Chapter 4 ®)
Concurrent Spectrum Access ez

Abstract Concurrent spectrum access (CSA), which allows different communica-
tion systems simultaneously transmit on the same frequency band, has been rec-
ognized as one of the most important techniques to realize the dynamic spectrum
management (DSM). By regulating the interference to be received by primary users,
the secondary users are able to gain continuous transmission opportunity. Without
the need of frequent spectrum detection and reconfiguration, the CSA has the merit
of low cost and easy implementation in practice. In this chapter, we will present some
important CSA models, discuss the key problems existing in these CSA systems, and
review the techniques to deal with these problems.

4.1 Introduction

Compared with the opportunistic spectrum access (OSA), in recent years, the concur-
rent spectrum access (CSA) has been attracting increasing interests from academia
and industry [1, 2]. The main reason is three-fold. Firstly, the CSA allows one or
multiple secondary users (SUs) simultaneously transmit on the primary spectrum,
provided that the interference to the primary users (PUs) can be regulated. Thus, the
SUs can transmission continuously regardless whether the PU is transmitting or not.
Secondly, neither inquiry of geolocation database nor spectrum sensing is needed,
and thus frequent spectrum reconfiguration can be avoided. This makes the cognitive
device be with low-cost hardware, which is thus more easier to be deployed. Thirdly,
the CSA can achieve higher area spectral efficiency due to its spatial reuse of spec-
trum [3, 4], and therefore, can be used to accommodate the dense wireless traffic in
host-spot areas.

To enable CSA, the secondary transmitter (SU-Tx) needs to refrain the interfer-
ence power produced to primary receiver (PU-Rx) by designing its transmit strategy,
such as transmit power, bit-rate, bandwidth and antenna beam, according to the chan-
nel state information (CSI) of the primary and the secondary systems. Mathemati-
cally, the design problem can be formulated to optimize the secondary performance
under the restrictions of the physical resource limitation of secondary system and the
protection requirement of primary system. The physical resource constraint has been
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taken into consideration in the transmission design for the traditional communica-
tion system with dedicated operation spectrum [5-7]. While, the additional primary
protection constraint poses new challenges to the design of both single-antenna and
multi-antenna CSA systems.

According to whether the interference temperature is explicitly given, the primary
protection constraint is rendered in two forms. When the interference temperature
is given as a predefined value, the primary protection constraint can be explicitly
expressed as interference power constraint. There are basically two types of inter-
ference power constraint which are known as peak interference power constraint
and average interference power constraint [8]. Peak interference power constraint
restricts the interference power levels for all the channel states, while the average
interference power constraint regulates the average interference power across all the
channel states. The peak interference power constraint is more stringent with which
the PUs can be protected all the time. Thus, it is suitable for protecting the PUs with
delay-sensitive services. The average interference power constraint is less stringent
compared with the former one, since it allows the interference power exceed the
interference temperature for some channel states. Thus, it is suitable to protect the
PUs with delay-insensitive services. On the other hand, when the explicit interference
temperature is unavailable, primary performance loss constraint is used to protect
the PUs [9, 10]. In fact, this is a fundamental formulation of primary protection
constraint, and can help the SUs to exploit the sharing opportunity more efficiently.
However, this constraint requires the information including the CSI of the primary
signal link and the transmit power of the PU, which is hard to be obtained in practice
due to the lack of cooperation between the primary and secondary systems.

The research on the CSA system with SUs being equipped with single antenna
mainly focuses on the analysis of secondary channel capacity. It has been shown
that the capacity of secondary system with fading channel exceeds that with addi-
tive white Gaussian noise (AWGN) channel, under the interference power constraint
[11]. The reason lies in that the fading channel with variation can provide more
transmission opportunities for the secondary system. For flat-fading channel, the
secondary channel capacity under the peak and the average interference power con-
straints are studied in [12], whereas the ergodic capacity and the outage capacity
under various combinations of the peak/average interference power constraint and
the peak/average transmit power constraint are studied in [13]. It shows that the
capacity under the average power constraint outperforms that under the peak power
constraint, since the former one can provide more flexibilities for the SU transmit
power design. In [9], the ergodic capacity and the outage capacity under the PU-Rx
outage constraint are analysed. It shows that to fulfill the same level of outage loss of
PU-Rx, the SU can achieve larger transmission rate under the PU outage constraint.
With zero outage loss permitted, the SU still achieves scalable transmit rate with the
PU outage constraint. In [14], the primary channel information is exploited to further
improve the secondary performance. To predict the interference power received by
the PU-Rx, the CSI from the SU-Tx to the PU-Rx, which is referred to as cross chan-
nel state information (C-CSI), should be known by the SU-Tx. The mean secondary
link capacity with imperfect knowledge of C-CSI is addressed in [15]. To protect the
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PU under imperfect C-CSI, it is shown that the interference temperature should be
decreased, which thus leads to a decrement of secondary link capacity.

The use of multiple antennas provides both multiplexing and diversity gains in
wireless transmissions [16, 17]. In particular, its function of co-channel interference
suppression for multiuser transmission makes it a promising technique to enhance the
CSA performance [18]. Generally speaking, multiple antennas can provide the SU-
Tx in an CSA system more degrees of freedom in space, which can be split between
the signal transmission to maximize the secondary transmit rate and the interference
avoidance for the PUs. In [19], the multiple-input multiple-output (MIMO) channel
capacity of the SU in a multi-antenna CSA system has been investigated. It shows
that the primary protection constraint makes the methods proposed for the tradi-
tional MIMO system inapplicable for the CR transmit and receive design. Similar
to the single-antenna CSA, moreover, the C-CSI is critical for the transmit design
for interference avoidance in the multi-antenna CSA. In [20], it shows that when
the effective interference channel can be perfectly estimated, the interference power
received by the PUs can be perfectly avoided via cognitive beamforming. In [21], it
further shows that the joint transmit and receive beamforming can effectively improve
the secondary transmit rate by suppressing the interference produced by the PU-Tx.
The use of multiple antennas also facilitates the multiple access and the broadcasting
of secondary system [22]. Similar to the single-antenna case, due to the restriction of
both transmit power and interference power, the transmit and receive design for the
traditional multiple-access channel and the broadcasting channel in multi-antenna
system is inapplicable and thus should be revisited [23, 24]. Moreover, the design for
multi-antenna CSA should take into consideration the uncertainty in the estimated
channel [25, 26] and the security issue [27, 28].

In the remainder of this chapter, we first present the single-antenna CSA system
and discuss the optimal transmit power design under different types of power con-
straint to maximize the secondary channel capacity. Then, the multi-antenna CSA
is discussed and the transceiver beamforming is presented under the condition of
known and unknown related CSI. After that, the transmit and receive design for the
cognitive multiple-access channel and the cognitive broadcasting channel are pre-
sented, which is followed by the discussion of robust design for the multi-antenna
CSA. As an application of CSA in practice, the spectrum refarming technique is
presented. Finally, the chapter is concluded with a summary.

4.2 Single-Antenna CSA

The simplest but most fundamental CSA system is comprised by a pair of SUs
and a pair of PUs. Each of the terminals is equipped with single antenna. A single
narrow frequency band is shared by the primary and secondary transmission. All
the channels involved in the system are independent block fading (BF) channels. As
shown in Fig.4.1, gpp. gps» &sp and gss denote the instantaneous channel power gains
from PU-Tx to PU-Rx, PU-Tx to SU-Rx, SU-Tx to SU-Rx, and SU-Tx to SU-Rx,
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respectively. All the channel power gains are assumed to be independent with each
other and be ergodic and stationary with continuous probability density function.
In order to study the limit of the secondary channel capacity, we consider that the
instantaneous channel power gains at each fading state are available at the SU-Tx.
The AWGN at the PU-Rx and the SU-Rx is assumed to be independent circularly
symmetric complex Gaussian variables with zero mean and variance Ny. We consider
that the PU-Tx is not aware of the coexistence of SU, and thus adopts fixed transmit
power P,. Note that in practice, the transmission of SU can be noticed by the PU
since the interference power received by the PU is increased. To compensate its
performance loss, the PU can increase its transmit power. Thus, rather than being
fixed, the PU transmit power can be adaptive according the secondary transmission.
This property has been utilized in the CR design for indirectly exploiting the primary
system information [14].

4.2.1 Power Constraints

In this CR system, the SU-Tx needs to regulate its transmit power to protect the PU
service. There are mainly two categories of power constraints, which are the transmit
power constraint and the primary protection constraint.

(1) Transmit Power Constraint

This is a physical resource constraint that restricts the transmit power of the SU
according to its power budget. Let v = (gpp, &ps» &sp» &ss)» and the SU transmit power
under v be P(v). Given the maximum peak and average transmit power of the SU
as P, and P,,, respectively, the transmit power constraint can be formulated as
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P(v) >0, Yv “4.1)
P(v) < Py, Y “4.2)
E[P(v)] < Py 4.3)

Equation (4.2) is known as the peak transmit power constraint, which is used to
address the non-linearity of the power amplifier of SU. Equation (4.3) is known as
the average transmit power constraint, which describes that the power consumption
of the SU should be affordable in a long-term sense.

(2) Primary Protection Constraint

The transmission of SU is allowed only when the primary service can be well pro-
tected. Thus, the primary protection constraint should be properly formulated. This
constraint also differentiates the CR design from the traditional one which is solely
restricted by the physical resource constraint. Generally, there are two kinds of pri-
mary protection constraints:

e Interference power constraint: When the peak or average interference temperature,
which are respectively denoted by Q ,x and Q,,, can be known by the SU-TXx, the
primary protection constraint can be expressed as the interference power constraint,
i.e.,

gspP (V) < Opk, YV 4.4
ElgpP(V)] < Qv 4.5)

Equation (4.4) is known as the peak interference power constraint. It can be seen
that the PU under this constraint can be fully protected at any fading status; thus,
this constraint is suitable for protecting the delay-sensitive services. Equation (4.5)
is known as the average interference power constraint. Since this constraint only
protects the PU in a long-term sense, and there can be cases that the interfer-
ence power exceeds the interference temperature at some fading states. Thus, it is
suitable to protect the delay-insensitive services.

e Primary performance loss constraint: When the peak or average interference tem-
perature is not available, the primary protection constraint can be formulated as

&p < &9, (4.6)
Ar, <8, Yv (4.7)

IA

Equation (4.6) is known as the PU outage constraint [29], in which g; denotes
the target outage probability of the PU that should be maintained, and ¢, is the
outage probability of PU under the co-transmission of SU. Letting y, be the
target signal-to-interference-plus-noise ratio (SINR) of the PU, ¢, can be derived

_ 8o Pp
as 8p =Pr {gspP(V)+NO < )/P

constraint [10], in which & is the maximum rate loss that is tolerable by the PU.

}. Equation (4.7) is known as the primary rate loss
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Note that in either (4.6) or (4.7), the primary system information, including gy,
and P, should be known by the SU-Tx. Such information can be transmitted
from PU to SU if the cooperation between the two systems is available. When
the inter-system cooperation is unavailable, the authors in [14] propose a scheme
to allow the SU-Tx send probing signal which triggers the power adaptation of
primary system. By doing so, the information of primary system can be exploited
to improve the performance of secondary system.

Thus, the power constraints of the SU-Tx can be formulated as different combi-
nations of the transmit power constraint and the primary protection constraint, i.e.,

Fi1={P(v):4.1),42),44)}
Fa={P):4.1),4.2), 4.5)}
Fz={P):(4.1),4.3), (4.4}
Fa={PW):(4.1),4.3), 4.5}
Fs={P(v):(4.1),4.2),4.6)}
Fo ={P(v): (4.1), (4.3), (4.6)}
Fr={PW):(4.1),42), 47N}
Fs={P(v):(4.1),(4.3), 4.7}

4.2.2 Optimal Transmit Power Design

The transmit power of the SU can be optimized to achieve different kinds of secondary
channel capacity. Here, we discuss the optimization of the SU transmit power for
maximizing the ergodic capacity and minimizing the outage capacity of secondary
system under different power constraints, respectively.

(1) Maximizing Ergodic Capacity

The ergodic capacity of BF channels is defined as the achievable rate averaged over
all the fading blocks. Note that the interference from the PU-Tx to the SU-Rx can be
ignored or treated as AWGN, the ergodic capacity of the secondary system can be
expressed as

0

Cog = [mg2 <1 n wﬂ 4.8)

where the expectation is taken over v. Then, the achievable ergodic capacity under
different sets of power constraint can be formulated as

max_ Ce (P4-1)
P(VEF;
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(2) Minimizing Outage Capacity

The outage capacity of BF channels is defined as the maximum rate that can be
maintained over the fading blocks with a given outage probability. Equivalently,
given the outage capacity of the secondary system, denoted by 7y, the corresponding
outage probability can be expressed as

SSP
Pow = Pr {1og2 (1 + g—(”)) < ro} (4.9)
No

Thus, maximizing the outage capacity is equivalent to minimizing the outage prob-
ability given the target outage capacity, i.e.,

min_ pout (P4-2)
P(v)eF:

Solving P4-1 and P4-2 gives the following observations.

e P4-1 and P4-2 have structural optimal solutions. For example, in P4—1, under
the peak transmit and peak interference power constraints (%), P(v) = P, when

8p < % . When g, > Q"" , the optimal transmit power follows channel inversion
I

with gy, 1.e., P(v) = Q”k . This indicates that deep fading in the interference
channel is helpful to the secondary performance. Under the average transmit and
peak interference power constraints (73 ), the SU transmit power is capped by Q”k
and is decided by gy, and gy simultaneously. Specifically, the transmit power fis
higher when the interference channel suffers from deep fading while the secondary
signal channel is not faded. In P4-2, under the peak transmit and peak interference
power constraints (), P(v) has the truncated channel inversion structure which
is similar to the conventional fading channel [5]. The difference lies in that the
condition for channel inversion here is determined by both the secondary signal
channel and the interference channel, while that in [5] it is determined by signal
channel solely. Therefore, this power allocation strategy is also referred to as two-
dimensional-truncated channel-inversion (2D-TCI).

e For both problems, the average interference power constraint is superior to the peak
counterpart, as the former one provides more flexibility to the power allocation of
the SU. Specifically, with the average interference power constraint, more power
can be used when the interference channel experiences deep fading while the
secondary signal channel is not faded.

e For both problems, the primary performance loss constraint is superior to the peak
interference power constraint, since the SU can transmit more opportunistically
with the former constraint. Moreover, when no additional outage of the PU is
allowed, the SU transmission is not possible under the peak interference power
constraint. However, under the primary performance loss constraint, the SU trans-
mission is not only allowed, but also sustains capacity increase with the transmit
power.



94 4 Concurrent Spectrum Access

4.3 Cognitive Beamforming

The use of multiple antennas in wireless communication can achieve beamform-
ing gain. Specifically, receive beamforming can suppress interference, while trans-
mit beamforming can avoid interference. By equipping multiple antennas, the SUs
can jointly design the transmit precoding and transmit power to effectively balance
between the interference avoidance to the PU and the performance optimization for
the secondary link. Such a technique is known as cognitive beamforming (CB).

A model of CB is shown in Fig.4.2, where an SU-Tx transmits signal to the
SU-Rx by concurrently sharing the spectrum of primary system in which two PUs
communicate with each other. The SU-Tx is required to be equipped with more
than one antennas, and the other terminals can be equipped with one or multiple
antennas. Let M, M,, M, and M, be the number of antennas on PU,, PU,, SU-
Tx and SU-RX, respectively. The full-rank transmit beamforming matrix of PU; is
denoted by A; € CMi*4i where j € {1,2}, d; denotes the corresponding number
of transmit data streams and 1 < d; < M;. Then, the transmit covariance matrix
of PU; can be written as S; = A jAJH . The receive beamforming matrix of PU; is
denoted by B; € C4>*M; where j € {1,2}. The primary terminals are considered to
be oblivious to the SUs, and treat the interference from the SU-Tx as additional noise.
In the secondary system, the transmit beamforming matrix of the SU-Tx is denoted by
the full-rank matrix A, € CM«*% where d, < M. Then, S, = A A¥ is the transmit
covariance matrix of the SU-Tx. Finally, H € CMs>*Mx denotes the secondary signal
channel matrix and G; € CM+*M« denotes the matrix of interference channel from
the SU-Tx to PU;.

4.3.1 Interference Channel Learning

The beamforming design, no matter at the receiver side or the transmitter side, heavily
relies on channel matrix. The beamforming in the conventional multi-antenna system
with dedicated spectrum is designed based on the signal channel matrix. However,
the CB design needs the information of both the secondary signal channel matrix
and the interference channel matrix from the SU-Tx to the PUs. The CB design with
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Fig. 4.3 The two-phase
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perfect knowledge of interference channel matrix is studied in [30]. However, in
a CSA network, the primary system is usually legacy that has been deployed and
operating for a period of time. The primary and secondary systems can also belong
to different operators. Therefore, although sharing the same spectrum, it is hard for
the primary system to provide cooperation for the secondary system in terms of
estimating and sending back the information of interference channel. Thus, the key
problem for the practical CB is how to obtain the interference channel matrix at the
SU-Tx.

To get some knowledge of the interference channel, a viable way is to allow
the SU-Tx listen to the signal sent by the PUs before its own transmission, and
estimate the channel from the PUs to the SU-Tx. Since the system operates at time-
division duplex (TDD) mode, the estimated channel can be treated as the interference
channel from the SU-Tx to the PUs according to channel reciprocity. This process is
referred to as channel learning. The learning-and-transmission protocol is illustrated
in Fig.4.3, in which T is the frame length, 7 is the time duration used for learning
the interference channel and the remainder 7 — 7 is used for data transmission.

In the channel learning phase, the SU-Tx listens to the transmission of PUs on
the spectrum of interest for N symbol periods. The received signal can be written as

yn) = GI'A;x;(n) +z(n), n=1,...,N (4.10)

where j = 1 indicates that the signal is transmitted from PU;; otherwise j = 2. The
vector x(n) contains the encoded signals without power allocation and precoding.
Then, the covariance matrix of the received signals at the SU-Tx can be derived as

Q, = Ely(m)(y(n))"] = Q; + pol (4.11)

where Q, represents the covariance matrix due to the signals from the two PUs, and
pol is the variance matrix of AWGN noise. At the SU-Tx, only the sample covariance
matrix can be obtained, i.e.,

. 1 &
Q=7 Zly(nxy(n))*’ (4.12)

Denote Q, as the estimation of Q; that can be abstracted from Qy. The aggregate
“effective” channel from both PUs to the SU-Tx can be derived as

G =Q!” (4.13)
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It should be noted that the channel which has been estimated is the so called effective
interference channel (EIC) rather than the actual interference channel. This chan-
nel propagates interference to both of the PUs. Under the assumption of channel
reciprocity, EIC from SU-Tx to both PUs can be denoted by Geg.

4.3.2 CB with Perfect Channel Learning

In this part, the transmit beamforming at the SU-TX, including the transmit precoding
and power allocation, under perfect learning of EIC is discussed. In the EIC learning,
the noise effect on estimating Q, based on (A)y can be completely removed by choosing
a large enough N,ie., N — oo.

To avoid the interference caused by the SU-Tx to both of the PUs, the precoding
matrix of the SU-Tx should meet

GetA. =0 (4.14)

Denote dgr as the rank of Gegr. The eigenvalue decomposition (EVD) of Q; can be
written as Q;, = VIV, where V € CMaxder apnd ¥ is a positive degr X degr diago-
nal matrix. Letting U € CMs«*(Mu—det) gatisfies VZ U = 0, the transmit beamforming
matrix of the SU-Tx can be written as

A, =1UC!? (4.15)

where C!/? € CMs—de)xd: and d. denotes the number of transmit data streams of
the SU-Tx. C. satisfies C. > 0 and Tr(C.) < P,, where P, denotes the maximum
transmit power of the SU-Tx. Equation (4.15) indicates that the design of trans-
mit beamforming matrix for the CR channel is equivalent to the design of transmit
covariance matrix C, for an auxiliary multi-antenna channel, i.e., HU, subject to the
transmit power constraint, i.e., Tr(C.) < P;. This simplifies the design of C,, since
the existing solutions are available for this well-studied precoder design problem
(see [31] and the references therein).

When the conditions A;’Gj EB;G;,je{l,2} hold,! and one or both of the
PUs have multiple antennas but transmit only through a subspace of the overall spa-
tial dimensions, i.e., d; < min{M, M,}, the proposed CB scheme based on (4.15)
outperforms the “P-SVD” scheme proposed in [30] where G ’s are perfectly known
by the SU-TXx, in terms of the achievable degree of freedom (DoF) of CR transmis-
sion. The reason lies in that the Gg contains the information of A;’ G;. Based on
the condition Af G; C B;G;, G also contains the information of B;G. Thus, the
propose scheme can have a strictly positive DoF even when M| + M, > My, pro-
vided that d; + d» < M. In contrary, the B;G; is unknown in the P-SVD scheme.

Ix C Y means that for two given matrices with the same column size, X and Y, if Xe = 0 for any
arbitrary vector e, then Ye = 0 always holds.
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Therefore, the DoF becomes zero when M| + M, > M. In most practical scenarios,
it has (d; + d») < (M + M>), and thereby the DoF gain achieved by the proposed
scheme ((min(My, — d, — d2)*, My))is always no less than the DoF achieved by the
P-SVD ((min(My — M| — M»)™", M)). Moreover, the maximum DoF is achieved
when d; = d, = 0, i.e., the PU links are switched off.

4.3.3 CB with Imperfect Channel Learning:
A Learning-Throughput Tradeoff

In this part, the CB with imperfect estimation of EIC due to finite sample size is
discussed. With finite N, the noise effect on estimating Q, cannot be removed, and
thus error appears in the EIC estimation. Denote Geff as the estimated EIC with error.
Recall the two-phase protocol given in Fig.4.3. It can be seen that the number of
sample size N increases as the learning duration t increases. This improves the esti-
mation accuracy of Gefr, and therefore contributes to the CR throughput. However,
increasing the learning duration will lead to a decrement of data transmission dura-
tion, which harms the CR throughput. Given that the overall frame length is limited
by the delay requirement of the secondary service, there exists an optimal learning
duration that maximizes the CR throughput. This is the so called learning-throughput
tradeoff in the CB design.
To exploit the learning-throughput tradeoff, the optimization problem can be for-
mulated as
T—1

max
7,C,

sit. Tr(C))<J,C.>=0,0<t<T

log [T+ HUC.U"H/p, (P4-3)

where U is obtained from Geﬁ‘, and J is the threshold that considers the interference
power limit and the transmit power limit. In what follows, we present the imperfect
estimation of EIC and the derivation of J.

(1) Imperfect Estimation of EIC

Since Geff depends solely on QY, we derive QS based on (A)y, whose EVD is

Q, =T,A,T# (4.16)
where ZA\y = Diag(il, iz, R ):MS[) is the eigenvalue matrix of Qy. Then, we con-
sider two cases:

e With known noise power: When the noise power py is known, the estimation of
Q, based on the maximum likelihood criterion can be written as
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Q. =T,Diag (G — )" ... Gas, — o)) T “.17)

whose rank is dAeff. The first dAeff columns of ’i‘y give the estimate of V, and the last
Mg — cfeff columns of ’i‘y give U. This will be used to design the CB precoding
matrix.

e With unknown noise power: When the noise power po is unknown, the noise power
should be estimated along with QA By obtaining g, deft, V and U the maximum
likelihood estimate of Qg can be derived as

Qs = VDiag (il — /30, ey it?err — ,50) ‘A’H (418)

which has the same structure with (4.17).
With QS being derived, the estimate of EIC can be determined according to (4.13).
(2) Interference Leakage to PUs

Since the estimated EIC is imperfect, there will be interference power leaked to the
PUs. Thus, the power constraint Tr(C,) < J should consider the interference leakage
and transmit power limit simultaneously. Based on the CB design in (4.15) with U
being replaced with U, the precoded transmit signal at the SU-Tx can be written as
S.(n) = IAJCCI./ 2tC (n),n > N. Then, the average interference leakage to PU; can be
expressed as

I; = E[|B;G;s.(n)||*] (4.19)

The normalized interference leakage with respective to poTr(B; Bf’ ) is then upper
bounded by

H
i< Tr(C,) )\max(GjGj )

< (4.20)
' 7 a;N Amin(AY GG A))

where «; is defined as E [%], and N; is the number of samples during the trans-

mission of PU;. The upper bound of the average interference leakage in (4.20) has
some interesting properties:

o The upper bound is finite, since a; > 0;

e The upper bound is invariant with any scaler multiplication with G ;. This means
that the normalized interference received by each PU is independent with its posi-
tion.

e The upper bound is inversely proportional to the number of samples and the trans-
mit power of the PU. Therefore, the PU with longer transmit time within the
learning duration and/or with higher transmit power will suffer from less interfer-
ence. This is the main principle based on which the SU-Tx designs a fair transmit
scheme in terms of distributing the interference among PUs.



4.3 Cognitive Beamforming 99

With the upper bound of interference leakage, the SINR of PU;, denoted by y;, can be
derived. Let y = rr{l%n2 }{y i}. The threshold J in the constraint of P4-3 can be derived
Jell,

as J = min (P,, y t) with peak transmit power constraint, and / = min (% P, yr)
with average transmit power constraint.

After U and J are determined, P4-3 can be solved. It can be seen that by intro-
ducing learning phase before data transmission, the multi-antenna SU-TX is able to
estimate the interference channel information which is indispensable for interference
control, and has a good balance between the interference avoidance and throughput
maximization.

4.4 Cognitive MIMO

In this section, we exploit multi-antennas at the secondary terminals to effectively
balance between the spatial multiplexing at the SU-Tx and the interference avoidance
at the PUs. The main challenges to be addressed include:

e The spatial spectrum design for the SU-Tx under the condition that the secondary
signal channel and the interference channel are perfectly known;

e The joint transmit and receive beamforming for the SUs to avoid interference to the
PUs and suppress interference from the PUs simultaneously, under the condition
that the secondary signal channel and the interference channel are unknown.

The model of the cognitive multiple-input multiple-output (MIMO) system is
shown in Fig.4.4, where a pair of SUs shares the same spectrum with K primary
users. The number of antennas of PU k is denoted by M}, and the number of antennas
of the SU-Tx and that of the SU-Rx are denoted by My and My, respectively. The
single-band frequency is shared by the primary and secondary systems. H € CMs*Msx

denotes the secondary signal channel matrix and G; € CM~*Ms« denotes the interfer-
ence channel matrix from the SU-Tx to PUy.
Fig. 4.4 The model of
cognitive MIMO system « Y_
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4.4.1 Spatial Spectrum Design

In this part, we discuss the spatial spectrum design for the SU-Tx to optimize the CR
throughput and avoid the interference to the PUs. To exploit the performance limit,
we consider that the channel matrices from the SU-Tx to the SU-Rx and that from
the SU-Tx to each PU are perfectly known by the SU-Tx. Let x(n) be the transmit
signal vector of the SU-Tx, which has been encoded and precoded. The received
signal at the SU-Rx can be represented by

y(n) = Hx(n) + z(n) 4.21)

where z(n) is the AWGN vector with normalized variance I. Let S be the trans-
mit covariance matrix of the secondary system. It has S = E[x(n)x(n)"] where the
expectation is taken over the codebook. Assuming that the ideal Gaussian code-
book with infinitely large number of codeword symbols is used, it has x(n) ~
CN(0,S),n =1,2,.... Then, by applying EVD, the transmit covariance matrix
can be written as

S=vzVv# (4.22)

where V € CMs* ig the precoding matrix with VV# =1, and d, < My is the length
of transmit data stream. d, is usually referred to as the degree of spatial multiplexing
because it measures the number of transmit dimensions in the spatial domain. When
d. = 1, the transmit strategy is known as beamforming, while when d, > 1, it is
known as spatial multiplexing. The transmit power of the SU-Tx is limited by its
power budget P;. Thus, the transmit power constraint can be formulated as Tr(S) <
P;. Letting g ; € C'™Ms be the channel vector from the SU-Tx to the jth receive
antenna of the kth PU, ithas G, = [ngq1 s g,{ M, ] T. Then, two kinds of interference
power constraint can be formulated:

e Total interference power constraint: If the total interference power received by all
the receive antennas of each PU is limited, the interference power constraint can
be formulated as

Tr(G«SGf) < Qi k=1,...,K (4.23)
where Qy is the total interference temperature of PUy.
e Individual interference power constraint: If the individual interference power
received by each antenna of the PU is limited, the interference power constraint
can be formulated as

gk,]Sg;Z] qu’ .]= 1,...,Mk, k= 17""K (424)

where gy is the individual interference temperature of PUy on each of its antennas.
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Then, the problem that aims to maximize the secondary capacity by optimizing
the spatial spectrum S of the SU-Tx can be formulated as
max log, [T+ HSH"| (P4-4)

s.t. Tr(S) < P,
(4.23) or (4.24)
S>0

In what follows, we will discuss the solving of P4-4.

4.4.1.1 One Single-Antenna PU

When K = 1 and M; = 1, there is only one single-antenna PU in the primary system.
In this case, the channel from the SU-Tx to the PU is a multiple-input single-output
(MISO) channel which can be represented as g € C'*Ms«_ Then, P4-4 can be simpli-
fied as

max log, [T+ HSH” | (P4-5)
s.t. Tr(S) < P,

gSg” <q

S>0

where g denotes the interference temperature of the PU. To solve this problem, we
consider the following two cases.

(1) MISO Secondary Channel, i.e., My = 1
In this case, H can be written as h € C'*M«_ and the rank of S is one. This indicates
that beamforming is optimal for the secondary transmission, and S can be written as
S = vv, where v € CM+*! Then, P4-5 can be simplified as
max log, (1 + [hv]?) (P4-6)
v
st v|* < P,

lgvl® <q

(2) MIMO Secondary Channel, i.e., Mg > 1

In this case, the rank of S is larger than one, and thus spatial multiplexing is optimal
instead of beamforming. In general, there is no closed-form solution of the optimal
S. Thus, two suboptimal algorithms that achieve the closed-form solution of S are
proposed as follows.
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e D-SVD:
Direct-channel SVD (D-SVD) method applies singular value decomposition
(SVD) to the secondary signal channel matrix, which can be expressed as
H = QA'/2U". Thus, the precoding matrix V can be obtained as V = U. Let
M; = min{My, My}. The optimal power allocation p = [py, ..., M] can be
obtained by solving

M;
max Z log,(1 + pi2i) (P4-7)

i=l

M
s.t. Zpi <P
i=1

M

Z“il’i =q
i=l

p=0

where A, is the diagonal element of A, o; = ||gu;||* and u; is the ith column of U.
The problem is shown convex and the closed-form optimal p; is given by

! N oM (4.25)
i = _ ,l=1,..., s .
b vt+ain A

where v and p are the nonnegative dual variables associated with the transmit
power constraint and the interference power constraint, respectively. Therefore, it
can be seen that by using D-SVD method, the optimal power allocation for the
MIMO secondary channel follows multi-level water-filling form.
e P-SVD:

Projected-channel SVD (P-SVD) method applies SVD to the projected channel
of H, i.e., H = H{I — g8"") with § =g /||g||l. Applying SVD to H; yields
H =Q., AL/Z(U )" Thus, the precoding matrix V can be obtainedas V=U,,
and the optimal power allocation can be derived as

1 +
p,:(v_F) L= l.M, (4.26)

where Af‘ is the diagonal element of A and v is the dual variable associated
with the transmit power constraint. Here we can see that, by using P-SVD, it has
(U)Hg =0.SinceS = U, 2 (U,), wehave gSg” = 0, which indicates that the
interference power produced to the PU can be perfectly avoided.
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4.4.1.2 Multiple Multi-antenna PUs

With multiple PUs which are equipped with single or multiple antennas, the trans-
mission of the SU-Tx can be designed by considering the following two cases.

(1) MISO Secondary Channel, My = 1

Since the closed-form solution of the optimal S is hard to achieve in this case, efficient
numerical optimization method can be proposed to solve the equivalent problem:

max |hv|? (P4-8)
v

st VP < P,

IGvI®> < Ok, k=1,....K

Although both of the constraints in P4-8 specify convex set of v, the non-convexity
of the objective function makes the overall problem non-concave in its current form.
However, we can observe that given any value of 8, ¢/%v satisfies the constraints of
P4-8, if v satisfies these constraints. At the meantime, the objective value is main-
tained. Thus, we can assume that hv is a real number, and P4-8 can be transformed to

max Re(hv) (P4-9)
v
s.t. Im(thv) =0
IviI* < P,
IGWvI* < Ok, k=1,.... K
This problem can be cast as a second-order cone programming (SOCP) [32], which
can be solved by standard numerical optimization software.
(2) MIMO Secondary Channel, i.e., Mg > 1

In this case, the D-SVD and the P-SVD methods which are proposed for the one
single-antenna PU can be used. Specifically, the multi-level water-filling power allo-
cation by using D-SVD in this case becomes

+
1 1 )
pi = _ ——> Li=1.2,... M, (4.27)
(” + D o i Wik A

where a; ;= |lg, jw; II>. v and i are the non-negative dual variables associated
with the transmit power constraint and the interference power constraint for PUy,
respectively. For P-SVD method, we construct the matrix of channel from the SU-Tx
to all primary receivers/antennas, denoted as G € CM*Ms by taking each g, j as the

(Zi,zl My_1 + j)th row of the matrix. Then, the SVD of G = [GT, ..., G%]" can

be expressed as G = QGAg 2Ug . Thus, given My > M, (otherwise, the projection
will be trivial), the projection of H can be expressed as H; = HI — UgU%).
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Fig. 4.5 The three-phase protocol for the cognitive MIMO system

4.4.2 Learning-Based Joint Spatial Spectrum Design

In this part, we investigate the cognitive MIMO by solving the two problems:

e The secondary signal channel and the interference channel are unknown;
e The interference from the PUs is suppressed by designing the spatial spectrum at
the SU-Rx.

For simplicity, we consider there are two PUs in the primary system, i.e., K = 2,
and only one of the PUs is located within the coverage of secondary transmission.
However, the proposed method is applicable without this assumption by using the
EIC which has been introduced in the previous section.

To enable the CR transmission, a three-phase protocol is proposed as shown in
Fig.4.5, whose interpretation is as follows.

e Channel Learning Stage: A duration of 1; is used for channel learning, in which the
SU-Tx and SU-Rx gain partial knowledge on the interference channel G; and G,
via listening to the transmission of the PUs. Specifically, the SUs blindly estimate
the noise subspace matrix from the covariance matrix of the received signal. It
should be noted that, due to the finite number of samples, perturbation inevitably
appears in the noise subspace matrix.

e Channel Training Stage: Since the secondary signal channel is unknown by the
SU-TXx, in the training stage with duration of t;, the SUs estimate the channel after
applying joint transmit and receive beamforming. By considering the interference
to and from the PUs, the optimal training structure can be derived to minimize
the channel estimation error. It is noted that the channel to be estimated is not the
actual channel from the SU-Tx to the SU-Rx, but is the effective channel, which
contains the information of transmit and receive beamforming matrices and the
actual signal channel.

e Data Transmission Stage: With the interference channel information learnt in the
first stage and the signal channel information estimated in the second stage, the SU-
Tx transmits signal during the data transmission stage with lengthof T — ; — 7;.

Itis worth noting that the parameter 7; plays an important role in the CR performance.
Intuitively, a larger t; might be preferred in terms of better space estimation, so
that the interference to and from the PUs can be minimized. However, increasing
learning time will decease the data transmission time, if the training duration is fixed.
This harms the CR throughput. Moreover, taking the interference constraints into
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consideration during training and data transmitting, the freedom of power allocation
isreduced. Thus, to investigate the CR performance, the lower bound of the secondary
ergodic capacity is evaluated, which is related to both the channel-estimation error
and the interference leakage to and from the PUs [33]. The lower bound of the CR
ergodic capacity is then maximized by optimizing the transmit power and the time
allocation over learning, training and transmission stages. A closed-form optimal
power allocation can be found for a given time allocation, whereas the optimal time
allocation can be found via two-dimensional search over a confined set [21].

4.5 Cognitive Multiple-Access and Broadcasting Channels

In the previous sections, the CR system under investigation has only one pair of
SUs. In this section, we present the CR system that contains multiple transmitters
or receivers, which forms the cognitive multiple-access channel (C-MAC) and the
cognitive broadcasting channel (C-BC), respectively.

4.5.1 Cognitive Multiple-Access Channel

In some practical scenarios, there are multiple SUs concurrently transmit signals to
their common receiver, such as the base station (BS) in the cellular networks or the
WiFi access point (AP). Such a secondary system can be modelled as the C-MAC as
is shown in Fig. 4.6. In this model, N SUs concurrently transmit signals to the BS by
sharing the primary spectrum. There are K PUs, each of which is equipped with single
antenna. To enable the multi-access of the SUs, the BS is equipped with M, receive
antennas. Denote H = [hy, ..., hy] € C¥*N and H = [h,, ..., hg] € CM*K a5
the channel matrices from the SUs and the PUs to the BS, respectively. The signal
vector received by the BS can be written as

y=Hx+HX +z (4.28)

where x and X are the vectors of transmit signal from the SUs and the PUs, and z is
the AWGN vector whose entries are assumed to be with zero mean and variance Nj.
Then, the following two optimization problems can be formulated.

(1) Sum-Rate Maximization Problem

With the aim of maximizing the total transmission rate of all the N SUs, the sum-rate
maximization problem for the single-input multiple-output multiple-access channel
can be formulated as
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Fig. 4.6 The system model g
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Up
n=1
st. pp <P,n=1,...N 4.29)
glp<Ow k=1,....K (4.30)
where U = [uy, ..., uy] with u; denoting the beamforming vector of SU;, and r; is

the information rate of SU;. Equation (4.29) is the peak transmit power constraint
with P, being the maximum allowable transmit power. Equation (4.30) indicates the
interference power constraints where g; is the channel power gain from the SUs to
PU; and Qy is the interference temperature of PU;. Using the zero-forcing based
decision feedback equalizer (ZF-DFE) at the BS and applying QR decomposition to
the channel matrix H, the channel can be decomposed as independent subchannels,
each of which is associated with one SU. This receiver can thus be viewed as receive
beamforming, where the beamforming vector is determined by the QR decomposition
of H. Thus, only the power vector p is remained to be optimized, and the objective of

the problem can be rewritten as max Zflv:l log (1 + ”;,—ﬁ‘), where A, is the effective
P

channel gain.

In P4-10, if the interference constraints are replaced with the single sum transmit
power constraint, the optimal power allocation can be derived as the conventional
water-filling solution. The multiple interference power constraints complicate the
solving of the problem, and thus, we solve the problem by considering the following
two cases.

e Single-PU case: When there is only one PU, and thus there remains one interfer-
ence power constraint, the optimal power allocation follows water-filling form.
Different from the conventional water-filling power allocation which has a com-
mon water level, this solution has different water levels for different SUs. More-
over, each water level is upper-bounded by the individual maximum allowable
transmit power. Therefore, this power allocation scheme is also referred to as
capped multi-level (CML) water-filling. Figure4.7 gives an example of the CML
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Fig. 4.7 The CML water cap -
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water-filling, where we can see that the power allocated to each SU is limited by
the minimum value between its specific water level and the water cap.

e Multiple-PU case: The method to solve P4-10 with multiple interference con-
straints is summarized as follows. The method first removes the non-effective
interference constraints. Suppose m effective constraints remain. It starts with the
sub-problems with a single interference constraint. For the case of i constraints, we
select i out of N constraints (thus, there are Cfﬂ combinations) and check whether
the solution of the sub-problems also satisfies the remained (m — i) constraints.
If yes, this solution is globally optimal; otherwise, we continue to search the case
of (i +1).

(2) SINR Balancing Problem

Taking the fairness among the SUs into consideration, the SINR balancing problem
is formulated as

n un7
max min 728 P (P4-11)
U,p 15)’1 SN J/nTO

s.t. (4.29), (4.30)

where y, o is the target SINR of SU,, and y,, (u,, p) is the SINR of SU,, which can be
derived as

H
Pnly, R,u,

ulfl (Zi;&n piRi + NOI + Z}le ﬁkﬁk) u,

va(u,, p) = (4.31)

where R; = h;h//, R; = hyh/’ and p; is the transmit power of PU. By investigating
the property of P4-11, we can see that (1) the N power constraints and K interference
constraints can be equally treated; (2) there is only one dominant constraint in the
problem, and thus the problem can be decoupled into (N + K) sub-problems each
of which is with single constraint; (3) the sub-problems can be sequentially solved,
which profoundly reduces the complexing of the algorithm. In fact, when one solution
of a sub-optimal problem is obtained, we can check whether it satisfies the other
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Fig. 4.8 The system model
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constraints. If yes, it can be treated as the global optimum without solving the other
sub-problems.

4.5.2 Cognitive Broadcasting Channel

When a BS is equipped with M, antennas and broadcasts information to N SUs,
cognitive broadcasting channel (C-BC) is built. A typical C-BC model is shown in
Fig.4.8, in which g denotes the vector of channel from the BS to the PU. The SU,,
has M, antennas. The precoding design for the C-BC is different from that for the
conventional MIMO-BC, because the transmission of the BS is restricted not only by
a sum-power constraint, but also by an interference power constraint. In literatures,
the MIMO-BC precoding design is solved by establishing the BC-MAC duality.
As one type of BC-MAC duality, the conventional BC-MAC duality is proposed to
derive the capacity region of MIMO-BC under a sum-power constraint [34, 35]. As
another type of BC-MAC duality, the minimax duality can obtain any boundary point
of a broadcasting channel capacity region under the single sum-power constraint or
multiple linear transmit covariance constraints (LTCC) [36, 37]. For solving the C-
BC precoding problem which is restricted by both of the sum-power constraint and
the interference power constraint, the general BC-MAC duality is proposed which
handles the multiple general LTCCs and simplifies the problem formulation [24].
The general LTCC is expressed as

Tr(QA) < J (2.32)

where Q is the transmit covariance matrix, A is a positive semidefinite matrix, and
J is a predefined threshold. The general LTCC includes various practical power
constraints, such as

e Total transmit power constraint: if A is an identity matrix;
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e Individual transmit power constraint: if A is a diagonal matrix in which one of
the diagonal elements is one and the others are zeros;

o Interference power constraint: if A = gg” where g is the vector of channel
response from the SU to the PU.

Then, the C-BC precoding problem can be formulated with subject to any com-
bination of the above constraints. For demonstrating how to transform the C-BC
precoding problem to its dual C-MAC problem, we take the following weighted
sum-rate maximization problem as an example.

N

max Wyt P4-12

12 ; (P4-12)
N

st Y Tr(U)) < P

n=1
N
> g"Ulg=<0

where r,, and w,, are the achievable rate and the weight coefficient of SU,,, respectively.
Uf’ denotes the precoding matrix of the BS. By applying the general BC-MAC duality,
non-negative auxiliary variables ¢, g, are introduced, with which P4-12 can be
transformed to

gnqrul max Z Wyl
s.t. qu (Z Tr(U?) — P) +q; (Z ghtulg — ) <0
n=1
Letting J = g, P + ¢, Q, the equivalent C-BC problem can be written as
max anrn
5.1 g ZTr(U )+ g ZgHUbg <J

n=1 n=1

based on which the dual C-MAC problem can be written as
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sty Te(Uho? < J

n=1

where the noise covariance matrix is ¢,gg” + ¢,1.

4.6 Robust Design

The CSI, including the C-CSI and S-CSI, is critical for the CR system to control
interference and optimize its performance. In practice, the CSI obtained by the SU
is normally imperfect, for which robust design is needed to be identified so that
the cognitive transmission strategy is less sensitive to the uncertainty in the CSL
In the literature, there are a few of related robust designs. One kind of ideas is
to design the robust beamforming so that a high probability that the interference
power constraint is satisfied can be achieved. Another kind of ideas is to model
the uncertainty in related CSI with boundary and design the robust beamforming to
guarantee the interference power constraint. In this part, we consider two scenarios,
i.e., only the C-CSI contains uncertainty [38] and both of the C-CSI and S-CSI
contain uncertainty [26], respectively.

4.6.1 Uncertain Interference Channel

To focus on the uncertainty in the interference channel, we consider that the secondary
S-CSI is perfectly known by the SU-Tx, and the uncertainty in the interference
channel is caused by the PU in moving environment or caused by the indistinguishable
PU-Rx due to mutual transmission between two PUs in TDD mode. In both cases,
the PU can be protected by considering that the degree of arrival (DoA) varies within
a certain range. The model of the system can be referred to Fig. 4.9 by letting K = 1
and N = 1, meaning that there is a single PU and a pair of SU-Tx and SU-Rx. To
characterize the interference channel, we use the spatial multipath model. Let L and
6@ be the number of multipaths and the DoA of the /th path, respectively. The fading
coefficient of the /th path can be denoted by «;. Then, the channel from the SU-Tx
to the PU can be expressed as

L
g=) aa@®") (4.32)

=1
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where a(6?")) is the steering vector of the /th path. Note that given the angular
spread of the PU, denoted by Ay, the range of the DoA can be written as 8¢ ¢
[0 — Ay /2, 0+ Ag /2], where g is the nominal DoA with respect ot the SU-Tx
antenna array. Generally, if the DoA region of the PU, denoted by ® = [0}, 6,], can
be perfectly known, we canset® — Ag/2 = 6, and 6 + Ay/2 = 6,.1f © is unknown,
we can choose a larger angular spread for estimating the position of the PU so that
sufficient protection to the PU can be provided. The rate optimization problem with
the aim of maximizing the secondary throughput can be formulated as

max r (P4-13)

w
s.t. [afOPywi? <0, voP e ©

2
[wi® <1

where r is the downlink rate that achieved by the secondary transmission, which can
be derived as r = |h" w|?. The first constraint is the interference power constraint
and the second constraint is the transmit power constraint in which the maximum
peak transmit power is normalized as one. Thus, similar to P4-8, the problem can be
transformed to

max Re[h” w]

s.t. Im[hf'w] = 0,

la” (0V)yw| < /0, VI
wl* < 1 (4.33)

Such a robust beamforming design can allocate the majority of the SU transmit power
along the SU-Rx DoA with refraining the transmit power along the DoA of the PU
below the interference temperature.

4.6.2 Uncertain Interference and Secondary Signal Channels

This part discusses the robust beamforming design for a multi-user MISO system to
address the uncertainty in both of the C-CSI and the secondary S-CSI. Only partial
knowledge of these channels are available. As shown in Fig.4.9, the SU-Tx with M
antennas transmits independent signal to the N SU-Rx’s, each of which is equipped
with single antenna. The channel from the SU-Tx to the nth SU-Rx is denoted by
h, € CM*!, The uncertainty in h, is described by the Euclidean ball

H, = {h S Jh— b, < an} (4.34)
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Fig. 4.9 The system model for robust design

where fln is the actual channel to the nth SU-Rx, and §,, > O is the radius of the
Euclidean ball. Then, the channel from SU-TX to the nth SU-Rx can be modelled as

h,=h,+a,, n=1,...,N (4.35)

where a,, is anorm-bounded uncertainty vector with ||a, || < §,. Similarly, the channel
from the SU-Tx to PU; can be modelled as

g =g +bi, k=1,....K (4.36)

and the uncertainty set of g is G;. Denoting the SU-Tx precoding matrix by W =
Wi, ..., wy] € CKXV the total transmit power of the SU-Tx, denoted by P;, can be
derived as E[||x]|2] = 3N, [lw,|1%. At the receiver side, the SINR at the nth SU-Rx
Iw,h,[*
No+Y0%, ., Wi, 27
by Pi’;n, can be derived as Z,],V=1 |wi g, |2. With T,, and Q; representing the target
SINR of the nth SU-Rx and the interference temperature of PUy, the beamforming
design problem can be formulated as

can be derived as y,, = The interference received by PUy, denoted

min Py (P4-14)
w

s.t. vy, >T,, Yh e H, and Vn
P* < Ok, Vg € Gy and Vk

int —=
This problem aims to minimize the transmit power of the SU-Tx with guaranteeing
the QoS requirement for each SU-Rx and keeping the interference received by each
PU below its interference temperature. Note that the constraints should be satisfied
under all possible channel conditions with the bounded uncertainty. In another word,
the QoS of SUs and the interference constraints should be satisfied for the worst case,

i.e., the constraints can be transformed as min y,, > I';,, Vn and max Pl'f1t < O, Vk.
h,eH, 2c€Gk

Thus, before solving P4-14, the problem min Y, and max Pi]fu should be solved first.
h, eH, 81 €Gk
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For solving these problems, loose bounds, strict bounds and exact robust methods
are proposed in [26], which shows that the robust design allows the SU-Tx transmit
with higher power than the non-robust design, and thus can achieve better secondary
performance.

4.7 Application: Spectrum Refarming

Applying the CSA technique in cellular networks is by no mean a trivial task
[39]. Although the resource allocation for the traditional cellular networks has been
extensively investigated both in single-cell [40] and multi-cell scenarios [41], the
spectrum sharing among cellular networks is challenging due to the additional inter-
ference power constraint. Moreover, the concrete characteristics of each cellular net-
work, such as the infrastructure deployment and the radio access technique (RAT)
profoundly affect the CSA design. Quite a few of literatures have investigated the
spectrum sharing between systems with the same RAT. For example, an orthogonal
frequency division multiple access (OFDMA) secondary system shares the spectrum
of an OFDMA primary system, or both of them are CDMA-based. In fact, due to
the explosive growth of the fourth generation (4G) wireless traffic, spectrum sharing
among OFDMA systems will be increasingly difficult as the 4G licensed spectrum
has been crowded. In addition, since the 4G wireless network outperforms the second
generation (2G) and the third generation (3G) in terms of peak data rate, latency and
throughput, the legacy subscribers have been migrating to the 4G cellular networks.
The out-moving of the legacy users decreases the utilization of the legacy licensed
spectrum, which thus provides sharing opportunity for the 4G networks. To this
end, the CSA between different generations of cellular networks, which is known as
spectrum refarming (SR), attracts more attentions in recent years.

There are two SR models, i.e., the opportunistic SR model and the concurrent SR
model, which are developed based on OSA and CSA, respectively.

e Opportunistic SR allows the OFDMA system dynamically access the spectrum
hole in the legacy bands. Due to the narrowband nature of global system for mobile
communications (GSM), the SR on GSM spectrum belongs to this model. As the
traffic of GSM decreases, there exist idle subbands that can be opportunistically
accessed. The authors in [42] proposed an Long-Term Evolution (LTE)/GSM SR
by reserving partial subbands for GSM transmission and controlling the transmit
power for both GSM and LTE to refrain the inter-technology interference. This
model was further extended to the heterogeneous cellular networks where the
OFDMA small cells access the idle spectrum of the GSM macrocell [43].

e Concurrent SR allows the different generations of networks co-transmit at the same
legacy band, provided that the primary system can be protected. The SR between
the OFDMA and CDMA systems belongs to this model, due to the wideband
nature for both systems. Since the channel destroys the orthogonality among the
CDMA users, there exists inter-user interference which is related to the number
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of CDMA users [44]. When the number of CDMA users decreases, each CDMA
user will experience less inter-user interference. Thus, they can tolerate an amount
of interference introduced by the OFDMA system, with which the target SINR of
the CDMA user can be maintained.

In what follows, we discuss the OFDMA/CDMA concurrent SR. The key challenges
to be addressed include: (1) Quantification of interference temperature: In related
literatures, the interference temperature is usually given as a predefined threshold
without any justification [45, 46]; (2) Joint optimization of the primary and sec-
ondary resource allocation: By taking the interference from the PU-Tx to the SU-Rx
into consideration, the primary and secondary power allocation can be jointly opti-
mized through exploiting the primary inner power control scheme. (3) Robust power
allocation: Without the information of C-CSI, robust power allocation should be
designed for the OFDMA system to provide sufficient protection to CDMA users.
The study also extends to the SR of multi-band CDMA system [47] and the hetero-
geneous SR systems [48, 49].

4.7.1 SR with Active Infrastructure Sharing

For the easy of deployment, the OFDMA can share the same cell site and same BS
antenna with the CDMA system, as shown in Fig.4.10 (Scenario I). This kind of
infrastructure sharing is known as active infrastructure sharing. Take the wideband
CDMA uplink as an example. In practice, it operates at a 5 MHz bandwidth with the
chip rate of 3.84 Mcps. The spreading gain can vary from 2 to 256 [50]. The LTE can
adopt 256 subcarriers when working at 5 MHz mode with subcarrier spacing of 15
kHz. The sampling rate is thus 15 kHz x 256 = 3.84 MHz that equals the wideband
CDMA chip rate. Thus, the two systems can easily get synchronized with the same
clock reference.

(1) Quantification of Interference Temperature

To quantify the interference temperature provided by the CDMA users, the SINR of
CDMA users with the interference from OFDMA system should be derived. Given
the number of CDMA users (denoted by U) and the spreading gain (denoted by N),
the SINR of CDMA user is determined by the specific spreading codes assigned
among users and the instantaneous S-CSI of the CDMA system. Due to the lack of
cooperation between the CDMA and OFDMA systems, these information is unknown
by the OFDMA system, and thus it is hard for the OFDMA system to predict the
CDMA SINR. By considering a large-dimension system where U, N — oo and %
approaches a finite constant, the SINR of the CDMA users approaches an asymptotic
value which is independent with the specific codes and instantaneous S-CSI. Thus,
by limiting the asymptotic SINR to be no less than the target SINR, the closed-form
interference temperature can be obtained [51].
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Fig.4.10 Different scenarios of the concurrent SR. Scenario I: SR with active infrastructure sharing;
Scenario II: SR with passive infrastructure sharing; Scenario III: SR in heterogeneous networks

(2) Joint Resource Optimization of CDMA and OFDMA Systems

Note that the interference temperature of the CDMA system is a function of the trans-
mit power of the CDMA user. A larger transmit power provides a higher interference
temperature but also introduces higher interference to the OFDMA user. Thus, there
exists an optimal CDMA transmit power to maximize the OFDMA throughput. An
efficient algorithm was proposed in [52] to solve the joint resource optimization of
the CDMA and OFDMA systems by investigating the convexity of the problem over
the CDMA transmit power and the OFDMA resource allocation. Moreover, although
the transmit power of CDMA and OFDMA systems are jointly optimized, it is unnec-
essary to inform the CDMA user with the optimal value of the transmit power in
practice. In fact, once the OFDMA system operates with its optimal transmit power
and subcarrier allocation, so as the CDMA system due to the inner power control of
the CDMA system.

4.7.2 SR with Passive Infrastructure Sharing

Passive infrastructure sharing refers to the sharing of passive elements in their radio
access networks, such as cell sites. When the SR technique is applied with passive
infrastructure sharing, the licensed legacy system and the unlicensed system are
equipped with separate BS antennas, as shown in Fig.4.10 (Scenario II). Intuitively,
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this additional BS antenna should bring along more diversity that can be exploited by
the OFDMA system to improve the refarming performance [11, 53, 54]. However,
without active participation of the legacy system, it is difficult to obtain the C-CSI,
which is the necessary information for the OFDMA system to predict the produced
interference.

To solve this problem, a robust resource allocation scheme was proposed in [55],
where the S-CSI of the OFDMA system is used as the C-CSI to predict the interfer-
ence power. It has been proved that under this scheme, the CDMA service can be
over-protected, i.e., the actual interference power is always no larger than the inter-
ference temperature. Furthermore, to fully utilize the interference temperature, an
iterative resource allocation scheme is proposed which gradually increases the trans-
mit power of OFDMA users until the actual interference received by the CDMA
system reaches the interference temperature.

4.7.3 SR in Heterogeneous Networks

To provide high throughput and seamless coverage for the wireless communications,
small cells have been proposed to overlay the existing cellular networks [56]. Con-
ventionally, small cells are deployed to share the radio spectrum by using the same
RAT with the macrocell [57, 58]. By doing so, the small cells can offload macrocell
traffic directly. However, they inevitably introduce interference to the macrocell users
and thus degrade their performance. To address this problem, SR in heterogeneous
networks is a viable solution.

Consider a heterogeneous network as shown in Fig.4.10 (Scenario III), where
multiple OFDMA small cells share the spectrum of CDMA macrocell. Specifically,
the downlink of small cells share the spectrum used for the CDMA uplink, since the
uplink traffic of the CDMA system is normally lighter than the downlink. By quan-
tifying the interference power produced by each small cell, the resource allocation
problem can be formulated, where the objective is to maximize the total through-
put of all small cells and the constraints are the total interference power constraint
and individual transmit power constraint. The problem is transformed to optimize the
transmit power and the allocation of interference temperature among small cells [48].

In practice, due to the limited signaling between the macrocell and the small cells,
the C-CSI between the small cell BS (SBS) and macrocell base station (MBS) is usu-
ally absent. Since the C-CSI accounts for the distance-based path loss, the small-scale
fading and the large-scale shadowing, only the latter two are to be determined, as the
distance between SBS and MBS is fixed and can be easily known from the global
geographical information. It is found that the optimal power allocation for the SR
heterogeneous networks is essentially independent with the fading and shadowing
components of the C-CSI and is only related to the distance-based path loss. There-
fore, the need of instantaneous information about the fading and shadowing of C-CSI
can be avoided.
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4.8 Summary

In this chapter, we have discussed the CSA technique by introducing the single-
antenna CSA system, the multi-antenna cognitive beamforming, the cognitive MIMO,
the C-MAC and C-BC, and the robust design for the CSA system. The application
of the CSA technique to operating the LTE cellular system on the legacy spectrum,
also known as the spectrum refarming, has been discussed. Several critical problems
in the CSA have been addressed, including the absence of the interference channel
and signal channel knowledge, the optimal beamforming and multiplexing, as well
as the interference avoidance and suppression.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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