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Sun Gravity-Assist to Trans-Lunar
Injection Orbits

Harishkumar Sellamuthu, Subramanian Arumugam
and Ram Krishan Sharma

Abstract Solar gravity propelled highly elliptical resident Earth orbits have been
utilized to improve lunar mission performance. A regularized orbit propagator has
been used to perform linear search for initial conditions that produce energy-saving
pre-trans-lunar injection exo-atmospheric highly elliptical orbits. Additional propel-
lant mass margin or smaller piggyback payloads to the Moon/high altitude orbits
may be enabled by such transfers.

Keywords Solar gravity · Regularization · Lunar transfer · Highly elliptical orbits

1 Introduction

With the reinvigorated global interests toward the cislunar space, energy-efficient
lunar transfers are being preferred by the stakeholders. The lunar transfers are ren-
dered through highly elliptical orbits (HEO), with eccentricity (e) > 0.4, whose
dynamics are predominantly governed by the third-body gravity perturbations from
the Sun and the Moon. When perigee altitude (hp > 600 km) is high (HPHEO), the
orbit geometry of HEO is influenced by the variation in apsidal lines of the Sun and
the Moon. Nodal regression consequently apsidal precession of the orbit are caused
by the Earth’s oblateness (J2). Lunisolar perturbation maintains constant semimajor
axis and varies the eccentricity of such orbits which causes the oscillation of perigee
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altitude. The short periodicity of the oscillation is driven by the orbital periods of the
Sun and the Moon, whose phases are sensitive to the initial angles of the Sun and
the Moon with respect to the orbital plane of the spacecraft [1–3].

Although several types of low-energy and low-thrust orbit designs to the Moon
were already flight-rated [4, 5], traditional high energy transfers are still being con-
sidered in view of mission reliability and sustainable technological developments in
upcoming space programs. For high energy transfers to the Moon via direct transfer
orbit, popularly known as trans-lunar injection (TLI), phasing throughmultiple HEO
is utilized to improve the mission performance for characterizing the propulsion sys-
tem and operational flexibility [6, 7]. During the phasing in HEO, the change in the
perigee and the apogee can be viewed as a naturally induced maneuver and may
come handy for fuel-saving transfer trajectories. Such naturally induced fuel-saving
trajectories are sensitive to initial conditions such as launch time and day, initial
orbital parameters, etc. Precise force models should be used with suitable formula-
tion of governing equations to obtain good trajectory estimates. Numerical errors are
seldom fully avoided in trajectory generation, and it is critical to minimize the errors
which may otherwise steer to false conclusions leading to wrong science and even
failure of a mission.

The nonlinear Newtonian differential equations of motion are unstable, are singu-
lar at collision of twobodies, and are not an ideal choice for low-order numerical prop-
agation. The theoretical and physical difficulties of singular differential equations can
be overcome by regularization which is a set of mathematical transformations that
can produce a suitable formulation of the equations of motion. Transforming time
as well as space coordinates produces regular equations, and one such regularization
technique is called Kustaanheimo–Stiefel (KS) regularization [8] where they trans-
formed the nonlinear Kepler motion and reduced it to linear differential equations
of a harmonic oscillator of constant frequency. Stiefel and Scheifele [9] extended
the application of KS transformation to perturbed motion. These equations are less
sensitive to round–off and truncation errors in the numerical integration algorithm.
The orbital frequency based on the total energy gives more accuracy to the in orbit
position calculations. The equations are regular everywhere and they are smoothed
for eccentric orbits as generalized eccentric anomaly is the independent variable.

KSROP is a regularized numerical orbit propagator package based on KS reg-
ular elements. KSROP contains lunisolar perturbations, Earth’s oblateness, atmo-
spheric drag, and solar radiation pressure perturbations. A fixed step-size fourth-
order Runge–Kutta numerical scheme with Gill’s variation is used for propagation.
In this study, we have run numerical simulations with varying initial conditions for
HPHEO using KSROP constraining to lunisolar and J2 perturbations and computed
energy-saving pre-TLI orbits.
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2 KS—Regular Orbit Propagator

The mapping of four-dimensional space onto the three-dimensional physical space
in Cartesian coordinates is called KS transformation [9], which is defined by

x = L(u)u,

where x is supplemented by a vanishing fourth component and r = ‖x‖ is the
magnitude of the position with x as the position vector with (x, y, z) as its components
in km in inertial geocentric coordinate frame, u is the KS position vector with (u1,
u2, u3, u4) as its components and

L(u) =

⎛
⎜⎜⎝

u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

⎞
⎟⎟⎠

is the generalized Levi–Civita matrix commonly known as KS matrix. With t being
the physical time, s (fictitious time) is defined by Sundman in the classical time trans-
formation [10]. The raised dimension would allow an additional degree of freedom
to the solution in parametric space. To achieve robust regularization of equations of
orbital motion using KS transformation, it is necessary to use generalized eccentric
anomaly (E) as the independent variable which is related to fictitious time (s) by

E = 2ws, (1)

where w is the orbital frequency obtained by

w =
√[

μ

2r
− |ẋ|

4

2

− V

2

]
. (2)

μ, ẋ, and V are the standard gravitational parameter of the Earth in km3s−2, velocity
vector with (ẋ, ẏ, ż) as its components in kms−1, and perturbing potential, respec-
tively. The velocity transformation is done through

ẋ = 4w

r
L(u)u∗,

where * represents derivative with respect to E.
The usage of E as independent variable, through Eq. (1), will render the solutions

more meaningful than s, for practical purposes. The perturbed KS regular elements
equations of motion [9] are
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dw

dE
= − r

8w2

∂V

∂t
− 1

2w

(
du
dE

· LT P
)

, (3)

dτ

dE
= 1

8w3
(μ − 2rV ) − r

16w3

(
u · ∂V

∂u
− 2LT P

)
− 2

w2

dw

dE

(
u · du

dE

)
, (4)

dα

dE
=

{
1

2w2

[
V

2
u + r

4

(
∂V

∂u
− 2LT P

)]
+ 2

w

dw

dE

du
dE

}
sin

E

2
, (5)

dβ

dE
=

{ −1

2w2

[
V

2
u + r

4

(
∂V

∂u
− 2LT P

)]
+ 2

w

dw

dE

du
dE

}
cos

E

2
, (6)

where P is the representation for the sum of nonconservative forces, namely, atmo-
spheric drag, solar radiation pressure, spacecraft thrust, etc.; V is the perturbing
potential which is the summation of all conservative forces such as non-sphericity
of the central body, third-body gravity attraction, etc.; τ is the time element which
computes the physical time through

t = τ − 1

w

(
u · u∗),

α and β are the KS regular elements arising from the KS elements u and u*. The
vector dimension in KS space is four. The integration of Eqs. (3)–(6) is carried
out using a fixed step-size fourth-order Runge–Kutta numerical scheme with Gill’s
variation.

The gravitational perturbations are indicated by perturbing potential V which is
expanded in terms of Legendre polynomial (Pn) of degree n. The third-body perturb-
ing potential is

Vnκ = −μκ

rκ

∞∑
n=2

(
r

rκ

)n

Pn(cosϕκ), (7)

with

cosϕκ = xκ x + yκ y + zκ z

rκr
,

ϕκ is the angle between the third-body and the spacecraft in inertial geocentric equato-
rial coordinates in degrees, rκ = (xκ , yκ , zκ ) is the position vector and its components
of the third-body in the inertial geocentric equatorial coordinate frame in km, R is the
equatorial radius of the Earth in km and μκ is the standard gravitational parameter
of the third-body in km3s−2. κ is “M” for the Moon and is “S” for the Sun. The
perturbing potential term with Earth’s oblateness is

Vn = μ

r

∞∑
n=2

Jn

(
R

r

)n

Pn(cosψ), (8)
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with

cosψ = z

r
,

where ψ is the argument of latitude in degrees and Jn is the nth order coefficient of
the zonal harmonic. When only V is considered and P = 0, Eq. (3) becomes

dw

dE
= 0, (9)

and rest of the equations are simplified. Plataforma Solar de Almería (PSA) [11] and
Fourier series algorithm [12] compute the geocentric lunar and solar position vectors.
The state and time elements equations are computed with the lunisolar perturbing
potential chosen up to third- and fourth-order expansion, respectively. The initial
conditions are obtained as in [9].

3 Numerical Study

The change in the perigee and the apogee altitudes, after a number of orbits, caused
by lunisolar gravity tends to change the eccentricity. Eccentricity change (�e) can
be directly translated to velocity change (�ve in ms−1) and mass change (�m) as

�ve = nmeana

2
√
1 − e2

�e,�m = m0

(
1 − e− �ve

g0 Isp

)
, (10)

where nmean is the mean motion in s−1, a is the semimajor axis in km, m0 is initial
mass in kg, g = 9.80665 is the acceleration due to gravity in ms−2, and Isp = 400
is the specific impulse of the engine in s. A contour map of �m is plotted in Fig. 1
with �ve ranging from 1 to 10 ms−1 and m0 from 1000 to 15000 kg. For a �ve gain
of 5 ms−1 for m0 of 6000 kg, the mass gain is up to 10 kg.

To achieve a goodmass gainmargin, the sensitivity of the initial orbital parameters
(time and day, inclination, argument of perigee, and the Sun azimuth angle with
respect to the spacecraft orbital plane) on the pre-TLI orbits should be considered.
Using KSROP, naturally propelled pre-TLI orbits are designed and their physics is
studied purview of the initial orbital parameters in respect to reachability to sphere
of influence of the Moon.

Three test cases with a fixed perigee altitude and different apogee altitudes (ha0),
as shown in Table 1, are considered with varying initial inclination, argument of
perigee, right ascension of ascending node and initial epoch. The initial inclination
and epoch are varied in steps of 1 degree and day, respectively. The initial argument
of perigee and right ascension of the ascending node are varied in steps of 5 degree.
The propagation is done for up to 50 revolutions and maximum �ve gain (�vegain+)
is computed for each initial condition from Eq. (10). Only the initial conditions that
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can reach within the lunar sphere of influence after an impulsive maneuver at perigee
with �vegain+ are obtained and rest of the initial conditions are deemed invalid.

If �ve is found to be negative, then it is not a suitable solution. The number of
valid initial conditions exceeds 70,000 in each case. Taking the maximization of the
mission performance into consideration, the maximum �vegain+ obtained at the end
of 10, 30 and 50 revolutions for each case is tabulated in Table 2.

Themagnitude of the�vegain+ values for each case resonateswith the initial apogee
altitude and the number of revolutions. CasesA andB have relativelymore difference

Fig. 1 Mass gain (�m) map in kg for fixed Isp= 400 s and g = 9.80665 ms−2

Table 1 Initial osculating elements for numerical simulation

Case A B C

hp0 in km 800

ha0 in km 60,000 70,000 80,000

I0 in degrees 17:1:28

Ω0 0:5:360

ω0 0:5:360

M0 0.0

Initial
epoch

dd-mm-yyyy
hh:min:ss

01-01-2019
00:00:00

Table 2 Maximum �vegain+
(ms−1) for each case

Number of revolutions Case

A B C

10 1.26336 1.41931 1.45219

30 2.3057 3.40331 4.152255

50 3.60427 5.07808 5.8561736
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than cases B and C. It is mainly due to the initial epoch, argument of perigee and
right ascension of the ascending node are found to be in the same neighborhood for
cases B and C.

To further understand the dynamics of the solar gravity on the velocity increment,
it is necessary to impose a limit on the lowest �vegain+ mainly because there exists
solutions with �vegain+ of the order 10−3 ms−1 which is not a very good margin.
The total number of solutions that can be sequestered between the lower limit and
maximum �vegain+ is the number of good solutions with relatively better �vegain+
values. With these constraints, the points are plotted with the initial epoch against
the varied initial orbital parameters in Figs. 2, 3 and 4. For simulations up to 10
revolutions, the lower limit is set at 1.25, 1.40 and 1.44 ms−1 for cases A, B, and C,
respectively, and depicted in Fig. 2. The total number of obtained solutions are 73,
12, and 27, respectively. It is noticed that good solutions exist only near the solstices
for ω0 < 90° or ω0 > 90° and few are observed near the start of the year before the
equinox. With inclination variation, case A is noted only at inclinations above 20°
during summer solstice and during start of the year. A similar trend is observed in B
and C. Before the spring equinox, there are few solutions for the Sun azimuth angle
between 100° and 150° and around summer solstice for the Sun azimuth angle above
300°. Similar seasonal trend as the inclination variation is found for Ω0 variation.

For the cases up to 30 revolutions, the lower limit for �vegain+ is set at 2.3, 3.0,
and 4.0 ms−1 in cases A, B, and C, respectively, where the total number of obtained
solutions are 23, 5, and 150. From Fig. 3, it is inferred that solutions exist near
equinoxes for ω0 > 180° and near solstices for ω0 < 180°. They show increasing
trend as the initial epoch varies. Cases A and B have very limited distribution but
case C is spread throughout except for the gaps between solstice and equinox. The
Sun azimuth angle configuration for the solutions is found where it is clear that there

(i) Argument of perigee (ii) Inclination

(iii) Sun azimuth angle (iv) Right ascension of ascending node

Fig. 2 Initial epoch versus (selected orbital elements) for solutions found up to 10 revolutions with
cases A (blue), B (red), and C (green)
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(i) Argument of perigee (ii) Inclination

(iii) Sun azimuth angle (iv) Right ascension of ascending node

Fig. 3 Initial epoch versus (selected orbital elements) for solutions found up to 30 revolutions with
cases A (blue), B (red), and C (green)

(i) Argument of perigee (ii) Inclination

(iii) Sun azimuth angle (iv) Right ascension of ascending node

Fig. 4 Initial epoch versus (selected orbital elements) for solutions found up to 50 revolutions with
cases A (blue), B (red), and C (green)

is no solution below 90° and between 150° and 250°. Solutions are found between
the two equinoxes for Ω0 < 180° and > 90° in cases A and C. For Ω0 > 180°, the
solutions in case B are found between two solstices and in case C between the two
equinoxes.

A lower limit is set on�vegain+ at 3.5, 5.0, and 5.75ms−1 for casesA, B, andCwith
50 revolutions, respectively. The number of solutions obtained from these settings
is 37, 18, and 31, respectively. It is observed in Fig. 4 that the initial argument of
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perigee is found above 180° during equinoxes and below 180° during solstices. The
number of solutions decrease as the equinox season fades into solstice but the initial
argument of perigee increases in all cases. Summer solstice has relatively higher
number of points than the winter solstice. Similarly, seasonal dynamics are seen
with respect to inclination as well. For all inclinations during equinoxes, the trend
is similar to the argument of perigee for all the three cases. It is inferred that the
seasonal dynamics of the initial Sun azimuth angle is more pronounced when it is
in the range of (90°–150°) and (250°–320°). Equinox seasons contains more good
solutions than solstices. Case B is not very prominent in the lower angles of the Sun
azimuth. The right ascension of the ascending node is found with similar distribution
and range as in Sun azimuth distribution. In the higher range, relatively there are less
number of solutions than lower range, especially it can be noticed during solstice.
In general, no good solution exists for the Sun azimuth angle in first quadrant and
in the range of (150°–250°) which is due to the positive change in perigee altitude
thereby reducing the eccentricity. The large gaps in the distribution of the solutions
are mainly because of the higher steps in the varying parameters considered for the
simulation. The primary reason for choosing higher steps is the computational time.
For generating the solution set for a single case up to 50 orbits, the simulation time
was about 6 days with an Intel FORTRAN compiler run in a Red Hat Linux Server
with 32 GB RAM and 8-core i7-4790 processors @3.6 GHz. The majority of the
seasonal dynamics is captured here which can improve the knowledge on multiple
orbit raising from pre-TLI orbits for achieving better efficiency in future high energy
lunar transfers.

4 Conclusion

The efficacy of the medium-fidelity KSROP is demonstrated through mission plan-
ning applications. The physics of the sun gravity propelled pre-TLI orbits and its
advantage in improving the mission performance is studied. It is found that such
orbits are extremely sensitive to the initial conditions. Delta-V gain up to 6 ms−1 is
obtained from the computations reaching up to 50 pre-TLI revolutions using linear
search algorithm. The gain in delta-V can be represented as gain in the propellant
mass thereby providing an opportunity for additional margin or for mounting piggy-
back smaller payloads such as lunar cubesats. Future studies shall use a variant of
genetic algorithm with better KSROP model to obtain finer solutions for real-time
applications.

Acknowledgements Wewould like to extend our gratitude to Padma Shri Dr. V. Adimurthy for the
fruitful discussion. We extend our thanks to the IBM Centre of Excellence for Big Data Software at
Karunya Institute of Technology and Sciences. The first author acknowledges Dr. Moriba Jah and
the Texas Advanced Computing Centre at UTAustin.



10 H. Sellamuthu et al.

References

1. Sharma RK, Bandyopadhyay P, Adimurthy V (2004) Consideration of lifetime limitation for
spent stages in GTO. Adv Space Res 34(5):1227–1232. https://doi.org/10.1016/j.asr.2003.
10.044

2. Wang Y, Gurfil P (2016) Dynamical modeling and lifetime analysis of geostationary transfer
orbits. Acta Astronaut 128:262–276. https://doi.org/10.1016/j.actaastro.2016.06.050

3. Wang Y, Gurfil P (2017) The role of solar apsidal resonance in the evolution of geostationary
transfer orbits. Adv Space Res 59(8):2101–2116. https://doi.org/10.1016/j.asr.2017.01.038

4. Koon WS, Lo MW, Marsden JE, Ross SD (2001) Low energy transfer to the Moon. Celest
Mech Dyn Astron 81(1):63–73. https://doi.org/10.1023/A:1013359120468

5. Hatch SJ, Roncoli RB, Sweetser TH (2010) GRAIL trajectory design: lunar orbit insertion
through science. In: AIAA/AAS astrodynamics specialist conference, Toronto, Canada

6. Adimurthy V, Ramanan RV, Tandon SR, Ravikumar C (2005) Launch strategy for Indian
lunar mission and precision injection to the Moon using genetic algorithm. J Earth Syst Sci
114(6):711–716. https://doi.org/10.1007/BF02715954

7. Ramanan RV, Adimurthy V (2006) Precise lunar gravity assist transfers to geostationary orbits.
J Guid Control Dyn 29(2):500–502. https://doi.org/10.2514/1.17469

8. Kustaanheimo P, Stiefel EL (1965) Perturbation theory of Kepler motion based on Spinor
regularization. J Reine Angew Math 218:204–219. https://doi.org/10.1515/crll.1965.218.204

9. Stiefel EL, Scheifele G (1971) Linear and regular celestial mechanics. Springer, Berlin
10. Sundman KF (1913) Mémoire sur le problème des trois corps. Acta Math 36(1):105–179.

https://doi.org/10.1007/BF02422379
11. Blanco-Muriel M, Alarcón-Padilla DC, López-Moratalla T, Lara-Coira M (2001) Computing

the solar vector. Sol Energy 70(5):431–441. https://doi.org/10.1016/S0038-092X(00)00156-0
12. Simpson DG (1999) An alternative lunar ephemeris model for on-board flight software use.

In: NASA/GSFC flight mechanics symposium, pp 175–184

https://doi.org/10.1016/j.asr.2003.10.044
https://doi.org/10.1016/j.actaastro.2016.06.050
https://doi.org/10.1016/j.asr.2017.01.038
https://doi.org/10.1023/A:1013359120468
https://doi.org/10.1007/BF02715954
https://doi.org/10.2514/1.17469
https://doi.org/10.1515/crll.1965.218.204
https://doi.org/10.1007/BF02422379
https://doi.org/10.1016/S0038-092X(00)00156-0


On the Recurrence Signatures
of Flapping Wings Exposed to Gusty
Simple Shear Flow

Manabendra M. De , J. S. Mathur and S. Vengadesan

Abstract The primary aim of the research reported in this paper was to understand
the effect of change of gusty simple shear inflow’s gradient on the force and moment
patterns of a flapping wing in the 3D reference frame. A wing undergoing one degree
of freedom asymmetric flapping and rectangular planform shape was considered.
The gradient of the gusty simple shear inflow profile, Vgrad, was varied from –10
to +10 in steps of 5 and corresponding vertical and horizontal forces and moment
about the flapping axis were computed. Time series of these forces and moment were
used to plot the global recurrence plots and were compared. Quantitative analysis
of the findings was carried out by the windowed recurrence quantification analysis
of the force and moment patterns. Eight recurrence parameters, viz. recurrence rate,
determinism, laminarity, trapping time, ratio, entropy, maximum line and trend were
calculated and compared.Numerical investigations revealed that negative gusty shear
gradient induced a considerable increase in vertical force andmoment andmarginally
decreased the horizontal forces. Positive gusty shear gradient induced a marginal
increase in horizontal forces but caused a substantial decrement in vertical force and
moment.

Keywords 1 DoF asymmetric flapping · Gusty shear flow · Pico aerial vehicle ·
Global recurrence plots · Windowed recurrence quantification analysis

1 Introduction

Flappingwings have been studied by academicians, scientists and engineers over past
decades to decode the fluid dynamics that drive the magnificent flight of birds and
insects. Various approaches like analytical, experimental and computational fluid
dynamics have been employed to understand the science. Attempts are underway
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to employ this scientific understanding to design and develop artificial flyers and
use them for civilian and military applications. However, due to their small size
and less mass, when these artificial flyers operate outdoor, they are subjected to the
gusty atmospheric conditions. In order to optimally operate in such gusty conditions,
it becomes important to understand the effect of these destabilizing atmospheric
conditions on the forces generated by the flapping wings and then find out measures
to ensure stable and controlled flight. Researchers like Lian and Shyy [1], Viswanath
and Tafti [2], Prater and Lian [3], Sarkar et al. [4], Zhu et al. [5] and Jones and
Yamaleev [6] studied effects of gusty inflow conditions on the flapping wing. Most
of them dealt with inflow conditions represented by a temporally varying sinusoidal
function or aHeaviside function. However, a real-life inflow condition haswind shear
also. Keeping inmind these aspects, 2D [7] and 3D [8] simulationswere carried out to
understand the effect of various inflow conditions on the force and moment patterns
of flapping wings. It was observed in the previous study [8] that the inflow with a
gusty simple shear inflow condition induced a relatively higher disturbance on the
force and moment patterns generated by a flapping wing.

In light of the above-mentioned observations and the previously reported studies
[7, 8], the present work focused on the numerical investigation of a rectangular wing
with 1 DoF asymmetric flapping kinematics subjected to a gusty simple shear inflow
profile in the 3D reference frame. The gradient of the gusty simple shear velocity
inflow profile, Vgrad, was varied and the effects on the force and moment patterns
were studied. Gusty simple shear inflow model was represented by a mathematical
expression with a non-zero mean inflow velocity term, a sinusoidally fluctuating
temporal term and a 1D shear gradient term. Reynolds number of the simulation was
limited to 150.

2 Methodology

3D unsteady Navier–Stokes equations were solved using finite volume formulation,
assuming incompressible and laminar flow for Re = 150. Mass and momentum
equations were solved in a fixed inertial reference frame by the ALE formulation.
Spatial discretization was second-order upwind and the temporal discretization was
second-order implicit. PISO scheme was used for pressure–velocity coupling. The
convergence of the iterative method was considered to be satisfied when mass and
momentum residues decreased below O(10−6) in magnitude. Finite volume formu-
lation based-CFD code ANSYS Fluent was used to solve the 3D time-dependent
unsteady Reynolds averaged Navier–Stokes equations. Dynamic meshing was used
for simulating wing flapping.

Flow domain is shown in Fig. 1. Flow domain consisted of a spherical domain
containing the wing. This domain moved with the wing. The grid inside this domain
did not deformduring the simulation. The spherical domainwas bounded by a cubical
flow domain. The grids in this domain deformed and re-gridded and adjusted their
shapes and sizes as the wingmarched in time and flapped. Face ABCDwas attributed
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Fig. 1 Domain details

with inlet velocity boundary condition. The gusty simple shear inflow condition
was specified on this face. Face EFGH was attributed to pressure outlet boundary
condition. The rest of the four faces, bounding the cubical domain, were attributed
with symmetric boundary conditions.

Wing kinematics is shown in Fig. 2. As depicted in the schematic, the kinematics
was asymmetric 1 DoF flapping. Similar kinematics is reported in the literature [9].
Wing planform was rectangular in shape with an aspect ratio of 4, wing half-span
of 155 mm and thickness of 0.3 mm. The flapping axis coincided with the X-axis.
The simulation was carried out for the flapping frequency of 250 Hz. Mean free
stream velocity, U∞, and fluid properties like density and viscosity were specified to

Fig. 2 Wing kinematics (looking from upstream)
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maintain simulation Re = 150. This Re falls in the operating regime of natural flyers
like the fruit fly and man-made flyers like pico aerial vehicles (PAVs).

The spatiotemporal frontal gust model, reported in this paper, was of the form
Uinlet =U∞ +Ug sin (2πfg t)+Vgrad · y. Here, Uinlet is the inlet velocity, U∞ is mean
free stream velocity, Ug is gust amplitude, Vgrad is the spatial velocity gradient per
unit length along Y-axis, y is the spatial location along Y-axis, fg is gust frequency in
Hz and t is time in seconds. For the simulation reported in this paper, Vgrad was varied
from −10 to +10 in steps of 5. Gust amplitude was of the same order as wingtip
velocity and gust frequency was an order of magnitude lesser than the flapping
frequency.

Global recurrence plots, derived from the phase plots of the forces and moments
for positive and negative shear gradients, were compared to qualitatively examine
the change in their signatures. Windowed recurrence quantification analysis using
eight recurrence parameters were carried out to quantitatively examine the effect
of change in the gradient of the gusty simple shear inflow profile on the force and
moment patterns.

3 Results and Discussions

Findings of the present study are reported in this section. These include plots of
instantaneous and gust cycle averaged force and moment coefficients, global recur-
rence plots and windowed recurrence quantification analysis.

3.1 Instantaneous Force and Moment Coefficients

Variations in instantaneous force and moment coefficient during a flapping cycle
over a period of one gust cycle are shown in Fig. 3a–c. The expressions to calculate
these force and moment coefficients are as follows:

(a) Vertical force coefficient     (b) Horizontal force coefficient          (c) Moment coefficient

Fig. 3 Variation of instantaneous coefficients
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CV = FV
1
2 × ρ × Awing × U∞

, CH = FH
1
2 × ρ × Awing × U∞

&

CM = MPivot
1
2 × ρ × Awing × U∞ × r’

(1)

Here, ρ is the fluid density in kg/m3, Awing is wing planform area in m2 and U∞
is free stream velocity in m/s. FV and FH are instantaneous vertical and horizontal
forces generated by thewing duringflapping inNewton, respectively, andMPivot is the
aerodynamic moment about wing’s flapping pivot axis in N-m. r’ is the characteristic
distance and is considered as the distance between the pivot point and the centroid
of the wing planform. CV, CH and CM are the non-dimensionalized vertical and
horizontal force and moment coefficients, respectively. The instantaneous force and
moment coefficients are plotted against non-dimensionalized time. The reference
timescale considered here is the period of one gust cycle, Tg.

It was observed from the plots of the instantaneous force and moment coefficients
that the shear gradient affected the force and moment patterns throughout the gust
cycle. The effect of shear gradient on the vertical force and moment was similar in
nature. The effect was observed to be more prominent during the wing reversals for
the vertical force and moment coefficients. The shear gradient altered the horizontal
force pattern throughout the gust cycle.

3.2 Gust Cycle Averaged Forces and Moment Coefficient

Variations in gust cycle averaged forces and moment coefficients with respect to
Vgrad are shown in Fig. 4a–c.

It was observed from these plots that as the shear gradient, Vgrad varied from –10 to
+10, the gust cycle averaged vertical force coefficient as well as moment coefficient
reduced in magnitude. The gust cycle averaged horizontal force coefficient, on the
other hand, increased as the shear gradient, Vgrad varied from –10 to +10. The
decrement in vertical force and moment were significant. Increment in the horizontal
force due to the variation of the shear gradient from –10 to +10 was marginal. Also,
the variation of the force and moment coefficients was nonlinear in nature. In the

(a) Vertical force coefficient (b) Horizontal force coefficient  (c) Moment coefficient

Fig. 4 Variation of gust cycle averaged coefficients w.r.t Vgrad
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present studies, two shear gradients on either side of the zero shear gradient were
considered. In order to understand the nonlinear behaviours, further detailed studies
can be pursued.

3.3 Global Recurrence Plots [10]

Global recurrence plots (GRP) are 2D graphical representation of the temporal
instances when the state of a dynamic system recurs. The plot represents the dis-
tances of every point g(a) to all the other points g(b) in the 2D phase space plot. The
mathematical expression for GRP is shown below:

G(a, b) = c(‖g(a) − g(b)‖) (2)

Here, a and b = 1, 2, 3, …, M, ‖·‖ is the Euclidean norm and c(·) correlates
the distance to the colour code. GRPs of vertical and horizontal force coefficients
and moment coefficient for Vgrad = ±10, ±5 and 0 were plotted and are shown in
Fig. 5a–c, respectively.

From these studies, it was observed that GRP patterns of the force and moment
coefficients exhibited a checkerboard pattern for all the shear gradient inflow condi-
tions. This indicated that their variationwas periodic in nature andwas a superposition
of harmonic oscillations. Checkerboard patterns for the vertical force and moment
coefficients were similar in nature. This implied that the effect of a change in the
gradient of gusty simple shear inflow was similar in nature on these two parameters.
Secondary checkerboard patterns were observed apart from the primary patterns in
the GRPs of the horizontal force coefficient. This prominently indicated the presence
of a periodic temporal change in the force pattern. These secondary checkerboard
patterns differed in accordance with the variation in the gradient of the gusty sim-
ple shear flow. It implied that higher positive and negative shear gradient induced a
possible onset of instability in the horizontal force pattern.

3.4 Windowed Recurrence Quantification Analysis [10]

Windowed recurrence quantification analysis (WRQA) is a quantitative recurrence
paradigm which inspects whether a dynamic system has a tendency or trend to move
to an unstable state. In the present study, eight parameters proposed by Webber and
Marwan [10] have been used. The eight parameters are recurrence rate, determinism,
laminarity, trapping time, ratio, entropy,maximum line and trend.Onewindowperiod
width was equal to the period of one flapping cycle. This choice was governed by
the thought process that the frontal gust induced a change in the inflow conditions
for consecutive flapping cycles. The focus of the study was to examine whether the
difference in the frontal gusty inflow conditions induced uneven fluctuations in the
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(i) Vgrad = -10         (ii) Vgrad = -5         (iii) Vgrad = 0            (iv) Vgrad = +5          (v) Vgrad = +10

(a)  Vertical force coefficient

(i) Vgrad = -10         (ii) Vgrad = -5         (iii) Vgrad = 0            (iv) Vgrad = +5          (v) Vgrad = +10

(b)  Horizontal force coefficient

(i) Vgrad = -10         (ii) Vgrad = -5         (iii) Vgrad = 0          (iv) Vgrad = +5       (v) Vgrad = +10

(c)  Moment coefficient

Fig. 5 Global recurrence plots

recurrence parameter series. A visible fluctuation in the recurrence parameter series
would imply a possible onset of instability. Standard deviations of these recurrence
parameter series were calculated to examine the extent of fluctuations. The threshold
for the WRQA calculations was chosen as five times the standard deviation to avoid
the effect of spurious local spikes. Dimension equal to 1 was considered. Euclidean
norm was adopted for calculating neighbourhood radius.

3.4.1 Recurrence Rate

Recurrence rate quantifies the concentration of recurrence instances in a dynamic
system. The mathematical expression to calculate it is as shown below:

Recurrence Rate = 1

M2

M∑

a,b=1

Rd,r
a,b × 100 (3)
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(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 6 Recurrence rate series

Here M is the data series length and Rd,r
a,b is the d-dimensional recurrence matrix

and r is the neighbourhood radius. For the reported study, d is equal to 1, and the
value of r is set in a manner such that the value of recurrence rates in the WRQA
approximates to 1% [10]. Recurrence rate series for force and moment coefficients
are shown in Fig. 6a–c.

3.4.2 Determinism

Determinism is themeasure of the diagonal pattern of length lmin in aGRP.A stochas-
tic natured dynamic system has a small value of determinism. A periodically natured
dynamic system has higher values of determinism. Mathematical expression to cal-
culate determinism is as below:

Determinism =
∑M

l=lmin
l Pr (l)

∑M
a,b R

d,r
a,b

× 100 (4)

Here Pr (l) represents frequency distribution of the diagonal pattern of length l, r
is the neighbourhoods radius and lmin is the minimum threshold of diagonal pattern.
For the present studies, lmin = 2 was considered. Determinism series for force and
moment coefficients are shown in Fig. 7a–c.

(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 7 Determinism series
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(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 8 Laminarity series

3.4.3 Laminarity

Laminarity is the measure of the vertical line of length vmin in a GRP. It is the repre-
sentation of the laminar state of a dynamic system and is independent of the laminar
phase length. Laminarity reduces when the proportion of recurrence singularities is
higher. Laminarity is calculated as below:

Laminarity =
∑M

v=vmin
vPr (v)

∑M
a,b R

d,r
a,b

× 100 (5)

Here Pr (v) is the frequency distribution of the vertical pattern’s length v in the
recurrence plot, r is the neighbourhood radius, and vmin is the minimum threshold of
vertical pattern. For the present studies, vmin = 2 was considered. Laminarity series
for force and moment coefficients are shown in Fig. 8a–c.

3.4.4 Trapping Time

Trapping time is derived based on the vertical patterns of GRP. It contains details of
the quantity and magnitude of vertical patterns. It represents the temporal trapping
information of the state of a dynamic system. Trapping time is calculated as below:

Trapping Time =
∑M

v=vmin
vPr (v)

∑M
v=vmin

Pr (v)
(6)

Trapping time series for force and moment coefficients are shown in Fig. 9a–c.

3.4.5 Ratio

Ratio is the WRQA parameter derived from determinism and recurrence rate. This
parameter helps to detect transitions in the nature of a dynamic system. Ratio is
calculated as below:
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(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 9 Trapping time series

(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 10 Ratio series

Ratio = M2

∑M
l=lmin

l Pr (l)
(∑M

a,b R
d,r
a,b

)2 (7)

Ratio series for force and moment coefficients are shown in Fig. 10a–c.

3.4.6 Entropy

Entropy is the Shannon entropy associated with the diagonal line lengths in the GRP.
It represents the complications of the deterministic patterns. Entropy is calculated as
below:

Entropy = −
M∑

l=lmin

p(l)lnp(l); p(l) = Pr (l)
∑M

l=lmin
Pr (l)

(8)

Here, the value of lmin is considered as 2. Entropy series for force and moment
coefficients are shown in Fig. 11a–c.

3.4.7 Maximum Line

Maximum line is associated with the mutual divergence of the trajectory patterns
in a GRP. It represents the limits of the closeness of each trajectory pattern with
their neighbouring patterns. It is linked to the largest positive Lyapunov exponent. It
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(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 11 Entropy series

(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 12 Maximum line series

contains information about the rate of divergence of the trajectories. Maximum line
is calculated as below:

Maximum Line = max({ li ; i = 1 . . .M}) (9)

Maximum Line series for force and moment coefficients are shown in Fig. 12a–c.

3.4.8 Trend

Trend represents the linear regression coefficient associated with the diagonal pat-
terns along the line of identity (LoI). It measures the time distance between the
diagonal patterns and the LoI. It is useful to detect drifts or such non-stationary
events. Trend is calculated as below:

Trend =
∑M

a=1(a − M/2)(RRa − 〈RRa〉)∑M
a=1(a − M/2)2

(10)

Here, 〈RRa〉 represents average recurrence rate of the ath diagonal pattern. Trend
series for force and moment coefficients are shown in Fig. 13a–c.

Standard deviations of all the recurrence parameters based on forces and moment
coefficients were computed and are reported in Tables 1, 2, and 3.

All the WRQA series quantitatively implied that the fluctuation of the windowed
series varied with the variation in the shear gradient. As compared to the fluctuations
in the WRQA parameters of the force and moment patterns for the flapping wing
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(a) Vertical force coefficient       (b) Horizontal force coefficient        (c) Moment coefficient

Fig. 13 Trend series

with a gusty simple shear inflow gradient of zero, the higher positive and negative
gradient flows induced more fluctuations. Also, it was observed that the fluctuations
of the force andmoment patterns corresponding to positive and negative gusty simple
shear flow grading had phase differences among them. From the tables of standard
deviations of theWRQAparameter series, it was observed that the standard deviation
was less for the shear gradient of zero. As the shear gradient varied on either side
(positive and negative), the standard deviations of the series increased. This implied
that the presence of a gradient in the inflow induced fluctuations in the series of
WRQA parameter. It is interpreted from these observations that the increase of shear
gradient can induce instability in the force patterns of the flapping wing system with
a 1 DoF asymmetric flapping kinematics.

4 Conclusion

Findings of the numerically investigate of flapping wings with Re= 150 undergoing
asymmetric 1 DoF flapping kinematics under the influence of gusty simple shear
inflow condition were reported in this paper. Effects of positive and negative shear
inflow profile on forces and moment patterns were assessed. It was observed that
variation of the gradient from negative to positive shear inclination reduced the
vertical force and moments and increased the horizontal force. From the application
point of view, this know-how would lead to improvement of the existing control
algorithms for kinematics of flapping wings and hence perk up their performance.
For example, if the pico aerial vehicle needs more lift force during a vertical take-off
mode, the stroke plane angle can be modulated such that a negative shear gradient
Vgrad within an acceptable limit is maintained, thus improving the lift force pattern.
Similarly, when the need for higher thrust arises, the stroke plane angle can be
modulated to maintain a positive shear gradient Vgrad within an acceptable limit.
This would help to the realization of man-made aerial vehicles with better flight
stability, longer flight endurance and enhanced manoeuvrability. Higher magnitude
of relative shear velocity inflow gradient would lead to the onset of instability. Hence
too much of relative shear velocity inflow gradient should be avoided for a wing
exhibiting a 1 DoF asymmetric flapping kinematics.
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Unsteady Heat Transfer from a
Non-isothermal Axisymmetric Body
Immersed in Porous Media Saturated
by Nanofluid

Shobha Bagai and Mridu Sharma

Abstract The intent of this paper is to present the numerical results for transient
heat transfer across an axisymmetric non-isothermal body embedded in porousmedia
saturated by nanofluid. A non-linear coupled PDE is reduced using dimensionless
similarity variables and is solved usingKeller Boxmethod. Buoyancy ratioNr, Brow-
nian motion Nb and thermophoresis Nt are the parameters considered in this study.
The effect of Lewis number Le and non-Newtonian parameter N on reduced Nusselt
number and reduced Sherwood number is recorded in tabular form for isothermal as
well as for non-isothermal bodies. Theheat flux for different values of non-Newtonian
parameter N is plotted in the case of sphere and cylinder at different time levels.

Keywords Porous media · Nanofluid · Transient · Non-Newtonian fluid ·
Non-isothermal axisymmetric body · Keller Box method

1 Introduction

Nanofluids possesses novel properties that make them useful in geophysics and
geothermal engineering, cooling of electronic systems, thermal insulation system,
groundwater pollution, and petroleum recovery. The field of heat transfer from a
heated body immersed in porous media saturated by nanofluids has been an area
of great interest to researchers across the globe due to its wide-scale applications.
Nanofluids play a crucial role as they enhance the thermal conductivity of a fluid
and are better than microfluids as they do not clog the pores. Mahdi et al. [1] and
Kasaeian et al. [2] in their review papers discussed latest developments in the field of
porous media and nanofluid. Some of the theory on this topic was also documented
in ([3–6]). The study of convection in porous media is done for different types of
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geometries immersed in porous media saturated with nanofluid has been studied
by different researchers. Nield and Kuznetsov [7] and Noghrehabadi et al. [8] have
investigated the problem for a flat vertical plate for constant viscosity and variable
viscosity, respectively. Gorla and Kumari [9] have solved free convection problem
for a non-Newtonian fluid for a horizontal plate. Tham and Nazar [10] and Gorla et
al. [11] have studied the problem for a sphere and a vertical cone, respectively.

Due to computational complexities of transient problems, the work carried out
by researchers in this field is mostly restricted to steady state. There are variety
of methods available to solve transient problems. For example, Degan et al. [12]
investigated transient boundary-layer flow along a vertical surface embedded in an
anisotropic porous medium using method of characteristics. Amin et al. [13] worked
on Darcy–Brinkman–Forchheimer model using explicit finite differencing scheme
etc. Chamkha et al. [14] presented a study of steady, laminar, natural convection
boundary-layer flow over a permeable vertical cone embedded in a porous medium
saturated with a nanofluid in the presence of uniform lateral mass flux. An analysis
was carried out by Loganathan et al. [15] to study the effects of heat generation and
nanoparticle volume concentration on an unsteady free convective flowof a nanofluid
past an impulsively started infinite vertical plate. Finite difference method was used
by Sheremet et al. [16] to solve unsteady free convection heat transfer in porous
cavity filled with nanofluid using Buongiorno’s mathematical model. Rajesh et al.
[17] worked on the effects of transverse magnetic field on transient free convective
flowof nanofluid past an impulsively started infinite vertical porous platewith viscous
dissipation.

The present study focuses on transient free convection heat transfer from an
axisymmetric body immersed in a porous media saturated by nanofluid for different
values of non-Newtonian parameter N . In this study, the system of coupled PDEs
has been solved using the Keller Box method.

2 Physical Model and Governing Equations

Consider Fig. 1 where the axes are fixed as x-axis along the surface of the body and
the y-axis normal to the surface of the body. The initial temperature of the body
T = T∞, where T∞ is the ambient temperature, is increased to T = Tw(x) which is
thereafter maintained at the same level, when time t is greater than zero. The wall
geometry r∗(x) is equal to 1, for plane flow and to r(x), for axisymmetric flow.

Consider the following governing equations which involves equation of continu-
ity, equation of momentum, equation of energy and equation of nanoparticle volume
fraction together with the boundary conditions. Introducing Darcy law and Boussi-
nesq approximations, we get

∂(r∗u)

∂x
+ ∂(r∗v)

∂y
= 0 (1)
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Fig. 1 Physical model

uN = (1 − φ∞)kβgx (T − T∞)

ν
− (ρp/ρ f ∞ − 1)gxk(φ − φ∞)

ν
(2)

σ
∂T

∂τ
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂φ

∂y

∂T

∂y
+ DT

T∞

(
∂T

∂y

)2]
(3)

�
∂φ

∂τ
+ u

∂φ

∂x
+ v

∂φ

∂y
= ∂2φ

∂y2
+ DT

T∞
∂2T

∂y2
(4)

At τ = 0 : u = 0, v = 0, T = T∞ (5)

τ > 0 : v = 0, T = Tw(x),φ = φw at y = 0

u → 0, T → T∞,φ → φ∞ as y → ∞ (6)

The acceleration due to gravity is given by gx = g[1 − (dr/dx)2] 1
2 . We introduce

the following similarity transformations to non-dimensionalize Eqs. (2)–(4):

f (η, t) = ψ

αr∗(Rax I (x)) 1
2

(7)

θ(η, t) = T − T∞
�Tw(x)

(8)

ω(η, t) = φ − φ∞
�φw

(9)

where η is the dimensionless space variable and t is the dimensionless time variable
given by

η = y

x

( Rax
I (x)

) 1
2
and t = α

σx2
Rax
I (x)

τ (10)
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The streamfunction ψ is defined as

u = 1

r∗
∂ψ

∂y
and v = − 1

r∗
∂ψ

∂x

which satisfies the equation of continuity (1). The modified Rayleigh number is
defined by

Rax = x

α

( (1 − φ∞)kβgx�Tw

ν

)1/N
(11)

and

I (x) =
∫ x
0 (gx�Tw)

1
N r∗2dx

(gx�Tw)
1
N r∗2x

(12)

is a non-dimensional function of x.
Substitution of the similarity variables given by Eqs. (7)–(10) in Eqs. (2)–(4) yields

(
∂ f

∂η

)N

= θ − Nr
�Twr

�Tw(x)
ω (13)

∂θ

∂t
− 1

2
f
∂θ

∂η
+ δ

∂ f

∂η
θ = ∂2θ

∂η2
+ Nb

∂θ

∂η

∂ω

∂η
+ Nt

�Tw(x)

�Twr

(
∂θ

∂η

)2

(14)

∂2ω

∂η2
+ Nt

Nb

�Tw(x)

�Twr

∂2θ

∂η2
= CLe

∂ω

∂t
− 1

2
Le f

∂ω

∂η
(15)

whereC is the ratio of heat capacity and porosity. The initial and boundary conditions
in non-dimensional form are written as

At t = 0 : f = 0, θ = 0,ω = 0

for t > 0 : f = 0, θ = 1,ω = 1 at η = 0

f ′ → 0, θ → 0,ω → 0 as η → ∞

3 Solution Procedure

The lumped parameter δ and the wall temperature defined as in [18]

δ = dln�Tw

dlnx

∫ x
0 r∗2(gx�Tw)

1
N dx

r∗2(gx�Tw)
1
N x

and �Tw ∝ ξλ (16)

Also, �Twr is defined as the average wall temperature
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�Twr = 1

ξ

∫ ξ

0
�Twdξ (17)

where the variable ξ is given as ξ = ∫ x
0 r∗2g

1
N
x dx .

Hence, δ will turn out to be

δ = Nλ

λ + N
(18)

For the plane flow, r∗ = 1 and gx = g, ξ is proportional to the distance measured
from the lower stagnation point. The variable ξ for the horizontal cylinder is given by
ξ = g

1
N R

∫ �

0 sin
1
N � d� and for the sphere is given by ξ = g

1
N R3

∫ �

0 sin2+1/N� d�,
where R is the radius of the horizontal cylinder (or the sphere) and � is the angle
measured from the lower stagnation point.

4 Keller Box Method

We will use Keller Box method to solve Eqs. (13)–(15) together with initial and
boundary conditions. The method is an extension of Crank–Nicolson method and is
second-order accurate in both time and space. This method is unconditionally stable.
The detailed discussion of this method can be found in Cebeci and Bradshaw [19]
and Keller [20]. The method can be described in three steps:

Step 1 Convert the system of higher order PDEs into the system of first-order PDEs.

θ′ = θ1 (19)

ω′ = ω1 (20)

( f ′)N = θ − Nr

λ + 1
ω (21)

∂θ

∂t
− 1

2
f θ1 + Nλ

N + λ
f ′θ = θ′

1 + Nbω1θ1 + Nt (λ + 1)(θ1)
2 (22)

ω′
1 + Nt (λ + 1)

Nb
θ′
1 = CLe

∂ω

∂t
− Le

2
f ω1 (23)

where prime in the above equations is with respect to η.

Step 2 The finite difference scheme is applied to first-order PDEs to obtain corre-
sponding difference equations.

For Eqs. (19)–(21), central differencing is applied with midpoint at (η j−1/2, tn),

θnj − θnj−1

h
= (θ1)

n
j + (θ1)

n
j−1

2
(24)

ωn
j − ωn

j−1

h
= (ω1)

n
j + (ω1)

n
j−1

2
(25)
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(
f nj − f nj−1

h

)N

= (θnj + θnj−1)

2
− Nr

λ + 1

ωn
j + ωn

j−1

2
(26)

The remaining first-order Eqs. (22) and (23) are solved by using central difference
about the midpoint (η j−1/2, tn−1/2) .

θnj−1/2 − θn−1
j−1/2

�t
= 1

2
( f )n−1/2

j−1/2(θ1)
n−1/2
j−1/2 − Nλ

N + λ
(θ)

n−1/2
j−1/2

f n−1/2
j − f n−1/2

j−1

h
+

(θ1)
n−1/2
j − (θ1)

n−1/2
j−1

h
+ Nb(ω1)

n−1/2
j−1/2(θ1)

n−1/2
j−1/2 + Nt (λ + 1)

(θ1
n−1/2
j−1/2)

2 + (θ1
n−1/2
j−1/2)

2

2
(27)

(ω1)
n−1/2
j − (ω1)

n−1/2
j−1

h
+ Nt (λ + 1)

Nb

(θ1)
n−1/2
j − (θ1)

n−1/2
j−1

h
=CLe

(ω)nj−1/2 − (ω)n−1
j−1/2

�t

− 1

2
( f )n−1/2

j−1/2(ω1)
n−1/2
j−1/2

(28)

Step 3 Linearise the discretized equations using Newton’s Method.
Wewill substitute the following linearising equations in Eqs. (24)–(28) and ignore

the higher order terms of δ to obtain system of linear PDEs:

θn+1
j = θnj + δθnj

θ1
n+1
j = θ1

n
j + δθ1

n
j

ωn+1
j = ωn

j + δωn
j

ω1
n+1
j = ω1

n
j + δω1

n
j

f n+1
j = f nj + δ f nj

The boundary conditions are also linearised using the same set of linearising equa-
tions to obtain following transformed boundary conditions:

δθ0 = 0, δω0 = 0 and δ f0 = 0

δθM = 0, δωM = 0. (29)

The system of linearised equations together with boundary conditions takes the form
of AX = B where A is a block tridiagonal matrix and B is a column vector. This
system of equations in matrix form together with appropriate initial guess, satisfying
boundary conditions, can be solved usingMatlab orMathematica to obtain the values
of X. In this paper, the solution is accepted when tolerance error reaches 10−3.
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5 Results and Discussions

The non-dimensional heat flux for a vertical flat plate at x = Lr is given by [18]

qv
∗ = [−θ′(0)]

(
λ + N

N

) 1
2

.

Table1 contains the values of the reduced Nusselt number (−θ′(0)) and reduced
Sherwood number (−ω′(0)) at steady state by solving the system of difference equa-
tions usingKeller Boxmethod. Nr = 0.5, Nt = 0.5 and Nb = 0.5 are assumed to be
constants and variation is done with respect to Lewis number Le and non-Newtonian
parameter N . The solutions (−θ′(0)) and (−ω′(0)) were independent of the choice
of �t and h, which confirms the stability of the method used for the problem under
study. The values are presented for �t = 0.05 and h = 0.02. Also, as the value of N
increases from 0.5 to 2, the value of (−θ′(0)) and (−ω′(0)) increases. As the param-
eter Le occurs only in the equation for the nanoparticle fraction (28), the effect of
the Lewis number Le is visible in the values of reduced Sherwood number −ω′(0)
whereas it does not alter the values of reduced Nusselt number. Sherwood number
increases significantly as Le increases. The values at steady state are independent of
constant C , for calculation purpose we have assumed C = 0.1.

The profiles of temperature function versus η are plotted in Figs. 2, 3, and 4
for pseudoplastic fluids (N = 0.5), Newtonian fluids (N = 1), and dilatant fluids
(N = 2). Figures5, 6, and 7 illustrate the heat flux variations for the three types of
fluids under consideration. For all the three cases, the heat flux oscillates near the
boundary (η = 0). The oscillations are smooth for non-isothermal body and aremore
significant in the transient state. These oscillations die down as we reach the steady
state. The streamfunction profiles are given in Figs. 8, 9, and 10. Because u → 0 as
η → ∞, the streamfunction f tends to a constant value as η → ∞.

Table 1 Values of reduced Nusselt number −θ′(0) and reduced Sherwood number−ω′(0) for
different values of λ and Le at steady state for vertical plate

λ Le N = 0.5 N = 1 N = 2

−θ′(0) −ω′(0) −θ′(0) −ω′(0) −θ′(0) −ω′(0)
0 10 0.1688 1.0768 0.2191 1.3876 0.2513 1.5783

50 0.1818 2.6416 0.2217 3.2541 0.2485 3.6253

100 0.1860 3.7893 0.2234 4.6222 0.2489 5.1247

1 10 0.2750 1.1809 0.3885 1.3054 0.4848 1.3650

50 0.2681 3.1939 0.3628 3.5341 0.4466 3.7243

100 0.2671 4.6247 0.3568 5.0987 0.4361 5.3649
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Fig. 2 Temperature profile for pseudoplastic fluid (N = 0.5)
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Fig. 3 Temperature profile for Newtonian fluid (N = 1)
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Fig. 4 Temperature profile for dilatant fluid (N = 2)

The local heat flux for the case of cylinder is given by

qc
∗ = qv

∗(sinφ)
1
N

[
(
∫ φ

0 (sinx)
1
N dx)

(2N+1)λ−N
2N

(
∫ π

0 (sinx)
1
N dx)

(2N+1)λ
2N

]

and for the case of sphere is
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Fig. 5 Heat flux profile for pseudoplastic fluid
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Fig. 6 Heat flux profile for Newtonian fluid
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Fig. 7 Heat flux profile for dilatant fluid

qs
∗ = qv

∗(sinφ)
N+1
N

[
(
∫ φ

0 (sinx)
2N+1
N dx)

(2N+1)λ−N
2N

(
∫ π

0 (sinx)
2N+1
N dx)

(2N+1)λ
2N

]

The heat flux profiles with respect to φ are given by Figs. 11 and 12. In these figures,
black curves are of isothermal bodies and green ones are for non-isothermal bodies.
The limiting value for isothermal as well non-isothermal cases for both sphere and
cylinder are calculated at the two stagnation point φ = 0,π and this value turns out
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Fig. 10 Profile of streamfunction f for dilatant fluid

to be zero except for the case of isothermal bodies at φ = 0 which is 0 for N = 0.5,
qv

∗ for N = 1 and ∞ for N = 2. Using the concept of critical points and double
derivative, the maxima value for N = 1 is obtained at 2π

3 in case of cylinder and at
3π
5 approximately for sphere. From the figures, we also observe that for a cylinder at
N = 0.5, the maxima are obtained at φ < 2π

3 and for N = 2 , φ > 2π
3 whereas for

sphere, maxima are at the same point.
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Fig. 12 Sphere

6 Conclusion

The present study investigates transient free convection flow for an axisymmetric
body immersed in a porousmedia saturated by nanofluid. Themodel incorporates the
effect ofBrownianmotion, buoyancy and thermophoresis. The following conclusions
can be made from the above study:

I. The solutions (−θ′(0)) and (−ω′(0)) were independent of the choice of �t and
h. Hence, the stability of the method is assured.

II. As the value of N increases, the heat flux will increase.
III. The effect of the Lewis number Le is insignificant on the reduced Nusselt num-

ber −θ′(0) whereas the effect is significantly visible in the values of reduced
Sherwood number −ω′(0).

IV. The value of reduced Sherwood number increases as Le increases.
V. The limiting value for isothermal as well non-isothermal cases for both sphere

and cylinder are calculated at the two stagnation points � = 0,π, and these
values turn out to be zero except for the case of isothermal bodies at � = 0
which is 0 for N = 0.5, qv for N = 1 and ∞ for N = 2.

VI. The point of maxima is observed for non-isothermal body in case of both sphere
and cylinder.
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Nevanlinna Theory for Finding
Meromorphic Solutions of Cubic-Quintic
Ginzburg–Landau Equation Arising
in Nonlinear Dynamics

Adaviswamy Tanuja

Abstract Research on meromorphic solution of complex differential equations
using Nevanlinna theory has become a subject of great interest. This paper is
devoted to finding meromorphic solutions of the cubic-quintic Ginzburg–Landau
equation which arises in problems of dynamics, especially fluid dynamics. We con-
sider the complex differential equation corresponding to cubic-quintic Ginzburg–
Landau equation with coefficients being small functions of meromorphic functions.
The problem has beenmainly studied under the condition that meromorphic function
and its first derivative share one value of the type counting multiplicity or ignoring
multiplicity.

Keywords Complex differential equations · Ginzburg–Landau equation ·
Meromorphic functions · Nevanlinna theory

1 Introduction

In this article, we find meromorphic solution of the cubic-quintic Ginzburg–Landau
equation using Nevanlinna theory which is a leading tool for obtaining the existence
of entire or meromorphic functions as solution of complex differential equations.
Recently, many researchers [1–9] have focused attention on complex differential
equations and several others [10–13] have concentrated on entire or meromorphic
functions sharing one value.

In the rest of this paper, we use standard notations and basic results of Nevanlinna
theory [14–17]. The aim of this paper is to find meromorphic solution, H(z), of the
following type of differential equation:

H ′ = c1H + c3H
3 + c5H

5, (1)
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where c1, c3 , and c5 are small functions of H . Equation (1) typically arises in a
nonlinear stability analysis. One could also have higher degree terms of odd nature in
the equation. We consider H ′ − 1 and H ′ − H to share 0 CM(counting multiplicity)
with N=5(r, H) �= S(r, H). In this case H and H ′ share 1CM(countingmultiplicity).
This kind of sharing value plays a cardinal role in finding the solution of complex
differential equations. We introduce the even degree terms knowing fully well that
they do not exist. This is just for the ease of proof. With the introduction of such
terms, Eq. (1) may be written as

H ′ = c0 + c1H + c2H
2 + c3H

3 + c4H
4 + c5H

5, (2)

it is understood that c0 = c2 = c4 = 0 which does not violate the assumption of ci ‘s
being small functions.

To prove the existence of meromorphic solution for the differential equation (2)
we make use of the following lemmas.

2 Required Lemmas

Lemma 1 Suppose H is a meromorphic function so that H ′ is not a constant then
either (

H ′′)5 = a
(
H ′ − μ

)6
, (3)

for some nonconstant a, or

N4)(r, H) ≤ N (5(r, H) + N4)

(
r,

1

H ′ − μ

)
+ N

(
r,

1

H ′′

)
+ S(r, H), (4)

where μ is a constant.

Proof Consider

Φ = 2
H ′′′

H ′′ − 3
H ′′

H ′ − μ
. (5)

Let z∞ be a pole of H of order 4 and fromEq. (5)we arrive at the following expression:

Φ(z) = O((z − z∞)5).

This shows that Φ has zero z∞ with multiplicity 5. Therefore, Eq. (3) is not true
which implies that Φ �≡ 0, then

N4)(r, H) ≤ N (r,
1

Φ
)

≤ T (r, Φ) + O(1).
(6)
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Note that Φ can have poles of order 4 at zeros of H ′′ or H ′ − μ or multiple poles of
H . Hence from Eq. (5), we can write

N (r, Φ) ≤ N (5(r, H) + N4)

(
r,

1

H ′ − μ

)
+ N

(
r,

1

H ′′

)
. (7)

Again from Eq. (5), we have

m(r, Φ) = S(r, H). (8)

Adding Eqs. (7) and (8) and substituting the resulting equation in Eq. (6), we get
Eq. (4).

Lemma 2 Consider meromorphic function H which is nonconstant then either
Eq. (4) holds or

H(z) = 3125

4a[z + 5B1]4 + μz + B2, (9)

where a �= 0, B1, B2 and μ are constants.

Proof Let H be a nonconstant and H ′ be a constant. Then H is a polynomial of
degree at most 1 and so N4)(r, H) = S(r, H). From this case Eq. (4) is true. Now we
consider H ′ is not a constant then by Lemma 1 if Eq. (4) is not true then Eq. (3) must
be true. We now rewrite Eq. (3) as

(
H ′′

H ′ − μ

)5

= a(H ′ − μ). (10)

Differentiating Eq. (10), we obtain

5

(
H ′′

H ′ − μ

)4 (
H ′′

H ′ − μ

)′
= aH ′′. (11)

Combining Eqs. (10) and (11) yields

(
H ′′

H ′ − μ

)−2 (
H ′′

H ′ − μ

)′
= 1

5
. (12)

Integrating Eq. (12) once and then using Eq. (10), we get

H ′ − μ = 1

a

[ −5

z + 5B1

]5

. (13)

By integrating Eq. (13) once and rearranging the resulting equation, we arrive at
Eq. (9).
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3 Main Results

We now prove two main results in this section one each on functions involving
counting multiplicity(CM) and ignoring multiplicity(IM).

Theorem 1 Suppose meromorphic function H which is nonconstant satisfying
Eq. (2). Let H ′ − 1 and H ′ − H sharing 0 CM, then we have H and H ′ sharing
1 CM and H will satisfy the equation

H(z) = z + B1

1 − ae−z
, (14)

where B1 and a �= 0 are constants.

Proof From Eq. (2), we can easily infer that N(5(r, H) + m(r, H) = S(r, H) which
implies that T (r, H) = N4)(r, H) + S(r, H). Therefore N4)(r, H) �= S(r, H), i.e.,
N=4(r, H) �= S(r, H). Following [18] we can get Eq. (14). Substituting Eq. (14) in
Eq. (2), we get

[
z + B1

1 − ae−z

]′
= c0 + c1

(
z + B1

1 − ae−z

)
+ c2

(
z + B1

1 − ae−z

)2

+ c3

(
z + B1

1 − ae−z

)3

+ c4

(
z + B1

1 − ae−z

)4

+ c5

(
z + B1

1 − ae−z

)5

.

(15)
If c0 �≡ 0, nowusingEq. (15)we get T (r, e−z) = S(r, e−z) this is not possible. Hence,
we conclude that c0 ≡ 0. Substituting c0 ≡ 0 in Eq. (15) and equating the coefficients
of like powers of ae−z, we can obtain c1(z), c3(z) and c5(z).

Having proved a theorem on a meromorphic solution of the Ginzburg–Landau equa-
tion (2) sharing one CM, in what follows we prove an analogous theorem for one
IM.

Theorem 2 Suppose meromorphic function H which is nonconstant satisfying the
Eq. (2). Let H and H ′ sharing 1 IM, now we have either

H ′ − 1 = −c5(H − 1)

[(
1 + c1

c5
+ c3

c5

)
(H4 + H3) +

(
1 + c1

c5

)
(H2 + H) + 1

]
,

(16)
or

H ′ − 1 = c5(H − 1)

[(
B1 − z − c1

c5
− c3

c5
+ 1

)
(H 4 + H 3)

+
(
B1 − z − c1

c5
+ 1

)
(H 2 + H) + B1 − z + 1],

(17)

where B1 is a constant.
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Proof Let z5 be a zero of H ′ − 1 and c j (z5) �≡ 0,∞( j = 0, 1, 3, 5) with H and H ′
sharing 1 IM along with z5 being a zero of H − 1 of order 4. Now using Eq. (2), we
can obtain

(c0 + c1 + c3 + c5)(z5) ≡ 1. (18)

If c0 + c1 + c3 + c5 �≡ 1, we obtain

N

(
r,

1

H ′ − 1

)
= N

(
r,

1

H − 1

)
≤ N

(
r,

1

c0 + c1 + c3 + c5 − 1

)
+ S(r, H),

≤ T (r, c0 + c1 + c3 + c5) + S(r, H),

≤ T (r, c0) + T (r, c1) + T (r, c3) + T (r, c5) + S(r, H),

= S(r, H). (19)

From Eq. (2), we get

N(5(r, H) + m(r, H) = S(r, H). (20)

Combining Eqs. (19) and (20), and using result from Yang and Yi [17], we get

T (r, H) ≤ N

(
r,

1

H − 1

)
+ N

(
r,

1

H ′ − 1

)
+ N (r, H) − N0

(
r,

1

H ′′
)

+ S(r, H),

= N (5(r, H) + N4)(r, H) − N0

(
r,

1

H ′′
)

+ S(r, H).

Also, we get the following expression:

N0

(
r,

1

H ′′

)
= S(r, H). (21)

Using Eqs. (4) and (9), with μ = 1, we get either

N4)(r, H) ≤ N (5(r, H) + N4)

(
r,

1

H ′ − 1

)
+ N

(
r,

1

H ′′

)
+ S(r, H), (22)

or

H = 3125

4a[z + 5B1]4 + z + B2, (23)

where B1, B2, and c �= 0 are constants. From Eqs. (19), (20), and (22), we get

T (r, H) ≤ N

(
r,

1

H ′′

)
+ S(r, H). (24)

Equation (24) together with Eq. (21) yields the following result:
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T (r, H) ≤ N (5

(
r,

1

H ′ − 1

)
+ S(r, H). (25)

Equations (25) and (19) yield the condition T (r, H) = S(r, H), and this is a contra-
diction. Therefore, Eq. (22) does not hold. From Eq. (23), we find that

H − 1 = 24a[z + 5B1]4[z + B2] + 18750

24a[z + 5B1]4 (26)

and

H ′ − 1 = −3125

a[z + 5B1]5 . (27)

Now H and H ′ cannot share 1 IM this is not possible. Therefore

c0 + c1 + c3 + c5 ≡ 1. (28)

Substituting Eq. (28) into the differential equation (2), we get

H ′ − 1 = c5(H − 1)

[(
c1
c5

+ c3
c5

+ 1

)
+

(
c3
c5

+ 1

)
(H + H 2) + H 3 + H 4

]
.

(29)

If 1 + c1
c5

+ c3
c5

= −1 or 1 +
(
c1
c5

)′ +
(
c3
c5

)′ = 0, then we, respectively, arrive at the

conclusion (16) or (17). Otherwise, we infer that

N

⎛

⎝r,
1

(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4

⎞

⎠ = S(r, H).

Suppose
(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4 has a zero of multi-

plicity l at z0, say, such that 1
c5

H ′−1
H−1 has a zero of multiplicity l at z0. Now let us

consider the following cases:

(i) H(z0) = ∞ or
(ii) H(z0) = H 2(z0) = H 3(z0) = H 4(z0) = H ′(z0) = 1 or
(iii) c5(z0) = ∞.
If H(z0) = ∞, then c5 has a pole of multiplicity l + 1 at z0, while if H ′(z0) =
H 4(z0) = H 3(z0) = H 2(z0) = H(z0) = 5, then c1

c5
+ 3 c3

c5
+ 5 has a zero of multi-

plicity 10 at z0 and 1 +
(
c1
c5

)′ +
(
c3
c5

)′
has a zero ofmultiplicitymin{l − 1, l + 1 − t}

at z0, here t represents the possible multiplicity of the pole of c5 at z0. From case
(iii), c5 will have a pole of multiplicity l at z0. Hence we have
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N

⎛

⎝r,
1

(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4

⎞

⎠ ≤ N (r, c5)

+N

(

r,
1

c1
c5

+ 3 c3
c5

+ 5

)

+ N

⎛

⎜
⎝r,

1

1 +
(
c1
c5

)′ +
(
c3
c5

)′

⎞

⎟
⎠ ,

N

⎛

⎝r,
1

(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4

⎞

⎠ ≤ S(r, H). (30)

Equation (29) may now be written as

[(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4
]′ −

[
1 +

(
c1
c5

)′ +
(
c3
c5

)′]

[(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4
]

= c5(H − 1). (31)

From Eqs. (20) and (31), it follows that, if 1 +
(
c1
c5

)′ +
(
c2
c5

)′ �= 0, then

m

⎛

⎝r,
1

(
c1
c5

+ c3
c5

+ 1
)

+
(
c3
c5

+ 1
)

(H + H 2) + H 3 + H 4

⎞

⎠ = S(r, H). (32)

From Eqs. (30) and (32), we can obtain T (r, H) = S(r, H) which is not possible.
Therefore, we have

1 +
(
c1
c5

)′
+

(
c3
c5

)′
≡ 0. (33)

By integrating Eq. (33) w.r.t. “z”, we have

c1
c5

+ c3
c5

= B1 − z. (34)

From Eqs. (29) and (34), we arrive at Eq. (17).

4 Conclusions

Ginzburg–Landau differential equation is a frequently used nonlinear differential
equation with algebraic nonlinearities in nonlinear stability problems. In this article,
we have shown that Nevanlinna theory can be used to obtain meromorphic solution
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of Ginzburg–Landau differential equation with sharing one counting multiplicity or
ignoring multiplicity between meromorphic function and its derivative. If nonlinear-
ities appear beyond the cubic term, then this meromorphic solution is most useful
since there is no known analytical solution of such equations.
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Geometry of Variably Inclined Inviscid
MHD Flows

Anirban Roy and R. Hari Baskar

Abstract A steady plane variably inclined magnetohydrodynamic flow of an invis-
cid incompressible fluid of infinite electrical conductivity studied. Introducing the
vorticity, magnetic flux density, and energy functions along with the variable angle
between magnetic field and velocity vector, governing equations are reformulated.
The resulting equations are solved to analyze the geometry of the fluid flow. Con-
sidering streamlines to be parallel, stream function approach is applied to obtain the
pattern for magnetic lines and the complete solution to the flow variables. Next con-
sidering parallel magnetic lines, magnetic flux function approach is applied to obtain
streamlines and the complete solution of the flow. A graphical analysis of pressure
variation is made in all the cases.

Keywords MHD · Incompressible · Vorticity · Magnetic flux density ·
Streamlines · Magnetic lines

1 Introduction

Afluidmotion is generally described by giving the flowpattern that is streamlines and
magnetic lines. In this article, we consider a steady plane variably inclinedMHDflow
of an inviscid incompressible fluid of infinite electrical conductivity. Steady plane
variably inclined flow means a flow where the velocity of the fluid and magnetic
vector fields are coplanar, and the angle between these vector fields is variable, a
function of two space coordinates in the flow region. We use the concept given by
Martin [1] where the order of the governing equations reduced.

Garg and Chandna [2], studied MHD flows of a viscous fluid having infinite elec-
trical conductivity where magnetic and velocity fields are orthogonal. Chandna and
Garg [2] used the concepts from differential geometry to study a constantly inclined
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MHD flow for a viscous fluid with infinite electrical conductivity. Nath and Chandna
[3] extended the work of Martin [1] further for steady incompressible orthogonal
MHD flows of viscous fluid with infinite electrical conductivity. Chandna et al. [4]
also studied a plane MHD flow of an incompressible viscous fluid having finite
electrical conductivity where they have considered that the magnetic field vector
is variably inclined with the velocity vector. Bagewadi and Bhagya [5] considered
variably inclined MHD flows for an incompressible viscous fluid having infinite
electrical conductivity. Applying hodograph transformation and using differential
geometry techniques, Bagewadi and Bhagya [6] studied the behavior of streamlines
in aligned flow. Solutions for steady plane orthogonal flow of second grade fluid are
obtained by Bagewadi and Bhagya [7] using curvilinear coordinate system where
one curve represents the streamlines and the other curve is left arbitrary. Manoj
et al. [8] applied transformation technique to constantly inclined steady, plane, two-
phaseMFD flows of viscous, incompressible fluid, through porous media. They used
hodograph transformation in particular and obtained partial differential equation of
second order which they used to find the solution for vortex flow. Ramesh et al. [9]
have analyzed the effect of radiation on the flow near the two-dimensional stagna-
tion point of an incompressible, viscous, electrically conducting dusty fluid toward
stretching sheet. They converted non-linear equations into similarity equations and
then solving numerically they analyzed the thermal results.Manjunatha andGireesha
[10] have observed the effect of variable viscosity and the thermal conductivity on
an MHD flow for a dusty fluid. Manjunatha et al. [11] have analyzed theoretically a
free convective MHD flow of an unsteady rotating dusty fluid. They solved govern-
ing equations analytically using perturbation technique for viscous, incompressible
electrically conducting fluid flow in the porous media under the influence of periodic
pressure gradient with uniform distribution of dust particles.

In this article, we write the governing equations in the convenient form introduc-
ing vorticity, current density, and energy function. Then by considering the parallel
streamlines, we use the stream function approach to obtain the pattern for magnetic
lines and obtain the complete solution to the flow variables. Next using magnetic
flux function approach when magnetic lines are considered parallel, streamlines are
obtained and then we derive the complete solution of the flow. In all the cases, the
variation of pressure is plotted in graphs and hence an analysis is made on pressure
function.

2 Governing Equations

The governing equations of a steady magnetohydrodynamic two-dimensional flow
of an inviscid incompressible fluid of infinite electrical conductivity are given by

div−→v = 0 (1)
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ρ
(−→v .grad

)−→v + grad p = μ curl
−→
H × −→

H (2)

curl
(−→v × �H

)
= �0 (3)

div �H = 0 (4)

where −→v denotes the velocity, ρ the constant fluid density, p the fluid pressure, μ

the constant magnetic permeability of flow, and
−→
H the magnetic field vector.

For a two-dimensional flow with
−→
H in the plane, we take −→v = (v1, v2) and−→

H = (H1,H2) with v = ∣∣−→v ∣∣ =
√
v21 + v22 and H =

∣∣∣
−→
H

∣∣∣ =
√
H 2

1 + H 2
2 .

We now reduce Eqs. (1)–(4) in Cartesian form by introducing the vorticity func-
tion, current density function and the energy function. Thus, the system of Eqs. (1)–
(4) is now replaced by the following system:

∂v1
∂x

+ ∂v2
∂y

= 0 (5)

−ρv2ξ + μδH2 = −∂h

∂x
(6)

−ρv1ξ + μδH1 = ∂h

∂y
(7)

v1H2−v2H1 = k, where k is an arbitrary non-zero constant. (8)

∂H1

∂x
+ ∂H2

∂y
= 0 (9)

∂v2
∂x

− ∂v1
∂y

= ξ (10)

∂H2

∂x
− ∂H1

∂y
= δ (11)

The above system of seven equations are having seven unknown functions v1, v2,
H1, H2, ξ , δ, and h, each of them are functions of x and y.

3 Variably Inclined MHD Flows

Let the variable angle α(x, y), between velocity vector and the magnetic field be such
that α(x, y) �= 0 for every α(x, y) in the flow region. So we get −→v .

−→
H = VH cosα

and
∣∣∣−→v × −→

H
∣∣∣ = VH sin α
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Therefore,

v1H1 + v2H2 = V H cos α (12)

And by (8), the Cartesian form of the diffusion Eq. (3), we have

v1H2−v2H1 = VH sin α = k (13)

Equations (12) and (13) can be used for solving H1 and H2 as well v1 and v2.
Here

H1 = k(v1 cot α − v2)

v2
, H2 = k(v2 cot α + v1)

v2
(14)

Eliminating H1 and H2 from Eqs. (6), (7), (9) and (11) using (14), we get the
following system of six partial differential equations:

∂v1
∂x

+ ∂v2
∂y

= 0 (5)

−ρv2ξ + kμ
(v2 cot α + v1)

v2
δ = −∂h

∂x
(15)

−ρv1ξ + kμ
(v1 cot α − v2)

v2
δ = ∂h

∂y
(16)

∂

∂x

(
v1 cot α − v2

v2

)
+ ∂

∂y

(
v2 cot α + v1

v2

)
= 0 (17)

∂v2
∂x

− ∂v1
∂y

= ξ (10)

k

[
∂

∂x

(
v2 cot α + v1

v2

)
− ∂

∂y

(
v1 cot α − v2

v2

)]
= δ (18)

The above system of six equations has six unknown functions v1, v2, α, ξ , δ, and
h. Once a solution of this system is determined, we can find pressure, velocity, and
magnetic field.

4 Streamlines Parallel to the X-Axis

The equation of continuity (5) implies the existence of a stream function ψ (x, y)
such that

dψ = −v2 dx + v1 dy or
∂ψ

∂x
= −v2,

∂ψ

∂y
= v1
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Then from Eqs. (15)–(18) and (10), we get

ρ

(
∂ψ

∂x

∂ξ

∂y
− ∂ψ

∂y

∂ξ

∂x

)
+ kμ

⎡

⎢
⎣

(
∂ψ

∂y − ∂ψ

∂x cot α
)

∂δ
∂y +

(
∂ψ

∂x + ∂ψ

∂y cot α
)

∂δ
∂x

(
∂ψ

∂x

)2 +
(

∂ψ

∂y

)2

⎤

⎥
⎦ = 0

(19)

Finally obtaining a solution of (19), we can find velocity field, vorticity, current
density, magnetic field, and energy, and thus can determine the pressure.

When the streamlines are straight lines parallel to the x-axis, we consider the
stream function ψ(x, y) in the form

ψ(x, y) = N (y), N ′(y) �= 0 (20)

Then

v1 = ∂ψ

∂y
= N ′(y) , v2 = −∂ψ

∂x
= 0

Thus

ξ = −N ′′(y) (21)

δ = −k
∂

∂y

(
cot α

N ′(y)

)
(22)

cot α = N ′′(y)
N ′(y)

x + M (y), whereM (y) is an arbitrary function of y. (23)

In order to solve for M(y) and N(y), we now discuss the following two cases:

(i)N ′′(y) = 0 (ii)
∂

∂y

(
N ′′(y)
N ′(y)

)
= 0

Case I:

N ′′(y) = 0 ⇒ N (y) = N1(y) + N2

∴ N (y) = N1y + N2 whereN1( �= 0) andN2 are arbitrary constants.

M (y) = N3y + N4 whereN3( �= 0) andN4 are arbitrary constants.

Then
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�v = (N1, 0), α = cot−1(N3y + N4), ξ = −k
N3

N1
, �H =

(
k(N3y + N4)

N1
,
k

N1

)

Then the pattern of magnetic lines are given by

N3y
2 + 2N4y − 2x = −N 2

4

N3
+ 2k1, where k1is an arbitrary constant.

i.e.,

N3y
2 + 2N4y − 2x = constant (24)

Magnetic lines pattern for different values of the arbitrary constants is plotted
below.

Then the energy function h(x, y) is given by

h = k2μ

N 2
1

[
N3x − (N3y + N4)

2

2

]

And hence, the pressure function is given by

p = k2μ

N 2
1

[
N3x − (N3y + N4)

2

2

]
− 1

2
ρN 2

1 (25)

Nowwe plot the graphs for variation of pressure corresponding to different values
of density andmagnetic permeability.Wehave taken arbitrary values for the constants
as k = 1, N1 = 0.6, N3 = 2, N4 = 0.5.

We now use the following non-dimensional quantities to avoid the arbitrary con-
stants:

X = x

L
, Y = y

L
, P = p

ρU2 , N1 = U , L = 1

N3
= N4

N3
, μ = ρ U4

k2
, k1 = L

where L is the characteristic length and U is the characteristic speed of the flow
motion. Then the non-dimensional expression is

Y 2 + 2Y − 2X = 3 andP = X − Y − 1

2
Y 2 − 1

The above two non-dimensional expressions give an overview of the geometry of
the magnetic lines and the pressure variation, given below in Figs. 9 and 10.
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Case II:

∂

∂y

(
N ′′(y)
N ′(y)

)
= 0 ⇒ N ′(y) = c2e

c1y, c2 �= 0

i.e.
∂�

∂y
= N ′(y) = c2e

c1y where c2 ( �=0) and c1 are arbitrary constants.

M (y) = c3 + c4e
2c1ywhere c3 and c4 are arbitrary constants.

Then

�v = (
c2e

c1y, 0
)
, α = cot−1

(
c1x + c3 + c4e

2c1y
)

, ξ = −c1c2e
c1y,

δ = kc1
c2

[
(c1x + c3)e

−c1y − c4e
c1y

]
, �H = k

c2

(
(c1x + c3)e

−c1y + c4e
c1y, e−c1y

)

Then the pattern of magnetic lines are given by

c4e
2c1y + c1c5e

c1y − c1x = c3,where c5 is an arbitrary constant. (26)

Magnetic lines pattern for different values of the arbitrary constants is plotted
below.

We find the energy function by integration.

h = ρ

2
c22e

2c1y − k2μ c1
2c22

[
(c1x + c3)

2e−2c1y + c24e
2c1y

]

+ k2μ

2c22

[
2c1c4x − 2c1

(c1
2
x + c3

)
x e−2c1y

]

And hence, the pressure function is given by

p = k2μ

2c22

[
2c1c4x − 2c1

(c1
2
x + c3

)
x e−2c1y − (c1x + c3)

2e−2c1y − c24e
2c1y

]
(27)

We now plot graphs for the variation of pressure for different values of magnetic
permeability. We take k = 1, c1 = 1, c2 = 2, c3 = 1, and c4 = 1.

We now substitute the following non-dimensional quantities:

X = x

L
, Y = y

L
, P = 2U 2

k2μ
p, c1 = 1

L
, c22e

2c1y = U 2, c3 = c4 = 1, c5 = L
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where L is the characteristic length and U is the characteristic velocity of the flow
motion.

Then the non-dimensional expression for magnetic lines and pressure are

e2Y + eY − X = 1 andP = 2Xe2Y − e4Y − 2X 2 − 4X − 1

The above two non-dimensional expression give an overview of the geometry of
the magnetic lines and the pressure variation, given below in Figs. 15 and 16.

Theorem 1 In the steady plane MHD flow of an incompressible inviscid fluid of infi-
nite electrical conductivity, when streamlines are parallel to the x-axis and inclined
variably to the magnetic lines in the flow plane, then magnetic lines pattern are either
N3y2 + 2N4y − 2x = constant or c4e2c1y + c1c5ec1y − c1x = c3.

5 Magnetic Lines Parallel to the X-Axis

Now

v1 = k(H2 + H1 cot α)

H 2
, v2 = k(H2 cot α − H1)

H 2
(28)

Eliminating v1 and v2 fromEqs. (5), (6), (7) and (10) using (28) we obtain a system
of six equations having six unknown functions H1, H2, h, ξ , δ and α as functions of
x, y. Once a solution of this system is determined, we can find pressure, velocity, and
magnetic field.

The solenoidal Eq. (9) implies the existence of magnetic flux function ϕ(x, y) such
that

dφ = −H2 dx + H1 dy or
∂φ

∂x
= −H2,

∂φ

∂y
= H1

Then we obtain,

μ

(
∂φ

∂y

∂δ

∂x
− ∂φ

∂x

∂δ

∂y

)
+ ρk

⎡

⎢
⎣

(
∂φ

∂x − ∂φ

∂y cot α
)

∂ξ

∂x +
(

∂φ

∂x cot α + ∂φ

∂y

)
∂ξ

∂y
(

∂φ

∂x

)2 +
(

∂φ

∂y

)2

⎤

⎥
⎦ = 0

(29)

Finally obtaining a solution of (29), we can find velocity field, vorticity, current
density, the magnetic field and energy and thus can determine the pressure.

When the magnetic lines are straight lines parallel to the x-axis and are variably
inclined to the streamlines in the flow plane, then we assume
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φ(x, y) = G(y)withG′(y) �= 0 (30)

so that

H1 = ∂φ

∂y
= G′(y) , H2 = −∂φ

∂x
= 0

Applying the expression of ϕ, we get the following equations in reduced form:

cot α = −G′′(y)
G′(y)

x + F(y), whereF(y) is an arbitrary function of y. (31)

ξ = − k
∂

∂y

[
cot α

G′(y)

]
(32)

δ = −G′′(y) (33)

In order to solve for F(y) and G(y), we have now the following two cases:

(i)G′′(y) = 0 (ii)
∂

∂y

(
G′′(y)
G′(y)

)
= 0

Case III:

G′′(y) = 0 ⇒ G(y) = b1y + b2

i.e. Φ(x, y) = b1y + b2 where b1( �= 0) and b2 are arbitrary constants.

F(y) = b3y + b4 where b3(�= 0) and b4 are arbitrary constants.

Then

�H = (b1, 0), α = cot−1(b3y + b4), ξ = −k
b3
b1

, δ = 0, �v =
(
k(b3y + b)

b1
,− k

b1

)

So the streamlines are given by

b3y
2 + 2b4y + 2x = b24

b3
+ 2k4,where k4 is an arbitrary constant.

i.e. b3y
2 + 2b4y + 2x = constant. (34)

Using the above solutions, we find the energy function by integration.
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h = ρk2

b21
b3x + ρk2

2b21
(b3y + b4)

2

And hence, the pressure function is given by

p = ρk2

2b21
(2b3x − 1) (35)

We now plot the graph for the variation of pressure for different densities. While
plotting the graph, we take b1 = 2 and b3 = 2.

For the characteristic length, L and the characteristic velocity, U using the fol-

lowing non-dimensional quantities: X = x
L , P = 2b21

ρk2 p, b3 = 1
L , b4 = 1, k4 = L

We get the non-dimensional expression for magnetic lines and pressure in the
following form:

Y 2 + 2Y + 2X = 3 andP = 2X − 1

These non-dimensional expressions give an overview of the geometry of the
streamlines and the pressure variation.

Case IV:

∂

∂y

(
G′′(y)
G′(y)

)
= 0 ⇒ G′(y) = d2 e

d1y

And so

G(y) = d2
d1

ed1y + d3, where d1 and d2 are non-zero constants.

F(y) = d4 + d5e
2d1y where d4 and d5 are arbitrary constants.

Then

�H = (
d2e

d1y, 0
)
, α = cot−1

(−d1x + d4 + d5e
2d1y

)
,

ξ = −k

(
d2
1

d2
xe−d1y − d1d4

d2
e−d1y + d1d5

d2
ed1y

)
, δ = −d1d2e

d1y,

�v = k

d2

((−d1xe
−d1y + d4e

−d1y + d5e
d1y,−e−d1y

))

So the streamlines are given by

d5e
2d1y − d1d6e

d1y + d1x = d4, where d6 is an arbitrary constant. (36)
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We find the energy function by integration.

h = ρ
k2

2d2
2

(
2d2

1 x
2e−2d1y − 4d1d4 x e

−2d1y + 2d1d5 x + d2
4 e

−2d1y + d2
5 e

2d1y
)

And hence, the pressure function is given by

p = ρ
k2

2d22

[
3d21 x2e−2d1y − 6d1d4 x e

−2d1y + 2d24 e
−2d1y + 2d25 e

2d1y + 2d4d5 + e−2d1y
]

(37)

We now plot the variation of pressure for different values of densities. While
plotting we consider y as constant and assign y = 2.

Using the following non-dimensional quantities for L, the characteristic length

X = x

L
, Y = y

L
, P = 2d2

2 e
2d1y

k2ρ
p, d1 = 1

L
, d4 = d5 = 1, d6 = L

Non-dimensional expression for streamlines and pressure are

e2Y − eY + X = 1 and P = 3(X − 1)2 + 2e4Y
(
e2Y + 1

)

Theorem 2 In the steady plane MHD flow of an incompressible inviscid fluid of
infinite electrical conductivity, if the magnetic lines are parallel to the x-axis and
inclined variably to the streamlines in the flow plane, then streamlines are either
b3y2 + 2b4y + 2x = constant or d5e2d1y − d1d6ed1y + d1x = constant.

6 Conclusions

We have studied variably inclined MHD flow problems, for two cases when stream-
lines as well magnetic lines are parallel to the x-axis.

When the streamlines are parallel to the x-axis, magnetic lines are found to be
either parabolic or spiral in nature, given by Eqs. (24) and (26), respectively. Pattern
of themagnetic lines is presented graphically in Figs. 1, 2, 3, 4, and 11.While plotting
magnetic lines given by Eq. (24), we take k1 = −3, −0.5, 0.9, 4 in every graph and
observe the change of pattern for four set of combinations of the arbitrary constants
N1 and N2, by taking their values as (1, 1), (1, −1), (−1, 1), and (−1–1). Parabolic
behavior of the magnetic lines is exhibited in all the four Figs. 1, 2, 3, and 4. For
case II, magnetic lines given by Eq. (26), graph is plotted in Fig. 11. Magnetic lines
are spiral and by taking different values of c1, c3, c4, and c5, the pattern is exhibited
(Figs. 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16).

Streamlines are found to be either parabolic or spiral in nature, given by Eqs. (34)
and (36), respectively, when the magnetic lines are parallel to the x-axis. Pattern of
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Fig. 1 Magnetic lines when N3 = 1 and N4 = 1

Fig. 2 Magnetic lines when N3 = 1 and N4 = −1
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Fig. 3 Magnetic lines when N3 = −1 and N4 = 1

Fig. 4 Magnetic lines when N3 = −1 and N4 = −1
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Fig. 5 Pressure variation μ = 50

Fig. 6 Pressure variation for μ = 150
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Fig. 7 Pressure variation for μ = 250

Fig. 8 Pressure variation for high density and low permeability
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Fig. 9 Overview of magnetic lines pattern (case I)

Fig. 10 Overview of pressure variation (case I)
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Fig. 11 Magnetic lines for different arbitrary constants

Fig. 12 Pressure variation for μ = 2
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Fig. 13 Pressure variation for μ = 10

Fig. 14 Pressure variation for μ = 50
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Fig. 15 Overview of magnetic lines pattern (case II)

Fig. 16 Overview of pressure variation (case II)
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Fig. 17 Streamlines when b3 = 1 and b4 = 1

the streamlines is presented graphically in Figs. 17, 18, 19, 20, and 24. Similar to the
last case, the parabolic behavior and spiral pattern of the streamlines are represented
graphically by considering different values of the arbitrary constants. While plotting
streamlines given by Eq. (34), we take the previous values for the arbitrary constant
k4 in every graph and observe the change of pattern for four set of combinations of
the arbitrary constants b3 and b4, by taking their values as (1, 1), (1,−1), (−1, 1), and
(−1–1). Parabolic behavior of the streamlines is exhibited in all the four Figs. 17, 18,
19, and 20. For the case IV, streamlines pattern is found as spiral, given by Eq. (36),
and is plotted for different combinations of values of the arbitrary constants d1, d4,
d5, and d6. All the variations are represented in Fig. 24 (Figs. 21, 22 and 23).

Finally, pressure is calculated and given by Eqs. (25), (27), (35), and (37). More-
over, the variation of the pressure in every cases being analyzed by plotting graphs.

When the streamlines are straight lines and parallel to the x-axis, we observe from
Figs. 5, 6, and 7 that the pressure increaseswhen themagnetic permeability increases.
And variation of density does not affect the pressure variation in a significant manner.
Density makes a considerable influence on the pressure when permeability is less
and the density value is very large. Graphical representation is given in Fig. 8. In
another case also, we observe from Figs. 12, 13, and 14 that pressure increases along
with the increase in permeability.

For the other two cases where magnetic lines are parallel to the x-axis, we observe
from Fig. 21 and from Figs. 25, 26, 27 and 28 that pressure increases when density
increases.
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Fig. 18 Streamlines when b3 = 1 and b4 = −1

Fig. 19 Streamlines when b3 = −1 and b4 = 1
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Fig. 20 Streamlines when b3 = −1 and b4 = −1

Fig. 21 Pressure variation for different densities
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Fig. 22 Overview of streamlines (case III)

Fig. 23 Overview of variation of pressure (case III)
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Fig. 24 Streamlines for different arbitrary constants

Fig. 25 Pressure variation with density versus x keeping y constant
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Fig. 26 Pressure variation for density equal to 1

Fig. 27 Pressure variation for density equal to 2.8
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Fig. 28 Pressure variation for density equal to 13.6

We have applied non-dimensional substitution on magnetic lines or streamlines
and the pressure expressions to get rid of arbitrary constants and plotted the graph
consequently. These graphs give an overview of the flow pattern and the variation
of pressure. Figures 9 and 15 give an overview of the magnetic lines pattern, and
Figs. 22 and 29 give the same for streamlines. Figures 10, 16, 23, and 30 give the
overview of pressure variations in all the cases.
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Fig. 29 Overview of streamlines (case IV)

Fig. 30 Overview of pressure variation (case IV)
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Kinematic Analysis of Theo Jansen
Mechanism-Based Eight-Leg Robot

Keval Bhavsar, Dharmik Gohel, Pranav Darji, Jitendra Modi
and Umang Parmar

Abstract This paper presents the design analysis of an intellectual model of an
autonomous surveillance robot. The principle objective is to do surveillance in the
muddy or desert area or on that region where the surface is less grippy. This spider
is having EIGHT legs controlled by two DC servo motors. The mechanism which
is used to make those legs is THEO JANSEN MECHANISM, which is one of the
animal walking patterns. To do the surveillance, a 360° rotating camera is used which
is having its own working module. All the electronics are controlled by Arduino and
that Arduino takes power to run itself as well as all other systems by 12 VDC battery.
As this is the first spider robot which is made by Polylactic Acid (PLA) material,
it gives comparison between Conventional Theo Jansen Mechanism and Modified
Theo Jansen Mechanism.

Keywords Theo Jansen mechanism · Animal walking pattern · 360 camera ·
Surveillance device · PLA material

1 Introduction

This paper presents the design and development of an intellectual model of an
autonomous surveillance robot known as Spider—A Security Device. The princi-
ple objective is to do surveillance in the muddy or desert area or on that region where
the surface is less grippy. This spider is having EIGHT legs controlled by two DC
servo motors. The mechanism which is used to make those legs is THEO JENSON
MECHANISM, which is one of the animal walking patterns. To do the surveillance,
a 360-degree rotating camera is used which is having its own working module. All
the electronics are controlled by Arduino and that Arduino takes power to run itself
as well as all other systems by 12 V DC battery, as this is the first spider robot which
is made by Polylactic Acid (PLA) material.
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2 Literature Review

The Klann linkage offers a considerable lot of guides of further developed strolling
cars without a portion of their limitations. It fits into the specialized void among
the strolling gadgets and axel-driven wheels. While Theo Jansen Mechanism uses
11 little bars, Dutch active stone carver Theo Jansen has made a planar instrument
that, when utilized pair with numerous others indistinguishable from it, can stroll in
a smooth forward movement.

Qu et al. [1] present the structure and advancement of an applied model of a self-
sufficient self-propelled inline examination robot, called Smart Spider. The essential
goal is to utilize this kind of robot for seaward oil and gas pipeline review, particu-
larly for those pipelines where the traditional astute pigging framework could not or
be hard to be conveyed. Deepak D, Pathma sharma S [2] proposed two six-legged
walker connected by utilizing a connection system and by coupling two kinematic
walkers with a different engine for every walker. By utilizing the different engine,
we can run every walker in the ideal position like front and back, and consequently
we can be ready to control the walker to turn left and right movements. Patnaik [3]
presents the Study of Theo Jansen Mechanism for burden conveying limit. It gives
the outcome for pressure study. Parekh et al. [4] present to automatize the errand
of pitch checking. Theo Jansen’s component displays better portability while pro-
ceeding onward unpleasant territory over wheeled robots. The enhancement is set
up to limit the vitality input and boost the throughput. The outcomes which were
gotten depended on a four-legged strolling model; in any case, the exactness can be
improved by expanding the quantity of legs. Nansai et al. [5] present unique study
of a four-legged Theo Jansen linkage instrument utilizing projection technique that
outcomes in requirement power and proportional Lagrange’s standard of movement
essential for any suggestive expansion or potential improvement of this NICHE sys-
tem. Numerical recreations utilizing MA TX are displayed in mix with the dynamic
study Kazuma Komoda, H.W. [6]. The connection is valuable to emulate creature
development, and they accepted that an extra here and there movement in the linkage
focus gives assorted movement designs from the first inward cycle. Amir AF, Nas-
siraei KI [7] present the possibility of IMD to approve how a mechanical gathering
can be intended to boost robot controllability, universalization, and errand execution.
Lokhande NG, Emche VB [8] present a robot that can venture over asphalts, climb
staircases, or travel into regions that are at present not reachable with wheels but
rather does not require microchip control or huge numbers of inciting instruments.
Celaya E, Porta JM [9] set up a hearty controller for a six-legged robot that enables
it to stroll over horrid territories in an independent way, with restricted utilization
of tangible information. Blair [10] examine a ROTAB produced for improving the
work envelope of an SIR-I robot in an adaptable assembling cell. The cell contains
six terminals, four of which are served by the robot.
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Fig. 1 Modified Theo Jansen mechanism

3 Research Gap

After doing literature review on many research papers as well as patents on Theo
Jansen mechanism, we found that no one had used plastic material till now in making
the robot. This study sets a theoretic basis for upcoming study into Theo Jansen
mechanism. Till now, Theo Jansen mechanism is used only for transportation robots
and walking robots. We are using this Theo Jensen mechanism for the surveillance.
In all the previous mechanisms, no ternary link is used in place of binary link. This
is the first spider robot which will made by Polylactic Acid (PLA) material (Figs. 1
and 2).

4 Design and Analysis

Here, Conventional Theo Jansen Mechanism has 12 links includes 2 binary joints, 4
ternary joints, and 4 quaternary joints, while the Modified Theo Jansen Mechanism
has 6 links of which 2 are ternary links and 4 are binary links (Figs. 3 and 4; Table 1).

When we did the path analysis in SOLIDWORKS 2017, we came to know that
we are getting almost the same path when we compared it with conventional Theo
Jansen mechanism (Figs. 5 and 6).

In Displacement Analysis, doing comparison with the Conventional Theo Jansen
Mechanism, we get minor difference in both the graphs (Figs. 7 and 8).
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Fig. 2 Conventional Theo Jansen mechanism

Fig. 3 Side view of the robot

LinearVelocityAnalysis, comparingwith conventional design,weget slight better
velocity (Figs. 9 and 10).

In Acceleration Analysis, Modified Theo Jansen Mechanism, we get more accel-
eration in starting and then it becomes constant which means that new design is not
jerky (Figs. 11 and 12).
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Fig. 4 Isometric view of the
robot

Table 1 Components of
robot with specifications

Component Specifications

Legs and body of robot Made from polylactic acid (PLA)

Motor 70–90 rpm, high torque

Arduino Mega

Battery 12 V (4 Unit)

Camera Camera—360 angle
motion-controlled camera module

Fig. 5 Conventional design
path
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Fig. 6 Modified Theo Jansen path

Fig. 7 Conventional Theo Jansen displacement graph

Fig. 8 Modified Theo Jansen displacement graph

Fig. 9 Conventional Theo Jansen velocity analysis

Fig. 10 Modified Theo Jansen velocity analysis
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Fig. 11 Conventional Theo Jansen acceleration analysis

Fig. 12 Modified Theo Jansen acceleration analysis

Fig. 13 Conventional Theo Jansen motor torque analysis

Fig. 14 Modified Theo Jansen motor torque analysis

In Torque Analysis, Modified Theo Jansen Mechanism requires a maximum
torque of 0.9 N mm, while the convention mechanism requires 0.6 N mm (Figs. 13
and 14).

Power Consumption inModified Theo JansenMechanism requires about 0.007W
to run while convention mechanism requires 0.006 W (Figs. 15 and 16).

5 Conclusion

The robot uses the Modified Theo Jensen as its walking pattern. It has six links
of which two are ternary links and four are binary links. This mechanism satisfies
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Fig. 15 Conventional Theo Jansen power consumption analysis

Fig. 16 Modified Theo Jansen power consumption analysis

Grubler’s and Kutzbach’s criterion. After doing the kinematic analysis of modified
Theo Jansen Mechanism, we found that it is jerk free, and by using ternary links it
provides us better stability with minor increase of input power.

Acknowledgements We would like to thank R. K. Technology who gave us an opportunity to
undertake such a great challenging and innovative work.
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Wave Trapping by Trapezoidal Porous
Breakwater

Santanu Koley

Abstract The trapping of normally incident free surface water waves by a porous
trapezoidal breakwater is studied in the context of two-dimensional linearized and
potential water wave theory. The trapezoidal porous breakwater is situated at a finite
distance away from the leeward rigid wall. The mathematical solution of the related
boundary value problem is obtained using thewell-known boundary elementmethod.
The flow of the water through the porous medium is modeled using Sollitt and
Cross model for thick porous structure (see [13]). A number of important physical
parameters such as wave loads on the rigid wall, reflection coefficient, and free
surface elevations are calculated and discussed in detail.

Keywords Porosity · Breakwater · Boundary element method

1 Introduction

Breakwaters generally constructed at ports and harbor to protect various marine
infrastructures from incoming waves coming from the open sea. The traditional
shapes of these breakwaters are trapezoidal in nature. Generally, these breakwaters
are placed at a suitable distance apart from a marine sea wall to create a calm or
tranquil region in the leeside of the breakwater. Earlier days, rigid breakwater was
constructed in ports and harbors (see [8] for details). The disadvantages of a rigid
breakwater are that incoming wave forces acting on these structures are very high
and due to that, these structures often got collapsed. Therefore, to increase the dura-
bility of these structures, often porous breakwaters are constructed. These porous
breakwaters can dissipate a huge amount of wave energy (see [8] for details). In this
way, the incoming wave loads will get reduced drastically. Significant research was
carried out in the past to study the wave transmission through porous breakwaters
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(see [8, 11, 12]). The widely used model for porous flow through the breakwater is
based on the Sollitt and Cross [13]. This model is extended and modified by [10]
for linear long wave theory. Reference [9] used an analytic solution method based
on expansion of velocity potentials in terms of eigenfunctions to study the scattering
of obliquely incident and non-breaking surface gravity waves by a bottom-mounted
finite width porous breakwater. Model test was performed extensively by [4] to
study the characteristics of the wave reflection of oblique surface gravity waves
by a rubble mound porous breakwater. Reference [14] studied the transmission of
water waves over submerged breakwater analytically using eigenfunction expansion
method. Reference [3] studied the flow pattern of the water waves above a submerged
trapezoidal rigid breakwater in the long wave approximation. Reference [15] studied
the wave transformation due to the presence of rigid trapezoidal breakwater or chan-
nel using the modified mild slope model. Reference [2] studied oblique incoming
waves interaction with porous structures having finite width of different structural
shapes and configurations in two-layer fluid system. Reference [5] investigated the
oblique water wave trapping in presence of bottom-standing and surface-piercing
thick porous structures placed near a rigid sea wall. They have used solution method
based on eigenfunction expansion technique for semi-analytical solution and bound-
ary element method to get numerical solution. This aforementioned problem was
further extended by [7] for sloping water bed and in presence of trapezoidal mul-
tilayered porous breakwater. Further, [1] studied the trapping of water waves by
porous breakwater in two-layered fluid system. Recently, [6] used a coupled method
based on eigenfunction expansion and boundary element method to study the surface
gravity wave trapping and scattering by a permeable semicircular breakwater placed
near to a sloping porous sea wall.

In the present manuscript, the trapping of normally incident water waves by a
trapezoidal porous breakwater placed near a rigid wall is investigated. The over-
all structure of the paper is as follows. In Sect. 2, the mathematical formulation of
the associated boundary value problem is provided. Section3 contains details of
boundary element method-based numerical solution technique. Following the same,
the results for various physical parameters are provided in Sect. 4. Finally, Sect. 5
contains the summary of the study.

2 Mathematical Formulation

In the present context, it is assumed that trapezoidal porous thick breakwater is placed
in finite water depth (see Fig. 1). The flow of the water is of potential kind. The
incident wave is propagating from−x to x direction and impinges on the breakwater
in normal direction. The trapezoidal-shaped surface-piercing structure (as in Fig. 1)
made up of porous materials such as interlocking armor units with the two-sides
slopes 1 : 10 and1 : 5, respectively. Further, the leeside vertical rigidwall is located at
a finite distance away from the breakwater. The water depth is assumed to be uniform
in nature. It is to be noted that the left-hand region of the breakwater is semi-infinite
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Fig. 1 Schematic diagram of the physical problem

and so to use numerical solution method, a fictitious boundary �l is constructed at a
finite distance away from the breakwater. The requirement and utility for the same
are discussed subsequently. For the sake of modeling, the total region is divided
into three regions, namely regions R j for j = 1, 2, 3. It is also assumed that the
water flow is simple harmonic having angular frequency ω. Therefore, the velocity
potentials in each region can be written in the form �(x, z, t) = �{φ(x, z)e−iωt }.
So, the spatial component of the velocity potentials φ j (x, z) for j = 1, 2, 3 satisfies
the well-known Laplace equation

( ∂2

∂x2
+ ∂2

∂z2

)
φ j = 0. (1)

Now, the boundary conditions at the bottom and at the free surface are

∂φ j

∂n
= 0 on �bj for j = 1, 2, 3, (2)

∂φ j

∂n
− K

(
m j + i f j

)
φ j on � f j for j = 1, 2, 3, (3)

where K = ω2/g, g = 9.81 m/s. It is to be noted that ∂/∂n represent the normal
derivative and m j = 1, f j = 0 for j = 1, 3. The boundary conditions on �s j are
given by

φ j = (m2 + i f2) φ2, and
∂φ j

∂n
= −ε2

∂φ2

∂n
, on �s j for j = 1, 3, (4)

where ε represents the porosity, and m and f are the inertial and linearized friction
coefficients, respectively. The boundary condition on the rigid wall gives

∂φ3

∂n
= 0, on �r. (5)
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Finally, the boundary condition at the far-field is given by

∂(φ1 − φI )

∂n
− ik0(φ1 − φI ) = 0, on �l, (6)

where φI = eik0(x+l) cosh(k0(z + h))

cosh k0h
is the incident wave potential with k0 is the

real and positive root of the dispersion relation K = k tanh kh. Here, �l is taken
four times water depth away from the breakwater to ensure that the effect of local or
evanescent wavemodes will vanish on�l. This also requires to ensure the uniqueness
of the solution.

In the next section, the aforementionedmathematical problemwill be transformed
into a system of integral equations and will be solved using the boundary element
method (see [5] for details).

3 Boundary Element Method-Based Solution Procedure

Using the Green’s function G(x, z; ξ, η) and the velocity potential φ(x, z) as two
arguments in the Green’s second identity over the domain 
 which is bounded by
�, we get the following Fredholm integral equation of second kind:

(
1
2φ(ξ, η)

φ(ξ, η)

)
=

∫

�

(
φ

∂G

∂n
− G

∂φ

∂n

)
d�(x, z),

(
if (ξ, η) ∈ �

if (ξ, η) ∈ 
 but /∈ �

)
. (7)

where

G (x, z; ξ, η) = 1

2π
ln

√
(x − ξ)2 + (z − η)2, r =

√
(x − ξ)2 + (z − η)2.

(8)
Now, using the boundary condition Eqs. (2)–(6), the following integral equations will
be obtained:

−0.5φ1 +
∫

�l

φ1

(
∂G

∂n
− ik0G

)
d� +

∫

�b1

φ1
∂G

∂n
d� +

∫

� f 1

(
∂G

∂n
− KG

)
φ1d�

+
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)
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− ik0G

)
d�,

(9)
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+
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∂G
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d�

(11)
Now, the integral equations (9)–(11) are discretized to get system of linear algebraic
equations which involve φ and ∂φ/∂n and solve these to get the required unknowns.
The detailed procedure was given in [8].

4 Results and Discussions

In this section, a code is written in MATLAB for the sake of numerical computation
as discussed in the previous section. The structural and wave parameters will assume
the following values:m2 = 1.0, h = 20 m and T = 10 s (T is the incident wave time
period) are kept fixed unless otherwise stated explicitly. The reflection coefficient is
given by

Kr = |R0|. (12)

The vertical and horizontal wave loads/forces Fv and Fh acting on the front side �s1

of the breakwater is given by

Fv = �
{
iρσ

∫

�s1

φ1nzd�

}
, Fh = �

{
iρσ

∫

�s1

φ1nxd�

}
, (13)

where nx and nz are the components along the x and z-directions, respectively, of
the unit normal vector n on �s1.

Figure2 shows the changes of reflection coefficient with the change in non-
dimensional wave number k0h for a number of values of friction coefficient f2 of
the porous material. It is observed in Fig. 2 that for k0h < 1/10, i.e., for long wave
approximation, the reflection coefficient Kr decreases for higher values ofwave num-
ber k0h. This happens because most of the wave energy in case of long waves passes
through the breakwater and again reflects back by the leeside rigid wall. However,
for higher and moderate values of the wave number k0h, the reflection coefficient
Kr changes in an oscillatory manner. This is due to the combined effect of wave
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Fig. 2 Kr versus k0h for
various f2
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Fig. 3 Fh and Fv versus k0h
for various f2
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reflection and wave energy dissipation due to the porous materials of the breakwater.
Moreover, it is seen that the wave reflection decreases for higher values of friction
coefficient f2. This is due to the higher amount of wave energy dissipation with an
increase in friction coefficient.

Figure3 shows the variation in the horizontal and vertical wave forces Fh and Fv

as a function of k0h for different values of friction coefficient f2. The occurrences of
phase lag between the two wave forces are clearly visible. For higher wave number
k0h, both the wave forces take the same values. However, for smaller values of k0h,
the vertical wave loads/forces acting on the seaside of the breakwater takesmaximum
and minimum values.

Figure4 depicts the changes in free surface elevation η/h for different possible
values of friction coefficient f2. It is observed that there is a huge decrease in the
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Fig. 4 η/h for various f2
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free surface elevation amplitude at the leeside of the trapezoidal porous breakwater.
This shows that by suitably placing breakwater at a finite distance away from the
rigid sea wall will helps to create a calm zone in the confined region between the
breakwater and the sea wall. Moreover, the figure shows that the amplitude of the
surface elevation diminishes for higher values of the friction coefficient f2. The
reason is that a significant portion of thewave energy is dissipatedwhen the incoming
wave passes through the porous structure.

5 Conclusion

The present study provides a boundary element method-based efficient numerical
solution technique to study wave past a trapezoidal shape porous breakwater. The
results clearly indicate that the trapezoidal porous breakwater is very effective to
create a tranquility region in between the rigid sea wall and the porous structure.
This will certainly reduces the wave force which is acting on the sea wall and various
marine infrastructures to a great extent. As a result, the durability of the sea wall will
increase significantly. The present methodology can be extended easily to handle
similar problems arise in mathematical physics and other engineering branches.
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Heat and Mass Transfer Due
to Double-Diffusion Convection
in a Square Porous Enclosure Occupied
by Casson Fluid

Madhu Aneja and Sapna Sharma

Abstract Heat and mass transfer in a porous cavity filled with Casson fluid are
analyzed. The flow behavior of Casson fluid in a porous cavity is investigated due
to the realization that most of the fluids exhibiting non-Newtonian behavior come in
contactwith porousmedia, particularly, in ceramic processing, enhancedoil recovery,
production of glass float, and processing of nuclearwaste. Themathematicalmodel of
the physical problem consisting of continuity, momentum, energy, and concentration
equations is converted into finite element equations and solved by penalty finite
element method. The bottom wall of the cavity is hotter than the side walls (T h

> T c). The top wall of the cavity is adiabatic. On the other hand, concentration is
more on the top wall compared to the bottom (Ch > Cc) wall. The side walls are
taken to be impermeable to concentration flux. The physical parameters governing
the fluid flow are Rayleigh number (Ra), Prandtl number (Pr), Darcy number (Da),
Lewis number (Le), buoyancy ratio parameter (N), and Casson fluid parameter (γ ).
It is observed from the obtained results that with the rise in Casson fluid parameter
in porous medium leads to enhancement in heat transfer rate, mass transfer rate, and
fluid flow intensification.

Keywords Porous media · Casson fluid · Penalty finite element method · Square
cavity · Free convection

1 Introduction

In recent years, natural convective flow in porous cavities has gained much attention
from researchers. This phenomenon has numerous applications in the industries and
engineering such as fluid flow in geothermal reservoirs, processes involved in chem-
ical separation, removal of moisture from stored grain system, production of crude
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oil, etc. The convection mode takes place when the temperature and concentration
gradient creates due to transfer of heat and species within the fluid layer. This phe-
nomenon is known as convection due to double diffusion. Numerous researchers [1–
3] have extensively examined the natural convection in a porous saturatedmedium. In
recent years, the double-diffusive flow in a porous medium has given some attention.
Bourich et al. [4] used the scale analysis method to investigate the two-dimensional
double-diffusive natural convection. The heat and mass transfer characteristics in a
multi-porous cavity were examined by Saghir [5]. They studied the impact of solutal
Rayleigh number on double diffusion and found that saltiness produces convection
which is stronger than thermal ones. Azeem et al. [6] analyzed the influence of small
solid wall on diffusion due to temperature and concentration gradient in a square
porous cavity. These authors’ research was confined to double diffusion in porous
cavities filled with viscous fluids which obey Newton’s law of viscosity. However,
non-Newtonian fluids also played an important role in many industrial and engineer-
ing processes. These are chyme movement in the intestine, blood flows in arteries,
foodstuff, and many more. To understand the flow behavior of these fluids, various
rheological models are developed. Some of these are power-law fluids [7], Jeffrey
fluids [8], micro-polar fluids [9],Maxwell fluids [10], viscoplastic fluids [11], Casson
fluids [12], etc. The characteristic behavior of materials like mud/melts, ink, soaps,
shampoos are not detected by the theory of Newtonian fluids. The Casson fluid is
one such model which helps in studying the characteristic behavior of these fluids.
The flow behavior of Casson fluid between two rotating cylinders was studied by
Eldabe et al. [13]. In the problems related to biology, Casson fluid model is studied
by Mernone et al. [14], Boyd et al. [15].

In the above mentioned literature, numerous researchers considered free convec-
tive flow with Casson fluid over stretching/shrinking surfaces, square cavity, etc. To
our best knowledge, Casson fluid flow in a square porous cavity has not been ana-
lyzed yet. Thus, the aim of the present investigation is to analyze the heat and mass
transfer characteristics of a Casson fluid in a porous square enclosure. Streamlines,
isotherms, iso-concentration lines, average Nusselt number, average Sherwood num-
ber, and fluid flow rate are analyzed for various pertinent parameters obtained in the
nondimensional form of the mathematical model and discussed in detail.

2 Mathematical Formulation of the Flow Problem

A saturated porous cavity is assumed to be filled with Casson fluid is demonstrated
in Fig. 1. The wall is heated with uniform temperature and denotes as Th from below.
On the other hand, both the side walls are symmetrical cooled, their temperature is
designated as Tc. The concentration at the top wall is higher than the bottom wall,
i.e., Ch > Cc. The side walls are impermeable to concentration flux.
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Fig. 1 Physical model and
coordinate system

The rheological condition of state for the Cauchy stress tensor [16] of Casson
fluid is given by

τi j =
⎧
⎨

⎩

2
(
μB + py√

2π

)
ei j , π > πc

2
(
μB + py√

2πc

)
ei j , π < πc

.

Here π = ei j ei j and ei j are the (i, j)th component of the deformation rate, π

designated as the components of the product of deformation rate itself, πc denotes
the critical value of this product for the particular non-Newtonian fluid,μB represents
the plastic dynamic viscosity, and py is the yield stress of the fluid. It is considered
that non-Newtonian fluid satisfies Boussinesq’s approximation and other physical
properties are assumed to be invariant. Moreover, the assumption here taken that
the fluid and porous medium possess homogeneity. Under these assumptions, the
mathematical model of the physical phenomenon is represented by nondimensional
continuity, conservation of momentum, energy, and concentration equations.

2.1 Governing Equations
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U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2
+ ∂2θ

∂Y 2

)

, (4)

U
∂ϕ
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∂ϕ

∂Y
= 1
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(
∂2ϕ

∂X2
+ ∂2ϕ

∂Y 2

)

. (5)

The following are the transformation used for conversion of equations into dimen-
sionless form:

X = x

L
, Y = y

L
, U = uL

α
, V = vL

α
, θ = T − Tc

Th − Tc
, Pr = ϑ

α
, γ =

√
2πc
∂P
∂Y

,

Ra = gβ(Th − Tc)L3Pr

ϑ2
, ϕ = C − Cc

Ch − Cc
, Le = α

D
, N = βc(Ch − Cc)

βT (Th − Tc)
, Da = K

L2
.

The corresponding boundary conditions are

U (X, 0) = U (X, 1) = U (0,Y ) = U (1,Y ) = 0,

V (X, 0) = V (X, 1) = V (0,Y ) = V (1,Y ) = 0,

θ(X, 0) = 1,
∂θ

∂Y
(X, 1) = 0, θ(0,Y ) = θ(1,Y ) = 0,

ϕ(X, 0) = 0, ϕ(X, 1) = 1
∂ϕ

∂X
(0,Y ) = ∂ϕ

∂X
(1,Y ) = 0. (6)

3 Methodology

The governing equations of the flow problem are solved by highly efficient penalty
finite element method [17, 18]. To accommodate the pressure in the momentum
equations, a penalty parameter� and incompressibility criteria are used,which results
in P = −�

(
∂U
∂X + ∂V

∂Y

)
. The continuity equation is satisfied automatically for large

values of �. For stable solutions, � is taken as 107. By using this assumption, the
pressure is eliminated and corresponding momentum equations take the form:
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The domain of computation comprises (20 × 20) biquadratic elements which
relate to (41 × 41) grid points. The nonlinearity in the modeled equations with the
lesser number of nodes is easily captured by biquadratic elements as compared to
finite difference/finite volume scheme [19].

4 Discussion of Results

The numerical results are obtained by varying key parameters such as Casson fluid
parameter (γ = 0.1−5.0), Darcy number

(
Da = 10−5−10−3

)
while other parame-

ters are kept fixed. Streamlines, isotherms, and iso-concentration profiles for different
values of governing parameters are visualized in Figs. 2, 3, 4, 5, 6 and 7. It is observed
that the results obtained via streamlines, isotherms, and iso-concentration lines are
symmetric about vertical axis due to symmetrical boundary conditions. The sym-
metric nature forms counter rotating vortices in the two halves of the cavity, i.e.,
left and right. Due to heating, the fluid moves upward along the symmetric plane in
each vortex cell and then moves in the horizontal direction because the upper wall

Fig. 2 Contour plots for γ = 0.1, Da = 10−5, Ra = 106, N = 0.5, Le = 1, Pr = 7.0

Fig. 3 Contour plots for γ = 1.0, Da = 10−5, Ra = 106, N = 0.5, Le = 1, Pr = 7.0
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Fig. 4 Contour plots for γ = 5.0, Da = 10−5, Ra = 106, N = 0.5, Le = 1, Pr = 7.0

Fig. 5 Contour plots for γ = 0.1, Da = 10−5, Ra = 106, N = 0.5, Le = 3, Pr = 0.71

Fig. 6 Contour plots for γ = 0.1, Da = 10−4, Ra = 106, N = 0.5, Le = 3, Pr = 0.71

is adiabatic. Afterward, the fluid moves downward through cold vertical walls as it
is feeling cooling effect and finally lifted by the heated bottom wall.

The present study investigates the influence of one of the important pertinent
parameter, i.e., Casson fluid parameter γ that represents the additional viscosity
of the fluid. Impact of Casson fluid parameter γ on streamlines, isotherms, and iso-
concentration lines is displayed in Figs. 2, 3 and 4. The key point to be noted here that
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Fig. 7 Contour plots for γ = 0.1, Da = 10−3, Ra = 106, N = 0.5, Le = 3, Pr = 0.71

with an increase in Casson fluid parameter efficient viscosity of the fluid decreases.
Thus, the size of the vortex pair increases. At fixed value of other parameters such as
Rayleigh number (heating condition), Darcy number (permeability), Lewis number,
Prandtl number, and Buoyancy ratio parameter, the fluid offers more resistance at
low value of γ to the movement. Thus, conduction is a dominance heat transfer
phenomenon due to reduction in convection current. For γ = 0.1, one can visualize
in Fig. 2a, a formation of a convective cell with a circular core of low intensity in
clockwise (positive sign) and anticlockwise (negative sign) directions of streamlines
ψ . Also, it is observed that with larger values of γ effective viscosity of fluid reduces.
Due to this fact, at higher values of γ convective cell core stretches as depicted in
Fig. 3a. For γ = 5.0, two elongated cores are formed in both the directions described
in Fig. 4a. Isotherms illustrated in Figs. 2b and 4b reflect that as the Casson fluid
parameter γ increases, heat transfer rate toward cold walls enhances. Similar kind of
behavior is depicted for iso-concentration lines and is displayed in Figs. 2c and 4c.

Figures 5, 6, and 7 demonstrate the velocity profile, temperature profile, and
concentration profile in terms of stream functions, isotherms and iso-concentration
lines with variation in Darcy number Da. It is observed that fluid circulation strongly
depends on the Darcy number. The two counterrotating vortex regions of streamlines
are observed by varying Darcy number. Even though with different values of Darcy
number, the shape of the recirculating region is almost similar but due to the increase
in magnitude of buoyant forces, more intensified streamlines anticipate.

In Fig. 5, at Da = 10−5 by taking Ra = 106, Pr = 0.71, γ = 0.1 and Le = 3.
These particular values are taken for fixed parameter as we are considering non-
Newtonian fluid. It is seen from the stream functions that the flow is exceptionally
frail. For lowDarcy number, the temperature distribution is purely due to conduction;
hence, fluid behaves as a stationary fluid. Similar behavior is observed for the iso-
concentration lines.At Da = 10−4, thefluidflow rate increases and as anticipateddue
to the cold vertical walls, the middle portion of the fluid rises toward the cold vertical
walls forming clockwise and anticlockwise symmetric rolls. The more grounded
circulation causes the isotherms to be condensed near the side walls and close to
the bottom wall resulting in more noteworthy heat exchange by convection and is
depicted in Fig. 6.
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Fig. 8 Heat transfer rate, mass transfer rate, and fluid flow rate for different values of Casson fluid
parameter γ and Prandtl number Pr

It is observed in Fig. 7, for Da = 10−3 and Ra = 106, free convective flow inside
the cavity takes place which results in the greater magnitude of stream functions.
Due to no-slip boundary conditions, circulations are concentrated near the center
as compared to side walls. The more noteworthy circulation in each half of the
box takes after a progressive wrapping around the centers of revolution, and an
increasingly articulated compression of the isotherms and iso-concentration lines
toward the boundary surfaces of the enclosures occurs. Thus at Da = 10−3, the
thermal boundary layer is significantly developed due to temperature gradients near
the base and side walls. A thermal boundary layer is almost developed in the entire
cavity for Da = 10−3 as compared to Da = 10−5 at which it develops approximately
75%. Concentration boundary layer thickness is more for Da = 10−3, whereas
concentration boundary thickness is negligible for Da = 10−5.

Heat, mass, and fluid flow rates for variation in Casson fluid parameter and Prandtl
number are displayed in Fig. 8. An expansion in Prandtl number prompts the heat
transfer, mass transfer while the intensity of flow decreases. On the other hand with
a rise in Casson fluid parameter γ , rate of heat transfer, mass transfer, and fluid flow
rate increases.

5 Concluding Remarks

1. For Casson fluid parameter γ > 1, due to a reduction in effective viscosity of
fluid leads to an increase in heat transfer, mass transfer, and fluid flow rate.

2. A growth in Darcy number Da and Rayleigh number Ra leads to convection
dominant flow which leads to a rise in the thermal boundary layer and concen-
tration boundary layer.

3. The heat transfer and the mass transfer rise whereas fluid flow rate decreases
with larger Prandtl number Pr .
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Convergence of Eigenfunction
Expansions for Membrane Coupled
Gravity Waves

Santanu Koley, K. Panduranga and Dipak K. Satpathi

Abstract In the present paper, some characteristics of eigenfunctions associated
with membrane coupled gravity waves and its convergence are provided for finite
water depth. Expansion formulae for velocity potentials and related orthogonal mode
coupling relations for Laplace equation subject to the higher order boundary condi-
tions are studied. The spectral representation of eigenfunctions is obtained in terms
of Dirac delta function through the Green’s function technique. Finally, the conver-
gence of eigenfunction expansion to velocity potential is obtained with the help of
spectral representations.

Keywords Spectral representation · Green’s function technique · Convergence of
eigenfunction expansion

1 Introduction

In recent years, more importance is given to understand the structural mechanics
when wave propagates through the structure. The exact mathematical descriptions
of the wave structure interaction problems are complex in nature. Hence, some phys-
ical assumptions need to be considered for modeling the same mathematically. In
many cases, the governing equation in wave structure interaction problem is the
Laplace/Helmholtz equation subject to the higher order boundary conditions on the
structural boundaries. The associated BVPs are generally non-Sturm–Liouville type
in nature. Rhodes-Robinson [1] derived the orthogonal mode coupling relations for
water wave structure interaction problems in presence of surface tension in water
of both finite and infinite depths. Later, Rhodes-Robinson [2] developed a reduction
method to tackle the surface wave interaction with immersed vertical rigid bound-
aries in finite and infinite water depth cases. Lawrie and Abrahams [3] derived an
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orthogonality relation for a class of boundary value problems having higher order
boundary conditions. Since then, several researchers such as [4–6] solved anumber of
hydroelastic problems using eigenfunction expansionmethod. They used appropriate
orthogonality relations to get a system of equations in terms of the unknowns.Manam
et al. [4] derived expansion formulae of velocity potential for semi-infinite strip as
well as quarter plane and also given an equivalent form of orthogonal mode coupling
relation for quarter plane. Lawrie and Abrahams [3] presented a new type of orthog-
onality relation for a general class of wave propagation problems through ducts and
pipes. Mondal et al. [7] derived the expansion formulae for velocity potentials for
wave structure interaction problems in three dimensions and associated orthogonal
mode coupling relations satisfying the higher order boundary conditions. Mondal
et al. [5] have developed amodified inner product to study the surfacewave scattering
by a floating semi-infinite flexible plate and concluded that the eigenfunctions for
the plate covered domain are orthogonal with respect to the newly developed inner
product.

In the present paper, some characteristics of eigenfunctions associated with mem-
brane coupled gravity waves and its convergence are provided for finite water depth
case. To derive the convergence of expansion formulae, first the Green’s function cor-
responding to the associated BVP is obtained and then expressed the same in terms of
spectral representations. Finally, using the spectral representation, it is shown that the
series of eigenfunction expansions converges to the velocity potential of the physical
problem.

2 Mathematical Formulation

The problem is studied in 2D Cartesian coordinate system where x-axis is consid-
ered horizontally and y-axis is taken in vertically upward direction. A thin flexible
membrane is floating in the region 0 < x < ∞. The water is occupied in the region
0 < x < ∞ and −h < y < 0 for finite water depth case. The fluid is assumed to be
of potential kind and so, there exists a velocity potential �(x, y, t). Further, under
the assumption of simple harmonic motion with circular frequency ω, the velocity
potential can be expressed as �(x, y, t) = �{φ(x, y)e−iωt }. Therefore, the spatial
velocity potential will satisfy the Laplace equation

∇2φ = 0 (1)

subject to the linearized membrane covered upper boundary condition and bottom
boundary condition

T
∂3φ

∂y3
+ ∂φ

∂y
− K ′φ = 0 on y = 0 (2)



Convergence of Eigenfunction Expansions for Membrane Coupled Gravity Waves 103

and
∂φ

∂y
on y = −h (3)

with

T = T1

ρg − mω2
, K ′ = ρω2

ρg − mω2

being constants as in [4]. Further, m is the mass of the membrane per unit length, g
is the acceleration due to gravity, T1 is the membrane tension and ρ is the density of
water.

3 Eigenfunction Expansion and Its Characteristics

3.1 Eigenfunction Expansion

The spatial component of the velocity potential φ(x, y) is expressed as (see [4, 5]
for details)

φ(x, y) =
∞∑

n=0

Rn(x)ψn(y) (4)

The eigenfunctions ψn’s are of the form

ψn =

⎧
⎪⎨

⎪⎩

cosh k0(h + y)

cosh k0h
, n = 0.

cos kn(h + y)

cos knh
, n = 1, 2, ...

(5)

where kn satisfies the dispersion relation

f (k) = 0,

with f (k) = K ′ − (T k2 + 1)k tanh kh. It has one real positive zero k = k0 and
infinite number of imaginary zeros on k = +ikn on the upper half complex plane.
The details of root-finding procedure for the aforementioned dispersion relation are
given in the Appendix. It is to be noted that in Eq. (4), the dependency of Rn(x) on
x-component is given by Rn(x) = Rneikn x with Rn being

Rn = 1

En

[ 0∫

−h

φ(x, y)ψn(y)dy + T

K ′
∂φ

∂y

∣∣∣∣
(x,0)

∂ψ

∂y

∣∣∣∣
y=0

]
(6)

where En = f ′(k)ψy(0)

2K ′ .
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3.2 Eigen Value Problem

Writing the eigenfunctions ψn(y) as ψ(y) and the same satisfy the equation

∂2ψ

∂y2
− k2ψ = 0, −h < y < 0 (7)

subject to the boundary conditions

T
∂3ψ

∂y3
+ ∂ψ

∂y
− K ′ψ = 0 on y = 0 (8)

and
∂ψ

∂y
= 0 on y = −h (9)

Here T and K ′ are same as defined before. Further, we can define orthogonal mode
coupling relation for ψn(y) (as in Eq.5) as

〈ψm, ψn〉 =
0∫

−h

ψmψndy + T

K ′

(
∂ψm

∂y

∂ψn

∂y

)∣∣∣∣
y=0

= Enδmn (10)

where δmn is the Kronecker delta.
Next, the Green’s function corresponding to the associated BVP as described

above is obtained and then expressed the same in terms of spectral representation.
The details are provided as different lemmas and theorems in the subsequent sections.

Lemma 1 The Green’s function ξ of the BVP stated in Sect. 3.2 is the solution of

∂2ξ

∂y2
− k2ξ = δ(y − η) f or − h < y, η < 0 (11)

which satisfies the boundary conditions (2) and (3) along with the following proper-
ties:

(i) ξ(y, η) is continuous at y = η

(ii) The first derivative of ξ(y, η) has jump discontinuity of magnitude −1 at the
point y = η

is given by

ξ(y, η) =
{

ξ1, η < y ≤ 0

ξ2,−h ≤ y < η
(12)
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where

ξ1 = [(T k3 + k) cosh ky + K ′ sinh ky]
k f (k)

cosh k(h + η)

cosh kh

ξ2 = [(T k3 + k) cosh kη + K ′ sinh kη]
k f (k)

cosh k(h + y)

cosh kh

Lemma 2 The Spectral representation of ψn can be expressed as (see [8] for details)

δ(y − η) =
∞∑

n=0

Znψn(y)ψn(η) (13)

where δ is the Dirac delta function and Zn = K ′

f ′(k) tanh knh
.

Proof Proceeding in same manner as discussed in [9], we can express Dirac delta
function as

lim
R→∞

1

π i

∮
ξ(y, η; k)k dk = −δ(y − η) (14)

where ξ is the Green’s function as expressed in (12). It has been observed that ξ is
an analytic function everywhere except at the poles. Thus, the left-hand side integral
in Eq. (14) reduces into sum of residues at poles. It is to be noticed that the Green’s
function involves f (k) (see Lemma 1), whose zeros are of the form k = ±k0 lying on
the real axis and infinite number of imaginary roots k = ±ikn, kn > 0 (see Appendix
for details). The path of integration being taken along the circular arc of radius
R(→ ∞) (�R), and consider semicircle (γr ) centered at k = k0 having radius r in
the upper half complex plane contains all the singular points

1

π i

∮
ξ (y, η; k) k dk = 1

π i

∮
k dk(ξ1(y, η; k)H(η − y) + ξ2(y, η; k)H(y − η))

(15)
where ξ1 and ξ2 same as in Eq.12 and H is the Heaviside step function. Using
Cauchy’s residue theorem and Jordan’s lemma, the two integrals on the right-hand
side of Eq.17 can be expressed as

1

π i

∮
ξ1k H(η − y) dk = −

∞∑

n=0

Znψn(y)ψn(η)H(η − y) (16)

1

π i

∮
ξ2k H(y − η) dk = −

∞∑

n=0

Znψn(y)ψn(η)H(y − η) (17)

Substituting the expressions of Eqs. (16) and (17) into Eq. (15), we get
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1

π i

∮
ξ k dk = −

∞∑

n=0

Znψn(y)ψn(η) (H(η − y) + H(y − η)) (18)

Now, the contour integral in Eq. (18) approaches to −δ(y − η) for R→ ∞.

3.3 Convergence of Eigenfunction Expansion

Theorem 1 Assume the coefficients

Rn = 1

En

[ ∫ 0

−∞
φ(x, y)ψn(y)dy + T

K ′
∂φ

∂y

∣∣∣∣
(x,0)

∂ψ

∂y

∣∣∣∣
y=0

]

exist, where the velocity potential φ (x, y) satisfies the Laplace equation (1) w.r.t to
the boundary conditions (2) and (3). The series

∞∑

n=0

Rn(x)ψn(y)

converges to φ(x, y)

Proof

∞∑

n=0

Rn(x)ψn(y)

=
∞∑

n=0

1

En

[ ∫ 0

−∞
φ(x, y)ψn(y)dy + T

K ′ φy(x, 0)ψny(0)

]
ψn(y)

=
∫ 0

−∞
φ(x, η)δ(y − η) dη

= φ(x, y)

Hence, the convergence of the eigenfunction expansion formula is established.

4 Conclusion

The study provides convergence of eigenfunction expansion in coupled membrane
gravity waves problem for finite water depth. To prove the convergence of eigen-
functions, Green’s function for associated BVP is derived, and also an inner product
between eigenfunctions is established. Then this Green’s function is integrated over
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the complex plane to obtain the spectral representation as Dirac delta function. Using
this spectral representation, the convergence of eigenfunction expansion is proved.

Appendix

Here the analysis of the roots of the wave dispersion relation is provided for the sake
of easy reference. The dispersion relation

f (k) = k(1 + T k2) tanh kh − K ′

will have the zeros of the form k = ±k0 located on the real axis and infinite number
of zeros k = ±ik1,±ik2,±ik3.... located on imaginary axis. It is also assumed that
k0 > 0 and 0 < k1 < k2 < ....

Proof These results can be obtained easily by taking equivalent form of dispersion
relation as follows:

f (k) = k(1 + T k2) sinh kh − K ′ cosh kh

Let
g(k) = k(1 + T k2) sinh kh

which has zeros k = 0,±i/
√

T and kh = ±nπ i, n ∈ Z on imaginary axis. Consider
a closed contour (�) as a squarewith vertices at (2n − 1) π

2 (±1 ± i)where n is a large
positive integer. Construct the square in such a way that it should contain all the zeros
of the dispersion relation and the sides of the square will not go through any zeros
on the imaginary axis. On the square | f (k) − g(k)| < | f (k)| is satisfied. Therefore,
using Rouch’s theorem, both the functions f (k) and g(k) have same number of zeros
within �. As n → ∞, f (k) has no zeros other than k = ±k0,±ik1,±ik2, ....
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Numerical Analysis of Variations
on Design Modifications of Train
and Tunnel Geometries to Reduce
Aerodynamic Drag on Train

Vaibhav Rastogi and Nityananda Nandi

Abstract The flow of air around the train in a confined space, i.e., tunnel is different
than that of the train moving in an open air. As the train passes through a tunnel,
there is a large amount of aerodynamic drag force exerted on the body of the train.
There is a compression of the air ahead of the train inside a tunnel due to which large
pressure is produced ahead of a train while just behind the tail there is a suction of
air due to low pressure at the tail end of the train. The train inside a confined space
in a tunnel behaves just like a loosely fitted piston inside a cylinder. Thus, in order
to reduce the drag force, train head and tail geometries are modified. This analysis
has been done on ANSYS Fluent 14.0 and steady Navier–Stokes (N-S) equations for
two-dimensional, axi-symmetric, incompressible flow using standard k-ε turbulence
modeling was solved with the help of Fluent 14.0 software to simulate the flow
around the train passing inside a tunnel. In this analysis, two observations are done:
first, tunnel width, i.e., blockage ratio has been changed from 0.25 to 0.36 (tunnel
width from 6 to 5 m) and variation of drag force with the blockage ratio is analyzed.
Second, train head and tail geometries are changed to see the variation of drag force
on blunt and hemispherical head and tail of the train. This paper suggests that a less
blockage ratio is responsible for less drag force on the train. A similar investigation
has been performed by taking different shapes of head and tail of the train keeping
the blockage ratio same.

Keywords Aerodynamic drag force · Blockage ratio · Train geometry · Tunnel ·
Blunt · Hemispherical
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1 Introduction

The airflow induced by a train inside a tunnel is different from the train moving in a
free stream of air. As the train passes inside a tunnel, huge amount of aerodynamic
drag is induced on the body of the train. When a train is moving in open air flow
around the train is fully unsteady and turbulent which generates rapidly changing
pressure fields around the train called as slipstreams [1]. But when it passes through
a tunnel it behaves like a loosely fitted piston in a cylinder [2]. The air ahead of
the train gets compressed and induces large pressure at the inlet of the train head.
The compressibility of the air around high-speed trains produces what are called
“micro-pressure waves” as a result of running in a confined space [3]. The air
velocity, pressure variation, and direction of the flow inside tunnels are different to
the slipstream in the open air. These differences depend on the size of the tunnel
(cross section and length of the tunnel) and the shape and speed of the train. As a
train is passing through a tunnel, a large aerodynamic drag force is exerted on the
body of the train [4, 5]. In order to reduce that drag force, some design modifications
of the tunnel and train have been done in order to reduce the drag force on the train
body [1]. This is a two-dimensional analysis of the train and tunnel model which is
taken from the work of Zhang [6] and certain modifications have been done to see
the variations [7–9].

Blockage ratio = cross− section area of the train
cross− section area of the tunnel

2 Methodology

Basic assumptions:

• The flow inside the tunnel was assumed to be incompressible.
• The flow is viscous, two dimensional, and steady.
• The walls of the train body and tunnel were smooth.
• The pressure inside the tunnel is considered to be atmospheric pressure, i.e.,
101,325 Pa.

• The flow was assumed to be turbulent.
• The air inside was perfect.
• Flow field Reynolds number Re was defined as

Re = rVL/m
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Governing equations:

The commercial CFD solver FLUENT was used in the present study to solve the
set of incompressible flow N-S equations along with the k-ε turbulence model. The
equations used are basically based on the following assumptions:

1. The flow is of a calorically perfect gas.
2. It is a two-dimensional, axi-symmetric, steady, turbulent, and incompressible

flow.

Standard k-ε model is the simplest “complete models” of turbulence. It is a two-
equations model in which the solution of two separate transport equations allows the
turbulent velocity and length scales to be independently determined.

The turbulence kinetic energy, k, and its rate of dissipation, ε, are obtained from
the following transport equations:

∂(ρk)
∂t + ∂(ρkui )

∂xi = ∂
∂x j

[(
μ+μt

σk

)
∂k
∂x j

]
+ Gk + Gb − ρε − Ym + Sk

∂(ρε)

∂t + ∂(ρεui )
∂xi = ∂

∂x j

[(
μ + μt

σε

)
∂ε
∂x j

]
+ C1ε

ε
k (Gk + C3εGb) − G2ερ

ε2

k + Sε

The continuity equation for the conservation of mass for a 2-D axi-symmetric
incompressible flow is given as follows:

∂(ρux )

∂x
+ ∂(ρvr )

∂r
+ ρvr

r
= 0

where x is the axial coordinate and r is the radial coordinate. Generalized momentum
conservation equations for the 2-D axi-symmetric body in axial and radial directions
are given as

∂(ρux )

∂t
+ ∂(ρrvrvr )

r∂r
+ ∂(ρrvxvr )

r∂x
= −∂p

∂r
+ 1

r

∂

∂r

[
rμ

(
2
∂ur
∂r

)]

+ 1

r

∂

∂x

[
rμ

(
∂ux
∂r

+ ∂vr
∂x

)]
+ Fr

In the above equations, Reynolds time averaging is applied for the turbulent flow.
In order to make the problem, simple axi-symmetric swirl is avoided.

For the computation of density of the incompressible gas, i.e., air, perfect gas
equation is used and the solver will compute the density as

ρ = P
R
M T

Model Geometry: The geometry of the model used for validation is shown in Fig. 1.
In the model, the train taken has a diameter of 3 m, body length 40 m, and a hemi-
spherical head with a blunt tail. The distance from the head of the train to the inlet
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of the tunnel is 80 m, and the distance from the tail of the train to the outlet is also
80 m [6, 10].

After validation, the variation of the drag force on the train was calculated by
taking different velocities of the train and with different blockage ratio of the tunnel.
At this parameter, different shapes of the train head and tail were taken in order to
optimize the drag force on the train.

3 Calculations and Analysis

Validation:

In the present work, results were compared with the work of Zhang [6] for validation.
The model taken for present analysis is similar to that of his and discussed earlier
(as shown in Fig. 1). Yaoping’s work was based on a train in an evacuated tube in
which the pressure is ranging from 10.1325 to 10132.5 Pa and a density ranging from
0.0001225 to 0.1225 kg/m3.

In the present analysis for validation of the proposed work, following parameters
are taken:

• Blockage ratio is taken as 0.36.
• Outside diameter of the tube is 5 m.
• The diameter of the train is 3 m (area = π * 1.52 = 7.068).

Fig. 1 Schematic model of the train (unit m)

Fig. 2 Aerodynamic drag
on the train at blockage ratio
0.36 and pressure = 10132.5
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• The half geometry of train is taken for analysis.
• Pressure is 10132.4 Pa and density is 0.1225.

Boundary Conditions:

• Velocity inlet (ranging from 50 to 250 m/s).
• Pressure outlet (0 Pa).
• Train body stationary wall.
• Tunnel body movable wall (in the opposite direction with the same velocity as of
air).

Following Fig. 3 compares the drag force and it shows how for an increase in the
velocity of the train the drag force increases (Fig. 2).

Results and discussion

In the following analysis, aerodynamic drag force is calculated by taking two shapes
of head and tail of the train, i.e., blunt and hemispherical. The drag force is calculated
for different velocities of the train ranging between 50 and 100m/s for blunt shape and
hemispherical shape of the train. And also aerodynamic drag force is also calculated
for different blockage ratios of the tunnel at different train velocities.

Following Tables 1 and 2 show the variation of drag force at different train veloc-
ities for different shapes of the train head and tail at tunnel blockage ratio of 0.25
and 0.36.

From the tables, it can be analyzed that the drag force is more for a blunt shape
head and tail of the train as compared to the hemispherical head and tail of the train.

Fig. 3 Curves are shown for
blunt head and tail of train at
different blockage ratios
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Table 1 Drag force at different train velocities for the blunt and hemispherical shape of the train
at blockage ratio = 0.25

Velocity (m/s) 50 60 70 80 90 100

Drag force (KN) (blunt head
and tail)

145.095 207.632 280.844 364.413 457.957 517.391

Drag force (KN)
(hemispherical head and
tail)

33.155 46.423 61.739 79.078 98.394 119.654
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Table 2 Drag force at different train velocities for the blunt and hemispherical shape of the train
at blockage ratio = 0.36

Velocity (m/s) 50 60 70 80 90 100

Drag force (KN) (blunt head
and tail)

226.042 322.790 436.132 566.127 711.84 874.249

Drag force (KN)
(hemispherical head and
tail)

57.610 80.403 106.620 136.204 169.061 205.034

Following curves show that as the blockage ratio increases from 0.25 to 0.36 or
as the tunnel width decreases from 6 to 5 m there is a drastic increase in the drag
force on the body of the train (Fig. 4).

Contours of velocity magnitude and streamlines in Tecplot

See Figs. 5, 6, 7, and 8.

Fig. 4 Curves are shown for
hemispherical head and tail
of train at different blockage
ratios
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Fig. 5 Velocity contours at V = 90 m/s, α = 0.25 for blunt head and tail
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Fig. 6 Velocity contours at V = 90 m/s, α = 0.25 for hemispherical head and tail

Fig. 7 Stream lines for hemispherical head and tail

Fig. 8 Stream lines for bunt head and tail

4 Conclusion

From the above results and discussion, it is observed that a less blockage ratio (0.25),
i.e., more tunnel width (6 m) is required to reduce the drag force on the body of the
train. And it is also observed that a blunt shape of head and tail produces a large
amount of drag force as compared to hemispherical head and tail of the train.

It is our concern to reduce the aerodynamic drag on the body of the train because it
reduces fuel consumption which in turn reduces the cost of operation of the train. So
in accordance with the parameters taken for analysis, less blockage ratio of the tunnel
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with hemispherical head and tail of the train is a suitable to design consideration for
less drag force on the body of the train.
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Analysis of Exact Solutions
of Electromagnetohydrodynamic Flow
and Heat Transfer of Non-Newtonian
Casson Fluid in Microchannel
with Viscous Dissipation and Joule
Heating

Motahar Reza and Amalendu Rana

Abstract A theoretical investigation is done to study the analytical solutions for the
velocity and temperature distribution of non-Newtonian Casson fluid in microchan-
nel associated with combined effects of electromagnetohydrodynamics forces and
electrokinematics forces. Heat transfer and flowcharacteristic of non-newtonianCas-
son fluid are controlled by the combination of imposed pressure gradients, applied
magnetic field, and electrokinematic forces. The interesting features of the electro-
magnetohydrodynamics flow along with heat transfer characteristic are examined by
variation in the nondimensional physical parameter on the velocity and temperate
profiles. The effect of Casson parameter on the velocity and temperature distribution
has been analyzed. Variation of Nusselt number with applied magnetic field and also
Casson parameter has been studied.

Keywords Electroosmotic flow · Electromagnetohydrodynamic flow ·
Microchannel · Casson fluid · Viscous dissipation · Joule heating · Hartmann
number · Nusselt number

1 Introduction

The study of heat transfer characteristics, flow separation, detection, and analysis of
chemical and biological samples in microsystem are needed to design the efficient
small-scale microfluidics system which is used in many engineering applications.
The mechanism to manipulating and controlling the fluid flow in micro-devices,
the electrically driven charge particle or fluid flow such as electroosmosis flow is
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considered instead of pressure-driven flow. This mechanism is used in many engi-
neering applications and technology for better accuracy and other benefits associated
with these flow problems [1–3]. The limitation of the strength of axial electric field
causes the upper limit in many applications in which axial electric field is employed
in the fluid flow to limit the Joule heating effects and associate negative consequences
[4, 5]. Further, it is observed from the experiments results bymany researchers that the
flows in microchannels can be augmented by using the combined effects of electro-
magnetohydrodynamics (EMHD). It was also experimentally found that the average
flow rates in microchannels can be substantially increased by using low-magnitude
magnetic fields [6].

In most of engineering applications in microsystem associated with recent and
modern technology, transport of non-Newtonian fluid throughmicrochannel is found
and this transport mechanism is characterized mathematically considering the mate-
rial behavior on nonlinear relation between stress and strain rates. The constitu-
tive model is important to describe the physical material properties. Recently, many
mathematical models have been studied by many researchers [7, 8] to analyze the
non-Newtonian characteristic in microchannel flows. Liu and Yang [9], Liu et al.
[10] have examined the electrokinetic-driven flow of Casson fluids in microchannel.
Ng [11] investigated the steady electroosmotic (EO) flow of a visco-plastic material,
namely, Casson fluid flow through a rectangular microchannel considering pressure
forcing.

Aim of the paper is to obtain the analytical solution for the velocity and tem-
perature distribution of the non-Newtonian Casson fluid in microchannel associated
with combined effects of electromagnetohydrodynamics forces and electrokinemat-
ics forces. The features of the electromagnetohydrodynamics flow along with heat
transfer characteristic are investigated by variation of different physical parameters
on the nondimensional flow velocity and temperate profiles. The effect of Casson
parameter and magnetic field on the velocity and temperature distribution has been
examined.

2 Mathematical Model and Problem Description

We consider non-Newtonian Casson fluid flow through a parallel plate microchannel
of height 2a, length l, and width W. The electric field and a magnetic field is applied
in the fluid flow simultaneously. Figure 1 shows the physical sketch of this problem.
Pressure gradient is applied along the axis of the plate which is influence by electric
double layer (EDL) which is formed due to applied electric field. The applied mag-
netic field interacts with applied electric field to control the flow and heat transfer
characteristic of the Casson fluid flow in microchannel.
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Fig. 1 Physical sketch of the problem

The Casson fluid sample plays both Newtonian and non-Newtonian fluid behav-
iors. The Casson fluid model proposed by Casson can be followed by

μγ̇ =
⎧
⎨

⎩

[
1 −

√
τ
τ0

]2
τ

0

f or τ ≥ τ0

f or τ ≤ τ0
(1)

where τ is the stress tensor, γ = ∇u +〖∇u〗T is the deformation rate tensor, μ

is the plastic dynamic viscosity of the fluid, τ0 is the critical value of Casson yield
stress, and the magnitude of the stress is

|τ | =
√
1

2
τ : τ (2)

when the yield stress vanishes then the model reduces to Newtonian model, by which
the plastic dynamic viscosity μ of the fluid becomes Newtonian viscosity.

The governing equations of the flow problem for conservation of mass, conser-
vation of momentum, equation for electric double layer (EDL) potential field and
conservation of energy for the electrolyte solute can be expressed as follows:

I. Mass-conservation equation:

Letρ is the density of the fluid and
−→
V be thefluid velocity, then themass-conservation

equation is written as
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∂ρ

∂t
+ ∇ · (ρ

−→
V ) = 0 (3)

II. Linear momentum equation:

D

Dt
(ρ

−→
V ) = ∇ · (�τ) + �b (4)

where the stress tensor is �τ and due to combined effect of electromagnetohydrody-
namic effect the body force �b per unit volume is described as

�b = ρe
−→
E + −→

F (5)

ρe is the net electric charge density,
−→
E is the applied external electric field, and

−→
F

is Lorentz force due to applied magnetic field. The Lorentz force can be written as

−→
F = −→

J × −→
B (6)

where
−→
J = σe(

−→
E + �u × −→

B ) and σe is the electrical conductivity of the medium.

III. Equation for potential distribution within EDL (Poisson–Boltzmann Equa-
tion):

In electroosmotic flow, to evaluate the net charge density ρe in the EDL, first the
EDL potential ψ is determined by solving the Poisson–Boltzmann equation:

∇ · (∇ψ) = −ρe

ε
(7)

where ε is permittivity of the fluid. The relationship between the charge density ρe

and the electric potential ψ is given by

ρe = −2n0ez sinh

(
ezψ

kBT

)

(8)

where n0 is the ion density (in molar units), e is the electronic charge, z is the
valence, kB is the Boltzmann constant, and T is the absolute temperature. To depict
the relationship between the net electric charge density and Debye length, n0 can be
expressed as a function of the Debye length, λ, as follows: n0 = εkBT

8πe2z2λ2 .

IV. Energy conservation equation:

D

Dt
(ρCPT ) = ∇ · (KTh∇T ) + �τ−→

D + q̇ (9)
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where
−→
D is the strain rate tensor, KTh be the thermal conductivity of the fluid, and

q̇ is the heat generation per unit volume due to Joule heating, which is given by

q̇ = (ρe
−→
V + σ

−→
E )(ρe

−→
V + σ

−→
E )

σ
(10)

Here σ is the electric conductivity of the fluid.

3 Momentum Transport for Fully Developed Flow Analysis

The simplified form of the above momentum conservation equation along the x-
direction, assuming a hydrodynamically fully developed flow for potential field
within the electric double layer (EDL), is written as

μ

(

1 + 1

β

)
d2u

dy2
− dp

dx
= −ρeEx + σe B

2
yu − σeEz By (11)

where β is Casson parameter, σe is the electrical conductivity of the medium, ρe is
the net electric charge density, and

−→
E is the applied external electric field.

The boundary conditions are written as

u(y = a) = 0; du

dy
(y = 0) = 0 (12)

Assuming dp/dx = −(∇ p/L) which is a constant for a fully developed flow.
The nondimensional form of Eq. (11) is given by

(

1 + 1

β

)
d2u∗

dy∗2 + u p

uHS
= −k2

cosh(ky∗)
cosh(k)

+ Ha2u∗ − HaS (13)

where

Ha = Bya

√
σe

μ
, uHS = −εψ0Ex

μ
, u p = ∇ pa2

μL
, S = (Eza/uHS)

√
σe/μ

The boundary conditions are reduced as

u∗(y∗ = 1) = 0
du∗

dy∗ (y∗ = 0) = 0 (14)

Equation (13) is analytically solved using the boundary conditions (14) to obtain
exact solution which is written as
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u∗ = (u p/uHS){(1 + 1/β)k2 − Ha2} − Ha3S + (1 + 1/β)k2SHa − Ha2k2

Ha2{Ha2 − (1 + 1/β)k2}{e(Ha/
√
1+1/β) + e−(Ha/

√
1+1/β)} {e(Hay∗/

√
1+1/β) + e−(Hay∗/

√
1+1/β)}

+ (u p/uHS){Ha2 − (1 + 1/β)k2} + Ha3S − (1 + 1/β)k2SHa + Ha2k2 cosh(ky∗) sec h(k)

Ha2{Ha2 − (1 + 1/β)k2}

4 Heat Transfer Analysis

To investigate the thermal transport characteristics associated with electromagneto-
hydrodynamic flows through rectangular microchannel is written to consider viscous
dissipation and volumetric heat generation terms which can be written as

ρCpu
∂T

∂x
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)

+ μ

(

1 + 1

β

)(
∂u

∂y

)2

+ SJ (15)

where CP is the specific heat of the liquid at constant pressure, T is the local temper-
ature of the liquid, k is the thermal conductivity of the liquid, and SJ = σ(E2

x + E2
z )

is the volumetric heat generation due to Joule heating effect (on considering weak
advective influence on ionic species transport, as consistent with the present for-
mulation). Now, for thermally fully developed flow, the classical nondimensional
temperature, θ = (T − TW )/(TM − TW ) is invariant of the axial coordinate (i.e., the
x coordinate), where TW is the channel wall temperature and TM is the bulk mean
temperature.

For investigation, the thermally fully developed analysis, the energy conservation
equation is reduced by suitable nondimensional transformation as

d2θ

dy∗2 = Nu

u∗
av

[

A − B · u∗(y∗) +
(

1 + 1

β

)

C.F(y∗)
]

(16)

where Nu = (ha/k) is the Nusselt number based on half channel height, u∗
av = uav

uHS
,

A = g1u∗
av , B = (

1 + g1 + g2
V
2

)
, C = g2u∗

av , g1 = (Sja/q
′′
w), g2 = (μu2HS/aq

2
w),

F(y∗) =
(
du∗
dy∗

)2
, V = ∫ 1

−1 F(y∗)dy∗

The boundary conditions are given by

θ(y∗ = 1) = 0,
dθ

dy∗ (y∗ = 0) = 0 (17)

The nondimensional temperature distribution is obtained to solve Eq. (16) based
on boundary conditions Eq. (17) using Mathematics 11.0 package as

θ = Nu

u∗
av

{F1(y
∗) − F1(1)} = Nuθ̃ (18)
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where θ̃ = 1
u∗
av

{F1(y∗) − F1(1)}.
From Eq. (18), the unknown Nusselt number is derived using the definition of

bulk mean temperature as

Nu = 2u∗
av

∫ 1
−1 u

∗θ̃dy∗ (19)

5 Result and Discussions

The analytical solutions for the velocity and temperature distribution of non-
Newtonian Casson fluid in rectangular microchannel have been obtained to solve
nonlinear differential equations (11) and (16) subject to the boundary conditions
(12) and (17) in the presence of combined effects of applied magnetic force and
electrokinematics forces along with pressure-driven force. The characteristics of
unknown Nusselt number have been derived by evaluating Eq. (19).

Figure 2 shows that the variation of velocity distribution for different values of
Hartmann numbers (Ha) in the absence of applied transverse electric field (S = 0). It
is observed fromFig. 2 that the appliedmagnetic field creates the Lorentz forcewhich
causes the retarding effect to opposing fluid particle velocity. So, by increasing the
applied magnetic field, the development length of Casson fluid flow decreases and
for large value of Hartmann Number, it does not become fully development flow. But
it is observed from Fig. 3 that in the presence of transverse applied electric field, for
large value of Hartmann number (Ha), fluid flow shows fully developed region. The
flowdevelopment-length decreases by increasing the appliedmagnetic field. Figure 4
depicts that variation of velocity distribution for different value of Casson parameter
in the absence of applied transverse electric field (see Fig. 4a) and in the presence
of applied transverse electrical field, S = 50 (see Fig. 4b). It is noticed that velocity

(a) (b)

Fig. 2 Variation of velocity distribution for several values of Hartmann number a Ha < 1, b Ha >
1 for parameter S = 0
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(a) (b)

Fig. 3 Variation of velocity distribution for several values of Hartmann number a Ha < 1, b Ha >
1 for parameter S = 50

(a) (b)

Fig. 4 Variation of velocity distribution for several values of Casson parameter β. a S = 0, b S =
50

at point increases with increasing the Casson parameter β. It is interesting to note
that development length of flow is more in the presence of transverse electric field
than absence of it. Figure 5 shows the effect of applied magnetic field on temperature
distribution. It is noted that temperature at fixed point decreases by increasing the
applied magnetic field in the absence of electric field. Figure 6 shows the variation
of Casson parameter on temperature distribution. It can be remarked from the fact
that temperature at a fixed point increases with increasing the Casson parameter.

Effect of the applied magnetic field on the variation of Nusselt number is plotted
in Fig. 7. It records that variation of Nusselt number increases with applied magnetic
field. It can be explained into two distinct regions in the presence of large applied
transverse electric field S= 50. In the small value of Hartmann number, the variation
of Nusselt number decreases with increasing the Hartmann number but at certain
limit of Hartmann number, i.e., threshold/critical value, variation of Nusselt number
increases with increasing magnetic field. Figure 8 displays the variation of Nusselt
number with Casson parameter β. It is noticed that variation of Nusselt number
decreases with decreasing Casson parameter.
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(a) (b)

Fig. 5 Variation of temperature distribution for several values of Hartmann number a Ha < 1, b Ha
> 1 for parameter S = 0

Fig. 6 Variation of temperature distribution for several values of Casson parameter

6 Conclusions

The analytical exact solutions of non-Newtonian Casson fluid flow and thermal trans-
port characteristics under the combined action of EMHD and constant pressure gra-
dient are analyzed in this study. Again, the effects of viscous dissipation and Joule
heating are also examined to the heat transfer analysis.

• It is observed that due to the presence and absence transverse electric field in both
cases, the flow is always fully developed flow except the presence of transverse
electric field with large Hartmann number.

• The temperature distribution at fixed point is decreasing when the applied electric
field is increasing. It is noted that the velocity and temperature of the flow both
are increasing when the Casson parameter is increasing. From this fact, it can be
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Fig. 7 Variation of Nusselt number with variation of Hartmann number when S = 50, g1 = 1, g2
= 0.01, β = 0.5, k = 4

Fig. 8 Variation of Nusselt number with variation of Casson parameter when S = 50, g1 = 1, g2
= 0.01, Ha = 5, k = 5

concluded that the velocity and temperature profiles both are proportional to the
Casson parameter.

• TheNusselt number is decreasing gradually with the increasing Casson parameter.
The Nusselt number is decreasing with the small value of Hartmann number to a
certain limit of Hartmann number.

• After a threshold/critical value of Hartmann number, the Nusselt number increases
with increasing the strength of magnetic field.



Analysis of Exact Solutions of Electromagnetohydrodynamic Flow … 127

• Our resultswill help those researcherswho take/investigatemore complicated fluid
flow model in microchannel for various industrial applications like microfluidic
devices.
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Pre-clinical Analysis of Implanted Ankle
Joint Using Finite Element Method

Subrata Mondal and Rajesh Ghosh

Abstract Slacken off of the implant component, dislocation, misalignment, frac-
ture, wear in meniscal bearing, etc. are the most important reasons behind the failure
of ankle arthroplasty. The study on the effects of implant material on tibia bone
stress due to total ankle replacement (TAR) is the prime goal of this paper. Com-
puted tomography (CT) scan data was used to develop the bones, and other soft
tissues for the intact and implanted ankle joint. Three implanted FE models were
generated having a different combination of implant material. The implanted FE
model 1 is having the implant material combination of metal and ultra-high molec-
ular weight polyethylene (UHMWPE). The combination of implant material in FE
model 2 was ceramic and UHMWPE, whereas FE model 3 consists of the implant
material combination of ceramic and carbon-fiber-reinforced polyetheretherketone
(CFR-PEEK), respectively. Three positions during gait such as dorsiflexion, neutral,
and plantar flexion positions were considered as applied loading condition, along
with muscle force and ligaments. Stress shielding was found in the proximal region
of the tibia (i.e., away from the implant neighborhood) due to implantation. Implant
material combinations have less impact on tibia bone stress. The present outcome
recommended that ceramic can be used as a substitute for metal and CFR-PEEK as
an alternate to UHMWPE owing to the high metal release of metal and UHMWPE
for long-standing attainment of the prosthetic components.

Keywords Ankle joint · Implant material · Finite element method · Tibia

1 Introduction

The total ankle replacement (TAR) is a preferred used operative surgery for ankle
arthritis and fracture. Loosening of the components is one of the leading causes for the
early failure of TAR. Extreme bone density resorption due to stress/strain shielding
and wear-induced osteolysis is the reason behind the late loosening of the tibia
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and talar components [1]. The appropriate arrangement of implant material (bearing
material) plays a critical role to decrease the stress/strain shielding and wear. Some
recent studies stated that carbon-fiber-reinforced polyetheretherketone (CFR-PEEK)
and ceramics implant material showed promising results [2–4]. In spite of the current
trend of tibial and talar component is made of metal, and meniscal bearing is made
of ultra-high molecular weight polyethylene (UHMWPE), ceramic as a substitute to
metal and CFR-PEEK as a substitute to UHMWPE might be helpful to reduce the
problem associated to the metallic ion release and high volumetric wear.

Numerous studies used the finite element method (FEM) and experimental tech-
nique to comprehend the load transmission through the intact and implanted ankle
and to assess the performance of TAR prosthesis [5–10]. A study by Reggiani et al.
[5] focused on to examine the consequence of kinematics of the foot contact pres-
sure. Misalignment of the TAR components caused higher joint contact pressure [6].
Sopher [7] also examined the effect of prosthetic malpositioning on micromotion at
the implant–bone interface and strain distribution. Most recently, Mondal and Ghosh
[8] studied the impact of implant orientation and different implant–bone interfaces on
strain energy density distribution at the tibia owing to TAR.Wear at the polyethylene
component is one of the significant issues of failure of TAR. Putra [9] stated that its
radial curvature influences wear in TAR. Most recently, Smyth [10] has also inves-
tigated the influence of kinematics on the volumetric wear at the meniscal bearing
owing to TAR. The impact of implant material combination (PEEK and its compos-
ites) on the wear rate of TAR devices has been investigated by Kerschhofer [11].
Apart from PEEK and its composite combination implant material, no other implant
material combination has been examined on the performance of TAR till now. It is
hypothesized that the selection of different implant materials might have an effect on
stress distribution at the tibia and wear at the meniscal bearing which may eventually
affect long-standing survival of the implant. The present study is focused on to have
an insight into the effect of implant material combination on stress distribution in
tibia bone owing to TAR.

2 Materials and Methods

The computed tomography (CT) scan images which were encoded in the digital
imaging and communications in medicine (DICOM) format and were kept in 512×
512 pixels, having a pixel size of 0.803 mm and slice thickness of 1 mm were used
to develop three-dimensional (3D) FE models of intact and implanted ankle joint
as similar to an earlier study [8, 12]. The comprehensive description of generation
and development of bones and other soft tissues was given in the previous study by
the same group of authors [8, 12]. The cortical bone layer was anticipated to have a
uniform Young’s modulus of 19 GPa and Poisson’s ratio of 0.3, respectively [8, 12].

The cancellous bonematerial propertieswere considered as heterogeneous, linear,
and isotropic. A linear relationshipwas used between bone density andCT gray value
(in Hounsfield unit) to determine the apparent density of cancellous bone.
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Table 1 The Young’s
modulus and Poisson’s ratio
of bones, cartilage, and
prosthetic components. Data
adapted from earlier studies
[2, 8, 13, 19]

Components Young’s modulus
(E), MPa

Poisson’s ratio (ν)

Cortical bone 19000 0.3

Cancellous bone Location depended 0.3

Tibial component
(Co-Cr-Mo)

210000 0.3

Tibial component
(Ceramic)

350000 0.26

Meniscal bearing
(UHMWPE)

1174 0.4

Meniscal bearing
(CFR-PEEK)

13000 0.4

Talar component
(Co-Cr-Mo)

210000 0.3

Talar component
(Ceramic)

350000 0.26

Cartilage 10 0.4

ρ = 0.022+ 0.0008456× HU (1)

A power law among Young’s modulus and density of bone was used similar to
the previous study to determine Young’s modulus after obtaining the density values
[13].

E = 4778ρ1.99 (2)

In order to develop the prosthetic components of ankle joint, the Scandinavian
Total Ankle Replacement (S.T.A.R@TM) prosthesis consists of a flat tibial compo-
nent (32 mm × 30 mm) with two anchorage bars, meniscal bearing (Thickness of
10 mm), and talar component (34 mm × 35 mm) which were created using design
software (Solidworks, DS Solidworks Corp., Concord, MA, USA) conferring to the
facts provided by the Small Bone Innovations, Inc. and positioned (optimal position)
according to surgical guidelines [14]. Rhinoceros software (Robert McNeel & Asso-
ciates, Seattle, WA, USA) was used for the virtual operation of implant and bone
[14].

In the case of implanted FE model 1, tibial and talar components were assigned
withCobalt–Chromium–Molybdenum, andmeniscal bearingwasUHMWPE, the FE
model 2 was assigned with ceramic and UHMWPE, and FE model 3 was assigned
with ceramic and CFR-PEEK to comprehend the consequence of different implant
material arrangements on bone stress. Material properties of prosthetic components
are shown in Table 1. ANSYS FE software v 17 was used for discretization of all
bones and implant components. Mesh convergence study was performed (based on
stress value in the tibia bone)with ten-node tetrahedral element to check that the result
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Tibia

Tibial Component

Polyethylene 
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Talar Component

Talus
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PTaCL
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Boundary 
Constraint 
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Fig. 1 The intact and implanted FE models showing bones, ligaments, and prosthetic components
with applied loading and boundary conditions

does not depend on element size. Three different element sizes (coarse, medium, and
fine) were considered for meshing purpose. The coarse, medium, and fine mesh were
consisting of 523,871, 723,438, and 965,213 number of elements. On comparing the
first (coarse) and the second (medium) FE models, 7% deviation in maximum stress
was observed. However, the deviation was reduced to 1.2%, when the results of
the second (medium) and the third (fine) models were compared. Therefore, the
second FE model contained 723,438 number of elements (maximum edge length
of 3 mm) which was considered for the present analysis. Figure 1 shows the intact
and implanted FE models. Apart from bones, soft tissues such as ligaments and
cartilages were also modeled for this study. Cartilages were developed between the
bones by using an offsettingmethodwhichwas donemanually inMIMICS software v
11.1 (Materialise, Leuven, Belgium). Whereas ligaments were modeled using linear
spring elements in ANSYS FE software v 17. Totally 16 numbers of ligaments were
identified around the ankle joint and inserted according to the earlier study [12, 15–
18]. The material properties of bones, cartilages, and prosthetic components were
shown in Table 1, whereas the material properties of ligaments are presented in
Table 2.

2.1 Applied Loading and Boundary Conditions

The magnitude and direction of ankle joint reaction forces at the three altered loca-
tions (dorsiflexion, neutral, and plantarflexion) during the posture stage of gait are
presented in Table 3. The magnitude of reaction forces was measured from earlier
literature [5, 8, 19, 20] which was equivalently rescaled and applied according to
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Table 2 The value of stiffness, Young’smodulus, and Poisson’s ratio of all the ligaments considered
in this study [15–18]

Ligaments represented in
models

Stiffness (N/mm) Young’s modulus (E),
MPa

Poisson’s ratio (ν)

Anterior tibiofibular
(ATiFL)

90 160 0.49

Anterior tibiotalar
(ATiTL)

70 184.5 0.49

Anterior talofibular
(ATaFL)

90 255.5 0.49

Calcaneofibular (CaFL) 70 512 0.49

Interosseous I- IV (Inte I-
IV)

400 260 0.4

Interosseous
talocalcaneal (ITaCL)

70 260 0.4

Lateral talocalcaneal
(LTaCL)

70 260 0.4

Medial talocalcaneal
(MTaCL)

70 260 0.4

Posterior tibiofibular
(PTiFL)

90 160 0.49

Posterior talofibular
(PTaFL)

70 216.5 0.49

Posterior tibiotalar
(PTiTL)

80 99.5 0.49

Posterior talocalcaneal
(PTaCL)

70 260 0.4

Tibiocalcaneal (TiCa) 122 512 0.49

Table 3 The reaction forces at the ankle joint. Data adapted from earlier studies [5, 8, 19, 20]

Concentrated Force (N) and
moment

Position

Dorsiflexion (−10°) Neutral (0°) Plantarflexion (+15°)

Axial force (Z-component) 1600 600 400

Interior–exterior force
(Y-component)

−185 150 100

Anterior–posterior force
(X-component)

−185 −280 −245

Interior–exterior torque
(Y-component)

−6.2 −2.85 0.1



134 S. Mondal and R. Ghosh

our present FE coordinate system. These reaction forces were applied underneath
the meniscal bearing on the set of nodes restricted in the specific fixed areas. Apart
from the joint reaction forces, muscle force (i.e., Achilles tendon) was set at 75% of
the total body weight at the extreme posterior position of the calcaneus bone in the
present FE model. Applied reaction force and fixed boundary condition are shown
in Fig. 1.

2.2 Contact Simulations

The present study assumed the debonded (non-osseointegration) implant–bone inter-
face condition. For the contact simulation, an Augmented Lagrangian contact algo-
rithm was used similar to an earlier study [2, 3, 8]. The contact stiffness and a pene-
tration factor for the intact and the implanted model were selected as per the previous
research [8]. The Coulomb friction coefficient of 0.02 was considered between bones
and cartilages in case of intact bone as described in earlier studies [8]. Owing to the
lubricating nature of the articulating surface, the contact between bone and cartilage
is considered to be frictionless.

3 Results

Equivalent stress distribution in the tibia formerly and later the implantation for the
different implant material combinations are shown in Fig. 2. Outcomes were attained
for all three loading conditions.

Stress (MPa)

(a) (b) (c) (d)

Fig. 2 Equivalent stress distribution (von Mises) in tibia before and after implantation for different
implant material combinations in case of debonded implant–bone interface condition
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Themagnitude of stress was found to be greater in the case of dorsiflexion loading
condition as compared to other two loading conditions (neutral and plantarflexion)
for all the models considered in this study. However, the stress distribution pattern
was found to be similar for all the three loading conditions. Therefore, to comprehend
the effect of implantation and different implant materials on stress distribution at the
tibia, only the outcomes conforming to the dorsiflexion position were presented in
Fig. 2. Considering the debonded implant–bone interface condition, implantation
headed for increasing in stress (around 5–30%) in the tibia bone adjacent to the tibial
component vicinity (Fig. 2a, b). Whereas away from the region of tibial component,
reduction in stress (around 10–50%) was found (Fig. 2a, b). Although the alterations
in stress distribution were observed to be nearly alike for prosthetic models 1, 2, and
3 in case of debonded implant–bone interface condition (Fig. 2b–d).

4 Discussions

The FE investigation has been extensively used for pre-clinical analysis and assess-
ment of the orthopedic implants owing to its less financial, computational cost, and
high precision. The present study was intended at studying the influence of differ-
ent implant materials on tibia bone stress due to TAR. For this analysis, CT scan
images were used to develop 3D FE models of the intact and implanted ankle joint.
S.T.A.R@TM prosthesis was used for this present study. It was not possible to validate
this FE model with direct one-to-one experimental data as the present CT scan data
were taken on a living subject of a 35-year female. The present FE model of the
implanted ankle was substantiated and corroborated with earlier published data by
Ozen [21] using the same material properties of bone, boundary, and loading con-
ditions. It was observed that predicted FE stress at the different bones corroborated
well with the earlier measured data by Ozen [21]. However, some deviations were
found due to the difference in geometry, the age of the patient, and the quality of
the CT scan dataset. These validation results are well comparable with the earlier
published data and support the present FE model.

The current study detected that implantation has an influence on stress distribu-
tion in the tibia. After the implantation, the stress value was increasing near the tibial
component, whereas the stress was decreasing toward the proximal region of the
tibia bone which was observed from Fig. 2a, b. The decrease in stress at the proximal
part of the tibia indicated stress shielding due to implantation for debonded (non-
osseointegration) implant–bone interfacial condition (Fig. 2b). It has beenmentioned
earlier that stress shielding in the bone is causing bone resorption due to bone remod-
eling and subsequent implant loosening [3]. The result of the present study indicated
different implant materials have less effect on stress distribution at tibia due to TAR.
Stress distribution was observed at the tibia is found to be almost similar for all the
three different implant material models (Fig. 2b–d). Although earlier studies stated
that ceramic appeared to be a promising and viable alternative to metal, owing to
its better biomechanical properties, such as lower friction, greater wear resistance,
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and more biocompatibility [2, 3]. As well as CFR-PEEK can be used in place of
UHMWPE due to its less metal ion release and volumetric wear [4]. Modern com-
ponents of ankle prosthesis are made of metal and UHMWPE which have high wear
and metal ion release. Considering almost same stress distribution in the tibia for all
the three different implant materials, it can be suggested from the present result that
ceramic and CFR-PEEK are alternatives to metal and UHMWPE, respectively.

The study, however, has some limitations and assumptions. The current FEmodels
contained only ligaments and cartilages as soft tissues. Ligaments were modeled as a
linear spring element as similar to an earlier study [19]. Cartilageswere anticipated as
linear elastic, isotropic, and homogeneous for the present study. Only three positions
of posture were considered as a loading condition in this study. Only one CT scan
data was used for the development of the implanted and intact joint.

5 Conclusions

The 3D FE models of the intact and the implanted ankle have been beneficial in
comprehending the deviations in load transfer. Stress shielding was found at the
proximal part of the tibia due to implantation which causes the bone density loss
owing to bone remodeling and threatens for fixation of the implant. The present
study concluded that ceramic could be used in place of metal and CFR-PEEK can
be used as a substitute to UHMWPE as metal and UHMWPE has a higher rate of
volumetric wear and metallic ion release.
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Dynamic Problem of Fractional
Thermoelasticity in Bounded Cylindrical
Domain with Relaxation Time
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Abstract A fractional heat conduction model of a solid heat conductor is designed
in the bounded cylindrical domain. The solid heat conductor under consideration is
assumed to be in the formof a thick circular plate. The boundaries of the thick circular
plate are traction free and subjected to externally applied axisymmetric heat source.
Governing heat conduction equation of this model has been designed in the context
of time fractional derivative with one-relaxation time. The solution of fractional
heat conduction equation in association with Caputo time fractional derivative has
been found by transforming the original boundary value problem into eigenvalue
problem through the integral transforms. The inversion of Laplace transforms in
terms of infinite series approximations has been achieved numerically using Gaver–
Stehfest algorithm. The convergence of infinite series solutions has been discussed.
Illustratively, the numerical scheme has been employed to partially distributed heat
flux and thermal behavior of a heat conductor has been discussed numerically and
studied graphically. Results obtained are compared with coupled thermoelasticity,
fractional thermoelasticity, and generalized thermoelasticity.
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1 Introduction

In thermal mechanics, a novel contribution of fractional calculus has been achieved
toward the development of the generalized theory of coupled thermoelasticity from
last few years. Povstenko [1, 2]reconstructed the Fourier’s law of heat conduction in
the context of Caputo [3] time fractional derivative. Sherief et al. [4] proved unique-
ness theorem to support the theory of fractional thermoelasticity. Following the frac-
tional theory of thermoelasticity, Hussein [5] solved a one-dimensional half-space
problem of the infinite domain for a long solid circular cylinder. The corresponding
thermal parameters were obtained analytically and numerically as well. The com-
puted results were compared to existing theories. Tripathi et al. [6] investigated the
thermal effects of a thick circular plate in half-space subjected to axisymmetric heat
source. Recently, Sherief and Raslan [7] applied Caputo Fabrizio fractional differen-
tial operator to discuss a fractional order thermoelastic problem. This problem deals
with an infinite elastic space under the influence of a continuous line heat source.
Analytically, the problem was solved using asymptotic expansions which were valid
for short times. The nature of propagation of thermal waves was also given special
attention. Sheiref et al. [8] assumed axisymmetric 2D problems for a viscoelastic
half-space where asymptotic expansions were used to study wave propagation in the
medium. Mathematically, the problem was solved using integral transforms, and the
numerically computed results for temperature, displacement, and thermal stresses
were illustrated graphically.

According to a report by Cotterell and Parkes [9], the post-buckling behavior of
a circular plate needed to be investigated mainly for two conditions as heating over
the center and at the edge. However, in the former case, the plate buckles into the
form of a saucer and in the latter into a saddle shape. The plate may be free or it may
be subjected to a variety of edge restraints.

This article is an attempt to design a two-dimensional heat conduction model of
a perfectly thermoelastic solid heat conductor in the form of a thick circular plate
subjected to the axisymmetric heat source with one-relaxation time in the bounded
cylindrical domain and thermal deformation effects have been investigated. The lat-
eral surfaces of the plate are traction free and subjected to thermal loading due to the
externally applied axisymmetric heat source. The governing equations of the heat
conduction model are taken from the generalized fractional theory of thermoelas-
ticity with one-relaxation time. The analytical solutions of the governing equations
are obtained by applying Laplace and finite Hankel transforms in time and space
variables, respectively. Illustratively, a numerical scheme is applied to a thick cir-
cular plate of copper material that is subjected to a partially distributed heat source
and distributions of temperature, displacement, and thermal stresses are obtained
analytically in Laplace domain. The numerical inversion has been achieved using
Gaver–Stehfest algorithm [10, 11]. The numerically computed results were depicted
graphically and compared to generalized and classical theories.

The model presented in this article may be helpful to decode and analyze the ther-
mal effects for the micro-level heating process of a thick circular plate, which could
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be useful in aerospace engineering, laser technology, fabrication of semiconductor
devices [12–14], and other related fields.

To our knowledge, no one has formulated a two-dimensional fractional thermoe-
lastic heat conduction problem associated with one-relaxation time in the bounded
cylindrical domain for a thick circular plate subjected to an axisymmetric heat source
whose surfaces are traction free. This is the latest and novel contribution to the field
of thermal mechanics.

2 The Mathematical Model

A brief description of the mathematical formulation of the governing equations of
the problem along with imposed boundary conditions is given below in the context
of fractional thermoelasticity is association with one-relaxation time.

2.1 Basic Assumptions and Governing Equations

Assume the axis of symmetry as z-axis and origin of the system of coordinates is at
middle plane between upper and lower faces of the plate. Due to rotational symmetry
about z-axis, all quantities are independent of the coordinate φ. Initially, the solid
is kept at zero temperature. The upper and lower plane boundary surfaces ∂Dplane

are subjected to convective heat flux �(r, t),∀ t > 0, described by a continuous
integrable function� : D × (0, ∞) −→ R. The circular boundary surface ∂Dcircular

attempts to simulate heat transfer by convection due to dissipation into surrounding
media. Assume that the boundary ∂D of heat conductor is free from traction. Under
these more realistic generalized boundary conditions, the thermal behavior of solid
heat conductor is required to be determined.

For displacement vector −→u (r, z, t) = (u1, 0, u2), the equations of motion can
be written as

μ�2u1 − μ

r2
u1 + (λ + μ)

∂e

∂r
− γ

∂T

∂r
= ρ

∂2u1
∂t2

, (1)

μ�2u2 + (λ + μ)
∂e

∂z
− γ

∂T

∂z
= ρ

∂2u2
∂t2

, (2)

e = u1
r

+ ∂u1
∂r

+ ∂u2
∂z

= 1

r

∂

∂r
(ru1) + ∂u2

∂z
. (3)

where λ,μ are Lamé constants, γ = αt (3λ + 2μ) is the material constant, and e is
dilatation function.

In viewofMaxwell–Cattaneo lawof heat conduction defined above, the governing
time fractional boundary value problem of heat conduction with the mixed boundary
conditions on open domain D for T : D × (−∞, ∞) −→ R has the following form:
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κ�2T =
(

∂

∂t
+ τ0

∂1+α

∂t1+α

)
(ρceT + γ T0e), α ∈ (0, 1], (4)

where T0 is reference temperature and T is the absolute temperature assumed to be
such that |T − T0| � 1. Constants κ is thermal conductivity, ρ is material density,
ce is the specific heat capacity, α is the fractional order applied to time derivatives,
and τ0 is relaxation time.

The normal and shear stresses σrr , σzz, σr z constitutive relations in terms of tem-
perature change and displacement supplement the preceding equations as

σrr = 2μ
∂u1
∂r

+ λe − γ (T − T0), (5)

σzz = 2μ
∂u2
∂z

+ λe − γ (T − T0), (6)

σr z = μ

(
∂u1
∂z

+ ∂u2
∂r

)
. (7)

Equations (1)–(7) constitute the mathematical formulation of the problem in the
context of fractional differentiation.

To convert the dimensionless system of equations, one can make use of the fol-
lowing nondimensional variables

r ′ = cδr, z′ = cδz, u′
1 = cδu1, u′

2 = cδu2, t ′ = cδt, τ ′
0 = (c2δ)

α
τ0, σ ′

i j = σi j

μ
,

θ = γ (T − T0)

(λ + 2μ)
, ε = γ 2T0

κc2δρ
, δ = ρce

κ
.

Using the above nondimensional variables, the governing Equations (1)–(7) take the
form (neglecting primes for simplicity)

�2u1 − u1
r2

+ (β2 − 1)
∂e

∂r
− β2 ∂θ

∂r
= β2 ∂2u1

∂t2
, (8)

�2u2 + (β2 − 1)
∂e

∂z
− β2 ∂θ

∂z
= β2 ∂2u2

∂t2
, (9)

�2θ =
(

∂

∂t
+ τ0

∂1+α

∂t1+α

)
(θ + εe), (10)

σrr = 2
∂u1
∂r

+ (β2 − 2)e − β2θ, (11)

σzz = 2
∂u2
∂z

+ (β2 − 2)e − β2θ, (12)

σr z =
(

∂u1
∂z

+ ∂u2
∂r

)
, (13)
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where

β2 = λ + 2μ

μ
.

Combining Eqs. (8), (9), and making use of Eq. (3), one will have the following
equation:

�2e − �2θ = ∂2e

∂t2
. (14)

Equations (8)–(14) constitute nondimensional conversion of governing equations.

2.2 Initial and Boundary Conditions

The plane boundaries ∂Dplane are subjected to axisymmetric heat flux � : ∂D ×
[0, ∞) −→ R, which is a continuous and absolutely integrable function that depends
on the space variable r and time variable t . The circular boundary ∂Dcircular attempts
to stimulate the heat transfer between plate and surrounding media. The boundary
conditions has the following form:

± κ
∂θ

∂z
+ h plθ = �(r, t), for z = ±h

2
, (15)

κ
∂θ

∂r
+ hcrθ = 0, for r = a, (16)

where h pl and hcr are heat transfer coefficient of plane and circular boundary surface
of thick circular plate, respectively. Assuming all the initial conditions are homoge-
neous boundary conditions for traction-free surfaces are given by

σzz = σr z = 0, z = ±h

2
, (17)

σrr = σr z = 0, r = a. (18)

Equations (15)–(18) describe the imposed initial and boundary conditions of the
problem.

3 The Mathematical Solution

Themathematical solution of governingdimensionless equations derived in the above
section subjected to initial and boundary condition has been achieved using Laplace
and Hankel integral transforms applied in time and space variables, respectively.
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The inversion of results obtained in the Laplace domain has been carried out by
Gaver–Stehfest algorithm to obtain the time-domain solutions.

3.1 Transformation in Laplace Domain

Applying Laplace transforms to nondimensional governing Equations (8)–(14)
together with the boundary conditions (15)–(18), one will have the following equa-
tions:

�2u1 − u1
r2

+ (β2 − 1)
∂e

∂r
− β2 ∂θ

∂r
= β2s2u1, (19)

�2u2 + (β2 − 1)
∂e

∂z
− β2 ∂θ

∂z
= β2s2u2, (20)

(�2 − s − τ0s
α+1)θ = ε(1 + τ0s

α)se, (21)

(�2 − s2)e = �2θ, (22)

σ rr = 2
∂u1
∂r

+ (β2 − 2)e − β2θ, (23)

σ zz = 2
∂u2
∂z

+ (β2 − 2)e − β2θ, (24)

σ r z =
(

∂u1
∂z

+ ∂u2
∂r

)
. (25)

± κ
∂θ

∂z
+ h plθ = �(r, s), z = ±h

2
, (26)

κ
∂θ

∂r
+ hcrθ = 0, r = a, (27)

σ zz = σ r z = 0, z = ±h

2
, (28)

σ r z = σ rr = 0, r = a, (29)

where �(r, s) is a function of variables r and Laplace parameter s.
Eliminating e between Eqs. (21), (22), one has the following equation in θ :

(�2 − m2
1)(�2 − m2

2)θ = 0, (30)

where m2
1, m

2
2 are the positive roots of real parts of the following characteristic

equation:

m4 − (s2 + s(1 + τ0s
α)(1 + ε))m2 + s3(1 + τ0s

α) = 0. (31)
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The solution of equation (30) is given by

(�2 − m2
i )θ i = 0, i = 1, 2. (32)

Equations (19)–(33) represent the conversion of nondimensional governing equations
including boundary conditions (8)–(18) in Laplace domain.

3.2 Transformation in Hankel Domain

Following Özisik [15], if ψ(r, z, t) be a function of space variables r, z and time
variable t , then the finite Hankel integral transform ψ∗(νn, z, t) and corresponding
inverse transform are given by following relations:

ψ∗(νn, z, t) =
a∫

0

r · S0(νn, r) · ψ(r, z, t) · dr, (33)

ψ(r, z, t) =
∞∑
n=1

S0(νn, r) · ψ∗(νn, z, t), (34)

where the summation is taken over the positive eigenvalues, νn , which are positive
root of the transcendental equation given as

νn J
′
0(νna) + hcr

κ
J0(νna) = 0, n ∈ N , (35)

and S0(νn, r) denotes the kernel of Hankel transform given by

S0(νn, r) =
√
2κνn J0(νnr)

aJ0(νna)
√[h2cr + κ2ν2

n ]
. (36)

3.3 Results in Laplace Domain

Practising finite Hankel transform and corresponding inverse transform to the nondi-
mensional Equations (19)–(29), including Eq. (32), one will have the following
results for distribution of temperature, displacement, and thermal stresses in Laplace
domain:
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θ(r, z, s) =
∞∑
n=1

i=2∑
i=1

S0(νn, r)Ai (νn, s)(m
2
i − s2) cosh(li z), (37)

e(r, z, s) =
∞∑
n=1

i=2∑
i=1

S0(νn, r)Ai (νn, s)m
2
i cosh(li z), where li =

√
ν2n + m2

i , i = 1, 2,

(38)

u1(r, z, s) = −
∞∑
n=1

S0(νn, r)

{
B(νn, s)l3 cosh l3z + ν2n

i=2∑
i=1

Ai (νn, s) cosh li z

}
, (39)

u2(r, z, s) =
∞∑
n=1

S0(νn, r)

{
B(νn, s) sinh l3z +

i=2∑
i=1

Ai (νn, s)li sinh li z

}
,

where l3 =
√

ν2n + β2s2, (40)

σ rr (r, z, s) =
∞∑
n=1

i=2∑
i=1

S0(νn, r)Ai (νn, s) cosh li z[β2s2 − 2m2
i ]

− 2
∞∑
n=1

S1(νn, r)

{
B(νn, s)l3 cosh l3z + ν2n

i=2∑
i=1

Ai (νn, s) cosh li z

}
, (41)

where S1(νn, r) = d

dr
S0(νn, r),

σ zz(r, z, s) =
∞∑
n=1

S0(νn, r)

{
(ν2n + l23)

i=2∑
i=1

Ai (νn, s) cosh li z + 2B(νn, s)l3 cosh l3z

}
,

(42)

σ r z(r, z, s) =
∞∑
n=1

S1(νn, r)

{
B(νn, s) sinh l3z +

i=2∑
i=1

Ai (νn, s)li sinh li z

}

−
∞∑
n=1

S0(νn, r)

{
B(νn, s)l

2
3 sinh l3z + ν2n

i=2∑
i=1

li Ai (νn, s) sinh li z

}
. (43)

Applying the prescribed boundary conditions to the results obtained in Laplace
domain, one will have the following simultaneous equations in unknowns Ai (νn, s),
B(νn, s):

i=2∑
i=1

Ai (νn, s)(m
2
i − s2)

[
κli sinh li

(
h

2

)
+ hsp cosh li

(
h

2

)]
= �

∗
(νn, s), (44)

(ν2
n + l23)

i=2∑
i=1

Ai (νn, s) cosh

(
li
h

2

)
+ 2l3B(νn, s) cosh

(
l3
h

2

)
= 0, (45)
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J0(νna)

{
B(νn, s)l

2
3 sinh

(
l3
h

2

)
+ ν2

n

i=2∑
i=1

li Ai (νn, s) sinh

(
li
h

2

)}

+ νn J1(νna)

{
B(νn, s) sinh

(
l3
h

2

)
+

i=2∑
i=1

Ai (νn, s)li sinh

(
li
h

2

)}
= 0. (46)

Equations (37)–(43) describe the analytical solutions of thermal parameters θ, u,

σ rr , σ zz, σ r z , respectively, inLaplacedomain,where unknownconstants A1(νn, s);
A2(νn, s); B(νn, s) can be obtained on solvingEquations (44)–(46) simultaneously.

3.4 Gaver–Stehfest Algorithm

Definition: The Gaver–Stehfest algorithm [10, 11] has been applied to approximate
the time-domain solutionusing the iteration scheme illustrated by following equation:

f (t) ≈ fM (t)

= ln(2)

t

2M∑
k=1

⎡
⎢⎢⎢⎢⎢⎣

(−1)M+k

⎡
⎢⎢⎢⎢⎢⎣

j=min(k,M)∑

j=�
(
k + 1

2

)
�

j M+1

M !
(
M

j

)(
2 j

j

)(
j

k − j

)
⎤
⎥⎥⎥⎥⎥⎦

· f

(
k ln(2)

t

)
⎤
⎥⎥⎥⎥⎥⎦

,

(47)

where �x� is the flooring function and 2M is an even integer whose value depends
on the word length of the computer used.

3.5 The Convergence Criterion

Convergence Theorem: Following Kuznetsov [16], assume that f : (0, ∞) −→ R

is a locally integrable function such that its Laplace transform f (s) exists for
all s > 0 and the sequence fM(t) is defined by Eq. (47), then the convergence
of sequence fM(t) depends on the values of the function f in the neighbor-
hood of t . If f has bounded variation in the neighborhood of t then fn(t) →
f (t + 0) + f (t − 0)

2
as n → ∞.
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4 The Numerical Scheme

Following fractional theory of thermoelasticity by Sherief et al. [4], the thermal
variations are studied by numerical values of thermal properties of heat conductor
by considering various order (α) of fractional differential coefficient in time vari-
able. As a special case for coupled thermoelasticity (α → 0), Cattaneo approach
to generalized fractional thermoelasticity (α = 0.5, 0.98) and generalized theory of
thermoelasticity (α = 1.0) are discussed numerically.

4.1 Illustrative Example

Assume that thick circular plate under consideration is subjected to partially dis-

tributed axisymmetric heat flux defined for 0 < r1 < r < a and z = ±h

2
, described

in terms of Heaviside unit step function as follows:

�(r, t) = θ0H(r − r1)H(t), for z = ±h

2
and r1 ∈ (0, a), (48)

�
∗
(νn, s) = θ0

sνn
[aJ1(aνn) − r1 J1(r1νn)] , (49)

where θ0 is strength of partially distributed heat flux.

4.2 Dimensions and Material Properties

Assuming following dimensions for numerical computations:
The radius a = 1.0 m,
The radius of inner annular region r1 = 0.5 m.
The thickness of the circular plate h = 0.3 m.
Following Hussein [5], the numerical scheme has been applied for
copper material with physical properties (with SI-units) given as

αt = 1.78 × 10−5 K−1, β2 = 4, ε = 0.0168Nm J−1,

θ0 = 373.15K κ = 386 J K−1 m−1 s−1,

h pl = hcr = 10Wm−2 K−1J K−1 s−1, λ = 7.76 × 1010Nm−2,

μ = 3.86 × 1010 Nm−2,

ρ = 8954 kgm−3, τ0 = 0.025 s, ce = 383.1 J Kg−1 K−1, T0 = 293K,

c = 4.158 × 103 m s−1.
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The nondimensional variations of temperature θ , displacement u, and thermal
stresses σrr , σzz, σr z are computed numerically for first ten positive roots of tran-
scendental equation (35) for radius a = 1.0 are νn = [0.2278, 3.8389, 7.0189,
10.1760, 13.3253, 16.4720, 19.6169, 22.7609, 25.9049, 29.0468].

5 Results and Discussion

Gaver–Stehfest algorithm [7, 8] has been applied to Eqs. (37)–(44) for inversion of
Laplace transform to obtain the time-domain solutions for the fixed value t = 0.1 s.
The numerically computed results are hereby plotted for 0 ≤ r ≤ 1 fixing z = 0.0
and −0.15 ≤ z ≤ 0.15 with fixed r = 0.5 in radial and axial directions and shown
by Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, respectively.

Figures 1 and 2 illustrate the nondimensional change in temperature θ inside the
elastic body in radial and axial directions, respectively. It is seen from the figures that
initially the magnitude of temperature is maximum for all the fractional orders and
as radial or axial space increases the absolute temperature reduces. It can be seen that
the absolute temperature is inversely proportional to the fractional order applied.

Fig. 1 Distribution of
temperature θ in radial
direction
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Fig. 2 Distribution of
temperature θ in axial
direction
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Fig. 3 Distribution of
displacement u in radial
direction
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Fig. 4 Distribution of
displacement u in axial
direction

-1.00E-01
-8.00E-02
-6.00E-02
-4.00E-02
-2.00E-02
0.00E+00
2.00E-02
4.00E-02
6.00E-02
8.00E-02
1.00E-01
1.20E-01

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

u

z

α=0.0

α=0.5

α=0.98

α=1.0

Fig. 5 Distribution of radial
stress σrr in radial direction
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Figures 3 and 4 exhibit the nondimensional displacement u inside the thick plate
in radial and axial directions. The displacement is attaining positive and negative
values as and when the space varies in both the sense and reaches zero at the extreme
ends. One can note that as and when the values of fractional order α increase the peak
of displacement decreases, or alternatively the change in displacement is inversely
proportional to the fractional order α considered.

Figures 5 and 6 depict the nondimensional variations of radial thermal stresses
σrr in radial and axial sense. Observing the results around 0.2 < r < 0.8. Axially the
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Fig. 6 Distribution of radial
stress σrr in axial direction
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Fig. 7 Distribution of axial
stress σzz in radial direction
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Fig. 8 Distribution of axial
stress σzz in axial direction
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Fig. 9 Distribution of shear
stress σr z in radial direction
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Fig. 10 Distribution of shear
stress σr z in axial direction
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stresses attain peak at middle plane z = 0 and attaining zero at both ends. It has been
found that the radial stresses σrr are inversely proportional to the fractional order α.

Figures 7 and 8 show the plots of the nondimensional variations of axial stress σzz

in radial and axial sense. The patterns of axial stresses show compressive and tensile
behavior symmetrically. It has been found that the radial stresses σzz are inversely
proportional to the fractional order α.

Figures 9 and 10 show the plots of the nondimensional variations of shear stress
σr z in radial and axial sense. The patterns of shear stresses show compressive and
tensile behavior symmetrically. It has been found that the radial stresses σr z are
inversely proportional to the fractional order α.

From Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, one can see that whenever fractional
order α approaches to zero the heat conduction equation (4) becomes parabolic and
represents classical theory of thermoelasticity. Moreover, while fractional order α

tends to unity, then the heat equation of this model becomes hyperbolic and expresses
generalized thermoelasticity theory derived by Lord and Shulman [17].
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6 The Concluding Remarks

In this manuscript, an attempt is made to investigate the thermal behavior of an
elastic body in the form of a thick circular plate. Considering microstructural heat
interactions due to the external heat flux applied to the body, a mathematical model
has been designed in the context of fractional calculus and thermoelasticity theory
and thermal-related parameters are obtained numerically and depicted graphically.
The concluding remarks summarizing the entire work are given below:

1. As per generalized theory deduced by Lord and Shulman [17], due to the
application of positive values of relaxation time τ0 the heat conduction equation
(4), it becomes hyperbolic for α = 1 and hence the finite speed of thermal wave
propagation has been attained.

2. The results obtained for temperature, displacement, and stresses are mathemat-
ically stable and satisfying all the initial and boundary conditions of the presented
model.

3. Since the resulting expressions for thermal parameters obtained in Laplace
domain are given in terms of hyperbolic functions that are multiplied to Bessel
functions, they are integrable and of finite exponential orders. Therefore, it can be
concluded that the method of inversion of Laplace transforms proposed by Gaver
and Stehfest [10, 11] is convergent for the model and satisfies the stability criterion
derived by Kunezentov [16].

4. Usually, the heat conduction models of thick circular plates are required to
investigate the thermal changes when the plate is subjected to internal or external
heating. The mathematical model presented in this manuscript investigates the ther-
mal properties of a thick circular plate subjected to an axisymmetric external heat
source. The finite speed of thermal waves has been achieved due to the application of
one-relaxation time τ0 in association with Caputo time fractional derivative of order
α ∈ (0, 1). The presented model can further be investigated for dual- and triple-
phase-lag heat conduction problems related to science and engineering. Following
Cotterell and Perks [9], practically the presented heat conduction model is especially
useful in solving the aerospace engineering problems.

5. According to this work, the fractional order α becomes a new investigator to
categorize various materials as per their ability of heat conduction.
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A Study on Free Vibration Behavior
of Microbeam Under Large Static
Deflection Using Modified Couple Stress
Theory

Sujash Bhattacharya and Debabrata Das

Abstract The free vibration behavior of a statically deflected Timoshenko
microbeam under uniformly distributed static load is studied based on modified cou-
ple stress theory. In the first step of the analysis, the beam configuration under large
static deflection is obtained through a nonlinear static analysis inwhich the governing
equations are derived employing minimum potential energy principle and incorpo-
rating von Karman geometric nonlinearity. In the subsequent step, the free vibration
behavior of the statically deflected microbeam is investigated employing Hamilton’s
principle and incorporating the tangent stiffness of the statically deflected beam con-
figuration. The solutions of the governing equations for both the steps are obtained by
approximating the displacement fields followingRitzmethod. Themodel is validated
using the available results in the literature for some reduced problems. The results for
the first two vibration modes are presented in nondimensional frequency–amplitude
plane for clamped, simply supported, and clamped–simply supported beams.

Keywords Microbeam · Timoshenko beam · Modified couple stress theory · Free
vibration · Geometric nonlinearity

1 Introduction

With modern technological advancements, the use of micro- and nano-sized struc-
tural elements such as beams and plates is becoming evident in various engineer-
ing applications such as micro- and nano-electro-mechanical systems (MEMS and
NEMS), vibration shock absorbers, atomic forcemicroscopes, resonant testing equip-
ments, electrostatically excited micro-actuators, micro-switches, etc. As a result, the
scientists and engineers are attracted to this interesting and challenging field involv-
ing the experimental and theoretical study of microstructure-dependent behavior
of beams and plates. Lam et al. [1] conducted experiments on micro-sized beams
and showed that its bending rigidity and stiffness are higher than that predicted by
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the classical beam theories. Over the past few years, various nonlocal and/or size-
dependent theories were developed to capture the size effects of micro- and nano-
sized beams, andmodified couple stress theory (MCST) and strain gradient elasticity
theory are the two major theories in this regard that are being widely considered by
the researchers. Kong et al. [2] analytically investigated the size-dependent dynamic
behavior of Euler–Bernoulli beam usingMCST and employingHamilton’s principle.
Based on MCST and Hamilton’s principle, a microstructure-dependent Timoshenko
beammodel was developed byMa et al. [3] using a variational formulation. Based on
MCST, Asghari et al. [4] developed a nonlinear size-dependent Timoshenko beam
model and presented results for static bending and free vibration of a hinged-hinged
beam. Based on MCST, Dehrouyeh-Semnani and Nikkhah-Bahrami [5] carried out
a parametric study to investigate the effect of size-dependent shear deformation on
static bending, buckling and free vibration behavior of microbeams employing both
classical and first shear deformation beam theories. Noori et al. [6] developed a higher
order microbeam model to study the natural frequencies of vibration for different
length-scale parameters and boundary conditions. In the current study, it is shown
how Timoshenko microbeams dynamically behave when subjected to large static
deflection, using MCST.

In the present work, the free vibration behavior of a statically deflectedmicrobeam
under uniformly distributed static load is studied based on MCST and the mathe-
matical formulation is based on Timoshenko beam theory (TBT). This problem has
been addressed for the first time through this work. In the first step of the problem,
the beam configuration under large static deflection is obtained through a nonlinear
static analysis in which the governing equations are derived employing minimum
potential energy principle and incorporating von Karman geometric nonlinearity. In
the subsequent step, the free vibration behavior of the deflected microbeam is inves-
tigated employing Hamilton’s principle and incorporating the tangent stiffness of the
statically deflected beam configuration. The solutions of the governing equations for
both the steps are obtained by approximating the displacement fields following Ritz
method. The results for the first two vibrationmodes are presented in nondimensional
frequency–amplitudeplane for clamped, simply supported, and clamped–simply sup-
ported beams.

2 Mathematical Formulation

A uniform beam with length L, width b, and thickness h is considered as shown in
Fig. 1 where the x- and z- axes are along the axial and thickness directions of the
beam. Considering TBT, the normal strain (εxx ) and the shear strain (γxz) are given
by

εxx = du

dx
− z

dψ

dx
+ 1

2

(
dw

dx

)2

(1a)
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Fig. 1 Beam with dimensions and coordinate axes

γxz = dw

dx
− ψ, (1b)

where the term 1
2

(
dw
dx

)2
accounts for von Karman-type geometric nonlinearity. Here,

u and w are the axial and transverse displacement fields of the midplane and ψ is the
rotation field of beam section about the midplane.

The governing equations for the static problemare derived employing the principle
of minimum potential energy given by

δ(U + V ) = 0, (2)

where U is the total strain energy, V is the potential energy of uniformly distributed
load with intensity p (N/m), and δ is the variational operator.

Here,

U = Un +Us +Uc, (3)

where Un is the normal strain energy, Us is the shear strain energy, and Uc is the
strain energy due to modified couple stress. According to MCST [3], the couple
stress tensor (m) is symmetric and the symmetric part of the curvature tensor (χ)
is the only conjugate strain measure to contribute to the strain energy Uc. For the
present one-dimensional problem involving beam, the only nonzero component of
χ is

χxy = 1

2

(
−∂ψ

∂x
− ∂2w

∂x2

)
. (4)
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The following one-dimensional constitutive relations [7] are employed to obtain
the nonzero components of the classical stress tensor and the couple stress tensor:
σxx = Eεxx , σxz = Gγxz,mxy = Gl2χxy, where l is the material length-scale
parameter, E is the Young’s modulus, and G is the shear modulus given by G =
E/{2(1 + υ)} with υ being the Poisson’s ratio. The various strain energies and work
potential are derived to the form given below:

Un = E A

2

L∫
0

[(
du

dx

)2

+ 1

4

(
dw

dx

)4

+
(
dw

dx

)2(du

dx

)]
dx + E I

2

L∫
0

(
dψ

dx

)2

dx,

(5a)

Us = kGA

2

L∫
0

{(
dw

dx

)2

− 2

(
dw

dx

)
ψ + ψ2

}
dx, (5b)

Uc = GAl2

8

L∫
0

{(
d2w

dx2

)2

+
(
dψ

dx

)2

+ 2

(
d2w

dx2

)(
dψ

dx

)}
dx, (5c)

V = −
L∫

0

w(pdx), (5d)

where A (= bh) and I (= bh3/12) are the cross-sectional area and area moment of
inertia and k is the shear correction factor given by

k = 5(1 + ν)

6 + 5ν
. (6)

The displacement fields are approximated using Ritz method as follows:

u(x) =
nu∑
i=1

ciφ
u
i (x),w(x) =

nu+nw∑
i=nu+1

ciφ
w
i−nu(x), ψ(x) =

nu+nw+nr∑
i=nu+nw+1

ciφ
r
i−nu−nw(x),

(7)

where φu
i , φw

i , and φr
i are the set of orthogonal admissible functions and ci is the

set of unknown parameters which are to be determined. The lowest order admissible
functions for clamped (CC), simply supported (SS), and clamped–simply supported
(CS) beams are selected to satisfy the geometric boundary conditions [8]. Putting the
expressions of assumed displacement fields given by (7) in (5a)–(5d) and applying
Eq. (2), the governing equations are obtained as

[
KT

ji

]{ci } = {
f j
}
. (8)
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Considering n1 = nu, n2 = nu + nw, n3 = nu + nw + nr , the nonzero com-

ponents of the total stiffness matrix
([

KT
ji

])
and the load vector

({
f j
})

are given

below:

[
KT

ji

]
j=1,n1
i=1,n1

= E A

L∫
0

dφu
i

dx

dφu
j

dx
,

[
KT

ji

]
j=1,n1
i=n1+1,n2

= E A

2

L∫
0

(
dw

dx

)dφw
i−n1

dx

dφu
j

dx
dx,

[
KT

ji

]
j=n1+1,n2
i=n1+1,n2

= E A

L∫
0

⎧⎪⎨
⎪⎩
(
du

dx

)dφw
i−n1

dx

dφw
j−n1

dx
dx + 1

2

L∫
0

(
dw

dx

)2 dφw
i−n1

dx

dφw
j−n1

dx
dx

⎫⎪⎬
⎪⎭

+ kGA

L∫
0

dφw
i−n1

dx

dφw
j−n1

dx
dx + GAl2

4

L∫
0

d2φw
i−n1

dx2

d2φw
j−n1

dx2
dx,

[
KT

ji

]
j=n1+1,n2
i=n2+1,n3

= −kGA

L∫
0

φri−n2

dφw
j−n1

dx
dx + GAl2

4

L∫
0

dφri−n2

dx

d2φw
j−n1

dx2
dx,

[
KT

ji

]
j=n2+1,n3
i=n1+1,n2

= −kGA

L∫
0

dφw
i−n1

dx
φrj−n2dx + GAl2

4

L∫
0

d2φw
i−n1

dx2

dφrj−n2

dx
dx,

[
KT

ji

]
j=n2+1,n3
i=n2+1,n3

= E I

L∫
0

dφri−n2

dx

dφrj−n2

dx
dx + kGA

L∫
0

φri−n2φ
r
j−n2dx

+ GAl2

4

L∫
0

dφri−n2

dx

dφrj−n2

dx
dx,

{
f j
}
j=1,n1 = 0,

{
f j
}
j=n1+1,n2 = p

L∫
0

φw
j−n1dx,

{
f j
}
j=n2+1,n3 = 0. (9)

Equation (8) is nonlinear involving unknown parameters ci and solved by an
iterative substitution method with successive relaxation. The solution provides the
deflected configuration of the beam.

The governing equation for free vibration of the statically deformed microbeam
is derived using Hamilton’s principle given by

δ

⎛
⎝

t2∫
t1

(Tk −U )dt

⎞
⎠ = 0, (10)
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where t is time and Tk is the kinetic energy of the microbeam which is given as

Tk = ρA

2

L∫
0

{(
dw

dt

)2

+
(
du

dt

)2
}
dx + ρ I

2

L∫
0

(
dψ

dt

)2

dx, (11)

where ρ is density of the material of the beam. For investigating the small amplitude
free vibration behavior, the tangent stiffness of the deflected beam configuration is

to be considered. Using the relationship
[
K t

ji

]
= ∂

∂ci

{
Frs
j

}
[8], the elements of the

tangent stiffness matrix are derived where
{
Frs
j

}
is the restoring force vector defined

as

{
Frs
j

} = [
KT

ji

]{ci }. (12)

The linear components of the total and tangent stiffness matrices are same. The

nonlinear components of
[
K t

ji

]
are as follows:

[
K t

ji

]
j=1,n1
i=n1+1,n2

= E A

L∫
0

(
dw

dx

)dφw
i−n1

dx

dφu
j

dx
dx,

[
K t

ji

]
j=n1+1,n2
i=1,n1

= E A

L∫
0

(
dw

dx

)
dφu

i
dx

dφw
j−n1

dx
dx,

[
K t

ji

]
j=n1+1,n2
i=n1+1,n2

= E A

⎡
⎢⎣

L∫
0

(
du

dx

)dφw
i−n1

dx

dφw
j−n1

dx
dx + 3

2

L∫
0

(
dw

dx

)2 dφw
i−n1

dx

dφw
j−n1

dx
dx

⎤
⎥⎦. (13)

The dynamic displacement and rotation fields are approximated as

u =
nu∑
i=1

diφ
u
i (x)e

iωt ,w =
nu+nw∑
i=nu+1

diφ
w
i−nu(x)e

iωt , ψ =
nu+nw+nr∑
i=nu+nw+1

diφ
r
i−nu−nw(x)eiωt ,

(14)

where di is the set of unknown coefficients determining vibration mode shape, ω is
the natural frequency of vibration, and i = √−1. Using Eqs. (10) and (11) and the
tangent stiffness matrix, and substituting the assumed displacement fields given by
(14), the governing equation is derived as an eigenvalue problem as shown below:

[
K t

ji

]{di } − ω2
[
Mji

]{di } = 0, (15)

where
[
Mji

]
is the mass matrix whose off-diagonal terms are zero. The elements of[

Mji
]
are given as follows:
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[
Mji

]
j=1,nu
i=1,nu

= ρA

L∫
0

φu
i φu

j dx,
[
Mji

]
j=n1+1,n2
i=n1+1,n2

= ρA

L∫
0

φw
i−n1φ

w
j−n1dx,

[
Mji

]
j=n2+1,n3
i=n2+1,n3

= ρ I

L∫
0

φr
i−n2φ

r
i−n2dx . (16)

The solution of Eq. (15) gives the natural frequencies and the correspondingmode
shapes.

3 Results and Discussion

The geometrically linear static deflection fields for different l/h values are compared
with Ref. [7] for a simply supported Timoshenko beam under sinusoidally varying
distributed load (of amplitude p) and it is shown in Fig. 2a. The natural frequencies
of vibration for different h/ l values for a simply supported Timoshenko beam are
compared with Ref. [3] and it is shown in Fig. 2b. The comparison plots for Fig. 2b
are generated by considering the three-dimensional form of constitutive relations as
used in Ref. [3]. The comparison plots in Fig. 2 matches very well with the available
results and thus validate the present model.

The results of the present study are presented in normalized frequency (ω/ω1)
versus static deflection amplitude (wmax/h) plane where wmax is the maximum static
deflection and ω1 is the natural frequency of vibration for the first mode. The results
are generated with the following values: l = 17.6 × 10−6 m, E = 200 GPa, ν =
0.30, ρ = 7850 kg/m3, L/h = 20, and b/h = 2. Figure 3a and b shows the
frequency–amplitude plots for the first two modes of vibration for a CC beam, each
corresponding to different h/ l values. Similar plots corresponding to different h/ l

Fig. 2 Validation plots: a static deflection fields and b natural frequencies of vibration
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Fig. 3 Normalized frequency versus deflection amplitude plots for a CC beam: a first mode and
b second mode

values are shown in Fig. 4a and b for the first two modes, respectively, for a SS beam
and in Fig. 5a and b for the first twomodes, respectively, for a CS beam. In each of the
figures of Figs. 3, 4 and 5, the frequency–amplitude plots for a classical beam (l = 0)
are also shown. The results show that with increase in the static deflection for any
specific h/ l ratio, the beam becomes more stiffer due to geometric stiffening action,
thus making the frequency to increase. With increasing h/ l ratio, the frequency–
amplitude plots get more and more curved from the initial point, and this is true
irrespective of the vibration modes and boundary conditions. It indicates that the
beam stiffness increases when the thickness becomes comparable with the material
length-scale parameter (decreasing h/ l) and as a result the geometric stiffening effect
due to large deflection becomes subdued. Further, it is observed that the behavior of a

Fig. 4 Normalized frequency versus deflection amplitude plots for a SS beam: a first mode and
b second mode
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Fig. 5 Normalized frequency versus deflection amplitude plots for a CS beam: a first mode and
b second mode

microbeam becomes almost identical to that of a classical beam when h/ l becomes
10 or more. Figures 3, 4, and 5 show that with increase in the deflection level, a
SS beam shows maximum increase in frequency, whereas a CC beam exhibits least
increase in frequency, and a CS beam comes in between in this regard. Thus, the
order of the beams with enhanced geometric stiffening is SS, CS, and CC.

4 Conclusions

The free vibration frequencies of a statically deflected Timoshenkomicrobeam under
uniformly distributed static load are computed based on MCST. The results are
presented in nondimensional frequency-static deflection amplitude plane for the first
two vibration modes for clamped, simply supported, and clamped–simply supported
microbeams. The results indicate that the beam stiffness increaseswhen the thickness
becomes comparable with the material length-scale parameter, and as a result the
effect of geometric stiffening diminishes on the frequency–amplitude behavior. The
size effect is found to disappear when the thickness is ten times or more of the
material length-scale parameter.
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Fatigue Life Estimation of a Box Girder
Bridge Using Coupled and Uncoupled
Bridge–Vehicle Dynamics

Anjaly J. Pillai, Suvendu Parida and Sudip Talukdar

Abstract In the present paper, fatigue life of a steel box girder bridge has been
evaluated by two approaches and the influencing parameters on fatigue life have
been studied. In the first approach, the box girder bridge has been idealized as a
Euler–Bernoulli beam and the coupled bridge–vehicle equations are developed. In
the second approach, vehicle equations are first solved taking bridge as rigid. The
pavement force found from the vehicle response and road roughness has been given as
input in 3-D FEMmodel created in CSI Bridge. Fatigue life of the bridge component
at the critical location has been found out using Miner approach and the stress time
history from coupled and uncoupled schemes has been used for comparison purpose.
The parameters which affect the fatigue life, i.e., velocity of the vehicle and road
surface roughness are varied to observe the effect on fatigue life.

Keywords Fatigue life · Box girder bridge · Coupled scheme · Uncoupled scheme

1 Introduction

The interaction between the bridge and the movement of the vehicles is a coupled
dynamic problem. Conventionally, majority of the research has been focussed on
obtaining the bridge response by approximating the moving vehicle as a number of
moving loads. The essential dynamic characteristics of the bridge are captured by the
moving load model with sufficient accuracy. In this model, the effect of interaction
between the bridge and the vehicle is ignored. Due to this reason, the moving load
model works well for cases where the mass of the vehicle is smaller in relative to
that of the bridge [1]. For cases where the mass of the vehicle cannot be ignored, the
effect of interaction between bridge and vehicles should be considered.

In order to include the interaction between bridge and vehicles, the elastic effects
of the tires and suspension mechanisms are modeled by springs and the damping
effects of tires and suspension systems are modeled by dashpots [2, 3]. Therefore, a
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multi-axle truck or tractor trailer can be represented as a number of discrete masses
each supported by a set of spring and dashpot [1]. This dynamic interaction between
vehicles and structures is analyzed by various researchers [2–5]. In addition, the
bridge response significantly depends on the road surface roughness. This is modeled
as a stationary Gaussian process which is generated by using certain power spectral
density functions to take into account the randomness in nature [1]. The effects of
vehicle-induced vibrations and the road surface roughness on bridge response have
been studied by various researchers [5–8].

Therefore, the fatigue life of the bridge is affected by the factors mentioned above.
Several authors have evaluated the fatigue life considering bridge–vehicle interac-
tion. Rao and Talukdar [8] evaluated fatigue damage in continuous bridge girder
based on the stress range frequency histogram. Vehicle-induced time history of max-
imum flexural stresses has been obtained by Monte Carlo simulation process and
utilized to develop the stress range frequency histogram taking into consideration of
the annual traffic volume. The cumulative damage index and the fatigue life of the
bridge are calculated using the linear damage accumulation theory. Cai and Chen [9]
presented the framework of dynamic analysis of coupled three-dimensional vehicle–
bridge system. Zhang and Cai [10] evaluated the fatigue reliability assessment of
existing bridges considering the random effects of vehicle speed and road-roughness
condition. Wang et al. [11] have developed a new approach for fatigue design of steel
bridges considering the effect of dynamic vehicle loading and truck overloading. The
aim of the paper is to compare the fatigue life obtained from bridge–vehicle coupled
and uncoupled dynamics and to examine the effect of vehicle speed and road rough-
ness on fatigue life. The parameters which affect the fatigue life, i.e., velocity of the
vehicle and the road surface roughness are varied to compare the same.

2 Road Surface Roughness

The road surface roughness which plays an important role in estimating the fatigue
life is described as a stationary Gaussian random field characterized by its power
spectral density (PSD) function [12]. The PSD function given by Yin et al. [13] has
been used and is shown below:

SGG(�s) = SGG(�0)
�2

0

�2
s + �2

L

(1)

where SGG(�s) is the PSD function of road surface unevenness in m2/c/m, SGG(�0)
is the road-roughness coefficient in m2/c/m, �0 is the discontinuity frequency con-
sidered as 1/(2π ) c/m, and �L is the lower cut off frequency considered as 0.1 c/m
[14].

The road-roughness coefficient as per ISO 8608:1995 for good, medium, and
poor road conditions was considered as 64 × 10−6, 256 × 10−6, and 1024 × 10−6,
respectively [14].
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3 Coupled Scheme

The box girder bridge has been idealized as Euler–Bernoulli beam and the coupled
vehicle–bridge equations are developed. The vehicle model corresponds to a quarter
car model as shown in Fig. 1.

The equation of motion for sprung mass is given by

ms z̈1 + cs(ż1 − ż2) + ks(z1 − z2) = 0 (2)

The equation of motion for unsprung mass is given by

mwz̈2 + cw
(
ż2 − ẏ − ḣ

) + kw(z2 − y − h) − cs(ż1 − ż2) − ks(z1 − z2) = 0 (3)

The bridge response is assumed as superposition of the normal modes given as

y(x, t) =
∞∑

j=1

φ j (x)η j (t) (4)

where φj(x) is the normalized mode shape in jth mode for simply supported beam.
Substituting Eq. (4) in Eq. (3), we get

mwz̈2 + (cs + cw)ż2 + (kw + ks)z2 − cs ż1 − ksz1

− cw

∞∑

j=1

φ j (x)η̇ j (t) −
∞∑

j=1

kwφ j (x)η j (t) = cwḣ + kwh (5)

Fig. 1 Vehicle movement on
bridge
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The equation of motion for the bridge is given as

mwz̈2 + (cs + cw)ż2 + (kw + ks)z2 − cs ż1 − ksz1 − cw

∞∑

j=1

φ j (x)η̇ j (t)

−
∞∑

j=1

kwφ j (x)η j (t) = cwḣ + kwh (6)

The equation of motion for the bridge is written considering modal expansion
technique for linear system and in view of orthogonal nature of normal modes

η̈ j (t) + 2ξω j η̇ j (t) + ω2
jη j (t) − cw

Mj
φ j {vt}ż2 − kw

Mj
φ j {vt}z2

= −kw
Mj

φ j {vt}h − cw
Mj

φ j {vt}ḣ − (ms + mw)gφ j {vt}

− cw
Mj

L∫

0

[ ∞∑

i=1

φi (x)η̇i (t)φ j (x)δ{x − vt} = dx

]

− kw
Mj

L∫

o

[ ∞∑

i=1

φi (x)ηi (t)φ j (x)δ{x − vt}dx
]

;= j = 1, 2, . . . (7)

In matrix form, the above equations can be written as

[M]
{
Ẍ

} + [C]
{
Ẋ

} + [K ]{X} = {F(t)} (8)

where [M], [C], and [K] are the mass matrix, damping matrix, and stiffness matrix
containing vehicle and bridge degrees of freedom, respectively. The response consists
of sprung mass displacement, unsprung mass displacement, and beam modes of
vibration. The squarematrices are of order (2+ n) where 2 corresponds to the vehicle
degrees of freedom and n corresponds to the bridge vibration modes considered. The
force vector {F(t)} is given as

F(t) = {
0 kwhm + cwḣm Q1(t) Q2(t) . . . Qk(t)

}T
(9)

Qk(t) = 1

Mk

⎛

⎜⎜⎜⎜
⎝

kw

{
z2(t) −

n∑

k=1
φk(y)ηk(t) − h(x)

}
φk(y)

+cw

{
ż2(t) −

n∑

k=1
φk(y)η̇k(t) − ḣ(x)

}
φk(y)

−{mw + ms}gφk(y)

⎞

⎟⎟⎟⎟
⎠

(10)
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whereMk is the generalized mass, φk(y) denotes the mode shape function for simply
supported beam, kw is the tire stiffness, cw is the damping of the tire, ηk(t) is the
bridge deflection considering the superposition of the normal modes, h(x) is the road
surface roughness at distance x from the left side of the beam consisting of road
surface roughness, hr(x) and mean profile of the bridge, hm(x), mw is the mass of the
tire, ms is the mass of the vehicle, z2(t) is the displacement of the unsprung mass,
and hm(x) is the mean profile of the bridge as shown in Eq. (11).

hm(x) = 0.01 sin
(πx

L

)
(11)

The stress history has been obtained after deriving a closed-form expression of
mean and covariance of the response given as

Xm(t) =
2n∑

j=1

um+n, j

n∑

s=1

u′
js

n∑

k=1

m ′
sk

∞∫

−∞
Hj (ω, t)dS[Fk(ω)];

m = 1, 2, 3, . . . , n (12)

E(Xm(t)) =
2n∑

j=1

um+n, j

n∑

s=1

u′
js

n∑

k=1

m ′
sk

∞∫

−∞
Hj (ω, t)E

[
dSFk (ω)

];

m = 1, 2, 3, . . . , n (13)

I jk(t) =
∞∫

−∞
H j (ω, t)E

[
dSFk (ω)

]
(14)

Kxi xk (t1, t2) =
2n∑

l=1

n∑

r=1

2n∑

p=1

n∑

s=1

n∑

b=1

n∑

w=1

[
ui+n,lu

′
l,r m̄r,suk+n,pu

′
p,bm̄b,w

{
Is,b(t1, t2) − Ils(t1)Ipb(t2)

}

]

;

l, k = 1, 2, ..n (15)

Is,b(t1, t2) =
∞∫

−∞

∞∫

−∞
Hl(ω1, t1)H

∗
p (ω2, t2)φFs Fb(ω1, ω2)dω1dω2 (16)

φFs Fb(ω1, ω2) =

⎧
⎪⎪⎨

⎪⎪⎩

0
(kt )

2φhRhR (ω1, ω2) + (ct )
2φḣ R ḣ R

(ω1, ω2)

(kt/Mk)
2φk(x1)φk(x2)φhRhR (ω1, ω2)

+(ct/Mk)
2φk(x1)φk(x2)φḣ R ḣ R

(ω1, ω2)

⎫
⎪⎪⎬

⎪⎪⎭
(17)

φhRhR (�1,�2) = φhRhR (�1)δ(�1 − �2) (18)
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φḣ R ḣ R
(�1,�2) = �2

1φhRhR (�1)δ(�1 − �2) (19)

In the above equation, u′ denotes the inverse of the eigenvector matrix, u and m ′
denotes the inverse of mass matrix,Hj(ω, t) denotes the transient frequency response
function [15], m̄ indicates the inverse of mass matrix, φFs Fb denotes the PSD function
for force, φhRhR denotes the PSD function for road surface roughness given in Eq. (1),
and φḣ R ḣ R

denotes the PSD function for derivative of road surface roughness.
The design stress obtained from the mean and standard deviation of the response

using coupled iteration was given as input for estimating the fatigue life. The design
stress consideredwas the addition ofmean stress and two times the standard deviation
of stress.

4 Uncoupled Iterative Scheme

First, the equation of motion for the vehicle is solved taking bridge as rigid. The
pavement force is found out at discrete time step using vehicle response and road
roughness. Thereafter, this force time history is applied to 3D FEM model of bridge
to calculate bridge response. The bridge was modeled using beam element with a
mesh size of 500 mm which is shown in Fig. 2. The length of the bridge considered
was 30 m and the width of the bridge considered was 6 m. The pavement force
along with the moving load was applied on the bridge to find out the response. Next,
bridge response is added to road roughness and updated pavement force is calculated.
This force is then applied to bridge model to obtain revised response. The process is
repeated till convergence is achieved.

Fig. 2 Bridge model created in CSI Bridge
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5 Results and Discussions

The stress history obtained from coupled scheme and uncoupled iteration scheme
has been obtained for each category of road surface roughness, i.e., good, medium,
and poor and also obtained by varying the vehicle forward velocity, i.e., 20, 40, and
60 km/h.

Fatigue life of the bridge component at critical location has been obtained using
Miner approach where the stress time history from coupled and uncoupled schemes
has been used for comparison.

The stress history plots using coupled and uncoupled schemes for 20, 40, and
60 km/h vehicle forward velocity are shown below in Figs. 3, 4, and 5, respectively.

Fig. 3 Stress time history
for fatigue life estimation for
vehicle forward velocity
20 km/h
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Fig. 4 Stress time history
for fatigue life estimation for
vehicle forward velocity
40 km/h
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Fig. 5 Stress time history
for fatigue life estimation for
vehicle forward velocity
60 km/h
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Table 1 Fatigue life comparison from coupled scheme and uncoupled scheme

Velocity of
the vehicle
(km/h)

Fatigue life (year) (coupled scheme) Fatigue life (year) (uncoupled
scheme)

Poor road Medium
road

Good road Poor road Medium
road

Good road

20 497 510 535 273 273 273

40 157 197 274 Unchanged

60 98 157 201 Unchanged

Fatigue life calculated usingMiner approachhas beenobtained for different velocities
of the vehicle shown in Table 1.

In Figs. 3, 4, and 5, UC(P) denotes the stress time history obtained from uncoupled
iteration scheme for poor road condition. C(P), C(M), andC(G) denote the stress time
history obtained from coupled scheme for poor, medium, and good road conditions,
respectively.

6 Conclusions

The following conclusions were made from the study:

1. It is observed that the fatigue life decreases as the condition of the road deterio-
rates since the dynamic force acting on the bridge will be more due to poor road
surface as compared to a good road surface.

2. As the velocity of the vehicle increases, fatigue life is observed to decrease due
to increase of low amplitude of flexural stress.
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3. It also observed that uncoupled iterative scheme underestimates fatigue life with-
out any sensitivity to the change of influencing factors.
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Size-Dependent Responses
of Timoshenko Beam Incorporating
the Strain Gradient Theories of Elasticity

Sai Sidhardh

Abstract This paper is concerned with the study of size effects over elastic response
due to strain gradient elasticity (SGE). The general form of SGE with higher order
gradients is simplified and either modified couple stress theory (MCST) or modified
strain gradient theory (MSGT) models the size effects. An element-free Galerkin
(EFG)model of the SGE response is obtained, and the algebraic governing equations
of motion are derived here from the variational principles. Following validation, a
comparison of the size effects exhibited by MCST and MSGT is carried out. The
effect of each component of the higher gradients over the stiffness of the beam is
also studied.

Keywords Strain gradient elasticity · Couple stress · Microstructure · Meshfree
methods

1 Introduction

Themicrostructural effects over the elastic response of micro- and nano-dimensional
structures have been noted through numerous theoretical and experimental studies.
Considering the inefficacy of classical continuum theories, various forms of the
higher order continuum theories have been proposed over the last century, in order
to incorporate these size effects. The foremost of these being the works by Mindlin.
However, owing to the complexity of these models, numerous simplified models
have also been proposed.

In the current study, we intend to start from the generalized strain gradient elastic-
ity (SGE) model presented by Mindlin and Eshel [1], and decompose the third-order
strain gradient tensor to independent components corresponding to higher order
gradients of the stretch and rotation variables. It will be shown that the prominent
theories used in literature to analyze size effects like themodified couple stress theory
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(MCST) [2] and the Lam’s strain gradient theory [3], also referred to as the modified
strain gradient theory (MSGT) [4], and are simplified models of this general theory.
Following this, numerical models for the MCST and MSGT are derived, and a brief
study on the effect of each higher order deformation mode on the size-dependent
elastic response is carried out here.

Tensors (including vectors) are denoted using boldface symbols, with order of the
tensor indicated. The commanotation is used to denote differentiation∧. For repeated
indices, Einstein summation is observed, with respect to the standard Cartesian coor-
dinates unless otherwise specified. The cross product is indicated by the ∧.

2 Strain Gradient Elasticity

The internal energy U of an isotropic continuum over domain � can be written as
[5]

U =
∫

Ω

(
μ||sym∇u||2 + λ

2
[tr∇u]2 + Wsge(D

2u)

)
dV (1)

where λ and μ are the Lame coefficients of isotropic solids. The additional energy
given byWsge(D2u)may be attributed to SGE. Different models have been proposed
corresponding to the variables chosen for the evaluation of this energy. Some of the
important theories are as follows:

• Mindlin proposed three independent models over the choice of higher order gradi-
ents to evaluateWsge: displacement gradients, strain gradients, or micro-rotations.
They are [1]

Form 1 : η = ∇(∇u); Form 2 : η̃ = ∇(ε); Form 3 : k̃ = 1

2
∇(∇ ∧ u) (2)

In the Form-I or Form-II, the third-order tensor may be split into spherical, sym-
metric, and antisymmetric components [6], physically corresponding to dilatation
gradient (div∇u), deviatoric stretch gradient (η̃), and curvature (χ). It must be noted
that all the three independent components contribute to the gradient elastic response.
However, ignoring one or more components, simplified versions of this generalized
model may be derived.

• The curvature energy corresponding to MSGT is given as follows [3]:

Wsge(D
2u) = μL2c

[
a0γiγi + a1η̂ijk η̂ijk + a2χ

s
ijχ

s
ij

]
(3)
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where γi, η̂ijk , and χ s
ij are the dilatation, deviatoric stretch gradients, and symmetric

curvature tensor. They are defined as

εij = 1

2

(
ui,j + uj,i

)
, γi = uk,ki, χ s

ij = 1

2

(
θi,j + θj,i

)
, where θ = 1

2
∇ ∧ u

η̂ijk = 1

3

(
εij,k + εjk,i + εik,j

) − 1

15

(
δij

(
εmm,k + 2εmk,m

)
+ δjk

(
εmm,i + 2εmi,m

) + δik
(
εmm,j + 2εmj,m

))
(4)

Lc is the material characteristic length scale. In this theory, the higher order defor-
mation energy due to antisymmetric component of curvature tensor χa has been
ignored.

• MCST is obtained from the MSGT model given above by further ignoring the
effects of stretch gradients, γ = 0 and η̃ = 0. The corresponding deformation
energy is [2]

Wsge(D
2u) = μL2c

[α1

4
χ s
ijχ

s
ij

]
(5)

3 MSGT Modeling

3.1 Constitutive Relations

The deformation energy corresponding to MSGT given in Eq. (3) may be expressed
as

U = 1

2

∫
�

(σ : ε + p · γ + m : χs + τ̂
...η̂) dV (6)

where the definitions for the strain and gradient tensor have been provided in Eq. (4).
The constitutive relations for an isotropic solid consideringMSGT can be given from
Eq. (6) as

σij = λεkkδij + 2μεij, pi= 2μl20γi, τ̂ijk = 2μl21 η̂ijk , mij = 2μl21χ
s
ij (7)

with l0, l1, and l2 being the material length constants corresponding to the dilatation,
deviatoric stretch, and symmetric rotation gradients, respectively.
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3.2 Numerical Model

The components of the displacement vector u at any point in the domain of the beam
(�) are given by the Timoshenko displacement field theory as follows:

u1(x1, x3) = u0(x1) + x3φ1(x1), u2(x1, x3) = 0, u3(x1, x3) = w(x1) (8)

The column vector of generalized displacement coordinates for any point in � is
as follows:

{d} = {u0 w0 φ1}T (9)

From the definitions given in Eq. (4), the evaluation of the components of the
strain and strain gradient tensors is straightforward, and hence not presented here.
The tensorial form of the constitutive relations given in Eq. (7) may be expressed in
the matrix form as follows:

{σ } = [C]{ε}, {p} = [R]{γ }, {τ̂ } = [S]{η̂}, {m} = [G]{χ s} (10)

The strains, strain gradient vectors may be evaluated using nodal displacement
vector {X } as

{ε} = [Z0][Bt]{X }, {
χ s

} = [Z1][BGt1]{X }
{γ } = [Z2][BGt2]{X }, {

η̂
} = [Z3][BGt3]{X } (11)

where the matrices [Z0], . . . , [Z3] provide the explicit interpolation of the strain and
strain gradients across the x3 and [B(•)] are the matrices providing the approximation
for gradients along x1 present in the strain and higher order deformation vectors in
terms of the nodal parameters for displacement coordinates. Further details regarding
the interpolation function matrix [N ] (also referred to as shape functions) will be
presented in the next section. The deformation energy U corresponding to MSGT as
defined in Eq. (6) can now be written in terms of the strain, strain gradient, stress,
and higher order stress vectors as

U = 1

2

˚
�

({ε}T {σ } + {γ }T {p} + {χ s}T {m} + {η̂}T {τ̂ })dV (12)

The total potential energy of the beam �, subjected to mechanical load q(x1) at
the top surface (x3 = h/2) is given as

� = U −
L∫

0

[
q(x1)u3(x1, h/2)

]
dx1 (13)



Size-Dependent Responses of Timoshenko Beam Incorporating … 179

Applying the variational principle δ� = 0, the algebraic governing equations of
motion for the static bending response of a linear elastic isotropic beam usingMSGT
are derived to be

[KMSGT]{X } = {F} (14)

[KMSGT] =
L∫

0

([Bt]T [Dt][Bt] + [BGt1]T [DGt1][BGt1]
+[BGt2]T [DGt2][BGt2] + [BGt3]T [DGt3][BGt3]

)
dx1,

{F} = b

L∫

0

([N ]T [0 1 0]T q(x1)
)
dx1, [Dt] = b

h/2∫

−h/2

[Z0]T [C][Z0]dx3,

[DGt1] = b

h/2∫

−h/2

[Z1]T [G][Z1]dx3, [DGt2] = b

h/2∫

−h/2

[Z2]T [R][Z2]dx3,

[DGt3] = b

h/2∫

−h/2

[Z3]T [S][Z3]dx3,

The additional stiffness due to SGE added to the stiffness corresponding to the
classical elasticity may be clearly noted from Eq. (16), with the energy added by
each of the [DGt] matrices corresponding to an independent mode of higher order
deformation metric.

4 MCST Modeling

The deformation energy U for domain � of isotropic elastic solid evaluated using
MCST is [2]

U = 1

2

∫

Ω

(
σ : ε + m : χ s)dV (15)

This theory may be considered to be a simplified model of the MSGT discussed
above, by ignoring the hydrostatic and deviatoric stretch gradients. Thus,MCSTmay
be obtained from MSGT by equating l0 and l1 to zero. Following this, the algebraic
governing equations of motion for static bending response of a linear elastic isotropic
beam under MCST are obtained as



180 S. Sidhardh

[KMCST]{X } = {F} (16)

where [KMCST] =
L∫
0

([Bt]T [Dt][Bt] + [BGt1]T [DGt1][BGt1]
)
dx1.

5 Weight and Shape Functions

At any point in the volume under study, the generalized displacement vector {d}
given in Eq. (9) can be interpolated in terms of the nodal displacement vector {X } as
follows:

{d} = [N ]{X } (17)

where [N ] is the shape function matrix derived using the EFG method. With explicit
integrations being performed in the x2 and x3 (see Eq. (14)), the interpolation is
necessary only in the x1 direction. The nodal displacement vector {X } has been
developed using the EFG method [7], with nodes evenly distributed along the length
of the beam, and their domain of influence chosen accordingly. A quadratic basis
function supported by a quarticweight function is chosen for themoving least squares
(MLS) approximation considering the C1 continuity requirements necessary for the
evaluation of the strain gradients. The functions satisfying the above continuity may
be obtained from the H2 Hilbert space defined over �. A detailed discussion on the
derivation of shape functions is not presented here for the sake of brevity, please refer
[8, 9].

6 Results and Discussions

For a numerical investigation of the EFG model developed above, the beam is con-
sidered to be made of a linear elastic, homogeneous, isotropic epoxy, with Young’s
modulus, E = 1.44 GPa, and Poisson’s ratio υ = 0.38. The geometric parameters
of the beam L, h are varied to study the size dependence of the response, and are
mentioned wherever necessary. The width of the beam b is always maintained at
2 × h. The material length scale parameters l0, l1 and l2 are all taken to be equal:
l0 = l1 = l2 = l. The nondimensionalization of the displacements is performed as

for distributed load:w̄ = w
1000EI

q0L4
; for point load: w̄ = w

1000EI

PL3

where I is the second moment of area (= bh3/12), q0, andP are the amplitudes of
the loads. To begin with, the numerical model developed in the preceding sections is
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Table 1 Normalized w̄ from EFG and analytical models [4, 10] for S-S beam under a uniform load
(l varied)

h/l L = 10h L = 100h

CT MCST MSGT CT MCST MSGT

1 Analytical 7.3006 2.2384 1.0760 6.9591 2.0949 0.759

EFG 7.2985 2.2675 1.0779 6.955 2.1066 0.7587

Abs. error (%) 0.029 1.300 0.177 0.059 0.558 0.040

10 Analytical 7.3006 7.1349 6.7703 6.9591 6.8011 6.4315

EFG 7.2999 7.1386 6.7709 6.9568 6.8024 6.436

Abs. error (%) 0.0096 0.052 0.009 0.033 0.019 0.070

validated with the corresponding analytical results [4, 10]. The normalized midplane
displacements of a simply supported (S-S) beam under a uniformly distributed load
q(x1) = q0 are presented in Table 1. A comparison of the numerical and analytical
results corresponding to the static response of the size-dependent Timoshenko beam
for different ratios of material and geometric length scales, h/l and L/h, respectively,
illustrates the efficacy of the current numerical model for MCST and MSGT studies.
From the table, the size dependence of elastic response forMCST andMSGT is illus-
trated by increasing w̄ for reducing geometric dimensions h/l. This size dependence
of the elastic response is not captured by the classical theory (CT), as noted from
identical w̄ for different h/l, given an aspect ratio L/h. Further, the w̄ for MCST and
MSGT approaching w̄ of CT upon increasing dimensions (h/l) can be attributed to
the decreasing ratio of deformation energy attributed to the gradient effects and clas-
sical strain energy, W (D2u)/W (Du) << 1 for large h/l, and thereby reducing size
effects with increasing dimensions. Similar observations for the case of bending due
to a point load (not presented here) indicate the intrinsic nature of SGE, and its relative
invariability to the external load. A comparison of w̄ forMCST andMSGT indicates,
MSGT to be stiffer for all the cases considered here. This is due to increase in the
stiffness of the beamwith the additional deformation energy inMSGT corresponding
to stretch gradients (γ, η̂), which is ignored for MCST. The normalized transverse
displacement along the length of the beam due to a point load for different h/l is
provided in Fig. 1a comparing the CT,MCST, andMSGT. The size-dependent nature
due to SGE theories is clearly evident in the figure, with reducing difference of w̄
across the theories with increasing dimensions, h/l. Further,w̄CT > w̄MCST > w̄MSGT.
From Sect. 2, the differences between CT, MCST, and MSGT are observed to be the
additional terms added to the internal energy of the beam. Therefore, an analysis to
compare the effect of each of these additional terms to the stiffness of the beam is
also performed here. With l0, l1 and l2 corresponding to dilatation, deviatoric stretch,
and curvature gradient energies, different cases of zero and nonzero length scales are
considered, and the normalized transverse displacement along the length in response
to a point load is evaluated from Eq. (14) and presented in Fig. 1b. For example,
l0 = l1 = l2 = 0 corresponds to the classical elasticity, the choice of length con-
stants for other cases are indicated in the figure. From the above parametric study, the
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Fig. 1 Normalized transverse displacement of a S-S beam for point load (L/h = 20, h = 50 µm)
comparing: (left) CT, MCST, MSGT for different h/l; (right) different components of SGE from
Eq. (3) (l = 17.6 µm [3])

following order may be obtained for the size effects induced by each of the gradient
terms available in the energy formulation provided in Eq. (3) over a beam bending:

Size Effects: CT <γ < MCST(χ)<η̂ <MSGT

7 Conclusions

In this paper, the derivation of the simplified SGE theories from the generalized
models has been studied. Following this, a numerical model for the size-dependent
Timoshenko beam has been developed using EFG method, and validated with liter-
ature. The size-dependent response of microbeams due to effect of strain gradients
is characterized by an additional deformation energy corresponding to these higher
order gradients of the displacement field. The effect of SGE diminishes with increas-
ing geometric dimensions, but it is significant in structures of the scale of material
length constants. The size effects over the static response due to the MCST and
MSGT are compared with CT here. Parametric studies indicate the significance of
stretch gradients (hydrostatic and deviatoric) for the current study, thus illustrating
the inadequacy of MCST for modeling gradient elastic response.
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Dynamic Response of Axisymmetric
Functionally Graded Viscothermoelastic
Hollow Cylinder Due to Heat Sources
by Using Series Solution

Himani Mittal and Dinesh Kumar Sharma

Abstract This paper represents the exact analysis of functionally graded viscother-
moelastic hollow cylinder subjected to dynamic heat sources. The viscothermoelastic
material is considered to be inhomogeneous due to easy power law. The outer and
inner surfaces of cylinder are kept traction free and time-dependent heat flux is
supplied on inner part of the body and outer part may be isothermal. The govern-
ing equations have been changed into ordinary differential equations due to time
harmonics. Series solution for regular singular points has been applied to ordinary
differential equations to represent deformation, temperature change, and traction
analytically. Numerical computations have been applied to field functions and rep-
resented graphically for radial stress, temperature change, and displacement against
time and thickness of cylinder. The present work has been deliberated for some spe-
cial applications in the thermal environment as it controls the variations of tractions
and deformations.

1 Introduction

The study of elastic and viscoelastic waves with cylindrical structures has many
applications for functionally graded materials as they are helpful in controlling high
variation of vibrations. The properties of thesematerials are not uniformly distributed
across the whole material but depend on the position of the material. These materials
are planned to have fluctuating chemical properties, changing thermal, mechanical,
electromagnetic, and piezoelectric properties. Flugge [1] used various viscother-
moelastic models for vibrating solids. Many problems in classical and nonclassical
theories of thermoelasticity were described in detail by Dhaliwal and Singh [2].
According to Niino et al. [3], the functionally graded materials consisting of more
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than two different materials, having micro-structure across the volume of the mate-
rial persuaded to have permanently varying spatial properties on macroscopic scales.
Keles and Tutuncu [4] presented the forced and free vibrations of functionally graded
transversely isotropic elastic cylinders and spheres in radial direction. Sharma et al.
[5] have studied the free vibrations in rigidly fixed viscothermoelastic hollow sphere
for uncoupled and coupled system of equations. Sharma et al. [6] have explored
the stress-free functionally graded viscothermoelastic hollow sphere by using series
solution in the framework of generalized thermoelasticity. Sharma [7] studied the
spheroidal and toroidal vibrations in viscothermoelastic spherical curved plates in the
framework of generalized thermoelasticity. Sharma et al. [8] presented the analytical
and numerical solutions for dynamic response of transversely isotropic thermoelastic
thick-walled hollow cylinder for time-dependent heat sources. Tripathi et al. [9] have
critically studied the axisymmetric heat supply on thick plate of infinite extent in the
context of diffusion thermoelasticity. Sherief and Allam [10] investigated the elec-
tromagnetic interactions for generalized thermoelastic solid cylinder. Sharma et al.
[11] studied the dynamic problem for the viscothermoelastic semi-infinite cylinder
in framework of five theories of generalized thermoelasticity. Sharma et al. [12] stud-
ied the forced thermal vibrations in functionally graded (FGM) viscothermoelastic
hollow sphere under the action of heat sources. Neuringer [13] studied the Fröbenius
method of series solution in which the indicial equation has complex roots.

In this paper, we consider dynamic functionally graded viscothermoelastic hollow
cylinder under time-dependent dynamic heat sources. The Lord–Shulman (LS) [14]
and Green–Lindsay (GL) [15] theories of generalized thermoelasticity have been
used for modeling. The goal of this paper is to explore an analytical modeling for
the realizing of field functions, i.e., stresses, temperature change, and displacement
analytically and graphically.

2 Formulation of Problem

We consider a thermally conducting thick viscothermoelastic cylinder having outer
radius (K a, (K > 1)) and inner radius a. The cylinder has been taken undisturbed in
initial stage with the uniform temperature T0. The domain for the cylinder is a ≤ r ≤
K a. The solid is proposed to be axisymmetric hollow cylinder made up of function-
ally gradedmaterial. The components of displacement and temperature in cylindrical
coordinates (r, θ, z) are expressed as uθ = uϕ = 0, ur = u (r, t) and T (r, t). The
governing equations for the homogeneous isotropic viscothermoelastic hollow cylin-
der/disk (Dhaliwal and Singh [3]) in the absence of body forces and heat sources
are

∂σr

∂r
+ σr − σθ

r
= ρ

∂2u

∂t2
(1)
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1

r

∂

∂r

(
K r

∂T

∂r

)
− ρCe

(
∂

∂t
+ t0

∂2

∂t2

)
T = T0β

∗
(

∂

∂t
+ t0δ1 k

∂2

∂t2

) (
∂ u

∂r
+ u

r

)
(2)

where σr = (λ∗ + 2μ∗) ∂u
∂r + λ∗ u

r − β∗(1 + t1δ2k
∂
∂t

)
T

σθ = λ∗ ∂u

∂r
+ (

λ∗ + 2μ∗)u
r

− β∗
(
1 + t1δ2k

∂

∂t

)
T (3)

Since the material is considered functionally graded due to simple power law, we
have

(λ∗, μ∗, ρ, K , β∗) = (
λ0, μ0, ρe, K0, β∗

0

)( r
a

)γ

(4)

Here γ denotes the degree of inhomogeneity; σr and σθ are stress components; ρe
is mass density; Ce is specific heat; K is thermal conductivity; λ∗, μ∗, and β∗ are
viscoelastic and viscothermoelastic constants.

where
λ0 = λe

(
1 + α0

∂

∂t

)
, μ0 = μe

(
1 + α1

∂

∂t

)
, β∗ = βe

(
1 + β0

∂

∂t

)
,

βe = (3λe + 2μe)αT , β0 = (3λeα0 + 2μeα1) αT

βe

Here αT is the coefficient of linear thermal expansion; λe and μe are Lame’s
constants;α0, α1, β0 are viscoelastic and viscothermoelastic relaxation times;
t0, t1 are relaxation time parameters; δ jk; (k = 1, 2) is Kronecker delta in which
j = 1 and j = 2 are Lord–Shulman (LS) and Green–Lindsay (GL) theories of
generalized thermoelasticity, respectively. Using Eqs. (3) and (4) in Eqs. (1) and (2),
we get

(
1 + δ0

∂
∂t

)(
∂2

∂r2 + m1
r

∂
∂r

)
u + m∗

2
r2 u − ρe

(λe+μe)
∂2u
∂t2

− βe
(λe+μe)

(
1 + β0

∂
∂t

)(
1 + t1δ2k

∂
∂t

)(
∂
∂r + γ

r

)
T = 0

Ko
T0βe

(
∂2

∂r2 + m1
r

∂
∂r

)
T − ρCe

βeT0

(
∂
∂t + t0

∂2

∂t2

)
T

−(
1 + β0

∂
∂t

)(
∂
∂t + t0δ2k

∂2

∂t2

)(
∂u
∂r + u

r

) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where m1 = γ + 1, m∗
2 = [

λ0(γ − 1) − 2μ0
]

To remove the complexity of the equations, we introduce non-dimensional quan-
tities given below:

X = r
a , τ = C1t

a ,U = u
a , εT = T0β2e

ρeCe(λe+2μe)
, ε̄ = T0βe

(λe+2μe)
, β̂0 = C1

a β0,

δ0 = α̂0 + 2δ2
(
α̂1 − α̂0

)
, (τ0, τ1) = C1

a (t0, t1), (α̂0, α̂1) = C1
a (α0, α1),

(τX , τθ) = 1
ρeC2

1
(σr , σθ),ω

∗ = Ce(λe+2μe)

K0
,

	∗ = aω∗
C1

,C2
1 = (λe+2μe)

ρe
,C2

2 = μe

ρe
, δ2 = C2

2

C2
1
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)
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3 Boundary Conditions

The analysis of cylinder is supposed to be undisturbed both thermally and mechani-
cally at initial stage. The non-dimensional initial conditions (after using nondimen-
sional quantities) are

∂U

∂τ
= U = 0,

∂θ

∂τ
= θ = 0 at τ = 0 and 1 ≤ X ≤ K; (K > 1) (7)

The inner surface r = a of FGM cylinder has been assumed to be traction free
(σr = 0) and all of a sudden this is applied to a time-dependent heat flux (−K T,r =
q + t0q̇ = q0 H(t), t > 0) and outer radius (r = Ka) of this cylinder has been
considered traction free (σr = 0) and isothermal conditions (T = 0). Hence, the
respective thermal and mechanical boundaries are in non-dimensional form after
using nondimensional quantities:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θ
∂X = −Q0H(τ),

(
1 + δ0

∂
∂τ

)
∂U
∂X + (1 − 2δ2)

(
1 + α0

∂
∂τ

)
U
X

−ε̄
(
1 + β ∂

∂τ

)(
1 + τ1

∂
∂τ

)
θ = 0 at X = 1

θ = 0,
(
1 + δ0

∂
∂τ

)
∂U
∂X + (1 − 2δ2)

(
1 + α0

∂
∂τ

)
U
X

−ε̄
(
1 + β ∂

∂τ

)(
1 + τ1

∂
∂τ

)
θ = 0 at X = K

(8)

where Q0 = q0a
K0T0

, q0 is constant.

4 Solution of Problem

Now substituting the non-dimensional quantities from Eq. (6) in Eq. (5), we get

⎧⎨
⎩

(
1 + δ0

∂
∂τ

)(
∂2

∂X2 + m1
X

∂
∂X

)
U + m′

2
X2U − ε̄

(
1 + β̂0

∂
∂τ

)(
1 + τ1δ2k

∂
∂τ

)(
∂

∂X + γ
X

)
θ = ∂2U

∂X2

∂2θ
∂X + m1

X
∂θ
∂X − 	∗(

∂
∂τ

+ τ0
∂2

∂τ2

)
θ = εT 	∗

ε̄

(
1 + β̂0

∂
∂τ

)(
∂
∂τ

+ τ′
0

∂2

∂τ2

)(
∂

∂X + 1
X

)
U

(9)

where m ′
2 =

[(
1 − 2δ2

)(
1 + α0

∂
∂τ

)
γ −

(
1 + δ̂0

∂
∂τ

)]
Now introducing the time-harmonic vibrations from our earlier published paper

Sharma et al. [6] and the transformation from Sharma et al. [8] as

U (X, τ) = X
−γ

2 V (X, τ)eiΩτ ; θ(X, τ) = X
−γ

2 �(X, τ)eiΩτ (10)

Using Eq. (10) in Eq. (9), we get

∇2V +
(
i	

δ̃0
− n2

X2

)
V + i	m3

(
d

dX
+ γ

2X

)
� = 0
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∇2� +
(
i	2	∗τ̃0 − γ2

4X2

)
� + im4	

3

(
d

dX
−

(
γ − 2

2

)
1

X

)
V = 0 (11)

where

τ̃0 = i	−1 + τ0, α̃1 = i	−1 + α̂1, δ̃0 = i	−1 + δ0,

∇2 = 1

X

d

dX

(
X

d

dX

)
, n2 = m2 − γ2

4

m3 = ε̄ β̃0 τ̃0

δ̃0
, m4 = εT 	∗β̃0 τ̃ ′

0

ε̄
, α̃0 = i 	−1 + α̃0,

β̃0 = i 	−1 + β̂0, τ̃1 = i 	−1 + τ1δ2k, τ′
0 = τ0

5 Series Solution

Since the differential Eq. (11) contains a regular singular point at X = 0, so we set
up the matrix Frobenius method of series solution in Eq. (11) such that there exist
one nontrivial solution which takes the form as

[
V
�

]
=

∞∑
k=0

[
AK

BK

]
Xs+k (12)

Here s is an eigenvalue and Ak, Bk are the unknown coefficients. Substituting the
solution assumed in Eq. (12) in Eq. (11) and on solving, we get

∞∑
k=0

(
h1(s + k)X−2 + h2(s + k)X−1 +

[
i	
δ̃0

0

0 	∗	2τ̃0

])
Xs+k

[
AK

BK

]
= 0 (13)

where h1(s + k) =
[

(s + k)2 − n2 0

0 (s + k) − γ2

4

]
, h2(s + k) =

[
0 i	m3

(
s + k + γ

2

)
i	∗	3m4

(
s + k −

(
γ−2
2

))
0

]

Now taking the coefficients of the lowest power of X (i.e. Xs−2) equals to zero,
we get

[
s2 − n2 0

0 s2 − γ2

4

][
A0(s j )
B0(s j )

]
= 0 (14)

For nontrivial solution, the roots of indicial equation from Eq. (14) are
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s1 = +n, s2 = −n, s3 = +γ

2
, s4 = −γ

2
(15)

Here the roots s1 and s2 may be complex roots and s3 and s4 are real roots. The
unknowns for the choice of indicial equation we choose as follows:

A0(s j ) =
{
1, j = 1, 2
0, j = 3, 4

, B0(s j ) =
{
0, j = 1, 2
1, j = 3, 4

(16)

Now taking the next lower power of X (i.e. Xs−1) equals to zero and after solving
it, we get

[
A1(s j )
B1(s j )

]
= −

[
0 E1

12(s j )
E1
21 0

][
A0(s j )
B0(s j )

]
(17)

where E1
12(s j ) = i	m3

(
s j+

(
γ+2
2

))

(s j+1)
2−n2

, E1
21(s j ) = i	∗	3m4

(
s j+

(
4−γ

2

))

(s j+1)
2−( γ

2 )
2

Continuing likewise and equating the like powers of the coefficients of Xs+k equal
to zero, we get

h1
(
s j + k + 2

)[ Ak+2(s j )
Bk+2(s j )

]
+ h2

(
s j + k + 1

)[ Ak+1(s j )
Bk+1(s j )

]

+
[

i	
δ̃0

0

0 	∗	2τ̃0

][
Ak(s j )
Bk(s j )

]
= 0; k = 0, 1, 2 . . . (18)

On solving Eq. (18), the following recurrence relation has been obtained:

[
Ak+2(s j )
Bk+2(s j )

]
= −

([
0 hk12
hk21 0

][
Ak+1(s j )
Bk+1(s j )

]
+

[
hk11 0
0 hk22

][
Ak(s j )
Bk(s j )

])
; k = 0, 1, 2 . . . (19)

where

hk11 = i	

δ0

((
s j + k + 2

)2 − n2
) , hk22 = 	∗	2τ̃0(

s j + k + 2
)2 − (

γ

2

)2 ,

hk12 =
iΩm3

(
s j + k +

(
γ+2
2

))
(
s j + k + 2

)2 − n2
, hk21 =

i	3m4

(
s j + k +

(
4−γ

2

))
(
s j + k + 2

)2 − (
γ

2

)2
Substituting k = 0 in Eq. (19), we get

[
A2(s j )
B2(s j )

]
= −

[
E2
11(s j ) 0
0 E2

22(s j )

][
A0(s j )
B0(s j )

]
(20)

where E2
11(s j ) = h012(s j )E

1
21(s j ) − h011(s j ), E2

22 = h021(s j )E
1
12(s j ) − h022(s j )

Again substituting k = 1 in Eq. (19), we get
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[
A3(s j )
B3(s j )

]
=

[
0 E3

12(s j )
E3
21(s j ) 0

][
A0(s j )
B0(s j )

]
(21)

where E3
12(s j ) = h112(s j )E

2
22(s j ) − h211(s j )E

1
12(s j ), E3

21(s j ) = h121(s j )E
2
11(s j ) −

h122(s j )E
1
21(s j )

Now continuing likewise, we obtain the unknowns (A2k(s j ), B2k(s j ))′ has similar
form as h1(s j + k) and (A2k+1(s j ), B2k+1(s j ))′ has same as h2(s j + k). Hence

[
A2k(s j )
B2k(s j )

]
=

[
E2k
11(s j ) 0
0 E2k

22(s j )

] [
A0(s j )
B0(s j )

]
,

[
A2k+1(s j )
B2k+1(s j )

]

= −
[

0 E2
11(s j )

E2
11(s j ) 0

][
A0(s j )
B0(s j )

]
(22)

where

E2k
11(s j ) = h2k−2

12 (s j )E
2k−1
21 (s j ) − h2k−2

11 (s j )E
2k−2
11 (s j ),

E2k
22(s j ) = h2k−2

21 (s j )E
2k−1
12 (s j ) − h2k−1

22 (s j )E
2k−1
22 (s j )

E2k+1
12 (s j ) = h2k−1

12 (s j )E
2k
22(s j ) − h2k−1

11 (s j )E
2k−1
11 (s j ),

E2k+1
21 (s j ) = h2k−1

21 (s j )E
2k
11(s j ) − h2k−1

22 (s j )E
2k−1
21 (s j )

So, we can write

[
E2k
11(s j ) 0
0 E2k

22(s j )

]
≈ O

(
k−1)[ i	m3 0

0 i	3m4

]
,

[
0 E2k+1

12 (s j )
E2k+1
21 (s j ) 0

]

≈ O
(
k−1

)[ 0 i	m3

i	3m4 0

]
(23)

The sequence {hk} in the complex field converges

(
lim
k→∞

hk = h

)
, if each of k

component sequence converges. Introducing the above fact that both the matrices(
E2k
11(s j ) 0
0 E2k

22(s j )

)
→ 0 and

(
0 E2k+1

12 (s j )
E2k+1
21 (s j ) 0

)
→ 0 as k → ∞. This

shows that the assumed sequences in solution (12) are uniformly and absolutely
convergent. Hence, assumed sequences in solution (12) can be written as

[
V
�

]
=

[
I −

[
0 E1

12(s j )
E1
21(s j ) 0

]
x +

[
E2
11(s j ) 0
0 E2

22(s j )

]
x2

−
[

0 E3
12(s j )

E3
21(s j ) 0

]
x3 + . . . ..∞

][
A0(s j )
B0(s j )

]
xs j (24)

Here I is identity matrix of order two. Hence, the series Eq. (12) and the derived
series in Eq. (24) are analytic function and differentiated term by term. Thus, the
general solution for Eq. (10) with the help of Eq. (24), we obtain
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U (X, τ) =
∞∑
k=0

[h1ke2k11(s1)Xs1 + h2ke
2k
11(s2)X

s2

+ h3ke
2k+1
12 (s3)X

s3+1 + h4ke
2k+1
12 (s4)X

s4+1]X2k− γ

2
(
eiΩτ

)
(25)

θ(X, τ) =
∞∑
k=0

h1ke
2k+1
21 (s1)X

s1+1 + h2ke
2k+1
21 (s2)X

s2+1

+ h3ke
2k
22(s3)X

s3 + h4ke
2k
22(s4)X

s4 ]X2k− γ

2
(
eiΩτ

)
(26)

where h1k, h2k, h3k and h4k are arbitrary constants to be determined. Applying time
harmonics and transformation from Eq. (10) on the boundary conditions in Eq. (8),
we obtain nondimensional transformed boundary conditions as

dθ
dX − γ

2X θ = −Q∗, dU
dX + 1

δ̃0

(
(1 − 2δ2)α̃0 − γ

2

)
U
X − i	m3θ = 0, at X = 1

θ = 0, dU
dX + 1

δ̃0

(
(1 − 2δ2)α̃0 − γ

2

)
U
X − i	m3θ = 0, at X = K

⎫⎬
⎭ (27)

where Q∗ = Q0H(τ). Upon using Eqs. (25) and (26) in Eq. (27), we get following
equations in matrix form as:

(
h jk

)
4×1 = (

Ei j
)−1
4×4(C)4×1 (28)

where the matrix C = (−Q∗ 0 0 0
)′

and the elements of matrix Ei j ; (i, j =
1, 2, 3, 4) are given below:

E11 = (R∗
1 + n)E2k+1

11 (n), E13 = (
R∗
2 + γ/2

)
E2k
22(γ/2),

E21 = (2k + n + a∗)E2k
11(n) + b∗E2k+1

21 (n)

E23 = (
2k + γ/2 + 1 + a∗)E2k+1

12 (γ/2) + b∗E2k
22(γ/2),

E31 = E2k+1
11 (n)K2k+1+n, E33 = E2k

22(γ/2)K2k+(γ/2)

E41 =
{
(2k + n + a∗)

1

K
E2k
11(n) + b∗E2k+1

21 (n)

}
K2k+n,

E43 =
{(

2k + γ

2
+ 1 + a∗

)
KE2k+1

12

(γ

2

)
+ b∗E2k

22

(γ

2

)}
K2k+(γ/2)

a∗ = (
1 − 2δ2

) α̃0

δ̃0
− γ

2
, b∗ = i ε̄Ωβ̃0τ̃1

δ̃0
, R∗

1 = 2k + 2 − γ

2
, R∗

2 = 2k − γ

2

The elements E12, E22, E32, E42 can be obtained from E11, E21, E31, E41 by
replacing n with −n and the elements E14, E24, E34, E44 can be obtained from
E13, E23, E33, E43 by replacing γ/2 with − γ/2. Equations (25)–(28) represent
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formal solution of the problem. In this analysis, we have considered the periodic
dynamic pressures as taken from Keles and Tutuncu [4]. For periodic pressure, we
assume the function H(τ) as

Q∗ = Q0 H(τ) = Q0(1 − cosΩτ) (29)

Deduction of results:

If the viscous effects and relaxation times are not considered, then the analysis is
reduced to thermoelastic hollow cylinder. Also, if the thermal effects are ignored,
then the analysis is reduced to elastic hollow cylinder.

6 Results and Discussions

For the authentication and validation of the analytical results, we need some numer-
ical computations which are applied using MATLAB software tools. For numerical
computations, we use copper material whose data has been acquired from our earlier
published paper Sharma et al. [11]. The numerical computations have been con-
sidered by choosing the ratio of inner radius to outer radius by taking K = 2 and
distance X = 1.5 from the center of the cylinder. The numerical simulations for the
variation of temperature, displacement, and radial stress are presented in Figs. 1, 2,
and 3 versus normalized thickness and Figs. 4, 5, and 6 versus time for different
values of inhomogeneous parameter γ.

Here the normalized thickness is defined as (η∗ = (X − 1)/(K − 1); K 	= 1)
(here 0 ≤ η∗ ≤ 1). Figure 1 shows that the temperature change decreases with
increasing values of η∗. The amplitude of temperature profile decreases due to
inhomogeneity parameter and varies accordingly as the value of (γ) would be
γ = 0.65 < 0.35 < 0.0 order. It is noticed from Fig. 2 that displacement (U )

increases sharply to attain its maximumvalue between 0.3 < η∗ < 0.5 and decreases

Fig. 1 Variation of
temperature versus thickness
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Fig. 2 Variation of
displacement versus
thickness
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Fig. 3 Variation of radial
stress versus thickness
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Fig. 4 Time history of
temperature change
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to become ultimately asymptotic with increasing value of (η∗). It is noted from Fig. 3
that the variation of radial stress (τX ) is compressive initially, and achieves maxi-
mum variation at η∗ = 0.3 and with increase in the value of η∗ the variations go on
decreasing and die out.

The field functions temperature, displacement, and radial stress in Figs. 4, 5, and 6
are noticed to vanish initially at τ = 0, which clearly agree with our initial conditions
as assumed in Eq. (7) of the problem. Figures 4, 5, and 6 show the patterns of field
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Fig. 5 Time history of
displacement
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Fig. 6 Time history of radial
stress
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functions, i.e., temperature, displacement, and radial stress against nondimensional
time in the disk made up of homogeneous material (γ = 0) and inhomogeneous
material (γ = 0.35, 0.65) due to periodic heat flux dynamic pressure and H(τ)

with 	 = 1.0. Figure 4 has been presented for temperature change against nondi-
mensional time. It is revealed from Fig. 4 that amplitudes of these quantities keep
on interchanging with time for (γ = 0, 0.35, 0.65). The variation in magnitude of
temperature in Fig. 4 is larger in homogeneous case, i.e., (γ = 0) rather than non-
homogeneous cases, i.e., (γ = 0.35, 0.65) and with increase in time the variation of
temperature goes on decreasing.

Figure 5 represents the variation of radial stress versus time. It is observed from
Fig. 5 that the behavior of quantities go on interchanging with time and has larger
variation at τ = 2.0 for all the values of γ and with increase in value of time the
variation of amplitude of displacement go on decreasing. Figure 6 shows the variation
of radial stress versus time. It is seen from Fig. 6 that the behavior of variations of
radial stress is noted to be sinusoidal and with increase in time the variations of
amplitude of stress go on decreasing. In Fig. 6, the peaks have been observed for
radial stress at τ = 2.0.

It can be concluded from all the figures that the variations are smaller for non-
homogeneous materials, i.e., (γ = 0.35, 0.65) in contrast with the larger variations
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for homogeneous material, i.e., (γ = 0). Results in Figs. 4, 5, and 6 are consis-
tent with (Keles and Tutuncu [4]) in the absence of thermal and viscous effects. It
may also be observed that deformation and stress development may be examined
(increased/decreased) as per requirement by increasing or decreasing the value of
grading index γ.

7 Conclusions

The series solution for regular singular points has been implemented successfully
to represent the axisymmetric vibrations of heat flux of viscothermoelastic hollow
cylinders under dynamic pressure. With the help of grading parameter, the deforma-
tion, change in temperature, and traction can be examined as per requirement. The
mechanical and thermal relaxation times have been observed to be significant in vis-
cothermoelastic tractions, displacement, and temperature distributions. As the values
of grading index parameter are increased, the variation is noted to be in decreasing
behavior and the grading index parameter can be used as traction controller. The
approach is well arranged and useful to represent the closed-form analytical solutions
due to nonhomogeneity grading parameter for generalized theories of viscothermoe-
lasticity. The results are consistent with (Keles and Tutuncu [4]) in the absence of
thermal and viscous effects. The closed-form solutions have further scope for applied
mechanics, applied mathematics, science, and engineering. The study may also find
applications in industry as grading index helps to control the variation of high stress
development.

Acknowledgements We both the authors are thankful to Late Professor J. N. Sharma, NIT
Hamirpur (HP) India who has gone from this world for providing us the expertise, moral support,
and kind guidance.

References

1. FluggeW (1967) Viscoelasticity. Blaisdell Publishing Company,Massachusetls, Toronto, Lon-
don

2. Dhaliwal RS, Singh A (1980) Dynamic coupled thermoelasticity. Hindustan Publishing Cor-
poration

3. Niino M, Hirai T, Watanabe R (1987) The functionally gradient materials. J Jpn Soc Compos
Mater 13:257–264. https://doi.org/10.6089/jscm.13.257

4. Keles I, Tutuncu N (2011) Exact analysis of axisymmetric dynamic response of functionally
graded cylinders (or disks) and spheres. J Appl Mech 78:061014–061017. https://doi.org/10.
1115/1.4003914

5. Sharma JN, Sharma DK, Dhaliwal SS (2013) Free vibration analysis of a rigidly fixed vis-
cothermoelastic hollow sphere. Indian J Pure Appl Math 44:559–586. https://doi.org/10.1007/
s13226-013-0030-y

https://doi.org/10.6089/jscm.13.257
https://doi.org/10.1115/1.4003914
https://doi.org/10.1007/s13226-013-0030-y


Dynamic Response of Axisymmetric Functionally Graded … 197

6. Sharma DK, Sharma JN, Dhaliwal SS, Walia V (2014) Vibration analysis of axisymmetric
functionally graded viscothermoelastic spheres. Acta Mech Sin 30:100–111. https://doi.org/
10.1007/s10409-014-0016-y

7. Sharma DK (2016) Free vibrations of homogenous isotropic viscothermoelastic spherical
curved plates. Tamkang J Sci Eng 19:135–148. https://doi.org/10.6180/jase.2016.19.2.04

8. Sharma J, Sharma P, Mishra KC (2016) Dynamic response of functionally graded cylinders
due to time-dependent heat flux. Meccanica 51:139–154. https://doi.org/10.1007/s11012-015-
0191-3

9. Tripathi JJ, Kedar GD, Deshmukh KC (2016) Generalized thermoelastic diffusion in a thick
circular plate including heat source. Alex Eng J 55:2241–2249. https://doi.org/10.1016/j.aej.
2016.06.003

10. Sherief HH, Allam AA (2017) Electro–magneto interaction in a two-dimensional generalized
thermoelastic solid cylinder. Acta Mech 228:2041–2062. https://doi.org/10.1007/s00707-017-
1814-7

11. Sharma D, Mittal H, Sharma SR, Parkash I (2017) Effect of deformation on semi–infinite
viscothermoelastic cylinder based on five theories of generalized thermoelasticity. Math J
Interdiscip Sci 6:17–35. https://doi.org/10.15415/mjis.2017.61003

12. Sharma DK, Sharma SR,Walia V (2018) Analysis of axisymmetric functionally graded forced
vibrations due to heat sources in viscothermoelastic hollow sphere using series solution. In:
AIP conference proceedings, vol 1975, p 030010. https://doi.org/10.1063/1.5042180

13. Neuringer JL (1978) The Frobenius method for complex roots of the indicial equation. Int J
Math Educ Sci Technol 9:71–77. https://doi.org/10.1080/0020739780090110

14. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys
Solids 15:299–309. https://doi.org/10.1016/0022-5096(67)90024-5

15. Green A, Lindsay K (1972) Thermoelasticity. J Elast 2:1–7. https://doi.org/10.1007/
BF00045689

https://doi.org/10.1007/s10409-014-0016-y
https://doi.org/10.6180/jase.2016.19.2.04
https://doi.org/10.1007/s11012-015-0191-3
https://doi.org/10.1016/j.aej.2016.06.003
https://doi.org/10.1007/s00707-017-1814-7
https://doi.org/10.15415/mjis.2017.61003
https://doi.org/10.1063/1.5042180
https://doi.org/10.1080/0020739780090110
https://doi.org/10.1016/0022-5096(67)90024-5
https://doi.org/10.1007/BF00045689


Modeling of a Novel Lower Limb
Exoskeleton System for Paraplegic
Patients

Mrinal Gupta, Jyotindra Narayan and S. K. Dwivedy

Abstract This paper presents the design of a novel low-cost motorized wheelchair
exoskeleton device to provide locomotive assistance and physical rehabilitation to
paraplegic patients in the age group of 20–75 years. CADmodeling of different parts
of the device has been completed using SOLIDWORKS software. Mathematical cal-
culations are performed to estimate the torque requirements to drive rear wheels, and
maximum torque requirement at knees in static condition. Static structural analysis
of different parts of the mechanism is performed using ANSYS software for opti-
mization and validation of the proposed design. The reduction in the overall mass of
the mechanism is achieved by multi-use of actuators, where a single motor has been
used for motion at more than one joints in the device. A mechanism is also designed
to allow easy switching of power for themotors from one joint to the other. Further, to
make the device eligible for use by people of different heights, adjustability in height
of the mechanism has been achieved via the use of telescoping link mechanisms for
legs of the device. The aim is to come up with a low-cost device which along with
fulfilling the mobility requirements stays light, without compromising the strength
and motion capabilities of the device.

Keywords Wheelchair exoskeleton · Paraplegic · Rehabilitation · Locomotive
assistance · Structural analysis
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1 Introduction

Mobility is a fundamental element of an individual’s daily life. Independence of
motion allows aperson toperform thebasic daily needs of life.Unfortunately,medical
conditions such as stroke, nerve injury, Parkinson’s disease or even genetic disorders
may cause damage to the nervous system of a person, subsequently leading him to
lose his/her muscle function, and as a result the ability to move. Such a condition of
inability to perform motion is known as paralysis. Majority of the cases of paralysis
arise due to strokes. Estimates of 2015 show that India has a total of approximately
1.8 million cases of stroke annually [1], the number rising each year. Owing to their
low incomes, the majority of these paralytic patients opt for manual wheelchairs
as a means to restore their mobility. However, these pose a few limitations such as
limited use on rough terrain, bruising on skin, and limited independent use by the
elderly because of lack of sufficient body strength needed to drive the wheelchair.
Thus, there is a need to develop a cheaper, more efficient solution in the form of a
motorized wheelchair exoskeleton, which can restore mobility in a much better way,
and simultaneously act as a means of rehabilitation, while keeping the overall cost
less.

A wheelchair exoskeleton refers to an assistive mobility device used to provide
assistance in locomotion to individuals suffering from limited physical mobility. It
can be operated in twomodes, one as amotorizedwheelchair, allowing the individual
to sit on a seat while steering himself/herself using a controller joystick to the point
of destination. The second mode of the device is the exoskeleton mode. Instead of
resting on the four wheels, the individual now stands on his/her feet with the help of
a support mechanism, called the lower limb exoskeleton.

A great deal of research has been done in the field of exoskeleton and wheelchair
design. A detailed study of some of these available exoskeleton devices, which
include HAL, ALEX, LOPES, ReWalk, Lokomat, HyAWET has been performed.
The Hybrid Assistive Limb (HAL) [2] is a battery operated lower limb exoskeleton
device which uses DC servo motors and harmonic drive gears for hip and knee actua-
tion. The Active Leg Exoskeleton (ALEX) [3] is a powered leg orthosis device which
uses non-back drivable linear actuators at hip and knee joints. These linear actuators
have built in encoders. In Lower Extremity Powered Exoskeleton (LOPES) [4], the
robot moves parallel to the patient’s body. Movements at joints have been achieved
using Bowden cable driven series elastic actuators. ReWalk [5] is a wearable motor-
ized suit developed by Argo Medical Technologies Inc. The device movements are
controlled using changes in center of gravity of the person and device. Lokomat [6]
is a robotic exoskeleton with a treadmill and body weight support system, manufac-
tured by Hocoma AG, a Swiss company. Hybrid Assistive Wheelchair Exoskeleton
(HyAWET) [7], designed by the Indian Institute of Technology Guwahati consists
of an actuation mechanism for actuating multiple degrees of freedom with the help
of minimum number of actuators. Other than a high cost factor, existing exoskeleton
devices encounter certain other limitations, such as complex adjustment for use by
individuals of different heights, large number of actuators in use, or lack of back
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drivable motors at joints. Based on the literature review and evaluation of their mer-
its and limitations, several design specifications related to dimensions of the parts,
actuators, speed limits, weight and cost are decided to meet the design objectives.

In this paper, modeling of wheelchair exoskeleton system is described exten-
sively in Sect. 2, using SOLIDWORKS software followed by formulation of torques
required. Then, FEA analysis is performed in ANSYS workbench. In Sect. 3, results
and discussions for finding the torque required at rear wheels and knee during sit
to stand motion are carried out. Thereafter, in Sect. 4, the conclusions are drawn
regarding the complete work covered for the exoskeleton system.

2 Modeling Description of the Wheelchair Exoskeleton
System

2.1 SolidWorks Modeling

Computer-aided modeling of different parts of the wheelchair exoskeleton system
is performed using SOLIDWORKS software. To make the device flexible for use
by people of different heights, telescoping leg links are used both for the thigh
and shank parts. Figure 1a shows the telescoping leg link mechanism. Back support
consists of a vertical back that has been attached at the hip joints. Figure 1b shows the
designed back support with all its components including a compartment for holding
the batteries. In the wheelchair mode, the device consists of a back post, armrests,
front and rear wheels, and the chassis. Two telescoping links, identical to the ones
used for leg mechanism are used to complete a four-link closed-loop serial linkage.
Figure 1c shows the four-link parallelogram chassis and how it transforms from
wheelchair to exoskeleton mode.

Once the person starts to proceed into exoskeleton mode, the parallelogram starts
to contract, with the top link moving up and the left and bottom link moving to
contract along the straightening leg links too. The upward motion allows the rear
wheels to rise and leave the ground and finally rise almost to the height of the knees,
allowing the person to move in the exoskeleton mode. The front and rear wheels used
in wheelchair design are shown in Fig. 1d.

Two linear actuators (one at each knee), as shown in Fig. 2a are being used at the
leg links, with one point of attachment on the thigh link, and other on the shank link.
These provide the required torque for motion at the knees. Two heavy-duty, back
drivable DC motors are used to provide required torque and RPM to rear wheels
for rotation while in wheelchair mode, and for the rotation of hip joints while in
exoskeleton mode. Figure 2b shows the DC motor used for hip joint and rear-wheel
actuation.
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Figure 2c shows the gear, dog clutch, and belt based power transmission mecha-
nism. The mechanism is designed in such a way that it could drive the hip joints in
exoskeleton mode without engaging with the rear wheels during that operation, and
also performs the vice-versa by actuating the rear wheels without any disturbance to
the hip joints during the wheelchair mode. A moving gear sandwiched between two
dog clutch devices allows fulfilling this purpose successfully.

Foot of the exoskeleton needs to be actuated for the exoskeleton to perform loco-
motion in accordance with the normal gait motion of a human body. To reduce the
cost of actuators, a passively actuated mechanism is developed which can perform
requiredmotion at the ankle using angular motion from the knee as its reference. This
multi-use of actuators allows reduction in overall cost associated with the device.

Based on the decided specifications, an appropriate design and CAD model of
the mechanism is developed. Figure 3 shows the concerned design in its two modes,
i.e., wheelchair mode and exoskeleton mode.

2.2 Calculation of Torque

Torque at Rear Wheels. Total force to drive the wheelchair is a sum of rolling
force, the force required to move on inclined plane and force required to accelerate
the device from rest to desired speed.

Fig. 1 CAD model of a telescoping leg links, b back support, c four-link mechanism and d front
and rear wheels
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F = FR + FI + FA (1)

where F is the total force, FR is the rolling force, FI is the force on an inclined plane
and FA is the force needed for acceleration.

FR = M × μr × g (2)

where FR is the rolling force, M is the total mass of device and human, μr is the
coefficient of rolling resistance and g is acceleration due to gravity.

FI = M × sin(α) × g (3)

Fig. 2 CAD model of a linear actuators, b DC motor, c power transmission system

Fig. 3 Proposed design a Wheelchair mode, b Exoskeleton mode with labeled parts
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where FI is the force on an incline, M is the total mass, α is the incline angle and g
is acceleration due to gravity.

FA = M × (v/t) (4)

where FA is the force required for acceleration, M is the total mass, v denotes final
velocity and t is the time. Total torque needed at wheels is calculated using the
product of total force with the radius of the wheel.

τ = F × r (5)

where τ is total torque at wheels, F is the total force and r is the radius of the wheel.
Torque Required at Knee. Torque at the knees can be calculated using weights

of device parts, and the location of their centers of gravity. The system can be divided
into three sub-assemblies or systems for the calculation of torque at the knees. System
1 includes the thigh link, human thigh and support pad. System2has the back support,
batteries and body trunk. System 3 includes the motor, rear wheel, and rear-wheel
connector along with lower part of chassis, gears and the dog clutches. The equations
for the mass of the three systems are illustrated below.

M1 = m1 + m2 + m3 (6)

where M1, m1, m2, and m3 are masses of system 1, thigh link, human thigh, and
support pad, respectively. As the mass of system 2 is distributed equally on both
sides, it will be half the sum of individual masses.

M2 = (m4 + m5 + m6)/2 (7)

whereM2, m4, m5, andm6 aremasses of system 2, back support, batteries, and human
trunk, respectively.

M3 = m7 + m8 + m9 + m10 + m11 + m12 + m13 (8)

where M3, m7, m8, m9, m10, m11, m12, and m13, respectively, denote the masses of
system 3,motor, rearwheel, rear-wheel connector, lower part of chassis, driven gears,
drive gear, and dog clutchmechanism. Total torque at the knee can be calculated using
Eq. (9) given below:

τ = (M1 × g × d1) + (M2 × g × d2) + (M3 × g × d3) (9)

where τ is the torque at one knee, M1, M2, and M3 are masses of systems 1, 2 and
3, respectively, g is acceleration due to gravity, and d1, d2, and d3 are the distances
of centers of masses of the three systems from the knee. Masses considered for the
different components (m1 to m13) are in accordance with the labeling in Fig. 3.
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2.3 Modeling Using FEM

Static structural analysis of different parts of the mechanism is performed using the
ANSYSWorkbench software. For analysis of the front-wheel connector, the base of
the wheel is kept fixed while applying downward force at the connector joint. With a
number of nodes and elements (BEAM4) at 25176 and13456, respectively,maximum
deformation of 0.79 mm is found in front-wheel connector, where it is attached to
the parallelogram linkage, as shown in Fig. 4a. Figure 4b shows the equivalent von
Mises stress which is quite less in the front-wheel connector as obtained from the
analysis.

The link used for connecting the rear wheel with the parallelogram linkage is
deformed by 0.30 mm at the junction of connector and linkage, as shown in Fig. 5a.
These results are obtained by keeping the rear wheel joint fixed while applying a
downward force at the junction between the connector and parallelogram chassis.
The number of nodes and elements (BEAM4) are kept at 5565 and 2867 in this simple
part. Figure 5b shows the equivalent von Mises stress result, far less than allowable
stress, in the connector as obtained with the same imposed conditions.

The results of total deformation and equivalent stress in the parallelogram linkage
are shown in Fig. 6a and b respectively. These are observed upon fixing the bottom
joints of parallelogram chassis while applying downward force on top of the linkage.
The number of nodes in the mesh is 33664 with a total of 6528 elements (BEAM4).
A maximum deformation of 0.32 mm is observed in the top portion of the linkage.
The aluminum alloy as a material is chosen for both the wheel connectors as well as
the chassis of the wheelchair. The assistive pads of plastic material used to support
thighs of the person have a higher deformation of 2.42 mm in the right side, as shown
in Fig. 7a. The meshing in this padding generates 4301 nodes with 604 elements

Fig. 4 Structural analysis of front-wheel connector a Total deformation, b Equivalent von Mises
stress
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Fig. 5 Structural analysis of rear-wheel connector a Total deformation, b Equivalent von Mises
stress

Fig. 6 Structural analysis of parallelogram chassis a Total deformation, b Equivalent von Mises
stress

Fig. 7 Structural analysis of support pads a Total deformation, b Equivalent von Mises stress
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(SOLID45). Figure 7b illustrates the equivalent stress, less than allowable stress,
observed in the part, obtained with the left side of pad fixed to the parallelogram
chassis.

3 Results and Discussions

3.1 Torque Required at Rear Wheels During Sit to Stand
Motion

Considering an average human ofmass 70 kg and themass of wheelchair exoskeleton
being~18kg calculated from theSolidWorksCADmodel after assigning correspond-
ing material properties to each component, the total mass of the device plus human
becomes 88 kg. The considered design parameters are given in Table 1.

Using Eqs. (2)–(4),

FR = 88 × 0.01 × 9.81 = 8.63 N (10)

FI = 88 × sin(5◦) × 9.81 = 75.24 N (11)

FA = 88 × (1.11/1) = 97.68 N (12)

Total force can be calculated using Eqs. (1), (10)–(12) as

F = 8.63 N + 75.24 N + 97.68 N = 181.55 N (13)

Now using Eqs. (5) and (13) to calculate the total torque

τ = 181.55 N × 0.115 m = 20.88 N-m (14)

Hence, the torque required for the actuation of rear wheels during sit to stand
motion is calculated as 20.88 N-m.

Table 1 Design parameters
for torque estimation at rear
wheels

Radius of rear wheel 115 mm

Desired speed of wheelchair exoskeleton in
sitting configuration

1.11 m/sec

Desired acceleration time 1 s

Maximum incline angle (α) 5 degrees

Working surface Concrete floor

Coefficient of rolling resistance 0.01
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3.2 Torque Required at Knee During Sit to Stand Motion

Table 2 gives the percent weight proportions and characteristic length of different
parts of the human body.

The masses of components of the wheelchair exoskeleton are calculated using
SolidWorks after assigning corresponding material properties for each component.
The masses of all involved components are given in Table 3.

Center of mass of the lower exoskeleton system consisting of rear wheel, wheel
to chassis connector, gears and L shaped linkage is found to be at 0.51 m from the
knee joint whereas for the system of back post, trunk, and battery case, it is found to
be at 0.47 m. Moreover, considering a 70-kg person with height 1.75 m the length
of the thigh is approximately 0.44 m, which gives the center of mass of thigh, thigh
link and pad system at 0.293 m from knee joint. Masses of different systems are now
calculated using the above-mentioned equations.

Using Eqs. (6)–(8),

Table 2 Fractional
distribution of body weight
and height of an average
Indian human

Segment Weight proportion in
%

Characteristic length
(m)

Head 8.23 0.29

Whole trunk 54.15 0.75

Total arm 5.335 0.45

Thigh 11.125 0.44

Lower leg 5.05 0.42

Foot 1.38 0.26

Table 3 Mass of different
components involved in
torque calculation

Component Mass (kg)

Thigh link (m1) 0.31

Human thigh (m2) 7.787

Thigh support pad (m3) 0.1

Back support (m4) 0.8

Batteries (m5) 5

Human trunk (m6) 37.905

Motor (m7) 2.0

Rear wheel (m8) 0.5

Rear wheel connector (m9) 0.413

Lower portion of chassis (m10) 0.56

Four driven gears (m11) 4 × 0.06 = 0.24

Drive gear (m12) 0.06

Dog clutch mechanism (m13) 4 × 0.05 = 0.20
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M1 = 0.31 + 7.787 + 0.1 = 8.197 kg (15)

M2 = (0.8 + 5 + 37.905)/2 = (43.705/2) = 21.852 kg (16)

M3 = 2.0 + 0.5 + 0.413 + 0.56 + 0.24 + 0.06 + 0.2 = 3.973 kg (17)

Now using Eqs. (9), (15)–(17) to calculate torque at one knee,

τ =(8.197 × 9.81 × 0.293) + (21.852 × 9.81 × 0.47)

+ (3.973 × 9.81 × 0.51) = 144.19 N-m (18)

Hence, torque required for the actuation of knee joints during sit to stand motion
is calculated as 144.19 N-m.

4 Conclusions

In this paper, a novel motorized wheelchair exoskeleton has been proposed. The
device has been modeled in SOLIDWORKS software. Thereafter, structural analysis
has been done using ANSYS Workbench, which has given maximum deformations
of 0.79 mm, 0.30 mm, 0.32 mm, and 2.42 mm in front-wheel, rear wheel connector,
parallelogram chassis, and thigh paddings, respectively. Then, for a test case with
an average human of 70 kg, torque requirements for the actuation of rear wheels
and knee joints during sit to stand motion have been found out as 20.88 N-m and
144.19 N-m, respectively. The device successfully achieves adjustability in its size
by use of telescoping links in the legs. Moreover, the use of a lesser number of
motors for multiple actuations helps cutting down the overall cost associated with the
device. The prototype, with the design analysis results and proper safety guidelines,
will be a fine proposition to solve the problem of assistive wheelchair exoskeleton
devices. Further, the dynamic analysis of the exoskeleton system for human gait with
experimental validation will be carried out in the near future.
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Characterization of Banana and Bagasse
Fiber-Reinforced Hybrid Epoxy
Composites

R. Prem Chand, Y. P. Ravitej and J. V. Shiva Mani Kanta

Abstract In this work, banana and bagasse fibers have been taken as reinforcement
material because of its ease of availability and low cost. Initially, the density of
the fibers are found using water displacement method. The fibers were treated by
NaOH and NaCl solution of 5% concentration for good adhesion property. These
are reinforced with the epoxy with Hardener—HY 951. The 20 and 30% of volume
fraction of banana and bagasse fibers of equal proportions are taken for fabrication
using hand lay-up method for the dimension 300 * 300 mm2. Change in the volume
fraction of FRC’s changes the value of young’s modulus by making the material
more stiffer. The testing was carried out by the computer-integrated universal testing
machine (UTM), which has the capacity of 100KN Kalpak software is used for the
data acquisition the testing. The specimen is cut into as perASTMD-3039 andASTM
D-790 standards for tensile test and flexural bending test, respectively. Tensile test
and flexural bending tests are conducted on 20 and 30% of volume fraction of fibers
(banana and bagasse). Results of tensile test and flexural bending test are obtained
experimentally and compared each other, results reveal that fibers of 30% volume
fraction make material stiffer and in turn increases the elasticity and UTS.

Keywords Tensile test · Computer-integrated universal testing machine · Flexural
bending tests · Data acquisition · Weight reduction method
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1 Introduction

This work focuses on banana and bagasse fiber-reinforced hybrid epoxy composites.
This will provide better properties by using naturally available fibers and deliver a
better composite material for the advanced the composite world. The introduction of
advanced epoxy resin matrix material’s with high-performance reinforcement of the
fibers of banana and bagasse, the penetration of the fibers as witnessed in the steady
of expansion in uses and volume.

While increasing it has been resulted in expected as the costs reduction. For
certain application, the use of natural fiber-reinforced composites rather than metals
has a higher efficiency as well as the effect in its characteristics. The many materials
when they are in a fibrous form shows very good strength property but to achieve
these properties the fibers should be reinforced with the suitable matrix material. The
density of cane bagasse as a composite of long particles and their internal adhesion
as well as has verified their temperature until their decomposition and suggested
their possible future utilization [1]. Bagasse reinforced composites having wider
application in automotive and railway coaches and buses for public transport system
keeping these characteristics and applications of Bagasse fiber has been selected
to combine with Banana fibers in order to extract the better properties. Out of the
available manufacturing process the hand lay-up technique is selected to prepare
bagasse and banana fiber-reinforced hybrid composite by using epoxy with proper
hardener. No work has been published on hybrid polymer matrix, to fill the void
characterization of the banana and bagasse fiber-reinforced hybrid epoxy composites
are obtained for different volume percentage combinations of fibers and results are
correlated with each other.

2 Literature Survey

The usage of the bagasse wastes to prepare fiber-reinforced composites for com-
mercial views and also discuss recent development of bagasse fiber-reinforced com-
posite, processing methods and its applications [2] is investigated. The mechanical
properties as per ASTM standards are investigated and stress–strain and deflection
by using ANSYS software tests were conducted for different volume fractions and
the results were compared. The authors suggested for hybrid composites by adding
different fibers [3]. The mechanical behavior of hybrid natural composites samples
were taken for different fibers with epoxy by using hand lay-up method for dif-
ferent weight fractions. Mechanical properties were evaluated according to ASTM
standards and better results were obtained [4]. The hybridization process by incor-
porating synthetic fiber with natural fiber to get higher strength, better stiffness and
also improvements inmechanical properties [5]. Themechanical properties of hybrid
epoxy composites show better results in tensile, flexural, and impact compared with
glass-reinforced composite and banana-reinforced composite. The banana fiber has
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been treated with sodium hydroxide in order to increase the wettability. The results
of treated and untreated banana fiber-reinforced composites were compared [6].
The tensile strength on the pseudo-stem woven fabric reinforced epoxy composite is
increased by 90% compared to virgin epoxy [7]. Banana fibers are compared through
their applications, use, and properties it has been concluded that banana fibers pro-
viding better chemical composition and properties by keeping the results obtained
by the different tests. Banana fibers show high variability along with and between
fibers. The standard deviation has been found to decrease with increasing diame-
ters of fibers. The behavior of fibers also gives hint for the subsequent behavior as
reinforcement in composites.

The above literature survey reveals that efficient hybridization of banana and
bagasse is obtained which improves the properties of the material for the greater
volume fraction of fibers for hybrid polymer matrix composites.

2.1 Calculation of Densities

Banana fibers are extracted by cutting into lengths into the convenient size and
peeling by layer-wise. The individual sheaths were dried under sunlight for 2 weeks
and again were soaked in water for 1 week. The sheaths were dried again and fibers
were ripped off. The obtained banana fibers were checked for strength by using a
single fiber strength method. Density calculation has been done for the individual
fibers by using the water displacement method. In this method the displacement of
the water after the addition of fiber into the water the density of fiber is determined.
The weight of the fiber is noted down. The density calculation of banana fiber is
shown in Table 1.

The Baggies fibers were extracted by crushing the sugarcane using the suitable
machine the obtained residue were taken and dried in sunlight for one week. The
dried residue was immersed in water for some time and then kept in the atmosphere
by exposing for sunlight for one week. The stalks which are present in a residue were
dried. The obtained residue is called Bagasse. In that, the fibers were extracted and
preserved. Density calculation has been done for the bagasse the values have shown
in Table 2. Out of the available manufacturing process, the hand lay-up technique
is selected to prepare Bagasse and Banana fiber-reinforced hybrid composite by
using epoxy with proper hardener. No work has been published on hybrid polymer

Table 1 Density test of banana fiber using the water displacement method

Sl. No Mass of fiber Initial reading Final reading Difference in
volume

Density

1 2.1 50 51.8 1.5 1.35

2 2 49 50.5 1.4 1.32

3 2.5 52 53.9 1.9 1.3



214 R. Prem Chand et al.

Table 2 Density test of bagasse fiber using water displacement method

Sl. No Mass of fiber Initial reading Final reading Difference in
volume

Density

1 2 40 41.6 1.6 1.25

2 2.2 42 43.7 1.7 1.29

3 2.5 44 46.1 2.1 1.1

matrix, to fill the void characterization of the banana and bagasse fiber-reinforced
hybrid epoxy composites are obtained for different volume percentage combinations
of fibers and results are correlated with each other.

3 Chemical Treatment

3.1 Alkali Treatment

Alkali treatment for natural fiber mercerization is applied in this method. It used
for the treatment of natural fibers. This method provides good quality fibers. The
mercerization process removes the natural and artificial impurities which are present
in the fiber by that it improves the adhesion between fiber and matrix. The process
reduces fiber diameter and improves aspect ratio. The alkali treatment gives better
results in mechanical interlocking by increasing the surface roughness. The prepared
fibers of banana and bagasse were immersed in the 5% concentration NaOH solution.
Immersed fiber was soaked in the solution for 2 h, then the fibers were taken out form
the solution and fibers were washed by the distilled water which is having the pH
value 7. The fibers werewashed neatly 4–5 times by using distilled in order to remove
the NaOH solution which has been accumulated on the fiber surface. This process is
used to remove the lignin content which is present in the fibers.

3.2 Saline Treatment

The distilled water was kept separately for one hour. The silane treatment has been
done on fibers by that which provides fiber-matrix adhesion to stable properties of the
composite. The sodium chloride pellets were dropped in a container which consists
of water by that the 5% concentration of the silane solution has been prepared. The
fibers were soaked separately in a silane solution and separately to 2 h in the solution.
The fibers were taken out from the container after two hours and then washed with
distilled water. These fibers were kept under sunlight for 1 week and dried.
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After treatment (Alkaline + Saline), the weight loss was calculated from the
equation.

Weight loss = [500 − 424/500] ∗ 100

Weight loss = 15.2%

W0 and W1 denote the weight of Natural fiber before and after (NaOH and NaCl)
treatment, respectively.

4 Fabrication of Banana and Bagasse Fiber-Reinforced
Hybrid Epoxy Composites

Banana and bagasse fibers were treated chemically by using NaOH and NaCl solu-
tions, thefiberswere dried to the sunlight. Thedriedfiberswere collected and chopped
to predetermine different lengths.

4.1 Calculation of Banana and Bagasse Fiber-Reinforced
Hybrid Epoxy Composites

From the water displacement method, densities of banana and bagesse are shown
below.

Density of Banana fiber = 1.35 g/cm3

Density of Bagasse fiber = 1.25 g/cm3

Density of Epoxy (LY 556) = 1.15 g/cm3

Volume of the composite die = length ∗ width ∗ thickness
Volume of the composite die = 300 ∗ 300 ∗ 3 mm = 270 cm3

(2)

4.1.1 Calculation for 20% Volume Fraction of Banana and Bagasse
Fiber-Reinforced Hybrid Epoxy Composites

The calculations of 20% Volume composite is shown below.

Vc = V Banana ∗ V Bagasse ∗ V Epoxy

m composite/ρ composite = m banana/ρ banana ∗ m bagasse/ρ bagasse ∗ m epoxy/ρ epoxy



216 R. Prem Chand et al.

Mass of the banana fiber, bagasse fiber, and epoxy is taken 0.1, 0.1, and 0.8,
respectively.

1/ρcomposite = 0.1/1.35 ∗ 0.1/1.25 ∗ 0.8/1.15

1/ρcomposite = 0.0741 ∗ 0.08 ∗ 0.6956

1/ρcomposite = 0.8497

Density composite = 1.176 g/cm3 (2)

Mass of composite mc = m composite ∗ V composite

From Eq. (1) and (2)

Mass of composite mc = 1.176 ∗ 270

Mass of composite mc = 317.52 gms

Mass of composite mc = 1.176 ∗ 270

Mass of composite mc = 317.52 gms

• For volume fraction of 20%, volume fraction of banana and bagasse fiber-
reinforced hybrid epoxy composites

Mass of total fiber = 317.52 × 20%
Mass of total fiber = 63.504 ≈ 64 gms
Mass of Banana fiber = 32 gms
Mass of total fiber = 63.504 ≈ 64 gms
Mass of Banana fiber = 32 gms
Mass of Bagasse fiber = 32 gms

• For volume fraction of 30%, volume fraction of banana and bagasse fiber-
reinforced hybrid epoxy composites

Vc = V Banana + V Bagasse + V Epoxy

M composite/ρ composite = M banana/ρ banana + M bagasse/ρ bagasse + M epoxy/ρ epoxy

1/ρcomposite = 0.15/1.35 + 0.15/1.25 + 0.7/1.15

1/ρcomposite = 0.1111 + 0.12 + 0.6087
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1/ρcomposite = 0.8398

ρComposite = 1.19 g/cm3

Massof composite mc = ρcomposite × Vcomposite

Mass of composite mc = 1.19 × 270

Mass of composite mc = 321.3 gms.

Mass of total fiber = 321.3 × 30%

Mass of total fiber = 96 gms.

Mass of Banana fiber = 48 gms.

Mass of Bagasse fiber = 48 gms.

4.2 Hand Lay-Up Method

Hand lay-upmethod is one of the preferredmethods for the preparation of composite.
Different fibers were taken for different lengths as well as different volume fraction.
Initially, 5 mm length fibers were taken to prepare the composite for 20% volume
fraction. The resin is prepared by using LY556 with suitable hardener HY 951 at
proper proportions.

The well prepared mixed resin has been layered into the predetermined mold
(specimen mold size is 300 * 300 * 3) mm. The chopped, both the fibers, banana
and bagasse are then distributed randomly over the resin as per calculations. In the
same way, the resin and the fibers were filled in the mold layer by layer. Then one
more layer of resin is applied on the top surface of the mold then the suitable weight
has been kept on the mold in order to avoid the shrinkage and the mold has been
allowed for curing into the oven for 8 h. The process has been repeated for different
fiber length with different volume fraction.

To prepare the hybrid composite plate the process used is hand lay-up process.
Initially, in the hand lay-upprocess, the pre-mold is prepared according to the required
dimensions of the composite plate. The Teflon tape is used for the boundary of the
dimensions of the plate. The acetone is applied on the floor of the pre-mold surface
and the mixture of fibers and resin are randomly distributed on the mold surface.

For the required dimension of thickness, the aluminum slab is placed on the top
of the surface on the prepared die to remove the excess amount of resin and also
to avoid the air bubbles in the mold. After removing the composite die the plate is
kept in the woven for about 100 °C for 2 h and finished fabricated model is shown
in Fig. 1.
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Fig. 1 Graph of stress versus strain for the tensile test

5 Results and Discussions

The obtained hybrid composite plates were cut according to ASTM composite stan-
dards for the characterizations. Someof the testswere conducted in order to character-
ize themechanical properties. The testing was carried out by the computer-integrated
universal testing machine (UTM) which has the capacity of 100KN Kalpak software
is used for the data acquisition the testing.

5.1 Tensile Test

The desired dimension of specimen for mechanical testing was cut by the fabricated
composite. Tensile strength of a material is the maximum amount of tensile stress
that it can be taken before failure. Dog-bone type specimen is the commonly used
specimen for tensile test. According to the ASTM D-3039, the tensile specimen was
made and the dimension is shown in Table 3.

Table 3 The tensile
specimen dimensions

Total length
in (mm)

Span length
in Mm

Width in mm Thickness in
mm

250 170 25 3
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• Calculation for Tensile Strength

Tensile Strength = W/(b × d)

where W, b and d are the ultimate failure load (N), mean width of sample (mm), and
mean thickness of sample (mm), respectively.

Tensile Strength = W/(b × d) = 645/(25 × 3) = 8.60 MPa

The tensile properties of the prepared specimen of ASTM D-3039 are tested, the
stress and strain curve obtained is shown in Fig. 1.

The first specimenwas 20% volume fraction specimen, where the specimen broke
at the tip of the neck and the second shows the 30% volume fraction specimen where
it as broke with maximum ultimate tensile strength by comparing to the 20% of
volume fraction specimen. Also by comparing the experimental and theoretical, the
percentage of error is less than 10%.

The above graph shows the results for stress versus strain in the tensile test, where
the maximum stress is 14.15 MPa and the Strain is 0.48 for one of the tensile test
which was carried out (Tables 4, 5, 6).

The results of the ultimate tensile strength versus volume fraction of the hybrid
composite specimen, where the ultimate tensile strength for 20% of volume fraction
is less compare to the volume fraction of 30%, results reveal that fibers of 30%
volume fraction makes material stiffer and in turn increases the elasticity and UTS.

Table 4 Tensile test results Sl. No. Specimen
composition

Peak load (N) Ultimate tensile
strength (MPa)

1 20% 436 9.08

2 30% 639 14.15

Table 5 Dimension for
flexural bending test

Total length
in (mm)

Span length
in (mm)

Width in
(mm)

Thickness in
(mm)

125 100 12.5 3

Table 6 Results for flexural
bending test

Sl. No. Specimen
composition

Peak load (N) 3 point flexural
strength (MPa)

1 20% 46 48.94

2 30% 76 81.41
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5.2 Flexural Bending Test (3 Point Bending Test)

The second test which we carried out was the three-point bending test that is the
flexural test this was chosen because it requires less material and eliminates the need
to accurately determine center point deflections with test equipment. According to
the ASTM D-790, the test was carried out and the dimensions are given below.

5.2.1 Calculation for Flexural Strength

For the calculation of Flexural strength, the formula is given below

Flexural Strength = 3PL/2bh2 = (3 × 46 × 80)/
(
2 × 12.5 × 32

) = 49.06 MPa.

The above specimen considering the ASTM D-790 was taken and kept in the
UTM machine and the load was applied at the center point.

For the 20% of volume fraction, the flexural bending strength was 48.94 MPa
and for the 30% of volume fraction, the flexural bending strength was 81.41 MPa
as shown in the above graph. When the percentage of volume fraction is increased
the better results were obtained in the above two tests. Also, the theoretical test was
calculated and by observing both experimental and theoretical results for flexural
test the percentage of error was calculated and it was less than 10%, results reveal
that fibers of 30% volume fraction make material stiffer and in turn increases the
elasticity and UTS.

6 Conclusion

The banana and bagasse Fiber-Reinforced Hybrid epoxy composite characteristics
have been studied both the fibers were treated with 5% NaOH and 5% NaCl solu-
tions. By that, the improved adhesion property has been observed. The fibers were
reinforced into the epoxy resin by using the hand lay-up method. Test plates were
obtained andwere tested. The valueswhich are obtained shows improvedmechanical
properties for larger volume fraction FRC’s.
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Crack Growth Simulation
in Quasi-brittle Materials Using
a Localizing Gradient Damage Model

Alok Negi and Sachin Kumar

Abstract Failure in quasi-brittle materials comes under an intermediate category
of fracture failure, which includes different stages, i.e., micro-cracks nucleation,
growth, and coalescence into a macroscopic crack. The different stages of failure
result in a tension-softening structural response, which can be accurately modeled
using the conventional gradient damage models. However, due to a constant interact-
ing domain throughout the load history, conventional gradient damage models suffer
from various drawbacks which limits their application to simulate the final stages of
quasi-brittle failure process. In this contribution, the present work illustrates a ther-
modynamically consistent localizing gradient damage model, which successfully
overcomes the drawbacks of conventional gradient damage models. The localizing
gradient damage model uses an interaction function definition in the constitutive
framework to take into account the diminishing nonlocal interactions, thus attaining
a macroscopic crack in the form of a localized damage profile during the last stages
of failure. The numerical accuracy of the model is tested against both mode-I and
mode-II types of failure problems and compared with the experimental results.

Keywords Damage · Localizing gradient · Finite element · Quasi-brittle materials

1 Introduction

During the past few decades, failure simulation of a quasi-brittle fracture process has
been a topic of interest among many researchers, due to their wide variety of appli-
cations in different engineering domains. Differing from the brittle materials, the
quasi-brittle materials exhibit a tension-softening response, which can be simulated
effectively with the help of discrete and smeared numerical approaches. In discrete
approaches such as extended finite element method (XFEM) and cohesive crack
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models [1, 2], cracks are treated as discontinuous displacement fields and the princi-
ples of fracture mechanics are required to model the crack growth behavior. Whereas
smeared approaches relies on the principles of continuum damage mechanics [3, 4]
where cracks are treated as the diffused damage zones with a complete loss of stiff-
ness. Both the approaches are effective enough to model the quasi-brittle fracture
process with their own sets of advantages and disadvantages. Smeared approaches
offer advantages in terms of prediction of initial cracks in the structure and are gen-
erally effective in multiple cracks scenarios, which can be a challenging task with
discrete approaches. In the literature associated with smeared approaches, both local
and nonlocal continuumdamagemodels have been proposed for simulating the quasi-
brittle fracture process.However, due to the strain-softening constitutive relations, the
local damage models suffer from various drawbacks such as mesh-dependent results
and pathological localization of damage. To overcome these drawbacks, the nonlocal
damage models undergo a regularization process with the help of an internal length
scale, which can be implemented either through gradient enhancement or integral
enhancement [3, 5]. Even though these enhancements differ in their implementation
approach, the gradient enhancement in the gradient damage models is equivalent to
integral enhancement, when Green’s function is used as the weight function in the
integral type nonlocal damage models [4]. In the literature associated with nonlocal
damage models, conventional gradient damage models with their excellent regular-
ization capabilities are able to simulate the quasi-brittle fracture process. But due
to the use of constant interaction domain, they still suffer from various issues such
as incorrect damage initiation and spurious damage growth which can be observed
during the final stages of failure [6]. The spurious damage growth behavior prevents
the formation of a macroscopic crack which is an integral part of the quasi-brittle
fracture process. Recently, based on a thermomechanical micromorphic framework,
a localized gradient damage model is proposed in [7], which is successful in over-
coming the drawbacks of the conventional gradient damage model. The localizing
gradient damage model uses an evolving length scale definition in order to attain
localized damage profiles during the final stages of softening.

2 Numerical Framework

The present numerical framework of the localized gradient damagemodel is based on
a generalized thermomechanical micromorphic theory, where an additional micro-
force balance equation needs to be satisfied. The localized gradient damage also
employs a damage-based interaction function in the free energy statement, which
results in an evolving interaction domain throughout the load history. This, in turn,
prevents the spurious damagegrowthbehavior,which is exhibited by the conventional
gradient damage models. The free energy density function is assumed in such a way
that a set of generalized stresses σ̃ and ξ̃ are obtained, which fulfills an additional
balance in the form of the micro-force balance equation, apart from the standard
equilibrium equation. The free energy density function is expressed as
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ψ = 1

2
(1 − ω)ε : C : ε + 1

2
h (e − ẽ)2 + 1

2
ghl2∇ ẽ · ∇ ẽ (1)

where C is the fourth-order elasticity tensor, ω is a damage variable which is respon-
sible for the degradation in material stiffness, ε is the strain tensor, h is a coupling
modulus, e is an equivalent strain variable characterizing macroscopic deformation,
ẽ is a morphic variable characterizing microscopic deformation, g is an interaction
function which captures the decrease in nonlocal interactions, and l is an internal
length scale parameter. The constitutive relations including themodified stress–strain
relation can be derived from the assumed free energy density statement by following
the standard Coleman–Noll procedure [8]. The modified stress–strain relation along
with the equivalent coupling stress σ̃ and moment stress ξ̃ relations are expressed as

σ = ∂ψ

∂ε
= (1 − ω) C ε + h (e − ẽ)

∂e

∂ε
(2)

σ̃ = ∂ψ

∂ ẽ
= h (ẽ − e) (3)

ξ̃ = ∂ψ

∂∇ ẽ
= ghl2∇ ẽ (4)

So apart from the standard equilibrium (given in Eq. (5)), a micro-force equilib-
rium (given in Eq. (6)) will be satisfied at each material point of the domain under
consideration.

∇ · σ = 0 (5)

σ̃ = ∇ · ξ̃ or ẽ − e = ∇ · (gl2∇ ẽ
)

(6)

3 Damage Characterization

A modified von Mises equivalent strain definition is used in the numerical examples
for the characterization of deformation at the macroscopic scale [4],

e = s − 1

2s(1 − 2ν)
I1 + 1

2s

[
(s − 1)2

(1 − 2ν)2
I 21 + 2s

(1 + ν)2
J2

]1/2

(7)

where s is a sensitivity parameter which is the ratio between the compressive strength
and tensile strength of the material, ν is the Poisson’s ratio, I1 is the first invariant
of strain tensor and J2 is the second invariant of the deviatoric strain tensor. The
employed exponential damage evolution criteria are expressed as
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ω =
{
0, κ ≤ κ0

1 − κ0
κ
{1 − α + α exp[−β(κ − κ0)]}, κ > κ0

(8)

where α accounts the residual strength of the material, β controls the softening
behavior in structural response,κ is a historyparameter that stores the latestmaximum
value of the nonlocal equivalent strain, and κ0 is an initiation damage threshold. In the
ensuing numerical examples, the damage initiation threshold is computed according
to the relation κ0 = ft

/
E . The history parameter κ is governed by the Kuhn–Tucker

relations, expressed as,

κ̇ ≥ 0, f ≤ 0, f κ̇ = 0 (9)

where f is the damage loading function, given as,

f = ẽ − κ (10)

The interaction function used in the free energy statement governs the nonlocal
interactions in the softening regime [7]. The interaction function depends on the
current damage state and its value decreases exponentially with increasing damage.
It is defined as

g = (1 − R) exp(−ηω) + R − exp(−η)

1 − exp(−η)
(11)

where η governs the rate of decreasing nonlocal interactions and R accounts for
the residual nonlocal interactions. The material parameter η = 1 and a residual
interaction value of R = 0.005 are used in the numerical examples.

4 Numerical Results and Discussion

To demonstrate the accuracy and performance of the localizing gradient damage
model, both mode-I and mode-II type of failure problems are considered in our
numerical analysis. MATLAB is used to simulate these problems where a standard
Newton–Raphson scheme is employed to model the nonlinear response exhibited
by the quasi-brittle structure. During the numerical implementation, displacement
control analysis is chosen. The problem domain is discretized using quadrilateral
elements (Q4 and Q8) with a total of 4 quadrature points within each element for the
numerical integration. The first numerical problem relates to the mode-I failure in a
three-point bending notched beam specimen. Since the specimen is only 13mm thick
in the out-of-plane direction, the localizing gradientmodel ismodified as per the plane
stress condition in our numerical analysis. The geometry and boundary conditions of
the three-point bending limestone specimen are given in Fig. 1. The load is applied
at the middle point of the specimen. The material parameters of the beam are taken
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W = 102 mm

F

a = 0.4W

L = 4W

t = 13 mm

Fig. 1 Geometry structure and boundary conditions of a three-point bending limestone specimen

as those in [7, 8]: elastic modulus E = 15,300 MPa, tensile strength ft = 3.45 MPa,
Poisson’s ratio υ = 0.15, h = E × 10−9, internal length scale l = 5.6 mm, sensitivity
parameter s = 8, residual strength parameter α = 0.99, and softening parameter β

= 320. The damage initiation threshold is taken as κ0 = ft
/
E = 2.25 × 10−4.

Figure 2 shows a comparison between the experimental and the numerical com-
puted structural response of the limestone notched beam specimen. Based on the
comparison, it can be noticed that the localizing gradient damage model is able to
reproduce the experimental response quiet accurately throughout the load history. A
similar peak load is attained and the model is able to capture the softening behavior
of the specimen accurately.

The damage and nonlocal equivalent strain profile in front of the notch are illus-
trated in Fig. 3. For this purpose, three different loading points are considered in the
load history in order to illustrate the evolution of damage and nonlocal equivalent
in a more appropriate way. As per the damage profile illustrated in Fig. 3a, it can be
noticed that the damage initiates from the notch and a localized damage profile is
attained in the final loading steps. The damage propagates along the applied load in
the subsequent loading steps. In contrast to the conventional damage model where

Fig. 2 Comparison between
the experimental and
numerical structural
response [9, 10]
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Fig. 3 a Damage profile (ω) and b nonlocal equivalent strain (ẽ) profile for different loading steps
using the localizing gradient damage model (l = 5.6mm)

damage tends to extend behind the notch, no spurious damage growth is observed
around the notch area in the final stages of softening. Thus, the localizing gradient
damage model is successful in delivering a localized macroscopic crack in the form
of localized damage profile.

The next problem that is taken into consideration is the shear band failure which
comes under the category of the mode-II type of failure problems. Shear band failure
is commonly exhibited by many geo-materials when they are subjected to compres-
sive loads and is an important problem for consideration. In this contribution, a shear
ban specimen is taken into consideration which is subjected to a compressive load.
Due to symmetry, only the half portion of the shear band specimen is modeled. The
geometry and boundary conditions of the specimen are shown in Fig. 4. A defective

Fig. 4 Specimen under
compressive load (shaded
part indicates a defective
region with a reduced
damage initiation threshold) L

L

u

L/10

L/20

F

Defective Region
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Fig. 5 Combined structural
response using different
models [6, 11]
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region is set at the bottom left corner of the plate in order to initiate the damage
propagation this region. The bottom end of the plate is fixed, while the top end of the
plate is subjected to a compressive load. The material parameters are kept similar to
that used in [9] are taken for the numerical simulation, i.e., elastic modulus E = 20
GPa, tensile strength ft = 2 MPa, Poisson’s ratio ν = 0.2 and sensitivity parameter
s= 1. The coupling modulus is taken as h = E × 10−9. The softening parameters are
taken as α = 0.99 and β = 100. A damage initiation threshold κ0 = ft

/
E = 10−4

is chosen with a 50% reduction in the defective region. Plain strain condition is
considered for the numerical simulation.

The combined structural response is shown in Fig. 5, which includes the structural
response of the localizing gradient damagemodel, conventionalmodel [6], and stress-
based integral nonlocal damage model [11] from the literature. A similar length
scale parameter l = 2 mm is chosen in all the models. On the basis of the combined
structural response of different models, it can be noticed that nearly all the models
have similar peak load capacity.However, due to nonlocal interactions over a constant
domain, the conventionalmodel (detailed in [6]) suffers fromvarious drawbacks such
as incorrect initiation of damage profile and spurious damage growth during the final
stages of failure. Even the stress-based integral type nonlocal damagemodel (detailed
in [11]) is not able to provide a smooth softening response for different mesh sizes,
during the final stages of softening. In contrast, on the basis of damage (ω) and
nonlocal equivalent strain (ẽ) profiles illustrated in Fig. 6, it can be clearly noticed
that the localizing gradient damage model is successful in providing a stationary
shear band profile till the final stages of failure. The damage initiates correctly from
the bottom left corner of the shear band specimen and an inclined shear band profile is
observed in all the loading steps. No spurious damage growth perpendicular to shear
band is observed during the final stages of softening. Instead a localized damage
profile is observed along the initial shear band which characterizes a correct shear
band failure.
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Fig. 6 a Damage profile (ω) and b nonlocal equivalent strain (ω) profile for different loading steps
using the localizing gradient damage model (l = 2mm)

5 Conclusions

Based on the obtained results of the mode-I problem, localizing gradient damage
model is able to reproduce the experimental structural response with good accuracy.
A narrow band of damage profile is observed during the final stages, which can
be considered as a macroscopic crack. Additionally, no spurious damage growth
is observed around the notch area and the crack propagates in accordance with the
mode-I failure. In the case of mode-II shear band failure problem, a localized damage
profile is observed along the initial shear bandwith no spurious damagegrowthduring
the final stages.
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Delamination Damage Analyses of Lap
Shear Joints Made with Flat
Fibre-Reinforced Polymer Composite
Laminates Subjected to Transverse Load

Sumeet Kumar Pati , A. K. Pradhan and M. K. Pandit

Abstract In this work, initiation and growth of pre-embedded delamination in the
adhesive-bonded lap shear joint (LSJ) made out of laminated fibre-reinforced poly-
mer (FRP) considering flat geometry subjected to transverse load have been investi-
gated. 3D nonlinear finite element technique has been employed to monitor the dam-
age mechanism. The critical location to place the delamination has been obtained
from the Tsai-Wu failure criterion. It is found to occur between the first and second
layers of the bottom adherend of the Lap shear joint. Proper contact elements have
been employed to avoid any interpenetration of delaminated surfaces. Interlaminar
peel and shear stresses are obtained and found to be three dimensional in behavior.
Virtual crack closure technique (VCCT) is used to determine the three components of
strain energy release rates (SERR) with respect to sliding (Mode I), opening (Mode
II) and cross sliding (Mode III) modes of failure. These values are found to be differ-
ent along two delamination fronts which show the dissimilar nature of propagation
of delamination.

Keywords Adhesive joints · Composites · Strain energy release rates (SERR) ·
Virtual crack closure technique (VCCT)

1 Introduction

Lap shear joints (LSJs) are used for strengthening fibre-reinforced polymer (FRP)
composite of flat or curved structures. Delamination may exist in between the plies
of the adherend of this type of joints. Delamination failure mode can be catastrophic,
so their study needs to be done carefully. Major factors causing the onset of delami-
nation are the high gradients of peel and shear stresses that occur in the interlaminar
region. Higher values of these stresses can fasten the process of delamination. This
delamination reduces the strength and stiffness of the overall structure. So these kinds
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of structures need to be analysed properly and methods need to be devised to arrest
or reduce the propagation of delamination.

Introduction of adhesives has been a gradual process, starting from the applica-
tion of sticky products to producing the simple level of adhesives by general cooking
methods, as mentioned byAdams [1]. Themain full-fledged research about the adhe-
sive bonding started with contributions from Volkersen, Goland, and Reissner [2, 3].
During loading, structures usually bend and loading becomes eccentric. This was not
included by Volkersen [2]. But this void was filled by Goland and Reissner [3]. They
also gave a two-dimensional analytical solution of peel and shear stress in single lap
joints (SLJs). A study on the lap shear joint specimen with cracks along the interface
was conducted by Brussat et al. [4]. They also gave some insights into a type of frac-
ture called a mixed-mode method of fracture. Cheuk and Tong [5] investigated a Lap
shear joint (LSJ) with an artificial crack pre-embedded in it. An experiment, as well
as a nonlinear FEM study, was conducted to find the stress distribution and calculate
the energy release rate at both the crack tips. Along with this they also obtained an
analytical solution to that problem. Talreja [6] studied how the stiffness reduction
is taking place due to transverse cracking in glass/epoxy composites. Rybicki and
Kanninen [7] presented an efficient method of calculating the stress intensity factors.
But the method was based on crack closure integral process. Panigrahi and Pradhan
[8] investigated the out of plane stresses using 3D nonlinear FEM techniques in
FRP. They investigated the effects on various delamination lengths. Sun and Tong
[9] investigated crack propagation in a cylindrical aluminium structure, which was
repaired by FRP.Kumar et al. [10] studied the delamination analysis in single lap pipe
joint of FRP using FEM techniques. Xu and Li [11] developed an analytical model
to predict stresses in a composite structure subjected to torsion. Baishya et al. [12]
studied the failure analysis of laminated FRP composite subjected to pressure and
torsion. Khan et al. [13] studied the fatigue delamination of the carbon fiber polymer
matrix composite. Jayakrishna et al. [14] studied the health monitoring of polymer
composites. Zhao et al. [15] simulated delamination problem in composite laminates
using XFEM (extended finite element method) technique. Kumar et al. [16] studied
delamination evolution in composites using modal analysis. Ipek et al. [17] studied
the effect of delamination on the buckling behaviour of composites. Zhao et al. [18]
introduced a stiffness reduction based model to study fatigue damage in composites.
Ismail et al. [19] studied delamination using thermomechanical model. Li and Chen
[20] proposed an extended cohesive damagemodel to predict delaminationmigration
in laminated composites.

From the literature survey, it is found that most papers analysed adhesive joints
using two-dimensional FEM. Further work needs to be done in the area of three-
dimensional finite element methods. Mostly single lap joints were analysed in previ-
ous research works. So the area of lap shear joints needs to be explored more. Also,
the transverse loading condition needs more attention as they have been seldom
addressed.

The objective of the present work is to analyse the lap shear joint made out of
FRP composite with pre-embedded delamination and subjected to transverse loading
condition. Virtual crack closure method has been employed to determine the energy



Delamination Damage Analyses of Lap Shear … 235

release values. Tsai Wu failure criterion has been employed to locate the initiation
of pre-embedded delamination. It is found to lie in the first two layers of the lower
adherend. So, delamination is inserted in that location before the application of load.
An effective FE simulation procedure has been used using proper contact elements
to evaluate the peel and shear stresses. Materials, as well as dimensions used for
analyses, have been chosen from Cheuk and Tong [5]. The current 3D nonlinear
FEM has been employed to validate a 2D experimental result from Cheuk and Tong
[5]. The results are found to be in accord with the existing work.

Following results were studied in this paper:

• Interlaminar peel and shear stress in the interface of adhesive and adherends and
also along the two delamination fronts.

• Second, SERR values are analysed along the two delamination fronts.
• The direction of crack growth is determined based on SERR values.

2 Three-Dimensional Finite Element Modelling of the LSJ

The physical geometry of the lap shear joint used in the present research is shown in
Fig. 1. The dimensions are taken as per Cheuk and Tong [5] model. The adherends
used in the structure are made out of T300/934 carbon epoxy plain-woven prepreg
[5]. Properties of individual layers or plies used in the adherends are mentioned
in Table 1. Each adherend is composed of eight layers of plies. The orientation of
each ply is zero degrees. And the thickness of each ply is of 0.215 mm. Though the
adherends are orthotropic in nature the adhesive used is isotropic in its behaviour.
FM 300-K of Cytek from Cheuk and Tong [5] has been used to join the adherends.
Properties of adhesive taken from Cheuk and Tong [5] are mentioned in Table 2. The

Fig. 1 Geometry of the lap shear joint (LSJ) made out of carbon/epoxy composite
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Table 1 Properties of a ply
of carbon epoxy plain-woven
prepreg (Cheuk and Tong [5])

Elastic moduli, Ex= Ey 57.226 GPa

Transverse elastic modulus, Ez 4.800 GPa

Shear modulus, Gxy 4.481 GPa

Shear moduli, Gxz and Gyz 04.400 GPa

Poisson’s ratio, νxy 0.050

Poisson’s ratios, νxz and νyz 0.280

Table 2 Mechanical
properties of FM 300-K
(Cheuk and Tong [5])

Young’s modulus, E 2.4 Gpa

Poisson’s ratio, ν 0.32

thickness of the adhesive is kept equal to the ply thickness. The delamination used
is symmetrical in nature. Delamination lengths used in the present analyses are 4, 6,
8 and 10 mm.

One end of the structure (Lap Shear Joint) is fixed and the other end is loaded with
a uniformly distributed transverse load of 1 N/mm in the negative z-direction. The
load is applied in equal steps along the width. The load magnitude and location of
pre-embedded delamination have been decided from the Tsai-Wu failure criterion.
Material non- linearity of adhesive has not been included in this research though
geometric nonlinearity has been included as suggested by Cheuk and Tong [5].

ANSYS has been used to evaluate the stresses in the interface of lower adherend
and adhesive and the stresses along two delamination fronts. Peel and out of plane
shear stresses are found to be prominent as per the observations. SOLID 185 of
layered type is used for the adherend and SOLID 185 of solid type is used for the
adhesive.

3 Strain Energy Release Rates (SERR)

The three components of strain energy release rates (SERR) that is the mode I, mode
II and mode III, calculated by Rybicki and Kanninen [7] using the virtual crack
closure technique (VCCT) have been mentioned in the following equations:

GI = 1

2�A
Z f [wt − wb] (1)

GI I = 1

2�A
X f [ut − ub] (2)

GI I I = 1

2�A
Y f [vt − vb] (3)
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Fig. 2 SERR parameters shown in the geometrical configuration of the LSJ

where Z f , X f and Y f denote the mode I, mode II and mode III forces, respec-
tively, which are used to prevent the nodes to move along the delamination front.
Here, [ut , vt ,wt ] and [ub, vb,wb] denote the displacements of the top and the bottom
delaminated surfaces as shown in Fig. 2. �A is the virtual incremental failure area
where �A can be expressed in the form of �A = �a × �a. �a has been shown in
Fig. 2.

4 Finite Element Analyses of the LSJ

4.1 Validation

Before doing the present research, an existing research paper in line with the present
analyses has been validated. Researchwork of Cheuk andTong [5] has been validated
and found to be in good agreement. Here the material and dimensions used are the
same as that of the present analyses. The current 3DFE technique is validatedwith the
existing 2D FE technique. The peel stress plot obtained along the bond line interface
has been shown in Fig. 3. Similarly, shear stresses along the bond line interface
are plotted and found to be in good agreement with the existing paper. The above
plots are also repeated for different delamination lengths and are validated with the
existing paper.

4.2 Problem Definition

As the current 3D FE approach was validated, so it is applied to solve the current
research work. Here the adhesive joint used is of lap shear type. The material and
dimensions are as per Cheuk and Tong [5]. The present model has been shown
in Fig. 1. The load applied is of uniform transverse type and the magnitude used is
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Fig. 3 Peel stress variation along the bond line interface of bottom adherend and adhesive with
delamination of 10 mm

1N/mm. The nonlinear effect of adhesivematerial has been neglected. But geometric
nonlinearity has been included to get the results.

5 Results and Discussions

5.1 Bond Line Stress In-Between Adhesive and Bottom
Adherend of Flat LSJ

Stress along the bond line interface plays a vital role in affecting the structural
integrity of LSJ as a change in Young’s modulus takes place at the interface. Both
3D and 2D plots have been obtained. 2D peel stress plot is shown in Fig. 4.
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Fig. 4 Peel stress plot along the bond line interface with a transverse load of 1 N/mm and 10 mm
delamination
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From the plot, it is clear that peel stress value achieves peak at two locations, one
at the overlapping end and the other near the delamination zone. Similarly, shear
stress plots have also been obtained. The out of plane shear stresses have been found
to be prominent than the in-plane shear stresses.

5.2 3D Variation of Stress In-Between Adhesive and Bottom
Adherend of Flat LSJ

The 3D variation of peel and shear stresses has been found to study the variation of
stresses along the width which was not possible through the 2D stress plots. The 2D
plot variation along the delamination length has been found to be in line with the 3D
plots.

From the 3D plots as shown in Figs. 5 and 6, it can be seen that the variation of peel
and out of plane shear stress achieves two peaks, one near the crack or delamination
zone and the other near the end where the load is applied.

5.3 Interlaminar Stresses Along Two Delamination Fronts

It is observed from Fig. 7 that the peel stress value is more in AB front than the
CD. It signifies higher stress towards the stiffened side than the unstiffened one. It
is also observed that peel stress value is maximum near the mid of the width. As

Fig. 5 Peel stress variation (σ z) in between the adhesive and bottom adherend
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Fig. 6 Out of plane shear stress (τ xz) variation in between the adhesive and bottom adherend
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Fig. 7 Variation of peel stress along the width a AB front and b CD front

the delamination length is increased, peel stress value increases along the AB front
while the opposite thing happens along the CD front.

5.4 Variation of SERRs Along the Delamination Fronts

From Fig. 8, it is observed that GI value dominates along the AB front for 10 mm
delamination length.

From Fig. 9, it is observed that GII dominates along the CD front for 10 mm
delamination length. So it can be concluded that there is a mixed-mode kind of
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Fig. 9 Variation of SERR for 10mm delamination length along CD. a GI variation, bGII variation,
c GIII variation

failure. Variation of GT has been shown in Fig. 10. It is observed from Fig. 10 that
as we increase the delamination length, the GT value increases along the AB front
and it decreases along the CD front. So there would be a faster rate of propagation
of the crack along the AB front or stiffened side of the LSJ.

6 Conclusion

Following conclusions have been drawn based on the 3D FE technique applied to
the LSJ:

• Edge effect has been studied by using the 3D FEM technique. This has given an
insight into the variation of stresses along the width.

• Based on the GT values for different delamination lengths, it can be concluded
that the rate of propagation of crack towards the stiffened side is more than the
unstiffened side.
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• Mixed-mode failure of the Lap Shear Joint has been observed. Mode I has been
found to be dominant towards the stiffened side andmode II towards the unstiffened
side.

• Growth and propagation of delamination reduce the load-bearing capacity of the
structure which needs to be prevented.

• The growth of delamination is not found to be symmetrical as the stress values are
not identical along the two delamination fronts.
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Dynamic Characteristics of Twisted
Composite Panels—A Finite Element
Study

K. S. Shivakumar Aradhya and S. Moorthi

Abstract This paper presents the details of the dynamic analysis of Laminated
Composite Twisted Panels. The effects of different parameters such as the angle of
twist, lamination angle, aspect ratio (plate width to thickness ratio) on the natural
frequencies and mode shapes are considered. The FEM analysis was carried out
using the front-end commercial software ANSYS (Ver: 10.0) (ANSYS(R) Help
System, 2006 [1]) with its modal analysis capabilities. The Block Lanczos algorithm
with subspace iteration technique was used in the extraction of natural frequencies
and corresponding mode shapes. The first few natural frequencies and corresponding
mode shapes were extracted for different combinations of angles of twist, lamination
angles, and aspect ratios. The frequencies extracted are in good agreement with
reported analytical solutions (Qatu and Leissa in Int J Mech Sci 33:927–940, 1991
[2]).

1 Introduction

Twisted cantilever panels have varied applications such as in wide-chord turbine
blades, compressor blades, and impeller and fan blades, particularly in turboma-
chinery. This wide range of practical applications of these twisted panels requires
a proper understanding of their dynamic characteristics for carrying out reliable
designs. Structural elements like turbine blades, subjected to periodic forces may
lead to parametric resonance due to a certain combination of forcing functions.
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Composite materials are being increasingly used in turbomachinery blades
because of their high specific strength and stiffness, and these can be tailored through
the variation of fiber orientation and stacking sequence to obtain an efficient design
[3]. Thus, the parametric resonance characteristics of laminated composite twisted
cantilever panels are of great importance in their engineering design, development,
and applications.

Analytical solutions are seldom capable of accurately analyzing these types of
problems because of the complex orthotropic nature ofmaterial and geometry. In such
situations, recourse is taken to approximate numerical methods. The Finite Element
Method (FEM) is the most commonly used numerical technique. The objectives
of the present investigations are to review the literature related to Finite Element
formulation of dynamic problems applied to orthographic laminated plates [4–6] and
to carry out a parametric FEM analysis of Laminated Composite Twisted Panels. The
effects of different parameters such as the angle of twist, lamination angle, aspect ratio
(plate width to thickness) on the natural frequencies andmode shapes are considered.
The front-end commercial software ANSYS [1] is utilized in the current studies.

2 Geometric Configuration of the Twisted Plate

Figure 1 shows the geometric configuration of the twisted cantilever plate
with relevant nomenclature. The plate considered has a symmetric ply orientation
[θ/ − θ/θ]. The ply orientation (θ) was varied from 0° to 90° in steps of 15°. The
angle of twist F is varied from 0° to 45° in steps of 15°. The plate dimensions are
a = b = 0.1 m. The two aspect ratios considered are (a/h) = 20 and 100.

a: length of the plate; b: width of the plate; h: thickness of the plate; φ: angle of twist; OXYZ: Co-
ordinate system at the fixed end; O’X’Y’Z’: Co-ordinate system at the free end

Fig. 1 Geometric configuration of the twisted cantilever plate
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3 Material Properties

The composite curved plate is assumed to be made of E-glass-epoxy composite
system. The properties of the E-glass-epoxy composite are presented in Table 1.

Table 1 Material properties
(E-glass epoxy composite)

Material property Value

Modulus of elasticity

EXX 60.0 × 109 N/m2

EYY 24.8 × 109 N/m2

EZZ 24.8 × 109 N/m2

Modulus of rigidity

GXY 12 × 109 N/m2

GYZ 12 × 109 N/m2

GXZ 12 × 109 N/m2

Poisson ratio ν 0.3

Density ρ 2324.76 Kg-mass/m3

Volume fraction

E-glass 83.26%

Epoxy 16.73%

4 Finite Element Analysis

1. FEM Model

The FEM meshes for different parametric studies were generated using the
orthotropic 3D Shell elements (SHELL99, ANSYS Ver: 10.0). Figure 2 shows
a typical FEM mesh for the twisted plate with ply angle θ = 45°, thickness ratio
(a/h) = 20 and angle of twist F = 45°.

The FEM mesh details are as follows:

Type of Element: SHELL99; No. of Elements = 400; No. of Nodes: 1281; No. of
Degrees of Freedom per Node (6): UX, UY, UZ and RX, RY, RZ.

The mesh size (number of elements) was arrived at after carrying out a convergent
study to get an optimum solution for each case considered.

2. Boundary Conditions

The fixed boundary conditions considered at the left end correspond to

UX = UY = UZ = RX = RY = RZ = 0
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Fig. 2 Typical FEM shell
model for the twisted plate

3. FEM Analysis

The problem was analyzed using the front-end commercial software ANSYS (Ver:
10.0) and adopting its modal analysis capabilities. The analysis was carried out on a
desktop computer system having the following specifications:

Computer model: Pentium 4; Operating System: Windows XP; System memory
(RAM): 256 MB; Hard disk size: 80 GB.

5 Analytical Solution

Analytical solution for the reported investigations was obtained by Qatu and Leissa
[2] using laminated shallow-shell theory and Ritz method. The relevant equation
provided by them for the computation of natural frequency is

Fij = [λij/(2πa2)] × [E11h2/ρ]0.5 (1)

where λij = Non-dimensional frequency; ρ = Mass density; E11= Modulus of
elasticity; h = Thickness; a = Length of the plate.

6 Results and Discussion

The total investigation consists of fifty-six (56) sets of results, the first twenty-eight
sets correspond to the aspect ratio (a/h) = 20 and the remaining twenty-eight sets
correspond to the other aspect ratio (a/h) = 100. In each case, the angle of twist
φ was varied from 0° to 45° in steps of 15° and for each angle of twist φ, the ply
orientation θ was varied from 0° to 90° in steps of 15°.
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Tables 2 and 3 present typical comparisons of current investigation results with
that of the analytical solutions obtained by Qatu and Leissa [2] for the first three
natural frequencies. Table 2 corresponds to the results for aspect ratio (a/h) = 20,
angle of twist φ = 45°, the ply orientation θ being varied from 0° to 90°. Similar
results for (a/h) = 100, angle of twist φ = 45° (again the ply orientation θ being
varied from 0° to 90°) are shown in Table 3.

Figures 3 and 4 represent typical mode shapes for plates with (a/h) = 20 and 100.
Figure 3 presents the mode shapes for the untwisted plate (φ = 0°) and (a/h) = 20.
The mode shapes correspond to the ply angle variation from 0° to 90° in steps of
30° and for each ply angle, the first four mode shapes are shown. The mode shapes
are shown in plan view and exhibit w-displacement (displacement along z-axis)
dominance.

Similar mode shapes for (a/h) = 100 and φ° = 45° are shown in Fig. 4. The mode
shapes correspond to the ply angle variation from 0° to 90° in steps of 30° and for
each ply angle, the first four mode shapes are shown.

Table 2 Natural frequencies for (a/h) = 20 and Angle of twist � = 45°

Ply angle θ Mode shape

1 2 3

Ansys Theory Ansys Theory Ansys Theory

0 398.03 351.73 1881.7 2022.8 1895.9 2522.7

15 382.51 338.39 1792.4 1949.16 1914.6 2516.49

30 343.03 304.77 1630.7 1763.8 1842 2432.56

45 299.5 566.62 1452 1553.47 1701.7 2264.87

60 269.88 239.38 1323.6 1402.73 1581.9 2121.04

75 257.38 227.3 1264 1333.29 1513.7 2043.53

90 254.67 224.7 1249.2 1316.16 1490.1 2018.12

Table 3 Natural frequencies for (a/h) = 100 and Angle of twist � = 45°

Ply angle θ Mode shape

1 2 3

Ansys Theory Ansys Theory Ansys Theory

0 79.9 70.47 401.98 419.05 1174.5 1339.67

15 77.09 67.93 387.11 403.75 1161.4 1290.14

30 69.58 61.38 349.05 364.52 1099.3 1165.47

45 60.84 53.74 305.63 319.19 965.36 1023.72

60 54.53 48.1 274.45 236.27 870.74 920.76

75 51.75 45.58 260.48 271.39 828.72 873.51

90 51.12 45.02 257.3 268.02 819.34 862.53
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Fig. 3 Mode shapes for aspect ratio (a/h) = 20 and angle of twist φ = 0° (untwisted)

Consolidated results of the entire investigation are shown in Figs. 5 and 6. Figure 5
represents the variation of natural frequencies with respect to the angle of twist (φ)
and for different ply orientations (θ) for a plate with an aspect ratio (a/h) = 20.
Similar results for a plate with an aspect ratio (a/h) = 100 are shown in Fig. 6.
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Fig. 4 Mode shapes for aspect ratio (a/h) = 100 and angle of twist φ = 45°

7 Conclusions

1. For untwisted plate (Fig. 3) and when θ = 0°, the first four mode shapes are,
in order, first span-wise bending mode (1B), first torsional mode (1T), first
chord-wise bending mode (1C) and finally second bending mode (2B). For θ

= 0°, there exists a material symmetry about the x-axis, and it is seen that
the mode shapes are either symmetric or antisymmetric about the x-axis. As θ

increases, this symmetry/antisymmetry is lost. However, the material symmetry
is recovered when θ becomes 90° and the mode shape is again either symmetric
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Fig. 5 Variation of natural frequencies with respect to the angle of twist (φ) and for different ply
orientations (θ ) for a plate with an aspect ratio (a/h) =20

Fig. 6 Variation of natural frequencies with respect to the angle of twist (φ) and for different ply
orientations (θ ) for a plate with an aspect ratio (a/h) = 100
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or antisymmetric. This observation is in concurrence with the results of Ref.
[2].

2. When the plate starts to have an initial twist, the second mode shape does not
remain as the torsional mode. For φ = 30° and 45°, the second mode becomes
second bending mode (2B).

3. The peak values of fundamental frequencies of the twisted plates are observed
when the fibers are perpendicular to the clamped edge in all the cases studied.

4. For plates with higher aspect ratio [(a/h) = 20], the second mode of vibration
corresponds to the first torsional mode (1T).

5. For both the aspect ratios, (a/h) = 20 and 100 and ply orientations varying
from 00 to 900, the natural frequencies decrease with increasing angle of twist
(Figs. 5 and 6).

6. For fiber angles between 00 and 900, the coupling between the modes exists,
and the strength of the coupling increases both with increasing fiber angle and
increasing and angle of twist.

7. Increasing in the angle of twist is found to decrease the fundamental frequency
which corresponds to the first bending mode.

8. An analysis of the mode shapes shows that the second mode shape is not always
the first torsional mode; it can be the second bending mode, especially for the
plates with fibers parallel to the clamped edge (θ = 90°).

9. The phenomenon of a certain mode-shape-changing gradually to a completely
different mode shape as a certain parameter (fiber angle) changes is observed;
more nodal lines tend to appear approximately parallel to the direction of the
fibers.

10. The number of symmetric modes increases as the angle of twist increases, when
θ = 90°.

11. The results of the current investigation are in good agreement with reported
analytical solutions [2], the maximum deviation being 12.5%.

12. The accuracy of the results obtained permits one to conclude that the FEM
method can be applied straightforwardly to investigate practical problems such
as studying the vibration characteristics of laminated twisted cantilever plates.
The method provides a quick means for the designer to assess the safety of the
composite structures to withstand dynamic loads.
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Analytical Solution for Two-Dimensional
Axisymmetric Thermoelastic Behavior
in the Multilayer Composite Hollow
Sphere

N. J. Wange, S. P. Pawar and M. N. Gaikwad

Abstract This article deals with an analytic solution of temperature distribution,
displacement and stress distribution function for two-dimensional multilayered hol-
low spheres. The solution is obtained by using the separation of the variable method.
Homogenous boundary conditions of the first or second kind can be applied on sur-
faces of θ = constant. However, homogeneous boundary conditions of the third kind
(convection) are used in the r-direction. Under prescribed conditions, the tempera-
ture distribution, displacement and thermal stresses in the sphere are to be analyzed
under the steady-state temperature field. The layers of the multilayer sphere are
homogeneous and isotropic.

Keywords Composite hollow sphere · Temperature distribution · Displacement
and thermal stresses · Steady state

1 Introduction

The temperature effect on thermal stresses in the composite regions consisting of
several layers have numerous applications in engineering, Technology, manufactur-
ing fields, etc. The increasing use of multilayer composite materials in engineering
applications has resulted in considerable research activity in recent years. The use
of composite materials of multilayer type has been tremendous in many engineering
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fields such as aerospace, automobiles, chemical and energy, civil and infrastructure,
sports and recreation, biomedical engineering, and so on.

An understanding of thermally induced stresses in multilayer isotropic bodies is
essential for a comprehensive study of their response due to exposure to a temperature
field, which may, in turn, occur in service or during the manufacturing stages.

The Laplace transform technique is used by Carslaw and Jaeger [1], they dis-
cussed the infinite composite of two different medium and obtained the temperature
distribution. They solved the transient boundary value problem of heat conduction in
solids consisting of many parallel layers. In practice, if the number of layers is more
than two, the inverse of the Laplace transform becomes quite difficult. The Adjoin-
solution technique which has been introduced by Goodman [2] provides a method
of solution to a large class of heat conduction problems in composite slabs from the
solution but one adjoin problem. The primary disadvantage of the Adjoin-solution
method is that only the solutions of the boundaries (i.e., interface) of the layers can
be determined. Recently Tittle [3] introduced a technique for orthogonal expansion
of functions over a one-dimensional multilayer region. The method essentially is
an extension of Sturm–Liouville problem to the case of one-dimensional multilayer
region and it has the advantage on other analytic methods is that its application to
the solution of the boundary value problem of heat conduction is relatively simple.
Bulavin and Kashcheev [4] used the method of separation of variables and orthog-
onal expansion of functions over a one-dimensional multilayer region to solve the
transient heat conduction problem involving distributed volume heat sources in a
multilayer region.

Recently, Vollbrech [5] discussed the stress in cylindrical and spherical walls sub-
jected to internal pressure stationary heat flow. Kandil [6] has studied the effect of
steady-state temperature and pressure gradient on the compound cylinder under high
pressure and temperature. Ghosn and Sabbaghian [7] investigated a one-dimensional
axisymmetric quasi-static coupled thermoelasticity problem. The solution technique
uses the Laplace transform. The inversion to the real domain is obtained by means
of Cauchy’s theorem of residues. Sherif and Anwar [8] discussed the problem of
infinitely long elastic circular cylinder whose inner and outer surfaces are subjected
to a known temperature and are traction free. They have neglected both the inertia
term and relaxation effects. Chen and Yang [9] discussed the thermal response of one
dimensional quasi-static coupled thermoelastic problem of an infinitely long cylin-
der composed of two different materials. They applied the Laplace transform with
respect to time and used the Fourier series and matrix operation to obtain the solu-
tion. Jane and Lee [10] considered the solution by using the Laplace transform and
the finite difference method. The cylinder was composed of multilayer of different
materials. They obtained a solution for the temperature and thermal stress distribu-
tions in a transient state. Lee [11] studied the one dimensional quasi-static coupled
thermoelastic problem of the multilayered sphere with time-dependent boundary
conditions is considered. The medium is without body forces and heat generation.
Laplace transform and finite difference methods are used to obtain the solution of a
wide range of transient thermal stresses.
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The study of all above-cited papers and other referred literature on multilayer
composites with different geometries reveals that results appearing with complexities
such as space and time-dependent properties. In most of the articles, the authors
have discussed the heat conduction problem only. In view of these findings, there is
a need to quantify the conclusions regarding the effect of temperature asymmetry
in fundamental problems where these multilayer composites are homogeneous and
isotropic. Pawar et al. [12] discussed the problem where the temperature and thermal
stresses are discussed under surface temperature asymmetry and heat generation
and obtained analytic solution. Recently, Pawar et al. [13] discussed the problem
where the steady temperature distribution and stress distribution function for one-
dimensional three-layered sphere subjected to asymmetric surface temperature and
internal heat generation is presented. The solutions are obtained and the effects on
thermal stresses due to heat generation and surface temperature asymmetry parameter
in the sphere are analyzed.

This article deals with an analytic solution of temperature distribution, displace-
ment, and stress distribution function for two-dimensional multilayered steady-state
hollow spheres. The solution is obtained by using the separation of the variable
method, The radial and tangential displacement inside the sphere is discussed with
the help of Goodier’s displacement potential and Boussinesq harmonic functions.

2 Formulation of the Problem

This work deals with the two-dimensional axisymmetric thermoelastic problem of
multilayer composite hollow sphere using the quasi-static approach. Composite n-
layer sphere contains an inner region r0 ≤ r ≤ r1, middle region r1 ≤ r ≤ rn−1, and
an outer region rn−1 ≤ r ≤ rn which are in perfect thermal contact. Homogeneous
boundary conditions of the first and second kind are applied to the angular surfaces
of θ = 0 and θ = � . Third kind boundary condition set on the inner radial surface
i = 1, r = r0 and outer i = n, r = rn radial surfaces. Under these more realistic
prescribed conditions the temperature distribution, displacement and thermal stresses
in the sphere are to be analyzed under the steady-state temperature field. The layers
of the multilayer sphere are homogeneous and isotropic, k(i), (i = 1, 2, 3) are the
thermal conductivities of material of these layers.

3 Heat Conduction Equation

Assume two-dimensional steady-state radial temperature field the heat conduction
equation in the i th layer of the composite is given as [14].
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Boundary, interface and initial conditions as
For the inner surface of the first layer (i = 1)
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For outer surface of the nth layer (i = n)

k(n) ∂T
(n)(rn, θ)

∂r
+ h(n)T (n)(rn, θ) = 0 (3)

For θ = 0 surface (i = 1, 2, 3 . . . n)

T (i)(r, θ = 0) = 0 or
∂T (i)(r, θ = 0)

∂θ
= 0 (4)

For θ = � surfaces (i = 1, 2, 3 . . . n)

T (i)(r, θ = �) = 0 or
∂T (i)(r, θ = �)

∂θ
= 0 (5)

For Inner interface of the i th layer i = 2, 3 . . . n

T (i)(ri−1, θ) = T (i−1)(ri−1, θ) (6)

k(i) ∂T
(i)(ri−1, θ)

∂r
= k(i−1) ∂T

(i−1)(ri−1, θ)

∂r
(7)

For the outer interface of the i th layer i = 1, 2, 3 . . . n − 1

T (i)(ri , θ) = T (i+1)(ri , θ) (8)

k(i) ∂T
(i)(ri , θ, t)

∂r
= k(i+1) ∂T

(i+1)(ri , θ, t)

∂r
(9)

Initial condition is

T (i)(ri , θ) = f (i)(r, θ) (10)
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4 Thermoelastic Problem

Two-dimensional problemof a spherical body, It is assumed that the body is deformed
symmetrically with respect to the coordinate axis z. Making use of the spherical
coordinate system (r, θ, φ), the force equilibrium equations in the directions of r
and θ as [N. Noda].
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The constitutive equations in the spherical coordinate system, or the generalized
Hooke’s law as
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The components of strain for an axisymmetric deformation in the spherical coor-
dinate system are
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ε(i)
rr = ∂u(i)

r

∂r

ε
(i)
θθ = u(i)

r

r
+ 1

r

∂u(i)
θ

∂θ

ε
(i)
φφ = u(i)

r

r
+ cot θ

u(i)
θ

r

ε
(i)
rθ = 1

2

(
1

r

∂u(i)
r

∂θ
+ ∂u(i)

θ

∂r
− u(i)

θ

r

)

e(i) = ∂u(i)
r

∂θ
+ 2

u(i)
r

r
+ cot θ

u(i)
θ

r
+ 1

r

∂u(i)
θ

∂θ
(18)

Substituting Eqs. (17) and (18) into Eqs. (11) and (12) Navier’s equations of
thermoelasticity for axisymmetric problems may be expressed as

(
λ(i) + 2μ(i)

)∂e(i)

∂r
− 2μ(i)

r sin θ

∂(ω
(i)
φ sin θ)

∂θ
− β(i) ∂τ (i)

∂r
+ F (i)

r = 0 (19)

(
λ(i) + 2μ(i)

)1
r

∂e(i)

∂θ
− 2μ(i)

r

∂(rω(i)
φ )

∂r
− β(i) 1

r

∂τ (i)

∂θ
+ F (i)

θ = 0 (20)

where ω
(i)
φ = 1

2r

[
∂(ru(i)

θ )

∂r − ∂u(i)
r

∂θ

]
The solution of the Navier’s equations without the body force for the axisymmet-

ric problem in the spherical coordinate system can be expressed by the Goodier’s
thermoelastic displacement potential �(i) and the Boussinesq harmonic functions
ϕ(i) and ψ(i)

u(i)
r = ∂�(i)

∂r
+ ∂ϕ(i)

∂r
+ r cos θ

∂ψ(i)

∂r
− (3 − 4ν(i))ψ(i) cos θ

u(i)
r = ∂�(i)

∂r
+
[
∂ϕ(i)

∂r
+ r cos θ

∂ψ(i)

∂r
− (3 − 4ν(i))ψ(i) cos θ

]

u(i)
r = u(i)

r + u(i)
r (21)

u(i)
θ = 1

r

∂�(i)

∂θ
+ 1

r

∂ϕ(i)

∂θ
+ cos θ

∂ψ(i)

∂θ
− (3 − 4ν(i))ψ(i) sin θ

u(i)
θ = 1

r

∂�(i)

∂θ
+
[
1

r

∂ϕ(i)

∂θ
+ cos θ

∂ψ(i)

∂θ
− (3 − 4ν(i))ψ(i) sin θ

]

u(i)
θ = u(i)

θ + u(i)
θ (22)
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where the component with a single bar is displacement with respect to �(i) and
component with double bar is displacement with respect to ϕ(i) and ψ(i). G(i), ν(i)

and a(i)
t are the shear modulus, Poisson’s ratio, coefficient of thermal expansion for

the material of multilayer hollow sphere. Functions must satisfy the equations as

∇2�(i) = K (i)τ (i),∇2ϕ(i) = 0, ∇2ψ(i) = 0 (23)

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
∂2

∂θ2
+ 1

r2
cot θ

∂

∂θ

K (i) = 1 + ν(i)

1 − ν(i)
a(i)
t

The strain components are represented as

ε(i)
rr = ∂2�(i)

∂r2
+ ∂2ϕ(i)

∂r2
+ r cos θ

∂2ψ(i)

∂r2
− 2(1 − 2ν(i)) cos θ

∂ψ(i)

∂r

ε
(i)
θθ = 1

r

∂�(i)

∂r
+ 1

r2
∂2�(i)

∂θ2
+ 1

r

∂ϕ(i)

∂r
+ 1

r2
∂2ϕ(i)

∂θ2
+ cos θ

∂ψ(i)

∂r

+ 1

r
cos θ

∂2ψ(i)

∂θ2
+ 2(1 − 2ν(i))

1

r
sin θ

∂ψ(i)

∂r

ε
(i)
φφ = 1

r

∂�(i)

∂r
+ cot θ

1

r2
∂�(i)

∂θ
+ 1

r

∂ϕ(i)

∂r
+ cot θ

1

r2
∂ϕ(i)

∂θ

+ cos θ
∂ψ(i)

∂r
+ cos2 θ

sin θ

1

r

∂ψ(i)

∂θ

ε
(i)
rθ = ∂2

∂r∂θ

(
�(i)

r

)
+ ∂2

∂r∂θ

(
ϕ(i)

r

)
+ (1 − 2ν(i)) sin θ

∂ψ(i)

∂r

+ cos θ
∂2ψ(i)

∂r∂θ
− 2(1 − ν(i))

1

r
cos θ

∂ψ(i)

∂θ

The stress components in the spherical coordinate system are represented in terms
of three functions �(i), ϕ(i) and ψ(i).

σ (i)
rr = 2G(i)

[
∂2�(i)

∂r2
− K (i)τ (i)

]

+ 2G(i)

[
∂2ϕ(i)

∂r2
+ r cos θ

∂2ψ(i)

∂r2
− 2(1 − ν(i)) cos θ

∂ψ(i)

∂r
+ 2ν(i) 1

r
sin θ

∂ψ(i)

∂θ

]

σ (i)
rr = σ

(i)
rr + σ

(i)
rr (24)
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σ
(i)
θθ = 2G(i)

⎡
⎢⎢⎣

1

r

∂�(i)

∂r
+ 1

r2
∂2�(i)

∂θ2
+ 1

r

∂ϕ(i)

∂r
+ 1

r2
∂2ϕ(i)

∂θ2
+ (1 − 2ν(i)) cos θ

∂ψ(i)

∂r

+ 1

r
cos θ

∂2ψ(i)

∂θ2
+ 2(1 − ν(i))

1

r
sin θ

∂ψ(i)

∂θ
− K (i)τ (i)

⎤
⎥⎥⎦

σ
(i)
θθ = 2G(i)

[
1

r

∂�(i)

∂r
+ 1

r2
∂2�(i)

∂θ2
− K (i)τ (i)

]

+ 2G(i)

[
1

r

∂ϕ(i)

∂r
+ 1

r2
∂2ϕ(i)

∂θ2
+ (1 − 2ν(i)) cos θ

∂ψ(i)

∂r
+ 1

r
cos θ

∂2ψ(i)

∂θ2
+ 2(1 − ν(i))

1

r
sin θ

∂ψ(i)

∂θ

]

σ
(i)
θθ = σ

(i)
θθ + σ

(i)
θθ (25)

σ
(i)
φφ = 2G(i)

[
1
r

∂�(i)

∂r + cot θ 1
r2

∂�(i)

∂θ
+ 1

r
∂ϕ(i)

∂r + cot θ 1
r2

∂ϕ(i)

∂θ
+ (1 − 2ν(i)) cos θ

∂ψ(i)

∂r

+ 1
r (cos θ cot θ + 2ν(i) sin θ)

∂ψ(i)

∂θ
− K (i)τ (i)

]

σ
(i)
φφ = 2G(i)

[
1

r

∂�(i)

∂r
+ cot θ

1

r2
∂�(i)

∂θ
− K (i)τ (i)

]

+ 2G(i)

[
1

r

∂ϕ(i)

∂r
+ cot θ

1

r2
∂ϕ(i)

∂θ
+ (1 − 2ν(i)) cos θ

∂ψ(i)

∂r
+ 1

r
(cos θ cot θ + 2ν(i) sin θ)

∂ψ(i)

∂θ

]

σ
(i)
φφ = σ

(i)
φφ + σ

(i)
φφ (26)

σ
(i)
rθ = 2G(i)

[
∂2

∂r∂θ

(
�(i)

r

)]

+ 2G(i)

[
∂2

∂r∂θ

(
ϕ(i)

r

)
+ (1 − 2ν(i)) sin θ

∂ψ(i)

∂r
+ cos θ

∂2ψ(i)

∂r∂θ
− 2(1 − ν(i))

1

r
cos θ

∂ψ(i)

∂θ

]

σ
(i)
rθ = 2G(i)

[
∂2

∂r∂θ

(
�(i)

r

)]

+ 2G(i)

[
∂2

∂r∂θ

(
ϕ(i)

r

)
+ (1 − 2ν(i)) sin θ

∂ψ(i)

∂r
+ cos θ

∂2ψ(i)

∂r∂θ
− 2(1 − ν(i))

1

r
cos θ

∂ψ(i)

∂θ

]

σ
(i)
rθ = σ

(i)
rθ + σ

(i)
rθ (27)

The mechanical boundary conditions on the traction free surfaces r = r0 and
r = rn are

σ (i)
rr = 0 and σ

(i)
rθ = 0 (28)

Assuming the interface conditions as i = 1, 2, 3, . . . n − 1

σ (i)
rr (ri ) = σ (i+1)

rr (ri )
σ

(i)
rθ (ri ) = σ

(i+1)
rθ (ri )

σ
(i)
θθ (ri ) = σ

(i+1)
θθ (ri )

(29)
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5 Solutions

Heat Conduction
The separation of variables method is used to solve the problem.

T (i)(r, θ) = R(i)(r)θ (i)(θ) (30)

d2R(i)(r)

dr2
�(i)(θ) + 2

r

dR(i)(r)

dr
�(i)(θ) + 1

r2
R(i)(r)

d2�(i)(θ)

dθ2
+ cot θ

r2
R(i)(r)

d�(i)(θ)

dθ
= 0

− r2
[
R(i)′′ (r)

R(i)(r)
+ 2

r

R(i)′ (r)

R(i)(r)

]
= �(i)′′ (θ)

�(i)(θ)
+ cot θ

�(i)′ (θ)

�(i)(θ)
= −m(1 + m) (31)

where m(1 + m) = (
λ(i)
m

)2

r2R(i)′′(r) + 2r R(i)′(r) − m(1 + m)R(i)(r) = 0

R(i)
m (r) = a(i)

m rm + b(i)
m r−(1+m) (32)

Application of the interface conditions (8)–(11) and boundary conditions (2)–(3)
to the transverse eigenfunction R(i)

m (r). The matrix (2n × 2n) are as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1in c2in 0 0 . . . 0 0 0 0 . . . 0 0 0 0
x11 x12 x13 x14 . . . 0 0 0 0 . . . 0 0 0 0
y11 y12 y13 y14 . . . 0 0 0 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . xi1 xi2 xi3 xi4 . . . 0 0 0 0
0 0 0 0 . . . yi1 yi2 yi3 yi4 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 0 0 0 . . . xi−1,1 xi−1,2 xi−1,3 xi−1,4

0 0 0 0 . . . 0 0 0 0 . . . yi−1,1 yi−1,2 yi−1,3 yi−1,4

0 0 0 0 . . . 0 0 0 0 . . . 0 0 c1out c2out

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
m

b(1)
m

. . .

. . .

a(i)
m

b(i)
m

. . .

. . .

a(n)
m

b(n)
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
. . .

. . .

0
0
. . .

. . .

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where

c1in = k(1)mrm−1
1 + h(1)rm1

c2in = −k(1)(1 + m)r−m−2
1 + h(1)r−1−m

1

xi1 = rmi xi2 = r−1−m
i xi3 = −rmi xi4 = −r−1−m

i

yi1 = k(i)mrm−1
i yi2 = k(i)(−1 − m)r−m−2

i yi3 = −k(i+1)mrm−1
i

yi4 = k(i+1)(1 + m)r−m−2
i

c1out = k(n)mrm−1
n + h(n)rmn c2out = −k(n)(1 + m)r−m−2

n + h(n)r−1−m
n

For heat flux to be continuous at the layer interfaces for all values of t.

α(i)
(
λ(i)
m

)2 = α(1)
(
λ(1)
m

)2
, i = 1, 2, . . . n (34)
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In the above matrix equation, λ(i)
m (i �= 1) maybe written in terms of λ(1)

m using the
above equation. Subsequently, transverse eigen condition can be obtained by setting
the determinant of the (2n × 2n) coefficient matrix equal to zero. And after that
eigenvalue determined the constants a(i)

m and b(i)
m .

The equation in �(i)(θ) can be written as

�(i)′′(θ)

�(i)(θ)
+ cot θ

�(i)′(θ)

�(i)(θ)
= −m(1 + m)

�(i)′′ + cot θ�(i)′ + m(m + 1)�(i) = 0 (35)

By change of variable using μ = cos θ

�(i)′ = − sin θ
d�(i)

dμ
(36)

�(i)′′ = − cos θ
d�(i)

dμ
+ sin2 θ

d2�(i)

dμ2
(37)

Substituting Eqs. (36) and (37) in Eq. (35).

− cos θ
d�(i)

dμ
+ sin2 θ

d2�(i)

dμ2
+ cos θ

sin θ

(
− sin θ

d�(i)

dμ

)
+ m(m + 1)�(i) = 0

(38)

(1 − μ2)
d2�(i)

dμ2
− 2μ

d�(i)

dμ
+ m(m + 1)�(i) = 0

d

dμ

[
(1 − μ2)

d�(i)

dμ

]
+ m(m + 1)�(i) = 0 (39)

�(i)
m (μ) = c1P

(i)
m (μ) + c2Q

(i)
m (μ)

�(i)
m (μ) = c1P

(i)
m (cos θ) + c2Q

(i)
m (cos θ) (40)

By using boundary conditions

Q(i)
m (cos 0) = Q(i)

m (1) = ∞

Hence c2 = 0

�(i)
m (θ) = c1P

(i)
m (cos θ)

Hence

c1 �= 0,�(i)
m (θ) = P (i)

m (cos θ) (41)
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It is assumed that the solution of the problem is in the form of a series expansion
of the derived eigenfunctions as follows such that

T (i)(r, θ) =
∞∑

m=0

R(i)
m (r)�(i)

m (θ)

T (i)(r, θ) =
∞∑

m=0

(
a(i)
m rm + b(i)

m r−m−1
)
P (i)
m (cos θ) (42)

Initial temperature is f (i)

6 Displacement Components

Displacement component corresponding to �(i) and τ (i)

Therefore, the temperature change τ (i) obtained as

τ (i) = T (i)(r, θ) − f (i)

τ (i) =
∞∑

m=0

(
a(i)
m rm + b(i)

m r−m−1
)
P (i)
m (cos θ) − f (i) (43)

The Goodier’s thermoelastic displacement potential �(i) satisfying the first of
Eq. (25) is obtained as [15]

�(i) = K (i)

{
− 1

6
f (i)r2 +

∞∑
m=0

[
1

2(2m + 3)
a(i)
m rm+2 − 1

2(2m − 1)
b(i)
m r−m+1

]
P(i)
m (cos θ)

}
(44)

Displacement component corresponding to ϕ(i) and ψ(i)

We have considered the problem of axisymmetric thermoelastic deformation in a
hollowmultilayer sphere. In this the coordinate variable θ is defined within the inter-
val 0 ≤ θ ≤ π . The Legendre functions P (i)

m (cos θ) is considered as the fundamental
solution of the Boussinesq harmonic functions ϕ(i) and ψ(i) for the axisymmetric
case in the spherical coordinate system for m = 0, 1, 2, 3 . . . thus the displacement
functions ϕ(i) and ψ(i) are represented by the series forms as [Noda].

ϕ(i)
m =

∞∑
m=0

(
c′(i)
1m r

m + c′(i)
2m r

−m−1
)
P (i)
m (cos θ) (45)

ψ(i)
m =

∞∑
m=0

(
d

′(i)
1m rm + d

′(i)
2m r−m−1

)
P (i)
m (cos θ) (46)
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The displacements corresponding to the Goodier’s thermoelastic potential func-
tions �(i) and the displacement functions ϕ(i) and ψ(i).

u(i)
r = K (i)

{
− 1

3
f (i)r +

∞∑
m=0

[
m + 2

2(2m + 3)
aimr

m+1 + m − 1

2(2m − 1)
bimr

−m
]
Pim(cos θ)

}
(47)

u(i)
r = ∂

∂r

( ∞∑
m=0

(
c

′(i)
1m rm + c

′(i)
2m r−m−1

)
P(i)
m (cos θ)

)
+ r cos θ

∂

∂r

( ∞∑
m=0

(
d

′(i)
1m rm + d

′(i)
2m r−m−1

)
P(i)
m (cos θ)

)

− (3 − 4ν(i)) cos θ

( ∞∑
m=0

(
d

′(i)
1m rm + d

′(i)
2m r−m−1

)
P(i)
m (cos θ)

)

u(i)
r =

∞∑
m=0

(
c

′(i)
1m mrm−1 + c

′(i)
2m (−m − 1)r−m−2

)
P(i)
m (cos θ)

+ r cos θ

∞∑
m=0

(
d

′(i)
1m mrm−1 + d

′(i)
2m (−m − 1)r−m−2

)
P(i)
m (cos θ)

− (3 − 4ν(i)) cos θ

( ∞∑
m=0

(
d

′(i)
1m rm + d

′(i)
2m r−m−1

)
P(i)
m (cos θ)

)

u(i)
r =

∞∑
m=0

(
c

′(i)
1m mrm−1 − c

′(i)
2m (m + 1)r−m−2

)
P(i)
m (cos θ)

+
∞∑

m=0

[
(m − 3 + 4ν(i))d

′(i)
1m rm − (m + 4 − 4ν(i))d

′(i)
2m r−m−1

]

× 1

2m + 1

[
(m + 1)P(i)

m+1(cos θ) + mP(i)
m−1(cos θ)

]
(48)

where cos θ P (i)
m (cos θ) = 1

2m+1

[
(m + 1)P (i)

m+1(cos θ) + mP (i)
m−1(cos θ)

]
It can be seen from expression (48) that this is not suitable for solving practical

boundary value problem because it contains three kinds Legendre functions with
different orders n − 1, n, n + 1 under the summation signs. Two solve this problem
we introduce new unknown constants given by

c
′(i)
1m = c(i)

1m − (m − 4 + 4v(i))d(i)
1m−2

c
′(i)
2m = c(i)

2m − (m + 5 − 4v(i))d(i)
2m+2

d
′(i)
1m = (2m + 1)d(i)

1m−1

d
′(i)
2m = (2m + 1)d(i)

2m+1

The function ϕ(i) and ψ(i) reduce to

ϕ(i) =
∞∑

m=0

{[
c(i)
1,m − (m − 4 + 4ν(i))d(i)

1,m−2

]
rm +

[
c(i)
2,m − (m + 5 − 4ν(i))d(i)

2,m+2

]
r−m−1

}
P(i)
m (cos θ)

(49)

ψ(i) =
∞∑

m=0

[
(2m + 1)d(i)

1,m−1r
m + (2m + 1)d(i)

2,m+1r
−m−1

]
P (i)
m (cos θ) (50)
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Using new unknown constants (48) can be expressed as

u(i)
r =

∞∑
m=0

[
mc(i)

1,mr
m−1 − (m + 1)c(i)

2,mr
−m−2 + (m + 1)(m − 2 + 4ν(i))d(i)

1,mr
m+1 − m(m + 3 − 4ν(i))d(i)

2,mr
−m

]
P(i)
m (cos θ)

Similarly the tangential displacement with respect to ϕ(i) and ψ(i)

u(i)
θ

= −
(
1 − μ2

)1/2 ∞∑
m=1

[
c(i)1,mrm−1 + c(i)2,mr−m−2 + (m + 5 − 4ν(i))d(i)

1,mrm+1

+(m − 4 + 4ν(i))d(i)
2,mr−m

]
m + 1

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]

The radial displacement and tangential displacement is obtained as

u(i)
r = K (i)

{
− 1

3
f (i)r +

∞∑
m=0

[
m + 2

2(2m + 3)
a(i)
m rm+1 + m − 1

2(2m − 1)
b(i)
m r−m

]
P(i)
m (cos θ)

}

+
∞∑

m=0

[
mc(i)

1,mr
m−1 − (m + 1)c(i)

2,mr
−m−2 + (m + 1)(m − 2 + 4ν(i))d(i)

1,mr
m+1

−m(m + 3 − 4ν(i))d(i)
2,mr

−m

]
P(i)
m (cos θ) (51)

u(i)
θ

= −K (i)
(
1 − μ2

)1/2 ∞∑
m=1

[
1

2(2m + 3)
a(i)
m rm+1 − 1

2(2m − 1)
b(i)
m r−m

]
m + 1

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]

−
(
1 − μ2

)1/2 ∞∑
m=1

[
c(i)1,mrm−1 + c(i)2,mr−m−2 + (m + 5 − 4ν(i))d(i)

1,mrm+1

+(m − 4 + 4ν(i))d(i)
2,mr−m

]
m + 1

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]

(52)

7 Thermal Stresses

The stress components corresponding to �(i) and τ (i)

σ
(i)
rr = 2G(i)K (i)

{
2

3
f (i) +

∞∑
m=0

[
m2 − m − 4

2(2m + 3)
a(i)
m rm − m2 + 3m − 2

2(2m − 1)
b(i)
m r−m−1

]
P(i)
m (cos θ)

}
(53)

The stress components corresponding to ϕ(i) and ψ(i)

σ
(i)
rr = 2G(i)

∞∑
m=0

[
m(m − 1)c(i)

1,mr
m−2 − (m + 1)(m + 2)c(i)

2,mr
−m−3

+(m + 1)(m2 − m − 2 + 2ν(i))d(i)
1,mr

m + m(m2 + 3m − 2ν(i))d(i)
2,mr

−m−1

]
P(i)
m (cos θ)

(54)

σ (i)
rr = 2G(i)K (i)

{
2

3
f (i) +

∞∑
m=0

[
m2 − m − 4

2(2m + 3)
a(i)
m rm − m2 + 3m − 2

2(2m − 1)
b(i)
m r−m−1

]
P(i)
m (cos θ)

}

+ 2G(i)
∞∑

m=0

[
m(m − 1)c(i)

1,mr
m−2 − (m + 1)(m + 2)c(i)

2,mr
−m−3

+(m + 1)(m2 − m − 2 + 2ν(i))d(i)
1,mr

m + m(m2 + 3m − 2ν(i))d(i)
2,mr

−m−1

]
P(i)
m (cos θ)

(55)



268 N. J. Wange et al.

σ
(i)
θθ

= 2G(i)K (i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

3
f (i) +

∞∑
m=0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2(2m + 3)
a(i)
m rm

×
{
(m + 1)

μ

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]
− (m + 1)2P(i)

m (μ)

}

+ 1

2(2m − 1)
b(i)
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×
{
−(m + 1)

μ

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]
+ (m − 1)2P(i)

m (μ)

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 2G(i)
∞∑

m=0

[
m2c(i)1,mrm−2 + (m + 1)2c(i)2,mr−m−3 + (m + 1)(m2 + 4m + 2 + 2ν(i))d(i)

1,mrm

+m(m2 − 2m − 1 + 2ν(i))d(i)
2,mr−m−1

]
P(i)
m (cos θ)

+ 2G(i)
∞∑

m=1

[
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2,mr−m−1

]
(m + 1)

μ

1 − μ2

[
μP(i)
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m+1(μ)

]

(56)

σ
(i)
φφ

= 2G(i)K (i)
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m rm

×
{
−(m + 1)

μ
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[
μP(i)

m (μ) − P(i)
m+1(μ)

]
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m (μ)

}
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2(2m − 1)
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×
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[
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m (μ) − P(i)
m+1(μ)
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+ 2G(i)
∞∑

m=0

⎡
⎣ mc(i)1,mrm−2 − (m + 1)c(i)2,mr−m−3 + (m + 1)

[
m − 2 − 2ν(i)(2m + 1)

]
d(i)
1,mrm

−m
[
m + 3 − 2ν(i)(2m + 1)

]
d(i)
2,mr−m−1

⎤
⎦P(i)

m (cos θ)

− 2G(i)
∞∑

m=1

[
c(i)1,mrm−2 + c(i)2,mr−m−3 + (m + 5 − 4ν(i))d(i)

1,mrm

+(m − 4 + 4ν(i))d(i)
2,mr−m−1

]
(m + 1)

μ

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]

(57)

σ
(i)
rθ = −2G(i)K (i)

(
1 − μ2

)1/2 ∞∑
m=1

[
m + 1

2(2m + 3)
a(i)
m rm + m

2(2m − 1)
b(i)
m r−m−1

]
× m + 1

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

]

− 2G(i)
(
1 − μ2

)1/2 ∞∑
m=1

[
(m − 1)c(i)1,mrm−2 − (m + 2)c(i)2,mr−m−3

+(m2 + 2m − 1 + 2ν(i))d(i)
1,mrm − (m2 − 2 + 2ν(i))d(i)

2,mr−m−1

]

× m + 1

1 − μ2

[
μP(i)

m (μ) − P(i)
m+1(μ)

] (58)

unknown constants are determined by using boundary and interface conditions
σ (i)
rr = 0 and σ

(i)
rθ = 0 at r = r0 and r = rn .

Assuming the interface conditions as i = 1, 2, 3, . . . n − 1.

σ (i)
rr (ri ) = σ (i+1)

rr (ri )

σ
(i)
rθ (ri ) = σ

(i+1)
rθ (ri )

σ
(i)
θθ (ri ) = σ

(i+1)
θθ (ri )
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8 Conclusion

In this paper, the exact analytical solutions are presented for displacement and ther-
mal stresses with two-dimensional steady-state temperature distribution in the mul-
tilayer hollow sphere. The temperature distribution is obtained by solving the heat
conduction equation by separation of variable method and using the condition of
continuity at the interface to get required eigenvalues in the solution. Each layer of
the spherical sphere is considered as isotropic and homogeneous. The components of
displacement and thermal stress function has been discussed with the help of Good-
ier’s displacement potential and Boussinesq harmonic functions as Noda et al. [16].
On determining temperature distribution function from the heat conduction equa-
tion, it is used as a known function. Furthermore, we have investigated the results on
the basis of assumed boundary conditions and approach was purely mathematical.
Obtained results are considered to be useful in the design of the smart multilayer
spherical vessels. Also, results may be used in industrial furnace, nuclear reactors,
chemical industry, turbines, spacecraft where multilayer materials are highly used.
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Investigation of Torsional Stability
and Camber Test on a Meter Gauge Flat
Wagon

Apurba Das and Gopal Agarwal

Abstract This paper presents the experimental study of the torsion test and camber
test of a flat freight wagon. The freight wagon considered as open-type 40 ft. gauge
flat wagon. The flat freight wagon comprises flat body structure and two bogies,
where the flat surface used to transport containers, goods, wood logs, etc. HBM load
cell of 50 T capacity is used to measure the force and deflection for experimental
determination of the torsional and camber values. The test methodology and setup
are established freight wagon testing. It is seen that the camber values are within the
safe zone as per designed payload. The average torsional stiffness is 3.45 × 1010

KNmm2/rad are seen considering the worst-case elevation with one side 20 mm and
other three side elevations are zero.

Keywords Flat wagon · Torsional test · Camber test · Load cells · Deflection

1 Introduction

Flat wagon is considered as railway wagons having a flat, full-length, or deck (sin-
gle or double decks for car transporters) with the superstructure. Various types of
superstructures are provided depending on the type of goods to be carried. Other
types of wagons like open wagons have side and end walls while the covered goods
wagons have a fixed roof and sides. Flat wagons are primarily considered for the
transportation of goods which are not affected by the weather. However, a special
type of flat wagons can be covered completely by plastics or hoods to facilitate the
transport of weather-affected products. The portion of the loading area of a flat wagon
is fully open and easily accessible even for covered wagon after removing the cover.
As per UIC flat wagons are generally divided into two segments. The first type is for
ordinary goods wagons with category letters “K”, “O”, and “R” and the second type
is for special goods wagons with category letters “L” and “S”. The basic difference
between these two types of the flat wagon is that the ordinary goods wagon always
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Fig. 1 Overview of the present 40-ft. container carrying flat wagon

consists of a flat deck which can be driven on, while the special goods wagon usually
do not have a flat deck and these needs to be designed based on the special product to
be carried on it. There are several variants with separate axles aswell as bogiewagons
[1] are available for both types of flat wagon. Flat wagons are the major stockholder
in the goods wagon family. A typical statistics shown by the German carrier- DB in
1998 that flat wagons comprise 40% of the total goods carrying wagon [2] confirms
this claim. The present container/goods carrying flat wagon (Fig. 1) can carry one
40 ft. standard container (12.2 m) or two 20 ft. (6.1 m) on top of another because
considering the limited vertical clearance (maximum moving dimension) by respec-
tive railway authorities, even though they usually can carry the weight in two stacks.
Apart from the conventional container some other typical goods can be transported
using this flat wagonwhich include: vehicles, engines, large pipes, metal beams, wire
coils, wire mesh, half-finished steel products, rails, sleepers and complete sections
of railway track, gravel, sand, and other bulk goods with proper add-on attachment
(hooks, side panels, etc.) to avoid the damage or loss of goods being transported.
During the transportation of such a variety of products on the container carrying
flat wagon, sometimes it is difficult to provide a uniform load on the wagon and
sometimes the uneven distribution of the load becomes necessary while a combina-
tion of products or eccentrically loaded goods are being transported. Therefore, it is
mandatory to prescribe the torsional limitation and the camber test data for uneven
distribution of the load to avoid interference with bogie parts in dynamic loading
condition for operational safety of the wagon [3, 4]. Camber is the vertical tilting of
the flat portion of the floor of the flat wagon. When the flat portion tilts up direction
at the middle and down direction at both ends the camber is considered as positive
camber. On the other hand, when flat portion tilts in down direction at the middle
and up direction at both ends, the camber is considered as negative camber. The
sum of tilt is measured in degrees from the vertical position. Controlling the camber
value is extremely necessary to restrict the influences the directional control and the
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wheelset wear. High positive camber affects the outside of the wheel and it causes
excessive premature wear on the suspension parts of the wagon. Whereas, high neg-
ative camber affects the inside of the wheel and it causes excessive premature wear
on the suspension parts of the wheel. Camber of 1° or more will adversely affect
the performance of the wagon [5]. In this present paper, the experimental torsional
test, as well as camber test procedure, has been described and the experimental test
data are captured in the data acquisition system. The outcomes of the test results are
discussed, analyzed and mandatory recommendations are provided.

2 Wagon Specification and Experimental Setup

The container carryingmeter gauge flat wagon is designed for carrying themaximum
payload 54 ton and the tare weight (wagon weight in empty condition), hence the
maximumgross load (wagonweight in fully loaded condition) is 68 ton. Thematerial
used for the wagon is S355J0 steels except for the top cover plate. The material used
for the top cover plate is S355J0W, which is weather resistant steel as this top cover
plate is exposed to rainwater. The other parametric data used for this wagon are
tabulated in Table 1.

2.1 Experimental Setup for Torsion Test

The purpose of the torsional stiffness tests is to determine the framework of the
trial program in accordance with the new freight wagon design policy as per EN
12663-2:2010 standard.

The flat wagon is placed on 4 load cell positioned as shown in Fig. 2. The HBM
Data Acquisition System (MX840AQuntumX) is used to record the measured data
[6]. TheForce/displacement Sensor (EncardioRite) of 50-ton capacity is used tomea-
sure the force and displacement values (Model NoELC-210A). The actual placement
of the load cell and the data acquisition system under the wagon structure to cap-
ture the force and displacement are shown in Fig. 3. For torsion test, the wagon is

Table 1 Parametric
specification of the present
flat wagon

Overall length 13,140 mm

Bogie base 6940 mm

Height of buffering (buffers) 790 mm

Coupler height 780 mm

Estimated tare weight 14 tones

Maximum gross weight 68 tones

Bogie type T17APB meter gauge bogie
with 3.3 T weight
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Fig. 2 Setup of load cell in the flat wagon

Fig. 3 Positioning of the load on the flat wagon with number 1–4

positioned under normal operating conditions in a lifting bench. The wagon without
bogies is placed horizontally by its four lifting points (those at the pivot crossbars).
The force sensor is placed under each of these points (shown in Fig. 3). Each of the
support points are also provided with a vertical displacement sensor. For the first
condition of the torsion test, one of the support points is then lifted and lowered with
the help of hydraulic pressure jack. The four forces and displacement are measured
and recorded. This similar operation is then carried out for each of the four support
points (Table 2).

2.2 Experimental Setup for Camber Test

The purpose of the present camber tests is to determine the deflection of the solebar
of the wagon in the loaded and unloaded condition in accordance to the new freight
wagon design policy as per EN12663-2:2010 standard. The solebar camber test value
needs to be restricted within the 0.3% length of the bogie base (distance between
two bogie centers). The wagon with bogie is placed on a flat railway shop ensuring
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Fig. 4 Experimental setup for the camber test

the perfect horizontal condition with the help of spirit level. The distance from the
left axle to the ground level (R1) and the distance from the right axle to the ground
level (R2) as well as the distance of the wagon base from the ground level (F) at
mid-position are measured and recorded both for empty (payload = 0) and loaded
condition (payload = 58 ton) (Fig. 4).

3 Results and Discussion

3.1 Torsional Test Results

The torsional stiffness (Ct*) can be measured using the Eq. 1

Ct∗ = 2a.(2bz)
2�F/h (1)

where Ct* is the torsional stiffness in (KN mm2/rad), 2a is the longitudinal distance
between the measuring points in mm, corresponding approximately to the wheel-
base, 2bz = lateral distance of the axle suspensions mounted, �F = vertical force
variation, h = displacement height, �F ′/h′: vertical stiffness at fulcrum in kN/mm.
It corresponds to the slope of the linear part of the force curve as a function of
the displacement. The forces are measured by a dynamometric chain. The sensor is
conditioned by an acquisition unit. Filtering (with low-pass filter) and scanning are
included in this package. It makes it possible to measure �F ′. The vertical displace-
ment of the fulcrum is measured by a displacement measuring chain. The sensor is
conditioned by the acquisition unit. Filtering (with low-pass filter) and scanning are
included in this package. For the tests, the force and displacement measurements
are synchronized. It makes it possible to measure h′. The initial value of load cell
1, 2, 3, and 4 after calibrating the wagon in perfect horizontal position are noted
as 2.487 T, 1.633 T, 1.688 T, and 1.72 T, respectively. The torsional stiffness (Ct*)
values for this specific wagon are calculated as presented in Table 3 (Fig. 5).



278 A. Das and G. Agarwal

Table 3 Determination of average torsional stiffness (Ct*) in KN mm2/rad from the torsion test

Test 1 Test 2 Test 3 Test 4

�F′/h′ in kN/mm 816.66 828 830.66 882

Average �F′/h′ (kN/mm) 839.331

2a* (mm) 6740

2bz (mm) 2500

Ct*(KN mm2/rad) 3.45 × 1010

Fig. 5 Schematic diagram
for torsional test parameter

4 Experimental Data and Calculation

(See Table 2).

4.1 Camber Test Results

This test consists to measure on the solebar the camber when the wagon is loaded and
unloaded. After placing the wagon in the perfect horizontal condition, the camber
value can be determined by Eq. 2.

ΔF = (F0 − F1) − [(R10 − R11) + (R20 − R21)]/2 (2)

where R10 and R11 is the distance from the left axle to the ground level in empty
and loaded condition, respectively. R20 and R21 is the distance from the right axle
to the ground level in empty and loaded condition, respectively. While F0 and F1 is
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Table 4 Results and
calculation of the Camber test
data from the experiment

Left sensors (1,4) Right sensors (2,3)

Empty
condition

Load
condition

Empty
condition

Load
condition

F: 743 mm F1: 689 mm F: 766 mm F1: 727 mm

R1: 854 mm R11: 809 mm R1: 882 mm R11: 838 m

R2: 863 mm R21: 819 mm R2: 868 mm R21: 836 mm

�F = 9.5 mm �F = 0 mm

Average �F = (9.5 + 0)/2 = 4.5 mm

The average camber value should be within 0.3% length of the
bogie base (0.3% of 6940 mm = 21 mm) and for this case, it is
within the limit

the distance of the wagon base from the ground level in empty and loaded condition,
respectively (Table 4).

5 Conclusions

During this experimental setup and experimental process, a suitable methodology is
established to determine the torsional stiffness and camber value of wagon due to
unbalanced load or uneven fluctuations of load due to railway track or cant deficien-
cies. The following conclusions can be listed down from the present analysis.

(a) A general methodology for testing the torsional stiffness and camber value is
established. This methodology can be used for other types of wagons such as
hoper or tank wagons.

(b) This will act as a general guideline for the wagon manufacture to prescribe
the worst-case camber and torsional stiffness data for the safe operation of the
wagon avoiding the derailment phenomenon.

(c) This will help the designer to take care the interference due to camber and tor-
sional instability due to unbalanced load distribution by the operating railways.

(d) The average torsional stiffness is 3.45 × 1010 KN mm2/rad that is seen consid-
ering the worst-case elevation.

(e) For the present case, the torsional stiffness and camber are within the range for
safe operation. The individual torsional stiffness for the case to case variation
can be drawn from the table by interpolating the elevation data.

Acknowledgements The authors acknowledge the Titagarh Wagons Ltd (Hind Motor Division-
Kolkata, India) and Titagarh Wagons AFR-Douai, France office for providing the testing facility
and design data.
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Nonlinear Dynamic Buckling and Failure
Study of Laminated Composite Plates
Subjected to Axial Impulse Loads

Vasanth Keshav , S. N. Patel and Rajesh Kumar

Abstract In this paper, the nonlinear dynamic buckling of laminated composite plate
is studied along with the failure of the plates. The balanced and symmetric cross-ply
laminated composite plates are subjected to in-plane impulse compressive loads. The
dynamic buckling load is calculated using Volmir’s criterion. The nonlinear dynamic
equations are solved using the finite element method. Imperfections are incorporated
in the plate in order to simulate the actual behavior. The effect of imperfection,
loading function, and duration of loading is studied. The first ply failure load for the
plate is calculated to check the precedence of dynamic buckling and first ply failure.
It is observed that the first ply failure for balanced and symmetric cross-ply laminated
composite plates occurs after the plate has buckled due to dynamic impulse loads.

Keywords Dynamic buckling · Impulsive loads · In-plane loading · Laminated
composite plates

1 Introduction

Laminated composite structures are being used for quite some time. Recently these
structures are being used in civil engineering structures as well. Analyzing a large
structure is time consuming, costly and in some cases, the desired output does not
come. So, a part of the structure is taken up for analysis. Laminated composite plates
are a part of a complex structure which, during its design life could be subjected
to accidental loads as well. These loads could be suddenly applied due to various
scenarios such as impact, fires, freezing, etc. When a laminated composite plate
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is subjected to such loads, it may not collapse, but can become unstable thereby
affecting its neighboring components.

A lot of research has been carried out in the field of parametric instability, in
which, the nature of the loads is vibrational. Prabhakara and Datta [1] studied the
instability of plate with cutout subjected to tensile and compressive axial loads using
finite elementmethod. Chattopadhyay andRadu [2] studied the parametric instability
of composite plates considering both rotary inertia and transverse shear. Sahu and
Datta [3] studied the parametric instability of isotropic and laminated composite
plates subjected to patch and point loads using finite element method. Pellicano [4]
studied the parametric instability of imperfect cylinders using the analytical method.
Chen et al. [5] studied the instability of composite plates subjected to biaxial and
bending stress using first-order shear deformation theory. Dey and Ramachandra [6]
studied the parametric instability of curved panels subjected to partial edge loading.

A few studies have been taken up in the area of dynamic buckling in which,
the nature of loads is impulsive. Ari-Gur and Simonetta [7] studied the dynamic
buckling of composite plates subjected to axial loads and reported that dynamic
buckling loads can be lower than static buckling loads if the applied pulse frequency
is near to the fundamental frequency of the plate. Petry and Fahlbusch [8] stud-
ied the dynamic buckling of isotropic thin plates subjected to in-plane loading and
reported the effects of various parameters like aspect ratio, thickness, and imper-
fection. Kubiak [9] proposed a new criterion for calculating dynamic buckling load
which takes into account components of inertia forces. Kowal-Michalska and Mania
[10] calculated the dynamic buckling load of isotropic and orthotropic plates. Yang
and Wang [11] calculated the dynamic buckling load of the isotropic plate with
elastically restrained edges using Budiansky–Hutchinson criterion.

In the current study, the nonlinear dynamic load of the laminated composite plate is
calculated using Volmir’s criterion. According to Volmir’s criterion, if the maximum
dynamic displacement due to any loading function, loading duration, and loading
amplitude, becomes equal to this thickness of the plate, then that load is considered
as the dynamic buckling load. The effect of various parameters like loading function,
imperfection, and loading duration is studied. The first ply failure of the plate is
calculated to checkwhether the first ply failure is occurring before the plate is buckled
due to dynamic impulse load. The study is carried out using the finite elementmethod
using ABAQUS/Explicit. Failure analysis can also be performed in the software by
taking into account the reduction in stiffness due to ply failure. However, the current
study focusses on dynamic buckling and hence regeneration of the stiffness matrix
is not considered. The current study is numerical, some experiments are required for
understanding the behavior in depth.

2 Theory and Formulation

The equation solved, and the theory is discussed in this section. In the current study,
the nonlinear dynamic equation solved is given in Eq. 1. Where, [M] is the mass
matrix, [K] the stiffness matrix, which is a function of deformations due to geometric
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nonlinearity, {u} the nodal displacement vector, {u̇} the nodal velocity vector and
{ü} the nodal acceleration vector. {F(t)} denotes the load vector. In the current study,
the effect of damping is not considered.

[M]
{
ü
} + [C]{u̇} + [K ({u})]{u} = {F(t)} (1)

The Eq. 1 is solved in Finite element method using ABAQUS/Explicit. In
ABAQUS/Explicit, thin shells (thickness <1/15 of characteristic length), are mod-
eled using Kirchhoff shell theory. The panel is modeled using a general-purpose shell
element S4R.

In ABAQUS/Explicit, the available failure criteria are Azzi-Tsai-Hill criterion,
Maximum stress criterion, Maximum strain criterion, Tsai-Hill criterion, and Tsai-
Wu criterion. Among these, Tsai-Hill criterion (Eq. 2) is considered, the equations
of which are given in Sect. 22.2.3 of ABAQUS 6.13 user guide. In Eq. (2), σ 11 is the
stress in a normal direction, σ 22 is the stress in the transverse direction, σ 12 is the
shear stress. Xt and Xc are the tensile and compressive strengths, respectively, in the
normal direction, Yt and Yc are the tensile and compressive strengths in transverse
direction and S is the shear strength. In accordance with the Tsai-Hill criterion, if
σ 11 > 0, X = Xt ; otherwise, X = Xc. If σ 22 > 0, Y = Yt ; otherwise, Y = Yc.

FI = σ 2
11

X2 − σ 11σ 22

X2 + σ 2
22

Y 2 + σ 2
12

S2 < 1 (2)

The dynamic buckling criterion used is Volmir’s criterion. The loss of stability for
plate happens when the maximum deflection reaches a pre-set target displacement
value [12]. This target transverse displacement value is set as the thickness of the
plate for the current study.

3 Results

In this section, first the results of the convergence and validation study are presented
and then the results of dynamic buckling study are discussed.

3.1 Convergence and Validation Study

3.1.1 Convergence and Validation Study of Static Buckling Load

In this section, the results of convergence and validation study are presented. A
simply supported plate with material properties The materials properties presented
byNarita and Leissa [13] are used.E1 = 138GPa,E2 = 8.96 GPa, G12 = 7.1 GPa, ν12

= 0.3. Thesematerial properties correspond toGraphite/Epoxy plates. The geometric
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properties considered are a/b= 1 and a/h= 100,where h corresponds to the thickness
of the plate. The layup sequence is (45°/−45°/45°/−45°/45°) The geometry of the
plate considered is shown in Fig. 1 and the boundary condition are shown in Fig. 2.
The nondimensional static buckling loads are calculated for different mesh sizes
and the converged mesh size is taken for the rest of the analysis. Equation 3 shows
the nondimensional static buckling load. Figure 3 shows the nondimensional static
buckling load versus mesh sizes and Table 1 shows the results of the current study
compared with the results reported by Narita and Leissa [13].

P̄x = Pxa2

D0
(3)

where D0 = E1h3

12(1−ν21ν12)

And, ν21 =
(

E2
E1

)
ν12

Fig. 1 Geometry of the plate

Fig. 2 Boundary conditions
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Fig. 3 Nondimensional
static buckling load versus
mesh sizes for the laminated
composite plate with a/b =
1, a/h = 100, layup sequence
(45°/−45°/45/°−45°/45°)
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static buckling load for
laminated composited plate
with layup sequence
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Fig. 4 w/h versus Ndyn/Nst for isotropic plate subjected to sinusoidal pulse load

From Fig. 3, it is seen that the results for mesh size 50 × 50 is converged and
the same mesh size is used for the rest of the study. From Table 1, it is seen that the
result of the present study match with the result of Narita and Leissa [13].
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3.1.2 Validation of Dynamic Buckling Load for Isotropic Plate

In this section, the calculation of dynamic buckling load for an isotropic plate is
validated using the result from the existing literature. An aluminum plate with
geometric and material properties: a/b = 1, h = 0.005, imperfection = 0.05 h; E
= 70 GPa, ν = 0.3, and ρ = 2950 kg/m3. The imperfection is 5% of the plate
thickness and the shape is the first buckling mode of the plate. Simply supported
boundary conditions are used for the plate as shown in Fig. 2. The plate is loaded
till its first natural period and the response is observed afterward also. The static buck-
ling load of the plate is 43045 N/m and duration of loading is 0.043176 s. Sinusoidal
loading function is shown in Fig. 5b is used. For various magnitudes of dynamic
loads, the response is observed. Figure 4 shows the plot of w/h versus Ndyn/N st for
the current study compared with the analytical–numerical results of Kubiak [12],
finite element results of Kowal-Michalska and Mania [10] and numerical results of
Petry and Fahlbusch [8].

It is seen from Fig. 4 that the finite element results of the current study match with
the analytical–numerical results of Kubiak [12].

3.2 Dynamic Buckling Study of Balanced and Symmetric
Cross-Ply Laminated Composite Plates

In this section, the results of dynamic buckling study and effect of loading duration,
loading function and imperfection is presented. The first ply failure load is also
presented along with these studies. First, the static buckling load and the natural
period of the plate is calculated using ABAQUS/Standard. Next imperfection is
incorporated into the plate. The imperfection is a certain percentage of the thickness
of the plate and the shape is the first buckling mode of the plate. The plate is loaded
for a loading duration and the response is observed after the removal of the load
as well. For various magnitudes of loads, the response of the plate is observed,
and the dynamic buckling load is calculated. The material and geometric properties
reported by Hinton et al. [14] are used. a/b = 1, a/h = 100; with a = 0.1 m. The
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Fig. 5 a Rectangular loading function b Sinusoidal loading function c Triangular loading function
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Fig. 6 w/h versus Ndyn/N st for composite plate with a/b= 1, a/h= 100 imperfection= 0.2 h sub-
jected to rectangular loading function

material properties are E1 = 138GPa, E2 = 11GPa, G12 = 5.5GPa, ν12 = 0.28, XT

= 1500 MPa, XC = 900 MPa, YT = 27 MPa, YC = 200 MPa and S12 = 80 MPa.
The layup sequence is (0°/90°/90°/0°). In the succeeding sections, the results of the
effects of various parameters are presented.

3.2.1 Effect of Loading Duration

In this section, the effect of loading duration on dynamic buckling of the laminated
composite plate is studied. The plate is loaded for Tb sec and the response is observed
after the removal of load also. The natural frequency of the plate is calculated (Tn)
and for various ratios of Tb/Tn the responses are observed. A laminated composite
plate with material properties described above is subjected to rectangular pulse load
(Fig. 5a). The static buckling load of the plate is 15951N/mand the first natural period
is 0.00284 s. Figure 6 shows the results of w/h versus Ndyn/N st for the laminated
composite plate with a/b = 1, a/h = 100 imperfection = 0.2 h.

From Fig. 6, it is seen that the converge after Tb/Tn = 0.75. Thus, the loading
duration near the natural period of the plate is critical. It is also observed that the
dynamic buckling load for all cases is lower than the static buckling load for the
laminated composite plate with imperfection 0.2 h.

3.2.2 Effect of Loading Function

In this section, the effect of loading function on dynamic buckling load of a lami-
nated composite plate is studied. Three types of loading functions are considered:
rectangular (Fig. 5a), sinusoidal (Fig. 5b) and triangular (Fig. 5c). The laminated
composite plate is loaded till its natural period. Figure 7 shows the plot of w/h versus
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Fig. 7 w/h versus Ndyn/N st
for laminated composite
plate with a/b = 1,
imperfection = 0.1 h,
subjected to various loading
functions
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Ndyn/N st for the laminated composite plate with a/b = 1, a/h = 100 imperfection =
0.1 h. Figure 8 shows the plot of Failure index versus Ndyn/N st for laminated com-
posite plate with a/b= 1, a/h= 100 imperfection= 0.1 h. The failure criterion used
is Tsai-Hill criterion.

From Fig. 7, it is seen that the rectangular loading function is the most critical
amongst the three since the area under the curve is the largest amongst the three
loading functions considered. The dynamic buckling load for rectangular loading
function is the only case where the dynamic buckling load is lower than the static

Fig. 8 Failure Index versus
Ndyn/N st for laminated
composite plate with a/b =
1, imperfection = 0.1 h,
subjected to various loading
functions
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buckling load. It is observed from Fig. 8 that the first ply failure load for all the cases
is higher than the dynamic buckling load. Hence, the first ply failure occurs after the
laminated composite plate buckles due to dynamic pulse loads irrespective of the
loading function used.

3.2.3 Effect of Imperfection

The effect of imperfection on dynamic buckling load is studied in this section. For all
three types of loading functions, dynamic buckling load and first ply failure load are
calculated. Four types of imperfection are considered: 0.05 h, 0.1 h, 0.15 h and 0.2 h
which are percentages of the thickness of the plate and shape is the first buckling
mode of the plate. The plate is loaded till its corresponding first natural period and
the response is observed. Figures 9, 11 and 13 show the plot of w/h versus Ndyn/N st

for the laminated composite plate with a/b= 1, a/h= 100 for rectangular, sinusoidal
and triangular loading functions, respectively. Figures 10, 12 and 14 show the plot

Fig. 9 w/h versus Ndyn/N st
for composite plate with a/b
= 1, subjected to rectangular
loading function for various
percentages of imperfections
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Fig. 10 Failure index versus
Ndyn/N st for composite plate
with a/b = 1, subjected to
rectangular loading function
for various percentages of
imperfections
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Fig. 11 w/h versus Ndyn/N st
for composite plate with a/b
= 1, subjected to sinusoidal
loading function for various
percentages of imperfections
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Fig. 12 Failure index versus
Ndyn/N st for composite plate
with a/b = 1, subjected to
sinusoidal loading function
for various percentages of
imperfections
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Fig. 13 w/h versus Ndyn/N st
for composite plate with a/b
= 1, subjected to triangular
loading function for various
percentages of imperfections
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Fig. 14 Failure index versus
Ndyn/N st for composite plate
with a/b = 1, subjected to
triangular loading function
for various percentages of
imperfections
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of Failure index versus Ndyn/Nst for laminated composite plate with a/b = 1, a/h =
100 for rectangular (Fig. 5a), sinusoidal (Fig. 5b) and triangular (Fig. 5c) loading
functions, respectively, with respect to Tsai Hill criterion.

It is seen from the above figures that the dynamic buckling of a laminated com-
posite plate occurs before the first ply failure load is reached. In the case of laminated
composite plated subjected to rectangular loading function, the dynamic buckling
load is lower than the static buckling load for imperfection values 0.1 h, 0.15 h, and
0.2 h. For sinusoidal loading function, the dynamic buckling load is equal to static
buckling load for imperfection value 0.2 h. For all cases of loading functions and
imperfection values, the first ply failure occurs at or beyond a ratio of Ndyn/N st = 2.
Figure 15 shows the deformed shape of the laminated composite plate with respect
to maximum deflection, with maximum value occurring at the center of the plate, at a
critical time when subjected toNdyn/N st = 0.9; the scale factor is 10. Figure 16 shows
the deformed shape of the laminated composite plate with respect to failure index,
with maximum value occurring at the center of the plate, at a critical time when
subjected to Ndyn/N st = 0.9; the scale factor is 10. Figure 17 shows the deformed
shape of the laminated composite plate with respect to maximum deflection, with
maximum value occurring at the center of the plate, at a critical time when subjected
to Ndyn/N st = 2; the scale factor is 5. Figure 18 shows the deformed shape of the
laminated composite plate with respect to failure index, with maximum value occur-
ring at the corners of the plate, at a critical time when subjected to Ndyn/N st = 2; the
scale factor is 5.
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Fig. 15 Deformed
composite plate showing
maximum transverse
deformation when subjected
to rectangular loading with
Ndyn/N st = 0.9, at critical
point of loading

Fig. 16 Deformed plate
showing failure index when
subjected to rectangular
loading with Ndyn/N st = 0.9,
at critical point of loading
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Fig. 17 Deformed
composite plate showing
maximum transverse
deformation when subjected
to rectangular loading with
Ndyn/N st = 2, at critical
point of loading

Fig. 18 Deformed plate
showing failure index when
subjected to rectangular
loading with Ndyn/N st = 2,
at critical point of loading
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4 Conclusions

From the current study, the following conclusions can be drawn for balanced and
symmetric cross-ply laminated composite plates:

1. The dynamic buckling load for balanced and symmetric cross-ply laminated com-
posite plates can be lower than static buckling load when subjected to impulsive
compression of the rectangular loading function.

2. Among the three loading functions (rectangular, sinusoidal, and triangular), rect-
angular loading function is the most critical since the area under the curve is
highest amongst the three.

3. Laminated composite plate, when subjected to axial impulsive loads, can lead to
dynamic buckling when the loading duration is near to the first natural period of
the plate.

4. Balanced and symmetric cross-ply laminated composite plate can withstand a
dynamic pulse load for up to twice the static buckling load before the first ply
failure occurs for the plate.
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Adhesion Failure Analysis in Lap Shear
Joint Specimen Subjected to Transverse
Loading Made of Curved FGM

Pritam Kumar Kundu , Arun Kumar Pradhan and Mihir Kumar Pandit

Abstract Functionally Graded Materials (FGMs) are the variation of composition
and structure over a volume which results in improvement of mechanical properties.
Damage in adhesive-bonded FGM composite joints may generate in various forms
like cohesive failure, adhesion failure, etc. This article deals with the loss of structural
integrity of the Lap Shear Joint (LSJ) made with curved FGM adherends of Al2O3

and Nickel by quantifying adhesion failure propagation. This is performed by eval-
uation of the interfacial stresses and the three modes of Strain Energy Release Rate
(SERR). The rate of propagation of the adhesion failure in the LSJ made with FGM
panels subjected to transverse loading is evaluated by employing a three-dimensional
nonlinear finite element analysis. The effect of overlap length on the LSJ made with
curved adherends on the interfacial stresses and the three modes of SERR is com-
puted. The use of FGM as adherend materials is found to be effective in reducing
the peak values of interfacial stresses and the three modes of SERR.

Keywords Adhesive joints · FGM · Interfacial stress · Strain Energy Release
Rates (SERR)

1 Introduction

Adhesive bonding techniques have been used successfully for joining different mate-
rials since an adhesive layer exhibit weight saving and a smooth load transfer between
the adherends. Single-lap joints have found extensive use for testing adhesive prop-
erties and as a structural component.

The research about adhesive bonding started in the first half of the twentieth
century, with the contributions of Goland and Reissner [1]. He presented a linear
2D analytical solution of the peel and shear stress distribution in SLJs made with
composite adherends considering the effect of bending due to eccentric loading path
and transverse vertical force at the joint ends. He has included large deflection of
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adherends in his formulation but considered that the adherend and thin adhesive are
an integral part of the adherend. Hart-Smith [2] added to some useful information
Goland and Reissner’s [1] formulation by separately considering adhesive, upper
adherend, and lower adherends. A newmethod has been developed by Zhao et al. [3]
for determining bending moments at the overlap ends of SLJs. Along with that, they
have also studied the effect ofmaterial, geometry, surface treatment, and environment
on the shear strength of SLJs.

Thermomechanical loading of adhesively bonded tubular single-lap joint (SLJ)
having functionally graded modulus was investigated by Apalak and Gunes [4] and
Apalak et al. [5]. The material properties were graded along the thickness of the tube.
Kumar [6] presented a mathematical approach to calculate the stress field in tubular
functionally graded adhesive joint with an assumption of no shear stress variation
along the thickness of the adhesive. The effective use of functionally graded adhesive
in adhesively bonded joints, which reduces peel stress concentration near adherend
discontinuities was studied by Scot et al. [7].

Hellen [8] proposed the Virtual Crack Extension Method (VCEM) to evaluate
SERR to study the crack propagation characteristics. However, using this method
the total SERR could only be calculated, but not the individual modes responsible for
mixed-mode interlaminar fracture. Sahin and Taheri [9] used the SERR method for
characterization and validation of the crack propagation in adhesive-bonded single-
lap joint made with flat laminates.

As of now, literature dealingwith the assessment of adhesion failure propagation in
LSJs made with curved FGM adherends subjected to transverse loading are seldom
available. In this research, 3D nonlinear FE analysis of LSJs made with curved
FGM adherend panels are carried out. The lap and strap adherends are joined by an
isotropic adhesive. Important aspects, such as the gradation of material properties of
adherends have been considered in the FE analysis by material properties data inputs
in the desired manner. As failure due to peel stress is significant and the interface
region of strap and adhesive is found to have maximum peel stress so an embedded
adhesion failure was given at the interface and crack was analyzed.

2 Three-Dimensional Finite Element Modeling of the LSJ

The geometry, loading, and boundary conditions of the LSJ specimen made with
FGM curved panels and having pre-embedded adhesion failure at the bond line
interface of adhesive and strap adherends is shown in Fig. 1. The thickness of the lap
and strap adherends is 1mm each. The inner radius of strap adherend is 71.6mm. The
angle of arc θ (shallowness angle) is taken to be 20° so that thewidth of strap adherend
is equal to w = 25.4 mm. The thickness of the adhesive is taken to be 0.2 mm. A
different dimension of circumferentially curved adhesion failure has been considered
in the present analysis.

The material properties of the constituents of the FGM used for the adherend
panels are given in Table 1 adopted fromApalak andGunes [4]. Cytekmake adhesive
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Fig. 1 Model of SLJ specimen subjected to transverse loading

Table 1 Material property of
constituents in FGM [4]

Material property Metal (Ni) Ceramic (Al2O3)

Young’s modulus Em = 199.5 GPa Em = 393 GPa

Poisson’s ratio υm = 0.3 υc = 0.25

Table 2 Material property of
Adhesive [4]

Young’s modulus E = 2.4 GPa

Poisson’s ratio υ = 0.32

FM300K is used for adhesive bonding between the lap and the strap FGMadherends
and the material properties for the adhesive are given in Table 2.

The variation of E and υ follows the given expression for both lap and strap FGM
adherends

E(z) = Em + (Ec − Em) × (z/l1)
∧n for 0 < z < l1 and l1 = 45mm (1)

υ(z) = υm + (υc − υm) × (z/l1)
∧n for 0 < z < l1 and l1 = 45mm (2)

υ(z) = υm + (υc − υm) × (z/l1)
∧n for z < l1 < 1 and l1 = 125mm (3)

υ(z) = υc + (υm − υc)

× ((z − l1)/(1 − 11))
∧n for 11 ≤ z ≤ l ; l1 = 45mm, l = 125mm (4)
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3 Strain Energy Release Rate

The three modes of energy release rate are calculated by the virtual crack closure
technique. The detailed expression is given below:

GI = (1/2�A)Rf [ut − us] (5)

GII = (1/2�A)Zf [wt − ws] (6)

GIII = (1/2�A) θf [vt − vs] (7)

where Zf, Rf, and θf denote the opening, sliding, and tearingmode forces respectively
which are required to hold the nodes at the tip of the crack front together to prevent
it from growth and subsequent propagation as shown in Fig. 2. The different modes
of failure are shown in Fig. 3.

Fig. 2 Model of curved failure front for calculation of SERR by VCCT

Fig. 3 Different modes of failure
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4 Finite Element Modeling

4.1 Validation

For validationof results, a flat SLJ specimenwith functionally graded adhesive having
identical geometry, material, loading and boundary conditions as taken by Guin and
Wang [10] has been analyzed using 8 nodded iso-parametric elements (SOLID185)
of ANSYS 16.0. The geometry and boundary condition as used in the paper is shown
in Fig. 4. Interfacial stresses have been evaluated in the present 3D FE method at
the adhesive and adherend interfaces. Figure 5 shows a sample result for normalized
peel stress along the entire overlap length.

4.2 Problem Definition

The approach was validated for flat FGM. So a similar analysis was done in this
paper. This paper studies the stress distribution near the adhesion failure front in
case of curved FGM subjected to transverse loading conditions. The dimensions and

Fig. 4 Geometry and boundary conditions for Guin and Wang [10]

Fig. 5 Normalized peel stress versus normalized thickness for Guin and Wang [10]
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Fig. 6 3D peel stress distribution between lap-adhesive and strap-adhesive interface

loading conditions are given in Fig. 1. The present analysis is done for lap shear
joint with one end clamped and other end loaded. The cohesive failure of adhesive
is neglected in the present analysis. As seen in Fig. 6 the stress between the adhesive
top surface and lap is less than the stress between adhesive bottom surface and strap.
So an embedded adhesion failure is given at the location of maximum stress and the
behavior of the crack is analyzed.

5 Results and Discussion

5.1 Interfacial Stress Along Failure Front

The plot of peel stress σr along the width for the transverse load is shown in Fig. 7.
From the figure we can conclude that there is a peak in peel stress at the center of the
width. Figure 8 represents the distribution of sliding stress which is in-plane shear
stress. It also has a peak value at the center. The value of sliding stress is less as
compared to peel stress. It corresponds to GII mode of failure. From Fig. 8 which

Fig. 7 Distribution of peel
stress along the width
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Fig. 8 Distribution of sliding stress and tearing stress along the width

represents the distribution of tearing stress along the failure front, we can conclude
that the maximum value of tearing stress is far less than peel stress and sliding shear
stress. This gives rise to the GIII mode of failure. So it also inferred that the value of
GIII is insignificant with respect to GI and GII mode of failure.

5.2 Comparison of Different Adhesion Failure Length

It is observed that there is maximum stress at the adhesive and strap interface. It
is evident from Fig. 6, so an intuitive adhesion failure is given at the interface to
determine the behavior of the failure front in case of vertical loading. Figures 9 and
10 represents the values of strain energy release rate for curved FGM specimen along
the width. It is clear that the values of strain energy release rate are highest at the
mid of the width. This led to the conclusion that the crack will propagate more at the
center as compared to the edges. Another inference which can be drawn from the
above figures is that as the adhesion failure length increases the value of the strain
energy release rate of different modes increases. So crack will propagate even faster.

Fig. 9 Comparison of GI
along the width for 2 mm,
3 mm and 4 mm adhesion
failure length
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Fig. 10 Comparison of GII and GT along the width for 2 mm, 3 mm, and 4 mm adhesion failure
length

Steps must be taken to reduce crack propagation. Stitching is one such operation,
which is done to reduce crack propagation but it also leads to stress concentration.

5.3 Comparison of Coefficient for FGM Preparation

From Figs. 11 and 12, it is observed that with the increase in the coefficient for
defining the FGM the value of GI, GII, and GT increases along the width.

Fig. 11 Comparison of GI
along the width for different
coefficients n = 0.3, 2, 3
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Fig. 12 Comparison of GII and GT along the width for different coefficients n = 0.3, 2, 3

Fig. 13 Comparison of GI along the width for different overlap lengths

5.4 Comparison of Varying Overlap Length

From Figs. 13 and 14, it is observed that with the increase in overlap length the value
of all the energy release rate components decreases. It is an indication of the increase
in peel, shear and tear strength of the componentwhen subjected to transverse loading
conditions.

6 Conclusion

Variation of stress along the width of the specimen are seldom reported. The stress
variation needs to be done along the width to know in detail of the location of stress
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Fig. 14 Comparison of GII and GT along the width for different overlap lengths

concentration. So a 3D finite element analysis was done on the specimen and all the
stress values were plotted along the width.

From the results obtained above, it was observed that there was a peak in the
stress value at the center of the width. This proves that at the center of the width
the opening is more as compared to at the edges. So we can conclude that the crack
growth in the specimen is non-self-similar crack growth.

Values of peel stress and sliding stress were found to be significant with respect
to tearing stress. So the value of GI and GII was more significant with respect to
GIII. Hence the failure was not dominated by a single mode rather we observed a
mixed-mode failure in FGM composite.

From the above figures, it was also observed that as the adhesion failure length
increases there is a gradual and faster increase rate of SERR. Similar was the case
for an increase in the exponential coefficient. This leads to a significant reduction
in load-carrying capability. Steps must be taken to reduce this crack propagation.
But with an increase in overlap length the adhesive area increases which lead to a
decrease in different strain energy release components.

7 Future Scope

One assumption in the analysis is the adhesive is assumed to be brittle in nature.
There is no cohesive failure occurring between layers of adhesive. This is followed
by taking the thickness of adhesive very less as compared to adherend thickness. But
in the real case, the adhesive may fail due to cohesive failure also. So a cohesive zone
modeling for the given specimen needs to be done.

The analysis for the given problem statement is done only for static loading con-
ditions while there are other dynamic loading conditions which are used in airplanes.
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The LSJ beam thus generated may be subjected to harmonic and impact loading con-
ditions also. Changing the loading conditions leads to specimen behaving differently
which needs to be further analyzed.

Nowadays, functionally graded adhesives are also used to reduce the effect of peel
stress and the interface. LSJ specimen with functionally graded adhesives (FGA)
is also used in submarines and other marine applications which are subjected to
continuous hygrothermal conditions. The effect of hygrothermal loading conditions
on FGA still remains a vacant space which needs to be explored.
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A Gradient-Damage Model for Cyclic
Behavior of Concrete

A. H. Monnamitheen Abdul Gafoor and D. Dinkler

Abstract The present paper elaborates a continuum formulation using a single
loading surface that relates a unified equivalent strain with a history deformation
parameter to characterize both the softening and hardening behaviors of the mate-
rial. The history parameter governs the growth of damage. Two additional history
parameters capture the crack-opening/closure effectively. The model further incor-
porates an implicit-gradient regularization to avoid numerical difficulties such as
localization of deformation into a vanishing size and ill-posedness of the boundary
value problem. Numerical results exhibit good agreement with experimental data
under several tests. Finally, the paper demonstrates the localization of deformation
due to a gradient-enhanced variable.

Keywords Isotropic damage · History parameter · Evolution law ·
Implicit-gradient

1 Introduction

Developments of continuum damage models to describe the deformation behavior
and fracture mechanisms of various kinds of materials have been done with serious
efforts. When the local continuum damage models are implemented into finite ele-
ment programs, localization into a vanishing size and unacceptable mesh-dependent
results are eventually caused due to strain-softening behavior of the material upon
mesh refinement. Such numerical difficulties are overcome by adopting some reg-
ularization methods such as nonlocal integral method [1] or implicit/explicit gra-
dient methods [2]. Thus, the advancements from local models to nonlocal mod-
els (either integral type or gradient type) make continuum damage mechanics a
promising approach to study the deformation behavior of any material. In the
field of civil engineering, concrete is a widely used construction material. But the
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brittleness of concrete causes damage to thematerial by opening up tensile cracks and
consequently leads to failure of structural components. Although there are several
continuum models available to study the nonlinear deformation behavior of con-
crete, only a fewmodels describe its deformation behavior including cyclic/dynamic
effects, which are of particular interests in case of earthquakes or impact loadings.
Therefore, it is essential to understand and to describe the mechanical behavior of
concrete under various loadings such as monotonic, cyclic, and reverse loading con-
ditions to ensure the safety of concrete structures.

Within the context of continuum damage mechanics, a macroscopic damage vari-
able, which idealizes the internal changes of the material, describes the correspond-
ing degradation in the material stiffness. A history deformation parameter, which
is related to a local state of deformation, governs the growth of damage. The local
state of deformation is usually measured by an effective stress, an equivalent stress, a
damage energy release rate, and a damage equivalent strain [3]. Nonetheless, several
models consider the damage equivalent strain such as Mazars strain [4], modified
von-Mises strain [2] and cracking and crushing strains [5] as a driving force for
the damage growth. These modifications in the measure of equivalent strains do not
completely capture the initial elastic domain and ultimate stress domain. The numer-
ical results show considerable differences, especially in bicompression and complex
regions, while comparing with experiments [5]. Hence, the equivalent strain has to
be defined appropriately to predict both the tensile and compressive behavior of
concrete, as it becomes vital in the evolution of damage.

Therefore, the damage model proposed by the authors [6], which adopts a unified
damage equivalent strain, is enabled to account for cyclic behavior of concrete in this
paper. In order to ensure mesh-independent results and localization of deformation
into a finite size, the implicit-gradient method [2] is incorporated as its linearization
is straightforward.

2 Local Damage Modeling

According to local continuum damage theory, the nonlinear deformation behavior
of the damaged concrete can be characterized by the constitutive relation, which is
based on the assumption of energy equivalence principle as follows:

σ = (1 − D)2 H : ε, (1)

where σ is Cauchy stress tensor and ε is Almansi strain tensor; H is the fourth-
order elasticity tensor of the undamaged material. D is an isotropic scalar damage
introduced explicitly as a function of a history deformation parameter κ describing
the severe most deformation that the material experienced during the load history.
The explicit function proposed by the authors [3] reads as
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D(κ) = 1 −
[κ0

κ

]β1

e−β2

[
κ−κ0

κ0

]
, (2)

where κ0 is an initial damage threshold used to set the initial elastic domain. The
model parameters β1 and β2 are responsible for the initial growth of damage and the
later damage growth. The range of D is given by 0 ≤ D ≤ 1.

There must be a local state of deformation that drives the growth of damage,
which is measured by the local equivalent strain ε. Although there are several defini-
tions available for determining the local measure [3], a unified definition of damage
equivalent strain is adopted in this work for describing both the tensile cracking as
well as crushing failures, which is given by

ε = (
α I1 + √

3J2 + βHσmax
)
/(1 − α)E, (3)

where I1 and J2 are the invariants and σmax is the maximum principal stress of pre-
dicted stress. H is a Heaviside function, which equals to 1 for all positive maximum
principal stresses, otherwise equals to 0. α and β are dimensionless constants as
defined in [7].

The expression (3) is inspired from the extended Lubliner-Lee failure criterion [7]
and slightly transformed to express a damage criterion f conveniently in strain space.
The relation between κ and ε is postulated by the damage criterion function f as
follows:

f = ε − κ. (4)

Thus, the function f decides the possibility of damage evolution at a point of con-
tinuum. During the damage process, the evolution of the history parameter κ must
always satisfy the Kuhn–Tucker loading/unloading conditions, which are mathemat-
ically expressed by

f ≤ 0, κ̇ ≥ 0, f κ̇ = 0, (5)

where (˙) represents the derivative of a variable with respect to time t . In addition,
in order to characterize the unilateral/cyclic behaviors of concrete, two different his-
tory parameters κt and κc are introduced corresponding to tension and compression.
Therefore, the history parameters κt, κc and κ are mathematically expressed as

κt = Sup
[
κ0t,max ε

]
; κc = Sup

[
κ0c,max ε

]
, (6)

κ = κtH + κc(1 − H), (7)

where κ0t and κ0c are the respective initial thresholds under tension and compression.
κt and κc thereby describe the severe most deformation that the material experienced
during the tensile load history and the compression load history respectively.
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3 Gradient-Damage Formulation

As the damage growth in the present model is driven by the local equivalent strain
ε, the nonlocal averaging procedure is applied to the local equivalent strain ε. Con-
sequently, the nonlocal counterpart of ε is approximated by the partial differential
equation called implicit-gradient equation [2] as follows:

ε̄ − l2c ∇2 ε̄ = ε, (8)

where ∇2 is the Laplacian operator and lc is the characteristic internal length scale.
The nonlocal equivalent strain ε̄, which represents the average of ε within the consid-
ered volume domain, describes the nonlocal behavior of the fracture process mecha-
nism. The Eq. (8)must always be supplemented by an additional boundary condition.
Therefore, the present work adopts a natural boundary condition at every point of
the boundary as

∇ ε̄ · n = 0, (9)

as it ensures that the average of nonlocal equivalent strain ε̄ over the entire domain
equals that of its local counterpart ε [2]. Hence, in case of gradient-enhanced damage
model, κ is related to the nonlocal equivalent strain ε̄ entering into the damage
criterion (4) instead of its local counterpart.

4 Model Validations

In order to check the ability of the damage model in predicting the material behavior,
the developed model has been implemented into an in-house finite element program
called codeBlue. The nonlinear system of resulting equations has been solved by
the Newton–Raphson method. The internal length scale lc is chosen as 200mm.
Linear shape functions have been used for nonlocal equivalent strains. The adopted
material and model parameters are provided in Table1. The material parameters are
taken from the work [7]. The model parameters β1 and β2 are calibrated using the
uniaxial tensile and compressive tests.

Table 1 Material and model parameters used for validation

Material
parameters

fc (MPa)
27.6

ft (MPa)
3.48

E (GPa)
31.7

ν (–)
0.2

Model β1t β2t β1c β2c κ0t κ0c

parameters 0.85 0.18 0.0 0.095 fc/E 10 ft/3E
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First, a single 8-noded brick element of size 200mm × 200mm × 50mm is
analyzed under selected elementary tests such as direct cyclic tension and compres-
sion, and alternate tension-compression/reverse cyclic loading to evaluate the perfor-
mance of the model. The displacement history is used to be cyclic with an increasing
magnitude either in tensile or compressive direction as an imposed loading.

4.1 Cyclic Tension and Compression

The simulated stress–strain curves under direct cyclic tensile and compressive load-
ing are depicted in Figs. 1 and 2, respectively. The model predictions agree fairly
with the experimental curves [8, 9]. As observed, the softening behavior under ten-
sion is reasonably comparable with the experimental curves. Similarly, both the
hardening and softening behaviors under compression are almost close to the exper-
imental data. κt or κc grows monotonically, as every reloading follows the path of the

Fig. 1 Uniaxial cyclic
tension
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previous unloading. Consequently, the increase in the slopes of the unloading curves
replicates the monotonic increase in damage under tension or compression. κ and
D remain constant during unloading and thus the loading/unloading conditions (5)
are satisfied. But the only discrepancy observed is that residual strains are not cap-
tured during unloading cycles since the model has not taken the inelastic evolution
of strains into account.

4.2 Reverse Cyclic Tests

As can be seen in Fig. 3, κt or κc is monotonically increasing during tension-
compression loading/unloading processes respectively. Subsequently, a monotonic
increase in the effective damage D is also viewed in Fig. 4 under tension or com-
pression. It is found that D becomes zero after the initial tensile loading (cycle 1)
and then entering into the first phase of compression (cycle 2) with initial stiff-
ness. But the accumulated D is recovered once the material experiences tension in
reloading (cycle 3). Thus, the model describes the unilateral behavior quite well as
it is observed from the Figs. 5 and 6 which display the actual and normalized stress
curves of the model, respectively. Thereby, the numerical response agrees well with
the experimental data [10] showing a full recovery of initial stiffness.

But the certain discrepancies observed are due to the fact that the permanent
deformation is not captured as the present article is limited to elasticity based model.
Nevertheless, the present model describes the loading and unloading behaviors and
initial stiffness recovery of the material well.

Fig. 3 History parameter
evolution

0 20 40 60 80
0

0.2

0.4

90

0.1

0.3

0.5

κ0c

κ0t

κt

1

κc

2

κt

3

κc

4 5

Time steps [-]

H
is
to

ry
p
ar

am
et
er

κ
(×

10
−

2
)
[-
]



A Gradient-Damage Model for Cyclic Behavior of Concrete 315

Fig. 4 Damage evolution
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4.3 Illustration of Nonlocal Phenomena

Second, a one-dimensional bar of size 100mm× 10mm× 10mmwith three different
FE meshes (n = 40, 80, 160-solid elements discretized along the bar) is studied
under tension in order to visualize the localization phenomena. An imperfection
of 10mm wide at the center of the bar is introduced. Two internal length values
lc = {5, 10}mm. Mesh-independent solutions are achievable. The converged stress
responses are illustrated in Fig. 7. The higher values of lc lead to the increase in peak
stress as noticed in Fig. 7 as well as the broader width of strain/damage localization
as seen in Fig. 8 and vice versa. The distributions of local and nonlocal equivalent
strains and damage over the length of the bar corresponding to three load steps are
shown in Figs. 9 and 10, respectively. As realized, the finite width of localization
of deformation or damage occurs and subsequent loading causes broadening of the
localization band.

Thus, the maximum values of local equivalent strains and the smooth distribu-
tion of nonlocal strains replicate the formation of macro-crack and the existence of
microstructural interactions in the bar, respectively.

5 Conclusions

The model has been developed using a unified equivalent strain that drives the evolu-
tion of effective damage. Two independent history parameters for tension and com-
pression leads the proposed model to be able to describe the crack-opening/closure
effects on micro-cracks under cyclic/reverse loadings. The model likewise captures
the unilateral behavior of concrete with the initial stiffness recovery for the first com-
pression loading by exhibiting good agreement with the experiments. Furthermore,
the localization analysis demonstrates that the gradient-enhancement on the local

Fig. 7 Converged stress
responses
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Fig. 8 Evolution of nonlocal
strains
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Fig. 9 Evolution of
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equivalent strain yields physically meaningful and mesh-independent responses as
the width of localization becomes finite. Themaximum values of local strains and the
smooth distribution of nonlocal strains replicate the macro-crack and the existence
of micro-structural interactions in the bar respectively.

The model incorporating the permanent inelastic strains and the damage induced-
anisotropy based on higher order tensors are underway and will be discussed in the
forthcoming papers.
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Reductions of Bending Stresses and Wear
in an Aerodynamic Involute Spur Gear
Profile

Y. P. Ravitej, O. Abhilash and Naveen kumar

Abstract Gears are widely used in automobile and aerospace sectors. The most
important duty of an engineer to design and manufacture of the transmission system
of it. Gears normally fail stress concentrations and fatigue resulting in wear and tear
of transmission elements like gears, pulleys, etc. This paper clears that by changing
properties of material used for manufacturing of gears, by optimizing the gear, the
stresses induced in the gears can be decreased modeling and analysis is carried out
by CATIA and ANSYS workbench, respectively. It is seen that reduction in bending
stresses is found in the above cases, are compared and correlated with each other.

Keywords Transmission elements · Aerospace sectors · Stress concentrations

1 Introduction

1.1 Transmission System

It is the system which contains power source and elements for transmission. It con-
tains a system of gearbox, gear trains and gives the necessary amount of speed and
torque from one shaft to another shaft. Gear ratios can be varied to obtain the desired
speed.

1.2 Gear Technology

Gears are the important media for transmission of power from one shaft to other.
Gear is classified based on shafts axis placement, speed, velocity ratio, etc. Due to the
mating of the two teeth of the gear, two stresses are developed, viz., contact stresses
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and bending stresses. Contact stresses are developed at the contact point of the gears
and bending stresses are developed at the root fillet of the gears. Contact stresses are
calculated by Hertzian contact stresses and bending stresses are calculated by Levis
bending stress equation.

1.3 Bending Stress

Bending stresses are developed at the root fillet of the gears. In the case of bending
stresses, the gear tooth acts as a cantilever beam.

Yellampalli et al. [1] made a study on dynamic analysis of spur gear set. Methods
for reduction of stresses involved in stressesmating of gears are discussed. Ravitej [2]
explains the fabrication and analysis of composites structure helpful for composite
gears.

In this paper, standard gear is design using CATIA and simulated using ANSYS
workbench for the cases, i.e.,

(a) Different material properties
(b) Optimization.

2 Methodology

These are developed at the root fillet of the gear, which in turn reduces the life of the
gears and to decrease the stresses induced the following are implemented.

• Changing the properties of the material,
• Optimization technique,
• Decreasing the root radius.

2.1 Gear Material Properties

Spur gear is designed by considering the parameters shown in Table 1.
Gear is modeled based on the design standards using CATIA 5 as shown in Fig. 1.
Three-dimensional gear model is modeled using CATIA v5, meshed and analyzed

using ANSYS Workbench shown in Figs. 1 and 3, respectively. Load of 500 N acts
on the face of the gear (Fig. 2).
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Table 1 Gear design
parameters

Sl. no. Parameters Values

1 Pressure angle 20°

2 Module 2

3 Addendum circle radius 32 mm

4 Pitch circle radius 30 mm

5 Dedendum circle radius 28.2 mm

Fig. 1 3D gear model

3 Results and Discussions

Results for different cases are discussed below.

3.1 Changing the Properties or Using Material with Different
Properties

One way of decreasing the bending stresses is by changing the property if the gear,
reduction of stresses for different materials is shown in the Figs. 4, 5, 6 and 7.

From the simulation analysis, it is concluded that by changing the properties of
the gear material the bending stresses can be reduced which is less than the yield
stress value of the material and is tabulated in Table 2.
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Fig. 2 Details of meshing

Fig. 3 BC and analysis
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Fig. 4 Equivalent stress in structural steel

Fig. 5 Equivalent stress in titanium

Fig. 6 Equivalent stress in stainless steel
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Fig. 7 Equivalent stress in aluminum

Table 2 Stress obtained by
various materials

Material Tensile yield stress
(MPa)

Equivalent stress
(MPa)

Aluminum 280 22.272

Stainless steel 207 18.141

Titanium 930 17.878

Structural steel 250 17.841

3.2 Optimization Technique

By optimization of the gear, bending stresses at the fillet can be decreased, for this
instant structural steel is selected as the material for the analysis. 8 holes of 3 mm
diameter are done on the specific positions, which decreases the weight of the gear
and intern decreases the stress induced at the fillet shown in the Figs. 8 and 9.

Comparison of results is shown in Table 3.
From the above table, it is noticed that bending stress obtained by unoptimized

gear is 17.841 MPa and bending stress obtained by optimized gear is 17.033 MPa.

3.3 By Decreasing the Root Radius

Root radius is an important factor that decides the stress intensity factor, root radius
of gears 0.5 and 0.78 mm are designed and analyzed for structural steel as a material
in mm. Results are discussed in Figs. 10 and 11.

Results are tabulated in Table 4.
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Fig. 8 Optimized gear

Fig. 9 Un-optimized gear

Table 3 Stress obtained by
optimization by various
materials

Un-optimized gear
(MPa)

Optimized gear
(MPa)

Difference (MPa)

17.841 17.033 0.808
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Fig. 10 Equi. stress result of radius 0.78 mm

Fig. 11 Equi. stress result of root radius 0.5 mm

Table 4 Results of
equivalent stress of different
root radii

Root radius
0.5 mm

Root radius
0.78 mm

Difference (%)

14.169 17.841 0.2

4 Conclusion

It is concluded that by using different material properties, optimization and decrease
of root radius bending stresses associated with the spur gear decreases. Hence wear
and tear and stress concentration decreases.
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Probability of Failure of a Beam
Subjected to Randomly Moving Loads

Alben Jose Kezhiyur, S. Talukdar and Anjaly J. Pillai

Abstract In the present paper, an analytical approach to study the deflection and
dynamic stresses in a simply supported beam when traversed by randomly moving
loads at a uniform speed whose inter-arrival time follows Poisson distribution has
been developed. The magnitude of payloads has been assumed to follow a uniform
distribution. Initially, the expression for deflection and dynamic stresses in a simply
supported beam traversed by a constant force is developed by application of Fourier
sine integral transformation followed by the method of Laplace–Carson integral
transformation and further followedby InverseFourier transformation. The analytical
expressions are found to obtain the deflection due to a set of loads which follow the
Poisson distribution. The inter-arrival time between the payload is an important factor
for the probability of failure as revealed from the analysis. The probability of failure
increases when the interval of arrival time is decreased.

Keywords Moving load · Inter-arrival time · Probability of failure · Poisson
distribution

1 Introduction

The general problem of transverse vibrations of beams resulting from the passage
of moving loads is of considerable practical interest in the dynamics of structures.
In most studies, the moving load has been regarded as deterministic. However, the
moving forces acting on highway bridges are of random magnitude; moreover, they
arrive at the span at random times. Consequently, the traffic load of a bridge is a
random process. Vibrations of this kind, occurring mainly in bridges, have been the
subject of studies for many years. Considering the practical importance of the topic,
research has been carried out on the vibration of a beam due to randomly moving
loads. The characterization of randomness can be done by different methods based
on probability theory. Shinozuka et al. [1] had considered the inter-arrival time to be
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following a gamma distribution. In this, the probability of trucks on the right and the
left lane was computed assuming both are independent events. The random vibration
of the beamwhen subjected to a random stream ofmoving forces was investigated by
Fryba [2], Sniady [3], Sieniawska and Sniady [4] and Sniady et al. [5]. Chen et al. [6]
developed the model in which the arrival of the vehicle follows a Poisson process. In
the present paper, an analysis has been performed to study themaximumvalue, mean,
and standard deviation of deflection and bending stresses developed at mid-span of a
simply supported beam for a set of snapshot time intervals under randomly moving
loads. The study is carried out considering the following cases (i) inter-arrival time
between moving loads is considered to follow Poisson distribution (ii) magnitude
of payloads is considered to follow a uniform distribution. An analytical expression
developed has been used to generate each sample of ensemble corresponding to a set
of random variables generated through the numerical process. A parametric study
has been conducted to examine the mid-span response statistics and probability of
failure.

2 Problem Formulation and Method of Solution

2.1 Dynamic Response

AEuler–Bernoulli beammodel of uniform properties has been considered The beam
behavior under a single constant moving load P is governed by the differential equa-
tion [7] as,

E J
∂4v(x, t)

∂x4
+ μ

∂v(x, t)

∂t
+ 2μωb

∂v(x, t)

∂t
= Pδ(x − ct) (1)

where, EJ is flexural rigidity,μ is mass/length, ωb is circular frequency of the damp-
ing of the beam, P is the constant load moving with velocity c, v(x, t) is the beam
deflection at point x at time t measured from the equilibrium position when beam is
loaded by its self-weight. δ is a Dirac delta function. The simply supported boundary
condition has been assumed for the beam. In the present paper, integral transform
technique has been used which has wide applicability in moving load track interac-
tions such as railway applications when track domain is infinite. Further, it has the
advantage of converting differential equation to algebraic equation. To formulate the
problem, we first define Fourier sine transform as

V ( j, t) =
l∫

0

v(x, t) sin
jπx

l
dx (2)
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In Eq. (2), V(j, t) is the transform of original displacement v(x, t), j is the harmonic
number, l is the length of the beam. The next step is to multiply each term of Eq. (1)
by sin(jπx/l), then integrate using boundary conditions within the domain of beam
which yields

V̈ ( j, t) + 2ωbV̇ ( j, t) + � 2
j V ( j, t) = (P/μ) sin

jπc

l
t (3)

where

� 2
j = ( j4π4/ l4)E J/μ (4)

Now let us define Laplace–Carson integral [8] as

V̄ ( j, s) = s

∞∫

0

V ( j, t) exp(−st)dt (5)

Performing Laplace-transform integral on Eq. (3) and applying the initial condi-
tions, one arrives after some algebraic manipulation

V̄ ( j, s) = P jω

μ

s

(s2 + j2ω2)(s2 + 2ωbs + ω̄2
j )

(6)

Taking inverse Fourier transforms and after rearrangement, finally, the expression
of time-dependent response original coordinate in the spatial domain is given by

v(x, t) = 2Pl3

π4E J

∞∑
j=1

1
j2[( j2−α2)2+4α2β2] [ j2( j2 − α2)

sin jω̄t − jα[( j2−α2)−2β2]
( j4−β2)0.5

×
exp(−ωbt) sin� j t − 2 jαβ

{cos jω̄t − exp(−ωbt) cos� j t}] sin( jπx/ l)

(7)

where

α = cl(μ/π2E J )0.5 (8)

β = ωb(μl
4/π4E J )0.5 (9)

Figure 1 shows a simply supported beam traversed by a series of moving load. In
the present study, a series of moving load which has randomness in load magnitude
and inter-arrival time has been considered. In our problem, we denote ts as snapshot
time which is defined as the interval at which the beam response to the number of
loads present on the beam is observed and the probability of failure is studied. Let
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Fig. 1 Simply supported
beam subjected to a series of
moving loads

x

c(t-ts)

P

l

t be the time at which the load entered the beam. For the leading load as shown in
Fig. 1, t

′= 0. The position of each load with reference to the origin is denoted by
c(ts − t

′
).

The methodology adopted is that the inter-arrival time between two loads is con-
sidered to be a random variable which follows the Poisson distribution and so a set
of random numbers which follow Poisson distribution are generated. The suitable
snapshot time as interested can be chosen for the developing the ensemble. For each
sample of a random number, response of the beam at mid-span subject to a series
of the moving load is calculated using linear superposition of the response given by
Eq. (7). Thus, performing repetitive calculation an ensemble consisting of N deflec-
tion time history can be created and statistical averaging across the ensemble yields
mean and standard deviation of deflection.

2.2 Probability of Failure of Beam

In our problem, failure of the beam is attributed to the serviceability condition show-
ing excessive deflection which hampers the performance of the structure. For esti-
mation of probability, we take meantime history plus 2× standard deviation of the
deflection of a slender beam. Let X(t) be deflection history at mid-span. A threshold
limit of the deflection is defined as Xm. A horizontal line Xm is drawn through the
threshold value and then the corresponding time intervals Δti are measured for the
regions which crosses the threshold limit. Hence, the probability of failure (Pf ) is
calculated [9] as

Pf = P(X > Xm) =
k∑

i=1


ti /T (10)
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3 Results and Discussion

The present approach has been illustrated with the help of the following data:
Length of beam = 10 m; mass per unit length = 30 kg/m; Moment of iner-

tia of beam section = 7×10−4 m4. Modulus of elasticity of beam = 2.1 × 1011

N/m2. The magnitude of vehicle load is taken randomly with uniform probability
density function in the range of 80–300 kN. The snapshot time interval was consid-
ered 10–50 s for obtaining the result.

3.1 Effect of Damping Properties of Beam

The damping of the beam is included in the nondimensional parameter β. The mid-
span deflection due to the series of moving load of uniform magnitude 200 kN
with inter-arrival rate 2 s on the beam has been considered to examine the effect
of damping. The mid-span deflection is nondimensionalized with respect to static
deflection of single point load of the same magnitude and has been presented in
Fig. 2. It is seen that only single wave is formed over the beam exhibiting lesser
magnitude as nondimensional parameter β increases.

Fig. 2 Effect of beam damping on the mid-span deflection
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Fig. 3 Maximum deflection at mid-span of the beam for snapshot time 10–30 secs

3.2 Effect of Snapshot Time Interval on Mean and Standard
Deviation of Peak Displacement

We define snapshot time as the interval at which the beam response to a number
of loads present on the beam is observed and the probability of failure is studied.
The snapshot time is taken from 10 to 30 s. The moving load arrival on the beam is
assumed to follow Poisson’s process. The mean arrival rate assumed for generating
the result is taken 2. Figure 3 shows the peak value of mean displacement of the beam
at mid-span while Fig. 4 presents the standard deviation of mid-span displacement.
It is found that in the interval considered, the peak value is fluctuating; however, the
largest value is noted at snapshot time 28 s. This may indicate a sufficient number
of moving loads should pass along the beam for accumulating significant stress. The
study thus remarks that for calculating the service life of a bridge, stress considered
for single-vehicle passage may predict long service life while practically this may
not happen in a busy bridge.

3.3 Probability of Failure

A parametric study has been done considering the mean of the Poisson random
variable effect over the probability of failure of the beam for two different sets
of snapshot intervals. This results in higher values of probability of failure. The
probability of failure as obtained for 10–30 s snap-shot interval is 0.31while the result
for 10–50 s snap-shot interval is 0.39. The probability of failure is based on a threshold
deflection limit of a steel beam, which is chosen as 50% more than permissible limit
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Fig. 4 Standard deviation of deflection at mid-span of beam for snap-shot time 10–30 s

for a steel beam as given in standard code of practice [10]. It is assumed that in the
condition of the highly deformed profile, plastic hinge forms leading to the collapse
of beam. As the mean value increases, the number of loads present on the beam at
higher snapshot times increases which results in higher deflection values of the beam
at those corresponding snapshot times.

4 Conclusion

In the present paper, an analytical expression for the dynamic response of a simply
supported beam subject to a moving load randomly arriving on the beam at constant
speed has been developed. The formulation is based on Fourier sine transform of
original partial differential equation to the ordinary differential equation, which is
again operated by Laplace–Carson integral transformation followed by the inverse
transform. This procedure has applicability to beams of an infinite extent such as
railroad track. The arrival rate of moving load has been considered to be a Poisson
process. The maximum deflection of the beam at the mid-span has been taken to
calculate the probability of failure by assuming certain threshold value of deflection,
in which a steel beam starts to form plastic hinge leading to collapse. Beam damping
has a significant effect on the peak displacement affecting the probability of failure.
As the mean value of the Poisson variable decreases, the number of loads present on
the beam increases which results in higher deflection values of the beam resulting in
higher values of probability of failure.
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Numerical Simulation and Wind Tunnel
Experiment on Pressure and Velocity
Distribution Around the NACA0012
Airfoil for Optimising an Aerodynamic
Model

Motahar Reza, Anindita M. Bhattacharyya, Deepak K. Sadangi
and Aman Kumar

Abstract Airfoil design is a significant facet of aerodynamics. In this paper, opti-
mise aerodynamic model for the NACA0012 airfoil shape has been studied based
the wind tunnel experiment and numerical simulation using ANSYS. The velocity
and pressure distribution around the NACA0012 airfoil has found by tests results
which are compared with numerical simulation. Based on this experiment result,
optimisations shape of the airfoil has been investigated.

Keywords Computational fluid dynamics (CFD) · Airfoil · Lift · Drag ·
NACA0012 · Lift coefficient · Drag coefficient

1 Introduction

Aerodynamics is a branch of science which deals with the analysis of flow over
a body. By evaluation of CFD is an accurate method for solving the problem of
aerodynamics. For the design of aircraft, the most important thing is to consider the
airflow over the airfoil. Airfoil is defined as the cross section of a body that is placed
in an airstream to generate useful aerodynamics force. A fixed-wing aircraft’s wings,
horizontal, and vertical stabilisers are built with airfoil-shaped cross sections, as are
helicopter rotor blades Airfoil are also found in propellers, fans, compressors and
turbines. Any object with an angle of attack in a moving fluid, such as a flat plate,
a building, or the deck of a bridge, will generate an aerodynamic force (called lift)
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perpendicular to the flow. Airfoils are more efficient lifting shapes, able to create
more lift (up to a point) and to generate lift with less drag.

Eleni et al. [1] evaluated the turbulence model for the simulation of the 2-D
subsonic flow over NACA0012. Ghose et al. [2] investigated the flow characteristics
over a symmetrical airfoil in a low-speed wind tunnel. Shih et al. [3] showed a new k-
ε eddy—viscosity model. Safayet et al. [4] evaluated the analysis of NACA6409 and
NACA4412 airfoil. Harris et al. [5] investigated 2-D aerodynamics characteristics of
the NACA0012 airfoil. Goorjian and Guruswamy [6] evaluated transonic unsteady
aerodynamic and aeroelastic calculation about airfoils and wings. The game theory
based evolutionary algorithms (genetic algorithms) to optimize the lift coefficient the
of an NACA0012 based airfoil has been investigated by Want et al. [7] and validated
turbulence model on NACA0012 has been mentioned in the report of NAS Technical
Report [8].

Motivation of this study is to examine the lift and drag characteristics of
NACA0012 airfoil for symmetrical shape and it is having the same dimension of
chamber line and cord line and it has been used in many constructions and engi-
neering applications. Typical examples of such use of the airfoil are the B-17 flying
fortress and Cessna 152 the helicopter Sikorsky S-61 SH-3 Sea King as well as
horizontal and vertical axis wind turbine [1].

The objective of this paper is to study optimize aerodynamic model for airfoil
NACA0012 shape based thewind tunnel experiment results and numerical simulation
results using ANSYS. The velocity and pressure distribution around the NACA0012
airfoil has been examined based on wind tunnel experiments results which are com-
pared with numerical solutions using Ansys based on finite volume scheme. Based
on this improved numerical results, optimization shape NACA012 airfoil has been
investigated and has been improved its performance through ANSYS software.

2 History of Airfoil

Based on measure needs airfoil profile was designed. One was the requirement of
flight, and another was to develop a new concept of slender, sleek and efficient
shapes. In the 1800s, the work on airfoil started with advancements continuing till
today. Ackeret [9] first work on the airfoil and led the initial work on calculating the
lift and drag on a supersonic airfoil. The flat plate was kept at angle of incidence
to incoming airstreams, and the lift force was derived. After that, the curvature was
applied to the leading edges of the flat plate and hence to avoid retardation of airspeed
over it. Many researchers and aerodynamicists are made concentration on how the
modified shapes and sizes of the aerofoil have to be used for their specific research
tasks and application. In a type of research, gliders are an invention that inspiration
to fly along with the air. If airflow passes over the wings from the leading edge,
it needs control over the planes. This was achieved satisfactorily at first and then
controlled with manual adjustments during flight. Great personalities who give their
idea were Wilbur Wright, Horatio F Phillips and Otto Lilienthal etc. next to their
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works, changes were made by National Physics Laboratory (NPL) and NACA in the
1930’s with common names as the 4-digit and 5-digit series of airfoil after testing in
the virtual wind tunnel at Langley Aeronautics Laboratory.

Present study is done on NACA0012 airfoil that is first family series of the airfoil
in the history and it most commonly used for research purpose in most cases. In
NACA0012 airfoil the centre of pressure remains constant at the upper and lower
part of the airfoil. This reduces the problem of Cp variation with varying angle of
attack of air over the airfoil.

3 Mathematical Model Analysis

The drag force is the aerodynamic force that opposes an aircraft’s motion through the
air is called drag. The lift force is the force that opposes the weight of an aeroplane
in the sky.

The lift and drag equations are given by,

dFD = −PdA cos θ + τdA sin θ (1)

dFL = −PdA sin θ − τdA cos θ (2)

Now the drag force is,

FD = ∫ dFD = ∫(−P cos θ + τ sin θ)dA (3)

And the lift force is,

FL = ∫ dFL = −∫(P sin θ + τ cos θ)dA (4)

Drag force and lift force can be written by using the coefficient of drag and
coefficient of lift respectively.

FD = 1

2
.ρ.A.V 2CD (5)

FL = 1

2
.ρ.A.V 2.CL (6)

The lift phenomenon can also be expressed by using Bernoulli’s equation. As per
Bernoulli’s equation for an incompressible steady flow; velocity increases if pressure
decreases and vice versa. When air passes over an airfoil, pressure decreases as the
continuous air flow from leading edge to the upper surface of the airfoil. Velocity
increases in that area. On other hand pressure increases when the air passes through
the bottom of the airfoil and velocity is decreased.
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A distant region is formed between the fluid stream and the body due to liquid
separation from a collection. This low-pressure region behind the body where back-
ward force and recirculation occur is called separated region. If the divided area is
vast, then drag is significant.Wake is defined as the region of air that arises behind the
body around which the fluid flows and extends for some distance. It is the boundary
layer that has separated from the rear of the body. Wake consists of vortices which
are responsible for creating drag by creating negative pressure in that region. In bluff
bodies, Wake doesn’t occur. Aerodynamic model those have attack angle more than
15° there Wake can happen this known as stalling point. Drag and negative pressure
become dominant from a stalling point.

Boundary layer separation depends on the Reynolds number. If Reynolds number
is higher than there will be a greater tendency that the flow is turbulent. Reynolds
number Re is defined by,

Re = ρUx

μ
(7)

where x is the thickness of the boundary layer where the current is laminar to
turbulent.

For all the flows, the solver solves conservation equations for mass and momen-
tum. Additional transport model is solver when the flow is turbulent. The equations
for conservation of mass or continuity equation can be written as follows [1];

∂p

∂t
+ ∇.(ρ �u) = Sm (8)

Equation 8 represents the general form of the mass conservation equation which
is valid for both compressible and incompressible flows. The source Sm is the mass
added to the continuous phase from the dispersed second phase and any user-defined
sources.

∂

∂t
(ρ �u) + ∇.(ρ �u�u) = −∇ p + ∇.( ¯̄τ) + ρ �g + �F (9)

Equation 2 represents the conservation of momentum in an internal reference
frame. Where p is the static pressure, ρ �g and �F are the gravitational and body
force respectively. �F is also contained other model-dependent source terms such as
porous-media and user-defined sources. And ¯̄τ is the stress tensor which is given by;

¯̄τ = μ

[(∇�u + ∇�ut) − 2

3

]
∇.�u I (10)

where μ is the molecular viscosity, I is the unit tensor, and the second term on the
right-hand side is the effect of volume dilation.
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4 Numerical Methodology

In this study, ANSYS CFD version 14.5 is used to simulate high Reynolds number
flow (Re = 3 × 106) past two-dimensional airfoil. Based on the chord length while
the attack angle varied from−5◦ to 5◦ then the flow is assumed as an incompressible
flow. In steady state, the simulation was conducted. The airfoil mesh and geometry
are shown in Fig. 1. The C-type mesh topology was chosen because it can minimize
the skewness of a near wall mesh as the structured quadrilateral element has the
advantages of a higher degree of control and accuracy, lower memory consumption
and a faster convergence rate.

Three mesh configurations of 16,980, 57,140 and 78,488 cells were conducted
for the grid independence test. The pressure coefficient versus distance of y-axis was
plotted and analysed. The results show all the lines of both configurations are almost
overlapped and there is no significant difference in between the 57,140 and 78488.
These indicate that using more fine mesh does not improve the model prediction.
Thus, meshing with a lower number of mesh cells does not sacrifice the solution
accuracy.

Since the Central Processing Unit (CPU) time increases exponentially with the
number of grids, the lower mesh cells, 57,140 were chosen. During CFD simulation
less mesh cell reduce CPU time, which permits a significant amount of case to be run.
The meshing gave a total of 19,325 nodes and had 10,075 elements, and the near wall
of the airfoil is refined using the boundary layer as shown in Fig. 1. The boundary
conditions for the airfoil are shown in Fig. 1. The airfoil was set to solid surfaces with
no slip, and the top and bottom lines were set to the symmetrical boundary condition.

The outlet boundary condition was set to atmospheric pressure, and the inlet
boundary was set to a velocity inlet of 30 m/s. The free stream temperature is 300 K.
The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) scheme was
selected for the pressure-velocity coupling while for spatial discretisation section,

Fig. 1 The grid structure of airfoil 0012 using Ansys
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the green-gauss node based was set. The second order upwind was used for the
momentum, turbulent kinetic energy and turbulent dissipation rate to arrive at the best
solution. Turbulences model from the viscous model which were Spalart-Allmaras,
k-ε Realizable and k-ω SST were selected.

5 Experimental Results and Discussions

The experiment was carried out at NIST Research laboratory at a velocity of 30 m/s
in an open circuit, suction type, and low-speed wind tunnel. The total length of the
wind tunnel is about 6.8 m. Out of which blower section is 1.4 m long. Themaximum
height is approximately 1.5 m. The test section is of 30 cm× 30 cm cross section and
110 cm length with a thick plexiglass window. The suction side of a blower driven
by a 1440 rpm 15 HP 440 V 50 cycles 3 phase AC motor is at the exit of the wind
tunnel. The test section velocity is varied by turning the wheel of the sliding gate.
The maximum speed of the wind tunnel is 70 m/s. in the experiment of the wind
tunnel for the various angle of attack (−5° and 5°) the pressure difference at multiple
points are given by the following tabulation, and from that table also we calculated
the coefficient of lift.

From the Table 1, the lift coefficient can be calculated as,
Pi = ρghi
Fi = Li × B × Pi
ρ = 1000Kg/m3, g = 9.81,
h = manometric reading,
Li = Length of the strip = 0.03m.

B = Width of airfoil = 0.2m.

Vertical component of each pressure force.
Fn = Fi × Cosθi
θi = Angle at pressure force.∑

LF = Lift Force for (0◦) = 41419.65 and Lift Force for (40◦) = 31765.27
Coefficient of Lift = FL/ρ.A. V

2

2
(A = 0.05m2)Projected Area.
(v = 30m/s)Velocity.
(For 0◦)Coefficient of Lift = 41419.65/ρ.A. V

2

2 = 1.84087.

(For 40◦)Coefficient of Lift = 31765.27/ρ.A. V
2

2 = 1.41178.
The analysis starts after visualisation of the output from the simulation process.

The number of node and element set as 19,325 and 10,075 respectively. The result
would be more accurate if the number of nodes and the feature could be increased in
the mesh. By increasing the number of node and element, the finite element analysis
can be performed more accurately.

Figure 2 shows that the lift performance of NACA0012 airfoil for the different
angle of incidence from 0◦ to 30◦. In Fig. 2 it is clear that coefficient of lift increases
with increasing angle of incidence, but after reaching 25◦ the value of lift coefficient
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Fig. 2 Lift co-efficient
versus angle of lift
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decrease suddenly and goes on decreasing as per increasing angle of incidence. The
condition at which the amount of lift coefficient starts to declines is known to be a
stalling situation. Although the lift coefficient increases with angle of attack, the net
effect is reduced efficiency for higher angle of attack. Hence another parameter is
considered to know the performance, i.e. the ratio of lift to drag also is known as the
coefficient of performance.

Figure 3 it is shown that the drag performance of NACA0012 airfoil, the drag
coefficient increaseswhen the angle of incidence goes on increasing. The lift and drag
performance of NACA0012 airfoil for the different angle of incidence considered
from 0◦ to 30◦.

From the simulation, CL and CD were found for different angle of attack. Finally,
the ratio of CL and CD was calculated in Fig. 4 in this figure the positive pressure
was created at the lower surface while negative force act at the upper surface of the
airfoil thus generating lift. Separation starts at the trailing edge thus forming Wake
with negative pressure at that region.

Fig. 3 Drag co-efficient versus angle of incidence
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Fig. 4 Pressure distribution around an airfoil

6 Optimization of NACA-0012 Airfoil

The optimisation is defined as the technique through which we can change the shape
of airfoil so that the drag force should be minimised and lift force should be max-
imised. We use ANSYS adjoint solver as an optimisation technique. In ANSYS
adjoint solver we define three components, i.e. lift force, drag force and lift-drag
ratio. First of all, we calculated the lift-drag ratio for the original shape is 12.15.
Then we change the mesh around the airfoil by using mesh—morphing tool and then
we again solved, and then we get the lift-drag ratio as 13.95. The optimised shape of
the airfoil is displayed in Fig. 5.

7 Conclusions

In this paper, the experimental results and numerical simulation results are used to
design a optimise airfoil shape using ANSYS software. It is noted from the obser-
vation that the lift to drag ratio is more than the original form of the airfoil. The
optimisation of NACA-0012 L-D ratio increases from the original airfoil, i.e. 13.95.
Hence, the lift force is maximised and drags force in minimised in our experiment.
The airfoil shapes required a positive angle of attack to generate lift, but the cam-
bered airfoil can generate lift at zero angles of attack. This “turning” of the air in the
vicinity of the airfoil creates curved streamlines which results in lower pressure on
one side and higher pressure on the other. This pressure difference is accompanied by
a velocity difference, via Bernoulli’s principle, so the resulting flow field about the
airfoil has a higher average velocity on the upper surface than on the lower surface.



346 M. Reza et al.

Fig. 5 Pressure distribution after optimising the shape of the airfoil
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