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Abstract. In 2008, Libert and Vergnaud constructed the first multi-use unidi-
rectional proxy re-signature scheme. In this scheme, the proxy can translate the
signatures several times but only in one direction. Thus, two problems remain
open. That is, to construct a multi-use unidirectional proxy re-signature scheme
based on classical hardness assumptions, and to design a multi-use unidirec-
tional proxy re-signature scheme with the size of signatures and the verification
cost growing sub-linearly with the number of translations. This paper solves the
first problem and sharply reduces the verification costs. We use the preimage
sampleable algorithm to develop a multi-use unidirectional proxy re-signature
scheme based on lattices, namely, the hardness of the Small Integer Solution
(SIS) problem. The verification cost does not grow with the number of trans-
lations and the size of signatures grows linearly with the number of translations
in this scheme. Furthermore, the proposal is secure in quantum environment.

Keywords: Lattice cryptography � Proxy re-signature scheme � Small Integer
Solution (SIS) problem � Gaussian Sample � Multi-use

1 Introduction

Proxy re-signature is proposed by Blaze, Bleumer, and Strauss [1]. In a proxy re-
signature scheme, a semi-trusted proxy is given some information that allows it to
transform Alice’s signature into Bob’s signature on the same message, but the proxy
cannot generate signatures for Alice or Bob on its own. In [1], the first proxy re-
signature scheme is constructed and is proven to be multi-use and bidirectional.
However, the proxy re-signature primitive was seldom noticed until 2005. In 2005,
Ateniese and Hohenberger [2] formalized the definition of security and illustrated the
applications of proxy re-signature schemes. What follows presents some properties that
will be taken into account in a proxy re-signature scheme.

1. Unidirectional: the proxy only can turn the Alice’s signatures into the Bob’s sig-
natures, but the reverse is not true.

2. Multi-use: a signature can be re-signed many times;
3. Private Proxy: re-signature keys are kept secret;
4. Transparent: we can not distinguish the re-signatures from the original signatures;
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5. Key optimal: a user is only required to store a constant amount of secret data;
6. Non-interactive: the delegatee does not participate in the process of the generation

of the proxy re-signature key;
7. Non-transitive: the re-signing rights cannot be re-delegated by the proxy;
8. Unlinkable: a re-signature cannot be linked to the one from which it was generated.

In [2], three proxy re-signature schemes were proposed: the first one is multi-use
and bidirectional with a private re-signature key; the second one is single-use and
unidirectional with a public re-signature key; the third one is single-use and unidi-
rectional with a private re-signature key. The possible applications of a re-signature
scheme may include the space-efficient proof, group signatures management, simpli-
fication of certificate management. However, it remains an open problem to design a
multi-use unidirectional re-signature scheme. To solve this problem, Labert and
Vergnaud [3] proposed two multi-use and unidirectional schemes with a private re-
signature key based on the l-FlexDH assumption (in the random oracle model and the
standard model, respectively). However, we are confronted with two open problems:
one is to construct a multi-use unidirectional proxy re-signature scheme under the
standard hardness assumptions; the other is to reduce the size of signatures and the
verification costs. Sunitha and Amberker [4] proposed another multi-use unidirectional
proxy re-signature scheme, but the scheme only obtains a forward security, and hence
is not provably secure. Sunitha [5] constructed a proxy signature schemes that trans-
lates Alice’s Schnorr/ElGamal/RSA signature to Bob’s RSA signature, but failed to
prove the security. Shao et al. [6] proposed the first multi-use bidirectional proxy re-
signature scheme in the standard model and extended it to the ID-based case. Shao
et al. [7] proposed the first unidirectional identity based proxy re-signature in the
random oracle based on the Schnorr’s signature and the Libert-Vergnaud proxy re-
signature. Shao et al. [8] analyzed and improved the previous security model [2] and
gave a unidirectional proxy re-signature scheme to meet the new security model. Yang
et al. [9] first defined the security model for threshold proxy re-signature scheme, and
then proposed two threshold proxy re-signature schemes based on the Ateniese-
Hohenberger’s and the Shao-Cao-Wang-Liang’s approach. However, the four pro-
posals were built from the intractability assumptions for factoring large integers or
solving discrete logarithms. Thus, they are not secure in the quantum setting and hence
it is meaningful to construct a proxy re-signature scheme secure in the quantum setting.

As an important class of post-quantum cryptography, lattice cryptography attracts
more and more attentions in the cryptographic literature in recent years due to the
elegant cryptographic properties. First, lattice cryptography only involves some linear
operations on small integers, and hence results in an asymptotically low computational
complexity. Second, the security is supported by the worst-case to average-case
equivalence connections. Since the first proposals of a provably secure lattice signature
scheme and a lattice IBE scheme due to Gentry et al. [10], we are witnessing a rapid
development of lattice cryptography. Many lattice schemes are constructed, such as the
lattice-based public key encryption schemes [11–14], identity-based encryption
schemes [10, 15–17], fully homomorphic encryption [18–21] and lattice-based sig-
natures schemes [10, 22] and signature schemes with particular properties [23–25].
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1.1 Contributions

We aim at the open problems left by Libert and Vergnaud over lattices. In our scheme,
the proxy re-signature key is generated by the Gaussian Sample algorithm. First, given
two public keys pk1 ¼ A1, pk2 ¼ A2 of users 1 and 2 and the secret key of user 2, use
the Gaussian Sample algorithm to generate the proxy re-signature key S1!2, such that
A2S1!2 ¼ A1 mod q. Second, gives an original signature e1 of user 1, and the re-
signature e2 ¼ S1!2e1. We know that the proxy re-signature key S1!2 has two prop-
erties: (1) its norm is small; (2) its distribution is statistically close to a Gaussian
distribution. Then the distribution of the re-signature is statistically close to a Gaussian
distribution and its norm is also small. Thus, the proxy re-signature has the same
properties as the original signature.

1.2 Organization

In Sect. 2, we formalize the related notations, review the definitions of lattice and
Gaussian distribution, introduce the lattice basis delegation technique, and define the
Small Integer Solution hardness assumption on which the security of our scheme is
based. We describe the definition and security model of a Proxy Re-Signature scheme
in Sect. 3. In Sect. 4, we propose a Multi-Use Unidirectional Proxy Re-Signature
scheme based on lattice in the random model. The scheme in the standard model is
constructed in Sect. 5. Finally, the conclusion is given in Sect. 6.

2 Preliminaries

2.1 Notation

We denote sets of real numbers by R and the integers by Z, respectively. Vectors are
written as bold italic lower-case letters, e.g. x. The i-th component of x is denoted by xi.
Matrices are written as bold italic capital letters, e.g. X, and the i-th column vector of a
matrix X is denoted xi. The Euclidean norm l2 norm of a vector x is denoted as

xk k2¼
ffiffiffiffiffiffiffiffiffiffiffi
x; xh ip ¼

ffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i

s
. Generally, we abbreviate xk k2 as xk k. The length of a

matrix is defined as the norm of the longest column, namely, Xk k ¼ maxi xik k, for
1� i� k.

2.2 Lattice

Let B ¼ b1; � � � ; bmf g 2 R
m�m be an m� m matrix whose columns are linearly inde-

pendent vectors b1; � � � ; bm 2 R
m. The m-dimensional lattice K generated by B,

K ¼ L Bð Þ ¼ y 2 R
m s:t: 9x 2 Z

m; y ¼ Bx ¼
Xm
i¼1

xibi

( )
ð1Þ

Here, we focus on inter lattices, i.e., L is contained in Z
m.
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Definition 1. For q prime, A 2 Z
n�m
q , u 2 Z

n
q, define:

K?q Að Þ :¼ e 2 Z
m s:t: Ae ¼ 0 modqð Þf g ð2Þ

Ku
q Að Þ :¼ e 2 Z

m s:t: Ae ¼ u modqð Þf g ð3Þ

Observe that if t 2 Ku
q Að Þ, then Ku

q Að Þ ¼ K?q Að Þþ t, hence Ku
q Að Þ is a shift of

K?q Að Þ.
Lemma 1 [26]. Let q� 3 be odd and m ¼ 6n log qd e. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs two matrixes A 2 Z

n�m
q and

T 2 Z
m�m
q such that A is statistically close to a uniform matrix in Z

n�m
q and T is a basis

for K?q Að Þ satisfying
~T

�� ���O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
pð Þ and Tk k�O n log qð Þ with all but negligible probability in n.

2.3 Discrete Gaussians

We briefly recall Discrete Gaussian Distributions over lattices.
For any positive parameter r[ 0 define the Gaussian function on R

m centered at c:

8x 2 R
m; qr;c xð Þ ¼ exp �p x� ck k2

.
r2

� �
ð4Þ

For any c 2 R
m, real r[ 0, and an m-dimensional K, define the Discrete Gaussian

Distribution over K as:

8x 2 R
m ;DK;r;c xð Þ ¼ qr;c xð Þ

qr;c Kð Þ ¼
qr;c xð ÞP
x2K qr;c xð Þ ð5Þ

Lemma 2 [10]. Let q� 2 and a matrix A 2 Z
n�m
q , m[ n. Let TA be a basis for K?q Að Þ,

r� ~TA
�� �� � x ffiffiffiffiffiffiffiffiffiffiffi

logm
pð Þ. Then for c 2 R

m, u 2 Z
n
q:

1. Pr x�DK?q Að Þ;r : xk k[ r
ffiffiffiffi
m
ph i

� negl nð Þ.
2. There is a polynomial-time algorithm SampleGaussian A;TA; r; cð Þ that returns

x 2 K?q Að Þ drawn from a distribution statistically close to DK?q Að Þ;r;c.

3. There is a polynomial-time algorithm SamplePre A;TA; u; rð Þ that returns x 2
Ku

q Að Þ sampled from a distribution statistically close to DKu
q Að Þ;r;c.

Definition 2. For any m-dimensional lattice K and positive real �[ 0, the smoothing
parameter g� is the smallest real r[ 0 such that q1=rðK�nf0gÞ� �.

Lemma 3 [27]. Let K	Zm be a lattice and r 2 R. For i ¼ 1; � � � ; k, vi 2 Z
m and let Xi

be mutually independent random variables sampled from DKþ vi;r. Let c ¼ c1; � � � ;ð
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ckÞ 2 Z
k, and define g :¼ gcd c1; � � � ; ckð Þ, and v :¼Pk

i¼1 civi. Suppose that r[ ck k �
g� Kð Þ for some negligible �. Then Z ¼Pk

i¼1 ciXi is statistically close to DgKþ v; ck kr.

Definition 3. We say that a matrix A in Z
m�m is Zq-invertible if Amod q is invertible

as a matrix in Z
m�m
q .

Algorithm 1. [16] SampleS 1mð Þ
Let rs ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
pð Þ � x logmð Þ � ffiffiffiffi

m
p

1. Let T0 be the canonical basis of the lattice Z
m;

2. For i ¼ 1; � � � ;m do si �R SampleGaussian Z
m;T0; rs; 0ð Þ;

3. If S is Zq-invertible, output S; otherwise repeat step 2.

2.4 The SIS Problem

In this section, we recall the Small Integer Solution problem, which is essentially the
knapsack problem over elements in Z

n
q. We focus on l2 � SISq;n;m;b problem.

Definition 4 (l2 � SISq;n;m;b problem). Given an integer q, a random matrix A 2 Z
n�m
q

and a real b, find a vector v 2 Z
mnf0g such that Av ¼ 0mod q and jjvjj � b.

The following lemma shows that l2 � SISq;n;m;b problem is as hard as approxi-
mating certain worst-case problems on lattice.

Lemma 4 [10]. For any poly-bounded m, b ¼ polyðnÞ and for any prime
q� b � xð ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p Þ, the average-case problem l2 � SISq;n;m;b is as hard as approxi-

mating the SIVP problem in the worst-case to within certain c ¼ b � ~Oð ffiffiffi
n
p Þ.

Lemma 5 [16]. Let q[ 2, m[ 2n log q and r[ jj~TAjj � xð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2m
p Þ. Then there

exists a polynomial-time algorithm SampleBasisLeftðA;M;TAÞ takes A;M 2 Z
n�m
q and

a basis TA of K?q ðAÞ as inputs, outputs a basis TF of K?q ðFÞ with jj~TAjj ¼ jj~TFjj, where
F ¼ ðAjMÞ.

3 Proxy Re-Signature: Definition and Security Model

3.1 Definition of Unidirectional Proxy Re-Signature

In this section we recall the definition of the unidirectional proxy re-signature schemes.
The unidirectional proxy re-signature scheme for L levels consists of five algorithms
(KeyGen, ReKeyGen, Sign, ReSign, Verify)

KeyGen: This algorithm takes as input a security parameter n and returns a user’s
private/public key pair (sk, pk).

ReKeyGen: This algorithm takes as input user i’s public key pki, user j’s private key
skj and returns a re-signature key rki!j that allows translating i’s signatures into j’s
signatures. The re-signature key rki!j is secret.
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Sign: This algorithm takes as input a message l, a private key ski, an integer l 2 L½ 
 and
returns a signature h on behalf of user i at level l.

ReSign: This algorithm takes as input public parameters, a level l signature h for
message l from user i, a re-signature key rki!j and checks that h is valid. If so, it
returns a signature h0 which verifies at level lþ 1 under public key pkj.

Verify: This algorithm takes as input public parameters, an integer l 2 L½ 
, a message
l, a signature h0, a public key pkj and returns 0 or 1.

Here, we explain that why the definition contains the level. In a proxy re-signature
scheme, if we can distinguish the re-signatures from the original signatures. Without
loss of generality, we say that original signatures are the Bob’s first-level signatures and
the re-signatures are the Bob’s second-level signatures. We know that Alice and proxy
can produce Bob’s re-signatures (second-level signatures). Then it is a secure problem
that the first-level signatures are generated by Alice and proxy. If we cannot distinguish
the re-signatures from the original signatures, i.e. the first-level signatures and second-
level signatures are indistinguishable, the level is not considered.

3.2 Security Model of Unidirectional Proxy Re-Signature

The security model of unidirectional proxy re-signature of [2] considers the following
notions termed as external and internal security.

External Security: It is the security against adversaries except the proxy and dele-
gation partners. Formally, for the security parameter n and all probability polynomial
time adversaries A:

Pr½fðpki; skiÞ  KeyGenð1nÞgi2 1;k½ 
;

ðt; l; hÞ  AOsign �;�ð Þ;Oresign �;�;�;�ð Þðfpkigi2 1;k½ 
Þ :
Verifyðpkt; l; hÞ ¼ 1 ^ ð1� t� kÞ ^ ðt; l; hÞ 62 Q
\1=poly nð Þ

ð6Þ

where the oracle Osign takes as input an index i 2 1; k½ 
 and a message l 2 M and
outputs a signature h Sign skj; l

� �
. The oracle Oresign takes as input two distinct

indices 1� i; j� k, a message l and a signature h and outputs a re-signature
h0  ReSign rki!j; pki; h; l

� �
. Let Q denotes the set of tuples t; l; hð Þ where A obtained

a signature h on l under public key pkt by querying Osign on t; lð Þ or Oresign �; t; l; �ð Þ.
Internal Security: This security model can be against the collusion attack (dishonest
proxies and colluding delegation partners). The model contains three security
guarantees.

1. Limited Proxy: This notion protects the honest delegator and delegatee, namely,
the proxy can not forge the signatures of the delegatee or delegator unless the
message was first signed by one of the latter’s delegates. Formally, for the security
parameter n and all probability polynomial time adversaries A:
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Pr½fðpki; skiÞ  KeyGenð1nÞgi2 1;k½ 
;

ðt; l; hÞ  AOsign �;�ð Þ;Orekey �;�ð Þðfpkigi2 1;k½ 
Þ :
Verifyðpkt; l; hÞ ¼ 1 ^ ð1� t� kÞ ^ ðt; lÞ 62 Q
\1=poly nð Þ

ð7Þ

where the oracle Osign takes as input an index i 2 1; k½ 
 and a message l 2 M and
outputs a signature h Sign skj; l

� �
. The oracle Orekey takes as input two distinct

indices 1� i; j� k and outputs the re-signature key rki!j  ReKey pki; pkj; skj
� �

. Let Q
denotes the set of tuples t; lð Þ where A obtained a signature on l under public key pkt
or one of its delegate key’s by querying Osign.

2. Delegatee Security: This notion protects the delegate, i.e., it can be against the
collusion attack from delegator and proxy. We associate the index 0 to the dele-
gatee. Formally, for the security parameter n and all probability polynomial time
adversaries A:

Pr½fðpki; skiÞ  KeyGenð1nÞgi2 1;k½ 
;

ðl; hÞ  AOsign 0;�ð Þ;Orekey �;Ið Þðpk0; fpki; skigi2 1;k½ 
Þ :
Verifyðpk0; l; hÞ ¼ 1 ^ ðl; hÞ 62 Q
\1=poly nð Þ

ð8Þ

where and Q is the set of pairs l; hð Þ such that A queried Osign 0; lð Þ and
obtained h.

3. Delegator Security: This notion protects the delegator, i.e., it can be against the
collusion attack from delegatee and proxy. That is, there are distinguishable sig-
natures for a user based on whether she used her strong secret key or her weak
secret key. The colluding delegate and proxy cannot produce strong signatures
(first-level signature) on her behalf. We associate the index 0 to the delegator.
Formally, for the security parameter n and all probability polynomial time adver-
saries A:

Pr½fðpki; skiÞ  KeyGenð1nÞgi2 1;k½ 
;

ðl; hÞ  AOsign 0;�ð Þ;Orekey �;�ð Þðpk0; fpki; skigi2 1;k½ 
Þ :
Verifyðpk0; l; hÞ ¼ 1 ^ ðl; hÞ 62 Q
\1=poly nð Þ

ð9Þ

where h is a first-level signature and Q is the set of pairs l; hð Þ such that A queried
Osign 0; lð Þ and obtained h.
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4 Multi-use Unidirectional Proxy Re-Signature
Scheme from Lattice in the Random Oracle Model

4.1 Our Construction

In this section, we use the Gentry, Peikert, and Vaikuntanathan’s signature scheme [10]
to construct a multi-use unidirectional proxy re-signature scheme. Let n be a security
parameter, and q� b � xðlog nÞ for b ¼ polyðnÞ. Let m� 2n log q and a Gaussian
parameter r�Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p Þ � xð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ. There is a collision-resistant secure hash

function H that maps f0; 1g� to Z
n
q. Our scheme consists of the following algorithms.

KeyGen: On input the security parameter n, run TrapGen q; nð Þ to generate a random
rank n matrix A 2 Z

n�m
q and a trapdoor basis T of K?q Að Þ such that ~T

�� ���O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
pð Þ.

Let the trapdoor function fA xð Þ ¼ Axmod q. The public key is pk ¼ A, the secret key is
sk ¼ T.

Re-Signature Key Generation: On input public keys of user A and B, pkA ¼ A,
pkB ¼ B and a secret key skB ¼ TB. Let A ¼ a1; a2; � � � ; amð ÞT , where ai 2 Z

n
q. For

every ai, i ¼ 1; 2; � � � ;m, use preimage sampleable algorithm SamplePreðB;TB; ai; rÞ
which samples a vector si such that Bsi ¼ ai mod q and sik k� r

ffiffiffiffi
m
p

. Let
SA!B ¼ s1; s2; � � � ; smð Þ 2 Z

m�m, then BSA!B ¼ Amod q and SA!Bk k� r
ffiffiffiffi
m
p

. Output
the re-signature key rkA!B ¼ SA!B.

Sign: The first-level signature: on input a secret key sk ¼ T and a message l, do:

1. Choose a random vector r 2 0; 1f g� and compute u ¼ H l jj rð Þ 2 Z
n
q;

2. Use preimage sampleable algorithm SamplePreðA;T; u; rÞ samples a vector e such
that Ae ¼ umod q and ek k� s

ffiffiffiffi
m
p

.
3. Output e; rð Þ as the signature for message l.

The i-level signature: on input a secret key sk ¼ T and a message l, do:

4. Choose a random vector r 2 0; 1f g� and compute u ¼ H l jj rð Þ 2 Z
n
q;

5. Use preimage sampleable algorithm SamplePreðA;T; u; rimði�1Þ=2Þ to sample a
vector e such that Ae ¼ umod q and ek k� rimi=2.

6. Output e; rð Þ as the signature for message l.

Re-Signature: On input re-signature key rkA!B ¼ SA!B, a public key pkA ¼ A, a
message l and a first-level signature eA; rð Þ, check that AeA ¼ umod q and
eAk k� r

ffiffiffiffi
m
p

. If eA is not a signature for l, output ?; otherwise compute re-signature
eB ¼ SA!BeA. eB; rð Þ is the re-signature for A! B.

The algorithm ReSign can transform an l-level signature into (l + 1)-level signature
as first-level re-signature.

Verify: On input a public key pkB ¼ B, a message l and a re-signature eB; rð Þ for
A! B. If BeB ¼ umod q and eBk k� r2m, output 1; otherwise output 0.
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4.2 Security and Good Properties

Theorem 1 (Multi-use). The scheme is multi-use correct.

Proof: Consider the users 1; � � � ; k. Suppose e1; rð Þ is a valid signature of user 1, i.e.,
A1e1 ¼ H l jj rð Þmod q and e1k k� r

ffiffiffiffi
m
p

. Re-signature procedure is performed from 1
to k through 2 to k − 1. The re-signature procedure is as follows:

ek ¼ Sk�1!kek�1 ¼ Sk�1!kSk�2!k�1ek�2
¼ � � � ¼ Sk�1!kSk�2!k�1 � � � S2!1e1

ð10Þ

The verification procedure by the public key Ak of user k is as follows:

Akek ¼ AkSk�1!kSk�2!k�1 � � � S2!1e1
¼ Ak�1Sk�2!k�1 � � � S2!1e1
¼ A1e1
¼ umod q

ð11Þ

and

ekk k ¼ Sk�1!kSk�2!k�1 � � � S2!1e1k k
� Sk�1!kk k � � � S2!1k k e1k k
� rkmk=2

ð12Þ

Therefore, the scheme is multi-use correct.
In the following, we analyze the other properties.

Theorem 2. In a random oracle model, the scheme is secure under the SISq;n;m;b
problem, more precisely, given a random rank n matrix A 2 Z

n�m
q , if finding a non-zero

vector v such that Av ¼ 0mod q and vk k� b is hard, then the scheme is secure.

Proof: We argue security in two parts, i.e., the external security and the internal
security.

External Security: For security, we assume there is a probability poly-time adversary
A which breaks this guarantee with non-negligible probability e after making at most
qH hash queries, qs signature queries and qrs re-signature queries. We use A to con-
struct a poly-time simulator B that solves the SISq;n;m;b problem.

System Parameters: On input a random matrix A 2 Z
n�m
q , the simulator B outputs a

non-zero vector v such that Av ¼ 0mod q and vk k� b.
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Public keys: When A asks for the creation of user i 2 1; � � � ; jf g, B needs to prepare j
public keys A1; � � � ;Aj. The procedure is as follows:

(i) Let A ¼ At. B uses the algorithm SampleS 1mð Þ to sample t � 1 matrices
St�1!t; � � � ; S1!2 and computes At�1 ¼ AtSt�1!t modq; � � � ;A1 ¼ A2S1!2 mod q.

(ii) B uses TrapGen 1nð Þ to generate j� t public/secret key pairs Ai;Tið Þ,
i ¼ tþ 1; � � � ;j.

In the following, B must answer the random oracle H, the signature oracle Osign and
the re-signature oracle Oresign. B simulates these oracles as follows:

Hash queries: B maintains a list of tuples i; uk; ek; lk; rkð Þð Þ which is called the H list.
For each query to H, if lk; rkð Þ is in the H list, then B returns uk to A. Otherwise, if
i[ t, compute uk ¼ H lkjjrkð Þ and use the secret key Ti to sample a vector
ek  SamplePreðAi;Ti; uk; riÞ, store i; uk; ek; lk; rkð Þð Þ and return uk to A. If i� t,
sample ek  DZ

m;si and compute uk ¼ Aiek mod q, store i; uk; ek; lk; rkð Þð Þ and return
uk to A.
Signature queries: For each query to Osign on input i; ðlk; rkÞð Þ. We assume that lk has
already been queried on the random oracle H. B looks up i; uk; ek; lk; rkð Þð Þ in the H
list and returns ek to A.
Re-Signature queries: For each query to Oresign on input i; j; lk; rkð Þ; ekð Þ, if j[ t,
compute re-signature key rki!j ¼ Si!j by the Re-Signature key generation algorithm
and compute e0k ¼ Si!jek, and then return e0k toA. Otherwise, if j� t, compute rki!j ¼
Si!j ¼ Sj�1!j � � � Si!iþ 1 and e0k ¼ Si!jek, and then return e0k to A.
Forgery: Without loss of generality, we assume that A selects At as the challenge
public key (the probability is 1=j) before outputting its forgery l�; r�ð Þ; e�ð Þ and
querying H on l�. Finally, A outputs forgery l�; r�ð Þ; e�ð Þ.

We now analyze the simulation. First, for each distinct query l; rð Þ to H, the value
u returned by B is u ¼ fA eð Þ ¼ Aemod q, where e DZ

m;s. Because the distribution
of u is uniform, it is identical to the uniformly random value of H l jj rð Þ in the real
system. Second, for each query l; rð Þ to Osign, B returns a single value e DZ

m;s such
that fA eð Þ ¼ H l jj rð Þ. In the real system, signature queries on l are answered by a
single value with the same distribution by the algorithm SamplePre. Third, for each
query to Oresign, we know that the re-signature key in Oresign queries is indistin-
guishable from that in the real system, so the Oresign queries is statistically close to the
view of the real system. Thus we claim that the simulation of B is identical to the real
system.

When A outputs forgery l�; r�ð Þ; e�ð Þ, B looks up l�; r�ð Þ; el�
� �

in the H list and
outputs v ¼ el� � e� as the solution of the SISq;n;m;b problem Av ¼ 0mod q. Because
l�; r�ð Þ; e�ð Þ and l�; r�ð Þ; el�

� �
are both the signatures of l�, then

Ate� mod q ¼ H l�jjr�ð Þmod q ¼ Atel� mod q ð13Þ
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Therefore, we obtain At e� � el�
� � ¼ 0mod q. Since e�k k, el�

�� ��� r
ffiffiffiffi
m
p

and
e� 6¼ el� , we have e� � el�

�� ��� 2r
ffiffiffiffi
m
p

and e� � em� 6¼ 0.

Internal Security: In this scheme, since the first-level signatures belong to the second-
level signatures, the colluding delegatee and proxy can produce a first-level signature
on delegator’s behalf. Thus, the delegator security in our scheme is not satisfied.
Internal security refers only to the limited proxy security and delegatee security.

Limited Proxy Security: For security, we assume there is a probability poly-time
adversary (proxy) A which breaks this guarantee with non-negligible probability. We
use A to construct a poly-time simulator B that solves the SISq;n;m;b problem.

System Parameters: On input a random matrix A 2 Z
n�m
q , the simulator B outputs a

non-zero vector v such that Av ¼ 0mod q and vk k� b.

Public keys: When A asks for the creation of user i 2 1; � � � ; jf g, B needs to prepare j
public keys A1; � � � ;Aj. The procedure is as follows:

(i) B sets A ¼ At.
(ii) B uses TrapGen 1nð Þ to generate j� 1 pairs of public/secret keys Ai;Tið Þ,

i ¼ 1; � � � ; t � 1; � � � ; tþ 1; � � � j.
In the following, B must answer the random oracle H, the signature oracle Osign and

the re-signature key oracle Ork. B simulates these oracles as follows:

Hash queries: B maintains a list of tuples i; uk; ek; lk; rkð Þð Þ which is called the H list.
for each query to H, if lk; rkð Þ is in the H list, then B returns uk to A. Otherwise, if
i 6¼ t, choose a random vector rk 2 0; 1f g�, compute uk ¼ H lk jj rkð Þ and use the secret
key Ti to sample a vector ek  SamplePreðAi;Ti; uk; riÞ, store i; uk; ek; lk; rkð Þð Þ and
return uk to A. If i ¼ t, sample ek  DZ

m;s and compute uk ¼ Aiek mod q, store
i; uk; ek; lk; rkð Þð Þ and return uk to A.
Signature queries: For each query to Osign on input i; ðlk; rkÞð Þ. We assume that lk has
already been queried on the random oracle H. B looks up i; uk; ek; lk; rkð Þð Þ in the H
list and returns ek to A.
Re-Signature key queries: For each query to Ork on input i; jð Þ , if i ¼ t or j ¼ t, abort;
otherwise, compute re-signature key rki!j ¼ Si!j by the Re-Signature key generation
algorithm and return rki!j ¼ Si!j to A.
Forgery: Without loss of generality, we assume that A selects At as the challenge
public key (the probability is 1=j) before outputting its forgery l�; r�ð Þ; e�ð Þ and
querying H on l�. Finally, A outputs forgery l�; r�ð Þ; e�ð Þ.

Simulator B’s simulation of the world for A is the same as the external security
except that the Re-Signature queries is replaced by the Re-Signature key queries.

Delegatee security: For security, we assume there is a probability poly-time adversary
(proxy) A which breaks this guarantee with non-negligible probability. We use A to
construct a poly-time simulator B that solves the SISq;n;m;b problem.

An Efficient Proxy Re-Signature Over Lattices 155



System Parameters: On input a random matrix A 2 Z
n�m
q , the simulator B outputs a

non-zero vector v such that Av ¼ 0mod q and vk k� b.

Public keys: When A asks for the creation of user i 2 1; � � � ; jf g, B needs to prepare j
public keys A1; � � � ;Aj. The procedure is as follows:

(i) B sets A ¼ A1.
(ii) B uses TrapGen 1nð Þ to generate k � 1 pairs of public/secret keys Ai;Tið Þ,

i ¼ 2; � � � ; j.
In the following, B must answer the random oracle H, the signature oracle Osign and

the re-signature key oracle Ork. B simulates these oracles as follows:

Hash queries: B maintains a list of tuples i; uk; ek; lk; rkð Þð Þ which is called the H list.
for each query to H, if lk is in the H list, B returns uk to A. Otherwise, if i 6¼ 1, choose
a random vector rk 2 0; 1f g�, compute uk ¼ H lk jj rkð Þ and use the secret key Ti to
sample a vector ek  SamplePreðAi;Ti; uk; riÞ, store i; uk; ek; lk; rkð Þð Þ and return uk
to A. If i ¼ 1, sample ek  DZ

m;s and compute uk ¼ A1ek mod q, store
1; uk; ek; lk; rkð Þð Þ and return uk to A.
Signature queries: For each query to Osign on input i; ðlk; rkÞð Þ. We assume that lk has
already been queried on the random oracle H. B looks up i; uk; ek; lk; rkð Þð Þ in the H
list and returns ek to A.
Re-Signature key queries: For each query to Ork on input i; jð Þ, if i ¼ 1, abort;
otherwise, compute re-signature key rki!j ¼ Si!j by the Re-Signature key generation
algorithm and return rki!j ¼ Si!j to A.
Forgery: Without loss of generality, we assume that A selects At as the challenge
public key (the probability is 1=j) before outputting its forgery l�; r�ð Þ; e�ð Þ and
querying H on l�. Finally, A outputs forgery l�; r�ð Þ; e�ð Þ.

We know that the simulation is perfect. When A outputs forgery l�; r�ð Þ; e�ð Þ, B
looks up l�; r�ð Þ; el�

� �
in the H list and outputs v ¼ el� � e� as the solution of the

SISq;n;m;b problem Av ¼ 0mod q. Because l�; r�ð Þ; e�ð Þ and l�; r�ð Þ; el�
� �

are both the
signatures of l�, then

A1e� mod q ¼ H l�jjr�ð Þmod q ¼ A1el� mod q ð14Þ

Therefore, we obtain A1 e� � el�
� � ¼ 0mod q. Since e�k k, el�

�� ��� r
ffiffiffiffi
m
p

and
e� 6¼ el� , we have e� � el�

�� ��� 2r
ffiffiffiffi
m
p

and e� � el� 6¼ 0.

4.3 Security and Efficiency Comparison

In this section, we compare the security and efficiency of the proposed scheme with that
of the scheme of [3] which is the first multi-use unidirectional proxy re-signature
scheme. The scheme needs 6 pair operations in the verification of 1-level signature, and
4L + 2 pair operations in the verification of L-level signature. The proposed
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construction is based on the Small Integer Solution problem. The verification cost does
not grow with the number of translations (only one matrix-vector product operation in
any level signature) and the size of signatures also grows linearly with the number of
translations. The comparison results are summarized in Table 1.

5 Multi-use Unidirectional Proxy Re-Signature
Scheme from Lattice in the Standard Model

In this section, we use the signature scheme of [15] to construct a multi-use unidi-
rectional proxy re-signature scheme in the standard model.

KeyGen: On input the security parameter n, run TrapGen q; nð Þ to generate a random
rank n matrix A0 2 Z

n�m
q and a trapdoor basis T0 of K?q A0ð Þ such that

~T0

�� ���O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
pð Þ.

For each b; jð Þ 2 0; 1f g � k½ 
, choose uniformly random and independent

AðbÞj 2 Z
n�m
q . Output public key pk ¼ ðA0;A

ðbÞ
j Þ and secret key sk ¼ T0.

Re-Signature Key Generation: On input public keys of user 1 and 2, pk1 ¼
ðA10;A

ðbÞ
j Þ, pk2 ¼ ðA20;A

ðbÞ
j Þ and a secret key sk2 ¼ T2. Let A10 ¼ a11; a12; � � � ;ð

a1mÞT , where a1i 2 Z
n
q. For every a1i, i ¼ 1; 2; � � � ;m, use preimage sampleable algo-

rithm SamplePreðA20;T2; a1i; rÞ which samples a vector si such that A20si ¼ a1i mod q
and sik k� r

ffiffiffiffi
m
p

. Let S ¼ s1; s2; � � � ; smð Þ 2 Z
m�m, then A20S ¼ A10 mod q and

Sk k� s
ffiffiffiffi
m
p

. Let S1!2 ¼ S 0
0 I

� 	
and output the re-signature key rk1!2 ¼ S1!2.

Sign: The first-level signature: on input a secret key sk ¼ T0 and a message
l 2 f0; 1gk , do:
1. Let Al ¼ A0jjAðl1Þ1 jj � � � jjAðlkÞk 2 Z

n�ðkþ 1Þm
q . Use SampleBasisLeftðA0;A

ðliÞ
i ;T0Þ to

generate the basis Tl of K? Al
� �

;
2. Use preimage sampleable algorithm SamplePreðAl;Tl; 0; rÞ to sample a vector e

such that Ale ¼ 0mod q and ek k� r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1Þmp

.
3. Output e as the signature for message l.

Table 1. Security and efficiency comparison

Cryptosystem Underlying
problem

The size of signature Verification cost

The scheme
of [3]

l-FlexDH
assumption

Grows linearly with the
number of translations

Grows linearly with the
number of translations

The proposed
scheme

SIS problem Grows linearly with the
number of translations

Not change with the
number of translations
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The i-level signature: on input a secret key sk ¼ T0 and a message l, do:

1. Let Al ¼ A0 jjAðl1Þ1 jj � � � jjAðlkÞk 2 Z
n�ðkþ 1Þm
q . Use SampleBasisLeftðA0;A

ðliÞ
i ;T0Þ

to generate the basis Tl of K? Al

� �
;

2. Use preimage sampleable algorithm SamplePreðAl;Tl; 0; ri ðkþ 1Þm½ 
ði�1Þ=2Þ to

sample a vector e such that Ale ¼ 0mod q and ek k� ri ðkþ 1Þm½ 
i=2.
3. Output e as the i-level signature for message l.

Re-Signature: On input re-signature key rk1!2 ¼ S1!2, a public key

pk1 ¼ ðA10;A
ðbÞ
j Þ, a message l and its signature e1, check that A1le1 ¼ 0mod q and

e1k k� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1Þmp

, where A1l ¼ A10 jjAðl1Þ1 jj � � � jjAðlkÞk 2 Z
n�ðkþ 1Þm
q . If e1 is not a

signature for l, output ?; otherwise compute re-signature e2 ¼ S1!2e1. e2 is the re-
signature for 1! 2.

Verify: On input a public key pk2 ¼ ðA20;A
ðbÞ
j Þ, a message l and a re-signature e2 for

1! 2. If A2le2 ¼ 0mod q and e2k k� r2ðkþ 1Þm, where A2l ¼ A20 jjAðl1Þ1

jj � � � jjAðlkÞk 2 Z
n�ðkþ 1Þm
q , output 1; otherwise output 0.

6 Conclusion

In this paper, we construct the first multi-use unidirectional proxy re-signature scheme
based on the hardness of the Small Integer Solution (SIS) problem. In our scheme, the
verification cost does not grow with the number of translations which only needs a
matrix-vector multiplication. The size of signatures grows linearly with the number of
the translations in this scheme. Our scheme only uses one signature algorithm such that
the user’s i-level signatures contain (i − 1)-level signatures, however it does not resist
the collusion attack of delegator security.
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