Chapter 3
Spectrum Sensing Theories and Methods | ¢

Abstract Spectrum sensing is a critical step in cognitive radio based DSM to learn
the radio environment. Despite its long history, in the past decade, the study on spec-
trum sensing has attracted substantial interests from the wireless communications
community. In this chapter, we first provide the fundamental theories on spectrum
sensing from the optimal likelihood ratio test perspective, then we review the clas-
sical methods including Bayesian method, robust hypothesis test, energy detection,
matched filtering detection, and cyclostationary detection. After that, we discuss the
robustness of the classical methods and review techniques that can enhance the sens-
ing reliability under hostile environment. These methods include eigenvalue based
sensing method, covariance based detection method. Finally, we discuss the cooper-
ative sensing that uses data fusion or decision fusion from multiple senors to enhance
the sensing performance.

3.1 Introduction

As mentioned in Chap. 1, the basic idea of a cognitive radio is to support spectrum
reuse or spectrum sharing, which allows the secondary networks/users to communi-
cate over the spectrum allocated/licensed to the primary users (PUs) when they are
not fully utilizing it. To do so, the secondary users (SUs) are required to frequently
perform spectrum sensing, i.e., detecting the presence of the PUs. Whenever the PUs
become active, the SUs have to detect the presence of them with a high probability,
and vacate the channel or reduce transmit power within certain amount of time. For
example, in the IEEE 802.22 standard [1-3], it is required for the SUs to detect the
TV and wireless microphone signals and vacate the channel within two seconds once
they become active. Furthermore, for TV signal detection, it is required to achieve
90% probability of detection and 10% probability of false alarm at signal-to-noise
ratio (SNR) level as low as —20dB [1].

Spectrum sensing has reborn as a very active research topic in the past decade
despite its long history in signal detection field. Quite a few new sensing methods
have been proposed which take into consideration practical requirements and con-
straints. In this chapter, we first provide the fundamental spectrum sensing theories
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from the optimal likelihood ratio test perspective, then review the classical methods
including Bayesian method, robust hypothesis test, energy detection, matched filter-
ing detection, and cyclostationary detection. After that, we discuss the robustness
of the classical methods and review techniques that can enhance the sensing relia-
bility under hostile environment, including eigenvalue based sensing method, and
covariance based detection. Finally, we discuss the cooperative spectrum sensing
techniques that uses data fusion or decision fusion to combine the sensing data from
multiple senors.

3.1.1 System Model for Spectrum Sensing

We consider an SU spectrum sensor with M > 1 antennas. A similar scenario is
the multi-node cooperative sensing, if all M distributed nodes are able to send their
observed signals to a central node. There are two hypotheses: H, the PU is inactive;

and Hj, the PU is active. The received signal at antenna/node i,i =1,..., M, is
given by
Ho : xi(n) = ni(n) (3.1
Hi 2 xi(n) = s;(n) +n;(n) (3.2)

where 7; (n) is the received noise plus possible interference. At hypothesis Hj, s; (1)
is the received primary signal at antenna/node i, which is the transmitted primary
signal passing through the wireless channel to the sensing antenna/node. That is,
s; (n) can be written as

qi
sim) =Y hi(DFw) (3.3)
=0

where 5(n) stands for the transmitted primary signal, /; (/) and g; denote the propa-
gation channel coefficient and channel order from the PU to the i th antenna/node. For
simplicity, it is assumed that the signal, noise, interference, and channel coefficients
are all real numbers, though the theory and derivation can be directly extended to
complex signals in most of the cases.

The objective of spectrum sensing is to choose one of the two hypotheses, H
or H,, based on the received signal samples at the SU sensor. The probability of
detection, Py, and probability of false alarm, Py,, are defined as follows:

Py = P (H|H) 34
Py, = P (Hi|Ho) (3.5)

where P (-|-) defines the conditional probability. There are interesting physical mean-
ings for the above two probabilities: P; defines how well the PU is protected when



3.1 Introduction 43

it is using the spectrum, while Py, determines the opportunity the SU misses out
when the PU is not using the spectrum. In general, a sensing algorithm is said to be
“optimal” if it achieves the lowest Py, for a given P; with a fixed number of sam-
ples, though there could be other criteria to evaluate the performance of a sensing
algorithm.

In order to apply both space and time processing, we stack the signals from the
M antennas/nodes and L time samples to yield the following ML x 1 vectors:

x(n) =[x1(n)...xyy(n) x;(n —1)...xpy(n—1)

o.oxin—L+1)...xy(n—L+ D]’ (3.6)
sn)y =[s1(n)...spy(n) ssn—1)...sy(n—1)

oosin—L+1)...sy(n—L+ DT (3.7)
nn) =[mm)...num) mn—1)...nu(n —1)

o.omm—L+1)...gun—L+ D" (3.8)

Based on the above vector forms, the hypothesis testing problem can be reformu-
lated as

Hy:x(n) =9@n), n=0,...,N—1. (3.9)
H, :x(n) =s(n) +y(n), n=0,...,N—1. (3.10)

Accurate knowledge on the noise power anz is the key for many detection methods.
Unfortunately, in practice, the noise uncertainty always presents. Due to the noise
uncertainty [4-6], the estimated (or assumed) noise power may be different from
the real noise power. Let the estimated noise power be &,72 = ozanz. It is assumed
that o (in dB) is uniformly distributed in an interval [— B, B], where B is called the
noise uncertainty factor [5]. In practice, the noise uncertainty factor of a receiving
device is typically in the range from 1 to 2 dB, but the environment/interference noise
uncertainty can be much higher [5].

3.1.2 Design Challenges for Spectrum Sensing

The design of spectrum sensing methods in CR faces a few specific challenges
including, among others, the following.

1. Low sensing SNR: A cognitive radio may need to sense the primary signal at
very low SNR condition. This is to overcome the hidden node problem, i.e., a
SU sensor hears very weak signal from the primary transmitter but can strongly
interfere the primary receiver if it transmits (here the primary receiver looks like a
hidden node). To avoid such interference, one solution is to require the SU sensor
to have the capability to sense the presence of the primary signal at very low SNR.
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For example, in the 802.22 standard, the sensing sensitivity requirement is as low
as —20dB.

2. Channel uncertainty: In wireless communications, the propagation channel is usu-
ally unknown and time variant. Such unknown channel makes coherent detection
methods unreliable in practice.

3. Non-synchronization: It is hard to synchronize the received signal with the pri-
mary signal in time and frequency domains. This will cause traditional methods
like preamble/pilot based detections less effective.

4. Noise uncertainty: The noise level may vary with time and location, which yields
the noise power uncertainty issue for detection [4—7]. This makes methods relying
on accurate noise power unreliable. Furthermore, the noise may not be white,
which will further affect the effectiveness of many methods with white noise
assumption.

5. Interference: There could be interferences from intentional or unintentional trans-
mitters. Thus, the detector needs to have the capability to suppress the interference
while identifying the primary signals.

While there have been a lot of spectrum sensing methods in the literature [8—15],
many of them are based on ideal assumptions, and cannot work well in a hostile radio
environment. We need the spectrum sensing to be robust to the unknown and maybe
time-varying channel, noise and interference.

3.2 C(lassical Detection Theories and Methods

In this section, we first provide the fundamental theories on spectrum sensing from
the optimal likelihood ratio test perspective, then we review the classical methods
including Bayesian method, robust hypothesis test, energy detection, matched filter-
ing detection, and cyclostationary detection.

3.2.1 Neyman—Pearson Theorem

The Neyman—Pearson (NP) theorem [16—18] states that, for a given probability of
false alarm, the test statistic that maximizes the probability of detection is the likeli-
hood ratio test (LRT) defined as

p(x|H))

_— 3.11
p(x|Ho) G-I

Trrr(X) =

where p(-) denotes the probability density function (PDF), and x denotes the received
signal vector that is the aggregation of x(n),n =0, 1, ..., N — 1. Such a likelihood
ratio test decides H; when T, g7 (X) exceeds a threshold y, and H, otherwise.
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The major difficulty in using the LRT is its requirement on the exact distributions
given in (3.11). Obviously, the distribution of random vector x under H| is related
to the source signal distribution, the wireless channels, and the noise distribution,
while the distribution of x under Hj is related to the noise distribution. In order to
use the LRT, we need to obtain the knowledge of the channels as well as the signal
and noise distributions, which is practically difficult to realize.

If we assume that the channels are flat-fading, and the received source signal
sample s; (n)’s are independent over n, the PDFs in LRT are decoupled as

N—-1

pxIHY) = [ | px(m)|H) (3.12)
n=0
N—-1

p(xIHo) = [ | p(x(n)|Ho) (3.13)

n=0

If we further assume that noise and signal samples are both Gaussian distributed, i.e.,
n(n) ~ N(0, 031) and s(n) ~ N (0, Ry), the LRT becomes the estimator-correlator
(EC) [16] detector for which the test statistic is given by

N—-1

Tec(®) = ) x" (MRR, + 0,1 ~'x(n) (3.14)
n=0

From (3.10), we see that R;(Ry + 20,1)7'x(n) is actually the minimum-mean-
squared-error (MMSE) estimation of the source signal s(n). Thus, Tg¢(x) in (3.14)
can be seen as the correlation of the observed signal x(n) with the MMSE estimation
of s(n).

The EC detector needs to know the source signal covariance matrix R, and noise
power ovnz. When the signal presence is unknown yet, it is unrealistic to have the
knowledge on the source signal covariance matrix which is related to unknown
channels.

3.2.2 Bayesian Method and the Generalized Likelihood Ratio
Test

In practical scenarios, it is difficult to know the likelihood functions exactly. For
instance, we may not know the noise power anz and/or source signal covariance R;.
Hypothesis testing in the presence of uncertain parameters is known as “composite”
hypothesis testing. In classic detection theory, there are two main approaches to
tackle this problem: the Bayesian method and the generalized likelihood ratio test
(GLRT).
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In the Bayesian method [16], the objective is to evaluate the likelihood functions
needed in the LRT through marginalization, i.e.,

p(x|Ho) = /P(Xlﬂo, ©0) p(Oo|Hy)d Oy (3.15)

where ® represents all the unknowns when Hj is true. Note that the integration
operation in (3.15) should be replaced with a summation if the elements in ®, are
drawn from a discrete sample space. Critically, we have to assign a prior distribu-
tion p(®y|Hp) to the unknown parameters. In other words, we need to treat these
unknowns as random variables, and use their known distributions to express our
belief in their values. Similarly, p(x|H;) can be defined. The main drawbacks of the
Bayesian approach are listed as follows:

1. The marginalization operation in (3.15) is often not tractable except for very
simple cases;

2. The choice of prior distributions affects the detection performance dramatically
and thus it is not a trivial task to choose them.

To make the LRT applicable, we may estimate the unknown parameters first
and then use the estimated parameters in the LRT. Known estimation techniques
could be used for this purpose. However, there is one major difference from the
conventional estimation problem where we know that signal is present, while in the
case of spectrum sensing we are not sure whether there is source signal or not (the
first priority here is the detection of signal presence). At different hypothesis, Hy or
H,, the unknown parameters are also different.

The GLRT is one efficient method [16, 18] to resolve the above problem, which
has been used in many applications, e.g., radar and sonar signal processing. For this
method, the maximum likelihood estimation of the unknown parameters under Hj
and H are first obtained as

@

0 = arg max p(x|Ho, Op)
=i}

@

1 = argmax pX|H,, ©1)
91

where ©( and ©®; are the set of unknown parameters under Hy and 7, respectively.
Then, the GLRT statistic is formed as

p(x|O1, Hy)

~ (3.16)
P(X|®g, Ho)

TGLrr =

Finally, the GLRT decides H; if Tgrgrr(X) > ¥, where y is a threshold, and Hj
otherwise.

It is not guaranteed that the GLRT is optimal or closes to the optimum when the
sample size goes to infinity. Since the unknown parameters in ®( and ®; are highly
dependent on the noise and signal statistical models, the estimations of them could
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be vulnerable to the modeling errors. Under the assumption of Gaussian distributed
source signals and noises, and flat-fading channels, some efficient spectrum sensing
methods based on the GLRT can be found in [19-21].

3.2.3 Robust Hypothesis Testing

The searching for robust detection methods has been of great interest in the field of
signal processing and many others. In this section, we start from a general paradigm
that is called robust hypothesis testing, then we review a few methods that are robust to
certain impairments. In Sects. 3.3-3.5, we will discuss a few new methods, including
eigenvalue based detections, covariance based detections, and cooperative sensing.

A useful paradigm to design robust detectors is the maxmin approach, which
maximizes the worst case detection performance. Among others, two techniques are
very useful for robust spectrum sensing: the robust hypothesis testing [22, 23] and
the robust matched filtering [24, 25]. In the following, we will give a brief overview
on them.

Let the PDF of areceived signal sample be f; athypothesis H) and fj athypothesis
Hy. If we know these two functions, the LRT-based detection described in Sect.3.2.2
is optimal. However, in practice, due to the channel impairment, noise uncertainty,
and interference, it is very hard to obtain these two functions exactly. One possible
situation is when we only know that f; and f; belong to certain classes. One such
class is called the e-contamination class given by

Ho : fo € Fo, Fo ={(1 —€0) f3) + €080} 3.17)
Hi: fieFi, Fi={(1—e)f) +eg} ’
where f jQ (j =0, 1) is the nominal PDF under hypothesis #;, €; in [1, 0] is the
maximum degree of contamination, and g; is an arbitrary density function. Assume
that we only know f ]Q and €; (an upper bound for contamination), j =1, 2. The
problem is then to design a detection scheme to minimize the worst-case probability
of error (e.g., probability of false alarm plus probability of mis-detection), i.e., finding
a detector W such that

~

W =argmin  max Pro(fo, f1. W) +1— Py(fo, fi, ¥ 318
=My (fo,fl)eFoxFl( ra(fo, f1, W) a(fo, f1, V) (3.18)

Hubber [22] proved that the optimal test statistic is a “censored” version of the LRT

given by
N-1

U =Terrr®) = [ rx(m) (3.19)
n=0
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where .
L@
<
Cla cl — f[?(l‘)
_ Ot 0(1)
r(t) = J;.:?(t;, co < % <y (3.20)
B LG
0w =0

and co, ¢ are nonnegative numbers related to €, €, fy, and f [22, 26]. Note that
if choosing ¢y = 0 and ¢; = 400, the test is the conventional LRT with respect to
nominal PDFs, f(? and flo .

One special case is the robust matched filtering. We turn the model (3.10) into a
vector form as

Hy:x=19 (3.21)
H :x=s+79 (3.22)

where s is the signal vector and 7 is the noise vector. Suppose that s is known. In
general, a matched-filtering detection is Ty p = ng. Let the covariance matrix of
the noise be R, = E(qy”). If R, = 031, it is known that choosing g = s is optimal.
In general, it is easy to verify that the optimal g to maximize the SNR is

-1
g=R; s (3.23)

In practice, the signal vector s may not be known exactly. For example, s may be
only known to be around sy with some errors modeled by

lIs —soll = A (3.24)

where A is an upper bound on the Euclidean-norm of the error. In this case, we are
interested in finding a proper value for g such that the worst-case SNR is maximized,
ie.,

g —argmax min SNR(s, g) (3.25)

g sils—soll<A
It was proved in [24, 25] that the optimal solution for the above maxmin problem is
g=R,+3D7 s (3.26)

where § is a nonnegative number such that §2||g]|> = A.

It is noted that there are also researches on the robust matched filtering detec-
tion when the signal has other types of uncertainty [26]. Moreover, if the noise has
uncertainties, i.e., R, is not known exactly, or both noise and signal have uncertain-
ties, the optimal robust matched-filtering detector was also found for some specific
uncertainty models in [26].
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3.2.4 Energy Detection

If we further assume that R, = 0521, the EC detection in (3.14) reduces to the well-
known energy detector (ED) [4, 27, 28] for which the test statistic is given as follows
(by discarding irrelevant constant terms).

N—1

1
Tep = nZZ%XT(n)X(n) (3.27)

Note that for the multi-antenna/node case, Tk p is actually the summation of energies
from all antennas/nodes, which is a straightforward cooperative sensing scheme [29—
31].

The test statistic is compared with a threshold to make to decision. Obviously the
threshold should be related to the noise power. Hence energy detection needs a priori
information of the noise variance (power). It has been shown that energy detection is
very sensitive to the inaccurate estimation of the noise power. We will give detailed
discussion on this later.

From the derivation above, we know that energy detection is the optimal detection
if there is only one antenna, the signal and noise samples are independent and iden-
tically distributed (iid) Gaussian random variables, and the noise variance (power)
is known. Even if the signal and noise do not have Gaussian distribution, in most
cases, energy detection is still approximately optimal for uncorrelated signal and
noise at low SNR [32]. In general, the ED is not optimal if signals or noise samples
are correlated.

The energy detection can be used in different ways and sometimes combined with
other techniques.

(1) We can filter the signal before the energy detection is implemented. Let f(I)
(I =0,1,..., L) beafilter or the combining of a bank of filters. The received signal
after filtering is

L
yim) =Y fDxi(n =1 (3.28)

=0

The energy detection after the filtering is therefore

N-1
1

nmmw=ﬁ§jmmm2 (3.29)
n=0

For practical applications, we can choose a narrowband filter or a bank of narrowband
filters if we want to detect the signals in specific frequency bands.

(2) Energy detection can also be done in frequency domain. Let S; (k) be the power
spectrum density (PSD) of the received signal x; (n). There are different methods to
estimate the PSD including periodogram, multitaper method (MTM) [33, 34] and oth-
ers. For the periodogram method, the received signal is divided into P non-overlapped
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blocks: x; ,(n) with length N . Let X; , (k) be the discrete Fourier transform (DFT)
of x; ,(n). Note that DFT can be computed by the fast Fourier transform (FFT). The
PSD is estimated as

1 P
Sitk) = 5 D 1Xi ()P (3.30)
p=1

The test statistic of the frequency domain energy detection is:

-1
Teor = oo > X s (3.31)

Again the test statistic is compared with a threshold to make a decision and the
threshold should be related to the noise power.

Among all the spectral estimation methods, the MTM is proved to achieve the
performance close to the maximum likelihood PSD estimator [33, 34]. Thus it can
be used to make a more accurate estimation of the PSD for spectrum sensing [35].
However, the computational complexity is also increased.

(3) The frequency domain energy detection can also be done in a more flexible way.
Lety beasubsetofset {0, 1, ..., Ny — 1}. We can select the signal frequency within
the bin ¢ for detection and may also give different weights to different antennas and
frequencies [36]. The test statistic is therefore

T xS (k 3.32
ED.F = MW/'ZZ“ (k) (3.32)

i=1 key

where g;  is the weight for antenna i and frequency index k. This can have a better
performance if we know that the interested signal power has peaks or is concentrated
in the frequency bin . For example, for ATSC signal detection, we know that the
signal has a strong peak at the pilot. So we can choose the set i to be the frequency
index around the pilot location. A special case is to choose just one frequency index
nearest to the pilot location. In some OFDM based standards, the pilot subcarriers
have higher power than other subcarriers. We can put more weights to the pilot
subcarriers.

Another variation of the method is to change the averaging of the signal PSD to
maximizing [37]. The test statistic becomes

M
1
T, = — E i .
ED,Max r]?ea];( M L Sl (k) (3 33)

The energy detection can also be done in other transform domains other than
the Fourier transform domain. In general, let X; r(k) (k =0,1,..., K — 1) be the
transformed signal of the original received signal x; (n). The transform domain energy
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detection is

M K

1 2

Tepr =502 ) 1 Xir (k)| (3.34)
i=1 k=1

For example, the wavelet can be chosen as the transform, which turns to the wavelet

multi-resolution detection [38]. In general, the transform should be chosen based on

the signal and noise property or/and purpose of detection.

3.2.5 Sequential Energy Detection

In the discussions above, we assume that the sensing time (number of signal samples
N) is a predefined fixed number. The detector is designed to have the optimal per-
formance with the given sample size. In some applications, the sensing time may not
be predefined. Our purpose is to design a detector that has the least average sensing
time. A popular approach for this is the sequential detection [39—41].

In general, a sequential detector makes a decision whenever a new signal sam-
ple is available. For simplicity, here we consider single detector case. Let x; =
(x(0), x(1), ..., x(k — 1))T be signal samples currently available at time k. The
sequential detector calculates a test statistic 7 (x;). It then makes a decision using
two thresholds:

T(x¢) = y1, Hi (3.35)
T (xx) < v0, Ho (3.36)

where y; > )y are some predefined thresholds. If the test statistic is between y; and
o, that is, Yo < T (x;) < y1, the detector does not make a decision on H; or Hj yet:
more samples are required. The detector will continue this process when new signal
samples are available till a decision on H; or H is reached.

Thus we do not know when the detection will finished to achieve the target sensing
performance. The sensing time is a random number. It is proved that the average
sensing time is shorter than the conventional methods (the Wald—Wolfowitz theorem
[40]). However, the worst case sensing time could be much longer.

Using the energy detection for sequential detection is discussed in [40]. Some
extensions and refinements can be found in [40].

3.2.6 Matched Filtering

If we assume that noise is Gaussian distributed and source signal s(r) is deterministic
and known to the receiver, it is easy to show that the LRT in this case becomes the
matched filtering based detector [16—18], for which the test statistic is
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Tyr = R ( Zs(n)x(n)) (3.37)

The test statistic is compared with a threshold to make a decision. Obviously the
threshold should be related to the noise power. Unlike energy detection, matched
filtering (MF) is more robust to the inaccurate noise power estimation [6, 7]. MF is
also widely used in other fields like radar signal processing.

Hence, theoretically matched filtering is optimal if the signal is deterministic and
known at the receiver. The major difficulties in MF are the time delay, frequency
offset and time dispersive channel.

For simplicity, we consider single antenna case here. In general, for a deterministic
transmitted signal s(n), the received signal x(n) can be written as

jZnen

v

x(n) = Zh(l)s(n —1—1) 45 (3.38)

where T is the timing error, € is the normalized frequency offset and A([) is the
channel.
Atideal case of e = 0,7 =0, L = 0 and 2(0) > 0,

Tur = @Nimnnzﬂe LNis*(n) (n) (3.39)
e W n=0 ’ ﬁ n=0 ! ‘

In this case, MF is optimal.

In practical wireless communication applications, the CFO ¢ and timing error
may not be zero, also the channel is most likely frequency selective: L > 0. So in
general, the test statistic of MF should be expressed as

-1 L N—1
Tur = ( Z Zeﬂ”e" *(n)s(n — 1 — t)) (JLN ,,2:(; S*(n)n(n)>

n=0 [=0
(3.40)
The CFO e, timing error and frequency selective are three major obstacles for the
MEF. Anyone of them could reduce the performance of MF dramatically.
To deal with the timing error, a commonly used solution is to averaging or taking
the maximum of the test statistic at different time delays of the received signal. Let

Tyr(V) = R, (f Z st (m)x(n + v)) (3.41)

n=0

be the test statistic of the signal with time delay —v. Obviously the best value is
v = 1. If we do not know the value of 7, we can average on different v or take the
maximum, that is,
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Tyra= 5~ Z Ty (v) (3.42)
u——A
or A
Turm = max Tyr(v) (3.43)

To tack the problem of CFO, we can modify the test of MF using the absolute
value

N-—1
Tur = f Z s (m)x(n)| (3.44)

This test is not affected by the carrier frequency offset.

Similarly we can also average or take the maximum of the absolute value test
statistics to deal with the timing error problem.

Like the energy detection, the MF can also be implemented in frequency domain
or transformed domain. Using the MF for ATSC signal detection is discussed in [42].

3.2.7 Cyclostationary Detection

Practical communication signals may have special statistical features. For example,
digitally modulated signals have non-random components such as double sideness
due to sine wave carrier and keying rate due to symbol period. Such signals have
a special statistical feature called cyclostationarity, i.e., their statistical parameters
vary periodically in time. This cyclostationarity can be extracted by the cyclic auto-
correlation (CAC) or the spectral-correlation density (SCD) [43-45].

For simplicity, in this section we consider single antenna case, thatis, M = 1. For
notation simplicity, we omit the subscript for antenna. For a given « and time lag t,
the CAC of a signal x(¢) is defined as

R*(r) = lim — /gx (t n 5) X" (t - E) et gy (3.45)
X A—oo A _ry 2 2

where « is called a cyclic frequency. If there exists at least one non-zero « such
that max, |R (t)| > 0, we say that x () exhibits cyclostationarity. The value of such
a depends on the type of modulation, symbol duration, etc. For example, for a
digitally modulated signal with symbol duration 7}, cyclostationary features exist at
o=z and o = %2 f. 4 -, where f. is the carrier frequency, and & is an integer.
Equ1valent1y, we can define the SCD, the Fourier transform of the CAC, as follows:

SY(f) = /oo R*(t)e /T dr (3.46)

]
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In binary spectrum sensing or signal detection, there are two hypotheses: Hp,
signal absent; and H, signal present. The received signal can be written as

Ho = y(@) = n() (3.47)
Hy:y(@) = h) @ x() + () (3.48)

where x () denotes the transmitted signal from the primary user, /(¢) is the channel
response, and 71 (¢) is the additive noise.

When source signal x(¢) passes through a wireless channel 4 (¢), the received
signal is impaired by the unknown propagation channel. It can be shown that the
SCD function of y(r) is

Sy(f)=H(f +a/DQH"(f —a/2)S:(f) (3.49)

where * denotes the conjugate, o denotes the cyclic frequency for x(¢), H(f) is the
Fourier transform of the channel A (z), and S, (f) is the SCD function of x (¢). Thus,
the unknown channel could have major impacts on the strength of SCD at certain
cyclic frequencies.

Cyclostationary detection (CSD) is well studied when Nyquist rate signal samples
are available. The rationale behind the CSD is that the signal x (¢) has cyclostationar-
ity, that is, there exists at least one non-zero cyclic frequency o such that RY (t) # 0
for some t, while the noise 7 () is a pure stationary process, that is, for any non-zero
a Ry (7) =0 for all 7’s, or equivalently S;'(f) = 0 for all f’s. In the following,
we list the cyclic frequencies for some signals with cyclostationarity in practical
applications [44, 45].

1. Analog TV signal: It has cyclic frequencies at multiples of the TV-signal hori-
zontal line-scan rate (15.75 KHz in USA, 15.625 KHz in Europe).

2. AM ssignal: x(t) = a(t) cos(2m f.t + ¢o). It has cyclic frequencies at &2 f,.

3. PM and FM signal: x(t) = cos(2rw f.t + ¢ (¢)). It usually has cyclic frequencies at
42 f... The characteristics of the SCD function at cyclic frequency +2 f. depend
on ¢(t).

4. Digital modulated signals:

a. Amplitude-Shift Keying: x(¢) = [Z;’;foo a,p(t —nAg —to)]cos(2r fo.t +
¢o). It has cyclic frequencies at k/A;, k #0 and £2f. +k/As, k =0,
+1,+2,....

b. Phase-Shift Keying: x(¢) = cos[2m f.t + fo:_oo a,p(t —nA; —ty)]. For

BPSK, it has cyclic frequencies at k/A;, k #0, and £2f. +k/As, k =
0,+£1, £2,.... For QPSK, it has cycle frequencies at k/ Ay, k # 0.

5. OFDM modulated signal: It has cyclic features at cyclic frequency k/(N;Tp),
where k is an integer number, N, is the length of an OFDM block (FFT size plus
CP size), and T}, is the symbol duration.



3.2 Classical Detection Theories and Methods 55

Let o be a non-zero cyclic frequency such that R%(7) # 0 for some 7. Assume
that the signal and noise are mutually independent. Then we have

Ho : RY’(r) =0 (3.50)
H, : R‘;O(r) = RY*(t) # 0, for some t (3.51)

In the frequency domain, this turns to

Ho : S3°(f) =0 (3.52)
H, : S‘y’."’(f) = S(f) # 0, for some f (3.53)

Therefore, Hy and H; can be distinguished by generating a test statistic from the
CAC/SCD of the received signal at cyclic frequency o and comparing the test
statistic with a threshold. A typical test statisticis C; = [ |[R*(t) |>dt or equivalently
Ci= [ISp(f)PPdf.

In practice, the received signal is sampled and only limited number of samples
are available. Let T be the sampling period and N be the number of samples. The
discrete version of the CAC is

N-1

1 —j2man
RYKTy) = = 3 y((n + 0Ty (T e (3.54)
n=0
wherethelagk =0, 1,..., M — 1 with M << N. Accordingly the discrete version
of the test statistic is
M—1
Ci= ) |RO(KT)? (3.55)
k=0

In CSD, the test statistic is compared with a threshold to make a decision. Intuitively
the threshold should be related to noise power. Due to the difficulty in acquiring the
accurate noise power in practice [7, 46, 47], we can use the maximum likelihood
estimation of the noise power. The maximum likelihood estimation of the noise
power is

=

52 1 T)|? 3.56
o =5 ly(nTy)| (3.56)

Il
=}

The threshold is thus chosen as ,3&,‘]‘ , where B is a scalar to meet the pre-defined
probability of false alarm.

There are other different test statistics and decision rules (thresholds) for the
CSD. Especially, if the signal has cyclostationarity at multiple cyclic frequencies,
how to use them to form a single test statistic is an interesting problem. In [48, 49], a
general structure based on the GLRT principle is proposed to use the multiple cyclic
frequencies. However, the method needs very high complexity and also some priori
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information on the channel. Some simplified approaches have also been studied [50].
The use of the CSD for ATSC signal is proposed [51]. There are also researches on
OFDM signal detections using the CSD [50, 52-54].

When interference exists, the CSD may still work well as long as the interference
does not have the same cyclostationary feature as the primary signal. In general, the
chance that the primary signal and the interference have the same cyclostationary
feature is slim. That means CSD is robust to interference and noise uncertainty.
Furthermore, it is possible to distinguish the signal type because different signal may
have different non-zero cyclic frequencies.

Although cyclostationary detection has certain advantages, it also has some dis-
advantages:

1. The method needs a very high sampling rate;

2. The computation of SCD function requires large number of samples and thus high

computational complexity;

The strength of SCD could be affected by the unknown channel [46];

4. The sampling time error and frequency offset could affect the cyclic frequencies
[55, 56], which will be discussed further in the next section.

et

3.2.8 Detection Threshold and Test Statistic Distribution

To make a decision on whether signal is present, we need to set a threshold y for
each proposed test statistic, such that certain P; and/or Py, can be achieved. For a
fixed sample size N, we cannot set the threshold to meet the targets for arbitrarily
high P; and low Py, at the same time, as they are conflicting to each other. Since
we have little or no prior information on the signal (actually we even do not know
whether there is a signal or not), it is difficult to set the threshold based on P;. Hence,
a common practice is to choose the threshold based on Py, under hypothesis Hp.

Without loss of generality, the test threshold can be decomposed into the following
form: y = yTo(x), where y, is related to the sample size N and the target P,, and
To(x) is a statistic related to the noise distribution under H. For example, for the
energy detection with known noise power, we have

To(x) =0, (3.57)

For the matched-filtering detection with known noise power, we have
Th(x) = o, (3.58)
In practice, the parameter | can be set either empirically based on the observations
over a period of time when the signal is known to be absent, or analytically based

on the distribution of the test statistic under ;. In general, such distributions are
difficult to find, while some known results are given as follows.
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For energy detection defined in (3.27), it can be shown that for a sufficiently large
values of N, its test statistic can be well approximated by the Gaussian distribution
[14, 28], i.e.,

1 2 20;
WTED(X) ~Nlo,, N under Hy (3.59)

Accordingly, for given P, and N, the corresponding y; can be found as

2
n=NM (\/ WQ_I(Pfa) + 1) (3.60)

+00
o) = \/% / e 2dy (3.61)

For the matched-filtering detection defined in (3.37), for a sufficiently large N,
we have

where

1

VN isml?

Thereby, for given Py, and N, it can be shown that

Tur(x) ~ N (0,07) under Hy (3.62)

n=0"Pw) | Y lIsmlP (3.63)

n=0

For the GLRT-based detection, it can be shown that the asymptotic (as N — 00)
log-likelihood ratio is central chi-square distributed [16]. More precisely,

21n Tgrrr(x) ~ x2 under Hy (3.64)

where r is the number of independent scalar unknowns under H, and H;. For
instance, if 0772 is known while R; is not, r will be equal to the number of inde-
pendent real-valued scalar variables in R;. However, there is no explicit expression

for y; in this case.

3.3 Eigenvalue Based Detections

Eigenvalue based detections (EBD) was first proposed in [47, 57-60]. The method
was later studied and refined in [19, 61-64]. EBD can be derived from different
approaches such as the GLRT principle or information theory. Some examples on
the derivations can be found in [19, 20, 64]. The threshold setting of the EBD needs
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random matrix theory [47, 57-60]. The EDB methods solve the noise uncertainty
problem by using statistical covariance matrix to estimate the noise power. The
method can detect signal without knowing explicit information of the signal. The
method was also adopted by IEEE802.22 standard as a solution to detect TV and
wireless microphone signals.

3.3.1 The Methods

We consider the same model as defined at the beginning of this chapter. Let N; o

max(g;;), zero-pad h;; (k) if necessary, and define

h;(n) o [h1j(n), haj(n), ..., hyj(m)]" (3.65)

We have [47]
x(n) = Hs(n) + p(n) (3.66)

. . P
where Hisa ML x (N + PL) (N = >~ N;) matrix defined as

j=1

def

HY (H,, H,, ... Hpl (3.67)
hj©0) - --~-hj(N;) 0 - 0
H; & 10 . 1N . (3.68)
0 0 --- hj(0) .-~ ---hj(N))

Note that the dimension of H; is ML x (N; + L).
Define the statistical covariance matrices of the signals and noise as

R, = Ex(n)x'(n)) (3.69)
R, = E(s(n)s'(n)) (3.70)
R, =E(n(n)n'(n)) (3.71)
We can verify that
R, = HRH' + 0,1y, (3.72)

where 0772 is the variance of the noise, and I, is the identity matrix of order M L.
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Let the eigenvalues of R, and HR,H be A > Ay > --- > Ay and p; > o >
-+ > pyr, respectively. Obviously, A, = p, + 0,72. When there is no signal, that is,
s(n) = 0 (then Ry = 0), we have ,; = Ay = --- = Ay = o, . Hence, A /Ay = 1.
When there is a signal, if p; > pyr, we have A;/Ay > 1. Hence, we can detect
if signal exists by checking the ratio A;/Aysr. Obviously, p; = pyp if and only if
HR,H" = AI,, where A is a positive number. From the definition of the matrix H
and Ry, itis highly probable that HR,H' # Al . In fact, the worst case is Ry = 021,
that is, the source signal samples are iid. At this case, HR;H" = o ?HH'. Obviously,
oHH" = ALy, if and only if all the rows of H have the same power and they are
co-orthogonal. This is only possible when N; =0, j=1,..., P and M = 1, that
is, the source signal samples are iid, all the channels are flat-fading and there is only
one receiver.

Thus, if M > 1 (multiple antennas) or the channel has multiple paths or the
source signal itself is correlated, the eigenvalues of the R, are not identical, while at
pure noise case, the R, should have identical eigenvalues. Hence, we can check the
eigenvalues of R; to see if signal presents.

In practice, we only have finite number of samples. Hence, we can only obtain
the sample covariance matrix other than the statistic covariance matrix. The sample
covariance matrix is defined as

L—-24+N

RX(N)déf% > xmxt () (3.73)

n=L—1

where N is the number of collected samples. Based on the sample covariance matrix
and its eigenvalues, a few methods have been proposed based on different prospec-
tives [19, 47, 57-64]. Such methods are called eigenvalue based detections (EBD).
Here we summarize the methods as follows.

Let A > Ay > --- > Ay be the eigenvalues of the sample covariance matrix.

Algorithm FEigenvalue based detections

Step 1. Compute the sample covariance matrix as defined in (3.73).

Step 2. Calculate the eigenvalues of the sample covariance matrix.

Step 3. Compute a test statistic from the eigenvalues. There are different approaches
to construct the test statistic. A few simple but effective method are as follows:

1. Maximum eigenvalue to trace detection (MET). The test statistic is
Tuer = M/t:(Ry(N)) (3.74)
where t.(-) is the trace of a matrix, t;(R,(N)) = Zfi Ll A;. This method is also

called blindly combined energy detection (BCED) in [60].
2. Maximum to minimum eigenvalue detection (MME) [47]. The test statistic is

Tyume = M /AmL (3.75)
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3. Arithmetic to geometric mean (AGM) [19]. The test statistic is

ML 1/ML
Tagm = —— ZA / (HA ) (3.76)

Step 4. Compare the test statistic with a threshold to make a decision.

All these methods do not use the information of the signal, channel and noise power
as well. The methods are robust to synchronization error, channel impairment, and
noise uncertainty.

3.3.2 Threshold Setting

To find a formula for the threshold is mathematically involved. In general we need to
find the theoretical distribution of some combination of the eigenvalues of a random
matrix. There have been some exciting works on this by using the random matrix
theory [47, 61-63, 65-68]. For simplicity, in the following, we provide an example
for the maximum eigenvalue detection (MED) with known noise power [59]. At
this case, we actually compare the ratio of the maximum eigenvalue of the sample
covariance matrix R, (N) to the noise power anz with a threshold y;. To set the value
for y, we need to know the distribution of 1{(N) /cr,? for any finite V. Fortunately,
the random matrix theory has laid the foundation to derive the distributions.

When there is no signal, R, (V) reduces to R, (), which is the sample covariance
matrix of the noise only. It is known that R, (N) is a Wishart random matrix [69].
The study of the eigenvalue distributions for random matrices is a very hot research
topic over recent years in mathematics, communications engineering, and physics
[69—72]. The joint PDF of the ordered eigenvalues of a Wishart random matrix has
been known for many years [69]. However, since the expression of the joint PDF
is very complicated, no simple closed-form expressions have been found for the
marginal PDFs of the ordered eigenvalues, although some computable expressions
have been found in [73]. Recently, I. M. Johnstone and K. Johansson have found
the distribution of the largest eigenvalue [70, 71] of a Wishart random matrix as
described in the following theorem.

Theorem 3.1 Let A(N) = %R,,(N) W= (~/ — 1+ VM2 andv=(J/N -1+
VM )(ﬁ f)1/3 Assume that lim M=y (0<y<1). Then, treAi-n

converges (with probability one) to the Tracy—Wldom distribution of order 1 [74,
75].
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Table 3.1 Numerical table for the Tracy—Widom distribution of order 1
t -390 |-3.18 | —2.78 |—-191 |—1.27 |—-0.59 |0.45 0.98 2.02
Fi(t) 0.01 0.05 0.10 0.30 0.50 0.70 |0.90 0.95 0.99

The Tracy—Widom distribution provides the limiting law for the largest eigenvalue
of certain random matrices [74, 75]. Let F be the cumulative distribution function
(CDF) of the Tracy—Widom distribution of order 1. We have

1 o0
Fi(t) = exp (—5 / (@) + (u — DHg* W) du) (3.77)
t
where ¢ (1) is the solution of the nonlinear Painlevé II differential equation given by
q" () = uq () +2¢° ) (3.78)
Accordingly, numerical solutions can be found for function F(¢) at different values
of t. Also, there have been tables for values of F;(¢) [70] as shown in Table 3.1.

Using the above results, we can derive the probability of false alarm as

Psy = P (A(N) > y10,)

_p ()\max(A(N)) — K > YN _I’L) ~1-F (M—_M) (3.79)
v

Vv v

Thus we have

N —
F (3’1_/*) ~ 11— Py, (3.80)
v
or equivalently,
N —u _
—~ F7N(1— Pyry) (3.81)

From the definitions of u and v in Theorem 3.1, we finally obtain the value for y; as

(VN +M)? L N+ VM) el p 280
n~ =g 1+ e FA = P (3.82)
Note that y; depends only on N and Py,. A similar approach like the above can be
used for the case of MME detection, as shown in [47, 68].

Figure 3.1 shows the expected (theoretical) and actual (by simulation) probability
of false alarm values based on the theoretical threshold in (3.82) for N = 5000,
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Fig. 3.1 Comparison of theoretical and actual Py,

M =8, and L = 1. It is observed that the differences between these two sets of
values are reasonably small, suggesting that the choice of the theoretical threshold
is quite accurate.

3.3.3 Performances of the Methods

To show the performance and the robustness of the methods, here we give some
simulation results for the EBDs. Comparison with the energy detection (ED) is also
included. We consider two cases here: the signal is time uncorrelated and the signal
is time correlated. The Receiver Operating Characteristics (ROC) curves (P, versus
Pr,) at SNR = —15dB, N = 5000, and M = 4 are plotted at the two cases. The
performance at first case in shown in Fig. 3.2 with L = 1 and that at the second case
is shown in Fig. 3.3 with L = 6, where “ED-udB” means energy detection with u
dB noise uncertainty. In Fig. 3.3, the source signal is the wireless microphone signal
[76] and a multipath fading channel (with eight independent taps of equal power)
is assumed. For both cases, MET, MME and AGM perform better than ED. MET,
MME and AGM are totally immune to noise uncertainty. However, the ED is very
vulnerable to noise power uncertainty [4—6].

Obviously the eigenvalue based detections do not use the information of the signal,
channel and noise power as well. The methods are robust to synchronization error,
channel impairment, and noise uncertainty. However, like other blind detections, the
methods are vulnerable to unknown narrowband interferences.
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3.4 Covariance Based Detections

Covariance based detections (CBD) was first proposed in [65, 77]. The method
solved the noise uncertainty problem by using the online estimated noise power. The
method can detect signal without knowing explicit information of the signal. The
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method was also adopted by IEEE802.22 standard for detecting TV signal and as
the first choice for sensing the wireless microphone signals.

3.4.1 The Methods

As shown in the last section, the covariance matrix of the received signal can be
written as

R, = HRH' + 0,1y, (3.83)

If the signal s(n) is not present, R; = 0. Hence the off-diagonal elements of R, are
all zeros. If there is signal and the signal samples are correlated, R, is not a diagonal
matrix. Hence, some of the off-diagonal elements of R, should be non-zeros.

In practice, the statistical covariance matrix can only be calculated using a limited
number of signal samples. For notation simplicity, here we consider the case of single
antenna/sensor M = 1, and drop the indices for antenna/sensor. Define the sample
auto-correlations of the received signal as

1=
r() = N mX_(:) x(m)x(m—10),1=0,1,...,L —1 (3.84)
where x (m) is the received signal samples, and N; is the number of available samples.
The statistical covariance matrix R, can be approximated by the sample covariance
matrix R, (Ny) as defined in the last section. At M = 1, R, (¥;) can be formed by
the auto-correlations r (). Note that the sample covariance matrix is symmetric and
Toeplitz.

Based on the generalized likelihood ratio test (GLRT) or information/signal pro-
cessing theory, there have been a few methods proposed based on the sample covari-
ance matrix. One class of such methods is called covariance based detections (CBD)
[1, 65, 76, 77]. Some methods that directly use the auto-correlations of the signal can
also be included in this class [78]. The covariance based detections directly use the
elements of the covariance matrix to construct detection methods, which can reduce
computational complexity. The methods are summarized in the following.

Let the entries of the matrix R, (Ny) be ¢, (m,n = 1,2, ..., ML).

Algorithm Covariance based detections
Step 1. Compute the sample covariance matrix R, (Ny) as defined in (3.73).
Step 2. Construct a test statistic directly from the entries of the sample covariance
matrix. In general, the test statistic of the CBD is

TCBD = Fl(cmn)/FZ(Cmm) (385)
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where F; and F, are two functions. At single antenna/sensor case, it can be written
equivalently as

Tegp =F1(r0),...,r(L —1))/Fa(r(0), ..., r(L —1)) (3.86)

There are many ways to choose the two functions. Some special cases are shown in
the following.

1. Covariance absolute value detection (CAVD). The test statistic is

ML ML ML
Teavn =Y Y lcmnl/ Y [cmml (3.87)
m=1 n=1 m=1

2. Maximum auto-correlation detection (MACD). The test statistic is

ML
Tuacp = max lcml/ Y lenn| (3.88)
m=1

3. Fixed auto-correlation detection (FACD): The test statistic is

ML
Tracn = |Cmonol/ Y, 1Cmm] (3.89)

m=1

where mg and ng are fixed numbers between 1 and M L. At single antenna case,
the detection can be written equivalently as

Tracp = Ir(lo)|/r(0) (3.90)

This detection is especially useful when we have some prior information on the
source signal correlation and knows the lag that produces the maximum auto-
correlation. For example, it can be used for detect the OFDM signal by using the
CP or pilot property [52]. ]

Step 3. Compare the test statistic with a threshold to make a decision.

All these methods do not use the information of the signal, channel and noise power
as well. The methods are robust to synchronization error, channel impairment, and
noise uncertainty.

The test statistic is compared with a threshold y to make a decision. The threshold
y is determined based on the given Py,. To find a formula for the thresholds is math-
ematically involved [65, 77]. We will show an example for M = 1 in the following
subsection.
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The computational complexity of the algorithm is as follows (for M = 1). Com-
puting the auto-correlations of the received signal requires about L Ny multiplications
and additions. Computing 7' (N;) and T5 (NVy) requires about L? additions. Therefore,
the total number of multiplications and additions is about LN + L?.

3.4.2 Detection Probability and Threshold Determination

It is generally difficult to find closed-form detection probabilities. For this purpose,
we need to find the distribution of test statistics. In [65, 76, 77], approximations for
the distribution of the test statistics has been found by using central limit theorem for
M = 1. Furthermore, the theoretical estimations for the two probabilities, P;, Pyq,
as well as the threshold associated with these probabilities, were also discussed. Here
we summarize the results as follows.

In the following, we consider the case of M = 1. Denote c,,, as the element of
sample covariance matrix R, (Ny) at the nth row and mth column, and let

L L
1
Ti(N) = 2> ) lel (3.91)
n=1 m=1
1 L
B(Ny) = — ; |Conl (3.92)

The test statistic of the CAVD is then Tcayp = T1(Ns)/To(Ny).
It is shown in [65, 76, 77] that

202 L—1
: _ 2 2 s
Jim E(T(NO) = 0f + 0] + = 12_1 (L = Dley] (3.93)
where
o =E[s(n)s(n — l)]/qf (3.94)

o is the signal power, 02 = E[s?(n)]. |oy| defines the correlation strength among
the signal samples, here 0 < |¢;| < 1. For simplicity, we denote

2 L-1
T, & T > (L =Dl (3.95)
=1

which is the overall correlation strength among the consecutive L samples. When
there is no signal, we have
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T1(Ny)/ Ta(Ng) = E(T1(N)) /E(To(Ny)) = 1 + (L = 1)

(3.96)

7 N
Note that this ratio approaches to 1 as N, approaches to infinite. Also note that the
ratio is not related to the noise power (variance). On the other hand, when there is

signal (signal plus noise case), we have

T (Ns)/ T2 (Ny) ~ E(T1(Ns)) /E(T2(Ny))

g%y — 1y SNR (3.97)
o2+o2 "7 TSNR+1 * '

Here the ratio approaches to a number larger than 1 as N approaches to infinite. The
number is determined by the correlation strength among the signal samples and the
SNR. Hence, for any fixed SNR, if there are sufficiently large number of samples,
we can always differentiate if there is signal or not based on the ratio.

However, in practice we have only limited number of samples. So, we need to
evaluate the performance at fixed N;.

First we analyze the Py, at hypothesis Hj. For given threshold y;, the probability
of false alarm for the CAVD algorithm is

Pa = P (Ti(N,) > nT5(Ny) ~ P (B(M) <t (1 T )oj)
N,m

4!

1 2
Y (RS S

252 2/ Nj
N, 9n
1 2
E<1+(L—1) ) -1
~1-Q T (3.98)
where
1 oo
Q@) = = / e " 2duy (3.99)
t
For a given Py, the associated threshold should be chosen such that
1 2
E(1+(L—1) m)—l y
TN, =—Q (Pya) (3.100)
That is,
1+(L -1,/
: (3.101)

V=
1= Q' (P
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Note that here the threshold is not related to noise power and SNR. After the
threshold is set, we now calculate the probability of detection at various SNR. For
the given threshold y;, when signal presents,

1
Py = P (T1(Ns) > yiTo(Ny)) = P <T2(Ns) < ZTI (Ns)>

1

B (Tz(Ns) ~o2—0o2 SEB(N(N)) -0l - %2>

n

NG,y JVahiny)

SE(Ti(Ny)) — o} — 0}
=1-Q (3.102)
Var (T2(N5))
For very large N; and low SNR, we have
202 2(052 + 02)?
Var(T>(Ny)) ~ N: (207 +07) ~ T" (3.103)
and
E(T\(Ny) ~ 0] + 0, + 0., (3.104)

Hence, we have a further approximation

1 Yeop 1 T, SNR

7 + yi(o2+o7) 1 " + V1(SNR+1) 1

Pam1-Q =1-Q
2/ N; 2/ N,

(3.105)

Obviously, the P; increases with the number of samples, Ny, the SNR and the cor-
relation strength among the signal samples. Note that y; is also related to N as

shown above, and Nlirn y1 = 1. Hence, for fixed SNR, P, approaches to 1 when N;
s— 00

approaches to infinite.

3.4.3 Performance Analysis and Comparison

To compare the performances of any methods, first we need a criterion. By properly
choosing the thresholds, many methods can achieve any given P; and Ps, > 0 if
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sufficiently large number of samples are available. The key pointis how many samples
are needed to achieve the given P; and Py, > 0.Hence, we choose this as the criterion
to compare the two algorithms.

For a target pair of P; and Py,, based on (3.105) and (3.101), we can find the
required number of samples for the CAVD as

L 2(QPr) QP + (L — 1)/ V)’

N,
(Y. SNR)?2

(3.106)

For fixed P; and Ps,, N, is only related to the smoothing factor L and the overall
correlation strength Y, . Hence, the best smoothing factor is

Lpess = rrlLln{NL} (3.107)

which is related to the correlation strength among the signal samples.

Here we give a comparison of the CBD with the energy detection. Energy detection
simply compares the average power of the received signal with the noise power to
make a decision. To guarantee a reliable detection, the threshold must be set according
to the noise power and the number of samples [4—6]. On the other hand, the proposed
methods do not rely on the noise power to set the threshold (see Eq.(3.101)), while
keeping other advantages of the energy detection. Simulations have shown that the
proposed method is much better than the energy detection when noise uncertainty
is present [65, 76, 77]. Hence, here we only compare the proposed method with the
ideal energy detection (assume that noise power is known exactly).

For energy detection, the required number of samples is approximately [5]

_2(Q ) — QN (P’

N, 3.108
SNR? ( )
Comparing (3.106) and (3.108), if we want N, < N,, we need
L—-1
T, > 1+ (3.109)

V7T (Q'(Pra) — Q7'(Py)

For example, if P; = 0.9 and Py, = 0.1, weneed Y, > 1+ %. In conclusion, if
the signal samples are highly correlated such that (3.109) holds, the CAVD is better
than the ideal energy detection; otherwise, the ideal energy detection is better.

In terms of the computational complexity, the energy detection needs about N
multiplications and additions. Hence, the computational complexity of the proposed
methods is about L times that of the energy detection.
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3.5 Cooperative Spectrum Sensing

When there are multiple secondary users/receivers distributed at different locations,
it is possible for them to cooperate to achieve higher sensing reliability. There are
various sensing cooperation schemes in the current literature [28, 29, 41, 79-92]. In
general, these schemes can be classified into two categories: (A) Data fusion: each
user sends its raw data or processed data to a specific user, which processes the data
collected and then makes the final decision; and (B) Decision fusion: multiple users
process their data independently and send their decisions to a specific user, which
then makes the final decision.

3.5.1 Data Fusion

Theoretically, the LRT based on the multiple sensors is the best. However, there
are two major difficulties in using the optimal LRT based method: (1) it needs the
exact distribution of x, which is related to the source signal distribution, the wireless
channels, and the noise distribution; (2) it may needs the raw data from all sensors,
which is very expensive for practical applications.

In some situations, the signal samples are independent in time, that is, E(s; (n)
s;(m)) = 0, for n # m. If we further assume that the noise and signal samples have
Gaussian distribution, i.e., n(n) ~ N (0, R,) and s(n) ~ N (0, R), where

R, = E(s(n)s’ (n)), R, = E(m@n)n” (n)) (3.110)

the LRT can be obtained explicitly as [89]

N—-1
1
log Trrr = N § x" (MR, 'R;(R; + R,) " 'x(n) (3.111)
n=0

Note that in general the cross-correlations among the signals from different sensors
are used in the detection here. It means that the fusion center needs the raw data from
all sensors, if the signals from different sensors are correlated in space. The reporting
of the raw data is very expensive for practical applications.

If the sensors are distributed at different locations and far apart, the primary signal
will very likely arrive at different sensors at different times. That is, in (3.3) 7, may
be different for different i. For example, assuming that we are sensing a channel with
6 MHz bandwidth with sampling rate 6 MHz, delay of one data sample approximately
equals to 50 m distance. In alarge size network like a 802.22 cell (typically with radius
30km), the distance differences of different sensors to the primary user could be as
large as several kilo-meters. Therefore, the relative time delays t;; can be as large
as 20 samples or more. If the delays are different, the signals at the sensors will be
independent in space.
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For distributed sensors, their noises are independent in space. If we aim for sensing
at very low SNR, the received signal at a sensor will be dominated by noise. Hence
even if the primary signals at different sensors may be weakly correlated, the whole
signals (primary signals plus noises) can be treated approximately as independent in
space at low SNR. So, in the following, we further assume that E(s; (n)s;(n)) =0,
fori # j.

Under the assumptions we have

R, = diag(o, |, ..., 0, 1) (3.112)
R, = diag(c},,....07,) (3.113)

where o, = E(|n;(n)[*) and o; = E(|s;(n)|*). Under the assumptions, we can

express the LRT equivalently as

1 N—-1 M 0_2. M "
logTerr = = D) gl =) ——Tpp; 3114
g LRT N L Gi[(05l+0772l)| ( )| P 1+]/l ED, ( )
where
=,
_ ) 2
Tep: = NoZ, ;:0 |xi (n)| (3.115)

andy; = 0};/0) ;.

Note that Tg p ; is the normalized energy at sensor i. The LRT is simply a linearly
combined (LC) cooperative sensing. This method is also called cooperative energy
detection (CED), which combines the energy from different sensors to make a deci-
sion. Thus there are three assertions for cooperative sensing by distributed sensors
with time independent signals:

1. the optimal cooperative sensing is the linearly combined energy detection;

2. the combining coefficient is a simple function of the SNR at the sensor;

3. asensor only needs to report its normalized energy and SNR to the fusion center,
and no raw data transmission is necessary.

If the signals are time dependent, the derivation of the LRT becomes much more
difficult. Furthermore, the information of correlation among the signal samples is
required. There have been methods to exploit the time and space correlations of the
signals in a multi-antenna system [14]. If the raw data from all sensors are sent to the
fusion center, the sensor network may be treated as a single multi-antenna system
(virtual multi-antenna system). If the fusion center does not have the raw data, how
to fully use the time and space correlations is still an open question, though there
have been some sub-optimal methods. For example, a fusion scheme based on the
CAVD is given in [87], which has the capability to mitigate interference and noise
uncertainty.
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A major difficulty in implementing the method is that the fusion center needs to
know the SNR at each user. Also the decision and threshold are related to the SNR’s,
which means that the detection process changes dynamically with the signal strength
and noise power.

If P =1, the propagation channels are flat-fading (g;x = 0, Vi, k), and 7 =
0, Vi, k, the signal at different antennas can be coherently combined first and then the
energy detection is used [28, 31, 93]. The method is called maximum ratio combined
(MRC) cooperative energy detection.

N-1 M
Turc = Z Z hixi (n)? (3.116)
0 i=l1

It is optimal if the noise powers at different sensors are equal. Note that the MRC
needs the raw data from all sensors and also the channel information.

We have proved that the LRT is actually a LC scheme. It is natural to also consider
other LC schemes. In general, a LC scheme simply sums the weighted energy values
to obtain the following test statistic

M
Tic =) &Tepi (3.117)
i=1

where g; is the combining coefficient with g; > 0. If we allow the combining coef-
ficients to depend on the SNRs of sensors, we know that the optimal sensing should
choose g; = v;/(1 + ). So the problem is how we design a LC scheme that does not
need the SNR information or only uses partially available SNR information, while
its performance does not degrade much.

One such scheme is the equal gain combine (EGC) [14, 28, 83, 84, 93, 94], i.e.,
gi =1/M forall i:

1
Tege = 2> Tep. (3.118)

EGC totally ignores the differences of sensors.

If the normalized signal energies at different sensors have large differences, a
natural way is to choose the largest normalized energy for detection. We call this
maximum normalized energy (MNE) cooperative sensing. The test statistic is

Tyne = max Tep,i (3.119)

Note that this is different from the method that uses the known sensor with the
largest normalized signal energies. The largest normalized energy may not always
be at the same sensor due to the dynamic changes of wireless channels. The method
is equivalent to the “OR decision rule” [79, 86].
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There have been many researches for the “selective energy detection”. Such meth-
ods select the “optimal” sensor to do the sensing based on different criterias [41,
90-92, 95-98].

3.5.2 Decision Fusion

In decision fusion, each sensor sends its one-bit (hard decision) or multiple-bit deci-
sion (soft-decision) to a central processor that deploys a fusion rule to make the final
decision.

Let us consider the case of hard decision: sensor i sends its decision bit u; (“1”
for signal present and “0” for signal absent) to the fusion center. Let u be the vector
formed from u;. The test statistic of the optimal fusion rule is thus the LRT [79]:

p(u|H,)
T, =— 3.120
DFLRT Pl Hy) ( )

Assuming that the sensors are independent, we have

M
p(uilHy)

T = _ 3.121

DFLRT L i) ( )

Let A; be the set of i such that u; = 1 and A be the set of i such that u; = 0. The
above expression can be rewritten as

M M

Py — Py
Tprrrr = (3.122)
tle_A[l fal lA_[ 11— Pfal

where P;; and Py, ; are the probability of detection and probability of false alarm
for user i, respectively. Taking logarithm, we obtain

dl Pdl
log Tprirr = Z log Zl T, (3.123)
IEA] a.i

By ignoring some constants not related to u;, the expression can be rewritten as

Pyi(1— Pryy)

M
log TprrLrr = Z u; log P (=P
fa,i — I'd,i

i=1

(3.124)

The test statistic is a weighted linear combination of the decisions from all sensors.
The weight for a particular sensor reflects its reliability, which is related to the
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status of the sensor (for example, signal strength, noise power, channel response,
and threshold).

If all sensors have the same status and choose the same threshold, the weights are
equal and therefore the LRT is equivalent to the popular “K out of M rule: if and
only if K decisions or more are “1”’s, the final decision is “1”. This includes “Logical-
OR (LO)” (K = 1), “Logical-AND (LA)” (K = M) and “Majority” (K = f%}) as
special cases [79]. Let the probability of detection and probability of false alarm of
the method are respectively

M
M S
Pi=Y (i ) (1—p.)"" P, (3.125)
i=K

and

M
Pj, = Z <1t4> (1- Pfa,i)M*’ P, (3.126)
i=K

While the Neyman—Pearson Theorem tells us that “K out of M rule is optimal
(for equal sensors case), it does not stipulate how to choose the threshold #, and K.
In general, to get the best threshold #, and K we need to solve some optimization
problems for different purpose.

If each user can send multiple-bit decision to the fusion center, a more reliable
decision can be made. A fusion scheme based on multiple-bit decisions is shown in
[29]. In general, there is a tradeoff between the number of decision bits and the fusion
reliability. There are also other fusion rules that may require additional information
[79, 99].

3.5.3 Robustness of Cooperative Sensing

Let the noise uncertainty factor of sensor i be «;. Assume that all sensors have the
same noise uncertainty bound. For the linear combination, the expectation of noise
power in T ¢ is therefore

M M
ofc =Y gibr /e =61 gi/a (3.127)
i=1 i=1

Hence, the noise uncertainty factor for LC fusion is oy ¢ = 1/ ZIA; (gi/a;). Note
that ; and 1/«; are limited in [1075/19, 108/1°] and have the same distribution.
Hence o ¢ is also limited in [10~8/19 108/19], EGC is a special case of LC. Based
on the well-known central limit theorem (CLT), it is easy to verify the following
theorem for EGC [56].
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Probability of detection

10 10" 10
Probability of false alarm

Fig. 3.4 ROC curve for data fusion: N = 5000, © = —15dB, 20 sensors

Theorem 3.2 Assume that all sensors have the same noise uncertainty bound B

and their noise uncertainty factors are independent. As M goes to infinite, the noise

uncertainty factor of EGC ap¢c converges in probability to a deterministic number
log(10) B .

1/E(a;) = %, that is, for any € > 0,

P (|Q’LC — 1/E(O{,)| > 6) =0 (3128)

It means that, as M approaches to infinite, there is no noise uncertainty for EGC
fusion rule. We can prove similar result for some other data fusion rules. Hence, data
fusion does reduce the noise uncertainty impact. For example, at N = 5000 and SNR
u = —15dB, the ROC curve for 20 sensors is shown in Fig. 3.4.

Although cooperative sensing can achieve better robustness and performance,
there are some issues associated with it. First, additional bandwidth is required to
exchange information among the cooperating users. In an ad-hoc network, this is by
no means a simple task. Second, the information exchange may induce errors, which
may have a major impact on fusion performance.

3.5.4 Cooperative CBD and EBD

As shown in the last sections, CBD and EBD are robust sensing methods that are
immune to noise uncertainty. Thus it is interesting to use it for cooperative sensing
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as well. In [87], methods were proposed to use the CBD and EBD for cooperative
sensing. Here we give a brief review of the methods.

It is assumed that there are M > 1 sensors/receivers in a network. The sensors are
distributed in different locations so that their local environments are different and
independent. Each sensor has only one antenna. Other than the previous model, here
we consider that the received signal may be contaminated by interference. There
are two hypothesizes: Hj and H;, which corresponds to signal absent or present,
respectively. The received signal at sensor/receiver i and time n is given as

Ho: xi(n) = pi(n) +n;(n) (3.129)
H: xi(n) = his(n — ;) + pi(n) + n;(n) (3.130)

Here p;(n) is the interference (like spurious signals) to sensor i, which may be
emitted from other electronic devices due to non-linear Analog-to-Digital Converters
(ADC) or from other intentional/un-intentional transmitters. Note that interferences
to different sensors could be different due to their location differences. n;(n) is
the Gaussian white noise to receiver i. s(n) is the primary user’s signal and h;
is the propagation channel from the primary to receiver i. 7; is the relative time
delay of the primary signal reaching sensor i. Note that primary signal may reach
different sensors at different times due to their location differences. In the following
we consider baseband processing and assume that the signal, noise and channel
coefficients are complex numbers.

3.54.1 The Methods
Let the auto-correlation of the signal be
iy =E@im)xi(n—-10),1=0,1,...,L —1 (3.131)

where L is the number of lags. Then, at hypothesis Ho,

Fi(l) = Fpi (D) + 7y (D) (3.132)

where
7p.i() = E(pi(n)p; (n — 1)) (3.133)
i) = E(mi(m)n; (n — 1)) (3.134)

Since 5, (n) are white noise samples, we have

Fpi0) =07, Fpi()=0,1>0 (3.135)

0,0’

where anz,i is the expected noise power at sensor i. At hypothesis H;, we have
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Fill) = [hi PR (D) + P i (1) + Py (D) (3.136)

where
() =E(s(n)s*(n — 1)) (3.137)

In practice, there are only limited number of samples at each sensor. Let N be the
number of samples. Then the auto-correlations can only be estimated by the sample
auto-correlations defined as

1 N—1
r,-(l):NnX:(;xi(n)x;‘(n—l), 1=0,1,...,L—1 (3.138)

Itisknown thatr; (1) approachesto 7; (1) if N is large. Each sensor computes its sample
auto-correlations r; (/) and then sends them to a fusion center (the fusion center could
be one of the sensor). The fusion center first averages the received auto-correlations,
that is, compute

| M
r() = m E ri(l) (3.139)
i=1

Then the covariance based detection (CBD) in [65] is used for the detection. Let

L—-1

T =Y gWlrdl, Ty =r(0) (3.140)
=0

where g(/) are positive weight coefficients and g(0) = 1. The decision statistic of
the cooperative covariance based detection (CCBD) is

Teesp =T/ T (3.141)
Let
1 M
= PO (3.142)

i=1

Then r (1) approaches to 7(I) for large simple size. At hypothesis Hy,
1< 1 &
=+ ; P + i;rn,,-(l) (3.143)

At hypothesis H,
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. i 1,
r(1)={ Z'hi }rs(l)+MZr,),i(lHMZrn,,«(l) (3.144)

i=1 i=1

Therefore, at hypothesis Hp,

o 80 |5 S i 0] + 4 T o7,

T/T ~ (3.145)
% Zzﬂil (qui(o) + anz,l)
while at hypothesis Hj,
St 8O [ S (PO + 7 0)| + & S 02,
T, ~ (3.146)

M Zi:l (|h,~|2r5(0) +7,:(0) + Un,i)

Unlike white noise, the interference may be correlated in time. Hence it is pos-
sible that 7, ;(I) # 0 for / > 0. However, if we assume that the interferences at
different sensors are different and independently distributed, it is highly possible
that ﬁ Zf‘il 75,i(1) (I > 0) will be small. This is proved in [87] for some special
cases. Thus CCBD does improve the robustness to interference.

As long as the primary signal samples are time correlated, we have 7} /7, > 1 at
hypothesis H;. Hence, we can use T}/ T5 to differentiate hypothesis H; and H;. We
summarize the cooperative covariance based detection (CCBD) as follows.

Algorithm Cooperative Covariance Based Detection

Step 1. Each sensor computes its sample auto-correlations r; (1), = 0,1, ..., L —
1.

Step 2. Every sensor sends its sample auto-correlations to the fusion center.

Step 3. The fusion center computes the average of the sample auto-correlations
of all sensors as described in (3.139).

Step 4. The fusion center computes two statistics 77 and 73 as described in (3.140).

Step 5. Determine the presence of the signal based on 77, 7, and a threshold y.
That is, if 71 /T, > y, signal exists; otherwise, signal does not exist. O

In Algorithm CCBD, a special choice for the weights is: g(0) =1, g(l) =
2(L-1D/L({=1,...,L—1).For this choice, it is equivalent to choose T} as the
summation of absolute values of all the entries of matrix R,, and 7, as the summation
of absolute values of all the diagonal entries of the matrix.

We can form the sample covariance matrix defined as

r@@ --r(L—-1)
R, = (3.147)
r*(L—1)--- r(0)
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Based on the analysis above, at hypothesis Hy, R, is approximately an diagonal
matrix, while at hypothesis H, R, is far from diagonal if the primary signal samples
are time correlated.

Based on the sample covariance matrix, the eigenvalue based detections (EBD)
discussed in the last sections can also be used here. We summarize the cooperative
eigenvalue based detection (CEBD) as follows.

Algorithm Cooperative Eigenvalue Based Detection

Step 1-Step 3. Same as Algorithm CCBD.

Step 4. Form the sample covariance matrix and compute the maximum eigenvalue
Cmax» and trace of the matrix R,, denoted as 7,.

Step 5. Determine the presence of the signal based on ¢,,,, and 7, and a threshold
y. Thatis, if {4/ T, > v, signal exists; otherwise, signal does not exist. O

3.5.4.2 Comparisons with Other Methods

There have been extensive studies on cooperative sensing. Some of the methods have
been discussed in Sect. 3.5.1. Among them, the cooperative energy detection (CED)
is the most popular method. Here we choose the CED for comparison.

In general, ED needs to know the noise power. A wrong estimation of noise
power will greatly degrade its performance [7, 47]. CED improves somewhat but
still vulnerable to the noise power uncertainty as shown above. Furthermore, when
unexpected interference presents, CED will treat it as signal and hence gives high
probability of false alarm.

Compared with CED, advantages of CCBD/CEBD are: (1) as an inherent property
of covariance and eigenvalue based detection [47, 65], CCBD/CEBD is robust to
noise uncertainty; (2) due to the cancellation of auto-correlations at non-zeros lags,
CCBD/CEBD is not sensitive to interferences; (3) it is naturally immune to wide-
band interference, since such interferences have very weak time correlations; (4)
there is no need for noise power estimation at all which reduces implementation
complexity.

Compared to single sensor covariance and eigenvalue based detections [47, 65],
which may be affected by correlated interferences, CCBD/CEBD overcomes this
drawback by cancelation of the adversary impact in the data fusion.

3.6 Summary

In this chapter, spectrum sensing techniques, including classical and newly-developed
robust methods, have been reviewed in a systematic way. We start with the fundamen-
tal sensing theories from the optimal likelihood ratio test perspective, then review the
classical methods including Bayesian method, robust hypothesis test, energy detec-
tion, matched filtering detection, and cyclostationary detection. After that, robust
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sensing methods, including eigenvalue based sensing method, and covariance based
detection, are discussed in detail, which enhance the sensing reliability under hostile
environment, Finally, cooperative spectrum sensing techniques are reviewed which
improve the sensing performance through combining the test statistics or decision
data from multiple senors. It is pointed out that this chapter only covers the basics of
spectrum sensing, but there are many topics are not covered here, such as wideband
spectrum sensing [100-103] and compressive sensing [104—107], interested readers
are encouraged to refer to the relevant literatures.
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