information plays a key role in dynamic
control of queueing networks. Readers may refer to Kuri and Kumar [201],
Altman and Stidham [19], Honhon and Seshadri [159], Altman et al. [17], Altman
and Jiménez [15] and Rosberg and Kermani [265].

Load balancing is an interesting research direction in queueing networks
with simply observable information, e.g., see Down and Lewis [103], Chou and
Abraham [79], e Silva and Gerla [288], Li and Kameda [217], Li et al. [220,221],
Li [219] and Li and Lui [224].

Objective Seven: Controlled Queues and Networks with Pricing
The optimal pricing policy is an important research direction in dynamic control
of queues and networks, e.g., see Low [229], Chen and Frank [74], Yoon and
Lewis [340], Çelik and Maglaras [69], Economou and Kanta [106], Yildirim and
Hasenbein [339], Feinberg and Yang [125], Bradford [45], Xia and Chen [327]
and Federgruen and Zheng [116].
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7 Sensitivity-Based Optimization for MDPs of Queueing
Networks

In this section, we simple introduce the sensitivity-based optimization in the
MDPs, and then provide an overview on how to apply the sensitivity-based
optimization in dynamic control of queues and networks.

In the late 1980s, to study dynamic control of queueing systems, Professors
Yu-Chi Ho and Xi-Ren Cao proposed and developed the infinitesimal perturba-
tion method for discrete event dynamic systems (DEDS), which is a new research
direction for online simulation optimization of the DEDS. See Ho and Cao [158]
for more interpretation. Further excellent books include Glasserman [142], Cao
[56] and Cassandras and Lafortune [68].

Sensitivity-Based Optimization: Cao et al. [66] and Cao and Chen [65] pub-
lished a pioneer work that transforms the infinitesimal perturbation of DEDS,
together with the MDPs, into the so-called sensitivity-based optimization by
means of the policy-based Markov processes and the policy-based Poisson equa-
tions, in which they also developed new concepts, for example, performance
potential, and performance difference equation. On this research line, Cao [58]
summarized many basic results of the sensitivity-based optimization. In addi-
tion, Li and Liu [223] and Chapter 11 in Li [218] extended and generalized the
sensitivity-based optimization to a more general perturbed Markov process with
infinite states by means of the RG-factorizations.

So far some work has applied the sensitivity-based optimization to deal with
MDPs of queues and networks, e.g., see Xia and Cao [326], Xia and Shihada
[331], Xia [324], Xia and Jia [329], Xia et al. [328] and Xia and Chen [327]; Ma
et al. [233,234] for data centers; and Li et al. [222] for inventory rationing control.
It is worthwhile to note that the sensitivity-based optimization of queues and
networks can be effectively supported and developed by means of the matrix-
analytic method by Neuts [245,246] and the RG-factorizations by Li [218]. Also
see Ma et al. [233,234] and Li et al. [222] for more details.

Recently, Xi-Ren Cao further extended and generalized the sensitivity-based
optimization to the more general case of diffusion processes, called relative opti-
mization of continuous-time and continuous-state stochastic systems (see Cao
[64] with a complete draft). Important examples include Cao [59–63] and refer-
ences therein.

Event-Based Optimization Approach: In many practical systems, an event
usually has a specific physical meaning and can mathematically correspond to a
set of state transitions with the same characteristics. In general, the number of
events from change of system states is much smaller than the state number of the
system. Therefore, such an event can be used to describe an approximate MDP,
hence this sets up a new optimal framework, called event-based optimization.
The event-based optimization can directly capture the future information and
the structure nature of the system, which are reflected in the event to aggre-
gate performance potential. Note only can the event-based optimization greatly
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save the calculation, but also it alleviates the dimensional disaster of a network
decision process.

For the event-based optimization, readers may refer to, for example, dynamic
control of queueing systems by Koole [190] and Koole [195]; dynamic control of
Markov systems by Cao [57], Cao [53], Xia [330] and Jia [171]; partially observ-
able Markov decision processes by Wang and Cao [318]; and admission control
of open queueing networks by Xia [325].

8 Concluding Remarks

In this survey, we provide an overview for the MDPs of queues and networks,
including single-server queues, multi-server queues and queueing networks. At
the same time, the overview is also related to some specific objectives, for exam-
ple, input control, service control, dynamic control based on different service
mechanisms, dynamic control based on pricing, threshold control and so on.

Along such a line, there are still a number of interesting directions for poten-
tial future research, for example:

• Developing effective and efficient algorithms to find the optimal polices and
to compute the optimal performance measures, and also probably linking AI
and learning algorithms;

• discussing structure properties of the optimal policy in the MDPs of queueing
networks under intelligent environment (for example, IoT, big data, cloud
service, blockchain and AI), and specifically, dealing with multi-dimensional
queueing dynamic control;

• analyzing structure properties of the optimal policy in the MDPs with either
QBD processes, Markov processes of GI/M/1 type or Markov processes of
M/G/1 type, which are well related to various practical stochastic models;

• applying the sensitivity-based optimization and the event-based optimization
to deal with dynamic control of practical stochastic networks, for example,
production and inventory control, manufacturing control, transportation net-
works, healthcare, sharing economics, cloud service, blockchain, service man-
agement, energy-efficient management and so forth.
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16. Altman, E., Jiménez, T., Koole, G.: On optimal call admission control in resource-
sharing system. IEEE Trans. Commun. 49(9), 1659–1668 (2001)
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dissertation, Universitätsbibliothek (University of Trier) (2004)

108. Emmons, H.: The optimal admission policy to a multiserver queue with finite
horizon. J. Appl. Probab. 9(1), 103–116 (1972)

109. Erlang, A.K.: The theory of probabilities and telephone conversations. Nyt
Tidsskrift for Matematik 20(B), 33–39 (1909)

110. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence.
Wiley, New York (2005)

111. Ettl, M., Feigin, G.E., Lin, G.Y., Yao, D.D.: A supply network model with base-
stock control and service requirements. Oper. Res. 48(2), 216–232 (2000)

112. Farrar, T.M.: Resource allocation in systems of queues. Ph.D. dissertation, Uni-
versity of Cambridge (1992)

113. Farrar, T.M.: Optimal use of an extra server in a two station tandem queueing
network. IEEE Trans. Autom. Control 38(8), 1296–1299 (1993)

114. Farrell, W.: Optimal switching policies in a non-homogeneous exponential queue-
ing system. Ph.D. dissertation, University of California at Los Angeles (1976)

115. Federgruen, A., So, K.C.: Optimality of threshold policies in single-server queue-
ing systems with server vacations. Adv. Appl. Probab. 23(2), 388–405 (1991)

116. Federgruen, A., Zheng, Y.S.: An efficient algorithm for computing an optimal
(r,Q) policy in continuous review stochastic inventory systems. Oper. Res. 40(4),
808–813 (1992)



An Overview for Markov Decision Processes in Queues and Networks 61

117. Federgruen, A., Zipkin, P.: An efficient algorithm for computing optimal (s, S)
policies. Oper. Res. 32(6), 1268–1285 (1984)

118. Feinberg, E.A.: Optimality conditions for inventory control. In: Optimization
Challenges in Complex, Networked and Risky Systems, pp. 14–45. INFORMS
TutORials in Operations Research (2016)

119. Feinberg, E.A., Kella, O.: Optimality of D-policies for an M/G/1 queue with a
removable server. Queueing Syst. 42(4), 355–376 (2002)

120. Feinberg, E.A., Kim, D.J.: Bicriterion optimization of an M/G/1 queue with a
removable server. Probab. Eng. Inf. Sci. 10(1), 57–73 (1996)

121. Feinberg, E.A., Liang, Y.: Structure of optimal policies to periodic-review inven-
tory models with convex costs and backorders for all values of discount factors.
Ann. Oper. Res., 1–17 (2017)

122. Feinberg, E.A., Shwartz, A. (eds.): Handbook of Markov Decision Processes:
Methods and Applications. Springer, New York (2002). https://doi.org/10.1007/
978-1-4615-0805-2

123. Feinberg, E.A., Yang, F.: Optimality of trunk reservation for an M/M/k/N queue
with several customer types and holding costs. Probab. Eng. Inf. Sci. 25(4), 537–
560 (2011)

124. Feinberg, E.A., Yang, F.: Dynamic price optimization for an M/M/k/N queue
with several customer types. ACM SIGMETRICS Perform. Eval. Rev. 41(3),
25–27 (2014)

125. Feinberg, E.A., Yang, F.: Optimal pricing for a GI/M/k/N queue with several
customer types and holding costs. Queueing Syst. 82(1–2), 103–120 (2016)

126. Feinberg, E.A., Zhang, X.: Optimal switching on and off the entire service capacity
of a parallel queue. Probab. Eng. Inf. Sci. 29(4), 483–506 (2015)

127. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York
(2012). https://doi.org/10.1007/978-1-4612-4054-9

128. Franken, L.J., Haverkort, B.R.: Reconfiguring distributed systems using Markov-
decision models. In: Proceedings of the Workshop on Trends in Distributed Sys-
tems, pp. 219–228 (1996)

129. Gajrat, A., Hordijk, A., Ridder, A.: Large-deviations analysis of the fluid approx-
imation for a controllable tandem queue. Ann. Appl. Probab. 13(4), 1423–1448
(2003)

130. Gallisch, E.: On monotone optimal policies in a queueing model of M/G/1 type
with controllable service time distribution. Ann. Appl. Probab. 11(4), 870–887
(1979)

131. Gandhi, A.D., Cassandras, C.G.: Optimal control of polling models for trans-
portation applications. Math. Comput. Modell. 23(11–12), 1–23 (1996)

132. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review,
and research prospects. Manuf. Serv. Oper. Management. 5(2), 79–141 (2003)

133. Garavello, M., Piccoli, B.: Traffic Flow on Networks. Springfield: American Insti-
tute of Mathematical Sciences (2006)

134. Gast, N., Gaujal, B.: A mean field approach for optimization in discrete time.
Discrete Event Dyn. Syst. 21(1), 63–101 (2011)

135. Gast, N., Gaujal, B., Le Boudec, J.Y.: Mean field for Markov decision processes:
from discrete to continuous optimization. IEEE Trans. Autom. Control 57(9),
2266–2280 (2012)

136. Gaujal, B., Hordijk, A., Van Der Laan, D.: On the optimal open-loop control
policy for deterministic and exponential polling systems. Probab. Eng. Inf. Sci.
21(2), 157–187 (2007)

https://doi.org/10.1007/978-1-4615-0805-2
https://doi.org/10.1007/978-1-4615-0805-2
https://doi.org/10.1007/978-1-4612-4054-9


62 Q.-L. Li et al.

137. Gayon, J.P., De Vericourt, F., Karaesmen, F.: Stock rationing in an M/Er/1
multi-class make-to-stock queue with backorders. IIE Trans. 41(12), 1096–1109
(2009)

138. Gelenbe, E., Pujolle, G., Gelenbe, E., Pujolle, G.: Introduction to Queueing Net-
works. Wiley, New York (1998)

139. George, J.M., Harrison, J.M.: Dynamic control of a queue with adjustable service
rate. Oper. Res. 49(5), 720–731 (2001)

140. Ghoneim, H.A., Stidham, S.: Control of arrivals to two queues in series. Eur. J.
Oper. Res. 21(3), 399–409 (1985)

141. Giovanidis, A., Wunder, G., Bühler, J.: Optimal control of a single queue with
retransmissions: delay-dropping tradeoffs. IEEE Trans. Wireless Commun. 8(7),
3736–3746 (2009)

142. Glasserman, P., Ho, Y.C.: Gradient Estimation via Perturbation Analysis.
Springer, Boston (1991)

143. Glasserman, P., Yao, D.D.: Monotone Structure in Discrete-Event Systems. Wiley,
New York (1994)

144. Groenevelt, R., Koole, G., Nain, P.: On the bias vector of a two-class preemptive
priority queue. Math. Methods Oper. Res. 55(1), 107–120 (2002)

145. Guo, X., Hernández-Lerma, O.: Continuous-Time Markov Decision Processes.
Springer, Heidelberg (2009)

146. Ha, A.Y.: Inventory rationing in a make-to-stock production system with several
demand classes and lost sales. Manage. Sci. 43(8), 1093–1103 (1997)

147. Ha, A.Y.: Stock-rationing policy for a make-to-stock production system with two
priority classes and backordering. Naval Res. Logistics 44(5), 457–472 (1997)

148. Ha, A.Y.: Stock rationing in an M/Ek/1 make-to-stock queue. Manage. Sci. 46(1),
77–87 (2000)

149. Hajek, B.: Optimal control of two interacting service stations. IEEE Trans.
Autom. Control 29(6), 491–499 (1984)

150. Hariharan, R., Moustafa, M.S., Stidham, S.: Scheduling in a multi-class series of
queues with deterministic service times. Queueing Syst. 24(1–4), 83–99 (1996)

151. Harrison, J.M.: Dynamic scheduling of a multiclass queue: discount optimality.
Oper. Res. 23(2), 270–282 (1975)

152. Harrison, J.M.: Brownian Motion and Stochastic Flow Systems. Wiley, New York
(1985)

153. Haviv, M., Puterman, M.L.: Bias optimality in controlled queueing systems. J.
Appl. Probab. 35(1), 136–150 (1998)

154. Helm, W.E., Waldmann, K.H.: Optimal control of arrivals to multiserver queues
in a random environment. J. Appl. Probab. 21(3), 602–615 (1984)

155. Hernádez-Lerma, O., Lasserre, J.B.: Discrete-Time Markov Control Processes:
Basic Optimality Criteria. Springer, New York (1996). https://doi.org/10.1007/
978-1-4612-0729-0
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Abstract. Motivated by various applications in inventory management,
this article is devoted to the stochastic monotonicity and comparabil-
ity of two special mean-risk models, called mean-conditional value-at-
risk (abbreviated as MCVaR) measures. Firstly, we characterize the two
MCVaR measures by the second quantile function of a random variable,
and show that the two MCVaR measures are consistent with ascend-
ing stochastic dominance (abbreviated as ASD) or descending stochastic
dominance (abbreviated as DSD) for risk lovers by using then relations
between the second quantile function and two stochastic dominance. We
also show that the two MCVaR measures have loss-aversion property for
risk-aversion case, and have subadditivity (superadditivity) and convex-
ity (convexity) for risk-seeking (risk-aversion), respectively. We obtain
similar results by using a linear transformation of a random variable
with a location and a scalar parameters, the transformation is corre-
sponding to ASD and DSD as location parameter changes. The obtained
results with respect to the stochastic monotonicity for the two MCVaR
measures are used to solve a inventory decision problem with bi-objective
maximization expected utility considering risk preference (including risk-
aversion and risk-seeking) and stockout cost. We obtain the close solution
and optimal expected utility for this problem. Due to the complexity of
the solution, we provide several upper and lower bounds for the optimal
order quantity, which are corresponding value in risk-neutral or with-
out stockout cost cases. The obtained results in this paper has a certain
insights and help for enterprises facing market uncertainty and consid-
ering decision maker’s risk preference.

Keywords: Newsvendor model · Stochastic dominance · Levy’s
transformation · Mean-conditional value-at-risks · Stockout cost

1 Introduction

Consider a company, e.g. a retailer sourcing a product with short life cycle to
stock using the framework of the newsvendor model, which is based upon risk
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neutrality so that managers will place orders to maximize expected profits or
minimize expected cost. However, in practice, there are many examples that
imply managers’ decisions do not always correspond to the expected profit-
maximization order quantity (e.g., Kahn 1992; Fisher and Raman 1996; Pat-
suris 2001). Experimental findings show that for high-profit products the order
quantity is less than the one of the risk-neutral decisions maker and for lower-
profit products the order quantity is higher than the one of the risk-neutral
decisions maker (e.g., Schweitzer and Cachon 2000; Bolton and Katok 2008).
On the other hand, the optimal inventory policies may involve stockouts under
stochastic demand. The effect of stockout in inventory models is usually taken
into account by means of a stockout (penalty) cost, and often assumed to be pro-
portional to the excess of demand over supply when the demand during stockout
is met by a priority shipment or extra production run (see Schwartz 1966; Caine
and Plaut 1976). For example, lost sales and production disruptions resulting
from the stockouts prompted one quarter of the buyers to abandon their supplier
by personal interviews and a mail survey of professional buyers in Canada and
the U.S.A (see Banting et al. 2015). Hence, it is very important and interesting
for the problems about the non-expected profit maximization (or cost minimiza-
tion) and considering stockout cost in stochastic inventory management.

There are lots of approaches to analyze the non-expected profit maximiza-
tion (or cost minimization) problems for risk averters: expected utility theory
(abbreviated as EUT) (Eeckhoudt et al. 1995; Agrawal and Seshadri 2000a,b;
Keren and Pliskin 2006); stochastic dominance (abbreviated as SD) (Quirk and
Saposnik 1962; Fishburn 1964, 1974); mean-variance (abbreviated as MV) model
(Markowitz 1952, 1970) etc. However, the above methods exist some limitations.
The EUT is however, too conceptual to identify in practice, and it exists a limita-
tion in the economics field, i.e., risk aversion within the EUT framework implies
that people are approximately risk-neutral when economic risk are small (Arrow
1971), but it is unreasonable when economic risk are large (see the example
presented by Rabin 2000). The stochastic dominance can model risk averters,
but it is computationally very difficult, it is not quite suitable with some of the
more complex inventory decision issues-it is a multiple criteria model with a
continuum of criteria. The mean-variance valuation satisfies a class of decision
makers with concave quadratic utility function to model risk averters, but it is
inadequate in the sense that it equally quantifies desirable upside influence and
undesirable downside outcomes.

In contrast to wide researches about profit maximization and risk control in
newsvendor problem, the study of loss aversion and risk-seeking in newsvendor
problem is relatively few. Motivated by the empirical supports and successful
applications of loss aversion in other fields (see Rabin 1998 and Camerer 2001),
we propose two special mean-risk models to model a newsvendor problem with
stockout cost, the two mean-risk models can not only model the risk-aversion
and risk-seeking, but also model loss aversion in newsvendor situation. That is,
we analyze a complex newsvendor problem incorporating decision maker’s risk
preference or loss aversion and considering positive stockout cost.
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The main contributions of the paper are:

• We introduce two class of special mean-risk models which the risk measures
are the conditional expected values of low or high profit (i.e., mean-CVaR
models). We show that the two mean-CVaR measures have loss aversion char-
acterization when the risk preference coefficient is larger than one.

• We show that the two class of mean-CVaR measures are consistent with
the ascending stochastic dominance (abbreviated as ASD) for risk averters
or descending stochastic dominance (abbreviated as DSD) for risk lovers, it
can also be characterized by a transformation of a random variable depend-
ing a two parameters representing the deterministic demand and demand
variability.

• We provide a close solution of the optimal order quantity and expected utility
for the newsvendor model with mean-CVaR constraint and stockout cost.
We show that a risk-averse inventory manager holds more inventory level
than that without stockout cost, a risk-taking inventory manager holds less
inventory level than that without stockout cost.

• We provide a comparison result for the optimal inventory level of the newsven-
dor model in risk-averse, risk-taking and risk-neutral cases. We show that a
risk-taking inventory manager holds more inventory level than in the classical
newsvendor model (risk-neutral case), a risk-averse inventory manager holds
less inventory level than in the classical newsvendor model.

Note that in this paper ‘increasing’ means ‘nondecreasing’ and ‘decreasing’
means ‘nonincreasing’.

The rest of this paper is organized as follows. In Sect. 2 we briefly review
some papers of related literature. In Sect. 3 we introduce two class of special
mean-risk models, and characterize them by stochastic dominance and a trans-
formation of a random variable with location and scalar parameters. In Sect. 4,
from the perspective of application, we analyze a newsvendor problem consid-
ering stockout cost and newsvendor’s preferences. In Sect. 5, we provide several
numerical examples to illustrate our results. Finally, in Sect. 6, we offer conclud-
ing remarks and suggest opportunities for future research.

2 Literature Review

2.1 The Newsvendor Problem Considering Risk Averters

In modern operations management, there are lots of approaches to analyze the
non-expected profit maximization (or cost minimization) problems for risk avert-
ers: expected utility theory (EUT); stochastic dominance; mean-variance and
mean-risk model etc.

Many authors have studied the selection rules for risk averters by expected
utility theory (e.g., Eeckhoudt et al. 1995; Agrawal and Seshadri 2000a; 2000b;
Keren and Pliskin 2006). Readers may refer to Schoemaker (1982) for a compre-
hensive review of EUT.
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Stochastic dominance is one of the fundamental concepts of decision theory
(Whitmore and Findlay 1978; Levy 1992) and has been widely used in economics
and finance (Bawa 1982; Levy 1992), risk theory (Denuit et al. 2005), reliability
(Ross and Schechner 1984; Bhattacharjee 1991) and queueing model (Yu 2017).
It originated in the majorization theory (Hardy, Littlewood and Polya 1934) for
the discrete case and was later extended to general distributions (Hanoch and
Levy 1969; Rothschild and Stiglitz 1969). Stochastic dominance is based on an
axiomatic model of risk-averse preferences (Fishburn 1964), it introduces a par-
tial order in the space of real random variables. The first degree relation was
originated by Quirk and Saposnik (1962) which carries over to expectations of
monotone utility functions, the second degree relation–to expectations of concave
nondecreasing utility functions, and the increasing convex ordering relation–to
expectations of convex nondecreasing utility functions. These increasing concave,
linear and increasing convex utility functions corresponding three major types of
persons: risk averters, risk neutrals and risk lovers. For equal mean distributions,
a theorem proved by Karamata (1932) is similar to the second degree stochastic
dominance (see also Lehmann 1955; Hardy et al. 1959; Lebreton 1987). More col-
lections of such works include Marshall and Olkin (1979), Stoyan (1983), Shaked
and Shanthikumar (1994) and Ross (1983). Song (1994) explored the effect of
leadtime uncertainty in minimizing cost newsvendor model with two equal-mean
demands by using more variable order. The auther finds optimal expected cost
is increasing when demand variability increases. Yu (2014a) studied the effect of
demand variability in maximizing profit newsvendor model with unequal-mean
demands by using more variable order and generalized more variable order. The
author finds optimal expected profit may be increasing when demand variability
increases under a certain condition. Yu (2014) analyzed the effect of demand
variability in inventory system with sales effort and replenishment decisions. Yu,
Yang and Li (2018) discussed the effect of supply leadtime and demand uncer-
tainty in inventory systems.

The mean-risk approach quantifies the problem in a expressive form of only
two criteria: the mean, representing the expected outcome, and the risk, a scalar
measure of the variability of outcomes (Markowitz 1952). It is appealing to deci-
sion makers and allows a simple trade-off analysis, analytical or geometrical. The
portfolio optimization problem is modeled as a mean-risk bicriteria optimization
problem. The classical Markowitz model uses the variance as the risk measure,
and is used to analyze optimization problem for risk averters (Markowitz 1952,
1970; Tobin 1958, 1965). However, many authors have pointed out that the
mean-variance model is, in general, not consistent with stochastic dominance
rules.

The CVaR is known as risk measures which is coherent (Artzner et al. 1999),
and consistent with the second (or higher) order stochastic dominance (Pflug
2000; Ogryczak and Ruszczyński 2002). These preferable properties are induced
from some axiomatization of rational investors’ behavior under uncertainty and,
thus, they are meaningful also to a manager who faces uncertain profit/loss sit-
uation as in the newsvendor problem. In particular, the consistency with the
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stochastic dominance implies that minimizing the CVaR never conflicts with
maximizing the expectation of any risk-averse utility function (Ogryczak and
Ruszczyński 2002). Chen et al. (2003) proposed a model about CVaR of profit
for newsvendor problem and obtained the optimal order quantity. Gotoh and
Takano (2007) provided analytical solutions and linear programming formula-
tion for minimizing CVaR in the newsvendor problem. Ma et al. (2012) consid-
ered a supply chain with a risk-neutral manufacturer and a risk-averse retailer
who use the CVaR measure as his risk measure. Sun et al. (2013) proposed
a stochastic programming model for the newsvendor problem by adopting the
CVaR measure as the risk metric in the objective function. Wu et al. (2013)
introduced the CVaR measure to study the effect of capacity uncertainty on the
inventory decisions of a risk-averse newsvendor. Xu et al. (2013) introduced a
tri-level model for the three-stage supply chain, in which the risk-averse retailer
intends to maximize his CVaR about profit. Qiu et al. (2014) introduced a CVaR
based profit maximization model to study the robust inventory decision-making
problem faced by risk-averse newsvendors with incomplete demand information.
Katariya et al. (2014) investigated the relationship between risk-neutral and
risk-averse newsvendor problems under the CVaR measure. All these papers
aim to control the potential risks and to reduce losses, either by maximizing
the CVaR about profit or minimizing the CVaR about cost for the risk-averse
newsvendor. Yu (2014c) discussed the stochastic monotonicity of mixture condi-
tional value-at-risk and its applications to inventory system without considering
stockout cost. Yu and Wang (2014) analyzed the effect of demand uncertainty
in inventory systems with mixture CVaR constrain.

2.2 The Newsvendor Problem Considering Risk Averters and Risk
Takers

From the perspective of decision-making, there are three major types of persons:
risk averters, risk neutrals and risk lovers. Their corresponding utility functions
are concave, linear and convex; all are increasing functions. Quirk and Saposnik
(1962) and many others develop some univariate stochastic dominance (SD) rules
for risk averters. On the other hand, Hammond (1974) and many others develop
the univariate SD rules for risk seekers. Li and Wong (1999 Extension of...) devel-
oped some stochastic dominance theorems for the location and scale family of
random variables and linear combinations of random variables and for risk lovers
as well as risk averters that extend results in Hadar and Russell (1971). Li and
Wong (1999) called stochastic dominance for risk lovers descending stochastic
dominance (DSD), corresponding to the increasing convex ordering of Stoyan
(1983). They called stochastic dominance for risk averters ascending stochastic
dominance (ASD), corresponding to the increasing concave ordering (i.e., SSD)
of Stoyan (1983). We note that stochastic dominance for risk neutrals is a spe-
cial case in the theory of stochastic dominance for risk averters or risk lovers.
Some authors analyzed the univariate ascending (descending) stochastic dom-
inance applied to risk averters (seekers) (e.g., Sriboonchitta, et al. 2009). Guo
and Wong (2016) first extends some well-known univariate stochastic dominance
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results to multivariate stochastic dominances for both risk averters and risk seek-
ers, respectively. Jammernegg and Kischka (2007) proposed a newsvendor model
where the inventory manager can control internal and customer-oriented perfor-
mance measures. The objective function is a convex combination of conditional
expected values of low and high profits, respectively. They showed that A risk-
averse inventory manager cannot Pareto-dominate a risk-neutral or risk-taking
inventory manager with respect to the expected profit and the level of product
availability. Gotoh and Takano (2007) provided a optimal solution through a
algorithm with three steps for the unconstrained mean-CVaR model with posi-
tive stockout cost, and showed that a closed form solution of the model did not
exist. They only obtained a closed form solution of the model for zero stockout
cost case. Yu (2014c) discussed the stochastic monotonicity of mixture condi-
tional value-at-risk and its applications to inventory system without considering
stockout cost. Yu and Wang (2014) analyzed the effect of demand uncertainty
in inventory systems with mixture CVaR constrain.

2.3 The Newsvendor Problem by Mean-Preserving Transformation

The mean-preserving transformation (abbreviated as MPT) approach is used to
study the effect of demand variability in stochastic modeles, it was introduced by
Gerchak and Mossman (1992), which is used to study the magnitude of the opti-
mal cost and order quantity change of newsboy with loss of sales when demand
variability increases. They showed that higher variability will lead to higher costs.
They also found that although the service level is not related to the optimal cost
when demand variability increases, but the optimal order quantity increases at
the low critical ratio when demand variability increases. Chen and Federgruen
(2000) pointed out that compared with profit measure, cost measure is more com-
plicated. From a corporate point of view, they analyszed the effect of reducing
demand variability based on profits. Li and Atikins (2005) focused on the impact
of coordination and information when market demand becomes more variable in
the sense of specific MPT. Zhu and Wu (2014) provided a general framework for
stochastic variability ordering under any mean-preserving transformation that
can be parameterized by a single scalar, and apply it to a broad class of specific
transformations, including the widely used mean-preserving affine transforma-
tion, truncation, and capping. Qin et al. (2011) analyzed the case in which mar-
keting effort effects demand uncertainty with MPT. They found that demand
mean increase due to marketing effort may leads to the increase about the opti-
mal order quantity. But the effect about demand variability reduction is not as
clear. Chua and Liu (2015) studied the maximization newsvendor problem using
MPT. They find that optimal order quantity decreases in demand variability
for zero salvage value. Begen et al. (2016) conducted the analysis to examine
the impacts of supply uncertainty, demand uncertainty and uncertainty reduc-
tion efforts on optimal order quantity and total cost through MPT. Levy (1977)
pointed out that the mean-preserving transformation can not explain the situa-
tion that demand mean and variability changed together. The author introduced
a new transformation of a random variable, which includes location parameter
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r and scale parameter α, where parameter r can measure the effect of different
mean, parameter α can measure the effect of variability. Yu and Li (2018) studied
the stochastic comparison of the generalized mean-preserving transformations
including Levy (1977)’s and Zhu and Wu (2014)’s transformations, and applied
the obtained results to solve inventory optimization problem. They showed that
the level of demand variability, the size of average demand and the sale price
of products will have an impact on the profit in newsvendor model. Usually the
optimal profit will decrease when demand variability increases, however, it may
be increase when demand variability increases under some conditions, such as
sale price of the products is low.

2.4 The Newsvendor Problem Considering Stockout Cost

For the newsvendor problem in the presence of the loss of goodwill stockout
opportunity cost, Choi et al. (2008) and Wu et al. (2009) both provide some
more analytical results. Choi et al. (2008) extend Choi et al. (2001) and con-
sider the newsvendor problem under the MV framework with decision mak-
ers possessing different risk attitude (namely, risk-averse, risk-neutral, and risk-
seeking). They found that when we include an explicit stockout penalty cost in
the problem, the variance of profit becomes more complicated. If this stockout
cost is huge, the optimal order quantities for risk-averse and risk-seeking deci-
sion makers will leave the corresponding efficient regions (i.e., the efficient regions
when the stockout cost equals zero). In particular, Wu et al. (2009) analytically
prove that when demand is distributed following a continuous power distribu-
tion, the optimal stocking quantity under an MV newsvendor model will exceed
the risk-neutral case’s optimal “fractile” quantity. Yu (2014a) studied the effect
of demand variability on expected cost (profit) of minimization cost (maximiza-
tion profit) newsvendor problems by using stochastic dominance and variability
orderings. They showed that there exists a certain demand distribution, the opti-
mal expected cost (profit) decrease (increase) when demand variability increases
for those shortage penalty cost that is larger than a certain value.

3 Stochastic Monotonicity of the Mean-CVaRs

In this section, we characterize the stochastic monotonicity of two special mean-
risk models, i.e., mean-CVaR models, by two methods: one is stochastic dom-
inance, another is the transformation with two parameters presented by Levy
(1977).

3.1 Stochastic Dominance and Mean-Risk Models

In this subsection, we provide several relations between stochastic dominance
and mean-risk models, and show that these mean-risk models are consistent
or ξ-consistent with the ascending stochastic dominance (abbreviated as ASD)
for risk averters or descending stochastic dominance (abbreviated as DSD) for
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risk lovers. These characterizations will be applied to analyze inventory decision
problem with risk preference decision maker in Sect. 4.2.

Stochastic dominance is defined by introducing a partial order in the space
of real random variables. Consider two continuous random variables X and Y
with distribution functions FX(·) and FY (·) having a continuously differentiable
densities fX(·) and fY (·) on an interval [�, �̄], where � or �̄ may be finite or infinite
taking −∞ or ∞, respectively, in late case, the corresponding closed interval is
written as open interval.

The first performance function F
(1)
X (·) is defined as the right-continuous

cumulative distribution function itself:

F
(1)
X (t) = FX(t) = P{X ≤ t}, t ∈ [�, �̄]. (1)

The first degree stochastic dominance (FSD) is defined as follows

Y ≥FSD X ⇐⇒ F
(1)
X (t) − F

(1)
Y (t) ≥ 0 for all t ∈ [�, �̄]. (2)

The second performance function F
(2)
X (·) is given by areas below the distri-

bution function FX(·):

F
(2)
X (t) = E[(t − X)+] =

∫ t

�

FX(x)dx, x ∈ [�, �̄]. (3)

and defines the ascending stochastic dominance (abbreviated as ASD) for risk
averters (see Li and Wong 1999), equivalently, the second degree stochastic dom-
inance (see Hadar and Russel 1969; Hanoch and Levy 1969):

Y ≥ASD X ⇐⇒ F
(2)
X (t) − F

(2)
Y (t) ≥ 0 for all x ∈ [�, �̄]. (4)

Levy (1992) provided the necessary condition for the ASD relation

Y ≥ASD X =⇒ μY ≥ μX . (5)

From the definition of ASD, it is easily to see that

Y ≥ASD X =⇒ V ar(Y ) ≤ V ar(X) and Cv(Y ) ≤ Cv(X). (6)

where Cv(X) = V ar(X)/(E[X])2, Cv(Y ) = V ar(Y )/(E[Y ])2 are coefficient of
variation of X and Y , respectively.

Remark 1. There are three definitions of “more riskier” associated with ASD
when two random variables X and Y have identical means, and showed the
equivalence of the following three definitions (see Rothschild and Stiglitz 1970):

(i) Y ≥ASD X.
(ii) E[u(Y )] ≥ E[u(X)] for all increasing concave function u(·).
(iii) X = Y + Z (X equal to Y plus a noise Z with E[Z|Y ] = 0).
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The third equivalent definitions of Rothschild and Stiglitz (1970) may help
us understanding why this is a variability ordering for the ASD.

For decision making under uncertainty, the ascending stochastic dominance
for risk averters is more important, it is equivalent to the comparison of two
second quantile functions F

(2)
X (·) and F

(2)
Y (·). If Y ≥ASD X, then Y is preferred

to X within all risk-averse preference models that prefer larger outcomes. Hence,
it is a matter of primary importance that an approach to the comparison of ran-
dom outcomes be consistent with the ascending stochastic dominance relation.
This paper focuses on the relation between ASD and the two mean-risk models
which the risk measures are the conditional expected values of low or high profit.

In the following we consider the relation between ASD and usual mean-risk
model. Mean-risk approaches are based on comparing two scalar characteristics,
the first is μ which represents the expected outcome (reward), and the second is
τ which represents some measure of risk.

Definition 1. We say that the mean-risk model (μX , τX) is consistent with the
ASD, if the following relation holds

Y ≥ASD X =⇒ μY ≥ μX and τY ≤ τX . (7)

Remark 2. From the definition of ASD, we see that the mean-risk model with
the risk measure defined as the expected shortfall below some fixed target t,
i.e., τX(t) = E[(t − X)+] is consistent with the ASD, where (z)+ = max{z, 0}.
Another risk measure is variance V ar(X) = E[(X−E[X])2], the mean-risk model
(μX , V ar(X)) is consistent with the ASD.

An important advantage of mean-risk approaches is the possibility of a pic-
torial tradeoff analysis. Denoted ξ by a trade-off coefficient between the risk and
the mean, we may compare two real values μX −ξτX and μY −ξτY . The following
relation holds

μY ≥ μX and rY ≤ rX =⇒ μY − ξτY ≥ μX − ξτX for all ξ > 0. (8)

In this paper we show that some mean-risk models (μX , τX) are ξ-consistent
with the ASD, where ξ positive constant, that is, ξ > 0 (see Definition 1.2 of
Ogryczak and Ruszczyński 2002).

Definition 2. We say that the mean-risk model (μX , τX) is ξ-consistent with
the ASD model, if there exists a positive constant ξ > 0 such that for all X and
Y , the following relation holds

Y ≥ASD X =⇒ μY − ξτY ≥ μX − ξτX . (9)

Based on the fact that the Y ≥ASD X =⇒ μY ≥ μX (see Levy 1992). This
Definition is consistent with that given by Ogryczak and Ruszczyński (1999).

Remark 3. An example of the mean-risk model is that the risk measure takes
the absolute semideviation δ̄X given by

δ̄X = E[(μX − X)+] =
∫ μX

−∞
(μX − x)dFX(x), (10)
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then the mean-risk model (μX , δ̄X) is 1-consistent with ASD (see Ogryczak and
Ruszczyński 2002), where (z)+ = max{z, 0}. Another example of the mean-risk
model is that the risk measure takes the conditional expected values of high
profit, the mean-risk model (μX ,−CV aR

(1/η)
η (X)) in (39) is (λ̃ − 1)/(1/η − 1))-

consistent with ASD when λ̃ ≥ 1. (see Theorem 1(ii)).
From (9), for 0 < ζ ≤ ξ, we have

μY ≥ μX and μY − ξτY ≥ μX − ξτX =⇒ μY ≥ μX and μY − ζτY ≥ μX − ξτX . (11)

That is, ξ-consistency implies ζ-consistency for all 0 < ζ ≤ ξ. Hence, (9) may
be interpreted as the consistency with ASD of the mean-risk model, provided
that the trade-off coefficient is bounded from above by ξ.

3.2 Characterization of Mean-CVaR by Stochastic Dominance

In this subsection, we characterize two mean-CVaRs in (38) and (39) by using
the relation between the mean-risk models and stochastic dominance in above
subsection, and show that the two mean-CVaR models are δ-consistent with the
ascending stochastic dominance for risk averters or the descending stochastic
dominance for risk lovers, where δ is a constant determined by risk preference
coefficient λ̃.

Firstly, we provide the properties of quantile dominance and the Lorenz
curve.

Consider the quantile model of stochastic dominance (Levy and Kroll 1978).
Let X be a continuous random variable with support [�, �] and let FX(·) be its
distribution function, i.e., FX(x) = P{X ≤ x}.

The first quantile function F−1
X : (0, 1) → [�, �] corresponding to a real ran-

dom variable X is defined as the left continuous inverse of the cumulative dis-
tribution function (Pflug 2000)

F−1
X (η) = inf{x : FX(x) ≥ η}, 0 < η < 1. (12)

When the inverse FX(·) does not exist, one can obtain a solution F−1
X (·) via

a simple numerical calculation (Silver et al. 1998).
Given η ∈ (0, 1) the number qX(η) is called a η-quantile of the random

variable X if Pr{X < qX(η)} ≤ η ≤ Pr{X ≤ qX(η)}.
From the definition of FSD we have

Y ≥FSD X ⇐⇒ F−1
Y (η) ≥ F−1

X (η) for all 0 < η < 1. (13)

Remark 4. Value-at-Risk (VaR) defined as the maximum loss at a specified
confidence level η is a widely used quantile risk measure. For a fixed level η,
0 < η < 1, define the VaR as the η-quantile (see Pflug 2000):

V aRη(X) = F−1
X (η). (14)
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To obtain quantile measures which are consistent with the ASD, Ogryczak
and Ruszczynski (2002) introduce the second quantile function F

(−2)
X : (0, 1) →

[�, �] defined as

F
(−2)
X (η) =

∫ η

0

F−1
X (θ)dθ for 0 < η < 1, (15)

where F
(−2)
X (0) = 0.

Remark 5. The second quantile function F
(−2)
X (·) in (15) can be rewritten as

F
(−2)
X (η) =

∫ F −1
X (η)

�

(η − FX(x))dx + η�, for 0 < η < 1, (16)

which is called generalized TTT transform, denoted by T̃X(·) (see Yu 2014a).

Remark 6. The function F
(−2)
X (·) is well defined for any random variable X

satisfying the condition E[X] < ∞. The function F
(−2)
X (·) is convex. The graph

of F
(−2)
X (·) is called the absolute Lorenz curve or ALC diagram for short. The

Lorenz curves are used for inequality ordering (Gastwirth 1971; Arnold 1986;
Muliere and Scarsini 1989) of positive random variables, relative to their (pos-
itive expectations). Such a Lorenz curve LX(γ) = F−2

X (γ)/μX , is convex and
increasing. The main application of the ALC diagram is the analysis of risk and
safety measures using quantiles of the distribution of the random outcome.

The following Proposition 1 provides basic properties for the second quantile
function F

(−2)
X (·) in (15), which will be used to characterize the mean-CVaRs in

(38) and (39). It can be obtained from (16), we omitted its proof.

Proposition 1. Consider a continuous random variable X. We have

(i) The second quantile function F
(−2)
X (η) in (15) is increasing convex function

of η in interval (0, 1) and

∂F
(−2)
X (η)
∂η

= F−1
X (η) for all 0 < η < 1. (17)

(ii) F
(−2)
X (0) = 0, F

(−2)
X (1) = E[X], and

0 ≤ F
(−2)
X (η) ≤ E[X] for all 0 < η < 1. (18)

The following Lemma 1 shows that the conjugate function F
(−2)
X (·) in (15)

may fully characterize the ASD relation. See Theorem 3.2 of Ogryczak and
Ruszczyński (2002) or Theorem 3 in Levy (1992).

Lemma 1. For two random variables X and Y with the second quantile func-
tion F

(−2)
X (·) and F

(−2)
Y (·), respectively. Then

Y ≥ASD X ⇐⇒ F
(−2)
Y (η) ≥ F

(−2)
X (η) for all 0 < η < 1. (19)
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Ogryczak and Ruszczyński (2002) provided another representation of the
second quantile function. Let η ∈ (0, 1) and suppose F

(−1)
X (·) exists such that

FX(x) = η. Then

F
(−2)
X (η) = ηE[X|X ≤ F

(−1)
X (η)]. (20)

Remark 7. From Corollary 3.3(ii) of Ogryczak and Ruszczyński (2002), The
second quantile function F

(−2)
X (·) is equivalent to the maximization problem

max
z∈R

(ηz − E[(z − X)+]), (21)

that is,

F
(−2)
X (η) = max

z∈R

(ηz − E[(z − X)+]), (22)

which is convex conjugate of convex function ϕ(z) = E[(z − X)+].
For a fixed level η, 0 < η < 1, the relation (19) in Lemma 1 can be rewritten

in the form

Y ≥ASD X ⇐⇒ F
(−2)
Y (η)/η ≥ F

(−2)
X (η)/η for all 0 < η < 1. (23)

which is the safety measure

CV aR(1/η)
η (X) =

F
(−2)
X (η)

η
, 0 < η < 1. (24)

This measure has a equivalent definition as follows

CV aR(1/η)
η (X) = max

z∈R

{z − 1
η
E[(z − X)+]}, (25)

(see e.g., Rockafellar and Uryasev 2000, 2002).
We call CV aR

(1/η)
η (·) in (25) the maximization conditional value at risk

where η reflects the degree of risk aversion, i.e., a lower value implies a higher
degree of risk aversion and a value of η = 1 implies risk neutrality. Combining
(24) and (20), the maximization conditional value at risk in (25) can be treated
as the conditional expectation of the revenue X when the revenue is not more
than η-VaR, i.e

CV aR(1/η)
η (X) = E[X|X ≤ F−1

X (η)}. (26)

The following Proposition 2 provides basic properties for the maximization
conditional value at risk in (24), which will be used to characterize the mean-
CVaRs in (38) and (39). Its proof is similar as Proposition 1, we omitted it.

Proposition 2. Consider a continuous random variable X with support [�, �].
We have
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(i) The maximization conditional value at risk in (24) is increasing function of
η in interval (0, 1] and

∂CV aR
(1/η)
η (X)

∂η
=

1
η2

∫ F −1
X (η)

�

FX(x)dx > 0 for all 0 < η < 1. (27)

(ii) limη→1 CV aR
(1/η)
η (X) = E[X], and

lim
η→0

CV aR(1/η)
η (X) = lim

η→0
F−1

X (η) = �. (28)

(iii) CV aR
(1/η)
η (X) satisfies

� < CV aR(1/η)
η (X) ≤ E[X] for all 0 < η < 1. (29)

Another conditional value at risk called the minimization conditional value
at risk. For a fixed level η, 0 < η < 1, the minimization conditional value at risk
CV aR

(0)
η (·) is defined as the solution of an optimization problem

CV aR(0)
η (X) = min

z∈R

{z +
1

1 − η
E[(X − z)+]}, (30)

(see e.g., Uryasev and Rockafellar (1999); Pflug (2000)).
Uryasev and Rockafellar (1999) have shown that for smooth distribution

FX(·) the minimization conditional value at risk CV aR
(0)
η (X) equals the condi-

tional expectation of X, given that X ≥ V aRη(X), i.e

CV aR(0)
η (X) = E[X|X ≥ F−1

X (η)}. (31)

It is easily to show that CV aR
(0)
η (·) given in (30), can be represented by the

function F
(−2)
X (·), that is

CV aR(0)
η (X) =

E[X] − F
(−2)
X (η)

1 − η
, 0 < η < 1. (32)

The following Proposition 3 provides basic properties for the minimization
CVaR in (30), which will be used to characterize the mean-CVaRs in (38) and
(39). Its proof is similar as Proposition 2, we omitted it.

Proposition 3. Consider a continuous random variable X with support [�, �].
We have

(i) The minimization conditional value at risk CV aR
(0)
η (·) in (30) is increasing

function of η in interval (0, 1] and

∂CV aR
(0)
η (X)

∂η
=

1
(1 − η)2

∫ �

F −1
X (η)

FX(x)dx > 0 for all 0 < η < 1. (33)
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(ii) limη→0 CV aR
(0)
η (X) = E[X], and

lim
η→1

CV aR(0)
η (X) = lim

η→1
F−1

X (η) = �. (34)

(iii) CV aR
(0)
η (X) satisfies

E[X] ≤ CV aR(0)
η (X) ≤ �̄ for all 0 < η < 1. (35)

Combining (31) and (25), it is easily to show that the minimization condi-
tional value at risk CV aR

(0)
η (·) in (30) and the maximization conditional value

at risk CV aR
(1/η)
η (·) in (25) satisfy the following relation:

ηCV aR(1/η)
η (X) + (1 − η)CV aR(0)

η (X) = E[X], 0 < η < 1. (36)

Now, we consider the mixture conditional value at risk, denoted as
CV aR

(λ/η)
η (·), it is a convex combination of conditional expected values of low

in profit (25) and high profit (30), respectively, and is given by (see e.g., Jam-
mernegg and Kischka 2007)

CV aR(λ/η)
η (X) = λCV aR(1/η)

η (X) + (1 − λ)CV aR(0)
η (X), (37)

where 0 ≤ λ ≤ 1 and 0 < η < 1.

Remark 8. According to Jammernegg and Kischka (2007), the two risk param-
eters λ and η all reflect the degree of risk aversion, a larger value of λ implies a
higher degree of risk aversion and a lower value of η implies a higher degree of
risk aversion. Based on this property, Yu (2014a) introduced a risk preference
coefficient λ̃ := λ/η, 0 ≤ λ̃ ≤ 1/η, λ̃ reflects the degree of risk preference of
decision maker, (i) when λ̃ = 1, it represents risk neutral, corresponding reflects
to the expected value E[X]; (ii) when 1 < λ̃ ≤ 1/η, it represents risk aversion,
including the conditional expected values of low profit CV aR

(1/η)
η (X); (iii) risk

taking when 0 ≤ λ̃ < 1, including the conditional expected values of high profit
CV aR

(0)
η (X). This property of the risk preference coefficient λ̃ is consistent with

the submodular property of the risk preference coefficient λ̃ with respect to λ̃ in
Theorem 3(iii).

The following Proposition 4 show that the mixture conditional value at risk
in (37) can be rewritten as two new mean-risk models, called the first and second
type mean conditional value at risks. Part (i) and (ii) of Proposition 4 can be
proved by combining (37) and (36), Part (iii) of Proposition 4 can be proved by
(39) and (24), we omitted it proof.

Proposition 4. Consider a continuous random variable X with support [�, �],
let FX(·) be its distribution function. Then for 0 ≤ λ̃ ≤ 1/η, the mixture con-
ditional value at risk CV aR

(λ/η)
η (X) corresponding to X is given in (37) can be

rewritten as the following equivalent forms:
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(i)

IMCV aR(λ̃)
η (X) = λ̃

(
E[X] − (

1 − 1
λ̃

)
CV aR(0)

η (X)
)
, (38)

which is called the first type mean conditional value at risk.
(ii)

IIMCV aR(λ̃)
η (X) =

1
η − λ̃
1
η − 1

(
E[X] − λ̃ − 1

1
η − λ̃

( − CV aR(1/η)
η (X)

))
, (39)

which is called the second type mean conditional value at risk.

Remark 9. When λ̃ = 1, two type mean conditional value at risk in Proposi-
tion 4 become the expected value E[X], which corresponds to risk-neutral case;
when 1 < λ̃ ≤ 1/η, three type mean conditional value at risk in Proposition 4 is
a function of the conditional expected values of low profit or the second quantile
function, which corresponds to risk-aversion case; when 0 ≤ λ̃ < 1, three type
mean conditional value at risk in Proposition 4 is a function of the conditional
expected values of high profit, which corresponds to risk-taking case.

Remark 10. The first type mean conditional value at risk in (38) can be rewrit-
ten into a function of the second quantile function as follows:

IMCV aR(λ̃)
η (X) =

1
1 − η

[
(1 − ηλ̃)E[X] + (λ̃ − 1)F (−2)

X (η)
]
, 0 < η < 1, (40)

where F
(−2)
X (·) is given in (15).

The following Theorem 1 provides relations between the ascending stochastic
dominance for risk averters and the mean-risk models in (39). Theorem 2 can
be obtained by (40) and Lemma 1, we omitted its proof.

Theorem 1 (Characterization of the Mean-CVaR by ASD). For two
continuous random variables X and Y with support [�, �]. For 1 ≤ λ̃ ≤ 1/η, we
have

(i) the mean-risk model
(
μX ,−CV aR

(1/η)
η (X)

)
in (39) is consistent with

ascending stochastic dominance for risk averters.
(ii) the mean-risk model

(
μX ,−CV aR

(1/η)
η (X)

)
in (39) is (λ̃ − 1)/(1/η − 1))-

consistent with ascending stochastic dominance for risk averters.

Remark 11. Theorem 1(i) shows when 1 ≤ λ̃ ≤ 1/η, the mean-risk model in
(39) taking −CV aR

(1/η)
η (·) as a risk measure is consistent with ASD, this result

was analyzed by Ogryczak and Ruszczyński (2002), but the authors did not
consider the ξ-consistent property in Theorem 1(ii), where ξ = (λ̃−1)/(1/η−1).

In order to analyze whether the mean-CVaR in (38) is consistent with some
stochastic ordering relation, we provide another stochastic dominance, that is,
descending stochastic dominance (abbreviated as DSD) for risk lovers, it is
defined as follows:
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Definition 3 (Ross and Schechner 1984; Song 1994).For two continuous ran-
dom variables X and Y with support [�, �]. Y is said to be smaller than X in the
sense of descending stochastic dominance for risk lovers, denoted by Y ≤DSD X,
if and only if E[u(Y )] ≤ E[u(X)] for all increasing convex functions u(·).

Stoyan (1983) and Ross and Schechner (1984) showed that the descending
stochastic dominance for risk lovers is equivalent to a simple condition:

Lemma 2 (Stoyan 1983; Ross and Schechner 1984).

Y ≤DSD X ⇐⇒ E[(Y − t)+] ≤ E[(X − t)+] for all x ∈ [�, �]. (41)

For two nonnegative random variables having the same mean, Ross (1983)
showed that (9) is equivalent to a stronger condition:

Lemma 3 (Ross 1983). If X and Y are nonnegative random variables such
that E[Y ] = E[X], then Y ≤DSD X if and only if E[u(Y )] ≤ E[u(X)] for all
convex functions u(·), that is, Y is less than X in the sense of convex ordering,
denoted by Y ≤CX X.

Remark 12. The descending stochastic dominance for risk lovers is weaker than
(implied by) the convex ordering. The following two properties may aid us in
understanding why the descending stochastic dominance for risk lovers is a vari-
ability ordering.

Lemma 4 (Brumelle and Vickson 1975). For two continuous random vari-
ables X and Y with support [�, �]. We have

(i) Y ≤DSD X and E[Y ] = E[X] implies V ar(Y ) ≤ V ar(X);
(ii) (The coupling property) Y ≤DSD X if and only if there exists a random

variable Z, with E(Z|Y ) ≥ 0 almost surely, such that X =d Y + Z. That
is, X is noisier than Y .

Combining Lemma 2 and the definition of the minimization CVaR in (31),
it is easily to prove the following imply relation about the increasing convex
ordering:

Proposition 5. For two continuous random variables X and Y with support
[�, �]. We have

(i) For all 0 < η < 1,

Y ≤DSD X =⇒ CV aR(0)
η (Y ) ≤ CV aR(0)

η (X) and E[Y ] ≤ E[X]. (42)

(ii) If E[Y ] = E[X], then Y ≤DSD X if and only if E[u(Y )] ≤ E[u(X)] for all
convex functions u(·), that is, Y is larger than X in the sense of convex
ordering, denoted by Y ≤CX X.

(iii) If E[Y ] = E[X], then

Y ≤DSD X =⇒ CV aR(0)
η (Y ) ≤ CV aR(0)

η (X) and V ar(Y ) ≤ V ar(X). (43)
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Remark 13. Li and Wong (1999) introduced two stochastic dominance con-
cepts: ascending stochastic dominance (ASD) for risk averters and descending
stochastic dominance (DSD) for risk lovers. The two stochastic orderings were
called to be increasing concave ordering (equivalently, DSD) and increasing con-
vex ordering defined by Stoyan (1983). Based on the relations between the two
class of stochastic orderings and two class of conditional value-at-risks in (23)
and Proposition 6(i), we know that the conditional expected values of low profit
in (25) corresponds to risk-aversion case, and the conditional expected values
of high profit in (30) corresponds to risk-taking case from the perspective of
decision making.

In the following we will analyze whether the two mean conditional value at
risk in (38) and (39) hold under ASD or increasing convex ordering.

The following Theorem 2 provides relations between the descending stochas-
tic dominance for risk lovers and the mean-risk models in (38) and Theorem 1
can be proved by (38) and Proposition 6(i), we omitted its proof.

Theorem 2 (Characterization of the Mean-CVaR by DSD). For two
continuous random variables X and Y with support [�, �]. For 0 ≤ λ̃ < 1, we
have

(i) the mean-risk model
(
μX ,−CV aR

(0)
η (·)) in (38) is consistent with the

descending stochastic dominance for risk lovers.
(ii) the mean-risk model

(
μX ,−CV aR

(0)
η (·)) in (38) is (1/λ̃−1)-consistent with

the descending stochastic dominance for risk lovers.

In the following we analyze several properties of the two type of mean-CVaRs
in (38) and (39), including the monotonicity with respect to the risk preference
coefficient; the upper/lower bounds; the subadditivity and convexity; the loss-
aversion. Based on the equivalence of the two type of mean-CVaRs in (38) and
(39), we only analyze the first type mean-CVaR in (38).

The following Theorem 3 provides the monotonicity of the mean-CVaR in
(38) with respect to the risk preference coefficient λ̃ and upper/lower bounds.

Theorem 3 (Monotonicity and Upper/Lower Bounds of the Mean-
CVaR). Let X be a continuous random variable with support [�, �] and let
FX(·) be its distribution function. The first type mean conditional value at risk

IMCV aR
(λ̃)
η (·) is given by (38).

(i) IMCV aR
(λ̃)
η (·) is decreasing function of λ̃ in interval [0, 1/η] and

IMCV aR
(λ̃)
η (X) satisfies

CV aR(1/η)
η (X) ≤ IMCV aR(λ̃)

η (X) ≤ CV aR(0)
η (X) for all 0 ≤ λ̃ ≤ 1/η. (44)

(ii) If 0 ≤ λ̃ < 1, then IMCV aR
(λ̃)
η (·) is increasing function of η in interval

(0, 1); if 1 ≤ λ̃ ≤ 1/η, then IMCV aR
(λ̃)
η (·) is decreasing function of η in
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interval (0, 1); and

∂IMCV aR
(λ̃)
η (X)

∂η
=

1 − λ̃

(1 − η)2

∫ �

F −1
X (η)

(1 − FX(x))dx for 0 < η < 1, (45)

(iii) IMCV aR
(λ̃)
η (·) is submodular function of (λ̃, η) for all 0 ≤ λ̃ ≤ 1/η and

0 < η < 1.
(iv) If 1 ≤ λ̃ ≤ 1/η, then IMCV aR

(λ̃)
η (X) ≤ E[X]; if 0 ≤ λ̃ < 1, then

IMCV aR
(λ̃)
η (X) > E[X].

Proof. Part (i): From (40), we get

∂IMCV aR
(λ̃)
η (X)

∂λ̃
=

η

1 − η
(
F

(−2)
Y (η)

η
− E[X])

≤ 0 for 0 < η < 1, (46)

where the inequality holds due to the fact in Proposition 2(iii), which leads to

the monotonicity and lower and upper bounds of IMCV aR
(λ̃)
η (X).

Part (ii): Calculating first derivatives of η on both sides of the Eq. (40), we
get Eq. (46), which leads to the monotonicity result.

Part (iii): From (46), which leads to the desired result.
Part (iv) follows by Part (i). 	

In order to obtain the subadditivity and convexity of the mean conditional

value at risk in (38), the following Lemma 5 provides the subadditivity and
convexity of the minimization CVaR in (30). Its proof see Pflug (2000).

Lemma 5 (Pflug 2000) (Subadditivity and Convexity of the Minimiza-
tion CVaR). Let X be a continuous random variable with support [�, �] and
let FX(·) be its distribution function. CV aR

(0)
η (·) is given in (30).

(i) CV aR
(0)
η (X) is translation-equivariant, i.e. CV aR

(0)
η (X + a) =

CV aR
(0)
η (X) + a.

(ii) CV aR
(0)
η (X) is positively homogeneous, i.e. CV aR

(0)
η (kX) = k ·

CV aR
(0)
η (X), if k > 0.

(iii) CV aR
(0)
η (X) is closed under linear transform, i.e. CV aR

(0)
η (kX + a) =

k · CV aR
(0)
η (X) + a, if k > 0.

(iv) CV aR
(0)
η (X) satisfies the subadditivity, i.e., for two random variables X1

and X2, we have

CV aR(0)
η (X1 + X2) ≤ CV aR(0)

η (X1) + CV aR(0)
η (X2). (47)

(v) For two random variables X1 and X2, CV aR
(0)
η (·) satisfies the convexity,

i.e., for any 0 ≤ λ ≤ 1, we have

CV aR(0)
η (λX1 + (1 − λ)X2) ≤ λCV aR(0)

η (X1) + (1 − λ)CV aR(0)
η (X2). (48)
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The following Theorem 4 provides the subadditivity and convexity and
upper/lower bounds of the mean-CVaR in (38). Theorem 4 can be shown by
using Lemma 5 and (38), we omitted its proof.

Theorem 4 (Subadditivity and Convexity of the Mean-CVaR). Let X
be a continuous random variable with support [�, �].

(i) IMCV aR
(λ̃)
η (X) is translation-equivariant, i.e. IMCV aR

(λ̃)
η (X + a) =

IMCV aR
(λ̃)
η (X) + a.

(ii) IMCV aR
(λ̃)
η (X) is positively homogeneous, i.e. IMCV aR

(λ̃)
η (kX) = k ·

IMCV aR
(λ̃)
η (X), if k > 0.

(iii) IMCV aR
(λ̃)
η (X) is closed under linear transform, i.e. IMCV aR

(λ̃)
η (kX +

a) = k · IMCV aR
(λ̃)
η (X) + a, if k > 0.

(iv) (a) If 0 ≤ λ̃ ≤ 1, then IMCV aR
(λ̃)
η (X) satisfies the subadditivity, i.e., for

two random variables X1 and X2, we have

IMCV aR(λ̃)
η (X1 + X2) ≤ IMCV aR(λ̃)

η (X1) + IMCV aR(λ̃)
η (X2). (49)

(b) If 1 ≤ λ̃ ≤ 1/η, then IMCV aR
(λ̃)
η (W ) satisfies the inverse subadditivity,

i.e., for two random variables X1 and X2, we have

IMCV aR(λ̃)
η (X1 + X2) ≥ IMCV aR(λ̃)

η (X1) + IMCV aR(λ̃)
η (X2). (50)

(v) For two random variables X1 and X2, we have

(a) If 0 ≤ λ̃ ≤ 1, then IMCV aR
(λ̃)
η (τX1+(1−τ)X2) satisfies the convexity,

i.e., for any 0 ≤ λ ≤ 1, we have

IMCV aR(λ̃)
η (λX1 + (1 − λ)X2) ≤ λIMCV aR(λ̃)

η (X1)

+ (1 − λ)IMCV aR(λ̃)
η (X2). (51)

(b) If 1 ≤ λ̃ ≤ 1/η, then IMCV aR
(λ̃)
η (X) satisfies the concavity, i.e.

IMCV aR(λ̃)
η (τX1 + (1 − τ)X2) ≥ τIMCV aR(λ̃)

η (X1)

+ (1 − τ)IMCV aR(λ̃)
η (X2). (52)

The following Theorem 5 shows that the mean conditional value at risk
IMCV aR

(λ̃)
η (·) in (38) has the loss-aversion characteristic.

Theorem 5 (Loss-Aversion Characteristic of the Mean-CVaR). Let X

be a continuous random variable with support [�, �]. IMCV aR
(λ̃)
η (·) is given in

(38). Let

IMCV aR(λ̃)
η (X) = E[u(X)], (53)
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then

u(X) =

{
(λ̃ + 1−λ̃

1−η )(X − z) + z, X − z ≥ 0,

λ̃(X − z) + z, X − z < 0,
(54)

where z = F−1
W (η), 0 < η < 1. When λ̃ > 1, the mean conditional value at

risk IMCV aR
(λ̃)
η (·) in (38) has the loss-aversion property, in this case, λ̃ >

λ̃ + (1 − λ̃)/(1 − η).

Proof. Combining (38) and (30), which leads to the desired results. 	


3.3 Characterization of Mean-CVaR by Levy’s Transformation

In this subsection, we analyze the stochastic monotonicity of the Mean-CVaR in
(38) based on the transformation with two parameters, this generalized trans-
formation introduced by Levy (1977), which has one main different with mean-
preserving transformation (abbreviated as MPT) used by Gerchak and Mossman
(1992): MPT characterize the effect of demand uncertainty reduction through
one single scalar, but Levy’s transformation (abbreviated as LT) in (55) can
study the situations which mean and variability of market demand change
together.

First, we provide the definition of Levy’s transformation. LetX be a continuous
random variable with support [�, �] and mean μX and variance V ar(X), let FX(·)
be its distribution function. Define a family of random variables as (Levy 1977):

Xα,r =d αX + (1 − α)r, 0 < α ≤ 1, (55)

where parameters α and r satisfy: 0 < α ≤ 1 and r > 0, “=d” means “has the
same distribution as” (Rothschild and Stiglitz 1970), r represents certain demand
level in a certain market environment (see Levy 1977 page 232, he called r as
riskless interest rate in finance). In fact, E[Xα,r] − E[X] = (1 − α)(r − μ

X
) ≥ 0

if and only if r ≥ μ
X

, that is, when r ≥ μ
X

, E[Xα,r] ≥ E[X]; when r = μ
X

,
E[Xα,r] = E[X] and when r < μ

X
, E[Xα,r] < E[X].

The parameter α in (55) reflects demand variability. In fact, V ar(Xα,r) =
α2V ar(X) ≤ V ar(X), the coefficient of variation Cv(Xα,r) = V ar(Xα,r)/
(E[Xα,r])2 = V ar(X)/[μ

X
+ ( 1

α − 1)r]2 is increasing in α in interval (0, 1], and
it satisfies: 0 < Cv(Xα,r) ≤ Cv(X) for all 0 < α ≤ 1 and r > 0.

Remark 14. In particular, (i) if r = μ
X

, the LT in (55) is changed to MPT
which was used by Gerchak and Mossman (1992) to solve newsvendor problem.
Qin et al. (2011) analyze the case in which marketing effort effects demand
uncertainty with MPT. They found that demand mean increase due to marketing
effort may leads to the increase about the optimal order quantity. But the effect
about demand variability reduction is not as clear. In reality, we use μ

X
denoting

the demand mean of a certain product throughout the country, (e.g. telephone,
bicycle et al.); (ii) if r > μ

X
, then r denotes the mean demand of this product

in developed regions (e.g. first-tier cities); (iii) if r < μ
X

, r denotes the mean
demand of this product in less developed area (e.g. remote region).
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Using LT, we can not only study the effect through the parameter α, but
also can analysis the situation that demand mean is changed. Therefore, LT can
be seen as a new tool to study the influence of demand variability on retailer’s
inventory decisions and utility of inventory decision maker.

The common link of the ASD is that they are generated as successive appli-
cations of mean-preserving or mean-reducing single crossing operations between
distribution functions, it provides a sufficient condition to assure the mean-
preserving increase in risk (MPIR) and ASD (see Diamond and Stiglitz 1974).

In order to obtain the sufficient condition for ASD, we provide the notation
of sign function. Let ϕ(·) be a real valued function defined in interval [�, �̄] ⊂ R

and let

S(ϕ) = S(ϕ(·)) = supS[ϕ(x1), ϕ(x2), ..., ϕ(xn)] (56)

where the supremum is extended over all sets x1, x2, ..., xn, (xi ∈ [�, �̄]), n is
arbitrary but finite, and S(y1, y2, ..., yn) is the number of sign changes of the
indicated sequence, zero terms being discarded (Karlin 1968, pp. 20).

We say that the functions f and g crosse each other k times if S(f − g) = k,
k = 0, 1, 2, .... They cross each other at most k times if S(f − g) ≤ k. If f has
an integral function F , then S(F ) ≤ S(f) + 1 (Karlin 1968, pp. 310–311).

Let X and Y be two random variables with continuous distribution func-
tion FX(·) and FY (·) with support [�, �̄] ⊂ R, where � or �̄ can be −∞ or ∞,
respectively.

Definition 4 (Single crossing see Chateauneuf, Cohen and Meilijson
2004). X is said to be single crosses Y if there exists x0 ∈ (�, �̄), such that

FX(x) − FY (x) � 0 resp. for x � x0, (57)

which denoted by S(FX(·) − FY (·)) = 1 with sign sequence +,−. (58)

Remark 15. Definition 5 provides a class of stochastic order, called cut-
criterion ordering (Karlin and Novikoff 1963; Whitt 1985). If S(FX(·)−FY (·)) =
1 with sign sequence +,−, then Y is said to be smaller than X according to cut-
criterion ordering, denoted by Y ≤cut X.

Whitt (1985) showed the relations between the ASD, DSD, convex ordering
and the cut-criterion ordering as follows:

Lemma 6 (Whitt 1985). Let X and Y be two continuous random variables
with support [�, �] and let E[X] and E[Y ] be means of X and Y , respectively.

(i) If E[Y ] ≥ E[X], then S(FX(·) − FY (·)) = 1 with sign sequence +,− ⇒
Y ≤ASD X.

(ii) If E[Y ] ≤ E[X], then S(FX(·) − FY (·)) = 1 with sign sequence +,− ⇒
Y ≤DSD X.

(iii) If E[Y ] = E[X], then S(FX(·) − FY (·)) = 1 with sign sequence +,− ⇒
Y ≤CX X, that is E[u(Y )] ≤ E[u(X)] for all convex function u(·).
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Proof. See Whitt (1985). 	

One of the important characteristic associated with LT is that it implies

three stochastic orderings including convex ordering, increasing concave order-
ing, increasing convex ordering, and can analyze complex optimization problem
based on the two parameters of LT.

The following Proposition 6 characterizes the variability of the LT Xα,r in
(55) by three stochastic orderings in Lemma 5. In particular, taking α1 = α and
α2 = 1 in Proposition 6, we get Corollary 1, which can used to analyze the effect
of demand variability reduction parameter α about the transformation LT. The
results in Corollary 1 can be obtained by in Proposition 6, we omitted its proof.

Proposition 6. Consider a family of random variables Xαi,r = αiX+(1−αi)r,
i = 1, 2, where X is a continuous random variable with support [�, �]. Let FX(·)
be distribution function of X, FXαi,r

(·) be distribution function of Xαi,r, i = 1, 2.
Denoting Cv(X) the coefficient of variation for the random variable X, that is,
Cv(X) = V ar(X)/(E[X])2. Then

(i) S(FXα2,r
(·) − FXα1,r

(·)) = 1 with sign sequence +,− (i.e., Xα1,r) ≤cut

Xα2,r) for all 0 < α1 < α2 and all r > 0.
(ii) E[Xα1,r] ≥ E[Xα2,r] if and only if r ≥ μ

X
, Cv(Xα1,r) ≤ Cv(Xα2,r) for all

0 < α1 < α2 and r > 0.
(iii) If r ≥ μ

X
, then Xα1,r ≥ASD Xα2,r and Cv(Xα1,r) ≤ Cv(Xα2,r).

(iv) If r ≤ μ
X

, then Xα1,r ≤DSD Xα2,r and Cv(Xα1,r) ≤ Cv(Xα2,r).
(v) If r = μ

X
, then Xα1,r ≤CX Xα2,r and V ar(Xα1,r) ≤ V ar(Xα2,r).

Proof. Part (i): Since FXαi,r
(x) = P{Xαi,r ≤ x} = FX(x−r

αi
+ r), where i = 1, 2.

We have FXα2,r
(x) − FXα1,r

(x) = FX(x−r
α2

+ r) − FX(x−r
α1

+ r) > 0 if and only if
x−r
α2

− x−r
α1

= α2−α1
α1α2

(r − x) > 0, that is, 0 < t < t0 = r. By Definition 5, which
leads to the desired results.

Part (ii): By calculation we have E[Xα1,r] −E[Xα2,r] = (α2 − α1)(r − μ
X

) ≥
0 if and only if r ≥ μ

X
, and V ar(Xαi,r) = (αi)2V ar(X), Cv(Xαi,r) =

V ar(Xαi,r)/(E[Xαi,r])
2 = V ar(X)/(μX + (1/αi − 1)r)2 is increasing function

of αi, which get the inequality corresponding to the coefficient of variation for
X.

Part (iii)–(v) can be obtained by combining Part (i) and (ii) and Lemma 5.
	

Corollary 1. Consider LT Xα,r in (55), where X be a continuous random vari-
able with support [�, �]. Denoting Cv(X) the coefficient of variation for the ran-
dom variable X. For all 0 < α ≤ 1,

(i) If r ≥ μ
X

, then Xα,r ≥ASD X and Cv(Xα,r) < Cv(X).
(ii) If r < μ

X
, then Xα,r ≤DSD X and Cv(Xα,r) < Cv(X).

(iii) If r = μ
X

, then Xα,r ≤CX X and V ar(Xα,r) < V ar(X).

Remark 16. Li and Wong (1999) obtained similar results as in Corollary 1, but
the authors did not consider the variability of random variable, e.g., variance or
coefficient of variation, at same time, the authors did not analyze the stochastic
monotonicity of the LT in (55) in the sense of ASD and DSD as in Proposition 6.
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The following Theorem 6 provides a sufficient condition to compare the sec-
ond quantile function F

(−2)
X (·) in (15) corresponding to two family of random

variables associated with LT in (55).

Theorem 6 (Characterization of the first and second quantile func-
tions by LT). Consider a family of random variables Xαi,r = αiX +
(1 − αi)r, i = 1, 2, where X is a continuous random variable with sup-
port [�, �]. The second quantile function F

(−2)
X (·) corresponding to X is given

in (15). Let F
(−2)
Xαi,r

(·) denote the second quantile function corresponding to Xαi,r,
i = 1, 2.

(i) F−1
Xαi,r

(η) = αiF
−1
X (η) + (1 − αi)r, and it is increasing function of αi in

interval (0, 1) if and only if r ≤ F
−1)
X (η), we have

F−1
Xα1,r

(η) − F−1
Xα2,r

(η) � 0 resp. for r � F
−1)
X (η). (59)

(ii) (a) F
(−2)
Xα1,r

(η) = αiF
(−2)
X (η) + (1 − αi)r.

(b) If r ≥ μ
X

, then F
(−2)
Xα1,r

(η) is decreasing function of αi in interval (0, 1),

we have F
(−2)
Xα1,r

(η) ≥ F
(−2)
Xα2,r

(η) for all 0 < η < 1.
(c) If � ≤ r < μ

X
, then there exists η0 ∈ (0, 1), such that

F
(−2)
Xα1,r

(η) − F
(−2)
Xα2,r

(η) � 0 resp. for η � η0, (60)

(d) If 0 < r < �, then F
(−2)
Xα1,r

(η) is increasing function of αi in interval (0, 1),

we have F
(−2)
Xα1,r

(η) ≤ F
(−2)
Xα2,r

(η) for all 0 < η < 1.

(iii) If 0 < r ≤ μ
X

, then E[Xαi,r] − F
(−2)
Xαi,r

(η) is increasing function of αi in
interval (0, 1], we have

E[Xα1,r] − F
(−2)
Xα1,r

(η) −
(
E[Xα2,r] − F

(−2)
Xα2,r

(η)
)

≤ 0, for all 0 < η < 1. (61)

Proof. Part (i): The expression of F−1
Xαi,r

(η) can be obtained by replacing X

with Xαi,r. The monotonicity of F−1
Xαi,r

(η) based on the fact ∂F−1
Xαi,r

(η)/∂αi =

F−1
X (η) − r ≥ 0 if and only if r ≤ F

−1)
X (η).

Part (ii): The expression of F
(−2)
Xαi,r

(η) can be proved by similar method as in

part (i). To show the monotonicity of F
(−2)
Xαi,r

(η), we note that ∂F
(−2)
Xαi,r

(η)/∂αi =

η(F (−2)
X (η)/η−r) = η(CV aR

(1/η)
η (X)−r), based on the upper and lower bounds

of CV aR
(1/η)
η (·) in Proposition 2(iii), which leads to the desired results.

Part (iii): Since E[Xαi,r] − F
(−2)
Xαi,r

(η) = (1 − η)(αiCV aR
(0)
η (X) + (1 − αi)r),

so ∂E[Xαi,r] − F
(−2)
Xαi,r

(η)/∂αi = (1 − η)(CV aR
(0)
η (X) − r) ≤ 0 if 0 < r ≤ μX by

Proposition 3(iii). 	
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The following Corollarys 2 and 3 provide a sufficient condition to compare
two maximization CVaR in (24) (minimization CVaR in (24) corresponding to
two family of random variables associated with LT in (55). Corollarys 2 and 3
can be proved from Theorem 6, we omitted their proof.

Corollary 2. Consider a family of random variables Xαi,r = αiX + (1 − αi)r,
i = 1, 2, where X is a continuous random variable with support [�, �]. The max-
imization conditional value at risk CV aR

(1/η)
η (·) corresponding to X is given

in (24).

(i) If r ≥ μ
X

, then CV aR
(1/η)
η (Xα1,r) ≥ CV aR

(1/η)
η (Xα2,r) for all 0 < η < 1.

(ii) If � ≤ r < μ
X

, then there exists η0 ∈ (0, 1), such that

CV aR(1/η)
η (Xα1,r) − CV aR(1/η)

η (Xα2,r) � 0 resp. for η � η0, (62)

Corollary 3. Consider a family of random variables Xαi,r = αiX + (1 − αi)r,
i = 1, 2, where X is a continuous random variable with support [�, �]. The max-
imization conditional value at risk CV aR

(0)
η (·) corresponding to X is given in

(30). If 0 < r ≤ μ
X

, then

CV aR(0)
η (Xα1,r) − CV aR(0)

η (Xα2,r) ≤ 0 for 0 < η < 1. (63)

The following Corollary 4 provides a sufficient condition to compare the first
type mean conditional value at risk in (38) corresponding to two family of ran-
dom variables associated with LT in (55). Corollary 4 can be proved by combin-
ing (38) and Theorem 6, we omitted its proof.

Corollary 4. Consider a family of random variables Xαi,r = αiX + (1 − αi)r,
i = 1, 2, where X is a continuous random variable with support [�, �]. The max-
imization conditional value at risk CV aR

(0)
η (·) corresponding to X is given in

(30).

(i) If 1 ≤ λ̃ ≤ 1/η and r ≥ μ
X

and

IMCV aR(λ̃)
η (Xα1,r) ≥ IMCV aR(λ̃)

η (Xα2,r) for all 0 < η < 1, (64)

(ii) If 0 ≤ λ̃ ≤ 1 and � ≤ r ≤ μ
X

, then

IMCV aR(λ̃)
η (Xα1,r) ≤ IMCV aR(λ̃)

η (Xα2,r) for all 0 < η < 1, (65)

(iii) If 0 < r < � and 0 ≤ λ̃ ≤ 1/η, then

IMCV aR(λ̃)
η (Xα1,r) ≤ IMCV aR(λ̃)

η (Xα2,r) for all 0 < η < 1, (66)

Remark 17. Based on the relation between the LT and the stochastic dom-
inance in Corollary 1, the results in Corollary 4(i) and (ii) based on LT are
consistent with that in Theorem 2 based on stochastic dominance, and we find
that the approach in Corollary 4(i) and (ii) are more simple than in Theorem 2,
since the former only depends on two parameters and the conditions are more
easily checked.
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4 Applications to Stochastic Inventory Systems

In this section we model a risk-neutral newsvendor problem with stockout
cost and a newsvendor problem with mean-CVaR constrain and stockout
cost, and analyze their performance measures and stochastic monotonicity and
upper/lower bounds.

4.1 The Risk-Neutral Newsvendor Problem

In this subsection, we model a risk-neutral newsvendor problem considering
stockout cost, analyze the properties of optimal solution and profit, and the
effect of demand uncertainty on order quantity and profit.

We consider a risk-neutral newsvendor selling short-life-cycle products with
uncertain demand. At the beginning of the selling season, the newsvendor ini-
tially orders y products at a unit cost c from a supplier and sells at a retail
price p > c during the selling season. Demand Xα,r is stochastic and depends
on two parameters r and α, which has the transformation form Xα,r =d

αX + (1 − α)r, 0 < α ≤ 1 in (55) such that α� + (1 − α)r ≥ 0, where X is
a random variable with support being continuous interval I = [�, �]. Here r rep-
resents certain demand level in a certain market environment (see Levy 1977
page 232, he called r as riskless interest rate in finance).

If realized demand x is higher than y, then unit shortage cost penalty s > 0 is
incurred on x−y units. If realized demand x is lower than y, then the newsvendor
salvages y − x unsold products at a unit value v < c. As with most of the
newsvendor models, we assume FX(·) is continuous, differentiable, invertible,
and strictly increasing over I. we assume that p > c > v.

The parameter α in (55) reflects demand variability. According to Proposi-
tion 7(iii)–(v), demand Xα,r is more variable (in the sense of ASD, increasing
convex ordering or convex ordering) when α increases for all r > 0. For exam-
ple, Xα,r is a uniform random variable with distribution function FXα,r

(x) =
(x − (1 − α)r)/α, its support is [(1 − α)r, (1 − α)r + α], mean of demand Xα,r is
(1−α)r+α/2, variance of demand Xα,r is α2/12. This uniform demand Xα,r can
be represented as Xα,r =d αU + (1 − α)r, where U is a uniform random variable
with support [0, 1]. Another example is, Xα,r is a exponential random variable
with with distribution function FXα,r

(x) = 1 − exp{−(x − (1 − α)r)/α}, its sup-
port [(1−α)r,∞), mean of demand Xα,r is (1−α)r+α, variance of demand Xα,r

is α2. This exponential demand Xα,r can be represented as Xα,r =d αU +(1−α)r,
where U is a uniform random variable with support [0, 1].

Let y denote the order quantity and Π(y,Xα,r) the profit. Π(y,Xα,r)
depends on y and the stochastic demand Xα,r and is given by:

Π(y,Xα,r) = p min(y,Xα,r) + v(y − Xα,r)+ − s(Xα,r − y)+ − cy

= (p + s − c)y − (p + s − v)(y − Xα,r)+ − sXα,r, (67)
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where (x)+ = max{x, 0}, the third term in the right-hand side of the first equa-
tion represents an artificial penalty for opportunity cost, and s is often set to
be 0. In particular, taking α = 1 in (67), it is identical to the expression in
Khouja (1999).

The objective of risk neutral newsvendor is to decide the order quantity y
and maximize his expected profit at the end of selling period, which is given by

max
y≥0

π
Xα,r

(y) = E[Π(y,Xα,r)], (68)

where Π(y,Xα,r) is given in (67).
Let yc

Xα,r
= arg maxy≥0 π

Xα,r
(y) denote the optimal order quantity of the

maximization newsvendor problem (68). The following Proposition 7 provides the
unique optimal order quantity and the optimal expected profit for problem (68).

Proposition 7. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·), assume that its inverse of
the distribution function F−1

X (·) exists. The demand Xα,r is given in (55). For
the maximization newsvendor problem (68).

(i) The optimal order quantity yc
Xα,r

is given by

yc
Xα,r

= αF−1
X (ρ) + (1 − α)r, (69)

where

ρ = (p + s − c)/(p + s − v), (70)

is called the critical ratio in newsvendor problem with stockout cost.
(ii) The optimal expected profit π

Xα,r
(yc

Xα,r
) is given by

πXα,r
(yc

Xα,r
) = (p + s − v)[αF

(−2)
X (ρ) − ρ − ρ0

1 − ρ0
αμX +

ρ0(1 − ρ)

1 − ρ0
(1 − α)r], (71)

where F
(−2)
X (·) is given in (15), ρ0 is a special case in (70) when s = 0, that

is,

ρ0 = (p − c)/(p − v), (72)

which is called the critical ratio in newsvendor problem without stockout
cost.

(iii) In particular, taking α = 1, we have

π
X1,r

(yc
X1,r

) = (p + s − v)
[
F

(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X

]
(73)

is the optimal profit when demand is X1,r = X, which the demand vari-
ability is up to the largest. On the other hand, taking α = 0, we have

π
X0,r

(yc
X0,r

) = (p − c)r (74)

is the optimal profit when demand is deterministic X0,r = r, in this case,
the order quantity is r.
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Proof. Part (i): π
Xα,r

(y) in (68) can be written as

πXα,r
(y) = (p + s − c)y − α(p + s − v)

∫ y−r
α

+r

�
FX(x)dx − s[αμX + (1 − α)r]. (75)

Finding the first derivative of the equation expected profit π
Xα,r

(y) in (68)
on both sides with respect to y, we have

∂π
Xα,r

(y)
∂y

= p + s − c − (p + s − v)FX

(y − r

α
+ r

)
. (76)

From Eq. (99), we see that π
Xα,r

(y) in (68) is strictly concave function
of y and the optimal solution of Problem (68) can be obtained by solving
∂π

Xα,r
(y)/∂y = 0, which leads to the desired results

Part (ii): Combining (69) and (68), The optimal expected profit in (71).
Part (iii) can be obtained by taking α = 1 and α = 0 in (71). 	

Next, we characterize the monotonicity of optimal profit about newsvendor

problem and stochastic comparison of newsvendor problem based on the LT.
The following Theorem 7 provides the effect of demand variability about optimal
order quantity in risk-neutral newsvendor problem.

Theorem 7. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·), assume that its inverse of
the distribution function F−1

X (·) exists. The demand Xα,r is given in (55). For
the maximization newsvendor problem (68).

(i) The optimal order quantity yc
Xα,r

is increasing function of the stockout cost
s, and yc

Xα,r
≥ yc

Xα,r
|s=0.

(ii) The optimal order quantity yc
Xα,r

is increasing function of α if and only if
ρ ≥ ρ0 = FX(r).

(iii) For all r > 0, the optimal expected profit π
Xα,r

(yc
Xα,r

) is decreasing function
of the unit stockout cost s in interval [0,∞) for all ρ ∈ (0, 1).

(iv) (a) When r ≥ μ
X

, the optimal expected profit π
Xα,r

(yc
Xα,r

) is decreasing
function of α for all ρ ∈ (0, 1).
(b) When 0 < r < μ

X
, there exist ρ ∈ (0, 1) (equivalently, s ∈ (0,∞)) such

that the optimal expected profit π
Xα,r

(yc
Xα,r

) is increasing function of α for
ρ ∈ (0, ρ) (equivalently, s ∈ (0, s)); is decreasing function of α for ρ ∈ (ρ, 1)
(equivalently, s ∈ (s,∞)), where ρ satisfies:

F
(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r = 0, (77)

equivalently, s satisfies:

F
(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r = 0, (78)

where ρ = (p + s − c)/(p + s − v).
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Proof. Part (i): From (70) in Proposition 7, it is easily to see that ρ is increas-
ing function of the stockout cost s, and the optimal order quantity yc

Xα,r
is a

increasing function of ρ, which leads to the desired result.
Part (ii): Finding the first derivative of the optimal order quantity yc

Xα,r
on

both sides with respect to α, we have

∂yc
Xα,r

(y)

∂α
= F−1

X (ρ) − r, (79)

which leads to the desired result.
Part (iii): Finding the first derivative of the optimal expected profit

π
Xα,r

(yc
Xα,r

) in (71) on both sides with respect to s, we have

∂π
Xα,r

(yc
Xα,r

)

∂s
= −α

∫ �̄

F −1
X (ρ)

(1 − FX(x))dx

< 0, for all r > 0, 0 < α ≤ 1, ρ ∈ (0, 1), (80)

which leads to the desired result.
Part (iv): Finding the first derivative of the optimal expected profit

π
Xα,r

(yc
Xα,r

) in (71) on both sides with respect to α, we have

∂π
Xα,r

(yc
Xα,r

)

∂α
= (p + s − v)

(
F

(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r
)

= (p + s − v)ψ(ρ, r), (81)

where

ψ(ρ, r) = F
(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r. (82)

By calculation, we have

ψ(0, r) =
ρ0

1 − ρ0
(μX − r), ψ(1, r) = 0, (83)

∂ψ(ρ, r)

∂ρ
= F −1

X (ρ) − μX

1 − ρ0
+

ρ0

1 − ρ0
r is increasing function of ρ, for ρ ∈ (0, 1), (84)

lim
ρ→1

∂ψ(ρ, r)

∂ρ
= �̄ − μX

1 − ρ0
+

ρ0

1 − ρ0
r > 0 for enough larger �̄. (85)

Based on those properties of function ψ(ρ, r) in (83)–(85) which leads to the
desired results. 	


The following Corollary 5 provides the upper and lower bounds for the opti-
mal order quantity yc

Xα,r
in (69) and the optimal expected profit π

Xα,r
(yc

Xα,r
)

in (71), those results can be obtained from the monotonicities of corresponding
functions in Theorem 7.
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Corollary 5. Let X be a random variable satisfying conditions in Theorem 7.
Then

(i) For all r > 0 and 0 < α ≤ 1, the optimal order quantity yc
Xα,r

satisfies

yc
Xα,r

� yc
X1,r

resp. for ρ � ρ0 . (86)

(ii) For all r > 0, the optimal expected profit π
Xα,r

(yc
Xα,r

) satisfies

π
Xα,r

(yc
Xα,r

) ≤ π
Xα,r

(yc
Xα,r

)|s=0, for all 0 < α ≤ 1 and 0 < ρ < 1, (87)

where π
Xα,r

(yc
Xα,r

)|s=0 is the optimal expected profit corresponding to the
newsvendor problem without stockout cost (i.e., s = 0).

(iii) (a) When r ≥ μ
X

, the optimal expected profit π
Xα,r

(yc
Xα,r

) satisfies

π
X1,r

(yc
X1,r

) ≤ π
Xα,r

(yc
Xα,r

) ≤ π
X0,r

(yc
X0,r

)

= (p − c)r, for 0 < α ≤ 1 and 0 < ρ < 1, (88)

that is,

π
X1,r

(yc
X1,r

)

p − c
≤ π

Xα,r
(yc

Xα,r
)

p − c
≤ r, for 0 < α ≤ 1 and 0 < ρ < 1. (89)

(b) When 0 < r < μ
X

, the optimal expected profit π
Xα,r

(yc
Xα,r

) satisfies

π
X1,r

(yc
X1,r

) � π
Xα,r

(yc
Xα,r

) � π
X0,r

(yc
X0,r

)

= (p − c)r resp. for ρ � ρ, (90)

that is,

π
X1,r

(yc
X1,r

)

p − c
�

π
Xα,r

(yc
Xα,r

)

p − c
� r resp. for ρ � ρ(equivalently, s � s),

(91)

for 0 < α ≤ 1, where ρ is determined by Eq. (77) (equivalently, s is deter-
mined by Eq. (78)).

Remark 18. If r = μX , the results in Corollary 4(i) are similar to the results
in Gerchak and Mossman (1992). Gerchak and Mossman get the results by
studying the minimization newsvendor problem with mean-preserving transfor-
mation. Corresponding to the results in Yu (2014a), minimization newsvendor
has the consistency with maximization newsvendor, which leads to the desired
results. We get the general results under different parameter r about maximiza-
tion newsvendor problem.
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Remark 19. For the results in Corollary 4(i), we have for some insights for
entrepreneurs: for the enterprises which in the first-tier cities where per capita
consumption is higher than general consumption level, they would better increase
their optimal order quantity if they are trying to reduce the variability of
demand. But for the enterprises which in the remote region where per capita
consumption is lower than general consumption level, they would better decrease
their optimal order quantity if they are trying to reduce the variability of
demand.

In the following we analyze the effect of reducing demand variability on
the optimal profit for the risk-neutral newsvendor. We define the effect level
of reducing demand variability as a function Δπc(α, r, ρ) which is a difference
between the optimal profit corresponding to demand Xα,r in (55) and X1,r. That
is,

Δπc(α, r, ρ) = π
Xα,r

(yc
Xα,r

) − π
X1,r

(yc
X1,r

), (92)

where the optimal profit πc(α, r, ρ) is given in (71).
By calculation, Δπc(α, r, ρ) in (92) can be rewritten as

Δπc(α, r, ρ) = (1 − α)(p + s − v)ψ(ρ, α)
= (1 − α)(p − c)[r − BX(ρ)], for all 0 < α ≤ 1and r > 0, (93)

where ψ(ρ, α) is given by (82) and

BX(ρ) =
1 − ρ0

ρ0
·
F

(−2)
X (ρ) − ρ−ρ0

1−ρ0 μ
X

1 − ρ

=
π

X1,r
(yc

X1,r
)

p − c
. (94)

The following Theorem 8 provides the effect of demand variability about
optimal order quantity in risk-neutral newsvendor problem. Part (ii) and (iii)
can be shown using similar method as in Theorem 7(iii), it can be use another
method to prove, the related results are identical.

Theorem 8. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·), assume that its inverse of
the distribution function F−1

X (·) exists. The demand Xα,r is given in (55). For
the maximization newsvendor problem (68).

(i) Δπc(α, r, ρ) is increasing function of the unit stockout cost s in interval
[0,∞) and it satisfies:

Δπc(α, r, ρ0) ≤ Δπc(α, r, ρ) for ρ ∈ (0, 1) (equivalently s ≥ 0). (95)

(ii) If r ≥ μ
X

, then Δπc(α, r, ρ) is decreasing function of α in interval (0, 1) for
all ρ ∈ (0, 1) (equivalently s ≥ 0).
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(iii) If 0 < r < μ
X

, there exist ρ ∈ (0, 1) (equivalently s ∈ (0,∞)) such that
Δπc(α, r, ρ) is decreasing function of α in interval (0, 1) for all ρ ∈ (ρ, 1)
(equivalently s ≥ s); Δπc(α, r, ρ) is increasing function of α in interval (0, 1)
for all ρ ∈ (0, ρ) (equivalently 0 < s < s), where ρ is given in (77), s is given
in (78).

Proof. Part (i): Finding the first derivative of the optimal order quantity yc
Xα,r

on both sides with respect to α, we have

∂yc
Xα,r

(y)

∂α
= F−1

X (ρ) − r, (96)

which leads to the desired result.
Part (ii): Finding the first derivative of the optimal expected profit

π
Xα,r

(yc
Xα,r

) in (71) on both sides with respect to s, we have

∂π
Xα,r

(yc
Xα,r

)

∂s
= −α

∫ �̄

F −1
X (ρ)

(1 − FX(x))dx

< 0, for all r > 0, 0 < α ≤ 1, ρ ∈ (0, 1), (97)

which leads to the desired result.
Part (iii): Finding the first derivative of the optimal expected profit

π
Xα,r

(yc
Xα,r

) in (71) on both sides with respect to α, we have

∂π
Xα,r

(yc
Xα,r

)

∂α
= (p + s − v)

(
F

(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r
)

= (p + s − v)ψ(ρ, r), (98)

where

ψ(ρ, r) = F
(−2)
X (ρ) − ρ − ρ0

1 − ρ0
μ

X
− ρ0(1 − ρ)

1 − ρ0
r. (99)

By calculation, we have

ψ(0, r) =
ρ0

1 − ρ0
(μX − r), ψ(1, r) = 0, (100)

∂ψ(ρ, r)
∂ρ

= F−1
X (ρ) − μ

X

1 − ρ0
+

ρ0

1 − ρ0
r is increasing function of ρ,

for ρ ∈ (0, 1), (101)

lim
ρ→1

∂ψ(ρ, r)
∂ρ

= �̄ − μ
X

1 − ρ0
+

ρ0

1 − ρ0
r > 0 for enough larger �̄. (102)

Based on those properties of function ψ(ρ, r) in (100)–(102) which leads to the
desired results. 	
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4.2 Newsvendor Problem with Mean-CVaR Constrain

The classical newsvendor maximizes expected profit. Within the expected utility
theory (and other normative decision theories), this is equivalent to the assump-
tion of risk-neutral behaviour: expected profit derived from the optimal order
quantity E[Π(y∗

X ,X)] is considered indifferent to the random profit Π(y∗
X ,X).

In decision theory risk-aversion decision maker is characterized by the fact that
the expected value E[Π(y∗

X ,X)] is preferred to the random variable Π(y∗
X ,X)

whereas for risk-taking behavior Π(y∗
X ,X) is preferred to E[Π(y∗

X ,X)].
Consider the newsvendor model studies in Sect. 4.1, the assumptions in this

section are identical as Sect. 4.1 except the newsvendor is risk-aversion or risk-
taking by the mean-CVaR given by in (38). The newsvendor who faces a random
demand Xα,r =d αX + (1 − α)r, 0 < α ≤ 1, which is given in (55), where X is
a continuous random variable with support [�, �]. The newsvendor’s objective is
to decide the order quantity y to maximize his utility, which can be expressed
as

maxy≥0πXα,r
(y) = IMCV aR(λ̃)

η (Π(y,Xα,r)), (103)

where the newsvendor’s random profit Π(y,Xα,r) is given in (67), the mean

conditional value-at-risk IMCV aR
(λ̃)
η (·)) is given in (38).

The next Theorem 9 provides the optimal order quantity and optimal
expected profit in newsvendor model with stockout cost and mix-CVaR criterion.

Theorem 9. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·), assume that its inverse of
the distribution function F−1

X (·) exists. For 0 < α ≤ 1, r > 0 and 0 ≤ λ̃ ≤ 1
η ,

(i) The optimal order quantity y∗
Xα,r

satisfies

ρ − FX(A(α, y∗
Xα,r

)) − λ̃ − 1
1
η − λ̃

[1
η
FX(A(α,

z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)) − ρ

]

= 0, (104)

where z∗
Xα,r

satisfies

FX(A(α,
z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)) − η

= FX(A(α,
(p + s − c)y∗

Xα,r
− z∗

Xα,r

s
)) − 1, (105)

here ρ is given in (70), and

A(α, y) =
y − (1 − α)r

α
. (106)
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(ii) The optimal utility profit πXα,r
(y∗

Xα,r
) is given by

πXα,r
(y∗

Xα,r
) = λ̃

[
(p + s − c)y∗

Xα,r
− α(p + s − v)

∫ A(α,y∗
Xα,r

)

�

FX(x)dx

− s(αμ
X

+ (1 − α)r)
]

(107)

− (λ̃ − 1)
[
z∗
Xα,r

− α(p + s − v)
1 − η

∫ A(α,y∗
Xα,r

)

�

FX(x)dx

+
α(p − v)

1 − η

∫ A(α,
z∗

Xα,r
+(c−v)y∗

Xα,r
p−v )

�

FX(x)dx

+
αs

1 − η

∫ A(α,
(p+s−c)y∗

Xα,r
−z∗

Xα,r
s )

�

FX(x)dx
]]

,

where y∗
Xα,r

satisfies (104) and z∗
Xα,r

satisfies (105).

Proof. Part (i): Combining problem (103) and the definition of minimization
CVaR in (30), problem (103) can be rewritten as

max
y≥0

min
z∈R

{
λ̃E[Π(y,Xα,r)] − (λ̃ − 1)ϕ(0)

Xα,r
(y, z)

}
, (108)

where

ϕ
(0)
Xα,r

(y, z) = z +
1

1 − η
E

[(
(p + s − c)y − (p + s − v)(y − Xα,r)+ − sXα,r − z

)
+

]

= z +
α(p − v)

1 − η

∫ A(α,y)

�

(
x − A(α,

z + (c − v)y

p − v
)
)
+

dFX(x) (109)

+
αs

1 − η

∫ �

A(α,y)

(
A(α,

(p + s − c)y − z

s
) − x

)
+

dFX(x).

(a) When z ≥ (p − c)y, we have

ϕ
(0)
Xα,r

(y, z) = z, (110)

it is clear that ϕ
(0)
Xα,r

(y, z) is strictly increasing function of z in interval
((p − c)y,∞).

(b) When z < (p − c)y, by calculation we get

ϕ
(0)
Xα,r

(y, z) = z − α(p − v)
1 − η

∫ A(α,y)

A(α,
z+(c−v)y

p−v )

FX(x)dx

+
αs

1 − η

∫ A(α,
(p+s−c)y−z

s )

A(α,y)

FX(x)dx. (111)
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Taking the first and second derivatives two sides of in (111) with respect to z, we
find that ϕ

(0)
Xα,r

(y, z) is strictly convex function of z in interval (−∞, (p − c)y),

and note that
∂ϕ

(0)
Xα,r

(y,z)

∂z |z=(p−c)y−= 1 > 0. We know that the optimal z∗
Xα,r

exists, which satisfies (105).
Combining (105) and (108), the expected utility of newsvendor can be rewrit-

ten as

πXα,r
(y) = λ̃

[
(p + s − c)y − α(p + s − v)

∫ A(α,y)

�

FX(x)dx
] − s

(
αμX + (1 − α)r

]

− (λ̃ − 1)
[
z∗

Xα,r
− α(p − v)

1 − η

∫ A(α,y)

A(α,
z∗

Xα,r
+(c−v)y

p−v
)

FX(x)dx (112)

+
αs

1 − η

∫ A(α,
(p+s−c)y−z∗

Xα,r
s

)

A(α,y)

FX(x)dx
]
.

Taking the first derivative in two sides of (112) with respect to y, we have

∂π
Xα,r

(y, λ̃)

∂y
= (p + s − v)

1
η − λ̃
1
η − 1

[
ρ − FX(A(α, y))

+
λ̃ − 1
1
η − λ̃

[
ρ − 1

η
FX

(
A(α,

z∗
Xα,r

+ (c − v)y

p − v
)
)]]

. (113)

From (113), it is easy to see π
Xα,r

(y) is unimodal function of y in interval (0,∞).
So there exists an unique solution y∗

Xα,r
, which satisfies (104) for all 0 ≤ λ̃ ≤ 1.

By using the similar method, we can get the optimal order quantity y∗
Xα,r

using
maximization CVaR for 1 ≤ λ̃ ≤ 1

η based on the second type mean conditional

value at risk IIMCV aR
(λ̃)
η (·) in (39).

Part (ii): Combining y∗
Xα,r

in (112) and (108), which leads to the desired
result for 0 ≤ λ̃ ≤ 1. Similar method can be used for the case 1 ≤ λ̃ ≤ 1/η. 	

Remark 20. From the proof of Theorem 8, we can easy to check, when s = 0,
we have z∗

Xα,r
in (105) satisfies

FX

(
A(α,

z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)
)

= η, (114)

and y∗
Xα,r

in (104) satisfies

ρ − λ̃ − 1
1
η − λ̃

(1 − ρ0) − FX(A(α, y∗
Xα,r

)) = 0. (115)

Hence, from (105) and (114), we have

FX

(
A(α,

z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)
)

� η resp. for s � 0. (116)
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The following Corollary 6 provides several relations and inequalities between
three functions A(α, y∗

Xα,r
) and A(α, (z∗

Xα,r
+ (c − v)y∗

Xα,r
)/(p − v)) in (104),

A(α, ((p+s− c)y∗
Xα,r

−z∗
Xα,r

)/s) in (105), which will be used to proof the upper
and lower bounds for the optimal order quantity.

Corollary 6. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·). For 0 < α ≤ 1, r > 0 and
0 ≤ λ̃ ≤ 1

η ,

(i) For s > 0, A(α, y∗
Xα,r

) and A(α,
z∗

Xα,r
+(c−v)y∗

Xα,r

p−v ) in (104),

A(α,
(p+s−c)y∗

Xα,r
−z∗

Xα,r

s ) in (105) satisfies

(p − v)A(α,
z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
) + sA(α,

(p + s − c)y∗
Xα,r

− z∗
Xα,r

s
)

= (p + s − v)A(α, y∗
Xα,r

). (117)

(ii) For s > 0,

A(α,
(p + s − c)y∗

Xα,r
− z∗

Xα,r

s
) = A(α, y∗

Xα,r
) +

(
A(α, y∗

Xα,r
)

− A(α,
z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)
)

> A(α, y∗
Xα,r

). (118)

(iii)

FX

(
A(α,

z∗
Xα,r

+ (c − v)y∗
Xα,r

p − v
)
)

> η − 1 + FX(A(α, y∗
Xα,r

)). (119)

Proof. Part (i) follows by checking the three functions in (104) and (105).
Part (ii): From (117), and note that y∗

Xα,r
− (z∗

Xα,r
+ (c − v)y∗

Xα,r
)/(p − v) =

[(p − c)y∗
Xα,r

− z∗
Xα,r

]/(p − v) > 0, which leads to the desired result.
Part (iii): Combining (118) and (105), which leads to the desired result. 	

The following Corollary 7 provides the optimal order quantity and expected

utility in problem (103) for demand X1,r = X, where demand Xα,r is given in
(55). Corollary 1 can be obtained by taking α = 1 in Theorem 9.

Corollary 7. Consider problem (103) with demand if X1,r is given in (55) for
α = 1, where X is a continuous random variable with support [�, �], its cumula-
tive distribution function is denoted by FX(·). For 0 ≤ λ̃ ≤ 1

η .

(i) The optimal order quantity y∗
X satisfies

ρ − FX(y∗
X) − λ̃ − 1

1
η − λ̃

[
1
η
FX(

z∗
X + (c − v)y∗

X

p − v
) − ρ] = 0, (120)
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where z∗
X satisfies

FX(
(p + s − c)y∗

X − z∗
X

s
) − FX(

z∗
X + (c − v)y∗

X

p − v
) = 1 − η, (121)

here ρ is given in (70) and ρ0 is given in (72).
(ii) The optimal utility profit πX(y∗

X) satisfies

πX(y∗
X) = λ̃

[
(p + s − c)y∗

X − α(p + s − v)
∫ y∗

X

�

FX(x)dx − sμ
X

]

− (λ̃ − 1)
[
z∗
X − (p + s − v)

1 − η

∫ y∗
X

�

FX(x)dx

+
(p − v)
1 − η

∫ z∗
X+(c−v)y∗

X
p−v

�

FX(x)dx +
s

1 − η

∫ (p+s−c)y∗
X −z∗

X
s

�

FX(x)dx
]
,

(122)

where y∗
X is given in (120) and z∗

X is given in (121).

The following Corollary 8 provides upper and lower bounds of the optimal
order quantity in (104) according to the newsvendor model with or without
stockout cost.

Corollary 8. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·). the optimal order quantity
y∗

Xα,r
given in (104). For 0 < α ≤ 1, r > 0 and 0 ≤ λ̃ ≤ 1

η ,

(i) When 1 < λ̃ ≤ 1/η, the optimal order quantity y∗
Xα,r

satisfies: y∗
Xα,r

>

y∗
Xα,r

|s=0.
(ii) When 0 ≤ λ̃ < 1, the optimal order quantity y∗

Xα,r
satisfies y∗

Xα,r
≤

y∗
Xα,r

|s=0.

Proof. Part (i): Combining (104) and (114), we know the function
FX(A(α, (z∗

Xα,r
+(c−v)y∗

Xα,r
)/(p−v))) in (104) satisfies: FX(A(α, (z∗

Xα,r
+(c−

v)y∗
Xα,r

)/(p−v))) = η when s = 0 and FX(A(α, (z∗
Xα,r

+(c−v)y∗
Xα,r

)/(p−v))) <

η when s > 0. Hence, the part
[
FX(A(α, (z∗

Xα,r
+ (c − v)y∗

Xα,r
)/(p − v)))/η − ρ

]
in middle brackets of (104) is strictly smaller than [1 − ρ]. When 1 < λ̃ ≤ 1/η,
the third part on the left of the Eq. (104) become (λ̃−1)[1−ρ]/(1/η − λ̃), which
is the third part on the left of the equation corresponding the optimal order
quantity in (115), which leads to the desired result.

Part (ii) follows by similar method as that in part (i). 	

Remark 21. For the newsvendor problem in the presence of the loss of good-
will stockout opportunity cost, Choi et al. (2008) considered the newsvendor
problem under the MV framework with decision makers possessing different risk
attitude (namely, risk-averse, risk-neutral, and risk-seeking). They found that



108 H.-B. Yu

when we include an explicit stockout penalty cost in the problem, the vari-
ance of profit becomes more complicated. Wu et al. (2009) analytically proved
that when demand is distributed following a continuous power distribution, the
optimal stocking quantity under an MV newsvendor model will exceed the risk-
neutral case’s optimal “fractile” quantity. Corollary 8 provides the upper and
lower bounds of the optimal order quantity in (104) for any demand distribu-
tions, and show that the optimal order quantity of the newsvendor model without
stockout cost is lower bound when λ̃ > 1; and upper bound when 0 ≤ λ̃ < 1.
This upper bound or lower bound properties of the optimal order quantity for
the risk-aversion case (λ̃ > 1) is consistent with that for the risk-neutral case
(λ̃ = 1). Since the optimal order quantity for the risk-neutral case is increasing
function of the stockout cost s, that is yc

Xα,r
≥ yc

Xα,r
|s=0. However, in the risk-

taking case (0 < λ̃ < 1), from Corollary 8, we have y∗
Xα,r

≤ y∗
Xα,r

|s=0, which
contrary to the result in the risk-neutral case.

The following Corollary 9 provides another upper and lower bounds for the
optimal order quantity y∗

Xα,r
in (104), which are the optimal order quantity

corresponding to the risk-neutral case (i.e., λ̃ = 1).

Corollary 9. Let X be a continuous random variable with support [�, �], its
cumulative distribution function is denoted by FX(·). For 0 < α ≤ 1 and r > 0,

(i) When 1 < λ̃ ≤ 1/η,
(a) The optimal order quantity y∗

Xα,r
has upper bound, that is, y∗

Xα,r
≤

ȳXα,r
, where ȳXα,r

is given by

ȳXα,r
= αF−1

X

(
ρ − λ̃ − 1

λ̃
(ρ − λ̃(1 − η)

1 − ηλ̃

)
+ (1 − α)r. (123)

(b) The upper bound ȳXα,r
is decreasing function of λ̃, hence ȳXα,r

≤
ȳXα,r

|λ̃=1 = αF−1
X (ρ) + (1 − α)r.

(c) The optimal order quantity y∗
Xα,r

has a common upper bound, that is,
y∗

Xα,r
≤ y∗

Xα,r
|λ̃=1 = αF−1

X (ρ) + (1 − α)r.
(ii) When 0 ≤ λ̃ < 1,

(a) The optimal order quantity y∗
Xα,r

has lower bound, that is, y∗
Xα,r

≥
y

Xα,r
, where ȳXα,r

is given by

y
Xα,r

= αF−1
X

(
ρ +

1 − λ̃

λ̃
(ρ − λ̃(1 − η)

1 − ηλ̃

)
+ (1 − α)r. (124)

(b) The lower bound y
Xα,r

is decreasing function of λ̃, hence y
Xα,r

≥
y

Xα,r
|λ̃=1 = αF−1

X (ρ) + (1 − α)r.
(c) The optimal order quantity y∗

Xα,r
has a common lower bound, that is,

y∗
Xα,r

≥ y∗
Xα,r

|λ̃=1 = αF−1
X (ρ) + (1 − α)r.
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Proof. Part (i): From (119) in Corollary 6, we know that FX

(
A(α, (z∗

Xα,r
+ (c −

v)y∗
Xα,r

)/(p − v)
)

> η − 1 + FX(A(α, y∗
Xα,r

)), combining this inequality and
Eq. (104), we get the upper bound in (123) when 1 < λ̃ ≤ 1/η. We note that the
function in (123) is decreasing function of λ̃, this means that The optimal order
quantity y∗

Xα,r
has a common upper bound, it is The optimal order quantity in

risk-neutral case (corresponding to λ̃ = 1).
Part (ii) holds by similar method as that in part (i). 	


5 Numerical Examples

To illustrate our results, we assume demand Xα,r in (55) is uniform random
variable or exponential random variable. The following three examples are used
to explain the obtained results in Theorem 3, Corollarys 4 and 9.

The following Example 1 explains the monotonicity and upper/lower bounds
of the Mean-CVaR in (38) in Theorem 3.

Example 1. Consider a uniform random variable X with distribution function
FXα,r

(x) = (x − a)/(b − a), its support is [a, b], mean μX = (a + b)/2, variance
of demand V ar(X) = (b − a)2/12. Its inverse distribution function F−1

X (η) =
a+(b−a)η, the second quantile function of X is F

(−2)
X (η) = aη+(b−a)η2/2. The

mean-CVaR in (38) is IMCV aR
(λ̃)
η (X) = (a+b)/2+(b−a)η/2− (b−a)ηλ̃/2. It

is clear that IMCV aR
(λ̃)
η (X) is decreasing function of λ̃ in interval [0, 1/η]. On

the other hand, ∂IMCV aR
(λ̃)
η (X)/∂η = (b−a)(1−λ̃)/2 > 0 if and only if λ̃ < 1,

which leads to the desired result in part (ii). Part (iii) and (iv) in Theorem 3
can be easily checked.

The following Example 2 explains the Monotonicity of the Mean-CVaR in
(38) with respect to the demand variability in Corollary 4.

Example 2. Consider a exponential random variable Xα,r with distribution
function FXα,r

(x) = 1−exp{−(x− (1−α)r)/α}, its support [(1−α)r,∞), mean
of demand Xα,r is (1−α)r+α, variance of demand Xα,r is α2. This exponential
random variable Xα,r can be represented as Xα,r =d αX + (1 − α)r, where
X is a exponential random variable with support [0,∞) with mean μ

X
= 1.

By calculation, we get the inverse distribution function F−1
Xα,r

(η) = (1 − α)r +

α(− ln(1 − η)), the second quantile function of Xα,r is F
(−2)
Xα,r

(η) = (1 − α)η +

αη + α(1 − η)(ln(1 − η)). The mean-CVaR in (38) is IMCV aR
(λ̃)
η (Xα,r) =

(1−α)r +(λ̃−1)α ln(1−η). ∂IMCV aR
(λ̃)
η (Xα,r)/∂α = 1− r − (λ̃−1)(− ln(1−

η)) < 0 if and only if (λ̃ − 1)(− ln(1 − η)) > 1 − r, this condition holds if
1 ≤ λ̃ ≤ 1/η and r ≥ μ

X
= 1, which is the result in part (i). On the other

hand, ∂IMCV aR
(λ̃)
η (Xα,r)/∂α = 1 − r − (λ̃ − 1)(− ln(1 − η)) > 0 if and only if

(1 − λ̃)(− ln(1 − η)) > r − 1, this condition holds if 0 ≤ λ̃ < 1 and r < μ
X

= 1,
which is the result in part (ii). The result in part (iii) follows based on the fact,
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∂IMCV aR
(λ̃)
η (Xα,r)/∂α > 0 for all r < 1 + (1 − λ̃)(− ln(1 − η)), that is, the

value of r is small enough.
The following Example 3 provides solution and expected utility for the prob-

lem (103) when demand Xα,r in (55) is a uniform random variable.

Example 3. Suppose demand Xα,r in problem (103) is a uniform random vari-
able with support [(1−α)r, (1−α)r +α], where X is a uniform random variable
with support [0, 1] and distribution function FX(x) = x, x ∈ [0, 1]. The distribu-
tion function of Xα,r is FXα,r

(x) = (x − (1 − α)r)/α, its mean (1 − α)r + α/2,
and variance α2/12. By calculation, the optimal order quantity is given by

y∗
Xα,r

= α
(
ρ − (1 − 1

λ̃
)

p − c

p + s − v

)
+ (1 − α)r (125)

The optimal expected utility is given by

piXα,r
(y∗

Xα,r
) = λ̃

[
α[(p + s − c)A(α, y∗

Xα,r
)

− 1
2
(p + s − v)(A(α, y∗

Xα,r
))2 − sμ

X
] + (p − c)(1 − α)r

]

(1 − λ̃)
[
αA(α, y∗

Xα,r
) − 1

2
α(p − v)s(1 − η)

p + s − v
+ (1 − α)r

]
, (126)

where

A(α, y∗
Xα,r

) = ρ − (1 − 1
λ̃

)
p − c

p + s − v
. (127)

It is easily checked that the optimal order quantity in (125) is increasing
function of s when 1 < λ̃ ≤ 1/η, is decreasing function of s when 0 ≤ λ̃ < 1,
which is the results of Corollary 8. It is clear that the optimal order quantity
in (125) is decreasing function of λ̃ in interval [0, 1/λ̃], which is the results of
Corollary 9.

6 Conclusion Remarks

In this paper, we provide a unified framework for analyzing the effects of demand
variability, decision maker’s risk preference and stockout cost on replenishment
policy and expected utility in stochastic inventory systems, and show that this
framework of stochastic inventory systems is interesting, difficult and challeng-
ing. We describe and analyze two mean-risk models with CVaR as risk measure
corresponding to a large-class measures in risk management, and specifically,
we show that the two mean-CVaR measures are consistent with the ascending
stochastic dominance for risk averters and descending stochastic dominance for
risk lovers respectively. We show that similar results can be obtained by using a
transformation of a random variable with a location and a scalar parameters.

Through some analysis, we see that the solutions of the newsvendor problem
with mean-CVaR consideration is complex when stockout cost is positive s > 0.
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We obtain the upper and lower of the optimal order quantity, and show that
the risk-takers order more than risk-neutral, the risk-neutral order more than
risk-averter. We obtain another upper and lower of the optimal order quantity
with respect to the stockout cost, more specifically, we show that the risk-takers
leads to less order quantity than the classic solution when a shortage penalty
parameter is set to be zero; and the risk-averters leads to more order quantity
than the classic solution when a shortage penalty parameter is set to be zero.

We hope that the methodology and results of this paper can be applicable in
the study of more general stochastic models and stochastic optimization prob-
lems by means of stochastic dominance and transformation of a random variable.
Along these lines, there are a number of interesting areas for potential future
research, for example:

• Developing effective algorithms for computing the optimal order quantity and
expected utility for these multi-objective stochastic optimization problems;

• analyzing supply chain system with single risk-neutral manufacturer and sin-
gle risk-preference retailer with mean-CVaR consideration.

• considering leader-follower supply chain game with mean-CVaR consider-
ation, the Stackelberg equilibrium need be analyzed by using the multi-
objective optimization approach and stochastic dominance or transformation
of random variable; and

• discussing supply chain network with multiple risk-preference manufacturers
or/and multiple risk-preference retailers using mean-CVaR criterion.

Acknowledgements. This research was supported by the National Natural Sci-
ence Foundation of China under grant Nos. 71932002, 71571010, 71672004 and the
Great Wall Scholar Training Program of Beijing Municipality under grant No. CIT &
TCD20180305.
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Abstract. Supply chain finance (SCF) is an important solution that
optimizes cash flow in order to lower financing costs and improve busi-
ness efficiency especially for small and medium-sized enterprises (SMEs).
Risk management is the essential requirement of SCF. In recent years, the
digital economy is developing rapidly worldwide and holds huge potential
for entrepreneurs and SMEs. In the digital economy scenario, digitaliza-
tion of supply chains is also becoming increasingly dynamic. Blockchain
technology is regarded as a potential means of digitalization for supply
chains and could play an important role in supply chain finance risk man-
agement. This paper first reviews the literature of supply chain finance
risk management and provides some disadvantages of traditional supply
chain finance risk management. Then we survey the new perspective for
supply chain finance risk management based on blockchain technology.
In particular, blockchain can increase the information transparency of
the supply chain, thereby reducing the credit risk of SMEs financing and
the operational risk in SCF. Categorization and analysis of the literature,
it provides an important perspective for future research of supply chain
finance risk management based on blockchain technology in the era of
digital economy.

Keywords: Supply chain finance · Risk management · Digital
economy · Blockchain technology · Credit risk · Operational risk

1 Introduction

With the development of economic globalization and network, the compara-
tive advantages among different companies, countries and even different regions
within a country are constantly explored and strengthened. As a consequence,
the supply chain is no longer a single chain, but becomes an intricate network,
which involves many coordination and interaction activities between enterprises.
The status of these coordination and interaction activities directly affects the ser-
vice, quality and effectiveness of the supply chain. In the operation of modern
c© Springer Nature Singapore Pte Ltd. 2019
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supply chain, the following steps are needed to realize the delivery of logistics.
Firstly, processing enterprises need to purchase raw materials from raw material
enterprises, process them into parts, and then sell them to component suppliers.
After component suppliers produce parts, they sell them to finished products
enterprises. Then finished products enterprises sell their finished products to
distributors and retailers, which ultimately sell goods to consumers. However,
in this series of activities, there is a capital gap as the funds of firm expendi-
ture and income occur at different times. For instance, when providing goods
to a downstream retailers (usually large buyer, such as Wal-Mart), suppliers,
especially small ones, often bear a long payment delay after delivery, depend-
ing on the agreed payment time and product quality. Therefore, for small and
medium-sized enterprises (SMEs) with insufficient capital, some “cost depres-
sions” have become the bottleneck restricting the development of supply chain.
Moreover, the economic downturn and lack of asset guarantees caused a con-
siderable reduction in loans, accompanied by high borrowing costs [32]. In this
context, the focus of supply chain research and exploration has gradually shifted
to the supply chain finance (SCF) to improve the efficiency of capital flow [60].
Sufficient working capital is more and more important for enterprises in the
fierce competition, especially for SMEs with great development opportunities
but restricted by cash flow.

Supply chain finance is a kind of management behavior and process inte-
grating logistics operation, commercial operation and financial management. It
closely links buyers, sellers, third party logistics and financial institution in trade,
realizes the function of using supply chain logistics to activate cash flow, and at
the same time uses cash flow to simulate supply chain logistics [60]. The ultimate
objective is to improve the efficiency of the supply chain. With the widespread
application of SCF, the number of scientific papers focusing on SCF has increased
in the last decade. However, through the contrast with the definition of SCF in
the existing literatures, it is found that the problem is addressed from differ-
ent perspectives, that is, the finance-oriented and supply chain-oriented per-
spectives [24]. More specifically, the former emphasizes on the financial aspects
and considers the SCF as a set of financial solutions [6]. The latter pays more
attention to the collaboration among the supply chain members, especially the
inventory optimization [52]. For more recent literature on SCF, we can refer to
[29,38,73,76] etc.

Supply chain finance risk refers to the possibility that funding providers will
suffer losses due to the influence of various unpredictable uncertainties in the
financing process of supply chain enterprises, which will cause the deviation
between the actual and expected returns of the financial products in the sup-
ply chain, or that the assets can not be recovered. In 2000, due to a fire at its
chip supplier, Ericsson lost $400 million, and its market share dropped from
12% to 9% [49]. In 2008, as the financial crisis broke out, numerous high-profit
companies went bankrupt one after another and the global economy was in a
downturn. The examples go on and on. However, no matter the risk caused
by natural disasters or human factors, the final loss is difficult to estimate.
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SCF approach is a set of solutions that optimizes cash flow by lending to funders
through credit trade, accounts receivable, pledged inventory or order financing.
Firms, especially the most vulnerable, once cannot repay the funding provider in
time due to the credit risk caused by uncertain factors, in that way the funding
provider will suffer great losses. Therefore, numerous scholars and practitioners
begin to pay attention to the risk management of supply chain finance. Specif-
ically, supply chain finance risk mainly include credit risk, market risk, legal
risk and operational risk. The core of supply chain finance risk management
includes four key factors: risk identification, risk measurement and evaluation,
risk monitoring and early warning and risk management. This paper focuses
on risk management, including risk management of supply chain finance via
loan-to-value ratio, contracts coordination and financing schemes, and financial
derivatives.

In recent years, the digital economy is developing rapidly worldwide and
holds huge potential for entrepreneurs and SMEs. Digital economy, also some-
times called the Internet Economy, New Economy, or Web Economy, refers to
an economy that is based on digital computing technologies. The term “Digital
Economy” was first mentioned in Japan by a Japanese professor and research
economist in the midst of Japan’s recession of the 1990s. In the west the term fol-
lowed and was coined in [17] that was among the first books to consider how the
Internet would change the way to do business. In the digital economy scenario,
digitalization of supply chains is becoming increasingly dynamic. Blockchain
technology is regarded as a potential means of digitalization for supply chains
[40]. In particular, blockchain can increase the information transparency of the
supply chain and play an important role in supply chain finance risk manage-
ment. For example, blockchain can reduce the credit risk of SMEs financing
and the operational risk in SCF. It provides an important perspective for future
research of supply chain finance risk management based on blockchain technol-
ogy in the era of digital economy.

This paper first reviews the literature of supply chain finance risk manage-
ment and provides some disadvantages of traditional supply chain finance risk
management. Then we survey the new perspective for supply chain finance risk
management based on blockchain technology. Based on previous studies, not
only is an innovative general framework to reduce credit risk proposed, but also
supplements the SCF risk management system.

The remainder of this paper is organized as follows. We review the research
of the supply chain finance risk management focusing on loan-to-value ratio in
Sect. 2. We review the research on supply chain finance risk management from
another perspective-improving the supply chain performance in Sect. 3 and on
supply chain finance risk management via financial derivatives, especially options
contracts in Sect. 4. Section 5 is devoted to present a new perspective for supply
chain finance risk management: blockchain technology and review some recent
preliminary explorations in this field.
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2 Supply Chain Finance Risk Management via
Loan-to-Value Ratio

Due to the good liquidity and marketability of inventory, in the last few years,
the financing of inventory pledge has become the focus of attention and research
in academia. Unlike traditional bank loans, which are mainly secured by real
estate mortgage or third-party guarantee companies, the financing of inventory
pledge utilizes movable property in real trade behaviors between enterprises and
upstream and downstream to obtain loans from banks and other financial insti-
tutions. Therefore, the development of inventory financing business can realize
the “multi-win” of financial institutions, financing enterprises and third-party
logistics. However, everything has two sides. It brings tremendous benefits, but
also risks and losses. Currently, the most significant factor affecting the inventory
pledge financing risk is the price risk, which is mainly caused by the fluctuation
of the market value of the pledges. The credit risk of the enterprises turn into the
liquidity risk of collateral in the inventory pledge financing [3,15,18]. Therefore,
it is significant to evaluate and manage the collateral risk not only for reducing
the bank losses but also for the development of this business.

With these pressing needs, the scholars and practitioners have made many
beneficial explorations on risk management of pledges. Through literature
review, this section focuses on the research of key risk control indicator, loan-to-
value rate. Moreover, its reasonable determination plays an important role in the
smooth development of inventory financing business and the effective reduction
of risk. Loan-to-value ratio is the ratio of loans and collateral value. The indica-
tors related to loan-to-value ratio include the discount rate or haircut rate, the
loan amount and the quantity of the collateral required by the loan, among which
the discount rate or haircut rate is the value of the collateral minus the amount
of the loan divided by the value of the collateral, i.e. 1-loan-to-value. Further-
more, the final setting of the loan-to-value rate is closely related to the business
model, characteristics of guarantee inventory, default probability of enterprises,
supervision mode and loan interest rate, etc. which can reflect the risk status
of supply chain financial business in a comprehensive way. Hence, the determi-
nation and optimization of loan-to-value rate has crucial theoretical significance
and broad application value.

Cossin et al. [16] propose a general framework for determining collateral
risk control in repurchase transactions. By establishing a credit risk model, the
risk level of collateral is determined by taking into account the intrinsic risk
parameters of collateral: mark-to-market and haircut. Jokivuolle and Peura [33]
present a risk debt model, in which the value of collateral may be related to the
probability of default. This model can not only estimate the expected default
loss, but also determine the loan-to-value rate as a loan criterion. Li et al. [44]
analyze the optimization of the pledge rate that the inventory price obeys various
random distributions. Using the “subject + debt” strategy, it establishes a pledge
rate decision-making model to avoid downsides risks, and points out that under
the static pledge situation, as long as the distribution of the market price of the
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pledge at the end of the financing period is known, an analytical formula of the
pledge rate can be obtained.

With the rapid development of modern financial risk management technology,
the researchers have made considerable progress in using risk management tools
to manage inventory financing. For example, the VaR (value at risk) method for
measuring market risk was first proposed in 1993. Subsequently, the risk control
model of risk metrics proposed by Morgan [34] for calculating the value of risk
has been widely adopted by numerous financial institutions. The VaR approach
is essentially a statistical measurement of the pricing fluctuations of the object. It
estimates the statistical distribution or probability density function of the future
price changes of the object according to the historical data. The mathematical
definition of VaR is:

Prob(Δp > V aR) = 1 − c (1)

Where, Δp is the loss of the object in the target period Δt, and c is the confidence
level. Taking pledges as the object, the following describes the basic calculation
process of VaR. Assuming that ω0 is the original value of the pledge at the
beginning of the loan; Y is the rate of change in value of the pledge during
the target period; μ is the expected value of rate of change; σ is the standard
deviation of rate of change, then the value of the pledge at the end of the loan
period ω is

ω = ω0(1 + Y ). (2)

Further, assuming that at the confidence level c, the minimum value change rate
of the pledges during the target period is Y ∗, then the minimum repayment
value ω∗ of the pledges at the confidence level is

ω∗ = ω0(1 + Y ∗). (3)

Thus, the relative VaR of the pledge in the target period can be defined as:

V aR = E(ω) − ω∗ = −ω0(Y ∗ − μ). (4)

The absolute VaR of the pledge in the target period can be defined as:

V aR = ω0 − ω∗ = −ω0Y
∗. (5)

From the above, as long as the value of ω∗ or Y ∗ at the confidence level c is
calculated, the relative VaR and absolute VaR can be obtained.

The measurement methods of VaR can be basically divided into two cate-
gories. The first category is the local valuation method including moving aver-
age, GARCH model, analysis variance-covariance approach and so on; The sec-
ond category is the full valuation method such as historical simulation, monte
carole simulation and bootstrap. Establishing a model with the formula AR(1)-
GARCH(1,1)-GED, He et al. [36] put forward the method of dividing the pledge
period into different risk windows to set the dynamic pledge rate. He et al. [28]
propose a new measurement method for extreme risk of futures price (value at
risk and conditional value at risk) according to inventory financing portfolio and
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time interval of dynamic impawn rate, and introduce monte carlo simulation
method to conclude that inventory portfolio can disperse financing risk.

In recent years, in addition to the above methods to determine the loan-to-
value rate, some innovative ideas have been proposed. Zhang et al. [72] inves-
tigate the determination of the loan-to-value rate in an idea of option pricing,
that is, the present value of the pledge equals the value of the put option. Sim-
ple empirical method or VaR method to determine the impawn rate may lead to
valuation failure, thus increasing the risk of banks or financial institutions. This
provides a new direction for the accurate solution of the pledge rate.

On the one hand, in addition to proposing methods and frameworks to deter-
mine and optimize the pledge rate, on the other hand, some literatures also
involve the research on the impact of the pledge rate under the constraint of
capital on logistics operation decision of enterprises. Buzacott and Zhang [3]
introduce asset-based financing into production decision-making for the first
time, and analyze how the setting of interest rate and loan-to-value rate affected
the profitability of enterprises by establishing a newsboy model. Dada and Hu
[19] analyze the decision-making of capital-constrained enterprises to borrow and
order seasonal inventory at a given lending rate based on the newsboy model.
Caldentey and Haugh [5] also study the decisions of retailers and manufactures
with capital constraints in the stackelberg game and analyze the supply chain
contract design when retailers can make financial hedging. In conclusion, there
are still a lot of papers considering the impact of pledge rate on decision-making,
thus they are not listed one by one.

Although the current research has provided some methods to evaluate the
collateral, there are still some other risks. For instance, financial institutions such
as banks cannot determine whether the inventories are repeatedly pledged, which
requires financial institutions to spend more manpower, material and finan-
cial resources to verify. Scholars still need to explore new ways to address this
problem.

3 Supply Chain Finance Risk Management via Contracts
Coordination and Financing Schemes

The first section summarizes the research status of the risk control indicator
loan-to-value rate on the control of supply chain financial risk. This section will
conclude the exploration and achievements of researchers on supply chain finan-
cial risk management from another perspective, that is, improving the supply
chain performance. It is highlighted that suppliers or retailers with capital con-
straints or both are subject to capital constraints. By introducing contracts or
choosing good financing schemes, the performance of the supply chain can be
improved, so as to reduce risk. Similar to the traditional supply chain without
capital constraint, Kanda and Deshmukh [37] show that supply chain members
attempt to coordinate by using contracts for better management of supplier-
buyer relationships and risk management.
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As we all know, to develop great supply chain finance business is inseparable
from the normal operation of its supply chain. Once the supply chain is subject
to fluctuation or disruption, enterprises with constraint capital are very likely to
have operational risk and credit risk, causing huge losses to financial institutions.
Consequently, the risk of supply chain finance must be closely related to the risk
in supply chain operation and management. Before describing the outstanding
contributions made by researchers to supply chain risk management, it is nec-
essary to introduce the most basic newsvendor model. Newsvendor model plays
an irreplaceable role in supply chain operation decision.

Consider a two-echelon supply chain consisting of one retailer and one sup-
plier. Assuming that market demand D is random and continuous, its distribu-
tion function is F and density function is f . The wholesale price of goods is w;
the retail price is p; the residual value is v, and the penalty for short supply is
s. The retailer orders goods with quantity Q from the supplier, so the retailer’s
expected revenue is

Π(Q) = E[p min(Q,D) + v max(Q − D, 0) − smax(Q − D, 0) − wQ]. (6)

The retailer needs to determine the optimal order quantity Q to maximize the
expected revenue, i.e.,

max
Q≥0

Π(Q). (7)

By solving the optimization problem, the optimal order quantity Q∗ is obtained:

Q∗ = F−1(
p + s − w

p + s − v
). (8)

Thus, the optimal expected revenue of retailer Π∗(Q∗) can be abtained.
With the frequent occurrence of risks and heavy losses, supply chain risk

management has attracted attention from both academia and practitioners of
operations management. A various set of supply disruption examples have been
provided by Chopra and Sodhi [7], sheffi [57] and Wu et al. [67]. There are
diverse mitigation techniques that deal with material flow risk such as multiple
sourcing [2], alternative sourcing and backup production options [1,70], flexibility
[61,64], and supplier selection [20]. In particular, Tang [58] provides a review
of supply risk for reference. In addition, a number of papers study financial
flow risk of supply chain [67]. For instance, Li et al. [45] and Goh et al. [25]
research the exchange rate risk which greatly affects the enterprises’ supplier
selection, market development and other operation decisions. Papadakis [50]
studys the price and cost risk which is bound up with exchange rate. The financial
strength of supply chain partners is also considered. Tang [58] points out that
the vulnerability of financial strength of s supply chain partner may easily affect
the whole supply chain network. Finally, except that the above material flow
risk and financial flow risk, stream of research is related to information flow
risk, which focuses on information accuracy [41,48], information system security
and disruption [21] and information outsourcing [14,48]. The literature of supply
chain risk management is more mature than that of supply chain finance risk
management, so it is not detailed.
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Recently, researchers have found that the operation decisions and capital
decisions of enterprises are inseparable, because in reality, enterprises often suffer
capital constrains, and their development is greatly influenced by bond financing,
bank loans, risk fund and other external investments. Moreover, Xu and Birge
[68] study the decision of a capital constrained buyer, and show that integrat-
ing financial and operational decisions can improve significantly the enterprises’
value. Thus, a number of papers related to coordination with capital constrained
supply chain are proposed in the supply chain finance system.

Dada and Hu [19] consider a supply chain with a capital constrained retailer,
and derive a non-linear loan schedule that coordinates the supply chain with a
wholesale price contract. By considering the quantity discount contracts, buy-
back contracts, two-part tariff contracts, revenue-sharing contracts and mark-
down allowance contracts, Lee and Rhee [42,43] show that these contracts can
coordinate the supply chain with trade credit financing rather than the bank
credit financing. In addition, Zhang et al. [71] explore the issue of supply chain
coordination by considering trade credit and default risk. They study a modi-
fied quantity discount based on order quantity and advance payment and find
that the existence of an appropriate amount of advance and discount can coordi-
nate the supply chain. Moreover, trade credit can not only solve financing needs
for enterprises with capital constrain, but also plays other functions other than
financing. Long et al. [46] and Rui and Lai [54] successively propose that trade
credit can be used as a guarantee for product quality. However, a single contract
has its risk, such as double marginal effect. Therefore, in order to overcome the
shortcomings of single contract and give full play to the unique advantages of
different contracts, scholars adopt joint contract, which not only plays an impor-
tant role in controlling the risk of capital provider, but also can better guarantee
the revenue of enterprises in the chain, so as to coordinate the supply chain
more effectively [35,55,69]. Cai et al. [4] proposes revenue sharing and supplier
subsidy contract, and show that compared with single revenue sharing contract,
joint contract can realize pareto improvement.

Another stream of literatures that comparing various financing schemes to
obtain which one is the best have been studied. For instance, Chen and Cai [8]
study the value of third party logistics (3PL) firms in budget-constrained supply
chain, and find that all partners can be better off under 3PL financing rather
than supplier credit financing. Tunay and Zhu [63] study BIF (large buyers
intermediate between banks and suppliers with capital constraint to guarantee
financing for suppliers) in a three-way decentralized game between the supplier,
the buyer, and the bank with supplier defects and endogenous buyer determined
interest rate and wholesale prices. Comparing the performance of two different
financial schemes with asymmetric information, they show that by allocating
risk away from the supplier and towards the buyer, BIF can improve supply
chain performance.
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4 Supply Chain Financing Risk Management via
Financial Derivatives

It is well known that financial derivatives are important tools for risk manage-
ment. A derivative is a financial contract whose value depends on one or more
basic assets or indices-underlying assets. The basic types of contracts include
forward, futures, swaps and options. Further, financial derivatives also include
hybrid financial instruments with multiple characteristics of forward, futures,
swaps and options. Originally, the main purpose of early participants in deriva-
tives markets is to hedge against forward risks. In fact, financial derivatives, such
as futures, options, forward, swaps and so on, have become an effective tool to
manage and reduce the risk of market participants.

To the best of our knowledge, the first contribution to the study of supply
chain risk management using derivatives is Ritchken and Tapiero [53], in which
they introduced the option contract into inventory management for hedging
against price and quantity uncertainty. Option contracts can provide the buyer
with right to buy a certain amount of goods from suppliers at a fixed price in the
future. The aim of this paper is to use options as hedging tools to manage risks
arising from uncertain prices and demand. Next, let’s briefly describe the model
in this article to show the risk management approach that uses option contracts
for hedging against price and quantity uncertainty in inventory procurement.

Consider a single period inventory model. Assumed that v0 unit goods with
per unit price of S0 are acquired at i = 0, and stored to period i = 1. Let u0 be
the number of options with strike price π at i = 1 are purchased at i = 0, the
option price is C0. S1 and d1 (random variables) represent the price of goods and
order quantities in period i = 1. Denoted hs(v0) and hc(u0) by the present value
of the inventory and option carrying charge. The decision make’ optimization
problem at i = 0 is

min
V0,U0

EU(F (v0, u0;S1, d1)), (9)

where F (v0, u0) = S0v0+hs(v0)+C0u0+hc(u0)−δC1u0+δS1v1 is the net present
value of cost, U is a utility function and δ is the discount rate, and v1 = d1− v0,
v1 is the number of units goods purchased in period i = 1, C1 is the inherent
value of the option contract in period i = 1, i.e., C1 = max{0, S1 − π}.

Option contracts have been increasingly employed as a popular strategy
by supply chain firms to hedge against the risk of unanticipated demand.
Golovachkina [26] designs a supply chain contract by using option in which a
competitive supplier offer an incentive-compatible contract to a manufacturer.
Furthermore, under information asymmetry about the buyer’s valuation pre-
mium for the suppliers’ product, Pei et al. [51] built a model to study the pricing
problem of contracts for a supplier of an industrial good in the presence of spot
trading, in which they provided an approach to the design of procurement con-
tracts combining buyers’ private valuations, spot market trading, information
asymmetry, and general pricing structures for option contracts.

Schummer and Vohra [56] study the mechanism-design problem for a supply
chains, in which a single buyer with an unknown future demand need to procure
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purchase options for a homogeneous good. Wu and Kleindorfer [66] develop
a framework for analyzing business-to-business (B2B) transactions and supply
chain management based on integrating contract procurement markets with spot
markets using capacity options and forwards. The key feature of this paper
is the competition and interaction among multiple sellers with heterogeneous
technologies. Option contracts are of increasing importance in practice and this
paper showed that options contracts were having fundamental impacts on both
B2B contracting as well as the operational decisions that flow from it.

Fu et al. [22] study a single-product periodic-review inventory system, in
which the demand is random and price-dependent. A company purchased a
single product from a range of supply sources, including a set of options contracts
(suppliers) with different flexibility and costs, and a spot market with uncertain
prices. By exercising the option reserved from the supplier and ordering from
the spot market when needed, the company made three decisions in each period,
namely, the selling price of the product, the quantity of option reserved and the
replenishment of inventory under the objective of maximizing the total expected
profit over a finite planning horizon.

Gaur and Seshadri [23] address the problem of hedging inventory risk using
the newsvendor model when demand is correlated with the price of a finan-
cial asset. In both the mean-variance framework and the more general utility-
maximization framework, they showed how to construct optimal static hedging
strategies that minimize the variance of profit for a given inventory level and
increase the expected utility for a risk-averse decision maker. They also ana-
lyzed the impact of hedging on the expected utility of the decision maker and
on the optimal inventory decision. The results showed that for both risk-neutral
and risk-averse decision makers, (1) hedging reduces the variance of profit and
increases expected utility, the reduction in the variance of profit is directly pro-
portional to the correlation of demand with the price of the asset; (2) it provides
an incentive to a risk-averse decision maker to order a quantity that is closer
to the expected value-maximizing quantity; (3) the hedging transactions do not
require additional investment.

The option contract can also coordinate the supply chain. Considering that
cooperative relationships are becoming more and more prevalent in supply chains
under the current industry environment, Zhao et al. [74] take a cooperation app-
roach to solve the coordination issues for manufacturer-retailer supply chains
using option contracts. Taking into account supply chain members risk prefer-
ences and negotiating powers, they developed an option contract model by using
the wholesale price mechanism as a benchmark. The results showed that, com-
pared with the benchmark as wholesale pricing mechanism, option contracts can
coordinate the supply chain and achieve Pareto-improvement.

Chen et al. [9] investigate a one-period two-echelon supply chain, which is
composed of a risk-neutral supplier that produces short life-cycle products and
a loss-averse retailer that orders from the supplier via option contracts and
sells to end-users with stochastic demand in the selling season. When a single
retail season begins, the retailer can obtain goods by purchasing and exercising
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call options. The results showed that, (1) the loss-averse retailer may order less
than, equal to, or more than the risk-neutral retailer; (2) the loss-averse retailer’s
optimal order quantity may increase in retail price and decrease in option price
and exercise price, which is different from the case of a risk-neutral retailer;
(3) there always exists a Pareto contract as compared to the non-coordinating
contracts.

Considering a service requirement, Chen and Shen [10] and Chen et al. [11]
examine the effect of options contracts and bidirectional option contracts on a
two echelon supply chain consisting of a supplier and a retailer, respectively.
Their study showed that the service level with (bidirectional) option contracts
is equivalent to that without them when the service requirement is binding,
while the service level with (bidirectional) option contracts is higher than that
without them when the service requirement is not binding. In the presence of
(bidirectional) option contracts and a service requirement, a distribution-free
coordination condition was as well proposed to achieve the Pareto improvement.

Hua et al. [31] develope a Stackelberg game to analyze the joint ordering and
financing problems in a two-echelon supply chain based on the option contract,
in which a capital-constrained retailer ordered via the option contract from a
single large supplier due to uncertain market demand. The retailer can apply
for either a bank loan or trade credit from the supplier whenever necessary
to maintain a reasonable capital level to pay for option orders because of its
limited capital. The results showed that the supplier should always finance the
retailer at the risk-free interest rate in the presence of the retailer’s bankruptcy
risk. Meanwhile, under trade credit, the supply chain’s efficiency is improved
(decreased) when the production cost is high (low). Furthermore, the results
showed that the supplier’s relationship concern can improve the supply chain’s
efficiency and the retailer’s revenue most of the time, but increase the retailer’s
bankruptcy risk when the production cost is high, implying that the supplier’s
attempt to help the retailer eventually harms its long-run survival.

In conclusion, there are two mainly disadvantages about present risk man-
agement of SCF. First, the current risk management methods lack risk control
before financing. The funding providers or the financing party usually use the
above three risk management methods to reduce the risk after determining the
financing. Second, risk management of SCF is realized through loan-to-value
rate, and contracts coordination and financing schemes, which is essentially the
risk sharing among members of the supply chain, third-party logistics companies

5 The Combination of Emerging Blockchain Technology
and SCF

In 2008, Nakamoto [47] proposes a scenario design for how to build a trusted
trading network without relying on authoritative third-party institutions, such
as banks. For the first time, the concept of blockchain technology is well
known. Blockchain technology is a new distributed infrastructure and comput-
ing method, which uses blockchain data structure to verify and store data, uses
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distributed node consensus algorithm to generate and update data, uses cryp-
tography to ensure data transmission and access security, and uses smart con-
tract composed of automated script code to program and operate data. More
concretely, blockchain is a growing list of records, called blocks, which are cryp-
tographically linked. Each block contains a cryptographic hash of the previous
block, a timestamp, and transaction data. Due to its design, the blockchain is
resistant to modification of the data. A blockchain is an open, distributed ledger
that can record transactions between two parties efficiently and in a verifiable
and permanent way. With a blockchain, many people can write entries into a
record of information, and a community of users can control how the record of
information is amended and updated [13].

Because of the above characteristics, blockchain technology has received
growing attentions from both academia and industry in the past few years. For
instance, the Economist defined blockchain technology as a ‘trusted machine’ in
November 2015. Due to the huge potential of blockchain technology, the model of
‘blockchain +’ is also being studied continuously. This section mainly focuses on
the application of blockchain technology in supply chain management and SCF.
Streams of papers with blockchain-based supply chain management are as fol-
lows. Blockchain-based applications using radio frequency identification (RFID),
the Internet of things(IoT), and tracking sensors could make breakthroughs in
supply chain management and logistics [59,62]. Key supply chain management
objectives such as cost, quality, sustainability, flexibility and risk management
can be improved according to the use of blockchain to increase transparency of
information in supply chain activities [39]. Zhu and Kouhizadeh [75] propose
that blockchain technology with traceability, transparency and so on may help
address information challenges to reduce the risk for rational product deletion.
On the other hand, the SCF based on blockchain technology has attracted exten-
sive attention. Chod et al. [12] identify a crucial benefit of blockchain adoption-by
opening a window of transparency into operations of a firm, blockchain technol-
ogy furnishes the ability to secure favorable financing terms at lower signaling
costs. In addition, more SCF platforms based on blockchain technology have
emerged, aiming at solving the problems of information asymmetry, low effi-
ciency of financing and high cost of financing in SCF [65]. Hofmann et al. [30]
try to discover possible opportunities from the application of the blockchain tech-
nology to SCF financing solutions, particularly in approved payables financing.
The results show that blockchains and distributed ledgers technology can bring
substantial benefits to all parties involved in SCF transactions by speeding up
the processes and reducing the overall cost of financing schemes.

5.1 The Significance of Blockchain Technology to SCF

Because of the small scale of operation, lack of fixed assets, poor risk resis-
tance and low credit rating of banks, financial institutions usually need to invest
a very high human cost for reducing the risk of financing. However, cost is
always the core of business practice. Therefore, SMEs are generally difficult
to obtain bank loans at low interest rates like competitive enterprises or even
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impossible to get. To develop financing services for SMEs and reduce the risk of
financing, specifically, financial institutions need to investigate the real operation
of supply chains to ensure that participants, trading results and documents are
the basis of real asset transactions. A large number of documents auditing, risk
control index estimation and establishment, as well as high operating costs, make
it impossible for Banks to fully and effectively carry out supply chain finance,
which greatly hinders the formation of scale economy and scope economy of
Banks.

In addition, the goal of SCF is to cover the financing of SMEs in an all-round
way. Under the credit guarantee of core enterprises, most of the financing objects
of SCF are ‘primary suppliers’ and ‘primary distributors’. However, the financing
needs of a large number of secondary and tertiary suppliers and distributors are
still unable to meet.

These painful points have always been difficult points to overcome for schol-
ars and practitioners. However, with the emergence of blockchain technology,
researchers believe that blockchain technology, due to its characteristics, can
well make up for the existing deficiencies of SCF business, delivering credit,
demonstrating authenticity at low cost and better serving SMEs. More con-
cretely, financial institutions can use transparent data on the chain and judge
the authenticity of trade by means of cross-validation, so as to decide whether to
finance enterprises or not. The SCF model under the blockchain structure can
greatly improve the operation efficiency of the capital market, reduce fraud in
financial transactions, and lower transaction costs. This will lead to a series of
theoretical and applied innovations in the field of SCF.

5.2 New Perspective for Risk Management: Blockchain Technology

Risk management of SCF is realized through loan-to-value rate, contracts coordi-
nation and financing schemes, which is essentially the risk sharing among mem-
bers of the supply chain, third-party logistics companies and financial institu-
tions. However, with the rise of blockchain technology, researchers have found
that supply chain finance risk management can be realized from a new perspec-
tive. Compared with risk sharing under information asymmetry, the new risk
management measure is more to increase the information transparency among
the members involved in SCF to avoid the generation of risk.

In the process of supply chain operation, all information is stored separately.
For example, financing enterprises have information of corporate operation and
capital, logistics companies have information of logistics and warehouse receipt
pledge, and Banks have information of financial products. Information disper-
sion and false information make it necessary for financial institutions to spend
a great many costs when evaluating the credit status of financing enterprises.
This situation leads to the difficulty and high cost of financing for financing
enterprises, and further hinders financial institutions from carrying out supply
chain financial business.

Nowadays, practitioners can build a platform for the gathering participants
involved in SCF based on blockchain technology. In addition, tax authorities,
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electric power authorities and legal authorities should be incorporated into
the platform to make full use of the information of authoritative institutions.
Members store information related to the transaction content on the platform.
As long as the data uploaded to the platform is authentic, the non-tamper abil-
ity of blockchain can ensure that the data on the platform will always be true.
When the financing enterprise proposes the financing demand to the financial
institution, the financial institution can make statistics and analysis of all the
information related to the financing enterprise on the platform by using the big
data technology. According to the data obtained, the bank judges the financing
risk and thus avoid huge losses.

6 Conclusions and Future Research

Risk management has become an essential tool in dealing with the risk issues
in supply chain finance. This paper surveys the applications of traditional risk
disposal to supply chain finance and reviews the existing literature including
supply chain finance risk management via loan-to-value ratio, contracts coordi-
nation and financing schemes, and financial derivatives. However, because of the
small scale of operation, lack of fixed assets, poor risk resistance and low credit
rating of banks, the cost for reducing the risk of supply chain finance via the
traditional risk disposal is very high. Specifically, financial institutions need to
investigate the real operation of supply chains to ensure that participants, trad-
ing results and documents are the basis of real asset transactions. In addition,
the financing demand of a large number of secondary and tertiary suppliers and
distributors are still unable to meet.

The development of the digital economy, in which the key factor of production
is the data in digital form, can significantly improve the effectiveness of different
types of production, technology, equipment, storage, sale, delivery of goods and
services. In the digital economy scenario, digitalization of supply chains is also
becoming increasingly dynamic. One of the tools of the digital economy, allowing
to provide all the necessary conditions and mechanisms for technology is the
blokchain technology. Blockchain technology can alleviate or even resolve the
business pain point of SCF, delivering credit and demonstrating authenticity at
low cost. The SCF model under the block chain structure can greatly improve the
operation efficiency of the capital market, reduce fraud in financial transactions,
and lower transaction costs. This will lead to a series of theoretical and applied
innovations in the field of SCF.

However, we still face some difficulties and challenges. For instance, how to
ensure that the data uploaded to the platform is authentic? How to motivate
participants to join the platform? Some researchers, such as He et al. [27], propose
a real incentive mechanism for distributed P2P applications based on blockchain,
which uses encrypted currencies such as bitcoin to motivate users to cooperate.
Therefore, the use of this technology needs higher technical conditions. Besides,
credit risk and operational risk can be reduced through blockchain technology.
However, how to reduce the market risk more effectively? This is something we
need to think about constantly in the future.
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Abstract. The study of vacation queue started in the 1970s. Up to
now, it has made abundant achievements, formed a theoretical framework
with stochastic decomposition as the core, and has been applied to many
fields. This paper gives a comprehensive overview of the research results
and analysis methods of vacation queue, including its applications in the
communication networks.

The essence of vacation queue is that the service may be interrupted.
As early as 1982, Jinhua Cao and Kan Cheng studied a kind of repairable
queueing system, which was the earliest work involving vacation queue at
home. From then on, a group of domestic scholars began to engage in the
study of vacation queue, and achieved a series of important achievements,
which are also described in this paper.

Keywords: Vacation queue · Working vacation queue · Stochastic
decomposition

1 Introduction

Since the pioneering work of Erlang [1], queueing theory has been developed over
almost 100 years and become an active branch of operations research and applied
probability theory. The analysis of classical queue model has formed a complete
theoretical system, and widely applied to various areas, such as, communication,
manufacture, traffic, service, management, military, and others. In modern times,
queueing theory has successfully applied to the system design and performance
analysis of high-tech field, such as, computer networks, wireless communication,
flexible manufacturing, e-commerce, online finance, and others. The fundamental
cause of keeping queuing theory in perpetuity is that it is connected with the
latest technological development in each period. The excellent monographs on
the classical queueing theory have been published, see [2–6], etc.
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Vacation queue is the generalization of classical queue. In many practical
applications, the server may become unavailable for a period of time due to
a variety of reasons. This period of server absence is called “vacation time”.
For example, the damage and repair of service facilities; routine maintenance of
service facilities in order to ensure service efficiency once the system becomes
empty; the server works on some supplementary jobs in its idle time when the
system load is lower; highway traffic jam; the airport was closed by fog, all
cases may result in the server vacation. Vacation queue reflects the fact that
the service may be interrupted. On the other hand, various vacation behaviors
may provide more flexibility for the optimization design and operation control
of the system. Therefore, the study of vacation queue has become the research
topic of stochastic models, and has obtained rich theoretical achievements and
the practical application achievements.

This paper systematic comments on the research achievements and analysis
methods of the vacation queue, and its applications in the performance analysis
of the communication networks.

Though priority queue, polling queue, repairable queue, all can be included
in the vacation queue, but it is generally regarded that the research on vacation
queue started from Levy and Yachiali [7]. From the view of effectively utilize idle
time, the authors introduced the term “vacation queue” and studied a kind of
M/G/1 vacation queue using embedded Markov chain, and derived the station-
ary queue length distribution and waiting time distribution. Another important
contribution of literature [7] is to prove that the stationary queue length and
waiting time in this M/G/1 model can be decomposed into the sum of two
independent random variables, where one part is the stationary queue length
and waiting time in the classical M/G/1 queue without vacation; the other is
additional queue length and additional delay caused by vacation behaviors. This
kind of “independent sum” structure of stationary indices is called “stochastic
decomposition” in literatures. Subsequently, it has been proved that the stochas-
tic decomposition structure is a universal rule in various vacation queues, and
it has important role in the analysis of vacation queue. Firstly, the stationary
distribution of classical queue without vacation is known, the stochastic decom-
position makes the analysis of vacation queue to focus on the study of additional
queue length and additional delay. Secondly, stochastic decomposition results
may clearly show the effect of various vacation polices on the stationary perfor-
mance indices of classical queueing system. Therefore, the stochastic decomposi-
tion brings great convenience to theoretical analysis and practical applications.

From 1975 to 1985, the early research on vacation queue focused on the
M/G/1 type queue models with variety of vacation policies. Using different meth-
ods, many researchers investigated the M/G/1 queue with multiple vacations,
single vacation, setup times, N -policy, etc. In 1986, a long survey written by
Doshi [8] detailed commented the early research results and analysis methods of
vacation queue on the first issue of the journal “Queueing System”. This survey
greatly prompted the study of vacation queue. Almost simultaneously, another
survey written by Teghen [9] was published in the journal “European Journal
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of Operational Research”, introducing the early research achievements from the
view of service control. Tian et al. [10] introduced the matrix-geometric solution
method into the study of vacation queue, analyzed a kind of GI/M/1 vacation
model and obtained the stationary distribution and its stochastic decomposition.
Subsequently, Chatterjee and Mukherjee [11] studied the GI/M/1 type vacation
queue using different method. Doshi [12] discussed the stochastic decomposition
structure in a general GI/G/1 vacation queue. In about 1990, there are many
research works on multiserver vacation queue. The earlier works see Levy and
Yachili [13] and Igaki [14]. Then, Tian et al. [15–18] investigated the M/M/c
queue with various vacation policies by quasi-birth-and-death process method.
The related works see Tian and Li [19], Xu and Zhang [20] and Tian and Zhang
[21–23]. The analysis of the GI/M/c type vacation queue can refer to Tian and
Zhang [24], Chao and Zhao [25], etc.

Different from single server vacation queue, the stationary index distributions
in a multiserver vacation queue is complicated, and show no stochastic decom-
position rule. However, Tian, Li and Cao [26] revealed the conditional stochastic
decomposition structure in the multiserver vacation queue. The number of cus-
tomers in queue under the condition the servers are all busy can be decomposed
into the sum of two independent random variables, where one variable is the num-
ber of customers in a corresponding classical multiserver queue without vacation
given that the servers are all busy, the other is additional queue length caused by
vacation. When an arrival finds all the server busy, the conditional waiting time
was proved to satisfy the similar conditional stochastic decomposition. In fact,
for a single server vacation queue, the conditional queue length and conditional
waiting time given that the server is busy also satisfied this kind of conditional
stochastic decomposition rule. Dishi [27] discussed the conditional distribution
in the M/G/1 vacation model. Only because the unconditional distributions
of stationary queue length and waiting time exist simple stochastic decomposi-
tion structure, which conceals the study of conditional stochastic decomposition.
The stochastic decomposition of conditional queue length and waiting time is
the common rule for both single server vacation queue and multiserver vacation
queue.

In this years, the queueing theory monograph published has included the
analysis of vacation queue. The analysis of all kinds of M/G/1 type (Geom/G/1-
type) vacation queues can refer to Bose [28] and Takagi [29]. The book edited
by Dshalalow [30] introduced the queueing system where vacation queue was
listed in the queue model with the state dependent on parameter. Tian and
Zhang [31] took stochastic decomposition as the main line to construct the the-
oretical framework of vacation queue. This monograph dedicated on vacation
models, and included the study of not only various M/G/1 type vacation queues
but also GI/M/1 type and multiserver vacation queue, moreover, introduced
the optimization design and operation control method, and some application
examples. The main contributions of this paper is to provide a comprehensive
overview for the stochastic decomposition structures of vacation queues.
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The remainder of this paper is organized as follows. In Sect. 2, we describe var-
ious vacation policies. Subsequently, we respectively give the stochastic decom-
position results for the M/G/1 vacation queue with non-exhaustive service, the
M/G/1 vacation queue with exhaustive service, GI/M/1-type vacation queue,
multi-server vacation queue and working vacation queue from Sect. 3 to Sect. 7.
Finally, we present the conclusions.

2 Vacation Policies

A vacation queuing system is formed by introducing appropriate vacation policy
into a classical queuing system. Vacation policy indicates the vacation startup
rule and vacation termination rule. The vacation strategies frequently appeared
in the literature are cited.

One class is called exhaustive service: once the server begins to serve the
customer, the server will continuously serve customers until the system becomes
empty. The vacation starts at the end of busy period. The vacation policies with
exhaustive service are as follows.

(1) Multiple Vacation (MV). Once there is no customer in the system, the server
begins to take a vacation of random length V . The server will take another
i.i.d vacation if there is no customer waiting in the system at a vacation
completion instant. The server terminates vacation period and begins a new
busy period until there are customers in the system at a vacation completion
instant.

(2) Single Vacation (SV). Once the system becomes empty, the server begins
to take a vacation of random length V . If there are customers in the sys-
tem at a vacation completion instant, the server begins to serve customers;
Otherwise, the server stays in idle.

(3) Setup Time (ST). The service facility is closed once a busy period completes,
the system will be restarted to serve the customer after a setup (preheat)
time of duration V when a customer arrives.

(4) N -policy Vacation (NV). Once the system becomes empty, the server begins
to take a vacation, a new busy period is started until there are N arrivals
in the system.

The other class is called nonexhaustive service. The server can take a vacation
even when the system is not empty. The classical nonexhaustive service includes
the following polices:

(1) Gated Service (GS). When the server returns from a vacation and begins a
service period, it serves continuously only those customers present at that
time, deferring the service of all customers that arrive during the service
period until after the completion of the next vacation.

(2) Limited Service (LS). The amount of work done in serving customers during
a given service period is limited. For example, the number of customers
serves continuously is not large than M (M -limited) or the total work time
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length of a service period is not large than T (T -limited). Whenever the
service limit is reached, the server starts a vacation regardless of the number
of customers in the system.

(3) Decrementing Service (DS). Once the server resumes queue service after a
vacation, it keeps serving customers until the amount of work (total cus-
tomer service time) is smaller than the amount of work at the beginning of
the busy period, and then it takes a vacation. For example, the server may
start a vacation when the number of customers in the system becomes M
less than the number of customers when the busy period started.

(4) Bernoulli Schedule (BS). The server takes a vacation of duration V with
probability p and serves another customer, if any, with probability 1 − p
after each customer service.

(5) Repairable Queue (RQ). The operating service may be damaged, and it con-
tinues to serve the customer after repair, taking the repair time as server’s
vacation.

The above illustrates some common vacation policies for the sake of narra-
tive. In fact, we may present various vacation policies according to application
requirements. Many special vacation policies in literatures are not mentioned
here.

3 M/G/1 Vacation Queue with Exhaustive Service

Consider a classical M/G/1 queue, where customers arrive according to a Poisson
process with rate λ, and service times are general distributed random variables
with LST b(s) and mean μ−1. Assume that the service order is first-come-first-
served (FCFS). Let Q and W be the stationary queue length and waiting time,
respectively. Denote the probability generating function (PGF) of Q and the
Laplace-Stieltjes transform (LST) of W by Q(z) and W (s), respectively. When
ρ = λμ−1 < 1, it is well known that

Q(z) =
(1 − ρ)(1 − z)b(λ(1 − z))

b(λ(1 − z)) − z
(1)

W (s) =
(1 − ρ)s

s − λ(1 − b(s))
(2)

and the means

E(Q) = ρ +
λ2b(2)

2(1 − ρ)
, E(W ) =

λb(2)

2(1 − ρ)

where b(2) is the second order of the service time. This is the famous Pallaczak-
Khinthine formulae.
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Introducing some vacation policy with exhaustive service, vacation time V
follows a general distribution, denote its LST by v(s). The embedded Markov
chain method is a simple and effective tool to deal with this kind of M/G/1
vacation queue. Denote the number of customers in the system at the nth cus-
tomer departure instant by Ln, then {Ln, n ≥ 1} is an embedded Markov chain
of the queueing process, and

Ln+1 =
{

Ln − 1 + A, Ln ≥ 1,
Qb − 1 + A, Ln = 0

where A is the number of arrivals in a service time. Qb is the number of cus-
tomers present in the system at the beginning of a busy period, its distribution
is dependent on vacation policy. Note that all regeneration points (embedded
instants) are in busy period, therefore, comparing {Ln, n ≥ 1} in vacation queue
with the embedded chain in the classical M/G/1 queue, only the first row of their
transition probability matrix is different. Moreover, based on PASTA property,
the stationary queue length distribution of {Ln, n ≥ 1} is the queue length
distribution in any instant for the Poisson arrival queue.

Now, denote the PGF of the stationary number of customers in the sys-
tem, Qv, and the LST of the stationary waiting time, Wv, by Qv(z),Wv(s),
respectively. Using embedded Markov chain method, for various M/G/1 vaca-
tion queues with exhaustive service, we obtain the stochastic decomposition
structure

Qv(z) = Q(z)Qd(z), Wv(s) = W (s)Wd(s)

where Q(z),W (s) are the PGF of the stationary queue length and the LST
of the stationary waiting time in the classical M/G/1 queue without vacation,
respectively, which is derived by Eqs. (1) and (2). Qd(z),Wd(s) are the PGF
of the additional queue length and the LST of the additional waiting time,
respectively. For the M/G/1 queue with multiple vacations, single vacation or
setup times, they are as follows

Qd(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − v(λ(1 − z))
λE(V )(1 − z)

, (MV)

1 − v(λ(1 − z)) + v(λ)(1 − z)
[v(λ) + λE(V )](1 − z)

, (SV)

1 − zv(λ(1 − z))
[1 + λE(V )](1 − z)

, (ST)

and

Wd(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − v(s)
E(V )s

, (MV)

sv(λ) + λ(1 − v(s))
[v(λ) + λE(V )]s

, (SV)

λ − (λ − s)v(s)
[1 + λE(V )]s

, (ST)
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From this kind of stochastic decomposition structure, it is easy to derive various
performance indices of vacation model. For example, the mean of Qv is

E(Qv) = ρ +
λ2b(2)

2(1 − ρ)
+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λE(V 2)
2E(V )

, (MV)

λ2E(V 2)
2[v(λ) + λE(V )]

, (SV)

2λE(V ) + λ2E(V 2)
2[1 + λE(V )]

, (ST)

For the M/G/1 queue with N-policy, vacation time can be regard as the
sum of N interarrivals, and Qb = N . The conditional waiting time W ′

v given
the arrival occurs in a busy period can be decomposed into independent sum
W ′

v = W + W ′
d, and

Qd(z) =
1 − zN

N(1 − z)
,

W ′
d(s) =

μ(1 − bN (s))
Ns

.

Levy and Yechiali [7] firstly studied the M/G/1 (MV) and M/G/1 (SV).
Subsequently, some researchers investigated the M/G/1 vacation queue with
exhaustive service using different methods. Such as, Fuhrmann [32], Doshi [33],
Harris and Marchal [34], Levy and Kleinrock [35], Takagi [36], Lee [37], Lee
et al. [38], Keilson and Servi [39], Keilson and Ramaswami [40], and others.

Various exhaustive service M/G/1 type queues were investigated successively,
and the stochastic decomposition of stationary indices were derived. Heymann
[41] discussed the M/G/1 queue with T -policy, once the busy period completes,
the server leaves the system for a certain length of time T , it begins to serve the
arrival or enter the idle state decided by the number of customers in the sys-
tem when it returns. Balachandran and Tijms [42] examined a kind of M/G/1
queue with D-policy, the server leaves the system after a busy period, it returns
until the work accumulation (total service time of waiting customers) reaches a
threshold D. Artalejo [43,44] analyzed a class of M/G/1 queue with N -policy
and D-policy. Yadin and Naor [45] introduced N -policy of the setup times and
closed times into the M/G/1 queue with the portable server. Lee and Srinivason
[46], Baba [47] studied the batch arrival M/G/1 vacation queue. Tian [48] intro-
duced a multiple adaptive vacation (MAV) policy, the number of vacations after
a busy period was controlled by a integer random variable H and arrival pro-
cess. Specially, H = 0 and H = 1 correspond to (MV)-policy and (SV)-policy,
respectively. The stationary distributions and their stochastic decomposition of
the M/G/1 (MAV) were derived in [48].

Other study is not on special vacation policy but to give the stochastic decom-
position directly by taking various vacation policies satisfying some requirement
as a whole. The related researches see Fuhrmann and Cooper [49], Shanthikumar
[50], Li and Zhu [51], and others.

Recently, Sun et al. [52,53] not only discussed the stationary distribution but
also economic behaviors of some M/G/1 vacation queues, and analyzed Nash
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equilibrium policies under competitive mechanism. More related researches see
Su and Li [54], Wang [55].

The analysis of exhaustive service M/G/1 type vacation queue has extended
corresponding discrete time Geom/G/1 queue. The discrete time queue is more
suitable for modeling analysis of computer networks and communication systems,
which refers to Brunnel and Kin [56], Woodward [57], Kobayashi and Konheim
[58], and others. Zhang and Tian [59] investigated the Geom/G/1 (MAV). The
Geom/G/1 (MV) and Geom/G/1 (SV) can be regarded as special cases of [59].
The researches of Geom/G/1 vacation queue see Fiems and Bruneel [60,61],
Bruneel [62,63], Alfa [64,65], and others. The analysis of Geom/G/1 vacation
queue refers to Takagi [29] (volume 3), and Tian and Zhang [31].

4 M/G/1 Vacation Queue with Non-exhaustive Service

The embedded Markov chain method does not apply to the M/G/1 vacation
queue with non-exhaustive service. The regeneration cycle method is a powerful
tool to deal with this kind of model, and refers to Heyman and Sovel [66], or
Ross [67].

Under the non-exhaustive vacation policy, there are customers in the system
at the service period ending instant and starting instant. Let Qb be the number
of customers present in the system at the beginning of a service period, with the
PGF Qb(z), which is determined by vacation policy.

Taking gated service (GS) for example, when the server finishes services
of Qb customers in the system, it starts to take a vacation of duration V . If
there is no customer at a vacation completion instant, the server takes another
vacation. The server starts a new service period until there are customers in the
system at some vacation completion instant, which is called gated service and
multiple vacation (GS, MV) policy. Similarly, we can define (GS, SV) policy.
If ρ < 1, using regeneration cycle method, we obtain the following stochastic
decomposition. Qv and Wv can be decomposed into the sum of three independent
random variables

Qv(z) = Q(z)Qd(z)Qr(z) Wv(s) = W (s)Wd(s)Wr(s).

Q(z),W (s) are given by Eqs. (1) and (2). For the M/G/1 (GS, MV), we have

Qd(z) =
1 − v(λ(1 − z))
λE(V )(1 − z)

,

Qr(z) = Qb(b(λ(1 − z)),

Wd(s) =
1 − v(s))
E(V )s

,

Wr(s) = Qb(b(s)).

where it is complicated for the distribution of Qb, but it is easy to derive the
function equation satisfied by its PGF Qb(z), and get the mean of Qb

E(Qb) =
λE(V )
1 − ρ

.
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Now, from the above stochastic decomposition, we obtain the means in the
M/G/1 (GS, MV)

E(Qv) = ρ +
λ2b(2)

2(1 − ρ)
+

λE(V 2)
2E(V )

+
λρE(V )
1 − ρ

,

E(Wv) =
λb(2)

2(1 − ρ)
+

E(V 2)
2E(V )

+
ρE(V )
1 − ρ

.

Similarly, for the gated service and single vacation M/G/1 (GS, SV), we have

E(Qb) =
v(λ) + λE(V )

1 − ρ
.

and

Qd(z) =
1 − v(λ(1 − z)) + v(λ)(1 − z)

[v(λ) + λE(V )](1 − z)
,

Qr(z) = Qb(b(λ(1 − z)),

Wd(s) =
v(λ)s + λ(1 − v(s))

[v(λ) + λE(V )]s
,

Wr(s) = Qb(b(s)).

The expected queue length and waiting time in the M/G/1 (GS, SV) respec-
tively are

E(Qv) = ρ +
λ2b(2)

2(1 − ρ)
+

λ2E(V 2)
2[v(λ) + λE(V )]

+
[v(λ) + λE(V )]ρ

1 − ρ
,

E(Wv) =
λb(2)

2(1 − ρ)
+

λE(V 2)
2[v(λ) + λE(V )]

+
v(λ) + λE(V )

μ(1 − ρ)
.

Regeneration cycle method can be used to deal with various non-exhaustive
service M/G/1 vacation queue and obtained similar stochastic decomposition.
Levy [68] introduced a Binomial distributed gated service policy. There are Qb

customers in the system at the beginning of the service period, the number
of customers served in this service period follows a Binomial distribution with
parameter (Qb, p). Other related researches of GS see Levy [68], Browne et al.
[69,70], Altman [71,72], Bacot et al. [73], Aktman [74], Choi et al. [75], and
others. The studies of discrete time Geom/G1 queue with gated service refer to
Ishizaki [76], fiems [77], and others.

Limited service (LS) M/G/1 vacation model was presented by Leung and
Eisenberg [78,79]. Lee [80,81] studied the limited space (LS) M/G/1/N queue.
Levy [68] investigated Bernoulli gated service model, was called Bernoulli
limited service system in literature. Takagi and Leung [82] discussed the
Geom/G/1 vacation queue with (LS)-policy. Ma and Tian [83,84] introduced
MAV policy into the non-exhaustive service system, and studied the Geom/G/1
(LS,MAV) and (GS, MAV). Decrementing service (DS) M/G/1 vacation model
referred to Takagi [85], this paper also studied the model with Bernoulli pro-
cess. Other works involved Bernoulli process see Keilson and Servi [86,87],
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Servi [88], Ramaswami and Servi [89], Choi and Park [90], Tedijanto [91], Wortman
et al. [92], Kumar [93], Madan [94], and others.

Taking the damage and maintenance as server vacation, the repairable queue
can be regarded as vacation queue with non-exhaustive service policy, where
the vacation may take place in the service time randomly. Cao and Cheng [95],
Cao [96] considered the repairable M/G/1 queue by introducing “the generalized
service time”, not only obtained the stationary indices but also reliability indices
including frequency of damage, availability, etc. Wang, Cao and Li [97] analyzed
the retrial M/G/1 repairable queue.

Bischof [98] investigated the M/G/1 type vacation queue with many vacation
polices. Variety of M/G/1, Geom/G/1 vacation queue with exhaustive and non-
exhaustive service refer to the monographs Takagi [29], Tian and Zhang [31].

5 GI/M/1-Type Vacation Queue

For a classical GI/M/1 queue, the interarrival time follows a general distribution,
with the LST a(s) and the mean λ−1. The service time follows an exponential
distribution with parameter μ. The service order is an FCFS discipline.

Let Ln(n ≥ 1) be the number of customers in the system just before the nth
arrival instant. When ρ < λμ−1 < 1, denote the stationary queue length and
stationary waiting time just before the nth arrival instant by L and W , with the
PGF L(z) and the LST W (s), respectively. We have

L(z) =
1 − r

1 − rz
, W (s) =

(1 − r)(μ + s)
μ(1 − r) + s

(3)

where r is the unique root of the equation z = a(μ(1 − z)) in the interval (0,1).
Compared to the M/G/1 type vacation queue, the study of the GI/M/1 type

vacation queue was very late. Tian et al. [10] detailed analyzed the GI/M/1
(MV), where the vacation time V follows an exponential distribution with
parameter θ. Now, {Ln, n ≥ 1} can’t completely indicate the state of the system,
we need to distinct the arrival occurs in busy period or vacation. Let

Jn =
{

0, the nth arrival occurs in busy period,
1, the nth arrival occurs in vacation.

{(Ln, Jn), n ≥ 1} is a two-dimensional embedded Markov chain, and the tran-
sition probability matrix has a block structure. Now, every numerical element
of the transition probability matrix of {Ln, n ≥ 1} in a classical GI/M/1 queue
is corresponding to a 2 × 2 sub-block, then, it is called the GI/M/1 type struc-
tural matrix. The matrix analysis method developed by Netus is used to deal
with {(Ln, Jn), n ≥ 1}. This method has become a powerful tools to analyze the
complex stochastic model, see Netus [99,100], Latouch and Rammaswami [101],
Li [102], Tian and Yue [103], and others.

Using the matrix-geometric solution method ([99]) of the GI/M/1 type struc-
tural matrix, the stationary distribution of {(Ln, Jn), n ≥ 1} is obtained, the
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stochastic decomposition of the stationary queue length Lv and the station-
ary waiting time Wv at the arrival instant are derived. Both Lv and Wv can
be decomposed into the sum of two independent random variables, that is,
Lv(z) = L(z)Ld(z), Wv(s) = W (s)Wd(s). L(z) and W (s) are the PGF and
LST of corresponding variables in the classical GI/M/1 queue without vacation,
given by Eq. (3). The PGF Ld(z) of additional queue length and the LST Wd(s)
of additional delay respectively are

Ld(z) = σ
1 − zr + zβ(r − a(θ))

1 − za(θ)
,

Wd(s) =
θ

θ + s

where both β and σ are constants, and

β =
θ

θ − μ(1 − a(θ))
,

σ =
1 − a(θ)

1 − r + β(r − a(θ))
.

It was proved if ρ < 1 then β(r − a(θ)) > 0 in [10]. Expanding Ld(z), we
obtain the distribution of Ld{

P{Ld = 0} = σ,

P{Ld = k} = σ
μ

θ
(1 − a(θ))β(r − a(θ))[a(θ)]k−1, k ≥ 1.

The probabilities of an arrival occurs in the busy period or vacation in steady
state respectively are

P{J = 0} =
β(r − a(θ))

1 − r + β(r − a(θ))
,

P{J = 0} =
1 − r

1 − r + β(r − a(θ))
.

From the above stochastic decomposition, we can derive the expectation for-
mulae in the GI/M/1 (MV)

E(Lv) =
r

1 − r
+

μβ(r − a(θ))
θ[1 − r + β(r − a(θ))]

,

E(Wv) =
r

μ(1 − r)
+

1
θ
.

Moreover, if the interarrival time follows a general distribution, the stationary
distribution of {Ln, n ≥ 1} is not the same with the stationary queue length dis-
tribution at any time. Using semi-Markov chain method, [10] gave the stationary
queue length distribution at any time in the GI/M/1 (MV).

Tian [104] discussed the GI/M/1 (SV) in parallel, and obtained the stationary
analysis and the stochastic decomposition.
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Chatterjee and Mukherjee [11] studied the GI/M/1 (MV) using the dif-
ferent method. Tian and Zhang [105] investigated the corresponding discrete
time GI/Geom/1 (MV) and got the stationary distributions and the stochas-
tic decomposition. Zhang and Tian [106] detailed analyzed the GI/M/1 queue
with N -policy. Tain [107], Tian and Zhang [108] studied the GI/M/1 queue with
PH vacation or setup times. Dukhovny [109] connected vacation queue with
Reimann boundary value problem, and investigated the GIX/MX/1 queue with
batch arrival and batch service by a special method. Karaesmen and Gupta [110]
examined the limited space GI/M/1/N vacation queue using supplementary vari-
able method, and obtained the stationary queue length distribution and the loss
probability. Laxmi and Gupta [111] considered a class of vacation queue with
batch service, limited space and a general distributed arrival. Ke [112] studied
the GI/M/1 vacation queue with multiple vacation and N -policy based on the
supplementary variable. Machihara [113] discussed the GI/SM/1 queue with a
Markov service and vacation dependent on service time. The literatures on the
GI/M/1 type queue are relatively less than those on the M/G/1 type queue.
No research work on the non-exhaustive service GI/M/1 vacation queue is seen.
The analysis of GI/M/1 type vacation model referred to Tian and Zhang [31].

6 Multi-server Vacation Queue

In a multiserver vacation queue, vacation policies have more complicated
changes. All servers may enter and complete vacation state synchronously, is
called synchronous (SY) vacation, or may start and terminate vacation individ-
ually, is called asynchronous (ASY) vacation. If vacation time follows an expo-
nential distribution or PH distribution in the M/M/c queue with various vaca-
tion polices, quasi-birth-and-death process (QBD) and matrix-geometric solution
method are ideal analysis tools.

Consider an M/M/c system with arrival rate λ, service rate μ, and FCFS
service order. When ρ < 1, denote the stationary queue length and waiting
time by Q and W , respectively. In order to derive the conditional stochastic
decomposition, denote

Q(c) = (Q − c| all c servers are busy),
W (c) = (W | the arrival finds all servers busy).

where Q(c) is the number of waiting customers in steady state given that all
servers are busy, W (c) is the conditional waiting time given that a customer
arrives at a state when all the servers are busy, denote corresponding PGF and
LST by Q(c)(z) and W (c)(s), respectively. For the classical M/M/1 queue, it is
easy to prove

Q(c)(z) =
1 − ρ

1 − ρz
, W (c)(s) =

cμ(1 − ρ)
s + cμ(1 − ρ)

. (4)

Introducing some sort of vacation policy, the corresponding denotations in the
M/M/c queue are added subscript v.
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Considering the following vacation policy: once all the servers become empty,
c servers begin to take a vacation of duration V together. If the system has no
customer at the end of a vacation, the servers take another vacation; If there are
j ≥ 1 customers waiting in the system, all the servers terminate the vacation
synchronously. If 1 ≤ j ≤ c, j servers begin to serve the customers, other c − j
servers enter the idle state and serve the arrival at any time. This kind of vacation
policy is called synchronous single vacation policy (SY, SV). Assume that V
follows an exponential distribution with parameter θ.

For the M/M/c (SY,MV), let Qv(t) be the number of customers in the system
at time t, J(t) = 1 means all servers take a vacation at time t, otherwise, J(t) =
0. {(Qv(t), J(t)), t ≥ 0} is a two dimensional QBD. Using QBD and matrix-
geometric solution method, we obtain not only various stationary distribution
but also the following conditional stochastic decomposition

Q(c)
v (z) = Q(c)(z)Qd(z), W (c)

v (s) = W (c)(s)Wd(s).

which indicate the conditional random variables Q
(c)
v and W

(c)
v in the M/M/c

vacation model can decomposed into the sum of two independent random vari-
ables, one is conditional random variables Q(c) and W (c) in the classical M/M/c
queue, and Q

(c)
v (z) and W

(c)
v (s) are given by Eq. (4). Qd and Wd are called the

additional queue length and additional delay, their PGF and LST respectively
are

Qd(z) =
1
σ

[
1

(c − 1)!

(λ

μ

)c−1

Ψ +
( λ

λ + θ

)c−1 θ + λ

θ + λ(1 − z)

]
,

Wd(s) = 1 − 1
σ

λ

θ

( λ

λ + θ

)c−1

+
cμ

σ

( λ

λ + θ

)c(
s +

λ

θ + θ
cμ

)−1

.

where both Ψ and σ are constants, and

Ψ =
c−2∑
i=0

i!
( μ

λ + θ

)i

,

σ =
1

(c − 1)!

(λ

μ

)c−1

Ψ +
( λ

λ + θ

)c−1λ + θ

θ
.

It is easy to verify that additional queue length Qd follows a modified geometric
distribution, and additional delay Wd follows a modified exponential distribution.

From the stochastic decomposition, we derive the expectations of conditional
variables in the M/M/c (SY, MV)

E(Q(c)
v ) =

1
1 − ρ

+
1
σ

( λ

λ + θ

)c−1λ(λ + θ)
θ2

,

E(W (c)
v ) =

1
cμ(1 − ρ)

+
1
σ

( λ

λ + θ

)c−1λ(λ + θ)
cμθ2

For the M/M/c (SY, SV) and M/M/c (SY, ST) queue, we also give various
stationary distributions and the similar conditional stochastic decomposition,
the details refer to Tian [114,115].
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The asynchronous vacation can be divided into multiple vacation (ASY, MV),
single vacation (ASY, SV), setup time (ASY, ST), etc. The QBD method can
deal with the M/M/c queue with the above polices. Now, J(t) = 0, 1, · · · , c
denote the number of the busy servers at time t, {(Q(t), J(t)), t ≥ 0} is a c + 1-
dimensional QBD. Using the matrix-geometric solution method of QBD process,
we derive the detailed analysis, and obtain the conditional stochastic decompo-
sition structure.

Qd(z) =
1
σ

{
β + z δ(I − zH)−1η

}
,

Wd(s) =
β

σ
+

cμ

σ
δ [sI − cμ(H − I)]−1

η.

where β and σ are constants, δ and η are c-dimensional row vectors and c-
dimensional column vector, respectively. H is c × c random matrix, all these
depend on explicit vacation policy, and

σ = β + δ(I − H)−1η.

c + 1-order block matrix

R =
[

H η
0 ρ

]

is the minimal non-negative solution of matrix quadratic equation. In all kinds
of vacation polices, by solving the matrix quadratic equation to determine and
calculate these vectors and matrices, the details refer to Tian et al. [16]. Tian,
Li and Cao [26], Tian [115]. From the above stochastic decomposition, it is easy
to get the means of conditional random variables in vacation models

E(Q(c)
v ) =

ρ

1 − ρ
+

1
σ

δ(I − H)−2η,

E(W (c)
v ) =

1
cμ

[
ρ

1 − ρ
+

1
σ

δ(I − H)−2η

]
.

The earliest work on the multiserver vacation model was done by Levy and
Yechiali [13], the preliminary results were derived using the classical birth-and-
death process. Igaki [14] considered the M/M/c queue with multiple vacation
and N -policy. Vinod [116] firstly proposed QBD method to study the M/M/c
queue, and gave the numerical method to determined stationary indices. Tian
and Li [19] investigated the M/M/c queue with synchronous vacation, where the
vacation times follow a PH distribution. Tian et al. [16] obtained the stationary
distribution and the stochastic decomposition of the M/M/c queue with various
asynchronous vacations. Tian, Li and Cao [26] constructed the uniform theoreti-
cal framework of the conditional stochastic decomposition for the M/M/c queues
with synchronous and asynchronous vacations using matrix-geometric solution
method. Zhang and Tian [23] introduced partial server’ vacation policy, that is,
there are no more than d(1 ≤ d ≤ c) servers taking vacation and at least c − d
servers on duty(serving or stay in idle) in the system at any time. The analysis
of the M/M/c queue with partial server’ synchronous vacation or asynchronous
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vacation and their conditional stochastic decomposition refer to Zhang and Tian
[22], Tian and Zhang [21], Xu and Zhang [20], and others.

Bardhan [117] studied a class of GI/M/c queue with interruptible service by
the diffusion approximation. Chao and Zhao [24] discussed the GI/M/c vaca-
tion queue, taking synchronous vacation and asynchronous vacation as “the
space vacation” and “the server vacation”, respectively. Tian et al. [15] analyzed
the GI/M/c queue with various synchronous vacations and got the conditional
stochastic decomposition. Tian and Zhang [25] generalized the exponentially
distributed vacation time to the PH distributed vacation time, and obtained
the stationary distribution and the conditional stochastic decomposition of the
GI/M/c vacation queue.

The analysis of variety of M/M/c and GI/M/c vacation queue refered to the
monograph published by Tian and Zhang [31].

7 Working Vacation Queue

Servi and Finn [118] introduced a semi-vacation policy, is called working vacation
(WV). For a classical M/M/1 queue with arrival rate λ and service rate μb, once
the system becomes empty, the server begins to take a vacation of duration V ,
and V follows an exponential distribution with parameter θ. In a vacation period,
the serve does not stop service completely and serves the arrival at a lower service
rate μv. If there is no customer in the system at the end of a vacation, the server
takes another vacation; Otherwise, the server changes service rate from μv to μb

and begins a busy period. This is called the multiple working vacation (MWV)
policy. Similarly, we can define the single working vacation (SWV). Obviously,
the working vacation queue is the generalization of the general vacation queue.

Literature [118] discussed the M/M/1 (MWV) using classical birth-and-death
process, and obtained the stationary distribution results. Based on QBD and
the matrix-geometric solution method, Liu, Xu and Tian [119] restudied the
M/M/1 (MWV), derived various index distributions and revealed the stochastic
decomposition rule. Denote the stationary queue length and waiting time by Qv

and Dv, and their PGF and LST by Qv(z) and Dv(s), respectively, then

Qv(z) = Q(z)Qd(z), Dv(s) = D(s)Dd(s)

where Q(z) and D(s) are the PGF and LST of the stationary queue length and
sojourn time, respectively, and

Q(z) =
1 − ρ

1 − zρ
, D(s) =

μb(1 − ρ)
s + μb(1 − ρ)

. (5)

The PGF of the additional queue length and the LST of the additional sojourn
time respectively are

Qd(z) = K

[
1 − r + r

(
1 − μv

μb

)z(1 − r)
1 − zr

]
,

Dd(s) = K

[
μv

μb
(1 − r) +

(
1 − μv

μb

) σ

s + σ

]
.
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where r, σ,K are constants, and

r =
1

2μv

[
λ + θ + μv −

√
(λ + θ + μv)2 − 4λμv

]
,

σ =
λ

r
(1 − r), K =

[
1 − r + r

(
1 − μv

μb

)]−1

.

It is proved that the additional queue length Qd follows a modified geometric
distribution and the additional sojourn time Dd follows a modified exponential
distribution.

Tian et al. [120] studied the M/M/1 (SWV) model and gave the similar
stochastic decomposition, and

Qd(z) = K∗
[
λ + θ

λ
(1 − r) +

(
1 − μv

μb

) zr

1 − zr

]
,

Dd(s) = K∗
[( θ

λ
+

μv

μb

)
(1 − r) +

(
1 − μv

μb

) σ

s + σ

]
.

where

K∗ =
[
λ + θ

λ
(1 − r) + r

(
1 − μv

μb

)]−1

.

Li and Tian [121] introduced a interruptible working vacation policy: the
number of customers reaches a threshold in a working vacation period, then the
server interrupts the vacation, changes service rate from μv to μb and begins
a regular busy period. In the M/M/1 queue with interruptible multiple work-
ing vacations, [121] gave the stationary distributions and stochastic decomposi-
tion results of Qv and Dv. Xu, Zhang and Tian [122] investigated the M/M/1
models with single working vacation and setup times. Tian Ma and Liu [123]
extended the analysis of M/M/1 (WV) to discrete time queue, detailed analyzed
the Geom/Geom/1 (MWV) queue and obtained its stochastic decomposition.

The GI/M/1 (WV) firstly studied by Baba [124], using matrix analysis method
to get the stationary queue length distribution at the arrival instant and at any
instant. Li [125] further obtained the stationary waiting time distribution, and
proved the stochastic decomposition structure of the stationary queue length Lv

and waiting time Wv at arrival instant. Both can be decomposed into the sum of
two independent random variables: Lv = L+Ld,Wv = W +Wd, where L and W
are the corresponding stationary random variables in the classical GI/M/1 queue,
their PGF and LST are given by Eq. (3). The PGF of additional queue length Ld

and the LST of the additional delay Wd respectively are

Ld(z) = K
1 − rz + α(r − h)z

1 − hz
,

Wd(s) =
μb(1 − h)

s + μb(1 − h)
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where r, h are the unique roots of equations z = a(μb(1 − z)) and z = a[θ +
μv(1 − z)] in the interval (0,1), respectively, Both α and K are constants

α =
θ

θ − (μb − μv)(1 − h)
,

K =
1 − h

1 − r + α(r − h)

It is proved if ρ = λμ−1 < 1 then α(r − h) > 0.
There are many researches on the GI/M/1 type working vacation queue.

Banik et al. [126] investigated the limited space GI/M/1/N (MWV), and gave
stationary indices and computational method. Li et al. [127] introduced inter-
ruptible working vacation into the GI/M/1 type queue, and got the stationary
distributions of Lv and Wv and their stochastic decompositions. Yu et al. [128]
examined the GIX/Mb/1 multiple working vacation queue with batch arrivals
and batch services using supplementary variable method. Chae et al. [129] dis-
cussed the GI/M/1 queue with single working vacation and corresponding dis-
crete time GI/Geom/1 queue, derived the distributions of the stationary queue
length and sojourn time. Li and Tian [130] gave the stationary distributions and
stochastic decompositions of Lv and Wv by structural matrix analysis. Laxmi et
al. [131] introduced interruptible working vacation into the GI/M(n)/1/N queue
with service depend on states, and obtained the stationary distributions with
supplementary variable method. Li and Tian [132] analyzed the discrete time
GI/Geom/1 queue with interruptible working vacation and got the stationary
index distributions and their stochastic decompositions.

It is more difficult to analyze the M/G/1 type working vacation queue.
Kim and Chae [133] firstly presented the M/G/1 (MWV), gave the calcula-
tion method of the queue length distribution. Wu and Takagi [134] computed
the stationary indices of the M/G/1 (MWV) using embedded Markov chain and
the contour integral of complex function. Yi et al. [135] discussed the discrete
time Geom/G/1 model with disaster and multiple working vacations. In fact, the
M/G/1 type structural matrix analysis (see Netus [100] or Li [102]) is the ideal
tool to analyze the M/G/1 type working vacation queue. Li et al. [136] firstly
used structural matrix analysis to deal with the M/G/1 (MWV), obtained not
only the expressions of the stationary queue length, waiting time and busy period
distribution, but also the stochastic decomposition structure. Furthermore, Li
et al. [137] analyzed the discrete time Geom/G/1 (MWV) in parallel. Zhang and
Hou [138] studied the MAP/G/1 queue with interruptible working vacation, got
the stationary analysis by supplementary variable and structural matrix meth-
ods. Gao and Liu [139] investigated the M/G/1 queue with single interruptible
working vacation and Benoulli schedule, obtained stationary indices by struc-
tural matrix analysis.

Tian et al. [140] assembled plenty of achievements of working vacation queue
using matrix analysis method in the long survey. Various discrete time working
vacation queues referred to Tian, Xu and Ma [141]. Li [125] used the structural
matrix method to analyze kinds of working vacation queues in the monograph.
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8 Related Applications

The study of vacation queue enriches the theory and method of stochastic model
analysis, and it has been widely used in various high-tech fields.

Kuehn [142] studied time division multiple access link in computer networks
based on the MX/G/1 (MV) with batch arrival and multiple vacations, and
gave the calculation method of its performance indices, and indicated that time
sharing system is superior to frequency sharing system from the view of average
response time. Gavish and Sumita [143] used vacation queue to model channel
and disk subsystem, obtained the calculation and comparison of various indices
for universal IBM-3330 and IBM-3380. Zhang [144] introduced the M/G/1 queue
with two kinds of vacations, and applied analysis results to the optimization
design of a class of flexible manufacturing system. Chafir and Silio [145] analyzed
the performance analysis of the ring LAN based on the M/G/1 queue with
Bernoulli vacation policy. Due to dynamic setup and removal of VCC in ATM
networks, Hassan et al. [146] regarded VCC as the M/G/1 model with setup
times and closed-down period, obtained calculation formulae of performance
indices, such as, setup rate, vacancy rate and response time, etc. Considering the
correlation structure of information arrival process and limited buffer capacity
in ATM networks, Niu et al. [147,148] used the MAP/G/1/N models with setup
and closed-down to analyze VCC more accurately. The discrete time queue is
more suitable to model VCC because IP block transmission in ATM networks is
a kind of discrete time phenomenon. Jin et al. [149–151] systematic developed
the analysis method of VCC based on the discrete time vacation queue. Jin and
Huo [152] established theory foundation and analysis method of VCC in the
monograph on VCC modeling analysis. Shen [153] applied the M/M/c queue
with partial server’ vacation to operation analysis of e-commerce system. Liu
et al. [154,155] constructed the hybrid service access control model in wireless
communication networks by the discrete time vacation queue. Huo et al. [156,
157] introduced a class of multiple vacations queue with closure mechanism to
model sleep mode of IEEE 8.2.16e access protocol in the mobile communication
networks, and obtained energy-saving efficiency, average delay, etc, and presented
a cost structure to determine the optimal sleep time. Li, Liu and Tian [137]
applied the discrete time working vacation queue to performance analysis of
ethernet fiber network by configuring different service rates through the router.
Similar configuration problems also occurred in stochastic networks, such as, e-
commerce, call center, city power supply, traffic dispersion, etc, hoping to analyze
by working vacation queue.

Due to limitations of the authors’ research interests and knowledge, only a
few applied studies are cited here. A large number of successful cases usually
published in specialized journals in various application fields, are beyond our
knowledge.
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9 Conclusions

Vacation queues have become the important component of complex stochastic
models analysis, plays a crucial role in the theory analysis and applications in the
operations research and management science. Taking stochastic decomposition
as the main line, we give a systematic review on the research results of vacation
queue, hoping to bring convenience for further research and wider application.
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Abstract. The degraded failure of on-board Doppler Velocity Sensor (DVS),
which achieves non-contact velocity measurement based on Doppler principle,
can be mainly attributed to the aging of microwave modules and deviation of the
radar emission angle. For the microwave modules, active devices such as Gunn
diodes are prior in degradation with respect to other passive devices, with the
phase noise expanding monotonically. On the other hand, the emission angle of
antenna deviates due to the metro vibration. In view of the actual working
condition of metro, the DVS may also suffer external shocks during the natural
degradation process, which is mixed with the natural degradation by model of
compound Poisson process in this paper. In view of the non-reversibility of
degradation, the inverse Gaussian process is chosen to describe the gradual
degradation of DVS. In addition, given the inherent and postnatal differences
among individual products, such as the dislocation of active devices induced
during the thermos-compression bonding and individual installation error of
antenna, the drift coefficients in the model are randomized. On this basis, the
impact of external shock is introduced into the reliability analysis competing
with the natural degradation of components. Finally, through parameters esti-
mation of virtual degradation testing data by simulation, the methodology is
demonstrated.

Keywords: Degradation � Process � DVS � Inverse Gaussian process � Poisson
shock � Randomized coefficients

1 Introduction

Degradation is the accumulation of product damage over time, which is usually
inevitable and irreversible in the field of engineering. From the perspective of relia-
bility, when the accumulated damage hits a certain threshold, whether constant or
random, the degradation level is thought to be unacceptable and thus, the system can be
regarded as failed. Different from the reliability assessment based on the single point
failure-time, performance degradation analysis focus on monitoring the dynamic
deterioration process, characterizing the underlying failure of system and predicting the
remaining useful life (RUL) of products. In view of this, according to some literatures,
for instance [1, 2], the degradation level can product more reliability information than

© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 161–175, 2019.
https://doi.org/10.1007/978-981-15-0864-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0864-6_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0864-6_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0864-6_7&amp;domain=pdf
https://doi.org/10.1007/978-981-15-0864-6_7


the time-to-failure data. In recent years, the degradation analysis has been accepted and
booming in various fields, including the reliability tests [3–5], reliability analysis [6–9]
and fault prognostics [10–13]. In practice, the performance of on-board Doppler
Velocity Sensor (DVS), which achieves non-contact velocity measurement based on
Doppler principle, degrades gradually due to the aging of microwave module [14] and
deviation of the radar emission angle [15, 16], as well as suffering from random shocks.

In the field of reliability research, the accumulated deterioration of product per-
formances over time is usually represented by the degradation curve. In some practical
cases, the degradation curve of product can be drawn based on the mass historical data
collected, such as the curve of bearings. However, due to the limited sample size and
significant individual variation, it is hard to measure the degradation degree of DVS
under actual working conditions accurately with an intuitive indicator. In this context,
we tried to build a probability model to depict its degradation process in the reliability
analysis of DVS.

Different from the degradation analysis on account of separate parts, the degra-
dation of DVS is a more complex procedure combined with random shocks. According
to reliability engineers in favor of stochastic modeling, the degradation of product can
be regarded to be induced by a sequence of exogenous shocks [10, 17]. Generally
speaking, the degradation of DVS can be modeled by a stochastic process on account
of its inherent randomness and additivity of degradation. Common stochastic process
models include Wiener process, Gamma process and IG process [17]. Notwithstanding
the wide application of well-studied Wiener and Gamma process [18–20], the IG
process has the advantages of both monotonic increments and flexibility of incorpo-
rating random and explanatory variables [21–23]. Although it used to be doubted for
the parameters lacking of physical meaning, according to [22], the inverse Gaussian
process can be interpreted physically as a limiting compound Poisson process with
non-negative increments, in this context, it is also fit for modeling the degradation of
components subjecting to complex failure mechanisms. With these nice properties, it
fits the requirements of modeling the monotone degradation process of DVS greatly.

In this study, the stochastic degradation model of DVS with coupled factors is
proposed, taking both the aging of components and random shocks into account.
Considering the individual heterogeneity of products and actual working condition, the
unobservable factors such as internal defects are included into the model by random-
izing the drift parameter. Besides, the random external shock is modeled with a
compound Poisson shock process and mixed with the gradual degradation to estimate
the overall reliability of DVS. To deal with the individual difference, the Bayesian
method is used to estimate the parameters adaptively.

The remainder of the article is organized as follows. In Sect. 2, the gradual
degradation due to the aging of microwave modules and the deviation of antenna angle,
the reason to choose IG process, as well as the necessity to induce random shocks are
briefly discussed. Based on the discussion, Sect. 3 introduces the basic model of IG
process, the incorporation of random effects, the compound Poisson process model of
external shocks as well as relevant statistical inferences. Section 4 focuses on the
parameter estimation based on Bayesian framework and uses simulated data to illus-
trate the reliability assessment of proposed method. Finally, the article is concluded in
Sect. 5, then the prospect for further research is discussed.
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2 Degradation Analysis of DVS

2.1 Fault Mechanism Analysis of Metro DVS

DVS is one of the core equipment of train control system and its performance
degradation is severely unfavorable to the safe operation. As given in Fig. 1, in the
metro system, the DVS is installed at the bottom of metro train and emits the micro-
wave with a certain frequency towards the road surface with a pre-specified emitting
angle h. The running velocity of metro train is measured based on the frequency
difference between the emitted and the received microwaves, which is dependent on the
reflecting condition and vibration to some extent. As a complex electronic instrument
composed by multi electron devices, in the successive operation of metro, the working
temperature of DVS rises with time inevitably and may reach over 100 °C, giving rise
to the accelerated aging of microwave module and drift of antenna. In addition, the
DVS suffers from vibration and shocks in three directions due to the sudden acceler-
ation and deceleration, road bump, as well as electromagnetic inferences from external
environment and other equipment on the train. In this context, besides the gradual
degradation attributed to the aging of microwave modules and deviation of the radar
emission angle, the DVS also suffers from the sudden increase of degradation level
caused by some random shocks, which manifests as the decrease of velocity mea-
surement and even blackout status of sensor. The mechanism of gradual degradation
and the model of random shocks are introduced briefly in the following section.

2.2 Gradual Degradation Analysis of DVS and the Influence on Velocity
Measurements

The DVS achieves non-contact velocity measurement based on Doppler principle.
When the length of electromagnetic wave emitted by the microwave module is k, the
emitting angle between the horizontal and antennal direction is h and the Doppler
frequency extracted by corresponding algorithm is fd , the velocity of metro can be
calculated by (1) as below.

Fig. 1. Schematic of metro DVS
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v ¼ kfd
2 cos h

ð1Þ

According to [14–16], the gradual degradation of DVS can be mainly attributed to
the aging of microwave modules and deviation of emission angle. For the microwave
modules, active devices such as Gunn diodes are prior in degradation with respect to
other passive devices, with the phase noise expanding monotonically. When the
increase of noise magnitude with respect to that under normal status hits a certain
threshold, the microwave module can be considered as failed. In addition, in the
practical operation, the emitting angle deviates due to the external vibration, bringing
non-irreversible error into the measure results. Assuming that the deviation of emitting
angle is dh while the real velocity remains v, then the Doppler frequency extracted f 0d
can be obtained by

f 0d ¼
2v cos hþ dhð Þ

k
ð2Þ

Meanwhile, the velocity measured v0 can be obtained by

v0 ¼ kf 0d
2 cos h

ð3Þ

Based on the inference above, corresponding deviation in velocity measurement Dv
can be calculated by

Dv¼ v� v0

v
¼ 1�

kf 0d
2 cos h
kfd

2 cos h

¼ 1� f 0d
fd
¼ 1� cos hþ dhð Þ

cos h
ð4Þ

It shows that with the monotonic deviation of antenna angel, the velocity measure
error also increases intuitively.

2.3 Model Selection of Random Shocks

In the operation of metro, besides the normal operating condition, the DVS also suffers
from random external shocks, including the high-temperature, vibration, electromag-
netic disturbances, and so on. Besides the gradual degradation, electromagnetic dis-
turbance and vibration shocks may also introduce sudden increase of degradation,
which has been evidenced by the historical record information. In the engineer field, the
random shocks can be divided into five types generally, among which the extreme
shock has been paid special attention [24–26]. Considering that the extreme shock
causes product failure only when its size is beyond a certain threshold, it may be the
most suitable to depict the electromagnetic and vibratory shocks the DVS suffers.
However, to describe the temporal and spatial randomness of shocks, in the next
section, the shocks are modeled with a compound Poisson process and incorporated
into the stochastic process model to assess the overall reliability of DVS. In this paper,
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the final failure of DVS is attributed to the competition between gradual degradation
and random shocks.

3 Degradation Model Based on Inverse Gaussian Process
and Shock Model Based on Compound Poisson Process

Based on analysis above, putting aside the random electromagnetic and vibratory
shocks, firstly the gradual degradation of DVS is modeled with an IG process in the
following section. The basic model and corresponding assumptions are given as below.

3.1 Introduction of IG Process

As a branch of stochastic process, the IG process Y tð Þ; t� 0f g satisfying the following
characteristics:

• Y tð Þ has independent increments, that is, Y t2ð Þ � Y t1ð Þ and Y s2ð Þ � Y s1ð Þ are
independent for 8t2 [ t1 � s2 [ s1 [ 0;

• Y tð Þ � Y sð Þ follows an IG distribution IG l K tð Þ � K sð Þð Þ; g K tð Þ � K sð Þ½ �2
� �

, for

8t[ s� 0, where K tð Þ is the monotonically increasing shape function.

When the mean and shape parameter of distribution are given by a; b[ 0, the prob-
ability density function (PDF) of IG a; bð Þ can be denoted as

fIG y; a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
b

2py3

s
� exp � b y� að Þ2

2a2y

" #
; y[ 0 ð5Þ

while the cumulative distribution function (CDF) can be obtained by integration as

FIG y; a; bð Þ ¼ U

ffiffiffi
b
y

s
y
a
� 1

� �" #
þ e

2b
aU �

ffiffiffi
b
y

s
y
a
þ 1

� �" #
; y[ 0 ð6Þ

where U �ð Þ is the standard normal CDF; under this assumption, the mean and variance
of y can be calculated by a and a3=b respectively. To simplify the form of formulas
while not losing generality, it is assumed that the initial values of K �ð Þ and Y �ð Þ at zero
point time are both zero, then Y tð Þ subjects to a distribution IG lK tð Þ; gK tð Þ2

� �
, whose

mean is K tð Þ and the variance is l3K tð Þ=g. In view of this assumption and (5), the PDF
of degradation quantity Y tð Þ can be denoted as

fIG y; lK tð Þ; gK2 tð Þ� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gK2 tð Þ
2py3

s
� exp � g y� lK tð Þð Þ2

2l2y

" #
; y[ 0 ð7Þ

and its CDF can be obtained referring to (6) as
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FIG y; lK tð Þ; gK2 tð Þ� � ¼ U
ffiffiffi
g
y

r
y
l
� K tð Þ

� �	 

þ e

2gK tð Þ
l U �

ffiffiffi
g
y

r
y
l
þK tð Þ

� �	 

ð8Þ

Corresponding to the concept of failure time in traditional reliability analysis but
slightly differing, for the degradation model, the failure time TD is usually defined as
the time when the accumulated degradation exceeds a certain threshold D for the first
time. Given this, the reliability function, namely the possibility that Y tð Þ\D is denoted
as

R t; lK tð Þ; gK2 tð Þ� � ¼ P Y tð Þ\D; lK tð Þ; gK2 tð Þ� �
¼ U

ffiffiffiffi
g
D

r
D
l
� K tð Þ

� �	 

þ e

2gK tð Þ
l U �

ffiffiffiffi
g
D

r
D
l
þK tð Þ

� �	 
 ð9Þ

In the formulae above, the parameter l, which is usually called the drift parameter
in literature, denotes the degradation rate while the parameter g can’t be interpreted
with a certain physical meaning. However, according to [22], the IG process is a limit
of compound Poisson processes with a certain kind of shock size distribution. Besides,
because of the inverse relation between it and the Wiener process, it is apparent that the
IG process enjoys greater flexibility comparing to other ones when the random effects
need to be incorporated in the model, which is explained more specifically in the
following part.

3.2 Incorporation of Random Effects

Due to the diverse working condition of metros, such as the traffic flow and ventilation
conditions, as well as the inherent heterogeneity of electronic components and installed
error, the dispersion of degradation rates within the DVS population can’t be ignored
simply, which requires the incorporation of random effects into the IG degradation
model. In this paper, the random effects mainly manifests as the variation of degra-
dation rate and they are embodied into the IG process in accordance with the inverse
relation between these two stochastic processes. By letting l subject to a truncated
normal distribution TN x; j�2ð Þ, Ye and Chen [22] introduced a random drift IG
process taking the dispersion of degradation rate into consideration. However, con-
sidering that under this assumption the variance l3K tð Þ=g is also dependent of l, the
randomized IG process model is not only randomized in drift in a strict sense. In this
paper, considering the engineering-driven case, the negativity of l is not of critical
concern, thus according to [22], to denote the differences among individual products,
the parameter l is assumed to follow a normal distribution N x; j2ð Þ, whose PDF is

gl ljx; j2� � ¼ 1ffiffiffiffiffiffi
2p

p
j
exp � l� xð Þ2

2j2

 !
ð10Þ

Then, the PDF of degradation can be obtained by integrating the marginal density
in the entire possible range with respect to l as
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fRD yjx; j;K tð Þ; gð Þ �
Z
l[ 0

fIG yjlK tð Þ; gK2 tð Þ� �
gl ljx; j2� �

dl

¼
Z
l[ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gK2 tð Þ
2py3

s
� exp � g y� lK tð Þð Þ2

2l2y

" #
1ffiffiffiffiffiffi
2p

p
j
exp � l� xð Þ2

2j2

 !
dl

ð11Þ

When the threshold of failure is set to be D, the reliability function of randomized IG
process is

RRD tjx; j;K tð Þ; gð Þ �
Z
l[ 0

R tjlK tð Þ; gK2 tð Þ� �
gl ljx; j2� �

dl

¼
Z
l[ 0

U

ffiffiffiffi
g
D

r
D
l
� K tð Þ

� �	 

þ e

2gK tð Þ
l U �

ffiffiffiffi
g
D

r
D
l
þK tð Þ

� �	 
	 


� 1ffiffiffiffiffiffi
2p

p
j
exp � l� xð Þ2

2j2

 !
dl

ð12Þ

3.3 The Compound Poisson Model of Random Shocks

For the on-board DVS, according to the historical failure record and empirical infor-
mation, the random shocks, which are mainly the electromagnetic disturbances and
strong vibration, are random both temporally and spatially. As a consequence, they can
be incorporated into the reliability analysis with a compound Poisson process, which
can be seen as a series of jumps with random arrival time and magnitude [27]. To
depict the temporal randomness, the arrival of shock is modeled as a homogeneous
Poisson process with adjacent intervals subjecting to exponential distribution, while the
intensity parameter of Poisson process is denoted by k and the total number of shocks
arrived before any non-negative time point t is represented by S tð Þ. The probability of
S tð Þ ¼ k is

P S tð Þ ¼ kf g ¼ ktð Þk
k!

e�kt ð13Þ

On the other hand, considering practical engineering cases, the magnitudes of each
shock Yi are set as independent identically distributed and subjects to a normal dis-
tribution Yi �N q; r2ð Þ. In this paper, given the modeling object DVS, it is supposed
that the shock comes at time t will result in the failure of DVS when its magnitude
exceeds a threshold H, otherwise the system is not impacted at all. Under this
assumption, the survival probability of DVS at each shock is

P Yi\Hð Þ ¼ U
H � q
r

� �
ð14Þ
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Considering the impact of external shocks during the operation of DVS, in this
paper the possible correlation between the shock process and gradual degradation are
not taken into account, therefore these two processes can be regarded as totally inde-
pendent. In view of this, the final reliability of the DVS at time point t can be given by

R tð Þ ¼ P Y tð Þ\D; S tð Þ ¼ 0f g

þ
XS
i¼1

P Y tð Þ\D; Y1\H; � � � ; YS tð Þ\H; S tð Þ ¼ i
� �

¼ P Y tð Þ\DjS tð Þ ¼ 0f g � P S tð Þ ¼ 0f g

þ
XS
i¼1

Pi Yi\Hð Þ � P Y tð Þ\DjS tð Þ ¼ if g � P S tð Þ ¼ if g

¼ R tjx; j; gð Þe�kt

þ
XS
i¼1

Ui H � q
r

� �
� R tjx; j; gð Þ � ktð Þi

i!
e�kt

ð15Þ

Based on analysis above, the overall reliability model of DVS is built, in which the
random shocks and gradual degradation process determines the reliability level of DVS
jointly.

4 Parameter Estimation Based on Bayesian Framework

4.1 Likelihood Function of IG Process

To estimate the parameter of IG degradation models, it is assumed that the degradation
observations for n samples at m discrete time points are obtained as Y tð Þ, with the
observations noted by tij i ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;mð Þ. After specifying the obser-
vation time points, which separate from each other with the same interval in this paper,
the degradation increments can be represented by Dyij ¼ Y tij

� �� Y ti;j�1
� �

, with

Dyij � IG liDKij; gDK
2
ij

� �
, DKij ¼ K tij

� �� K ti;j�1
� �

and K tð Þ ¼ t. The randomized

drift l subjects to N x; j2ð Þ. On this basis, the likelihood of sample i i ¼ 1; 2; . . .; nð Þ
can be obtained by

Li ¼
Z

gl lijx; j2
� �Ym

j¼1

f DyijjliDKij; gDK
2
ij

� �
dl ð16Þ

where x and j are the hyper parameters that determine the distribution of drift
parameter l. Then the overall likelihood function can be calculated by

L ¼
Yn
i¼1

Li ð17Þ
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Considering the complex form of likelihood function, it is almost impossible to
maximize it in an analytical way directly. Given this, although the formula of likeli-
hood function is given here, in actual calculation, the Markov Chain Monte Carlo
(MCMC) method is used to estimate the parameters of the model based on random
sampling. In terms of the Bayesian framework presented in [28], in this case the model
can be regarded to have fixed parameters x; j; g and a randomized parameter l. To
perform Bayesian analysis, the informative prior distribution for all the parameters are
given by

x�N ax; b2x
� �

j�N aj; b2j
� �

g�Uniform ag; bg
� �� ð18Þ

On this basis, the joint posterior distribution can be obtained according to (19)

p x; j; g; ljYð Þ / p xð Þp jð Þp gð ÞL ð19Þ

where p(x), p(j) and p(η) denote the probability density function of x, j and g
respectively, that can be calculated in terms of the prior distributions given in (18).

4.2 Degradation Monitor of DVS

Although the degradation of DVS can be attributed to the aging of microwave and
deviation of antenna angle, in practice, it is almost implausible to monitor the noise
magnitude and angle deviation within the sensor directly. Besides, based on the
velocity measurement, it can be seen that the microwave frequency and emitting angle
of antenna are coupled and they result in the final deviation of measurements. How-
ever, the real velocity of metro can’t be obtained directly, thus the velocity error can’t
be chosen as the degradation reference. Fortunately, along the metro railway, there are
located a series of transponders separating from each other with certain distances.
Considering that the trip distance is the integral of velocity, the velocity measured by
DVS can be converted to trip distance, then in terms of the reference distance given by
transponders, the degradation of DVS performance can be monitored indirectly.

Assuming that the distance between two transponders are L and the velocity
measurements during this distance with sampling interval T are ~vk k ¼ 1; 2; � � � ;Kð Þ,
then without degradation, the relation between the metro velocity and trip distance is

L¼PK
k¼1

~vk þ L0. With the performance degradation of DVS, the difference value L0

increases monotonically, as a result, it can be used to measure the degradation to some
extent. Given that the distances between transponders are not unique, in this paper, the
ratio L0=L is chosen to characterize the degradation of DVS.

4.3 Simulation Study

To demonstrate the reliability analysis on the basis of compound model presented, the
degradation path of 20 DVS components are simulated as given in Fig. 2, in which the
error percentage of distance measurement L0=L is chosen to characterize the
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degradation level. Considering the non-homogeneity of degradation rates among
components, the drift parameters of paths deviate from each other to some extent.

Based on the discrete sample points extracted from the simulated path, the Open
BUGs software is used to achieve parameter estimation via MCMC. To perform
parameter estimation, 100000 samples were generated and according to empirical
information the first 5000 samples were deleted. The parameter estimation result for the
randomized IG model is shown in Table 1, while the distribution and boxplot of
randomized drift parameters of 20 samples are shown in Figs. 3 and 4.

Based on this, the reliability function of DVS components with different l is shown
in Fig. 5, where the drift parameters are set with the estimated mean.

On the other hand, in real application the parameters of compound Poisson process
should be estimated based on historical records, in this paper, the parameters are set
empirically. The reliability function of compound Poisson process is given in Fig. 6
and the final reliability with different thresholds obtained by (15) is given in Fig. 7.

Fig. 2. Simulated degradation path of DVS (noted by the error percentage of distance)

Table 1. Estimated parameter of random drift IG model.

Parameter Mean True value MC error Median

x 9.674e-4 10e-4 2.385e-4 11.11e-4
j 4.86e-5 5e-5 2.54e-5 6.02e-5
g 5.51e-5 5.45e-5 3.137e-6 5.114e-5
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From above the reliability curve, this method incorporates the gradual degradation
model based on IG process and the random shocks model based on Compound Poisson
Process, fusing the status monitoring data with historical empirical information. It not
only gives a guide to evaluate the state of DVS, but also help in the optimization of
maintain arrangement.

Fig. 3. Distribution of randomized drift parameters of 20 samples

Fig. 4. Boxplot of drift parameter among 20 samples
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Fig. 5. Reliability function of samples with different drift

Fig. 6. Reliability function of compound Poisson shock
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5 Conclusions

Besides the aging of microwave module and deviation of the radar emission angle, the
degraded failure of on-board DVS is also attributed to random external shocks. In this
paper, the random shocks are mixed with the stochastic process degradation by model
of compound Poisson shock. In view of the non-reversibility of degradation, the
inverse Gaussian process is used to model the gradual degradation of on-board DVS.
Considering the inherent and postnatal differences among individual products, the drift
coefficients in the model are randomized with a normal distribution. On this basis, the
impact of external shock, which is modeled by a compound Poisson distribution due to
its temporal and spatial randomness, is introduced into the reliability analysis com-
peting with the natural degradation of components. Finally, through reasonable coef-
ficients estimation of virtual degradation testing data by simulation, the reliability curve
of DVS is estimated.
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Abstract. In the last decade, the high-speed rail (HSR) has undergone rapid
development and is playing a more and more important role in the transportation
system of China. However, the currently adopted maintenance policy of HSR is
still mainly usage-based preventive maintenance, which is quite conservative
and incurs tremendous annual maintenance costs. Thus, it is necessary to con-
duct predictive maintenance so as to save maintenance cost as well as ensure the
reliability of HSR, which requires for predicting the remaining useful life
(RUL) as an essential step. As sensor technology and the 5th generation wireless
technology advance, condition monitoring has been convenient and cost effi-
cient. Based on the collected condition information data, the RUL prediction
becomes possible.
In this research, we develop an Elman artificial neural network for the purpose

of predicting the RUL of HSR bearings, based on the condition monitoring data.
To fulfill this purpose, we firstly propose the concepts of current and cumulative
state characteristics for analyzing the state monitoring data to extract and filter
features that can reflect the current state of the bearings. Then, we build the
Elman artificial neural network, evaluate the role cumulative state characteristics
play in the model and obtain the weights and thresholds with optimal prediction
performance. This way, the network structure and the neuron number of hidden
layers are optimized. Experimentation based on the data set of the 2012
IEEE PHM Data Challenge demonstrates the goodness of the proposed
approach.

Keywords: Condition monitoring � Elman neural network � High-speed rail �
Remaining useful life prediction

1 Introduction

1.1 Review of RUL Estimation for Bearings

With its fast development in the last decade, the high-speed rail (HSR) has become
increasingly significant for the transportation of China. Thus, it has been paramount to
ensure the safe and reliable long-term operation of HSR in a cost-effective manner.
However, the currently adopted maintenance policy of HSR is still mainly usage-based
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preventive maintenance with a quite conservative policy, which cannot fully utilize the
service life of critical components like bearings and has incurred tremendous annual
maintenance costs. Therefore, predictive maintenance is in urgent need to lower down
the maintenance cost. As an essential step of predictive maintenance, it is necessary to
predict the remaining useful life (RUL), which is the length of time from a specific time
point to the time of failure. Statistics show that 30% of the failures of rotating
machines, 40% of the failures of induction machines and 20% of the failures of
gearboxes are caused by bearings [1, 2]. Failure of a bearing can cause a chain reaction
of the system, and its normal operation is critical to the safety and reliability of HSR.
Thus, this research focuses on the RUL prediction for bearings.

The availability of data on component conditions used to be the bottleneck of
predicting RUL precisely. Recently, the advancement of sensor technology and the 5th
generation wireless technology has made it much more convenient and less costly to
collect condition monitoring data, which can be used to predict the RUL of HSR
components, and help managers decide when to maintain a component and at what
level of maintenance. This way, the maintenance costs can be significantly reduced by
avoiding improper maintenance activities.

RUL can be predicted via analyzing historical event data and condition monitoring
data of a component. The prediction of RUL of bearings has been extensively studied
over the past several decades. We roughly divide the existing prediction approaches
into three categories: the approach based on statistical theory, the one based on physical
model and the one based on machine learning. The Lunberg-Palmgren (L-P) model, the
Ioannides-Harris (I-H) model, and the three-parameter Weibull distribution model are
all based on statistical theory. Based on Weibull’s [3] early work, Lundberg and
Palmgren [4] developed L-P theory to predict the RUL of bearings. By using the
parameters of bearings, the operation load, L-P model can predict the RUL of bearings
with high precision in most cases. However, it cannot cover the case of extra-long
bearing lifetime in endurance experiments.

As an extension of L-P theory, Ioannides and Harris [5] presented I-H theory which
states that bearings wouldn’t generate fatigue failure if the load is lower than the
endurance fatigue limit. They introduced reliability coefficient and correction factors
into the model and described the multiple effects which influence bearing life suc-
cessfully. The three-parameter Weibull distribution model [6] simplifies a bearing into
a mechanical system made up of outer ring, inner ring and rolling elements in series.
The contact fatigue lifetime distribution is considered as a three-parameter Weibull
distribution. By analyzing large amounts of bearing operating data, the parameters can
be determined. But the calculation process is quite complex, which has limited its
practical application to the analysis of real-world bearings.

Physical models divide the life of a bearing into three stages according to the
growing process of defects: the incubation period, the stable expansion period and the
unstable expansion period [7]. In the incubation period and stable expansion period, the
degradation of the bearing is regular and predictable. Therefore, its life can be predicted
according to the theory of fracture mechanics [7]. Physical models can be further
divided into three types: the model based on crack generation, the model based on
crack development, and the model combining the two periods together [8]. Cheng et al.
[9] assumed that the crack of a bearing is incurred by the incorrect accumulation of
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particles on the moving belt and derived the formula describing the life of the crack
generation. Paris and Eedogan [10] used material coefficient and stress intensity to
describe the rate of crack development. Liu et al. [11] applied the fatigue life prediction
theory based on crack development to the prediction of the crack generation stage in
the latent period. They used equivalent crack size method to unify the bearing life
prediction during the crack generation and development stages. The advantage of
bearing life prediction based on physical models is that less experimental sample data is
required to establish a model describing the degradation failure, compared with the
other models. Nevertheless, the limitation of physical models is that the physical
structures of bearings are heterogeneous, and there doesn’t exist a unified physical
model to be universally applicable. Moreover, some basic assumptions in the physical
models cannot be directly applied to the practical situation. For example, the
assumption that the monitoring of the crack state of a bearing can be performed without
affecting its normal operation usually does not hold in reality.

In recent years, the advancement of sensor and telecommunication technologies
have made it more convenient and less costly for monitoring the conditions of a
component. The data generated by events such as installation, failure, and replacement
of components are called event data. The temperature, humidity, vibration frequency,
amplitude, and X-ray image recorded by the sensors during the operation of a device
can reflect the condition of the device and are called condition monitoring data. The
event data and condition monitoring data can be applied to predict the degradation
process of bearings as well as predict the RUL. The degradation of bearings is highly
nonlinear, and its mechanism is not yet clear to us. Meanwhile, machine learning
theories can be used for the modeling of highly nonlinear processes with good per-
formance. Therefore, it has been widely used in the RUL prediction of bearings, and
approaches, such as artificial neural networks, random forests, decision trees, SVM,
and logistic regression, have been developed. Emanuele et al. [12] developed a new
algorithm to predict train rolling bearing’s RUL by using online support vector
regression (OL-SVR). The innovation lies in the use of heuristic algorithms to optimize
the accuracy of the OL-SVR model and the development of a model selection strategy
that can balance the model performance and the computational resources required.
However, this approach still needs to consume huge computational resources when the
amount of data is large. Sutrisno et al. [13] proposed a method for testing bearing RUL
using anomaly detection, degradation feature inference and survival time ratio esti-
mation. They did band-pass filtering to the vibration signal of rolling bearings and
generate the spectrum of the vibration signals by the Fast Fourier Transform
(FFT) algorithm. Then, they predicted the RUL using the duration of the defected
frequency. However, this method only achieved good prediction results for certain
bearings. Ren et al. [14] proposed a sparse representation model to extract the intrinsic
correlation of the training dataset and measure the similarity between the test dataset
and the training dataset, and a stratified Hough voting process to evaluate the RUL of
the test sample using continuous information of the monitoring data. In summary, the
bearing life prediction method based on machine learning predicts the RUL of the
bearing by extracting the characteristic parameters during the bearing operation. The
common shortcomings of these models are that their parameters have no clear physical
meanings, and thus, the model’s interpretability is not good.

178 C. Liu and C. Zhang



1.2 Main Research Contents

This research develops an Elman artificial neural network for the purpose of predicting
the RUL of HSR bearings. Compared with traditional data processing methods, ANN
(artificial neural network) technology has obvious advantages in dealing with fuzzy
data, random data, and nonlinear data. It is especially suitable for systems with large
scale, complex structure and unclear information [15]. Therefore, we study the adop-
tion of ANN into the RUL prediction of bearings. And the Elman neural network
realizes the one-step delay operator by adding the receiving layer in the hidden layer of
the feedforward network and memorizes the historical output of the network. Thus,
Elman neural network can dynamically update the parameters by self-feedback, which
is superior for time series prediction [16]. Therefore, we choose the Elman neural
network to develop the model for RUL prediction. For this purpose, we also propose
the concepts of current and cumulative state characteristics and then compare and
evaluate the role they play in the prediction of RUL. The condition monitoring data for
model training is provided by the 2012 IEEE PHM Data Challenge. By experimen-
tation, we obtain the weights and thresholds of Elman neural network with good
predictive precision.

The following notations are used in this research:
Notations
Xt RUL at time t
Yt The history data and condition monitoring data up to time t
f xtjytð Þ The probability distribution function of XtunderYt
E xtjytð Þ The expectation value of XtunderYt
U kð Þ The external signal of Elman neural network
Xc kð Þ The hidden layer feedback signal
X kþ 1ð Þ The output of hidden layer
Y kþ 1ð Þ The neural network output
l The number of neurons in the hidden layer
m The number of input dimension
n The number of output dimension
a A positive integer between 0 and 10

Compared with existing studies, we acquire the model with better RUL prediction
effects and more robustness by adding cumulative time domain indexes. The intro-
duction of cumulative time-domain indexes can accelerate the convergence of Elman
neural network and help in identifying the bearing failure modes. Thus, we achieve
better RUL prediction effects and make the model more robust.

The paper is organized as follows. Section 2 builds Elman artificial neural network
and optimizes the network structure from training functions and the neuron number of
hidden layers. Section 3 analyzes the state monitoring data of bearings, extracts and
filters features that can reflect the current state of the bearings. Section 4 compares the
performance of neural networks based on the current state characteristics, the cumu-
lative state characteristics and both types of features and evaluate the effect of cumu-
lative time domain indexes. Section 5 presents conclusions and discussion on future
improvements.
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2 The Design of Artificial Neural Network

Since the 1980s, the research on artificial neural network (ANN) has already become a
hot topic. The theory has achieved great development and has been widely applied in
various fields. ANN is divided into several categories according to its structure and
principle [17]: According to the flow of information while running, it can be divided
into feedforward and feedback neural networks. The feedforward neural network
introduces hidden layers and nonlinear transfer functions for nonlinear mapping, and its
output only depends on the network input and network weight matrix, with no relation
to the historical output of the network, while the input of feedback neural network also
includes the feedback of model output. The state of the network neuron changes with
the learning process until it reaches a steady state, which indicates the completion of
model training. The feedback neural network mainly includes Hopfield neural network,
Elman neural network and Boltzmann neural network.

The Elman neural network model was proposed by Elman in 1990 [18]. To
describe the proposed approach, we use Xt to denote RUL at time t, Yt to denote the
historical event data and condition monitoring data up to time t. The objective function
of the prediction is f xtjytð Þ or E xtjytð Þ, with f xtjytð Þ representing the probability dis-
tribution function of Xt given Yt and E xtjytð Þ representing the expectation of Xt given
Yt. Elman neural network is used as a recursive network model with an external signal,
denoted as U kð Þ, and a hidden layer feedback signal, denoted as Xc kð Þ, as input. The
feedback is realized through a context unit. The model structure [19] is shown in
Fig. 1, where, Xc kð Þ refers to the output of the context unit time k; X kþ 1ð Þ represents
the output of hidden layer; Y kþ 1ð Þ represents the network output.

Fig. 1. Elman neural network model
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When the Elman network adopts a linear transfer function, the hidden unit, the
context unit and the output unit are shown in Eqs. 1–3, respectively.

X kð Þ ¼ rx WxU kð ÞþUxXc k � 1ð Þþ bh½ � ð1Þ
Xc kð Þ ¼ X k � 1ð Þ ð2Þ

Y kþ 1ð Þ ¼ ry WyX kð Þþ by
� � ð3Þ

where, W, U and b are parameter matrices and vector, rx and ry are activation
functions.

We set the mean square error (MSE) as the performance function of Elman neural
network to study the proposed problem. When there are too many hidden layers in the
middle of the neural network, the model may be easily over fitted, and the training
speed will be slow [20]. For the prediction problem of one-dimensional output, gen-
erally only one hidden layer is needed to achieve the required prediction accuracy [19].
Thus, we set the number of hidden layers to 1. The number of neurons in the hidden
layer is determined according to the empirical formula, as described in Eq. 4.

l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ a ð4Þ

where, l refers to the number of neurons in the hidden layer, m refers to the number of
input dimensions, n refers to the number of output dimensions, and a refers to a
positive integer between 0 and 10.

In this study, the number of neurons in the input layer of the Elman neural network
equals the number of time domain indexes we input, and the number of neurons in the
output layer equals the number of output characteristics of the model, which equals 1 in
the RUL prediction problem. Therefore, the final Elman neural network we built is
shown in Fig. 2.

Fig. 2. The structure of Elman neural network model
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3 The Processing of Original Condition Monitoring Data

In this section we first design IIR (Infinite Impulse Response) elliptical band-pass filter
to preprocess the original vibration signals. By moving the filtering bandpass we
implemented 24 experiments and chose the appropriate interval. With the filtered data
we extracted the characteristics reflecting the running state of the bearings and
smoothed them to reduce the data noise.

This study uses data provided by the FEMTO-ST Association of France, and the
bearing aging test was carried out on the laboratory test platform (PRONOSTIA) [21],
which accelerates bearing aging under constant or varying operating conditions while
on-line collecting health monitoring data (rotation speed, load force, temperature,
vibration) of the experiments. In the accelerated aging test of the bearing, the failure
point of the experimental bearing is defined as the timing of the bearing vibration
acceleration (horizontal or vertical) to reach 20 g for the first time. The experimental
data set is shown in Table 1. In all bearing accelerated aging experiments, the vibration
acceleration signal is used to sample the vibration signal acceleration of the rolling
bearing in the vertical and horizontal direction at intervals.

3.1 Filtration of Original Vibration Signal Data

Compared with the FIR (Finite Impulse Response) band-pass filter, the IIR band-pass
filter has the advantages of low signal time delay, low order and high processing speed
while being able to achieve the same filtering performance. Therefore, we use IIR
elliptical band-pass filtering to process the vibration acceleration of the bearings. Using
the SPtool toolbox provided by MATLAB R2017b, we design the elliptical bandpass
filter as follows: The input signal frequency is set as 25.6 kHz, the filter strength is set
as Astop1 = 60 dB, Apass = 1, Astop1 = 80 dB, and the elliptical bandpass filter
prototype is generated by the minimum order. The waveform of the original signal was
obtained by the SPtool toolbox, as shown in Fig. 3. The FFT (Fast Fourier Transform)
algorithm is employed to conduct the Fourier transform, and transfer time domain
signals into frequency domain signals, as shown in Fig. 4.

Table 1. The datasets

Datasets Operating conditions
Condition 1 Condition 2 Condition 3

Learning set Bearing 1_1 Bearing 2_1 Bearing 3_1
Bearing 1_2 Bearing 2_2 Bearing 3_2

Test set Bearing 1_3 Bearing 2_3 Bearing 3_3
Bearing 1_4 Bearing 2_4
Bearing 1_5 Bearing 2_5
Bearing 1_6 Bearing 2_6
Bearing 1_7 Bearing 2_7
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We use 500 Hz as the unit frequency band and start moving the passband from 0–
500 Hz to 11.5–12 kHz to cover the full frequency of the signal, evaluated by the
smoothness of the signal kurtosis curve [22]. Finally, we determined the bandpass of the
elliptical bandpass filter as: Fstop1 = 5000 Hz, Fpass1 = 5500 Hz, Fpass2 = 6000 Hz,
Fstop2 = 6500 Hz, as shown in Fig. 5. After the original signal is filtered by the

Fig. 3. Original vibration signal waveform

Fig. 4. Vibration signal frequency domain diagram
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elliptical bandpass filter, the output waveform can be obtained as shown in Fig. 6. It can
be observed that the vibration acceleration signal processed by the elliptical band pass
filter is smoother than the original signals shown in Fig. 3 and shows a certain
periodicity.

3.2 Extraction of Vibration Signal Characteristics

After filtering and smoothing the original vibration signals, we extract time domain
indexes that can reflect the state of bearings. The advantage of prediction method by
time domain indexes is that various characteristic indexes are accessible from a single
signal.

Fig. 5. Elliptic bandpass filter

Fig. 6. The vibration signal after filtering
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The physical characteristics of the rolling bearing during operation, such as
vibration speed, vibration acceleration, vibration phase, vibration frequency and
internal temperature, can reflect the current state of the bearing and be used to analyze
and monitor the state of the bearing. Therefore, we extract common time domain
indexes of horizontal and vertical vibration acceleration signals, including range, root-
mean-square (RMS), kurtosis, arcsine standard deviation, and skewness.

Range refers to the amplitude of bearing vibration signal per unit time. It can be
calculated with Eq. 5.

Xp ¼ max½xðtiÞ� � min½xðtiÞ� ð5Þ

where, x tið Þ refers to the signal value at time ti.
RMS is employed to reflect the average energy of the signal. It is often used to

evaluate the wear level of bearings. The more the bearing wears, the greater the RMS
value of its vibration signal. RMS can be calculated via Eq. 6.

wx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

x2 tið Þ
s

ð6Þ

where, x tið Þ reflects the state of the machine, and N refers to the number of points of the
discrete signal sample.

Kurtosis refers to the fourth-order central moment of the vibration signal. It is
sensitive to vibration shock and is superior for the diagnosis of early surface damage in
bearings. Kurtosis can be calculated via Eq. 7.

K ¼ 1
N

PN
i¼1

x tið Þ�l
r

� �4 ð7Þ

where, l refers to the mean of the acceleration signal, and r refers to the standard
deviation of the acceleration signal. The normal kurtosis (zero kurtosis) of the defined
signal is K ¼ 3, which indicates that the bearing is operating in a good condition.

Arcsine standard deviation is derived from the trigonometric function of the
vibration signal. It performs better in the manner of signal trend and scale than the other
indexes. The formula of arcsine standard deviation is shown as Eq. 8:

STD asinð Þ ¼ r log xi þ
ffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

ph i� �
ð8Þ

Skewness refers to the third-order central moment of the vibration signal. It is used
to measure the skew level of the signal waveform and can be obtained via Eq. 9.

Skew xð Þ ¼ E x�l
r

� �3h i
ð9Þ

In addition, we also include the mean and standard deviation of the time domain
indexes we inspect. All the time domain indexes of the bearing vibration signal are
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shown in Table 2. In order to obtain the time domain indexes which can reflect the state
of the bearing, we evaluate the time domain indexes by the correlation coefficient,
denoted as r, between the indexes and the bearing running time and the monotonic
trend index M, which is defined as Eq. 10.

M ¼ number of d
dx [ 0

n� 1
� number of d

dx\0
n� 1

				
				;

M 2 0; 1½ �
ð10Þ

The time domain index M approaches 1 for indexes with monotonic trend, and
approaches 0, otherwise. We obtained the correlation coefficient r and the monotonicity
index M of the time domain indexes, as shown in Table 3 and Fig. 7.

It can be seen from Fig. 7 that the correlation coefficient r and the monotonicity
index M of the mean of the horizontal and vertical vibration signal tend to be zero,
indicating that the mean of the vibration signal has no significant correlation with the
bearing’s RUL, and there is no significant monotonicity. Therefore, we remove the
mean from the time domain indexes. As for the horizontal and vertical skewness, the
monotonic index M is close to 0, indicating that there is no obvious monotonic trend in
the skewness index. And the horizontal skewness index is positively correlated with the
bearing running time, while the vertical skewness index is inversely correlated to the
bearing running time. This is not consistent with the vertical and horizontal consistency
principle compared with other time domain indexes. Therefore, we removed the
skewness index from the time domain indexes. Finally, by analyzing the correlation
coefficient r and the monotonicity index M of the indexes, we determine to keep the
range, the root mean square, the kurtosis, the arcsine standard deviation, and the
standard deviation as the input of the model.

Table 2. Time domain indexes of vibration signal

Signal Time domain indexes

Horizontal range rms kurtosis stdasin skewness std mean
Vertical range rms kurtosis stdasin skewness std mean

Table 3. The Results of time domain indexes

Traditional time domain indexes
\ range rms kurtosis stdasin skewness std mean

r1 −0.45 −0.40 −0.54 −0.43 0.64 −0.40 −0.01
M1 0.06 0.06 0.20 0.05 0.10 0.06 0.03
r2 −0.42 −0.42 −0.31 −0.43 −0.06 −0.41 −0.06
M2 0.07 0.05 0.16 0.03 0.01 0.05 0.02
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However, from Fig. 7, it can also be seen that the traditional time-domain indexes
such as kurtosis and standard deviation show relatively weak trend and monotony, and
the correlation with bearing running time is not strong enough, either. The reason of
this phenomenon lies in that the operation of the bearings is usually affected by quite
complex environmental factors resulting in a large amount of noise data and fluctuation
of the vibration signals. Moreover, traditional time domain indexes can only reflect the
state information of the rolling bearings at the current time point, neglecting historical
data, which may reflect the failure modes of the bearings and play an important role in
bearing RUL prediction. Therefore, in this research, we focus on the cumulative state
characteristics which refer to the indexes that reflect historical operating data of the
bearings and can be transformed with Eq. 11 [23].

CFv ¼
PN

i¼1
Fv ið ÞPN

i¼1
Fv ið Þ

		 		12 ð11Þ

where,
PN

i¼1 Fv ið Þ refers to the sum of current state characteristics from time 0 to v.
After the cumulative transformation, the trend of the time domain indexes can be

greatly improved, and the stability has also been enhanced. For example, the kurtosis
index of the vibration signal before and after the cumulative transformation is shown in
Figs. 8 and 9, respectively. By comparing these two figures, it can be seen that after the
cumulative transformation, the kurtosis index increases monotonically with a good
linear trend, and the curve transition is relatively smooth.

Fig. 7. The correlation coefficient and the monotonicity index
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Fig. 8. Trend of kurtosis

Fig. 9. Trend of cumulative kurtosis

Table 4. The cumulative state characteristics

Cumulative time domain indexes
\ range rms kurtosis stdasin std

r1 −0.99 −0.98 −0.99 −0.99 −0.99
M1 1 1 1 1 1
r2 −0.99 −0.98 −0.98 −0.98 −0.98
M2 1 1 0.998 1 1
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Thus, it can be concluded that the traditional time-domain indexes after cumulative
transformation show better trend and stability.We also obtained the correlation coefficient
r and themonotonicity indexMof the cumulative transformation indexes for the bearings,
as shown in Table 4, fromwhich it can be seen that the correlation coefficient between the
cumulative index and the bearing RUL approaches 1 and exhibits a good linear correla-
tion, and the monotonic indexM of the cumulative index also approaches 1 and presents a
quite good trend. Thus, we determine to use the cumulative indicator as an auxiliary input
to help predict the bearing’s RUL.

4 Experimentation

We first consider the traditional time domain indexes selected in Sect. 3 as the input of
the Elman network, as shown in Table 5. Thus, the input dimension of the Elman
neural network is 10, and the output dimension is 1. According to the empirical for-
mula, the number of neurons in the hidden layer is determined to be integers within
interval

ffiffiffiffiffi
11

p þ 1;
ffiffiffiffiffi
11

p þ 10
� �

. The Elman neural network training functions we
examined are shown in Table 6. Next, we adjust the parameters of the network by
training the functions and the number of hidden layer neurons.

We first fixed the number of hidden layer neurons to the default value of 10 and
selected the triangular basis transfer function TANSIG as the transfer function. The
maximum number of training steps was set to equal 10,000 steps with the maximum
number of failed steps allowed equal to 6. By changing the training function, we
obtained the determined neural network, as shown in Table 7. Figure 10 shows the
convergence speed of the Elman neural network with different training functions. It can
be seen that training functions TRAINBFG, TRAINCGB, TRAINLM, TRAINRP,
TRAINSCG have relatively short training steps and durations. Figure 11 shows the
Elman neural network obtained by different training functions. It can be observed that
the network performance and training error of training functions TRAINBR and
TRAINLM are significantly lower than the other training functions. Therefore, we
choose training function TRAINLM as the Elman neural network training function.

Next, we fixed the training function to TRAINLM with other parameters remaining
unchanged, except for the number of neurons in the hidden layer. The obtained neural
networks are shown in Table 8. Figure 12 shows the convergence rate of Elman net-
works for different hidden layer neurons. It can be observed that as the number of
neurons in the hidden layer increases, the training duration and training step length of the
network also increase and they increase sharply, when the hidden layer neurons are more
than 9. Figure 13 shows the Elman network training effect of different hidden layer
neurons. It can be observed that the training MSE (Mean Square Error) and training error
of the Elman neural network decrease with the increase of the number of neurons in the

Table 5. Traditional time domain features of vibration signals

Signal Traditional time domain indexes

Horizontal range rms kurtosis stdasin std
Vertical range rms kurtosis stdasin std
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hidden layer. However, too many neurons in the hidden layer will lead to over-fitting of
the model. When the number of neurons is 8, the training performance decreases to
0.00697 and the training error decreases to 469.9, both reaching the minimum point. So,
we choose the number of neurons in the hidden layer to be 8, which can ensure good
network training performance as well as fast convergence speed.

Table 6. Elman network functions to be examined

Training functions Function declaration

TRAINBFG Quasi-Newton BP algorithm
TRAINBR Bayesian standardized training function
TRAINCGB Power-Beale conjugate gradient BP algorithm
TRAINGD BP algorithm with gradient descent
TRAINGDM BP algorithm with gradient descent momentum
TRAINLM Levenberg-Marquardt
TRAINRP Resettable BP algorithm (Rprop)
TRAINSCG BP algorithm for quantifying continuous gradient

Table 7. Elman network performance with different train functions

Training function Epoch Time/s Performance Gradient Error

TRAINBFG 128 2 0.0214 0.0141 880.1
TRAINBR 622 67 0.00707 9.71E-07 460.8
TRAINCGB 49 1 0.032 0.0304 1088.7
TRAINGD 10000 34 0.0462 0.00516 1365.8
TRAINGDM 10000 33 0.0423 0.00306 1294.7
TRAINLM 187 18 0.0071 4.34E-03 463.5
TRAINRP 768 2 0.0277 0.0108 1023.3
TRAINSCG 53 1 0.0402 0.00755 1275.3

Fig. 10. The convergence rate of Elman neural network with different training functions
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After the parameter adjustment of the model, we finally obtained the Elman neural
network based on the traditional time domain indexes. The network uses TRAINLM as
the training function. The number of hidden layer neurons is 8. The training perfor-
mance is 0.009995 and the training error is 536.6.

The network convergence process is shown in Fig. 14. The prediction error is
shown in Fig. 15. It can be observed that the Elman neural network based on the
traditional time domain does not converge well. The value of error rate shows large
fluctuations. Employing this network, the RUL of the test bearings is obtained, as
shown in Table 9. It can be observed that the Elman neural network based on the
traditional time domain indexes may result in large errors in predicting the RUL of
some bearings, for example, the error rates of 7 out of 11 bearings are higher than
100%. The reason for this may be the lack of classification and identification of fault
modes of the bearing.

Fig. 11. The Elman neural network obtained by different training functions

Table 8. Elman network under different hidden layer neurons

Number of neurons Epoch Time/s Performance Error

4 30 1 0.0152 725.3
5 75 2 0.0116 626.6
6 63 2 0.0114 616.2
7 102 5 0.011 590.7
8 143 9 0.00697 470.0
9 118 9 0.00904 525.6
10 175 17 0.00887 524.0
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To increase the prediction precision, we further trained the Elman neural network
based on the cumulative time domain indexes, following the same process as done in
the method of modeling based on the traditional time domain indexes. The cumulative
time domain indexes that have been selected and normalized are shown in Table 10.
The obtained Elman neural network uses TRAINLM as the training function, with the
number of hidden layer neurons equal to 8. The training performance equals 0.000184
and the training error equals 25.9.

The network convergence process is shown in Fig. 16. The prediction error is
shown in Fig. 17. It can be observed that the convergence effect of the Elman neural
network based on the cumulative time domain indexes is better than that based on the
traditional time domain indexes. Most of the absolute value of the prediction error rate

Fig. 12. The convergence rate of Elman neural networks with different hidden layer neurons

Fig. 13. The training effect of Elman neural networks with different hidden layer neurons
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is smaller than 5%. Using this network, the RUL of the test bearings can be predicted as
shown in Table 11, from which, it can be observed that the model based on the
cumulative time domain index can hardly predict the RUL of the bearing, with only 1
out of 11 bearings’ prediction error rate below 100%. Thus, it is not feasible to predict
the bearing RUL only by the cumulative indexes.

In order to improve the quality of predicting the bearing’s RUL, we then combine the
traditional and cumulative time domain indexes together as the input of the Elman net-
work. Following the same process to adjust the parameters as done before, we can obtain
the Elman neural network based on both the traditional and cumulative time domain
indexes. The network uses TRAINLM as the training function. The number of hidden
layer neurons is 8. The training performance is 0.000588 and the training error is 110.1.

The network convergence process is shown in Fig. 18. The prediction error is
shown in Fig. 19. It can be observed that the convergence accuracy of the Elman neural
network based on both the traditional and cumulative time domain indexes is much
better than that based only on traditional time domain index, and slightly worse than
that based only on the cumulative time domain indexes, with the mean square error
converging between 0.0001 and 0.001. Using this network, the RUL of test bearings
was determined as shown in Table 12. It can be observed that the Elman neural
network based on both the traditional and cumulative time domain indexes have a
better effect, with 7 out of 11 bearings’ RUL prediction error rate below 50%.

Table 9. The prediction accuracy of Elman network based on traditional time domain features

Bearing 1–3 1–4 1–5 1–6 1–7 2–3 2–4 2–5 2–6 2–7 3–3

Lifetime 5730 2890 1610 1460 7570 7530 1390 3090 1290 580 820
Prediction 5310 0 9190 5264 5970 11600 5437 6429 233 7719 5718
Error rate 0.07 1 −4.71 −2.61 0.21 −0.54 −2.91 −1.08 0.82 −12.3 −5.97

Fig. 14. The convergence process of Elman network based on traditional time domain indexes
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Fig. 15. The training error of Elman network based on traditional time domain features

Table 10. Cumulative time domain features of vibration signals

Signal Cumulative time domain indexes

Horizontal range rms kurtosis stdasin std
Vertical range rms kurtosis stdasin std

Fig. 16. The convergence process of Elman network based on cumulative indexes
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Table 11. The performance of the Elman network based on cumulative indexes

Bearing 1–3 1–4 1–5 1–6 1–7 2–3 2–4 2–5 2–6 2–7 3–3

Lifetime 5730 2890 1610 1460 7570 7530 1390 3090 1290 580 820
Prediction 133 0.02 0 0 157 0.76 4021 3241 2843 3684 1828
Error rate 0.98 1 1 1 0.98 1 −1.89 −0.05 −1.20 −5.35 −1.23

Fig. 18. The convergence process of Elman network based on traditional and cumulative time
domain features

Fig. 17. The training error of Elman network based on cumulative time domain features
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5 Conclusion and Discussions

This study developed Elman neural network based on cumulative time domain indexes
to predict the RUL of bearings. We tested the proposed approach on the dataset of the
2012 PHM Data Challenge and built the Elman neural network based on traditional
time domain indexes, cumulative time domain indexes and combined traditional and
cumulative time domain indexes. After adjusting the network model parameters, we
predicted the RUL of the test bearings and analyzed experimental results as follows:
From the perspective of prediction accuracy, the RUL prediction based on combined
traditional and cumulative time domain indexes is better than that based on traditional
time domain indexes. And the model only based on cumulative time domain indexes
has the worst prediction accuracy. From the perspective of model convergence speed,
Elman neural network based on traditional time domain indexes has the fastest speed,
followed by the model based on combined traditional and cumulative time domain
indexes, and the one based on cumulative time domain indexes has the slowest con-
vergence speed. From the perspective of neural network training accuracy, the model

Fig. 19. The prediction effort of Elman network based on traditional and cumulative time
domain indexes

Table 12. The prediction accuracy of Elman network based on traditional and cumulative time
domain indexes

Bearing 1–3 1–4 1–5 1–6 1–7 2–3 2–4 2–5 2–6 2–7 3–3

Lifetime 5730 2890 1610 1460 7570 7530 1390 3090 1290 580 820
Prediction 5100 3 1960 830 7410 6740 2890 3012 2240 27003 486
Error rate 0.11 1 −0.22 0.43 0.02 0.11 −1.08 0.03 −0.74 −45.6 0.41
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based on cumulative time domain indexes has the smallest error and the best perfor-
mance, followed by the model based on both traditional and cumulative time domain
indicators, while the model based on traditional time domain index Neural network has
the worst training effect.

In summary, the ANN based on only traditional time domain indexes will lead to
difficult convergence aswell as bad training accuracy.Only some bearings have favorable
RUL prediction results under this model. The model based on only cumulative time
domain indexes will cause the neural network to converge slowly. Although the training
effect turns better, it is prone to over-fitting and the prediction results of the model is not
good. Compared with models only considering traditional time domain indexes, we can
acquire the model with better RUL prediction effects and more robustness by adding
cumulative time domain indexes into the model. The introduction of cumulative time-
domain indexes can accelerate the convergence speed of the Elman neural network,
obtain better training effect and help in identifying the bearing failure modes. Thus, we
can achieve better RUL prediction effects and make the model more robust.

This study only tested the public data set of the 2012 PHM Data Challenge.
However, in real industrial systems, bearings are diverse in materials and sizes. More
data samples should be tested to verify whether the proposed prediction methods can be
generalized. The parameters of the prediction model based on neural network do not
have actual physical meanings and, thus, the model interpretability is not good. In
future, time series prediction models, such as ARIMA, will be adopted and compare
with the developed Elman neural network to evaluate the effect of cumulative time
domain indexes.
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Abstract. Multi-state is a characteristic of advanced engineering systems and
products. The reliability of multi-state systems (MSSs) has been received con-
siderable attentions since the middle of 1970s. Over the last decade, Bayesian
networks (BNs), as an effective and efficient reasoning tool under uncertainty,
have been intensively concerned in MSS reliability modeling and assessment.
This chapter presented a holistic framework for MSS reliability modeling and
assessment by BNs. Firstly, the basic characteristics of MSSs and BNs are
reviewed. Secondly, the detailed procedures of constructing the BN models of
diverse MSSs are provided. The corresponding dynamic Bayesian network
(DBN) models are also constructed to characterize the degradation profiles of
MSSs over time, as well as various dependencies among components. Thirdly, a
reliability assessment method by fusing multi-level observation data is devel-
oped. The results show that the reliability modeling and assessment for MSSs by
BNs are effective considerably.

Keywords: Multi-state systems (MSSs) � Bayesian networks (BNs) �
Reliability modeling � Reliability assessment � Parameter estimation �
Dependency

1 Introduction

Multi-state is a typical characteristic of advance engineering systems and products
[1–4]. Many technical systems that perform their intended tasks/missions with multiple
(more than two) distinguishable states between perfectly functioning and completely
failed can be regarded as multi-state systems (MSSs) [1]. The MSS reliability models,
first introduced in the mid-1970s, have received considerable concerns in the past few
decades, because the models can characterize complicated deterioration processes of
engineering systems more precisely than that of the traditional binary-state system
(BSS) reliability models [1, 5]. For example, based on the length of flank wear, the
health status of a cutting tool can be classified approximately into five discrete states
from the normal state (perfectly functioning) to nominally sharp (<0.1 mm), part worn
(0.1–0.15 mm), severely worn (>0.15 mm), and fractured/chipped (completely failed)
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states [6]. Another instance is that a power generating system can function at multiple
levels of generating capacity [1]. Similar treatment can also be found in diverse
engineering situations, e.g., manufacturing systems, networked systems, grid systems,
spacecraft, and municipal infrastructure.

As both components, subsystems, and the entire system can manifest multiple states,
the MSS reliability models are, therefore, much complicated. The approaches to MSS
reliability modeling and assessment can be roughly classified into four categories [1].

• An extension of the Boolean models to the multi-value case. The methods based on
the extension of the Boolean models is natural expansions of Boolean methods that
were well implemented in BSSs, such as, for example, multi-state fault tree [7],
multi-state minimal cuts/paths [8, 9], and multi-value decision diagram [10].

• Stochastic models. The stochastic models, such as homogeneous/non-homogeneous
Markov [11] and semi-Markov [12, 13], are more universal to characterize the
degradation processes of MSSs. However, due to the dimension damnation, the
stochastic models only suit to relatively small scale MSSs because the number of
system states increases dramatically with the increase in the number of components
and component states. Another severe restriction to implement the stochastic
models is the computational complexity, because it is inevitably to solve a system
of differential equations (for homogeneous/non-homogeneous Markov) or a system
of integral equations (for semi-Markov).

• Universal generating functions (UGFs). The UGF technique is effective enough that
utilizes a rapid algebraic procedure to identify the state probability distribution of
the entire system based on the state probability distributions of all the components
[14]. However, this technique is a sort of “static” approaches that cannot charac-
terize the dynamic degradation profiles of MSSs.

• Simulation-based methods. The degradation behaviors of most MSSs in real-world
situations can be simulated by the Monte Carlo method [15]. Nevertheless, the time
consumption involved in the development and execution of the simulation models
are oftentimes unaffordable to achieve a high accurate result.

The recursive algorithms were also developed to evaluate the reliability of gener-
alized multi-state k-out-of-n systems and multi-state weighted k-out-of-n systems [16,
17]. It was proved that the recursive algorithms can outperform the UGF approaches
with or without collecting like terms for the reliability assessment of multi-state
weighted k-out-of-n systems. In addition, the degradation process of each multi-state
component in an MSS can be characterized by the stochastic models, and thus the state
probability distribution of the component at any particular time can be obtained. By
combining the stochastic models and UGF approaches, the state probability distribution
of the entire system at any particular time can be readily obtained, even for relatively
large-scale systems.

Apart from the aforementioned methods and tools, Bayesian networks (BNs) [18], as
a probabilistic graphical model, are capable of handling with various uncertainty prob-
lems effectively based on probabilistic information representation and inference. BNs
have gained considerable popularity inMSS reliabilitymodeling and assessment over the
last decade. There is still a booming interest for using BNs in the reliability community,
especially for MSS reliability modeling and assessment. This chapter will present a
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holistic framework for MSS reliability modeling and assessment with BNs. The contri-
butions of this chapter are trifold: (1) the proposed framework can effectively characterize
the dynamic behaviors of various MSSs; (2) the proposed framework can effectively
characterize various dependencies in MSSs; (3) the proposed framework can effectively
aggregate multi-level observation data to dynamically assess reliability of MSSs.

The reminder of this chapter is organized as follows. In Sect. 2, the basic char-
acteristics of MSS and BNs are reviewed. The detailed procedures of constructing the
BN models for a diversity of MSSs are provided in Sect. 3. A reliability assessment
method by fusing multi-level observation data is developed in Sect. 4. A brief closure
is given in Sect. 5.

2 Preliminaries

2.1 Multi-state Systems

An MSS herein is composed of Mc homogenous or heterogeneous multi-state com-
ponents. The states of each component are distinguished by its performance capacities
or degradation levels. Suppose that component l can possess Nc

l mutually ordered
states, then the sets of the performance capacity and state component l can be denoted
as gcl ¼fgl;1; gl;2; . . .gl;Nc

l
g and scl ¼f1; 2; . . .;Nc

l g, respectively. States 1 and Nc
l are the

best state and worst state of component l, respectively. The performance capacity and
state of component l at time t are denoted as Gc

l ðtÞ (Gc
l ðtÞ 2 gcl ) and ClðtÞ (ClðtÞ 2 scl ),

respectively. If component l sojourns in state i at time t, i.e., ClðtÞ ¼ i, the performance
capacity Gc

l ðtÞ ¼ gl;i. In this chapter, states f1; 2; . . .;Nc
l � 1g are acceptable states;

therefore, component l is viewed as being failed if the component sojourns in state Nc
l .

In this chapter, the degradation profile of each component is assumed to follow a
homogeneous discrete-time Markov process. Other stochastic models, such as non-
homogenous Markov process and semi-Markov process, can also be adopted. As each
component degrades from the best state to the worst state, the Markov model is
irreducible, transient, and aperiodic. The one-step state transition matrix of the Markov
model for component l is represented as:

Pl ¼

pl;ð1;1Þ pl;ð1;2Þ . . . pl;ð1;Nc
l Þ

0 pl;ð2;2Þ . . . pl;ð2;Nc
l Þ

..

. ..
. . .

. ..
.

0 0 . . . pl;ðNc
l ;N

c
l Þ

2
6664

3
7775;

where pl;ði;jÞ ¼ PrfClðtþDtÞ ¼ jjClðtÞ ¼ ig (1� i� j�Nc
l ) is the state probability of

component l from state i to state j within a basic time interval Dt. The state probability
distribution of component l at time t is denoted by a probability vector
plðtÞ ¼ ½pl;1ðtÞ; pl;2ðtÞ; . . .; pl;Nc

l
ðtÞ�, where pl;iðtÞ ¼ PrfClðtÞ ¼ ig. With the known state

probability distribution of component l at time t, i.e., plðtÞ, the state probability dis-
tribution of the component at time tþ kDt can be computed as follows:
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plðtþ kDtÞ ¼ plðtÞ � ðPlÞk: ð1Þ

Based on the physical configuration and/or functional relations between compo-
nents, the components in an MSS can be divided into Msub subgroups that are con-
sidered as Msub subsystems. The number of the states that subsystem m and the entire
system can have are Nsub

m and Nsys, respectively. Likewise, the performance capacity
and state of subsystem m at time t are denoted as Gs

mðtÞ and SmðtÞ, respectively; the
performance capacity and state of the entire system at time t are denoted as GðtÞ and
SðtÞ, respectively; states 1 is the best state each subsystem and the entire system; states
Nsub
m and Nsys are the worst states of subsystem m and the entire system, respectively.
The states of each subsystem and the entire system are completely determined by

the state combinations of their corresponding constituents. The structure function /mð�Þ
that identifies the relation between subsystem m and its constituents are deterministic
and known; the structure function /ð�Þ that identifies the relation between the entire
system and its constituents are also deterministic and known. It is common that more
than one state combination of components may result in particular subsystem and/or
system state [19]. An MSS is considered reliable if the system sojourns in the
acceptable states during the operation period. Therefore, the reliability of an MSS is
defined as the sum of the probabilities of the system sojourning in the acceptable states.

2.2 Bayesian Networks

BNs [18], also known as belief networks, Bayesian belief networks, and casual net-
works, are inherently compact representations of multivariate statistical distribution
functions. A BN contains a qualitative part, i.e., the direct acyclic graph (DAG), and a
quantitative part, i.e., a set of conditional probability tables (CPTs). The DAG of a BN
consists of a set of nodes denoting random variables fX1; X2; . . .; Xng and a set of
links characterizing the probabilistic dependencies among nodes. The terms node and
random variable are used interchangeably hereinafter. Based on the types of all nodes,
a BN can be classified into one of the three categories [20], i.e., discrete BNs, con-
tinuous BNs, and hybrid BNs. This chapter limits the treatment to the discrete BNs in
which all nodes are discrete.

Each node in a BN can manifest finite mutually exclusive states. A link, as a
directed edge from Xj to Xi, represents that Xj has a directed casual effect on Xi.
Therefore, Xj is considered a parent of Xi, which can be denoted as Xj 2 paðXiÞ;
whereas Xi is regarded as a child of Xj. Particularly, a node without any parent nodes
and child nodes are called a root node and a leaf node, respectively. The DAG of a BN
reflects the casual relations between all nodes, whereas the CPTs of the BN characterize
the strength of these casual relations quantitatively. For a node Xi with a parent set
paðXiÞ, the CPT of Xi, denoted as PrfXijpaðXiÞg represents the conditional probability
mass function of Xi under the condition of paðXiÞ. Particularly, a set of marginal
probability tables (MPTs) need to be assigned to all root nodes. An illustrative BN with
six nodes is shown in Fig. 1. X1 and X3 are root nodes, whereas X5 and X6 are leaf
nodes. The parent nodes of X2 and X4 are denoted as paðX2Þ ¼ X1 and
paðX4Þ ¼ fX1;X2;X3g, respectively. The parent node of both X5 and X6 is X4.
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Based on the chain rule, the joint probability distribution of all the random variables
in a BN can be decomposed into the product of a set of conditional probability dis-
tributions, and it is given by:

PrfX1;X2; . . .;Xng ¼
Yn
i¼1

PrfXijpaðXiÞg: ð2Þ

As an example, the joint probability distribution of the BN in Fig. 1 is represented as:

PrfX1;X2; . . .;X6g
¼ PrfX1g PrfX3g PrfX2jX1g PrfX4jX1;X2;X3g PrfX5jX4g PrfX6jX4g

: ð3Þ

When one or more nodes are observed/instantiated, or say, evidences are inputted

into these nodes, BNs are capable of updating the probability distributions of other
nodes without observation/instantiation/evidence via effective inference. Various effi-
cient algorithms for exact or approximate probabilistic inference can be utilized to
update the entire BN, such as variable elimination algorithm, junction tree algorithm,
and Markov chain Monte Carlo (MCMC) methods. The details of the BN inference
algorithms can be referred to the books by Jensen and Nielsen [18], and Koller and
Friedman [21].

The BN in Fig. 1 is essentially a static model that can only represent the casual
relations among nodes at a particular time instant. To characterize to the evolving
behaviors of random variables over time, local models are necessary to be constructed
for each unit of time. A local BN model at a particular time is called a time slice.
Temporal links that are also directed edges are introduced to constitute a full model by
connecting all the time slices in a chronological order. The full model is called a
dynamic Bayesian network (DBN). The detailed procedures of constructing DBN
models will be elaborated in Sect. 3.2.

X1 X3

X4

X5

X2

X6

Fig. 1. An illustrative BN
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Numerous software can be utilized to model practical problems by BN or DBN
from different aspects. An overview of available software in the literature are provided
herein without pretending to be exhaustive.

• Various software with integrated and intuitive graphical interfaces are powerful and
user-friendly, e.g., BayesiaLab, GeNIe, Hugin, Netica, and AgenaRisk.
These software make BNs accessible to engineers without programming skills.

• A diversity of packages in different programming environments are also available,
e.g., various R packages on CRAN, BNT in MATLAB, and BayesPy in Python.
These packages that can make BNs manipulable are efficient, flexible, and
extendable enough for engineers with proficient programming skills.

• BUGS (Bayesian inference Using Gibbs Sampling) is concerned with several
flexible software that implement the approximate Bayesian inference using MCMC
methods. The well-known WinBUGS, OpenBUGS, and JAGS are all a sort of BUGS
software packages.

BNs can represent and characterize various uncertainties and dependencies in
reliability engineering in an intuitive, flexible, and effective manner; therefore, BNs
have become a very popular tool to address diverse practical reliability problems [22–
27]. The reported works in the literature regarding to BN applications in BSSs can be
essentially extended to multi-state cases. As each node of a BN can have multiple
(more than two) mutually exclusive states, BNs have gained considerable concerns in
MSS reliability modeling and assessment recently. Compared with classical reliability
formalisms, such as fault trees [28–30], in both modeling and analysis features, BNs
have showed significant advantages over the traditional frameworks. Therefore, BNs
have been applied to a diversity of engineering cases, such as the search and rescue
operations [31], medium voltage air insulated switch operation [32], axle and vehicle
[33], power generating systems [19], cutter feeding control system [34, 35], water
distribution system [36, 37], bridge condition modeling [38], and subsea blowout
preventer [39–41].

Due to the powerful capabilities in modeling and reasoning, BNs were utilized to
characterize both random and epistemic uncertainties as well as various dependencies
in the context of MSSs. For example, to deal with epistemic uncertainty in reliability
evaluation, BNs and DBNs were extended to evidential networks and dynamic evi-
dential networks based on Dempster-Shafer evidence theory [34, 35, 42], respectively.
Various failure dependencies between components, such as common cause failures
(CCFs) [34, 43, 44] and cascading failures [45], were also modeled by BNs. As the
system reliability can be updated based on BN inference algorithms if a component
node is instantiated, BNs were adopted in the importance measure analysis [35, 46]. In
addition to these aspects, BNs have also been extensively applied to system mainte-
nance management in which BNs were used to infer the condition of a system or its
components if some components and/or the entire system can be observed before
maintenance decision-making [23, 47–51].

The temporal BN model of a system can be constructed to characterize the
degradation/failure profile (temporal dependency) of the system. In general, temporal
models can be divided into two broad categories based on the time representation, i.e.,
event-based approaches and time-sliced approaches. Based on the event-based
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approaches, Boudali and Dugan [52, 53] constructed a discrete-time BN and a
continuous-time BN reliability modeling and analysis frameworks. Based on the time-
sliced approaches, various DBN models were constructed to evaluate reliability of a
system over time [19, 43, 54–58]. For example, Cai et al. [43] constructed a multi-
phase DBN model to determine the safety integrity level of a safety instrumented
system with CCFs. Jiang and Liu [19], and Xu et al. [57] developed a data-driven
reliability assessment method based on DBNs by aggregating multi-level observation
data. Khakzad [58] developed a DBN model to characterize the dynamic behaviors of
the wildfire spread in wildland-industrial interfaces. Additionally, by decomposing an
entire system model into several smaller modules, the object-oriented BNs were built
up for large-scale, complex, and hierarchical systems [59–63].

To improve the modeling and inference efficiencies, various improved algorithms
were proposed for BNs and DBNs, such as the topology optimization algorithm [64],
dynamic discretization method [65], discretization of continuous random variables
[66], compression inference algorithm [67], and improved compression inference
algorithm [68].

3 Reliability Modeling by BNs

This section provides general procedures of constructing BN and DBN models for
various typical MSSs, e.g., series systems, parallel systems, series-parallel systems,
bridge systems, and phased-mission systems. Two kinds of failure dependencies among
components are also considered in the BN and DBN models.

3.1 BN Models of Typical MSSs

The states of the components, subsystems, and the entire system of an MSS at a
particular time are all inherently random variables. To characterize an MSS in the
framework of BNs, the components, subsystems, and the entire system of an MSS are
represented by nodes. For an MSS consisting of Mc components that can be divided
into Msub subsystems, a corresponding BN model of the system can be constructed
using a set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ; S1; S2; . . .; SMsub ; Sg. In
the BN model, nodes Cl (l 2 f1; 2; . . .;Mcg), Sm (m 2 f1;2; . . .;Msubg), and S corre-
spond to component l, subsystem m, and the entire system, respectively. Directed edges
that link different nodes are added based on the relations between the states of com-
ponents, subsystems, and the entire system. For an MSS with all the components being
s-independent, node Cl (l 2 f1; 2; . . .;Mcg) is a root node, whereas node S is a leaf
node. If subsystem m (or the entire system) is composed of components fl1; l2; . . .; lkg
and subsystems fm1; m2; . . .; mng, directed edges for nodes fCl1 ; Cl2 ; . . .; Clk ;
Sm1 ; Sm2 ; . . .; Smng to node Sm (or node S) are added into the BN model.

The CPTs and MPTs of the nodes quantifies the directed edges in a BN model. For
an MSS in which all the components are s-independent, the MPT of each root node Cl

is the state probability distribution of component l at a particular time. The CPTs of
each node Sm and leaf node S can be essentially obtained by the structure function of
subsystem m and the entire system, respectively.
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To provide the detailed procedures of constructing various BN models, several
typical MSSs, i.e., series systems, parallel systems, series-parallel systems, bridge
systems, and phased-mission systems, shown in Fig. 2, are used for illustration here-
inafter. For a better comparison of the BN models for different system types, the
components that constitute these systems are set to be the same. Each system is
composed of five s-independent components, and the performance capacities of each
component corresponding to its states are tabulated in Table 1.

3.1.1 BN Models of the Illustrative Series System
As all the five components are connected in series, two candidate BN models of the
illustrative series system, shown in Fig. 3, can be constructed. Although both two
candidate BN models are correct, candidate BN model 2 is superior to model 1 because

C1 C4C2 C3 C5

C4

C3

C5

C1

C2

(a) Series system (b) Parallel system

C4

C3

C1

C2 C5

C4

C3

C5

C1

C2

(c) Series-parallel system (d) Bridge system

Phase 1 Phase 2 Phase 3

C3

C1

C2

C4C1

C2 C5

C4

C3

C5

Time

(e) Phased-mission system

Fig. 2. Configurations of several typical MSSs

Table 1. Performance capacities of each component

Component no. State 1 State 2 State 3 State 4

1 7 3 0 –

2 8 4 0 –

3 11 8 3 0
4 7 3 0 –

5 8 4 0 –
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it has a simpler CPT for each child node than that of model 1. For candidate BN model
1, all the component nodes, i.e., nodes fC1;C2; . . .;C5g, are linked to the system node,
i.e., node S, directly; therefore, the CPT of node S is a Cartesian product of
Nc
1 � Nc

2 � . . . � Nc
5. For candidate BN model 2, three additional child nodes of the

component nodes, i.e., nodes S1, S2, and S3, are added, and they can avoid an oversize
CPT of the system node. The dimensions of the CPTs for nodes S1, S2, S3, and S in
model 2 are Nc

1 � Nc
2, N

c
3 � Ns

1, N
c
4 � Ns

2, and Nc
5 � Ns

3, respectively. In this regard,
candidate BN model 2 of the illustrative series system is preferable and will be used for
further analysis hereinafter. Interested readers can also find more details in [64] where a
topology optimization algorithm was proposed to address the inefficiency of a con-
verging BN structure.

For any multi-state series system consisting of n s-independent components
fCl1 ;Cl2 ; . . .;Clng, the system performance capacity at any time is determined by the
performance capacities of all the components and is equal to GðtÞ ¼ minfGc

l1ðtÞ;
Gc

l2ðtÞ; . . .; Gc
lnðtÞg. Therefore, the system state can be obtained based on the state

combinations of all the components. As an example, for the series system in Fig. 2, the
performance capacity of subsystem 1 at any time is completely determined by com-
ponents 1 and 2. The relations between the performance capacities (states) of sub-
system 1 and the corresponding state combinations of components 1 and 2 are given in
Table 2. As a result, the CPT of node S1 in the BN model of the series system, shown
in Table 3, can be obtained. Each element in Table 3 is a conditional probability of
node S1 conditional on a particular state combination of nodes C1 and C2. In a similar
manner, the CPTs of nodes S2, S3, and S can be obtained readily. The MPT of node Cl

(l 2 f1; 2; . . .; 5g) are essentially the state probability distributions of component l at a
particular time, and it can be obtained by Eq. (1).

C1 C3 C4 C5C2

S1

S2

S3

S

(a) Candidate BN model 1 (b) Candidate BN model 2

C1 C3 C4 C5C2

S

Fig. 3. Two candidate BN models of the series and parallel systems
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3.1.2 BN Models of the Illustrative Parallel System
For the illustrative parallel system that is composed of five s-independent components,
two candidate BN models, shown in Fig. 3, can also be constructed. It is worth noting
that the two DAGs of both the two candidate BN models for the illustrative series and
parallel system are exactly the same. Likewise, candidate BN model 2 of the illustrative
parallel system is preferable and will be used for further analysis hereinafter.

For any multi-state parallel system consisting of n s-independent components
fCl1 ;Cl2 ; . . .;Clng, the system performance capacity at any time is determined by the
performance capacities of all the components and is equal to GðtÞ ¼ Pn

k¼1 G
c
liðtÞ.

Therefore, the system state can be obtained based on the state combinations of all the
components. As an example, for the parallel system in Fig. 2, the performance capacity
of subsystem 1 at any time is completely determined by components 1 and 2. The
relations between the performance capacities (states) of subsystem 1 and the corre-
sponding state combinations of components 1 and 2 are given in Table 4. As a result,
the CPT of node S1 in the BN model of the parallel system, shown in Table 5, can be
obtained. It can be seen that the CPT of node S1 of the parallel system is different from
the CPT of node S1 of the series system. The CPTs of nodes S2, S3, and S can be
obtained readily in the same fashion.

Table 2. Performance capacities and states of subsystem 1 of the series system

Performance capacity State of subsystem 1 State of component 1 State of component 2

7 1 1 1
4 2 1 2
3 3 2 1

2 2
0 4 1, 2 3

3 1, 2, 3

Table 3. CPT of node S1 of the series system

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node S1 1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0
4 0 0 1 0 0 1 1 1 1

Table 4. Performance capacities and states of subsystem 1 of the parallel system

Performance capacity State of subsystem 1 State of component 1 State of component 2

15 1 1 1
11 2 1 2

2 1

(continued)
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3.1.3 BN Model of the Illustrative Series-Parallel System
Based on the system structure of the illustrative series-parallel system in Fig. 2, two
candidate BN models, shown in Fig. 4, can also be constructed. Although candidate
BN model 1 is intuitive, the CPTs of the child nodes in candidate BN model 2 are
simplified by adding a subsystem node, i.e., node S2 of candidate BN model 2.
Therefore, candidate BN model 2 of the illustrative series-parallel system is preferable
and will be used for further analysis hereinafter.

Corresponding to candidate BN model 2, subsystem 1 is composed of components
1 and 2 in parallel; subsystem 2 is composed of component 3 and subsystem 1 in series;
subsystem 3 is composed of components 4 and 5 in parallel; the entire system consists
of subsystems 2 and 3 in series. Consequently, the performance capacities of subsys-
tems 1, 2, and 3 at time t are computed as Gs

1ðtÞ ¼ Gc
1ðtÞþGc

2ðtÞ, Gs
2ðtÞ ¼ minfGc

3ðtÞ;
Gs

1ðtÞg, and Gs
3ðtÞ ¼ Gc

4ðtÞþGc
5ðtÞ, respectively; the performance capacity of the entire

system at time t is computed as GðtÞ ¼ minfGs
2ðtÞ;Gs

3ðtÞg. The similar analyses
implemented in Tables 3 and 5 can also be done herein to obtain the CPTs of nodes S1,
S2, S3, and S.

Table 4. (continued)

Performance capacity State of subsystem 1 State of component 1 State of component 2

8 3 3 1
7 4 1 3

2 2
4 5 3 2
3 6 2 3
0 7 3 3

Table 5. CPT of node S1 of the parallel system

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node S1 1 1 0 0 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0
4 0 0 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 0 1
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3.1.4 BN Model of the Illustrative Bridge System
The BN model of the illustrative bridge system can be constructed based on the minimal
success paths [42]. For the illustrative bridge system in Fig. 2, there exist four minimal
success paths, i.e., fC1;C4g, fC1;C3;C5g, fC2;C5g, and fC2;C3;C4g. Therefore, the
bridge system can be decomposed into two simplified sub-models, and the BN model of
the bridge system can be constructed as shown in Fig. 5. In the BN model, nodes S3 and
S6 represent sub-models 1 and 2, respectively; node S represents the entire bridge
system. The performance capacities of subsystems 1, 2, and 3 at time t can be computed
as Gs

1ðtÞ ¼ minfGc
3ðtÞ; Gc

5ðtÞg, Gs
2ðtÞ ¼ Gc

4ðtÞ þ Gs
1ðtÞ, and Gs

3ðtÞ ¼ minfGc
1ðtÞ;

Gs
2ðtÞg, respectively; the performance capacities of subsystems 4, 5, and 6 at time t can

be computed as Gs
4ðtÞ ¼ minfGc

3ðtÞ; Gc
4ðtÞg, Gs

5ðtÞ ¼ Gc
5ðtÞ þ Gs

4ðtÞ, and Gs
6ðtÞ ¼

minfGc
2ðtÞ; Gs

5ðtÞg, respectively; the performance capacity of the entire system at time t
can be computed as GðtÞ ¼ Gs

3ðtÞþGs
6ðtÞ. Consequently, the CPTs of all the child

nodes in the BN model can be obtained readily.

C1

C4C5

C2

C3
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S2
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S
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S6C4C3

C5

C2

C5C3

C4

C1

(b) BN model of the bridge system(a) Decomposition of the bridge system

Sub-model 1

Sub-model 2

Fig. 5. Decomposition and BN model of the bridge system

C1 C3 C4 C5C2

S1 S3

S

S2

C1 C3 C4 C5C2

S1 S2

S

(a) Candidate BN model 1 (b) Candidate BN model 2

Fig. 4. Candidate BN models of the series-parallel system
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3.1.5 BN Model of the Illustrative Phased-Mission Systems
The multi-state phased-mission system herein is intended to perform a mission with H
phases. The system may reconfigure in different phases to meet varying mission
demands, resulting in a distinct system structure in each phase. If a component is
suspended in a phase, the component is assumed to not deteriorate during the phase and
its state remains unchanged. The number of subsystems in phase h is denoted by Msub

h
(h 2 f1; 2; . . .;Hg); the numbers of the states of subsystem m and the entire system in
phase h are denoted by Nsub

m;h and Nsys
h , respectively. The performance capacities of

component l, subsystem m, and the entire system at time t in phase h are denoted by
Gc

l;hðtÞ, Gs
m;hðtÞ, and GhðtÞ, respectively. The states of component l, subsystem m, and

the entire system at time t in phase h are denoted by Cl;hðtÞ, Sm;hðtÞ, and ShðtÞ,
respectively. It should be noted that SmðtÞ hereinbefore denotes the state of subsystem
m at time t for a general MSS, whereas ShðtÞ herein represents the state of the entire
system at time t in phase h for a multi-state phased-mission system. The duration of
phase h is Th (h 2 f1; 2; . . .;Hg) times of the basic time interval.

The system survival at the end of a phase is not only determined by the system state
at the end of the phase, but also depends on whether the system can survive at the end
of the last phase. Therefore, a binary-state node, denoted as Dh (h 2 f1; 2; . . .;Hg), is
introduced herein to indicate whether the system can survive at the end of phase h. By
linking node Dh of adjacent phases by the directed edges, the probability of the system
surviving in each phase can be characterized. Let Dh ¼ 1 and Dh ¼ 2 denote the
system being in the functioning state and failure state at the end of phase h, respec-
tively. Therefore, the conditional probabilities of node Dh can be represented as
follows:

PrfDh ¼ 1jDh�1; Shg ¼ 1 Dh�1 ¼ 1 and Sh is acceptable
0 otherwise

�
; ð4Þ

PrfDh ¼ 2jDh�1; Shg ¼ 1 Dh�1 ¼ 2 or Sh is unacceptable
0 otherwise

�
: ð5Þ

A set of nodes, which is denoted as X ¼ fX1;X2; . . .;XHg, are used to construct
the BN model of a phased-mission system. Xh ¼ fC1;h; C2;h; . . .; CMc;h; S1;h;
S2;h; . . .; SMsub;h; Sh; Dhg (h 2 f1; 2; . . .;Hg) is the set of nodes in phase h, where
nodes Cl;h ðl 2 f1; 2; . . .; McgÞ; Sm;hðm 2 f1; 2; . . .; Msub

h gÞ; and Sh correspond
to component l, subsystem m, and the entire system in phase h, respectively. In each
phase, a local BN model can be constructed first based on the corresponding system
structure. Directed edges are then added between component nodes across different
phases to characterize the relations between different phases. The BN model of the
illustrative phased-mission system in Fig. 2 can be constructed as shown in Fig. 6. The
local BN model of phase h characterizes the phased-mission system at the end of phase
h. In phase 1, components 1, 2, and 3 are in operation, whereas components 4 and 5 are
suspended. The performance capacities of subsystem 1 and the entire system at time t
in phase 1 are denoted as Gs

1;1ðtÞ ¼ Gc
1;1ðtÞþGc

2;1ðtÞ and G1ðtÞ ¼ minfGc
3;1ðtÞ;

Gs
1;1ðtÞg, respectively. Likewise, the performance capacities of the subsystem(s) and the
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entire system in phases 2 and 3 can be obtained. Consequently, the CPTs of all the
subsystem nodes and the system nodes in the BN model can be obtained readily.

If a component node in a phase is a root node, the MPT of the component node in
the phase is essentially the state probability distribution of the corresponding compo-
nent at a particular time. Nevertheless, if a component node in a phase is a child node,
the CPT of the component node in the phase is essentially the state transition matrix of
the corresponding component. As an example, for the BN model of the illustrative
phased-mission system in Fig. 6, the CPTs of nodes C1;2 and C2;2 are the T2-step state
transition matrix of components 1 and 2, respectively; the CPTs of nodes C4;3 and C5;3

are the T3-step state transition matrix of components 4 and 5, respectively; the CPT of
node C3;3 is the T3-step state transition matrix of component 3.

3.2 DBN Models of Typical MSSs

The BN models in Sect. 3.2 are all static models that can only represent an MSS at a
particular time. The DBN model of an MSS can characterize the degradation process of
the MSS during the operation period. By using a time slice to represent an MSS at a
particular time, the DBN model of the MSS is inherently a discrete-time model. In a
DBN model, all the time slices are the repetitive BN models of an MSS at a particular
time. The time interval between two adjacent time slices is a basic time interval, i.e., Dt.
Suppose that the operation period is T � Dt, the number of time slices is thus equal to
T þ 1. Time slice t (t 2 f0; 1; . . .; Tg) represents the local BN model at time t. A set of
nodes, denoted as X ¼ fXð0Þ; Xð1Þ; . . .; XðTÞg, are used to construct the DBN
model of an MSS. XðtÞ ¼ fC1ðtÞ; C2ðtÞ; . . .; CMcðtÞ; S1ðtÞ; S2ðtÞ; . . .; SMsubðtÞ;
SðtÞg is the set of nodes in time slice t, where ClðtÞ ðl 2 f1; 2; . . .; McgÞ;
SmðtÞ ðm 2 f1; 2; . . .; MsubgÞ; and SðtÞ correspond to component l, subsystem m,
and the entire system at time t, respectively. The MPT of node Clð0Þ is the state
probability distribution of component l at the beginning of use.

A temporal link from node ClðtÞ ðl 2 f1; 2; . . .; Mcg; t 2 f0; 1; . . .; T � 1gÞ
to node Clðtþ 1Þ is added to connect the two component nodes between two adjacent
time slices, and it characterizes the degradation profiles of component l within a basic
time interval. The strength of the temporal link from node ClðtÞ to node Clðtþ 1Þ is

C1,1 C3,1C2,1

S1,1

S1

D1

C1,2 C4,2 C5,2C2,2

S1,2 S2,2

S2

D2

C3,3 C4,3 C5,3

S1,3

S3

D3

Phase 1 Phase 2 Phase 3

Fig. 6. BN model of the phased-mission system
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quantified by the CPT of node Clðtþ 1Þ which is equivalent to the state transition
matrix of component l. The illustrative systems in Fig. 2 are used herein to provide
detailed procedures of constructing the DBN models of various systems.

The DBN models of the illustrative series system in an extended form and an
abstract form are shown in Fig. 7. In the extended form of the DBN model, all the time
slices from time slice 0 to time slice T are displayed. In the abstract form of the DBN
model, only a particular time slice, i.e., time slice t, is displayed. The number attached
to each temporal link, i.e., “1”, represents the number of time slices used for the
temporal dependency. The number in the square box, i.e., T þ 1, represents the total
number of time slices in the DBN model. The DBN models of the illustrative parallel
system in an extended form and an abstract form are also shown in Fig. 7. As discussed
in Sect. 3.1, although the DAGs of the DBN models for the series and parallel systems
are identical, the CPTs of the subsystem nodes and system nodes, i.e., nodes
SmðtÞ ðm 2 f1; 2; . . .; Msubg; t 2 f0; 1; . . .; TgÞ and SðtÞ ðt 2 f0; 1; . . .; TgÞ
are distinct. In a similar manner, the abstract forms of the DBN models of the illus-
trative series-parallel and bridge systems are shown in Fig. 8.

…
…

…
…

…

…
…

…
…

…

C1(t) C3(t) C4(t) C5(t)C2(t)

S1(t)

S2(t)

S3(t)

S(t)

1 11 1 1

(a) Extended form

(b) Abstract form

T+1

Fig. 7. DBN models of the series and parallel systems
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For a phased-mission system, a set of nodes, denoted as X ¼ fX1; X2; . . .; XHg;
are used to construct the DBN model, where X1 ¼ fX1ð0Þ; X1ð1Þ; . . .; X1ðT1Þg and
Xh ¼ fX1ð

Ph�1
k¼1 Tk þ 1Þ; Xhð

Ph�1
k¼1 Tk þ 2Þ; . . .; Xhð

Ph
k¼1 TkÞg ðh 2 f2; 3; . . .;

HgÞ represent the local DBN models of the system in phase 1 and phase h, respectively.
XhðtÞ ¼ fC1;hðtÞ; C2;hðtÞ; . . .; CMc;hðtÞ; S1;hðtÞ; S2;hðtÞ; . . .; SMsub;hðtÞ; ShðtÞ; DhðtÞg
ðh 2 f1; 2; . . .; HgÞ represents time slice t in phase h, where Cl;hðtÞ ðl 2 f1; 2;
. . .;McgÞ, Sm;hðtÞ ðm 2 f1; 2; . . .; Msub

h gÞ; ShðtÞ, and DhðtÞ correspond to component
l, subsystem m, the entire system, and system survival at time t in phase h, respectively. t
is elapse time from the beginning of use.

The DBN model of the illustrative phased-mission system is shown in Fig. 9. In
each phase, a local DBN model is constructed to characterize the degradation process
of the system in the phase. T1 þ 1, T2, and T3 time slices are repeated in phases 1, 2,
and 3, respectively. Particularly, the adjacent time slices at the end of phase h
(h 2 f1; 2g) and the beginning of phase hþ 1 are depicted to shown the detailed
temporal dependencies between the two adjacent phases. As components 1 and 2 are in
operation in both phases 1 and 2, in time slices T1 þ 1 and T1 þ 2, only two temporal
links are added to the corresponding component nodes, i.e., the directed edge from
node Cl;1ðT1 þ 1Þ to node Cl;2ðT1 þ 2Þ (l 2 f1; 2g). Likewise, as components 4 and 5
are in operation in both phases 2 and 3, in time slices T1 þ T2 þ 1 and T1 þ T2 þ 2, only
two temporal links are added to the corresponding component nodes, i.e., the directed
edge from node Cl;2ðT1 þ T2 þ 1Þ to node Cl;3ðT1 þ T2 þ 2Þ (l 2 f4; 5g). As compo-
nents 4 and 5 are suspended in phase 1, the state probability distributions of nodes
C4;2ðT1 þ 2Þ and C5;2ðT1 þ 2Þ are actually the corresponding state probability distri-
butions of components 4 and 5 at the beginning of use, respectively. Nevertheless, as
component 3 is in operation in phases 1 and 3 and in idle in phase 2, the state
probability distribution of node C3;3ðT1 þ T2 þ 2Þ is equal to the state probability
distribution of node C3;1ðT1 þ 1Þ.

C1(t) C3(t) C4(t) C5(t)C2(t)

S1(t) S3(t)

S(t)

S2(t)
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(a) Series-parallel system
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(b) Bridge system

T+1
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Fig. 8. DBN models of the series-parallel and bridge systems

214 T. Jiang et al.



3.3 Failure Dependencies in BN and DBN Models

The components in the BN and DBN models presented in Sects. 3.1 and 3.2 are
assumed to be s-independent. Nevertheless, in real-world situations, the failure pro-
cesses of the components may be inevitably s-dependent. BNs are a powerful tool to
cope with various dependencies and can be utilized to model failure dependencies
between components during their degradation processes. Two typical failure depen-
dencies,.i.e., CCFs [44, 69–72] and immediate failure dependence (IFD) [73, 74], are
considered in the illustrative series-parallel system herein.

CCFs are the failures of multiple dependent components within a system because of
a share root cause or a common cause (CC) [69, 71], such as extreme environmental
conditions or human errors. The presence of CCFs tends to increase the joint failure
probability of a system, contributing significantly to the overall unreliability of systems
subject to CCFs. Therefore, it is crucial to incorporate CC effects into the reliability
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Fig. 9. DBN model of the phased-mission system
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modeling and assessment of systems subject to CCFs to avoid overestimation of system
reliability measures.

An MSS can be subject to CCFs because of various elementary CCs. CCs are
exclusive mutually and are external to the system. In general, CCs existing in an MSS
can be denoted as fCC1; CC2; . . .; CCnCCg, where nCC represents the number of
elementary CCs. Therefore, a set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ;
S1; S2; . . .; SMsub ; S; CC1; CC2; . . .; CCnCC ; U1; U2; . . .; UMcg, can be used to
construct the BN model of an MSS with CCFs. Node Cl (l 2 f1; 2; . . .;Mcg) denotes
the state probability distribution of component l caused by its own degradation,
whereas node Ul denotes state probability distribution of component l incorporating the
effects of CCs. Node Ul can be a null node if component l is not affected by any CCs.
Node CCk (k 2 f1; 2; . . .; nCCg) has two states, i.e., CCk 2 f1; 2g. States 1 and 2 of
node CCk represent the non-occurrence and occurrence the k th CC, respectively. The
inter-arrival time of the k th CC is assumed to be exponentially distributed with
parameter kCCk . If component l is affected by n CCs fCCk1 ;CCk2 ; . . .;CCkng, the con-
ditional probabilities of node Ul can be represented as follows:

PrfUl ¼ Nc
l jCl;CCk1 ;CCk2 ; . . .;CCkng ¼ 1 Cl ¼ Nc

l or 9CCkj ¼ 2
0 Cl 6¼ Nc

l and 8CCkj ¼ 1

�
; ð6Þ

PrfUl ¼ ijCl;CCk1 ;CCk2 ; . . .;CCkng ¼ 1 Cl ¼ i and 8CCkj ¼ 1
0 Cl 6¼ i or 9CCkj ¼ 2

�
; i 6¼ Nc

l : ð7Þ

In the DBN model with CCFs, the temporal links are added to the CC nodes to
characterize the occurrence of the CCs. The marginal probabilities of node CCkð0Þ in
time slice 0 can be denoted as PrfCCkð0Þ ¼ 1g ¼ 1 and PrfCCkð0Þ ¼ 2g ¼ 0. Due to
the memoryless of the exponential distribution, the conditional probabilities of node
CCkðtÞ (t 2 f1; 2; . . .;Tg) can be represented as follows:

PrfCCkðtÞ ¼ 1jCCkðt � 1Þg ¼ 1� expð�kCCk � DtÞ; ð8Þ

PrfCCkðtÞ ¼ 2jCCkðt � 1Þg ¼ expð�kCCk � DtÞ: ð9Þ

In addition, if component l is not affected by CCs, a temporal link will be added to
node ClðtÞ from time slice t � 1 (t 2 f1; 2; . . .;Tg) to time slice t. On the contrary, if
component l is affected by CCs, a temporal link will be added from node Ulðt �
1Þ ðt 2 f1; 2; . . .; TgÞ to node ClðtÞ as Ulðt � 1Þ represents the actual condition of
component l.

The illustrative series-parallel system in Fig. 2 is used herein for further analysis.
Suppose that two CCs exist in the system; CC1 affects components 1 and 2; CC2 affects
components 4 and 5. Consequently, the BN and DBN models of the illustrative series-
parallel system with CCFs are shown in Fig. 10. In the BN model, node U3 is omitted
since component 3 is not affected by any CCs. As an example, based on Eqs. (6) and
(7), the CPT of U1 is tabulated in Table 6. Two time slices of the DBN model are
shown in Fig. 11 to present the details of the temporal links between the CC nodes and
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component nodes. In the DBN model, the CPT of node ClðtÞ ðt 2 f1; 2; . . .; TgÞ is
always the one-step transition matrix of component l regardless of the parent node of
node ClðtÞ. Furthermore, the BN and DBN models with CCFs can be extended to more
generalized cases, such as probabilistic CCFs [71, 72] and the case in which a CC can
manifest multiple states [43].

IFD is common in real-world situations, and it refers to that the failure a component
(influencing component) may cause immediate failures of some other components
(affected components) [73, 74]. For instance, the failure of an electrical component
creates a voltage spike that immediately triggers the failures of the neighboring
components.

A set of nodes, denoted as X ¼ fC1; C2; . . .; CMc ; S1; S2; . . .; SMsub ; S; U1;
U2; . . .; UMcg, can be used to construct the BN model of an MSS with IFD. Node Cl

(l 2 f1; 2; . . .;Mcg) denotes the state probability distribution of component l caused by
its own degradation, whereas node Ul denotes state probability distribution of com-
ponent l incorporating the effects of IFD. Likewise, node Ul can be a null node if
component l is not affected by other components. Suppose that an immediate failure of
affected component l occurs with probability pIFl if component l is not failed and one of
its influencing components fails. If the failure of any of n components
fCk1 ;Ck2 ; . . .;Ckng can cause the failure of component l, the conditional probability of
node Ul can be represented as follows:

CC2

U1

C3

U4 U5U2

S1 S3

S

S2

C1 C4 C5C2CC1

(a) BN model with CCFs (b) DBN model with CCFs

T+1

11 1

U1(t) U4(t) U5(t)U2(t)

S1(t) S3(t)

S(t)

S2(t)

C1(t) C5(t)C2(t)CC1(t) CC2(t)C3(t) C4(t)

1 11

1

Fig. 10. BN and DBN models of the series-parallel system with CCFs

Table 6. CPT of node U1 in the BN model with CCFs

State of node CC1 1 2

State of node C1 1 2 3 1 2 3

State of node U1 1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 1 1 1
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PrfUl ¼ Nc
l jCl;Ck1 ;Ck2 ; . . .;Ckng ¼

1 Cl ¼ Nc
l

pIFl Cl 6¼ Nc
l and 9Ckj ¼ Nc

l ;
0 Cl 6¼ Nc

l and 8Ckj 6¼ Nc
l

8<
: ð10Þ

PrfUl ¼ ijCl;Ck1 ;Ck2 ; . . .;Ckng ¼
1 Cl ¼ i and 8Ckj 6¼ Nc

l
1� pIFl Cl ¼ i and 9Ckj ¼ Nc

l
0 Cl 6¼ i

8<
: ; i 6¼ Nc

l : ð11Þ

In the DBN model with IFD, if component l is not affected by other components, a
temporal link will be added to node ClðtÞ from time slice t � 1 (t 2 f1; 2; . . .;Tg) to
time slice t. On the contrary, if the failure of any of n components fCk1 ;Ck2 ; . . .;Ckng
can cause the failure of component l, a temporal link will be added from node Ulðt �
1Þ ðt 2 f1; 2; . . .; TgÞ to node ClðtÞ since Ulðt � 1Þ represents the actual condition
of component l.

The illustrative series-parallel system in Fig. 2 is used herein for further analysis.
Suppose that the failure of component 1 can cause an immediate failure of component
2; the failure of component 4 can also lead to a failure of component 5 immediately.
Consequently, the BN and DBN models of the illustrative series-parallel system with
IFD are shown in Fig. 12. In the BN model, nodes U1, U3, and U4 are omitted. As an
example, based on Eqs. (10) and (11), the CPT of node U2 is tabulated in Table 7.
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Fig. 11. Two time slices of the DBN model with CCFs
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4 Reliability Assessment by DBNs

In this section, system reliability of the preceding MSSs can be assessed based on DBN
models. If no evidence is inserted, the state probability distribution of the entire system
at any time can be obtained by marginalizing the system node in the corresponding
time slice. If some nodes are instantiated, the state probability distribution of the system
node in any time slice can be updated by BN inference algorithms. Subsequently, by
defining the acceptable states of an MSS, the reliability of the entire system can be
estimated for any time instant.

4.1 BN Inference

Let the node set X ¼ fXð0Þ; Xð1Þ; . . .; XðTÞg denote the DBN model of an MSS,
whereXðtÞ ¼ fC1ðtÞ; C2ðtÞ; . . .; CMcðtÞ; S1ðtÞ; S2ðtÞ; . . .; SMsubðtÞ; SðtÞg. The joint
probability of the DBN model can be expressed as:

C3 U5U2

S1 S3

S

S2

C1 C4

C5C2

(a) BN model with IFD

S1(t) S3(t)

S(t)

S2(t)

(b) DBN model with IFD

T+1

C3(t) U5(t)U2(t)C1(t) C4(t)

C5(t)C2(t)

1 1 1
1 1

Fig. 12. BN and DBN models of the series-parallel system with IFD

Table 7. CPT of node U2 in the BN model with IFD

State of node C1 1 2 3

State of node C2 1 2 3 1 2 3 1 2 3

State of node U2 1 1 0 0 1 0 0 1� pIF2 0 0

2 0 1 0 0 1 0 0 1� pIF2 0

3 0 0 1 0 0 1 pIF2 pIF2 1
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PrðXÞ ¼ Pr
[T
t¼0

[Mc

l¼1

ClðtÞ;
[Msub

m¼1

SmðtÞ; SðtÞ
" #( )

¼
Y

QMc

l¼1
PrfClð0Þg

QT
t¼1

PrfClðtÞjClðt � 1Þg component nodes

QMsub

m¼1

QT
t¼0

PrfSmðtÞjpaðSmðtÞÞg subsystem nodes

QT
t¼0

PrfSðtÞjpaðSðtÞÞg system nodes

8>>>>>>>><
>>>>>>>>:

: ð12Þ

The state probability distribution of the entire system at time t can be obtained by
marginalizing node SðtÞ, which is represented as [18]:

PrfSðtÞg ¼
X

XnSðtÞ PrfXg: ð13Þ

During the operation period, the states of some components, subsystems, and the
entire system can be observed by conducting condition monitoring periodically or non-
periodically. If a component, subsystem, or the entire system is observed in a particular
state at a particular time, the corresponding node in the DBN model of the system is
instantiated with the observed state. Suppose that ne nodes in a DBN model are
instantiated, the evidence of a DBN model is denoted as e ¼ feX1 ; eX2 ; . . .; eXneg, where
eXi (i 2 f1; 2; . . .; neg) denotes the evidence of node Xi, i.e., the observed state of a
component, subsystem, or the entire system at a particular time. Consequently, when
evidence e is inputted into a DBN model, on the basis of the Bayes formula, the
posterior probability distribution of the system state at time t can be obtained by
marginalizing node SðtÞ, and it is represented as follows [18]:

PrfSðtÞjeg ¼
P

XnSðtÞ PrfX; eg
Prfeg ; ð14Þ

where Prfeg is the prior probability of evidence e. Prfeg can be calculated by
marginalizing the instantiated nodes, i.e., nodes fX1;X2; . . .;Xneg, which is represented
as follows [18]:

Prfeg ¼
X

XnfX1;X2;...;Xneg PrfX; eg: ð15Þ

Equations (13)–(15) can be calculated by various BN inference algorithms, such as
variable elimination algorithm and junction tree algorithm. The details involved in the
BN inference algorithms can be found in the books by Jensen and Nielsen [18], and
Koller and Friedman [21]. Consequently, the state probability distribution of the entire
system at time t can be evaluated by Eq. (13).
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4.2 Reliability Assessment by Aggregating Multi-level Observation Data

The degradation processes of the components, subsystems, and the entire system of an
MSS can be inspected by collecting condition monitoring data from sensors that are
mounted at various physical levels of the system (component level, subsystem level,
and system level). Observation data can be collected from multiple levels of an MSS
simultaneously or asynchronously during the operation stage [7, 19, 75–77]. If an
inspection is conducted at a particular time, the state probability distribution and
reliability of an MSS can be updated by aggregating multi-level observation data.
Moreover, if inspections are conducted chronologically during the operation period, the
state probability distribution and reliability of an MSS can be updated dynamically. An
evidence in the DBN model of an MSS is essentially the collected multi-level obser-
vation data. Therefore, the state probability distribution and reliability of an MSS can
be updated using Eq. (14) once an evidence is inserted into the DBN model of the
MSS. More details involved in updating system reliability dynamically by observation
data during the operation period can be referred to [77–79]. The illustrative systems in
Fig. 2 are used herein for further analysis.

For each of the five systems in Fig. 2, i.e., the series system, parallel system, series-
parallel system, bridge system, and phased-mission system, the system is considered as
reliable if the performance capacity of the entire system is not less than a user demand.
The user demand of the five systems are set to be 3. The one-step state transition
matrixes of all the components are given as follows:

P1 ¼
0:9185 0:0564 0:0251

0 0:9608 0:0392
0 0 1

2
4

3
5; P2 ¼

0:9231 0:0474 0:0295
0 0:9734 0:0266
0 0 1

2
4

3
5;

P4 ¼
0:9579 0:0290 0:0131

0 0:9724 0:0276
0 0 1

2
4

3
5; P5 ¼

0:9550 0:0308 0:0142
0 0:9704 0:0296
0 0 1

2
4

3
5;

P3 ¼
0:9465 0:0286 0:0149 0:0100

0 0:9589 0:0281 0:0130
0 0 0:9802 0:0198
0 0 0 1

2
664

3
775:

The duration of the operation period is set at T ¼ 50 units of time. For the phased-
mission system, the durations of the three phases are set at T1 ¼ 12 units of time,
T2 ¼ 18 units of time, and T3 ¼ 20 units of time. Consequently, for the series, parallel,
series-parallel, and bridge systems, system reliabilities at time t, denoted as RðtÞ, are
shown in Fig. 13; for the phased-mission system, system reliability at time t is shown
in Fig. 14.
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When one or more inspections are conducted chronologically, the system reliability
of an MSS will be updated dynamically. The system-level or multi-level observation
data of the five systems collected at two different time instants, i.e., t1 ¼ 8 units of time
and t2 ¼ 20 units of time, are listed in Table 8. As a result, for each of the five systems,
system reliability can be updated dynamically at the two inspection time instants. The
updated system reliabilities of the series, parallel, series-parallel, and bridge systems
are shown in Fig. 13. The updated system reliabilities of the phased-mission system are
shown in Fig. 14.
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Fig. 13. Original and updated system reliabilities of the four systems
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5 Conclusions and Discussions

In this chapter, a holistic framework for MSS reliability modeling and assessment based
on BNs and DBNs is presented. The basic characteristics of MSSs and BNs are pre-
sented. The detailed procedures of constructing the BN and DBN models of various
MSSs are provided. The results show that BNs and DBNs can effectively represent and
characterize dependency among components in MSSs. A reliability assessment
approach by aggregating multi-level observation data is developed, which can update
the system reliability dynamically once an additional inspection is conducted. The
reliability modeling and assessment results of five typical MSSs show that BNs and
DBNs are effective considerably in terms of modeling and assessing reliability of MSSs.

A crucial premise in this chapter is that the degradation process of each component
in an MSS is characterized by a homogenous Markov process. Nevertheless, in real-
world situations, the degradation process of a component may follow a non-
homogenous Markov process or semi-Markov process. Under such a circumstance, one
can calculate the transition probability matrix of a non-homogenous Markov process or
semi-Markov process between any two time instants [12, 13, 80]. By setting the

0 8 10 12 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time

R
el

ia
bi

li
ty

P hase 1 P hase 2 P hase 3

y

R(t) in Phase 1 
R(t) in Phase 1 R(t) in Phase 2

01020304050
Time

R R(t) in Phase 2 after t2=20
01020304050

00.20.40.6

el
ia

b

R(t) in Phase 3 after t1=8

R(t) in Phase 3 after t2=20

R(t) in Phase 3

after t1=8
0 60.81bi

li
ty R(t) in Phase 2 after t1=8

Fig. 14. Original and updated system reliabilities of the phased-mission system

Table 8. Multi-level observation data

Systems Observations
t1 ¼ 8 t2 ¼ 20

Series Sð8Þ ¼ 1 Sð20Þ ¼ 2, C1ð20Þ ¼ 1
Parallel Sð8Þ ¼ 3 Sð20Þ ¼ 16, S2ð20Þ ¼ 6
Series-parallel Sð8Þ ¼ 2, S1ð8Þ ¼ 2 Sð20Þ ¼ 4, C4ð20Þ ¼ 2
Bridge Sð8Þ ¼ 1, C3ð8Þ ¼ 2 Sð20Þ ¼ 5, C3ð20Þ ¼ 3, C4ð20Þ ¼ 2
Phased-mission S1ð8Þ ¼ 1, S1;1ð8Þ ¼ 2 S2ð20Þ ¼ 3, S1;2ð20Þ ¼ 3, C4;2ð20Þ ¼ 2
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transition probability matrix as the corresponding CPT between two time slices, the
proposed DBN models can be further extended to the non-homogenous Markov or
semi-Markov case. Additionally, the CPTs of subsystem and system nodes in this
chapter are all assumed to be deterministic. It is noted that probabilistic CPTs of
subsystem and system nodes correspond to a generalized BN model which can reflect
imperfect knowledge of system behaviors [28, 81].
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Abstract. Accelerated Degradation Test (ADT) provides effective
information for reliability assessment of performance characteristic of
long-life and high-reliability products. Existing typical models and anal-
ysis usually assume that the products under test are of high consistency
level during the manufacturing process, which implies that the individ-
ual differences of the initial performance of the products can be ignored.
However, this may not be the case, and the initial performance of the test
units may have great impact on the subsequent degradation rate. Both
positively related and negatively related are possible. This phenomenon
can be observed in many different examples, such as the performance of
inkjet printer heads. It means that reliability-related information can be
obtained before accelerated degradation test. The study considers the
impact of initial performance on the reliability assessment. Based on the
existing typical accelerated degradation test model and analysis process,
this paper introduces the initial information of the products to carry out
reliability assessment and test plan. The asymptotic variance of a lifetime
quantile at normal use conditions is considered to obtain the optimum
test plan. Results show that the initial performance of the test units can
be made use of to improve the accuracy of estimators. The impact of
fisher information has been taken into account.

Keywords: Accelerated degradation test · Reliability assessment ·
Random initial degradation · Fisher information · Asymptotic
variance · Test plan

1 Introduction

With the development of science and technology, the reliability of industrial
products is getting higher and higher, and the requirement for the high qual-
ity of components and systems is also increasing. The reliability of products
with long lifetime need to be evaluated in advance. There are usually very few
failure data in a limited amount of time for test. This is a challenge to the
traditional statistical inference method based on life test. On the other hand,
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the development of technology also enables us to monitor the failure modes or
key performance parameters of products. Such degradation information provides
abundant information for the reliability evaluation of highly reliable products.
By applying additional stress to the products, the degradation process can usu-
ally be accelerated, so that more degradation and failure data can be observed
within the same length of test duration, and the performance of the product can
be more fully understood. Degradation modelling has been applied for many
years in various fields such as electronics, materials and so on. Meeker and
Escobar [8] introduces the general methods of modelling, analysis and test plan
of degradation data. Wu and Shao [13] use the mixed effect model to fit the
degradation data. The least square method is used to estimate the parameters.
The reliability of test units has also been evaluated. Weaver et al. [11] considers
a linear random effect model in which the degradation rate of products follows
the normal distribution. In addition to the general path model, the stochastic
process model can be used to fit the degraded data, such as the Gauss process
model [12] as well as the inverse Gauss process model [10].

By carefully planning the stress level, sample allocation and measuring time
point of accelerated degradation test, the obtained data can be more efficient in
statistical inference of product reliability, which can also reduce testing costs.
Sheng-Tsaing and Hong-Fwu [9] propose a criterion for determining the ter-
mination time of the test. Yu and Tseng [15] introduce cost function and get
the test plan by minimizing the cost function. Marseguerra et al. [7] present a
multi-objective genetic algorithm for solving the optimal degradation test plan.
In Weaver et al. [11], experimental design is also concerned with minimizing
the asymptotic variance of the statistics of interest. In many practical applica-
tions, the degradation of test units does not start from zero. There are differ-
ences among individuals, such as the examples of disk error units in Meeker and
Escobar [8]. The initial difference may further affect the subsequent degrada-
tion rate. Lu et al. [6] assume that the initial state and degradation rate follow
the multivariate normal distribution, which is also the model to be used in this
paper. This correlation may have some effects on the statistical inference pro-
cess. But he did not focus on the impact of random initial degradation status.
Li [4] first use the method of functional analysis to consider the related prob-
lems. The existence of optimal test plan in some given probability space has been
proof. The corresponding iterated numerical optimization algorithm is also pro-
posed, despite the convergence of the algorithm. Ye et al. [14] make a theoretical
study of the initial degradation and carried out numerical simulation from the
statistical perspectives.

In this paper, the random initial status has been taken into account in the
modelling and analysis of accelerated degradation test, and the effects on reli-
ability evaluation accuracy and test scheme design are studied. The degraded
model is briefly introduced and the inference process is given. By analysing and
comparing a group of real data, this study demonstrates the effect of initial sta-
tus on degradation and its effect on product evaluation, and verifies the results of
optimal design of test scheme considering initial goodness by simulation analysis.
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2 Modelling and Inference

The acceleration model considered in this paper contains only one stress variable.
The degradation data are positive and have a positive degradation rate. The
degradation rate is faster at high stress level and the initial state is negatively
correlated with the degradation rate. In the traditional test plan of accelerated
degradation test, samples are randomly allocated to different stress levels, which
we call random allocation. Here we consider a new allocation scheme, because
we have the initial degradation information of the test units, that is, when t = 0,
the degradation data of the test units is denoted as X. We assign the samples
to the stress levels from high to low based on the order of initial states. We
call this scheme as strategic allocation. The basic idea is as follows. Assuming
that there are n samples, Xi is the i-th order statistic of the initial degradation,
there are two stress levels in the test. The first nL samples with better initial
state, i.e. the first nL samples, are allocated to the lower stress level sL, and
the remaining samples are allocated to the higher stress level sH . Because of the
negative correlation between the initial state and the degradation rate, samples
with better initial state may degrade much faster, so even at low stress levels,
they will provide more information of failure and performance, which is more
conducive to the inference of reliability than that in random allocation. This idea
is quite intuitive. Li [4] has proved that the intuitive allocation plan will actually
improve the accuracy of estimation with functional theory. Though it is not an
optimal plan as a whole, the plan can be easily calculated and implemented.

2.1 Model of ADT

For sample i, we record the stress level as si, the measurement time point ti =
(ti1, · · · , timi

)′, where mi is the number of measurements besides the initial state
of sample i, and the corresponding measurement data as Y i = (Yi1, · · · , Yimi

)′.
Thus, all the data collected are D = {(Xi, si, ti,Y i) |i = 1, 2, · · · , n}. A random
effect model is used in this paper to analyse the degradation data. This model
was firstly introduced by Lu et al. [6]. For test units with stress level s, the
degradation level at time t is measured

Y (t, s) = D(t, s) + ε = b0 + b1 exp (γs)t + ε (1)

where b0 is the initial degradation performance, b1 is the slope, indicating the
degradation rate in normal use condition, γ is the model parameter which is
used to fit the effect of stress level on the degradation rate, and ε ∼ N

(
0, σ2

ε

)
is

the measurement error. In order to consider the initial quality difference among
test units and its effect on degradation rate, it is assumed that (b0, b1) follows
normal distribution

(
b0
b1

)
∼ N

((
α0

α1

)
,

(
σ2
0 σ01

σ01 σ2
0

))

the correlation coefficient ρ = σ01/(σ0σ1) may be positive or negative.
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In order to simplify the calculation process, we can always conduct a mono-
tone transformation on the stress level. Assume s0 to be the normal use level of
the test unit and sH be the maximum stress level applicable to model (1). The
following transformation is used to normalize the stress level

s =
ψ(s̃) − ψ(s̃0)

ψ(s̃H) − ψ(s̃0)
(2)

where ψ(·) is a monotone function and s̃ means the stress level before normal-
ization whereas s means the normalized stress level. Particularly, ψ(s̃) = 1/s̃
in the Arrhenius model and ψ(s̃) = ln(s̃) in the power law model. After the
normalization, all the stress levels involved in the tests are compressed into the
interval [0, 1], and the normal use level becomes 0.

2.2 Parameter Estimation

Model (1) is a random effect model. We use the maximum likelihood estimation
method to estimate the parameters of the model. In the process, we derive the
Fisher information matrix for subsequent estimation of variance. The degrada-
tion level of the initial measurement is X = b0 + ε ∼ N(α0, σ

2
0 + σ2

ε). All the
measurements (Xi,Y i)′ of sample i also follows the multivariate normal distri-
bution

(
Xi

Y i

)
∼ N (μi,Σi)

where μi = Zizi

(
α0

α1

)
Σi = Zizi

(
σ2
0 σ01

σ01 σ2
0

)
ziZ

′
i, and Imi

represents the

identity matrix with order mi

Zi =
(

1 1 · · · 1
0 ti1 · · · timi

)
,zi =

(
1 0
0 exp(γsi)

)
(3)

Let θ = (α0, α1, γ, σ2
0 , σ

2
1 , σ

2
ε , σ01)′ be all the parameters involved in the model.

We only need to solve the likelihood equation to get the estimator θ̂. The loga-
rithm of likelihood function is

l(θ|D) = −1
2

n∑

i=1

ln det(Σi) − 1
2

n∑

i=1

((
Xi

Y i

)
− μi

)′
Σ−1

i

((
Xi

Y i

)
− μi

)
(4)

where det(·) represents the function to calculate determinant. This likelihood
equation contains a non-linear exponential function. The analytic expression
of parameter estimation θ̂ cannot be obtained by solving the equation. The
likelihood equation can be solved by numerical method. The Fisher information
matrix is I(θ) = E

(−∂2l(θ)/∂θ∂θ′). The solving process is a bit complicated.
Formula (16) in Klein et al. [3] gives the result directly. I(θ) = Ĩ + I, Ĩ is
an additional positive semidefinite matrix which can be seen as the additional
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information from the initial degradation level of the test units. Li [4] derives the
formula of the information matrix

Ĩ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n
σ2
0+σ2

ε
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 n

2(σ2
0+σ2

ε)
2 0 n

2(σ2
0+σ2

ε)
2 0

0 0 0 0 0 0 0
0 0 0 n

2(σ2
0+σ2

ε)
2 0 n

2(σ2
0+σ2

ε)
2 0

0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

while I represents the information provided by the degradation process. The
(k, l)-th entry of the matrix I is

Iθ (k, l) =
1
2

n∑

i=1

tr
(

Σ−1
i

∂Σi

∂θk
Σ−1

i

∂Σi

∂θl

)
+

n∑

i=1

E
(

∂μ′
i

∂θk
Σ−1

i

∂μi

∂θl

)
(6)

where ∂/∂θl denotes the partial derivative of the l-th parameter, tr(·) solves
the trace of square matrix. For any given function g(θ), the MLE of g(θ) is
g(θ̂ML) by the continuity of maximum likelihood estimation. Then, according
to the asymptotic normality of MLE and Delta method, the asymptotic variance
of g(θ̂ML) is obtained

Avar
(
g(θ̂ML)

)
= ∇g(θ̂ML)′Avar

(
θ̂ML

)
∇g(θ̂ML)

= ∇g(θ̂ML)′
[
I(θ̂ML)

]−1

∇g(θ̂ML)
(7)

where ∇g(·) denotes the gradient of function g(·) with respect to parameter θ.
These are the inference methods for stochastic allocation schemes. When we

adopt the allocation scheme that takes into account the initial degradation level,
the inference process will change a little. The main difference appears in mean μi

and covariance matrix Σi of (Xi,Y i)′. By rewriting the log-likelihood function,
the MLE and the Fisher information matrix are similar to the previous ones.
Explict expression can be found in Ye et al. [14].

2.3 Assessment of Reliability

Let Df denote a given failure threshold. Under stress level s, the failure time
T (s) of samples is the first time that the true degradation level D(t, s) = b0 +
b1 exp (γs)t reaches Df . Here we assume that the degradation rate is positive,
and then we have the following results

FT (t, s) = P (T (s) � t) = P (b0 + b1 exp (γs)t � Df )
= 1 − Φ(κ) (8)

where

κ =
Df − α0 − α1τ(s)

√
σ2
0 + σ2

1τ
2(s) + 2σ01τ(s)

, τ(s) = exp(γs)t
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and Ψ(·) represents the cumulative distribution function of the standard normal
distribution. In engineering practice, we are generally concerned about the life of
the product under normal stress conditions, so we can get the life distribution of
the product only by substituting the stress under normal use condition into (8).
With the formula of lifetime distribution, the lower confidence limits of relia-
bility for MTTF under a certain level of significance α, which is an important
performance index in production, can also be obtained. It is given by the for-
mula FT (t, s)−z1−α∇FT (t, s)′I−1(θ̂ML)∇FT (t, s), where z1−α is the quantile of
standard normal distribution. The Fisher information matrix here also depends
on the scheme of allocation and whether the initial state has been taken into
consideration. Similar inference process can be obtained for model with negative
degradation levels or negative degradation rate.

3 Optimal Test Plan for ADT

ADT involves many test variables, including sample size, stress level, measure-
ment time point and so on. The different values of these variables will affect
the test duration, cost and the accuracy of the final estimation. Generally, the
more samples, the longer the test duration and the more degraded data, the
higher the estimation accuracy will be. So we consider the allocation of stress
level and sample size at each level under the condition of fixed sample size and
measurement times, in order that the subsequent inference will have some excel-
lent properties. This idea was originally introduced by Kiefer [2]. In addition,
because of the initial information of the test units, the allocation method may
be random or based on the initial state.

In ADT test plan, there are many different criteria to determine the test
scheme. For example, in the statistical inference of linear model, the A-optimal
criterion, E-optimal criterion and the D-optimal criterion based on design
matrix [1]. Here we use the method of minimizing the asymptotic variance of
p-quantile tp to obtain the test plan. There are many experimental variables that
can be used for decision-making. If we consider them all, it will make the prob-
lem very complicated. So we simplify these variables. In addition to the fixed
sample size mentioned before, we also assume that the time intervals between
measurements are equal. The total number of measurements is fixed in advance.
All samples are tested at two different stress levels. Optimal stress levels and
the sample size at each stress level are selected to minimize the asymptotic vari-
ance Avar(t̂p). Since at high stress level, the degradation rate of products will
be faster and more life information will be provided, we always assume that sH

is the highest stress level in the degradation model (1), i.e. sH = 1. While the
low stress level sL is the decision variable between intervals (0, 1). It can be
seen from (7) that the asymptotic variance Avar(t̂p) is not related to the specific
degradation data in the test process, but only to the decision variables of the
test and the selection of the model parameters θ. The model parameter θ needs
to be determined before the test, which is called the plan value θ of degradation
test. It is used to calculate the asymptotic variance and make the calculation
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result closer to the real situation. We hope that the parameter θ selected in
advance is closer to the real value, so that the test scheme obtained can provide
the most reliable results. In fact, we can only estimate the value of parameter θ
after obtaining degenerate data through experiments. There is a contradiction
between whether to estimate parameters first or to get test plan first. The plan
value of parameters in engineering is usually selected from the data in history.
In the absence of prior information, a feasible solution is to conduct a small test
to estimate the model parameter θ before the formal ADT is carried out, and
then use these parameters for subsequent test plan. In the next example, we use
real degradation data to estimate the parameters and redesign the degradation
test scheme with these parameters. Decision-making problems can be written as
the following optimization process

min
(sL,nL)

Avar(t̂p)

It should be noted that the information matrix I(θ) involved in the formula
for calculating the asymptotic variance Avar(t̂p) in the random allocation is
different from that in the strategic allocation. This is also mentioned in the
inference process in Sect. 3.

4 Case Study and Simulation Results

This example is a set of transistor data. Lu [5] uses the Wiener process model,
and specific data can be found in that appendix. Electronic transistor is a very
important component in the electronic equipment. The degradation of these
transistors will eventually lead to the failure of the relevant equipment. Since
the data in Lu [5] have been processed due to the nature of the patent, we only
consider the magnitude of the value, but do not explain its specific physical
meanings.

There are 20 samples in this data set, in which there are different 5 tem-
peratures and 2 current levels. Since the method considered in this paper only
involves one stress variable, we divide the data into two groups and evaluate the
reliability of the data under two kinds of currents. The degradation performance
of samples at the same temperature was measured at the same time, and the
number of measurements ranged from 6 to 38. The measurement time points
under different stress levels are quite different, ranging from 300 h to 15000 h.
Lu [5] points out that it may be caused by different degradation mechanism at
extreme temperature. So we only adopt the data measured between 25 ◦C and
75 ◦C. Figure 1 shows the degradation process with respect to different temper-
atures at current level 1.

It can be seen that the initial state of different samples varies greatly, ranging
from 80 to 110, and the corresponding degradation rate varies slightly. We can
see the correlation between the initial state and degradation rate in parameter
estimation. The failure threshold varies according to the different application
scenarios of transistors. 70 is used as the threshold to illustrate the analysis
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Fig. 1. Degradation path under different temperature. Threshold is given by Df = 70.

Table 1. MLE of parameters for Transistor Degradation Data. Case 1: including data
with random initial state; Case 2: neglecting data at the first inspection time.

Case 1 Case 2

α̂0 93.2 89.7

α̂1 −4.43 × 10−4 −4.52 × 10−4

γ̂ 3.17 2.88

σ̂2
0 1.066 1.327

σ̂2
1 1.68 × 10−5 1.53 × 10−5

σ̂2
ε 6.82 5.13

σ̂01 −0.000389 −0.000392

ρ̂ −0.092 −0.087

Lower bound 0.9743 0.9695

results. We calculate the lower confidence limit with respect to 90% significance
at 10, 000 h at 25 ◦C. The results of assessment of reliability are as follows.

Table 1 shows the MLE of parameters on transistor degradation data at cur-
rent level 1. It can be seen that the correlation coefficient between the initial
state and the degradation rate is negative. Because it is a decreasing degrada-
tion process, the better the initial state, the faster the degradation. We have
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calculated the MLE with data at current level 2, which has indicated the same
result.

In order to study the effect of initial information on the evaluation results,
we omit the measurements at time 0 from all the data and re-estimate the
parameters with the remaining data. The results are shown in the third column
in Table 1. The MLEs are closed to that in case 1, however, we get a smaller
lower confidence limit, that is to say, the estimation tends to be conservative,
and the lack of initial information will make the confidence interval wider, which
is consistent with the previous theoretical results. So if we want to have a more
accurate estimate of product reliability, it is benefit to measure the initial state
of the test units and make use of it.

Fig. 2. Contour plot of the large-sample variance of t̂0.1 using two different allocation
methods. Longitudinal axis represents the stress level after normalization. (a) random
allocation; (b) strategic allocation.

We use the parameters obtained to furtherly optimize the test plan. We measure
with sample size n = 20, every 50 h until 1000 h, and design the test by minimiz-
ing the asymptotic variance of 0.1-quantile of life at 0 ◦C. Since the optimization
problem is a continuous non-convex problem, if we discretize the stress level at
0.001 intervals, the optimization problem will become a discrete problem. We
only need to get the maximum value at the lattice point. Here we draw the
asymptotic variance contour plots under the two allocation methods as shown
in Fig. 2

Table 2. Optimal test plan with two different allocation methods and corresponding
asymptotic variance.

Sample size under sL Temperature of sL Asymptotic variance

Random allocation 14 18.44 ◦C 311.7323

Strategic allocation 15 19.70 ◦C 273.8081
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Table 2 shows that the lowest asymptotic variance 311.73 is achieved when
14 samples are allocated to 18.44 ◦C at low temperature under the random allo-
cation scheme. The optimal result is 15 samples at low temperature 19.70 ◦C
when applying strategic allocation according to the initial degradation. The cor-
responding the asymptotic variance is 273.81. That is to say, the variance of the
statistics concerned has been reduced to 12.17%, and the effect is significant.
Therefore, considering the initial degradation has a positive impact on the test
plan. In the other word, to achieve the same variance as that in the strategic
allocation scheme, the random allocation need much bigger sample size. This
can reduce the cost of the test to a certain extent.

5 Conclusion

In this paper, the effect of initial status of product on assessment of reliability
and test plan are studied. The general results are obtained through theoreti-
cal derivation. In the assessment of reliability, the Fisher information matrix is
larger when considering the initial state than neglecting it. The effect on esti-
mating lower confidence limit of reliability is that the estimation under strategic
allocation will be more accurate. Analysis on a set of typical electronic product
failure data coincide with the theorical result. In terms of testing plan optimiza-
tion, we compared the traditional random allocation method with the strategic
allocation method. Simulation results show that the strategic allocation method
can obtain smaller estimation variance under the same sample size and number
of measurements, which is conducive to speeding up the degradation test and
reducing the test cost.
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Abstract. It has been well known that minimal repairs are widely used
in planning periodic replacement policies in reliability engineering. In this
chapter, we begin with the standard periodic replacement policies that
are planned at time T or at failure K, respectively, where the cumulative
hazard function H(t) is used to count the number of minimal repairs.
Next, three extensions of the above standard policies are discussed: (1)
When the replacement policies of T and K are planned simultaneously,
the approaches of first and last are used to make the best choice. (2)
We delay replacement to be done at the first failure over T when it
cannot be performed on time T . (3) We begin to plan replacement time
T once the first failure or the Kth failure has occurred. We formulate
the models of cost rates and give analytical discussions. In addition,
comparisons are made for the above policies from point of cost. Finally,
numerical examples are illustrated when the failure time has a Weibull
distribution.

Keywords: Failure rate · Minimal repair · Replacement time ·
Periodic replacement · Overtime replacement

1 Introduction

Manufacturing systems with performance degradation and replacement strat-
egy are commonly encountered in practice. Replacements done after failure
and before failure are called corrective replacement and preventive replacement,
respectively [1]. However, for a large and complex system, which consists of many
kinds of units, minimal repairs that cost less are always took into considerations
at failures [2].

Repair models have been studied extensively, such as repairable system sub-
jected to minimal repair [3], age-based replacement with minimal repair [4–6],
inspection modeling with minimal repair [7], warranty maintenance with repair
c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 240–258, 2019.
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time threshold [8], random working models with replacement and minimal repair
[9], repairs for multi-sate systems [10], repair process governed by the generalized
Polya process [11], and etc.

It has been found that the system operation can be quickly resumed after
minimal repairs, even though sometimes the repair is imperfect [12]. In other
words, we can make full use of the system under minimal repairs. When mini-
mal repair is taken into account for replacement policies, it is possible to make
replacement plans by counting the number of repairs, which is an alternative
policy of that planned with the scale of time. Zhao et al. [13] have discussed
replacement first and last policies that are planned at time T and at number N
of repairs, using the first and last triggering event approaches. The approach of
whichever triggering event occurs last, i.e., maintenances based on the assump-
tion of “whichever occurs last” [14] has been proposed as another good choice for
the bivariate replacement, not only because it could let the system operate for
a longer time, but because it could avoid operational interruptions to complete
more running jobs. From this viewpoint, this chapter begins with the standard
periodic replacement policies that are planned at time T or at failure K, respec-
tively, where the cumulative hazard function H(t) is used to count the number
of minimal repairs. Using the approaches of first and last, the replacement first
and last policies of T and K are planned simultaneously.

When the system is running some successive jobs without stops, it is better
to perform replacement policies after several jobs are completed even though
the replacement time has arrived [1]. Replacement policies scheduled at the first
completion of some working cycle over a planned time T [15] were modeled. That
is, replacement scheduled at continuous times could be modified to be done at
discrete applications. We next delay replacement policy to be done at the first
failure over T when it cannot be performed on time T . Meanwhile, replacement
first and last with overtime T and failure K are modeled. In addition, we begin
to plan replacement time T once the first failure or the Kth failure has occurred,
as the extensions of the above overtime policy.

In this chapter, we suppose that failures of an operating unit occur at
a nonhomogeneous Poisson process with cumulative hazard function H(t) ≡∫ t

0
h(u)du, and the failure rate h(t) ≡ dH(t)/dt = f(t)/F (t) increases strictly

with t from h(0) to h(∞) = ∞, where f(t) is a density function of F (t) =
1 − e−H(t), its mean μ ≡ ∫ ∞

0
F (t)dt, and Φ(t) ≡ 1 − Φ(t) for any function Φ(t).

Then, the probability that k failures occur in [0, t] is

pk(t) =
H(t)k

k!
e−H(t) (k = 0, 1, 2, · · · ).

We denote that Pk(t) =
∑∞

j=k pj(t) and P k(t) = 1 − Pk(t), then Pk(0) = 0,
P k(0) = 1, Pk(∞) = 1, P k(∞) = 0, P0(t) = 1, P 0(t) = 0, limk→∞ Pk(t) = 0
and limk→∞ P k(t) = 1. The above probabilities have the following relations: For
0 < t < ∞ and k = 0, 1, 2, · · · ,

Pk+1(t) =
∫ t

0

pk(u)h(u)du, P k+1(t) =
∫ ∞

t

pk(u)h(u)du,
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∫ ∞

0

pk(t)h(t)dt = 1,
∞∑

k=0

kpk(t) = H(t),

∫ ∞

0

H(t)dPk(t) =
∫ ∞

0

P k(t)h(t)dt =
k−1∑

j=0

∫ ∞

0

pj(t)h(t)dt = k.

Furthermore, note that

Q(T ) ≡ e−H(T )

∫ ∞
T

e−H(t)dt
=

F (T )
∫ ∞

T
F (t)dt

> h(T )

increases strictly with T from 1/μ to h(∞).
For the above assumptions, this chapter formulates the replacement models

of cost rates and give analytical discussions. Several comparisons are made from
the point of cost. Numerical examples are illustrated when the failure time has
a Weibull distribution.

2 Standard Policies

We introduce two standard replacement policies in which the unit is replaced
preventively at time T and at failure K.

(1) Replacement at T

We suppose that the unit undergoes minimal repair at each failure and its failure
rate remains undisturbed by repairs. When the unit is replaced at time T (0 <
T < ∞), the expected cost rate is [1]

C(T ) =
cT + cMH(T )

T
, (1)

where cT = replacement cost at time T and cM = cost of minimal repair at each
failure. Optimum T ∗ to minimize C(T ) satisfies

Th(T ) − H(T ) =
cT

cM
, i.e.,

∫ T

0

[h(T ) − h(t)]dt =
cT

cM
, (2)

and the resulting cost rate is

C(T ∗) = cMh(T ∗). (3)
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(2) Replacement at K

When the unit is replaced at failure K (K = 1, 2, · · · ), the expected cost rate is
[1]

C(K) =
cK + cMK
∫ ∞
0

PK(t)dt
, (4)

where cK = replacement cost at failure K. Optimum K∗ to minimize C(K)
satisfies

1
∫ ∞
0

pK(t)dt

∫ ∞

0

PK(t)dt − K ≥ cK

cM
. (5)

Note that
∫ ∞
0

pK(t)dt decreases strictly with K to 1/h(∞).

(3) Numerical Example

When H(t) = tα, i.e, h(t) = αtα−1, Table 1 presents optimum T ∗ and K∗ when
cT = cK = 100.0. Table 1 shows that both T ∗ and K∗ decreases with α and cM .
This means that optimum T ∗ and K∗ decrease with the failure rate and the cost
of minimal repair.

Table 1. Optimum T ∗ and K∗ when cT = cK = 100.0.

cM α = 1.2 α = 2.0
T ∗ K∗ T ∗ K∗

10 26.050 51 3.162 11
20 14.620 26 2.236 6
30 10.428 17 1.826 4
40 8.205 13 1.581 3
50 6.813 11 1.414 3
60 5.853 9 1.291 2
70 5.147 8 1.195 2
80 4.605 7 1.118 2
90 4.175 6 1.054 2

100 3.824 6 1.000 2

3 Three Extensions

As extended policies, we give the following three policies of replacement first and
last, replacement overtime and replacement after failure.
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3.1 Replacement First and Last

(1) Replacement First at T and K

When the unit is replaced at time T (0 < T ≤ ∞) or at failure K (K = 1, 2, · · · ),
whichever occurs first, the expected cost rate is

CF (T,K) =
cT + (cK − cT )PK(T ) + cM

∫ T

0
PK(t)h(t)dt

∫ T

0
PK(t)dt

, (6)

which agrees with C(T ) in (1) as K → ∞ and C(K) in (4) as T → ∞.
When cK = cT , we find optimum T ∗

F and K∗
F to minimize CF (T,K). Differ-

entiating CF (T,K) with respect to T and setting it equal to zero,

h(T )
∫ T

0

PK(t)dt −
∫ T

0

PK(t)h(t)dt =
cT

cM
, (7)

whose left-hand side increases strictly with T from 0 to ∞. Thus, there exists a
finite and unique T ∗

F (0 < T ∗
F < ∞) which satisfies (7), and the resulting cost

rate is

CF (T ∗
F ,K) = cMh(T ∗

F ). (8)

Note that the left-hand side of (7) increases strictly with K to that of (2), then
TF

∗ decreases with K to T ∗ given in (2).
Forming the inequality CF (T,K + 1) − CF (T,K) ≥ 0,

H1(T,K)
∫ T

0

PK(t)dt −
∫ T

0

PK(t)h(t)dt ≥ cT

cM
, (9)

where

H1(T,K) ≡
∫ T

0
pK(t)h(t)dt

∫ T

0
pK(t)dt

< h(T ),

which increases strictly with K to h(T ).
Substituting (8) into (9),

H1(T,K) ≥ h(T ),

which does not hold for any T . Therefore, optimum policy to minimize CF (T,K)
is T ∗

F = T ∗ and K∗
F = ∞, where T ∗ is given in (2).

Note that the left-hand side of (9) increases with K to that of (2). If T ≤ T ∗,
then K∗

F = ∞, and if T > T ∗, then there exists a finite and unique minimum
K∗

F (1 ≤ K∗
F < ∞) which satisfies (9).
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(2) Replacement Last at T and K

When the unit is replaced at time T (0 ≤ T < ∞) or at failure K (K =
0, 1, 2, · · · ), whichever occurs last, the expected cost rate is

CL(T,K) =
cT + (cK − cT ) + cM [H(T ) +

∫ ∞
T

PK(t)h(t)dt]
T +

∫ ∞
T

PK(t)dt
, (10)

which agrees with C(T ) in (1) as K = 0 and C(K) in (4) as T = 0.
When cK = cT , we find optimum T ∗

L and K∗
L to minimize CL(T,K). Differ-

entiating CL(T,K) with respect to T and setting it equal to zero,
∫ T

0

[h(T ) − h(t)]dt −
∫ ∞

T

PK(t)[h(t) − h(T )]dt =
cT

cM
, (11)

whose left-hand side increases strictly with T from −K to ∞. Thus, there exists
a finite and unique T ∗

L (0 < T ∗
L < ∞) which satisfies (11), and the resulting cost

rate is

CL(T ∗
L,K) = cMh(T ∗

L). (12)

Note that the left-hand side of (11) decreases strictly with K from that of (2),
then T ∗

L increases with K from T ∗ given in (2).
Forming the inequality CL(T,K + 1) − CL(T,K) ≥ 0,

∫ T

0

[H2(T,K) − h(t)]dt −
∫ ∞

T

PK(t)[h(t) − H2(T,K)]dt ≥ cT

cM
, (13)

where

H2(T,K) ≡
∫ ∞

T
pK(t)h(t)dt

∫ ∞
T

pK(t)dt
≥ h(T ),

which increases strictly with K from Q(T ) > h(T ) to h(∞).
Substituting (11) into (13),

H2(T,K) ≥ h(T ),

which always holds for any T . Therefore, optimum policy to minimize CL(T,K)
is T ∗

L = T ∗ and K∗
L = 0, where T ∗ is given in (2).

Note that the left-hand side of (13) increases with K from

TQ(T ) − H(T ) ≥ Th(T ) − H(T ).

If T ≥ T ∗, then K∗
L = 0, and if T < T ∗, then there exists a finite and unique

minimum K∗
L (1 ≤ K∗

L < ∞) which satisfies (13).
In addition, comparing the policies of replacement first and last in (1) and

(2), if T < T ∗, then replacement last is more economical than replacement
first; If T = T ∗, then replacement at time T ∗ is more economical than both
replacement first and last; If T > T ∗, then replacement first is more economical
than replacement last.
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Table 2. Optimum T ∗
F and T ∗

L when cT = 100.0 and α = 1.2.

cM K = 5 K = 10
T ∗

F T ∗
L T ∗

F T ∗
L

10 ∞ 26.050 90.672 26.050
20 52.621 14.620 21.517 14.620
30 21.147 10.428 11.940 10.431
40 12.487 8.206 8.624 8.233
50 8.844 6.815 6.947 6.916
60 6.926 5.862 5.901 6.072
70 5.761 5.171 5.165 5.500
80 4.978 4.651 4.613 5.094
90 4.413 4.249 4.178 4.791

100 3.982 3.933 3.825 4.559

Table 3. Optimum T ∗
F and T ∗

L when cT = 100.0 and α = 2.0.

cM K = 5 K = 10
T ∗

F T ∗
L T ∗

F T ∗
L

10 3.439 3.163 3.185 3.179
20 2.270 2.259 2.236 2.401
30 1.833 1.902 1.826 2.135
40 1.583 1.716 1.581 2.001
50 1.415 1.603 1.414 1.921
60 1.291 1.527 1.291 1.868
70 1.195 1.473 1.195 1.830
80 1.118 1.432 1.118 1.801
90 1.054 1.401 1.054 1.779

100 1.000 1.375 1.000 1.761

(3) Numerical Examples

When H(t) = tα, Tables 2 and 3 present optimum T ∗
F and T ∗

L when cT = 100.0
and α = 1.2, 2.0. These two tables show that T ∗

F and T ∗
L decrease with cM , T ∗

F

decreases with K and T ∗
L increases with K. From (8) and (12), we know that if

T ∗
L < T ∗

F , replacement last saves more cost than that of replacement first, e.g.,
when K = 5 in Table 2, and so on.

When H(t) = tα, Tables 4 and 5 present optimum K∗
F and K∗

L when cT =
100.0 and α = 1.2, 2.0. These two tables show that if finite K∗

F exists, K∗
L = 0,
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Table 4. Optimum K∗
F and K∗

L when cT = 100.0 and α = 1.2.

cM T = 5.0 T = 10.0 T ∗

K∗
F K∗

L K∗
F K∗

L

10 ∞ 51 ∞ 51 26.050
20 ∞ 26 ∞ 25 14.620
30 ∞ 17 ∞ 1 10.428
40 ∞ 13 15 0 8.205
50 ∞ 9 11 0 6.813
60 ∞ 5 9 0 5.853
70 ∞ 1 8 0 5.147
80 16 0 7 0 4.605
90 10 0 6 0 4.175

100 7 0 6 0 3.824

Table 5. Optimum K∗
F and K∗

L when cT = 100.0 and α = 2.0.

cM T = 1.0 T = 2.0 T ∗

K∗
F K∗

L K∗
F K∗

L

10 ∞ 11 ∞ 10 3.162
20 ∞ 5 ∞ 2 2.236
30 ∞ 4 8 0 1.826
40 ∞ 3 4 0 1.581
50 ∞ 2 3 0 1.414
60 ∞ 1 3 0 1.291
70 ∞ 1 2 0 1.195
80 ∞ 1 2 0 1.118
90 ∞ 1 2 0 1.054

100 ∞ 1 2 0 1.000

and if finite K∗
L exists, K∗

F = ∞, which has been already shown that if T < T ∗

then K∗
F = ∞, and if T > T ∗ then K∗

L = 0 for T ∗ given in Table 1.
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3.2 Replacement Over Time

(1) Replacement Over Time T

When the unit is replaced at the first failure over time T (0 ≤ T < ∞), the
expected cost rate is [15]

CO(T ) =
cO + cM [H(T ) + 1]

T +
∫ ∞

T
F (t)dt/F (T )

, (14)

where cO = replacement cost over time T . Optimum T ∗
O to minimize CO(T )

satisfies

TQ(T ) − H(T ) =
cO

cM
, (15)

and the resulting cost rate is

C(T ∗
O) = cMQ(T ∗

O) =
cO + cMH(T ∗

O)
T ∗

O

, (16)

which agrees with (1) as cO = cT and T ∗
O = T .

When cO = cT , note that Q(T ) > h(T ), then T ∗
O < T ∗. From (16), CO(T ∗

O) >
C(T ∗), i.e., replacement at T is more economical than replacement over time T .

Table 6 presents optimum T ∗
O when cO = 100.0. It shows that T ∗

O decreases
with cM and α, and T ∗

O < T ∗.

Table 6. Optimum T ∗
O when cO = 100.0.

cM α = 1.2 α = 2.0
T ∗

O T ∗
O

10 25.663 3.015
20 14.155 2.040
30 9.935 1.598
40 7.696 1.331
50 6.293 1.148
60 5.325 1.012
70 4.614 0.907
80 4.069 0.822
90 3.636 0.752

100 3.284 0.694
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(2) Replacement Overtime First with T and K

When the unit is replaced at the first failure over time T (0 ≤ T < ∞) or at
failure K (K = 1, 2, · · · ), whichever occurs first, the expected cost rate is

COF (T,K) =
cO + (cK − cO)PK(T ) + cM

∑K−1
k=0 Pk(T )

∫ T

0
PK(t)dt + PK(T )

∫ ∞
T

e−H(t)+H(T )dt
, (17)

which agrees with CO(T ) in (14) as K → ∞ and C(K) in (4) as T → ∞.
When cK = cO, we find optimum T ∗

OF and K∗
OF to minimize COF (T,K).

Differentiating COF (T,K) with respect to T and setting it equal to zero,

Q(T )
∫ T

0

PK(t)dt −
∫ T

0

PK(t)h(t)dt =
cO

cM
, (18)

whose left-hand side increases strictly with T from 0 to ∞. Thus, there exists
a finite and unique T ∗

OF (0 < T ∗
OF < ∞) which satisfies (18), and the resulting

cost rate is

COF (T ∗
OF ,K) = cMQ(T ∗

OF ). (19)

Note that the left-hand side of (18) increases strictly with K to that of (15),
then T ∗

OF decreases with K to T ∗
O given in (15).

Forming the inequality COF (T,K + 1) − COF (T,K) ≥ 0,

H3(T,K)

[∫ T

0

PK(t)dt + PK(T )
∫ ∞

T

e−H(t)+H(T )dt

]

−
K−1∑

k=0

Pk(T ) ≥ cO

cM
,

(20)

where

H3(T,K) ≡ PK(T )
∫ T

0
[
∫ ∞

t
e−H(u)+H(t)du]dPK(t)

< Q(T ),

which increases strictly with K to Q(T ).
Substituting (18) into (20),

H3(T,K) ≥ Q(T ),

which does not hold for any T . Therefore, optimum policy to minimize
COF (T,K) is T ∗

OF = T ∗
O and K∗

OF = ∞, where T ∗
O is given in (15).

Note that the left-hand side of (20) increases with K to that of (15). If
T ≤ T ∗

O, then K∗
OF = ∞, and if T > T ∗

O, then there exists a finite and unique
minimum K∗

OF (1 ≤ K∗
OF < ∞) which satisfies (20).
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(3) Replacement Overtime Last with T and K

When the unit is replaced at the first failure over time T (0 ≤ T < ∞) or at
failure K (K = 0, 1, 2, · · · ), whichever occurs last, the expected cost rate is

COL(T,K) =
cO + (cK − cO)PK(T ) + cM [H(T ) +

∑K−1
k=0 P k(T )]

T +
∫ ∞

T
PK(t)dt + PK(T )

∫ ∞
T

e−H(t)+H(T )dt
, (21)

which agrees with CO(T ) in (14) as K = 0 and C(K) in (4) as T → 0.
When cK = cO, we find optimum T ∗

OL and K∗
OL to minimize COL(T,K).

Differentiating COL(T,K) with respect to T and setting it equal to zero,

∫ T

0

[Q(T ) − h(t)]dt +
∫ ∞

T

PK(t)[Q(T ) − h(t)]dt =
cO

cM
, (22)

whose left-hand side increases strictly with T to ∞. Thus, there exists a finite
and unique T ∗

OL (0 ≤ T ∗
OL < ∞) which satisfies (22), and the resulting cost rate

is

COL(T ∗
OL,K) = cMQ(T ∗

OL). (23)

Note that the left-hand side of (22) increases strictly with K from that of (15),
then T ∗

OL increases with K from T ∗
O given in (15).

Forming the inequality COL(T,K + 1) − COL(T,K) ≥ 0,

H4(T,K)
[

T +
∫ ∞

T

PK(t)dt + PK(T )
∫ ∞

T

e−H(t)+H(T )dt

]

−
[

H(T ) +
K−1∑

k=0

P k(T )

]

≥ cO

cM
, (24)

where

H4(T,K) ≡
∫ ∞

T
pK−1(t)h(t)dt

∫ ∞
T

pK−1h(t){∫ ∞
t

e−H(u)+H(t)du}dt
> Q(T ),

which increases strictly with K from Q(T ) to ∞.
Substituting (22) into (24),

H4(T,K) > Q(T ),

which always holds for any T . Therefore, optimum policy to minimize COL(T,K)
is T ∗

OL = T ∗
O and K∗

OL = 0, where T ∗
O is given in (15).

Note that the left-hand side of (24) increases with K from that of (15) to ∞.
If T ≥ T ∗

O, then K∗
OL = 0, and if T < T ∗

O, then there exists a finite and unique
minimum K∗

OL (1 ≤ K∗
OL < ∞) which satisfies (24).
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(4) Numerical Examples

When H(t) = tα, Tables 7 and 8 present optimum T ∗
OF and T ∗

OL when cO = 100.0
and α = 1.2, 2.0. From (19) and (23), we know that if T ∗

OL < T ∗
OF , replacement

overtime last saves more cost than that of replacement overtime first, e.g., when
K = 5 in Table 7, and so on.

Table 7. Optimum T ∗
OF and T ∗

OL when cO = 100.0 and α = 1.2.

cM K = 5 K = 10
T ∗

OF T ∗
OL T ∗

OF T ∗
OL

10 ∞ 25.663 93.317 25.663
20 52.686 14.155 21.092 14.155
30 20.720 9.935 11.447 9.937
40 11.999 7.696 8.105 7.720
50 8.324 6.294 6.419 6.385
60 6.386 5.331 5.367 5.527
70 5.210 4.630 4.630 4.945
80 4.423 4.102 4.074 4.531
90 3.856 3.692 3.638 4.223

100 3.425 3.368 3.285 3.986

Table 8. Optimum T ∗
OF and T ∗

OL when cO = 100.0 and α = 2.0.

cM K = 5 K = 10
T ∗

OF T ∗
OL T ∗

OF T ∗
OL

10 3.299 3.015 3.037 3.030
20 2.072 2.058 2.040 2.207
30 1.604 1.667 1.598 1.919
40 1.332 1.458 1.331 1.774
50 1.148 1.330 1.148 1.686
60 1.012 1.243 1.012 1.626
70 0.907 1.180 0.907 1.584
80 0.822 1.133 0.822 1.552
90 0.752 1.096 0.752 1.527

100 0.694 1.066 0.694 1.508

When H(t) = tα, Tables 9 and 10 present optimum K∗
OF and K∗

OL when
cO = 100.0 and α = 1.2, 2.0. These two tables show similar tendencies with
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those in Tables 4 and 5, which has been already shown that if T < T ∗
O then

K∗
OF = ∞, and if T > T ∗

O then K∗
L = 0 for T ∗

O given in Table 6.

Table 9. Optimum K∗
OF and K∗

OL when cO = 100.0 and α = 1.2.

cM T = 5.0 T = 10.0 T ∗
O

K∗
OF K∗

OL K∗
OF K∗

OL

10 ∞ 28 ∞ 28 25.663
20 ∞ 23 ∞ 23 14.155
30 ∞ 17 56 0 9.935
40 ∞ 13 14 0 7.696
50 ∞ 8 11 0 6.293
60 ∞ 1 9 0 5.325
70 17 0 8 0 4.614
80 10 0 7 0 4.069
90 8 0 6 0 3.636

100 6 0 6 0 3.284

Table 10. Optimum K∗
OF and K∗

OL when cO = 100.0 and α = 2.0.

cM T = 1.0 T = 2.0 T ∗
O

K∗
OF K∗

OL K∗
OF K∗

OL

10 ∞ 11 ∞ 10 3.015
20 ∞ 5 ∞ 1 2.040
30 ∞ 3 5 0 1.598
40 ∞ 2 3 0 1.331
50 ∞ 1 3 0 1.148
60 ∞ 1 2 0 1.012
70 6 0 2 0 0.907
80 4 0 2 0 0.822
90 3 0 2 0 0.752

100 2 0 2 0 0.694
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3.3 Replacement After Failure

(1) Replacement After the First Failure

When replacement time T is planned after the first failure, i.e., there is no
replacement plan before the first failure, the mean time to replacement is

∫ ∞

0

(t + T )dF (t) = T + μ, (25)

and the expected number of failures until replacement is
∫ ∞

0

[1 + H(t + T ) − H(t)]dF (t) =
∫ ∞

0

H(t + T )dF (t). (26)

Thus, the expected cost rate is

CA(T ) =
cT + cM

∫ ∞
0

H(t + T )dF (t)
T + μ

. (27)

We find optimum T ∗
A to minimize CA(T ). Differentiating CA(T ) with respect

to T and setting it equal to zero,

(T + μ)
∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

H(t + T )dF (t) =
cT

cM
, (28)

whose left-hand side increases strictly with T from μ
∫ ∞
0

h(t)dF (t) − 1 to ∞.
Therefore, there exits a finite and unique T ∗

A (0 < T ∗
A < ∞) which satisfies (28),

and the resulting cost rate is

CA(T ∗
A) = cM

∫ ∞

0

h(t + T ∗
A)dF (t). (29)

Comparing T ∗
A in (28) and T ∗ in (2),

LA(T ) ≡ (T + μ)
∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

H(t + T )dF (t) − Th(T ) + H(T )

= μ

∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

h(t + T )F (t)dt

+ T

∫ ∞

0

[h(t + T ) − h(T )]dF (t).

Furthermore,

μ

∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

h(t + T )F (t)dt

= μ

∫ ∞

0

[h(t + T ) − h(T )]dF (t) −
∫ ∞

0

[h(t + T ) − h(T )]F (t)dt

= μ

∫ ∞

0

[∫ t

0

dh(u + T )
]

dF (t) −
∫ ∞

0

[∫ t

0

dh(u + T )
]

F (t)dt

=
∫ ∞

0

[

μF (u) −
∫ ∞

u

F (t)dt

]

dh(u + T ) > 0,
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as
∫ ∞

u
F (t)dt/F (u) decreases with u from μ to 0, which follows that LA(T ) > 0.

This concludes that T ∗
A < T ∗.

Comparing CA(T ) in (27) and C(T ) in (1), let CA(T ) − C(T ) = 0, then,

cT T + cMT

∫ ∞

0

H(t + T )dF (t) − cT (T + μ) − cM (T + μ)H(T )

= cM

∫ ∞

0

[Th(t + T ) − H(T )]F (t)dt = cT μ,

i.e.,
∫ ∞

0

[Th(t + T ) − H(T )]F (t)dt =
cT μ

cM
, (30)

whose left-hand side increases strictly with T from 0 to ∞. Thus, there exists
a finite and unique T̃ which satisfies (30). Therefore, we obtain: If T ≤ T̃ , then
CA(T ) ≤ C(T ), and if T > T̃ , then CA(T ) > C(T ).

Next, compare T̃ , T ∗
A and T ∗. From (2) and (30),

T

μ

∫ ∞

0

h(t + T )F (t)dt − H(T ) − Th(T ) + H(T )

=
T

μ

∫ ∞

0

[h(t + T ) − h(T )]F (t)dt > 0,

which follows that T̃ < T ∗.

Table 11. Optimum T ∗
A and ˜T when cT = 100.0.

cM α = 1.2 α = 2.0
T ∗

A T̃ T ∗
A T̃

10 25.133 25.270 2.310 2.648
20 13.718 13.856 1.397 1.742
30 9.540 9.677 0.997 1.347
40 7.330 7.467 0.761 1.115
50 5.950 6.087 0.602 0.958
60 5.001 5.137 0.485 0.845
70 4.306 4.443 0.396 0.758
80 3.775 3.911 0.324 0.688
90 3.355 3.490 0.265 0.631

100 3.013 3.148 0.216 0.584
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From (28) and (30),

(T + μ)
∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

H(t + T )dF (t)

− T

μ

∫ ∞

0

h(t + T )F (t)dt + H(T )

=
T + μ

μ

[

μ

∫ ∞

0

h(t + T )dF (t) −
∫ ∞

0

h(t + T )F (t)dt

]

> 0,

which follows that T ∗
A < T̃ .

When H(t) = tα, Table 11 presents optimum T ∗
A and T̃ when cT = 100.0.

This shows that T ∗
A < T̃ < T ∗, where T ∗ is given in Table 1. When α = 1.2,

μ =
∫ ∞
0

e−t1.2dt = 0.941, and when α = 2.0, μ =
∫ ∞
0

e−t1.2dt = 0.886, it is easy
to shown that T ∗

A < T ∗ < T ∗
A + μ, and T ∗

A + μ are almost equal to T ∗.

(2) Replacement After the Kth Failure

When replacement time T is planned after K failures, i.e., there is no replacement
plan before the Kth failure, the mean time to replacement is

∫ ∞

0

(t + T )dPK(t) = T +
∫ ∞

0

PK(t)dt, (31)

and the expected number of failures until replacement is
∫ ∞

0

[K + H(t + T ) − H(t)]dPK(t)

= K +
∫ ∞

0

[H(t + T ) − H(t)]dPK(t) =
∫ ∞

0

H(t + T )dPK(t). (32)

Thus, the expected cost rate is

CAK(T,K) =
cT + cM

∫ ∞
0

H(t + T )dPK(t)
T +

∫ ∞
0

PK(t)dt
, (33)

which agrees with (1) when K = 0, (4) when T = 0, and (27) when K = 1.
We find optimum T ∗

AK and K∗
AK to minimize CAK(T,K). Differentiating

CAK(T,K) with respect to T and setting it equal to zero,
∫ ∞

0

h(t + T )dPK(t)
[

T +
∫ ∞

0

PK(t)dt

]

−
∫ ∞

0

H(t + T )dPK(t) =
cT

cM
, (34)

whose left-hand side increases strictly with T to ∞. Thus, there exists a finite
and unique T ∗

AK (0 ≤ T ∗
AK < ∞) which satisfies (34), and the resulting cost rate

is

CAK(T ∗
AK) = cM

∫ ∞

0

h(t + T ∗
AK)dPK(t). (35)
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Table 12. Optimum T ∗
AK and K∗

AK when cT = 100.0 and α = 1.2.

cM K = 5 or T = 5.0 K = 10 or T = 10.0
T ∗

AK K∗
AK T ∗

AK K∗
AK

10 22.345 39 19.392 28
20 10.967 15 8.045 6
30 6.821 8 3.927 1
40 4.640 4 1.773 1
50 3.288 2 0.445 1
60 2.365 1 0.000 0
70 1.696 1 0.000 0
80 1.188 1 0.000 0
90 0.791 1 0.000 0

100 0.472 1 0.000 0

Table 13. Optimum T ∗
AK and K∗

AK when cT = 100.0 and α = 2.0.

cM K = 1 or T = 1.0 K = 2 or T = 2.0
T ∗

AK K∗
AK T ∗

AK K∗
AK

10 2.310 5 1.870 2
20 1.397 2 0.954 1
30 0.997 1 0.559 1
40 0.761 1 0.324 1
50 0.602 1 0.165 1
60 0.485 1 0.049 1
70 0.396 1 0.000 0
80 0.324 1 0.000 0
90 0.265 1 0.000 0

100 0.216 1 0.000 0

Note that the left-hand side of (34) increases strictly with K from that of (2),
then T ∗

AK decreases with K from T ∗ given in (2).
Forming the inequality CAK(T,K + 1) − CAK(T,K) ≥ 0,

H5(T,K)
[

T +
∫ ∞

0

PK(t)dt

]

−
∫ ∞

0

H(t + T )dPK(t) ≥ cT

cM
, (36)
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where

H5(T,K) ≡
∫ ∞
0

pK(t)h(t + T )dt
∫ ∞
0

pK(t)dt
≥

∫ ∞
0

PK+1(t)h(t + T )dt
∫ ∞
0

PK+1(t)dt
,

which increases strictly with K to ∞ and increases strictly with T to h(∞). Thus,
the left-hand side of (36) increases strictly with K from H5(T, 0)T −H(T ) to ∞.
Thus, there exists a finite and unique minimum K∗

AK (0 ≤ K∗
AK < ∞) which

satisfies (36). Note that the left-hand side of (36) increases with T from that of
(5), then K∗

AK decreases with T from K∗ given in (5).
When H(t) = tα, Tables 12 and 13 presents optimum T ∗

AK for K and K∗
AK

for T when cT = 100.0 and α = 1.2, 2.0. Tables 12 and 13 show that when given
T and K is large or α becomes large, both T ∗

AK and K∗
AK would go to 0.

4 Conclusions

This chapter has surveyed the standard replacement policies that are planned
at time T and at number K of failures, respectively, and then discussed three
extensions of the policies of T and K, that is, replacement first and last, replace-
ment overtime first and last, replacement after the first and the Kth failure. It
has been shown that the cumulative hazard function H(t) plays an important
role to model the number of failures between replacement policies.

We have also compared the above replacement policies from the point of cost
and found the relations of their optimum replacement times or failure numbers
for replacement. For example, we have shown that, optimum T ∗

F for replacement
first decreases with K to T ∗, optimum TO for replacement overtime is always
less than T ∗, optimum time T ∗

A < T̃ < T ∗, where T ∗ an optimum time for the
standard policy. This chapter would provide an interesting work of modelings of
replacement policies with minimal repairs for maintainability studies.
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Abstract. Consecutive systems have applications in the field of telecommu-
nication, transportation, illumination, heating, etc. However, all the existing
works just studied the reliability of a single consecutive system. The typical
studied consecutive systems include linear/circular consecutive k-out-of-n sys-
tems, linear sliding window systems, linear multi-state consecutively connected
systems, etc. These models are restricted to the cases where all the system
components are arranged on a line or on a circle. In practice, a system may
consist of some components arranged on two parallel lines, instead of a single
line. An example is the system consisting of road lights at both sides of the
highway. In this chapter, a reliability model for system consisting of two linear
parallel consecutive subsystems is proposed where three failure modes are
considered: (1) the subsystem 1 has at least k1 consecutive failed components;
(2) the subsystem 2 has at least k2 consecutive failed components; (3) the system
has at least m consecutive failed pairs of components. An iterative approach is
proposed to evaluate the reliability of such a system. Numerical examples are
presented to illustrate the applications.

Keywords: Consecutive systems � Dual system � Failure mode � Iterative
approach � Reliability

1 Introduction

As an extension of the typical k-out-of-n system [1–9], a consecutive k-out-of-n system
fails if consecutive k out of the total n system components fail [10–14]. Depending on
whether the components are arranged on a line or on a circle, the system is called
linear/circular consecutive system [15]. This kind of consecutive system has applica-
tions in telecommunications, pumping systems, heating systems, etc. [16]. For instance,
a telecommunication system may consist of several relay stations on a line, with each
merely able to send signal to the next k stations. The failure of more than k consecutive
relay stations cuts off the signal transmission and fails the system. Due to the practical
background of the consecutive system, many generalizations have made by researchers
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considering different practical factors. Say, some researchers studied the linear multi-
state consecutively connected system (LMCCS) where each node can provide con-
nection with some following nodes depending on the capacity of the node [17–22].
Except modelling the reliability of such a system, researchers also studied the optimal
allocation of components in the system and the optimal maintenance strategy [23].
Some other researchers studied the sliding window systems and its variants [24–26].

However, all the above works are restricted to the case where all the system
components are arranged on a line or on a circle. In practice, some system may have
components arranged on two parallel lines. Take the highway for examples, it has road
lights at both sides. If each side has too many consecutive lights broken, it may affect
the traffic. The situation is worse if some consecutive pairs of road lights fail on both
sides of the highway. Therefore, this chapter proposes a reliability model for the dual
linear consecutive system consisting of two linear consecutive subsystems, each with
n components. Figure 1 shows an illustration of such a system. The system is assumed
to have three diverse failure modes, i.e., the system fails if: (1) The subsystem 1 has at
least k1 consecutive failed components; (2) The subsystem 2 has at least k2 consecutive
failed components; (3) The system has m consecutive pairs of failed components,
where m is smaller than or equal to k1 and k2.

The remaining of this chapter is organized as follows. Section 2 proposes an
iterative approach to evaluate the reliability of such a system. Section 3 presents a
numerical example. Section 4 concludes this chapter and points out the future research.

Fig. 1. A dual linear consecutive system
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2 The Model

The system consists of two subsystems which are called respectively subsystem 1 and
subsystem 2. The subsystem 1 consists of n components and their reliabilities are
denoted as p1; . . .; pn. Similarly, the subsystem 2 consists of n components and their
reliabilities are denoted as q1; . . .; qn. The system has three failure modes, i.e., it fails if
at least k1 consecutive components fail in subsystem 1, at least k2 consecutive com-
ponents fail in subsystem 2, or at least m consecutively paired components fail in
subsystem 1 and subsystem 2, where m is smaller than both k1 and k2. For the con-
venience of discussion, the three failure modes are called failure mode 1, failure mode
2, and failure mode 3, respectively. The reason for assuming m to be smaller than both
k1 and k2 is that the system has only two failure modes if m is not smaller than either k1
or k2. Say, if m is greater than k1 but smaller than k2, then the failure mode 3 auto-
matically leads to failure mode 1, which makes considering only failure mode 2 and 3
to be sufficient for system reliability evaluation.

The reliability of such a system is denoted as Rðn; k1; k2;m; p1; . . .; pn; q1; . . .; qnÞ.
In order to evaluate the system reliability, an iterative approach is proposed. Use v1 and
v2 to denote the indices of the first components in subsystem 1 and subsystem 2 which
are working. In order for the system to be reliable, it is easy to see that v1 and v2 must
satisfy that v1 � k1; v2 � k2, and minðv1; v2Þ�m. In addition, three different cases may
happen, that is, v1 is equal to v2, v1 is smaller than v2, and v1 is bigger than v2. These
three conditions are discussed as below.

1. In the case where v1 is equal to v2. The conditions that v1 � k1; v2 � k2 and
minðv1; v2Þ�m are simplified as v1 ¼ v2 �m. Once v1 ¼ v2 �m is satisfied, the
conditional system reliability is equal to the reliability of the subsystem consisting
of the components of from the ðv1 þ 1Þ-th pair to the n-th pair of the original system.
That is, the conditional system reliability of the system can be obtained by altering
the reliability and equals to Rðn� v1; k1; k2;m; pv1 þ 1; . . .; pn; qv1 þ 1; . . .; qnÞ.

2. In the case where v1 is bigger than v2. The conditions that v1 � k1; v2 � k2 and
minðv1; v2Þ�m are simplified as v2 �m; v2 � v1 � k1. The conditional reliability is
denoted as ~Rðn� v1; n� v2; k1; k2;m; pv1 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ. Note that, here
we have introduced ~R, which is different from the system reliability R. The notation
~R is used to describe the reliability of a system consisting of two subsystems of
different lengths, whereas R is used to describe the reliability of a system consisting
of two subsystems of the same length. In order to use the iterative approach to
obtain R, it is also needed to build the iterative relationship for ~R. However, to avoid
interrupting the reading, this relationship is shown in the later stage.

3. In the case where v1 is smaller than v2. The conditions that v1 � k1; v2 � k2 and
minðv1; v2Þ�m are simplified as v1 �m; v1 � v2 � k2. The conditional reliability is
denoted as ~Rðn� v1; n� v2; k1; k2;m; pv1 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ. Note that the
conditional reliability under this case is not the same as the case when v1 is bigger
than v2.
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Considering the three cases above, it is easy to see that:

Rðn; k1; k2;m; p1; . . .; pn; q1; . . .; qnÞ
¼ Pm

v1¼1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv1�1Þqv1

�Rðn� v1; k1; k2;m; pv1 þ 1; . . .; pn; qv1 þ 1; . . .; qnÞ
þ Pm

v2¼1

Pk1

v1¼v2 þ 1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv2�1Þqv2

�~Rðn� v1; n� v2; k1; k2;m; pv1 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ
þ Pm

v1¼1

Pk2

v2¼v1 þ 1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv2�1Þqv2

�~Rðn� v1; n� v2; k1; k2;m; pv1 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ

; ð1Þ

where ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv2�1Þqv2 is the probability that the
first working component in subsystem 1 is v1 and the first working component in
subsystem 2 is v2. From Eq. (1), it can be seen that the system reliability is decomposed
into the reliabilities of systems of smaller size. However, since the right hand side of
Eq. (1) contains not only R, but also ~R, the iterative relationship of ~R also needs to be
provided. Similarly, two different cases need to be considered, i.e., v1\v2 and v2\v1.
Since the two cases are symmetric, it is only needed to know how to decompose ~R
without loss of generality when v1\v2. Use v3 to denote the second working com-
ponent in subsystem 1. It is easy to see that there are four different cases which are
v3\v2; v3 ¼ v2; n� v3 [ v2, and v3 does not exist. Note that the last case corre-
sponds to the situation that all the components after component v1 in subsystem 1 are
failed. Therefore, the conditional reliability of the system ~R can be decomposed as

~Rðn� v1; n� v2; k1; k2;m; pv1 þ 1; . . .; pn; qv2 þ 1; . . .; qnjv1\v2Þ

¼ Pv2�1

v3¼v1 þ 1
1ðv3 � v1 � 1\mÞð1� pv1 þ 1Þ. . .ð1� pv3�1Þpv3

�~Rðn� v3; n� v2; k1; k2;m; pv3 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ
þ 1ðv2 � v1 � 1\mÞð1� pv1 þ 1Þ. . .ð1� pv2�1Þpv2Rðn� v2; k1; k2;m; pv2 þ 1; . . .pn; qv2 þ 1; . . .; qnÞ
þ Pn

v3¼v2 þ 1
1ðv3 � v1 � 1\k1; v2 � v1 � 1\mÞð1� pv1 þ 1Þ. . .ð1� pv3�1Þpv3

�~Rðn� v3; n� v2; k1; k2;m; pv3 þ 1; . . .; pn; qv2 þ 1; . . .; qnÞ
þ 1ðn� v1\k1; v2 � v1 � 1\mÞð1� pv1 þ 1Þ. . .ð1� pn�1Þð1� pnÞRRðn� v2;m; qv2 þ 1; . . .; qnÞ

;

ð2Þ

where 1ðÞ is the unity function that 1ðTrueÞ ¼ 1 and 1ðFalseÞ ¼ 0, and RRðn�
v2;m; qv2 þ 1; . . .; qnÞ is the reliability of a consecutive m-out-of-n-v-2 system with
reliabilities of components equaling to qv2 þ 1; . . .; qn. Note that ~R is the summation of
the probabilities of four different cases mentioned.
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From Eqs. (1) and (2), it is easy to see that the R can be finally decomposed to the
reliabilities of single linear consecutive systems. For any single consecutive kk-out-of-
nn system, the system reliability can be readily calculated from another iterative
approach. For the convenience of discussion, we use RRRðkk; nn; h1; . . .; hnnÞ to rep-
resent the reliability of a consecutive kk-out-of-nn system with components reliabilities
equaling to h1; . . .; hnn. Thus, the following relationship holds as

RRRðkk; nn; h1; . . .; hnnÞ ¼
Pkk

v4¼1
ð1� h1Þ. . .ð1� hv4�1Þhv4

�RRRðkk; nn� kk; hv4 þ 1; . . .; hnnÞ
; ð3Þ

where v4 is the first working component in the consecutive kk-out-of-nn system.

3 Illustrative Example

To illustrate the calculating process of the proposed model, we present a brief example
in this section. Here consider a dual linear consecutive system where each of its two
subsystems consists of 4 components. The reliabilities of the components in subsystem
1 and 2 are denoted as p1; p2; p3; p4 and q1; q2; q3; q4 respectively. The system fails if
any 3 or more consecutive components fail at any one subsystems, or any 2 or more
consecutively paired components fail. Thus, according to the definition of the proposed
model, n ¼ 4; k1 ¼ k2 ¼ 3; m ¼ 2.

According to Eq. (1), we have

Rð4; 3; 3; 2; p1; p2; p3; p4; q1; q2; q3; q4Þ
¼ P2

v1¼1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv1�1Þqv1

�Rð4� v1; 3; 3; 2; pv1 þ 1; . . .; p4; qv1 þ 1; . . .; q4Þ
þ P2

v2¼1

P3

v1¼v2 þ 1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv2�1Þqv2 ;

�~Rð4� v1; 4� v2; 3; 3; 2; pv1 þ 1; . . .; p4; qv2 þ 1; . . .; q4Þ
þ P2

v1¼1

P3

v2¼v1 þ 1
ð1� p1Þ. . .ð1� pv1�1Þpv1ð1� q1Þ. . .ð1� qv2�1Þqv2

�~Rð4� v1; 4� v2; 3; 3; 2; pv1 þ 1; . . .; p4; qv2 þ 1; . . .; q4Þ
¼ I1 þ I2 þ I3

ð4Þ

where I1; I2; I3 indicate the first, second and third items respectively.
According to Eqs. (1) and (2), we can obtain the following derivation process:
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First, I1 can be further decomposed as:

I1 ¼ p1q1Rð3; 3; 3; 2; p2; p3; p4; q2; q3; q4Þ
þ ð1� p1Þp2ð1� q1Þq2Rð2; 3; 3; 2; p3; p4; q3; q4Þ
¼ p1q1

P2

v1¼1
ð1� p2Þ. . .ð1� p1þ v1�1Þp1þ v1ð1� q2Þ. . .ð1� q1þ v1�1Þq1þ v1

�Rð3� v1; 3; 3; 2; p1þ v1 þ 1; . . .; p4; q1þ v1 þ 1; . . .; q4Þ
þ p1q1

P2

v2¼1

P3

v1¼v2 þ 1
ð1� p2Þ. . .ð1� p1þ v1�1Þp1þ v1ð1� q2Þ. . .ð1� q1þ v2�1Þq1þ v2

�~Rð3� v1; 3� v2; 3; 3; 2; pv1 þ 1; . . .; p4; qv2 þ 1; . . .; q4Þ
þ p1q1

P2

v1¼1

P3

v2¼v1 þ 1
ð1� p2Þ. . .ð1� p1þ v1�1Þp1þ v1ð1� q2Þ. . .ð1� q1þ v2�1Þq1þ v2

�~Rð3� v1; 3� v2; 3; 3; 2; pv1 þ 1; . . .; p4; qv2 þ 1; . . .; q4Þ
þ ð1� p1Þp2ð1� q1Þq2Rð2; 3; 3; 2; p3; p4; q3; q4Þ
¼ I1;1 þ I1;2 þ I1;3 þ I1;4

;

ð5Þ

where I1;1; I1;2; I1;3; I1;4 indicate the first to the fourth items respectively. Specifically,

I1;1 ¼ p1p2q1q2Rð3� 1; 3; 3; 2; p3; p4; q3; q4Þ
þ p1ð1� p2Þp3q1ð1� q2Þq3Rð3� 2; 3; 3; 2; p4; q4Þ
¼ p1p2q1q2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ� þ p1ð1� p2Þp3q1ð1� q2Þq3

; ð6Þ

I1;2 ¼ p1ð1� p2Þp3q1q2~Rð3� 2; 3� 1; 3; 3; 2; p4; q3; q4Þ
þ p1ð1� p2Þð1� p3Þp4q1q2~Rð3� 3; 3� 1; 3; 3; 2; q3; q4Þ
þ p1ð1� p2Þð1� p3Þp4q1ð1� q2Þq3~Rð3� 3; 3� 2; 3; 3; 2; q4Þ
¼ p1ð1� p2Þp3q1q2 þ p1ð1� p2Þð1� p3Þp4q1q2
þ p1ð1� p2Þð1� p3Þp4q1ð1� q2Þq3

; ð7Þ

I1;3 ¼ p1p2q1ð1� q2Þq3~Rð3� 1; 3� 2; 3; 3; 2; p3; p4; q4Þ
þ p1p2q1ð1� q2Þð1� q3Þq4~Rð3� 1; 3� 3; 3; 3; 2; p3; p4Þ
þ p1ð1� p2Þp3q1ð1� q2Þð1� q3Þq4~Rð3� 2; 3� 3; 3; 3; 2; p4Þ;
¼ p1p2q1ð1� q2Þq3 þ p1p2q1ð1� q2Þð1� q3Þq4
þ p1ð1� p2Þp3q1ð1� q2Þð1� q3Þp4

ð8Þ

I1;4 ¼ ð1� p1Þp2ð1� q1Þq2Rð2; 3; 3; 2; p3; p4; q3; q4Þ
¼ð1� p1Þp2ð1� q1Þq2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ� : ð9Þ

Second, for I2

I2 ¼ ð1� p1Þp2q1~Rð4� 2; 4� 1; 3; 3; 2; p3; p4; q2; q3; q4Þ
þ ð1� p1Þð1� p2Þp3q1~Rð4� 3; 4� 1; 3; 3; 2; p4; q2; q3; q4Þ
þ ð1� p1Þð1� p2Þp3ð1� q1Þq2~Rð4� 3; 4� 2; 3; 3; 2; p4; q3; q4Þ
¼ I2;1 þ I2;2 þ I2;3

; ð10Þ
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where I2;1; I2;2; I2;3 indicate the first, second and third items respectively. Specifically,

I2;1 ¼ ð1� p1Þp2q1~Rð4� 2; 4� 1; 3; 3; 2; p3; p4; q2; q3; q4Þ
¼ ð1� p1Þp2q1
�f1ð2� 1� 1\2Þq2Rð4� 2; 3; 3; 2; p3; p4; q3; q4Þ
þ 1ð3� 1� 1\3; 2� 1� 1\2Þð1� q2Þq3Rð4� 2; 4� 3; 3; 3; 2; p3; p4; q4Þ
þ 1ð4� 1� 1\3; 2� 1� 1\2Þð1� q2Þð1� q3Þq4Rð4� 2; 4� 4; 3; 3; 2; p3; p4Þ
þ 1ð4� 1\3; 2� 1� 1\2Þð1� q2Þð1� q3Þð1� q4ÞRRð4� 2; 2; p3; p4Þg
¼ ð1� p1Þp2q1
�fq2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�
þ ð1� q2Þq3 þð1� q2Þð1� q3Þq4 þ 0g

; ð11Þ

I2;2 ¼ ð1� p1Þð1� p2Þp3q1~Rð4� 3; 4� 1; 3; 3; 2; p4; q2; q3; q4Þ
¼ ð1� p1Þð1� p2Þp3q1½1� ð1� q2Þð1� q3Þð1� q4Þ� ; ð12Þ

I2;3 ¼ ð1� p1Þð1� p2Þp3ð1� q1Þq2~Rð4� 3; 4� 2; 3; 3; 2; p4; q3; q4Þ
¼ ð1� p1Þð1� p2Þp3ð1� q1Þq2 � 1

ð13Þ

Third, for I3

I3 ¼ p1ð1� q1Þq2~Rð4� 1; 4� 2; 3; 3; 2; p2; p3; p4; q3; q4Þ
þ p1ð1� q1Þð1� q2Þq3~Rð4� 1; 4� 3; 3; 3; 2; p2; p3; p4; q4Þ
þ ð1� p1Þp2ð1� q1Þð1� q2Þq3~Rð4� 2; 4� 3; 3; 3; 2; p3; p4; q4Þ
¼ I3;1 þ I3;2 þ I3;3

; ð14Þ

where I3;1; I3;2; I3;3 indicate the first, second and third items respectively. Specifically,

I3;1 ¼ p1ð1� q1Þq2~Rð4� 1; 4� 2; 3; 3; 2; p2; p3; p4; q3; q4Þ
¼ p1ð1� q1Þq2f
1ð2� 1� 1\2Þp2Rð4� 2; 3; 3; 2; p3; p4; q3; q4Þ
þ 1ð3� 1� 1\3; 2� 1� 1\2Þð1� p2Þp3~Rð4� 3; 4� 2; 3; 3; 2; p4; q3; q4Þ
þ 1ð4� 1� 1\3; 2� 1� 1\2Þð1� p2Þð1� p3Þp4~Rð4� 4; 4� 2; 3; 3; 2; q3; q4Þ;
þ 1ð4� 1\3; 2� 1� 1\2Þð1� p2Þð1� p3Þð1� p4ÞRRð4� 2; 2; q3; q4Þ
¼p1ð1� q1Þq2fp2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�
þ ð1� p2Þp3 þð1� p2Þð1� p3Þp4 þ 0g

ð15Þ

I3;2 ¼ p1ð1� q1Þð1� q2Þq3~Rð4� 1; 4� 3; 3; 3; 2; p2; p3; p4; q4Þ
¼ p1ð1� q1Þð1� q2Þq3½1� ð1� p2Þð1� p3Þð1� p4Þ� ; ð16Þ

I3;3 ¼ ð1� p1Þp2ð1� q1Þð1� q2Þq3~Rð4� 2; 4� 3; 3; 3; 2; p3; p4; q4Þ
¼ ð1� p1Þp2ð1� q1Þð1� q2Þq3 � 1

: ð17Þ
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Finally, by adding up all the above probabilities leading to system success, we can
obtain the function of the system reliability, which is

Rð4; 3; 3; 2; p1; p2; p3; p4; q1; q2; q3; q4Þ ¼ I1 þ I2 þ I3
¼ I1;1 þ I1;2 þ I1;3 þ I1;4 þ I2;1 þ I2;2 þ I2;3 þ I3;1 þ I3;2 þ I3;3
¼ fp1p2q1q2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�
þ p1ð1� p2Þp3q1ð1� q2Þq3g
þfp1ð1� p2Þp3q1q2 þ p1ð1� p2Þð1� p3Þp4q1q2
þ p1ð1� p2Þð1� p3Þp4q1ð1� q2Þq3g
þfp1p2q1ð1� q2Þq3 þ p1p2q1ð1� q2Þð1� q3Þq4
þ p1ð1� p2Þp3q1ð1� q2Þð1� q3Þq4g
þfð1� p1Þp2ð1� q1Þq2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�g
þ fð1� p1Þp2q1fq2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�
þ ð1� q2Þq3 þð1� q2Þð1� q3Þq4 þ 0gg
þfð1� p1Þð1� p2Þp3q1½1� ð1� q2Þð1� q3Þð1� q4Þ�g
þ fð1� p1Þð1� p2Þp3ð1� q1Þq2 � 1g
þfp1ð1� q1Þq2fp2½1� ð1� p3Þð1� p4Þð1� q3Þð1� q4Þ�
þ ð1� p2Þp3 þð1� p2Þð1� p3Þp4 þ 0gg
þfp1ð1� q1Þð1� q2Þq3½1� ð1� p2Þð1� p3Þð1� p4Þ�g
þ fð1� p1Þp2ð1� q1Þð1� q2Þq3 � 1g

: ð18Þ

Then we can calculate the reliability of the system by substituting the numerical
values of p1; p2; p3; p4 and q1; q2; q3; q4 into Eq. (18). To present the variation trend of
reliability, we assume that the basic reliabilities of these components are 0.5 and then
vary the reliability of the concerned variable in two ways: (1) varying the reliability of
only one component at a time; (2) varying the reliability of a pair of components at a
time.

Figure 2 shows the first case. The solid line illustrates the variation of system relia-
bility by the variation of p1 from 0 to 1 for p2 ¼ p3 ¼ p4 ¼ q1 ¼ q2 ¼ q3 ¼ q4 ¼ 0:5.
The dashed line illustrates the variation of system reliability by the variation of p2 from 0
to 1 for p1 ¼ p3 ¼ p4 ¼ q1 ¼ q2 ¼ q3 ¼ q4 ¼ 0:5. As the system is symmetric for the
first half components (components 1 and 2 in both two subsystems) and the other half
components (components 3 and 4 in both two subsystems), the variation of system
reliability by the variation of p3 and p4 is the same as the variation of system reliability by
the variation of p2 and p1 respectively, so we do not display the other two curves in this
figure.

It can be seen from Fig. 2 that the reliability of the system increases with the
reliabilities of its components, which is consistent with common sense that the system is
more reliable if its components are more reliable. In addition, it should be noted that p2
grows faster than p1 which makes the surpass for the curve of p2 to the curve of p1 when
they are 0.5. This phenomenon represents that the component deployed at the middle
influences the reliability of the system more than the component deployed at the
beginning and the end. The two curves intersect at the point of p1 ¼ p2 ¼ 0:5 where two
curves represent the same case and p1 ¼ p2 ¼ p3 ¼ p4 ¼ q1 ¼ q2 ¼ q3 ¼ q4 ¼ 0:5.
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Figure 3 shows the second case. The solid line illustrates the variation of system
reliability by the synchronous variations of p1 and q1 from 0 to 1 for p2 ¼ p3 ¼
p4 ¼ q2 ¼ q3 ¼ q4 ¼ 0:5. The dashed line illustrates the variation of system’s relia-
bility by the synchronous variations of p2 and q2 from 0 to 1 for p1 ¼ p3 ¼ p4
¼ q1 ¼ q3 ¼ q4 ¼ 0:5. Besides, the curves for p3, q3 and p4, q4 are also not plotted in
this figure due to the symmetry of the system.

It can be seen from Fig. 3 that the reliability of the system increases with the
reliability of its components. Compared with the curves in Fig. 2, the ranges of two
curves in Fig. 3 are larger. For example, the system reliability for ðp1; q1Þ in Fig. 3
starts from about 0.3 and ends over 0.9, while the system reliability for p1 in Fig. 2
starts from about 0.45 and ends under 0.8. This is because that a pair of components is
more important than just one single component to the duel system. Just like Fig. 2, the
two curves in Fig. 3 meet at the point where p1 ¼ p2 ¼ p3 ¼ p4 ¼ q1 ¼ q2 ¼ q3
¼ q4 ¼ 0:5. Besides, the growth rate of the curve for ðp2; q2Þ is faster than the growth
rate of the curve for ðp1; q1Þ, which is consistent with Fig. 2, representing that the
paired components deployed at the middle is more important to the system reliability
compared with the paired components deployed at the beginning and the end.

With an example of small scale system, we illustrated the feasibility of the proposed
reliability model and the process of the proposed iterative approach to evaluate the
reliability. In practice, the model and the iterative approach proposed in this chapter can
be straightforwardly applied to large scale systems easily using computer programming
for the complete calculation.

Fig. 2. System reliability as functions of p1 and p2.
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4 Conclusions

In this chapter, we proposed a model to evaluate the reliability of dual linear con-
secutive system. The dual linear consecutive system consists of two subsystems where
components are arranged on two parallel lines, which has been widely applied in
practice. Three failure modes are considered: (1) at least k1 consecutive components fail
in subsystem 1; (2) at least k2 consecutive components fail in subsystem 2; (3) at least
m consecutively paired components fail in subsystem 1 and subsystem 2, where m is
smaller than both k1 and k2. This study developed an iterative approach to construct the
evaluation model. A brief example is presented to illustrate the calculating process of
the proposed mode. Future work can be devoted to the optimal positioning of the
components in the system.
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Abstract. Importance measures in reliability systems are used to identify weak
single component or multiple components in contributing to proper functioning
of the system. They can be used to analyze the structure optimization with
component reliabilities for reconfigurable systems, and solve the system opti-
mization problem for a kind of component assignment problem for the con-
secutive k out of n systems. In reconfigurable systems, the system structure can
be changed by reordering the components. The optimal structure can be deter-
mined for any specific combination of system components. For the change of the
reliability of specific components, the importance of the corresponding com-
ponents and the optimal system structure can be found. The relationships
between reliability allocation and the importance are studied by building the
reliability of the optimal system structure as a function of component reliability.
At last, a numerical example is used to demonstrate the proposed method.

Keywords: Reliability systems � Importance measures � Optimization �
Structure

1 Introduction

Importance measures are widely used for identifying weaknesses components and
supporting the system reliability improvement. Many works have evaluated the system
reliability [1–3]. Importance measures were originally proposed by Birnbaum. Then a
lot of importance measures have been introduced to apply in consecutive k-out-of-n
systems [4–9]. The Birnbaum importance measures have also been used to solve the
component assignment problem and study their optimal configuration for consecutive-
k-out-of-n system in work [10–13]. Papastavridis [14] analyzed the computation of the
Birnbaum importance in consecutive-k-out-of-n: F systems. Lin et al. [15] obtained the
component ranks based on the structure importance. Zuo [16] analyzed the relation-
ships of Birnbaum importance between consecutive-k-out-of-n: G and F systems. Kuo
et al. [17] gave the relationships between the consecutive k-out-of-n: F and G systems
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for the optimal configuration. Dui et al. [18, 19] analyzed the changes of different
importance measures when the optimal system reliability is changed.

A consecutive-k-out-of-n system is composed of n ordered components, in which
the system fails or works only when at least k consecutive components fail or work
[20]. In real life, the linear consecutive-k-out-of-n systems have many applications in
engineering area, such as oil pipeline, street-lighting systems, long-distance telecom-
munication systems, and relay stations [21]. In actual practice, the system optimal
structure may change with some component reliabilities change. The problem of the
structure optimization of a linear consecutive-k-out-of-n system is to assign the com-
ponents to n positions on the line to maximize the reliability of the system [22]. The
optimal permutation is to assign component reliabilities in a certain order to system
components. An optimal assignment is called invariant if it depends only on the
ordering of the component reliability, but not on their actual values. When the optimal
arrangement is not invariant, a heuristic algorithm is used to determine the approximate
optimal assignment.

In this paper, the possible changes of the optimal structure and the lifetime are
considered with importance measures. These can describe the component importance
changes when with the component orders changes in optimal systems.

The rest of the paper is organized as follows. Section 2 analyzes the importance
measures for system optimization. A numerical example is used to demonstrate the
system change based on the component importance values in Sect. 3. Section 4 gives
the conclusions.

2 Importance Measures for System Optimization

In this section, we discuss consecutive k-out-of-n: F systems of performance level
K. For a multi-state system of performance level K, the system (component) fails when
the state of system (component) is less than K, and works when the state of system
(component) is more than or equal to K. So the multi-state consecutive k-out-of-n: F
system of performance level K is equivalent to: UðXðtÞÞ\K if and only if at least kK
consecutive components have XiðtÞ\K.

The Birnbaum importance of component i in multi-state systems with the perfor-
mance level K is as in (1),

IðBMÞti ¼ Pr UðXðtÞÞ�KjXiðtÞ�Kf g � Pr UðXðtÞÞ�KjXiðtÞ\Kf g; ð1Þ

where U XðtÞð Þ is the system structure function, X(t) state vector of the components
ðX1ðtÞ;X2ðtÞ; . . .;XnðtÞÞ and XiðtÞ the state of component i, XiðtÞ ¼ 0; 1; 2; . . .;M.

The integrated importance of component i for multi-state system reliability of
performance level K is defined as in (2),

IðIIMÞti ¼ PrfXiðtÞ�Kg � kiðtÞIðBMÞti; ð2Þ

where kiðtÞ is the failure rate of component i at time t.
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The Mean Absolute Deviation [23] evaluates the effect of all states of a component
on the system reliability as in (3),

IðMAD)ti ¼
X
l

PðXiðtÞ ¼ lÞjPðUðli;XðtÞÞ� dÞ � PðUðXðtÞÞ� dÞj; ð3Þ

where d represents the system constant demand.
For one multi-state system of K level, the system constant demand d represents

K level, and component i has two classes of states, XiðtÞ�K or XiðtÞ\K. Because
PrfUðXðtÞÞ�Kg ¼ PrðXiðtÞ�KÞ Pr UðXðtÞÞ�KjXiðtÞ�Kf gþ PrðXiðtÞ\KÞ Pr UðXðtÞÞf
�KjXiðtÞ\Kg, we have IðMAD)ti ¼ 2 PrðXiðtÞ�KÞ PrðXiðtÞ\KÞIðBMÞti:

Then Mean Absolute Deviation for multi-state systems of performance level K is as
in (4),

IðMAD)ti ¼ 2 PrðXiðtÞ�KÞ PrðXiðtÞ\KÞIðBMÞti: ð4Þ

Let RtðjÞ is the reliability of multi-state consecutive k-out-of-j: F subsystem con-
sisting of components 1; 2; . . .; j at time t, R0tðjÞ the reliability of multi-state consecutive
k-out-of-j: F subsystem consisting of components ðn� jþ 1Þ; ðn� jþ 2Þ; . . .;
ðn� 1Þ; n.

Then the Birnbaum importance for the consecutive k-out-of-n: F system of per-
formance level K is as in (5),

IðBMÞti ¼
@RtðnÞ
@Pi;KðtÞ ¼

Rtði� 1ÞR0tðn� iÞ � RtðnÞ
1� Pi;KðtÞ ; ð5Þ

where Pi;KðtÞ ¼ PrfXiðtÞ�Kg.
The integrated importance for the consecutive k-out-of-n: F system in multi-state

systems of performance level K is as in (6),

IðIIMÞti ¼ PrfXiðtÞ�Kg � kiðtÞIðBMÞti ¼ Pi;KðtÞ � kiðtÞR
tði� 1ÞRtðn� iÞ � RtðnÞ

1� Pi;KðtÞ :

ð6Þ

The Mean Absolute Deviation for the consecutive k-out-of-n: F system in multi-
state systems of performance level K is as in (7),

IðMADÞti ¼ 2Pi;K (t) Rtði� 1ÞR0t(n� i)� Rt(n)½ �: ð7Þ
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If a component reliability changes, the optimal system structure may also change.
Then, the importance of the corresponding component will change with the change of
the optimal system structure. Suppose that Rt

optði� 1Þ, R0t
optðn� iÞ, Rt

optðnÞ are the
system or subsystem reliabilities obtained for the optimal configurations at time t. For the
optimal structure of the consecutive k-out-of-n: F system, the Birnbaum importance of

component i is IðBMÞti ¼ Rt
optði� 1ÞR0t

optðn� iÞ � Rt
optðnÞ

� �
= 1� Pi;KðtÞ
� �

, the inte-

grated importance of component i in consecutive k-out-of-n: F system can be repre-

sented that IðIIMÞti ¼ Pi;KðtÞ � kiðtÞ � Rt
optði� 1ÞR0t

optðn� iÞ � Rt
optðnÞ

� �
= 1� Pi;KðtÞ
� �

,

and Mean Absolute Deviation of component i is IðMAD)ti ¼ 2Pi;KðtÞ
Rt
optði� 1ÞR0t

optðn� iÞ � Rt
optðnÞ

h i
:

3 Numerical Examples

In this section, component n follows the two-parameter Weibull distribution, and other
components follow exponential distribution. In exponential distributions, the failure
rate of component i is ki ¼ 0:2þ 0:2ði� 1Þ. For component n, the Weibull distribution
is FðtÞ ¼ 1� exp � t=bð Þa½ �, where b and a are the scale and shape parameters,
respectively, and a[ 0, b[ 0. When a ¼ 1, the Weibull distribution becomes into the
exponential distributions. Let a ¼ 0:1, a ¼ 3 to represent the decreasing and increasing
failure rate. We use the consecutive-k-out-of-5: F and G systems to illustrate the value
change of the proposed measures with the optimal system structure for k = 3, 4.

For consecutive-3-out-of-5: F and G systems, the reliability changes of system,
target component (component 5), and other components (components 1, 2, 3, 4) are as
in Fig. 1. If the failure rate is smaller, then the component reliability decreases slower.
So the reliability curves from top to bottom are the ones of components 1, 2, 3, 4,
respectively, in Fig. 1. When shape parameter is 0.1 or 3 for component 5, the relia-
bility curve of component 5 intersects with that of components 1, 2, 3, 4.

Figures 2 and 3 show different component importance measures for consecutive-3-
out-of-5: F and G systems when shape parameter is 0.1.

Figures 4 and 5 show different component importance measures for consecutive-3-
out-of-5: F and G systems when shape parameter is 3.

Figures 6 and 7 show different component importance measures for consecutive-4-
out-of-5: F and G systems when shape parameter is 0.1.

Figures 8 and 9 show different component importance measures for consecutive-4-
out-of-5: F and G systems when shape parameter is 3.
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From Figs. 2 to 9, when different curves interact, the change of system optimal
structure occurs. Besides, importance values of different components in optimal
structure change with time. The original permutation may not be optimal after the
change in the reliability of a specific component. The importance index of a specific
component obtained with respect to the possible system reconfiguration indicates that
the most promising component reliability change can be attained when the system
structure can be easily modified. The optimal system structure varies with the change in
component reliability. Thus, component importance is related to the optimal system
structure. When the reliability curve of the target component intersects with one of the
other components, the increase in the importance index corresponds to the change in
the system’s optimal configuration.

(a) Reliability when shape parameter is 0.1
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Fig. 1. Reliability changes with time
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Fig. 2. All component importance values for consecutive-3-out-of-5: F systems when shape
parameter is 0.1
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Fig. 3. All component importance values for consecutive-3-out-of-5: G systems when shape
parameter is 0.1
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Fig. 4. All component importance values for consecutive-3-out-of-5: F systems when shape
parameter is 3
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Fig. 5. All component importance values for consecutive-3-out-of-5: G systems when shape
parameter is 3
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Fig. 6. All component importance values for consecutive-4-out-of-5: F systems when shape
parameter is 0.1
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Fig. 7. All component importance values for consecutive-4-out-of-5: G systems when shape
parameter is 0.1
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Fig. 8. All component importance values for consecutive-4-out-of-5: F systems when shape
parameter is 3
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Fig. 9. All component importance values for consecutive-4-out-of-5: G systems when shape
parameter is 3
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4 Concluding Remarks

This paper studied the optimization methods of component importance in reliability
systems. Based on the important measure, we analyze the relationships between the
component reliability with the degradation characteristics and the optimal dispatching
system to solve the reliability optimization problem of consecutive k out of n systems.

In future work, the system optimization involves minimizing the system cost
subject to reliability requirement or maximizing the system reliability under resource
constraints, such as cost, weight. It has attracted many researchers due to the high
requirements of performance for various kinds of systems. Besides, the states of
components and systems in research works could be classified into binary state system,
multi-state system and continuous state system. We also study the improvement
methods of system structure to increase component reliability, add redundant compo-
nents, reassign interchangeable components and optimize the combinations of above
methods.

Acknowledgments. The authors gratefully acknowledge the financial supports for this research
from the National Natural Science Foundation of China (Nos. 71771186, 71501173).
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Abstract. It is well-known that the Lorenz ordering, which is widely
used to rank the inequality of income, will lead to the ordering of coef-
ficient of variation. This paper finds that these two stochastic orders
are equivalent within several common two-parameter families of distri-
butions including the location-scale family, some scale and shape param-
eter family. Our finding manifests that once the compared life distribu-
tions or income distributions belong to a two-parameter family discussed
above, rankings by the Lorenz curve and by the coefficient of variation
for inequality generate the same order. Furthermore, a simple general
sufficient condition without limiting within two-parameter families for
this property is provided. These results could extend application of coef-
ficient of variation, which can be regarded as a proxy of Lorenz curve in
many cases for an inequality ranking or orderings of life distributions,
even if the life has asymmetric heavy-tail distribution.

Keywords: Lorenz order · Coefficient of variation · Location-scale
family · Scale and shape parameter family

1 Introduction

The Lorenz curve, which is a very popular and powerful tool to measure the
inequality of income, has been extensively studied in the literature. See, e.g.,
[1–3]. To make the compared income distributions sortable in the Lorenz sense,
various conditions have already been introduced in many studies such as [4–7].

Another relatively simple and fairly common inequality measure is the coef-
ficient of variation (CV), which is formally defined by CVX = σX/μX for a
random variable X with the mean μX and the standard deviation σX . It is well
known that the Lorenz order is a very strict order and implies the inequality
ordering under many indices, including the CV, the Gini index [8], the Pietra
index [9] and the Amato index [10]. It is noteworthy that they are not equivalent
c© Springer Nature Singapore Pte Ltd. 2019
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in general. More specifically, as pointed out by [11], the CV order can not imply
the Lorenz order.

However, the consistency of the mean-standard deviation decision and the
expected utility maximization is established by [12] and [13] under the assump-
tion that the compared risks belong to the location-scale (LS) family. Within the
LS family of distributions, [14] also show that any reward-to-risk performance
measure with positive homogeneity and functional translation invariance is an
increasing function of the Sharpe ratio. From these successful attempts, it seems
workable to investigate the equivalence of the CV order and the Lorenz order by
restricting the compared risks to some family of distributions. However, to the
best of our knowledge, few papers have been devoted to this interesting problem.
It is thus the objective of this paper to shed some light on this topic.

In this paper, we find that the CV order and the Lorenz order are indeed
equivalent within a large number of two-parameter families of distributions for
which the CV exists. The first family is the LS family including many widely
used distributions such as the exponential, extreme value distribution of type
I, Laplace, logistic, half-logistic, normal, half-normal, and the uniform distri-
butions. We refer to [15] for more properties of LS distributions. The second
distribution family we consider is the scale and shape parameter family, which
includes the scale-power parameter family and the scale-convolution parameter
family [5]. This family is quite large and encompasses the gamma distribution,
lognormal distribution, Pareto III (also known as Fisk distribution), the Weibull
distribution and so on. In addition to these two families of distributions, a gen-
eral sufficient condition for this property is provided, inverse Weibull distribution
and inverse Gaussian distribution given as an example.

2 Equivalence of the CV Order and the Lorenz Order

First, we provide the definitions of Lorenz curve and Lorenz order.

Definition 1 (Lorenz curve and Lorenz order). The Lorenz curve of a
random variable X with cumulative distribution function(c.d.f.) FX(·) and a
positive finite mean μX is given by

LX(p) =

∫ p

0
F−1

X (s)ds

μX
, p ∈ [0, 1], (1)

where F−1
X (s) = sup{x : FX(x) ≤ s} for 0 < s < 1 is the right-continuous

inverse function of FX(·).
Based upon the Lorenz curve, X is said to be smaller than another random

variable Y with a positive finite mean in the Lorenz order(denoted X ≤Lorenz Y )
if LX(p) ≥ LY (p) for all p ∈ (0, 1).

[7] points out that X ≤Lorenz Y if and only if X/μX ≤cx Y/μY , where the
convex order is formally defined below:



Equivalence of CV Ordering and the Lorenz Ordering Within Some Families 287

Definition 2 (Convex order). The random variable X is said to be smaller
than Y in the convex order (denoted by X ≤cx Y ) if E[φ(X)] ≤ E[φ(Y )] holds
for all convex functions φ(·) provided that the expectations exist.

Based upon the above definition of convex order, now we have

X ≤Lorenz Y ⇐⇒ X/μX ≤cx Y/μY =⇒ CVX ≤ CVY , (2)

assuming that X and Y have a finite variance. It is noteworthy that the reverse
is generally incorrect as emphasized by [11]. However, if the compared risks are
restricted to follow some two-parameter distributions, the CV order can imply
the Lorenz order, as discussed below.

2.1 The LS Family of Distributions

In this subsection, we assume that the compared risks satisfy the LS property
defined below:

Definition 3 (Location-scale family). A random variable X belongs to the
LS family if its c.d.f. is in the form of

FX(x|a, b) = H

(
x − a

b

)

, x ∈ R, a ∈ R, b > 0,

where a is a location parameter, b is a scale parameter, and H(·) is a c.d.f.
independent of a and b. [15].

It is necessary to point out that the location parameter and the scale param-
eter need not be the mean and standard deviation of a random variable, respec-
tively. Furthermore, the LS distribution may have infinite mean or variance, and
Cauchy distribution is a special example. The LS family of distributions is quite
a large family and encompasses many widely used statistical distributions listed
in Sect. 1.2 of [15].

Theorem 1. Suppose that a random variable X with positive finite mean and
variance belongs to the LS family. Then the Lorenz curve LX(p) of X is decreas-
ing in CVX for all p ∈ (0, 1).

Proof. Note that the inverse function F−1
X (·) is positively homogeneous and

translation invariant. We have

LX(p) =

∫ p

0
F−1
X (s)ds

μX
=

∫ p

0
(σXF−1

Z (s) + μX)ds

μX
= CVX×

∫ p

0

F−1
Z (s)ds+p, p ∈ (0, 1),

(3)

where Z =
X − μX

σX
.

Since it is assumed that X follows the LS distribution with a location param-
eter a and a scale parameter b, we let W = (X − a)/b such that it has the c.d.f.
H(·). With the help of W , the random variable Z could be rewritten by

Z =
X − (a + bμW )

bσW
=

W

σW
− μW

σW
,
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which in turn implies that the distribution of Z relies only upon the c.d.f. H(·).
The residual task is to show

∫ p

0
F−1

Z (s)ds ≤ 0 for all p ∈ (0, 1). More specif-
ically, noting that E[Z] = 0 and that F−1

Z (·) is a right-continuous increasing
function, the result is trivial if F−1

Z (p) ≤ 0. Otherwise, if F−1
Z (p) > 0, we have

∫ p

0

F−1
Z (s)ds =

∫ 1

0

F−1
Z (s)ds −

∫ 1

p

F−1
Z (s)ds = E[Z] −

∫ 1

p

F−1
Z (s)ds < 0.

As a consequence, it follows from (3) that the Lorenz curve LX(p) is decreas-
ing in CVX for each p ∈ (0, 1). The proof is finally completed.

An explanation on how Theorem 1 implies the equivalence between the CV
order and the Lorenz order can be provided. Actually, the decreasing property
of LX(p) with respect to CVX is not enough to the equivalence. However, the
formula (3) shows that LX(p) linearly depends on CVX through a coefficient
determined by the baseline distribution. This property is the reason why the CV
order and the Lorenz order are equivalent.

While LS family is quite large, it is impossible to contain all the two-
parameter distributions. Thus, we proceed to analyze this equivalence over
another fairly common class of distributions in the next subsection.

2.2 The Scale and Shape Parameter Family of Distributions

In this subsection, we restrict the compared risks to the scale and shape param-
eter family which includes the scale-power parameter family and the scale-
convolution parameter family as special cases. We define the scale and shape
parameter family following [16].

Definition 4 (Scale and shape parameter family). Suppose that in
terms of the distribution function F (·|β), a two-parameter distribution function
F (·|α, β) is defined as

F (x|α, β) = F (αx|β),

where α > 0 is a scale parameter and β ∈ I is a shape parameter. Then
{F (·|α, β) : α > 0, β ∈ I} is called a scale and shape parameter family with the
underlying distribution F (·|β).

Theorem 2. Suppose that {F (·|α, β) : α > 0, β ∈ I} is a scale and shape
parameter family of distributions with F (0|α, β) = 0 and a finite variance. If
F (·|β) is monotonic in the shape parameter β in the sense of Lorenz order, then
the CV order implies the Lorenz order.

Proof. [16] claims that the CV of a random variable belonging to the scale and
shape parameter family is a function of the shape parameter β and irrelevant
with the scale parameter α. If F (·|β) is monotonic in β in the sense of Lorenz
order, then Eq. (2) implies that the CV must be a monotonic function of β. If
the CV is strictly monotonic in β, then it follows from Eq. (2) that the CV order
is consistent with the Lorenz order.
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Otherwise, if the CV of F (·|β1) is equal to that of F (·|β2) with β1 < β2, then
we can show that the Lorenz curves are equal for these two distributions. More
specifically, we denote by Y1 and Y2 the random variables corresponding to these
two distributions. Since it is assumed that the Lorenz curve is monotonic in β,
we can see from (2) that Y1/μY1 and Y2/μY2 are comparable in convex order.
Noting that CVY1 = CVY2 , it follows from Theorem 3.A.42 in [6] that Y1/μY1 and
Y2/μY2 are equal in distribution. Noting that LY (p) = LtY (p) for all p ∈ (0, 1)
and t > 0, we get that Y1 and Y2 are equal in the Lorenz order. The proof is
thus completed.

In the above theorem, the assumption of the monotonicity of F (·|β) with
respect to the shape parameter in the sense of Lorenz order at first seems very
strict and uneasy to be verified. Exactly, this assumption holds true for many
scale-shape distributions such as the scale-power parameter family and the scale-
convolution parameter family which are defined below.

Definition 5 (Scale-power parameter family and scale-convolution
parameter family). For a scale and shape parameter family {F (·|α, β) : α >
0, β ∈ I, F (0|α, β) = 0} with the underlying distribution F (·|β), if the underly-
ing distribution is in the form of

F (x|β) = F (xβ), β > 0,

then this family and β are called the scale-power parameter family and the power
parameter, respectively.

On the other hand, if the index set I is closed under addition and the under-
lying distribution F (·|β) satisfies the following property

F (·|β1 + β2) = F (·|β1) ∗ F (·|β2) for allβ1, β2 ∈ I,

then {F (·|α, β) : α > 0, β ∈ I, F (0|α, β) = 0} and the shape parameter β are
said to be a scale-convolution parameter family and the convolution parameter,
respectively.

The above assumptions of the underlying distribution F (·|β) are weak such
that these two subclasses of distributions include many commonly used distri-
bution functions. Just to name a few, the lognormal, Pareto III and Weibull dis-
tributions belong to the scale-power parameter family, and the scale-convolution
parameter family includes the Gamma distribution. For more detailed discussion
of this two subclasses of distributions, we refer to [5].

Corollary 1. Suppose that {F (·|α, β) : α > 0, β ∈ I, F (0|α, β) = 0} is a scale
and shape parameter family of distributions with a finite CV. If it is a scale-
power parameter family or a scale-convolution parameter family, then the CV
order implies Lorenz order.

Proof. It follows from Proposition 7.D.5 and Proposition 7.J.6. in [5] that the
Lorenz order is monotonic in the shape parameter β if it is a power parameter or a
convolution parameter. The final result can be easily derived by using Theorem 2.



290 Y. Xiao and J. Yao

2.3 A Sufficient Condition for the Equivalence Property

We have shown that the CV order and the Lorenz order are equivalent when
the compared risks are restricted to the LS family or some scale and shape
parameter family. It is noteworthy that the assumption of these two families is
sufficient but not necessary to investigate the equivalence of these two stochastic
orders. To extend this, a simple general sufficient condition without limiting
within two-parameter families for the equivalence property is provided.

Theorem 3. Assume that nonnegative random variables X and Y have distri-
bution functions FX and FY , expectations μX and μY , and CVX and CVY ,
respectively. If FX(μXx) crosses FY (μY x) at most once, then CVX ≤ CVY

implies X ≤Lorenz Y .

Proof. Let R = X/μX and V = Y/μY with distributions FR and FV . Noting
that E(R) = E(V ) = 1, the Karlin-Novikoff cut criterion will imply that R and
V are comparable in convex order, then it follows from (2) that X and Y can
be ranked in the Lorenz order. Thus, we only have to show the CV order can
imply the convex order by taking the advantage of the up-crossing property of
distribution functions.

In fact, FR crosses FV or FX(μXx) crosses FY (μY x) exactly once, denoting
the crossing point as x0. Since

E(R) − E(V ) =
∫ +∞

0

(FR(x) − FV (x))dx = 0,

where F denotes survival function, we have

(CVX)2 − (CVY )2 = V ar(R) − V ar(V ) = E(R2) − E(V 2)

= 2
∫ +∞

0

x(FR(x) − FV (x))dx

= 2
∫ +∞

0

(x − x0)(FR(x) − FV (x))dx ≤ 0. (4)

It follows that FR crosses FV from above since the two factors of the integrand
in Eq. (4) must have opposite signs for all x. Applying Theorem 3.A.44. in [6],
R is less than V in convex order. The proof is thus completed.

The key function of this condition is a handy to avoid identifying which
families the compared life distributions belong to.

Example 1 (Inverse Weibull distribution). Considering the inverse Weibull dis-
tribution, also known as Fréchet distribution, i.e. the distribution function

FX(x) = exp{−(x/α)−β}, α > 0, β > 0, x > 0.

Its expectation is αΓ (1− 1
β ) for β > 1, and its variance is α2(Γ (1− 2

β )− (Γ (1−
1
β ))2) for β > 2.
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Assume that nonnegative random variables X and Y have inverse Weibull
distributions FX and FY with parameters (α1, β1) and (α2, β2), βi > 2, i = 1, 2,
respectively. Consider FX(μXx) = FY (μY x), i.e.

exp{−(Γ (1 − 1
β1

)x)−β1} = exp{−(Γ (1 − 1
β2

)x)−β2}, β1, β2 > 2, x > 0.

Then FX(μXx)−FY (μY x) = 0 has one solution x = exp{β2A2 − β1A1

β1 − β2
} for β1 �=

β2 in (0,∞), where Ai = ln(Γ (1− 1
βi

)), i = 1, 2. It follows that CVX ≤ (≥)CVY

implies X ≤Lorenz (≥Lorenz)Y by Theorem 3. For the special case β1 = β2, i.e.
FX(μXx) = FY (μY x) for all x, and hence X and Y are equal in the Lorenz
order.

A specific example for the distribution function and the Lorenz curve of
Inverse Weibull distribution is shown in Fig. 1.

0 0.5 1 1.5 2 2.5 3

x
0

0.2

0.4

0.6

0.8

1

F( x)

=0.5, =2.1, CV=2.48
=1.5, =3.5, CV=0.52

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0.5, =2.1, CV=2.48
=1.5, =3.5, CV=0.52

Fig. 1. A specific example for the distribution function (left figure) and the Lorenz
curve (right figure) of Inverse Weibull distribution

Example 2 (Inverse Gaussian distribution). The inverse Gaussian distribution,
which is also known as the Wald distribution, is a two-parameter family of con-
tinuous probability distributions with the density function

fX(x) =

√
θ√

2πx3
exp

{

−θ(x − m)2

2m2x

}

, θ,m, x > 0.

Its c.d.f. can be given by

FX(x|m, θ) = Φ

(√
θ

x

( x

m
− 1

)
)

+ exp

{
2θ

m

}

Φ

(

−
√

θ

x

( x

m
+ 1

)
)

,

where Φ(·) is the c.d.f. of standard normal distribution.
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Fig. 2. A specific example for the distribution function (left figure) and the Lorenz
curve (right figure) of Inverse Gaussian distribution

Obviously, it belongs neither to the LS family nor the scale and shape param-
eter family. However, we can help establish the equivalence of the CV order and
the Lorenz order by Theorem 3. That is if the compared risks follow the inverse
Gaussian distribution, then the CV order is consistent with the Lorenz order.

In fact, for random variables Yi that follow the inverse Gaussian distribution
with parameters (θi, mi) for i = 1, 2, it is known that

μYi
= mi and σYi

=

√
m3

i

θi
,

which in turn imply CVYi
=

√
mi

θi
. Now consider μY1fY1 (μY1x) = μY2fY2 (μY2x),

that is,
√

θ1√
2πm1x3

exp

{

−θ1(x − 1)2

2m1x

}

=
√

θ2√
2πm2x3

exp

{

−θ2(x − 1)2

2m2x

}

(5)

for θ1, θ2, m1, m2, x > 0, which is equivalent to
(

1
CV 2

Y2

− 1
CV 2

Y1

)

(x − 1)2 + 2ln

(
CVY2

CVY1

)

(x − 1) + 2ln
(

CVY2

CVY1

)

= 0.

It is trivial that the above equation has at most two real solutions, and hence
the distribution functions F Yi

µYi

(·|mi, θi) for i = 1, 2 intersect at most once. By

Theorem 3 again, that Y1 and Y2 can be ranked in the Lorenz order.
And if CVY1 = CVY2 , we can see from (5) that {Yi/μYi

}i=1 are equal in
distribution and hence Yi for i = 1, 2 are equal in the Lorenz order.

A specific example for the distribution function and the Lorenz curve of
Inverse Gaussian distribution is shown in Fig. 2.

3 Conclusion

It is well known that the Lorenz order is a very strict order and implies the
inequality ordering under many indices, and the CV order can not imply the
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Lorenz order in general. However, this paper shows that these two stochastic
orders are equivalent if the compared risks are restricted to some two-parameter
family of distributions. Due to the easy calculation of CV, our result can help
ease the difficulty in ranking the income inequality once the income distributions
belong to the two-parameter family considered in this paper.

In the literature, the CV measure is often criticized for not incorporating the
higher moments especially of the risks with asymmetric heavy tails, and hence
is usually replaced by Gini index [8] to measure the inequality. It is noteworthy
that the ordering under Gini index can also be implied by the Lorenz order. As
a consequence, our result manifests that Gini index and the CV measure exactly
generate the identical ranking order when the compared risks belong to some
special two-parameter family.
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Abstract. This paper considers the statistical inference of competing risks
model with modified Weibull distribution which not only covers the increasing
and decreasing hazard rate function, and also represents a bathtub-shaped hazard
rate behavior. Based on the adaptive Type-II progressive hybrid censored data,
the maximum likelihood estimations of the unknown parameters are obtained,
and then the Bayes approach, combined Gibbs sampling method, is also con-
sidered with gamma priors of the scale parameters and vague priors for the
shape parameters. Finally, two data sets with a real data set and a Monte Carlo
simulate data set are analyzed to investigate the performance of the purposed
methods.

Keywords: Competing risks model � Modified Weibull distribution � Adaptive
Type-II progressive hybrid censoring � Maximum likelihood estimator � Bayes
estimator � Gibbs sample

1 Introduction

In reliability and survival analysis, many units have the “bathtub-shaped” hazard rates.
This hazard rate initially decreases because of the burn-in effect, and then it reaches a
stable value and finally the rate increases as the units wear out or aging. Common life
distributions, including Exponential, Weibull, Gamma and ect, generally do not have a
bathtub-shaped hazard rate and are not suitable to model this life data. So, recent years
many models by generalizing or extending the Weibull distribution have been proposed
to deal with this problem. For example, the exponentiated Weibull distribution
(EW) distribution [1], modified Weibull (MW) distribution [2], extended flexible
Weibull distribution [3], generalized modified Weibull distribution [4], the beta
modified Weibull distribution [5] and Kumaraswamy modified Weibull distribution [6].
Among them, the three parameters MW distribution, due to the less parameters and
closed cumulative distribution function (CDF), has been considered by many scholars.
Jiang et al. [7] estimated the parameters of MW distribution by using maximum-
likelihood method and Markov chain Monte Carlo method based on complete data.
Updhyay and Gupta [8] considered Bayse estimations (BEs) of the parameters for MW
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distribution. Jiang et al. [9] derived maximum-likelihood estimations (MLEs) of the
parameters based on complete data and Type-II censored data as well as proved the
existence and uniqueness of the MLEs. Peng and Yan [10] acquired the MLEs and BEs
of the MW distribution under Type-II progressive censored scheme. Vidović [11]
obtained the MLEs of MW distribution in the presence of upper kth record values and
confirmed the existence and uniqueness of MLEs. EL-Sagheer et al. [12] got the point
and interval estimators of MW distribution in constant-stress partially accelerated life
test based on Type-II progressive censored sample.

Due to the complexity of the external environment and internal structure, the failure
of unit would be caused by more than one failure causes, and every cause possible
leads to the final failure of the unit. So, the failure of unit can be seen as the competing
result of failure causes. The competing risks model occurres in many application fields
such as life test, engineering, medical statistics and reliability. The statistical analysis
for competing risks model has been considered by many authors. For example,
Bhattacharya et al. [13] considered the competing risk model with Weibull distribution.
Anmadi et al. [14] analyzed competing risks model with exponential distribution under
middle censored. Feizjavadian and Hashemi [15] studied the dependent competing
risks by using Marshall-Olkin bivariate Weibull (MOBW) distribution in progressively
hybrid censoring. Wu et al. [16] discussed the dependent competing risks by using
copula function under progressively hybrid censoring in accelerated life test.

Censoring is a very common phenomenon in life test and many authors made
statistical inference of the life test under different censorings. The most common
censoring schemes are Type-I, Type-II, progressive censoring scheme (PCS) and
progressively hybrid censoring scheme (PHCS) and the details of these censorings can
be seen in Epstein [17], Childs et al. [18], Kundu and Joarder [19] and Childs et al.
[20]. Compared to Type-I, Type-II, PCS, the PHCS provides the flexibility to remove
surviving testing units and terminate the life test. However, as referred in [20], the
PHCS also has the shortcomings. In the Type-I PHCS, the effective sample size is
random and it may be a very small number which will result in low efficiency of the
statistical inference. In the Type-II PHCS, there is enough effective sample size but the
termination time of the test is difficult to predict.

In order to increase the efficiency of statistical inference as well as save the total test
time, Ng et al. [21] suggested the adaptive Type-II progressive hybrid scheme (AT-II
PHCS). This scheme works as follows. Suppose n identical units are put on life test.
The observed number of failures m m\nð Þ is fixed in advance and the test time is
allowed to run over the time T which is given beforehand. The progressive censoring
scheme R1;R2; . . .;Rmð Þ is specified but the values of some of the Ri may change
accordingly during the life test. During the life test, upon the ith failure observed, Ri

units are randomly removed from the test. We denote the m completely observed
lifetimes by Xi:m:n; i ¼ 1; 2; . . .;m. If the mth failure time occurs before time T (i.e.
Xm:m:n\T), the test stops at time Xm:m:n with the unchanged progressive censoring
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scheme R1;R2; . . .;Rmð Þ where Rm ¼ n� m�Pm
i¼1

Ri. Otherwise, if the Jth failure

occurs before time T , i.e. XJ:m:n\T\XJþ 1:m:n, where J\m, then we adapt the number
of units progressively removed from test upon failures by setting RJþ 1 ¼ RJþ 2 ¼
. . . ¼ Rm�1 ¼ 0 and at the time Xm:m:n all remaining units Rm are removed, where

Rm ¼ n� m�PJ
i¼1

Ri. Thus, in this case, the effectively applied progressive censored

scheme is R1; . . .;RJ ; 0; . . .; 0; n� m�PJ
i¼1

Ri

� �
. For convenience, let Xi ¼ Xi:m:n; i ¼

1; 2; . . .;m. After the above test is carried out, we can get the following observation
data.

Case 1: X1;R1ð Þ; . . .; Xm;Rmð Þ, if Xm\T , where Rm ¼ n� m�Pm
i¼1

Ri.

Case2: X1;R1ð Þ; . . .; XJ ;RJð Þ XJþ 1; 0ð Þ; . . .; Xm�1; 0ð Þ; Xm;Rmð Þ, if XJ\T\XJþ 1,

J\m, where Rm ¼ n� m�PJ
i¼1

Ri.

The main advantage of this scheme is to speed up the test when the test duration
exceeds predetermined time T and assure us to obtain effective failure numbers for the
statistical inference.

Currently, there are few literatures related to competing risks model with a bathtub-
shaped lifetime distribution. Therefore, the purpose of this paper is to make statistical
inference of the competing risks model with MW distribution under AT-II PHCS. The
main contributions of this paper can be expounded from two aspects. (1) Construct the
competing risks model of the product which lifetime variables follow the MW distri-
bution. The MW distribution has the bathtub-shaped failure rate which is common in
practical application and many studies show that the MW distribution can better fit the
real life data of a part of the product. (2) Investigate the statistical inference problem of
the competing risks model with MW distribution under AT-II PHCS. In the AT-II
PHCS, the experimenter can obtain the fixed failures and also terminate the test as soon
as possible after exceeding the ideal test time.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
MW distribution and property of its hazard rate function (HRF). The competing risks
model under AT-II PHCS is proposed and the MLEs of unknown parameters are
derived in Sect. 3. The BEs and highest posterior density (HPD) credible intervals
(CIs) of the parameters based on gamma priors for the scale parameters and vague
priors for the shape parameters are presented in Sect. 4. The simulation results and data
analysis are showed in Sect. 5. Some conclusions are provided in Sect. 6.
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2 The Modified Weibull Distribution and Property of Its
Hazard Rate Function

In this section, we make a description on the MW distribution and it’s HRF.
The CDF and probability density function (PDF) of the MW distribution can be

represented as follows, respectively.

F x; a; k; bð Þ ¼ 1� exp �bxaekx
� � ð1Þ

f x; a; k; bð Þ ¼ b aþ kxð Þxa�1ekx exp �bxaekx
� �

; x� 0; a; k[ 0; b� 0 ð2Þ

where a and k are the shape parameters of the distribution, and b is the scale parameter,
respectively.

The HRF of the MW distribution is

H x; hð Þ ¼ f x; hð Þ
1� F x; hð Þ ¼ b aþ kxð Þxa�1ekx ð3Þ

The first derivation of the HRF with respect to x is

H0 x; hð Þ ¼ bxa�2ekx k2x2 þ 2akxþ a2 � a
� � ð4Þ

From (4), we can see that the shape of the HRF mainly depends on the parameter a. At
the same time, the parameter k also plays an indirect role in assessing the shape of the
HRF.

(1) If a� 1, the function H0 x; hð Þ[ 0 for all x[ 0, which implying HRF is an
increasing function.

(2) If 0\a\1, the function H0 x; hð Þ has a change point where the curve of the HRF
changes its behavior. Based on the quadratic expression k2x2 þ 2akxþ a2 � a, we
can obtain the change point which is x ¼ ffiffiffi

a
p � að Þ=k. When 0\x\

ffiffiffi
a

p � að Þ=k,
the H0 x; hð Þ\0 which implying the HRF is a decreasing function. If the
x[

ffiffiffi
a

p � að Þ=k, the H0 x; hð Þ[ 0 which implying the HRF is an increasing
function. In summary, HRF is decreasing initially and then increasing, which
implying the HRF is a bathtub-shape function. The figure of the HRF of MW
distribution is seen in Fig. 1.
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3 The Competing Risks Model Description and MLEs

This section is developed to describe the competing risks model by using MW dis-
tribution and consider the point estimations of the unknown parameters by employing
maximum likelihood method based on the competing risks data under AT-II PHCS.

3.1 The Competing Risks Model Description

Suppose n independent and identical units are put on life test and each unit has two
independent failure causes. The lifetimes of n units are denoted by X1;X2; . . .;Xn and
for ith unit, the lifetime is Xi = min Xi1;Xi2ð Þ; i ¼ 1; 2; . . .; n where Xij; i ¼
1; 2; . . .; n; j ¼ 1; 2 represents the latent failure time of the ith unit under the jth failure
cause. Suppose that the latent failure time Xij; i ¼ 1; 2; . . .; n; j ¼ 1; 2 follows the MW
distribution. Let h ¼ a; k; b1; b2ð Þ, the CDF and PDF of the MW distribution can be
expressed as follows, respectively.

Fj x; hð Þ ¼ 1� exp �bjx
aekx

� � ð5Þ

fj x; hð Þ ¼ bj aþ kxð Þxa�1ekx exp �bjx
aekx

� �
; x� 0; k[ 0; bj [ 0; j ¼ 1; 2 ð6Þ

Under AT-II PHCS, the failure number m, the progressive censoring scheme
R1;R2; . . .;Rmð Þ and the terminal time T where T 2 0; þ1ð Þ are predetermined. For
the time T , if XJ � T �XJþ 1, where J\m, the dependent censoring scheme is

Fig. 1. HRF of MW distribution for different a; bð Þ when k ¼ 0:1
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expressed as R�
i ¼ RiI XJ\Tð Þ; i ¼ 1; 2; . . .;m� 1 and R�

m ¼ Pm
k¼jþ 1

Rk. Otherwise,

R�
i ¼ Ri; i ¼ 1; 2; . . .;m. Then, we can obtain the adaptive Type-II progressive cen-

sored competing risks data X1; c1;R�
1

� �
; X2; c2;R�

2

� �
; . . .; Xm; cm;R�

m

� �
, where ci is

failure cause of the ith unit and is defined as follows.

ci ¼ 0; if Xi1\Xi2

1; if Xi1 [Xi2
;

�
i ¼ 1; 2; . . .;m ð7Þ

3.2 The MLEs

Under the AT-II PHCS, let J ¼ max i : Xi � Tf g be denoted the number of failures
before T . Based on the competing risks data, the likelihood function can be written as
follows.

L hð Þ / Qm
i¼1

f1 xið Þ�F2 xið Þ½ �d1 cið Þ f2 xið Þ�F1 xið Þ½ �d2 cið Þ �F1 xið Þ�F2 xið Þ½ �R�
i

/ bm1
1 bm2

2

Qm
i¼1

aþ kxið Þxa�1
i ekxi exp � b1 þ b2ð Þxai ekxi R�

i þ 1
� �� 	 ð8Þ

Where dj �ð Þ; j ¼ 1; 2 is the indicator function, dj cið Þ ¼ 1; if ci ¼ j; dj cið Þ ¼ 0; if ci 6¼ j

mj ¼
Pm
i¼1

dj cið Þ; j ¼ 1; 2 is the failure number which is affected by the jth failure cause.

On the basis of (8), the log-likelihood function can be transformed into the fol-
lowing result.

ln L hð Þ ¼ m1 ln b1 þm2 ln b2 þ
Pm
i¼1

ln aþ kxið Þþ Pm
i¼1

kxi

þ a� 1ð ÞPm
i¼1

ln xi � b1 þ b2ð ÞPm
i¼1

xai e
kxi R�

i þ 1
� � ð9Þ

By setting the first partial derivative of ln L with respect to a, k and bj; j ¼ 1; 2 to
zero, we can obtain the following results.

@ ln L hð Þ
@a

¼
Xm
i¼1

1
aþ kxi

þ ln xi

� �
� b1 þ b2ð Þ

Xm
i¼1

xai e
kxi ln xi R�

i þ 1
� � ¼ 0 ð10Þ

@ ln L hð Þ
@k

¼
Xm
i¼1

xi
aþ kxi

þ xi

� �
� b1 þ b2ð Þ

Xm
i¼1

xaþ 1
i ekxi R�

i þ 1
� � ¼ 0 ð11Þ

@ ln L hð Þ
@bj

¼ mj

bj
�
Xm
i¼1

xai e
kxi R�

i þ 1
� � ¼ 0; j ¼ 1; 2 ð12Þ
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Since the MLEs of the a, k and bj; j ¼ 1; 2 cannot be solved analytically from (10) to
(12), we can use the Newton-Raphson iteration method to obtain the MLEs of the
parameters. The specific steps of method can be expresses as follows.

Step 1: Give the initial values of a, k and bj; j ¼ 1; 2, say a 0ð Þ; k 0ð Þ and b 0ð Þ
j ; j ¼ 1; 2,

respectively.

Step 2: In the kth iteration, calculate @ lnL
@a ; @ lnL

@k ; @ ln L
@b1

; @ ln L
@b2


 �
ak ;kk ;bk1;b

k
2ð Þ

��� and the

observed Fisher information matrix I ak; kk; bk1; b
k
2

� �
. Where

I a; k; b1; b2ð Þ ¼
I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

2
664

3
775

where

I11 ¼ �E @2 ln L
@a2


 �
; I22 ¼ �E @2 ln L

@k2


 �
; I jþ 2ð Þ jþ 2ð Þ ¼ �E @2 ln L

@bj@bj


 �
I12 ¼ I21 ¼ �E @2 ln L

@a@k


 �
; I1 jþ 2ð Þ ¼ I jþ 2ð Þ1 ¼ �E @2 ln L

@a@bj


 �
; I2 jþ 2ð Þ ¼ I jþ 2ð Þ2 ¼ �E @2 ln L

@k@bj


 �
j ¼ 1; 2:

Step 3: Update a; k; b1; b2ð Þ by

a kþ 1ð Þ; k kþ 1ð Þ; b kþ 1ð Þ
1 ; b kþ 1ð Þ

2


 �
¼

ak; kk; bk1; b
k
2

� �þ @ lnL
@a ; @ ln L

@k ; @ ln L
@b1

; @ lnL
@b2


 �
ak ;kk ;bk1;b

k
2ð Þ

��� � I�1 ak; kk; bk1; b
k
2

� � :

Step 4: Setting k ¼ kþ 1 the MLEs of the parameters (denoted by â; k̂ and
b̂j; j ¼ 1; 2) can be obtained by repeating the step 2–3 until

a kþ 1ð Þ; k kþ 1ð Þ; b kþ 1ð Þ
1 ; b kþ 1ð Þ

2


 �
� ak; kk; bk1; b

k
2

� ���� ���\e

where e is a threshold value and fixed in advance.

4 Bayes Analysis

Bayes method is an effective alternative to traditional statistics and has been widely used
in statistical inference. Since the Bayes analysis considers the prior information, this
may result in a moderate effective on the final inference. In this section, we provide the
Bayes inference for the unknown parameters, which including the BEs and HPD CIs.

We assume that a, k and bj; j ¼ 1; 2 are independent with each other. For the
parameter bj; j ¼ 1; 2, the gamma distribution with the parameters aj; bj

� �
; j ¼ 1; 2 is
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selected as the prior distribution, because it is the conjugate distribution when a and k
are known, and the PDF of bj is written as follows.

p bj
� � ¼ bajj

C aj
� � baj�1

j e�bjbj ; j ¼ 1; 2

For the parameters a and k, we select the independent vague priors and the PDF are
written as follows.

p að Þ ¼ 1
c1

; p kð Þ ¼ 1
c2

;

where the hyper parameters aj; bj; cj; j ¼ 1; 2 are known and non-negative.
Thus, the joint prior function of the parameters can be written as follows.

p a; k; b1; b2ð Þ ¼ ba11 ba22
c1c2C a1ð ÞC a2ð Þ b

a1�1
1 e�b1b1ba2�1

2 e�b2b2 ð13Þ

According to (8), the posterior density function is obtained as follows.

p a; k; b1;b2 xjð Þ
¼ L x;a;k;b1;b2ð Þp a;k;b1;b2ð ÞR þ1

0

R þ1
0

R þ1
0

R þ1
0

L x;a;k;b1;b2ð Þp a;k;b1;b2ð Þdad kd b1db2

/ bm1 þ a1�1
1 bm2 þ a2�1

2

Qm
i¼1

aþ kxið Þxa�1
i ekxi

� exp �b1
Pm
i¼1

xai e
kxi R�

i þ 1
� �þ b1

� �� 
exp �b2

Pm
i¼1

xai e
kxi R�

i þ 1
� �þ b2

� �� 
ð14Þ

The BE of any function of parameters, say - a; k; b1; b2ð Þ, under squared error loss
function can be expressed as follows.

-̂ a; k; b1; b2ð Þ ¼ E - a; k; b1; b2ð Þ xjð Þ
¼ R þ1

0

R þ1
0

R þ1
0

R þ1
0 - a; k;b1; b2ð Þp a; k; b1; b2 xjð Þdadkdb1db2 ð15Þ

Because the BEs of the parameters cannot be got analytically, we can adapt the Gibbs
sample method to calculate the BEs.

From (14), the full posterior conditional distributions of the parameters a, k and
bj; j ¼ 1; 2 can be expressed as follows.

p bj a; k; xj� � / bmj þ aj�1
j exp �bj

Xm
i¼1

xai e
kxi R�

i þ 1
� �þ bj

 !( )
; j ¼ 1; 2 ð16Þ

302 W. Yan and S. Yimin



p a k; b1; b2; xjð Þ /
Ym
i¼1

aþ kxið Þxa�1
i exp � b1 þ b2ð Þxai ekxi R�

i þ 1
� �� 	 ð17Þ

p k a; b1; b2; xjð Þ /
Ym
i¼1

aþ kxið Þekxi exp � b1 þ b2ð Þxai ekxi R�
i þ 1

� �� 	 ð18Þ

From (16), we can easily get that it is a gamma density function, and it can be written as
follows.

bj a; k; xj 	 Gamma mj þ aj;
Xm
i¼1

xai e
kxi R�

i þ 1
� �þ bj

 ! !
; j ¼ 1; 2

For the parameters a and k, the full posterior conditions are both log-concave functions.
The following lemma is used for further development.

Lemma 1: p a k; b1; b2; xjð Þ and p k a; b1; b2; xjð Þ are both the log-concave functions.
Proof:

ln p a k; b1; b2; xjð Þ /Pm
i¼1

l aþ kxið Þþ a� 1ð ÞPm
i¼1

ln xi � b1 þ b2ð ÞPm
i¼1

xai e
kxi R�

i þ 1
� �

ln p k a; b1; b2; xjð Þ /Pm
i¼1

ln aþ kxið Þþ k
Pm
i¼1

xi � b1 þ b2ð ÞPm
i¼1

xai e
kxi R�

i þ 1
� �

Let h að Þ ¼ ln p a k; b1; b2; xjð Þ, g kð Þ ¼ ln p k a; b1; b2; xjð Þ, then

h0 að Þ /Pm
i¼1

1
aþ kxið Þ þ

Pm
i¼1

log xi � b1 þ b2ð ÞPm
i¼1

xai e
kxi R�

i þ 1
� �

log xið Þ

h00 að Þ / �Pm
i¼1

1
aþ kxið Þ2 � b1 þ b2ð ÞPm

i¼1
xai e

kxi R�
i þ 1

� �
log xið Þ2\0

g0 kð Þ /Pm
i¼1

xi
aþ kxið Þ þ

Pm
i¼1

xi � b1 þ b2ð ÞPm
i¼1

xai e
kxi R�

i þ 1
� �

xi

g00 kð Þ / �Pm
i¼1

x2i
aþ kxið Þ2 � b1 þ b2ð ÞPm

i¼1
xai e

kxi R�
i þ 1

� �
x2i\0

Since h00 að Þ\0; g00 kð Þ\0, h að Þ; g kð Þ are log-concave functions.
To obtain the BEs of the parameters, we use the Gibbs sample method, and the

specific steps expressed as follows.

Step 1: Initial values a; k; b1; b2ð Þ ¼ a 0ð Þ; k 0ð Þ; b 0ð Þ
1 ; b 0ð Þ

2


 �
.

Step 2: Generate b 1ð Þ
j from

Gamma mj þ aj;
Xm
i¼1

xa
0ð Þ

i ek
0ð Þxi R�

i þ 1
� �þ bj

 ! !
; j ¼ 1; 2:
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Step 3: Generate a 1ð Þ from (17) by using the adaptive rejection sampling method
[22].
Step 4: Generate k 1ð Þ from (18) by using the adaptive rejection sampling method.
Step 5: Repeat step 2–4 for N times, and we obtained the

a kð Þ; k kð Þ; b kð Þ
1 ; b kð Þ

2


 �
; k ¼ 1; 2; . . .. . .;N:

Step 6: Under the squared error loss function, the BE of - a; k; b1; b2ð Þ is

-̂ a; k; b1; b2ð Þ ¼ E - a; k; b1; b2ð Þ xj½ �
¼ PN

k¼1
- a kð Þ; k kð Þ; b kð Þ

1 ; b kð Þ
2


 �
=N :

For given c, the HPD CI of - a; k; b1; b2ð Þ can be obtained by the following three
steps.

Step 1: Arrange -i ¼ - a ið Þ; k ið Þ; b ið Þ
1 ; b ið Þ

2


 �
; i ¼ 1; 2; . . .;N in ascending order,

referred to as - 1ð Þ;- 2ð Þ; . . .;- Nð Þ.
Step 2: Consider the 100 1� cð Þ% CIs as - lð Þ;- lþN 1�cð Þð Þ

� 	
; l ¼ 1; . . .;N�

1� að ÞN.
Step 3: Consider the shortest interval from - lð Þ;- lþN 1�cð Þð Þ

� 	
; l ¼ 1; . . .;N �

1� að ÞN as the HPD CI.

5 Data Analysis

In this section, we consider two numerical examples based on a real data set and the
simulate data to investigate the performance of the proposed methods.

5.1 Real Data Set

In this section, we consider the real data from Aarset [23] which is given in Table 1.
This real data set has been considered by Lai et al. [2], Ng [24] and Jiang et al. [7] and
proved with a bathtub-shaped failure rate property. The [2] indicated that the set fit by
MW distribution is better than the other extended Weibull distribution.

Now we create an adaptive Type-II progressive hybrid data set with m ¼ 35,
T ¼ 90 and R4 ¼ 4;R12 ¼ 4;R25 ¼ 3;R33 ¼ 4;Ri ¼ 0; i 6¼ 4; 12; 25; 33: The data set is
presented in Table 2. For the simple, the cause 1 data is denoted by T1 and the cause 2
data denoted by T2.
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In competing risks model, the life data is from MW distribution with different
parameters. Before the data is analyzed, we examine that the assumption of the equality
of the scale parameters of MW distribution is whether reasonable or not. It is assumed
that T1 and T2 follow the MW distribution with the parameters a1; k1; b1ð Þ and
a2; k2; b2ð Þ, respectively. The likelihood rate test (LRS) for following hypothesis is
discussed.

H0 : a1 ¼ a2; k1 ¼ k2V:SH1 : H0 is not true

The LR statistic �2 L0 � L1ð Þ ¼ 4:7541, where L0 and L1 is the maximum log-
likelihood values under H0 and H1, respectively and the associated value p is greater
than 0.05. Hence, we should accept the null hypothesis.

For the BEs and HPD CIs of the parameters, we consider the prior information with
aj ¼ 0:0001 and bj ¼ 0:0001; j ¼ 1; 2, the point and interval estimations of the
parameters are shown in Table 3 and the trace plot of 2000 iterations of the parameters
listed in Fig. 2.

Table 2. The adaptive Type-II progressive hybrid data set

Cause1 0.1 0.2 1 1 3 6 11 12 18 32 36 40 47 50 63
67 75 79 84 85

Cause2 1 1 2 7 18 21 45 55 60 67 72 82 84 85 86

Table 1. The competing risks data from Aarset with two failure causes

Cause1 0.1 0.2 1 1 1 3 6 11 12 18 18 18 32 36 40
45 47 50 63 67 67 75 79 83 84 85 85 85

Cause2 1 1 2 7 18 18 21 45 55 60 63 67 67 72 82
82 84 84 85 85 86 86

Table 3. The point and interval estimations of the parameters

Estimator a k b1 b2
MLE 0.3115 0.0101 0.1913 0.0789
Bayes 0.3356 0.0154 0.1536 0.1067
HPD (0.2825,0.3811) (0.0115,0.00183) (0.1082,0.1987) (0.0513,0.1438)
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5.2 Simulation Data Set

Without loss of generality, we consider the completing risks model has two indepen-
dent failure causes and the lifetime of each failure cause follows the MW distribution.
The initial values of the parameters are a; k; b1; b2ð Þ ¼ 0:75; 2; 1:5; 1:8ð Þ and the
sample size is n ¼ 30; 40; 60. The MLEs, BEs and HPD CIs of the unknown param-
eters are obtained under different values m and T . Three different progressive censoring
schemes are used, which are denoted as follows.

Scheme 1: R1 ¼ R2 ¼ . . . ¼ Rm�1 ¼ 1 and Rm ¼ n� 2mþ 1;
Scheme 2: R1 ¼ R2 ¼ . . . ¼ Rm�1 ¼ 0 and Rm ¼ n� m;
Scheme 3: R1 ¼ n� m and R2 ¼ . . . ¼ Rm ¼ 0.

To compute the BEs and HPD CIs of the parameters, the hyper parameters of the
prior are given by aj ¼ 0:0001 and bj ¼ 0:0001; j ¼ 1; 2. Now, the same process is
repeated 1000 times, and then the mean squared error (MSE) are computed, which is
considered byMSE ¼P100

i¼1 ð/i � /̂iÞ2=1000, where /i and /̂i denote the initial values
and the estimation values of a; k and bj; j ¼ 1; 2, respectively. Under different pro-
gressive censoring schemes, the point estimations of the unknown parameters are
shown in Tables 4 and 5. And the HPD CIs with the given significant level (0.05) is
also computed and the results are shown in Tables 6 and 7.

Fig. 2. Trace plot for the parameters of MW distribution under Gibbs sampling algorithm
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Table 4. The MSEs of the parameters when T ¼ 0:5

n m Scheme Estimator a k b1 b2
30 10 1 MLE 0.234 0.4393 0.4115 0.4182

Bayes 0.1454 0.3678 0.3626 0.3611
2 MLE 0.2365 0.4446 0.4199 0.4261

Bayes 0.1457 0.3598 0.3612 0.3596
3 MLE 0.2432 0.4524 0.4205 0.4253

Bayes 0.1484 0.3679 0.3635 0.3652
15 1 MLE 0.216 0.4259 0.3927 0.3957

Bayes 0.1326 0.3492 0.3406 0.3481
2 MLE 0.2197 0.4273 0.4044 0.4108

Bayes 0.1374 0.3358 0.3428 0.3351
3 MLE 0.2189 0.4167 0.4123 0.4087

Bayes 0.1365 0.3485 0.3417 0.3412
40 15 1 MLE 0.1969 0.3704 0.3489 0.3709

Bayes 0.1156 0.3111 0.3143 0.3123
2 MLE 0.2059 0.3766 0.3421 0.3826

Bayes 0.1204 0.3095 0.3192 0.3126
3 MLE 0.2103 0.3748 0.3446 0.3875

Bayes 0.1191 0.3020 0.3148 0.3167
20 1 MLE 0.1758 0.3517 0.3228 0.3438

Bayes 0.1024 0.2902 0.2772 0.2963
2 MLE 0.1803 0.3573 0.3147 0.3583

Bayes 0.1103 0.2852 0.2812 0.2926
3 MLE 0.1816 0.3609 0.3232 0.3528

Bayes 0.1112 0.2913 0.2814 0.2913
60 20 1 MLE 0.1555 0.3262 0.3018 0.3146

Bayes 0.0954 0.2632 0.2478 0.2722
2 MLE 0.1632 0.3171 0.2957 0.3182

Bayes 0.1001 0.2597 0.2519 0.2702
3 MLE 0.1613 0.3227 0.2988 0.3261

Bayes 0.0979 0.2586 0.2553 0.2735
30 1 MLE 0.1278 0.2823 0.2708 0.2839

Bayes 0.0723 0.2354 0.2036 0.2337
2 MLE 0.1373 0.2937 0.2752 0.2864

Bayes 0.0804 0.2283 0.2132 0.2371
3 MLE 0.1369 0.2921 0.2861 0.2896

Bayes 0.0841 0.2221 0.2119 0.2387
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From the Tables 4 and 5, it can be seen that: with the sample size n increasing, both
the MSEs of the MLEs and BEs for the unknown parameters decrease. Furthermore, as
the sample size n is fixed, the MSEs of the MLEs and BEs for the unknown parameters
decrease when the effective sample size m increase. The BEs of the unknown

Table 5. The MSEs of the parameters when T ¼ 1

n m Scheme Estimator a k b1 b2
30 10 1 MLE 0.2352 0.4351 0.4252 0.4211

Bayes 0.1507 0.3589 0.3612 0.3595
2 MLE 0.2277 0.4343 0.4173 0.4145

Bayes 0.1496 0.3602 0.3649 0.3556
3 MLE 0.2318 0.4376 0.4225 0.4168

Bayes 0.1483 0.3611 0.3689 0.3574
15 1 MLE 0.2182 0.4164 0.3999 0.3972

Bayes 0.1355 0.3343 0.3407 0.3357
2 MLE 0.2194 0.4236 0.3853 0.3831

Bayes 0.1314 0.3301 0.3346 0.3409
3 MLE 0.2219 0.4213 0.3921 0.3879

Bayes 0.1297 0.3319 0.3367 0.3416
40 15 1 MLE 0.1961 0.3773 0.3567 0.3658

Bayes 0.1123 0.3102 0.3021 0.3109
2 MLE 0.2064 0.3814 0.3571 0.3672

Bayes 0.1157 0.2992 0.3031 0.3118
3 MLE 0.2035 0.3843 0.3572 0.3711

Bayes 0.1146 0.2989 0.3108 0.3146
20 1 MLE 0.1731 0.3432 0.3278 0.3395

Bayes 0.1012 0.2892 0.2777 0.2955
2 MLE 0.1728 0.3374 0.3256 0.3302

Bayes 0.1053 0.2781 0.2765 0.2889
3 MLE 0.1707 0.3473 0.3309 0.3415

Bayes 0.1064 0.2875 0.2798 0.2912
60 20 1 MLE 0.1571 0.3114 0.305 0.3092

Bayes 0.0913 0.2652 0.2448 0.2657
2 MLE 0.1534 0.3182 0.3013 0.3085

Bayes 0.0956 0.2537 0.2479 0.2648
3 MLE 0.1569 0.3119 0.3117 0.3145

Bayes 0.0973 0.2618 0.2503 0.2687
30 1 MLE 0.1284 0.2757 0.2639 0.2743

Bayes 0.0759 0.2302 0.2135 0.2324
2 MLE 0.1311 0.2836 0.2632 0.2791

Bayes 0.0813 0.2313 0.2131 0.2352
3 MLE 0.1313 0.2856 0.2709 0.2784

Bayes 0.0897 0.2357 0.2157 0.2388
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parameters is better than MLEs and it’s MSEs is always less than the MLE’s. The
reason is that the Bayes approach considers the effective prior information which
including historical experience and information. From Tables 6 and 7, it can be
observed that: the lengths of the HPD CIs are decreased with the sample size n or the
effective sample size m increase.

Table 6. The HPD CIs of the parameters when T ¼ 0:5

n m Scheme Estimator a k b1 b2
30 10 1 HPD (0.6187,0.9173) (1.7915,2.3066) (1.1912,1.9254) (1.4722,2.2714)

Length 0.2986 0.5151 0.7342 0.7992

2 HPD (0.616,0.9198) (1.7899,2.3016) (1.1894,1.9279) (1.4014,2.2157)
Length 0.3038 0.5118 0.7385 0.8143

3 HPD (0.6178,0.9254) (1.7896,2.3092) (1.1861,1.9254) (1.4199,2.2681)

Length 0.3076 0.5196 0.7393 0.8482
15 1 HPD (0.638,0.8865) (1.8467,2.2792) (1.2153,1.8546) (1.4837,2.1843)

Length 0.2485 0.4325 0.6393 0.7005
2 HPD (0.6237,0.8768) (1.8557,2.2862) (1.2184,1.8497) (1.4992,2.1925)

Length 0.2532 0.4305 0.6313 0.6933

3 HPD (0.6381,0.8959) (1.847,2.2812) (1.2218,1.8712) (1.4911,2.1954)
Length 0.2578 0.4342 0.6494 0.7043

40 15 1 HPD (0.6496,0.8876) (1.86,2.2662) (1.2389,1.8297) (1.5588,2.1943)
Length 0.2379 0.4062 0.5908 0.6354

2 HPD (0.6447,0.8783) (1.8573,2.2652) (1.2244,1.8136) (1.5511,2.1863)

Length 0.2336 0.4079 0.5892 0.6352
3 HPD (0.6459,0.8844) (1.8653,2.2745) (1.2473,1.8392) (1.5519,2.1882)

Length 0.2385 0.4092 0.5919 0.6363
20 1 HPD (0.6591,0.865) (1.8673,2.1879) (1.2749,1.7838) (1.5863,2.1154)

Length 0.2058 0.3206 0.5089 0.5291

2 HPD (0.6623,0.8652) (1.8652,2.1891) (1.2895,1.7986) (1.5831,2.1162)
Length 0.203 0.3239 0.5091 0.5331

3 HPD (0.6556,0.8655) (1.8629,2.1857) (1.2546,1.7659) (1.5826,2.1184)
Length 0.2099 0.3228 0.5113 0.5357

60 20 1 HPD (0.6698,0.8539) (1.8752,2.1456) (1.2912,1.7454) (1.6224,2.0741)

Length 0.1841 0.2704 0.4542 0.4518
2 HPD (0.6686,0.8512) (1.8952,2.1633) (1.2938,1.7469) (1.6139,2.0745)

Length 0.1826 0.2681 0.4531 0.4606
3 HPD (0.6756,0.8612) (1.8672,2.143) (1.2861,1.7438) (1.6099,2.0681)

Length 0.1856 0.2758 0.4577 0.4582

30 1 HPD (0.6931,0.8418) (1.9473,2.0968) (1.3588,1.7118) (1.6649,2.0295)
Length 0.1487 0.1495 0.353 0.3646

2 HPD (0.6911,0.8325) (1.9366,2.0811) (1.3491,1.6897) (1.6597,2.016)

Length 0.1414 0.1445 0.3406 0.3563
3 HPD (0.6868,0.8319) (1.9207,2.0729) (1.3418,1.705) (1.6475,2.0139)

Length 0.1451 0.1522 0.3632 0.3664
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6 Conclusion

Under AT-II PHCS, we have studied the statistical inference of the competing risks
model by using the MW distribution, which not only coverers the increasing and
decreasing hazard rate function, and also has a bathtub-shaped behavior. The MLEs,
BEs and HPD CIs of the unknown parameters are obtained. Finally, two data sets (real

Table 7. The HPD CIs of the parameters when T ¼ 1

n m Scheme Estimator a k b1 b2
30 10 1 HPD (0.6125,0.9095) (1.7878,2.3053) (1.1958,1.9317) (1.4331,2.2377)

Length 0.297 0.5174 0.7358 0.8045

2 HPD (0.6147,0.9146) (1.7937,2.3058) (1.1929,1.9367) (1.4488,2.2392)
Length 0.2999 0.5121 0.7438 0.7904

3 HPD (0.6171,0.9153) (1.7789,2.3071) (1.1792,1.9151) (1.4187,2.2716)

Length 0.2982 0.5282 0.7358 0.8529
15 1 HPD (0.6397,0.8857) (1.8511,2.2808) (1.2282,1.8676) (1.5017,2.2061)

Length 0.2459 0.4296 0.6394 0.7044
2 HPD (0.6305,0.8848) (1.8349,2.2674) (1.2153,1.8492) (1.5011,2.2043)

Length 0.2542 0.4326 0.6339 0.7032

3 HPD (0.6376,0.8939) (1.8497,2.2801) (1.2178,1.8641) (1.4827,2.1854)
Length 0.2563 0.4305 0.6463 0.7027

40 15 1 HPD (0.6447,0.8825) (1.8653,2.2714) (1.2412,1.8255) (1.5649,2.1954)
Length 0.2378 0.4061 0.5843 0.6305

2 HPD (0.6453,0.8782) (1.848,2.2528) (1.2288,1.8143) (1.5599,2.1962)

Length 0.2329 0.4048 0.5856 0.6363
3 HPD (0.6473,0.8844) (1.8683,2.2749) (1.2416,1.8337) (1.5526,2.1925)

Length 0.2371 0.4066 0.5921 0.6399
20 1 HPD (0.6618,0.8666) (1.8639,2.1925) (1.2662,1.7792) (1.5814,2.1096)

Length 0.2048 0.3286 0.513 0.5282

2 HPD (0.6571,0.8614) (1.8772,2.1977) (1.2799,1.7813) (1.5785,2.1176)
Length 0.2043 0.3205 0.5015 0.5392

3 HPD (0.6577,0.8671) (1.8731,2.1986) (1.2826,1.7975) (1.5858,2.1244)
Length 0.2094 0.3255 0.5149 0.5386

60 20 1 HPD (0.6702,0.8547) (1.8733,2.1497) (1.2958,1.7512) (1.6331,2.0845)

Length 0.1845 0.2764 0.4554 0.4514
2 HPD (0.6602,0.845) (1.8921,2.1539) (1.3029,1.7567) (1.6188,2.0828)

Length 0.1848 0.2618 0.4538 0.464
3 HPD (0.6726,0.8624) (1.8834,2.1547) (1.2924,1.7584) (1.6087,2.0696)

Length 0.1898 0.2713 0.466 0.4609

30 1 HPD (0.6976,0.8401) (1.9342,2.0795) (1.3614,1.7196) (1.6706,2.0259)
Length 0.1425 0.1454 0.3582 0.3553

2 HPD (0.6864,0.8312) (1.9387,2.0867) (1.3517,1.6936) (1.6694,2.0256)

Length 0.1448 0.148 0.3418 0.3562
3 HPD (0.6821,0.8362) (1.9116,2.0727) (1.3274,1.6927) (1.6753,2.0338)

Length 0.1541 0.1611 0.3653 0.3585
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data set and simulation data set) are provided to evaluate the performance of all
procedures, and the results show that when the sample size or the effective sample size
are large, both the MSEs of MLEs and BEs for the parameters are have the better
performance and meanwhile, the HPD CIs for parameters have the shorter lengths. The
BEs for parameters give the better performance than that of MLEs in term of MSE in
most case.

An assumption is made in this paper that the competing risks are statistically
independent. The case, however, where the competing risks are dependent, is very
common in practice and the related statistical inference with dependent competing risks
model is possible future work.
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Abstract. A functional law of the iterated logarithm (LIL) and its corre-
sponding LIL are established for an overloaded multiclass queueing model
with preemptive priority service discipline. The functional LIL and the
LIL limits quantify the magnitude of asymptotic stochastic fluctuations
of the stochastic processes compensated by their deterministic fluid lim-
its in two forms: the functional and numerical, respectively. We establish
the functional LIL and LIL limits for five performance measures: queue
length, workload, busy time, idle time and number of departures. By the
primitive data of the first and second moments of the interarrival and
service times, all the functional LILs are expressed into some compact
sets of continuous functions and their corresponding LILs are some ana-
lytic functions. The proofs are based on the fluid approximation and the
strong approximation of the queueing system, with the fluid approxima-
tion characterizing the expected values of the performance functions and
the strong approximation approximating discrete performance processes
with reflected Brownian motions.

Keywords: Multiclass queue · The functional law of the iterated
logarithm · The law of the iterated logarithm · Strong approximation ·
Brownian motion

1 Introduction

We study one type of functional law of the iterated logarithm (LIL) and two
types of LIL limits for the overloaded multiclass (GI/GI)K/1/PPSD queueing
system, which consists of one server, K classes of customers, a preemptive priority
service discipline (PPSD) with class i having preemptive priority over class j for
1 ≤ i < j ≤ K, class-dependent and exogenous renewal arrival processes (the
first GI) and independent and identically distributed (i.i.d.) general service times
(the second GI).
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In the queueing literature, researcher put their attention on the multi-class
priority queues heavily because the models are relevant to many real applica-
tions. For example, patients are treated sequently based on their severity levels in
emergency rooms; the VIP customers experience less waiting time in service sys-
tems such as call centers; customers taking “fastpasses” can jump over the long
regular waiting lines in entertainment parks such as Disneyland. Many asymp-
totic theories have been established for queueing models with priority policy
including diffusion approximations [1,7,31], strong approximations [3,5,11,38]
and heavy-traffic weak convergence results [1,20,35]. Since strong approxima-
tions are important building blocks for our analysis, we note that the most
relevant work to the current paper is [5] among the literature on priority queues,
which developed the strong approximations for the performance measures for
the (GI/GI)K/1/PPSD queueing system. Another related paper is [15], which
studied some similar results on the functional LIL and LIL for the underloaded
and critical loaded for the (GI/GI)K/1/PPSD queueing system and complement
the current work.

The limits of the functional LIL and the LIL, for a stochastic process such
as renewal process, can quantify its magnitude of asymptotic stochastic fluctua-
tions by its fluid limit (mean value) in two forms: the functional and numerical,
respectively. In literature, one type of the functional LIL and two types of the
LIL limits for stochastic processes are captured by the researcher generally. The
functional LIL is usually thought of as being developed by Strassen [33] for Brow-
nian motion firstly, and the two LIL limits here are referred to the Lévy’s LIL
[25,26] and its later generalized LIL by Csörgő and Révész [8], respectively. For
the overloaded (GI/GI)K/1/PPSD system, we develop the functional LIL and
the two LILs in Lévy’s type for performance measures: queue length, workload,
busy time, idle time and number of departures. Although based on a common
(GI/GI)K/1/PPSD queueing model with [18], we aim to develop the functional
LIL and the LIL in Lévy’s type in this paper, and authors mainly focused on
the LIL in Csörgő and Révész’s type in [18]. Besides the different issues, the
analysis for the LILs are also different: in this paper the LIL limits are obtained
through finding the supremum and the infimum of the obtained compact set of
the functional LIL limits, in [18] the LILs are got through analyzing the fluid
and strong approximations.

The functional LIL above is firstly obtained by Strassen [33] for standard
Brownian motion. It qualifies the asymptotic rate of the increasing variability
around the mean zero through continuous functions. Assume W (t) is a one-
dimensional standard Brownian motion or Wiener process, and define its asso-
ciated functional LIL–scaled process: Wn(t) = W (nt)/

√
2n log log n for all t ∈

[0, 1]. Strassen’s functional LIL tells us that the sequence {Wn(t), n = 3, 4, . . . }
is relatively compact, which means its every subsequence has a convergent sub-
subsequence, and that all the limits of the convergent subsequences are in a
compact set: the space of absolutely continuous functions x with x(0) = 0 and∫ 1

0
[ẋ(t)]2 dt ≤ 1, where ẋ is the derivative of x. This compact set of the limit

points is
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{

x ∈ C
1[0, 1] : x(0) = 0,

∫ 1

0

[ẋ(t)]2 dt ≤ 1
}

,

where C
1[0, 1] is the functional space of the one-dimensional continuous func-

tions defined on [0, 1]. One can see [8,33] for the functional LIL of the multi–
dimensional Brownian motion. Strassen’s result on the functional LIL has many
applications besides in queueing networks, such as, diffusion process [2], Markov
chain [34].

The two LILs: the Lévy’s LIL and the generalization by Csörgő and Révész,
are firstly established for standard Brownian motion too. Different with the
functional LIL, the LIL use the numerical value to qualify the asymptotic rate
of the increasing variability. For the defined W (t) above, the Lévy’s LIL in [25,26]
is to find the superior and inferior limits: with probability one (w.p.1),

lim sup
L→∞

W (L)√
2L log log L

= − lim inf
L→∞

W (L)√
2L log log L

= 1, (1.1)

and the generalized LIL by Csörgő and Révész [8] is: w.p.1,

lim sup
L→∞

sup0≤t≤L |W (t)|√
2L log log L

= 1. (1.2)

There is a weaker form of LIL in the literture:

sup
0≤t≤L

|W (t)| = O(
√

L log log L) w.p.1.

The functional O means that f(t) = O(g(t)) as t → ∞ if lim supt→∞
|f(t)/g(t)| ≤ M for some M > 0. See [4–6] for more details. The LIL seems
more numerical because it provides an explicit value (the “1” in (1.1) and (1.2))
to characterize the asymptotic rate of the increasing variability, however the
functional LIL can be thought of as another mathematical issue and tells us the
fluctuation in some compact sets. Mathematically, the LIL can be thought of as
the supremum or the infimum of the functional LIL set supported on [0, 1].

In the literature of queueing networks, three methods exist for the func-
tional LIL and LIL limits to our best knowledge. Based on the functional LIL
by Strassen, Iglehart [24] reconstructed a process through renewal processes to
develop the functional LIL and the LIL in Lévy’s type for queue length, depar-
ture and waiting time of the multiple channel queueing systems. Minkevičius etc.
[29,30,32] used a probability inequality method to obtain the LIL in Lévy’s type
for multiphase queue, single-server and multi-server open queueing networks in
strictly heavy traffic. By the method based on fluid and strong approximations,
Guo, Liu and Pei [19] studied the functional LIL and the LIL in Lévy’s type for
a single-server queue with batch arrival and feedbacks; Guo and Li [16] obtained
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the functional LIL and the LIL in Lévy’s type for the performance functions of
a two-stage tandem queue, whose generalized LIL in Csörgő and Révész’s type
is obtained in [17]; Guo and Liu [18] got the LIL in Csörgő and Révész’s type
for the (GI/GI)K/1/PPSD queueing system.

We summarize our contributions below. First, we provide a whole analysis for
the functional LIL and LIL limits: from how to define them by renewal process,
fluid and strong approximations to how to prove or compute them with the help
of Brownian motion. Second, we obtain the functional LIL and the LIL in Lévy’s
type for five key performance measures for the overloaded (GI/GI)K/1/PPSD
queueing system: the queue length, workload, busy time, idle time and depar-
ture processes (see Sect. 2 for their definitions). Third, the functional LIL and
LIL in Lévy’s type obtained for overloaded (GI/GI)K/1/PPSD queueing system
cover three types of situations: the traffic intensity less than, equivalent to and
more than one. Forth, we identify the functional LIL of performance measures as
compact sets of analytic functions in terms of the primitive model parameters,
and the LIL as analytic functions, where the model parameters are the first and
second moments of the interarrival and service times. Fifth, the functional LIL
and LIL limits provide interesting and sometimes counterintuitive observations.
For instance, the functional LIL and the LIL for the workload and busy time
are almost the same for classes with traffic intensity no more than one; the func-
tion LIL– and LIL–versions of the Little’s law, which identifies the relationship
between the queue length and workload processes, are preserved well for classes
with traffic intensity no more than one and fail for classes with traffic intensity
more than one.

An approach based on strong approximation (or the strong approximation
approach) are used to find all the functional LIL and LIL limits. Next we
simply introduce the strong approximation and the strong approximation app-
roach through a renewal process. Define {N(t), t ≥ 0} to be a renewal process
with rate λ > 0 and interarrival time variance σ2 < ∞. Let N̄(t) = λt and
Ñ(t) = λt + λ3/2σW (t) with W being a one-dimensional standard Brownian
motion. We note here that N̄(t) and Ñ(t) are the fluid and strong approxima-
tions of N(t), respectively. Assume that the rth moment of the interarrival times
exists, r > 2 is a positive number, then, by [21,22],

sup
0≤t≤L

∣
∣
∣N(t) − Ñ(t)

∣
∣
∣ = o(L1/r), w.p.1, (1.3)

where the function “o(·)” says that f(t) = o(g(t)) as t → ∞ if limt→∞
|f(t)/g(t)| = 0. Equation (1.3) tells us that the renewal process N(t) can be
approximated by a Brownian motion with a positive drift λ and the approxi-
mating error is in the order of o(L1/r). The functional LIL of N(t) is the limit
of the scaled sequence: for all t ∈ [0, 1], as n → ∞, w.p.1,

N(nt) − N̄(nt)√
2n log log n

=
N(nt) − ˜N(nt)√

2n log log n
+

˜N(nt) − N̄(nt)√
2n log log n

=
λ3/2σW (nt)√

2n log log n
+ o(1), (1.4)



Functional Law of the Iterated Logarithm for Multiclass Queues 319

where the second equality is from (1.3). From above, the functional LIL of
renewal process is changed into a problem of Brownian motion. Similar result
holds for the LIL, because, as (1.4), w.p.1,

N(t) − N̄(t)√
2t log log t

=
N(t) − ˜N(t)√

2t log log t
+

˜N(t) − N̄(t)√
2t log log t

=
λ3/2σW (t)√
2t log log t

+ o(1), t → ∞. (1.5)

However, it is a pity to note that the functional LIL scaled process (1.4) is rela-
tively compact and then has no unique limit. As a result, what we can do is (i) to
find all the limits of convergent subsequences which is the functional LIL issue,
(ii) to find the superior and inferior limits of the scaled process in (1.5) which
is exactly the LIL. For the application of strong approximation, see random
walks [8–10]. For applications in queueing models, see [6] for GI/GI/1 queue,
[13] for GI/GI/∞ queue, [37] for multiple channel queue, [14] for tandem-queue
network, [4,23,36] for generalized Jackson network, [38] for non-preemptive pri-
ority queue, [27,28] for time-dependent Markovian network queues and [5,6] for
feedforward queueing networks.

The strong approximation approach follows four steps: (i) To establish the
fluid and strong approximations for the performance measures of interest (e.g.,
the queue length and workload processes). (ii) To associate the functional LILs
of performance measures of interest with their corresponding strong approxi-
mations, which are usually the continuous functions of Brownian motions. (iii)
To find the closed-form functional LIL of Brownian functions, which is gener-
ally a compact set of continuous functions. (iv) To compute the LIL through
analyzing the functional LIL set. Since there exist many properties of Brown-
ian motion, the strong approximation approach DOES take advantage of these
existing functional LIL results and helps us to find the functional LIL for the
queueing model. However, two big difficulties exist for the strong approximation
approach: to develop the fluid and strong approximations for given queuing sys-
tems. In addition, obtaining the LIL from a given functional LIL set may not be
straightforward. The previous methods for the functional LIL and LIL include
the continuous mapping method [5,6,36,37] and probability inequality method
[23,38].

The rest paper is organized as follows. In Sect. 2, we formalize the
(GI/GI)K/1/PPSD queueing model, define the key performance measures, and
introduce their fluid limits for applications below. In Sect. 3, we define the func-
tional LIL and its corresponding LIL limits for the processes of interest and intro-
duce our main results, that is, Theorems 3.1–3.3. We also given some remarks to
provide insights of these results. In Sect. 4, we prove the main result Theorems
3.1–3.3, whose bases: Strassen’s funcitional LIL and the strong approximation,
are also introduced in this section, we also develop some results on the relatively
compact. Finally, in Sect. 5 we draw conclusions.

We close the introduction by summarizing all notations. All random vari-
ables and processes are assumed to be defined on a common probability space
(Ω,F ,P). Let E(X) and Var(X) be the mean and variance for random vari-
able X, respectively. Write X =d Y if X and Y are identically distributed.
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For positive integer k, let R
k and R

k
+ be the sets of the k-dimensional and

nonnegative real numbers, respectively. Define R = R
1 and R+ = R

1
+. Let

prime be the transpose of a vector or matrix. Given a = (a1, a1, . . . , ak)′ ∈ R
k,

|a| = (a2
1 + · · · + a2

k)1/2 denotes the Euclidean norm. Let “≡” denote a defi-
nition. [a]+ ≡ max{a, 0} for a ∈ R. For a, b ∈ R, define a ∨ b = max{a, b},
a ∧ b = min{a, b}. Let D

k[a, b] be the space of k-dimensional right continuous
functions on [a, b) having left limits on (a, b], endowed the Skorohod topology,
see [12]. Assume that C

k[a, b] is the subset of continuous functions in D
k[a, b].

Let D ≡ D
1 and C ≡ C

1. Define D0 ≡ {x ∈ D : x(0) ≥ 0}. Given two functions
f and g, define f ◦ g(t) = f(g(t)). It says that fn ⇒ Kf w.p.1 if {fn, n ≥ 1}
is relatively compact and the set of all limit points are in the compact set Kf .
Define the uniform norm ||f ||L ≡ sup0≤t≤L |f(t)| for function f . We say that
fn → f uniformly on compact set (u.o.c.) if ||fn − f ||L → 0, as n → ∞. Let
ϕ(t) ≡ √

2t log log t for all t bigger than Eular constant. Let e(·) be the identity
mapping e(t) ≡ t for all t, η(·) be the zero mapping η(t) = 0 for all t, and 1C(·)
be the indicator function of some given set C, i.e., 1C(s) = 1 if s ∈ C and 0
otherwise.

2 The Model

We consider the model consisting of a single server and K queues, K ≥ 2. Each
queue k is fed by an external class-k arrival process, 1 ≤ k ≤ K. In each queue,
customers are served in the order of arrival. A PPSD policy is enforced among
K classes: If a customer of higher priority arrives, the low-priority customer that
is currently being served (if any) will be immediately bumped out of service and
placed at the head of line of its own queue; after all customers of higher priorities
leave the system, the server will resume serving that preempted customer until
its service is completed or another interruption by a customer of higher priority.
We label these classes from 1 to K with class 1 takes the highest priority while
class K the lowest.

For each class k, let uk(n) and vk(n) be the interarrival time (time between
two consecutive arrivals) and service time of the nth customer. Let uk =
{uk(n), n = 1, 2, . . . } and vk = {vk(n), n = 1, 2, . . . } be two independent
i.i.d. sequence of non-negative random variables, having means E[uk(1)] ≡
1/λk and E[vk(1)] ≡ 1/μk, variances V ar[vk(1)] and V ar[vk(1)], and the
squared coefficients of variation c2

a,k ≡ V ar[uk(1)]/(E[uk(1)])2 and c2
s,k ≡

V ar[vk(1)]/(E[vk(1)])2, respectively. Define the partial sums

Uk(n) ≡
n∑

i=1

uk(i) and Vk(n) ≡
n∑

i=1

vk(i), n = 1, 2, . . . ,

and their corresponding renewal processes

Ak(t) ≡ max{n ≥ 0 : Uk(n) ≤ t} and Sk(t) ≡ max{n ≥ 0 : Vk(n) ≤ t},
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where Ak(t) counts the total number of arrivals for class k customers in the time
interval (0, t] and Sk(t) counts the number of class k customers the server can
potentially serve in (0, t] if there are no class i customers with i < k.

Define the overall traffic intensity

ρ ≡
K∑

k=1

ρk with ρk ≡ λk

μk
, k = 1, 2, . . . ,K.

We say the system is underloaded when ρ < 1, critically loaded when ρ = 1 and
overloaded when ρ > 1. Let c2

k ≡ c2
a,k + c2

s,k be the variability coefficient for class
k (capturing the variabilities of both the arrival and service distributions), and
let ck > 0. Let

σ2
k ≡

k∑

j=1

ρj wj with wj ≡ c2
j

μj
.

Here σ2
k can be understood as the (weighted) cumulative utilization of service

capacity by the first k classes.
Let Qk(t) be the total number of class-k customers in the system at time t,

let Zk(t) be the workload for class k at time t, that is the total amount of time
required to process all class k customers assuming no future arrivals and no class
i < k customers after time t. Let Tk(t) be the total amount of time the server is
busy serving class k customers in [0, t], that is T1(t) =

∫ t

0
1{Q1(s)>0}ds and

Tk(t) =
∫ t

0

1{Qk(s)>0,Qi(s)=0,i<k}ds for 2 ≤ k ≤ K.

Let Ik(t) be the residual time in [0, t] available to serve classes k+1, . . . , K after
serving the first k classes, i.e., Ik(t) = t − ∑k

i=1 Ti(t). Define Yk(t) = μkIk(t)
for k = 1, 2, . . . , K. Let Dk(t) = Sk(Tk(t)) count the total number of class k
customers that complete service by time t. Let Q ≡ (Q1, . . . , QK)′ be the vector
of the queue length processes, also let Z, B, I and D be the vectors of the
workload, busy time, idle time and departure processes in the same token.

We have the dynamical equations:

Qk(t) = Ak(t) − Dk(t) ≥ 0, Zk(t) = Vk(Ak(t)) − Tk(t),
∫ t

0

Qk(t)dIk(t) = 0,

where the first equation holds by flow conservation, the second holds because
Vk(Ak(t)) represents the total amount of work (measured in time units) of class-
k arrivals in [0, t], and the third holds because the idle process Ik(t) increases
only when Qk(t) = 0.

Next, we give the fluid limit for the performance measures defined above. The
fluid limit is based on the functional strong law of large numbers of stochastic
process. Define the corresponding scaled processes as

Q̄(n)(t) =
1
n

Q(nt), Z̄(n)(t) =
1
n

Z(nt), T̄ (n)(t) =
1
n

T (nt),

Ī(n)(t) =
1
n

I(nt), D̄(n)(t) =
1
n

D(nt).
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We summarize the fluid limits [11] in the next lemma, also see [3,18] for details
and proofs.

Lemma 2.1 (Fluid limits for the (GI/GI)K/1/PPSD queue). Assume the sys-
tem is initially empty. If E[uk(1)] < ∞ and E[vk(1)] < ∞, then

(

Q̄(n), Z̄(n), T̄ (n), Ī(n), D̄(n)
)

→ (

Q̄, Z̄, T̄ , Ī, D̄
) ≡ X̄, u.o.c., w.p.1, as n → ∞,

where X̄ ≡ (X̄1, . . . , X̄K) with the kth element X̄k =
(
Q̄k, Z̄k, T̄k, Īk, D̄k

)
satisfy-

ing

Q̄k(t) ≡ λkt − D̄k(t) = X̄k(t) + Ȳk(t) ≥ 0, X̄k(t) ≡ (λk − μk)t + μk

k−1∑

l=1

T̄l(t),

Ȳk(t) ≡ Ψ(X̄k)(t), T̄k(t) ≡ t −
k−1∑

l=1

T̄l(t) − Īk(t), Īk(t) ≡ Ȳk(t)
μk

,

D̄k(t) ≡ μkT̄k(t), Z̄k(t) ≡ Q̄k(t)
μk

, k = 1, . . . , K, (2.1)

and functions Φ and Ψ are defined for x ∈ D0 as

Ψ(x)(t) ≡ sup
0≤s≤t

{−x(s)}+ and Φ(x)(t) ≡ x(t) + sup
0≤s≤t

{−x(s)}+. (2.2)

Remark 2.1 (Oblique reflection mapping). The mapping (Ψ,Φ) is known as
the one dimensional oblique reflection mapping, and is Lipschitz continuous in
uniform norm, see [6] for detailed discussions. Alternative representation for
(Ψ,Φ) is given below.

Definition 2.1 (Definition of oblique reflection mapping). For any function x ∈
D0, if there exists a unique pair of functions z, y ∈ D0 satisfying

(i) z(t) = x(t) + y(t) ≥ 0;
(ii) y is nondecreasing and y(0) = 0;
(iii)

∫ ∞
0

z(t)dy(t) = 0,

then (z, y) ≡ (Φ,Ψ)(x) is called the one dimensional oblique reflection mapping.

The objective of the rest of the paper is to establish the functional LIL and
the LIL limits for performance functions (Qk, Zk, Bk, Ik,Dk, 1 ≤ k ≤ K) and
identify the LIL limits as simple functions of the primitive model data

D ≡ (
λk, μk, c2

a,k, c2
s,k, c2

k, 1 ≤ k ≤ K
)
, (2.3)

and identify the functional LIL limits as functional set in term of data in (2.3)
together with some compact sets of continuous functions.
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3 Main Results

In this section, we give the funcitional LIL and its corresponding LILin Lévy’s
type for the performance measures in the (GI/GI)K/1/PPSD queueing system.
We firstly formalize the LIL and the functional LIL limits into mathematical
problems and then present main results in Theorems 3.1–3.3.

3.1 The LIL and the Functional LIL Scalings

Now we are ready to define the LIL and the functional LIL scalings based on
the fluid limit given in Lemma 2.1.

The LIL Scalings and Limits. We define the LIL-scaled processes for Qk:

Q∗
k,sup ≡ lim sup

t→∞
Qk(t) − Q̄k(t)

ϕ(t)
, Q∗

k,inf ≡ lim inf
t→∞

Qk(t) − Q̄k(t)

ϕ(t)
, k = 1, 2, . . . , K. (3.1)

Similarly, we define the following LIL-scaled notations in the same token of (3.1):
for k = 1, 2, . . . ,K,

Z∗
k,sup, Z

∗
k,inf ; T ∗

k,sup, T
∗
k,inf ; I∗

k,sup, I
∗
k,inf ; D∗

k,sup,D
∗
k,inf . (3.2)

Let

X ∗
k,sup ≡ (

Q∗
k,sup, Z

∗
k,sup, T

∗
k,sup, I

∗
k,sup,D

∗
k,sup

)
,

X ∗
k,inf ≡ (

Q∗
k,inf , Z∗

k,inf , T ∗
k,inf , I∗

k,inf ,D∗
k,inf

)
, k = 1, 2, . . . ,K. (3.3)

We will express all LIL limits in (3.3) as functions of the primitive data (2.3).

The Functional LIL Scalings and Limits. For all t ∈ [0, 1] and n = 3, 4, . . . ,
define the functional LIL-scaled process for Qk:

Qn
k (t) ≡ Qk(nt) − Q̄k(nt)

ϕ(n)
, k = 1, 2, . . . ,K. (3.4)

Similarly we define the functional LIL-scaled processes: Zn
k (t), Tn

k (t), In
k (t),

Y n
k (t), Dn

k (t) in the same token of (3.4), k = 1, 2, . . . ,K. We will develop all
the functional LIL results by showing that

(Qn
k , Zn

k , T n
k , In

k , Dn
k ) ⇒

(KQk
, KZk

, KTk
, KIk

, KDk

) ≡ K∗
k, w.p.1, k = 1, 2, . . . , K, (3.5)

which are expressed in terms of the input data (2.3) and the compact set Gk

defined as

Gk(δ) ≡
{

x ∈ C
k[0, 1] : x(0) = 0,

∫ 1

0

[ẋ(t)]2 dt ≤ δ2

}

, δ > 0, (3.6)

where the square denotes inner product, and ẋ(t) denotes the derivative of x(t)
which exists almost everywhere with respect to Lebesgue measure. We simply
denote G1 by G. Strassen [33] proved that Gk(δ) is a compact set in C

k[0, 1] for
any δ > 0, and that for x ∈ Gk(δ) and 0 ≤ a ≤ b ≤ 1, |x(b)−x(a)| ≤ δ(b− a)1/2.
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Remark 3.1 (Understanding the functional LIL and LIL). From the defini-
tions of the LIL (3.1) and functional LIL (3.4), it is easy to see that both of
them refine the fluid limit of renewal process because they are not only cen-
tered by the fluid limit, but also show us the asymptotic deviations around the
fluid limit. Meanwhile we note that the mathematical forms presented by the LIL
and the functional LIL are different: the LIL is numerical and the functional
LIL is functional. Especially, the functional set of the functional LIL consist of
univariate or multivariate functions. Generally, the sup-LIL and inf-LIL are the
supremum and the infimum of some function in its corresponding functional LIL
limit, respectively. When the functional LIL is a set of the univariate functions,
it is easy to find the LIL limits, however, when the functional LIL is a set of
multivariate functions, it is difficult to analyze the functional set and find the
LIL limits.

3.2 The LIL and the Functional LIL Limits

We now give our main results: the functional LIL and its corresponding LIL in
Lévy’s type for the queue length, workload, busy time, idle time and departure
processes in the overload regime. All proofs are given in Sect. 4.

Throughout the rest of the paper, we suppose that, for all k = 1, . . . , K,

E [uk(1)r] < ∞ and E [vk(1)r] < ∞ for some r > 2. (3.7)

For applications, we define the continuous mapping G1 : C × C → C by

G1(x, y)(t) = inf
0≤s≤t

[x(s) − y(s)]+ + y(t). (3.8)

Define the continuous mapping G2 : C × C → C by

G2(x, y)(t) = inf
0≤s≤t

[x(s)]+ + y(t). (3.9)

Suppose that the (GI/GI)K/1/PPSD queueing system is in the overloaded
regime: ρ > 1, there are three sub-cases categorized by the values of ρ1, . . . , ρK :

Case 1. There exists a k0 : 1 ≤ k0 < K such that
k0∑

j=1

ρj = 1 and
k0+1∑

j=1

ρj > 1;

Case 2. There exists a k0 : 1 ≤ k0 < K such that
k0∑

j=1

ρj < 1 and
k0+1∑

j=1

ρj > 1;

Case 3. ρ1 > 1.

Next, we give our main results according to three cases defined above.

Theorem 3.1 (The limits in Case 1). Suppose that the (GI/GI)K/1/PPSD
queueing system is in Case 1 of the overloaded regime, the functional LIL limits
for class 1 to class k0 − 1 satisfy, w.p.1,

K∗
k =

{(

η, η,
λ
1/2
k ck

μk
x, −σkx, λ

1/2
k ca,kx

)

: x ∈ G(1)

}

, k = 1, 2, . . . , k0 − 1, (3.10)
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The functional LIL limits for class k0 satisfy, w.p.1,

K∗
k0

=
{(

Φ(μk0x), Φ(x), G1(y), Ψ(x), G1(μKy)
)

: x ∈ G(σk0 ), y ∈ G2(σk0 )
}

, (3.11)

For class k0 + 1, the functional LIL, w.p.1,

Kk0+1 =
{(

G2(qk0+1x), G2(zk0+1x), Ψ(σk0y), η, μk0+1Ψ(σk0y)
)

: x ∈ G2(1), y ∈ G(1)
}

, (3.12)

where

qk0+1 =
√

λk0+1c2
a,k0+1 + μ2

k0+1σ
2
k0

, zk0+1 =

√

σ2
k0

+
λk0+1c2

k0+1

μ2
k0+1

, (3.13)

and for k = k0 + 2, k0 + 3, . . . , K if k0 + 1 < K, the functional LIL limits

Kk =
{(

λ
1/2
k ca,kx,

ck

√
λk

μk
x, η, η, η

)

: x ∈ G(1)
}

. (3.14)

For the LIL limits, the classes from 1 to k0 − 1 satisfy, w.p.1,

X ∗
k,sup = −X ∗

k,inf =

(

0, 0,
λ

1/2
k ck

μk
, σk, λ

1/2
k ca,k

)

, k = 1, 2, . . . , k0 − 1. (3.15)

The class k0 satisfies, w.p.1,

Q∗
k0,sup = μk0Z∗

k0,sup = μk0I∗
k0,sup = σk0 , Q∗

k0,inf = Z∗
k0,inf = I∗

k0,inf = 0, (3.16)

The class k0 + 1 satisfies, w.p.1,

T ∗
k0+1,sup = σk0+1, D∗

k0+1,sup = μk0+1σk0+1,

T ∗
k0+1,inf = D∗

k0+1,inf = I∗
k0+1,sup = I∗

k0+1,inf = 0, (3.17)

the classes from k0 + 2, k0 + 3, . . . , K satisfy, w.p.1,

Q∗
k,sup = −Q∗

k,inf = λ
1/2
k ca,k, Z∗

k,sup = −Z∗
k,inf =

ck

√
λk

μk
, T ∗

k,sup = T ∗
k,inf = I∗

k,sup

= I∗
k,inf = D∗

k,sup = D∗
k,inf = 0, k = k0 + 2, k0 + 3, . . . , K. (3.18)

Remark 3.2 (Understanding the limits in Case 1). The Case 1 in the over-
loaded regime is more complicated than the underloaded and critically loaded
cases [15], the reasons is that class k0 is a critically loaded state:

∑k0
k=1 ρk = 1.

Since the first k0 classes form an underloaded (GI/GI)k0/1/PPSD queueing sys-
tem, readers can refer to [15] for insights, we only go to understand the classes
k0 + 1, . . . , K, which characterize the overloaded regime. When k0 is the critical
critically loaded class, the asymptotic stochastic fluctuations, for class k0 + 1
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and classes k0 + 2, k0 + 3, . . . , K, are very different. This is so because class
k0 + 1 is still influenced by the performance of the first k classes (although the
first k0 classes have utilized all service capacity, it is still possible to serve some
(perhaps very little) class k0 + 1 customers), however the customers of classes
k0 +2, k0 +3, . . . , K are almost never served. This difference is well embodied in
the parameters in (3.12)–(3.13) and (3.14). For example, (i) for the queue length,
the second term μ2

k0+1σ
2
k0

of qk0+1 in (3.13) represents the influence from the first

k0 classes, and the corresponding parameter λ
1/2
k ca,k for k > k0 + 1 in (3.14) is

from its own arrival process and is independent of the first k0 classes, k > k0+1;
(ii) for busy time, the asymptotic fluctuation of the Tk0+1 is in fact identical with
Ik0 because Tk0+1(t) = Ik0(t)−Ik0+1(t) and the deviation from Ik0+1(t) is almost
negligible, however the asymptotic fluctuation of the Tk(t) = Ik−1(t) − Ik(t) is
almost zero with the same reason that the deviation of Ik(t) is almost negligible
for k > k0 + 1; (iii) for departure, since the departure is heavily dependent on
the busy time, it follows that the asymptotic fluctuation of Dk0+1 is embodied by
σk0 , the fluctuation parameter of the first k classes, nevertheless the asymptotic
fluctuation for classes k > k0 + 1 is zero because the corresponding asymptotic
fluctuation for busy time is almost negligible.

Theorem 3.2 (The limits in Case 2). Suppose that the (GI/GI)K/1/PPSD
queueing system is in Case 2 of the overloaded regime, the functional LIL limits
for class 1 to class k0 −1 satisfy (3.10) with k = 1, 2, . . . , k0; The functional LIL
limits for classes k0 + 2 to K satisfy (3.14) with k = k0 + 2, k0 + 3, . . . , K. For
class k0 + 1,

Kk0+1 =
{(

q∗
k0+1x, σk0+1x,−σk0x, η, d∗

k0+1x
)

: x ∈ G(1)
}

; (3.19)

where

q∗
k0+1 =

√
√
√
√
√μ2

k0+1σ
2
k0

+ λk0+1c2
a,k0+1 + μk0+1c2

s,k0+1

√
√
√
√1 −

k0∑

i=1

ρi,

d∗
k0+1 =

√
√
√
√
√μ2

k0+1σ
2
k0

+ μk0+1c2
s,k0+1

√
√
√
√1 −

k0∑

i=1

ρi. (3.20)

For the LIL limits, the classes from 1 to k0 satisfy (3.15) with k = 1, 2, . . . , k0,
the class k0 + 1 satisfies

X ∗
k0+1,sup = −X ∗

k0+1,inf =
(
q∗
k0+1, σk0+1, σk0 , 0, d∗

k0+1

)
, w.p.1, (3.21)

the classes from k0 + 2 to K satisfy (3.18) with k = k0 + 2, k0 + 3, . . . , K.

Remark 3.3 (Understanding the limits in Case 2). When k0 is the last under-
loaded class and k0 + 1 is the first overloaded class, that is, the system is in the
Case 2, class k0 + 1 can utilize the (1 −∑k0

i=1 ρi) parts of capacity of the server,
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classes k0 + 2, k0 + 3, . . . , K are almost never served. The performance for class
k(> k0) can refer to classes k0 + 2, k0 + 3 . . . , K in Case 1. For class k0 + 1,
the deviation parameter for queue length q∗

k0+1 consists of three parts: μ2
k0+1σ

2
k0

,

λk0+1c
2
a,k0+1 and μk0+1c

2
s,k0+1

√
1 − ∑k0

i=1 ρi, representing three asymptotic fluc-
tuations from the first k0 classes, the arrival and the service of class k0 + 1,
respectively. For workload processes of classes k0 and k0 + 1, their deviation
parameters have similar structure: σk0 and σk0+1, because, for class k0 + 1, the
workload process keeps track of the total amount of unfinished service times, their
unfinished service variability will still make an impact to the total workload. For
busy time Tk0+1, its deviation parameter σk0 is the same as the idle time Ik0 ,
this is so because, Ik(t), the remaining service capacity available for low-priority
classes k > k0, will asymptotically all be devoted to class k0 + 1. For departure
Dk0+1, the deviation parameter d∗

k0+1 in (3.20) includes the influence μ2
k0+1σ

2
k0

from the first k0 class, and the influence μk0+1c
2
s,k0+1

√
1 − ∑k0

i=1 ρi from its own
service, however is short of its own arrival influence because the queue length of
class k0 + 1 will go to infinity, and then its own arrival has no impact on it.

Theorem 3.3 (The limits in Case 3). Suppose that the (GI/GI)K/1/PPSD
queueing system is in Case 3 of the overloaded regime, the functional LIL limits
(3.14) holds for classes k = 2, 3, . . . ,K. For class 1, we have the functional LIL
limits:

K1 =
{(√

λ1c2
a,1 + μ1c2

s,1x, σ1x, η, η, μ
1/2
1 cs,1x

)
: x ∈ G(1)

}
. (3.22)

For the LIL limits, the class 1 satisfies

X ∗
1,sup = −X ∗

1,inf =
(√

λ1c2
a,1 + μ1c2

s,1, σ1, 0, 0, μ
1/2
1 cs,1

)
, w.p.1, (3.23)

the classes from 2 to K satisfy (3.18) with k = 2, 3, . . . ,K.

Remark 3.4 (The Little’s law). Together with Theorems 3.1–3.3, it says that
the Little’s law between the queue length and the workload processes holds for
classes with traffic intensity no more than one and fails in classes with traffic
intensity more than one, that is,

KQk
= μkKZk

, Q∗
k,sup = μkZ∗

k,sup, Q∗
k,inf = μkZ∗

k,inf for k :
k∑

i=1

ρi ≤ 1,

KQk
�= μkKZk

, Q∗
k,sup �= μkZ∗

k,sup, Q∗
k,inf �= μkZ∗

k,inf for k :
k∑

i=1

ρi > 1.

For the class k:
∑k

i=1 ρi > 1, its queue length Qk will go to infinity with time
increasing. The unfinished class-k customers play no role on the queue length
because the queue length counts the number of them. However, the unfinished
class-k customers maybe make an big impact on the workload if their service is
high variable.
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Remark 3.5 (The functional LIL sets consisting of binary functions). From
Theorems 3.1–3.3, we can find that the functional LIL sets, for classes k, k + 1
with ρk = 1, consist of some continuous binary functions, such as, G1(x, y) in
(3.8) and G2(x, y) in (3.9). All other functional LIL sets are composed of contin-
uous unary functions. Through finding the supremum and infimum of the func-
tional set, we can get the superior and inferior LIL limits, such as, Q∗

k,sup and
Q∗

k,inf with ρk < 1. Nevertheless, for the functional LIL sets consisting of binary
functions, such as, KQk

= G2(G2(qk0+1)) in (3.12), we do not have good idea to
analyze their the supremum and infimum, as a result, we do not show readers
their corresponding LIL limits. Mathematically, it is interesting to develop new
methods to analyze such binary functional sets and find the corresponding the
supremum and infimum or the LIL limits.

4 Proofs

In this section, we prove our main results: Theorems 3.1–3.3. We will prove
them by the strong approximation approach. We first give some basis for proof
in Sect. 4.1, and then prove Theorems 3.1–3.3 in Sect. 4.2, respectively.

4.1 The Primitive Basis for Proofs

We give some basis for applications in the proof, including the strong approxima-
tion of the performance measures which are some equations based on Brownian
motions, the functional LIL of Brownian motions and its corresponding continu-
ous mapping theorem given by Strassen in [33] and some results on the relatively
compact limits.

The idea of the strong approximation is to approximate a discrete process,
such as the queue length Q, by the sum of two continuous functions: (i) the
deterministic fluid function Q̄ and (ii) standard Brownian motions, with Q̄ char-
acterizing the mean value and the Brownian motions quantifying the stochastic
fluctuations around that mean value. We next introduce the strong approxima-
tions for the (GI/GI)K/1/PPSD system, and see Lemma 1 and Corollaries 1
and 3 in [18] for details.

Lemma 4.1 (Strong approximations for (GI/GI)K/1/PPSD). If (3.7) holds,
then, w.p.1,
∣
∣
∣
∣
∣
∣Qk − Q̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Zk − Z̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Tk − T̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Ik − Ĩk

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Dk − D̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r), k = 1, 2, . . . ,K, (4.1)
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where

Q̃k(t) ≡ X̃k(t) + Ỹk(t) = Φ(X̃k)(t), Ỹk(t) ≡ Ψ(X̃k)(t),

X̃k(t) ≡ (λk − μk)t + μk

k−1∑

l=1

T̃l(t) + W̃k(t),

T̃k(t) ≡ t −
k−1∑

j=1

T̃j(t) − Ĩk(t), Ĩk(t) ≡ 1
μk

Ỹk(t),

Z̃k(t) ≡ 1
μk

Q̃k(t) +
1
μk

[
μ

1/2
k cs,kWs,k(T̄k(t)) − μ

1/2
k cs,kWs,k(ρkt)

]
,

D̃k(t) ≡ μkT̃k(t) + μ
1/2
k cs,kWs,k(T̄k(t)),

W̃k(t) ≡ λ
1/2
k ca,kWa,k(t) − μ

1/2
k cs,kWs,k(T̄k(t)), (4.2)

Wa,k and Ws,k are independent standard Brownian motions associated with the
arrival and service processes of class k, respectively, and Ψ and Φ are defined in
(2.2). Let Wk(t) ≡ μk

∑k
l=1 W̃l(t)/μl, k = 1, 2, . . . , K, the functional measures

X̃k(t) and B̃k(t) in (4.2) satisfy

X̃k(t) − X̄k(t) = −
k−1∑

l=1

μk

μl

[
Q̃l(t) − Q̄l(t)

]
+ Wk(t), (4.3)

T̄k(t) − T̃k(t) =
1
μk

[
Q̃k(t) − Q̄k(t)

]
− 1

μk
W̃k(t). (4.4)

The approximated queue length Q̃k(t) satisfy: If ρk < 1, k = 1, 2, . . . ,K, then∣
∣
∣
∣
∣
∣Q̃k

∣
∣
∣
∣
∣
∣
L

= O(log L) w.p.1 as L → ∞.

Lemma 4.1 provides a basis for our strong approximation approach. By the
strong approximation above, we can transform the problem K∗

k into a Brown-
ian motion associated problem. Now we defined the Brownian motion scaling
processes: The functional LIL scaled processes for Q̃k:

Q̃n
k (t) =

Q̃k(nt) − Q̄k(nt)
ϕ(n)

, k = 1, 2, . . . ,K. (4.5)

Similarly, we define the scaled processes Z̃n
k (t), T̃n

k (t), Ĩn
k (t), Ỹ n

k (t), D̃n
k (t) in the

same token of (4.5) for k = 1, 2, . . . ,K, respectively. Let
(
Q̃n

k , Z̃n
k , T̃n

k , Ĩn
k , D̃n

k

)
⇒

(
KQ̃k

,KZ̃k
,KT̃k

,KĨk
,KD̃k

)
, w.p.1, k = 1, 2, . . . ,K,

if the limits on the right exist. It similarly follows from Lemma 4.3 in [16] that

K∗
k =

(
KQ̃k

,KZ̃k
,KT̃k

,KĨk
,KD̃k

)
, k = 1, 2, . . . ,K. (4.6)

In words, if we need to find the functional LILs K∗
k in (3.5), we only go to

compute the corresponding Brownian motion problems in (4.6).



330 Y. Guo and X. Hou

Strassen [33] firstly developed the functional LIL for Brownian motion as
follows.

Lemma 4.2 (Strassen’s functional LIL result). If Wa,Wb are two mutually
independent one-dimensional standard Brownian motions, σa �= 0, σb �= 0 are
two constants, then, for any t ∈ [0.1], w.p.1,

Wa(nt)
ϕ(n)

⇒ G(1) and
(

σaWa(nt)
ϕ(n)

,
σbWb(nt)

ϕ(n)

)

⇒ G2

(√
σ2

a + σ2
b

)

.

The following Lemma 4.3 is a Corollary of Theorem 3 in [33], called the
continuous mapping theorem for the relatively compact.

Lemma 4.3 (Strassen’s continuous mapping theorem). Let {xn : n ≥ 1} be a
relatively compact sequence in C

k[0, 1] endowed with the uniform norm and with
the compact set Gk as its set of limit points. If f is a continuous function on
C

k[0, 1] into some metric space S with Borel sets ψ, then the sequence {f(xn) :
n ≥ 1} is relatively compact in (S, ψ) and the set of its limit points coincides
with f(Gk), a compact set.

The following Lemma 4.4 is mainly used in Theorems 3.1 to deal with the
relatively compact of the sum of two or more functions, where one function
sequence converges to single zero-point set.

Lemma 4.4 (Relatively compact for sum function). Consider three sequences
of relatively compact functions: {fn

i (t)} ⊂ C[0, 1], satisfying that fn
i (t) ⇒ Ki

for i = 1, 2, 3, (fn
i (t), fn

j (t)) ⇒ Kij, i �= j, t ∈ [0, 1]. Suppose K1 = {η(t), t ∈
[0, 1]} ≡ {0}, we have (i) fn

1 (t) + fn
2 (t) ⇒ K2, (ii) (fn

2 (t), fn
1 (t) + fn

3 (t)) ⇒ K23

as n → ∞, where K2 is a compact set of univariate functions, K23 is a compact
set of binary functions.

Proof. We first note that (i) is a special case of (ii), it remains to prove (ii). By the
definition of relatively compact, since (fn

2 (t), fn
3 (t)) ⇒ K23, then for any subse-

quence {(fnk
2 (t), fnk

3 (t)), k = 1, 2, . . . } of the given sequence {(fn
2 (t), fn

3 (t)), n =
1, 2, . . . }, there exists a convergent subsubsequence {(f

nkl
2 (t), f

nkl
3 (t)), l =

1, 2, . . . } with its convergence limit, say a binary function x23(t), in K23 for
all t ∈ [0, 1], that is,

(f
nkl
2 (t), f

nkl
3 (t)) → x23(t) for all t ∈ [0, 1] as l → ∞.

Notice that K1 = {η(t), t ∈ [0, 1]}, the sequence {fn
1 (t)} is in fact a convergent

sequence: fn
1 (t) → η(t) ≡ 0 for all t ∈ [0, 1] as n → ∞. For its subsubsequence

{(f
nkl
1 (t), n = 1, 2, . . . }, we also have f

nkl
1 (t) → 0 for all t ∈ [0, 1] as l → ∞. So,

these follow that

(f
nkl
2 (t), f

nkl
1 (t) + f

nkl
3 (t)) → x23(t) for all t ∈ [0, 1] as l → ∞.

Hence, (fn
2 (t), fn

1 (t) + fn
3 (t)) ⇒ K23 for all t ∈ [0, 1] as n → ∞.
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The next Lemma 4.5 is mainly used in Theorem 3.1 to deal with the rela-
tively compact of some compound functions whose some function sequences are
convergent with limit zero.

Lemma 4.5 (Relatively compact for the compound). Given three functions
gi(t) ∈ C[0, 1], i = 1, 2, 3 and let gn

i (t) = gi(nt)/ϕ(n). Suppose that g1 is contin-
uous under the uniform norm, gn

2 (t) → {η(t), t ∈ [0, 1]} ≡ {0} for all t ∈ [0, 1],
gn
3 (t) is relatively compact and satisfies that gn

3 (t) ⇒ Kg3 for all t ∈ [0, 1], where
Kg3 ⊂ C[0, 1] is a compact set. Then, for all t ∈ [0, 1], both g1 ◦ gn

3 (t) and
g1 ◦ (gn

2 + gn
3 )(t) are relatively compact with the identical limit set g1(Kg3), that

is, as n → ∞,

g1 ◦ gn
3 (t) ⇒ g1(Kg3) and g1 ◦ (gn

2 + gn
3 )(t) ⇒ g1(Kg3).

Proof. Because g1 is a continuous mapping under the uniform norm, gn
3 (t) ⇒ Kg3

for all t ∈ [0, 1], it follows from Lemma 4.3 that g1 ◦ gn
3 (t) ⇒ g1(Kg3) as n → ∞.

By the definition of relatively compact, since gn
3 (t) ⇒ Kg3 for all t ∈ [0, 1], then

for any subsequence {(gnk
3 (t), k = 1, 2, . . . } of the given sequence {(gn

3 (t)), n =
1, 2, . . . }, there exists a convergent subsubsequence {g

nkl
3 (t), l = 1, 2, . . . }, which

converges to a limit in Kg3 , say x3(t) ∈ Kg3 for all t ∈ [0, 1], that is,

g
nkl
3 (t) → x3(t) for all t ∈ [0, 1] as l → ∞.

Since gn
2 (t) → 0 for all t ∈ [0, 1], the subsbusequence g

nkl
2 (t) → 0 for all t ∈ [0, 1]

as l → ∞. As a result, for the sequence {gn
2 +gn

3 , n = 1, 2, . . . }, its subsbusequence

(g
nkl
2 + g

nkl
3 )(t) = g

nkl
2 (t) + g

nkl
3 (t) → x3(t) for all t ∈ [0, 1] as l → ∞.

That is, (gn
2 + gn

3 )(t) ⇒ Kg3 . This follows that g1 ◦ (gn
2 + gn

3 )(t) ⇒ g1(Kg3).

4.2 Proofs of Theorems 3.1–3.3

In this section, we go to prove Theorems 3.1–3.3. Before proving, we first present
the following Lemma 4.6 for application, which helps us to deal with the process
Qk easily. Reader can refer to Lemma 6 in [18] for its proof.

Lemma 4.6. Suppose that the overloaded (GI/GI)K/1/PPSD is in Case 1,
that is, there exists a k0: 1 ≤ k0 < K such that

∑k0
j=1 ρj = 1 and

∑k0+1
j=1 ρj > 1,

then for i = 1, 2, . . . ,K − k0,

X̃k0+i(t) − X̄k0+i(t) = W̃k0+i(t) − μk0+iĨk0+i−1(t), (4.7)

Q̃k0+i(t) − Q̄k0+i(t) = W̃k0+i(t) − μk0+i

[
Ĩk0+i−1(t) − Ĩk0+i(t)

]
. (4.8)

Proof of Theorem 3.1. We firstly note that the queueing system is in Case
1: There exists a k0: 1 ≤ k0 < K such that

∑k0
j=1 ρj = 1 and

∑k0+1
j=1 ρj > 1.

Since the first k0 classes form a critically loaded (GI/GI)k0/1/PPSD queueing
system, the functional LIL (3.10) and the LIL (3.15) of classes 1, 2, . . . , k0 − 1
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can be obtained similarly with Theorem 3.1 in [15], and the functional LIL
(3.11) and the LIL (3.16) are similar with Theorem 3.2 in [15]. It remains to
prove the functional LILs (3.12), (3.14) and the LILs (3.17), (3.18) for classes
k0 + 1, k0 + 2, . . . , K.

For applications, we give the fluid solution to (2.1):

X̄k(t) =

{(
0, 0, ρkt, (1 − ∑k

i=1 ρi)t, λkt
)

, k = 1, 2, . . . , k0,

(λkt, ρkt, 0, 0, 0) , k = k0 + 1, k0 + 2, . . . , K.
(4.9)

The Functional LIL for Class k0 + 1. Now we are ready to deal with the
functional LIL for class k0 + 1. By (4.3),

X̃k0+1(t) = X̄k0+1(t) −
k0∑

l=1

μk0+1

μl

Q̃l(t) +

k0∑

l=1

μk0+1

μl

W̃l(t) + λ
1/2
k0+1ca,k0+1Wa,k0+1(t). (4.10)

Notice that, in the above equality, the last two terms are driftless Brownian
motions, the second term satisfies, for all t ∈ [0, 1],

k0−1∑

l=1

μk0+1

μl
Q̃n

l (t) =

k0−1∑

l=1

μk0+1

μl

Q̃n
l (nt)

ϕ(n)
⇒ {0},

Q̃n
k0

(nt)

ϕ(n)
⇒ Φ(G(μk0σk0 )), w.p.1,

as n → ∞, and then

k0−1∑

l=1

μk0+1

μl

Q̃l(t)
t

→ 0,
Q̃k0(t)

t
→ 0, w.p.1, as t → ∞.

This follows that limt→∞ X̃k0+1(t)/t = limt→∞ X̄k0+1(t)/t = λk0+1 w.p.1, or
equivalently limt→∞ X̃k0+1(t) = +∞, w.p.1. So, this, together with the definition
of the mapping Ψ in (2.2), implies that supt≥0 Ỹk0+1(t) < ∞ w.p.1, and as a
result, for all t ∈ [0, 1],

Ĩn
k0+1(t) =

Ỹ n
k0+1(t)
μk0+1

=
Ỹk0+1(nt)
μk0+1ϕ(n)

→ 0, w.p.1.

For Tk0+1, by (4.2) and (4.9),

T̃ n
k0+1(t) =

T̃k0+1(nt)

ϕ(n)
=

Ĩk0 (nt) − Ĩk0+1(nt)

ϕ(n)
= Ĩn

k0
(t) − Ĩn

k0+1(t) ⇒ Ψ(G(σk0 )), w.p.1

for all t ∈ [0, t], where the relatively compact limits follows from the functional
LIL of Ĩn

k0
(t). For Qk0+1, it follows from (4.2) and (4.9) that, for all t ∈ [0, 1],

w.p.1,

D̃
n
k0+1(t) =

D̃k0+1(nt) − D̄k0+1(nt)

ϕ(n)
=

μk0+1T̃k0+1(nt)

ϕ(n)
= μk0+1T̃

n
k0+1(t) ⇒ μk0+1Ψ(G(σk0 )).
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For Qk0+1, it follows from (4.4), (4.8) and (4.9) that

Q̃
n
k0+1(t) =

Q̃k0+1(nt) − Q̄k0+1(nt)

ϕ(n)
=

W̃k0+1(nt)

ϕ(n)
− μk0+1

(
Ĩ

n
k0

(t) − Ĩ
n
k0+1(t)

)

=
λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
−

μk0+1 Ĩk0 (nt)

ϕ(n)
+ μk0+1 Ĩ

n
k0+1(t)

=
λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
−

μk0+1

μk0ϕ(n)
sup

0≤s≤nt

[
−X̃k0 (s)

]+
+ μk0+1 Ĩ

n
k0+1(t) (4.11)

=
λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
+ μk0+1 Ĩ

n
k0+1(t)

−
μk0+1

μk0ϕ(n)
sup

0≤s≤nt

⎡

⎣
k0−1∑

l=1

μk0

μl

Q̃l(s) − Wk0 (s)

⎤

⎦

+

=
λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
+ μk0+1 Ĩ

n
k0+1(t)

− sup
0≤s≤nt

⎡

⎣
k0−1∑

l=1

μk0+1Q̃l(s)

μlϕ(n)
−

μk0+1Wk0 (s)

μk0ϕ(n)

⎤

⎦

+

=
λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
+ μk0+1 Ĩ

n
k0+1(t) − Ψ(−

k0−1∑

l=1

μk0+1Q̃l

μlϕ(n)
+

μk0+1

μk0

Wk0

ϕ(n)
)(nt).

Notice that, for all t ∈ [0, 1], Ĩn
k0+1(t) → 0 and

∑k0−1
l=1 Q̃n

l (t) → 0 as n → ∞.
In order to find the functional LIL limit of Q̃n

k0+1(t), it suffices to compute the
functional LIL limit of

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
− Ψ(

μk0+1

μk0

Wk0

ϕ(n)
)(nt)

=
λ

1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)
+ inf

0≤s≤nt

[
μk0+1

μk0

Wk0

ϕ(n)
(s)

]+

(4.12)

= G2(
μk0+1

μk0

Wk0

ϕ(n)
,
λ

1/2
k0+1ca,k0+1Wa,k0+1

ϕ(n)
)(nt),

where G2 is defined in (3.9). Because Wk0 and Wa,k0+1 are independent Brownian
motions, and

V ar

(

λ
1/2
k0+1ca,k0+1Wa,k0+1(t) +

μk0+1

μk0

Wk0(t)
)

= q2
k0+1t,

where qk0+1 is defined in (3.13), together with Lemmas 4.2 and 4.3 we get that,
for all t ∈ [0, 1], w.p.1,

G2(
μk0+1

μk0

Wk0

ϕ(n)
,
λ

1/2
k0+1ca,k0+1Wa,k0+1

ϕ(n)
)(nt) ⇒ G2(G2(qk0+1)).

So, by Lemma 4.5, for all t ∈ [0, 1], Q̃n
k0+1(t) ⇒ G2(G2(qk0+1)) w.p.1.
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We next go to find the functional LIL limit for Z̃n
k0+1(t). By (4.2), (4.3) and

(4.9),

Z̃
n
k0+1(t) =

Z̃k0+1(nt) − Z̄k0+1(nt)

ϕ(n)

=
1

μk0+1

Q̃k0+1(nt) − μ
1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt) − Q̄k0+1(nt)

ϕ(n)

=
1

μk0+1

W̃k0+1(nt) − μ
1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

ϕ(n)
−

(
Ĩ

n
k0

(t) − Ĩ
n
k0+1(t)

)

=
1

μk0+1

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

ϕ(n)

− 1

μk0

Ỹ
n

k0
(t) + Ĩ

n
k0+1(t)

=
1

μk0+1

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

ϕ(n)

− 1

μk0ϕ(n)
Ψ(X̃k0 )(nt) + Ĩ

n
k0+1(t)

=
1

μk0+1

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

ϕ(n)

− Ψ(−
k0−1∑

l=1

Q̃l

μlϕ(n)
+

Wk0

μk0ϕ(n)
)(nt) + Ĩ

n
k0+1(t),

where the third equality holds similarly with the third equality for Q̃n
k0+1(t)

above, the forth equality holds because T̄k0+1(t) = 0 and Ĩn
k0

(t) = Ψ(X̃k0)(nt)/
(μk0ϕ(n)), the sixth equality holds similarly with (4.11). As analysis for Qk0+1,
if we compute the functional LIL for Zk0+1, by Lemma 4.5 it suffices to consider
the following functional LIL, as (4.12),

1

μk0+1

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

ϕ(n)
− Ψ(

Wk0

μk0ϕ(n)
)(nt)

=
λ

1/2
k0+1ca,k0+1Wa,k0+1(nt) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1nt)

μk0+1ϕ(n)
+ inf

0≤s≤nt

[
Wk0 (s)

μk0ϕ(n)

]+

= G2(
Wk0

μk0ϕ(n)
,

λ
1/2
k0+1ca,k0+1Wa,k0+1 − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1·)

μk0+1ϕ(n)
)(nt),

where G2 is defined in (3.9). Because Wk0 , Wa,k0+1 and Ws,k0+1 are independent
Brownian motions, and

V ar

⎛

⎝ Wk0 (t)

μk0

+
λ

1/2
k0+1ca,k0+1Wa,k0+1(t) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1t)

μk0+1

⎞

⎠ = z
2
k0+1t,

where zk0+1 is defined in (3.13), it follows from Lemmas 4.2 and 4.3 that, for all
t ∈ [0, 1], w.p.1,

G2(
Wk0

μk0ϕ(n)
,

λ
1/2
k0+1ca,k0+1Wa,k0+1 − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1·)

μk0+1ϕ(n)
)(nt) ⇒ G2(G2(zk0+1)),
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then Z̃n
k0+1(t) ⇒ G2(G2(zk0+1)) w.p.1 for all t ∈ [0, 1].

The Functional LIL for Classes k0+2 to K. We next consider the functional
LIL limits for classes k0 + 2, k0 + 3, . . . , K. We first prove Ĩk(t) < ∞ w.p.1 for
all t and k = k0 + 2, k0 + 3, . . . , K by induction. Since T̄k0+2(t) = 0, rewriting
(4.7) yields that

X̃k0+2(t) − X̄k0+2(t) = λ
1/2
k0+2ca,k0+2Wa,k0+2(t) − μk0+2Ĩk0+1(t).

Notice that Ĩn
k0+1(t) → 0 w.p.1 for all t ∈ [0, 1], then Ĩk0+1(t)/t → 0 w.p.1 as

t → ∞. So,

lim
t→∞

X̃k0+2(t)
t

= lim
t→∞

X̄k0+2(t)
t

= λk0+2 > 0 w.p.1,

and limt→∞ X̃k0+2(t) = ∞ w.p.1. Hence, Ĩk0+2(t) = sup0≤s≤t

(
−X̃k0+2(s)

)+

<

+∞ w.p.1.
Next, we suppose that, for all t, Ĩk(t) < ∞ w.p.1 k = k0 +2, k0 +3, . . . , k0 + i

with i < K − k0. Since T̄k0+i+1(t) = 0, (4.7) implies that

X̃k0+i+1(t) − X̄k0+i+1(t) = λ
1/2
k0+i+1ca,k0+i+1Wa,k0+i+1(t) − μk0+i+1Ĩk0+i(t).

By the induction hypothesis, Ĩk0+i(t) < ∞ w.p.1 for all t, then Ĩk0+i(t)/t → 0
w.p.1 as t → ∞. With similar analysis of Ĩk0+2, we have limt→∞ X̃k0+i+1(t) = ∞
w.p.1, and as a result, Ĩk0+i+1(t) = sup0≤s≤t

(
−X̃k0+i+1(s)

)+

< +∞ w.p.1.

Hence, we proved that Ĩk(t) < ∞ w.p.1 for all t and k = k0 + 2, k0 + 3, . . . , K.
This follows that, for all t ∈ [0, 1] and i = 1, 2, . . . ,K − k0,

Ĩn
k0+i(t) =

Ĩk0+i(nt) − Īk0+i(nt)
ϕ(n)

=
Ĩk0+i(nt)

ϕ(n)
→ 0, w.p.1,

and then Ĩn
k0+i(t) ⇒ {0} w.p.1 for all t ∈ [0, 1] and i = 1, 2, . . . ,K − k0.

We now go to find the functional LIL for Tk and Dk, k = k0+2, k0+3, . . . , K.
Notice that Ĩn

k (t) ⇒ {0} w.p.1 for all t ∈ [0, 1] and k = k0 + 2, k0 + 3, . . . , K, we
have, by (4.2) and (4.9), k = k0 + 2, k0 + 3, . . . , K,

T̃ n
k0+i(t) =

T̃k0+i(nt)

ϕ(n)
=

Ĩk0+i−1(nt) − Ĩk0+i(nt)

ϕ(n)
= Ĩn

k0+i−1(t) − Ĩn
k0+i(t) ⇒ 0, w.p.1,

D̃n
k0+i(t) =

D̃k0+i(nt)

ϕ(n)
=

μk0+iT̃k0+i(nt)

ϕ(n)
= μk0+iT̃

n
k0+i(t) ⇒ 0, w.p.1.

For Qk, k = k0 + 2, k0 + 3, . . . , K, since T̄k(t) = 0 for all k = k0 + 2, k0 +
3, . . . , K, it follows from (4.8) that, for all t ∈ [0, 1] and k = k0 +2, k0 +3, . . . , K,

Q̃n
k (t) =

Q̃k(nt) − Q̄k(nt)

ϕ(n)
=

λ
1/2
k ca,kWk(nt)

ϕ(n)
− μk

[
Ĩn
k−1(t) − Ĩn

k (t)
]

⇒ G(λ
1/2
k ca,k), w.p.1,
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where the relatively compact limit holds because Ĩn
k (t) ⇒ {0} w.p.1 for all

t ∈ [0, 1] and k = k0 + 2, k0 + 3, . . . , K.
For Zk, k = k0 + 2, k0 + 3, . . . , K, by (4.2) and (4.9), for all t ∈ [0, 1],

Z̃n
k (t) =

Z̃k(nt) − Z̄k(nt)
ϕ(n)

=
Q̃k(nt) − μ

1/2
k cs,kWs,k(nρkt) − Q̄k(nt)

μkϕ(n)

=
1

μkϕ(n)

[
λ

1/2
k ca,kWa,k(nt) − μ

1/2
k cs,kWs,k(nρkt)

]
− Ĩn

k−1(t) + Ĩn
k (t)

⇒ G(
ck

√
λk

μk
), w.p.1,

where the relatively compact limit holds because the variance of the sum of
λ

1/2
k ca,kWa,k(t) and μ

1/2
k cs,kWs,k(ρkt) is λkc2

kt, and Ĩn
k (t) ⇒ {0} w.p.1 for all

t ∈ [0, 1] and k = k0 + 2, k0 + 3, . . . , K.

The LIL. We now go to find the LIL (3.17) for class k0 + 1 and the LIL (3.18)
for classes k0 + 2, . . . , K. Notice that, for δ > 0 given above, by (2.1) on page
169 in [24], |y(b)| ≤ δ

√
b ≤ δ for any y ∈ G(δ) and 0 ≤ b ≤ 1, then, for any δ > 0,

sup
x∈Ψ(G(δ))

x(1) = sup
y∈G(δ)

sup
0≤s≤1

{−y(s)} = δ, inf
x∈Ψ(G(δ))

x(1) = inf
y∈K(δ)

sup
0≤s≤1

{−y(s)} = 0, (4.13)

where the supremum and infimum are attained for the functions y(s) = −s and
y(s) = 0 respectively. We get the LIL limits for T ∗

k0+1,sup, T
∗
k0+1,inf ,D∗

k0+1,sup

and D∗
k0+1,inf . The LIL limits I∗

k0+1,sup = I∗
k0+1,inf = 0 follows from KIk0+1 =

{0}. That is, (3.17) holds. For classes k0 + 2, k0 + 3, . . . , K, their LIL limits can
be obtained similarly with Theorem 3.1 in [15], which follows (3.18). �
Proof of Theorem 3.2. We firstly note that there exists a k0: 1 ≤ k0 < K
such that

∑k0
j=1 ρj < 1 and

∑k0+1
j=1 ρj > 1. As Theorem 3.1, we first go to find

the functional LIL and then the LIL limits. Notice that the first k0 classes form
a underloaded (GI/GI)k0/1/PPSD queueing system, we have the functional
LIL and the LIL limits the same as (3.10) and (3.15) with k = 1, 2, . . . , k0,
respectively, the functional LIL and the LIL limits for classes k0+2, k0+3, . . . , K
are the same as (3.14) and (3.18) respectively. So, we only need to consider class
k0 + 1, that is, the functional LIL (3.19) and the LIL (3.21).

For applications, we give the following fluid solution to (2.1) for class k =
k0 + 1:

X̄k(t) =

⎛

⎝μk(

k∑

l=1

ρl − 1)t, (

k∑

l=1

ρl − 1)t, (1 −
k−1∑

l=1

ρl)t, 0, μk(1 −
k−1∑

l=1

ρl)t

⎞

⎠ , k = k0 + 1. (4.14)

The Functional LIL for Class k0 + 1. We now consider the functional LIL
limits for class k0 + 1. As the analysis for (4.10), by (4.3) we have

X̃k0+1(t) = X̄k0+1(t) −
k0∑

l=1

μk0+1

μl
Q̃l(t) +

k0+1∑

l=1

μk0+1

μl
W̃l(t). (4.15)
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where X̄k0+1(t) = μk0+1

(∑k0+1
l=1 ρl − 1

)
t = Q̄k0+1(t) by (2.1). Since the first k0

classes form a underloaded (GI/GI)k0/1/PPSD queueing system, we have, for
all t ∈ [0, 1],

1
ϕ(n)

k0∑

l=1

μk0+1

μl
Q̃l(nt) ⇒ {0}, w.p.1, (4.16)

and then,
1
t

k0∑

l=1

μk0+1

μl
Q̃l(t) → 0, w.p.1, as t → ∞.

Notice that W̃l(t) is a driftless Brownian motion, we have limt→∞ X̃k0+1(t) =

+∞ w.p.1, as a result, Ĩk0+1(t) = sup0≤s≤t

[
−X̃k0+1(s)

]+

/μk0+1 < ∞ w.p.1.

So, it follows that, for all t ∈ [0, 1], Ĩn
k0+1(t) = Ĩk0+1(nt)/ϕ(n) ⇒ {0} w.p.1.

For the functional LIL of Tk0+1, since T̃k0+1(t) = Ĩk0(t) − Ĩk0+1(t) and
T̄k0+1(t) = Īk0(t) − Īk0+1(t), we have, for all t ∈ [0, 1],

T̃n
k0+1(t) =

T̃k0+1(nt) − T̄k0+1(nt)
ϕ(n)

=
Ĩk0(nt) − Īk0(nt)

ϕ(n)
− Ĩk0+1(nt) − Īk0+1(nt)

ϕ(n)

= Ĩn
k0

(t) − Ĩn
k0+1(t) ⇒ −G(σk0), w.p.1,

because, for all t ∈ [0, 1], w.p.1, Ĩn
k0

(t) ⇒ −G(σk0), see Theorem 3.1 in [15], and
Ĩn
k0+1(t) ⇒ {0} as above.

For the functional LIL of Qk0+1, by (4.2), (4.3) and (4.14),

Q̃n
k0+1(t) =

Q̃k0+1(nt) − Q̄k0+1(nt)
ϕ(n)

=
X̃k0+1(t) − X̄k0+1(nt) + Ỹk0+1(nt)

ϕ(n)

=
1

ϕ(n)

(

−
k0∑

l=1

μk0+1

μl
Q̃l(nt) + Wk0+1(nt)

)

+ μk0+1Ĩ
n
k0+1(t).

Notice that (4.16) holds, Ĩn
k0+1(t) ⇒ {0} for all t ∈ [0, 1] w.p.1, and by Eqs. (4.1)

and (4.14),

Wk0+1(t) =
k0+1∑

l=1

μk0+1

μl
W̃l(t) =

k0∑

l=1

μk0+1

μl
W̃l(t) + λ

1/2
k0+1ca,k0+1Wa,k0+1(t)

−μ
1/2
k0+1cs,k0+1Ws,k0+1((1 −

k0∑

l=1

ρl)t) (4.17)

is a driftless Brownian motion with variance parameter q∗
k0+1 which is defined

in (3.20), we have, for all t ∈ [0, 1], Q̃n
k0+1(t) ⇒ G(q∗

k0+1) w.p.1.
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For the functional LIL of Zk0+1, by (4.3),

X̃k0+1(t) − X̄k0+1(t) = −
k0∑

l=1

μk0+1

μl
Q̃l(t) + Wk0+1(t),

then, with (4.2), (4.14) and (4.17),

Z̃
n
k0+1(t) =

Z̃k0+1(nt) − Z̄k0+1(nt)

ϕ(n)
=

1

μk0+1ϕ(n)

[
X̃k0+1(nt) − X̄k0+1(nt)

]
+ Ĩ

n
k0+1(t)

+
1

μk0+1ϕ(n)

[
μ
1/2
k0+1cs,k0+1Ws,k0+1(T̄k0+1(nt)) − μ

1/2
k0+1cs,k0+1Ws,k0+1(nρk0+1t)

]

= Ĩ
n
k0+1(t) −

k0∑

l=1

1

μl

Q̃
n
l (t) +

k0+1∑

l=1

1

μlϕ(n)

[
λ
1/2
l

ca,lWa,l(nt) − μ
1/2
l

cs,lWs,l(nρlt)
]

.

Similarly, for all t ∈ [0, 1],

Ĩn
k0+1(t) ⇒ {0},

k0∑

l=1

1
μl

Q̃n
l (t) ⇒ {0} w.p.1, (4.18)

and by Lemma 4.2, for all t ∈ [0, 1],

k0+1∑

l=1

1
μlϕ(n)

[
λ

1/2
l ca,lWa,l(nt) − μ

1/2
l cs,lWs,l(nρlt)

]
⇒ G(σk0+1) w.p.1,

So, for all t ∈ [0, 1], Z̃n
k0+1(t) ⇒ G(σk0+1) w.p.1.

Finally, we go to find the functional LIL for Dk0+1. By (4.2), (4.3), (4.4),
(4.14) and (4.17), we have

D̃
n
k0+1(t) =

D̃k0+1(nt) − D̄k0+1(nt)

ϕ(n)

=
μk0+1

ϕ(n)

[
T̃k0+1(nt) − T̄k0+1(nt)

]
+

μ
1/2
k0+1cs,k0+1Ws,k0+1(T̄k0+1(nt))

ϕ(n)

= − 1

ϕ(n)

[
Q̃k0+1(nt) − Q̄k0+1(nt)

]
+

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)

= − 1

ϕ(n)

[
X̃k0+1(nt) − X̄k0+1(nt)

]
− μk0+1 Ĩ

n
k0+1(t) +

λ
1/2
k0+1ca,k0+1Wa,k0+1(nt)

ϕ(n)

=

k0∑

l=1

μk0+1

μl

Q̃
n
l (t) − μk0+1Ĩ

n
k0+1(t) −

k0∑

l=1

μk0+1W̃l(nt)

μlϕ(n)

+
μ
1/2
k0+1cs,k0+1Ws,k0+1(T̄k0+1(nt))

ϕ(n)
,

because, as (4.18), for all t ∈ [0, 1], the first two terms

k0∑

l=1

μk0+1

μl
Q̃n

l (t) ⇒ {0}, μk0+1Ĩ
n
k0+1(t) ⇒ {0}, w.p.1,
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and for the last two terms, notice that, for all t ≥ 0, T̄k0+1(t) = (1 − ∑k0
l=1 ρl)t,

V ar

(
k0∑

l=1

μk0+1W̃l(t)
μl

+ μ
1/2
k0+1cs,k0+1Ws,k0+1(T̄k0+1(t))

)

= (d∗
k0+1)

2t,

where d∗
k0+1 is defined in (3.20), then, for all t ∈ [0, 1], by Lemma 4.2,

−
k0∑

l=1

μk0+1W̃l(nt)
μlϕ(n)

+
μ

1/2
k0+1cs,k0+1Ws,k0+1(T̄k0+1(nt))

ϕ(n)
⇒ G(d∗

k0+1), w.p.1,

we have, together with Lemma 4.4, D̃n
k0+1(t) ⇒ G(d∗

k0+1) w.p.1 for all t ∈ [0, 1].

The LIL. The LIL limits (3.21) for classes k0+1, . . . , K can be obtained similarly
with the part of the LIL of Theorem 3.1 in [15]. �
Proof of Theorem 3.3. We first note that the traffic intensity ρ1 > 1. Since
the (GI/GI)1/1/PPSD is a overloaded queueing system, the classes from 2 to
K operate similarly with classes k0 + 2, k0 + 3, . . . , K in Theorem 3.2, it follows
the functional LIL and the LIL limits for class 2 to K satisfy (3.14) and (3.18)
with k = 2, 3, . . . ,K, respectively. It suffices to find the functional LIL and the
LIL for class 1. For applications, we first give the class-1’s fluid solution to (2.1):
X̄1(t) = ((λ1 − μ1)t, (1 − ρ1)t, t, 0, μ1t) for all t ≥ 0.

The Functional LIL for Class 1. Now, we are ready to compute the functional
LIL limits for class 1. We first deal with I1. Since ρ1 > 1 and

X̃1(t) = μ1(ρ1 − 1)t + λ
1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(t),

we have limt→∞ X̃1(t)/t = μ1(ρ1 − 1) > 0 w.p.1, as a result, limt→∞ X̃1(t) = ∞
w.p.1. So,

Ψ(X̃1)(nt) = sup
0≤s≤nt

[
−X̃1(s)

]+
< ∞ and Ĩn

1 (t) =
1

μ1ϕ(n)
Ψ(X̃1)(nt) ⇒ {0}, w.p.1,

for all t ∈ [0, 1]. As a result, for all t ∈ [0, 1],

T̃n
1 (t) =

T̃1(nt) − T̄1(nt)
ϕ(n)

= − Ĩ1(nt)
ϕ(n)

= −Ĩn
1 (t) ⇒ {0}, w.p.1,

For Q1, since Q̄1(t) = X̄1(t) for all t ≥ 0, by Lemma 4.2,

Q̃n
1 (t) =

Q̃1(nt) − Q̄1(nt)
ϕ(n)

=
1

ϕ(n)

[
X̃1(nt) + μ1Ĩ1(nt) − X̄1(nt)

]

=
1

ϕ(n)

[
λ

1/2
1 ca,1Wa,1(nt) − μ

1/2
1 cs,1Ws,1(nt)

]
+ μ1Ĩ

n
1 (t)

⇒ G(
√

λ1c2
a,1 + μ1c2

s,1), w.p.1
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for all t ∈ [0, 1], because Ĩn
1 (t) ⇒ {0} w.p.1 for all t ∈ [0, 1] and the variance of

the Brownian motion λ
1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(t) is (λ1c

2
a,1 + μ1c

2
s,1)t. For

the functional LIL of Z1, by (2.1) and (4.2),

Z̄1(t) =
Q̄1(t)
μ1

and Z̃1(t) =
Q̃1(t)
μ1

+
μ

1/2
1 cs,1Ws,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t)

μ1
,

and then, by Lemma 4.2, for all t ∈ [0, 1],

Z̃n
1 (t) =

Z̃1(nt) − Z̄1(nt)
ϕ(n)

=
Q̃n

1 (t)
μ1

+
μ

1/2
1 cs,1Ws,1(nt) − μ

1/2
1 cs,1Ws,1(nρ1t)

μ1ϕ(n)

= Ĩn
1 (t) +

W̃1(nt)
μ1ϕ(n)

+
μ

1/2
1 cs,1Ws,1(nt) − μ

1/2
1 cs,1Ws,1(nρ1t)

μ1ϕ(n)

= Ĩn
1 (t) +

λ
1/2
1 ca,1Wa,1(nt) − μ

1/2
1 cs,1Ws,1(nρ1t)

μ1ϕ(n)
⇒ G(σ1), w.p.1,

because the variance of Brownian motion (λ1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t))

is λ(c2
a,1 + c2

s,1)t = μ2
1σ

2
1t. For the functional LIL of D1, since, by (2.1) and (4.2),

for all t ∈ [0, 1],

D̃n
1 (t) =

D̃1(nt) − D̄1(nt)
ϕ(n)

= μ1T̃
n
1 (t) +

μ
1/2
1 cs,1Ws,1(nt)

ϕ(n)
⇒ G(μ1/2

1 cs,1), w.p.1,

because, for all t ∈ [0, 1], T̃n
1 (t) ⇒ {0} w.p.1.

The LIL. When ρ1 > 1, the LIL limits can be obtained in two cases: class 1 and
classes from 2 to K. For class 1, we can get the LIL limits (3.23) as the analysis
in part: The LIL in Theorem 3.1 in [15]. For classes 2 to K, its proof is similar
too. �

5 Conclusion

In this paper, we introduced a model of an overloaded multi-class single-server
queue under a priority service discipline, called (GI/GI)K/1/PPSD queueing
system. Specifically, the (GI/GI)K/1/PPSD model consists of a single server
and K classes of customers, with class 1 taking the highest priority, class 2
the second highest priority, and so on, class K the lowest priority. The service
discipline is assumed to be preemptive.

We developed the functional LIL and its corresponding LIL in Lévy’s type
(1.1) for the overloaded (GI/GI)K/1/PPSD queueing system by focusing on
five key performance measures: queue length, workload, busy time, idle time,
and departure processes. The functional LIL and LIL limits refine the previous
work on the functional strong law of large numbers (or fluid limit) and show
us more insight on the asymptotic fluctuations around the fluid limits in the
functional and numerical form, respectively. All the functional LIL and LIL limits
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are identified respectively to be the functional compact set and functions by the
first and second moments of primitive data: the arrival and service. Our main
results, Theorems 3.1–3.3, give us a whole analysis on the asymptotic deviation
covering all classes with traffic intensity less than, equivalent to and more than
one.

The approach here to analysis for main results: Theorems 3.1–3.3, are based
on the fluid and strong approximations, called the strong approximation app-
roach, which operates in four steps: find the fluid solution and strong approxi-
mation, transferring the discrete problems on the functional LIL into their corre-
sponding strong approximation problems, finding the functional LIL limits and
finding the LIL in Lévy’s type from some compact set given by the functional
LIL limits.

It is also interesting and important to find the asymptotic fluctuations around
the fluid limit for some other queueing systems. From the main results: Theorems
3.1–3.3, it says that more random parameters, such that arrival and service
times, makes the system fluctuation around the mean value bigger. However,
this changing fluctuation does not embody in other approximations, such as the
fluid, diffusion and strong approximations. The functional LIL and LIL limits
can help us to find more insight on the asymptotic fluctuations in numerical and
functional forms.

Acknowledgements. This work is supported by NSFC grants 11871116 and
11971074.

Appendix

To improve the paper’s readability, we summarize the notations of the perfor-
mance functions used in this paper. In the following two tables, the first one is
for the fluid approximation, strong approximation, the functional LIL and its
corresponding LIL in Lévy’s type, for k = 1, 2, . . . ,K,

Performance functions Queue length Workload Busy time Idle time Departure

Original notation Qk(t) Zk(t) Bk(t) Ik(t) Dk(t)

Fluid approximation Q̄k(t) Z̄k(t) B̄k(t) Īk(t) D̄k(t)

Strong approximation Q̃k(t) Z̃k(t) B̃k(t) Ĩk(t) D̃k(t)

Functional LIL KQk
KZk

KBk
KIk

KDk

And for strong approximation K
Q̃k

K
Z̃k

K
B̃k

K
Ĩk

K
D̃k

Lévy’s LIL of superior limit Q∗
k,sup(t) Z∗

k,sup(t) B∗
k,sup(t) I∗

k,sup(t) D∗
k,sup(t)

Lévy’s LIL of inferior limit Q∗
k,inf (t) Z∗

k,inf (t) B∗
k,inf (t) I∗

k,inf (t) D∗
k,inf (t)

The second is for the scaled process of the LIL in Lévy’s type, the functional
LIL and the fluid limits, for k = 1, 2, . . . ,K,
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Scalings of Lévy’s LIL of functional LIL and of strong approximation of fluid

for Qk
Qk(t)−Q̄k(t)

ϕ(t) Qn
k (t) ≡ Qk(nt)−Q̄k(nt)

ϕ(n) Q̃n
k (t) ≡ Q̃k(nt)−Q̄k(nt)

ϕ(n) Q̄
(n)
k

(t) ≡ 1
n

Qn(nt)

for Zk
Zk(t)−Z̄k(t)

ϕ(t) Zn
k (t) ≡ Zk(nt)−Z̄k(nt)

ϕ(n) Z̃n
k (t) ≡ Z̃k(nt)−Z̄k(nt)

ϕ(n) Z̄
(n)
k

(t) ≡ 1
n

Zn(nt)

for Bk
Bk(t)−B̄k(t)

ϕ(t) Bn
k (t) ≡ Bk(nt)−B̄k(nt)

ϕ(n) B̃n
k (t) ≡ B̃k(nt)−B̄k(nt)

ϕ(n) B̄
(n)
k

(t) ≡ 1
n

Bn(nt)

for Ik
Ik(t)−Īk(t)

ϕ(t) In
k (t) ≡ Ik(nt)−Īk(nt)

ϕ(n) Ĩn
k (t) ≡ Ĩk(nt)−Īk(nt)

ϕ(n) Ī
(n)
k

(t) ≡ 1
n

In(nt)

for Dk
Dk(t)−D̄k(t)

ϕ(t) Dn
k (t) ≡ Dk(nt)−D̄k(nt)

ϕ(n) D̃n
k (t) ≡ D̃k(nt)−D̄k(nt)

ϕ(n) D̄
(n)
k

(t) ≡ 1
n

Dn(nt)
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Abstract. A functional law of the iterated logarithm (LIL) and its cor-
responding LIL are established for a underloaded and critically loaded
multiclass queueing system with preemptive priority service discipline,
covering five performance measures: queue length, workload, busy time,
idle time and number of departures. All the functional LIL and the LIL
limits quantify the magnitude of asymptotic stochastic fluctuations of the
performance compensated by their deterministic fluid limits in two forms:
the functional and numerical, respectively. By the primitive data of the
first and second moments of the interarrival and service times, all the
functional LILs are expressed into some compact sets of continuous func-
tions and all the LILs are some analytic functions. The proofs are based
on the fluid approximation and the strong approximation of the queueing
system, with the fluid approximation characterizing the expected values
of the performance functions and the strong approximation approximat-
ing discrete performance processes with reflected Brownian motions.

Keywords: Multiclass queue · The functional law of the iterated
logarithm · The law of the iterated logarithm · Strong approximation ·
Brownian motion

1 Introduction

This paper can be thought of as a companion of [10]. Both of papers focus on a
common multiclass (GI/GI)K/1/PPSD queueing system, which consists of one
server and K customer classes, all customers arrive at the system from outside
following class-dependent renewal processes (the first GI), and are served by
a preemptive priority service discipline (PPSD) with class 1 taking the highest
priority, class 2 taking the second highest priority, and so on, class K taking the
lowest priority, the service times are assumed to be independent and identically
distributed (i.i.d.) non-exponential random variables (the second GI). However,
this paper and [10] have different research issues. Guo [10] aims to the over-
loaded regime of the system, defined by the traffic intensity ρ > 1, however this
c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 344–360, 2019.
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paper considers the underloaded and critically loaded regimes with the traffic
intensity ρ < 1 and ρ = 1, respectively. We develop, for the underloaded and
critically loaded regimes, a functional law of the iterated logarithm (LIL) and
its corresponding LIL in Lévy’s type for five key performance measures: queue
length, workload, busy time, idle time and the number of departures.

Among literature on queueing studies, it is emphasized that the previous
works of [1,3,6,10] and [13] are the most revalant to the current paper. In
[1,6], the authors obtained the fluid approximation for queueing networks under
static buffer priority service policy, which helps us understand the determinis-
tic dynamic performance for the (GI/GI)K/1/PPSD queueing system. Chen
and Shen [3] developed the strong approximation for a feedforward queueing
networks, which follows the strong approximation for the (GI/GI)K/1/PPSD
queueing system. Guo etc. [10,13] considered the (GI/GI)K/1/PPSD queue-
ing system. Guo [10] studied the overloaded regime for the (GI/GI)K/1/PPSD
queueing system, and obtained the functional LIL and the LIL in Lévy’s type.
Guo and Liu [13] established the LIL limits in Csörgő and Révész’s type. For the
underloaded and critically loaded regimes of the (GI/GI)K/1/PPSD queueing
system, we establish the functional LIL and its associated LIL in Lévy’s type
for the five performance measures. Other literature on multiclass priority queue-
ing systems can refer to [2,4] for fluid approximation, [8,9,22–24] for strong
approximations, [11,14,15] for functional LIL and [12,18–20] for LIL.

Both functional LIL and LIL limits quantize the asymptotic stochastic fluctu-
ations of stochastic processes around their fluid limits in functional and numer-
ical forms, respectively. To our best knowledge, there are one type of the func-
tional LIL and two types of the LIL limits for stochastic processes in literature.
The functional LIL generally originates to Strassen [21], and the two types of
LIL limits are the Lévy’s LIL [16,17] and its later generalized LIL by Csörgő and
Révész [5]. The functional LIL and the LIL limits are both firstly established for
the standard Brownian motion. Let W (t) be a one-dimensional standard Brow-
nian motion, and Wn(t) = W (nt)/

√
2n log log n be the corresponding functional

LIL–scaled process for t ∈ [0, 1] and n = 3, 4, . . . . Strassen’s functional LIL
tells us that, (i) the scaled sequence {Wn(t), n = 3, 4, . . . } is relatively com-
pact, which means that every subsequence has a convergent subsubsequence, (ii)
all the limits of the convergent subsequences form a compact set in the space of
absolutely continuous functions x, which satisfies that x(0) = 0,

∫ 1

0
[ẋ(t)]2 dt ≤ 1,

with ẋ being the derivative of x and the square brackets being the inner product.
Mathematically, the compact set has the following form:

{

x ∈ C
1[0, 1] : x(0) = 0,

∫ 1

0

[ẋ(t)]2 dt ≤ 1
}

,

where C
1[0, 1] is the space of the one-dimensional continuous functions on [0, 1].

The Lévy’s LIL is to consider the superior and inferior limits: with probability
one (w.p.1),

lim sup
L→∞

W (L)√
2L log log L

= − lim inf
L→∞

W (L)√
2L log log L

= 1, (1.1)
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and the generalized LIL by Csörgő and Révész [5] is: w.p.1,

lim sup
L→∞

sup0≤t≤L |W (t)|√
2L log log L

= 1. (1.2)

Besides the above LILs in (1.1) and (1.2), there is a weaker type of LIL: for
Brwonian motion W defined above, sup0≤t≤L |W (t)| = O(

√
L log log L) w.p.1,

where we say f(t) = O(g(t)) as t → ∞ if lim supt→∞ |f(t)/g(t)| ≤ N for some
N > 0. Readers can refer to [2–4] for more details.

The contributions of this paper are summarized below. As a supplement to
[10], we study the underloaded and critically loaded regimes, and develop the
functional LIL and the LIL in Lévy’s type for five key performance measures of
the (GI/GI)K/1/PPSD queueing system, including the queue length, workload,
busy time, idle time and departure processes (see Sect. 2 for their definitions).
All the functional LIL limits of the above performance measures are identified
to be as compact sets of analytic functions and the corresponding LIL in Lévy’s
type as analytic functions, where all the functions are constructed in terms of the
primitive model parameters, and the model parameters are the first and second
moments of the interarrival and service times. The main results, Theorems 3.1
and 3.2, are proved by an approach based on strong approximation (or strong
approximation approach), which is different from the previous approach based
on probabilistic inequality or renewal process construction. Some interesting
observations from Theorems 3.1 and 3.2 are given, for example, the functional
LIL– and LIL–versions of the Little’s law between the queue length and workload
processes are preserved well in the underloaded and critically loaded regimes, the
LIL of the queue length, as the function of traffic intensity ρ, is continuous when
ρ < 1 and has a big upper skip at ρ = 1.

The presentation of the paper will proceed as follows. First, the (GI/GI)K/1/
PPSD queueing model, the associated key performance functions, and their
corresponding fluid limits are in Sect. 2. Then, in Sect. 3, the functional LIL and
its corresponding LIL limits for the processes of interest, that is, Theorems 3.1
and 3.2, are presented. For reader’s convenience, some insights of these results
are given too. The proofs of Theorems 3.1 and 3.2 are given in Sect. 4, in which
we also present the proof’s bases before proving: Strassen’s funcitional LIL, the
strong approximation, and some results on the relatively compact. Finally, we
draw conclusions in Sect. 5.

We conclude the introduction with an account of the notations and conventions
used throughout the paper. Let (Ω,F ,P) a common probability space on which all
random variables and processes are defined, E(·) and Var(·) be the corresponding
mean and variance, respectively. “ =d ” means equality in distribution. Given any
positive integer k, Rk and R

k
+ are the sets of the k-dimensional real numbers and

nonnegative real numbers, especially, R = R
1 and R+ = R

1
+. Let prime be the

transpose of a vector or matrix. For x = (x1, x1, . . . , ak)′ ∈ R
k, |x| = (x2

1 + · · · +
x2

k)1/2 is the Euclidean norm. For x ∈ R, [x]+ ≡ max{x, 0}, where “≡” denotes a
definition. Given x, y ∈ R, let x ∨ y = max{x, y}, and x ∧ y = min{x, y}. Suppose
D

k[x, y] is the space of k-dimensional right continuous functions on [x, y) with left



Functional Law of the Iterated Logarithm for Multiclass Queues 347

limits on (x, y], endowed the Skorohod topology [7]. Suppose that Ck[x, y] is the
subset of continuous functions in D

k[x, y]. Especially D ≡ D
1, C ≡ C

1 and D0 ≡
{x ∈ D : x(0) ≥ 0}. Given functions f and g, f ◦ g(t) = f(g(t)), ḟ(t) denotes the
derivative of f(t). If {fn, n ≥ 1} is relatively compact and the set of all limit points
form a compact set Kf , we say that fn ⇒ Kf w.p.1. Let ||f ||L ≡ sup0≤t≤L |f(t)|
be the uniform norm of f . We say that fn → f uniformly on compact set (u.o.c.)
if ||fn − f ||L → 0, as n → ∞. Let ϕ(t) ≡ √

2t log log t for all t bigger than Eular
constant. Define the identity mapping e with e(t) ≡ t, the zero mapping η with
η(t) = 0 for all t, and the indicator function 1C with 1C(s) = 1 if s ∈ C and 0
otherwise.

2 The (GI/GI)K/1/PPSD queueing system

As described in the first paragraph in Sect. 1, the (GI/GI)K/1/PPSD queueing
system has one single-server station serving K classes of customers, K ≥ 2. Each
class has its own exogenous arrival process and its own priority. We assume that
class-1 has the highest priority, class-2 has the second highest priority, and so on,
class-K has the lowest priority. A PPSD policy is operated among all classes. In
words, customers with identical priority are severed accordingly to the order of
arrivals, and customers with different priorities are served accordingly to their
priorities: A newly arrival of class-k can preempt the service of class-i with i > k,
and the interrupted class-i customer resumes its service only when all customers
with higher priority than class-i complete service.

The Primitive Data. Suppose that uk ≡ {uk(n), n = 1, 2, . . . } and vk ≡
{vk(n), n = 1, 2, . . . }, k = 1, 2, . . . ,K, are 2K sequences of mutually indepen-
dent i.i.d. random variables, denote the interarrival and service time sequences.
More specially, uk(n) denotes the class–k interarrival time between the (n−1)st
and the nth arrivals, and vk(n) denotes the service time of the nth served
the class–k customer. Assume that the sequences uk and vk have the following
moments: means E[uk(1)] ≡ 1/λk and E[vk(1)] ≡ 1/μk, variances V ar[vk(1)] and
V ar[vk(1)], respectively. Define the corresponding squared coefficients of varia-
tion: c2

a,k ≡ V ar[uk(1)]/(E[uk(1)])2 and c2
s,k ≡ V ar[vk(1)]/(E[vk(1)])2. Define

the arrival process:

Ak(t) ≡ max{n ≥ 0 : Uk(n) ≤ t} with Uk(n) ≡
n∑

i=1

uk(i),

where Ak(t) denotes the total number of arrivals for class–k customers in (0, t],
the service process:

Sk(t) ≡ max{n ≥ 0 : Vk(n) ≤ t} with Vk(n) ≡
n∑

i=1

vk(i), n = 1, 2, . . . .

where Sk(t) is the number of class–k customers the server serves in t units of
time.
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The Dynamical Equations. We define the following performance measures.
For class k, k = 1, 2, . . . ,K,

• Qk(t) is the queue length process and denotes the number of class-k customers
in the system at time t;

• Zk(t) is the workload process and denotes the time that the server needs to
finish the current customers of class k in system at time t;

• Tk(t) is the busy time process and is the total amount of time the server is
busy serving class k customers in [0, t];

• Ik(t) = t−∑k
i=1 Ti(t) is the residual time in [0, t] and denotes the time available

for the server to serve classes k + 1, . . . , K after serving the first k classes;
• Dk(t) is the departure process and counts the completed customers of class

k in [0, t].

The dynamical equations are given:

Qk(t) = Ak(t) − Dk(t) ≥ 0, Dk(t) = Sk(Tk(t)),

Tk(t) =
∫ t

0

1{Qk(s)>0,Qi(s)=0,i<k}ds, T1(t) =
∫ t

0

1{Q1(s)>0}ds,

Zk(t) = Vk(Ak(t)) − Tk(t),
∫ t

0

Qk(t)dIk(t) = 0,

where the first equation follows from the flow conservation, the forth holds
because Vk(Ak(t)) denotes the amount of work of class-k arrivals by time t,
and the last is from the fact that Ik(t) increases only when Qk(t) = 0.

We define the traffic intensity

ρ ≡
K∑

k=1

ρk with ρk ≡ λk

μk
, k = 1, 2, . . . ,K.

We say the system is underloaded when ρ < 1, critically loaded when ρ = 1 and
overloaded when ρ > 1.

The Fluid Limit. We now give the fluid limit for applications next. First, we
define the fluid scaled process:

Q̄(n)(t) =
1
n

Q(nt), Z̄(n)(t) =
1
n

Z(nt), T̄ (n)(t) =
1
n

T (nt),

Ī(n)(t) =
1
n

I(nt), D̄(n)(t) =
1
n

D(nt).

The following fluid limits is from [6].
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Lemma 2.1 (Fluid limits [6]). Suppose that the system is initially empty, that
is Qk(0) = 0, k = 1, 2, . . . , K. If E[uk(1)] < ∞ and E[vk(1)] < ∞, we have

(
Q̄(n), Z̄(n), T̄ (n), Ī(n), D̄(n)

)
→ (

Q̄, Z̄, T̄ , Ī, D̄
) ≡ X̄, u.o.c., w.p.1, as n → ∞,

where the limit

X̄ ≡ (X̄1, . . . , X̄K), having the element X̄k =
(
Q̄k, Z̄k, T̄k, Īk, D̄k

)
, k = 1, . . . , K,

satisfies

Q̄k(t) ≡ μkZ̄k(t) ≡ λkt − D̄k(t) = X̄k(t) + Ȳk(t) ≥ 0,

X̄k(t) ≡ (λk − μk)t + μk

k−1∑

l=1

T̄l(t),

T̄k(t) ≡ t −
k−1∑

l=1

T̄l(t) − Īk(t),

Īk(t) ≡ Ȳk(t)
μk

, Ȳk(t) ≡ Ψ(X̄k)(t),

D̄k(t) ≡ μkT̄k(t), (2.1)

the functions Φ and Ψ are defined for x ∈ D0 as

Ψ(x)(t) ≡ sup
0≤s≤t

{−x(s)}+, Φ(x)(t) ≡ x(t) + sup
0≤s≤t

{−x(s)}+. (2.2)

The mapping (Ψ,Φ) in (2.2) is known as the one dimensional oblique reflec-
tion mapping, and is Lipschitz continuous in uniform norm, see [4] for more
details.

The Objective. As a supplement to [10], we go to find the LIL in Lévy’s
type and functional LIL for the five main performance measures (Qk, Zk, Bk,
Ik,Dk, 1 ≤ k ≤ K) in the underloaded and critically loaded regimes. The LIL will
present us some analytic function of the primitive moment data

D ≡ (
λk, μk, c2

a,k, c2
s,k, c2

k, 1 ≤ k ≤ K
)
, (2.3)

the functional LIL will show us some compact set of continuous functions of the
data (2.3).

3 Main Results

In this section, we establish the LIL in Lévy’s type and functional LIL for the five
main performance measures (Qk, Zk, Bk, Ik,Dk, 1 ≤ k ≤ K) in the underloaded
and critically loaded regimes. We first define the LIL and functional LIL in
Sect. 3.1 and give the main results in Sect. 3.2.
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3.1 The Primitive Scalings

We define the primitive scalings firstly for the LIL and secondly the functional
LIL.

The LIL Scalings. We define the LIL-scaled processes: for k = 1, 2, . . . , K,

Q∗
k,sup ≡ lim sup

t→∞
Qk(t) − Q̄k(t)

ϕ(t)
, Q∗

k,inf ≡ lim inf
t→∞

Qk(t) − Q̄k(t)
ϕ(t)

,

Z∗
k,sup ≡ lim sup

t→∞
Zk(t) − Z̄k(t)

ϕ(t)
, Z∗

k,inf ≡ lim inf
t→∞

Zk(t) − Z̄k(t)
ϕ(t)

,

T ∗
k,sup ≡ lim sup

t→∞
Tk(t) − T̄k(t)

ϕ(t)
, T ∗

k,inf ≡ lim inf
t→∞

Tk(t) − T̄k(t)
ϕ(t)

,

I∗
k,sup ≡ lim sup

t→∞
Ik(t) − Īk(t)

ϕ(t)
, I∗

k,inf ≡ lim inf
t→∞

Ik(t) − Īk(t)
ϕ(t)

,

D∗
k,sup ≡ lim sup

t→∞
Dk(t) − D̄k(t)

ϕ(t)
, D∗

k,inf ≡ lim inf
t→∞

Dk(t) − D̄k(t)
ϕ(t)

. (3.1)

For k = 1, 2 . . . ,K, let

X ∗
k,sup ≡ (

Q∗
k,sup, Z

∗
k,sup, T

∗
k,sup, I

∗
k,sup,D

∗
k,sup

)
,

X ∗
k,inf ≡ (

Q∗
k,inf , Z∗

k,inf , T ∗
k,inf , I∗

k,inf ,D∗
k,inf

)
. (3.2)

We go to identify all the LIL limits in (3.2) as analytic functions based on (2.3).

The Functional LIL Scalings. We define the functional LIL-scaled processes:
for t ∈ [0, 1] and n = 3, 4, . . . ,,

Qn
k (t) ≡ Qk(nt) − Q̄k(nt)

ϕ(n)
, Zn

k (t) ≡ Zk(nt) − Z̄k(nt)

ϕ(n)
, T n

k (t) ≡ Tk(nt) − T̄k(nt)

ϕ(n)
,

In
k (t) ≡ Ik(nt) − Īk(nt)

ϕ(n)
, Dn

k (t) ≡ Dk(nt) − D̄k(nt)

ϕ(n)
, for k = 1, 2, . . . , K. (3.3)

We go to establish the following result:
(
Q

n
k , Z

n
k , T

n
k , I

n
k , D

n
k

) ⇒ (KQk
, KZk

, KTk
, KIk

, KDk

) ≡ K∗
k, w.p.1, k = 1, 2, . . . , K, (3.4)

which are identified by the data (2.3) and the compact set Gk:

Gk(δ) ≡
{

x ∈ C
k[0, 1] : x(0) = 0,

∫ 1

0

|ẋ(t)|2 dt ≤ δ2

}

, δ > 0. (3.5)

In [21] Strassen told us that Gk(δ) is a compact set in C
k[0, 1] for any δ > 0, and

that for x ∈ Gk(δ) and 0 ≤ a ≤ b ≤ 1, |x(b) − x(a)| ≤ δ(b − a)1/2.
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3.2 The LIL and the Functional LIL Limits

We now give our main results: Theorems 3.1 and 3.2. All proofs are given in
Sect. 4. Throughout the rest of the paper, we suppose that, for all k = 1, . . . , K,

E [uk(1)r] < ∞ and E [vk(1)r] < ∞ for some r > 2. (3.6)

Theorem 3.1 (Limits in the underloaded regime). Suppose (3.6) holds. If ρ <
1, then, w.p.1, the functional LIL

K∗
k =

{(
η, η,

λ
1/2
k ck

μk
x, −σkx, λ

1/2
k ca,kx

)
: x ∈ G(1)

}
, k = 1, 2, . . . , K, (3.7)

and the LIL

X ∗
k,sup = −X ∗

k,inf =

(

0, 0,
λ

1/2
k ck

μk
, σk, λ

1/2
k ca,k

)

, k = 1, 2, . . . ,K, (3.8)

where

σ2
k ≡

k∑

j=1

ρj

c2
j

μj
with c2

j ≡ c2
a,j + c2

s,j ,

and σ2
k can be understood as the (weighted) cumulative utilization of service

capacity by the first k classes.

Remark 3.1 (Insight from the underloaded regime). If the (GI/GI)K/1/
PPSD queueing system is in the underloaded regime, then all classes are in
light traffic, and all queue lengths are stochastic bounded (not growing with time
t), and this follows the zero functional LIL- and LIL-limits. Since the fluid and
strong approximations satisfy the Little’s law in the underloaded regime, the sim-
ilar zero functional LIL- and LIL-limits are followed for the workload process.
In the sense of the functional LIL and LIL, all the workload (or waiting time)
process are asymptotically negligible in the underloaded regime, so all customers
are quickly served upon arrival. This show us that the departure process per-
forms similarly with its corresponding arrival and is almost independent of the
service. This gives us the reason that the class-k departure’s LIL and the func-
tional LIL limits are only expressed by the arrival parameter λ1/2ca,k. Because
∑k

i=1 Tk(t) + Ik(t) = t for all t ≥ 0, the stochastic deviations, from the first k

classes’s busy time
∑k

i=1 Tk(t) and the idle time Ik(t), are mutually supplement
each other. As a result, the deviation parameter of the idle time Ik(t) is embodied
by σk: σ2

k =
∑k

i=1(λ
1/2
k ck/μk)2, the parameter for busy time from classes 1 to k,

see (3.7) and (3.8).
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Theorem 3.2 (Limits in the critically loaded regimes). Suppose (3.6) holds. If
ρ = 1, then, the functional LILs K∗

k satisfy (3.7) for k = 1, 2, . . . ,K − 1 w.p.1,
and for class K,

K∗
K = {(Φ(μKx), Φ(x), G1(y), Ψ(x), G1(μKy)) : x ∈ G(σK), y ∈ G2(σK)} , w.p.1, (3.9)

where G1 : C × C → C is a continuous mapping defined by

G1(x, y)(t) = inf
0≤s≤t

[x(s) − y(s)] + y(t). (3.10)

For the LIL limits, X ∗
k,sup and X ∗

k,inf satisfy (3.8) for classes k = 1, 2, . . . ,K−1,
and for class K,

Q
∗
K,sup = μKZ

∗
K,sup = μKI

∗
K,sup = σK , Q

∗
K,inf = Z

∗
K,inf = I

∗
K,inf = 0, w.p.1. (3.11)

Remark 3.2 (Insight from the critically loaded regime). If the (GI/GI)K/1/
PPSD is in the critically loaded regime, then classes 1, 2, . . . ,K − 1 are in light
traffic, class K is a critical loaded state. Under the PPSD service discipline, the
performance of class K is impacted by the classes 1, 2, . . . ,K − 1 with higher
priority, this is why the deviation parameter σK is in (3.9) and (3.11). The zero
limits of the LIL in (3.11) comes from their definitions which can be understood
together with the oblique reflection mapping (2.2) and the Little’s law: Q∗

K,sup =
μKZ∗

K,sup and KQK
= μKKQK

. Finally we note that, the LIL of the queue length,
as the function of traffic intensity ρ, is continuous when ρ < 1 and has a big
upper skip at ρ = 1.

4 Proofs

In this section, we prove Theorems 3.1 and 3.2 by the strong approximation
approach. We first give some basis for proof in Sect. 4.1, and then prove them in
Sect. 4.2.

4.1 Strong Approximation and Associated Reslults

We give the basis for the proof including the strong approximation and Strassen’s
functional LIL. The strong approximation for (GI/GI)K/1/PPSD queueing is
a Brownian motion system associated with the fluid approximation. Strassen’s
functional LIL helps us get the functional LIL of the main performance measures
based on the Brownian motion system.

Lemma 4.1 (Strong approximations) . Suppose that (3.6) holds, we have,
w.p.1,

∣
∣
∣
∣
∣
∣Qk − Q̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Zk − Z̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Tk − T̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Ik − Ĩk

∣
∣
∣
∣
∣
∣
L

= o(L1/r),
∣
∣
∣
∣
∣
∣Dk − D̃k

∣
∣
∣
∣
∣
∣
L

= o(L1/r), k = 1, 2, . . . ,K, (4.1)
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where

Q̃k(t) ≡ X̃k(t) + Ỹk(t) = Φ(X̃k)(t), Ỹk(t) ≡ Ψ(X̃k)(t),

X̃k(t) ≡ (λk − μk)t + μk

k−1∑

l=1

T̃l(t) + W̃k(t),

T̃k(t) ≡ t −
k−1∑

j=1

T̃j(t) − Ĩk(t), Ĩk(t) ≡ 1
μk

Ỹk(t),

Z̃k(t) ≡ 1
μk

Q̃k(t) +
1
μk

[
μ

1/2
k cs,kWs,k(T̄k(t)) − μ

1/2
k cs,kWs,k(ρkt)

]
,

D̃k(t) ≡ μkT̃k(t) + μ
1/2
k cs,kWs,k(T̄k(t)),

W̃k(t) ≡ λ
1/2
k ca,kWa,k(t) − μ

1/2
k cs,kWs,k(T̄k(t)), (4.2)

Ψ and Φ are defined in (2.2), Wa,k and Ws,k are independent standard Brownian
motions which can be looked as from the arrival and service processes of class
k, respectively. Define Wk(t) ≡ μk

∑k
l=1 W̃l(t)/μl, k = 1, 2, . . . , K, X̃k(t) and

B̃k(t) satisfy

X̃k(t) − X̄k(t) = −
k−1∑

l=1

μk

μl

[
Q̃l(t) − Q̄l(t)

]
+ Wk(t), (4.3)

T̄k(t) − T̃k(t) =
1
μk

[
Q̃k(t) − Q̄k(t)

]
− 1

μk
W̃k(t). (4.4)

In addition, If ρk < 1, k = 1, 2, . . . ,K, then
∣
∣
∣
∣
∣
∣Q̃k

∣
∣
∣
∣
∣
∣
L

= O(log L) w.p.1 as L → ∞.

Lemma 4.1 approximates the discrete (GI/GI)K/1/PPSD queueing system
into a continuous Brownian motion system. In fact, based on the strong approx-
imation given by Lemma 4.1 the discrete function LIL problem 3.4 can be trans-
formed into its corresponding continuous problem of Brownian motion. To this
end, we define the following scaled processes based on the strong approximation.

Q̃n
k (t) =

Q̃k(nt) − Q̄k(nt)

ϕ(n)
, Z̃n

k (t) ≡ Z̃k(nt) − Z̄k(nt)

ϕ(n)
, T̃ n

k (t) ≡ T̃k(nt) − T̄k(nt)

ϕ(n)
,

Ĩn
k (t) ≡ Ĩk(nt) − Īk(nt)

ϕ(n)
, D̃n

k (t) ≡ D̃k(nt) − D̄k(nt)

ϕ(n)
, for k = 1, 2, . . . , K. (4.5)

Let
(
Q̃n

k , Z̃n
k , T̃n

k , Ĩn
k , D̃n

k

)
⇒

(
KQ̃k

,KZ̃k
,KT̃k

,KĨk
,KD̃k

)
, w.p.1, k = 1, 2, . . . ,K,

if the relatively compact limits on the right exist. Similarly with Lemma 4.3 in
[11] we conclude that

K∗
k =

(
KQ̃k

,KZ̃k
,KT̃k

,KĨk
,KD̃k

)
, k = 1, 2, . . . ,K. (4.6)
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It means in 4.6 that it suffices to find the functional LIL in (4.6) if we are
interested in the functional LIL in (3.4).

The following result is Strassen’s functional LIL for BM [21].

Lemma 4.2 (Strassen’s functional LIL). Suppose that Wa,Wb are two mutually
independent one-dimensional standard Brownian motions, σa, σb are two nonzero
constants, we have, for any t ∈ [0.1], w.p.1,

Wa(nt)
ϕ(n)

⇒ G(1) and
(

σaWa(nt)
ϕ(n)

,
σbWb(nt)

ϕ(n)

)

⇒ G2

(√
σ2

a + σ2
b

)

.

4.2 Proof of Theorems 3.1 and 3.2

We first prove Theorem 3.1 and then Theorem 3.2.

Proof of Theorem 3.1. We first go to find the functional LIL and then the LIL
in Lévy’s type. For applications, we give the following fluid solution to (2.1) in
this underloaded regime:

X̄k(t) = (0, 0, ρkt, (1 −
k∑

i=1

ρi)t, λkt) for k = 1, 2, . . . ,K, t ≥ 0.

The Functional LIL for the Underloaded Regime. By Lemma 4.1,∣
∣
∣
∣
∣
∣Q̃k

∣
∣
∣
∣
∣
∣
L

= O(log L) w.p.1 as L → ∞. So, with (4.5) Q̃n
k (t) ⇒ η(t) ≡ 0 w.p.1

for all t ∈ [0, 1]. For Zk, it follows from (2.1) and (4.2) that Q̄k(t) = μkZ̄k(t)
and Q̃k(t) = μkZ̃k(t), and than Z̃n

k (t) ⇒ η(t) ≡ 0 w.p.1 for all t ∈ [0, 1]. We now
go to find the functional LIL limits for Tk and Ik. By Lemmas 4.2 and (4.4), we
have, k = 1, 2, . . . ,K,

T̃n
k (t) =

T̃k(nt) − T̄k(nt)
ϕ(n)

= − 1
μk

Q̃n
k (t) +

1
μk

W̃k(nt)
ϕ(n)

⇒ 1
μk

G(λ1/2
k ck), w.p.1,

where, in the underloaded regime, W̃k(t) = λ
1/2
k ca,kWa,k(t) − μ

1/2
k cs,kWs,k(ρkt)

is a driftless Brownian motion with variance parameter λ
1/2
k ck. For Ik,

Ĩn
k (t) =

Ĩk(nt) − Īk(nt)
ϕ(n)

=

∑k
l=1

(
T̄l(nt) − T̃l(nt)

)

ϕ(n)

=
k∑

l=1

1
μl

Q̃n
l (t) −

∑k
l=1

1
μl

W̃l(nt)

ϕ(n)
⇒ −G(σk), w.p.1, (4.7)

because Q̃n
l (t) ⇒ η(t) ≡ 0 w.p.1 and

∑k
l=1 W̃l(t)/μl is a driftless Brownian

motion with variance parameter σk. For Dk,
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D̃n
k (t) =

D̃k(nt) − D̄k(nt)
ϕ(n)

=
μ

1/2
k cs,kWs,k(T̄k(nt)) + μk(T̃k(nt) − T̄k(nt))

ϕ(n)

=
μ

1/2
k cs,kWs,k(T̄k(nt)) −

[
Q̃k(nt) − W̃k(nt)

]

ϕ(n)

= −Q̃n
k (t) +

λ
1/2
k ca,kWa,k(nt)

ϕ(n)
⇒ G(λ1/2

k ca,k), w.p.1,

because Q̃n
k (t) ⇒ η(t) ≡ 0 w.p.1 and λ

1/2
k ca,kWa,k(t) is a driftless Brownian

motion with variance parameter λ
1/2
k ca,k. Hence we get all the functional LIL

limits in this underloaded regime.

The LIL for the UL Regime. Now we are ready to find the LIL limits X ∗
k,sup

and X ∗
k,inf in (3.2) based on the functional LIL sets in (3.7). Firstly, we note

that if fn ⇒ Kf = {0}, then lim infn→∞ fn = lim supn→∞ fn = limn→∞ fn = 0.
Because KQk

= KZk
= {η} for k = 1, 2, . . . ,K, we have

Q∗
k,sup = Q∗

k,inf = Z∗
k,sup = Z∗

k,inf = 0, w.p.1.

Secondly, for any δ > 0,

sup
x∈G(δ)

x(1) = δ, inf
x∈G(δ)

x(1) = −δ, (4.8)

where the supremum is actually attained for the functions x(t) = δt and
the infimum is from x(t) = −δt. In doing so, we can get the LIL lim-
its T ∗

k,sup, T
∗
k,inf , I∗

k,sup, I
∗
k,inf ,D∗

k,sup,D
∗
k,inf for k = 1, 2, . . . ,K. Hense, (3.8)

holds. �
Proof of Theorem 3.2. In this critically loaded regime, it is easy to see that the
first K − 1 classes form a underloaded queueing system (GI/GI)K−1/1/PPSD

because
∑K−1

k=1 ρk < 1, and the first K − 1 classes does not receive the influence
from class K under the PPSD policy. So, the functional LIL limits K∗

k satisfy
(3.7), the LIL limits X ∗

k,sup and X ∗
k,inf satisfy (3.8) for k = 1, 2, . . . ,K − 1.

So, it remains to find the functional LIL and the LIL limits for class K. For
applications, we first give the fluid solution to (2.1) in this critically loaded
regime: for t ≥ 0,

X̄k(t) = (0, 0, ρkt, (1 −
k∑

i=1

ρi)t, λkt) k = 1, 2, . . . ,K.

The Functional LIL for Class K. We are ready to find the functional LIL for
this critically loaded regime. We first find the functional LIL limits for Qk and
IK . Notice that X̄k(t) = Q̄k(t) = 0 for all k = 1, 2, . . . ,K and t ≥ 0, by (4.3),
for all t ∈ [0, 1],
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X̃K(nt)
ϕ(n)

=
X̃K(nt) − X̄K(nt)

ϕ(n)
=

−∑K−1
l=1

μk

μl

[
Q̃l(nt) − Q̄l(nt)

]

ϕ(n)
+

WK(nt)
ϕ(n)

= −
K−1∑

l=1

μk

μl
Q̃n

l (t) +
WK(nt)

ϕ(n)
⇒ G(μKσK), w.p.1

because KQ̃k
= {0} for all k = 1, 2, . . . , K −1, and WK(t) is a driftless Brownian

motion with variance parameter μKσK . Since the mappings Φ and Ψ are contin-
uous in uniform norm, by Strassen’s continuous mapping theorem (see Lemma
4.3 in [10]) we have, for all t ∈ [0, 1],

˜Qn
K(t) =

˜QK(nt)

ϕ(n)
=

Φ( ˜XK)(nt)

ϕ(n)
⇒ Φ(G(μKσK)), w.p.1,

˜In
K(t) =

˜IK(nt)

ϕ(n)
=

1

μK

Ψ( ˜XK)(nt)

ϕ(n)
=

Ψ( ˜XK/μK)(nt)

ϕ(n)
⇒ Ψ(G(σK)), w.p.1, (4.9)

where the equalities above hold because Q̄K(t) = ĪK(t) = Φ(X̄K)(t) =
Ψ(X̄K)(t) = 0 for t ≥ 0. Since Q̃K(t) = Z̃K(t)/μK and Q̄K(t) = Z̄K(t)/μK = 0
for all t ≥ 0, we have, for all t ∈ [0, 1],

Z̃n
K(t) =

Q̃K(nt)
μKϕ(n)

=
Φ(X̃K/μK)(nt)

ϕ(n)
⇒ Φ(G(σK)), w.p.1,

For TK(t),

T̃
n
K(t) =

T̃K(nt) − T̄K(nt)

ϕ(n)
=

1

μKϕ(n)

{
W̃K(nt) − [X̃K(nt) + ỸK(nt)]

}

=
1

ϕ(n)

{
K−1∑

l=1

1

μl

Q̃l(nt) −
K−1∑

l=1

1

μl

W̃l(nt) − 1

μK

ỸK(nt)

}

=
1

ϕ(n)

{
K−1∑

l=1

1

μl

Q̃l(nt) −
K−1∑

l=1

1

μl

W̃l(nt) − 1

μK

Ψ(−
K−1∑

l=1

μK

μl

Q̃l + WK)(nt)

}

=

K−1∑

l=1

1

μl

Q̃l(nt)

ϕ(n)
−

K−1∑

l=1

1

μl

W̃l(nt)

ϕ(n)
− 1

ϕ(n)

1

μK

Ψ(−
K−1∑

l=1

μK

μl

Q̃l + μK

K−1∑

l=1

W̃l

μl

+ W̃K)(nt)

=

K−1∑

l=1

1

μl

Q̃l(nt)

ϕ(n)
−

K−1∑

l=1

1

μl

W̃l(nt)

ϕ(n)

− 1

ϕ(n)

1

μK

sup
0≤s≤nt

{
K−1∑

l=1

μK

μl

Q̃l(s) − μK

K−1∑

l=1

W̃l

μl

(s) − W̃K(s)

}

=

K−1∑

l=1

1

μl

Q̃l(nt)

ϕ(n)
−

K−1∑

l=1

1

μl

W̃l(nt)

ϕ(n)
+ inf

0≤s≤nt

{

−
K−1∑

l=1

1

μl

Q̃l(s)

ϕ(n)
+

K−1∑

l=1

1

μl

W̃l(s)

ϕ(n)
+

W̃K(s)

μKϕ(n)

}

= G1(
W̃K

μKϕ(n)
,

K−1∑

l=1

1

μl

Q̃l

ϕ(n)
−

K−1∑

l=1

1

μl

W̃l

ϕ(n)
)(nt),

where the third equality holds because, by (4.3),

X̃K(t) = −
K−1∑

l=1

μK

μl
Q̃l(t) + WK(t) and WK(t) = μK

K−1∑

l=1

W̃l(t)
μl

+ W̃K(t),
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and this follows the forth and fifth equalities, the sixth equality comes from (2.2)
and

K−1∑

l=1

μK

μl
Q̃l(0) − μK

K−1∑

l=1

W̃l

μl
(0) − W̃K(0) = 0,

the last equality comes from (3.10). Since Q̃n
l (t) = Q̃l(nt)/ϕ(n) → 0 as n → ∞

for all t ∈ [0, 1] and l = 1, 2, . . . ,K − 1, we have, w.p.1,

K−1∑

l=1

1
μl

Q̃l(nt)
ϕ(n)

=
K−1∑

l=1

1
μl

Q̃n
l (t) → 0 for all t ∈ [0, 1].

This, together with Lemma 4.4 in [10], implies that

(
W̃K

μKϕ(n)
,

K−1∑

l=1

1
μl

Q̃l

ϕ(n)
−

K−1∑

l=1

1
μl

W̃l

ϕ(n)
)(nt) and (

W̃K

μKϕ(n)
,−

K−1∑

l=1

1
μl

W̃l

ϕ(n)
)(nt)

have identical relatively compact limits. Since W̃l(t) are mutually independent,
l = 1, 2, . . . ,K, and the variance V ar(W̃K(t)/μK) + V ar(−∑K−1

l=1 W̃l)(t)/μl) =
σ2

K . So, by Lemma 4.2, for all t ∈ [0, 1],

(
W̃K(nt)
μKϕ(n)

,−
K−1∑

l=1

1
μl

W̃l(nt)
ϕ(n)

) ⇒ G2(σK), w.p.1.

This and Strassen’s continuous mapping theorem (see Lemma 4.3 in [10]) gives
that, for all t ∈ [0, 1],

T̃n
K(t) = G1(

W̃K

μKϕ(n)
,

K−1∑

l=1

1
μl

Q̃l

ϕ(n)
−

K−1∑

l=1

1
μl

W̃l

ϕ(n)
)(nt) ⇒ G1(G2(σK)), w.p.1.

Now, we go to find the functional LIL of DK . By (4.2) and (4.5),

D̃
n
K(t) =

D̃K(nt) − D̄K(nt)

ϕ(n)
=

−Q̃K(nt) + λ
1/2
K

ca,KWa,K(nt)

ϕ(n)

=
1

ϕ(n)

(
−X̃K(nt) − ỸK(nt) + λ

1/2
K

ca,KWa,K(t)
)

=
1

ϕ(n)

⎛

⎝
K−1∑

l=1

μK

μl

Q̃l(nt) − WK(nt) − ỸK(nt) + λ
1/2
K

ca,KWa,K(nt)

⎞

⎠

=
1

ϕ(n)

⎛

⎝
K−1∑

l=1

μK

μl

Q̃l(nt) −
K−1∑

l=1

μKW̃l(nt)

μl

− ỸK(nt) + μ
1/2
K

cs,KWs,K(T̄ (nt))

⎞

⎠

=

K−1∑

l=1

μKQ̃l(nt)

ϕ(n)μl

−
K−1∑

l=1

μKW̃l(nt)

ϕ(n)μl

+
μ
1/2
K

cs,KWs,K(T̄ (nt))

ϕ(n)

+ inf
0≤s≤nt

⎧
⎨

⎩
−

K−1∑

l=1

μKQ̃l(s)

ϕ(n)μl

+

K−1∑

l=1

μKW̃l(s)

ϕ(n)μl

− μ
1/2
K

cs,KWs,K(T̄ (s))

ϕ(n)
+

λ
1/2
K

ca,KWa,K(s)

ϕ(n)

⎫
⎬

⎭

= G1(
λ
1/2
K

ca,KWa,K

ϕ(n)
,

K−1∑

l=1

μKQ̃l

ϕ(n)μl

−
K−1∑

l=1

μKW̃l

ϕ(n)μl

+
μ
1/2
K

cs,KWs,K(T̄ (·))
ϕ(n)

)(nt),
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where the third, the fifth and the sixth equalities follow from (4.2), the forth
follows from (4.3), the seventh equality follows from (3.10). Since Q̃n

l (t) =
Q̃l(nt)/ϕ(n) → 0 as n → ∞ for all t ∈ [0, 1] and l = 1, 2, . . . ,K − 1, the
sequence

(
λ
1/2
K ca,KWa,K(nt)

ϕ(n)
,

K−1∑
l=1

μKQ̃l(nt)

ϕ(n)μl
−

K−1∑
l=1

μKW̃l(nt)

ϕ(n)μl
+

μ
1/2
K cs,KWs,K(T̄ ((nt)))

ϕ(n)

)

has the same relatively compact limits as
(

λ
1/2
K ca,KWa,K(nt)

ϕ(n)
,−

K−1∑

l=1

μKW̃l(nt)
ϕ(n)μl

+
μ

1/2
K cs,KWs,K(T̄ ((nt)))

ϕ(n)

)

,

which is relatively compact, by Lemma 4.2, the corresponding convergence
limit set is G2(μKσK) because the sum of variances of λ

1/2
K ca,KWa,K(t) and

−∑K−1
l=1 μKW̃l(t)/μl +μ

1/2
K cs,KWs,K(T̄ ((t))) is μ2

Kσ2
Kt. Notice that G1 is a con-

tinuous binary function, together with Strassen’s continuous mapping theorem
(see Lemma 4.3 in [10]), D̃n

K(t) ⇒ G1(G2(μKσK)) w.p.1 for all t ∈ [0, 1]. So far,
we finish the functional LIL’s proof for the critically loaded regime.

The LIL for Class K. By Corollaries 3.1 and 3.2 in [15], for any δ > 0,

sup
x∈Φ(G(δ))

x(1) = δ and inf
x∈Φ(G(δ))

x(1) = 0, (4.10)

where the supremum is actually attained for the functions x(t) = δt and the
infimum is from x(t) = 0. In dong so, we can get the LIL:

Q∗
K,sup = μKZ∗

K,sup = σK , Q∗
K,inf = Z∗

K,inf = 0, w.p.1.

For the LIL of IK , for δ > 0 given above, by (2.1) on page 169 in [15], |y(b)| ≤
δ
√

b ≤ δ for any y ∈ G(δ) and 0 ≤ b ≤ 1, then, for any δ > 0,

sup
x∈Ψ(G(δ))

x(1) = sup
y∈G(δ)

sup
0≤s≤1

{−y(s)} = δ,

inf
x∈Ψ(G(δ))

x(1) = inf
y∈K(δ)

sup
0≤s≤1

{−y(s)} = 0, (4.11)

where, as for (4.10), the supremum is attained for the functions y(s) = −s
and the infimum is from y(s) = 0. This gives the LIL: I∗

K,sup = σK/μK and
I∗
K,inf = 0 w.p.1. That is, (3.11) holds.

Hence, we finished the proof. �

5 Conclusion

We introduced a multi-class single server queue (GI/GI)K/1/PPSD queueing
system, which consists of K classes of customers and one server. Specially, all
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customers come to the system from outside and leave the system after service
completion. A preemptive priority service discipline is in force: class 1 taking
the highest priority, class 2 the second highest priority, and so on, class K the
lowest priority.

This paper can be thought of as a companion of [10], which focus on the
functional LIL and LIL for the overloaded regime for the (GI/GI)K/1/PPSD
queueing system, different from the underloaded and critically loaded regimes.
In this paper, we develop the functional LIL and the LIL in Lévy’s type for the
five key performance measures: queue length, workload, busy time, idle time,
and departure processes.

The functional LIL and LIL limits help us to understand the asymptotic per-
formance of the queueing system well. From the definition, the functional LIL
and the LIL limits refine the fluid limits, which characterizes the determinis-
tic dynamics of performance for queueing systems. They show us the maximal
asymptotic deviation around the fluid limit, and are identified respectively to
be the functional compact set and functions by the first and second moments of
primitive data: the arrival and service.

The main results: Theorems 3.1 and 3.2, are proved by an approach based on
the strong approximation, which follows four steps: First, to establish the fluid
and strong approximations for the performance functions of interest (e.g., the
queue length and workload processes); Second, to associate the functional LILs
of these performance functions with the functional LILs of their corresponding
strong approximations; Third, to treat the Brownian motion related processes
to obtain closed-form functional LIL limits, which is generally a compact set
of continuous functions; Finally, to obtain the LIL limits through analyzing the
compact set of their corresponding functional LIL limits.

Finally, we note that it is also interesting to find the functional LIL and LIL
limits for more queueing systems. They can give us some more engineering insight
on the asymptotic fluctuation through some numerical value and simple functions
based on the primitive data, which is not be given by other approximations, such
fluid, diffusion and strong approximations.

Acknowledgements. This work is supported by NSFC grants 11871116 and
11971074.
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19. Minkevičius, S.: On the law of the iterated logarithm in multiserver open queueing
networks. Stochastics 86(1), 46–59 (2014)
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Abstract. We study the asymptotic behavior of tail probability for the
waiting time in the steady-state M/G/1/ROS multiple-vacation queue
with regularly-varying service time and vacation time distributions. Con-
ditioning on the server being busy or on vacation, the asymptotic con-
ditional tail probabilities are obtained explicitly. We also verify that
the waiting-time tail for M/G/1/ROS queue with multiple-vacation is
asymptotically equivalent to that for the standard M/G/1/ROS queue
(without vacation), as long as the vacation time has a tail probability
lighter than the service time.

Keywords: M/G/1 queue · Random order of service · Vacation ·
Waiting time · Tail asymptotics

1 Introduction

Triggered by the desire for measuring the quality of service (QoS) in modern
communication networks (see, e.g., [14] and [15]), there has been much inter-
est in studying the asymptotic behaviors for queues with heavy-tailed service
time distributions. The tail asymptotics for queueing quantities, such as queue
length and waiting time, is of fundamental importance due to the stringent QoS
requirements often requiring these tail probabilities to be significantly small.

Queueing systems with vacations are a type of very important queueing sys-
tems, which find many applications in abroad range of areas, e.g., production,
computer, and communication systems. A variety of queues with vacations have
been extensively studied for more than 40 years. Literature reviews on vacation
queues can be found in, e.g., the survey [8] and the book [17].

In this paper, we are interested in the asymptotic behavior of tail probability
for the stationary waiting time in the M/G/1 queue with multiple-vacation and
random order service (ROS) discipline. The customers are assumed to arrive
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according to a Poisson process with rate λ. The service time Tβ is assumed to
be i.i.d. r.v.’s having the distribution Fβ(t) with Fβ(0) = 0 and mean β1 < ∞.
Each time a service is completed and the system is not empty, the next customer
to be served is selected at random from all the customers waiting in the queue.
Each time a busy period ends and system becomes empty, the server undergoes
a vacation of random length of time Tα. Whenever the server returns from a
vacation and finds one or more customers waiting, the server goes on serving
a customer immediately, otherwise, on return from a vacation, the server finds
no customer waiting, the server takes on a vacation again. The generic vacation
time Tα is assumed to have the distribution Fα(t) with Fα(0) = 0 and mean
α1 < ∞. Besides, we use the notations α(s) and β(s) to represent the Laplace-
Stieltjes (LS) transforms of Fα(t) and Fβ(t), respectively. It is well known that
the system is stable if and only if (iff) ρ = λβ1 < 1, which is assumed to hold
throughout this paper.

There are many references on asymptotic analysis for queueing systems with
heavy-tailed distributions, e.g., Asmussen, Klüppelberg and Sigman [1], Boxma
and Denisov [4], and more references can be found in two excellent surveys: Borst
et al. [3], and Boxma and Zwart [6]. As far as the ROS discipline concerned, we
refer readers to [5] and [12]. Under the assumption of regularly-varying service
time distribution, Borst, et al. [5] and Kim, et al. [12] obtained asymptotic
expressions for the waiting time distributions in the ordinary M/G/1 queue
(without vacation) and the M/G/1 queue with retrials, respectively.

Our focus in this paper is to study the asymptoic behavior for the tail prob-
ability of the waiting time in the M/G/1/ROS vacation queue with regularly-
varying service time and vacation time distributions, which is one of typical
and commonly used heavy-tailed distributions. Conditioning on the server being
busy or on vacation, the asymptotic conditional tail probabilities are obtained
explicitly. As a side product (Remark 2) of main results obtained in this paper,
we verify that the waiting-time tail for M/G/1/ROS queue with multiple vaca-
tion is asymptotically equivalent to that for the standard M/G/1/ROS queue
(without vacation), as long as the vacation time has a tail probability lighter
than the service time.

The rest of the paper is organized as follows: Sect. 2 provides preliminaries
to facilitate our analysis. In Sects. 3 and 4, we study the asymptotic behaviors
for the conditional tail probabilities of waiting time conditioning on the server
being busy and on vacation, respectively.

2 Preliminary

In this section, we present some definitions, notations and useful literature
results, which will be used in later sections

Definition 1 (Bingham, Goldie and Teugels [2]). A measurable function
U : (0,∞) → (0,∞) is regularly varying at ∞ with index σ ∈ (−∞,∞) (written
U ∈ Rσ) iff limt→∞ U(xt)/U(t) = xσ for all x > 0. If σ = 0 we call U slowly
varying, i.e., limt→∞ U(xt)/U(t) = 1 for all x > 0.
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We will use L(t) to represent a slowly varying function at ∞ (see Definition 1)
and make the following basic assumptions on the service time Tβ and the vacation
time Tα:

A1. The service time Tβ has tail probability P{Tβ > t} ∼ t−bL(t) as t → ∞,
where 1 < b < 2.

A2. The vacation time Tα has tail probability P{Tα > t} ∼ γP{Tβ > t} as
t → ∞, where γ ≥ 0.

Remark 1. When γ = 0, Assumption A2 is to be interpreted as P{Tα > t} =
o
(
P{Tβ > t})

, which means that the vacation time has a tail probability lighter
than the service time. When γ > 0, two tail probabilities are asymptotically
equivalent up to a prefactor γ.

Let Tπ be the busy period of the standard M/G/1 queue with arrival rate λ

and service time Tβ . It is well known that π1
def= E(Tπ) = β1/(1 − ρ). By π(s),

we denote the LS transform of the probability distribution function of Tπ. Under
Assumption A1, the tail probability P{Tπ > t} is regularly varying according to
de Meyer and Teugels [7]:

P{Tπ > t} ∼ 1
(1 − ρ)b+1

· t−bL(t) as t → ∞. (1)

Let F
(e)
β (t) be the so-called equilibrium distribution of Fβ(t), which is defined

as F
(e)
β (t) = β−1

1

∫ t

0
(1 − Fβ(x))dx. Similarly, we define F

(e)
α (t) = α−1

1

∫ t

0
(1 −

Fα(x))dx and F
(e)
π (t) = π−1

1

∫ t

0
(1 − Fπ(x))dx. Denote by β(e)(s), α(e)(s) and

π(e)(s) the LS transforms of F
(e)
β (t), F

(e)
α (t) and F

(e)
π (t), respectively.

By Karamata’s theorem (e.g., p. 28 in Bingham, Goldie and Teugels [2]) and
Assumptions A1 and A2, we know that 1−F

(e)
β (t) ∼ cβt−b+1L(t), 1−F

(e)
α (t) ∼

cαt−b+1L(t) and 1 − F
(e)
π (t) ∼ cπt−b+1L(t) as t → ∞, where

cβ =
1

(b − 1)β1
, (2)

cα =
γ

(b − 1)α1
, (3)

cπ =
1

(b − 1)π1
· 1
(1 − ρ)b+1

=
cβ

(1 − ρ)b
. (4)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we further obtain the
asymptotic properties for LS transforms β(e)(s), α(e)(s) and π

(e)
0 (s):

1 − β(e)(s) = cβc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (5)

1 − α(e)(s) = cαc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (6)
1 − π(e)(s) = cπc(b)sb−1L(1/s)(1 + o(1)) s ↓ 0, (7)

where c(b) = Γ (b − 1)Γ (2 − b)/Γ (b − 1).
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Let W be the waiting time of a generic customer, Wb and Wv be two r.v.s
whose probability distributions coincide with the conditional probability dis-
tributions of W given that the generic customer finds the server busy and on
vacation upon its arrival, respectively. Precisely, P{Wb ≤ t} = P{W ≤ t|busy}
and P{Wv ≤ t} = P{W ≤ t|vacation}. Therefore, the probability distributions
P{Wb ≤ t} and P{Wv ≤ t} have the LS transforms Wb(s)

def= E(e−sW |busy) and
Wv(s) def= E(e−sW |vacation), respectively. Our starting point for tail asymptotic
analysis on P{Wb > t} and P{Wv > t} is based on the expressions for Wb(s)
and Wv(s), which can be found in [17].

Wb(s) =
1 − ρ

α1ρs

∫ 1

π(s)

[
1 − α(λ − λu)

][
β(λ − λu) − β(s + λ − λu)

]
[
β(λ − λu) − u

][
u − β(s + λ − λu)

]

· exp {−G(s, u)} du, (8)

Wv(s) =
1

α1s

∫ 1

π(s)

α(λ − λu) − α(s + λ − λu)
u − β(s + λ − λu)

· exp {−G(s, u)} du, (9)

where

G(s, u) =
∫ 1

u

1
v − β(s + λ − λv)

dv. (10)

3 Asymptotic Tail Probability of Wb

In this section, we are going to derive the asymptotic expression of P{Wb > t}
as t → ∞ based on Wb(s), the LS transform of distribution function P{Wb ≤ t}.
Let us rewrite (8) as follows

Wb(s) =
1 − ρ

ρs

∫ 1

π(s)

α(e)(λ − λu) ·
[ λ − λu

β(λ − λu) − u
+

λ − λu

u − β(s + λ − λu)

]

· exp {−G(s, u)} du. (11)

Setting u = u(t) = 1 − st/λ in (11), and noting that

λ − λπ(s)
s

=
ρ

1 − ρ
· 1 − π(s)

sE(Tπ)
=

ρ

1 − ρ
π(e)(s), (12)

we get that

Wb(s) =
1 − ρ

ρ

∫ ρ
1−ρ π(e)(s)

0

α(e)(st)
[ st

st − λ + λβ(st)
+

st

−st + λ − λβ(s + st)

]

· exp{−G(s, 1 − st/λ)}dt. (13)
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It follows from (10) that

G(s, 1 − st/λ) =
∫ 1

1−(st/λ)

1
v − β(s + λ − λv)

dv

=
∫ 1

0

st

−stw + λ − λβ(s + stw)
dw

=
∫ 1

0

1
D(s, t, w)

dw, (14)

where

D(s, t, w) =
−stw + λ − λβ(s + stw)

st
= −w + ρ(w + 1/t)β(e)(s + stw).(15)

Let

B1(s, t) =
st

st − λ + λβ(st)
=

1
1 − ρβ(e)(st)

, (16)

B2(s, t) =
st

−st + λ − λβ(s + st)
=

1
D(s, t, 1)

, (17)

C(s, t) = exp
{

−
∫ 1

0

1
D(s, t, w)

dw

}
, (18)

g(s, t) = α(e)(st)
(
B1(s, t) + B2(s, t)

)
C(s, t). (19)

Then we can further rewrite (13) as

Wb(s) =
1 − ρ

ρ

∫ ρ
1−ρ π(e)(s)

0

g(s, t)dt = Wb1(s) − Wb2(s) (20)

where

Wb1(s) =
1 − ρ

ρ

∫ ρ
1−ρ

0

g(s, t)dt, Wb2(s) =
1 − ρ

ρ

∫ ρ
1−ρ

ρ
1−ρ π(e)(s)

g(s, t)dt. (21)

In following subsections, we are going to discuss the asymptotic properties
for Wb1(s) and Wb2(s) as s ↓ 0, which will be used to obtain the asymptotics
of P{Wb > t} as t → ∞ later. For this purpose, we start with studying the
asymptotic behaviors for B1(s, t), B2(s, t) and C(s, t) as s ↓ 0.

3.1 Asymptotic Properties for B1(s, t), B2(s, t) and C(s, t) as s ↓ 0

It follows from (16) and (5) that

B1(s, t) =
1

1 − ρ + ρ(1 − β(e)(st))
=

1
1 − ρ

· 1

1 +
ρ

1 − ρ
β
(e)
0 (st)

=
1

1 − ρ
− cβc(b)ρ

(1 − ρ)2
(st)b−1L(1/s)(1 + o(1)). (22)
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where we have used the fact that 1/(1 − x) = 1 + x + x2 + · · · for |x| < 1.
It follows from (15) and (5) that

D(s, t, w) = −w + ρw + ρ/t − ρ(w + 1/t)β(e)
0 (s + stw)

= (−w + ρw + ρ/t)
[
1 − ρ(w + 1/t)β(e)

0 (s + stw)
−w + ρw + ρ/t

]

= (−w + ρw + ρ/t)

·
[
1 − cβc(b)ρ

(1/t)(1 + tw)b

−w + ρw + ρ/t
· sb−1L(1/s)(1 + o(1))

]
, (23)

which implies that

1
D(s, t, w)

=
1

−w + ρw + ρ/t

+cβc(b)ρ
(1/t)(1 + tw)b

(−w + ρw + ρ/t)2
· sb−1L(1/s)(1 + o(1)). (24)

Therefore, by (18),

C(s, t) = ϕ(t) · exp
{−cβc(b)ρH(t)sb−1L(1/s)(1 + o(1))

}
, (25)

where

ϕ(t) = exp
{

−
∫ 1

0

1
−w + ρw + ρ/t

dw

}
=

(−t + ρt + ρ

ρ

) 1
1−ρ

, (26)

H(t) =
∫ 1

0

(1/t)(1 + tw)b

(−w + ρw + ρ/t)2
dw. (27)

Note that the fact that e−x = 1 − x + (−x)2/2! + · · · . Then (25) yields

C(s, t) = ϕ(t)
[
1 − cβc(b)ρH(t)sb−1L(1/s)(1 + o(1))

]
. (28)

In addition, by (17) and (24), we get

B2(s, t) =
1

−1 + ρ + ρ/t
+ cβc(b)ρ

(1/t)(1 + t)b

(−1 + ρ + ρ/t)2
sb−1L(1/s)(1 + o(1)).(29)

3.2 Asymptotic Property for Wb1(s) as s ↓ 0

It follows from (22) and (29) that

B1(s, t) + B2(s, t) = ψ(t) − cβc(b)ρK(t)sb−1L(1/s)(1 + o(1)), (30)
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where

ψ(t) =
1

1 − ρ
· ρ

−t + ρt + ρ
. (31)

K(t) = K0(t) − K1(t) (32)

K0(t) =
tb−1

(1 − ρ)2
, (33)

K1(t) =
(1/t)(1 + t)b

(−1 + ρ + ρ/t)2
. (34)

By (19), (6), (28) and (30), we know

g(s, t) = ϕ(t)ψ(t) −
[
cαc(b)tb−1ϕ(t)ψ(t) + cβc(b)ρϕ(t)

(
K(t) + ψ(t)H(t)

)]

·sb−1L(1/s)(1 + o(1)). (35)

Recalling the expression of Wb1(s) in (21), along with (35), we can write

Wb1(s) =
1 − ρ

ρ

∫ ρ
1−ρ

0

ϕ(t)ψ(t)dt −
[
cαc(b)

1 − ρ

ρ

∫ ρ
1−ρ

0

tb−1ϕ(t)ψ(t)dt +

cβc(b)(1 − ρ)
∫ ρ

1−ρ

0

ϕ(t)
(
K(t) + ψ(t)H(t)

)
dt

]

·sb−1L(1/s)(1 + o(1)). (36)

In the following, we are going to calculate the integrals in (36). By (26) and (31),

ϕ(t)ψ(t) =
1

1 − ρ

(−t + ρt + ρ

ρ

) 1
1−ρ −1

, (37)

hence

1 − ρ

ρ

∫ ρ
1−ρ

0

ϕ(t)ψ(t)dt =
1

1 − ρ

∫ 1

0

(1 − x)
1

1−ρ −1dx = 1, (38)

1 − ρ

ρ

∫ ρ
1−ρ

0

tb−1ϕ(t)ψ(t)dt =
1
ρ

( ρ

1 − ρ

)b
∫ 1

0

(1 − x)
1

1−ρ −1xb−1dx. (39)

By (26) and (33),
∫ ρ

1−ρ

0

ϕ(t)K0(t)dt =
1

(1 − ρ)2

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ · tb−1dt

=
1

(1 − ρ)2
( ρ

1 − ρ

)b
∫ 1

0

(1 − x)
1

1−ρ · xb−1dx. (40)

By (26) and (34),
∫ ρ

1−ρ

0

ϕ(t)K1(t)dt =
∫ ρ

1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ · t(1 + t)b

(−t + ρt + ρ)2
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2 · x
(
1 +

ρ

1 − ρ
x
)b

dx. (41)
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By (37) and (27),

∫ ρ
1−ρ

0

ϕ(t)ψ(t)H(t)dt

=
∫ ρ

1−ρ

0

ϕ(t)ψ(t) ·
(∫ t

0

(1 + y)b

(−y + ρy + ρ)2
dy

)
dt

=
1

(1 − ρ)

∫ ρ
1−ρ

0

(1 + y)b

(−y + ρy + ρ)2
[ ∫ ρ

1−ρ

y

(−t + ρt + ρ

ρ

) ρ
1−ρ

dt
]
dy

=
1

(1 − ρ)ρ

∫ ρ
1−ρ

0

(−y + ρy + ρ

ρ

) ρ
1−ρ −1

(1 + y)bdy

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2
(
1 +

ρ

1 − ρ
x
)b

dx. (42)

Noting that K(t) is given in (32) and substituting (38)–(42) into (36), we obtain

Wb1(s) = 1 − dbc(b) · sb−1L(1/s)(1 + o(1)), (43)

where

db =
(cα

ρ
+

cβ

1 − ρ

)( ρ

1 − ρ

)b
∫ 1

0

(
1 − x

) 1
1−ρ · xb−1dx

+
cβ

1 − ρ

∫ 1

0

(
1 − x

) 1
1−ρ −1(

1 +
ρ

1 − ρ
x
)b

dx. (44)

3.3 Asymptotic Property for Wb2(s) as s ↓ 0

Recall (21). By the integration middle value theorem, there exists ξ(s) ∈ (0, 1)
such that

Wb2(s) = g
(
s, h(s)

)(
1 − π(e)(s)

)
, (45)

where h(s) = ρ
1−ρ

[
π(e)(s) + ξ(s)(1 − π(e)(s))

]
. It follows from (7) that

h(s) =
ρ

1 − ρ

(
1 + O(1) · sb−1L(1/s)

)
. (46)

Next, we will prove that g
(
s, h(s)

)
= o(1). By (35), we have

g
(
s, h(s)

)
= ϕ(h(s))ψ(h(s)) −

[
cαc(b)(h(s))b−1ϕ(h(s))ψ(h(s))

+cβc(b)ρϕ(h(s))
(
K(h(s)) + ψ(h(s))H(h(s))

)]

·sb−1L(1/s)(1 + o(1)). (47)
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By (46), we know that −h(s) + ρh(s) + ρ = O(1) · sb−1L(1/s), which together
with (26) and (37) leads to

ϕ(h(s)) = O(1) · s(b−1)/(1−ρ)
(
L(1/s)

) 1
1−ρ , (48)

ϕ
(
h(s)

)
ψ

(
h(s)

)
= O(1) · s(b−1)( 1

1−ρ −1)
(
L(1/s)

) 1
1−ρ −1

. (49)

Because lims→0 h(s) = ρ/(1 − ρ), it follows from (33), (34) and (27) that

K0(h(s)) =
(h(s))b−1

(1 − ρ)2
= O(1), (50)

K1(h(s)) =
(1/h(s))(1 + h(s))b

(−1 + ρ + ρ/h(s))2
= O(1) ·

( 1
sb−1L(1/s)

)2

, (51)

H(h(s)) =
∫ 1

0

(1/h(s))(1 + h(s)w)b

(−w + ρw + ρ/h(s))2
dw = O(1). (52)

Further, by (48)–(52),

ϕ(h(s))K(h(s))sb−1L(1/s) = o(1), (53)
ϕ
(
h(s)

)
ψ

(
h(s)

)
H(h(s))sb−1L(1/s) = o(1). (54)

It follows from (47), (49), (53) and (54) that g
(
s, h(s)

)
= o(1), which, together

with (45) and (7), results in

Wb2(s) = o(1) · sb−1L(1/s). (55)

3.4 Tail Probability Asymptotics for Wb

By (20), (43) and (55),

Wb(s) = 1 − c(b)dbs
b−1L(1/s)(1 + o(1)). (56)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we obtain

P{Wb > t} = P{W > t|busy} ∼ dbt
−b+1L(t) as t → ∞. (57)

where db is given in (44).

4 Asymptotic Tail Probability of Wv

In this section, we are going to derive the asymptotic expression of P{Wv > t}
as t → ∞ based on Wv(s) given in (9). Let

A(s, t) =
α(st) − α(s + st)

α1st
= (1 + 1/t)α(e)(s + st) − α(e)(st), (58)

gv(s, t) = A(s, t)B2(s, t)C(s, t). (59)
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Similar to derivation of (20), we get that

Wv(s) =
∫ ρ

1−ρ π(e)(s)

0

gv(s, t)dt = Wv1(s) − Wv2(s), (60)

where

Wv1(s) =
∫ ρ

1−ρ

0

gv(s, t)dt, Wv2(s) =
∫ ρ

1−ρ

ρ
1−ρ π(e)(s)

gv(s, t)dt. (61)

In following subsections, we will discuss the asymptotic behavior of Wv1(s)
and Wv2(s) as s ↓ 0, which will be used later to obtain the asymptotics of
P{Wv > t} as t → ∞.

4.1 Asymptotic Property for Wv1(s) as s ↓ 0

It follows from (6) and (58) that

A(s, t) =
1
t

[
1 − cαc(b)

(
(1 + t)b − tb

)
sb−1L(1/s)(1 + o(1))

]
, (62)

which, together with (29), implies that

A(s, t)B2(s, t) =
1

−t + ρt + ρ

[
1 −

(
cαc(b)

(
(1 + t)b − tb

) − cβc(b)ρ
(1 + t)b

−t + ρt + ρ

)

·sb−1L(1/s)(1 + o(1))
]

=
1 − ρ

ρ
ψ(t)

[
1 − c(b)ρ

(
cαR1(t) − cβR2(t)

)

·sb−1L(1/s)(1 + o(1))
]
. (63)

where

R1(t) =
(1 + t)b − tb

ρ
, (64)

R2(t) =
(1 + t)b

−t + ρt + ρ
. (65)

By (63) and (28), we obtain

gv(s, t) = ϕ(t)ψ(t)
[1 − ρ

ρ
− c(b)(1 − ρ)

(
cβH(t) + cαR1(t) − cβR2(t)

)

·sb−1L(1/s)(1 + o(1))
]
. (66)

Recalling the expression of Wv1(s) given in (61), along with (38) and (66), we
can write

Wv1(s) = 1 − c(b)(1 − ρ)
[ ∫ ρ

1−ρ

0

ϕ(t)ψ(t)
(
cβH(t) + cαR1(t) − cβR2(t)

)
dt

]

·sb−1L(1/s)(1 + o(1)). (67)
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Next, let us calculate the integrals in (67). By (37) and (64),
∫ ρ

1−ρ

0

ϕ(t)ψ(t)R1(t)dt

=
1

ρ(1 − ρ)

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ −1

·
[
(1 + t)b − tb

]
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −1
[(

1 +
ρx

1 − ρ

)b

−
( ρx

1 − ρ

)b]
dx. (68)

By (37) and (65),
∫ ρ

1−ρ

0

ϕ(t)ψ(t)R2(t)dt =
1

1 − ρ

∫ ρ
1−ρ

0

(−t + ρt + ρ

ρ

) 1
1−ρ −1

· (1 + t)b

−t + ρt + ρ
dt

=
1

(1 − ρ)2

∫ 1

0

(1 − x)
1

1−ρ −2 ·
(
1 +

ρ

1 − ρ
x
)b

dx. (69)

Substituting (68), (69) and (42) into (67), we obtain

Wv1(s) = 1 − c(b)dv · sb−1L(1/s)(1 + o(1)), (70)

where

dv =
cα

1 − ρ

∫ 1

0

(1 − x)
1

1−ρ −1
[(

1 +
ρx

1 − ρ

)b

−
( ρx

1 − ρ

)b]
dx. (71)

4.2 Asymptotic Property for Wv2(s) as s ↓ 0

Recall (61). By the integration middle value theorem, there exists ξv(s) ∈ (0, 1)
such that

Wv2(s) = gv

(
s, hv(s)

)(
1 − π(e)(s)

)
, (72)

where hv(s) = ρ
1−ρ

[
π(e)(s) + ξv(s)(1 − π(e)(s))

]
. Further, by (7),

hv(s) =
ρ

1 − ρ

[
1 + O(1) · sb−1L(1/s)

]
. (73)

Next, we will prove that gv

(
s, hv(s)

)
= o(1). By (66), we have

gv

(
s, hv(s)

)

= ϕ(hv(s))ψ(hv(s))
[1 − ρ

ρ
− c(b)(1 − ρ)

·
(
cβH(hv(s)) + cαR1(hv(s)) − cβR2(hv(s))

)
sb−1L(1/s)(1 + o(1))

]
. (74)

Immediately, by (73), we know that −hv(s) + ρhv(s) + ρ = O(1) · sb−1L(1/s),
which together with (37) leads to

ϕ
(
hv(s)

)
ψ

(
hv(s)

)
= O(1) · s(b−1)( 1

1−ρ −1)
(
L(1/s)

) 1
1−ρ −1

. (75)
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Because lims→0 hv(s) = ρ/(1 − ρ), it follows from (64) and (65) that

R1(hv(s)) =
(1 + hv(s))b − (hv(s))b

ρ
= O(1), (76)

R2(hv(s)) =
(1 + hv(s))b

−hv(s) + ρhv(s) + ρ
= O(1) ·

( 1
sb−1L(1/s)

)
, (77)

H(hv(s)) =
∫ 1

0

(1/hv(s))(1 + hv(s)w)b

(−w + ρw + ρ/hv(s))2
dw = O(1). (78)

Further, by (75) and (77),

ϕ(hv(s))ψ(hv(s))R2(hv(s))sb−1L(1/s) = o(1). (79)

It follows from (74)–(76) and (78)–(79) that gv

(
s, hv(s)

)
= o(1), which, together

with (72) and (7), results in

Wv2(s) = o(1) · sb−1L(1/s). (80)

4.3 Tail Probability Asymptotics for Wv and W

By (60), (70) and (80)

Wv(s) = 1 − c(b)dv · sb−1L(1/s)(1 + o(1)). (81)

Applying Theorem 8.1.6, p. 333 in Bingham et al. [2], we obtain

P{W > t|vacation} = P{Wv > t} ∼ dv · t−b+1L(t) as t → ∞. (82)

where dv is given in (71).
Note that P{W > t} = ρP{Wb > t} + (1 − ρ)P{Wv > t}. By (57) and (82),

we have

P{W > t} ∼
(
ρdb + (1 − ρ)dv

)
· t−b+1L(t) as t → ∞. (83)

A special case: γ = 0.
This is the case when the vacation time Tα has a tail lighter than the service
time Tβ , in which cα = 0. Thus, by (83), (44) and (71),

P{W > t} ∼ ρ

1 − ρ
cβcW · t−b+1L(t) as t → ∞. (84)

where

cW =
( ρ

1 − ρ

)b
∫ 1

0

(
1 − x

) 1
1−ρ · xb−1dx

+
∫ 1

0

(
1 − x

) 1
1−ρ −1(

1 +
ρ

1 − ρ
x
)b

dx. (85)

Remark 2. In [5], Boxma et al. (2004) have shown that the asymptotic result
(84), along with (85) is true for the standard M/G/1/ROS queue (without
vacation). As one of side products in this paper, we have verified that such a
result is still valid even for the M/G/1/ROS queue with multiple vacations, as
long as the vacation time has a tail probability lighter than the service time.
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Abstract. This paper considers an M/M/1 constant retrial queueing
model with reserved idle time under N -policy. A customer can occupy the
server instantaneously when the server is turned on and idle upon arrival.
After the service of the last customer, the server stays idle for some
random time. During this period, if a customer arrives, he obtains service
immediately. Otherwise, the sever will shut down for saving energy and
be reactivated if the number of waiting customers in retrial orbit reaches
a given threshold N(N > 1). The probabilities of the server in different
states are derived through generating function method. Moreover, based
on the reward-cost function and the expected payoff, all customers will
decide whether to join or balk the system upon arrival. Given these
strategic behaviors we establish the net profit of the service provider per
unit of time. Finally, some numerical examples are presented to illustrate
the necessity of the reserved idle time’s existence from the perspective
of the service provider. It is found the longer the reserved idle time, the
greater the server’s profit.

Keywords: Retrial queue · Reserved idle time · N-policy ·
Equilibrium strategies

1 Introduction

Since the work of Naor [11] and Edelson and Hilderbrand [5], the game-theoretic
analysis of queueing systems has been paid considerable attention. In such an
issue, given a reward-cost structure, information on the queue length and other
performance measures is a crucial factor for customers who make decision on
whether to join or to balk the system upon arrival. In principle, there are two
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groups regarding the information levels in rational queueing: observable and
unobservable queues. Interested readers are referred to Hassin and Haviv [10]
and Hassin [9] for more comprehensive reviews.

It is very significant to study how the information level influences customers’
decision and how to control queueing systems under different information levels.
For example, Burnetas and Economou [1] considered a Markovian single-server
queueing system with setup times, and they derived equilibrium strategies of
customers under various information levels and analyzed the stationary behavior
of system under these strategies. Economou and Kanta [3] studied the Markovian
single-server queue that alternates between on and off periods. The equilibrium
threshold balking strategies in fully observable and almost observable queues
were derived.

These issues are studied in the scope of queueing game with vacations. Due
to the versatile applicability of vacation queueing systems, considerable interests
have been focused on the study of performance evaluation and optimal control
of these systems. For a detailed review of the main results and methodologies
on this topic, the interested readers are referred to Doshi [2], Takagi [12], Tian
and Zhang [13]. In reality, server vacations often occur in practical problems.
For example, a server may deactivate for economic reasons, suffer random fail-
ures, go under preventive maintenance or attend a secondary service system.
During last decades, the economic analysis of vacation queueing systems with
strategic customer behavior has gained a great amount of interest. Guo and Has-
sin [6] considered a single-server vacation queue with N -policy and exhaustive
service, where the server reactivates once there are N customers arrived in the
system and shuts down when the system becomes empty. It was shown that the
equilibrium and socially optimal strategies are multiple for unobservable queue-
ing situation and unique for the observable case. The work was extended by
Guo and Hassin [7] to the case of heterogeneous customers. They studied both
unobservable and observable queues and considered two situations regarding cus-
tomers’ delay sensitivity. Later on, Guo and Li [8] studied strategic behavior and
social optimization in partially observable Markovian vacation queues. Recently,
Wang et al. [14] considered customers strategic behavior and the correspond-
ing social maximization problem in an M/M/1 constant retrial queue with the
N -policy. They examined customers strategic responses to different information
levels, compared the individual equilibrium with the socially optimal behavior
and studied the Price of Anarchy of the system numerically.

Note that all the work mentioned above are conducted without the reserved
idle time. So in this paper, we try to model an M/M/1 constant retrial queueing
model with reserved idle time under N -policy. After completing the service of
the last customer, the server stays idle for some random time waiting for a new
customer. If there is a new arrival during the idle period, the server continues
serving the new arrival, otherwise it shuts down. And it’s resumed only when the
queue length reaches a given critical length N(N > 1). We consider the partially
observable queues where a customer can only observe the state of the server at
his arrival instant and does not observe the number of customers in the system.
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We study the customers’ equilibrium arrival rate and the net profit of the service
provider. What is more, we give a proof of the necessity of the reserved idle time
by numerical experiments.

Thus, the main contributions of this paper are two-fold. Firstly, among all
the works with N -policy, we are the first to introduce the reserved idle time and
setup time to it. From the perspective of service provider, it is shown that the
longer reserved idle time can bring more profit. That is, the existence of reserved
idle time is necessary. Then for such a model we investigate customers’ equilib-
rium behavior, where both the phenomena of “follow-the-crowd” and “avoid-
the-crowd” can arise.

The outline of this paper is given as follows. In Sect. 2, we give a detailed
model description and the reward-cost structure. In Sect. 3, we obtain an exact
solution for the probabilities of the server in different states in terms of partial
generating functions. The equilibrium arrival rate for joining the orbit when only
the server’s state is observable is given in Sect. 4. And in Sect. 5, we establish
the net profit function and the cost of the service provider, and some numerical
examples are provided in order to verify the rationality of the reserved idle time.
Then the conclusion is summarized in Sect. 6.

2 Model Description

We consider an M/M/1 constant retrial queueing model with reserved idle time
under N -policy in which customers arrive according to a Poisson process with
rate λ. The service times are assumed to be exponentially distributed with rate
μ. A customer will be served instantaneously when finding the server turned on
and idle (called “normal idle state”) upon arrival. After the service completion of
the last customer, the server stays idle for some random time, and the reserved
idle time is assumed to be exponentially distributed with rate α. During this
period, if a customer arrives, he obtains service immediately. Otherwise, the
sever will shut down (called “sleep mode state”) and becomes active (called
“normal working state”) again if the number of waiting customers in retrial
orbit reaches a given threshold N . The setup time is assumed to be exponentially
distributed with rate β. An arriving customer who finds the server busy (serving
a customer) joins a “virtual” retrial orbit in accordance with a first-come-first-
served (FCFS) discipline. After finishing service, a customer leaves the system
and the server seeks to serve a customer from the retrial orbit. The time required
to seek a customer from the orbit is assumed to be exponentially distributed with
rate θ. However, a new customer maybe arrive during the seeking process. In
this case, the server interrupts the seeking process and serves the new arriving
customer. We assume that the interarrival times, service times and seeking times
are mutually independent.

We are interested in the behavior of customers that whether to join or to
balk upon their arrival. After service, we assume that every customer receives a
reward of R units and each customer needs to pay a waiting cost C units per time
unit until the time he leaves after being served. Moreover, we assume that the
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server charges all the customers entering the system an admission fee P (< R).
Customers are risk neutral and wish to maximize their expected benefit. We
assume that

R − P >
C

μ
. (1)

If this condition fails to hold, which means that the customers who find the
server idle don’t want to enter the system because their reward is equal to
or smaller than their expected total waiting cost. We further stress that the
decisions are irrevocable and the queueing system does not permit retrials of
balking customers or reneging of entering customers.

In our model, we assume that the customers are informed upon their arrival
only about the state of the server. In principle, the customers’ joining probabil-
ities upon arrival are conditional on the state of the server C(t). Therefore, we
denote the equilibrium joining probabilities of customers by qi (i = 0, 1, 2), and
consequently the effective equilibrium arrival rates are λi ≡ λqi which are equal
to or less than λ. From the condition (1), we know that the customer’s reward
exceeds the expected waiting cost when observing the server is in the normal idle
state. Thus, he or she will definitely enter the system, which means λ0 = λ. So
joining such a system is a dominant strategy. Therefore, we need only study the
behavior of the customers when C(t) = 1, 2, that is, the server is in sleep mode
state and normal working state. Instead of working on the joining probabilities,
we can alternatively consider the corresponding arrival rates.

3 Performance Measures

In this section, we have the fact that {X(t) = (C(t), N(t)); t ≥ 0} forms a Markov
chain on the state space S = {(0, i), i ≥ 0; (1, j), j ≥ 0; (2, k), 0 ≤ k ≤ N}
where C(t) denotes the state of the server (0: normal idle; 1: normal working; 2:
sleep mode) and N(t) denotes the number of customers in the orbit at time t,
respectively. We assume that the system is stable, i.e., the stationary distribution
exists if and only if (see [4])

λ1(λ + θ)
(μθ)

< 1.

The transition rate diagram is shown in Fig. 1. Letting πi,j = limt→∞ P (C(t) =
i,N(t) = j) denote the joint stationary distribution of X(t). We define the
corresponding partial generating functions as follows.

Π0(z) =
∞∑

n=0

π0,nzn,Π1(z) =
∞∑

n=0

π1,nzn,Π2(z) =
N∑

n=0

π2,nzn. |z| ≤ 1
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Fig. 1. Transition rate diagram of the original model

Lemma 1. For the M/M/1 constant retrial queueing model with reserved idle
time under N -policy, given the arrival rates (λ, λ1, λ2), the stationary probabili-
ties of the states 0, 1 and 2 are given, respectively, by

Π0(1) =
[

μ

λ + θ

λθ + Nα(λ + θ)
(λ + θ)(μ − λ1) − λμ

+
θ

λ + θ

]
π0,0, (2)

Π1(1) =
λθ + Nα(λ + θ)

(λ + θ)(μ − λ1) − λμ
π0,0, (3)

Π2(1) = (
Nα

λ2
+

α

β
)π0,0. (4)

Moreover, we have the following equations

Π
′
0(z)|z=1 =

{
μ

λ + θ

{
2Nαλ + N(N − 1)α(λ + θ)

2[(λ + θ)(μ − λ1) − λμ]

+
λ1(λ + θ)[λθ + Nα(λ + θ)]

[(λ + θ)(μ − λ1) − λμ]2

}
+

Nα

λ + θ

}
π0,0, (5)

Π
′
1(z)|z=1 =

{
2Nαλ + N(N − 1)α(λ + θ)

2[(λ + θ)(μ − λ1) − λμ]
+

λ1(λ + θ)[λθ + Nα(λ + θ)]

[(λ + θ)(μ − λ1) − λμ]2

}
π0,0, (6)

Π
′
2(z)|z=1 =

[
N(N − 1)

2

α

λ2
+

Nα

β

]
π0,0, (7)

where

π0,0 =

[
μ

λ + θ

λθ + Nα(λ + θ)

(λ + θ)(μ − λ1) − λμ
+

θ

λ + θ
+

λθ + Nα(λ + θ)

(λ + θ)(μ − λ1) − λμ
+

Nα

λ2
+

α

β

]−1

.

Proof. The balance equations for states (i, j) are given as follows.

(λ + α)π0,0 = μπ1,0, (8)
(λ + θ)π0,n = μπ1,n, 1 ≤ n ≤ N − 1, n ≥ N + 1, (9)
(λ + θ)π0,N = μπ1,N + βπ2,N , (10)

(λ1 + μ)π1,n = λ1π1,n−1 + λπ0,n + θπ0,n+1, n ≥ 1, (11)
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(λ1 + μ)π1,0 = λπ0,0 + θπ0,1, (12)
λ2π2,0 = απ0,0, (13)
λ2π2,n = λ2π2,n−1, 1 ≤ n ≤ N − 1, (14)
βπ2,N = λ2π2,N−1. (15)

Using equations (13)–(15), we obtain

Π2(z) =
1 − zN

1 − z

α

λ2
π0,0 +

α

β
zNπ0,0. (16)

Multiplying equations (8)–(12) by the corresponding powers of z and summing
up, we have the following system of equations for generating functions

(λ + θ)Π0(z) + απ0,0 = μΠ1(z) + αzNπ0,0 + θπ0,0, (17)

(λ1 + μ)Π1(z) = λΠ0(z) +
θ

z
Π0(z) + λ1zΠ1(z) − θ

z
π0,0, (18)

which yields

Π0(z) =
μ

λ + θ
Π1(z) +

α(zN − 1) + θ

λ + θ
π0,0, (19)

Π1(z) =
(λz + θ)[α(zN − 1) + θ] − θ(λ + θ)
(λ + θ)z(λ1 + μ − λ1z) − (λz + θ)μ

π0,0. (20)

Letting z = 1 in equations (16), (19) and (20), combining the normaliza-
tion condition and using L

′
Hôspital

′
s rule we can derive π0,0. Then we can

obtain Π0(1),Π1(1),Π2(1) as given by (2)–(4). Taking the first derivative of
the equations (16), (19) and (20) with respect to z and letting z = 1, we have
Π

′
0(z)|z=1,Π

′
1(z)|z=1,Π

′
2(z)|z=1. which are given by (5)–(7). This completes the

proof. ��

4 Equilibrium Arrival Rates

We define T (i, j)(i = 0, j ≥ 1; i = 1, j ≥ 0; i = 2, 1 ≤ j ≤ N) as the mean
waiting time of a tagged customer that he is at the jth position in the orbit,
given that the server is in state i.

Lemma 2. For the M/M/1 constant retrial queueing model with reserved idle
time under N -policy, the expected waiting time of a tagged customer given that
he is at the jth position in the orbit and the servers state is i (i = 0,1,2), are
given by, respectively,

T (0, j) =
λ + θ + μ

μθ
j, j ≥ 1, (21)

T (1, j) =
λ + θ + μ

μθ
j +

1
μ

, j ≥ 0, (22)

T (2, j) =
N − j

λ2
+

1
β

+
λ + θ + μ

μθ
j, 1 ≤ j ≤ N. (23)
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Proof. By a first step argument, we know T (i, j) satisfies the linear system of
equations

T (1, 0) =
1
μ

, (24)

T (1, j) =
1

λ1 + μ
+

λ1

λ1 + μ
T (1, j) +

μ

λ1 + μ
T (0, j), j ≥ 1, (25)

T (0, j) =
1

λ + θ
+

λ

λ + θ
T (1, j) +

θ

λ + θ
T (1, j − 1), j ≥ 1, (26)

T (2, j) =
N − j

λ2
+

1
β

+ T (0, j), 1 ≤ j ≤ N. (27)

Solving (25) with respect to T (1, j) and substituting in (26), we obtain that

T (1, j) − T (1, j − 1) =
λ + θ + μ

μθ
, j ≥ 1.

Taking into account (24), we obtain (22). Substituting (22) in (26) we can obtain
(21) and then substituting (21) into (27), we obtain (23). This completes the
proof. ��
Theorem 1. For the M/M/1 constant retrial queueing model with reserved idle
time under N -policy, given the arrival rates (λ, λ1, λ2), the expected waiting time
of an arrival upon seeing a busy sever and the expected waiting time upon seeing
a sleep server are

W1 =
λ + θ + μ

μθ
+

1

μ
+

λ + θ + μ

μθ

(
2Nαλ + N(N − 1)α(λ + θ)

2[λθ + Nα(λ + θ)]

+
λ1(λ + θ)

[(λ + θ)(μ − λ1) − λμ]

)
, (28)

W2 =
1

β
+

N − 1

λ2
+

λ + θ + μ

μθ
+

(
λ + θ + μ

μθ
− 1

λ2

)
N(N − 1)β + 2Nλ2

2Nβ + 2λ2
. (29)

Proof. Let P (k|s) be the probability that the number of customers in the orbit
is k conditional on observing the server’s status s, where s = 1, 2. Note that,
we define Ws(k) be the expected waiting time if the number of customers in the
orbit is k and the server’s status is s when a customer arrives.

If the arriving customer observes a busy server, the conditional probability
is P (k|1) = π(1,k)

Π1(1)
, and according to (22), we have W1(k) = T (1, k + 1) =

λ+θ+μ
μθ (k + 1) + 1

μ . Thus, the expected waiting time upon seeing a busy server
is

W1 =

∞∑

k=0

W1(k)P (k|1) =
∑∞

k=0 π(1, k)T (1, k + 1)

Π1(1)
=

∑∞
k=0 π(1, k)[λ+θ+μ

μθ
(k + 1) + 1

μ
]

Π1(1)

=
λ + θ + μ

μθ
+

1

μ
+

λ + θ + μ

μθ

Π
′
1(z)|z=1

Π1(1)
.
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From Lemma 1, we obtain (28).
Similarly, if the arriving customer observes the server in sleep mode, the

corresponding conditional probability is P (k|2) = π(2,k)
Π2(1)

, 0 ≤ k ≤ N − 1 and

W2(k) = T (2, k + 1) = N−k−1
λ2

+ 1
β + λ+θ+μ

μθ (k + 1), are derived by (23). Thus,
the expected waiting time upon seeing a server in sleep mode is

W2 =
N−1∑

k=0

W2(k)P (k|2) =
∑N−1

k=0 π(2, k)T (2, k + 1)
Π2(1)

=

∑N−1
k=0 π(2, k)[N−k−1

λ2
+ 1

β + λ+θ+μ
μθ (k + 1)]

Π2(1)

=
1
β

+
N − 1

λ2
+

λ + θ + μ

μθ
+ (

λ + θ + μ

μθ
− 1

λ2
)
Π

′
2(z)|z=1

Π2(1)
.

From Lemma 1, we obtain (29). This completes the proof. ��
From (28) and (29), we can see that the expected waiting time W1(W2) is

independent of the arrive rate λ2(λ1). Thus, we can determine the equilibrium
arrival rates separately. So in the remainder of this work, we can regard W1 (or
W2) as W1(λ1) (or W2(λ2)).

Theorem 2. For the M/M/1 constant retrial queueing model with reserved idle
time under N -policy, the equilibrium arrival rate when the server is busy is given
by

λe
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if R − P ≤ C

{
λ+μ+θ

μθ + 1
μ + λ+μ+θ

μθ
2Nαλ+N(N−1)α(λ+θ)

2[λθ+Nα(λ+θ)]

}
;

Aμθ
(1+A)(λ+θ) , if C{λ+μ+θ

μθ + 1
μ + λ+μ+θ

μθ
2Nαλ+N(N−1)α(λ+θ)

2[λθ+Nα(λ+θ)] } < R − P

< C

{
λ+θ+μ

μθ + 1
μ + λ+θ+μ

μθ

×( 2Nαλ+N(N−1)α(λ+θ)
2[λθ+Nα(λ+θ)] + λ(λ+θ)

[(λ+θ)(μ−λ)−λμ] )
}

;

λ, if R − P ≥ C

{
λ+θ+μ

μθ + 1
μ

+λ+θ+μ
μθ ( 2Nαλ+N(N−1)α(λ+θ)

2[λθ+Nα(λ+θ)] + λ(λ+θ)
[(λ+θ)(μ−λ)−λμ] )

}
.

(30)

where

A =
(R − P )μθ

C(λ + θ + μ)
− 1 − θ

λ + θ + μ
− 2Nαλ + N(N − 1)α(λ + θ)

2[λθ + Nα(λ + θ)]
.

And the equilibrium arrival rate when the server is in sleep mode is given as
follows: If λ22 ≥ λ,
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λe
2 =

⎧⎪⎨
⎪⎩

0, if R − P < C{ 1
β

+ N−1
λ

+ λ+θ+μ
μθ

+ (λ+θ+μ
μθ

− 1
λ
)N(N−1)β+2Nλ

2Nβ+2λ
};

{0, λ}, if R − P = C{ 1
β

+ N−1
λ

+ λ+θ+μ
μθ

+ (λ+θ+μ
μθ

− 1
λ
)N(N−1)β+2Nλ

2Nβ+2λ
};

{0, λ
′
2, λ}, if R − P > C{ 1

β
+ N−1

λ
+ λ+θ+μ

μθ
+ (λ+θ+μ

μθ
− 1

λ
)N(N−1)β+2Nλ

2Nβ+2λ
}.
(31)

where λ22 is the positive root of B = 0, B = [2μθ + N(N + 1)β(λ + θ + μ)]λ2
2 +

2μθβN(1 − N)λ2 − (N − 1)μθβ2N2 and λ
′
2 is the solution of equation R − P −

CW2 = 0.
If λ22 < λ,

λe
2 =

⎧
⎪⎨

⎪⎩

0, if R − P < CW2(λ22);
{0, λ

′
21, λ

′
22}, if CW2(λ22) < R − P < CW2(λ);

{0, λ
′
23, λ}, if R − P > CW2(λ).

(32)

where λ
′
21 and λ

′
22 satisfies the equation R−P −CW2 = 0, and λ

′
23 is the smaller

root of the equation R − P − CW2 = 0.

Proof. First, we consider the equilibrium arrival rate upon seeing the server in
normal working state, denoted by λe

1. Taking the first derivative about λ1 of the
equation (28), we have

W
′
1(λ1) =

(λ + θ + μ)(λ + θ)
[(λ + θ)(μ − λ1) − λμ]2

> 0.

So the mean waiting time W1 increases with λ1. This demonstrates “avoid-the-
crowd” (ATC) customer behavior, and consequently, at most one equilibrium
arrival rate exists. According to the reward-cost structure, the net payoff of the
customer joining the system equals the difference between his reward R and his
waiting cost. So, from Theorem 1, his expected net payoff is

S1(λ1) = R − P − CW1(λ1)

= R − P − C
[λ + θ + μ

μθ
+

1
μ

+
λ + θ + μ

μθ
(
2Nαλ + N(N − 1)α(λ + θ)

2[λθ + Nα(λ + θ)]

+
λ1(λ + θ)

[(λ + θ)(μ − λ1) − λμ]
)
]
. (33)

We observe that S1(λ1) is strictly decreasing for λ1 ∈ [0, λ] and thus have the
following results:

1. If R − P ≤ C{λ+μ+θ
μθ + 1

μ + λ+μ+θ
μθ

2Nαλ+N(N−1)α(λ+θ)
2[λθ+Nα(λ+θ)] }, i.e., S1(0) ≤ 0, then

S1(λ1) in (33) is non-positive for every λ1, so the best response is balking
and the unique equilibrium point is λe

1 = 0, which gives the first part of (30);
2. If C{λ+μ+θ

μθ + 1
μ + λ+μ+θ

μθ
2Nαλ+N(N−1)α(λ+θ)

2[λθ+Nα(λ+θ)] } < R − P < C{λ+θ+μ
μθ + 1

μ +
λ+θ+μ

μθ ( 2Nαλ+N(N−1)α(λ+θ)
2[λθ+Nα(λ+θ)] + λ(λ+θ)

[(λ+θ)(μ−λ)−λμ] )}, there exists an arrival rate
that satisfies R − P = CW1(λ1), which derives the unique equilibrium rate
λ1 = Aμθ

(1+A)(λ+θ) , which gives the second part of (30);
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3. If R − P ≥ C{λ+θ+μ
μθ + 1

μ + λ+θ+μ
μθ ( 2Nαλ+N(N−1)α(λ+θ)

2[λθ+Nα(λ+θ)] + λ(λ+θ)
[(λ+θ)(μ−λ)−λμ] )},

i.e., S1(λ) ≥ 0, then S1(λ1) in (33) is non-negative for every λ1, so the unique
equilibrium point is λe

1 = λ. Thus, we have the third part of (30).

Similarly, we consider the equilibrium arrival rate upon seeing the server is
in sleep mode state, denoted by λe

2. If all other customers choose to balk when
seeing the server in sleep mode, the system will never be active and the best
response for the tagged customer is also to balk. Obviously, all balking is always
an equilibrium strategy. So we now only consider a positive equilibrium arrival
rate upon seeing a sleep mode server. Similarly, we take the first derivative about
λ2 of the equation (29), we have

W
′
2(λ2) =

B

2λ2
2μθ(Nβ + λ2)2

,

where B = [2μθ+N(N +1)β(λ+θ+μ)]λ2
2+2μθβN(1−N)λ2−(N −1)μθβ2N2.

Supposing that the solutions of B = 0 are λ21 and λ22, by calculation we can
see that λ21 < 0 and λ22 > 0. Thus, we have

Case 1: if λ22 ≥ λ, W2 decreases with λ2 in [0, λ]. This demonstrates “follow-
the-crowd” (FTC) customer behavior, and therefore, multiple equilibrium arrival
rates could exist.

Case 2: if λ22 < λ, W2 decreases with λ2 in [0, λ22], while increases with λ2

in [λ22, λ].
So, from Theorem 1, if an arriving customer finds the server in sleep mode

and decides to enter, his expected net benefit is

S2(λ2) = R − P − CW2(λ2)

= R − P − C

[
1
β

+
N − 1

λ2
+

λ + θ + μ

μθ

+(
λ + θ + μ

μθ
− 1

λ2
)
N(N − 1)β + 2Nλ2

2Nβ + 2λ2

]
. (34)

In Case 1, we observe that S2(λ2) is strictly increasing for λ2 ∈ [0, λ] and
thus have the following results:

1. if R−P < C{ 1
β + N−1

λ + λ+θ+μ
μθ +(λ+θ+μ

μθ − 1
λ )N(N−1)β+2Nλ

2Nβ+2λ }, i.e., S2(λ) < 0,
then S2(λ2) in (34) is negative for every λ2, so the best response is balking
and the unique equilibrium point is λe

2 = 0, which gives the first branch of
(31);

2. if R−P = C{ 1
β + N−1

λ + λ+θ+μ
μθ +(λ+θ+μ

μθ − 1
λ )N(N−1)β+2Nλ

2Nβ+2λ }, i.e., S2(λ) = 0,
then S2(λ2) in (34) is negative for every λ2 < λ, so all the customers decide
to join the system and the unique equilibrium point is λe

2 = λ;
3. if R−P > C{ 1

β + N−1
λ + λ+θ+μ

μθ +(λ+θ+μ
μθ − 1

λ )N(N−1)β+2Nλ
2Nβ+2λ }, i.e., S2(λ) > 0,

then there exist two equilibrium arrival rates λe
2 = λ

′
2 ∈ [0, λ] and λe

2 = λ,
where λ

′
2 is the unique root of S2(λ2) = 0. Thus we have the last part of (31).
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In Case 2, S2(λ2) achieves the maximum in λ22. Thus, we have the following
results:

1. if R − P < CW2(λ22), i.e., S2(λ22) < 0, then S2(λ2) in (34) is negative for
every λ2 ∈ [0, λ], so the best response is balking and the unique equilibrium
point is λe

2 = 0, which gives the first branch of (32);
2. if CW2(λ22) ≤ R−P < CW2(λ), then there exist two equilibrium arrival rates

λe
2 = λ

′
21 and λe

2 = λ
′
22, where λ

′
21 and λ

′
22 satisfy the equation R−P −CW2 =

0;
3. if R − P ≥ CW2(λ), then there exist two equilibrium arrival rates λe

2 = λ
′
23

and λe
2 = λ, where λ

′
23 is the smaller root of the equation R − P − CW2 = 0.

Thus we have the last part of (32). This completes the proof. ��
Remark 1. From Eqs. (28) and (29), it is easily seen that upon finding the server
is busy, the expected waiting time is increasing on λ1. So we have an ATC
situation, and the individual equilibrium arrival rate λe

1 is given in (30). Upon
finding the server is in sleep mode, in Case 1, the expected waiting time decreases
in λ2. So we have an FTC situation, there are multiple equilibrium arrival rates
λe
2 given in (31). However, the value λ

′
2 is unstable. That is because, with any

small increase of the arrival rate, the expected waiting time decreases and more
customers will enter the system. This will further increase the arrival rate.

5 The Optimal Reserved Idle Time

Given the customers’ equilibrium behavior, in this section, we study the optimal
reserved idle time to maximize the server’s profit. Considering the server incurs
some costs when it is on, assume the consumption of the server per time unit
when it is in setup, idle and busy states is cs, ci, cb respectively, and there is no
consumption when the server is off. Moreover, the consumption of the space per
customer per time unit is ch.

According to Lemma 1, we obtain the average number of customers in the
system is LQ = Π

′
0(z)|z=1 + Π

′
1(z)|z=1 + Π

′
2(z)|z=1 + Π1(1). Accordingly, the

cost of the service provider per unit of time is

Scost = chLQ + csπ2,N + ciΠ0(1) + cbΠ1(1). (35)

On the other hand, the effective arrival rate of the system in equilibrium is

λeff = λe
2(Π2(1) − π2,N ) + λe

1Π1(1) + λΠ0(1), (36)

where Π2(1),Π1(1),Π0(1) are given in Lemma 1 and λe
2, λ

e
1 are illustrated in

Theorem 2. Thus, the net profit of the service provider per unit of time can be
expressed as

Spro = λeffP − Scost. (37)
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Next, we try to analyze the influences of the parameter α on the net profit
of the service provider per unit of time, i.e., Spro. Considering the complexity
of the monotonic proof of our objective function, we tend to adopt numerical
experiments to investigate the optimal reserved idle time and verify the necessity
of α′s existence.

From Figs. 2, 3, 4 and 5, we observed that the net profit is decreasing with
α, because the server shuts down faster when no one is in the system as α gets
larger and reduces the customers’ willingness to enter when the system is idle,
which leads to the smaller effective arrival rate and the net profit of the service
provider per unit of time. Thus, the smaller α, the larger net profit of the service
provider is. In other words, from the perspective of the server, the setting of
reserved idle time can bring more profit.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

α

S p
ro

N=4
N=6
N=8

Fig. 2. The profit Spro of the service provider per unit of time vs. α for λ = 1, μ =
5, θ = 2, β = 2, R = 20, P = 10, C = 1, ch = 1, cs = 1, ci = 4, cb = 6.

Remark 2. Note that as α → ∞ and β → ∞, i.e., the reserved idle time and the
setup time tend to zero. That is, the system degenerates into the model of Wang
et al. [14].
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Fig. 3. The profit Spro of the service provider per unit of time vs. α for λ = 1, θ =
2, N = 6, β = 2, R = 20, P = 10, C = 1, ch = 1, cs = 1, ci = 4, cb = 6.
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Fig. 4. The profit Spro of the service provider per unit of time vs. α for λ = 1, μ =
5, N = 6, β = 2, R = 20, P = 10, C = 1, ch = 1, cs = 1, ci = 4, cb = 6.
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Fig. 5. The profit Spro of the service provider per unit of time vs. α for λ = 1, μ =
5, θ = 2, N = 6, β = 2, R = 20, C = 1, ch = 1, cs = 1, ci = 4, cb = 6.

6 Conclusions

In this paper we studied an M/M/1 constant retrial queueing model with
reserved idle time under N -policy. The model was explicitly analyzed in terms
of generating function and the analysis yielded an exact solution for the proba-
bilities of the server in different states. Furthermore, we studied the equilibrium
arrival rates upon finding the server is busy and in sleep mode, which is con-
ditioned on the state of the server is observable to the potential customers.
Furthermore, we studied the net profit of the service provider with respect to α
numerically and verified the necessity of α′s existence. In addition to this, there
is still some work to do in the future. For example, the retrial rate is not constant
but linear in many practical cases, which means the retrial rate is proportionable
to the number of customers in the orbit.
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Abstract. Quick detection of common changes is critical in sequential
monitoring of multi-stream data where a common change is referred as a
change that only occurs in a portion of panels. After briefly reviewing the
CUSUM and Shiryayev-Roberts (SR) procedures for a single sequence
under an exponential family model, we propose a combined CUSUM-SR
procedure that is locally optimal in terms of the delay detection time.
The design based on the Average In-control Run Length and comparisons
with other procedures are discussed. After a common change is detected,
a classifier formed by the post-change parameter estimations is used to
isolate the possible candidates for the changed panels, that are then used
to estimate the common change-point. To reduce the false discovery rate
(FDR), supplementary runs are proposed. Dow Jones 30 Industrial Stock
Prices are used for demonstration.

Keywords: Common change · Sequential detection · CUSUM and SR
procedure · False Discovery Rate

1 Introduction

The traditional change-point detection is focused on quick detection of a change
in a single sequence (panel) where the change is typically caused from inter-
nal sources. Two most well-known procedures are the CUSUM and Shiryayev-
Roberts procedures that are briefly introduced in Sect. 2. Recent research on
sequential change-point detection problem has focused on detecting common
changes in multi-stream data or panel data. Here, a common change is referred as
a change that occurs only in a portion of the N panels; usually caused by external
sources. Several typical detection procedures have been discussed and extended;
see Xie and Siegmund [23], Mei [5], and Tartakovsky and Veeravalli [12]. Chan [3]
discussed the optimality of detection procedures.

The estimation of common change-point and isolation of changed panels after
sequential detection is also important. For example, when a common change is
detected in 30 Dow Jones Industrial Indexed Stocks, we shall be interested in
finding out in which sectors of the 30 stocks the change occurred. In multi-sensor
detection, the estimation of the location of the signal is also important after a
c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 391–409, 2019.
https://doi.org/10.1007/978-981-15-0864-6_20
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signal is detected. Wu [21] proposed a combined SR-CUSUM procedure that uses
the sum of N Shiryayev-Roberts processes to detect the common change and N
individual CUSUM processes to isolate the changed panels and estimate the
change point. The alarming limit is chosen such that the average in-control run
length is equal to a designated value. The procedure is introduced in Sect. 3 along
with asymptotic results for the average run lengths. Those panels with large
scores formed by the post-mean estimates along with the delay detection time
will be considered as the candidates of changed panels. As the simulation results
in Sect. 4 show, when the signal strength is weak, i.e. the post-change parameter
is close to the reference value, it is difficult to discriminate the true alarms from
those false alarms. To reduce the false discovery rate (FDR), supplementary runs
are necessary for those candidates of true changed panels. In Sect. 5, we propose
to run supplementary Sequential Probability Ratio Tests (SPRTs) with two sided
boundary [0, d) starting at initial value c (0 < c < d) on each of the candidates
for changed panels. Those panels with runs that down-cross the boundary 0 will
be classified as false alarms; while those with runs that up-cross the boundary
d are classified as true alarms. The value of d and c will be chosen depending
on the estimated false alarm rate or the estimated proportion of false alarms.
The simulation results show that the FDR is reduced significantly with the
supplementary runs. Theoretical results for the distribution of estimated delay
detection time and normalized post-change parameter estimation are presented
in Sect. 6 for both unchanged and changed panels. Dow Jones 30 stock daily
closing prices are used for illustration.

2 Sequential Change Detection in a Single Sequence

2.1 The CUSUM Procedure

Consider a single sequence of independent observations {Xk} with change point ν
which follow a standard exponential family distribution with the baseline density
f0(x) for k < ν and

fθ(x) = exp(θx − c(θ))f0(x)

for k ≥ ν and θ > 0, where c(0) = c′(0) = 0 and c′′(0) = 1.
For testing H0 : 0 ≤ ν < ∞ vs H1 : ν = ∞, the sequential CUSUM procedure

based on likelihood ratio process makes an alarm at

τCUSUM = inf{n > 0 : Tn > A},

where Tn = max(0, Tn−1 + δXn − c(δ)) for a predesigned alarming boundary A
and a reference value δ > 0 for θ. When an alarm is made, the change-point ν
is estimated as the last zero epoch of the CUSUM process Tn:

ν̂ = max{n < τCUSUM : Tn = 0},

and the post-change parameter θ is estimated by the mean equation:

c′(θ̂) =
TτCUSUM

τCUSUM − ν̂
+

c(δ)
δ

.
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The conditional bias and absolute bias of ν̂ and θ̂ given τCUSUM > ν are stud-
ied in Wu [15] along with related inference problems. To design the CUSUM
procedure, the following accurate approximation (Siegmund [10]) for Average
In-control Run Length (ARL0) can be used to calculate A in the normal case:

ARL0 = E∞[τCUSUM ] ≈ eA+δρ − 1 − (A + δρ)
δ2/2

,

where E∞[.] denote the expectation when there is no change and ρ ≈ 0.5826.

2.2 The Shiryayev-Roberts Procedure

Alternatively, we can use the Bayesian approach by first assuming the change
point ν follows a geometric prior distribution

P [ν = k] = (1 − λ)k−1λ,

for k = 1, 2, .... For observations up to time t, the posterior distribution of ν
given X1, ...,Xt equals to

πk,t = P [ν = k|x1, ..., xt]

=
e
∑t

k(δxj−c(δ))Πt
1f0(xj)p(1 − p)k−1

∑t
k=1 e

∑t
k(δxj−c(δ))Πt

1f0(xj)λ(1 − λ)k−1 + (1 − λ)tΠt
1f0(xj)

,

for the reference value δ. Define

πt =
t∑

k=1

πk,t = P [ν ≤ t|x1, .., xt]

as the posterior probability that the change occurred before time t and the
conditional posterior mean as

E[ν|ν ≤ t;x1, ..., xt] =
∑t

k=1 kπk,t

πt
.

An alarm should be raised when the posterior odd process πt/(1 − πt) crosses a
threshold.

As λ → 0 (change occurs far away from beginning), the standardized pos-
terior odd process approaches the Shiryayev-Roberts (SR) process (Pollak and
Siegmund [7]).

Rt = Rt(δ) = lim
λ→0

πt

λ(1 − πt)

=
t∑

k=1

e
∑t

k(δxj−c(δ))

= (1 + Rt−1(δ))eδxt−c(δ)



394 Y. Wu

where R0(δ) = 0 and the conditional mean approaches

E[ν|ν ≤ t;x1, ..., xt] → Qt

Rt
,

where

Qt =
t∑

k=1

ke
∑t

k(δxj−c(δ)) = (t + Qt−1)eδxt−c(δ),

for Q0 = 0. An alarm is raised at

τSR = inf{t > 0 : Rt(δ) > B}.

After an alarm, the conditional posterior mean given ν ≤ τSR is

ν̃ = �QτSR

RτSR

�,

since the change-point is assumed to take the integer values only. The true post-
change parameter θ is estimated by the equation.

c′(θ̃) =

∑T0
[ν̃]+1 xi

τ0 − [ν̃]
.

In the normal case, the following accurate approximation for ARL0 = E∞[τ0]
(Pollak [6]) can be used to design B:

ARL0 ≈ Beδρ,

By using the recursive form of Rt, the following lemma gives the monotone
property of the change-point estimation and its variance:

Lemma 1. (i) The recursive change-point estimation {νn} = Qn

Rn
is monotone

non-decreasing.
(ii) Under Pθ(.),

V ar(Rn) = ec(2θ)−2c(θ)V ar(Rn−1) + n2(ec(2θ)−2c(θ) − 1).

Remark 1. When the post-change parameter θ = δ, the CUSUM procedure
minimizes the maximum conditional delay detection time; while the Shiryayev-
Roberts procedure minimizes the stationary conditional delay detection time.

Remark 2. A numerical comparison in terms of the conditional bias (absolute
bias) of ν̃ and ν̂ by using the two procedures is studied in Tables 2.1 and 10.1 of
Wu [15] for δ = 0.5, 1.0 in the normal case. It showed that there are no significant
differences between the two procedures. The CUSUM procedure performs better
for δ = 0.5 and the Shiryayev-Roberts procedure performs slightly better for
δ = 1.0. However, when θ is unknown, a smaller reference value δ, say, 0.5, is
chosen as the minimum change magnitude subject to detect and in addition, it
is inconvenient to calculate the post-change parameter estimation by using the
Shiryayev-Roberts procedure. Thus, the CUSUM procedure is preferred in terms
of change-point and post-change parameter estimation.
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3 A Combined SR-CUSUM Procedure

3.1 Definition

Assume there are N independent panels and the observations {X
(i)
j } in each

panel i follow the same change point model defined in Sect. 2. Also, a change
may only occur in a p = K

N proportion of the N panels, called common change.
The N panels can be assumed following a mixture model with probability p of
change in each panel. For convenience of discussion, we select the same reference
parameter δ for all panels.

For observations {X
(i)
j } for i = 1, ..., N and j = 1, ..., t with possible change

points 0 ≤ ν = k ≤ t, the log-likelihood ratio for testing H0 : ν = ∞ vs
H1 : 0 ≤ ν < ∞ can be written as

lt(k, p) =
N∑

i=1

ln(1 + p(e
∑t

k+1(δX
(i)
j −c(δ)) − 1)).

By taking the local approach as discussed in Wu [13], we let p → 0 and the local
score is obtained as

lt(k) =
∂lt(k, p)

∂p
|p=0 =

N∑

i=1

(e
∑t

k+1(δX
(i)
j −c(δ)) − 1).

By using the same Bayesian approach as in Sect. 2, the limiting local posterior-
odd process will be equivalent to

Rt(δ) − Nt =
t∑

k=1

N∑

i=1

(e
∑t

k+1(δX
(i)
j −c(δ)) − 1)

=
N∑

i=1

t∑

k=1

(e
∑t

k+1(δX
(i)
j −c(δ)) − 1)

=
N∑

i=1

(Rt(i) − t).

where Rt = Rt(δ) =
∑N

i=1 Rt(i) is the sum of the N Shiryayev-Roberts processes
and

Rt(i) =
t∑

k=1

e
∑t

k+1(δX
(i)
j −c(δ))

is the Shiryayev-Roberts process formed from the observations in panel i.
An alarm will be raised at the stopping time

τ = inf{t > 0 : Rt > B},

where B is chosen such that the ARL0 is equal to the designated value.
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3.2 Average Run Lengths

The design for B is based on the following approximation for the average in-
control run length and its proof is given in Wu [21], which extends the results
of Pollak [6].

Theorem 1. As B → ∞,

ARL0 ≈ B

N
γ(δ),

where
1/γ(δ) = lim

x→∞ Eδe
−(Sτx −x)

with

τx = inf{t > 0 : S
(1)
t =

t∑

i=1

(δX(1)
i − c(δ)) > x}.

In the normal case, when δ is small,

ARL0 = E∞τ ≈ B

N
eρδ,

where ρ ≈ 0.583.

Further results on the exponential property of false alarm time can be seen
in Pollak and Tartakovsky [8] and Polunchenko [9]. The following theorem also
gives an upper bound for the Average Out-of-Control Run Length ARL1 when
the number of changed panels is K ≤ N .

Theorem 2. For θ satisfying c′(θ) > c(δ)/δ,

ARL1 = E0[τ ] ≤ O(
ln(B/K)

δc′(θ) − c(δ)

(

1 − N − K

B(δc′(θ) − c(δ))
+ o(

1
B

)
)

).

In the normal case for θ > δ/2,

ARL1 ≤ O(
ln(B/K)
δ(θ − δ/2)

(

1 − N − K

Bδ(θ − δ/2)
+ o(

1
B

)
)

).

In the normal case, Table 1 gives the simulated average conditional delay
detection times (CDDT) E[τ −ν|τ > ν] for ARL0 = 1000 with number of panels
N = 10, 20, 60, 100 and change portion p = 0.05, 0.10, 0.20, 0.30, 0.50 and 1.00 in
the case δ = 0.5 with the change point ν = 100. The value of B is calculated
from the approximation given in Theorem 1. Numbers in the brackets are the
corresponding false alarm rates (FAR) with 5000 replications. Table 2 gives the
corresponding results for δ = 1.0. Comparison with other procedures as shown
in Wu [21] demonstrated that the proposed procedure is very competitive when
the proportion is small.
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Table 1. Average delay detection time and false alarm rate with δ = 0.5 and ARL0 =
1000

Panel number N = 10 N = 20 N = 60 N = 100

p μ B = 7472.92 B = 14945.83 B = 44837.5 B = 74729.15

0.05 0.5 49.38 (0.052) 36.22 (0.047) 32.85 (0.036)

0.05 1.0 18.55 (0.058) 15.35 (0.059) 14.57 (0.042)

0.05 1.5 11.47 (0.061) 9.84 (0.036) 9.56 (0.034)

0.05 2.0 8.42 (0.067) 7.47 (0.044) 7.12 (0.047)

0.10 0.5 43.51 (0.054) 34.70 (0.051) 27.74 (0.049) 26.19 (0.040)

0.10 1.0 16.66 (0.048) 14.61 (0.043) 12.73 (0.049) 12.27 (0.053)

0.10 1.5 10.37 (0.056) 9.33 (0.053) 8.26 (0.047) 8.15 (0.043)

0.10 2.0 7.69 (0.053) 6.99 (0.051) 6.26 (0.047) 6.07 (0.041)

0.20 0.5 30.35 (0.049) 26.50 (0.047) 22.81 (0.039) 21.18 (0.044)

0.20 1.0 13.00 (0.054) 11.68 (0.062) 10.56 (0.045) 10.06 (0.048)

0.20 1.5 8.33 (0.076) 7.72 (0.057) 7.10 (0.045) 6.78 (0.046)

0.20 2.0 6.17 (0.054) 5.87 (0.044) 5.34 (0.043) 5.14 (0.045)

0.30 0.5 26.33 (0.069) 22.94 (0.060) 19.80 (0.053) 18.50 (0.043)

0.30 1.0 11.25 (0.072) 10.33 (0.053) 9.39 (0.055) 8.98 (0.036)

0.30 1.5 7.41 (0.063) 6.89 (0.065) 6.28 (0.046) 6.14 (0.048)

0.30 2.0 5.55 (0.062) 5.18 (0.062) 4.76 (0.051) 4.65 (0.043)

0.50 0.5 20.28 (0.063) 18.41 (0.052) 16.54 (0.049) 15.41 (0.036)

0.50 1.0 9.41 (0.056) 8.75 (0.064) 7.90 (0.041) 7.68 (0.041)

0.50 1.5 6.29 (0.066) 5.92 (0.047) 5.39 (0.033) 5.23 (0.037)

0.50 2.0 4.76 (0.055) 4.47 (0.042) 4.16 (0.041) 4.06 (0.043)

1.0 0.5 15.17 (0.061) 14.25 (0.045) 12.52 (0.053) 12.05 (0.044)

1.0 1.0 7.41 (0.065) 6.94 (0.058) 6.29 (0.042) 6.22 (0.043)

1.0 1.5 4.97 (0.065) 4.64 (0.055) 4.31 (0.035) 4.26 (0.038)

1.0 2.0 3.81 (0.058) 3.62 (0.056) 3.38 (0.048) 3.28 (0.036)

4 Isolation and Estimation After Detection

4.1 Isolation of Changed Panels

As mentioned in Wu [17], for the change-point estimation, we are mainly inter-
ested in the absolute bias as the change-point is a location parameter where
for a single sequence, it was proved that the MLE from the CUSUM test has
smaller absolute bias than the Bayesian estimation. The combined SR-CUSUM
procedure calculates the N CUSUM processes recursively as

Tt(i) = max(0, Tt−1(i) + δX
(i)
t − c(δ))
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Table 2. Average delay detection time and false alarm rate with δ = 1.0 and ARL0 =
1000

Panel number N = 10 N = 20 N = 60 N = 100

p μ B = 5582.21 B = 11164.42 B = 33493.26 B = 55822.1

0.05 0.5 72.08 (0.074) 40.05 (0.075) 34.58 (0.075)

0.05 1.0 15.34 (0.088) 11.62 (0.076) 10.50 (0.076)

0.05 1.5 8.46 (0.082) 6.87 (0.073) 6.36 (0.076)

0.05 2.0 5.86 (0.083) 4.94 (0.079) 4.70 (0.070)

0.10 0.5 63.54 (0.085) 43.36 (0.084) 28.56 (0.074) 24.30 (0.069)

0.10 1.0 14.03 (0.078) 11.35 (0.099) 9.22 (0.077) 8.65 (0.070)

0.10 1.5 7.65 (0.096) 6.73 (0.093) 5.72 (0.084) 5.43 (0.077)

0.10 2.0 5.39 (0.083) 4.73 (0.084) 4.23 (0.069) 4.05 (0.069)

0.20 0.5 38.34 (0.079) 28.50 (0.107) 20.50 (0.092) 18.27 (0.069)

0.20 1.0 10.23 (0.091) 8.85 (0.088) 7.66 (0.092) 7.20 (0.087)

0.20 1.5 6.06 (0.077) 5.43 (0.095) 4.84 (0.072) 4.67 (0.087)

0.20 2.0 4.41 (0.082) 3.98 (0.085) 3.62 (0.088) 3.53 (0.069)

0.30 0.5 28.50 (0.085) 22.18 (0.099) 16.98 (0.095) 15.25 (0.084)

0.30 1.0 8.86 (0.091) 7.72 (0.088) 6.80 (0.083) 6.46 (0.078)

0.30 1.5 5.32 (0.088) 4.86 (0.102) 4.35 (0.082) 4.19 (0.093)

0.30 2.0 3.81 (0.095) 3.60 (0.094) 3.31 (0.086) 3.18 (0.097)

0.50 0.5 19.84 (0.087) 16.65 (0.077) 13.65 (0.104) 12.56 (0.080)

0.50 1.0 7.21 (0.077) 6.62 (0.078) 5.77 (0.085) 5.65 (0.077)

0.50 1.5 4.57 (0.099) 4.25 (0.088) 3.86 (0.082) 3.74 (0.079)

0.50 2.0 3.36 (0.084) 3.16 (0.079) 2.95 (0.072) 2.86 (0.076)

1.0 0.5 13.84 (0.082) 12.24 (0.084) 10.47 (0.077) 9.96 (0.074)

1.0 1.0 5.75 (0.068) 5.17 (0.090) 4.76 (0.106) 4.58 (0.077)

1.0 1.5 3.70 (0.096) 3.47 (0.083) 3.21 (0.079) 3.07 (0.081)

1.0 2.0 2.82 (0.082) 2.68 (0.072) 2.56 (0.087) 2.50 (0.090)

in each individual panel and at the alarm time τ the change-point for the ith

panel is estimated as the last zero point of Tt(i),

ν̂i = max{t < τ : Tt(i) = 0},

for i = 1, ..., N , which is indeed the MLE when μ = δ. The post-change parameter
estimate in panel i is given by the moment estimation equation

c′(θ̂i) =

∑τ
j=ν̂i+1 X

(i)
j

τ − ν̂i
=

1
δ

[
Tτ (i)
τ − ν̂i

+ c(δ)
]

.

After an alarm is raised for a common change-point, we want to isolate the
changed panels and estimate the common change-point. A common criterion
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is to use the false discovery rate (FDR) defined as the ratio of falsely claimed
“changed” panels among all claimed changed panels.

Apparently, to isolate the “true” changed panels, both the change-point esti-
mation (or estimated delay detection time τ − ν̂i after the change-point estima-
tion) and estimated strength of signals (the post-change parameter estimations)
provide related information.

First, we note that the induced distribution formed by all the change-point
estimations ν̂i for i = 1, 2, ..., N is a mixture distribution from those “true”
changed panels and other panels. However, note that the change-point estimation
for those “unchanged” panels is highly related to the alarm limit and the delay
detection time τ − ν̂i for i = 1, 2, ..., N are relatively short. We further note
that the change-point estimations for unchanged panels are highly dependent
on the alarming limit that makes us difficult to use it as a classifier. Instead,
the isolation of changed panels should rely mainly on the post-change parameter
estimation by comparing with reference value.

Here we use a modified score defined as

Zi =
√

τ − ν̂i(c′(θ̂i))√

c′′(θ̂)
,

as the classifier, which is the multiplication of the square root of the delay detec-
tion time and the standardized post-mean estimation. In the normal case, this
reduces to

Zi =
√

τ − ν̂i
Tτ (i)/(τ − ν̂i) + δ2/2

δ
.

On the other hand, the classifier can also be thought as the sum of normalized
CUSUM process value and the square root of the delay detection time.

A panel with score Zi > z∗ will be considered as a changed pane where z∗

is selected as any common critical value. Second order corrections of this score
in a large scale of sequential probability ratio tests and one-sided truncated
sequential tests are discussed in Wu ([15,21]).

To show how the distribution of the change point estimation and z-score
behaves for unchanged and changed panels after detection, we conduct a simula-
tion study. For ARL0 = 1000 and ν = 100, we take δ = 0.5, μ = 0.5, 1.0, 1.5, 2.0,
N = 100 and K = 10. B is calculated from the approximation given in Theorem
1. The simulated distributions show that although the delay detection time dis-
tributions are distinguishable between the changed and unchanged panels when
μ = δ = 0.5, the difference becomes less obvious as μ is larger than δ. However, the
difference between z-score distributions becomes obvious when μ is larger than δ.

For N = 100 and p = 0.05, 0.10, 0.20, 0.50, Table 3 reported the median
conditional delay detection time (CDDT), the median change-point estimation
ν̃ based on isolated changed panels, the false non-discovery rate(FNR)defined as
the rate of non-discovered changed panels among all true changed panels, the
false discovery rate (FDR) defined as the rate of non-changed panels among all
isolated change panels. The simulation is replicated for 5000 times conditioning
on those trials with τ > ν.
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Note that the estimate that minimizes the absolute bias from the induced
distribution formed from the change-point estimators is known as the median
estimate as stated in the following standard lemma.

Lemma 2. For any distribution function F(x), the value c which minimizes∫ |x−c|dF (x) is the median of F(x) defined as any number M such that F (M) ≥
1/2 and 1 − F (M−) ≥ 1/2.

The simulation procedure is summarized into the following several steps:
Step 1: The sum of the N Shiryayev-Roberts processes is used to detect the
common change and the 100 individual CUSUM processes for 100 panels are
calculated in parallel, so are the corresponding change-point estimations and
post-change mean estimations.
Step 2: When an alarm is made, conditioning on τ > ν, those panels with scores
Zi > z∗ = 1.645 are isolated as the changed panels and used to estimate the
common change point and changed panels. Meanwhile the simulated false alarm
rate (FAR) (P (τ ≤ ν)) is reported.
Step 3: The common change-point is calculated as the median ν̃ of the corre-
sponding estimations from the isolated changed panels. The median conditional
delay detection time (CDDT) is also reported.
Step 4: FNR and FDR are reported.

The results show that the bias of the change-point estimation becomes more
negative as μ gets larger. By treating δ as the smallest change-magnitude we
want to detect, we found that δ = 0.5 is preferred in terms of the FNR and
FAR. However, the FDRs are large.

To show how the value of z∗ affects the error rates, we select several common
values z∗ = 1.645, 1.96, 2.326 and 2.576. For δ = 0.5, ARL0 = 5000, ν = 1000,
N = 100, and K = 10 (B = 373647.5), with 5000 simulations, Table 4 reported
the FAR (False Alarm Rate), median conditional delay detection time (CDDT),
median change-point estimation ν̃, FNR, and FDR. Although the FDR is smaller
for larger values of z∗, it increases the FNR when μ = δ.

4.2 Supplementary Sequential Tests

Tables 3 and 4 show that no matter what the post-change mean is, the false
discovery rate is very high as the false alarms are not ignorable for large number
of panels. To overcome this difficulty, we propose to conduct supplementary
SPRTs for those panels with large values of z∗ as discussed in Wu [18]. The
procedure in the normal case is defined in the following several steps.

(i) We select all the panels with Zi =
√

τ − ν̂i
Tτ (i)/(τ−ν̂i)+δ2/2

δ > z∗ as potential
candidates for changed panels where z∗ = 1.645 for supplementary sequen-
tial tests; (as we use [0, δ] as the indifference zone).

(ii) The supplementary sequential tests are run on these panels starting at d/2
with boundary [0, d], where d is selected such that d = o(ln(B/K) (without
increasing average detection length theoretically as stated in Theorem 2).
If the run ends crossing the lower boundary 0, then the panel is classified
without change; otherwise it is classified as a true changed panel.



Sequential Common Change Detection and Isolation of Changed Panels 401

Table 3. Estimation of common change point and isolation error rates with ARL0 =
1000 and δ = 0.5.

p μ FAR CDDT ν̃ FNR FDR

δ = 0.5

0.05 0.5 0.045 32 114.5 0.0545 0.836

1.0 0.044 15 100 0.0082 0.829

1.5 0.043 10 96.5 0.0021 0.828

2.0 0.040 7 95 0.0007 0.827

0.10 0.5 0.046 26 106 0.0814 0.714

1.0 0.0428 12 98 0.017 0.700

1.5 0.0454 8 96 0.0046 0.696

2.0 0.037 6 95 0.0011 0.695

0.20 0.5 0.037 21 101 0.118 0.536

1.0 0.035 10 97.5 0.0295 0.513

1.5 0.040 7 96 0.0081 0.507

2.0 0.0442 5 96 0.0022 0.504

0.50 0.5 0.040 16 99 0.179 0.240

1.0 0.045 8 97 0.0622 0.216

1.5 0.0408 5 97 0.022 0.208

2.0 0.0414 4 97 0.0083 0.206

δ = 1.0

0.05 1.0 0.0934 10 104 0.036 0.776

1.5 0.0864 6 100 0.0103 0.771

2.0 0.0786 5 100 0.0029 0.771

0.10 1.0 0.0764 9 101 0.0622 0.630

1.5 0.0774 5 100 0.0201 0.620

2.0 0.0846 4 99.5 0.0066 0.615

0.20 1.0 0.0814 7 100 0.0900 0.440

1.5 0.081 5 100 0.0345 0.426

2.0 0.0784 4 99 0.0125 0.420

0.50 1.0 0.0868 6 100 0.1411 0.175

1.5 0.0864 4 100 0.0629 0.162

2.0 0.081 3 100 0.0285 0.156

(iii) For the final isolated panels, the common change-point will be estimated as
the mean or median of the corresponding change-point estimations.

We notice that the supplementary runs will increase the total average delay
detection time in lower order, but should reduce the false alarm rate significantly.
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Table 4. Effect of z∗ on isolation error rates

z∗ μ FAR CDTT ν̃ FNR FDR

1.645 0.5 0.168 35 1013 0.0433 0.705

1.0 0.165 16 999.5 0.0047 0.697

1.5 0.170 11 997 0.00009 0.695

2.0 0.173 8 996 0.00001 0.695

1.96 0.5 0.177 35 1006 0.0787 0.607

1.0 0.164 16 998 0.011 0.586

1.5 0.176 11 996.5 0.002 0.586

2.0 0.160 8 995 0.00008 0.586

2.326 0.5 0.170 35 1001 0.146 0.454

1.0 0.173 16 997.5 0.029 0.419

1.5 0.173 11 996 0.006 0.413

2.0 0.173 8 995.5 0.001 0.413

2.576 0.5 0.170 35 1000 0.212 0.342

1.0 0.159 16 997 0.049 0.299

1.5 0.176 11 996.5 0.012 0.289

2.0 0.178 8 996 0.003 0.289

Table 5. FDR after supplementary runs for ARL0 = 1000 and δ = 0.5(1.0) with
N = 100

p μ FAR CDDT FNR FDR ν̂ ν̃ SRL

0.05 0.5 0.036 32 0.142 0.316 102.6 101 12

1.0 0.043 15 (10) 0.0096 (0.1071) 0.294 (0.1922) 96.8 98 (100) 10 (4)

1.5 0.040 10 (6) 0.0024 (0.0171) 0.282 (0.1723) 95.6 97 (100) 10 (3)

2.0 0.044 7 (5) 0.0009 (0.0042) 0.282 (0.1747) 95.6 97 (100) 10 (3)

0.10 0.5 0.045 26 0.164 0.195 99.9 100 12

1.0 0.044 12 (9) 0.0183 (0.1259) 0.168 (0.110) 97.1 98 (100) 9 (4)

1.5 0.044 8 (5) 0.0041 (0.0257) 0.166 (0.097) 96.7 97.5 (100) 8 (3)

2.0 0.044 6 (4) 0.0017 (0.0074) 0.162 (0.096) 96.5 97 (100) 8 (3)

0.20 0.5 0.042 21 0.2007 0.104 98.9 99.5 12

1.0 0.043 10 (7) 0.0314 (0.1557) 0.086 (0.057) 97.4 98 (100) 8 (4)

1.5 0.047 7 (5) 0.0081 (0.0404) 0.085 (0.049) 97.2 97.5 (100) 6 (3)

2.0 0.043 5 (4) 0.0030 (0.0140) 0.085 (0.047) 97.0 97 (100) 4.5 (2)

0.50 0.5 0.044 16 0.2546 0.031 98.4 99 12

1.0 0.038 8 (6) 0.0634 (0.2018) 0.024 (0.0156) 97.5 98 (100) 6 (4)

1.5 0.046 5 (4) 0.0210 (0.0699) 0.024 (0.0136) 97.4 98 (100) 4 (3)

2.0 0.042 4 (3) 0.0094 (0.0287) 0.023 (0.0131) 97.4 97.5 (100) 3 (2)
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Table 5 gives the simulation results with 5000 runs for ARL0 = 1000, N =
100, and δ = 0.5 and 1.0 as in Table 1. After a common change is detected,
sequential tests for those panels with Z-score larger than Z∗ = 1.645 are run
with two sided boundaries [0,4] with starting values 2.0. The selection of d = 4
makes both the first type and second of error equal to e−(d+ρ) = e−2.583 ≈ 0.0755
(as discussed in Wu [18]). For change point ν = 100, the proportion of changed
panels is taken as 0.05, 0.10, 0.20, and 0.50. Reported are the False Alarm Rate
(FAR), 1st kind err rate, False Discovery Rate (FDR) calculated conditioning on
those true alarms, the estimations of the change point calculated as the mean (ν̂)
and median (ν̃) based on the change-point estimations from those final isolated
“changed” panels, and the median average supplementary run length (SRL).

Remark 3. As stated in (iii), to eliminate the possible large runs, we can
truncate all tests at time C such that d = o(C) but C = o(ln(B)). An alternative
procedure by using the sequential truncated one-sided tests was discussed in
Wu [20].

Remark 4. Control of the two types of errors for sequential multiple hypotheses
testing procedure has been a topic of recent focuses. We refer to De and Baron [4]
and Song and Fellouris [11] for some recent results. Further investigation in our
case seems necessary as we already have preliminary information available.

Figure 1 plotted the histograms for the FDR and change-point estimations
based on 5000 simulations.

Based on the simulation results, we can see that the supplementary runs can
reduce the FDR dramatically with slight increase on the first kind of error rate.
Also the median estimation for the change-point has smaller bias than the mean
estimation.

5 Distribution of Change Point Estimation
and Standardized Z-Score

In this section, we present some theoretical results for the estimated delay detec-
tion time and the z-score. Wu [14] studied second order approximations for the
bias of change-point estimation by using the CUSUM procedure for a single
sequence. Second order corrections of the z-scores for a single sequence with
true alarm and false alarms are further studied in Wu ([16,19]). In the single
sequence, the distributions of the CUSUM process and Shiryayev-Roberts pro-
cess have been studied in Pollak and Siegmund [7], Pollak and Tartakovsky [8],
and Polenchenko [9] in both the discrete and continuous time cases. However,
multiple sequence tests raise quite different scenario as the alarm will be mostly
raised by the true changed panels that, in turn, do not affect the probability
behaviours for the unchanged panels. Therefore, we split our discussions for
those unchanged panels from changed panels.
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Fig. 1. Histograms of FDR and change-point estimation

5.1 Null Distribution for Change-Point Estimation

By conditioning on a common change being detected, the alarm will mostly be
raised from those changed panels. Those unchanged panels can be studied by
treating the alarm time as a random stopping time. Here, we used the approach
as in Wu [15].

Consider a random walk {Sn = S0 +
∑n

i=1(Xi − δ/2)} with S0 = 0 where
Xi are i.i.d N(0, 1) random variables. By looking backward at the alarm time τ ,
the paths of observations from those unchanged panels are approximately i.i.d
copies of {Sn} and τ − ν̂i is the maximum point σM with maximum value M :

M = sup
0≤k<∞

Sk.

In the following we give some results for (σM ,M). Let τ
(0)
+ = 0. Define

τ+ = τ
(1)
+ = inf{n > 0 : Sn > 0}

and for k ≥ 2
τ
(k)
+ = inf{n > τ

(k−1)
+ : Sn > S

τ
(k−1)
+

},

and
L = sup{k > 0 : τ

(k)
+ < ∞},

and L = 0 if τ+ = ∞. It can be easily seen that

P [L = k] = pk(1 − p),

for k = 0, 1, 2, ... where p = P [τ+ < ∞].
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Now we note that
(σM ,M) =d (τ (L)

+ , S
τ
(L)
+

).

For given L = k > 0, (τ (k)
+ , S

τ
(k)
+

) is in distribution equivalent to the sum of k

i.i.d. copies of (τ+, Sτ+)|τ+ < ∞. This leads to the following Laplace transform
for (σM ,M) in the normal case.

Theorem 3.

E[sσM eλM ] =
1 − G+(1, 0)
1 − G+(s, λ)

,

where G+(s, λ) = 1 − E[sτ+eλSτ+ ; τ+ < ∞].

Proof. By conditioning on the value of L, we have

E[sσM eλM ] =
∞∑

k=0

E[sτ
(L)
+ e

λS
τ
(L)
+ ;L = k]

=
∞∑

k=0

(E[sτ+eλSτ+ ; τ+ < ∞])kP (τ+ = ∞)

=
1 − P (τ+ < ∞)

1 − E[sτ+eλSτ+ ; τ+ < ∞]
.

Remark 5. From Theorem 3, the exact forms for moments of σM and M can
be obtained. For example,

E[σM ] =
E[τ+; τ+ < ∞]

P (τ+ = ∞)
; E[M ] =

E[Sτ+ ; τ+ < ∞]
P (τ+ = ∞)

.

Since the random walk {Sn} has negative drift, the Wiener-Hopf factorization
(e.g. Theorem 8.41 of Siegmund [10]) gives

(1 − G+(s, λ))(1 − G−(s, λ)) = 1 − seλ2/2−δλ/2,

where G−(s, λ) = E[sτ−eλSτ− ]. By letting s → 1 and λ = 0, we have

1 − G+(1, 0) =
1

Eτ−
.

Thus, we have an alternative form

E[sσM eλM ] =
1

Eτ−
1 − E[sτ−eλSτ− ]
1 − seλ2/2−δλ/2

.

The following corollary gives the approximate exponential property for M as
δ → 0.

Corollary 1. As δ → 0,

lim
n→∞ P (T (1)

n < x) = P (δM < x) → 1 − e−x.
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Proof. We take s = 1 and note that E[Sτ− ] = −(δ/2)E[τ−]. Using the alternative
form, as δ → 0, the moment generating function of δM equals to

E[eλδM ] =
1

E[τ−]
1 − E[eλδSτ− ]

1 − eλ2δ2/2−λδ2/2

=
−δ/2

E[Sτ− ]
λδE[Sτ− ] + o(δ)

λ2δ2/2 − λδ2/2 + o(δ2)

=
1 + o(δ)

1 − λ + o(δ)

=
1

1 − λ
+ o(δ),

the moment generating function of a standard exponential distribution.

To study the distribution of σM , denote by P ∗(.) the probability measure
with mean δ/2 and τ∗

c = inf{n : S∗
n > c} for an independent copy {S∗

n} of {Sn}
for c > 0.

Corollary 2. P [σM = 0] = P (τ+ = ∞] and for any n > 0,

P [σM ≤ n] = E[P ∗[τ∗
M ≤ n|M ]].

Proof.

P [σM ≤ n] = P [ sup
n≤k<∞

Sk ≤ sup
0≤k≤n

Sk]

= P [ sup
n≤k<∞

(Sk − Sn) ≤ − sup
0≤k≤n

(Sn − Sk)]

= P [M ≤ sup
0≤k≤n

S∗
k ]

= E[P ∗(τ∗
M ≤ n|M)].

When δ → 0, P (τ+ = ∞) → 0. From Corollary 1, δM is asymptotically an expo-
nential variable. For a given large value of M , Equation (3.30) of Siegmund [10]
gives the following inverse Gaussian approximation:

P ∗[τ∗
M ≤ n|M ] ≈ 1 − Φ(

M + ρ√
n

− (δ/2)
√

n) + eδ(M+ρ)Φ(−M + ρ√
n

− (δ/2)
√

n).

Therefore the unconditional distribution of σM is approximately a mixture
of inverse Gaussian distribution.

Remark 6. More recently, Wu [22] gives the explicit joint distribution for
(σM ,M) under the continuous Brownian motion model. Also, a second order
approximation for the distribution of M is used to propose a FDR-controlled
isolation rule. Comparisons with the proposed procedure will be conducted in
future communications.
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5.2 A Real Example

Here we use the adjusted closing prices of Dow Jones 30 stocks from Sept 5,
2018 to Sept 4, 2018 (total 252 days) as illustration. We use the differences of
logarithm as the original data. The Auto-Correlation Function (ACF) plots show
that the autocorrelation can be ignored at the first step. The first 100 data for
each stock are used to standardize with mean 0 and standard deviation 1. Also,
the observations with absolute values larger than 3 are truncated to 3 to avoid
any potential effect of outliers. To detect a common change of decrease in mean,
we use the negatives of the observations.

For N = 30 and ARL0 = 10, 000, the approximate value for B is 224142.6.
The S-R process detected the common change at τ = 107. The histograms of
change-points and z-scores in Fig. 2 showed that all the panels are isolated as
changed panels.

Supplementary SPRTs are run as described in Sect. 5 which can also identify
whether the change in panels are temporary. The histogram of the run lengths
showed that the supplementary runs have median run length 2 and the 20 stocks
that their means showed decreases are “AAPL” “AXP” “CAT” “CVX” “CSCO”
“KO” “DWDP” “XOM” “GS” “HD” “JNJ” “JPM” “MCD” “MSFT” “PFE”
“TRV” “UTX” “VZ” “V” “WMT”.

Fig. 2. Plots of change-point estimation and Z-scores
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6 Conclusion

We proposed a combined SR-CUSUM procedure to detect common changes in
multi-panel data. To reduce the FDR for isolating changed panels and estimating
the common change point, supplementary SPRTs are proposed to run on possible
candidates after detection. An alternative method is to run one-sided truncated
sequential tests by just finding the true changed panels as discussed in Wu [20].
Further discussions on sequential multiple tests on the control of FDR can also be
used in the supplementary run; see Bartroff [1] and Bartroff and Song [2]. As dis-
cussed in Wu [21], we may also use the adaptive combined SR-CUSUM procedure
which can eliminate high biases when the true change magnitudes are unknown.
The results will be presented in future communications.

Acknowledgement. This research is partially supported by a RSCA grant from Cal-
ifornia State University Stanislaus.
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Abstract. In this paper, we consider a production-inventory system
with a service facility and production interruptions. Customers arrive in
the system according to a Poisson process and require a random time
of the service from a single service facility. The service time is assumed
to be exponentially distributed. The items are produced according to an
(s, S) policy. Each customer leaves the system with one item from the
inventory at his service completion epoch if the inventory is available.
The production is interrupted for a vacation of random time once the
inventory level becomes S. The vacations are exponentially distributed.
On return from a vacation, if the inventory level depletes to s, then the
production is immediately switched on. It then starts production and
is kept in the on mode until the inventory level becomes S. The items
in stock are perishable and have exponential life times. It is assumed
that no customers is allowed to join the queue when the inventory level
is zero. We first derive the stability condition of the system. Then, We
obtain the product form solution for the stationary joint distribution of
the number of customers and the on-hand inventory level. Based on this
stationary distribution, we compute explicitly some performance mea-
sures and develop a cost function. Finally, some numerical results are
presented.

Keywords: Production-inventory system · Service time · Lost sales ·
Perishable items · Cost function

1 Introduction

Queueing-inventory systems are queueing systems with attached inventory con-
trol. In such a system, satisfying each demand needs not only an on-hand inven-
tory item but also some service time. Over the last decades, queueing-inventory
systems have attracted much attention due to their close connection with the
research on integrated supply chain management. The first work on queuing-
inventory system appears in Sigman and Simchi-Levi [1]. The authors investi-
gate an M/G/1 queueing-inventory system and develop a light traffic heuristic for
c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 410–428, 2019.
https://doi.org/10.1007/978-981-15-0864-6_21
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finding performance descriptions for their model. This is followed by a sequence
of papers (see Berman and Kim [2,3], Berman and Sapna [4–6], Schwarz et al.
[7], Krishnamoorthy et al. [8], Viswanath et al. [9] and a survey paper Krish-
namoorthy et al. [10] and reference therein).

Krishnamoorthy and Viswanath [11] extend a queueing-inventory system
with (s, S) policy to a production-inventory system with a positive service time
and server’s vacation. They investigate the system stability and the system state
distribution. Several performance measures are also computed. Krishnamoorthy
et al. [12] consider an (s, S) production-inventory system with a positive service
time under the assumptions of a Poisson arrival process and exponentially dis-
tributed service time and production time. They obtain product form solution
for the steady state distribution under assumption that customers do not join
when the inventory level is zero.

Baek and Moon [13] study a production-inventory system with a positive
service time in which the stocks are delivered both by an outside supplier and
an international production. The stocks are replenished either by an external
order under a (r,Q) policy, or by an internal production. They obtain a product
form solution for the stationary joint distribution of the queue length and the
on-hand inventory level. Baek and Moon [14] consider an (s, S) production-
inventory system with an attached M/M/c/∞ queue. The production process
and arrival process are assumed to be Poisson processes. The service times are
assumed to be exponentially distributed. They prove the independence of the
inventory level process and the queue length process, and they derive the explicit
stationary joint probability in product form. Recently, Yue and Qin [15] extend
the model studied by Krishnamoorthy et al. [12] by considering the production
vacation. They assume that the production facility takes multiple vacation when
the on-hand inventory level reaches S. They obtain the product form solution for
the stationary joint distribution of the queue length and the on-hand inventory
level under the assumption that all arriving customers are lost during the stock
out period. Besides, they compute explicitly some performance measures and
develop a cost function based on these performance measures.

In all work quoted above, items in inventory are stored indefinitely to meet
demands. However, when dealing with perishables inventory, the product life
time must be taken into account in inventory models. Examples of perish-
able products include fresh food, seasonal products, blood products, chemicals,
medicines and so on. Since the last few decades, analysis of the models for perish-
able products has drawn much attention of researchers because of its important
applications in inventory and production systems. A comprehensive survey on
perishable inventory systems is referred to Karaesmen et al. [16] and Bakker
et al. [17]. For an early review of work, we refer the reader to Nahmias [18],
Raafat [19], and Goyal and Giri [20]. Queueing-inventory systems with perish-
able inventory have been studied by Sivakumar and Arivarignan [21], Manuel
et al. [22], [23] and several others, just mention a few of them.

In this paper, we consider a production-inventory system with perishable items
and a service facility who serves customers. The items are produced according to
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an (s, S) policy. Each customer leaves the system with one item from the inventory
at his service completion epoch if the inventory is available. The production is
interrupted for a vacation of random time once the inventory level becomes S. This
model extends the system model in Yue and Qin [15] to the model with perishable
inventory items and interruption of the production.

The main contributions of this paper are as follows: (i) We extend the model
considered by Yue and Qin [15] by considering perishable inventory items. (ii) We
derive an explicit stationary condition which is independent on the parameters of
the production and the vacation by using quasi-birth-and-death (QBD) process
theory. (iii) We obtain product form solution for the stationary joint distribution
of the queue length and the on-hand inventory level by using the matrix analytic
approach. (iv) We compute explicitly some performance measures and develop
a cost function based on these performance measures.

The rest of the paper is organized as follows. The system model is described
in Sect. 2. In Sect. 3, we perform the steady state analysis. Firstly, the stability
condition of the system is derived by using QBD process theory. Then, the joint
distribution of the number of customers and the inventory level in product form
is obtained. Finally, some performance measures are computed. A mean cost
function is developed in Sect. 4, and numerical results are also presented in this
section. Conclusions are given in Sect. 5.

2 System Model

The production-inventory system considered in this paper is described as follows
(see Fig. 1):

Customers arrive in the system according to a Poisson process with rate
λ. There is a single service facility (server) who serves the customers one by
one under a First-Come, First-Served (FCFS) discipline. The service times are
exponentially distributed with rate μ. Each customer leaves the system with one
item from the inventory at his service completion epoch. It is assumed that all
arriving customers are lost when the inventory level is zero.

The system has a single production facility that produces one type of prod-
uct, and the production times are exponentially distributed with rate η. The
production is interrupted for a vacation of random time once the inventory level
becomes S. The vacations are exponentially distributed with rate θ. On return
from a vacation, if the inventory level depletes to s, then the production is imme-
diately switched on and is kept in the on mode until the inventory level becomes
S. Otherwise, on return from the vacation, if the inventory level is higher than s,
then the production facility goes on another vacation of random duration at the
same distribution rate as earlier. This type of vacation is called multiple vacation
in literature of queueing system with vacations (see, e.g., Tian and Zhang [24]).

The items in stock are perishable and their life times are distributed expo-
nentially with rate γ.
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Fig. 1. Diagram of the proposed production-inventory model.

3 Steady-State Analysis

In this section, we first formulate the system state process as a QBD process
and then derive the stability condition of the system. Then, we derive the joint
stationary distribution of the number of customers, the inventory level and the
status of the production in the steady state. Using this distribution, we compute
some performance measures.

3.1 Stability Condition

Let {X(t), t ≥ 0}={(N(t), I(t), J(t)), t ≥ 0} be the system state process, where
N(t) denotes the number of customers at time t, I(t) denotes the inventory level
at time t, and J(t) denotes the status of the production process at time t which is
defined as either 0 or 1 according to whether the production facility is taking on
a vacation or in production mode, respectively. Then, the process {X(t), t ≥ 0}
is a continuous-time Markov process (CTMP) which is a QBD process with state
space:

Ω = {(i, j, k), i ≥ 0, 0 ≤ j ≤ S − 1, k = 0, 1} ∪ {(i, S, 0), i ≥ 0}.

The infinitesimal generator of the process {X(t), t ≥ 0} is given as follows:

Q =

⎛
⎜⎜⎜⎝

A0 C
B A C

B A C
. . . . . . . . .

⎞
⎟⎟⎟⎠
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where A0, A, B and C are all (2S + 1) × (2S + 1) matrices, and they are given
as follows:

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0 U0

L1 F1 U0

. . . . . . . . .
Ls Fs U0

Ls+1 Fs+1 U0

. . . . . . . . .
LS−2 FS−2 U0

LS−1 FS−1 U1

LS FS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

F0 =
(−θ θ

0 −η

)
,

Fi =
(−(λ + θ + iγ) θ

0 −(λ + η + iγ)

)
, i = 1, 2, .., s,

Fi =
(−(λ + iγ) 0

0 −(λ + iγ + η)

)
, i = s + 1, s + 2, ..., S − 1,

FS = −(λ + Sγ), U0 =
(

0 0
0 η

)
, U1 =

(
0
η

)
,

Li =
(

iγ 0
0 iγ

)
, i = 1, 2, ..., S − 1,

LS = (Sγ 0)

and

B =

⎛
⎜⎜⎜⎜⎜⎝

0
M1 0

. . . . . .
M1 0

M2 0

⎞
⎟⎟⎟⎟⎟⎠

with

M1 =
(

μ 0
0 μ

)
,M2 =

(
μ 0

)
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and C is given by

C =

⎛
⎜⎜⎜⎜⎜⎝

0
M3

. . .
M3

λ

⎞
⎟⎟⎟⎟⎟⎠

where

M3 =
(

λ 0
0 λ

)

and A is given by

A = A0 − μ

λ
C.

Using QBD process theory, we can derive the stability condition of the system
which is given by the following theorem.

Theorem 1. The process {X(t), t ≥ 0} with the infinitesimal generator Q is
positive recurrent if and only if ρ = λ

μ < 1.

Proof. To derive the stability condition of the process {Φ(t), t ≥ 0}, we consider
the matrix H = A + B + C, which is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0 U0

D1 G1 U0

. . . . . . . . .
Ds Gs U0

Ds+1 Gs+1 U0

. . . . . . . . .
DS−2 GS−2 U0

DS−1 GS−1 U1

DS GS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

Gi =
(−(μ + θ + iγ) θ

0 −(μ + η + iγ)

)
, i = 1, 2, ..., s,

Gi =
(−(μ + iγ) 0

0 −(μ + iγ + η)

)
, i = s + 1, s + 2, ..., S − 1,

GS = −(μ + Sγ),
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Di =
(

μ + iγ 0
0 μ + iγ

)
, i = 1, 2, ..., S − 1,

DS =
(
μ + Sγ 0

)

and the matrices U0 and U1 are defined previously.
Let x = (x(0, 0), x(0, 1), ..., x(S−1, 0), x(S−1, 1), x(S, 0)) be the steady state

probability vector of the generator H. Then, x satisfies equations xH = 0 and
xe = 1, where e is a column vector of 1’s of appropriate dimension.

From the structure of matrices B and C, we have

xCe = λ

(
S−1∑
i=1

[x(i, 0) + x(i, 1)] + x(S, 0)

)
= λ [1 − x(0, 0) − x(0, 1)]

and

xBe = μ

(
S−1∑
i=1

[x(i, 0) + x(i, 1)] + x(S, 0)

)
= μ [1 − x(0, 0) − x(0, 1)] .

From Neuts [25], the process {Φ(t), t ≥ 0} is positive recurrent if and only if

xCe < xBe.

Thus, we get λ < μ from this equality since it is not difficult to get the steady
state probability vector x of the generator H, then we have x(0, 0)+x(0, 1) �= 1.
So, the system is stable if and only if ρ = λ

μ < 1. ��
Remark 1. Theorem 1 shows that the stability condition for the present model is
the same as that of the classical M/M/1 queueing system, and it is independent
to the parameters of production and the vacation. So, the interruption (vacation)
of the production dose not influence the stability of the system for our system
model.

3.2 Steady-State Distribution

In this section, we use matrix analytic approach to derive the steady-state dis-
tribution of the system. The idea of the method is as used in Krishnamoorthy
and Viswanath [12].

Firstly, we consider a production-inventory system where the service time of
customers is zero. For this case, the corresponding Markov process is defined as
{X̂(t), t ≥ 0} = {(I(t), J(t)), t ≥ 0}, where I(t) denotes the inventory level at
time t, and J(t) denotes the status of the production process at time t which is
defined as that in last subsection. The process {X̂(t), t ≥ 0} is a CTMP with
finite state space

Ω̂ = {(j, k), 0 ≤ j ≤ S − 1, k = 0, 1} ∪ {S, 0},
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and its infinitesimal generator is given by

Q̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0 U0

L̂1 F1 U0

. . . . . . . . .
L̂s Fs U0

L̂s+1 Fs+1 U0

. . . . . . . . .
L̂S−2 FS−2 U0

L̂S−1 FS−1 U1

L̂S FS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

L̂i =
(

λ + iγ 0
0 λ + iγ

)
, i = 1, 2, ..., S − 1,

L̂S = (λ + Sγ 0)

and the other matrices in Q̂ are as defined previously in last subsection.
Let π = (π(0, 0), π(0, 1), ..., π(S − 1, 0), π(S − 1, 1), π(S, 0)) be the steady-

state probability vector of the process {X̂(t), t ≥ 0}. Then π satisfies the set of
equations

{
πQ̂ = 0
πe = 1

(1)

where e is a column vector of 1’s of appropriate dimension. Thus, Eq. (1) reduce
to the following set of equations:

θπ(0, 0) = (λ + γ)π(1, 0), (2)
(λ + iγ + θ)π(i, 0) = (λ + (i + 1)γ)π(i + 1, 0), i = 1, 2, ..., s, (3)
(λ + iγ)π(i, 0) = (λ + (i + 1)γ)π(i + 1, 0), i = s + 1, s + 2, ..., S − 1, (4)
(λ + Sγ)π(S, 0) = ηπ(S − 1, 1), (5)
ηπ(0, 1) = (λ + γ)π(1, 1) + θπ(0, 0), (6)
(λ + η + iγ)π(i, 1) = (λ + (i + 1)γ)π(i + 1, 1) + ηπ(i − 1, 1) + θπ(i, 0),

i = 1, 2, ..., s, (7)
(λ + η + iγ)π(i, 1) = (λ + (i + 1)γ)π(i + 1, 1) + ηπ(i − 1, 1),

i = s + 1, s + 2, ..., S − 2, (8)
(λ + η + (S − 1)γ)π(S − 1, 1) = ηπ(S − 2, 1), (9)
S−1∑
i=0

[π(i, 0) + π(i, 1)] + π(S, 0) = 1 (10)
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Theorem 2. The steady-state probability distribution of the process {X̂(t), t ≥ 0}
is given by

π(i, 0) = αiπ(S, 0), i = 0, 1, ..., S − 1, (11)
π(i, 1) = βiπ(S, 0), i = 0, 1, ..., S − 1 (12)

and

π(S, 0) =

[
1 +

S−1∑
i=0

(αi + βi)

]−1

(13)

where

α0 =
(λ + γ)

θ
α1, (14)

αi = αs+1

s∏
k=i

λ + (k + 1)γ
λ + kγ + θ

, i = 1, 2, ..., s, (15)

αi =
S−1∏
k=i

λ + (k + 1)γ
λ + kγ

, i = s + 1, s + 2, ..., S − 1 (16)

and for i = 0, 1, ..., s − 1, βi is determined by the following iterative formula

βi =
λ + (i + 1)γ

η
βi+1 +

λ + Sγ

η
− θ

η

s∑
k=i+1

αk (17)

and for i = s, s + 1, ..., S − 2, βi is given by

βi =
λ + Sγ

η

S−i−1∑
j=1

{
1 +

1
ηk

j∏
k=1

[λ + (i + k)γ]

}
(18)

and

βS−1 =
λ + Sγ

η
. (19)

Proof. Equations. (3) and (4) can be rewritten as

π(i, 0) =
λ + (i + 1)γ
λ + iγ + θ

π(i + 1, 0), i = 1, 2, ..., s (20)

and

π(i, 0) =
λ + (i + 1)γ

λ + iγ
π(i + 1, 0), i = s + 1, s + 2, ..., S − 1. (21)

Using Eq. (21) recursively, we get

π(i, 0) = αiπ(S, 0), i = s + 1, s + 2, ..., S − 1 (22)
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where αi is defined by Eq. (16) for i = s + 1, s + 2, ..., S − 1. Using Eq. (20)
recursively, we get

π(i, 0) =
s∏

k=i

λ + (k + 1)γ
λ + kγ + θ

π(s + 1, 0), i = 1, 2, ..., s. (23)

Substituting Eq. (22) with i = s + 1 into Eq. (23), we have

π(i, 0) = αs+1

s∏
k=i

λ + (k + 1)γ
λ + kγ + θ

π(S, 0)

= αiπ(S, 0), i = 1, 2, ..., s (24)

where αi is defined by Eq. (15) for i = 1, 2, ..., s. For Eq. (2), using Eq. (24) with
i = 1, we get

π(0, 0) =
λ + γ

θ
π(1, 0) = α0π(S, 0)

where α0 is defined by Eq. (14).
Equation (8) can be written as

(λ + iγ)π(i, 1) − ηπ(i − 1, 1) = (λ + (i + 1)γ)π(i + 1, 1) − ηπ(i, 1),
i = s + 1, s + 2, ..., S − 2. (25)

Repeating Eq. (25) and using Eqs. (5) and (9), we get

π(i, 1) =
λ + (i + 1)γ

η
π(i + 1, 1) +

λ + Sγ

η
π(S, 0), i = s, s + 1, ..., S − 2. (26)

From Eq. (5), we have

π(S − 1, 1) = βS−1π(S, 0). (27)

where βS−1 is defined by Eq. (19). Let

π(i, 1) = βiπ(S, 0), i = s, s + 1, ..., S − 2. (28)

then we get from Eq. (26) that

βi =
λ + (i + 1)γ

η
βi+1 + βS−1, i = s, s + 1, ..., S − 2, (29)

Repeating Eq. (29), we get βi for i = s, s + 1, ..., S − 2 as given by Eq. (18).
Equation (7) can be written as

(λ + iγ)π(i, 1) − ηπ(i − 1, 1) = (λ + (i + 1)γ)π(i + 1, 1) − ηπ(i, 1) + θπ(i, 0),
i = 1, 2, ..., s. (30)
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Repeating Eq. (30) and noting Eq. (25), we have

π(i, 1) =
λ + (i + 1)γ

η
π(i + 1, 1) +

λ + Sγ

η
π(S, 0) − θ

η

s∑
k=i+1

π(k, 0),

i = 0, 1, ..., s − 1. (31)

Let
π(i, 1) = βiπ(S, 0), i = 0, 1, ..., s − 1.

Using Eq. (11), then we get βi for i = 0, 1, ..., s−1 from Eq. (31) as determined by
Eq. (17). Using Eqs. (11) and (12), π(S, 0) can be derived from the normalizing
condition given by Eq. (10) which is as given by Eq. (13). ��

Next, we find the steady-state distribution of the process {X(t), t ≥ 0}. Let
P = (P0, P1, ...) be the steady-state probability vector of the process {X(t), t ≥
0}, where

Pi = (P (i, 0, 0), P (i, 0, 1), ..., P (i, S − 1, 0), P (i, S − 1, 1), P (S, 0))

is a row vector with dimension 2S + 1. Then, P satisfies the following set of
equations:

{
PQ = 0
Pe = 1 (32)

where e is a column vector of 1’s of appropriate dimension. The steady-state
probability vector P can be obtained by solving Eq. (32).

Theorem 3. If ρ < 1, the elements of the steady-state probability vector P =
(P0, P1, ..., ) of the process {X(t), t ≥ 0} is given by

Pi = (1 − ρ)ρiπ, i = 0, 1, ... (33)

where π = (π(0, 0), π(0, 1), ..., π(S − 1, 0), π(S − 1, 1), π(S, 0)) is given by Theo-
rem 2.

Proof. Eq. (32) can be rewritten as follows:

P0A0 + P1B = 0, (34)
PiC + Pi+1A + Pi+2B = 0, i = 0, 1, ..., (35)
∞∑

i=0

Pi e = 1. (36)

Let

Pi = κρiπ, i = 0, 1, ... (37)

where κ is a constant. Now, we verify that Eqs. (34) and (35) are satisfied with
the above assumption.
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Substituting Eq. (37) into the left sides of Eq. (34) and (35), we have

P0A0 + P1B = κπ(A0 + ρB) (38)

and

PiC + Pi+1A + Pi+2B = κρiπ
(
C + ρA + ρ2B

)

= κρiπ

[
C + ρ

(
A0 − 1

ρ
C

)
+ ρ2B

]

= κρi+1π (A0 + ρB) , i = 0, 1, .... (39)

From the structure of the matrices A0, B and Q̂, it is easy to verify that

A0 + ρB = Q̂. (40)

From Eq. (1), we have πQ̂ = 0. Hence, the right sides of Eqs. (34) and (35)
are verified under the assumption given by Eq. (37). Using Eq. (36) and noting
πe = 1, we have

κ

∞∑
i=0

ρi = 1. (41)

Hence, if ρ < 1, we have κ = 1 − ρ. ��
Remark 2. Theorem 3 shows that the steady-state distribution of the system has
a product form of two distributions. One is the distribution of the queue length
in the classical M/M/1 system with the same parameters λ and μ, and the other
one is the distribution of the inventory level in the production-inventory system
with interruption of production and zero service time.

3.3 Performance Measures

In this subsection, we derive the following performance measures of system by
using the steady-state probability distribution obtained in the last section.

(1) The mean number of customers in the system is given by

Enc =
∞∑

i=0

iPie =
ρ

1 − ρ
. (42)

(2) The mean inventory level is given by

Ein =
∞∑

i=0

S−1∑
j=0

j [P (i, j, 0) + P (i, j, 1)] +
∞∑

i=0

SP (i, S, 0)

=

⎡
⎣S +

S−1∑
j=0

j(αj + βj)

⎤
⎦ π(S, 0). (43)
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(3) The mean production rate is given by

Epr =
∞∑

i=0

S−1∑
j=0

ηP (i, j, 1) = η

S−1∑
j=0

βjπ(S, 0). (44)

(4) The mean loss rate of perishable inventory items is given by

Elp = γEin (45)

where Ein is given by Eq. (43).
(5) The mean loss rate of customers is given by

Elc =
∞∑

i=0

λ [P (i, 0, 0) + P (i, 0, 1)] = λ(α0 + β0)π(S, 0). (46)

Remark 3. We observe from Eq. (42) that the mean number of customers in the
system is the same as that in the classical M/M/1 queue, and it is independent
with the other parameters η, θ and γ. On the other hand, Eqs. (43)–(46) show
that the performance measures related to production-inventory are independent
with the service rate μ. This is because of the property of product form solution
presented in Theorem 3 (see Remark 2).

4 Numerical Analysis

In this section, we develop the mean cost function F (s, S) by using these perfor-
mance measures. Then, we consider effect of some system parameters on these
performance measures and the mean cost function by numerical examples.

Firstly, we develop the mean cost function by means of the above performance
measures. The mean total cost rate per unit time is given by

F (s, S) = C1Enc + C2Ein + C3Epr + C4Elp + C5Elc (47)

where C1 is the cost of serving each customer per unit time, C2 is the holding
cost per unit time per inventory item, C3 is the cost of production per unit time
per inventory item, C4 is the cost incurred due to the loss of perishable inventory
items and C5 is the cost incurred due to loss of customers.

In the following, we consider the effect of some parameters of the system on
the performance measures related with inventory and the mean cost function
by using numerical examples. The numerical results on performance measures
are shown in Tables 1, 2, 3 and 4. The numerical results on mean cost function
are shown in Figs. 2, 3, 4 and 5. The cost parameters are given as follows: C1 =
10, C2 = 10, C3 = 100, C4 = 500, C5 = 2000. The values of the parameters are
considered in the following four cases:

Case 1. λ varies from 0.7 to 2.1, and the other parameters are fixed as follows:
μ = 12, η = 6, θ = 1.2, γ = 0.02, s = 3 and S = 27.



A Production-Inventory System with a Service Facility 423

Case 2. η varies from 3.5 to 7.0, and the other parameters are fixed as follows:
λ = 1.5, μ = 12, γ = 0.02, s = 3 and S = 27.

Case 3. θ varies from 0.3 to 2.4, and the other parameters are fixed as follows:
λ = 1.5, μ = 12, η = 6, γ = 0.02, s = 3 and S = 27.

Case 4. γ varies from 0.01 to 0.09, and the other parameters are fixed as
follows: λ = 1.5, μ = 12, η = 6, θ = 1.2, s = 3 and S = 27.

Table 1. The effect of the arrival rate λ on some performance measures.

λ Ein Epr Elc Elp

0.7 14.1441 0.9815 0.0014 0.2829

0.9 14.1838 1.1805 0.0032 0.2837

1.1 14.1768 1.3775 0.0060 0.2835

1.3 14.1418 1.5729 0.0099 0.2828

1.5 14.0890 1.7688 0.0150 0.2818

1.7 14.0243 1.9692 0.0212 0.2815

1.9 13.9513 2.1540 0.0286 0.2790

2.1 13.8723 2.3404 0.0370 0.2774

0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
300

350

400

450

500

550

600

λ

F(s
,S)

Fig. 2. The effect of the arrival rate λ on the mean cost function F (s, S).

It is observed from Table 1 that the mean production rate Epr and the mean
loss rate of customers Elc increase with λ. This agrees with our expected obser-
vation. As the increasing of the mean arrival rate, more items are taken by
customers from the inventory which increases the chance for switching on the
production and hence increases the mean production rate Epr. Since the more
inventory items are needed with the increasing of the arrival rate, thus the prob-
ability that on-hand inventory level goes to be zero will increase. Therefore, the
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mean loss rate of customers Elc increase with the arrival rate. However, the con-
cave property for both the mean inventory level Ein and the mean loss rate of
perishable inventory items Elp is observed from Table 1. This can be explained as
follows: when λ < θ, the production is switched on more frequently than arrival
of demands. Thus, the addition to the inventory occurs more frequently than
arrivals. This explains why the mean inventory level Ein and the mean loss rate
of perishable inventory items Elp increase with the arrival rate λ when λ < θ.
However, when λ > θ, the arrivals of demands occurs more frequently than the
chance that the production is switching on. Thus, this leads to the decreasing of
both the mean inventory level Ein and the mean loss rate of perishable inven-
tory items Elp. From Fig. 2, it is observed that the mean cost function F (s, S)
increases with the arrival rate λ.

Remark 4. An arrival customer is either receiving one inventory item or lost.
Therefore, the relation λ = Epr − Elp + Elc is expected. This relation can be
observed from Table 1.

Table 2. The effect of the production rate η on some performance measures.

η Ein Epr Elp Elc

3.5 13.9273 1.7621 0.2785 0.0165

4.0 13.9877 1.7640 0.2798 0.0158

4.5 14.0266 1.7651 0.2805 0.0154

5.0 14.0537 1.7659 0.2811 0.0152

5.5 14.0737 1.7664 0.2815 0.0151

6.0 14.0890 1.7668 0.2818 0.0150

6.5 14.1011 1.7671 0.2820 0.0150

7.0 14.1109 1.7673 0.2822 0.0150

From Table 2, we observe that the mean inventory level Ein, the mean pro-
duction rate Epr and the mean loss rate of perishable inventory items Elp increase
with parameter η, and the mean loss rate of customers Elc decreases with param-
eter η. Since more items are replenished to the inventory with the parameter
η, then the mean inventory level Ein and the mean production rate Epr will
increase, which results in the increasing of Elp and the decreasing of Elc. This
explains our observation for the effect of parameter η. Moreover, Fig. 3 shows
that the mean cost function F (s, S) increases with the parameter η, but the
scale of the increase is very small.
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Fig. 3. The effect of the production rate η on the mean cost function F (s, S).

Table 3. The effect of the vacation rate θ on some performance measures.

θ Ein Epr Elp Elc

0.3 12.4789 1.6118 0.2496 0.1318

0.6 13.4948 1.7188 0.2699 0.0511

0.9 13.8824 1.7520 0.2776 0.0256

1.2 14.0890 1.7668 0.2818 0.0150

1.5 14.2178 1.7747 0.2844 0.0097

1.8 14.3058 1.7794 0.2861 0.0067

2.1 14.3698 1.7825 0.2874 0.0049

2.4 14.4184 1.7846 0.2884 0.0038

Table 3 shows that the same effect of the parameter θ on the performance
measures as the parameter η. The explanation for this can be observed from
the fact that the chance that the production is switching on increases with the
parameter θ and the previous explanation for the effect of the parameter η on
the performance measures. However, we find that the effect of the parameter θ
on the mean cost function F (s, S) is very different from that of the parameter η.
Figure 4 shows that the mean cost function F (s, S) decreases significantly with
the parameter θ. This may be due to the significant decreasing of the mean loss
rate of customers Elc which can be seen from the data for Elc in Table 3.

It is observed from Table 4 that the mean inventory level Ein decreases with the
failure rate γ, while the other performance measures Epr, Elp and Elc increase with
the failure rate γ. This agrees with the expected observation. When the failure
rate γ increases, the more items in inventory are lost due to the shorter life time.
Thus, the mean loss rate of inventory items Elp will increases, and then the mean
inventory level Ein will decreases. So, this will lead to the increasing of the other
two performance measures Epr and Elc. Moreover, we observe from Fig. 5 that the
mean cost function F (s, S) increases significantly with the failure rate γ.
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Fig. 4. The effect of the vacation rate θ on the mean cost function F (s, S).

Table 4. The effect of the failure rate γ on some performance measures.

γ Ein Epr Elp Elc

0.01 14.2875 1.6288 0.1439 0.0140

0.02 14.0890 1.7668 0.2818 0.0150

0.03 13.9342 1.9021 0.4180 0.0159

0.04 13.8148 2.0359 0.5526 0.0167

0.05 13.7252 2.1688 0.6863 0.0174

0.06 13.6614 2.2316 0.8197 0.0181

0.07 13.6206 2.4348 0.9534 0.0187

0.08 13.6006 2.7045 1.2240 0.0195
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Fig. 5. The effect of the failure rate γ on the mean cost function F (s, S).

5 Conclusions

In this paper, we studied a production-inventory system with a service facil-
ity and a (s, S) production policy where the production was interrupted for a
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vacation of random time. The steady-state joint distribution of the queue length
and the on-hand inventory level of the system in product form was obtained
by using the matrix technique. Some performance measures and the mean cost
function were derived based on the performance measures. The effect of system
parameters on some performance measures and the mean cost function were
investigated using numerical examples. Numerical investigations illustrated the
monotonic effect of some parameters. Although we obtain the explicit cost func-
tion given by Eq. (47), it is not immediate to prove structural property (e.g.,
convexity) of the function F (s, S). So, it seems hard to perform an analytical
sensitivity analysis for the cost function. However, some numerical optimiza-
tion methods such as genetic algorithm may used to obtain the optimal policy
(s∗, S∗) to minimize the cost function. Future work could consider various gener-
alizations to make the system more realistic. For example, one extension would
be to consider more general distributions of the service times, the production
times and the vacation times.
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Hebei Province, China (No. A2017203078).

References

1. Sigman, K., Simchi-Levi, D.: Light traffc heuristic for an M/G/1 queue with limited
inventory. Ann. Oper. Res. 40(1), 371–380 (1992)

2. Berman, O., Kim, E.: Stochastic models for inventory management at service facil-
ities. Stoch. Models 15(4), 695–718 (1999)

3. Berman, O., Kim, E.: Dynamic inventory strategies for profit maximization in
a service facility with stochastic service, demand and lead time. Math. Methods
Oper. Res. 60(3), 497–521 (2004)

4. Berman, O., Sapna, K.P.: Inventory management at service facilities for systems
with arbitrary distributed service times. Stoch. Models 16(3–4), 343–360 (2000)

5. Berman, O., Sapna, K.P.: Optical control of service for facilities holding inventory.
Comput. Oper. Res. 28, 429–441 (2001)

6. Berman, O., Sapna, K.P.: Optimal service rates of a service facility with perishable
inventory items. Naval Res. Logistics 49, 464–482 (2002)

7. Schwarz, M., Sauer, C., Daduna, H., Kulik, R., Szekli, R.: M/M/1 queueing systems
with inventory. Queueing Syst. 54(1), 55–78 (2006)

8. Krishnamoorthy, A., Deepak, T.G., Narayanan, V.C., Vineetha, K.: Control poli-
cies for inventory with service time. Stochastic Anal. Appl. 24(4), 889–899 (2006)

9. Viswanath, C.N., Deepak, T.G., Krishnamoorthy, A., Krishkumar, B.: On (s, S)
inventory policy with service time, vacation to server and correlated lead time.
Qual. Technol. Quanti. Manage. 5(2), 129–144 (2008)

10. Krishnamoorthy, A., Lakshmy, B., Manikandan, R.: A survey on inventory models
with positive service time. Opsearch 48(2), 153–169 (2011)

11. Krishnamoorthy, A., Narayanan, V.C.: Production inventory with service time and
vacation to the server. IMA J. Manage. Math. 22, 33–45 (2011)

12. Krishnamoorthy, A., Narayanan, V.C.: Stochastic decomposition in production
inventory with service time. Eur. J. Oper. Res. 228, 358–366 (2013)



428 D. Yue et al.

13. Baek, J.W., Moon, S.K.: The M/M/1 queue with a production-inventory system
and lost sales. Appl. Math. Comput. 233, 534–544 (2014)

14. Baek, J.W., Moon, S.K.: A production-inventory system with Markovian service
queue and lost sales. J. Korean Stat. Soc. 45(1), 14–24 (2016)

15. Yue, D., Qin, Y.: A production inventory system with service time and production
vacations. J. Syst. Sci. Syst. Eng. 28(2), 168–180 (2019)

16. Karaesmen, I., Scheller-Wolf, A., Deniz, B.: Managing perishable and aging inven-
tories: review and future research directions. In: Kempf, K., Keskinocak, P., Uzsoy,
P. (eds.) International Series in Operations Research and Management Science:
Planning Production and Inventories in the Extended Enterprise, vol. 1, pp. 393–
438. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-6485-4 15

17. Bakker, M., Riezebos, J., Teunter, R.H.: Review of inventory systems with deteri-
oration since 2001. Eur. J. Oper. Res. 221(2), 275–284 (2012)

18. Nahmias, S.: Perishable inventory theory, a review. Oper. Res. 30, 680–708 (1982)
19. Raafat, F.: Survey of literature on continuously deteriorating inventory models. J.

Oper. Res. Soc. 42(1), 27–37 (1991)
20. Goyal, S., Giri, B.: Recent trends in modeling of deteriorating inventory. Eur. J.

Oper. Res. 134, 1–16 (2001)
21. Sivakumar, B., Arivariganan, G.: A perishable inventory system at service facilities

with negative customers. Int. J. Inf. Manage. Sci. 17(2), 1–18 (2006)
22. Manuel, P., Sivakumar, B., Arivarignan, G.: A perishable inventory system with

service facilities, MAP arrivals and PH-service times. J. Syst. Sci. Syst. Eng. 16(1),
62–73 (2007)

23. Manuel, P., Sivakumar, B., Arivarignan, G.: A perishable inventory system with
service facilities and retrial demands. Comput. Ind. Engineering 54, 484–501 (2007)

24. Tian, N., Zhang, Z.G.: Vacation Queuing Models: Theory and Applications.
Springer-Verlag, New York (2006). https://doi.org/10.1007/978-0-387-33723-4

25. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: an Algorithmic
Approach. John Hopkins Press, Baltimore (1981)

https://doi.org/10.1007/978-1-4419-6485-4_15
https://doi.org/10.1007/978-0-387-33723-4


Deposit Design for a Production System
with Impatient Customers

Na Li1(B), Wei Wang1, and Rui-Na Fan2

1 Department of Industrial Engineering, Shanghai JiaoTong University,
Shanghai 200240, China
na-li03@sjtu.edu.cn

2 School of Economics and Management, Yanshan University,

Qinhuangdao 066004, China

Abstract. Most researchers who study make-to-stock production con-
trol systems either assume that all orders are eventually met (complete
backordering) or that no customers are willing to wait (lost sales). In an
actual manufacturing system, however, customers may queue in line but
renege after some time due to impatience. To alleviate the loss in sales
caused by the reneging behavior of impatient customers, deposits from
the customers may be required by a production system. In this paper,
an axial turbine blade production system with impatient customers and
a deposit policy is modeled as an assembly queue network. We derive
a mathematical model of system performance based on Markov chain
methods, and we discuss the optimal deposit amount from the point of
view of net profit optimization.

Keywords: Impatient customer · Deposit · Risk · Optimization

1 Introduction

We consider a production system with impatient customers. Customers impa-
tience may influence the demand of a production system. Most researchers who
study production system analysis assume that customers either wait until their
orders are met or leave when their orders are not fulfilled immediately. In an
actual manufacturing system, however, customers may leave the system (called
balking) when they find that the waiting list is too long. In other cases, cus-
tomers may place orders knowing that the orders cannot be met immediately.
Subsequently, some of the customers may become impatient and leave the system
after deciding not to wait longer (called reneging).

In this paper, an axial turbine blade factory is studied. The turbine blade
is one of the key parts of gas turbine. The studied axial turbine blade is high-
technology product and very few local factories can provide it. Nowadays, a lot
of new power stations are emerging and many old power stations are updating
their gas turbines. They both need to order the turbine blade based on their
requirements, which lead the order list of the studied axial turbine blade increase.
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Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 429–445, 2019.
https://doi.org/10.1007/978-981-15-0864-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0864-6_22&domain=pdf
https://doi.org/10.1007/978-981-15-0864-6_22


430 N. Li et al.

Some customers will balk and search for product from oversea market. Others
may join the order list. While waiting for the product, some may renege by
finding other alternative providers. Since the production process is very long
and the specified resource for each order is prepared in advance, the renege of
customers will damage the profit. Therefore, the deposit policy is proposed to
reduce the renege loss of the system. Every customer who places an order is
required to pay a deposit. To some extent, a deposit policy guarantees that
customers, despite being impatient, will renege less often.

A key challenge confronting managers is determining the optimal deposit
amount. To make the decision, we build an optimization model with the objec-
tive of maximizing net profit. To solve the optimization problem, we first inves-
tigate a mathematical model of the customers balking and reneging behavior
with respect to deposit. Then, we evaluate the performance of the system with
regard to the behavior model and propose a straightforward solution based on
the performance measures. Finally, we examine, through numerical experiments,
the optimal decisions with respect to different system characteristics and propose
some insights for system management.

This paper has three main contributions to the literature. First, we provide
a modeling method for representing the effect of paying a deposit on customer
behavior. Second, we construct the system using an assembly queue line and
assess its performance based on the proposed customer behavior model. Third,
we offer insight into making decisions regarding the deposit value.

The remainder of this paper is organized as follows: In Sect. 2, we present
literature relevant to the study. In Sect. 3, we describe the details of the proposed
optimization problem and the methodology for solving the problem. In Sect. 4,
we demonstrate, through numerical studies, the sensitivity of the optimal deposit
decision with respect to customers deposit risk perception, customers impatience
level and the system arrival rate. In Sect. 5, we state our conclusion and propose
future research opportunities.

2 Literature Review

Many researchers have investigated customer impatience modeling (e.g.,
Kawanishi [8], Ou and Rao [14], Wang et al. [23]). Both balking and reneging have
been considered. Various balking rules have been presented in the literature. Wait-
ing time is the main factor that affects one’s decision to either join or balk (e.g.,
Liu and Kulkarni [9,10]). However, customers always decide on the basis of the
queue length given that the queue length can be easily obtained by customer. Some
work-concerned customers balk if the number of customers before them is beyond
a value (e.g., Christ and Avi-Itzhak [2], Economou and Kanta [4]). Several other
papers have examined queues with balking probabilities depending on the num-
ber of waiting customers in the system upon arrival (e.g., Singh [17], Lozano and
Moreno [12]). In modeling reneging behaviors, most studies assume that customers
renege after a waiting time period if the queue time exceeds some tolerable value.
The simplest case of the tolerable value is a fixed constant (see for example Haight
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[6], Boots and Tijms [1] and Xiong and Altiok [20], and their references). In other
studies, researchers assume that the maximal waiting time has an exponential dis-
tribution (see for example Rao [16], Whitt [25], Wang and Chang [22]). In addition,
customers’ impatience may result from a slow service rate (Perel and Yechiali [15])
or a disastrous breakdown (Yechiali [21]).

Alternatively, no research has been conducted yet on a deposit policy and
how it affects customer behaviors. Nevertheless, we can draw lessons from the
literature on price-dependent demand rate. Some studies consider that price
will influence demand, such as Wee [24], Datta and Paul [3]), Mondal et al. [13],
Teng and Chang [19]. Most of them assume that the demand rate is a decreasing
function with respect to price.

System design and optimization problems regarding customer impatience
have been investigated extensively. For example, Sumita, Masuda and Yamakawa
[18] studied optimal pricing and capacity planning for a service facility with
impatient customers and limited buffer; Lodree, Jang & Klein [11] proposed an
optimal scheduling method for a two-stage supply chain system dependent on
customer impatience; Jouini et al. [7] studied call center performance optimiza-
tion problems by considering impatience and real-time anticipated delays; and
Economopoulos, Kouikoglou & Grigoroudis [5] investigated a production control
problem with impatient customers.

To the best of our knowledge, no studies have been conducted to determine
an optimal deposit level for a system with impatient customers. We attempt to
provide a modeling method for understanding how a deposit influences customer
behavior and propose a method for making the deposit decision.

3 Optimization Model

The production system we discuss is a basic make-to-stock system with a sin-
gle manufacturing facility that meets the demand for a single item. When the
predetermined maximum stock level is reached the production stops. If the sys-
tem is out of stock, arriving customers may balk or enter a queue. If they enter
the queue they are required to pay a non-refundable deposit. Some impatience
customers may renege while waiting in the queue. We assume that the produc-
tion time has an exponential distribution with parameter λp. The customers are
assumed to arrive at the system from the outside according to a Poisson process
at rate λd. Each customer desires a unit of the product, and each must pay a
sum of money S as a deposit if he or she decides to place an order.

The customers are impatient and sensitive to the risk of losing their deposit.
When a customer arrives at the system, their first choice is to either place an
order or balk from the system. If the customers decide to place an order, they
still have the option of waiting until the product arrives or reneging if the waiting
time is too long.

By customer interview we found that imposing on the system will reduce the
customers’ reneging probability while simultaneously increasing their balking
probability. The reason that they balk is that they fear to loss the deposit since
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they may have other better purchase choice while waiting. Consequently, it has
a multifaceted impact on system performance.

We are interested in the design of S. The challenge is to find the optimal S
that will be most likely to help us achieve our objectives. For example, if our
goal is to maximize the net profit of the system, the optimization problem can
be expressed as follows:

Max obj = NP = R × TH + S × RR − h × Ep − b × RL − c × Eo (1)
s.t. [TH, RR, RL, Eo] = Performance (S) , 0 ≤ S ≤ LS

In the formulas, NP is the unit time net profit. TH is the throughput rate,
and R is the profit achieved from every order satisfied by the production factory.
The profit from the satisfied orders per time unit is TH × R. RR is the renege
rate of the customers, and the average obtained deposit from default orders is
S ×RR. If h is the average holding cost per unit time per product, and Ep is the
average number of products, then the holding cost is h×Ep. If b is the cost for per
lost order each time unit, and RL is the customer loss rate, then the cost caused
by lost order is b × RL. If c is the cost per unit time when a customer is waiting
to be accommodated, and Eo is the average number of waiting customers, then
the customer waiting cost is c×Eo. Furthermore, Performance(S) is a function
to derive TH,RR, Ep, RL and Eo for a given system with specified S.

Formulation (1) is a complex nonlinear optimization problem. To solve this
problem, we must appreciate the impact of customer behavior on the system
and understand the system’s performance. In Subsect. 3.1, we will discuss how
the customer numbers and deposit value affect the system. In Subsect. 3.2, we
develop a method based on a queuing model to derive Performance(S). A
simple exhaustive search algorithm is proposed in Subsect. 3.3.

3.1 Customer Behavior Modeling

The mathematical model of the customers’ balking and reneging behavior with
respect to S is essential for the development of the performance of the system.
In this section, we study a method for the mathematical modeling of customer
behavior.

Both the waiting time and the deposit amount will affect the balking behavior
of a customer. Let “PrBCD” be the probability of balking caused by the deposit
requirement. We interviewed 24 customers and got some general ideas. Firstly,
the reason that they balk is that they fear to loss the deposit since they may
have other better purchase choice. Therefore, the risk attitude is one factor that
will influence their balk probability. Secondly, the balking preference is related
with the expected product delivery waiting time. If the waiting time is short,
they would like to pay more deposit, whereas, they will consider the risk that
they may switch to other supplier and loss the deposit. The effect is similar
as that the deposit has a perception value related with the waiting time. For
simplification, we define it as S (1 + δ)n, δ in which is a parameter reflecting the
customers’ attitude to the influence of waiting time. Besides, we found that most
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of the customers will consider the value of the product, if the product is more
valuable, they would like to pay more deposit. The proportion of the perception
deposit value to the value of the product is one of the critical factors.

Therefore, we assume that “PrBCD” is the ratio of the perceived value of S
to the largest acceptable deposit LS, and we define it as f (S, n)

Pr BCD = f (S, n) =

⎧
⎨

⎩

0 n = 0
(S (1 + δ)n

/LS)(1−α)
S (1 + δ)n

< LS
1 S (1 + δ)n ≥ LS

(2)

where S (1 + δ)n indicates the customer’s perceived value of the deposit relative
to n. LS is the value of the order. α is a parameter which represents the risk
attitude to the deposit for a customer and 0 < α < 1. Figure 1 displays how α
and δ influence the Pr BCD. The curves confirm that higher α and bigger δ
imply more preference for balking. Note that this formulation is only a rough and
specific modeling method which derived from the case we studied. By choosing
suitable parameters α and δ, it can model the deposit caused balking in the
specified case. However, more general studies should be done in future to justify
its suitable range.

Fig. 1. Probability curves for deposit risk balking with respect to α and δ

Considering the impatience-caused balking, a customer who arrives at the
system will balk due to the long waiting time. Lozano and Moreno [8] pointed
that the probability a customer balks due to impatience. Pr ICB, can be
expressed as a nonlinear increasing function of the number of the customers
waiting in the system, n, as

Pr ICB = 1 − rn, 0 < r < 1 (3)

in which r represents the level of the customer’s patience. Figure 2 indicates
that a higher r means more impatient customer type and a higher n implies
higher probability of impatient customer balking for a given type of customer.
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Therefore, the rate that customers enter the system for a given waiting number
of orders n and deposit S will be

λ
′
d (n) = λd (1 − Pr BCD) (1 − Pr ICB) (4)

Fig. 2. Probability of impatient customer balking with respect to n for different r

Next, we define the reneging behavior of the customers who have placed
orders. For a system without a deposit, many researchers ([12–14]) assume that
if a customer’s waiting time in the queue is longer than his upper boundary
time T (T is assumed to be exponentially distributed with mean 1/θ), the cus-
tomer stops waiting and reneges from the system. For a system with a deposit,
even if the customer’s waiting time has been longer than T , he may not renege
because he has paid the deposit and does not want to lose it. We assume that if
the customer’s actual waiting time in the queue is longer than T , the customer
reneges from the system with a probability function g (S). Given that the cus-
tomer would not like to lose a larger deposit, the probability function is a convex
decreasing function (Fig. 3), which we define as

g (S) = βS , (5)

where 0 < β < 1 is a parameter that indicates the perspective of the customer to
lose the deposit he has paid. A larger β signifies a customer who is more willing
to give up the deposit. Assuming that customers are independent, the average
reneging rate μ (n) for customers waiting in the system for a given n is

μ (n) = nβSθ (6)
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Fig. 3. Probability function g (S) with respect to S for different β

3.2 Performance Analysis of the Production System

We model the system as a virtual assembly production line (Fig. 4), in which the
product and the order are seen as two parts to be assembled by a virtual machine.
Bo is the buffer of the orders. Once an order and a product are simultaneously
available, the virtual assembly machine matches them immediately.

Fig. 4. The virtual assembly line model

Let Np (t) be the number of products in buffer Bp and No (t) be the number
of orders in buffer Bo at time t. The products in Bp and the orders in Bo will
not exist at the same time. Then, X = {Np (t) , No (t) , t ≥ 0} forms a Markov
chain with state space Θ = {0, No} ∪ {Np, 0}, where No = {0, 1, 2, 3, ...}, Np =
{0, 1, 2, 3, ..., C} in which the buffer capacity limitation is C. The transition rates
are

q∗ =

⎧
⎪⎪⎨

⎪⎪⎩

λd (i, 0) → (i − 1, 0)
λ

′
d (j) (0, j) → (0, j + 1)

λp (i, 0) → (i + 1, 0)
λp + μ (j) (0, j) → (0, j − 1)

(7)
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We derive explicit expressions for the distribution of the system using the
balance equations; the steady-state probabilities are as follows:

π (i, 0) =
(

λd

λp

)C−i

π (C, 0) , for i = 0, ..., C − 1, (8)

π (0, j) =
(

λd

λp

)C j∏

i=1

(
λ

′
d (i − 1)

λp + μ (i)

)

π (C, 0) , for j ≥ 1 (9)

Using normalizing conditions
∑

Θ

π (i, j) = 1, we obtain

π (C, 0) =

⎡
⎣1 +

C−1∑
i=0

(((
λd

λp

)C−i
))

+
∞∑
j=1

⎛
⎝

(
λd

λp

)C j∏
i=1

(
λ

′
d (i − 1)

λp + μ (i)

)⎞
⎠

⎤
⎦

−1

(10)

The average number of products in inventory Ep and the average number of
waiting orders Eo are given by

Ep = E [Np] =
C∑

i=1

i × π (i, 0) (11)

Eo = E [No] =
∞∑

j=1

i × π (0, j) (12)

If product inventory is not zero, the newly arrived order will be satisfied at the
rate of λd. If the order inventory is not zero, the system satisfies its order at the
rate of λ

′
d (j) − μ (j) (dependent on system state (0, j)). Finally, the assembly

system’s throughput rate can be derived by

TH = λd ×
C∑

i=0

π (i, 0) +
∞∑

j=1

(
π (0, j) ×

(
λ

′
d (j) − μ (j)

))
(13)

Defining Pr B as the probability of a customer balking in the system, the prob-
ability will be

Pr B = 1 − (1 − Pr BCD) (1 − Pr ICB) . (14)

Then, the average balking rate is given by

RB = E [BalkingRate] =
∞∑

j=0

(π (0, j) Pr B (S, j)) λd (15)

The average reneging rate is

RR = E [RenegingRate] =
∞∑

j=0

(π (0, j) μ (j)) . (16)
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The average rate of customer loss is the sum of the average balking rate and the
average reneging rate, which yields

RL = RB + RR. (17)

The average utilization of the system is

U = 1 −
C∑

i=0

π (i, 0) . (18)

3.3 Solution Procedure

Because the feasible deposit space is finite in reality, we propose the follow-
ing exhaustive search algorithm for obtaining the optimal policy by iteratively
evaluating and comparing each policy:

Step (1): Set obj∗=0; initialize the deposit S and searching step m;
Step (2): Compute Performance(S);
Step (3): Derive obj(S). If obj(S) > obj∗, then set obj∗ = obj(S) and

S∗ = S;
Step (4): If S + m ≤ LS, then set S = S + m and go to step 2; Otherwise,

stop.

4 Numerical Experiments

An axial turbine blade product case is studied. The system allows at most 15
waiting orders (C = 15). The arrival rate from the marketing is λd = 1. The
production rate is λp = 0.8. The value of the product is normalized as LS =
20. The customers’ behavior is investigated by interviews and data analysis.
24 customers are interviewed; They are required to answer the questions such
as what will make them balk, how many orders will make them refuse to join
into the order and balk, how the deposit influences their balking decision and
how the deposit affects their decision of renege. The information are applied to
construct the customer behavior models proposed in Sect. 3.1 and the customer
was consulted frequently to estimate values of parameters used in the model.
Finally, the parameters are set as δ = 0.0001, α = 0.1, β = 0.1, r = 0.97, θ =
1/50. The economic parameters are R = 20, b = 0.25, h = 0.5 and c = 0.01. We
change the deposit value and obtain the system performances by the performance
analysis method. Table 1 shows some of the results.

In addition to the basic performance measures, we also compute the DCB,
DAR and GAP . DCB is the increased balking rate for a system with a deposit
S compared with a no-deposit system. DAR is the reduced reneging rate for
a system with a deposit S compared with a no-deposit system. GAP is the
difference between the two. These variables can be expressed by the following
formulas:

DAR = RR (0) − RR (S) , (19)
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DCB = RR (S) − RB (0) , (20)

GAP = DAR − DCB. (21)

In the system, DAR can be seen as the decrease in the system loss rate
resulting from imposing a deposit, and DCB is the increase in RL brought about
by the deposit. GAP , therefore, indicates whether the positive effect outweighs
the negative effect and by how much. We illustrate in Fig. 5 how GAP changes
along with S. As indicated, GAP increases first and then decreases with respect
to S. The maximum value of GAP exists at S = 0.9, which means that imposing
a deposit of 0.9 offers the most benefit to RL. Similarly, the minimum RL is
located when S = 0.9 (Table 1). We also find that GAP is positive only when
S is less than 2.3. This result suggests that when imposing a deposit of more
than 2.3, the positive impact of decreased reneging behavior is outweighed by
the negative consequence of increased balking.

Fig. 5. The gap between DAR and DCB

When considering the optimal S∗ with regard to the net profit, we find from
Table 1 that the optimal deposit is 0.7, not 0.9. This is because that imposing
a deposit affects not only the performance of RL but also other factors, such as
the inventory level and the number of customers waiting.

In the next few subsections, we discuss how the variables of the problem
impact the optimal decision. In each experiment, unless otherwise stated, we
modify one parameter, fixing the others to the standard values and computing
the optimal deposit S∗ and the corresponding NP ∗. We also compute the gap
between NP ∗ and NP (0), which indicates the difference in the benefit when
comparing systems with and without a deposit requirement:

Benefit = NP ∗ − NP (0) . (22)
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4.1 Effect of Customer Arrival Rate

In this subsection, we investigate how the customer arrival rate influences the
optimal decision. Because there is complex interplay between arrival rate and
performance, this result is difficult to predict. However, we do find some insights,
as shown by the numerical results in Table 2.

Table 1. Performance results for system with the standard parameter values

S TH Ep Eo RB RR RL U DCB DAR GAP NP

0.1 0.79693 0.85227 4.5859 0.12847 0.072855 0.20132 0.75901 0.012415 0.012494 7.97E− 05 15.424

0.3 0.79721 7.69E− 01 5.1367 0.14972 0.051489 0.20121 0.78247 0.033669 0.03386 0.00019056 15.473

0.5 0.79739 7.22E− 01 5.5215 0.16621 0.034921 0.20113 0.79592 0.050156 0.050428 0.00027175 15.499

0.7 0.79746 7.01E− 01 5.7392 0.17821 0.022902 0.20111 0.80173 0.06215 0.062446 0.00029661 15.507

0.9 0.79747 7.00E− 01 5.8143 0.18645 0.01464 0.20109 0.80204 0.070397 0.070709 0.00031214 15.504

1.1 0.79744 7.12E− 01 5.7841 0.19192 9.19E− 03 0.20111 0.79854 0.075861 0.07616 0.0002985 15.494

1.3 0.79736 7.34E− 01 5.6827 0.19544 5.70E− 03 0.20114 0.79248 0.079389 0.079653 0.0002633 15.48

1.5 0.79725 7.61E− 01 5.5368 0.19769 3.50E− 03 0.20119 0.78472 0.081633 0.081847 0.00021379 15.464

1.7 0.79713 7.93E− 01 5.3654 0.19911 2.14E− 03 0.20125 0.77585 0.083052 0.083208 0.00015568 15.446

1.9 0.797 8.27E− 01 5.1811 0.20001 1.30E− 03 0.20131 0.76627 0.083952 0.084044 9.28E− 05 15.427

2.1 0.79689 8.62E− 01 4.99 0.20055 7.93E− 04 0.20134 0.75621 0.084496 0.084556 6.06E− 05 15.408

2.3 0.79675 8.99E− 01 4.801 0.20093 4.81E− 04 0.20142 0.74591 0.084878 0.084868 −1.08E− 05 15.388

2.5 0.7966 9.36E− 01 4.6148 0.20119 2.92E− 04 0.20149 0.73545 0.085139 0.085057 −8.15E− 05 15.368

2.7 0.79649 9.73E− 01 4.4313 0.20134 1.77E− 04 0.20152 0.72488 0.085288 0.085172 −0.0001161 15.349

2.9 0.79634 1.01E+00 4.2556 0.20149 1.07E− 04 0.20159 0.71433 0.085432 0.085242 −0.0001905 15.329

3.1 0.79619 1.05E+00 4.0858 0.2016 6.49E− 05 0.20167 0.70378 0.085547 0.085284 −0.0002626 15.309

3.3 0.79608 1.08E+00 3.9204 0.20166 3.93E− 05 0.2017 0.69325 0.085605 0.08531 −0.0002958 15.29

3.5 0.79593 1.12E+00 3.7635 0.20175 2.38E− 05 0.20177 0.68282 0.085695 0.085325 −0.0003701 15.27

3.7 0.79583 1.16E+00 3.6105 0.20178 1.44E− 05 0.2018 0.67243 0.08573 0.085334 −3.95E− 04 15.251

3.9 0.79568 1.19E+00 3.4662 0.20187 8.73E− 06 0.20188 0.66219 0.085812 0.08534 −4.72E− 04 15.231

To discuss our findings, we illustrate two figures–Figs. 6 and 7–to explicitly
show how NP ∗ and S∗, respectively, change in relation to λd.

Figure 6 illustrates that NP ∗ first increases quickly and then decreases slowly.
It is clear that an increase in production rate will enhance the throughput, result-
ing in higher net profit. This outcome demonstrates that revenue is the dominant
factor contributing to net profit at the beginning of the process. However, when
the production rate is increased to a level that the system cannot afford (more
than its service capacity), loss due to congestion (RL and Eo) will increase and

Table 2. Optimal decisions for systems with different λd

λd 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S∗ 0.3 0.7 0.7 0.4 0.3 0.3 0.3 0.3

NP ∗ 2.9094 11.754 15.507 15.798 15.755 15.685 15.615 15.547

Benefit 0.00021 0.14049 0.11899 0.0336 0.02005 0.02118 0.02463 0.0283
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Fig. 6. The optimal net profits for systems with different customer arrival rates

dominate the trend of net profit. Therefore, net profit begins to decrease. Because
R is greater than both b and c, the increase rate of NP ∗ is much higher than its
decrease rate. As a result, we recommend that customer development policies
should be linked with system capacity. If measures such as extensive promotion
bring in more customers than the system can afford, the system’s net profit may
suffer. We separate the total benefit of imposing an optimal deposit from the
detailed compositions of net profit. These results are shown in Fig. 7. As evi-
denced, we find that the later increase of net profit occurs due to unreturned
deposits; however, it is not our intention to impose this type of deposit strategy.
In the long run, a system of achieving net profit through unreturned deposits
will hurt the reputation of the firm. Therefore, we consider only that the benefit
of the deposit policy increases first and then decreases with the arrival rate.
This conclusion signifies that a system with a small arrival rate is not crowded
and therefore has little need for the deposit to reduce the reneging effect. While
a system with an extremely large arrival rate (such as λd = 1.4, in this case),
is too overcrowded to be helped by the deposit. In this instance, systems with
arrival rates λd = 0.8 and λd = 1 have significantly more benefit than systems
with other arrival rates. This conclusion signifies that a deposit strategy is more
suitable for a system with an arrival rate near the production rate or slightly
higher.

4.2 Effect of Deposit Risk Perception

The risk perception of customers is affected by parameters α, δ, LS and β; we
will study the influence of them in turn.

A higher value of α indicates a higher level of customer risk sensitivity, signi-
fying that this customer is less willing to pay a deposit. Based on the standard
parameter setting, we change α from 0.1 to 0.6; Table 3 shows the results. We
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Fig. 7. The benefits from each component for different customer arrival rates

find, as α increases, that the optimal deposit is decreased, and NP ∗ and Benefit
are likewise decreased. This result suggests that for customers who are more risk
sensitivity, we obtain less benefit from imposing a deposit. In this case, when
α = 0.6, requiring a deposit derives no benefit, and we should not apply the
deposit strategy.

Table 3. Optimal decisions for systems with different α

α 0.1 0.2 0.3 0.4 0.5 0.6

S∗ 0.7 0.7 0.7 0.7 0.6 0

NP ∗ 15.507 15.494 15.477 15.454 15.421 15.388

Benefit 0.11899 0.10599 0.089474 0.065949 0.033107 0

δ reflects the customer’s perception value to S. A larger δ implies that the
customer is more concerned about the time value of the deposit. For a fixed
waiting time, a larger δ indicates that the customer values the deposit more and
is therefore less willing to pay it. Table 4 shows the decision results at different
δ settings. The impact of δ on system decisions is similar to that of in that a
larger δ results in less benefit from imposing a deposit.

Table 5 demonstrates how the decision changes with LS. We conclude from
the results that for a more valuable order, the deposit can be larger and the
system benefit will be greater.

The impact that a deposit policy has on reneging behavior is affected primar-
ily by β. A larger β indicates that customers are more likely to forego the deposit
and renege from the system. As shown in Table 6, we conclude that imposing a
deposit is more suitable for a system with a small because t βhe benefit decreases
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Table 4. Optimal decisions for systems with different δ

δ 0.0001 0.001 0.01 0.1 0.2 0.5

S∗ 0.7 0.7 0.7 0.5 0.3 0

NP ∗ 15.507 15.507 15.503 15.464 15.42 15.388

Benefit 0.11899 0.11865 0.11509 0.075849 0.03182 0

Table 5. Optimal decisions for systems with different LS

LS 10 12 14 16 18 20

S∗ 0.4 0.5 0.6 0.6 0.7 0.7

NP ∗ 15.442 15.461 15.476 15.488 15.498 15.507

Benefit 0.054409 0.073263 0.087773 0.1001 0.1103 0.11899

with respect to β. Interestingly, we find that the optimal deposit increases first
and then decreases with respect to β. This outcome is because the deposit is not
returned and therefore is not included in the net profit function. Table 7 displays
the results when we delete the unreturned deposit value from the NP function.
As shown in the table, if we do not consider the unreturned deposit, we should
impose a larger deposit for customers who are less concerned about losing the
deposit. When the customers are more concerned about losing the deposit, at a
level of β = 0.55 or higher, the system is not suitable for imposing a deposit.

Table 6. Optimal decisions for systems with different β

β 0.1 0.25 0.4 0.55 0.7 0.85

S∗ 0.7 0.8 1 1 0.9 0.4

NP ∗ 15.507 15.477 15.452 15.429 15.406 15.388

Benefit 0.11899 0.088886 0.064257 0.040655 0.018451 9.11E-05

4.3 Effect of Impatience

In the model, r indicates the impatience level when customers arrive, and θ
denotes their impatience level while waiting in queue. A larger r suggests that
customers are more often balk. We conclude from Table 8 that a deposit strat-
egy is more suitable for a system with customers who are less willing to balk
because the benefit increases with r. However, the optimal deposit decreases first
and then increases. This result signifies that, for a system with a very small r,
one can expect less deposit-caused balking and apply a larger deposit because
the customers are more impatient, yet balking little. Therefore, the increase in
deposit-caused balking is also small. For a system with a very high r, one can
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Table 7. Optimal decisions for systems with different β (the unreturned S is not
included in NP )

β 0.1 0.25 0.4 0.55 0.7 0.85

S∗ 0.8 0.9 0.9 0 0 0

NP ∗ 15.492 15.45 15.415 15.388 15.388 15.388

Benefit 0.10406 0.061803 0.026632 0 0 0

Table 8. Optimal decisions for systems with different r

r 0.2 0.35 0.5 0.65 0.8 0.95

S∗ 0.8 0.7 0.6 0.6 0.5 0.7

NP ∗ 14.409 14.474 14.556 14.67 14.86 15.351

Benefit 0.008024 0.008944 0.010713 0.01421 0.023963 0.0852

also expect less deposit-caused balking because the customers are balking a great
deal already, and any increase in balking makes little difference.

Regarding θ, a larger θ denotes customers who are more impatient and also
more willing to renege. From Table 9, we can conclude that we should impose
a larger deposit for systems with a larger θ. Though the system NP ∗ decreases
with θ, the benefit from imposing a deposit increases with θ, suggesting that
imposing a deposit is more suitable for customers with higher impatience levels
while waiting in queue. The decrease in net profit is caused by elevated reneging
behavior when θ increases.

Table 9. Optimal decisions for system with different θ

θ 0.014 0.017 0.02 0.025 0.033 0.05

S∗ 0.6 0.7 0.7 0.8 0.9 1.1

NP ∗ 15.519 15.513 15.507 15.499 15.49 15.476

Benefit 0.074061 0.092875 0.11899 0.15742 0.21758 0.31664

5 Conclusions and Future Work

In this paper, we discuss the deposit design problem in a system with impa-
tient customers. We propose models for behavior when customers are affected
by different levels of deposit and impatience. To this end, we determine how
to construct a mathematical analysis of this type of problem. On the basis of
behavior models, production system performance measures are obtained by ana-
lyzing a virtual assembly line. Optimal deposit imposition in different situations
is discussed via numerical experiments.
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Our suggestions for future studies are as follows: (1) design and validate addi-
tional accurate customer behavior models concerning deposit and impatience
and (2) explore systems with other production features, such as batch arrival
customers or order treatment service time.
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Abstract. The China Pakistan Economic Corridor (CPEC), an exten-
sion of the silk road, is highly expected to bring the regional stability
among south Asian countries by acting as a link to the silk road eco-
nomic belt and the 21st-century maritime silk road. Hence, the increas-
ingly large scale international trade makes the role of CPEC road ship-
ments significant between supply and demand. By considering various
risks involved in the CPEC’s road transportation routes, a trade-off func-
tion based on the factors: Cost Cs, profit Bs, and safety Ps is set up.
We establish a probability density function taking cost, profit and safety
as the continuous random variables, and use their weight to capture a
better trade-off policy. Thus such a trade-off function is to maximize the
total satisfaction of road trading by analyzing the best appropriateness
between the commodity group and the CPEC route. The methodology
and results given in this paper provide an effective method for several
reliable route paths among commodity groups.

Keywords: International trade · The China Pakistan Economic
Corridor · Trade-off function · Commodity group

1 Introduction

The China Pakistan Economic Corridor (CPEC) is an umbrella project of Belt
and Road Initiative (BRI). It connects Kashgar and the western region of China
with the deep sea port of Gwadar, Pakistan. By viewing from the perspective of
China, Pakistan serves as an assurance policy to her energy risks, as it provides
diversity, security, and enhancement of energy supplies. China, being the largest
consumer of oil in the world, has a long term plan of oil from Gwadar, which is
likely to save a distance of over 7580 miles. Not to mention 80% of China’s oil,
that is currently imported bypassing hostile choke-points through the Straits of
Malacca, is likely to increase [11]. The completion of the China Pakistan Eco-
nomic Corridor (CPEC) will reduce the distance by 50–85% for China’s present
c© Springer Nature Singapore Pte Ltd. 2019
Q.-L. Li et al. (Eds.): Cao Festschrift 2019, CCIS 1102, pp. 446–464, 2019.
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container traffic. The oil tankers that take 20 to 30 days to reach Shanghai from
Gulf are likely to take less than a week time through Gwadar (see Table 1).
Strategically, Pakistan lies at the fulcrum of Middle East, South Asia, and Cen-
tral Asia, which provides the most economical link between Central Asia or
Persian Gulf and the energy scant broader South Asia [3]. It exhibits that the
trading activity through Pakistan is going to increase.

Table 1. Trading distance comparison (via Shanghai vs via Gwadar)

Sr. Origin Destination Via Shanghai

(miles)

Via Pakistan

(miles)

Saved

(miles)

Saved (%)

1 Central China Middle East 11206 3626 7580 68

2 Central China Europe 17801 10928 6873 39

3 Central China Pakistan (Gwadar) 10601 3081 7520 71

4 Western China Middle East 12537 2295 10242 82

5 Western China Europe 19132 9597 9539 50

6 Western China Pakistan (Gwadar) 11932 1750 10182 85

The road infrastructure construction is taking longer than planned, but from
short term, medium term and long term projects, the emphasis is on develop-
ing a road infrastructure first [19]. Hence, the primary and readily bulk trading
of CPEC will start from roads. To see up to what extent the highways and
motorways under CPEC are developed in Pakistan, follow the report on Pak-
istan Economic Survey 2017–2018 [14]. Partially functional China Pakistan Eco-
nomic Corridor has already started serving two purposes; internationally it is
becoming world’s most significant trade route scaling down global transport dis-
tance between continents, while it is helping in invigorating Pakistan’s stagnant
economy domestically. Before the CPEC, Pakistan has relatively advanced road
transportation infrastructure (than railways or airways) in the form of inter-
city highways and motorways managed by National Highway and Motorway
Authority (NHMA). Now, the massive Chinese investment and her direct civil
engineering expertise on the road infrastructure, which includes widening and
upgrading existing highways and building new highway routes, has enhanced the
CPEC’s capacity to meet the challenges of potential transit trade.

Keeping aside the motivational debate on China’s massive investment, Pak-
istan’s smooth trade, including 10–15% Chinese trade, is not only dependent on
the road capacities to handle the trade volume but also on the risk involved while
trading through highways. Pakistan’s internal challenges are a major impediment
in the smooth execution of trade transportation. The common problems that still
exist in Pakistan’s transportation are traveling time, long waiting hours, high
cost, increased cost of doing business, and above all the poor performance of
transport sector which cost around 5% of GDP each year [6]. On the other
hand, there exist geopolitical and security risks causing uncertainty, due to the
perceived world power’s adjustment towards this region. The mix of interna-
tional, national, and extremist factor is creating disruptive activities, which is
the primary threat to CPEC [10].
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There are four routes under the CPEC: The western, the central, and the
eastern route, also known as three main corridors; and the fourth, the northern
route. The northern route connects to Kashgar in western China. The western
route is comparatively shorter and runs through the underdeveloped area of
Khyber Pakhtunkhwa and Balochistan province. The central route crisscrosses
the country, and the eastern route runs through Sindh and Punjab mainly [6].
For some details of all the key node cities under the CPEC routes, please refer
to Table 2.

The transit trade from immediate and distant neighbors is likely to increase
the stress on transport demand (supply chain). To cope with potential transit
challenges, this paper proposes a trade-off function with the help of probability
density functions to examine the risk of cost, profit and safety for each CPEC
highway route. The traveling cost, delay time, and the unsafe factors of road
transportation are considered to drive a better trade-off policy to make road
transportation under the CPEC smooth and competitive in the international
market. The results allow the policymakers to evaluate the best appropriate
route for different commodities groups. The remainder of this paper is organized
as follows. Section 2 provides the literature review. Section 3 shows the proba-
bility design and analysis. Section 4 contains the performance analysis. And the
conclusion is in Sect. 5.

2 Literature Review

Several researchers got attracted towards the mega CPEC corridor’s infrastruc-
ture development. The world’s critics and project’s challenges have brought a
gap for researchers. Another reason is the increasing trade growth of countries
on Belt and Road Initiative (BRI). Since the inauguration of CPEC, Pakistan’s
total export is growing every month i.e. 27.4% increase in September 2018 [5].
Recently, some researchers also have tabled high quality research on both inter-
model fright and means of fright. Qi and Wang [21] compared the time and cost
on Maritime route and Eurasian land bridge to transport goods from China to
Europe. They concluded that it took 10 days less on land bridge to transport
goods as compared to the sea. Khalid [1] analyzed the effect of CPEC in terms
of transport cost and distance. He compared the existing route of Chinese trade
with the new CPEC route. It resulted in decrease of cost and time, i.e. cost from
China to Middle East decreased by $1450 and for Europe by $1350, while the
travel time decreased by 21 days. The distance through the CPEC to Middle
East and Europe is decreased by 11,000 km to 13,000 km.

An admirable research, on structural reliability of highway bridges on the
CPEC by using the probability distributions and the live load analysis, showed
the maximum probability for the failure of the highway bridges against the
world’s standard of bridges. Rasheed [23] suggested that the legal load limit
to be strictly imposed by National Highway Authority of Pakistan and that
the actual data needed to record for the better output results. Celikbilek [4]
showed how maximizing the profit while to minimize the total risk associated
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with supply chain network design. He took the case of Chicago to discuss the
risk in supply chain efficiency. A harsh winter and tough transportation condi-
tions were considered, which prevented the companies in establishing a facility.
There were different risk levels which influence on the supply chain network effi-
ciency. Kanings [8], a senior economist, analyzed the international trade on the
Belt and Road Initiative (BRI) and discussed how the connections between BRI
countries were strengthened and the trade cost between them was lowered. She
further explained that the transportation infrastructure projects, across Asia
and Europe, are the key parts of BRI projects, and transportation cost is con-
sistently found to be an important part of trade cost. The halving transport
cost by WTO is 33% on the assumption that the transport cost is two-third
of trade cost. When the trade cost falls between BRI connected countries, the
trade between both of them increases. Masood et al. [11] explained the unsatis-
fied transportation system of Pakistan that hardly satisfied the local demand of
the country with regional and international transit made from Karachi port. But
the trade through deep sea Gwadar port is likely to reduce the travel distance
by 50 to 85% towards Europe, Middle East and Africa, and likely to increase the
trade volume through the CPEC corridors. Hence it was important to analyze
the direct and indirect risks involved on road trading through Pakistan. The
challenges of poor transport service, low condition highway network, poor safety
record, and poor truck fleet, were likely to overcome with the high investment on
road infrastructure. But the common challenges of transport sector that needed
to be addressed was long waiting time and traveling time, as well as high cost of
travel caused reduction in export. They explained that the transport sector is a
back bone of business economy. In Pakistan it costed around 5% of GDP every
year.

The major security concerns in Pakistan are religious extremism, sectarian,
and ethno-political violence in Sindh and Baluchistan supported by anti-state
forces. The number of terror attempts has already been observed that targeted
the Chinese interest. A single attack on the CPEC road infrastructure construc-
tion can have negative impact on international trade through Pakistan. Recent
operations by arm forces has already weakened these groups and the country
witnessed about 70% decline in security issues. See Hussain [6] for more details.
On the other hand the natural disaster is a main factor that may effect the
CPEC road transportation. To this end, an energy efficient transportation plan
for the CPEC is read, in which probable impact on carbon emission of Pakistan
is analyzed, and the reduction of CO2 emission is suggested by Zubedi et al.
[26]. They suggested strategies to the climate researchers and policy makers for
adoption and mitigation of greenhouse gases (GHG).

3 Probability Design and Analysis

With the help of primary and secondary data, we calculate the normal distribu-
tions for the travel cost, travel time with delay time, safety and profit between
major city nodes on the four routes of CPEC, and proposes a trade-off function
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against each route to facilitate the sensitivity of different commodity groups in
road shipments. The trade-off function can help us to adopt the most suitable
route for the commodity groups and can allow us to switch among the routes on
the basis of the priority factors of commodities’ road shipments. The secondary
data is the official data obtained by Ministries of Pakistan, whereas the primary
source is the questionnaire survey that are filled by Pakistan’s provincial traders
and logistics’ operators. A total of 322 fillings are achieved and their weights
are concluded, where α1, α2, and α3 are the weights of cost, profit and safety
respectively. The trade-off function is defined as:

� = α1E[CS ] + α2E(BS) + α3E(PS). (1)

The cost CS , profit BS , and safety PS are calculated by means of the exponential
probability density function

f(x) = λe−λt. (2)

The four routes are named as the Northern, Western, Central and Eastern routes
[15]. The distance of the routes, the names of national highways and the names
of major city nodes are all real and official [18] (See Table 2). It is worthwhile
to note that the northern route is connected with all the other three routes of
the CPEC (also called the three corridors of the CPEC). The distance of the
northern route adds up to the distance of any other route (Western, Eastern
and Central), in order to calculate the total distance between two edges, i.e. the
deep sea Gwadar Port in Baluchistan and the border on Karakorum highway
“Khunjerab Pass” (See Fig. 1).

Table 2. Major city nodes on CPEC routes [15]

Northern Nodes
Distance

(km)
Highways Western Nodes

Distance

(km)
Highways Central Nodes Distance(km) Highways Eastern Nodes

Distance

(km)
Highways

Khunjrab-Raikot 335 N35 Burhan-D.I.Khan 285 N5, N80 Burhan-D.I.Khan 288 N5, N80 Peshawar-Islamabad 155 M1

Raikot-Thakot 270 N35 D.I.Khan-Zhob 205 N50 D.I.Khan-Jampur 250 N55 Islamabad-Pindi Bhattian 235 M2

Thakot-Havelian 120 N35 Zhob-Quetta 331 N50 Jampur-Wangu Hills 363 M55, N8 Pindi Bhattian-Multan 298 M4

Havelian-Burhan 59 E35, M1 Quetta-Surab 214 N25 Wangu Hills-Khuzdar 108 M8, N25 Multan-Sukkur 392 N70, N65

Surab-Hoshab 449 N85 Khuzdar-Basima 110 N30 Sukkur-Hyderabad 296 N5

Hoshab-Gwadar 193 M8, N10 Basima-Gwadar 642 N10, N85 Hyderabad-Karachi 136 M9

Karachi-Gwadar 630 N10

aThe city nodes “Burhan-DI Khan” and “Bisma-Gwadar” on central route are the par-
tially shared highway segment of western route.

3.1 CPEC Route Road Travel Time

The travel time is calculated by dividing the total distance of road transport by
average speed of truck. The highest allowed speed of the truck is 110 km/h on
a smooth highway, and dropped to 30 km/h or below on hilly and mountainous
areas [24]. Therefore, an average speed of 50 km/h is considered to fulfill the
requirements, see Table 3. Total distance is retrieved from the National Highway
Authority (NHA) [15].
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Fig. 1. Routes of China Pakistan economic corridor

3.2 Delay in Travel Time

There are many different factors that may cause delay in traveling like bad
weather, strikes, traffic jam, driver’s rest time, and police inspections etcetera.
Moreover, the administered law and order situation in Pakistan is not at a point
where surprise delays can completely be avoided. Hence, the probability of delay
time is calculated between two city nodes by using the normal probability density
function. Here the Gwadar is treated as origin with delay time (i.e. T1) and city
Hoshab as the next city on the western route with delay time (i.e. T2) and so
on (see Figure 1). Since the travel time increases on continuous behavior, we can
write the transportation time and its mean between two city nodes as follows:

The transportation time is

TR = T1 + T2 + T3 + ... + Tn+1. (3)

The mean of transportation time is

E[TR] = E[T1] + E[T2] + E[T3] + ... + E[Tn+1], (4)

and
E[Ti] =

1
λi

. (5)
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We define a density function of delay time as

f(t) =

{
e−λt, if t ≥ 0
0, if t < 0.

(6)

The probability distribution function with respect to the delay time is

F (x) = 1 − e− ∫ x
0 λ(t)dt (7)

For the probability distribution of delay time that may affect the travel time
between two city nodes, given below are the two cases. In the first case, the
probability of delay time more than 5 h is considered; while in the second case,
the probability that the delay time lies between 3 to 5 h is calculated between
the CPEC city nodes.

Case 1
For the delay time more the 5 h, the probability function of Node i is define as

P (Ti ≤ t) =

{
1 − e−λit, if t ≥ 0,

0, if t < 0,
(8)

and the mean of the delay time is given by

μTi
= E[Ti] =

1
λ i

. (9)

As we know from the real data calculations, the ideal travel time between city
nodes is 3.5 h (if there is no travel congestion and smooth driving is continu-
ous). By considering that the maximum tolerance delay is 7 h between two city
nodes, we assume that the delay time of 40 ft container vehicles is exponentially
distributed with the mean of 4 h.

The delay time mean is given by,

μ1 = E[T1] = 4,

and the delay rate is given by

λ1 =
1
μ1

=
1
4
.

The probability of delay time that may occur for more than 5 h to reach Hoshab
city is given by

P (T1 ≥ 5) = e
−5
4 = 0.2865

Hence, the probability is about 25% for 40 ft container vehicles to reach Hoshab
city with a delay time of 5 h (Fig. 2).
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Fig. 2. Probability of delay time for more than 5 h from Gwadar Port to city Hoshab

Case 2
The probability of the delay time lies between an interval of 3 and 5 h. When
the average delay time is 4 h, the probability function is defined as

P{3 ≤ T < 5} =
∫ 5

3

λe−λtdt.

Hence the probability of delay time which lies between 3 to 5 h is 18%. While
from case 1, the probability of delay time more than 5 h is 25%. Because there
are more chances of delay with more than 5 h for a 40 ft container vehicle, so
the 5 h delay has been added in the traveling time between two city nodes (see
Table 3).

Road Lanes, Toll Plazas, and Intersections Under CPEC Routes
The interchanges and toll plazas on the highways also cause delays in travel time.
For this purpose, some official data for numbers of tolls and interchanges on the
CPEC highways are collected [16]. Further, the way that they are most likely
to encounter on each journey is also observed. The interchanges and toll plazas
are most likely to encounter when changing the highway routes. The toll plazas
get on the way only when an entry or exit is made from the city [13]. It must be
acknowledged that there are a lot of interchanges and toll plazas on each route,
only the interchanges and the toll plazas of the city nodes are being considered.
Hence the delay of 15 min is added in Table 3.
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Table 3. Total travel time with delay factors against each CPEC’s route

Route Distance

kilometers

Toll plazas

average

Interchanges

average

Travel time

hours

Delay time

hours

Total time

hours

Northern 784 2 2 16 25.68 26

Western 1677 1 1 49 55.89 56

Central 1761 2 2 51 60.90 62

Eastern 2142 7 10 59 109.52 113
aDelay time of 5 h were found between first to city nodes. Hence, it is multiplied by

average number of interchanges against each route and added with travel time.
bTotal time is obtained by adding the delay time with the result of multiplication of

interchanges by 0.3 h.

3.3 Transportation Cost of CPEC Routes

The domestic average cost per kilometer ($0.43) is estimated by dividing the total
distance with total cost of 40 ft container truck, i.e. $1260 [1]. The longest route
distance from Gwadar port to Khunjerab pass is 2926 km taken from National
Highway Authority (NHA), Pakistan. The official charges of toll plazas, as shown
in Table 4, are also added in to the total cost [17].

Total Transportation Cost = Road Travel Cost + Cost of toll Plazas

Table 4. Route cost of CPEC road transport

Route Distance
kilometers

Toll plazas Max toll
tax dollars

Total cost
dollars

Northern 784 2 4 345

Western 1677 1 1 723

Central 1761 2 1 760

Eastern 2142 7 4 948
a$0.43 per kilometer cost is applied.
bMaximum toll tax has been considered for the calculation of cost.

The individual cost Ci between two city nodes, as well as the total cost CS

of each route is calculated. Moreover, the probability of cost occurrence is also
derived by using a cumulative distribution function, which will be mentioned in
the next section of this paper. For the cost, we have

CS = C1T1 + C2T2 + C3T3 + ... + Cn+1Tn+1.

Taking its mean as

E[CS ] = C1E[T1] + C2E[T2] + C3E[T3] + ... + Cn+1E[Tn+1].



China Pakistan Economic Corridor 455

3.4 Transportation Prices by Logistic Companies

Price of standard 40 ft container with full load is being considered to fulfill the
purpose of getting the profit against the CPEC route trip. The road freight price
of 40 ft container truck is taken by five cargo companies in Pakistan, named Costa
Logistics, MG Sky Cargo, Akurate Services, Agility, and Silk Logistics (Table 5).
The charges remain valid for short period and also fluctuate a lot, hence the aver-
age price $0.81 per kilometers is calculated among the five expensive and cheap
logistics companies [9]. The transportation price is calculated by multiplying the
average price of a kilometer with total distance of the route.

Table 5. Price of the CPEC road transportation

Company Price
(dollar)

Distance from Gwadar
to Khunjerab
(kilometers)

Truck load
(cubic meter)

Price
(per km)

Mean
(dollar)

Costa Logistics 1807 0.71

MG Sky Cargo 1920 0.75

Akurate Services 2033 2545 100 0.80 0.81

Agility 2259 0.89

Silk Logistics 2250 0.88
aPrice of 40 ft container’s service is obtained by five companies operating nationwide.

3.5 Unsafe Factors of the CPEC Routes

Considering Pakistan’s current security issues, traffic situations and geographical
challenges and the major factors, that may cause uncertainty in an international
trade through CPEC, are natural disasters, terrorism, and accidents. With the
help of these factors, we are able to find out how unsafe the route is, and the
route’s unsafe probability is denominated by PR. Further, natural disasters with
sub-factors of temperature, floods, earth quakes, Glacier-Lake Outburst Flood
(GLOF), and land sliding are calculated for the routes individually. As the offi-
cial data were found in weighted form, the normalized values are obtained with
the help of absolute function [7,12]. Accidental data is not available city wise,
only provincial accidents and highway routes accidents are available. Therefore
highway route wise accidents are considered more appropriate for this research
[2,22]. On the other hand, for terrorism eight years (2010–2018) of data is con-
sidered to get the trend [20]. Unlike accidental data, the data on terrorist attacks
is considered as city wise, it will only effect the road shipment if there is a stop
at one of the city nodes. Special Economic Zones (SEZ) allocated under CPEC
are the points where the trucks most likely transit. The city nodes around the
SEZ are considered of high importance. Hence, the average number of city ter-
rorism attacks over the years are taken for all the CPEC routes. The probability
between two city nodes to be unsafe is given in two different cases: the first one
is that a city terrorism attacks make the roads unusable.

PS = P1P2P3...Pn+1.
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The other one is for only a node influence

PS = (1 − P1)(1 − P2)(1 − P3)...(Pn+1).

3.6 Profit on Different Routes of CPEC

Profit BS is simply determined by subtracting the cost from the price. Since the
delay time and unsafe factors are different for each route, they impact the direct
and indirect cost. Its mean and variance are also calculated for routes and for
city nodes. This will help in differentiating the routes from each other. We can
write the profit between two city nodes as

BS = B1 + B2 + B3 + ... + Bn+1,

and its mean is given by

E[BS ] = E[B1] + E[B2] + E[B3] + ... + E[Bn+1].

4 Performance Analysis

This section is to find an optional trade-route for smooth and safe road shipping
of different commodity groups in an increased international trade of CPEC. To
calculate the trade-off function for each route, the elements calculated for the
trade-off function are the cost CS , the profit BS , and the safety PS (see Table 6).
In between the city nodes of each route, there are many small cities so that the
district impact has been taken for unsafe factors, for example, accidents and
natural disasters etcetera. The results are conducted using Vertex42 on Microsoft
Excel [25]. See Table 6 for the means and variances of the factors given in the
trade-off function.

4.1 Probabilities of Traveling Times

The cumulative distribution function is used to get the travel time probabilities
between city nodes along the northern, western, central, and eastern routes.
The result shows that the cumulative probability of a travel time less then 7 h
(including delay time), that a random 40 ft container truck takes to cover the
distance between each city nodes, is 0.2862. And the cumulative probability that
a randomly chosen 40 ft container truck will travel in more then 106 h to cover
the distance between each city nodes is almost zero i.e. 0.0003 (Fig. 3). Table 6
shows us the probability of travel time against each city nodes’ interval.
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(a) City nodes (b) CPEC routes

Fig. 3. Probability graph of travel time between city nodes and routes of CPEC.
1. Blue line is indicating probability density function (pdf) and red is the indication of
cumulative distribution function (cdf). 2. Highlighted area under the curve shows the
area of least travel time. (Color figure online)

Table 6. Results of the trade-off factors in China Pakistan economic corridor

Sr. City Nodes Time (Hours) Time Time Time Unsafe Factors Unsafe Unsafe Cost($) Cost Cost Profit ($) Profit Profit Profit

Under CPEC Routes Time Length Probability Mean Variance Probability Mean Variance Total Cost Probability Mean Variance Total Profit Probability Mean Variance

NORTHERN ROUTE 26.28 0.15 0.47 345 0.08 $287.33 0.08

1 Khunjrab-Raikot 12.00 0.35 0.33 0.00 0.70 0.55 0.01 145 0.61 0.33 0.06 $125.05 0.68 $0.37 0.06

2 Raikot-Thakot 10.70 0.33 0.51 117 0.53 $100.55 0.53

3 Thakot-Havelian 7.70 0.29 0.43 53 0.12 $44.00 0.19

4 Havelian-Burhan 11.78 0.35 0.57 34 0.07 $14.01 0.09

WESTERN ROUTE 56.29 0.41 0.32 723 0.55 $630.62 0.58

1 Burhan-D.I.Khan 11.00 0.34 0.34 0.00 0.46 0.41 0.01 125 0.49 0.46 0.05 $104.96 0.56 $0.53 0.04

2 D.I.Khan-Zhob 9.40 0.31 0.48 89 0.28 $76.04 0.37

3 Zhob-Quetta 11.92 0.35 0.42 144 0.60 $123.54 0.67

4 Quetta-Surab 9.58 0.32 0.41 93 0.30 $79.43 0.39

5 Surab-Hoshab 14.28 0.39 0.24 194 0.86 $168.03 0.88

6 Hoshab-Gwadar 9.16 0.31 0.44 84 0.25 $71.52 0.34

CENTRAL ROUTE 61.50 0.91 0.11 760 0.60 $661 0.63

1
Burhan-D.I.Khan

(Partial Western Route)
11.06 0.34 0.34 0.00 0.40 0.36 0.01 125 0.49 0.46 0.10 $107.33 0.57 $0.52 0.09

2 D.I.Khan-Jampur 10.30 0.33 0.47 109 0.39 $93.01 0.48

3 Jampur-Wangu Hills 12.56 0.36 0.49 157 0.68 $135.61 0.74

4 Wangu Hills-Khuzdar 7.46 0.29 0.22 48 0.11 $39.47 0.17

5 Khuzdar-Basima 7.50 0.29 0.22 49 0.11 $40.23 0.18

6
Basima-Gwadar

(Partial Western Route)
18.14 0.44 0.33 277 0.99 $240.79 0.99

EASTERN ROUTE 112.58 0.41 0.64 948 0.84 $780.75 0.82

1 Peshawar-Islamabad 50.80 0.88 0.69 0.07 0.48 0.52 0.01 112 0.41 0.61 0.06 $13.14 0.18 $0.51 0.08

2 Islamabad-Pindi Bhattian 73.60 0.98 0.30 150 0.64 $39.18 0.34

3 Pindi Bhattian-Multan 106.66 1.00 0.49 161 0.70 $79.40 0.53

4 Multan-Sukkur 13.14 0.37 0.55 176 0.78 $140.33 0.76

5 Sukkur-Hyderabad 11.22 0.34 0.55 136 0.56 $102.89 0.57

6 Hyderabad-Karachi 45.12 0.83 0.63 65 0.17 $45.06 0.19

7 Karachi-Gwadar 17.90 0.45 0.63 272 0.99 $236.26 0.99

aThe probabilities mentioned above are from cumulative distribution function and shows
the real probability among them.
bUnder each route are the city nodes’ intervals. The distance against the routes and the
distance between city nodes are mentioned in Table 4.
cThe sum of city nodes’ distance will differ from the total distance calculated for routes.
This is because if we go in and out city wise, we have to pay toll tax at each city
interchange, but if the vehicle enters the highway and does not exit then it will have to
pay as per the highways it switches. The highways has been mentioned in Table 2.
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4.2 Unsafe Probabilities

To find out how unsafe the routes of CPEC are, the background calculation of
accident, past natural disasters and terrorist attacks for last 8 years are consid-
ered. The average impact of each of the factor is added to find the rate of unsafe
probability of routes.

The cumulative probability that the accidents occur on any CPEC route less
than 126 times is 0.2263. And the probability that they may occur more then 591
times on CPEC route is 0.0795. Figure 4 shows the normal distribution graph
of accidents, and the highlighted area under the curve shows the least accident
chances on the CPEC routes.

Terrorism has a high fluctuating history in Pakistan. The trend shows that
the cumulative probability of terrorist incident equals to 0 is 0.2863, and the
probability that they may occur more than 91 times is 0.0036.

Lastly, Fig. 5 shows the probability graphs of each route for natural disaster.
The probability of less then 20 disastrous incidents to happen in western route is
0.12057, whereas the probability of incident for more than 37 is 0.15853. Likewise,
all the other probabilities can be followed in Table 7.

Moreover, the combine effect of unsafe factors i.e. accidents, terrorism, and
natural disasters is calculated by taking average of the three factors (Please see
Table 8).

Table 7. Cumulative probabilities of natural disasters on each route

Natural disasters: Temperature, Earth quakes, Floods, Land sliding, GLOF

Probabilities Western Central Eastern Northern

xmin = 20,
xmax = 37

xmin = 30,
xmax=42

xmin=26,
xmax=41

xmin = 11,
xmax = 44

Pr(x < xmin) 0.12057 0.12949 0.04727 0.08247

Pr(x > xmax) 0.15853 0.05501 0.147 0.12129

Pr(xmin < x < xmax) 0.7209 0.81551 0.80572 0.7962411

4.3 Traveling Cost on CPEC Routes

Even though the CPEC route is cost efficient for China, as it reduces the distance
manifold. But for Pakistan it is still a challenge to save more due to the poorly
managed past transportation system of the country. Figure 6 shows probability
graph of cost against routes as well as against city nodes. The cost of travel
on new CPEC routes including the direct cost (toll taxes) and the indirect cost
(delay time) are considered to get the valid probabilities. The cumulative prob-
ability of 40 ft container truck to travel among city nodes with cost less than
$33.6 is 0.072 and probability of cost greater than $277 is 0.0091. However, as
discussed earlier that using routes do not require to pay the toll tax at each



China Pakistan Economic Corridor 459

Fig. 4. CPEC routes accidental probability graph. 1. Blue line is indicating probabil-
ity density function (pdf) and red is the indication of cumulative distribution function
(cdf). 2. Highlighted area under the curve shows the area of the least accident occur-
rence. (Color figure online)

(a) Central route (b) Eastern route

(c) Northern route (d) Western route

Fig. 5. Probability of natural disasters. 1. Blue line indicates probability density func-
tion (pdf) and red indicates cumulative distribution function (cdf). 2. Highlighted area
under the curve shows the area with probability of having more chances of natural
disasters. (Color figure online)
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(a) CPEC routes (b) City nodes under CPEC

Fig. 6. Cost probability of CPEC routes’ traveling. 1. Blue line is indicating probability
density function (pdf) and red is indication cumulative distribution function (cdf).
2. Highlighted area under the curve shows the area with probability of having more
chances of minimum cost. (Color figure online)

interchange, it only needs to pay once exit is required. Hence, the cumulative
probability of 40 ft container truck to travel among the routes with cost less than
$345 is 0.0834 and probability of cost more than $948 is 0.1570.

4.4 Profit Using CPEC Routes

The price charged by logistic companies in Pakistan for a 40 ft container truck is
obtained. Usually their prices also include the maintenance charges of the vehicle.
The profit is simply calculated by subtracting cost from price earned. For the
probability calculations of profit against city nodes and routes. See Table 6 for
final results (Fig. 7).

(a) Between two city nodes (b) On CPEC routes

Fig. 7. Profit probability under CPEC. 1. Blue line is indicating probability density
function (pdf) and red is the indication of cumulative distribution function (cdf). 2.
Highlighted area under the curve shows the area with probability of minimum profit
that is only 8.5% considering city nodes and 7.6% considering CPEC routes. (Color
figure online)
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4.5 Weights of Cost, Profit and Safety

The fully functional CPEC route is the eastern route whereas other routes are
partially in use due to some parts of them under construction and they will
get completed in the year 2020. With the help of questionnaire, we are able to
find out the current scenario of what people think of CPEC routes and how
their trading is getting on with these routes. The traders and logistic business
officials from all provinces (Punjab, Baluchistan, Sindh, KPK) are picked to fill
the questionnaire. For weights α1, α2, and α3 are assigned for cost, profit and
safety, respectively. In which α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1, see Table 8
for more details.

Table 8. Trade-off functions of CPEC

Trade-off

function

CPEC routes Cost α1 ≥ 0 Profit α2 ≥ 0 Safety α3 ≥ 0 Cost E[CS ] Profit E[BS ] Unsafe

E[PR]

�1 Northern route 0.26 0.17 0.57 0.33 0.37 0.55

�2 Western route 0.18 0.20 0.62 0.46 0.53 0.41

�3 Central route 0.23 0.26 0.51 0.46 0.51 0.36

�4 Eastern route 0.21 0.18 0.60 0.84 0.51 0.52
aα1, α2 and α3 are the weights of cost, profit, and safety respectively, summing to 1 (100%).
bE[CS ], E[BS ] and E[PR] are the mean of the probabilities against each route.

4.6 Trade-Off Policy Against Major Trade Categories

Our results are to easily decide the trade-off for international trade commodities.
The CPEC is not only meant for China-Pakistan, but also to bring regional
stability. The trade through CPEC can connect many neighboring countries and
the land-locked countries. The trade-off policy helps in deciding the route for
trade commodities for their smooth transportation. For example, China, being
the biggest consumer of oil in the world, wants the CPEC to be its energy
assurance corridor. Because oil is expensive and most demanding product, hence
the trade-off policy with maximum route safety must be adopted over route cost
or profit. Similarly, the perishable products need a route with less distance and
travel time. And the product with less profit margin may need to choose the
route with less cost.

Considering our results, the northern route has less traveling distance, less
cost and more profit but as this route is unavoidable as it connects China with
rest of the three routes of the CPEC. On the other hand, Western Route is
upgraded but partially built and expected to be fully functional in the year
2020. This route is found to be the most reliable in every aspect. On contrary,
the central route has high cost effecting less profit but is considered as the most
safe route. Lastly, the eastern route is the longest one with most industrialized
cities connected to it in the country. Infrastructure is strong at the eastern route,
and it has been the most developed in CPEC so far. Apart from high cost, less
safe and longer travel time, the profit is maximum with respect to the other
routes under the CPEC.
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Table 9. Trade-off between CPEC routes for commodity groups

China-Pakistan
Economic Corridor

Trade-offs considered routes

Important trade
categories

Northern Western Central Eastern

Unavoidable Upgraded &
partially built

Newly built Developed &
industrialized

Processed food groups T, C, B B

Machinery & transport
groups

T, C, B All C, T, P B

Petroleum groups T, C, B C, T, P

Textile groups T, C, B All B

Chemical groups T, C, B All C, T, P B

Metal groups T, C, B All

Plastic and rubbers
groups

T, C, B C, T, P B

Paper goods groups T, C, B B

Stone and glass groups T, C, B All

Agriculture group T, C, B All C, T, P
aB, C, P, T are indicating profitably, less costly, mostly safe and time efficiency,
respectively.

Table 9 shows that for processed food groups, the eastern route is the best
choice because this route passes through the province Punjab and Sindh, which
are most developed and agricultural provinces of Pakistan. Hence trading of food
group commodity is likely to have more profit on this route. For machinery and
transport group all routes are suitably depending upon the scenario of delivery.
For example, for profit the eastern route can be used. For less cost, less time,
and less safety the central route can be used. Moreover, for petroleum groups the
safety matters more, hence the central route with less cost, less transportation
time and more safety is suitable. Likewise, all the other groups have been assigned
a route. Routes can be changed by depending upon the urgency or diplomacy of
the trade.

5 Conclusion

The execution of increasingly large-scale international the trade through China-
Pakistan Economic Corridor (CPEC) is a challenging task for Pakistan more
than it is for its core investor China. Especially when the history of Pakistan’s
trade is not so good. To prove effectiveness and efficiency of road trading which
fulfill the supply and demand for regional countries, Pakistan needs to adopt
special measures. Even though there are different means of trade planned in the
CPEC to avoid any kind of uncertainty, i.e., sea, air, rail, and direct oil pipeline,
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but the very first linkage is the highways network of Pakistan. Rest of the means
(train or air) are included in a long term plan and they are time taking. Hence,
the objective of this research is to evaluate the four routes of the CPEC in terms
of cost, profit and safety, and to design a trade-off function for each of its route.

Findings of this paper allow us to deeply analyze each route of the CPEC and
to suggest an optional trade-off function in term of commodity-groups’ safety,
urgency and worthy. The sub-factors of the trade-off function is calculated by
using probability density function, and the weighted average is included against
each factor.

The CPEC, which is already beneficial in connecting Middle East and Europe
to the South Asian region through the shortest distance, would bring more ben-
efit to Pakistan itself, if the efficient trading gets executed. Future researches
can be but not limited to trade means in the CPEC, cost effective means of the
CPEC and policy measures to cope with trading hurdles under the CPEC.
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Abstract. The existing network connectivity discriminant algorithms have high
time complexity, which could not satisfy the requirement of quick connectivity
discrimination for large-scale networks, such as computer networks, commu-
nication networks and energy networks, etc. Aiming at the strong connectivity
discriminant problem of directed networks, this paper extends the Warshall
algorithm from simple directed networks to complex ones and gives an
improved discriminant algorithm, which can reduce the time complexity of the
Warshall algorithm by half. This is of great practical value to the connectivity
discrimination for various large-scale complex directed networks.

Keywords: Complex directed network � Strong connectivity � Connectivity
discriminant algorithm � Time complexity

1 Introduction

Connectivity discriminant algorithms for complex directed networks, including self-
rings and multiple directed edges, not only play an important role in graph theory
[1–5], but also have wide application in communication [6, 7], computer [8], control
[7, 9, 10], transportation and all kinds of networks [3, 4, 6, 8, 11].

During the last twenty years, thousands of articles have been published in the field
of consistency control of multi-agent systems [7, 11]. In all these articles, it is assumed
that the communication network between the multi-agents is always connected, but
none of them studied the connectivity problem for the communication networks of
multi-agent systems. In the practical application of multi-agent consistency control
(such as the formation flight control of multi-UAVs), the connectivity of communi-
cation network between multi-agents must be tested and determined at all time,
otherwise it is difficult to ensure that the predetermined control objectives can be
achieved [3–5]. When the number of agents is huge, or the scale of communication
network is large, due to the high time complexity, the existing network connectivity
discriminant algorithms could not satisfy the requirement of quick discrimination.

This work was supported by the National Natural Science Foundation (NNSF) of China under Grant
61673041.
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There are many similar practical applications, which are not described here. The above
indicates that we urgently need to develop efficient connectivity discriminant algo-
rithms, in order to satisfy the requirement of connectivity discrimination for various
large-scale complex networks.

Networks can be divided into undirected networks, directed networks, undirected
and directed hybrid networks (referred to as hybrid networks) [4]. In terms of con-
nectivity, any undirected edge can be replaced by two opposite directed edges, so that
both undirected networks and hybrid networks can be represented by directed net-
works, but not vice versa. For this reason, complex directed networks have greater
universality, and the research on efficient discriminant algorithms for strong connec-
tivity has greater theoretical and practical significance.

Strong connectivity discriminant algorithms of directed networks can be mainly
classified into two categories: one is the algorithms based on depth-first or breadth-first
searching technologies [1], such as Tarjan algorithm and Gabow algorithm; the other is
the algorithms based on reachability matrix [2] and the Warshall algorithm based on
relation transitive closure [1]. Tarjan algorithm and Gabow algorithm are a kind of
network-oriented direct search algorithms. Their advantage is the low algorithm
complexity (both are O nþmð Þ, n is the number of nodes, and m is the number of
edges), but the disadvantages are that they are only suitable for simple directed net-
works (no self-rings and multiple directed edges) and are not easy to program (stack
and labeling techniques are required). The advantages of the Warshall algorithm is that
its structure is very concise and the bit operation method with higher efficiency can be
used. The disadvantages are that the algorithm has high complexity O 2n3ð Þð Þ and can
only be used in simple directed networks [1]. Though connectivity discriminant
algorithm based on the reachability matrix can be used in complex directed networks, it
is generally not applicable to large-scale practical networks due to its high complexity.

In this paper, the Warshall algorithm, which is only suitable for simple directed
networks, is extended to complex directed networks, and an improved algorithm is
given, which can reduce the time complexity of the Warshall algorithm by half. This
provides theoretical basis and support algorithm for various practical applications, such
as reliability analysis of network systems [3, 6, 8], consistency control or formation
control of large-scale multi-agent systems [7, 9, 10].

2 Problem Description and Knowledge Preparation

Definition 1: A directed network D is defined as an even pair D ¼ V;Eð Þ, where:
(1) V is a nonempty set, whose elements are called nodes; (2) E is a subset of ordered
product V � V whose elements are called directed edges.

Definition 2 (Yin & Wu [2]): Given a directed network D, if there exists a directed
chain u; vð Þ so that node u can reach node v, then v is said to be reachable from u.

(1) If any two nodes in D are mutually reachable, then D is strongly connected.
(2) If at least one of the two nodes in D can reach the other node, D is said to be

unidirectionally connected.
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Definition 2 shows that strong connectivity implies unidirectional connectivity, but
not vice versa. Without special declaration, all directed networks discussed in this
paper refer to complex directed networks.

Definition 3 (Yin & Wu [2]): Given a directed network D ¼ V;Eð Þ. Suppose that its
node set is V ¼ v1; v2; � � � ; vnf g, and call P ¼ P pij

� � 2 Rn�n the reachability matrix of
D, where

pij ¼ 1; there is at least one directed chain from mi to mj;
0; there is no directed chain from mi to mj:

�

At least one directed chain (a directed edge is considered as a directed chain of
length 1) from vi to vj is equivalent to the statement that vi can reach vj, otherwise vi is
not reachable to vj.

From Definitions 2 and 3, we can conclude that the necessary and sufficient con-
dition for strong connectivity of directed network D is that all elements of reachability
matrix P Pij

� �
is 1.

Example 1 (Yin & Wu [2]): Find the reachability matrix of the directed network
shown in Fig. 1, and decide the connectivity of the directed network according to the
reachability matrix.

(1) Suppose that the numbering sequence of the nodes is v1; v2; v3 and v4, then the
reachability matrix of the directed network shown in Fig. 1 is

P4 pij
� � ¼

1 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

2
664

3
775:

The directed network shown in Fig. 1 is not strongly connected, because not all the
elements of P4 pij

� �
are 1.

Fig. 1. A directed network with 4 nodes
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(2) Consider the remaining directed subnetworks after removing node v1 and its
adjacent edges. Suppose that the numbering sequence of nodes is v2; v3 and v4,
then the corresponding reachability matrix is

P3 pij
� � ¼

1 1 1
1 1 1
1 1 1

2
4

3
5:

Because all the elements of P3 pij
� �

are 1, the directed subnetworks consisting of
nodes v2; v3 and v4, have all their adjacent edges strongly connected.

The above discussion shows that if we know the reachability matrix of a directed
network, we can easily determine the strong connectivity of that network. When the
scale of the directed network is small, we can directly obtain the reachability matrix
according to Definition 3. However, when the scale of the directed network is very
large, it is very difficult to calculate the reachability matrix directly according to
Definition 3.

Definition 4 (Yin & Wu [2]): Given a directed network D ¼ V;Eð Þ, suppose that its
node set is V ¼ v1; v2; � � � ; vnf g, and call A ¼ A aij

� � 2 Rn�n the adjacency matrix of
D, where

aij ¼ mij; mi is adjacent to mj; and there aremij directed edges from mi to mj;
0; mi is not adjacent to mj; or adjacent to but there are no edges from mi to mj:

�

Here, mij � 1 is an integer. When D is a simple directed network, mij ¼ 1; when D is a
complex directed network, there is at least one mij [ 1.

There is a definite relationship between adjacency matrix A and reachability matrix
P. In order to calculate the reachability matrix P from the adjacency matrix A, we
should take the following steps [2]:

(1) Find B ¼ AþA2 þ � � � þAn;
(2) Change the nonzero elements in B to 1, while keeping the zero elements

unchanged. Suppose that the matrix obtained by this operation is B, then B ¼ P. Bit
operation cannot be used in the process of solving B and the computational complexity
is higher than O n4ð Þ, so this method is not usually used in practical application.

Definition 5: Given a directed network D ¼ V;Eð Þ, the set of nodes is assumed to be

V ¼ v1; v2; � � � ; vnf g, and MR ¼ W0 w 0½ �
ij

� �
2 Rn�n is called the adjacency relation

matrix of D, where

w½0�
ij =

1, vi is adjacent to vj and there are directed edges from vi to vj;

0, viis not adjacent to vj, k or adjacent but there are no directed edges from vi to vj:

�

In the above definition, adjacency relation R between nodes in complex directed
network D is a binary relation defined on node set V, and the 0� 1 matrix represen-
tation of R is the adjacency relation matrix MR.
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Comparing Definitions 3, 4 and 5, we can conclude that the connectivity of D will
not change when the multiple edges between all nodes in complex directed network D
are reduced to one. Therefore, when D is a simple directed network, A ¼ MR; when D
is a complex directed network, by changing all the elements in A which are greater than
1 to 1 while keeping the others unchanged, we will get MR. In this way, MR can be
directly obtained according to Definition 5, and the connectivity of D remains
unchanged.

The meaning of Definition 5 is to extend the adjacency matrix of a simple directed
network to the adjacency relation matrix of a complex directed network, such that we
can extend the applicability of the Warshall algorithm from simple directed networks to
complex directed networks.

Lemma 1 (Rosen [1]): Given a directed network D ¼ V;Eð Þ, suppose the adjacency
relation and the adjacency relation matrix is R and MR, respectively. Then

(1) the transitive closure of adjacency relation R is R� ¼ Sn
k¼1 R

k;
(2) R� equals the connectivity relation of D;

(3) the 0� 1 matrix of transitive closure R� is MR� ¼ M 1½ �
R _M 2½ �

R _M 3½ �
R _ � � � _

M n½ �
R .

In Lemma 1(3), “_” represents the Boolean OR operation, and M k½ �
R 1� k� nð Þ

represents the k th power under Boolean intersection operation. Lemma 1 tells us that
transitive closure R� of the directed network D is the connectivity relation between
nodes in D, and the transitive closure matrix MR� is actually the reachability matrix P,
i.e. MR� ¼ P; if all elements of MR� are 1, the directed network D is strongly con-
nected, otherwise, D is not strongly connected.

The biggest advantage of solving MR� is that the bit operation method with higher
computational efficiency can be adopted. However, when MR� is directly calculated
according to Lemma 1(3), the computational complexity will be as high as O n4ð Þ. It’s
obvious that such high computational complexity is not suitable for determining the
connectivity of large-scale directed networks, and new efficient algorithms are still need
to be developed.

3 The Basis of Algorithm Design and the New Algorithm
Design

3.1 The Basis of Algorithm Design

As aforementioned, the calculation amount for directly solving MR� according to
Lemma 1(3) is huge. For this reason, Warshall made significant improvements to these
algorithms in 1960.

The Warshall algorithm is based on the construction of a series of 0� 1 matrices.
These matrices are W0;W1; � � � ;Wn, respectively. Among these matrices, W0 ¼ MR is

the adjacency relation matrix, Wk ¼ w k½ �
ij

h i
and Wn ¼ MR� [1].
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Lemma 2 (Rosen [1]): Given a directed network D which has n n� 2ð Þ nodes. Sup-
pose that Wk ¼ w k½ �

ij

h i
is a 0� 1 matrix, then w k½ �

ij ¼ 1 if and only if there exists a path

from vi to vj, whose internal nodes are taken from the set v1; v2; � � � ; vkf g, such that

w½k�
ij ¼ w½k�1�

ij _ w½k�1�
ik ^ w½k�1�

kj

� �
;

where i; j and k are positive integers no more than n.
Lemma 2 is the famous Warshall algorithm. We need 2n2 bit operations to solve Wk

from Wk�1, but solving Wn ¼ MR� needs a total number of n� 2n2 ¼ 2n3 bit opera-
tions. Thus, the computational complexity of the Warshall algorithm is O 2n3ð Þ [1].
This algorithm is most famous for its remarkably simple structure and low computa-
tional complexity.

The following analysis shows that the Warshall algorithm can be further improved.
Given k 2 1; 2; � � � ; nf g, we can extend the Warshall algorithm as follows

( )
( )
( )

( )

[ ] [ 1] [ 1] [ 1]
11 11 1 1

[ ] [ 1] [ 1] [ 1]
12 12 1 2

[ ] [ 1] [ 1] [ 1]
13 13 1 3

[ ] [ 1] [ 1] [ 1]
1 1 1

k k k k
k k

k k k k
k k

k k k k
k k

k k k k
n n k kn

w w w w

w w w w

w w w w

w w w w

− − −

− − −

− − −

− − −

= ∨ ∧

= ∨ ∧

= ∨ ∧

= ∨ ∧

( )
( )
( )

( )

[ ] [ 1] [ 1] [ 1]
1 1 1

[ ] [ 1] [ 1] [ 1]
2 2 2

[ ] [ 1] [ 1] [ 1]
3 3 3

[ ] [ 1] [ 1] [ 1]

k k k k
n n nk k

k k k k
n n nk k

k k k k
n n nk k

k k k k
nn nn nk kn

w w w w

w w w w

w w w w

w w w w

− − −

− − −

− − −

− − −

= ∨ ∧

= ∨ ∧

= ∨ ∧

= ∨ ∧

When observing the elements in the first column within brackets on the right side of

each equation above, for every 1� j� n, we can find that w k½ �
1j ¼ w k�1½ �

1j if w k�1½ �
1k ¼ 0;

otherwise, w k½ �
1j ¼ w k�1½ �

1j _ w k�1½ �
kj ; …; w k½ �

nj ¼ w k�1½ �
nj if w k�1½ �

nk ¼ 0, otherwise, w k½ �
nj ¼

w k�1½ �
nj _ w k�1½ �

kj . This shows that every time we add a comparison operation to determine

whether w k�1½ �
ik is 0, we can get n calculation results: w k½ �

ij ¼ w k�1½ �
ij 1� j� nð Þ or

w k½ �
ij ¼ w k�1½ �

ij _ w k�1½ �
kj 1� j� nð Þ. The former is an assignment operation and does not

increase the amount of calculation (in the algorithm complexity analysis, the assign-
ment operation is not considered), while the latter reduces 2n bit operations of n
elements needing to be solved, to n bit operations. In this way, the amount of calcu-
lation is reduced by half. Based on this observation and analysis, we can improve the
Warshall algorithm.

Corollary 1 (The improved Warshall algorithm): Given a directed network D with

n n� 2ð Þ nodes. Suppose thatWk ¼ w k½ �
ij

h i
is a 0� 1 matrix, then w k½ �

ij ¼ 1 if and only if

there is a path from vi to vj, whose internal nodes are taken from set v1; v2; � � � ; vkf g,
such that w k½ �

ij ¼ w k�1½ �
ij if w k�1½ �

ik ¼ 0, otherwise w k½ �
ij ¼ w k�1½ �

ij _ w k�1½ �
kj , where i; j and k

are positive integers no more than n.
According to Corollary 1, we need nþ n2ð Þ bit operations to solve Wk from Wk�1

(including n comparison operations and n2 bit operations), and solving Wn ¼ MR�
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totally needs n� n2 þ nð Þ ¼ n3 þ n2 bit operations. In summary, the computational
complexity of the algorithm given in Corollary 1 is O n3ð Þ, which reduces the com-
putational complexity of the Warshall algorithm by half. It is not hard to understand
that when D is a large-scale sparse network, i.e., MR is a large-scale sparse matrix, the
computational complexity of the algorithm given in Corollary 1 will be lower than
O n3ð Þ.

From the previous discussion, we can know that Wn ¼ MR� ¼ P, and Wn can be
calculated by the method given in Corollary 1. Therefore, solving the reachability
matrix P is converted into solving Wn, and we can determine whether D is strongly
connected according to whether all the elements of Wn are 1.

3.2 The New Algorithm Design

Given a directed network D with n n� 2ð Þ nodes, we can design a new strong con-
nectivity discriminant algorithm for D according to Corollary 1. The main steps of the
algorithm can be summarized as follows:

(1) According to Definition 5, input the adjacency relation matrix W0 ¼ MR;
(2) According to Corollary 1, calculate the transitive closure matrix Wn ¼ MR� ;
(3) Calculate the number M Wnð Þ of nonzero elements of Wn;
(4) if M Wnð Þ ¼ n2, output the result that D is strongly connected; Otherwise, output

the result that D is not strongly connected.

Strong Connectivity Discriminant Algorithm for Directed Networks:

(1) When k ¼ 0, input the adjacency relation matrix W0 w 0½ �
ij

� �
of the directed net-

work D with n n� 2ð Þ nodes;
(2) When i ¼ 0, set k ¼ kþ 1;
(3) Set i ¼ iþ 1;

(4) If w k�1½ �
ik ¼ 0, set j ¼ 0 and turn to (5); Otherwise, set j ¼ 0 and turn to (9);

(5) Set j ¼ jþ 1, w k½ �
ij ¼ w k�1½ �

ij ;
(6) If j\ n, turn to (5); Otherwise, turn to (7);
(7) If i\n, turn to (3); Otherwise, turn to (8);
(8) If k\n, turn to (2); Otherwise, turn to (13);

(9) Set j ¼ jþ 1 and w k½ �
ij ¼ w k�1½ �

ij _ w k�1½ �
kj ;

(10) If j\n, turn to (9); Otherwise, turn to (11);
(11) If i\n, turn to (3); Otherwise, turn to (12);
(12) If k\n, turn to (2); Otherwise, turn to (13);

(13) Calculate M Wnð Þ ¼ Pn
i¼1

Pn
j¼1 w

n½ �
ij ;

(14) If M Wnð Þ ¼ n2, output the result that D is strongly connected; Otherwise, output
the result that D is not strongly connected.
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A Pseudocode of Strong Connectivity Discriminant Algorithm for Directed
Networks:

3.3 Example of the Algorithm

Example 2: Determine the connectivity of the directed network shown in Fig. 2, with
the sequence numbers of the nodes remaining unchanged.

According to the node numbers in Fig. 2 and the improved Warshall algorithm
given in this paper, we can obtain

Fig. 2. A directed network with 6 nodes
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W0 ¼ MR ¼

1 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0

2
6666664

3
7777775
;W1 ¼

1 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 1 0
0 0 0 0 0 1
1 1 0 1 0 0

2
6666664

3
7777775
;

W2 ¼ W3 ¼

1 1 0 1 0 0
0 0 0 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
0 0 0 0 0 1
1 1 0 1 0 0

2
6666664

3
7777775
;W4 ¼

1 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 1
1 1 1 1 1 0

2
6666664

3
7777775
;

W5 ¼

1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 0 0 0 0 1
1 1 1 1 1 1

2
6666664

3
7777775
;W6 ¼ MR� ¼

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

2
6666664

3
7777775
:

Because M W6ð Þ ¼ 62 ¼ 36, we can determine that the directed network shown in
Fig. 2 is strongly connected.

Then for this directed network, we will briefly analyze the calculation loads of the
connectivity discriminant algorithms based on the reachability matrix, the Warshall
algorithm and our improved discriminant algorithm, respectively, in order to compare
their time complexities.

(1) The reachability-matrix-based connectivity discriminant algorithm, which needs
to calculate the reachability matrix first, requires a total of 5� 62 þ 5� 62 �
2� 6� 1ð Þ ¼ 2160 integer operations;

(2) The Warshall connectivity discriminant algorithm totally needs to perform
2� 63 ¼ 432 bit operations;

(3) Our connectivity discriminant algorithm performs a total of 63 ¼ 216 bit
operations.

Obviously, the algorithm proposed in this paper requires the least number of
calculations.

4 Conclusion

Connectivity discriminant algorithms for directed networks not only play an important
role in graph theory, but also have wide application in communication, computer,
control, transportation, energy grids, and various kinds of large-scale networks. The
complex directed networks have greater universality than other kinds of networks, and
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the research on efficient discriminant algorithms for the strong connectivity has greater
theoretical and realistic significance.

In Sect. 2, we gave the definition of adjacency relation matrix (Definition 5). The
meaning of Definition 5 is to extend the adjacency matrices of simple directed networks
to the adjacency relation matrices of complex directed networks, which provides a
theoretical basis for extending the Warshall algorithm that is only suitable for simple
directed networks to complex directed networks.

The relevant conclusion given in Sect. 3 is the main contribution of this paper.
Aiming at the strong connectivity discriminant problem of directed networks, we
extended the Warshall algorithm only for simple directed networks to an improved
algorithm for complex directed networks, which can reduce the time complexity of the
Warshall algorithm by half. This provides theoretical basis and algorithm support for
consistency control of multi-agent systems or connectivity discrimination of other
large-scale complex directed networks.

Furthermore, after each undirected edge is replaced by two directed edges with
opposite directions, the proposed strong connectivity discriminant algorithms for
complex directed networks can also be applied to determine the connectivity of
complex undirected networks as well as complex hybrid networks.
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Abstract. Generally, when using the Poisson distribution to fit the count data, a
basic assumption is that the sample mean and sample variance of the data are
roughly equal. If this basic condition is not met, it is not appropriate to model
with Poisson distribution. Some extended Poisson distributions have been
generalized by researchers to model the Poisson-like distribution data. This
paper discusses four new two-parameter extended Poisson distributions: expo-
nentiated Poisson distribution, transmuted Poisson distribution, odd Poisson
distribution and Alpha logarithmic transformed Poisson distribution, which
provide better fitting effects than traditional Poisson distributions and the tra-
ditional Poisson distribution is a special case. The effects of parameters on the
distribution function in these distributions are discussed, mainly on the two
aspects of mathematical expectation and variance. Compared with the traditional
Poisson distribution, the over- or under-Poisson dispersive properties of their
distribution are studied. According to the actual three sets of specific data sets,
the parameters of these models were estimated by maximum likelihood esti-
mators, least squares estimators, and the suitability of these models was ana-
lyzed by comparative analysis.

Keywords: Two-parameter extended Poisson distribution � Over- or under-
Poisson dispersive � Parameter estimation

1 Introduction

The Poisson distribution is a probabilistic model associated with the counting process
with a wide range of applications. The Poisson distribution is suitable for describing the
probability distribution of the number of random events occurring per unit time. When
a random event, such as the calls received by a telephone exchange; passengers coming
to a bus stop; particles emitted by a radioactive substance; white blood cells in a certain
area under a microscope, etc., occurs at a fixed average instantaneous rate k (When the
density or randomness occurs randomly and independently), then the number or
number of occurrences of this event in unit time approximately obey the Poisson
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distribution PðkÞ. Therefore, Poisson distribution plays an important role in some
issues of management science, operations research and natural science.

There are many Poisson-like distribution data in real life, and some researchers
have developed two-parameter extended Poisson distributions to fit these data. These
models include the stuttering Poisson, zero-inflated Poisson (ZIP), hurdle shifted
Poisson (HSP), negative binomial, normal and gamma distributions [1–6]. Among
these distributions, the stuttering Poisson is computationally intensive; ZIP, HSP and
negative binomial distribution are only applicable for over-Poisson dispersive cases.

In order to find some more general models to fit various non-typical count data, and
considering the simplicity of the model, we discuss the extension of four new two-
parameter Poisson distribution models in this paper. They are exponentiated Poisson
distribution, transmuted Poisson distribution, Alpha logarithmic transformed Poisson
distribution and odd Poisson distribution. Our purpose is to analyze the characteristics
of these models, to understand the performance of their modeling count data, and to
enrich the methods of modeling count data.

The paper is organized as follows. In Sect. 2, we summarize two-parameter
extensions of the Poisson distribution. The study of four new models is in Sect. 3. The
appropriateness and usefulness of the proposed models and approaches are illustrated
in Sect. 4. The paper is concluded in Sect. 5.

2 Earlier Extensions of the Poisson Distribution

There are several extended Poisson distributions and those extensions with two
parameters are outlined as follows.

The first extension is the stuttering Poisson distribution, which is obtained by
compounding the Poisson distribution with a geometric distribution [6]. Its probability
mass function (pmf) is given by

f ðxÞ ¼
e�k; x ¼ 0Px
i¼1

Ci�1
x�1ð1� qÞiqx�1 kie�k

i! x[ 0 ; k[ 0; q 2 ð0; 1Þ:
8<
: ð1Þ

Where x represents a non-negative integer and x in the latter model also represents a
non-negative integer. The mean and variance are given by

l ¼ k=ð1� qÞ; r2 ¼ lð1þ qÞ=ð1� qÞ: ð2Þ

From Eq. (2), we have r2 [ l, implying that it is always over-Poisson dispersive.
Clearly, it is computationally intensive and hence its application is limited.

The second extension is the zero-inflated Poisson distribution. It is developed for
modeling the excess zeros [2, 4, 7, 8]. The pmf of the ZIP model is given by

f ðxÞ ¼ 1� aþ ae�k; for x ¼ 0
a kxe�k

x! ; for x[ 0
k[ 0; a 2 ð0; 1Þ:

�
ð3Þ
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The mean and variance are given by

l ¼ ak; r2 ¼ lð1þ k� akÞ: ð4Þ

Clearly, we have r2 [ l, implying that it is always over-Poisson dispersive.
The third extension is the hurdle shifted Poisson distribution (SPD), which is a

mixture of a deterministic (or degenerate) distribution and the shifted Poisson distri-
bution [1]. Its pmf is given by

f ðxÞ ¼ q; x ¼ 0
ð1� qÞ kx�1e�x

ðx�1Þ! ; x[ 0

�
: ð5Þ

The mean and variance are given by

l ¼ ð1� qÞðkþ 1Þ; r2=l ¼ qð1þ kÞþ k=ð1þ kÞ: ð6Þ

Clearly, it can be over-Poisson dispersion (when k or q is large) or under-Poisson
dispersion (when k and q are small).

3 Proposed Extensions of the Poisson Distribution

In this section we discuss four two-parameter Poisson distributions. These four models
in this paper are based on the ordinary Poisson distribution. By adding a parameter to
construct a monotonically rising function of the original distribution function, a new
two-parameter Poisson distribution is generated. These distributions are generalizations
of the ordinary Poisson distribution, and the ordinary Poisson distribution is a special
case of these generalized Poisson distributions. These functions include exponentiated
Poisson distribution, transmuted Poisson distribution, odd Poisson distribution and
Alpha logarithmic transformed Poisson distribution.

3.1 Exponentiated Poisson Distribution

Jiang proposed an exponentiated Poisson distribution (EPD) for modelling bus-motor
failure data [9]. The EPD is defined by

FðxÞ ¼ e�kcð
Xx

i¼0

ki

i!
Þc; k; c[ 0: ð7Þ

In fact, this distribution function can be expressed as

FðxÞ ¼ ð
Xx

i¼1

ki

i!
e�kÞc ¼ ½GðxÞ�c ð8Þ
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where GðxÞ is a Poisson distribution with a parameter of k. In this way we can clearly
see the regulation of the original Poisson distribution by the parameter c.

To examine its Poisson dispersion, we randomly generate a set of combinations of k
and c. For each combination, we calculate the values of l and r2. Figure 1 shows the
plot of l=r2 vs. c, and Fig. 2 shows the plot of l vs. k. As can be seen from these two
figures, the EPD can be either over-Poisson dispersion (when c < 1) or under-Poisson
dispersion (when c > 1); and the mean value (l) is highly correlated with the value of k.

3.2 Transmuted Poisson Distribution

For an arbitrary distribution function GðxÞ, Shaw and Buckley [10] define a transmuted
distribution as

FðxÞ ¼ ð1þ aÞGðxÞ � aG2ðxÞ; aj j � 1: ð9Þ

When GðxÞ is the Poisson distribution, we obtain the transmuted Poisson distri-
bution (TPD). In this paper we examine the appropriateness of TPD as an alternative
distribution to model the Counting data for Poisson-like distribution.

To examine its Poisson dispersion, we randomly generate a set of combinations of
k and a. For each combination, we calculate the values of l and r2.
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Figure 3 shows the plot of l=r2 vs. a; and Fig. 4 shows the plot of l vs. k. As can
be seen from these two figures, TPD can be slightly over-Poisson dispersive (when
a > 0 and k is relatively small) or under-Poisson dispersion; and the mean value (l) is
highly correlated with the value of k.

3.3 Alpha Logarithmic Transformed Poisson Distribution

Pappas et al. [11] proposed a new method for generating distributions with the fol-
lowing cumulative distribution function (CDF)

f ðxÞ ¼ 1� log½a�ða�1ÞGðxÞ�
log a ; a[ 0; a 6¼ 1

GðxÞ; a ¼ 0
:

(
ð10Þ

When GðxÞ is the Poisson distribution, we obtain the Alpha logarithmic trans-
formed Poisson distribution (ALTPD).

In order to study the characteristics of ALTPD, we used experimental design
methods to select different combinations of two parameters k and a (k is the parameter
of ordinary Poisson distribution), and discuss their Poisson dispersion by calculating
their mean and variance ratio.

ALTPD has a very stable Poisson dispersive. In general, for a given small
parameter k (for example, no more than 4), as the parameter a increases, l=r2 becomes
larger. For the larger parameter k, the value of l=r2 is very stable close to 1. In
addition, when a is less than1, l=r2 is less than 1, and the model is weak over-Poisson
dispersive (slightly less than 1). When a is greater than 1, l=r2 is generally larger than
1, and the model is weak under-Poisson dispersive (slightly greater than 1). For each
given a, the mean value (l) is highly correlated with the value of k. Figure 5 shows the
plot of l=r2 vs. a when k ¼ 4; and Fig. 6 shows the plot of l vs. k.

3.4 Odd Poisson Distribution

Kahadawala [12] proposed a new method for generating distributions with the fol-
lowing cumulative distribution function (CDF):

Fig. 5. Plot of l=r2 vs. a Fig. 6. Plot of l vs. k
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FðxÞ ¼
Fb
xðxÞ

Fb
xðxÞþ ½1�FxðxÞ�b

; k[ 0; b[ 0

F�b
x ðxÞ

F�b
x ðxÞþ ½1�FxðxÞ��b ; k[ 0; b\0

8<
: : ð11Þ

When FwðxÞ is the Poisson distribution, we obtain the Odd Poisson distribution
(OPD). OPD has two parameters: k (the rate of occurrence) and b. In order to study the
influence of two parameters on the distribution, this paper uses the different combi-
nations of k and b. Through calculation and analysis, the following characteristics
about the model are obtained.

The parameter b has a great influence on the Poisson dispersive of OPD. For a
given parameter value k, l=r2 increases as the parameter b increases, and has an
exponential function growth pattern. In general, when b is less than 1, the value of
l=r2 is less than 1, the model is over-dispersive; when b is greater than 1, the value of
l=r2 is greater than 1, and the model is over-dispersive. On the other hand, for each
given a, the mean value (l) is highly correlated with the value of k. Figure 7 shows the
plot of l=r2 vs. a when k ¼ 4; and Fig. 8 shows the plot of l vs. k when b ¼ 3:5.

4 Illustrations

In the current section we will fit the four extensions of Poisson distribution into three
different count data sets. By comparative analysis, we obtain the characteristics of the
four models in fitting the modeling count data. The data for the first example is from the
strike counts data, and the data for the second example is from the annual total spare
parts turnover numbers. The data for both examples comes from the count data in the
real case. Similar count data in many other applications areas can be fitted using the
above four models. In the following case study we take the following steps:

• First we use the maximum likelihood estimation method to fit these count data with
five models (including the ordinary Poisson distribution and the four proposed
models), and obtain the parameters of the model to determine the specific model.
The performance of each model was initially evaluated by comparing the effects of
the fit of each model. Since there is no previous information, we must first make a
model selection. In this paper we use two common criteria: Akaike information

Fig. 7. Plot of l=r2 vs. a Fig. 8. Plot of l vs. k
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criterion (AIC) and the Bayesian information criterion (BIC), which are respectively
given by

AIC ¼ �2 lnðLmaxÞþ 2k; BIC ¼ �2 lnðLmaxÞþ k lnðnÞ; ð12Þ

where n is the sample size, k is the number of the parameters that have been
estimated and Lmax is the maximum value of the likelihood function for the
estimated model [13, 14]. Under the two criteria, the method of determining the
optimal model is: the smaller the value AICðBICÞ obtained by calculation, the more
appropriate the model is.

• In order to compare the fitting effects of these models, we calculate the error sum of
squares (SSE, equivalently, residual sum of squares) which is obtained by the
maximum likelihood estimation method. SSE is denoted by

SSE ¼
X
i

ðyi � ŷiÞ2 ð13Þ

where yi is the actual observed data and ŷi is the predicted data calculated by the
fitted model. A small SSE indicates that the model achieved a good fit effect. In
addition, the sample mean and sample variance of the original data set and the
mathematical expectation and variance of the simulated model are calculated
separately. These performances of the five models are comprehensively evaluated
by comparing these digital features.

• Fit the five models to three data sets by least squares and compare the fit of each
model by calculation.

• Combine the fitted scatter plot, maximum likelihood estimation method and least
squares method to make a comprehensive evaluation of the fitting effect of the five
models on the three count data sets.

4.1 Example 1

The data shown in Fig. 9 come from the number of outbreaks of strikes (in 4-week
periods) in the UK coal mining industry for the years 1948–1959. These data can be
found in Kendall [15], while they were further analyzed by Athanasios et al. [16]. The
abscissa indicates the number of weeks in which the strike continues, and the vertical
coordinates indicates the number of times the five strikes occurred. Through simple
calculations, we obtain that the sample mean and variance are equal to 0.994 and 0.742,
respectively. Therefore, it is obvious that the data set is of under-Poisson dispersion
since the sample mean–variance ratio is equal to 0.994/0.742 = 1.3396 > 1.

As can be seen from Fig. 10, except for the ordinary Poisson model and the
ALTPD model, the fitting effect is slightly worse, and the other three models have
better fitting effects.
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Table 1 lists each model parameters obtained by the maximum likelihood esti-
mation method (MLEM), in the second and third columns, respectively. The AIC and
BIC values are placed in the fourth and fifth columns, respectively. The last column
lists the SSE calculated from the model obtained by the maximum likelihood estimation
method. From the perspective of the AIC and BIC, EPD, TPD and OPD are not much
different, and they are relatively small. The difference is that the TPD model has the
smallest SSE value and the best fit. EPD has the smallest AIC and BIC value and is the
most suitable model.

Fig. 9. Bar plot for the strike count data

Fig. 10. Scatter plots of raw data and fitted models for Example 1

Table 1. Estimated parameters and model performances for Example 1(MLE)

Model Parameter1 (k) Parameter2 AIC BIC SSE

POISSON 0.9936 387.8724 392.9223 0.020834
EPD 0.6199 1.9464 379.2787 385.3784 0.001819
TPD 0.6082 −0.9986 379.2926 385.3923 0.001661
ALTPD 0.5231 8.5559 383.6997 389.7994 0.013013
OPD 1.0661 1.3106 379.3668 385.4665 0.001898
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Table 2 lists the Mean, variance, and mean-variance ratios of each model, which
are represented by l, r2, and l=r2, respectively, and the calculation results are placed
in columns 3 to 7, respectively. In particular, the second column gives the sample mean
and sample variance, which are not distinguished by special symbols.

It can be clearly seen from Table 2 that the Mean, variance, and mean-variance
ratios of the three models EPD, TPD and OPD are very close to the sample mean and
sample variance, and the ratio of the two values are very close, indicating that the three
models are relative suitable model.

Table 3 lists the model parameters obtained by least squares method and SSE. By
comparing with Table 2, we find that the model parameters obtained by the two
parameter estimation methods have little difference except for the ALTPD model. This
indicates that the ALTPD model is not robust enough. In addition, the comparison of
the SSE values shows that the least squares method improves the maximum likelihood
method and the SSE values are all smaller.

Through the above analysis and comparison, it is not appropriate to use the simple
Poisson distribution and the ALTPD for modeling the data of strike outbreaks, while
the other three models EPD, TPD and OPD are appropriate in terms of the AIC and BIC
values, fitting effect and the comparison of digital features. Especially the performance
of the EPD model is the best.

4.2 Example 2

The data shown in Table 4 come from Guo et al. [17] and deal with the annual total
spare parts turnover numbers (which reflect the actual demand of a repairable unit) of

Table 2. Mean, variance, and mean-variance ratio for each model for Example 1

Data Poisson EPD TPD ALTPD OPD

l 0.9936 0.9936 0.9923 0.9921 0.9732 0.9903

r2 0.7419 0.9936 0.7228 0.7137 0.8044 0.7235

l=r2 1.3393 1.0000 1.3730 1.3900 1.2099 1.3686

Table 3. Estimated parameters and model performances for Example 1 (LS)

Model Parameter1 (k) Parameter2 SSE

POISSON 1.0900 0.018784
EPD 0.5239 2.2894 0.001055
TPD 0.5925 −1.0000 0.001523
ALTPD 0.2358 69.0121 0.011815
OPD 1.0377 1.3963 0.001084
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Part 1 and 2. The sample mean and variance for Part 1 [Part 2] are 5.4 and 3.14 [9.3 and
12.70], respectively, implying under-Poisson [over-Poisson] dispersion.

Figure 11 shows the scatter plot of two data sets and the models obtained from
maximum likelihood estimation. To illustrate the performance of these proposed
models in modeling count data, we list some of the modeling information of each
model in Tables 5 and 6, respectively, which include the model parameter values (in
the second column and Three columns), AIC and BIC values (in the fourth and fifth
columns), and SSE (in the last column). By comparing the figure and the table, we have
the following observations (Tables 7 and 8):

• According to the results of columns 4–6, the best model for data set 1 (Part 1) is
EPD, followed by the OPD; for data set 2 (Part 2), the ordinary Poisson distribution
is the most suitable model in terms of the AIC and BIC values, while TPD is the best
fit model in terms of SSE.

• It can be seen from Fig. 11 that for Part 1, the fitting effect of all models is slightly
better than Part 2. This is partly because the data of Part 2 does not have the typical
characteristics of Poisson distribution (unimodal), so the overall fitting effect is not
very good.

• In Part 1, the parameters of TPD model are the same as those of the ordinary
Poisson distribution, indicating that for larger l=r2 (1.72), the TPD model has no
advantage over the Poisson distribution. In Part 2, the modeling of ALTPD has
similar results.

Table 4. Demand data for Example 2

Year Part 1 Part 2 Year Part 1 Part 2 Year Part 1 Part 2 Year Part 1 Part 2

1 7 11 14 6 10 27 6 11 40 3 11
2 6 9 15 8 9 28 5 6 41 4 8
3 8 10 16 9 16 29 4 4 42 4 7
4 6 8 17 5 18 30 4 5 43 3 6
5 5 8 18 8 10 31 5 5 44 4 5
6 10 9 19 7 18 32 3 12 45 4 7
7 7 12 20 4 12 33 3 7 46 3 5
8 6 7 21 6 10 34 5 9 47 5 13
9 5 5 22 5 8 35 7 8 48 3 8
10 5 6 23 7 9 36 8 15 49 4 9
11 6 6 24 5 7 37 4 17 50 4 7
12 4 13 25 4 7 38 7 9
13 4 8 26 9 8 39 6 17
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(Part 1)                            (Part 2)   

Fig. 11. Scatter plot of raw data and fitted models for Example 1

Table 5. Estimated parameters and model performances for Example 2 (MLE, Part 1)

Model Parameter1 (k) Parameter2 AIC BIC SSE

POISSON 5.4000 205.0478 208.9599 0.010871
EPD 3.7442 2.9630 198.0012 201.8252 0.008825
TPD 5.4000 0.0000 207.0478 210.8719 0.010871
ALTPD 5.0421 1.6602 206.9666 210.7907 0.011118
OPD 5.4377 1.3999 200.0431 203.8672 0.010359

Table 6. Estimated parameters and model performances for Example 2 (MLE, Part 2)

Model Parameter1 (k) Parameter2 AIC BIC SSE

POISSON 9.3000 265.9286 267.8406 0.012575
EPD 9.8972 0.8110 267.443 271.267 0.012773
TPD 9.9231 0.4000 266.5151 270.3392 0.010811
ALTPD 9.3000 0.0000 267.9286 271.7526 0.012575
OPD 8.9376 0.9987 266.8197 270.6438 0.012817

Table 7. Mean, variance, and mean-variance ratio for each model for Example 1 (Part 1)

Data Poisson EPD TPD ALTPD OPD

l 5.4000 5.4000 5.3842 5.4000 5.3628 5.3623

r2 3.1429 5.4000 2.8392 5.4000 5.2209 3.0946

l=r2 1.7182 1.0000 1.8963 1.0000 1.0272 1.7328

Table 8. Mean, variance, and mean-variance ratio for each model for Example 1 (Part 2)

Data Poisson EPD TPD ALTPD OPD

l 9.3000 9.3000 9.3162 9.2168 9.3000 8.9379

r2 12.7041 9.3000 10.7027 9.0664 9.3000 8.9568

l=r2 0.7320 1.0000 0.8705 1.0166 1.0000 0.9979
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Tables 9 and 10 show the model parameters and SSE obtained by least squares
under the two data sets, respectively. For Part 1, the EPD model is superior to other
models in terms of SSE, and the OPD model is second. For Part 2, from the perspective
of SSE, the five models have little difference in terms of SSE, and TPD is slightly better
than other models.

5 Conclusions

As an extension and generalization of a simple Poisson distribution, four two-parameter
Poisson distributions are discussed. The article discusses the construction of the model,
the relationship between mean and variance and two parameters, and Poisson disper-
sion. In order to study the performance of these models in terms of counting data, we
demonstrate the suitability and performance differences of these proposed models by
two parameter estimation methods through two real-world examples. We have the
following conclusions:

1. Each of the above distribution is a generalized form of two-parameter Poisson
distribution constructed by a distribution function of ordinary Poisson distribution
in a certain form. Each distribution is flexible without losing simplicity.

2. The EPD model and the OPD model have relatively good modeling adaptability,
which is related to the characteristics of the two models. When the second
parameter c of the EPD model is less than 1, the model is over-Poisson dispersive,
and while the c is greater than 1, the model is under-Poisson dispersive. Poisson
dispersion can be adjusted by parameter c. In the OPD model, the influence of the
parameter b is very large: when b is small, the model is over-Poisson dispersive;

Table 9. Estimated parameters and model performances for Example 2 (LS, Part 1)

Model Parameter1 (k) Parameter2 SSE

POISSON 4.9961 0.008828
EPD 3.9498 2.0131 0.004385
TPD 4.9961 0.0000 0.008828
ALTPD 4.4968 1.9795 0.008694
OPD 5.0328 1.2477 0.005025

Table 10. Estimated parameters and model performances for Example 2 (LS, Part 2)

Model Parameter1 (k) Parameter2 SSE

POISSON 8.3339 0.007603
EPD 7.9735 1.1646 0.007447
TPD 9.3235 0.5373 0.007044
ALTPD 8.3313 0.0000 0.007602
OPD 8.3246 1.0604 0.007426
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when b is large, and the model is under-Poisson dispersive, and l=r2 increases
rapidly with the increase of b.

3. The parameters of the proposed model are highly correlated with the mean of the
distribution, which helps to estimate the initial values of the parameters, and also
provides a criterion for the suitability of the model, that is, the estimated value of
the parameters should be close to the sample mean.

4. The TPD model is suitable for under-Poisson dispersion, especially for cases that
l=r2 is slightly greater than 1, and no more than 1.5 is preferred. The ALTPD
model is relatively stable, and it’s l=r2 generally varies in the interval [0.9, 1.1], so
the ALTPD model is suitable for modeling data sets with l=r2 close to 1. For the
case that l=r2 is too large or too small, the two models cannot achieve a good
fitting effect.

5. For counting data that does not have Poisson distribution characteristics, such as
multi-modality, the above model modelling effect is not ideal, so it is necessary for
the counting data to initially select the model according to the data characteristics.

These four models enrich the modeling method for modeling Poisson type count
data. Combined with the characteristics of specific practical problems, from the gen-
eration mechanism of counting data, it is also possible to develop a generalized model
of Poisson distribution that is more in line with specific practical problems.
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