An Efficient Proxy Re-Signature Over Lattices

Mingming Jiang', Jingiu Hou', Yuyan Guo'®™, Yan Wang?,
and Shimin Wei'

! School of Computer Science and Technology,
Huaibei Normal University, Huaibei 235000, China
guoyuyan428@l63. com
2 School of Mathematics Science, Huaibei Normal University,
Huaibei 235000, China

Abstract. In 2008, Libert and Vergnaud constructed the first multi-use unidi-
rectional proxy re-signature scheme. In this scheme, the proxy can translate the
signatures several times but only in one direction. Thus, two problems remain
open. That is, to construct a multi-use unidirectional proxy re-signature scheme
based on classical hardness assumptions, and to design a multi-use unidirec-
tional proxy re-signature scheme with the size of signatures and the verification
cost growing sub-linearly with the number of translations. This paper solves the
first problem and sharply reduces the verification costs. We use the preimage
sampleable algorithm to develop a multi-use unidirectional proxy re-signature
scheme based on lattices, namely, the hardness of the Small Integer Solution
(SIS) problem. The verification cost does not grow with the number of trans-
lations and the size of signatures grows linearly with the number of translations
in this scheme. Furthermore, the proposal is secure in quantum environment.
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1 Introduction
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Proxy re-signature is proposed by Blaze, Bleumer, and Strauss [1]. In a proxy re-
signature scheme, a semi-trusted proxy is given some information that allows it to
transform Alice’s signature into Bob’s signature on the same message, but the proxy
cannot generate signatures for Alice or Bob on its own. In [1], the first proxy re-
signature scheme is constructed and is proven to be multi-use and bidirectional.
However, the proxy re-signature primitive was seldom noticed until 2005. In 2005,
Ateniese and Hohenberger [2] formalized the definition of security and illustrated the
applications of proxy re-signature schemes. What follows presents some properties that
will be taken into account in a proxy re-signature scheme.

1.
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Unidirectional: the proxy only can turn the Alice’s signatures into the Bob’s sig-
natures, but the reverse is not true.

Multi-use: a signature can be re-signed many times;
Private Proxy: re-signature keys are kept secret;
Transparent: we can not distinguish the re-signatures from the original signatures;
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Key optimal: a user is only required to store a constant amount of secret data;

6. Non-interactive: the delegatee does not participate in the process of the generation
of the proxy re-signature key;

7. Non-transitive: the re-signing rights cannot be re-delegated by the proxys;

8. Unlinkable: a re-signature cannot be linked to the one from which it was generated.

In [2], three proxy re-signature schemes were proposed: the first one is multi-use
and bidirectional with a private re-signature key; the second one is single-use and
unidirectional with a public re-signature key; the third one is single-use and unidi-
rectional with a private re-signature key. The possible applications of a re-signature
scheme may include the space-efficient proof, group signatures management, simpli-
fication of certificate management. However, it remains an open problem to design a
multi-use unidirectional re-signature scheme. To solve this problem, Labert and
Vergnaud [3] proposed two multi-use and unidirectional schemes with a private re-
signature key based on the /-FlexDH assumption (in the random oracle model and the
standard model, respectively). However, we are confronted with two open problems:
one is to construct a multi-use unidirectional proxy re-signature scheme under the
standard hardness assumptions; the other is to reduce the size of signatures and the
verification costs. Sunitha and Amberker [4] proposed another multi-use unidirectional
proxy re-signature scheme, but the scheme only obtains a forward security, and hence
is not provably secure. Sunitha [5] constructed a proxy signature schemes that trans-
lates Alice’s Schnort/ElGamal/RSA signature to Bob’s RSA signature, but failed to
prove the security. Shao et al. [6] proposed the first multi-use bidirectional proxy re-
signature scheme in the standard model and extended it to the ID-based case. Shao
et al. [7] proposed the first unidirectional identity based proxy re-signature in the
random oracle based on the Schnorr’s signature and the Libert-Vergnaud proxy re-
signature. Shao et al. [8] analyzed and improved the previous security model [2] and
gave a unidirectional proxy re-signature scheme to meet the new security model. Yang
et al. [9] first defined the security model for threshold proxy re-signature scheme, and
then proposed two threshold proxy re-signature schemes based on the Ateniese-
Hohenberger’s and the Shao-Cao-Wang-Liang’s approach. However, the four pro-
posals were built from the intractability assumptions for factoring large integers or
solving discrete logarithms. Thus, they are not secure in the quantum setting and hence
it is meaningful to construct a proxy re-signature scheme secure in the quantum setting.

As an important class of post-quantum cryptography, lattice cryptography attracts
more and more attentions in the cryptographic literature in recent years due to the
elegant cryptographic properties. First, lattice cryptography only involves some linear
operations on small integers, and hence results in an asymptotically low computational
complexity. Second, the security is supported by the worst-case to average-case
equivalence connections. Since the first proposals of a provably secure lattice signature
scheme and a lattice IBE scheme due to Gentry et al. [10], we are witnessing a rapid
development of lattice cryptography. Many lattice schemes are constructed, such as the
lattice-based public key encryption schemes [11-14], identity-based encryption
schemes [10, 15-17], fully homomorphic encryption [18-21] and lattice-based sig-
natures schemes [10, 22] and signature schemes with particular properties [23-25].



An Efficient Proxy Re-Signature Over Lattices 147

1.1 Contributions

We aim at the open problems left by Libert and Vergnaud over lattices. In our scheme,
the proxy re-signature key is generated by the Gaussian Sample algorithm. First, given
two public keys pk; = A}, pk, = A, of users 1 and 2 and the secret key of user 2, use
the Gaussian Sample algorithm to generate the proxy re-signature key S;_.,, such that
A»S1_», = Ay modg. Second, gives an original signature e; of user 1, and the re-
signature e; = S1_,e;. We know that the proxy re-signature key S;_, has two prop-
erties: (1) its norm is small; (2) its distribution is statistically close to a Gaussian
distribution. Then the distribution of the re-signature is statistically close to a Gaussian
distribution and its norm is also small. Thus, the proxy re-signature has the same
properties as the original signature.

1.2 Organization

In Sect. 2, we formalize the related notations, review the definitions of lattice and
Gaussian distribution, introduce the lattice basis delegation technique, and define the
Small Integer Solution hardness assumption on which the security of our scheme is
based. We describe the definition and security model of a Proxy Re-Signature scheme
in Sect. 3. In Sect. 4, we propose a Multi-Use Unidirectional Proxy Re-Signature
scheme based on lattice in the random model. The scheme in the standard model is
constructed in Sect. 5. Finally, the conclusion is given in Sect. 6.

2 Preliminaries

2.1 Notation

We denote sets of real numbers by R and the integers by Z, respectively. Vectors are
written as bold italic lower-case letters, e.g. x. The i-th component of x is denoted by x;.
Matrices are written as bold italic capital letters, e.g. X, and the i-th column vector of a
matrix X is denoted x;. The Euclidean norm [, norm of a vector x is denoted as

lx|l,= /(x,x) = /> x?. Generally, we abbreviate |x||, as [x||. The length of a
\/ =i

matrix is defined as the norm of the longest column, namely, || X|| = max;|jx;||, for
1<i<k.

2.2 Lattice

Let B=1{by,---,b,} € R™" be an m X m matrix whose columns are linearly inde-
pendent vectors by, - - -, b, € R". The m-dimensional lattice A generated by B,
A=L(B) = {yeR’” st Ix e Z", y:Bx:inbl} (1)
i=1

Here, we focus on inter lattices, i.e., £ is contained in Z".
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Definition 1. For g prime, A € Z;X”‘, uc Zg, define:

ALA) :={e € Z" si. Ae=0(modg)} 2)

Ay(A) :={e€Z" s.t. Ae=u(modg)} (3)

. i . .
Observe that if £ € Aj(A), then AJ(A) = A, (A) +1, hence AJ(A) is a shift of
A, (A).

Lemma 1 [26]. Let ¢>3 be odd and m = [6nlogq|. There is a probabilistic
polynomial-time algorithm TrapGen(g, n) that outputs two matrixes A € ng’" and

T ¢ Z;”X’” such that A is statistically close to a uniform matrix in Z;X’” and T is a basis
n . .
for Ag (A) satisfying
|T|| < O(y/nTogq) and ||T|| < O(nlogq) with all but negligible probability in 7.

2.3 Discrete Gaussians

We briefly recall Discrete Gaussian Distributions over lattices.
For any positive parameter ¢ > 0 define the Gaussian function on R™ centered at ¢:

Vx € R”, p,(x) = exp(—mlx — ¢ /0*) (4)

For any ¢ € R™, real ¢ > 0, and an m-dimensional A, define the Discrete Gaussian
Distribution over A as:

Ve € R" Dy ofx) = Poc®) _ Poc®) 5)

pa,c(A) ZXEA pu,c (x)

Lemma 2 [10]. Let ¢ > 2 and a matrix A € ZZX"’, m > n. Let T4 be a basis for A; A),
o> ||TA|| - w(y/logm). Then for ¢ € R", u € ZZ:

1. Pr |:xNDAL(A>’g s x| > a\/ﬁ] <negl(n).
2. There is a polynomial-time algorithm SampleGaussian (A,Ta,0,c) that returns
n .. . ..
x € A, (A) drawn from a distribution statistically close to D AL (4) e
3. There is a polynomial-time algorithm SamplePre (A,T4,u,0) that returns x €
AZ (A) sampled from a distribution statistically close to Dt (a) ge-

Definition 2. For any m-dimensional lattice A and positive real ¢ > 0, the smoothing
parameter 7, is the smallest real ¢ > 0 such that p, ,,(A"\{0}) <e.

Lemma 3 [27]. Let ACZ™ be a lattice and 0 € R. Fori=1,---,k, v; € Z" and let X;
be mutually independent random variables sampled from Dj ,,,. Let ¢ = (cy,-- -,
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cx) € ZF, and define g := ged(cy, -+, ci), and v := Zle ¢;v;. Suppose that ¢ > ||c]| -
1.(A) for some negligible €. Then Z = Zle c;X; is statistically close t0 Dgp 1y ¢|jo-

Definition 3. We say that a matrix A in Z™*" is Z,-invertible if A mod ¢ is invertible
as a matrix in Zy*".

Algorithm 1. [16] SampleS(1™)
Let oy = O(v/nlogq) - w(logm) - \/m
1. Let Ty be the canonical basis of the lattice Z™;
2. Fori=1,---,mdo s,»«LSampleGaussian(Z’”, T, a5, 0);

3. If § is Z,-invertible, output §; otherwise repeat step 2.

2.4 The SIS Problem

In this section, we recall the Small Integer Solution problem, which is essentially the
knapsack problem over elements in ZZ. We focus on I, — SIS, 3 problem.

nxm

Definition 4 (I, — SIS, ,, s problem). Given an integer ¢, a random matrix A € Zq

and a real f, find a vector v € Z™\{0} such that Av = 0 mod ¢ and ||v|| < f.
The following lemma shows that /, — SIS, ,, s problem is as hard as approxi-
mating certain worst-case problems on lattice.

Lemma 4 [10]. For any poly-bounded m, f = poly(n) and for any prime
q> - w(y/nlogn), the average-case problem I, — SIS, , s is as hard as approxi-
mating the SIVP problem in the worst-case to within certain y = f§ - O(+/n).

Lemma 5 [16]. Let ¢ > 2, m > 2nlogq and o > ||T4|| - @( /log 2Zm). Then there
exists a polynomial-time algorithm SampleBasisLeft(A,M,T,) takesA,M € Z;X”’ and
a basis Ty of A; (A) as inputs, outputs a basis T of /1; (F) with ||T,|| = ||TF||, where
F = (AM).

3 Proxy Re-Signature: Definition and Security Model

3.1 Definition of Unidirectional Proxy Re-Signature

In this section we recall the definition of the unidirectional proxy re-signature schemes.
The unidirectional proxy re-signature scheme for L levels consists of five algorithms
(KeyGen, ReKeyGen, Sign, ReSign, Verify)

KeyGen: This algorithm takes as input a security parameter n and returns a user’s
private/public key pair (sk, pk).

ReKeyGen: This algorithm takes as input user i’s public key pk;, user j’s private key
sk; and returns a re-signature key rk;_; that allows translating i’s signatures into j’s
signatures. The re-signature key rk;_.; is secret.
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Sign: This algorithm takes as input a message u, a private key sk;, an integer / € [L] and
returns a signature 0 on behalf of user i at level [.

ReSign: This algorithm takes as input public parameters, a level [ signature 6 for
message (1 from user i, a re-signature key rk;_,; and checks that 0 is valid. If so, it
returns a signature 6’ which verifies at level /+ 1 under public key pk;.

Verify: This algorithm takes as input public parameters, an integer [ € [L], a message
u, a signature ¢, a public key pkj and returns O or 1.

Here, we explain that why the definition contains the level. In a proxy re-signature
scheme, if we can distinguish the re-signatures from the original signatures. Without
loss of generality, we say that original signatures are the Bob’s first-level signatures and
the re-signatures are the Bob’s second-level signatures. We know that Alice and proxy
can produce Bob’s re-signatures (second-level signatures). Then it is a secure problem
that the first-level signatures are generated by Alice and proxy. If we cannot distinguish
the re-signatures from the original signatures, i.e. the first-level signatures and second-
level signatures are indistinguishable, the level is not considered.

3.2 Security Model of Unidirectional Proxy Re-Signature

The security model of unidirectional proxy re-signature of [2] considers the following
notions termed as external and internal security.

External Security: It is the security against adversaries except the proxy and dele-
gation partners. Formally, for the security parameter n and all probability polynomial
time adversaries A:

Pr[{(pki, ski) — KeyGen(l”)}iE“_’k],
(t, 11, 0) «— A O (i}, ) (6)
Verify(pki, i, 0) = 1 A (1 <t <k) A (t,1,0) & Q] <1/poly(n)

where the oracle Oy, takes as input an index i € [1,k| and a message u € M and
outputs a signature 6 < Sign (skj, ,u). The oracle O,eiq, takes as input two distinct
indices 1<i,j<k, a message u and a signature 6 and outputs a re-signature
0' — ReSign(rki—;, pki, 0, t). Let Q denotes the set of tuples (7, i, 0) where A obtained
a signature 0 on y under public key pk, by querying Oy, 0n (2, 1) O Oregign (-, 1, 1, -).

Internal Security: This security model can be against the collusion attack (dishonest
proxies and colluding delegation partners). The model contains three security
guarantees.

1. Limited Proxy: This notion protects the honest delegator and delegatee, namely,
the proxy can not forge the signatures of the delegatee or delegator unless the
message was first signed by one of the latter’s delegates. Formally, for the security
parameter n and all probability polynomial time adversaries .A:
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Pr[{(pki, ski) < KeyGen(1")};c( -
(t, 1, 0) = A0 Ot (fpley, ) (7)
Verify(pki, 1, 0) = 1 A (1 <t <k) A (1, 1) & Q] <1/poly(n)

where the oracle Oy, takes as input an index i € [1,4] and a message u € M and
outputs a signature 0 « Sign (skj7 ,u). The oracle O,y takes as input two distinct
indices 1 <i,j <k and outputs the re-signature key rk;_,; «+— ReKey (pki, pk;, skj). Let O
denotes the set of tuples (¢, 1) where 4 obtained a signature on x under public key pk,
or one of its delegate key’s by querying Ogign.

2. Delegatee Security: This notion protects the delegate, i.e., it can be against the
collusion attack from delegator and proxy. We associate the index O to the dele-
gatee. Formally, for the security parameter n and all probability polynomial time
adversaries A:

Pr[{(pki, sk;) < KeyGen(1")},c(
(1, 0) — AOsien (0:) Oretey (-,7%) (pko, {pkivski}ie[l,k]) : (8)
Verify(pko, 11, 0) = 1 A (1, 0) & Q] <1/poly(n)
where « =0 and Q is the set of pairs (u,0) such that A queried Oy, (0, u) and
obtained 0.

3. Delegator Security: This notion protects the delegator, i.e., it can be against the
collusion attack from delegatee and proxy. That is, there are distinguishable sig-
natures for a user based on whether she used her strong secret key or her weak
secret key. The colluding delegate and proxy cannot produce strong signatures
(first-level signature) on her behalf. We associate the index O to the delegator.
Formally, for the security parameter n and all probability polynomial time adver-
saries A:

Pr[{(pki, ski) < KeyGen(1")};c1 -
(#7 0) - Aog,g,,(()_,-).Orgkey(»;)(pkm {pkhSki}ie[l,k]) : (9)
Verify(pko, 1, 0) = 1 A (n, 0) & Q] <1/poly(n)

where 0 is a first-level signature and Q is the set of pairs (g, §) such that A queried
Oign(0, ) and obtained 0.



152 M. Jiang et al.

4 Multi-use Unidirectional Proxy Re-Signature
Scheme from Lattice in the Random Oracle Model

4.1 Our Construction

In this section, we use the Gentry, Peikert, and Vaikuntanathan’s signature scheme [10]
to construct a multi-use unidirectional proxy re-signature scheme. Let n be a security
parameter, and g > f§- w(logn) for f = poly(n). Let m>2nlogq and a Gaussian
parameter ¢ > O(y/nlogq) - w(y/Togn). There is a collision-resistant secure hash
function H that maps {0, 1} to ZZ. Our scheme consists of the following algorithms.

KeyGen: On input the security parameter n, run TrapGen(q,n) to generate a random
rank n matrix A € Z;*" and a trapdoor basis T of A; (A) such that ||TH < O(y/nlogq).

Let the trapdoor function f4 (x) = Ax mod g. The public key is pk = A, the secret key is
sk=T.

Re-Signature Key Generation: On input public keys of user A and B, pky = A,
pkg = B and a secret key skp = Tp. Let A = (a;,ay, - - ,am)T, where a; € ZZ. For
every a;, i = 1,2,---,m, use preimage sampleable algorithm SamplePre(B, Ty, a;,0)
which samples a vector s; such that Bs;=a;modg and ||s;|| <oy/m. Let
Sa—p = (51,82, +,8,) € Z™", then BSs—.p = A mod ¢ and ||Ss—z|| < ay/m. Output
the re-signature key rka—p = Sa—p-

Sign: The first-level signature: on input a secret key sk = T and a message u, do:

1. Choose a random vector r € {0,1}" and compute u = H(u||r) € Zj;

2. Use preimage sampleable algorithm SamplePre(A,T,u, o) samples a vector e such
that Ae = u mod g and ||e]| < s/m.

3. Output (e, r) as the signature for message p.

The i-level signature: on input a secret key sk = T and a message p, do:

4. Choose a random vector r € {0, 1}* and compute u = H(u||r) € Z}j;

5. Use preimage sampleable algorithm SamplePre(A,T,u,c'm~1/?) to sample a
vector e such that Ae = u mod ¢ and ||e|| < ¢'m'/>.

6. Output (e,r) as the signature for message .

Re-Signature: On input re-signature key rks_.p = Sa_p, a public key pks = A, a
message p and a first-level signature (e4,r), check that Aey = umodg and
lleal] < o+v/m. If e4 is not a signature for u, output L; otherwise compute re-signature
ep = Sa_.pea. (e, r) is the re-signature for A — B.

The algorithm ReSign can transform an [-level signature into (I + 1)-level signature
as first-level re-signature.

Verify: On input a public key pkg = B, a message u and a re-signature (eg,r) for
A — B. If Beg = umod q and ||ep|| < o*m, output 1; otherwise output 0.
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4.2 Security and Good Properties

Theorem 1 (Multi-use). The scheme is multi-use correct.

Proof: Consider the users 1, - -, k. Suppose (e;,r) is a valid signature of user 1, i.e.,
Aje; = H(p|| r) mod g and ||e; || < oy/m. Re-signature procedure is performed from 1
to k through 2 to k — 1. The re-signature procedure is as follows:

er = Si_1—rlk—1 = Sk—1-1Sk—2—r—1€k—2 (10)
= =S 1—kSk—2—k—1 - Sa—1€1

The verification procedure by the public key A, of user k is as follows:

Arer = ApSi_1—kSk—2—k—1 - S2—1€]

= Ar_1Sk—2—k—1---S2—1€1

(11)

=Aie
=umod g
and
llexll = [ISk—1-xSk—2—k—1- - Sa—re1|
<1Sk=1=kll -~ - 1S2—1l][ex ] (12)
S O'kmk/2

Therefore, the scheme is multi-use correct.
In the following, we analyze the other properties.

Theorem 2. In a random oracle model, the scheme is secure under the SIS, .
problem, more precisely, given a random rank n matrix A € ZZX’“, if finding a non-zero
vector v such that Av = 0 mod ¢ and ||v|| < f is hard, then the scheme is secure.

Proof: We argue security in two parts, i.e., the external security and the internal
security.

External Security: For security, we assume there is a probability poly-time adversary
A which breaks this guarantee with non-negligible probability ¢ after making at most
gn hash queries, g, signature queries and g,y re-signature queries. We use A to con-
struct a poly-time simulator B that solves the SIS, ,, g problem.

System Parameters: On input a random matrix A € szm’ the simulator B outputs a
non-zero vector v such that Av = 0 mod ¢ and ||v|| < p.
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Public keys: When A asks for the creation of useri € {1, --,}, B needs to prepare «
public keys Ay, - - -,Ay. The procedure is as follows:

(i) Let A =A,. B uses the algorithm SampleS(1™) to sample 7— 1 matrices
Si—1-¢,-+,S81-2 and computes A,_| = A,S,_|_, modg, ---,A; = A5, mod q.

(i) B uses TrapGen(1") to generate k —¢ public/secret key pairs (4;,T;),
i=t+1,---,x

In the following, B must answer the random oracle H, the signature oracle g, and
the re-signature oracle O,g,. B simulates these oracles as follows:

Hash queries: 13 maintains a list of tuples (i, uy, ex, (14, rr)) which is called the H list.
For each query to H, if (u;,r) is in the H list, then B returns u; to A. Otherwise, if
i >1t, compute wu; = H(w||lrx) and use the secret key T; to sample a vector
ey — SamplePre(A;, T;,uy, 0;), store (i,uy, e, (i, rr)) and return u; to A. If i<y,
sample e < Dyn,, and compute u; = A;e, mod g, store (i, uy, ey, (i, rx)) and return
u; to A.

Signature queries: For each query to Oy, on input (i, (i, r¢)). We assume that 1, has
already been queried on the random oracle H. B looks up (i, u, e, (14, 7)) in the H
list and returns e; to A.

Re-Signature queries: For each query to Oyeggn on input (i,7, (ty, i), ex), if j > 1,
compute re-signature key rk;_; = S;_; by the Re-Signature key generation algorithm
and compute e’y = S i—jex, and then return ¢'; to A. Otherwise, if j <1, compute rki_; =
Si; =81 -Simi+1 and €'y = S;_jer, and then return €', to A.

Forgery: Without loss of generality, we assume that A selects A, as the challenge
public key (the probability is 1/x) before outputting its forgery ((u*,r*),e*) and
querying H on u*. Finally, A outputs forgery ((u*,r*),e*).

We now analyze the simulation. First, for each distinct query (u, r) to H, the value
u returned by B is u = f4(e) = Ae mod ¢, where e < Dz» ;. Because the distribution
of u is uniform, it is identical to the uniformly random value of H(x||r) in the real
system. Second, for each query (y, r) to Oyg,, B returns a single value e «— Dyn ; such
that f4 (e) = H(p|| 7). In the real system, signature queries on p are answered by a
single value with the same distribution by the algorithm SamplePre. Third, for each
query t0 Oyesign, We know that the re-signature key in g, queries is indistin-
guishable from that in the real system, so the O, queries is statistically close to the
view of the real system. Thus we claim that the simulation of B is identical to the real
system.

When A outputs forgery ((u*,r*),e*), B looks up ((u*,r*),e, ) in the H list and
outputs v = e, — " as the solution of the SIS, . s problem Av = 0 mod q. Because
((u*,r*),€*) and ((u*,r*),e, ) are both the signatures of x*, then

A" mod g = H(p"||r") mod g = Ae, mod g (13)
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Therefore, we obtain A,(e* —e, ) =0modg. Since |e*|], <gy/m and

<20+/m and €* — e, # 0.

lew

e* # e,-, we have |le* — e,

Internal Security: In this scheme, since the first-level signatures belong to the second-
level signatures, the colluding delegatee and proxy can produce a first-level signature
on delegator’s behalf. Thus, the delegator security in our scheme is not satisfied.
Internal security refers only to the limited proxy security and delegatee security.

Limited Proxy Security: For security, we assume there is a probability poly-time
adversary (proxy) A which breaks this guarantee with non-negligible probability. We
use A to construct a poly-time simulator B that solves the SIS, ,, g problem.

System Parameters: On input a random matrix A € Z’;X"’, the simulator B outputs a
non-zero vector v such that Av = 0 mod g and ||v|| < f.

Public keys: When A asks for the creation of user i € {1,---,k}, B needs to prepare K
public keys Ay, - --,Ag. The procedure is as follows:

(i) BsetsA=A,.
(ii) B uses TrapGen(1") to generate k — 1 pairs of public/secret keys (A;,T;),
1= 17...,[_ 1,‘~-,t—|—1,-“K.

In the following, B must answer the random oracle H, the signature oracle g, and
the re-signature key oracle O,. B simulates these oracles as follows:

Hash queries: B maintains a list of tuples (i, uy, ex, (i, 7)) which is called the H list.
for each query to H, if (p,r) is in the H list, then B returns u; to A. Otherwise, if
i # t, choose a random vector r, € {0, 1}", compute u; = H(y || r¢) and use the secret
key T; to sample a vector e; < SamplePre(A;, T;,uy, c;), store (i,uy, ey, (1, ry)) and
return u; to A. If i =1, sample e; «— Dyn; and compute u;, = A;e; mod g, store
(i, ur, ex, (1, rx)) and return uy; to A.

Signature queries: For each query to Oy, on input (i, (i, r¢)). We assume that z, has
already been queried on the random oracle H. B looks up (i, u, ey, (4, 7)) in the H
list and returns e; to A.

Re-Signature key queries: For each query to O, on input (i, j) , if i = # or j = ¢, abort;
otherwise, compute re-signature key rk;_; = S,_; by the Re-Signature key generation
algorithm and return rk;_; = S;_; to A.

Forgery: Without loss of generality, we assume that A selects A, as the challenge
public key (the probability is 1/x) before outputting its forgery ((u*,r*),e*) and
querying H on u*. Finally, A outputs forgery ((u*,r*),e*).

Simulator B’s simulation of the world for A is the same as the external security
except that the Re-Signature queries is replaced by the Re-Signature key queries.

Delegatee security: For security, we assume there is a probability poly-time adversary
(proxy) A which breaks this guarantee with non-negligible probability. We use A to
construct a poly-time simulator 3 that solves the SIS, ,, s problem.
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System Parameters: On input a random matrix A € Z’;X'", the simulator B outputs a
non-zero vector v such that Av = 0 mod ¢ and ||v|| < p.

Public keys: When A asks for the creation of user i € {1, ---,k}, B needs to prepare «
public keys Ay, - - -,A. The procedure is as follows:

(i) BsetsA =A,.
(ii) B uses TrapGen(1") to generate k — 1 pairs of public/secret keys (A;,T;),
i=2, k%

In the following, B must answer the random oracle H, the signature oracle Oy;,, and
the re-signature key oracle O,;. B simulates these oracles as follows:

Hash queries: 13 maintains a list of tuples (i, u, ex, (14, rx)) which is called the H list.
for each query to H, if ; is in the H list, B returns #; to A. Otherwise, if i # 1, choose
a random vector ry € {0,1}", compute uy = H(y || rx) and use the secret key T; to
sample a vector e, < SamplePre(A;, T;, uy, 0;), store (i,uy, ey, (1, 7)) and return uy
to A If i=1, sample e; < Dz»; and compute u; =Ae; modgqg, store
(1, ug, ex, (14, ) and return uy to A.

Signature queries: For each query to Oy, on input (i, (i, r¢)). We assume that 1, has
already been queried on the random oracle H. BB looks up (i, uy, ey, (1, 7)) in the H
list and returns e, to A.

Re-Signature key queries: For each query to Oy on input (i,j), if i =1, abort;
otherwise, compute re-signature key rk;_; = S;_; by the Re-Signature key generation
algorithm and return rk;_; = S;_; to A.

Forgery: Without loss of generality, we assume that A selects A, as the challenge
public key (the probability is 1/k) before outputting its forgery ((u*,r*),e*) and
querying H on u*. Finally, A outputs forgery ((u*,r"),e").

We know that the simulation is perfect. When A outputs forgery ((u*,r*),e*), B
looks up ((u*,7*),e,) in the H list and outputs v = e, — e" as the solution of the
SISy, problem Av = 0 mod g. Because ((u*,r*),e*) and ((u*,r*), e, ) are both the
signatures of u*, then

Aje"mod g = H(u*||r*) mod g = Aje, mod g (14)

Therefore, we obtain A;(e* —e,) =0modg. Since |e*||, |e,| <oym and

e* # e, , we have He* —e,||<20y/mand e* —e, # 0.

4.3 Security and Efficiency Comparison

In this section, we compare the security and efficiency of the proposed scheme with that
of the scheme of [3] which is the first multi-use unidirectional proxy re-signature
scheme. The scheme needs 6 pair operations in the verification of 1-level signature, and
4L + 2 pair operations in the verification of L-level signature. The proposed
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construction is based on the Small Integer Solution problem. The verification cost does
not grow with the number of translations (only one matrix-vector product operation in
any level signature) and the size of signatures also grows linearly with the number of
translations. The comparison results are summarized in Table 1.

Table 1. Security and efficiency comparison

Cryptosystem | Underlying The size of signature Verification cost
problem

The scheme I-FlexDH Grows linearly with the Grows linearly with the

of [3] assumption number of translations number of translations

The proposed | SIS problem | Grows linearly with the Not change with the

scheme number of translations number of translations

5 Multi-use Unidirectional Proxy Re-Signature
Scheme from Lattice in the Standard Model

In this section, we use the signature scheme of [15] to construct a multi-use unidi-
rectional proxy re-signature scheme in the standard model.

KeyGen: On input the security parameter n, run TrapGen(g,n) to generate a random
rank n matrix Ag € ZZX"’ and a trapdoor basis Ty of /\qL (Ap) such that
HTOH < O0(y/nlogq).

For each (b,j) € {0,1} x [k], choose uniformly random and independent
A;b) € Zy"™. Output public key pk = (AO,AJ@) and secret key sk = T.

Re-Signature Key Generation: On input public keys of user 1 and 2, pk; =
(AIO,AJ(.")), pky = (A2O,AJ(-b>) and a secret key sk, =T,. Let Ajg = (aji,a12,- -,
alm)T, where a,; € ZZ. For every ay;, i = 1,2,---,m, use preimage sampleable algo-
rithm SamplePre(Aq, T2, ay;, 0) which samples a vector s; such that A»ps; = a1; mod g
and ||s;|| <oym. Let S = (s1,82, ,8m) € Z™"™, then AS =Ajpymodqg and

IS]| < sy/m. Let 81, = (3 g) and output the re-signature key rk; ., = S 5.

Sign: The first-level signature: on input a secret key sk =T, and a message
e {0,1}, do:

1. Let A, = Aol|A1"]| -+ ||A) € Zz*+Vm Use SampleBasisLefr(Ag, A", Tp) to
generate the basis T, of A™(A,);
2. Use preimage sampleable algorithm SamplePre(A,,T,,0, ) to sample a vector e

such that A,e = 0 mod ¢ and ||e|| <a+/(k+ 1)m.
3. Output e as the signature for message f.
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The i-level signature: on input a secret key sk = Ty and a message u, do:

1. Let A, = Aq||A{") || [|AY™) € Z2*+Vm Use SampleBasisLeft(Ao,AM, Ty)
to generate the basis T, of A" (A,);

2. Use preimage sampleable algorithm SamplePre(A,,T,,0,0'[(k+ m)%) 1o
sample a vector e such that A,e = 0 mod g and |le|| < o’[(k + 1)m)"’*.
3. Output e as the i-level signature for message u.

Re-Signature: On input re-signature key rkj_o =S,-,, a public key
pky = (AIO,A;b)), a message u and its signature e, check that A,,e; = 0 mod g and
lei|l <s+/(k+1)m, where A, = A A - HA,((”k) € ZZX("“)”’. If e; is not a

signature for p, output L; otherwise compute re-signature e, = S;_.,e;. e; is the re-
signature for 1 — 2.

Verify: On input a public key pk, = (AQO,AJ@), a message ¢ and a re-signature e, for
12 If Aye;=0modg and ey <c*(k+1)m, where Ay, =Axy|A"
|- ||A,<{“k) € ng(kﬂ)m, output 1; otherwise output 0.

6 Conclusion

In this paper, we construct the first multi-use unidirectional proxy re-signature scheme
based on the hardness of the Small Integer Solution (SIS) problem. In our scheme, the
verification cost does not grow with the number of translations which only needs a
matrix-vector multiplication. The size of signatures grows linearly with the number of
the translations in this scheme. Our scheme only uses one signature algorithm such that
the user’s i-level signatures contain (i — 1)-level signatures, however it does not resist
the collusion attack of delegator security.
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